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A Note to the Reader

AN IMAGINARY TALE has a very strong historical component to it, but that does
not mean it is a mathematical lightweight. But don’t read too much into that
either. It is not a scholarly tome meant to be read only by some mythical, elite
group, such as the one described in the 1920s fable that claimed there were
only twelve people in the world who really understood Einstein. Ï21 has
long labored under a similar false story of unfathomable mystery. The French
philosophical genius of the Enlightenment, Denis Diderot, wrote of mathe-
maticians that they “resemble those who gaze out from the tops of high moun-
tains whose summits are lost in the clouds. Objects on the plain below have
disappeared from view; they are left with only the spectacle of their own
thoughts and the consciousness of the height to which they have risen and
where perhaps it is not possible for everyone to follow and breathe [the thin
air].” Well, in this book the air is almost always at sea-level pressure. Large
chunks of this book can, in fact, be read and understood by a high school
senior who has paid attention to his or her teachers in the standard fare of pre-
college courses. Still, it will be most accessible to the million or so who each
year complete a college course in freshman calculus. It is not a textbook, but I
do think it could be profitably read by students as a supplement to the more
standard presentations of mathematics. I am an electrical engineer, not a mathemati-
cian, and the style of the writing reflects the difference. Indeed, I have taken
advantage of my freedom from the usual dictates of textbook pedagogy—
which in its worst form can be pedantic—to write in a casual and, I hope,
entertaining style. But when I need to do an integral, let me assure you I have
not fallen to my knees in dumbstruck horror. And neither should you. The
power and beauty of complex numbers and functions, and the amazing story
of their discovery, will amply repay any extension of concentration that the
relatively harder parts may demand.
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THE HARDCOVER EDITION of this book appeared in 1998, and for the eight long
years since, I have had to go to bed every single night thinking about dumb
typos, stupid missing minus signs, and embarrassingly awkward phrases. Each
has been like a sliver of wood under a fingernail. None of them was life threat-
ening, of course, but together they made my intellectual life less than perfect.
For the first six months after the book first came out I’d wake up at night, mut-
tering to myself much as the eccentric Victorian electrical physicist Oliver
Heaviside had done when he was approaching his sixties: “I must be getting
as stupid as an owl.” Those were interesting times—the life of the elderly
mathematics writer can be a stressful one.

But no more! Over the years readers have generously taken the time to
send me their discoveries of my oversights, and with their lists in one hand
and a red pen in the other, I have joyfully pulled those irritants out of this
paperback edition. Probably not all of them, alas, but still, I do feel better
(a feeling that will no doubt vanish upon receiving the next e-mail or letter
telling me of one or more errors I have missed). Two long, detailed letters
I received in 1999 from Professors Robert Burckel (Dept. of Mathematics,
Kansas State University) and David Wunsch (Dept. of Electrical Engineering,
University of Massachusetts at Lowell) were particularly helpful. Princeton
University Press published the sequel to this book, Doctor Euler’s Fabulous
Formula, earlier this year, and so the appearance so soon after of a corrected
and updated edition of An Imaginary Tale is particularly gratifying. I thank
my editor at Princeton, Vickie Kearn, for providing me this opportunity to
revisit the book. Now, on to what’s changed in this edition besides corrected
misprints.

Actually, and perhaps somewhat inconsistently, I’ll start by mentioning some
things that haven’t changed. While I carefully read everything that readers
sent me, and while I admit that the vast majority of what was sent to me ended
up having a significant impact on the corrections to the book, there were a few
exceptions. Let me give you just two examples of this. To start, one reader
took me to task rather severely for declaring (on p. 9) that del Ferro’s break-
through idea that cracked the depressed cubic equation was “of the magician
class.” No, no, no, said the reader (who claimed he was a professional mathe-
matician), that was merely a “good idea” that lots of people could have had.
Well, to that I can only say that nobody before del Ferro did have that idea.
Whatever might be asserted about what mathematicians might have done, or
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could have done, or even should have done in the past, the fact remains that it
was del Ferro who solved the depressed cubic. I think my sophisticated critical
reader has just forgotten how much he himself must have been impressed when
he first saw how to solve a cubic equation.

“Familiarity breeds contempt” is a cliché precisely because it is true. As an
example of what I’m getting at here, every good high-school math student
today knows how to prove is irrational, but that doesn’t mean it’s now just
a ho-hum demonstration. Twenty-five centuries or so ago the discovery of irra-
tional numbers was a revolutionary event in mathematics, and good students
still oooh and aaah when they first see the proof for . In the same way, I
think my critical reader is dead wrong about the depressed cubic, and so I have
not changed a single word in the book’s discussion of del Ferro.

As a second example of “an error that wasn’t,” a reader wrote to complain
that in figure 5.8 (the circuit diagram of a phase-shift oscillator) the voltage u
is to the right of voltage v, but in the text I refer to the voltage u being to the
left. This assertion stopped me dead in my tracks for a moment (I had
confused left and right?—my Lord, I must be dumber than an owl!), until
I realized he was looking at the resistor-capacitor feedback network in the
circuit, despite the fact that in the text I specifically state I am talking about
the voltages on the input/output terminals of the amplifier connected to that
network. (Thank the Lord, I’m not dumber than an owl! Such are the little
things that give pleasure to the mind of an old mathematics writer at mid-
night.) I say more about this circuit in just a bit. That same reader (who, by
the way, is a professor of mathematics) also claimed to be completely
bamboozled by my occasional use of the symbol, e.g., when I write r �

instead of re i� to denote the vector of length r at angle � to the positive real
axis. I think he was exaggerating just a bit. I agree that is a nonstandard
mathematical notation (electrical engineers, on the other hand, use it all the
time), but I think mathematicians ought to seriously consider adopting it as
well; it is such a natural notation, looking like the angle concept it represents.

By far the greatest reader correspondence was generated by box 3.3
(“Exponential Madness” on p. 79), which presents a purported “derivation” of
the result for all integer n: the puzzle is, of course, that this state-
ment is actually true only for the single case of n = 0. When I wrote box 3.3 my
intention was simply to create some initial “perplexation” that would then be
cleared away by the reader himself after thinking about the discussion on the
preceding page (box 3.2, “Raising a Complex Number to a Complex Power”);
and if not then, then later on by the material in section 6.9 (“Many-Valued
Functions”). The key clue to what has happened in the “derivation” of box 3.3

1 = e-4�2n2

∠

∠∠

12

12
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is the phrase about mathematical “operations that appear [my emphasis] to
always be valid.” But are all those operations in box 3.3 really valid?

For example, we learn in high-school algebra that if z is real then

(a) eln(z) = z

and

(b) ln(ez) = z.

If z is complex, however, then (a) is still true (indeed, I use it in box 3.2 when
calculating (1 + i)(1+i)), but (b) may not be. To illustrate the problems we can
run into with (b), suppose that we start with Euler’s famous identity ei� + 1 = 0,
i.e., with ei� = �1. Squaring both sides gives ei2� = 1, and then using (b) says
ln(e2�i) = ln(1), i.e, that 2�i = 0. I think we’d all agree that isn’t right! This is,
of course, the same sort of quandry we have in box 3.3. The resolution comes
when we realize that 1 isn’t just ei2�, but rather is the infinity of values ei2�n,
where n is any positive or negative integer, as well as zero and one. What we
really should write, then, is not ei2� = 1 but rather ei2�n = 1, which, when we
use (b), gives ln(ei2�n) = ln(1) = i2�n. That is, what we have actually derived
is that ln(1) is a complex quantity that, more precisely, is a pure imaginary,
i.e., ln(1) has a zero real part. We learn in high-school algebra about the zero
real part (ln(1) = 0 in high school), but the complete answer is that ln(1) has
an imaginary part, too, which, while it can be zero, can also be non-zero (for
n = 1, 2, . . . ) as well.

You’ll find the explanation to the puzzle of box 3.3 in the new appendix D
at the end of this book, but if you’re a new reader, you’ll have a lot more fun
if you try to figure it out for yourself before looking there.

The discussion in section 5.1 on Kasner’s problem also provoked a number of
letters from disbelieving readers. One, an MIT professor, wrote to say “Kasner’s
example clobbered my intuition” and that “I have decided that Kasner’s example
is bogus.” Now Kasner did indeed have a reputation for possessing a wicked
sense of humor (he was the originator, for example, of the amusing names
of googol and googolplex for the numbers 10100 and 10googol, respectively), but as
a mathematician he was quite serious. In addition to his 1914 paper that I cite in
the book (note 2 for chapter 5 on p. 245), you can find even more on
path and chord lengths of complex-valued functions in a second paper by Kasner
himself (“Complex Geometry and Relativity: Theory of the ‘Rac’ Curvature,”
Proceedings of the National Academy of Sciences of the United States of America,
March 15, 1932, pp. 267–274), and in yet another paper that appeared ten years
later (George Comenetz, “The Limit of the Ratio of Arc to Chord,” American
Journal of Mathematics 64 (1942): 695–713).

;;



In section 5.6 I state that the phase-shift feedback oscillator circuit in figure 5.8
was the basis for the first product manufactured by today’s multibillion-dollar
corporate giant Hewlett-Packard. Stanford University electrical engineering pro-
fessor Gene Franklin wrote in 2004 to correct me. As he put it, “You are close but
no cigar.” The oscillator circuit that inspired the first HP product (the HP-200A
audio oscillator) was actually what electrical engineers call a Wien Bridge oscil-
lator, about which you can find more (if interested) in any undergraduate book on
electronics. Or, if you prefer getting your information from the horse’s mouth,
look up the 1939 Stanford thesis for the Engineers degree (an “everything but the
dissertation” Ph.D.) in which William Hewlett (1913–2001) describes his circuit.
My thanks, then, to Professor Franklin—as a graduate of Stanford’s EE program
myself, I should have checked my story with more care. But rest assured that
all of the complex-valued math used to analyze the phase-shift oscillator in sec-
tion 5.6 is okay! And, as mentioned earlier, the voltage labels in figure 5.8 are
okay, too.

I did, however, receive a number of letters from readers almost pleading for
a derivation of the third-order differential equation that I claim (on p. 139)
describes the oscillator’s resistor-capacitor feedback network. You’ll find a
derivation in the new appendix E at the end of the book. I have to admit that
to do this myself, I had to unleash the awesome power of the Laplace trans-
form (otherwise I, too, get hopelessly lost in all the algebra); but in appendix E
I present a brief explanation of the transform, and so I think even if you’ve
never seen it before you’ll be able to follow the calculations. The appearance
of the Laplace transform in the paperback edition of this book is appropriate,
since the transform’s proper mathematical foundation is in complex function
theory. The elementary use I make of it in appendix E avoids the “complex”
details, but still, I really should have said more about the transform in
the book’s original epilog (section 7.8), beyond that of the throwaway line
near the bottom of page 222. Appendix E helps correct that deficiency.
Mathematicians and engineers alike use the Laplace transform routinely to
solve many important differential equations.

In section 6.3 I overlooked an important reference that appeared the year
before this book was published: Mark McKinzie and Curtis Tuckey, “Hidden
Lemmas in Euler’s Summation of the Reciprocals of the Squares,” Archive for
History of Exact Sciences 51 (1997): 29–57.

The book’s discussion in section 6.4 on the Riemann hypothesis, the most
famous unsolved problem in mathematics (and almost certainly among the
deepest of all problems in the history of mathematics), needs to be updated.
I write on page 154 that all of the first 1.5 � 109 complex zeros of the zeta func-
tion have been verified by computer calculation to, without exception, lie on the

PREFACE TO THE PAPERBACK EDITION
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so-called critical line z = 1⁄2 + ib. As of October 2004 that heroic achievement
had been far surpassed; it is now known that all of the first 1013 (yes, the first
ten trillion) complex zeros of �(z) are on the critical line. Riemann himself
calculated just the first three (making a slight error in the value of b for the third
zero) before conjecturing that all the complex zeros are on the critical line.
Modern computers can process many millions of zeros in a single day, and, as
a measure of how explosive has been the growth over the last fifty years of the
business of locating the zeros, as recently as 1958—the year I graduated from
high school—fewer than the first 36,000 zeros had been verified to be on the
critical line. Even my little, not-so-new laptop computer can do in mere min-
utes what it would have taken an enormous expenditure of effort by Riemann
to do. The plot in figure P.1, for example, shows the absolute value of �(z) for
z = 1⁄2 + ib as b varies from 0 to 27, and you immediately see that |� (z)| = 0 (and
so �(z) = 0) at three points (b = 14.13, 21.02, and 25.01, which are the imagi-
nary parts of Riemann’s first three zeros).

Figure P.1. The First Three Non-Trivial Zeros of the Riemann Zeta Function.
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I must admit that my personal effort in creating figure P.1 amounted to
simply writing a few lines of MATLAB code; then, while I exhausted
myself making a hot cup of coffee (even with that elementary task my
microwave actually did all the work!), my laptop computer evaluated
|�(z)| at each of 2,000 evenly spaced values of b over the interval 0 to 27
and produced figure P.1 in about a minute. (What do you think Riemann
could have done with such a gadget?) Of course, these computer calcula-
tions mean nothing to the pure mathematician. The discovery of even just
one complex root off of the critical line would be instantly fatal to the
Riemann hypothesis. And there is nothing in known mathematics that says
that might not actually be the case. As one scholar of the zeta function,
H. M. Edwards, has written, “ . . . unless some basic cause is operating
which has eluded mathematicians for 110 years [142 years now, as I write],
occasional [complex] roots off the [critical] line are altogether possible.”1

That is, despite the known chain of trillions of consecutive zeros on the crit-
ical line, Riemann might have simply been wrong with his conjecture. As
Edwards goes on to write, “Riemann’s insight was stupendous, but it was
not supernatural, and what seemed ‘probable’ to him in 1859 might seem
less so today.”2

By the way, now that I’ve mentioned the critical line, here’s another
pretty little calculation for you to try your hand at (one reader wrote to
complain that the book, despite not being either a textbook or a puzzle
book, didn’t have enough problems to challenge him). After you have
read through the material on the gamma function and Euler’s famous reflec-
tion formula for the gamma function (sections 6.12 and 6.13), see if you
can show that the absolute value of the gamma function on the critical
line is

You can find a solution in the new appendix F at the very end of the book, but
don’t peek until you’ve given it a good try. (You’ll find that keeping in mind
the concept of the conjugate of a complex quantity will help.) Calculating the
value of �(z) on the critical line is vastly more difficult; indeed, the best that
has been done, so far, is to find upper bounds on the value of as
a function of b.3

Up to this point, my little math errors have gone unmentioned; I have qui-
etly made each correction to a wrong sign, a wrong exponent, etc., and then
passed on in silence to the next. In section 6.7, however, the letters from

ƒz11/2 + ib2 ƒ

ƒ ≠1z2 ƒ z= 1/2+ ib =
A

π
cosh1πb2

.
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Professors Burckel and Wunsch caught me being just a little too clever for my
(and your) own good. I have decided in this case to let my embarrassing lapses
stand, and instead to simply quote from the letters. That way you can get the
corrections and have a good laugh at me at the same time. (You do get your
money’s worth with a Princeton math book!) The problem is with a few of my
manipulations with , e.g., when I write on page 160 “This goes
wrong at the step where �1 is replaced with i2,” and on page 161 where I write
“never replace �i/i with �1 followed by using i2 for the �1.” In the first case,
Professor Wunsch wrote “There is nothing wrong with this [replacing �1
with i2]. The error occurs here:

The problem is that the set of values of log z2 is not identical to the set of val-
ues of 2 log z. Consider the equation

ln i2 = 2 ln i.

Suppose you take the left side as ��i. The set of values on the right side is

.

There is no integer k that will give you equality.” And for the second case,
Professor Burckel wrote “I think if �1 can’t replace �i/i and i2 can’t replace
�1, then we’ve clearly left mathematics for mysticism. The explanation for all
this is rather the failure of the familiar homomorphic property of the complex
logarithm . . . log(ab) need not equal log(a) + log(b).” Well, what can I say?
The two professors are right. I was trying to say what I wanted to say without
using words like homomorphic, and ended up making a bit of a mess of it.
Your author hangs his head in contrite shame.

Professor Burckel’s letter to me also corrects the statement I make on
page 221 that, before Laurent’s work, “Cauchy was unaware of the power
series expansion form for analytic functions.” As Professor Burckel wrote,
“This is not true. Cauchy derived the power series representation in a famous
1831 Turin memoir. Laurent’s contribution was the bilateral representation
around a singularity.”

Now, one last comment. Once you’ve finished this book you are hereby
authorized to boldly sing the following song (preferably to yourself, in the
shower). This authorization is good for as long as you please—or at least until
your Significant Other tells you (as did mine) to please shut up. As far as

2 c ia
π
2

+ 2kπb d = i3π + 4kπ4

i

2
ln i 2 = 2 ln i.

i = 2-1
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Mine eyes have seen the glory of the Argand diagram,
They have seen the i’s and thetas of De Moivre’s mighty plan.
Now I can find the complex roots with consummate elan,
With the root of minus one.

(Chorus)

Complex numbers are so easy;
Complex numbers are so easy;
Complex numbers are so easy;
With the root of minus one.

In Cartesian co-ordinates the complex plane is fine,
But the grandeur of the polar form this beauty doth outshine.
You’ll be raising i + 40 to the power of 99,
With the root of minus one.

Chorus

You’ll realize your understanding was just second rate,
When you see the power and magic of the complex conjugate.
Drawing vectors corresponding to the roots of minus eight,
With the root of minus one.

Chorus

I do hope you enjoy this book!

paul.nahin@unh.edu
Lee, New Hampshire
July 2006

The Complex Number Song (tune: 
The Battle Hymn of the Republic)

I have been able to determine, the author is unknown, but he or she obviously
was—or is—one of great wit:
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Preface

Long ago, in a year so far in the past (1954) that my life then as a high school

freshman now seems like a dream, my father gave me the gift of a subscription

to a new magazine called Popular Electronics. He did this because he was a

scientist, and his oldest son seemed to have talents in science and mathematics

that were in danger of being subverted by the evil of science fiction. I had, in

fact, given him plenty of reason for such concern. I devoured science fiction in

those days, you see, often sitting in the kitchen at eleven at night eating a huge

sandwich and reading a novel set on Mars a million years in the future. Dad,

of course, would have preferred that I be reading a book on algebra or physics.

Being a clever man, he decided not to simply forbid the science fiction, but

rather to outflank the science fiction stories by getting me to read technical

stories, like the “Carl and Jerry” tales that appeared each month in Popular

get involved in some exciting adventure in which their technical knowledge

saved the day. They were a 1950s amalgamation of the Hardy Boys and Tom

Swift. My father’s plan was to get me to identify with Carl and Jerry, instead

of with Robert Heinlein’s neurotic time travelers.

Well, Dad’s devious plan worked (although I never completely gave up the

science fiction), and I got hooked not only on Carl and Jerry but also on the

electronic construction projects the magazine featured in each issue. I learned

how to read electrical schematics from the magazine, whose editors used the

same exploded-view, pictorial wiring diagrams that became so well known to

all who ever built an electronic, mail-order kit. I constructed a home workshop

in the garage behind the house, and a lot of amazing gadgets were built

designers had intended.

My greatest success was an “applause meter” that was used by the judges at

fier, and a 500 microampere meter wired into the amplifier output was all it

really was. But what really had the greatest impact on me wasn’t that gadget,

or any of the others that I built during my high school years. It was one that, in

a burst of youthful enthusiasm exceeded only by my enormous ignorance of

theory, I didn’t realize is impossible to build.

When the April 1955 issue of Popular Electronics arrived in the mail, one

Electronics. Carl and Jerry were two high school electronics whiz kids

geeks or nerds, in today’s unattractive  terms who managed each month to

there although not all of them worked, or at least not in the way  the original

the high school talent show one year a loudspeaker pick-up, an audio ampli-

of the inside photographs displayed an incredible sight a desk lamp emitting
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not a cone of light, but, instead, a cone of darkness! My eyes bugged out when

I saw that. What wondrous science was at work here, I gasped (metaphorically

speaking, of course, because what fourteen-year-old kid do you know, other

than in a TV sitcom, who actually talks like that?). The secret, according to the

accompanying article, was that the lamp was not plugged into a normal power

outlet, but rather into an outlet delivering contra-polar power. Another photo-

was covered with ice! And another displayed a frozen ice tray on a hot plate,

except it was now a cold plate because it was plugged into contra-polar power.

I looked at those three photographs, and I remember my pulse rate elevated

and I felt a momentary spell of faintness. This was simply wonderful.

Well, of course it was all just a huge editorial joke, aided by some nifty

photographic retouching. When I showed the article to my father, he glanced

at it and then looked at me with what I now know was a mixture of pity and

amusement. Dad wasn’t an electrical engineer or a physicist, but with a Ph.D.

in chemistry he wasn’t totally ignorant of technical matters that fell outside

the realm of benzene rings and molecular bonds. He immediately suspected

that “contra-polar power” probably violated perhaps seven different funda-

mental principles of physics. Rather than laughing at me, however, he simply

said, “Son, look at the date on the cover.” I had not noticed the “April” before,

or even the subtitle, “In keeping with the first day of April,” but I quickly

understood the significance. I still remember my enormous embarrassment at

having been so completely taken in. Even I could recognize the “spoofiness”

of contra-polar power once I got to the end of the article and read its footnote

4. It listed a phony citation, as follows: “Transactions of the Contra-Polar

ment found in a flying saucer).”

Like any good spoof, it had lots of tantalizing truths in it, but presented in a

slightly goofy way. To give you a sample of the tone of the article, here’s a

typical passage: “When ‘contra-polar energy’ is applied to an ordinary table

lamp, light is not produced, but taken away, and the area affected by the lamp

becomes dark. (Editor’s Note: This phenomenon should not be confused with

‘black light,’ so-called, which actually is merely light without any visible

elements. As far as the human eye is concerned, ‘black light’ is equivalent to

zero light; the light produced by contra-polar energy might be designated

‘negative light,’ since it subtracts from light already present.)”

To set readers up for an “explanation” of the astounding properties of

contra-polar energy, the very next sentence makes the following assertion,

hilarious now, as I read it decades later, but quite logical to me in 1955: “One

of the reasons why atomic energy has not yet become popular among home

graph showed a soldering iron plugged into the contra-polar power outlet it

Energy Commission, Vol. 45,  pp. 1324 1346 (Ed. Note A reprint of a docu-
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experimenters is that an understanding of its production requires a knowledge

of very advanced mathematics.” Just algebra, however, would strip bare

contra-polar energy, or so claimed the article. Contra-polar power “worked”

by simply using the negative square root (instead of the positive root) in calcu-

lating the resonant frequency in a circuit containing both inductance and ca-

pacitance. The idea of negative frequency was intriguing to my mind (and

electrical engineers have actually made sense out of it when combined with

��1), but then the editors played a few more clever tricks and came up with

negative resistance.

As everybody knows who likes to curl up in a warm bed at night under an

electric blanket, or who likes a crunchy piece of toast in the morning, resistors

(positive resistors) get hot when conducting an electric current. “Obviously,”

the soldering iron and the ice cube tray photographs. (The logic, if you can

call it that, behind the cone of darkness out of a desk lamp still eludes me,

however.) Now, there really is such a thing as negative resistance, and it has

long been known by electrical engineers to occur in the operation, under cer-

tain specific conditions, of electric arcs. Such arcs were used, for example, in

the very early pre-electronic days of radio to build extremely powerful trans-

mitters that were able to broadcast music and human speech, rather than just

the on-off telegraph code signals that were all the Hertz and Marconi spark-

gap transmitters could send. Later, in college, I would learn that the operation

of radio is impossible to understand, at a deep theoretical level, without an

understanding of ��1.

All of this was more fascinating to my young mind than I can tell you, even

forty years later, even with a somewhat increased vocabulary. It showed me

that there were big, exciting ideas in the world of electronics, bigger than I had

ever imagined while out in the garage tinkering with my gadgets. And later,

when in my high school algebra classes I was introduced to complex numbers

as the solutions to certain quadratic equations, I knew (unlike my mostly per-

plexed classmates) that they were not just part of a sterile intellectual game. I

already knew that ��1 was important to electrical engineers, and to their

ability to construct truly amazing devices.

Three and a half years after reading about contra-polar power, I was sitting

in an early morning train out of Los Angeles’ Union Station, heading north to

Palo Alto on my way to join the Stanford University freshman class of 1958.

Over the years that Carl and Jerry appeared in Popular Electronics, the tales

chronicled their progression from high school freshmen to electrical engineer-

ing students at the fictional “Parvoo University” and, like them, I was taking

the first step on the career path I’ve trodden ever since, as an electrical engi-

then, a negative resistor should cool  down when conducting a current hence
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neer. Once at Stanford I had more than enough to fill my days with reading

and so I quickly drifted away from Popular Electronics, but it had been there

at just the right time for me; Dad’s plan had worked better than he could have

possibly hoped. In a certain sense, then, my whole professional life has been

the result of my youthful fascination with the mystery of ��1 and that is why

I have written this book.1

In a letter (dated January 13, 1852) to his English friend Augustus De Mor-

gan, the Irish mathematician William Rowan Hamilton wrote, “I see that

history of ��1.” Five days later De Morgan replied, “As to a history of

��1, it would be no small job to do it well from the Hindoos downwards.”

Well, neither Hamilton or De Morgan ever wrote that history and, as far as I

know, nobody else has either. And so that’s another reason why I wrote this

book. I simply wanted to learn more.

My one great regret is that Dad isn’t here to read it. But if he were, I hope

he would be pleased at the result of his investment in a magazine subscription

nearly a half century ago.

either you or I but I hope it will be you must write, some time or other, a
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Introduction

In 1878 a pair of brothers, the soon-to-become-infamous thieves Ahmed and
Mohammed Abd er-Rassul, stumbled upon the ancient Egyptian burial site in
the Valley of Kings, at Deir el-Bahri. They quickly had a thriving business
going selling stolen relics, one of which was a mathematical papyrus; one of
the brothers sold it to the Russian Egyptologist V. S. Golenishchev in 1893,
who in turn gave it to the Museum of Fine Arts in Moscow in 1912.1 There it
remained, a mystery until its complete translation in 1930, at which time the
scholarly world learned just how mathematically advanced the ancient Egyp-
tians had been.

In particular, the fourteenth problem of the Moscow Mathematical Papyrus
(MMP), as it is now called, is a specific numerical example of how to calcu-
late the volume V of a truncated square pyramid, the so-called frustum of a
pyramid. This example strongly suggests that the ancient Egyptians knew the
formula

V h a ab b= + +1

3
2 2( ),

where a and b are the edge lengths of the bottom and top squares, respectively,
and h is the height. One historian of science has called this knowledge
“breath-taking” and “the masterpiece of Egyptian geometry.”2 The derivation
of this formula is a routine exercise for anyone who has had freshman cal-
culus, but it is much less obvious how the Egyptians could have discovered it
without a knowledge of integral calculus.3

While correct, this result does have one very slight stylistic flaw. The values
of a and b are what a modern engineer or physicist would call an “observ-
able,” i.e., they are lengths that can be directly determined simply by laying a
tape measure out along the bottom and top edges of the frustum. The value of
h, however, is not directly measurable, or certainly it isn’t for a solid pyramid.
It can be calculated for any given pyramid, of course, using a knowledge of
geometry and trigonometry, but how much more direct it would be to express
the volume of the frustum in terms not of h, but of c, the slant edge length.
That length is directly measurable. This was finally done but, as far as is
known today, not until the first century a.d. by the great mathematician-
engineer Heron of Alexandria, who is usually called a Greek but may have
actually been an Egyptian. It is, in fact, an elementary problem in geometry to
show that
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h c
a b= − −





2
2

2
2

.

Now, let’s skip ahead in time to 1897, to a talk given that year at a meeting
of the American Association for the Advancement of Science by Wooster
Woodruff Beman, a professor of mathematics at the University of Michigan,
and a well-known historian of the subject. I quote from that address:

We find the square root of a negative quantity appearing for the first time in the
Stereometria of Heron of Alexandria . . . After having given a correct formula
for the determination of the volume of a frustum of a pyramid with square base
and applied it successfully to the case where the side of the lower base is 10, of
the upper 2, and the edge 9, the author endeavors to solve the problem where the
side of the lower base is 28, of the upper 4, and the edge 15. Instead of the
square root of 81 2 144 required by the formula, he takes the square root of 144
2 81 . . . , i.e., he replaces Ï21 by 1, and fails to observe that the problem as
stated is impossible. Whether this mistake was due to Heron or to the ignorance
of some copyist cannot be determined.4

That is, using a 5 28, b 5 4, and c 5 15 in his formula for h, Heron wrote:

h = − −



 = − = − − = −( ) ( ) .15 2

28 4

2
225 2 12 225 144 144 81 1442

2
2

The next, magnificent step would of course have been to write h 5 Ï263,
but the Stereometria records it as h 5 Ï63, and so Heron missed being the
earliest known scholar to have derived the square root of a negative number in
a mathematical analysis of a physical problem. If Heron really did fudge his
arithmetic then he paid dearly for it in lost fame. It would be a thousand years
more before a mathematician would even bother to take notice of such a
thing—and then simply to dismiss it as obvious nonsense—and yet five hun-
dred years more before the square root of a negative number would be taken
seriously (but still be considered a mystery).

While Heron almost surely had to be aware of the appearance of the square
root of a negative number in the frustum problem, his fellow Alexandrian two
centuries later, Diophantus, seems to have completely missed a similar event
when he chanced upon it. Diophantus is honored today as having played the
same role in algebra that Euclid did in geometry. Euclid gave us his Elements,
and Diophantus presented posterity with the Arithmetica. In both of these
cases, the information contained was almost certainly the results of many
previous, anonymous mathematicians whose identities are now lost forever to
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history. It was Euclid and Diophantus, however, who collected and organized
this mathematical heritage in coherent form in their great works.

In my opinion, Euclid did the better job because Elements is a logical theory
of plane geometry. Arithmetica, or at least the several chapters or books that
have survived of the original thirteen, is, on the other hand, a collection of
specific numerical solutions to certain problems, with no generalized, theoreti-
cal development of methods. Each problem in Arithmetica is unique unto
itself, much like those on the Moscow Mathematical Papyrus. But this is not
to say that the solutions given are not ingenious, and in many cases even
diabolically clever. Arithmetica is still an excellent hunting ground for a mod-
ern teacher of high school algebra looking for problems to challenge, even
stump, the brightest of students.5

In book 6, for example, we find the following problem (number 22): Given
a right triangle with area 7 and perimeter 12, find its sides. Here’s how Di-
ophantus derived the quadratic equation 172x 5 336x2 1 24 from the state-
ment of the problem. With the sides of the right triangle denoted by P1 and P2,
the problem presented by Diophantus is equivalent to solving the simul-
taneous equations

P P

P P P P

1 2

1 2 1
2

2
2

14

12

=

+ + + =

,

.

These can be solved by routine, if somewhat lengthy, algebraic manipulation,
but Diophantus’ clever idea was to immediately reduce the number of vari-
ables from two to one by writing

P
x

P1 2
1

14= = and x.

Then the first equation reduces to the identity 14 5 14, and the second to

1
14

1
196 122

2

x
x

x
x+ + + = ,

which is easily put into the form given above,

172x 5 336x2 1 24.

It is a useful exercise to directly solve the original P1, P2 equations, and then
to show that the results are consistent with Diophantus’ solution.

Diophantus wrote the equation the way he did because it displays all the
coefficients as positive numbers, i.e., the ancients rejected negative numbers
as being without meaning because they could see no way physically to inter-
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pret a number that is “less than nothing.” Indeed, elsewhere in Arithmetica
(problem 2 in book 5) he wrote, of the equation 4x 1 20 5 4, that it was
“absurd” because it would lead to the “impossible” solution x 5 24. In accor-
dance with this position, Diophantus used only the positive root when solving
a quadratic. As late as the sixteenth century we find mathematicians referring
to the negative roots of an equation as fictitious or absurd or false.

And so, of course, the square root of a negative number would have simply
been beyond the pale. It is the French mathematician René Descartes, writing
fourteen centuries later in his 1637 La Geometrie, whose work I will discuss
in some detail in chapter 2, to whom we owe the term imaginary for such
numbers. Before Descartes’ introduction of this term, the square roots of neg-
ative numbers were called sophisticated or subtle. It is just such a thing, in
fact, that Diophantus’ quadratic equation for the triangle problem results in,
i.e., the quadratic formula quickly gives the solutions

x = ± −43 167

168
.

But this is not what Diophantus wrote. What he wrote was simply that the
quadratic equation was not possible. By that he meant the equation has no
rational solution because “half the coefficient of x multiplied into itself, minus
the product of the coefficient of x2 and the units” must make a square for a
rational solution to exist, while

172

2
336 24 668

2



 − = −( )( )

certainly is not a square. As for the square root of this negative number,
Diophantus had nothing at all to say.

Six hundred years later (circa 850 a.d.) the Hindu mathematician Ma-
haviracarya wrote on this issue, but then only to declare what Heron and
Diophantus had practiced so long before: “The square of a positive as well as
of a negative (quantity) is positive; and the square roots of those (square
quantities) are positive and negative in order. As in the nature of things
a negative (quantity) is not a square (quantity), it has therefore no square root
[my emphasis].”6 More centuries would pass before opinion would
change.

At the beginning of George Gamow’s beautiful little book of popularized
science, One Two Three . . . Infinity, there’s the following limerick to give the
reader a flavor both of what is coming next, and of the author’s playful sense
of humor:



I N T R O D U C T I O N

7

There was a young fellow from Trinity
Who took Ï`.
But the number of digits
Gave him the fidgets;
He dropped Math and took up Divinity.

This book is not about the truly monumental task of taking the square root of
infinity, but rather about another task that a great many very clever mathemati-
cians of the past (certainly including Heron and Diophantus) thought an even
more absurd one—that of figuring out the meaning of the square root of minus
one.
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The Puzzles of Imaginary Numbers

1.1 The Cubic Equation

At the end of his 1494 book Summa de Arithmetica, Geometria, Proportioni et
Proportionalita, summarizing all the knowledge of that time on arithmetic,
algebra (including quadratic equations), and trigonometry, the Franciscan friar
Luca Pacioli (circa 1445–1514) made a bold assertion. He declared that the
solution of the cubic equation is “as impossible at the present state of science
as the quadrature of the circle.” The latter problem had been around in mathe-
matics ever since the time of the Greek mathematician Hippocrates, circa 440
b.c. The quadrature of a circle, the construction by straightedge and compass
alone of the square equal in area to the circle, had proven to be difficult, and
when Pacioli wrote the quadrature problem was still unsolved. He clearly
meant only to use it as a measure of the difficulty of solving the cubic, but
actually the quadrature problem is a measure of the greatest difficulty, since it
was shown in 1882 to be impossible.

Pacioli was wrong in his assertion, however, because within the next ten
years the University of Bologna mathematician Scipione del Ferro (1465–
1526) did, in fact, discover how to solve the so-called depressed cubic, a
special case of the general cubic in which the second-degree term is missing.
Because his solution to the depressed cubic is central to the first progress
made toward understanding the square root of minus one, it is worth some
effort in understanding just what del Ferro did.

The general cubic contains all the powers of the unknown, i.e.,

x3 1 a1x2 1 a2x 1 a3 5 0

where we can take the coefficient of the third-degree term to be unity without
loss of any generality. If that coefficient is not one, then we just divide through
the equation by the coefficient, which we can always do unless it is zero—but
then the equation isn’t really a cubic.

The cubic solved by del Ferro, on the other hand, has the general form of

x3 1 px 5 q,

where p and q are non-negative. Just like Diophantus, sixteenth-century math-
ematicians, del Ferro included, avoided the appearance of negative coeffi-
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cients in their equations.1 Solving this equation may seem to fall somewhat
short of solving the general cubic, but with the discovery of one last ingenious
trick del Ferro’s solution is general. What del Ferro somehow stumbled upon
is that solutions to the depressed cubic can be written as the sum of two terms,
i.e., we can express the unknown x as x 5 u 1 v. Substituting this into the
depressed cubic, expanding, and collecting terms, results in

u3 1 v3 1 (3uv 1 p)(u 1 v) 5 q.

This single, rather complicated-looking equation, can be rewritten as two
individually less complicated statements:

3uv 1 p 5 0

which then says

u3 1 v3 5 q.

How did del Ferro know to do this? The Polish-American mathematician
Mark Kac (1914–84) answered this question with his famous distinction be-
tween the ordinary genius and the magician genius: “An ordinary genius is a
fellow that you and I would be just as good as, if we were only many times
better. There is no mystery as to how his mind works. Once we understand
what he has done, we feel certain that we, too, could have done it. It is differ-
ent with the magicians . . . the working of their minds is for all intents and
purposes incomprehensible. Even after we understand what they have done,
the process by which they have done it is completely dark.” Del Ferro’s idea
was of the magician class.

Solving the first equation for v in terms of p and u, and substituting into the
second equation, we obtain

u qu
p6 3

3

27
0− − = .

At first glance this sixth-degree equation may look like a huge step backward,
but in fact it isn’t. The equation is, indeed, of the sixth degree, but it is also
quadratic in u3. So, using the solution formula for quadratics, well-known
since Babylonian times, we have

u
q q p3

2 3

2 4 27
= ± + .

or, using just the positive root,2
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u
q q p= + +

3
2 3

2 4 27
.

Now, since v3 � q � u3, then

v
q q p= − +

3
2 3

2 4 27
.

Thus, a solution to the depressed cubic x3 � px � q is the fearsome-looking
expression

x
q q p q q p= + + + − +

3
2 3

3
2 3

2 4 27 2 4 27
.

Alternatively, since ��1 � � 1, then the second term in this expression can
have a �1 factor taken through the outer radical to give the equivalent

x
q q p q q p= + + − − + +

3
2 3

3
2 3

2 4 27 2 4 27
.

You can find both forms stated in different books discussing cubics, but there
is no reason to prefer one over the other.

Since p and q were taken by del Ferro to be positive, it is immediately
obvious that these two (equivalent) expressions for x will always give a real
result. In fact, although there are three solutions or roots to any cubic (see
appendix A), it is not hard to show that there is always exactly one real,
positive root and therefore two complex roots to del Ferro’s cubic (see
box 1.1).

Now, before continuing with the cubic let me say just a bit about the nature
of complex numbers. A complex number is neither purely real nor purely
imaginary, but rather is a composite of the two. That is, if a and b are both
purely real, then a � b��1 is complex. The form used by mathematicians
and nearly everybody else is a � ib (the great eighteenth-century Swiss math-
ematician Leonhard Euler, about whom much more is said in chapter 6, intro-
duced the i symbol for ��1 in 1777). This is written as a � jb by electrical
engineers. The reason electrical engineers generally opt for j is that ��1
often occurs in their problems when electric currents are involved, and the
letter i is traditionally reserved for that quantity. Contrary to popular myth,
however, I can assure you that most electrical engineers are not confused
when they see an equation involving complex numbers written with i � ��1
rather than with j. With that said, however, let me admit that in chapter 5 I,

3
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B O X  1 . 1

The One Real, Positive Solution to del Ferro’s
Cubic Equation

To see that there is exactly one real, positive root to the depressed
cubic x3 1 px 5 q, where p and q are both non-negative, consider the
function

f (x) 5 x3 1 px 2 q.

Del Ferro’s problem is that of solving for the roots of f (x) 5 0. Now,
if you calculate the derivative of f (x) [denoted by f 9(x)] and recall that
the derivative is the slope of the curve f (x), then you will get

f 9(x) 5 3x2 1 p,

which is always non-negative because x2 is never negative, and we are
assuming p is non-negative. That is, f(x) always has non-negative slope,
and so never decreases as x increases. Since f(0) 5 2q, which is never
positive (since we are assuming that q is non-negative), then a plot of
f (x) must look like figure 1.1. From the figure it is clear that the curve
crosses the x-axis only once, thus locating the real root, and that the
crossing is such that the root is never negative (it is zero only if q 5 0).

Figure 1.1. Plot of f (x) 5 x3 1 px 2 q, p and q $ 0.
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too, will use j rather than i for Ï21 when I show you a nice little electrical
puzzle from the nineteenth century.

Complex numbers obey many of the obvious rules, e.g., (a 1 ib) (c 1 id) 5
ac 1 iad 1 ibc 1 i2bd 5 ac 2 bd 1 i(ad 1 bc). But you do have to be
careful. For example, if a and b can both only be positive, then Ïab 5 Ïa
Ïb. But if we allow negative numbers, too, this rule fails, e.g., Ï(24)(29) 5
Ï36 5 6 ± Ï24 Ï29 5 (2i)(3i) 5 6i2 5 26. Euler was confused on this
very point in his 1770 Algebra.

One final, very important comment on the reals versus the complex. Com-
plex numbers fail to have the ordering property of the reals. Ordering means
that we can write statements like x . 0 or x , 0. Indeed, if x and y are both
real, and if x . 0 and y . 0, then their product xy . 0. If we try to impose this
behavior on complex numbers, however, then we get into trouble. An easy
way to see this is by a counterexample. That is, let us suppose we can order
the complex numbers. Then, in particular, it must be true that either i . 0 or
i , 0. Suppose i . 0. Then, 21 5 i ⋅ i . 0, which is clearly false. So we must
suppose i , 0, which when we multiply through by 21 (which flips the sense
of the inequality) says 2i . 0. Then, 21 5 (2i) ⋅ (2i) . 0, just as before, and
it is still clearly false. The conclusion is that the original assumption of order-
ing leads us into contradiction, and so that assumption must be false. Now
back to cubics.

Once we have the real root to del Ferro’s cubic, then finding the two com-
plex roots is not difficult. Suppose we denote the real root given by del Ferro’s
equation by r1. Then we can factor the cubic as

(x 2 r1)(x 2 r2)(x 2 r3) 5 0 5 (x 2 r1)[x2 2 x(r2 1 r3) 1 r2r3].

To find the two additional roots, r2 and r3, we can then apply the quadratic
formula to

x2 2 x(r2 1 r3) 1 r2r3 5 0.

For example, consider the case of x3 1 6x 5 20, where we have p 5 6 and q 5
20. Substituting these values into the second version of del Ferro’s formula gives

x = + − − +
3 3

10 108 10 108 .

Now, if you look at the original cubic long enough, perhaps you’ll have the
lucky thought that x 5 2 works (8 1 12 5 20). So could that complicated-
looking thing with all the radical signs that I just wrote actually be 2? Well,
yes, it is. Run it through a hand calculator and you will see that
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x = − = − =3 3
20 392305 0 392305 2 7320508 0 7320508 2. . . . .

Then, to find the other two roots to f (x) 5 0 5 x3 1 6x 2 20, we use the fact
that one factor of f (x) is (x 2 2) to find, with some long division, that

(x 2 2)(x2 1 2x 1 10) 5 x3 1 6x 2 20.

Applying the quadratic formula to the quadratic factor quickly gives the two
complex roots (solutions to the original cubic) of

r2 5 21 1 3Ï21

and

r3 5 21 2 3Ï21.

1.2 Negative Attitudes about Negative Numbers

But this is all getting ahead of the story. Del Ferro and his fellow mathemati-
cians did not, in fact, do any of the above sort of factoring to get the complex
roots—the finding of a single, real, positive number for the solution of a cubic
was all they were after. And, as long as mathematicians concerned themselves
with del Ferro’s original depressed cubic, then a single, real, positive root is
all there is, and all was well. But what of such a cubic as x3 2 6x 5 20, where
now we have p 5 26 , 0? Del Ferro would never have written such a cubic,
of course, with its negative coefficient, but rather would have written x3 5 6x
1 20 and would have considered this an entirely new problem. That is, he
would have started over from the beginning to solve

x3 5 px 1 q

with, again, both p and q non-negative. This is totally unnecessary, however,
as at no place in the solution to x3 1 px 5 q did he ever actually use the non-
negativity of p and q. That is, such assumptions have no importance, and were
explicitly made simply because of an unwarranted aversion by early mathe-
maticians to negative numbers.

This suspicion of negative numbers seems so odd to scientists and engi-
neers today, however, simply because they are used to them and have forgot-
ten the turmoil they went through in their grade-school years. In fact, intel-
ligent, nontechnical adults continue to experience this turmoil, as illustrated in
the following wonderful couplet, often attributed to the poet W. H. Auden:
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Minus times minus is plus.
The reason for this we need not discuss.

The great English mathematician John Wallis (1616–1703), for example,
whom you will meet in more detail later in the next chapter as the individual
who made the first rational attempt to attach physical significance to Ï21,
also made some incredible assertions concerning negative numbers. In his
1665 book Arithmetica Infinitorum, an influential book read with great interest
by the young Isaac Newton, Wallis made the following argument. Since
a 4 0, with a . 0, is positive infinity, and since a 4 b, with b , 0, is a
negative number, then this negative number must be greater than positive
infinity because the denominator in the second case is less than the denomina-
tor in the first case (i.e., b , 0). This left Wallis with the astounding conclu-
sion that a negative number is simultaneously both less than zero and greater
than positive infinity, and so who can blame him for being wary of negative
numbers? And, of course, he was not alone. Indeed, the great Euler himself
thought Auden’s concern sufficiently meritorious that he included a somewhat
dubious “explanation” for why “minus times minus is plus” in his famous
textbook Algebra (1770).

We are bolder today. Now we simply say, okay, p is negative (so what?)
and plug right into the original del Ferro formula. That is, replacing the nega-
tive p with 2p (where now p itself is non-negative) we have

x
q q p q q p= + − − − + −

3
2 3

3
2 3

2 4 27 2 4 27

as the solution to x3 5 px 1 q, with p and q both non-negative. In particular,
the formula tells us that the solution to x3 5 6x 1 20 is

x = + − − + =
3 3

10 92 10 92 3 4377073.

which is indeed a solution to the cubic, as can be easily verified with a hand-
held calculator.

1.3 A Rash Challenge

The story of the cubic now takes a tortured, twisted path. As was the tradition
in those days, del Ferro kept his solution secret. He did this because, unlike
today’s academic mathematicians who make their living publishing their re-
sults to earn first appointment to a junior professorship and later promotion
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and tenure, del Ferro and his colleagues were more like independently em-
ployed businessmen. They earned their livelihoods by challenging each other
to public contests of problem solving, and the winner took all—prize money,
maybe, certainly “glory,” and with luck the support of an admiring and rich
patron. One’s chances of winning such contests were obviously enhanced by
knowing how to solve problems that others could not, so secrecy was the style
of the day.

In fact, del Ferro almost took the secret of how to solve depressed cubics to
the grave, telling at most only a small number of close friends. As he lay dying
he told one more, his student Antonio Maria Fior. While Fior was not a partic-
ularly good mathematician, such knowledge was a formidable weapon and so,
in 1535, he challenged a far better known and infinitely more able mathemati-
cian, Niccolo Fontana (1500–77). Fontana had come to Fior’s attention be-
cause Fontana had recently announced that he could solve cubics of the gen-
eral form x3 1 px2 5 q. Fior thought Fontana was bluffing, that he actually
had no such solution, and so Fior saw him as the perfect victim, ripe for the
plucking of a public contest.

Fontana, who is better known today as simply Tartaglia (“the stammerer,”
because of a speech impediment caused by a terrible sword wound to the jaw
that he received from an invading French soldier when he was twelve), sus-
pected Fior had received the secret of the depressed cubic from del Ferro.
Fearing it would be such cubics he would be challenged with, and not know-
ing how to solve them, Tartaglia threw himself with a tremendous effort into
solving the depressed cubic; just before the contest day he succeeded in redis-
covering del Ferro’s solution of x3 1 px 5 q for himself. This is an interesting
example of how, once a problem is known to have a solution, others quickly
find it, too—a phenomenon related, I think, to sports records, e.g., within
months of Roger Bannister breaking the four-minute mile it seemed as though
every good runner in the world started doing it. In any case, Tartaglia’s dis-
covery, combined with his ability to really solve x3 1 px2 5 q (he had not
been bluffing), allowed him to utterly defeat Fior. Each proposed thirty prob-
lems for the other, and while Fior could solve none of Tartaglia’s, Tartaglia
solved all of Fior’s.

1.4 The Secret Spreads

All of this is pretty bizarre, but the story gets even better. Like del Ferro,
Tartaglia kept his newly won knowledge to himself, both for the reasons I
mentioned before and because Tartaglia planned to publish the solutions to both
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types of cubics himself, in a book he thought he might one day write (but never
did). When the news of his rout of Fior spread, however, it quickly reached the
ear of Girolamo Cardano (1501–76), otherwise known simply as Cardan. Un-
like Fior, Cardan was an outstanding intellect who, among his many talents, was
an extremely good mathematician.3 Cardan’s intellectual curiosity was fired by
the knowledge that Tartaglia knew the secret to the depressed cubic, and he
begged Tartaglia to reveal it. After initially refusing, Tartaglia eventually
yielded and told Cardan the rule, but not the derivation, for calculating
solutions—and even then only after extracting a vow of secrecy.

Cardan was not a saint, but he also was not a scoundrel. He almost certainly
had every intention of honoring his oath of silence, but then he began to hear
that Tartaglia was not the first to solve the depressed cubic. And once he had
actually seen the surviving papers of del Ferro, Cardan no longer felt bound to
keep his silence. Cardan rediscovered Tartaglia’s solution for himself and then
published it in his book Ars Magna (The Great Art—of algebra, as opposed to
the lesser art of arithmetic) in 1545. In this book he gave Tartaglia and del
Ferro specific credit, but still Tartaglia felt wronged and he launched a bliz-
zard of claims charging Cardan with plagiarism and worse.4 This part of the
story I will not pursue here, as it has nothing to do with Ï21, except to say
that Tartaglia’s fear of lost fame in fact came to pass. Even though he and del
Ferro indeed had priority as the true, independent discoverers of the solution
to the depressed cubic, ever since Ars Magna, it has been known as the “Car-
dan formula.”

Cardan was not an intellectual thief (plagiarists don’t give attributions), and
in fact he showed how to extend the solution of the depressed cubic to all
cubics. This was a major achievement in itself, and it is all Cardan’s. The idea
is as inspired as was del Ferro’s original breakthrough. Cardan started with the
general cubic

x3 1 a1x2 1 a2x 1 a3 5 0

and then changed variable to x 5 y 2 !da1. Substituting this back into the
general cubic, expanding, and collecting terms, he obtained

y a a y a a a a3
2 1

2
1
3

2 1 3
1

3

2

27

1

3
+ −



 = − + − .

That is, he obtained the depressed cubic y3 1 py 5 q with

p a a

q a a a a

= −

= − + −

2 1
2

1
3

1 2 3

1

3
2

27

1

3

,

.
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The depressed cubic so obtained can now be solved with the Cardan formula.
For example, if you start with x3 � 15x2 � 81x � 175 � 0 and then make
Cardan’s change of variable x � y � 5, you will get

p

q

= − =

= − − + − − − =

81
1

3
15 6

2

27
15

1

3
81 15 175 20

2

3

( ) ,

( ) ( )( ) ( ) ,

and so y3 � 6y � 20. I solved this equation earlier in this chapter, getting y �

2. Thus, x � 7 is the solution to the above cubic, as a hand calculation will
quickly confirm.

So it looks as if the cubic equation problem has finally been put to rest, and
all is well. Not so, however, and Cardan knew it. Recall the solution to
x3 � px � q,

x
q q p q q p= + − − − + −

3
2 3

3
2 3

2 4 27 2 4 27
.

There is a dragon lurking in this version of the Cardan formula! If q2/4 �
p3/27 � 0 then the formula involves the square root of a negative number, and
the great puzzle was not the imaginary number itself, but something quite
different. The fact that Cardan had no fear of imaginaries themselves is quite
clear from the famous problem he gives in Ars Magna, that of dividing ten
into two parts whose product is forty. He calls this problem “manifestly im-
possible” because it leads immediately to the quadratic equation x2 � 10x �

40 � 0, where x and 10 � x are the two parts, an equation with the complex
roots—which Cardan called sophistic because he could see no physical mean-
ing to them—of 5 � ��15 and 5 � ��15. Their sum is obviously ten
because the imaginary parts cancel, but what of their product? Cardan boldly
wrote “nevertheless we will operate” and formally calculated

(5 � ��15)(5 � ��15) � (5)(5) � (5)(��15) � (5)(��15)

As Cardan said of this calculation, “Putting aside the mental tortures in-
volved” in doing this, i.e., in manipulating ��15 just like any other number,
everything works out. Still, while not afraid of such numbers, it is clear from
his next words that he viewed them with more than a little suspicion: “So
progresses arithmetic subtlety the end of which, as is said, is as refined as it is
useless.” But what really perplexed Cardan was the case of such square roots
of negative numbers occurring in the Cardan formula for cubic equations that
clearly had only real solutions.

(��15)(��15) � 25 � 15 � 40.�
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1.5 How Complex Numbers Can Represent Real Solutions

To see what I mean by this, consider the problem treated by Cardan’s fol-
lower, the Italian engineer-architect Rafael Bombelli (1526–72). Bombelli’s
fame among his contemporaries was as a practical man who knew how to
drain swampy marshes, but today his fame is as an expert in algebra who
explained what is really going in Cardan’s formula. In his Algebra of 1572,
Bombelli presents the cubic x3 5 15x 1 4 and, with perhaps just a little
pondering, you can see that x 5 4 is a solution. Then, using long divi-
sion/factoring, you can easily show that the two other solutions are x 5 22 6
Ï3. That is, all three solutions are real. But look at what the Cardan formula
gives, with p 5 15 and q 5 4. Since q2/4 5 4 and p3/27 5 125, then

x = + − − − + − = + − + − −
3 3 3 3

2 121 2 121 2 121 2 121.

Cardan’s formula gives a solution that is the sum of the cube roots of two
complex conjugates (if this word is strange to you, then you should read ap-
pendix A), and you might think that if anything isn’t real it will be something
as “complex” as that, right? Wrong. Cardan did not realize this; with obvious
frustration he called the cubics in which such a strange result occurred “irre-
ducible” and pursued the matter no more. It is instructive, before going fur-
ther, to see why he used the term “irreducible.”

Cardan was completely mystified by how to actually calculate the cube root
of a complex number. To see the circular loop in algebra that caused his
confusion, consider Bombelli’s cubic. Let us suppose that, whatever the cube
root in the solution given by the Cardan formula is, we can at least write it
most generally as a complex number. For example, let us write

3
2 121+ − = + −u v .

We wish to find both u and v (where v . 0). Cubing both sides gives

2 1 Ï2121 5 u3 1 3u2Ï2v 2 3uv 2 vÏ2v.

Equating the real and imaginary parts on both sides, we then get

u3 2 3uv 5 2,
3u2Ï2v 2 vÏ2v 5 Ï2121.

Squaring both of these equations gives us another pair:

u6 2 6u4v 1 9u2v2 5 4,
29u4v 1 6u2v2 2 v3 5 2121.

and subtracting the second equation from the first equation results in
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u6 1 3u4v 1 3u2v2 1 v3 5 125.

Both sides of this are perfect cubes, i.e., taking cube roots gives u2 1 v 5 5, or
v 5 5 2 u2. Substituting this back into the u3 2 3uv 5 2 equation above
results in 4u3 5 15u 1 2, another cubic equation in a single variable. And, in
fact, dividing through by 4 to put it in the form u3 5 pu 1 q, we have p 5 ArG
and q 5 !s and so, using the formula at the end of section 1.2,

q p2 3

4 27

1

16

3 375

27 64
− = − ,

( )( )
,

which is clearly negative.
That is, 4u3 5 15u 1 2 is an irreducible cubic and will, when “solved” by

the Cardan formula, result in having to calculate the cube roots of complex
numbers. So we are right back where we started, faced with the problem of
how to calculate such a thing. The problem seems to be stuck in a loop. No
wonder Cardan called this situation “irreducible.” Later, in chapter 3, you will
see how mathematicians eventually discovered how to calculate any root of a
complex number.

It was Bombelli’s great insight to see that the weird expression that Car-
dan’s formula gives for x is real, but expressed in a very unfamiliar manner
(see box 1.2 for what is going on geometrically in irreducible cubics). This
insight did not come easily. As Bombelli wrote in his Algebra, “It was a wild
thought in the judgement of many; and I too for a long time was of the same
opinion. The whole matter seemed to rest on sophistry rather than on truth.
Yet I sought so long, until I actually proved this to be the case.” Here’s how
he did it, beginning with the observation that if the Cardan formula solu-

tion is actually real then it must be that 
3 3

2 121 2 121+ − − − and  are

complex conjugates,5 i.e., if a and b are some yet to be determined real num-
bers, where

3

3

2 121 1

2 121 1

+ − = + −

− − = − −

a b

a b

,

,

then we have x 5 2a, which is indeed real. The first of these two statements
says that

2 1 Ï2121 5 (a 1 bÏ21)3.

From the identity (m 1 n)3 5 m3 1 n3 1 3mn(m 1 n), with m 5 a and n 5
bÏ21, we get



C H A P T E R  O N E

20

B O X  1 . 2

The Irreducible Case Means There Are Three Real Roots

To study the nature of the roots to x3 5 px 1 q, where p and q are
both non-negative, consider the function

f (x) 5 x3 2 px 2 q.

Calculating f9(x) 5 3x2 2 p, we see that the plot of f (x) will have tan-
gents with zero slope at x 5 6Ïp/3, i.e., the local extrema of the de-
pressed cubic that can lead to the irreducible case are symmetrically
located about the vertical axis. The values of f (x) at these two local
extrema are, if we denote them by M1 and M2,

M
p p

p
p

q p
p

q x
p

M
p p

p
p

q p
p

q x
p

1

2

3 3 3

2

3 3 3

3 3 3

2

3 3 3

= − − = − − = +

= − + − = − = −

, ,

, .

 at 

 at 

Notice that the local minima M1 , 0, always (as p and q are both
non-negative), while the local maximum M2 can be of either sign, de-
pending on the values of p and q. Now, if we are to have three real
roots, then f (x) must cross the x-axis three times and this will happen
only if M2 . 0, as shown in figure 1.2. That is, the condition for all
real roots is Se pÏp/3 2 q . 0, or sRjp3 . q2, or, at last, q2/4 2 p3/27
, 0. But this is precisely the condition in the Cardan formula that
leads to imaginary numbers in the solution. That is, the occurrence of
the irreducible case is always associated with three real roots to the
cubic f (x) 5 0. As the figure also makes clear, these three roots are
such that two are negative and one is positive. See if you can also
show that the sum of the three roots must be zero.*

* This is a particular example of the following more general statement. Suppose we
write the nth-degree polynomial equation xn 1 an21xn21 1 an22xn22 1 ⋅ ⋅ ⋅ 1 a1x 1
a0 5 0 in factored form. That is, if we denote the n roots of the equation by r1, r2, . . .
, rn, then we can write (x 2 r1)(x 2 r2) ⋅ ⋅ ⋅ (x 2 rn) 5 0. By successively multiplying
the factors together, starting at the left, you can easily show that the coefficient of the
xn21 term is the negative of the sum of the roots, i.e., that an21 5 2(r1 1 r2 1 ⋅ ⋅ ⋅ 1
rn). In the case of the depressed cubic, with no x2 term, we have a2 5 0 by definition,
i.e., the sum of the roots of any depressed cubic equation is zero.
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Figure 1.2. Plot of f (x) 5 x3 2 px 2 q, p and q $ 0.

(a 1 bÏ21)3 5 a3 2 b3Ï21 1 3abÏ21 (a 1 bÏ21)
5 a3 2 b3Ï21 1 3a2bÏ21 2 3ab2

5 a(a2 2 3b2) 1 b(3a2 2 b2)Ï21.

If this complex expression is to equal the complex number 2 1 Ï2121, then
the real and imaginary parts must be separately equal, and so we arrive at the
following pair of conditions:

a(a2 2 3b2) 5 2,
b(3a2 2 b2) 5 11.

If we assume a and b are both integers (there is no a priori justification for
this, but we are always free to try something and see where it goes), then
perhaps you will notice that a 5 2 and b 5 1 work in both conditions. There
are also ways to work this conclusion out more formally. For example, notice
that 2 and 11 are prime, ask yourself what are the integer factors of any prime,
and notice that if a and b are integers then so are a2 2 3b2 and 3a2 2 b2. For
our purposes here, however, it is sufficient to see that

3

3

2 121 2 1

2 121 2 1

+ − = + −

− − = − −

,

,



C H A P T E R  O N E

22

statements that are easily verified by cubing both sides. With these results
Bombelli thus showed that the mysterious Cardan solution is x 5 4, and this is
correct. As shown in box 1.2, for the irreducible case with all three roots real,
there is just one positive root; that is, the root given by the Cardan formula
(see if you can prove this—read the last half of appendix A if you need help).

1.6 Calculating the Real Roots without Imaginaries

Still, while the Cardan formula works in all cases, including the irreducible
case, you might be wondering why there is not a formula that directly pro-
duces a real answer for the positive real root in the irreducible case. And, in
fact, there is. Discovered by the great French mathematician Francoise Viète6

(1540–1603), it gives all the roots of the irreducible cubic in terms of the
cosine and arccosine (or inverse cosine) trigonometric functions. This discov-
ery is all the more remarkable when one considers that Viète was not a profes-
sional mathematician, but rather was a lawyer in service to the state, under the
kings Henri III and Henri IV. He did his mathematics when he could steal time
away from his “more important” duties, such as decoding intercepted, en-
crypted letters written by the Spanish court during France’s war with Spain.
While clever, Viète’s solution (published posthumously in 1615) seems not to
be very well known, and so here is what he did.

Viète started his analysis with the cubic equation x3 5 px 1 q, with p and q
written as p 5 3a2 and q 5 a2b. That is, he started with the cubic

x a x a b a
p

b
q

p
3 2 23

3

3= + = =, . with  and 

Then, he used the trigonometric identity

cos ( ) cos( ) cos( ).3 3

4

1

4
3θ θ θ= +

If you don’t recall this identity, just accept it for now—I will derive it for you
in chapter 3 using complex numbers. Viète’s next step was to suppose that one
can always find a  such that x 5 2a cos( ). I’ll now show you that this
supposition is in fact true by actually calculating the required value of . From
the supposition we have cos( ) 5 x/2a, and if this is substituted into the above
trigonometric identity then you can quickly show that x3 5 3a2x 1

2a3cos(3 ). But this is just the cubic we are trying to solve if we write
2a3cos(3 ) 5 a2b. That is,



T H E  P U Z Z L E S  O F  I M A G I N A R Y  N U M B E R S

23

θ = 





−1

3 2
1cos .

b

a

Inserting this result for  into x 5 2a cos ( ) immediately gives us the
solution

x a
b

a
= 













−2
1

3 2
1cos cos

or, in terms of p and q,

x
p q

p p
=


















−2

3

1

3

3 3

2
1cos cos .

For this x to be real, the argument of the cos21 must be no greater than one,
i.e., 3Ï3q # 2p3/2. (Later in this book, in chapter 6, I will discuss what
happens when the magnitude of the argument in the inverse cosine function is
greater than one.) But this condition is easily shown to be equivalent to q2/4 2
p3/27 # 0, which is precisely the condition that defines the irreducible case.
Notice that imaginary quantities do not appear in Viète’s formula, unlike the
Cardan formula.

Does Viète’s formula work? As a test, recall Bombelli’s cubic x3 5 15x 1
4, with p 5 15 and q 5 4. Viète’s formula gives

x =

















−2 5

1

3

12 3

30 15
1cos cos .

This rather fearsome-looking expression is easily run through a hand calcula-
tor to give x 5 4, which is correct. This root is found by taking
cos21(12Ï3/30Ï15) 5 79.6958. But a quick sketch of the cosine function
will show that the angles 280.3058 and 439.6958 are equally valid. Evaluating
x for these two angles will give the other real roots 20.268 and 23.732, i.e.,
22 6 Ï3. Viète himself, however, paid no attention to negative roots. And
for another quick check, consider the special case when q 5 0. Then, x3 2 px
5 0 which by inspection has the three real roots x 5 0, x 5 6Ïp. That is, x 5
Ïp is the one positive root. Viète’s formula gives, for q 5 0,

x
p p= 








=−2
3

1

3
0 2

3
301cos cos ( ) cos( )o

since cos21(0) 5 908. But (2/Ï3) cos(308) 5 1 and so Viète’s formula does
give x 5 Ïp. And since cos21(0) 5 2708 (and 4508), too, you can easily
verify that the formula gives the x 5 0 and x 5 2Ïp roots, as well. Techni-
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cally, this is not an irreducible cubic, but Viète’s formula still works. Notice
that the roots in these two specific cases satisfy the last statement made in
box 1.2.

Viète knew very well the level at which his analytical skills operated. As he
himself wrote of his mathematics, it was “not alchemist’s gold, soon to go up
in smoke, but the true metal, dug out from the mines where dragons are stand-
ing watch.” Vi`ete was not a man with any false modesty. If his solution had
been found a century earlier, would Cardan have worried much over the imag-
inaries that appeared in his formula? Would Bombelli have been motivated to
find the “realness” of the complex expressions that appear in the formal solu-
tion to the irreducible cubic? It is interesting to speculate about how the his-
tory of mathematics might have been different if some genius had beaten
Viète to his discovery. But there was no such genius, and it was Bombelli’s
glory to unlock the final secret of the cubic.

Bombelli’s insight into the nature of the Cardan formula in the irreducible
case broke the mental logjam concerning Ï21. With his work, it became
clear that manipulating Ï21 using the ordinary rules of arithmetic leads to
perfectly correct results. Much of the mystery, the near-mystical aura, of
Ï21 was cleared away with Bombelli’s analyses. There did remain one last
intellectual hurdle to leap, however, that of determining the physical meaning
of Ï21 (and that will be the topic of the next two chapters), but Bombelli’s
work had unlocked what had seemed to be an unpassable barrier.

1.7 A Curious Rediscovery

There is one last curious episode concerning the Cardan formula that I want to
tell you about. About one hundred years after Bombelli explained how the
Cardan formula works in all cases, including the irreducible case where all
roots are real, the young Gottfried Leibniz (1646–1716) somehow became
convinced the issue was still open. This is all the more remarkable because
Leibniz is known to have studied Bombelli’s Algebra, and yet he thought
there was still something left to add to the Cardan formula. Leibniz was a
genius, but this occurred at about age twenty-five, when, as one historian put
it, “Leibniz had but little of any competence in what was then modern mathe-
matics. Such firsthand knowledge as he had was mostly Greek.”7

Leibniz had, at that time, just met the great Dutch physicist and mathemati-
cian Christian Huygens (1629–95), with whom he began a lifelong correspon-
dence. In a letter written sometime between 1673 and 1675 to Huygens,8 he
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began to rehash what Bombelli had done so long before. In this letter he
communicated his famous (if anticlimactic) result

1 3 1 3 6+ − + − − = ,

of which Leibniz later declared, “I do not remember to have noted a more
singular and paradoxical fact in all analysis; for I think I am the first one to
have reduced irrational roots, imaginary in form, to real values. . . .” Of
course, it was Bombelli who was the first, by a century.

When the imaginary number Ï21 is first introduced to high school stu-
dents it is common to read something like the following (which, actually, I’ve
taken from a college level textbook9): “The real equation x2 1 1 5 0 led to the
invention of i (and also 2i) in the first place. That was declared to be the
solution and the case was closed.” Well, of course, this is simple to read and
easy to remember but, as you now know, it is also not true. When the early
mathematicians ran into x2 1 1 5 0 and other such quadratics they simply
shut their eyes and called them “impossible.” They certainly did not invent a
solution for them. The breakthrough for Ï21 came not from quadratic equa-
tions, but rather from cubics which clearly had real solutions but for which the
Cardan formula produced formal answers with imaginary components. The basis
for the breakthrough was in a clearer-than-before understanding of the idea of
the conjugate of a complex number. Before continuing with Leibniz, then, let
me show you a pretty use of the complex conjugate.

Consider the following statement, easily shown to be correct with a little
arithmetic on the back of an envelope:

(22 1 32) (42 1 52) 5 533 5 72 1 222 5 232 1 22.

And this one, which is only just a bit more trouble to verify:

(172 1 192) (132 1 152) 5 256,100 5 642 1 5022 5 82 1 5062.

What is going on here?
These are two examples of a general theorem that says the product of two

sums of two squares of integers is always expressible, in two different ways,
as the sum of two squares of integers. That is, given integers a, b, c, and d, we
can always find two pairs of positive integers u and v such that

(a2 1 b2) (c2 1 d2) 5 u2 1 v2.

Therefore, says this theorem, it must be true that there are two integer solu-
tions to, for example,

(892 1 1012) (1112 1 1332) 5 543,841,220 5 u2 1 v2.
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Can you see what u and v are? Probably not. With complex numbers, and the
concept of the complex conjugate, however, it is easy to analyze this problem.
Here is how to do it.

Factoring the above general statement of the theorem to be proved, we have

(a � ib)(c � id )][(a � ib)(c �

id )].

Since the quantities in the right-hand brackets are conjugates, we can write the
right-hand side as (u � iv)(u � iv). That is,

u � iv � (a � ib)(c � id ) � (ac � bd ) � i(bc � ad )

and so

u � �ac �bd� and v � bc � ad.

But this isn’t the only possible solution. We can also write the factored expres-
sion as

[(a � ib)(c � id )][(a � ib)(c � id )] � [u � iv][u � iv]

and so a second solution is

u � iv � (a � ib)(c � id ) � (ac � bd ) � i(bc � ad )

or,

u � ac � bd and v � �bc � ad�.

These results prove the theorem by actually constructing formulas for u and
v, and in particular they tell us that

(892 � 1012) (1112 � 1332) � 3,5542 � 23,0482 � 6262 � 23,3122.

This problem is quite old (it was known to Diophantus), and a discussion of it,
one not using complex numbers, can be found in the 1225 book Liber quad-
ratorum (The Book of Squares10) by the medieval Italian mathematician
Leonardo Pisano (circa 1170–1250), i.e., Leonardo of Pisa, a town best
known today for its famous leaning tower. Leibniz, no doubt, would have
found the concept of the complex conjugate to be just what was needed to
explain his “paradoxical fact.”

As Leibniz expressed his confusion, “I did not understand how . . . a quan-
tity could be real, when imaginary or impossible numbers were used to ex-
press it.” He found this so astonishing that after his death, among some un-
published papers, several such expressions were found, as if he had calculated
them endlessly. For example, solving the cubics x3 � 13x � 12 � 0 and x3 �

48x � 72 � 0, respectively, led him to the additional discoveries that

[(a � ib)(a � ib)][(c � id )(c � id )] � [
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and
3 3

The realness of the literally complex expressions on the left would, today, be
considered by a good high school algebra student to be trivially obvious. Such
has been the progress in mathematics in understanding ��1. Indeed, using
the conjugate concept, we know today that a plot of any function f (x) contains,
in its very geometry, all the roots to the equation f (x) � 0, real and complex.
Let me conclude this chapter by showing you how this is so, in particular, for
quadratics and for cubics.

1.8 How to Find Complex Roots with a Ruler

When an nth-degree polynomial y � f (x) with real coefficients is plotted, the
geometrical interpretation is that the plot will cross the x-axis once for each
real root of the equation f (x) � 0. Crossing the x-axis is, in fact, where the
zero on the right-hand side comes from. If there are fewer than n crossings,
say m � n, then the interpretation is that there are m real roots, given by the
crossings, and n � m complex roots. The value of n � m is an even number
since, as shown in appendix A, complex roots always appear as conjugate
pairs. This is not to say, however, that there is no physical signature in the plot
for the complex roots. The signature for the real roots, the x-axis crossings, is
simple and direct, but if you are willing to do just a bit more work you can
read off the complex roots, too.

First, consider the quadratic f (x) � ax2 � bx � c � 0. The two roots to this
equation are either both real or a complex conjugate pair, depending on the
algebraic sign of the quantity b2 � 4ac. If this is non-negative, then the roots
are real and there are either two x-axis crossings or a touching of the axis (if b2

� 4ac � 0, giving a double root). If b2 � 4ac is negative then the roots are
complex and there are no x-axis crossings, which is the case shown in figure
1.3. Let us assume that this is the case, and that the roots are p 
 iq. Then,
writing f (x) in factored form,

f (x) � a(x � p � iq)(x � p � iq) � a[(x � p)2 � q2],

it is clear that f (x) � aq2 if a � 0, and f (x) � aq2 if a � 0. That is, f (x) takes
on its minimum value at x � p if a � 0 (as shown in figure 1.3), or its

36 + −2800 + 36 − −2800 = 6.−36 −
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Figure 1.3. A quadratic equation with no real roots.

maximum value at x 5 p if a , 0. We can, therefore, measure p from the plot
of f (x) as the x-coordinate of the local extremum.

Next, to measure the value of q from the plot, first measure the y coordinate
of the minimum (I’m assuming a . 0, but the a , 0 case is a trivial variation),
i.e., measure aq2. Then, at x 5 p, first move upward 2aq2, then over to the
right until you intersect the plot. The x-value of this intersection point (call it
x̂), when plugged into the quadratic equation, gives

f (x̂) 5 2aq2 5 a[(x̂ 2 p)2 1 q2] 5 a(x̂ 2 p)2 1 aq2

or,

aq2 5 a(x̂ 2 p)2 or q 5 x̂ 2 p.

Thus, q can be directly measured off the plot of f (x), as shown in figure 1.3.
Concentrating next on cubics, observe first that there will be either (a) three

real roots or (b) one real root and two complex conjugate roots. Be sure you are
clear in your mind why all three roots cannot be complex, and why there cannot
be two real roots and one complex root. If you’re not clear on this, see appendix
A. Case (b) is the one of interest for us. Call the real root x 5 k, and the conjugate
pair of roots x 5 p 6 iq. Then, we can write f (x) in factored form as

y 5 f (x) 5 (x 2 k)(x 2 p 1 iq)(x 2 p 2 iq)
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or, expanding and collecting terms, as

f (x) � (x � k)(x2 � 2xp � p2 � q2).

The plot of a cubic with a single real root, which means one x-axis crossing,
will have the general appearance of figure 1.4. Construct the triangle AMT,
where A is the intersection point of y � f (x) with the x-axis, T is the point of
tangency to y � f (x) of a straight line passing through A, and M is the foot of
the perpendicular through T perpendicular to the x-axis. Of course, the real
root is k � OA.

Now, consider the straight line y � �(x � k), which clearly passes through
A as y � 0 when x � k. Imagine that the slope of this line, �, is adjusted until it
just touches y � f (x), i.e., until it is tangent to y � f (x). This then gives us T,
and since the x-value at T is common to both y � f (x) and y �  (x � k), calling
this x-value x̂ says that

�(x̂ � k) � (x̂ � k)(x̂2 � 2px̂ � p2 � q2).

Since x̂ � k � 0, we can divide through both sides of this equation to obtain a
quadratic in x̂,

� � x̂2 � 2px̂ � p2 � q2.

Figure 1.4. A cubic equation with one real root.

�
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In fact, since T is a point of tangency, there must be exactly one value of x̂.
That is,

x̂2 2 2px̂ 1 p2 1 q2 2 l 5 0

must have two equal, or double, roots. Now, in general,

ˆ
( )

,x
p p p q

=
± − + −2 4 4

2

2 2 2 λ

and to have double roots the radical must be zero. That is,

4p2 2 4(p2 1 q2 2 l) 5 0

or, l 5 q2. That is, the tangent line AT has slope q2 5 TM/AM. The value of x̂
is, from the general expression for x̂, then just x̂ 5 p 5 OM.

So, to find all the roots of the cubic, you need only plot y 5 f (x) and then:

1. Read off the real root by measuring OA (5 k).
2. Place a straightedge at A as a pivot point and swing the edge slowly until it

just touches the plotted function (thus “locating” T ).
3. Measure TM and AM, and then calculate

q
TM

AM
= .

4. Measure OM to give p.
5. The two imaginary roots are p 1 iq and p 2 iq.
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A First Try at Understanding

the Geometry of ��1

2.1 René Descartes

Despite the success of Bombelli in giving formal meaning to ��1 when it
appeared in the answers given by Cardan’s formula, there still lacked a physical
interpretation. Mathematicians of the sixteenth century were very much tied to
the Greek tradition of geometry, and they felt uncomfortable with concepts to
which they could not give a geometric meaning. This is why, two centuries
after Bombelli’s Algebra, we find Euler writing in his Algebra of 1770

All such expressions as ��1, ��2, etc., are consequently impossible or
imaginary numbers, since they represent roots of negative quantities; and of
such numbers we may truly assert that they are neither nothing, nor greater than
nothing, nor less than nothing, which necessarily constitutes them imaginary or
impossible.

No such “negative” feelings were directed toward the square roots of posi-
tive numbers, however, because, at least in part, it was known that a geometric
construction of them could be given. The following construction is given by
René Descartes (1596–1650) in his 1637 La Geometrie.1 Suppose GH is a
given line segment as shown in figure 2.1, and the problem is to construct
another line segment with length equal to �GH. Descartes began by extend-
ing GH to F, where FG is of unit length.  has to be a given length, too, and
it establishes the size or scale of the construction. Thus, FH � FG � GH � 1
� GH. Next, he used the well-known method for bisecting a line segment to
locate K, the midpoint of FH. Then, using K as the center, he constructed the
semicircle FIH with radius KH � FK. Finally, at G he erected a perpendicular
that intersects the semicircle at I (and so IK is a radius, too). From all this we
can write that

FG GH IK

GH IK

GH IK

+ =

+ =

+ =

2

1 2

1

2
1

,

,

( ) .

FH
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Figure 2.1. Constructing the square root of a line (IG 5 ÏGH).

Also,

FG GK IK

GK IK FG IK GH

GK GH

+ =

= − = − = + −

= −

,

( ) ,

( ).

1
1

2
1 1

1

2
1

Now, from the Pythagorean theorem we have

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) [( ) ( ) ]

IG GK IK

IG GH GH

IG GH GH GH

2 2 2

2 2 2

2 2 2

1

4
1

1

4
1

1

4
1 1

+ =

+ − = +

= + − − =

Thus, IG 5 ÏGH. Descartes himself wrote none of this, but he did write, as
the very last line of La Geometrie, words that show his omissions were no
oversight: “I hope that posterity will judge me kindly, not only as to things
which I have explained, but also as to those which I have intentionally omitted
so as to leave to others the pleasure of discovery.” A man with a sense of
irony.

It is important to distinguish between the construction of the square root of
any given line segment, as described by Descartes, and the construction of a
line segment equal to a specified square root. The second case, for the square
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root of integer lengths (assuming, once again, that one has a priori knowledge
of the unit length), was given an elegant geometric solution long before Des-
cartes by the fourth-century b.c. mathematician Theodorus of Cyrene. Theo-
dorus, who taught Plato mathematics, demonstrated that the square roots of all
the nonsquare integers from 3 to 17 are irrational—his student Theaetetus
extended this result to all nonsquare integers. All of Theodorus’ work is lost,
and it is not known how he arrived at his results, but we know of them because
Plato put both men into his dialogue Theaetetus and tells us of their individual
achievements.

It has been suggested that perhaps Theodorus’ solution was based on the
following method for constructing Ïn for any positive integer n . 1, as
shown in figure 2.2. This figure shows a spiral of right triangles with a com-
mon vertex, where in each triangle the side opposite the common vertex has

Figure 2.2. Theodorus’ spiral of triangles.
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length 1. The hypotenuse of the nth triangle then has length Ïn 1 1. Plato
wondered why Theodorus stopped with Ï17 in his irrationality analyses
(“somehow he got into difficulties”), but figure 2.2 may provide the reason. If
we compute the sum of the vertex angles for the first n triangles, then we have

tan tan tan tan .− − − −





+ 





+ 





+ + 





1 1 1 11

1

1

2

1

3

1
 . . . 

n

For n 5 16 (which gives Ï17) this sum is 351.158, while for n 5 17 the
sum is 364.788. That is, perhaps Theodorus stopped at Ï17 simply because
for n . 16 his spiral started to overlap itself and the drawing became
“messy.”

These constructions deal with the square roots of positive lengths. But
what, geometrically, could the square root of a negative mean? According to
Descartes it meant the sheer impossibility of doing a geometric construction.
And just who was this Descartes, you must by now be wondering? Born into
the lower levels of French nobility, Descartes received a good general educa-
tion from Jesuits, spent two years in Paris studying mathematics by himself,
and wound up in 1617 as a twenty-one year old gentleman officer in military
service to a prince. Two years later he quit the military life because, as he
recounted later, he had had several dreams in which tantalizing ideas were
revealed to him that led eventually to his work in analytic geometry. A pos-
sible loss to the brotherhood of warriors, maybe, but it was a decision of
inestimable gain for mathematics. In 1628 Descartes moved to Holland
where he lived a mostly solitary life as a scholar. In 1637 he used his knowl-
edge of geometry to develop the first scientific explanation of the rainbow,
based on tracing rays of light through one (or more) internal reflections of
the rays inside water drops. In 1649 he moved to Stockholm to tutor Queen
Christina. The next year the brutal Swedish winter did him in, and he died of
pneumonia.

To see how Descartes understood the association of imaginary numbers
with geometric impossibility, consider his demonstration on how to solve qua-
dratic equations with geometric constructions (what follows is from his La
Geometrie). He began with the equation z2 5 az 1 b2, where a and b2 are both
non-negative, and which he took to be the lengths of two given line segments.
In particular, suppose as shown in figure 2.3 that LM is equal to the square
root of the given b2. Suppose, too, that LN 5 !sa, an easy bisecting construc-
tion of the given a, and that LN is erected perpendicular to LM. Next, construct
the circle of radius !sa, centered on N, draw the line NM, and, finally, extend



T H E  G E O M E T R Y  O F  Ï2 1

35

Figure 2.3. Descartes’ geometric construction of the positive root to z2 5 az 1 b2,
with a and b2 both positive.

NM to intersect the other side of the circle at O. Then it is immediately ob-
vious that

OM a a b= + 



 +1

2

1

2

2
2 ,

which is the positive algebraic solution to the quadratic z2 5 az 1 b2. Thus,
Descartes has geometrically constructed one solution to the quadratic. This
construction always works, for any given positive values of a and b2. Notice
that Descartes is ignoring the other solution of z 5 !sa 2 Ï!fa2 1 b2, which for
any positive a and b2 is always negative. His reason for doing this was, as I
have stressed before, that the mathematicians of his day did not accept such
false roots, as Descartes called them.

Descartes next considered the quadratic z2 5 az 2 b2. The algebraic solu-
tion is

z a a b= ± −1

2

1

4
2 2 ,

and so now complex roots are possible, even with a and b2 constrained to be
positive. Descartes explored the geometric implications of this possibility, as
follows. He started, as before, with the same line segments LN 5 !sa and LM 5
b. But instead of joining N and M, he erected a perpendicular line at M and
then, with N as the center (see figure 2.4), he drew the circle with radius !sa.
The two points where this circle intersects the perpendicular line, if such inter-
sections occur, define the two points Q and R. Descartes then observed that the
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Figure 2.4. Descartes’ geometric construction of both positive roots
to z2 5 az 2 b2, with a and b2 both positive.

two line segments MQ and MR are the two solutions to the quadratic, if they
exist. This “observation” is a pretty problem in algebra and geometry, and you
should try your hand at showing that MQ and MR are, indeed, equal to the two
values of z given above—but try before you look at the hint.2 Notice that now
Descartes is happy to acknowledge both solutions given by his geometric
construction, since if the two values z 5 !sa 6 Ï!fa2 2 b2 are real then they are
also positive.

What did Descartes conclude from all this? As he wrote at the end of his
analysis, “And if the circle described about N and passing through L neither
cuts nor touches the line MQR, the equation has no root [real root, is what
Descartes should have said], and so we may say that the construction of the
problem is impossible [my emphasis].” Descartes thus excludes the case of a
double root when he does not allow the circle just to touch the perpendicular,
i.e., to let R and Q be one and the same point. Notice that, for there to be no
intersection (or “touching”) at all, the geometric condition is b . !sa, which is
precisely the algebraic condition that gives complex roots to the quadratic.

I am ignoring Descartes’ treatment of the case of z2 1 az 5 b2 because it
adds nothing to the discussion here. That quadratic, and the two I discussed
above, are the only ones presented by Descartes because there is always at
least one positive root to them. He completely ignores the fourth possibility of
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z2 1 az 1 b2 5 0 because it never has positive roots if a and b2 are both
positive, the only sort of root that, for Descartes, had geometric significance.
Associating the appearance of imaginary numbers with the physically impos-
sible is a routine concept to a modern engineer or physicist, however, and it is
not difficult to construct a simple physics example of how this can happen.

Imagine that a man is running at his top speed of v feet per second, to catch
a bus that is stopped at a traffic light. When he is still a distance of d feet from
the bus, the light changes and the bus starts to move away from the running
man with a constant acceleration of a feet per second per second. When will
the man catch the bus? To answer this question, let x 5 0 represent the posi-
tion of the light (the light will serve as the origin of our coordinate system), let
xb denote the position of the bus, and let xm denote the position of the man.
Then, at time t 5 0, for example, xb 5 0 and xm 5 2d, i.e., t 5 0 is the instant
the light changes. For an arbitrary time t $ 0 we can write

x at

x d vt

b

m

=

= − +

1

2
2,

.

If we imagine that the man catches the bus at time t 5 T, then from the
meaning of catching we have xb(T ) 5 xm(T ), i.e.,

1

2
2aT d vT= − + ,

a quadratic equation for T. The solution is

T
v

a

v

a

d

a

v

a
i

d

a

v

a
= ± 



 − = ± − 





2 2

2 2 .

If d . !sv2/a then T is a complex time, and this is interpreted to mean that
the man cannot actually catch the bus. But that does not mean there is no
physically significant meaning to T. To see this, write s 5 xb 2 xm, i.e., s is the
separation between the bus and the man. Thus,

s at d vt= + −1

2
2 .

To catch the bus at time T means that then s 5 0. We can now ask a new
question related to the question of catching the bus. We suppose that the man
does not catch the bus, but now we ask at what time is the man closest to
the bus? In other words, at what time is s minimum? Setting ds/dt 5 0 gives
t 5 v/a.
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That is, the man is closest to catching the bus at a time equal to the real part
of the complex time T. The imaginary part of T has physical significance, too,
albeit a different one. The physical distinction between catching and not
catching the bus is equivalent to T being real or complex. This latter distinc-
tion is controlled by the imaginary part of T, i.e., the transition between catch-
ing and not catching the bus occurs at the condition 2d/a 5 (v/a)2. Given any
two of the three quantities d, a, and v, we can use this condition to determine
the critical value of the third quantity that determines whether or not the man
catches the bus. For example, if we are given both v and a, then d must be no
greater than !sv2/a if the man is to catch the bus.

Finally, here’s one more question for you to think about. Suppose the man
does catch the bus, which means T is real. For which T does this occur—there
are, after all, two positive values given for T, determined by the 6 signs? That
is, what is the physical significance of two real roots? See the answer3 only
after thinking about this for a while.

It is not too hard to construct a more mathematical example. Imagine, as
shown in figure 2.5, the circle with radius one centered on the origin described
by the equation x2 1 y2 5 1. Consider the point (0,b) on the y-axis, where b .

Figure 2.5. A tangent line to a circle.
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1, which means the point is outside the circle, as shown. Suppose we draw the
line through that point that is also tangent to the circle and which intersects
the positive x-axis, as shown. What is the slope of that tangent line? If we call
the slope m then the equation for the tangent line is that old workhorse from
high school geometry, y 5 mx 1 b. By inspection, we have m , 0. At the
point of tangency the line and the circle share that point, and so at that point x2

1 (mx 1 b)2 5 1. That is, if x̂ is the x-coordinate of the point of tangency, then
x 5 x̂ is the solution to this quadratic. We can expand the quadratic out and
write its solution, using the quadratic formula:

ˆ
( )( )

( )
.x

mb m b m b

m
=

− ± − + −
+

2 4 4 1 1

2 1

2 2 2 2

2

Since there must be exactly one solution—by definition, a tangent line just
touches the circle and does not cut through it at multiple points—then the
expression under the square root sign must equal zero. Solving for m and
remembering it must be negative, we have

m 5 2Ïb2 2 1

and

ˆ .x
b

= − 



1

1 2

These expressions are real for b . 1, as we supposed, but what if 0 , b ,
1, i.e., what if the point on the y-axis is inside the circle? It is then physically
obvious that we can no longer actually draw a tangent line to the circle, and
that the expressions for m and x̂ now give imaginary values. Here we see a
direct connection between the onset of imaginary numbers and our physical
inability to make a geometric construction.4

Finally, now that the idea of a line with an imaginary slope has come up, let
me point out a curious property that such lines can have. Suppose we have two
straight lines making angles a and b with the x-axis, as shown in figure 2.6.
The tangents of these angles are, of course, the slopes of the lines. That is, if m
5 tan(a) and n 5 tan(b), then the equations of the two lines are y 5 nx 1 b1

and y 5 mx 1 b2. Now, the angle between the two lines is f 5 b 2 a and,
using a result from trigonometry,

tan( ) tan( )
tan( ) tan( )

tan( ) tan( )
.φ β α β α

β α
= − = −

+
= −

+1 1

n m

nm

For example, suppose the two lines are parallel; then m 5 n and tan(f) 5 0,
which says f 5 0, i.e., parallel lines are inclined at angle zero to each other.
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Figure 2.6. Two straight lines that cross in a plane.

This is all quite obvious, right? Well, suppose that we have two lines, each
with the same imaginary slope i. Then,

tan( ) ,φ = −
+

=
−

=i i

i1

0

1 1

0

02

which is indeterminate. Notice that this weird result occurs only for an imag-
inary slope of i. If m � n � ki with k �  then tan(�) � 0 as it “should.” What
is so special about a slope of precisely i? I don’t know—perhaps it is best, for
now, just to enjoy the mystery of this calculation for its own sake.

2.2 John Wallis

Despite Descartes’ association of imaginary with the impossibility of a geo-
metric construction, at least one younger mathematician thought that there

1,
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might be something to construct that would represent Ï21. John Wallis,
mentioned in the previous chapter, was a child prodigy who at age fourteen (in
1630, seven years before La Geometrie was published) both read and spoke
Latin and read Greek, Hebrew, and French. Ironically, he only began to study
arithmetic as a “pleasing diversion in spare hours” the following year. Wallis
made rapid progress after that, however, and by 1647 or 1648 he had pro-
gressed sufficiently far that he was able to rediscover the Cardan formula for
himself. Still, his underlying training was as a theologian and he served as
royal chaplain to Charles II, and declined an offer in 1692 from Queen Mary II
to make him a deacon.

It therefore was something of a surprise when, in 1649, he was appointed
Savilian Professor of Geometry at Oxford University. This appointment al-
most surely came as a reward for his valuable services to Parliament as a
decipherer of captured coded messages during its struggle with King Charles I
and his Royalist followers. Wallis was not a sycophant, however, because
while he was favored by Parliament he did not curry such favor—he was one
of the signers of the petition to Parliament not to execute the deposed Charles
I, and he signed before Cromwell had Wallis appointed to Oxford.

Wallis was one of the original members of a group of like-minded men at
Oxford that evolved into the Royal Society of London, and he eventually
served as its President. His 1655 book Arithmetica Infinitorum contains the
germ of the integral calculus; for example, it discusses the area under curves
of the form y 5 xn, and it contains Wallis’ famous product formula for p,

π
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2

1

2
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3

4
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7
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9
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  . . . ,

which alternately over- and underestimates the value of p as more and more
factors are included. In chapter 6 I will show you how to derive this. Wallis’
book is known to have had great influence on the young Isaac Newton.

The connection between Wallis and Newton was renewed many years later
when, in the controversy between Newton and Leibniz over which man had
priority in developing the differential calculus, Wallis as President of the
Royal Society became involved in mediating the conflicting claims of the two.
After his death he was interred in the Oxford University church, and the fol-
lowing words were inscribed on a nearby wall: “Here sleeps John Wallis,
Doctor of Theology, Savilian Professor of Geometry, and Keeper of the Ox-
ford Archives. He left immortal works. . . .” It is not surprising, then, that
when a man of this caliber turned his attention to Ï21 something of interest
was the result.
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There is evidence that years before his 1685 Algebra, in which he formally
presented his analyses of imaginaries, Wallis had pondered and puzzled over
the meaning of imaginary numbers in geometry. For example, Wallis engaged
in a correspondence with the English mathematician John Collins (1625–83)
on this topic, and typical of the problems he was considering is the one Collins
related (in a letter dated October 19, 1675) to the Scottish mathematician
James Gregory (1638–75). Collins wrote that in an earlier letter, to show how
a “tiro” might be misled,5 Wallis had analyzed a triangle with sides 1 and 2,
on a base of 4. Wallis showed that if one simply goes through the formal
algebra then the two segments of the base beneath the sides of length 1 and 2
come out real, even though the triangle is an impossible one (try drawing it!).
Apparently Wallis did not pursue this “paradox” at that time because, in his
letter to Gregory, Collins went on to write “but if he had proceeded further he
would have found the perpendicular to have been [imaginary], which had
manifested the impossibility.” This seems to indicate that Wallis, before 1675,
was perhaps still unsure of the precise connection between algebraic imagin-
aries and geometry. By 1685, however, Wallis had made progress.

As a prelude to his analyses of the square root of a negative number, Wallis
began by observing, in his Algebra, that just negative numbers themselves, so
long viewed with suspicion by mathematicians, did in fact have a perfectly
clear physical interpretation. Directing his readers’ attention to a straight line,
with some point marked as the zero point or origin, Wallis wrote that a posi-
tive number means distance measured from the zero point to the right, and that
a negative number means distance measured from the zero point to the left. In
Wallis’ own words, “And though, as to the bare Algebraick Notation, it [a
negative number] import a quantity less than nothing: Yet, when it comes to a
Physical Application, it denotes as Real a Quantity as if the Sign were 1; but
to be interpreted in a contrary sense.” This all surely is obvious to a modern
reader, but everything, even the obvious, is earned with hard thinking by some
pioneering genius.

With the proper physical interpretation of negative numbers thus settled,
Wallis then moved on to the real, or perhaps I should say imaginary, game he
was after. He reminded his readers of the so-called mean proportional, i.e., if
b and c are two given positive numbers, then x is the mean proportional of b
and c if it satisfies the statement “b is to x as x is to c.” Or, in algebra,

b

x

x

c
=

which says x 5 Ïbc. Sometimes b, x, and c are said to be in harmonic
progression because three equally taut strings of length b, x, and c will vibrate
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and emit audible tones at frequencies that differ by equal intervals. Today you
are much more likely to encounter the term geometric mean for x; the arith-
metic mean is, of course, (b 1 c)/2. In the spirit of Descartes’ La Geometrie,
which Wallis had studied and greatly admired, Wallis showed how to geomet-
rically construct the mean proportional of two given line segments. Here is
how he did that.

As shown in figure 2.7, Wallis placed his zero point at A and then drew the
line segment AC. Then, finding the midpoint of AC, he drew the circle with
AC as a diameter. Next, picking the arbitrary point B on the diameter any-
where between A and C, Wallis erected the perpendicular at B that intersects
the circle at P. It is clear that the two triangles ABP and PBC are right trian-
gles, and so we can write

(BP)2 1 (AB)2 5 (AP)2,
(BP)2 1 (BC)2 5 (PC)2.

It is also true, but perhaps not so obvious, that APC is a right triangle, too.6

So,

(AP)2 1 (PC)2 5 (AC)2.

Substituting the first expressions for (AP)2 and (PC)2 into the third expression,
and writing AC 5 AB 1 BC, then

(BP)2 1 (AB)2 1 (BP)2 1 (BC)2 5 (AB 1 BC)2.

Figure 2.7. Wallis’ construction of the mean proportional [BP 5 Ï (AB)(BC)].
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Expanding the right-hand side and collecting terms, this last expression re-
duces to (BP)2 5 (AB)(BC), i.e., to

BP 5 Ï(AB)(BC),

which says BP is the mean proportional of AB and BC.
Wallis next modified this geometric construction of the mean proportional

of two positive line segments—positive because AB is extended to the right
from A to B, and BC is extended to the right from B to C—to include the case
of one of the line segments representing a negative value. To do this he drew
figure 2.7 again, up to the step of locating B and the perpendicular through B
intersecting the circle at P as shown in figure 2.8. But then, using P as a point
of tangency to the circle, Wallis extended the tangent line—that is, he con-
structed the line perpendicular to the radius PR (point R is the center of the
diameter AC) that passes through P— until it intersected the extension of the
diameter AC at the point B9 to the left of A.

Now, by construction the triangle PRB9 is a right triangle, and so from
Pythagoras we have

(B9P)2 1 (RP)2 5 (B9R)2.

Since RP is a radius, then RP 5 !sAC. Noticing, too, that B9C 5 B9A 1 AC, we
can then write AC 5 B9C 2 B9A and so

RP B C B A AC= ′ − ′ =1

2

1

2
( ) .

Figure 2.8. Wallis’ construction of B9P 5 Ï (AB9)(B9C).
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Also, B9R 5 B9A 1 AR, and, as AR is a radius, then B9R 5 B9A 1 !sAC, or B9R
5 B9A 1 !s(B9C 2 B9A), or B9R 5 !s(B9A 1 B9C).

Now, substituting these expressions for RP and B9R into the “Pythagoras”
equation written for the PRB9 triangle,

( ) [( ) ( )] [( ) ( )]′ + ′ − ′ = ′ + ′B P B C B A B A B C2 2 21

4

1

4

or, after expanding and collecting terms, (B9P)2 5 (B9A)(B9C). If we suppose
that the direction of extension of a line segment is irrelevant then we can just
as well write this last result as (B9P)2 5 (AB9)(B9C), which gives

B9P 5 Ï(AB9)(B9C),

a result that, except for the primes, looks just like the result derived for figure
2.5. But if we use Wallis’ idea that direction does matter, then we have B9C .
0 and AB9 , 0, and so B9P is the square root of a negative quantity.

Well, what can one say about all this? It is clever, yes, but it certainly has
the flavor of an exercise in splitting hairs at least as much as it has of geome-
try. Somehow it seems unlikely that we could really be saying very much, if
anything, profound about Ï21 with this sort of argument. As one twentieth-
century author wrote of yet another attempt by Wallis at geometrically ex-
plaining Ï21, it is “ingenious but scarcely convincing.”7 In fact, to his
credit, Wallis himself wasn’t terribly happy with this, either, and for him it
was really just a warm-up. It was with yet another, completely different con-
struction that he literally began to move in the correct direction to unlock the
geometric secret of Ï21.

Figure 2.9. Two triangles that have two specified sides and an angle
not included between the given sides.
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Wallis began anew by treating a classic problem in geometry, that of con-
structing a triangle when two sides and an angle not included between the two 
sides, are given. This is often called an ambiguous problem because, as shown
in figure 2.9, there are generally two possibilities. In the figure the two given
sides are AP and PB (5PB9) and ] PAD 5 a is the given angle. It is clear that
the altitude (PC) of the triangle is determined and, as long as PB 5 PB9 . PC,
there are two solutions, the triangles APB and APB9. But if PB 5 PB9 , PC
then there is no solution if we insist that solutions be upon the base AD (i.e.,
that B and B9 be on AD).

Algebraically, what is going on can be expressed by the following two
equations (remembering that BC 5 CB9):

AB 5 AC 2 BC 5 Ï(AP)2 2 (PC)2 2 Ï(PB)2 2 (PC)2,
AB9 5 AC 1 CB9 5 Ï(AP)2 2 (PC)2 1 Ï(PB)2 2 (PC)2.

These two equations say that if PC . PB then we get square roots of negative
numbers, which Descartes would have interpreted as saying that the geometric
construction of the desired triangle is impossible. But maybe that is not actu-
ally so.

Wallis’ great insight was to realize that, even in the case of PC . PB, the
given data still determine two points B and B9 if we allow them to be some-
where other than on the base AD. Here’s how he did it. Looking at figure 2.10,
he constructed the circle with PC as a diameter. Then, using P as the center,
Wallis swung another arc of radius PB until it intersected the first circle at B

Figure 2.10. Wallis’ construction hinting at perpendicularity as the meaning
of an imaginary number.
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and B9. He then argued that the triangles PAB (shown in the figure) and PAB9

(not outlined) are the solution triangles, i.e., they are determined by the given
sides AP and PB (5PB9) and by the angle ] PAD 5 a. The difference now,
of course, is that the angle ] PAD does not appear in the solution triangle; but
observe carefully that this was not a requirement in the original statement of
the construction problem—only that the solution triangle be determined by
two given sides and an angle. The big difference now is that the points B and 
B9 do not lie on the base AD, but rather above it. Wallis had stumbled on the
idea that, in some sense, the geometrical manifestation of imaginary numbers
is vertical movement in the plane. Wallis himself made no such statement,
however, and this is really a retrospective comment made with the benefit of
three centuries of hindsight.

It would be another century before the now “obvious” representation of
complex numbers as points in the plane, with the horizontal and vertical direc-
tions being the real and imaginary directions, respectively, would be put forth,
but Wallis came very close. Close enough that at the beginning of the twen-
tieth century we find the philosopher Ernst Mach—whose views are known to
have greatly influenced Einstein—writing in his 1906 book Space and Geom-
etry of Ï21 as “a mean direction ⋅ proportional between 11 and 21.” Even
so, a close miss is still a miss, and Wallis’ work in complex number geometry
is remembered today only by historians.
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The Puzzles Start to Clear

3.1 Caspar Wessel Sees the Way

More than a hundred years after Wallis’ valiant but flawed attempt to tame
complex numbers geometrically, the problem was suddenly and quite un-
dramatically solved by the Norwegian1 Caspar Wessel (1745–1818). This is
both remarkable and, ironically, understandable, when you consider that
Wessel was not a professional mathematician but a surveyor. Wessel’s break-
through on a problem that had stumped a lot of brilliant minds was, in fact,
motivated by the practical problems he faced every day in making maps, i.e.,
by the survey data he regularly encountered in the form of plane and spherical
polygons. There was no family tradition in mathematics to guide him, as both
his father and his father’s father were men of the cloth. It was Wessel’s work
that inspired him to success where all others had failed before.

Even though Wessel was one of thirteen children, and consequently the
family finances must have been limited, he did receive a good high school
education, followed by a year at the University of Copenhagen. He then left
academic life and began his work as a cartographer while still a teenager
(1764), as an assistant with the Danish Survey Commission operated by the
Royal Danish Academy of Sciences. Surveying would be his life’s work—
although for some reason he also passed the University of Copenhagen’s ex-
amination in Roman law in 1778—and by 1798 he had risen to a supervisory
position. He “retired” in 1805 but continued to work for several more years
before rheumatism, a bad ailment for anyone but particularly so for a sur-
veyor, forced him to really stop. He was highly regarded as a surveyor, receiv-
ing a silver medal from the Royal Danish Academy of Sciences for the map-
ping he did for the French government.

Still, respected as he was as a surveyor, he was not the most obvious person
to present a paper (on March 10, 1797, just before his fifty-second birthday)
titled “On the Analytic Representation of Direction: An Attempt” to the Royal
Danish Academy of Sciences. Wessel is known to have been aided in the
writing of his paper by the president of the science section of the Academy,
whose support certainly did not hurt, but the intellectual content was all
Wessel’s. Its quality and merit were judged to be so high that it was the first
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paper to be accepted for publication—in the Academy’s Memoires of 1799—
by an author not a member of the Academy.

Written in Danish and published in a journal not read by many outside of
Denmark, Wessel’s brilliant paper was fated to have no impact. It wasn’t until
1895 that it was rediscovered and Wessel was at long last recognized as the
pioneer he was.2 Although others, within a few years after Wessel’s paper was
published, traveled much the same path as he did and it was those others who
were read, it was Wessel who walked that path first. Let us examine what
he did.

Unlike Wallis’ tortuous geometric constructions, figure 3.1 shows the sim-
plicity of Wessel’s interpretation of complex numbers. For both him and us
modern folk a complex number is either the point a 1 ib in the so-called
complex plane (a and b are two real numbers) or the directed radius vector
from the origin to that point. Written in this fashion, the complex number is
said to be in rectangular or Cartesian form. An enormously useful alternative
is the polar form, written in terms of the length of the radius vector and the
polar angle, which is the angle measured counterclockwise from the x-axis to
the radius vector. That is, if  5 tan21(b/a), then a 1 ib 5 Ïa2 1 b2hcos( )
1 isin( )j. The value of Ïa2 1 b2, the length of the radius vector, is called
the modulus of the complex number a 1 ib. The value of the polar angle
tan21(b/a) is called the argument of a 1 ib and written as arg(a 1 ib). More
compactly, we can write all this in the form

a ib a b
b

a
+ = + ∠ 





−2 2 1tan .

Figure 3.1. Wessel’s geometry of complex numbers.
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The / notation for complex numbers is most commonly used by electrical
engineers, but mathematicians often find it quite useful as well. I’ll make good
use of it in the pages that follow. There is, however, one caveat concerning the
polar form of representing complex numbers that is most important to keep in
mind. A common error made by students who are first learning about the polar
form is a failure to appreciate that the tangent function is periodic with period
1808, not 3608. That is, the tangent function goes through its complete interval
of values (2` to `) as the polar angle  varies from 2908 to 908. Or, if we
express angles in units of radians (one radian 5 1808/p 5 57.2968), then the
tangent function goes through its complete interval of values as the polar
angle varies from 2p/2 to p/2 radians. This means that blindly plugging
values of a and b into  5 tan21(b/a) may lead to mistakes. So, to be precise,
let us define

θ = 



 >−tan ,1 0

b

a
a when 

i.e., the complex number is in either the first or the fourth quadrant, and

θ = + 



 <−180 01o tan ,

b

a
a when 

i.e., the complex number is in either the second or the third quadrant.
Recall that the quadrants of the plane are numbered counterclockwise from

the first, which is the quadrant where a and b are both positive. When you use
a hand-held calculator’s arctangent button, or more likely the SHIFT or INV
and then the TAN buttons to compute angles, the machine assumes a . 0 (if
b/a , 0 the machine assumes it is because of b) and so it always returns a
result between 2908 and 908. This is called the principal value of the arc-
tangent. If, in fact, a , 0, then you must make the appropriate adjustment as
given above.

How was Wessel led to the now standard way of representing complex
numbers? Wessel began his paper by describing what today is called vector
addition. That is, if we have two directed line segments both lying along the
x-axis (but perhaps in opposite directions), then we add them by positioning
the starting point of one at the terminal point of the other, and the sum is the
net resulting directed line segment extending from the initial point of the first
segment to the terminal point of the second. Wessel said the sum of two
nonparallel segments should obey the same rule, and this procedure is shown
in figure 3.2. So far there is nothing new here, as Wallis had expressed quite
similar ideas on how to add directed line segments. Wessel’s original contri-
bution was to see how to multiply such segments.
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Figure 3.2. Vector addition.

Wessel discovered how to multiply line segments by making a clever gen-
eralization from the behavior of real numbers. He observed that the product of
two numbers (say, 3 and 22, with a product of 26) has the same ratio to each
factor as the other factor has to 1. That is, 26/3 5 22 5 22/1, and 26/22 5
3 5 3/1. So, assuming there exists a unit directed line segment, Wessel argued
that the product of two directed line segments should have two properties.
First, and immediately analogous to real numbers, the length of the product
should be the product of the lengths of the individual line segments.

But what of the direction of the product? This second property is Wessel’s
seminal contribution: by analogy with all that has gone before, he said the line
segment product should differ in direction from each line segment factor by
the same angular amount as the other line segment factor differs in direction
when compared to the unit directed line segment. Thus, suppose the unit di-
rected line segment points from left to right at angle 08, i.e., along the positive
x-axis. Then, if we have two line segments to multiply together, one at angle 
and the other at angle a, the product angle must be the sum  1 a because  1
a differs from  by a (the angle by which the a-segment differs from the unit
segment), and  1 a differs from a by  (the angle by which the -segment
differs from the unit segment).

This is perhaps so painfully elementary, or even obvious, today, that it
seems almost childish to write it out in so many words, but don’t be deceived.
If you think it “obvious” you are confusing something known for a long time,
perhaps since high school, with something everybody is born knowing. Babies
are born knowing how to cry, but they are not born knowing how to multiply
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directed line segments together. That is something that had to be either discov-
ered or invented, depending on how you view the evolution of mathematics,
and Wessel was the first to see how to do it.

With just these few brilliant insights by Wessel we can do some extraordin-
ary calculations. Let me show you just three. First, what is (0.3 1 i2.6)17?
This looks pretty horrible at first, but observe that

0 3 2 6 0 3 2 6
2 6

0 3
2 6172505 83 4180552 2 1. . ( . ) ( . ) tan

.

.
. . .+ = + ∠ 



 = ∠−i o

Since (0.3 1 i2.6)17 means 0.3 1 i2.6 multiplied by itself seventeen times,
then Wessel’s rules tell us to raise the magnitude or modulus to the seven-
teenth power, and to multiply the polar angle or argument by seventeen. That
is,

(0.3 1 i2.6)17 5 (2.6172505)17 / (83.4180558  17) 5 12,687,322 /
1,418.10618.

This is a complex number in the fourth quadrant, which you can see by simply
subtracting 3608 chunks of polar angle—with each such chunk representing
one complete revolution about the origin—until you arrive at an angle less
than 3608. Thus,

( . . ) , , .

, , .

, , {cos( . ) sin( . )}

, , , , .

0 3 2 6 12 687 322 338 1061

12 687 322 21 893915

12 687 322 21 893915 21 893915

11 772 300 4 730 800

17+ = ∠

= ∠ −

= − + −
= −

i

i

i

o

o

o o

Before Wessel this calculation would have required multiplying 0.3 1 i2.6 by
itself seventeen times, and the details would have driven most people crazy.

Here is another even more wonderful computation based on Wessel’s idea
of adding the angles. Consider the product (2 1 i)(3 1 i) 5 5 1 i5. Using the
radian as our unit of angle, the angle of the product is tan21(5/5) 5 tan21(1)
5 p/4. The angles of the two factors on the left are, similarly, tan21(1/2) and
tan21(1/3). Thus, we immediately have

tan tan ,− −



 + 



 =1 11

2

1

3 4

π

a result you can easily verify on a calculator set to its radian, not degree,
mode. I defy you to find a more direct derivation of this formula. In the same
way, multiply out (5 1 i)4(2239 1 i) and see if you can demonstrate that
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4
1

5

1

239 4
1 1tan tan .− −⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠ = π

This is a famous formula in the history of �, one you will see again in chapter
6. After you do the multiplication you should find that the product is a number
in the third quadrant, with angle 5�/4 radians, not �/4 radians. This may
puzzle you at first but, if so, probably not after you observe that the factor
(�239 � i) is in the second quadrant and so has angle �� � tan�1(1/239)�
radians. After you collect terms you will see that the two inverse tangent  terms

easier, more direct way to derive this identity? I can’t!
And finally, if you multiply out (p � q � i)(p2 � pq � 1 � iq), where p and

q are any pair of real numbers, you should now easily be able to derive the
well-known identity

tan�1�1/(p � q)� � tan�1�q/(p2 � pq � 1)� � tan�1(1/p).

Without complex numbers and Wessel’s idea of adding the angles, deriving
this identity would be a much more difficult problem.

Ever since Wessel, then, multiplying two directed line segments together
has meant the two-step operation of multiplying the two lengths, with length
always taken to be a positive value, and adding the two direction angles.
These two operations determine the length and direction angle of the product,
and it is this definition of a product that gives us the explanation for what
��1 means geometrically. That is, suppose that there is a directed line seg-
ment that represents ��1, and that its length is l and its direction angle �.
Mathematically, then, we have ��1 � l � �. Multiplying this statement by
itself, i.e., squaring both sides, we have �1 � l2 � 2� or, as �1 � 1 � 180�,
then l2 � 2� � 1 � 180�. Thus, l2 � 1 and 2� � 180�, and so l � 1 and � �

90�. This says ��1 is the directed line segment of length one pointing
straight up along the vertical axis or, at long last,

i = − = ∠1 1 90o.

This is so important a statement that it is the only mathematical expression in
the entire book that I have enclosed.

Historians generally credit Wessel with being the first to associate an axis
perpendicular to the real axis with the axis of imaginaries. However, there are
indications that this idea, just before Wessel, was one whose time was ripe.
There is a throwaway line, for example, in an 1847 book by the great French
mathematical physicist Augustin-Louis Cauchy that as early as 1786 one

on the left-hand side of the identity sum to �/4 radians. Can you think of an
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Henri Dominique Truel (“a modest scholar,” wrote Cauchy) had represented
imaginary values by an axis perpendicular to the horizontal real axis. Nothing
is known of Truel, however, and it appears he never published his results,
whatever they may have been. And there are hints in the writings of Gauss that
he was onto the same idea as early as 1796, but he too did not publish at that
time. It was Wessel who was first in putting his ideas forward in a public
forum.

How beautifully simple is Wessel’s idea. Multiplying by Ï21 is, geomet-
rically, simply a rotation by 908 in the counterclockwise (CCW) sense. In
figure 3.3, for example, the vector representing the complex number a 1 ib is
drawn in the first quadrant of the complex plane (a . 0, b . 0). Multiplying
by i gives a 908 CCW rotation to the vector, rotating it into the second quad-
rant to i(a 1 ib) 5 2b 1 ia. Because of this property Ï21 is often said to be
the rotation operator, in addition to being an imaginary number.

As one historian of mathematics has observed,3 the elegance and sheer
wonderful simplicity of this interpretation suggests “that there is no occasion
for anyone to muddle himself into a state of mystic wonderment over . . . the
grossly misnamed ‘imaginaries.’” This is not to say, however, that this geo-

Figure 3.3. Ï21 as the rotation operator in the complex plane.



T H E  P U Z Z L E S  S T A R T  T O  C L E A R

55

metric interpretation wasn’t a huge leap forward in human understanding.
Indeed, it is only the start of a tidal wave of elegant calculations.

For example, figure 3.4 shows the unit circle and two arbitrary radius vec-
tors, one at angle � and one at angle 
. Since each vector has unit length, their
product will also be of unit length, at angle 
 � � (as shown). Writing all three
radius vectors out mathematically, we have

1 � � � cos(�) � i sin(�),

1 � 
 � cos(
) �  sin(
),

1 � (
 � �) � cos(
 � �) � i sin(
 � �),

and since (1 � �)(1 � 
) � 1 � (
 � �), we must have

�cos(�) � i sin(�)� �cos(
) � i sin(
)� � cos(
 � �) � i sin(
 � �).

Expanding the left-hand side gives

�cos(�)cos(
) � sin(�)sin(
)� � i �sin(�)cos(
) � cos(�)sin(
)� � cos(
 �

�) � i sin(
 � �).

Figure 3.4. Vector multiplication.

i
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Two complex numbers are equal only if their real and imaginary parts are
separately equal, and so we immediately have the two trigonometric identities

cos(a 1 ) 5 cos( )cos(a) 2 sin( )sin(a),

sin(a 1 ) 5 sin( )cos(a) 1 cos( )sin(a).

For the special case of a 5  these expressions reduce to cos(2a) 5 cos2(a) 2
sin2(a) and sin(2a) 5 2sin(a)cos(a). Such identities had been known long
before Wessel, of course; for example, they can be found in the book Alma-
gest (the greatest) by Ptolemy of Alexandria, written in the second century
a.d., but until Wessel’s new geometry of complex numbers they had never
before been so easily derived. By deriving these identities in this way I have
deviated from Wessel’s actual presentation. He used the identities to do things
in essentially the reverse order from my presentation, but I think showing the
development the way I have is much more dramatic. The intellectual content
is the same, either way. These two identities are useful, for example, in deriv-
ing the expression for tan(a 2 b) used in section 2.1. Simply write tan(a 2 b)
5 sin(a 2 b)/cos(a 2 b), use the two above identities to expand the sine and
cosine, and divide through by cos(a)cos(b).

With his wonderful deduction of the geometry of Ï21 there was now no
stopping Wessel with even more exotic calculations. For example, if you start
with a unit radius vector of direction angle /m, where m is an integer, then it
follows immediately that

1 1      ∠







= 



 + 













= ∠ = +θ θ θ θ θ θ
m m

i
m

i
m m

cos sin cos( ) sin( ).

Or, turning this statement around by taking the mth root,

{cos( ) sin( )} cos sin ./θ θ θ θ+ = 



 + 



i

m
i

m
m  1

This result was not original with Wessel (although this elegantly simple
derivation of it was), and it is commonly known as “De Moivre’s theorem,”
after the French-born mathematician Abraham De Moivre (1667–1754). De
Moivre, a Protestant, left Catholic France at age eighteen to seek religious
freedom in London, where he became a friend of Isaac Newton. In a 1698
paper published in the Philosophical Transactions of the Royal Society, he
mentions that Newton knew of an equivalent expression of De Moivre’s theo-
rem as early as 1676, which Newton used to calculate the cube roots of the
complex numbers that come out of the Cardan formula for the irreducible
case. De Moivre probably learned of this technique from Newton, and used it
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in earning his livelihood as a “solver of mathematical problems.” De Moivre
was a man of great talent—particularly skilled in probability theory applied to
gambling, he wrote The Doctrine of Chances in 1718 and discovered the ubiq-
uitous normal or “bell-shaped” curve now known by Gauss’ name. Tradition
has it that Newton himself would often reply to mathematical questions by
saying “Ask Mr. De Moivre, he knows more about it than I do.” It is clear
from De Moivre’s writings that he did, in fact, know and use the above result,
but he never actually wrote it out explicitly—that was done by Euler in 1748,
who arrived at it by entirely different means, which are discussed in chapter 6.

De Moivre’s theorem allowed Wessel to calculate any integer root of a
complex number. In his paper, for example, Wessel hints at the power of his
results by stating

3
4 3 4 1 2 10+ − = ∠  o.

This is, indeed, correct, but he doesn’t provide any of the details on how he
arrived at it. Here’s how he probably reasoned. The complex number under
the cube root sign is, in polar form,

( ) ( ) tan tan .4 3 4
4

4 3
48 16

1

3
8 302 2 1 1+ ∠ 





= + ∠ 





= ∠− −      o

Thus,

3
1 3 1 34 3 4 1 8 30 8

30
2+ − = ∠ = ∠ = ∠( ) ,/ /    

3
  10o

o
o

which is, when written out in Cartesian form,

2cos(108) 1 i 2sin(108) 5 1.969615506 1 i 0.347296355.

That this result is correct can be verified simply by cubing it, a tedious task
made easy with a hand-held calculator that can do complex number arithme-
tic, and observing that the result is, indeed, 6.928203230 1 i4 5 4Ï3 1 i4.
Wessel was well aware that, just as there are two square roots of any number,
there are m mth roots. So there are three cube roots of 4Ï3 1 i4. Wessel also
knew that these roots are separated by equal angles, i.e., if one root is 2 / 108

then the other two are 2 / 1308 and 2 / 2508. To see this, suppose the
complex number for which we are calculating the nth roots has angle . Then,
obviously, one of the roots will have angle /n because when we raise that
root to the nth power we must get the original number back, at angle . This is
so since angles add during multiplication and we have /n  n 5 . If another
possible angle for a root is a, then na 5  1 k ⋅ 3608, where k is some integer,
i.e., adding an integer number of complete 3608 rotations to  makes no differ-



C H A P T E R  T H R E E

58

ence as it returns us to . Thus a 5 /n 1 k ⋅ 3608/n. When k 5 0 we get a 5
/n, the angle of the “obvious” root. And for k 5 1, 2, . . . , n 2 1 we get n 2

1 more, different angles, for a total of n uniformly spaced angles. Using other
integer values for k that are either negative or greater than n 2 1 simply
repeats roots given by values of k equal to the first n non-negative integers,
e.g., k 5 n repeats the root given by k 5 0.

As another example of this sort of calculation, recall from chapter 1 the
Cardan formula solution to the irreducible cubic considered by Bombelli,

x = + − + − −
3 3

2 121 2 121.

There I went through a fairly complicated argument to show that

3

3

2 121 2 1

2 121 2 1

+ − = + −

− − = − −

,

,

and so x 5 4. Using De Moivre’s formula, however, these results are easy to
calculate. Thus, the complex number 2 1 Ï2121 5 2 1 i11 is, in polar form,

( ) ( ) tan . .2 11
11

2
125 79 695153532 2 1+ ∠ 



 = ∠−    o

So,

3 1 3
2 121 125

79 69515353

3

2 236067977 26 56505117

2 236067977 26 56505117 26 56505117

2

+ − = ( ) ∠

= ∠

= +
= +

/ .

. .

. {cos( . sin( . )}

  

  

 

o

o

o oi

i

Since there are two other cube roots of 2 1 Ï2121 (and similarly for 2 2
Ï2121), there are a total of three values of x that give the three roots of the
cubic equation. All will be real and, of course, equal to the roots calculated in
section 1.6 using Viète’s trigonometric solution.

As one final example, consider the problem of finding the nth roots of unity;
that is, of finding all the solutions to zn 5 1, the so-called cyclotomic equation.
The name refers to the close association of the equation with the construction
of regular n-gons inscribed in circles, a problem I’ll return to in the next
chapter. The equation can be rewritten as zn 2 1 5 0, and you can easily
verify by long division that the left-hand side can be factored as

(z 2 1)(zn21 1 zn22 1 ⋅ ⋅ ⋅ 1 z 1 1) 5 0.
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One solution is the obvious root of 1 from the left-hand factor, and so the other
n � 1 roots must be the roots of the right-hand factor. That is, the solutions to
the rather formidable-looking equation

zn�1 � zn�2 � ⋅ ⋅ ⋅ � z � 1 � 0

z k
n

i k
n

k n= ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ = −cos sin , , , .

2 2
1 2 1

π π
   . . . ,  

The case of k � 0 gives, of course, the z � 1 solution that comes from the
(z � 1) factor.

For the case of n � 5, for example, the four roots (other than the obvious
z � 1) to the quintic cyclotomic z5 � 1 � 0 are given by

k i i

k i i

k i i

k

= ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ = +

= ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ = − +

= ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ = − −

= ⎛
⎝

⎞
⎠ +

1
2

5

2

5
0 309017 0 9510565

2
4

5

4

5
0 809017 0 5877853

3
6

5

6

5
0 809017 0 5877853

4
8

5

; cos sin . . ,

; cos sin . . ,

; cos sin . . ,

; cos

π π

π π

π π

π
i i sin . . ,

8

5
0 309017 0 9510565

π⎛
⎝

⎞
⎠ = −

Now, to help you feel more comfortable with this result, as well as to demon-
strate dramatically how easily De Moivre’s theorem generates solutions to the
cyclotomic equation, I will show you a completely different, algebraic solu-
tion for the n � 5 case. As the Italian-born Joseph Louis Lagrange (1736–
1813) did in 1771, I will first remove the obvious z � 1 factor to get the
reduced quartic equation

z4 � z3 � z2 � z � 1 � 0.

This can be written as

(z2 � z�2) � (z � z�1) � 1 � 0,

�1 and noticing that u2 � z2 � z�2 � 2, becomes

u2 � u � 1 � 0.

This quadratic is quickly solved to give

u = − ± = −1 5

2
0 618034 1 618034. . . and 

which, b  defining u � z � z

are simply those given by De Moivre’s formula, i.e.,

y
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Next, from the definition of u we have z2 2 uz 1 1 5 0, another quadratic also
quickly solved to give

z
u u= ± −2 4

2

Substitution of the above values for u gives us four values of z that are
exactly what De Moivre’s theorem gave. Complex number geometry and De
Moivre’s theorem, and ordinary algebra, are in total agreement here, and that
should increase your confidence in the truth of the claim that there is nothing
at all imaginary about complex numbers. De Moivre’s theorem would in fact
give us the solutions to z97 2 1 5 0 just as quickly as it did for n 5 5 (or for
any other integer n), while Lagrange’s clever algebraic substitution that works
so well for n 5 5 does not work in the general case.

A slightly more sophisticated analysis than that provided here would show
that De Moivre’s theorem is true even when m is not restricted to positive
integers. An especially interesting special case, for example, is for m 5 21,
which says

cos( ) sin( )
cos( ) sin( )

cos( ) sin( )

cos( ) sin( ).

θ θ
θ θ

θ θ

θ θ

+{ } =
+

= − + −

= −

−i
i

i

i

1 1

That is, on the circumference of the unit circle the reciprocal of any complex
number is equal to the conjugate of that number. This result becomes self-
evident, in retrospect, by cross-multiplying to get the well-known identity
1 5 hcos( ) 1 isin( )jhcos( ) 2 isin( )j 5 cos2( ) 1 sin2( ).

3.2 Deriving Trigonometric Identities
from De Moivre’s Theorem

De Moivre’s theorem is, in fact, a machine for generating trigonometric iden-
tities. If, for example, we set m 5 3 in De Moivre’s theorem, then we get

cos sin cos sin .
1

3

1

3

3

θ θ θ θ



 + 













= ( ) + ( )i i

Expanding the left-hand side gives

cos sin cos cos sin sin ,3 2 2 31

3
3

1

3

1

3
3

1

3

1

3

1

3
θ θ θ θ θ θ



 − 









 + 









 − 
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which, when the real parts of this and of the right-hand side of the first identity
are set equal, with  5 3a, results in

cos(3a) 5 cos3(a) 2 3sin2(a)cos(a).

Now, since sin2(a) 1 cos2(a) 5 1, an identity derived at the end of the last
section, we can write

cos(3a) 5 4cos3(a) 2 3cos(a)

or

cos ( ) cos( ) cos( ).3 3

4

1

4
3α α α= +

This is the trigonometric identity used by Viète in solving the irreducible case
of the Cardan formula. Using other values of m in De Moivre’s theorem, and
separately equating real and imaginary parts of the result, allows the deriva-
tion of literally an endless number of trigonometric identities.

There is another, ingenious way to use De Moivre’s theorem to derive trigo-
nometric identities. If we let z denote a point on the unit circle in the complex
plane, then we can write z in Cartesian form as z 5 cos( ) 1 isin( ), where 
is the angle of the radius vector directed from the origin to z. As shown in the
previous section, 1/z 5 z21 5 cos( ) 2 i sin( ). From De Moivre’s theorem
we also have zn 5 cos(n ) 1 isin(n ), and z2n 5 cos(n ) 2 isin(n ). All these
statements together allow us to write

z 1 z21 5 2cos( ) and zn 1 z2n 5 2cos(n ).

Now, for a specific example of what we can do with these two results.
Suppose we write

(z 1 z21)6 5 26cos6( ).

We could also multiply (z 1 z21)6 out to get

z6 1 6z4 1 15z2 1 20 1 15z22 1 6z24 1 z26 5 (z6 1 z26) 1 6(z4 1
z24) 1 15(z2 1 z22) 1 20.

We don’t have to actually multiply this out term by term. It is much easier to
use the binomial theorem, which says

( ) )x y n
k x yn

k

n
n k k+ =

=

−∑ (
0

where the binomial coefficient
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( ) !

!( )!
,n

k
n

k n k
=

−

(Remember that 0! 5 1, but if you have forgotten I’ll derive it for you in
chapter 6.) It is understood that

( ) ,n
k = 0

if k . n. Now let x 5 z and y 5 z21 and you can write down the terms of
(z 1 z21)6 as fast as you can evaluate factorials. Now, the above result for
(z 1 z21)6 is equal to the following [where I have successively taken n 5 6, 4,
and 2 in the relation zn 1 z2n 5 2cos(n )]:

2cos(6 ) 1 12cos(4 ) 1 30cos(2 ) 1 20.

But this is equal to 26cos6( ), and so we have the exotic identity

cos ( ) cos( ) cos( ) cos( ) .6 1

32
6

3

16
4

15

32
2

5

16
θ θ θ θ= + + +

The presence of the constant term, aTh, is due to the fact that cos6( ) is never
negative, i.e., electrical engineers would say the average or dc value of cos6( )
is aTh. The dc value of cos15( ), on the other hand, is zero because it is symmet-
rical about the horizontal axis, i.e., it is negative and positive equally. It would
be no more difficult to derive a similar result for, say, cos15( ).

Now, to demonstrate to yourself how much power this application of Ï21
has given you, see if you can verify the following amazing identity: cos(11 )
5 1024cos11( ) 2 2,816cos9( ) 1 2,816cos7( ) 2 1,232cos5( ) 1

220cos3( ) 2 11cos( ). Can you also derive the series for sin(11 ) in terms of
powers of sin( )? This is a bit of work, but you should know that in 1593 the
Belgium-born mathematician Adrian van Roomer (1561–1615) worked out
such a power series for sin(45 ) while constructing a famous challenge
problem—that of solving a particular forty-fifth-degree equation. Vi` ete aston-
ished van Roomer by using his vast knowledge of trigonometry to solve the
equation in just one day. Now that is a lot harder than working out sin(11 ),
don’t you think?

De Moivre’s formula appears to be able to do everything we might want for
sines and cosines, but what about the other trigonometric functions? Complex
numbers can handle such questions, too. In chapter 6, for example, you’ll see
how one of De Moivre’s contemporaries developed an ingenious, calculus-
based use of Ï21 to derive a general formula for tan(n ) in terms of powers
of tan( ).
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As a dramatic example of De Moivre’s theorem, let me show you how it
can be used to derive Viète’s infinite product formula for � that I mentioned
back in note 6 of chapter 1. Starting with De Moivre’s theorem for m � 2, we
have

{cos( ) sin( )} cos sin ./θ θ θ θ+ = ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠i i1 2 1

2

1

2

Squaring both sides, we get

cos( ) sin( ) cos sin sin cosθ θ θ θ θ θ+ = ⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠ + ⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠i i2 21

2

1

2
2

1

2

1

2

which, when the real parts are equated, gives cos(�) � cos2(���) � sin2(���), a
result derived in section 3.1 as a special case of the identity for cos(
 � �).
Using the identity cos2(���) � sin2(���) � 1 then gives us the so-called half-
angle formulas

cos
cos( )1

2

1

2
θ θ⎛

⎝
⎞
⎠ = +

and

sin
cos( )

.
1

2

1

2
θ θ⎛

⎝
⎞
⎠ = −

If we equate the imaginary parts, however, we get

sin( ) sin cos .θ θ θ= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠2

1

2

1

2

This identity can be applied to itself to write

sin( ) sin cos cos .θ θ θ θ= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝

⎞
⎠2 2

1

4

1

4

1

2

In fact, we can continue to do this, and if we do it n times (where n � 1 is
the original identity) then

sin( ) cos cos cos sin .θ θ θ θ θ= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠2

1

2

1

4

1 1

2
n

n
. . .

Dividing through by � gives

sin( )
cos cos cos

sinθ
θ

θ θ θ
θ

θ
= ⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

1

2

1
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1
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1

2
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If we then let n become arbitrarily large, and  is expressed in units of radians,
then the last factor converges to 1 (if you don’t recall why this is so, don’t
worry—I’ll derive it for you in chapter 6). So

sin( )
cos cos cos

θ
θ

θ θ θ= 

















1

2

1

4

1

8
 . . . ,

where the right-hand side continues on for an infinity of factors. Now, for
 5 p/2, this reduces to Viète’s formula

2

4 8 16π
π π π= 















cos cos cos  . . . .

Using p as the product symbol, this is more compactly written as

cos .
π

π2

2

2
k

k





 =

=

∞

∏

Since cos(p/4) 5 Ï2/2, applying the half-angle formula for cos(!s ) gives the
elegant-appearing equivalent expression

2 2

2

2 2

2

2 2 2

2π
= ⋅ + ⋅

+ +
  . . ..

We can use the results of this section and the previous one to solve equa-
tions that would otherwise be very difficult to attack. For example, what are
all the solutions to (z 1 1)n 5 zn, where n is a positive integer? Since this is a
polynomial equation of degree n 2 1 (notice that the zn terms on both sides
cancel) we expect that there are n 2 1 solutions. As z 5 0 is obviously not a
solution, we can divide through by z and say that the original equation is
equivalent to

z

z

n+



 =1

1,

and so from section 3.1 we immediately have

z

z
k

n
i k

n
k n

+ = 



 + 



 = −1 2 2

1cos sin , .
π π

 0,  1,  2,  . . . ,  

Cross-multiplying and collecting terms gives

z k
n

i k
n

1
2 2

1− 



 − 













= −cos sin .
π π
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From one of the above half-angle formulas we know that 1 2 cos(k2p/n) 5
2sin2(kp/n). From section 3.1 we also know that sin(k2p/n) 5

2sin(kp/n)cos(kp/n). Thus,

z k
n

i k
n

k
n

2 2 12sin sin cos .
π π π



 − 



















= −

Since 2i2 5 1 then this last statement can be written as

− 









 + 













= −i z k
n

k
n

i k
n

2 1sin cos sin
π π π

or, solving for z,

z

i k
n

k
n

i k
n
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 + 













1

2sin cos sin
.

π π π

There is an important proviso here, however—we must exclude the k 5 0 case
to avoid dividing by zero, i.e., to avoid the sin(kp/n) 5 0 case. This gives us
our n 2 1 solutions, then, as now k 5 1, 2, . . . , n 2 1. We can put the
solutions in much more elegant form by using the last result from the previous
section, i.e.,

1

cos sin
cos sin .

k
n

i k
n

k
n

i k
nπ π

π π
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Thus,

z
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n
i k

n

i k
n

i k
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= − − 



 = −

cos sin

sin
cot , ,

π π

π
π

2

1

2

1

2
11,  2,  . . . ,  

which gives us the rather surprising (I think) result that all of the solutions to
(z 1 1)n 5 zn each lie on the vertical line that intersects the real axis at x 5 2!s.
Without De Moivre’s theorem this would be a very much more difficult
problem.

3.3 Complex Numbers and Exponentials

The introduction of the complex plane into mathematics by Wessel dramat-
ically expanded the concept of number. Before Wessel all known numbers
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were real, confined to the one-dimensional x-axis, the so-called real axis. After
Wessel, the domain of all possible numbers expanded to the two-dimensional
plane, infinite in all directions, not just to the left and right. The discovery of
complex numbers was the last in a sequence of discoveries that gradually
filled in the set of all numbers, starting with the positive integers (finger count-
ing) and then expanding to include the positive rationals and irrational reals,
negatives, and then finally the complex.

Although I will not prove it here, the complex numbers are complete under
the usual arithmetic operations. That means we will always get another com-
plex number as the result of doing addition, subtraction, multiplication, divi-
sion, taking any root, etc., on other complex numbers. When we try to take the
square root of 21 (a real number), for example, we suddenly leave the real
numbers, and so the reals are not complete with respect to the square root
operation. We don’t have to be concerned that something like that will happen
with the complex numbers, however, and we won’t have to invent even more
exotic numbers (the “really complex”!) Complex numbers are everything
there is in the two-dimensional plane.

Now, just one last comment on Wessel’s work before we move on. After
the development of the brilliant ideas I’ve discussed so far, Wessel made the
statement that there is yet a third way to represent complex numbers, in addi-
tion to the Cartesian and the polar forms, a way involving exponentials. I’m
not going to go into his arguments on this in this book, for two reasons. First,
Wessel’s presentation on this point is definitely less impressive than is the first
part of his paper, depending as it does on a rather questionable amalgamation
of the binomial theorem and infinite series—and he actually doesn’t do any-
thing with the results he gets. Wessel himself knew things were unclear when
he wrote “I shall produce complete proofs for [my claims] at another time, if
privileged to do so.” He never did. And second, the exponential connection to
Ï21 was done decades before Wessel by others, in far more convincing
fashion. I think it is best to see how they did it, and their work appears in
chapter 6. As a prelude to that more extensive historical presentation, how-
ever, let me next show you how a modern mathematician might develop the
exponential interpretation of complex numbers.

Consider two complex numbers on the unit circle, one at angle a and the
other at angle . Wessel’s definition of complex multiplication tells us that

hcos(a) 1 isin(a)jhcos( ) 1 isin( )j 5 cos(a 1 ) 1 isin(a 1 ),

as depicted in figure 3.3. De Moivre’s theorem tells us that

hcos( ) 1 isin( )jn 5 cos(n ) 1 isin(n ).
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We can write these two statements in compact form with the notation f (�) �

cos(�) � isin(�), and similarly for f (
), as follows:

f (
)f (�) � f (
 � �),
f n(�) � f (n�).

Now, try to think of an actual function, f, that has both of these properties.
After a bit, you might think of

f (
) � eK
,
f (�) � eK�,

where K is a constant. This works because

eK
 ⋅ eK� � eK(
��),
�eK��n � enK�.

Thus, we can write f (�) � cos(�) � isin(�) � eK�, and for the special case of
� � 0 (which reduces to 1 � e0) this is obviously true for any value of K. But
for the general case of arbitrary �, K cannot be just anything. To find K,
differentiate f (�) with respect to � to get

�sin(�) � icos(�) � KeK� � i�cos(�) � isin(�)� � ieK�.

Thus, K � i and so f (�) � cos(�) � isin(�) � 1 � � � ei�.
This famous result—called “Euler’s identity”—will be discussed in much

more detail in chapter 6. Just to leave you for now with a few little gems of
symbolic dazzle, however, suppose � � �. Then, �1 � ei� or ei� � 1 � 0, a
single statement connecting five central numbers in mathematics. James
Gleick’s biography of the great American physicist Richard Feynman repro-
duces this statement on a page from one of Feynman’s youthful notebooks.4

Dated April 1933, a month before his fifteenth birthday, the page has this
identity printed in a bold scrawl and titled “THE MOST REMARKABLE

markable as it is a special case of a more general result that allows us to
calculate logarithms of negative numbers, and complex ones, too, something
students are told in high school algebra can’t be done. As an example of how it
can be done, just write ei� � �1 and so ln(�1) � i�. The logarithm of a
negative number is an imaginary number.

If � � �/2 in the expression for ei� then i � ei�/2. If we take the natural
logarithm of both sides (assuming such a thing can be done—what, after all,
could ln(i) mean?), then ln(i) � i��� or � � (2/i)ln(i). The American mathe-
matician Benjamin Peirce (1809–80) called this formal result a “mysterious
formula.” What an understatement! If, on the other hand, we raise both sides
to the ith power (whatever that might mean), then we have

uberant overstatement, but it is re-FORMULA IN MATH.” This is an ex
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i e e ei i i i= = − = = =− −( ) ( ) ./ ( ) / /π π π2 1 2 21 0 2078
2

 . . . .

An imaginary number to an imaginary power can be real! Who could even
have made up such an astonishing conclusion? As you will see in chapter 6
this isn’t the end of the story, either—in fact, ii has infinitely many real values,
of which e2p/2 is only one. Peirce’s reference to the “mysterious formula,”
which he actually wrote as Ï212Ï21 5 ep/2, appears in his 1866 book
Linear Associative Algebra. An often told story has it that, after demonstrating
the mysterious formula to one of his classes at Harvard, he declared “Gentle-
men, this is surely true, it is absolutely paradoxical; we cannot understand it,
and we don’t know what it means. But we have proved it, and therefore we
know it must be the truth.” These words are certainly in keeping with the
famous opening sentence of Linear Associative Algebra: ”Mathematics is the
science which draws necessary conclusions.”

Expressions involving the products of trigonometric functions, such as
sin(a)cos(b), often occur in scientific analyses,5 and we can use the exponen-
tial connection to complex numbers to derive useful identities for such expres-
sions. All of these derivations depend on noticing that, since ei  5 cos( ) 1
isin( ), we can then write e2i  5 cos(2 ) 1 isin(2 ) 5 cos( ) 2 isin( ). If
we add and subtract these two expressions for ei  and e2i  we can solve for
cos( ) and sin( ) in terms of the exponentials:

cos( ) sin( ) .θ θ
θ θ θ θ

= + = −− −e e e e

i

i i i i

2 2
 and 

Now, to see how useful these expressions are, consider the product
sin(a)cos(b), which we can write as

sin( ) cos( )

sin( ) sin( )

sin( ) sin( ).

( ) ( ) ( ) ( )

α β

α β α β

α β α β

α α β β

α β α β α β α β

= − ⋅ +

= − + −

= + + −

= + + −

− −

+ − + − − −

e e

i

e e

e e e e

i
i i

i

i i i i

i i i

2 2

4
2 2

4
1

2

1

2

For the special case of a 5 b this identity reduces to
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sin( ) cos( ) sin( ),α α α= 1

2
2

a result derived earlier in this chapter in another way, i.e., using Wessel’s idea
of multiplying line segments. This same approach can be used to find identi-
ties for the other possible product expressions, sin(a)sin(b) and cos(a)cos(b).

Certain common trigonometric integrals yield easily when attacked with
complex exponentials. Consider, for example, the problem of evaluating

cos ( ) cos( )n n d
0

π
θ θ θ∫

where n is any non-negative integer. From the identity

2cos( )ei  5 1 1 ei2

it follows that

2ncosn( )ein  5 (1 1 ei2 )n.

Since this is an identity in , it remains an identity if we replace  every-
where with 2 . Remembering that the cosine is an even function, i.e., that
cos(2 ) 5 cos( ), we then have

2ncosn( )e2in  5 (1 1 e2i2 )n.

Adding these two identities, then, gives us

2ncosn( )[ein  1 e2in ] 5 2n11cosn( )cos(n )
5 (1 1 ei2 )n 1 (1 1 e2i2 )n.

The left-hand side of the last equality looks just like the integrand of our
integral, but what about the stuff on the right? It should be clear to you
(I hope!) that, given enough time, we could multiply out each of the terms to
get the two expansions

(1 1 ei2 )n 5 1 1 a1ei2  1 a2ei4  1 ⋅ ⋅ ⋅ 1 anein(2 ),
(1 1 e2i2 )n 5 1 1 b1e2i2  1 b2e2i4  1 ⋅ ⋅ ⋅ 1 bne2in(2 ),

where the a’s and the b’s are numerical coefficients. Indeed, we could more
easily calculate these coefficients by using the binomial theorem, but why
bother? When we integrate both sides, i.e., when we write

2 1

00

n n n d d+ = ∫∫ cos ( ) cos( ) { ,θ θ θ θ
ππ

sum of the two expansions} 
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then all of the integrals on the right of the form

e d k nik2

0

1 2θ
π

θ∫ = ± ± ±, , ,  . . . ,  

are zero. This important result is easy to prove formally by simply doing the
easy exponential integral and plugging in the integration limits. Just remember
that eik2p 5 1 when k is any integer. Only the two leading 1’s in the expan-
sions result in nonzero integrals, then, to give

2 2 21

0 0

n n n d d+ ∫ ∫= =cos ( ) cos( ) .
π π

θ θ θ θ π

Thus, we have the wonderfully pretty result, for very little work, that

cos ( ) cos( ) , ,n
nn d n

0 2
0

π
θ θ θ π

∫ = =  1,  2,  . . . .

As a little test for you on the above ideas, see if you can apply them to show
that

sin ( )
( )!

( !)
,2

0
2 2

2

2
n

nd
n

n
nθ θ π

π

∫ = =  0,  1,  2,  . . . ,

a famous result known by other means to John Wallis. Such calculations illus-
trate a famous saying attributed to the French mathematician Jacques Hada-
mard (1865–1963): “The shortest path between two truths in the real domain
passes through the complex domain.”

I’ll conclude this section with a calculation that demonstrates the power of
much of what has been discussed so far in this chapter. In addition, it will set
the stage for the analysis I will do in chapter 7 when deriving an integral that
plays a fundamental role in mathematics. To start, I want you to consider the
general cyclotomic equation of even power, i.e., for n any positive integer,
consider z2n 2 1 5 0. This equation has 2n roots evenly spaced in angle
around the unit circle, with a separation of 2p/2n 5 p/n radians. Two of the
roots are obvious, the real z 5 61; I think it equally obvious that there can be
no other real roots. Therefore, the other 2n 2 2 5 2(n 2 1) roots must be
complex. Half of these complex roots are on the upper part of the circle (they
have positive imaginary part) and the other half (which are the conjugates of
the first half ) are on the lower part of the circle. All of the complex roots are
compactly written (with all angles in radians) as 1 / (p 6 kp/n), k 5 1, 2,
. . . , n 2 1. Notice that k 5 0 gives the real root 1 / p 5 21, while k 5 n
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gives the other real root 1 � 0 � 1 � 2� � �1. From all this, then, it follows
that it must be possible to factor the cyclotomic equation as

z z z z z

z z z z

n

k

n
2

1

1

2

1 1 1 1 1

1 1 1 1

− = − + − ∠ ⎛
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⎫
⎬
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− ∠ −⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎫
⎬
⎭

= − + − ∠ ⎛
⎝

⎞
⎠ + ∠ −⎛

⎝
⎞
⎠

⎡
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⎤
⎦⎥

∠

=

−
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( )( )

  + k
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n

  + k
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  k
n

+1  2  

π π π π

π π π π π
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⎫
⎬
⎭=

−

∏
k

n

1

1

.

Now, 1 � 2� � 1 and also

1 1

2

    ∠ +⎛
⎝

⎞
⎠ + ∠ −⎛

⎝
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⎠ = +

= +
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−
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cos .

Thus,

z z z z z k
n

n

k

n
2 2

1

1

1 1 1 2 1− = − + + ⎛
⎝

⎞
⎠ +⎧

⎨
⎩

⎫
⎬
⎭=

−

∏( )( ) cos
π

or, factoring a z out of each of the n � 1 terms in the braces on the right,

z z z z k
n

zn n

k

n
2 2 1 1

1

1

1 1 2− = − + ⎛
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⎞
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Dividing through by zn gives

z z z z z k
n
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If we next set the complex variable z to be any point on the unit circle, then
we can write z � cos(�) � isin(�). Recall from section 3.1 that z�1 � cos(�)
� isin(�), and so from De Moivre’s theorem zn � cos(n�) � isin(n�) as well
as z�n � cos(n�) � isin(n�). Thus,

2 2 2 2
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1

1
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If we then let � → 0 we have lim�→0sin(n�)/sin(�) � n, and of course
lim�→0cos(�) � 1. Again, as I promised in section 3.2 during the derivation of

1
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Viète’s infinite product formula for p, the first of these two statements will be
formally derived in chapter 6. So we arrive at

n k
n

n

k

n

= + 
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∏2 11

1

1

cos .
π

Recall now the half-angle formula from section 3.2, i.e., for a any angle
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which says that cos(a) 5 2cos2(!sa) 2 1. Thus,

1 2
2

2+ 



 = 



cos cosk

n

k

n

π π

and so

n
k

n

k

n
n

k

n
n

k

n

= 



 = 





−

=

−
−

=

−

∏ ∏2 2
2

2
2

1 2

1

1
2 1 2

1

1

cos cos .( )π π

Taking the square root of both sides—which we can do without having any
sign ambiguity concerns because cos(kp/2n) . 0 for all k from 1 to n 2 1—
we finally arrive at
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This is certainly a pretty formula—I think the Ïn in the numerator is
totally unexpected—but is it correct? Well, we can always check the formula
for any specific value of n. Let us try n 5 5. Then the formula claims that

cos . ,
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5 0 1397543

π

and in fact if you run the product of the four cosine factors on the left through
your calculator you’ll find that is just what you will indeed get. And, by the
way, if you simply define a new index variable on the product as j 5 n 2 k (so
that as k runs from 1 to n 2 1 then j runs from n 2 1 to 1), and if you recall
that sin( ) 5 cos(!sp 2 ), then it is easy to see that we also have the result
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There are no Ï21 terms left in the final formulas, but can you even begin to
imagine how to derive them without Ï21? I can’t.
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3.4 Argand

As I stated before, brilliant as Wessel’s contribution was, it simply was not
read—and would not be—until unearthed from the musty literature a century
after the fact. Wessel’s ideas were, however, “in the air” and within a decade
of the original presentation of his paper to the Danish Academy they were
rediscovered. Indeed, the year 1806 actually saw two publications that, more
or less, put forth Wessel’s complex plane and his association of the vertical
axis with the axis of imaginaries.

The first of these two writers, the Swiss-born Jean-Robert Argand (1768–
1822), was from as unlikely a background as was Wessel. Essentially nothing is
known of Argand’s early life, but he probably was not formally trained in
mathematics—in 1806, when nearly forty, he was laboring in obscurity as a
Parisian bookkeeper. In 1876 the French mathematician Guillaume-Jules Hoüel
(1823–86) reprinted Argand’s pamphlet, and in his introductory preface tells of
his attempt to track down details of Argand’s life. It was through Hoüel’s efforts
that Argand’s registry of birth was found. He found very little more beyond that,
however. Hoüel ended his brief account with the following poignant words: “If
we add to this that, about 1813, Argand lived at Paris rue de Gentilly, No. 12, as
indicated in his own handwriting on the cover of [a copy of his pamphlet] we
shall have stated all we have been able to learn of this original man, whose
modest life will remain unknown, but whose services to science Hamilton and
Cauchy have deemed worthy the gratitude of posterity.”

Despite his humble origin, in 1806 Argand had his work on complex
numbers—in which the idea of the modulus is first introduced—published in
a small print run by a private press. Since he probably meant to give copies
away free to friends and correspondents, who would of course know who the
author was, he did not even put his name on the title page. This work, titled
Essay on the Geometrical Interpretation of Imaginary Quantities, was almost
surely doomed to disappear even faster than had Wessel’s, except for subse-
quent events of an astonishing nature.

One who received a copy of Argand’s work was the great French mathe-
matician Adrien-Marie Legendre (1752–1833), who in turn mentioned it in a
letter to Francois Francais (1768–1810), a professor of mathematics whose
military background led him naturally into mathematical problems related to
artillery; for example, the use of calculus to study the motion of projectiles
through air. When he died, his younger brother Jacques (1775–1833) inher-
ited the older brother’s papers. Jacques, too, had an extensive military back-
ground and, from 1811 until his death, he was professor of military art at the
Ecole Impériale d’Application du Génie et de l’Artillerie in Metz. Also, like his
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older brother, Jacques was a mathematician and, while going through his late
brother’s papers, he found Legendre’s 1806 letter describing the mathematics
in Argand’s pamphlet—but he didn’t know Argand’s name as Legendre had
failed to mention it in the letter.

Stimulated by the ideas he read about in that letter, Jacques published an
article in an 1813 issue of the journal Annales de Mathématiques giving the
basics of the geometry of complex numbers. In the last paragraph of his pa-
per, however, Francais acknowledged his debt to Legendre’s letter and, fur-
ther, urged the anonymous author whose work Legendre discussed in that
letter to come forward. Happily, Argand learned of this plea and his reply
appeared in the very next issue of the journal. Accompanying Argand’s reply
was a short note by Francais, in which he declared Argand to be the first to
have developed the geometry of imaginaries and that he was pleased to so
acknowledge this priority (neither man had, of course, heard of Wessel).
What a happy story this is, particularly when compared to the sorry mess of
tangled claims of priority that still surrounds the Tartaglia/Cardan contro-
versy over the cubic.

With the publication of Argand’s ideas in a recognized journal of mathe-
matics, some controversy erupted between Argand and Francais on one side
and the French mathematician Francois-Joseph Servois (1767–1847) on the
other. A man with a military background who, like Francais, taught for a while
at the artillery school in Metz, Servois felt that a geometric interpretation of
algebraic ideas somehow made them impure. For example, in a letter to the
Annales he wrote “I confess that I do not yet see in this notation anything but a
geometric mask applied to analytic forms the direct use of which seems to me
simple and more expeditious.”6 Curiously, this debate remained more or less
courteous and probably, if anything, helped to attract some attention to Ar-
gand’s ideas. Even more curiously, Wessel (who was still alive) heard nothing
of these doings in France, and nobody else remembered, if they ever knew,
that Wessel had done it all twenty years before. Wessel and Argand went to
their graves only four years apart, with neither having learned of the other and
with most of the world ignorant of both.

In Hoüel’s 1876 reprint of Argand’s work the following ironic testimonial
was included in the introductory preface, words quoted from the recently de-
ceased young German mathematician Hermann Hankel (1839–73): “The first
to show how to represent the imaginary form A 1 Bi by points in a plane, and
to give rules for their geometric addition and multiplication, was Ar-
gand. . . . unless some older work is discovered, Argand must be regarded as
the true founder of the theory of complex quantities in a plane.” Two decades
later, of course, Wessel’s “older work” was discovered.
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3.5 Buée

The second rediscovery in 1806 of Wessel’s ideas came from an even more
obscure writer than Argand, the French Abbé Adrien-Quentin Buée (1748–
1826), who published, in French, a very long paper in the Philosophical
Transactions of the Royal Society of London. Unlike the workmanlike style
of both Wessel and Argand, Buée’s work has a decidedly mystical air to it,
and it must have seemed quite strange to all who managed to get through its
sixty-five pages. His geometric understanding of Ï21 is clear when he writes
“Ï21 is the sign of perpendicularity.” Matters become somewhat suspect,
however, when after failing to define multiplication of line segments (Wessel’s
central contribution) Buée then states that if t represents future time and if
2t represents past time, then the present time is composed of t  !sÏ21 and
2t  !sÏ21.

As one Harvard mathematician wrote on this a century later, “It is vain to
speculate after this lapse of time as to why such a memoir was accepted by the
Society. Was the good Abbé an émigré whom the British delighted to honor
the year that they defeated his non-emigrated countrymen at Trafalgar? Some
such reason there must have been, as the intrinsic worth of the memoir would
never recommend it for publication.”7 Five years later an English mathemati-
cian offered a somewhat less snide assessment when he wrote “It must be
stated that this paper serves to indicate little more than the fact that the Abbé’s
ideas concerning imaginaries are decidedly unorthodox.”8 These two com-
ments are generally correct, but it is also true that the Irish mathematical
genius William Rowan Hamilton seems, in his correspondence, to have had a
favorable, or at least a tolerant, opinion of Buée’s paper.

In fact, while Buée’s paper does have a slightly mystical flavor to it, he did
not write it simply to proselytize his own peculiar ideas. Rather, he wrote in an
attempt to respond to questions raised in a book written just three years before,
by the respected French mathematician and statesman Lazare Carnot (1753–
1823). (Carnot—whose son, Sadi, is known today as the “father of modern
thermodynamics”—was greatly troubled by the mysteries of Ï21 and, in his
1803 book Géométrie de Position, he formulated many interesting questions,
one of which is discussed in box 3.1.) Buée’s paper is speculative, yes, indeed
it is even “strange,” but it was certainly written in a scholarly search for truth.
I don’t think Buée was, in any sense of the word, a quack, and certainly not
deserving of ridicule.

Indeed, Buée’s paper struck at least one well-known and respected French
mathematician at the time as sufficiently meritorious that he9 suggested Ar-
gand’s work could have been written after Argand had seen Buée’s paper.
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B O X  3 . 1

Carnot’s Problem of Dividing a Line Segment

In his 1803 book Géométrie de Position Carnot asks the following
question: given a line segment AB, of length a, how can it be divided
into two shorter segments so that the product of their lengths is equal
to one-half the square of the original length?* Carnot solves this by
letting the two new lengths be denoted by x and a 2 x. Then,

x a x a( )− = 1

2
2

and this is easily solved to give

x a i a= ±1

2

1

2
.

Just as discussed back in section 2.1, the appearance of a complex so-
lution was interpreted by Carnot to mean that the point on the line
segment defined by x (the distance from A to the point) does not lie
between A and B. That is, it is not physically possible to divide AB as
required by the given constraint.

Buée, on the other hand, while agreeing that the dividing point
could not be between A and B, imagined that the imaginary part of x
meant the point is located off to the side of AB, i.e., at a distance of
!sa from the midpoint (because the real part of x is !sa) of AB. Hence
Buée’s interpretation of i 5 Ï21 as meaning perpendicularity. Buée
offers nothing to support this idea, however, unlike Wessel’s analysis,
in which the same conclusion follows logically.

* I have been unable to obtain a copy of Carnot’s book, and so the discussion in box
3.1 is based on the tutorial essay by Alexander MacFarlane, “On the Imaginary of Alge-
bra,” Proceedings of the American Association for the Advancement of Science 41
(1892):33–55.

This Argand hotly rejected, arguing that there is generally a significant lapse
between the date a journal bears and when it actually appears, and since his
pamphlet was published in 1806 then he could not have seen Buée’s work
prior to writing his own. As Argand put it, obviously insulted at such a com-
ment hinting transparently at plagiarism, “This is sufficient to prove that if the
contribution of Buée was wholly his own, as is quite possible, then it is also
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quite certain that I could have had no knowledge of his paper when my treatise
appeared.” In any case, the two works are significantly different in presenta-
tion, with Argand’s the clear superior.

But this is not to say that Argand, too, didn’t have his problems with com-
plex numbers. For example, he was at first convinced that (Ï21)Ï21 could
not be written in the two-dimensional form a 1 ib, but rather would require a
three-dimensional space. In one of the exchanges in the Annales, Francais
pointed out that Argand was wrong; or as he diplomatically put it, Argand’s
claim was “simply a conjecture open to serious objection.” In fact, he went on
to derive the even more general formula

( ) {cos[ ln( )] sin[ ln( )]}./c e d c d cd d− = + −− −1 11 2π

For c 5 d 5 1, this reduces to ii 5 e2p/2 which is obviously purely real, and
so (Ï21)Ï21 needs only the one-dimensional real axis to find its home—
not even the full two dimensions of the complex plane are needed and cer-
tainly not the three of space. Box 3.2 shows how Francais’ generalization can
be made even more general. And box 3.3 should keep you sleepless for a few
nights!

3.6 Rediscovery Redux

After 1814 Argand’s work drifted toward the same oblivion as had Wessel’s,
and matters had to be rediscovered yet again. Just as 1806 had been a year of
simultaneous discovery for Argand and Buée, 1828 also saw the publication
of two books, one in Cambridge, England and the other in Paris. The latter, by
C. V. Mourey, I have been unable to obtain,10 but the other, by the Reverend
John Warren (1796–1852), a Fellow of Jesus College of Cambridge Univer-
sity, was a solid, formula-packed presentation of complex numbers (A Trea-
tise on the Geometrical Representation of the Square Roots of Negative Quan-
tities). Warren’s book would perhaps have its greatest impact not by what it
had to say, but by how it said it, and in how its geometrical approach was
rejected by William Rowan Hamilton. Hamilton was inspired by Warren’s
book to think he could do better, and as an already famous man his work, so
one might think, would not be forgotten.

William Rowan Hamilton (1805–65) was born in Dublin, Ireland, and by
the time he died not far from where he began his life he had left his mark all
over mathematical physics. He got off to a rather odd start, however. A youth
of almost unbelievably misguided precocity, he devoted many of his early
years to gaining proficiency in multiple languages—Latin, Greek, and
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B O X  3 . 2

Raising a Complex Number to a Complex Power

Francais’ rebuttal to Argand’s claim that ii cannot itself be written
as a complex number could have been even more general than it was.
He could have calculated

( )a b c d+ − + −1 1

and shown that even this more “complex” expression can be written
as the sum of a real part and an imaginary part. Euler did this in
1749, when Wessel was four years old (and Argand was 219) and the
French mathematician and philosopher Jean le Rond d’Alembert
(1717–83) claimed to have done it even earlier. Argand’s ii would
then have simply been the special case of a 5 c 5 0 and b 5 d 5 1.
Can you do this? As a hint, I will calculate (1 1 i)11i and that should
provide you with enough clues for the general approach. To start,
write 1 1 i 5 Ï2 / (p/4 1 2pk), where k is any integer. Then,
using the identity x 5 eln(x),

( ) ln( ) ( ) ln( ) ( ) ln{ ( / )}

( ) ln{ } ( ){ln( ) ( / )}

{ln( ) ( / )} {ln( ) ( /

( / )

1 1 1 1 1 1 2 4 2
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=

+ + + + + ∠ +

+ + + +
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+

i e e e

e e

e e
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i
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π π

π

π π

π π

++2k )}.

The so-called principal value for (1 1 i)11i is the k 5 0 case, which
gives

e e e i

i

i{ln( ) / } {ln( ) / } / cos ln( ) sin ln( )

. .

2 4 2 4 4 2 2
4

2
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0 2739 0 5837

− + −= +







+ +













= +

π π π π π

 . . .   . . . .

Using the same approach, see if you can show that 1i 5 e22pk. Thus,
while the principal value of 1i 5 1, the common saying of “one to
any power is always one” is not true in general.

Hebrew by age five, to which by age nine he had added Persian, Arabic,
Sanskrit, etc., etc. As the historian of mathematics E. T. Bell wrote of all this
effort, “Good God! What was the sense of it all?”11 By the end of 1824,
however, discipline appeared and mathematics had become his passion to the
point that he presented a paper on optics to the Royal Irish Academy. The
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B O X  3 . 3

Exponential Madness

If you think exponentials are pretty straightforward at this point,
then consider the following infuriating little puzzle. It was proposed in
1827 by a one-time cattle herder, the self-taught Danish mathematician
Thomas Clausen (1801–85). Gauss himself declared Clausen to have
“outstanding talents” and, as this puzzle shows, perhaps even diabolic
ones. Clausen wrote the puzzle as a challenge problem, and variations
of it periodically appear in the problem sections of mathematics jour-
nals to this day.

ei2pn 5 1 for n 5 0, 61, 62, . . .

e ⋅ ei2pn 5 e 5 e11i2pn

e11i2pn 5 he11i2pnj(11i2pn)

e 5 e(11i2pn)2 5 e11i4pn24p2n2 5 e11i4pne24p2n2

e11i4pn 5 e

e 5 ee24p2n2

1 5 e24p2n2

The last statement is true only for n 5 0. And yet, we started with a
statement true for all integer n and then performed operations that ap-
pear to always be valid. What happened?

Academy did have some trouble understanding everything that the still teen-
age Hamilton had to say, but by 1836 he had learned how to express himself
well enough that the Royal Society awarded him its Royal Medal that year for
some important optical studies.

Still, while his name lives in physics today in a quantity called the Hamilto-
nian, a concept studied by every undergraduate physics student learning about
the science of dynamics, little is remembered of the man. His early work in
optics and wave motion, which led to the formulation of the Hamiltonian, has
a particular irony to it, too, when one realizes that a century later the emerging
quantum-wave mechanics found Hamilton’s ideas fundamentally important.
Ironic, because it is the names of others, Louis de Broglie and Erwin Schrö-
dinger, in particular, that are associated with wave mechanics, not Hamilton’s.
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In mathematics, too, Hamilton made a big splash during his lifetime only to
have his ghost watch his association with it all fade to a mere shadow of the
original glory. Hamilton’s work in complex numbers is the prime example of
this fate. In 1829 a friend urged him to read Warren’s book, published the year
before. He did and Hamilton, who felt that algebra—with its Ï21—was
separate and distinct from geometry, rejected that book’s geometric interpreta-
tion of complex numbers. Rather, he felt that Ï21 should have a purely
algebraic interpretation. As he wrote much later, in 1853, “I . . . felt dissat-
isfied with any view which should not give to [imaginaries] from the outset a
clear interpretation and meaning; and wished that this should be done, for
square roots of negatives, without introducing considerations so expressly
geometrical as those which involved the conception of an angle.”12

Hamilton felt that, just as geometry is the science of space and just as that
science had found its mathematical expression in Euclid’s Elements, algebra
too should be the science of something in our physical existence. He decided
the “something” must be time, an idea he picked up from Kant’s philosophy,
and declared that time must be what algebra—with its Ï21—is all about. In
associating time with Ï21 Hamilton was, of course, not the first; recall Buée,
whose 1806 paper Hamilton had read. Hamilton would certainly have been
less sure of himself on this line of reasoning if he had known that there is no
one science of geometry, i.e., Euclid’s geometry is only one of many possible,
self-consistent geometries. Euclidean geometry does seem to describe our lo-
cal surroundings quite well, but on a cosmic scale physicists have turned to
non-Euclidean geometries to describe what nearly everybody who has seen
Star Trek has heard of these days—the geometry of curved spacetime. So, just
as there is no one science of space, there is no one science of algebra either—
another algebra that is commonly used today is Boolean algebra, the logical
algebra of sets used to design digital machines, like computers—and they
can’t all be about time!

Hamilton knew nothing of such matters, however, and so in June of 1835 he
presented to the Irish Academy a paper titled “Theory of Conjugate Functions
or Algebraic Couples: with a Preliminary Essay on Algebra as a Science of
Pure Time.” I will skip over the metaphysics of algebra as the science of time,
and simply tell you about the mathematics. Hamilton defined ordered pairs of
real numbers, written as (a,b), to be a couple. He defined the addition and
multiplication of two couples as follows:

(a,b) 1 (c,d ) 5 (a 1 c, b 1 d ),
(a,b)(c,d ) 5 (ac 2 bd, bc 1 ad ).

Note very carefully that these are definitions, and as such require no further
explanation. In fact, however, it is painfully clear that Hamilton was moti-
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vated to make these particular definitions because he already knew that that is
how complex numbers “work.” That is, his mathematically “pure and ab-
stract” couple (a,b) is just another way to write a � ib. Hamilton, however,
felt his notation somehow better since it avoids the use of the “absurd” ��1.
Still, as a wit once put it, “A rose is a rose, and a pig by any other name is still
a pig.” There is an amusing comment by Hamilton himself on the fact that his
abstract definitions are really not arbitrary at all: “Persons who have read with
attention the foregoing remarks of this theory . . . will see that these defini-
tions are really not arbitrarily chosen.” Indeed not.

In any case, continuing with the analogy to complex numbers, Hamilton
wrote the purely real number a as the couple (a,0). This is, of course, exactly
what you do when you write a as the abbreviated form of a � 0��1. So,
formally, we have from the multiplication definition that

a(c,d ) � (a,0)(c,d ) � (ac,ad )

and, in particular, if a � �1 then

�1(c,d ) � �(c,d ) � (�1,0)(c,d ) � (�c,�d ).

Now,

(0,1)2(c,d ) � (0,1)(0,1)(c,d ) � (0,1)(�d,c)
� (�c,�d ) � �(c,d ).

Thus, (0,1)2 � �1 or, just as one would expect, we have (0,1) � ��1. There
should be no surprise here that (0,1) � i � ��1, because we started with
(a,b) � a � ib.

There is not just a little irony in Hamilton’s aversion to a geometrical view
of complex numbers. I say this because Hamilton of course knew of the rota-
tional property of ��1. Indeed, it was that geometrical knowledge that led
him on to his next mathematical quest, one that was to obsess him for the rest
of his life. Just as ��1 rotates vectors in the complex plane, Hamilton won-
dered what would rotate vectors in three-dimensional space. This led him to

here.13

3.7 Gauss

By the time Hamilton published his work on couples the geometric interpreta-
tion had already been given the stamp of approval by the intellectual giant
Carl Friedrich Gauss (1777–1855). In April of 1831, four years before Ham-
ilton, Gauss had already presented his own geometric ideas on complex num-

his discovery of quaternions or hypercomplex numbers, a story I will not tell
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bers in a memoir to the Royal Society of Göttingen. In fact, Gauss had been in
possession of these concepts in 1796 (before Wessel) and had used them to
reproduce, without Gauss’ knowledge, Wessel’s results. But, like so many
other of his works of genius, he had neglected to publish until he felt he had
everything “just right.” In an 1812 letter to the French mathematician Pierre
Laplace, for example, Gauss wrote “I have in my papers many things for
which I could perhaps lose the priority of publication, but you know, I prefer
to let things ripen.”14

In 1831 he had finally reached a sufficiently ripened state concerning com-
plex numbers (the term complex is his), and it was Gauss’ enormous reputa-
tion that at last carried the day. Gauss’ understanding of complex numbers did
evolve over time. For example, at the time of the writing of his dissertation he
believed there might be an endless hierarchy of complex numbers, i.e., that the
complex numbers might not be complete. He called these ever more complex
numbers “vera umbrae umbra,” or “veritable shadows of shadows.” Later, of
course, he realized that this is not so. In his honor the complex plane is some-
times referred to as the “Gaussian plane,” except in France where one is
equally likely to read of the “Argand plane.” Complex numbers of the form a
1 ib with a and b both integers are called Gaussian integers. After Gauss,
Ï21 was accepted as a legitimate symbol and, on the occasion of the fifty-
year jubilee (in 1849) celebrating his doctorate, the congratulatory address
told him “You have made possible the impossible.”

As Gauss wrote in 1831, “If this subject has hitherto been considered from
the wrong viewpoint and thus enveloped in mystery and surrounded by dark-
ness, it is largely an unsuitable terminology which should be blamed. Had 11,
21 and Ï21, instead of being called positive, negative and imaginary (or
worse still impossible) unity, been given the names, say, of direct, inverse and
lateral unity, there would hardly have been any scope for such obscurity.” It is
ironic that in that same year Hamilton’s friend Augustus De Morgan wrote, in
his book On the Study and Difficulties of Mathematics, “We have shown the
symbol Ï21 to be void of meaning, or rather self-contradictory and absurd.”
Years later De Morgan was still a skeptic; in his 1849 book Trigonometry and
Double Algebra he wrote “The student, if he should hereafter inquire into the
assertions of different writers, who contend for what each of them considers as
the explanation of Ï21, will do well to substitute the indefinite article.” De
Morgan was too much the skeptic, but he was not ignorant—in that same
book he managed to overcome his distaste for Ï21 and perform essentially
the general calculations given in box 3.2. As one modern writer has put it, “At
the beginning of their history, complex numbers a 1 bÏ21 were considered
to be ‘impossible numbers,’ tolerated only in a limited algebraic domain be-
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cause they seemed useful in the solution of cubic equations. But their signifi-
cance turned out to be geometric [my emphasis] and ultimately led to the
unification of algebraic functions with conformal mapping, potential theory,
and another ‘impossible’ field, noneuclidean geometry. This [geometric] reso-
lution of the paradox of Ï21 was so powerful, unexpected, and beautiful that
only the word ‘miracle’ seems adequate to describe it.”15

There were, I should tell you, some who still resisted. While writing in the
Cambridge Philosophical Society’s Transactions, for example, the English
mathematician George Airy (1801–92), who was the Astronomer Royal from
1835 to 1881, declared “I have not the smallest confidence in any result which
is essentially obtained by the use of imaginary symbols.” Five years after
Gauss’ jubilee, the English logician George Boole (1815–64) called Ï21 an
“uninterpretable symbol” in his 1854 masterpiece An Investigation of the
Laws of Thought. And finally, as late as the 1880s, the situation was such that
one of the top mathematics students in England would recall, decades later,
that “it was an age when the use of Ï21 was suspect at Cambridge even in
trigonometrical formulae. . . . The imaginary i was suspiciously regarded as
an untrustworthy intruder.”16 Change comes hard, even for mathematicians.
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Using Complex Numbers

4.1 Complex Numbers as Vectors

In this chapter, and in the next, I will show you some specific examples or
case studies of the application of complex numbers to the solution of interest-
ing problems in mathematics and applied science. Most of the underlying
theory in this chapter will be based on the elementary idea that complex num-
bers can represent vectors, i.e., quantities with magnitude and direction, in the
complex plane. Indeed, complex number arithmetic can be interpreted as se-
quences of vector manipulations.

The addition and subtraction of vectors is routinely taught in high school
physics and, as shown in figure 4.1, the ideas are quite straightforward. In that
figure the complex numbers 2 2 i3 and 3 1 i4 are shown as vectors, and their
sum is calculated using the well-known parallelogram rule of adding “head-
to-tail” to get 5 1 i. To subtract, say, 2 2 i3 from 3 1 i4, we first form 2(2 2
i3) 5 22 1 i3 (which, as a multiplication of 2 2 i3 by 21 5 1 / 1808 is
simply a 1808 clockwise rotation of 2 2 i3) and then add as before to get 1 1
i7. This is shown in figure 4.2. Notice that the 1808 rotation is equivalent to
extending 2 2 i3 backwards along its own direction, through the origin.

Less familiar than addition and subtraction, perhaps, but really no more
difficult, is the geometrical vector multiplication and division of complex
numbers.1 To see how multiplication works, you need only recall that it is
multiple addition. For example, for real numbers, 3  5 5 3 1 3 1 3 1 3 1 3
5 5 1 5 1 5. That is, we can either add 5 three times or add 3 five times. This
elementary observation can be easily extended to complex number/vector
multiplication, as well. So, suppose we want to calculate (2 2 i3) (3 1 i2). To
do this geometrically, arbitrarily pick either one of the factors, say 3 1 i2, and
add it to itself 2 2 i3 times. This isn’t as crazy as it perhaps sounds! Just
notice that (2 2 i3) (3 1 i2) 5 2(3 1 i2) 2 i3(3 1 i2). This tells us to first
draw the vector 3 1 i2, and then make it twice as long. Call the result V1, for
“vector one.” Then draw the vector 3 1 i2, make it three times as long, and,
finally, rotate the result by 2908 because of the factor 2i 5 1 / 2908. Call
the result of these operations V2. The answer we want is just V1 1 V2, a
vector addition that we already know how to do. The entire process is shown
in figure 4.3, where the rotation operation on 3 1 i2 can be thought of as
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Figure 4.1. Vector addition.

defining a new set of coordinate axes, x9 and y9, in which the final addition
operation is performed. In the same way, division of complex number vectors
can be interpreted as multiple subtraction.

4.2 Doing Geometry with Complex Vector Algebra

One elementary but most useful application of treating complex numbers as
vectors is in proving geometric theorems. To illustrate this I will first demon-
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Figure 4.2. Vector subtraction.

strate the technique by proving a theorem from elementary Euclidean geome-
try that, using the traditional axiomatic approach, is not so easy to do. I think,
however, that you will find the complex vector proof to be almost transparent.
Then, with that done, I will show you a beautifully short complex vector proof
of a simple version of an elegant theorem due to Roger Cotes, about whom
much more will be said in chapter 6.

To begin, let me ask you to consider the following fundamental assertion
which I’ll soon prove for you. Let me call it assertion 1, as eventually there
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Figure 4.3. Vector multiplication.

will be an assertion 2. So, assertion 1: Suppose you are given two points in the
complex plane, P1 and P2, with coordinates z1 5 x1 1 iy1 and z2 5 x2 1 iy2,
respectively, as shown in figure 4.4. Further, let P be an arbitrary point on the
line segment connecting P1 and P2. Then, if P divides the line segment P1P2

into two (obviously shorter) line segments P1P and PP2, where P1P/PP2 5 l,
then we can write the location of P as

z
z z= +

+
1 2

1

λ
λ

.

In particular, if l 5 1 then P is the midpoint of P1P2 and

z
z z= +1 2

2
,
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Figure 4.4. The geometry of assertion 1.

i.e., z is the average of z1 and z2, and P bisects P1P2. And if l 5 2, then P is a
trisection point of P1P2 and

z
z z= +1 22

3
.

Notice that this trisection point is closer to P2 than it is to P1. The other trisection
point, the one closer to P1 than it is to P2, occurs for l 5 !s which gives

z
z z= +2

3
1 2 .

Assertion 1 is actually quite easy to prove, using figure 4.4. Simply notice
that since P1 and P2 are on the same line segment, and by the definition of l,
we can write

x x

y y

x x

y y

x x

x x

y y

y y
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These three expressions are easily manipulated to give

x
x x
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1 1
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λ
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 and ,

which is assertion 1 with z 5 x 1 iy.
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Now we will use assertion 1 to prove the following claim: the medians of
any triangle meet in a point P which is two-thirds of the way from each vertex
to the opposite side, as shown in figure 4.5. Here is the proof. Each median
from a vertex terminates, by definition, at the midpoint of the side opposite the
vertex. The locations of the terminating points of the three medians, from
assertion 1 (using l 5 1 for bisecting points), are as shown in figure 4.5 where
the locations of the three vertices A, B, and C are z1, z2, and z3, respectively.
Now, for each median line segment, we can compute the point that is two-
thirds of the way from the appropriate vertex, again using assertion 1 with l 5
2. This gives the trisection point closer to the terminating point, which is what
we want. Let us call these three points PA, PB, and PC, and then show they are
the same point as claimed by the theorem. Thus,

P z z z z z z

P z z z z z z

P z z z z z z

A

B

C

= + ⋅ +





= + +

= + ⋅ +





= + +

= + ⋅ +
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1
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1
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1
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1

3
2

1

2

1

3

1 2 3 1 2 3

2 1 3 2 1 3

3 1 2 3 1 2

( ) ( ),

( ) ( ),

( ) ( ),

Figure 4.5. A geometric theorem.
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and obviously PA 5 PB 5 PC. So, we are done! Wasn’t that easy? Try creat-
ing a traditional high school geometry proof and I think you will find it much
more difficult.

Before turning to Cotes’ theorem, here is assertion 2. The distance between
two points z1 and z2 in the complex plane is uz1 2 z2u 5 Ï(x1 2 x2)2 1 (y1 2
y2)2. The proof of this is simply to remember the Pythagorean theorem. Now
let us use this to discuss Cotes’ theorem. Cotes’ theorem: If a regular n-gon is
inscribed in a circle with radius r, and if the point P lies on one of the radii
from the center of the circle, i.e., of the n-gon, to one of the vertices at distance
a from the center, then the product of the distances between P and all of the
vertices is rn 2 an or an 2 rn, depending on whether P is inside the circle (a ,
r) or outside the circle (a . r), respectively. Figure 4.6 shows the geometry
involved for the case of n 5 4 and for P inside the circle.

Cotes was led to this theorem because of a claim made by Leibniz in his
1702 book Acta Eruditorum. There he observed that the integrals

dx

x a

dx

x a+ +∫∫  and 2 2

Figure 4.6. Cotes’ theorem, for a regular 4-gon.
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are expressible in terms of the logarithmic and trigonometric functions, re-
spectively, but the next such integrals of

dx

x a

dx

x a4 4 8 8+ +∫∫  and 

cannot be so expressed. Cotes responded to this (incorrect) claim by studying
how to factor xn 6 an and, indeed, how to construct the factors geometrically.
Hence his theorem, which he only stated and did not prove. It was not until
1722 that a proof was finally published by Henry Pemberton (1694–1771),
who was editor of the third edition of Newton’s Principia. John Bernoulli
described Pemberton’s proof as “long, tedious and intricate,” but that’s be-
cause Pemberton didn’t use complex numbers! We know of Cotes’ theorem
only because his cousin, the physicist Robert Smith (1689–1768), included it
in Harmonia Mensurarum after he reconstructed the jumble of rough notes
left by Cotes at his sudden death.

In the simple situation shown in figure 4.6 it is easy to verify Cotes’ theo-
rem by direct calculation of the distances involved, but what if n were very
much larger (say, 924)? We don’t want to calculate 924 distances! We want a
general proof, valid for all n. Here’s how to do it. First, with no loss of
generality we can always place the center of the circle at the origin of the
coordinate axes, and imagine that P is on the real axis at z 5 a, as shown in
figure 4.6. Then, simply notice that the locations of the vertices of the regular
n-gon are the solutions to the cyclotomic equation zn 2 rn 5 0 discussed in the
previous chapter. Thus, with zK denoting the location of the kth vertex, we can
write this equation in factored form as

(z 2 z1)(z 2 z2)(z 2 z3) ⋅ ⋅ ⋅ (z 2 zn) 5 zn 2 rn.

If we take the absolute value of both sides of this expression, and use the fact
that the absolute value of a product is the product of the absolute values—a
fact easy to verify by direct evaluation—then

uz 2 z1u uz 2 z2u uz 2 z3u ⋅ ⋅ ⋅ uz 2 znu 5 uzn 2 rnu.

From assertion 2, the left-hand side is just the product of the distances from
a point at arbitrary location z to all the vertices. Now, in particular, let us take z
5 a, the location of point P. Since P is on the real axis, then z is real and zn 5
an. Also, by its very definition as the value of the radius, we know r is real,
and so zn 2 rn is real, too. Thus, since an absolute value is always positive, we
have
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Again, we are done, and all the action happens so fast we almost have to look
twice to realize it.

4.3 The Gamow Problem

For our next example, consider the following problem taken from George
Gamow’s wonderful, popularized science book One Two Three . . . Infinity.
Published in 1947, it is still one of the best of its kind, maybe even the best.
Gamow, a physicist, took a utilitarian approach to mathematics, one much
more like an engineer’s than a mathematician’s, and in one section he dis-
cusses complex numbers. In particular, he invented a charming problem to
illustrate the rotational property of Ï21. Gamow’s problem is presented as
the story of a “young and adventurous man” who discovers an ancient parch-
ment among his late great-grandfather’s papers. On it he reads:

Sail to  North latitude and  West longitude where thou wilt find a
deserted island. There lieth a large meadow, not pent, on the north shore of the
island where standeth a lonely oak and a lonely pine. There thou wilt also see an
old gallows on which we once were wont to hang traitors. Start thou from the
gallows and walk to the oak counting thy steps. At the oak thou must turn right
by a right angle and take the same number of steps. Put here a spike in the
ground. Now must thou return to the gallows and walk to the pine counting thy
steps. At the pine thou must turn left by a right angle and see that thou takest the
same number of steps, and put another spike into the ground. Dig halfway
between the spikes; the treasure is there.

All of this is shown in figure 4.7. To this wonderfully imaginative set of
instructions Gamow added two funny footnotes: one to tell us that he has of
course omitted the numerical values of longitude and latitude to prevent any
of us from tossing his book aside and rushing off to start digging up the
treasure, and a second to inform us that he, of course, knows oak and pine
trees don’t grow on deserted islands but he has altered the real types of trees
again to help keep the actual island secret. Gamow must have been quite a
funny fellow at a party.

The young man follows the instructions, at least to the point of locating the
island, where he sees the oak and the pine trees. But, alas, there is no gallows!
Unlike the living trees, the gallows has long since disintegrated in the weather,
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Figure 4.7. Gamow’s map.

and not a trace of it or its location remains. Unable to carry out the rest of the
instructions (or so he believes), the young man sails away with nary a gold coin or
a diamond necklace to show for his troubles. And that’s too bad because, as
Gamow observes, he could have located the treasure with no difficulty at all, if he
had understood complex numbers. Now, while I find Gamow’s problem itself
charming I am less enthusiastic about his explanation of it. This is one of the very
few instances where I would even dare to challenge a thinker of Gamow’s
intellect, but I think my solution is far clearer. If you want to compare Gamow’s
with mine, then buy his book—as a true classic of popularization, it is still in
print after fifty years. Here’s my solution.

Since we don’t know where the gallows was, let’s just write its location as the
general a 1 ib in the complex plane, as shown in figure 4.7, using a coordinate
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system with the real axis drawn through the line segment joining the two trees,
and with the imaginary axis positioned so that the two trees are symmetrically
located at 61 (in whatever units of distance we wish). As it turns out, the location
of the treasure is independent of both a and b, an astonishing and, I think, utterly
unexpected fact that can be established as follows.

Begin by first imagining a temporary shift of the origin of coordinates to the
oak. Then the vector pointing from the oak to the gallows is (a 1 1) 1 ib. To
locate the first spike, then, we must rotate this vector by 1908, i.e., multiply it by
i. The location of Sl in the new coordinates is, then, 2b 1 i(1 1 a). Returning to
the original coordinates gives the location of Sl as 2b 2 1 1 i(1 1 a).

Next, imagine a second temporary shift of the origin of coordinates to the
pine. Then the vector pointing from the pine to the gallows is (a 2 1) 1 ib. To
locate the second spike, then, we must rotate this vector by 2908, i.e., multiply
by 2i. The location of S2 in the new coordinates is, then, b 2 i(a 2 1).
Returning to the original coordinates gives the location of S2 as (b 1 1) 2i(a 2 1).

The location of the treasure is the midpoint of the line segment joining S1
and S2 or, as discussed in the previous example, the location is the average of
the coordinates of S1 and S2, i.e., the treasure is at

− + + + + + − − =( ) ( ) ( ) ( )
.

b i a b i a
i

1 1 1 1

2

Our ignorance of the values for a and b is irrelevant, because all the a’s and
b’s cancel. The treasure is located right on the imaginary axis, at a distance
from the origin equal to the distances of both of the trees from the origin. Who
could have guessed it?

4.4 Solving Leonardo’s Recurrence

Recall the generalized Fibonacci recurrence from note 10 of chapter 1, i.e.,
un12 5 pun11 1 qun, with uo and u1 specified. For Fibonacci’s particular
problem p 5 q 5 1, but we can solve the recurrence (that is, find a formula for
un as a function of n, alone) for any values of p and q. All it takes is a trick or
two, and perhaps just a little bit of complex number arithmetic as well. For
example, let us suppose that p 5 4 and q 5 28, with uo 5 u1 5 1. Then it is
simple arithmetic to generate the series:

1, 1, 24, 224, 264, 264, . . . .

What I will show you now is how to find a general expression for un that will
let you calculate any specific term (n given) without having to generate the
entire sequence of values up to the term you want.
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I will start by guessing un 5 kzn, where both k and z are constants. How do I
know that works? Because I’ve seen it work before, that’s how! Now, that
really isn’t quite the flippant answer you might think it is, as I will justify my
“guess” by actually calculating the values of k and z, i.e., I will prove to you
that my guess works. There is nothing dishonorable about guessing correct
solutions—indeed, great mathematicians and scientists are invariably great
guessers—just as long as eventually the guess is verified to work. The next
time you encounter a recurrence formula, you can guess the answer too be-
cause then you will have already seen that it works.

To find the value of z, I’ll substitute my guess for un into the recurrence.
Then,

kzn12 5 4kzn11 2 8kzn,

or, upon dividing through by kzn (notice the k’s cancel in every term), we are
left with the quadratic z2 5 4z 2 8. That is easily solved to give

z i e i= ± − = ± = ±4 16 32

2
2 2 23 2 4/ / .π

Note carefully that we have two values for z. That is, both

un1 5 k123n/2einp/4

and

un2 5 k223n/2e2inp/4

satisfy the recurrence. Note equally carefully that I am not assuming the same
value of k for each value of z, i.e., I have put subscripts on the k’s to tell them
apart. So, which un should we use?

The most general solution is to use both, as a sum. Therefore I’ll write

un 5 un1 1 un2 5 k123n/2einp/4 1 k223n/2e2inp/4.

To find the two constants k1 and k2, I will next use the so-called initial conditions,
i.e., the two given values uo 5 u1 5 1 that start the recurrence. Thus,

n 5 0: k1 1 k2 5 1,
n 5 1: k123/2eip/4 1 k223/2e2ip/4 5 1.

These two simultaneous equations in two unknowns can be solved by routine
algebra to give

k i e

k i e

i

i

1
1 2

2
1 2

1

2

1

4

1

4
5

1

2

1

4

1

4
5

1

1

= + =

= − =

−

−−

tan ( / )

tan ( / )

,

.
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So we have the rather complex-looking result

u e en
n i n i n

= +





− +{ } − +{ }− −

2 53 2 2 4 1 2 4 1 21 1
/ ( / ) tan ( / ) ( / ) tan ( / )

,
π π

but this can be greatly simplified. Using Euler’s identity we have

u
n

n
n= + 













− −2 5 2
4

1

2
3 2 2 1/ cos tan .

π

Now, recalling the formula cos(a 1 ) 5 cos(a)cos( ) 2 sin(a)sin( ) de-
rived in section 3.1, and observing that

cos tan ,

sin tan ,

−
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it then quickly follows that

u
n n

nn
n= 



 − 













=−2 2
4 4

3 2 1/ cos sin ,
π π

  0,  1,  2,  . . . .

It’s easy to see that this does reduce to uo 5 u1 5 1 for n 5 0 and n 5 1, but
does it give all the rest of the values of un correctly for n . 1? Well, it is a
simple matter to compare some values of un generated directly from the recur-
rence to the values generated by the above formula. After a while you’ll get
tired of making such comparisons because they always agree. For example, if
you use the recurrence itself you can calculate from it that u11 5 298,304.
The formula gives

u11
33 2 1

15

15 15

2 2
11

4

11

4

2 2 2
3

4

3

4

2 2
2

2

1

2
3 2 98 304

= 



 − 













= 



 − 













= − −







= − ⋅ = −

−/ cos sin

cos sin

, .

π π

π π

The formula works.
If you repeat this analysis for the general recurrence, keeping p and q as

literals, you’ll find that z is complex only if p2 1 4q , 0. So with p 5 q 5
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1, as in Leonardo’s problem, this inequality is not satisfied and in his case z
will be real. The solution goes through just as easily (perhaps more easily)
as it does for complex z, however, and if you try it for yourself you should
be able to show that the solution to un12 5 un11 1 un with uo 5 u1 5 1 is

u nn

n n

= +





− −

















=
+ +

1

5

1 5

2

1 5

2
0

1 1

, ,  1,  2,  . . . .

Such recurrences often occur in engineering and science (they are very
common in the classical theory of combinatorial probability), but in
Leonardo’s time they were brand new. Indeed, Leonardo’s recurrence was the
first time such a thing had been encountered, and many of his contemporaries
must have wondered just what he was doing. Perhaps that explains the
nickname he went under during his lifetime (“Fibonacci” wasn’t used until
centuries after his death), that of Bigollo. The word comes from the Italian
bighellone for loafer or ne’er-do-well. Did this pejorative arise because others
thought Leonardo was studying mathematics—such as his recurrence—of no
practical value? If so, it didn’t bother Leonardo much, as he used it, too, when
referring to himself.

4.5 Imaginary Time in Spacetime Physics

In this, the final example of the chapter, I want to show you something in
which Ï21 plays the central role in an application quite a bit different from
the purely mathematical. To read it through, however, you will have to accept
a couple of equations from physics as being true, but I will quote so much
authority you will almost surely be willing to go along.

So here’s the authority. According to Einstein (and who is going to dispute
him?), two people who are in uniform relative motion with respect to each
other will measure both time and space differently. This statement, from spe-
cial relativity, is certainly mysterious as I’ve stated it, so let me put it in more
specific form. Suppose we have a person who we agree to say is ”not mov-
ing,” or at least is not accelerating. To say “not moving” is a tricky thing, as
we have to say not moving with respect to what. But then, if we point to the
what that we say is our standard for not moving we are really right back where
we started from, because someone could ask us not moving with respect to
what? To say someone is not accelerating, however, is not so problematical.
Then there are no forces acting on that person, and forces can be measured
with instrumentation located right on that person—a physicist would say the



C H A P T E R  F O U R

98

instrumentation is local. This follows from Isaac Newton’s famous second
law of motion, and Newton is tough to argue with, too.

So, given this person who is not accelerating, let us put him at the origin of
a standard x, y, z coordinate system in three-dimensional space and say that he
measures the location in space of anything observed, called an event, with
respect to these three coordinate axes. If this person in fact observes two
events in space, at (x1, y1, z1) and at (x2, y2, z2), then using the Pythagorean
theorem he would calculate the spatial distance squared between the two
events as

s2 � (x1 � x2)2 � (y1 � y2)2 � (z1 � z2)2.

In fact, if the two events are very close to each other, we could write the
differential distance squared as

(ds)2 � (dx)2 � (dy)2 � (dz)2.

This last expression is called the distance metric of our three-dimensional
space.

The Pythagorean or Euclidean function is the usual distance function or
metric, sometimes called distance as the crow flies, but it is not the only one
possible. Mathematicians have defined the general properties of all distance
functions as follows: if A and B are any two points, and if d(A,B) denotes the
distance between A and B, then (1) d(A,B) � d(B,A); (2) d(A,B) � 0 if and
only if A � B; and (3) if C is any third point then d(A,B) � d(A,C) � d(C,B).
The Pythagorean distance function possesses these three properties, but so do
many other distance functions.2

A physical property of (ds)2 that I want to focus on in this case study is its
invariance with respect to certain classes of changes in the coordinate system.
Suppose we draw a line on a flat sheet of paper, and measure the distance
between two points (call them A and B) on the line. This distance obviously
does not depend on how we happen to draw the coordinate axes, i.e., the
distance between A and B will not change if we arbitrarily translate and/or
rotate the axes, as shown in figure 4.8. The individual coordinates of A and B
will obviously change under such coordinate system transformations, but they
will change in such a way that the quantity (ds)2 does not change. Thus, if we
denote the axes of any such shifted (translated) and/or rotated coordinate sys-
tem by x� and y�, then no matter what the coordinates of A and B are in the x, y
system, we must have

(ds)2 � (ds�)2 � (dx�)2 � (dy�)2 � (dz�)2.
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Figure 4.8. The distance between two points does not depend on
the coordinate axes.

Now, let me complicate matters just a little bit. In addition to recording the
spatial coordinates of an event, i.e., where it is, let’s imagine that our nonac-
celerating person also records the time, i.e., when the event occurs. He then
has four numbers, (x, y, z, t), that locate the event in four-dimensional space-
time.

That was easy, so let me extend the situation just a little bit more. Suppose
we have a second person who moves at constant speed v, measured with
respect to the nonaccelerating first person, in the direction along the x-axis of
the first person, as shown in figure 4.9. There is no motion of this second
person in the other two spatial directions. This is not, of course, the most
general case of two people in uniform relative motion, but I am trying to keep
things simple here! Now, this second person can reasonably be considered as
at the origin of a second coordinate system, which I’ll denote as x9, y9, z9.
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Figure 4.9. Two coordinate systems in uniform, relative motion.

Obviously, y 5 y9, z 5 z9, and, I think, most would agree that t 5 t9, i.e., time
“flows” the same for both persons. But what is the connection between x and
x9? To answer this question, let us agree to say that we measure time from the
instant the two origins in figure 4.9 coincide. That is, at that instant, t 5 t9 5 0.
Then it is clear, I think, that x9 5 x 2 vt because, if both persons see the same
event occur at, say, x 5 xo . 0 at the same time to . 0, then the moving
person will be closer to the event by the distance vto.

These elementary considerations, in summary, give us the equations

x9 5 x 2 vt,
y9 5 y,
z9 5 z,
t9 5 t,

equations that are called the Galilean transformation from the “stationary” or
unprimed coordinate system to the “moving” or primed coordinate system.
They are so named to honor the great Italian mathematical physicist Galileo
Galilei (1564–1642). They are, however, not correct.

This was the great shock of relativity theory at the start of the twentieth
century, in fact, that the “obvious” beliefs that time is the same for everyone,
and that space is at most a nearly trivial, uniform shift in coordinates, are
simply not true. This is not a book on relativistic physics, however, and so I’ll
ask you to read up on the physics elsewhere if you are interested,3 but for our
purposes here all you need now is to have the correct transformation equa-
tions. They are:
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where c is the speed of light, about 186,000 miles per second. Notice that if c
were infinity then the correct transformation equations would reduce to the
Galilean transformation, i.e., for Galileo, light traveled infinitely fast, which,
in most everyday situations, is a pretty good approximation.

The correct equations are called the Lorentz (not the Einstein) transforma-
tion, after the Dutch physicist Hendrik Antoon Lorentz (1853–1928), who
discovered them in 1904 by direct mathematical manipulation of James Clerk
Maxwell’s equations for the electromagnetic field. It was Einstein, however,
who in 1905 showed how to derive the transformation equations from a funda-
mental reexamination of space and time, without concerning himself about the
details of any specific physical laws. That, in fact, was Einstein’s touchstone,
the belief that all physical laws must obey the same coordinate transformation
equations—under very general conditions, the Lorentz equations are the only
ones that are possible.

With all of this background material behind us, you are ready for the real
issue of this example. Rather than talking of the distance between events in
three-dimensional space, physicists speak of the interval between events in
four-dimensional spacetime. How is the interval defined? The obvious answer
is simply to extend the three-dimensional definition of distance by adding in
the time variable. That is, if we write c(dt) as a sort of natural “time”
variable—we have to multiply dt by a speed to get a quantity with space units,
to match the units of dx, dy, and dz, and c is the one “natural” speed in
physics—then we might reasonably expect the interval ds to be determined by
the relation

(ds)2 5 (cdt)2 1 (dx)2 1 (dy)2 1 (dz)2.

This so-called spacetime metric for the interval may seem natural, but it is
wrong.

It is wrong because, just as distance is invariant under the coordinate trans-
formations of translation and/or rotation, the interval should be invariant un-
der the Lorentz spacetime transformation. As I’ll show you now, however, the
above metric is not invariant. To calculate (ds9)2, we need to first calculate
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(cdt9)2, (dx9)2, (dy9)2, and (dz9)2. The last two differentials are particularly
easy to calculate because of the geometry of the situation we are assuming in
this example: y9 5 y and z9 5 z. Thus, dy9 5 dy and dz9 5 dz. For the first two
differentials, however, we must do just a little more work. For cdt9, it greatly
helps to think carefully about just what dt9 is. It is the total differential change
in time in the primed system, and it depends on two unprimed variables, x and
t, because

′ = −

−
t

t vx c

v c

/

( / )
.

2

21

From calculus we have a result due to Euler (1734)

dt
t

x
dx

t

t
dt′ = ∂ ′

∂
+ ∂ ′

∂
,

which simply says that the total differential change of t9 is the sum of the
partial differential changes with respect to x and t, with each such change
calculated while holding the other variable fixed. Thus,
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From these two results it immediately follows that
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Now, suppose (incorrectly, as you’ll soon see) that (ds)2 5 (cdt)2 1 (dx)2 1
(dy)2 1 (dz)2 is the spacetime metric. To check this for invariance, I will next
calculate (ds9)2 5 (cdt9)2 1 (dx9)2 1 (dy9)2 1 (dz9)2. This gives

( )

( ) ( )( ) ( )
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This expression for (ds9)2 is clearly not equal to (ds)2.
So how should we define (ds)2 to have invariance? What Einstein discov-

ered is that rather than using c(dt) we should use Ï21c(dt). That is,

(ds)2 5 2c2(dt)2 1 (dx)2 1 (dy)2 1 (dz)2

is invariant under the Lorentz transformation.4 This means that if we compute
(ds9)2 we’ll get precisely the same result, i.e., that

(ds)2 5 (ds9)2 5 2c2(dt9)2 1 (dx9)2 1 (dy9)2 1 (dz9)2.

Why, you might wonder, does the expression for (ds9)2 have primes on every-
thing except for the c, i.e., why don’t we also have to write c9 as the speed of
light in the primed coordinate system? The answer is that you do, but in fact c9

5 c, i.e., just as is the interval, the speed of light is invariant under the Lorentz
transformation. In fact, the invariance of the speed of light is one of the as-
sumptions that Einstein built into his special theory of relativity.5

To see that this (ds)2 is invariant write the this last expression out as fol-
lows:
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which is equal to (ds)2. That is, to achieve interval invariance in four-
dimensional spacetime we must use 2(cdt)2 5 (cÏ21dt)2, not (cdt)2. Using
Ï21c(dt) 5 c(Ï21dt), using if you will “imaginary time” (shades of
Buée!),6 gives us the interval invariance we want, but it also makes it pretty
clear that time really is fundamentally different from space, a point that many
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science writers today have muddied in overly simplistic popularizations on
relativity theory.

I ended chapter 3 with the remark that the mathematicians of the nineteenth
century often found it hard to accept Ï21. In some cases, I must tell you,
some physicists of the twentieth century had an even harder time. In a reveal-
ing article criticizing Einstein’s and Minkowski’s cÏ21 a National Bureau of
Standards physicist admitted that 

Ï21 has a legitimate application in pure mathematics, where it forms a part of
various ingenious devices for handling otherwise intractable situations. It has
also a limited value in mathematical physics, as in the theory of fluid motion,
but here also only as an essential cog in a mathematical device. In these legiti-
mate cases, having done its work it retires gracefully from the scene.

But then this physicist demonstrated his real view of Ï21 as having essen-
tially no physical significance when he concluded his essay with the following
sarcastic words: 

The criterion for distinguishing sense from nonsense has been lost; our minds
are ready to tolerate anything, if it comes from a man of repute and is accom-
panied by an array of symbols in Clarendon type.

And yet we must not be too hard on Ï21; it may stand us in good stead on
occasion, as is instanced by a tradition of the National Bureau of Standards.

In the early days of the Bureau, when the staff was smaller, and there were no
official guides, the staff-members took turns in conducting parties of visitors
through the laboratories. On one such occasion the visitors were shown some
liquid air, and they asked, “What is this used for?” In those days liquid air had
not yet found any practical application, and was merely a scientific curiosity.
The guide . . . was rather non-plussed for the moment, but quickly recovered
her presence of mind, and replied, “It is used to lubricate the square root of
minus one.7

This odd anecdote completely misses the point, as Ï21 has no less physi-
cal significance than do 0.107, 2, Ï10, or any other individual number (about
which physicists do not usually write sarcastic essays). Some numbers, of
course, do have obvious physical ties; for example, p, which is the ratio of the
circumference of a circle to its diameter. Perhaps Ï21 has at least as much
physical significance as p, in fact, when one recalls the rotational property of
Ï21 discussed in chapter 3.
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More Uses of Complex Numbers

5.1 Taking a Shortcut Through Hyperspace
with Complex Functions

I ended the last chapter in spacetime, and this next example of using complex
numbers remains at least a little bit connected with that part of mathematical
physics. Watchers of science fiction movies are well acquainted with the idea
of hyperspace wormholes as spacetime shortcuts from one point to another,
paths that are traversable in less time than it takes light to make the straight
line trip; for example, see the 1994 film Stargate.1 For the first example of this
chapter, I want to show you that mathematicians long ago gave a hint at how
such a thing might happen, and in fact did so before Einstein published his
general theory of relativity, the theory from which the physical prediction of
wormholes comes.

As shown in any freshman calculus textbook, the differential arc length ds
along a curve y 5 y(x) is

ds dx dy dx
dy

dx
= + = + 



( ) ( ) .2 2

2

1

The arc length from x 5 0 to x 5 x̂, then, is simply

s y dx
x

= + ′∫ 1 2

0

.
ˆ

In 1914 the American mathematician Edward Kasner (1878–1955) showed
how, if y(x) is complex valued and not simply purely real, this formula leads
to a totally unexpected, nonintuitive, indeed, a downright bizarre result.

Kasner started his analysis2 by observing that if we are given two points P
and Q on the curve y 5 y(x), then there are two obvious ways to travel from P
to Q. First, simply move along the curve itself, through the arc length distance
s where, let us say, P is associated with x 5 0 and Q with x 5 x̂. Alternatively,
you could connect P and Q with a straight line, i.e., the chord between P and
Q, and travel along that segment through a distance c. Intuitively, it is clear
that c , s. Somewhat less intuitive is that limx̂→0s/c $ 1, with most people
wondering how this limit could be different from unity. As Kasner wrote,
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however, “It is easy . . . to construct exceptions [to the case of unity ratio] in
the domain of real functions: by making the curve sufficiently crinkly the limit
may become say two, or any assigned number greater than unity.” Then Ka-
sner dropped his bombshell.

If, Kasner wrote, one allows y(x) to be a complex-valued function then the
limit of arc length to chord length can be less than one! The old adage that “a
straight line is the shortest path between two points” is not necessarily true for
complex-valued curves. I can’t draw a complex-valued curve for you on a
piece of paper, of course—how would you draw y(x) 5 x2 1 ix, for
example?—but we can still do the formal calculations. This is in analogy to
theoretical physicists who cannot sketch the way a hyperspace wormhole
would penetrate spacetime from Earth to Pluto in a path only one hundred feet
long, but who nonetheless take such a thing seriously, at least on paper. Don’t
confuse the nature of y(x) 5 x2 1 ix with that of z 5 x 1 iy. In the second case
it is z that is complex and the y that is plotted on the vertical axis is real, i.e.,
we are using the y-axis to record just the imaginary part of z. For y 5 x2 1 ix,
the quantity on the vertical axis is complex and I simply do not know how to
draw that! Here now is a simple example of what Kasner did.

Starting with y(x) 5 x2 1 ix, the chord length from (0,0) to (x̂,ŷ) is

c 5 Ïx̂2 1 ŷ2 5 Ïx̂2 1 x̂4 1 i2x̂3 2 x̂2 5 x̂Ïx̂2 1 i2x̂.

Thus, as x̂ → 0, we can approximate c as

c 5 x̂3/2Ïi2, x̂ ø 0,

where I have made use of the fact that x̂2 goes to zero much faster than does x̂.
The arc length between (0,0) and (x̂,ŷ) is
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These two results tell us that
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That is, the arc length distance is almost 6% shorter than the straight line
distance.

Kasner actually showed quite a bit more than this, with a much more gen-
eral result being that if y(x) 5 mkxk 1 ix, where mk is any value (in the
example I just gave, with k 5 2, I used m2 5 1), then

lim , ,
x̂

s

c

k

k
k

→
=

+
=

0

2

1
1  2,  3,  . . . .

For k 5 1 the ratio is unity, but as k increases the ratio can be made as small as
we like. This is a good exercise for you to try your hand at—it’s not really
very difficult. What is difficult, I think, is “seeing” this amazing result. Good
luck at it, and if you come up with a solution, let me know!

5.2 Maximum Walks in the Complex Plane

For our next case study I will leave spacetime and mathematical hyperspace
shortcuts for the more ordinary two-dimensional complex plane, but even
there you’ll see that we can find lots of excitement. To motivate the analysis,
let me ask you to think back on a standard problem in summing geometric
series from high school algebra, and an amusing way to pose it. I recall first
hearing it this way as a high school sophomore in 1955.

A boy and a girl stand facing each other, separated by a distance of two feet.
While the girl remains stationary, the boy takes a series of steps toward the
girl. The first step is one foot. The second is one-half of a foot. The third is
one-quarter of a foot. And so on. As the teacher explained with a smile to his
class of innocent fifteen-year-olds, the boy never actually reaches the girl but,
within a finite number of steps, is close enough “for all practical purposes.” At
that, naturally, we all—or, at least I—blushed at the thought of the shy, chaste
kiss we imagined then occurred.

Suppose now we literally add a twist to this hoary problem. Let’s put our
young fellow at the origin of the complex plane, and have him walk forward
along the positive real axis for unit distance. He then pivots on his heels in a
CCW way through angle  and walks forward for one-half a unit of distance.
He then pivots again through a CCW rotation of  and moves forward for one-
quarter a unit of distance. He continues doing this for an infinity of equal
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Figure 5.1. A walk in the complex plane.

rotations and ever-decreasing distances, each one-half of the previous dis-
tance. Where does he end up in the complex plane, and for what angle  is he
farthest away from the real axis? A sketch of this process is shown in figure
5.1, where I have assumed a value of  , 908 simply for the purpose of
drawing a clear diagram.

This “walk in the complex plane” is mathematically described by a sum of
vectors, i.e., after the (n 1 1)st step, the vector sum S(n 1 1) points to the
boy’s location in the plane:

S n e e ei i
n

in( ) .+ = + + + +1 1
1

2

1

4

1

2
2θ θ θ . . . 

The boy’s distance from the real axis is the imaginary part of S(n 1 1), so
what we want to calculate is the value of  that maximizes the imaginary part
of S(`). Recognizing the expression for S(n 1 1) as a geometric series, with
the common term between any two adjacent terms as !sei , we can multiply
through the series by the common factor to get

1
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Then, subtracting this from the original series, we obtain
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or
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or, upon letting n → `,
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where Sr and Si are the real and imaginary parts of S(`), respectively. This is
not difficult to manipulate to give
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Now, to maximize the distance from the real axis, we do the usual thing and
set dSi/d  5 0. If you do that you will find cos( ) 5 0.8, or  5 36.878, and so
the maximum value for Si 5 @d, i.e., S(`) 5 $ d 1 i@d.

Suppose, next, that we don’t want to maximize the boy’s distance from the
real axis but rather his distance from the origin. Now we must be somewhat
more precise, and specify what is meant by distance. For example, do we
mean the Pythagorean distance, or the city-block distance I discussed in the
last chapter? It makes a difference! (For the problem I just did, however, the
answer is the same for either distance function—do you see why?) That is, we
can find the  that maximizes either the Pythagorean distance ÏSr

2 1 Si
2 or the

city-block distance uSru 1 uSiu and arrive at the results  5 08 and  5 15.728,
respectively. You should go through the calculations and verify these
values—without complex exponentials I think these would be quite awkward
problems to analyze. In the next example I will show you a problem of ancient
origin and of modern significance that is extraordinarily difficult to study
without complex exponentials, but with them is extraordinarily pretty.

5.3 Kepler’s Laws and Satellite Orbits

One of the oldest of scientific problems is the so-called N-body problem,
inspired by the late-night loneliness of stargazing shepherds and the mysticism
of astrologers who earned their livings casting horoscopes. As both of these
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groups, the earliest astronomers, watched certain specks of light (planets) in the
dark sky move across a stationary background of other far more numerous
specks of light (stars), the question of how to understand, and even predict, such
motions was a natural one. In more modern times a justification for an interest in
celestial mechanics is the practical problem of predicting the tides and the
proper times to launch interplanetary rockets. The positions of the Moon and, to
a lesser extent, the Sun, had long been known to be correlated with the varia-
tions in the tides, and so there is a natural connection between the two phenom-
ena, one on Earth and the other in the heavens. The military, for one, finds the
tides of great interest—when Euler published his 1772 treatise Theory of the
Moon’s Motion, both Russian and British naval navigation experts read it
through carefully.

As I will discuss in more detail in this example, Newton’s discovery of both
the calculus and the inverse-square law of gravitation allowed the motions of
two interacting masses to be explained in a scientific, rational way. Newton
had begun to think about gravity as early as 1665, when only twenty-two, in
connection with the Moon’s motion. He used only geometry in his derivation
of the inverse-square law of gravity (a law discussed in some detail later in
this chapter), not calculus, which he was also in the process of inventing.3 And
later, when he published his gravity research in his 1687 book Mathematical
Principles of Natural Philosophy (generally called simply the Principia), he
still restricted his mathematical presentation to geometry. He did this to avoid
having the philosophical debates then raging concerning the calculus detract
from the physics.

There are, of course, more than just two distinct masses in the universe. The
problem of calculating the motion of N gravitationally interacting masses be-
came known as the N-body problem of celestial mechanics, and the myth has
spread among most physicists that it remains unsolved for N $ 3. This is true
only if one demands closed-form, exact equations. In fact, the Finnish mathe-
matical astronomer Karl F. Sundman (1873–1949) solved the three-body
problem during the period 1907–19, and in 1991 a Chinese student, Quidong
Wang, solved the N-body problem for any N. These solutions are in the form
of infinite convergent series, however, which unfortunately converge far too
slowly to be of any practical use. Of course, with the development of super-
computers, physicists can now directly calculate the future motions of hun-
dreds, even thousands, of interacting masses, as far into the future as one
would like, using Newton’s equations of motion and gravity. Solving the
N-body problem analytically is no longer of any practical importance.

For N 5 2 masses, however, exact analytical formulas for the motions have
long been known. These derivations are greatly simplified with a couple of
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approximations. For example, for any particular planet in the solar system it is
a good approximation that it exists alone with the Sun. And since the Sun is so
much more massive than any of the planets—even Jupiter has less than 0.1%
of the Sun’s mass—it is a very good approximation that the Sun’s motion due
to the planet is negligible compared to the planet’s motion due to the Sun. To
say much more than this requires some interesting mathematics, however,
mathematics which is greatly aided by the use of complex numbers. After just
a bit of historical discussion, I will show you how Newton literally explained
the mystery of the heavens.

The earliest views of the structure of the solar system were geocentric, that
the Earth is the fixed center of things, and that everything in the celestial sky
that moves revolves in circular paths around our stationary planet. After all,
proponents of this view argued, how could the Earth move?—everything
would blow away in a terrible wind! This objection actually isn’t something to
sneer at—things do appear that way, at least at first glance. This view was
held by the enormously influential Aristotle, for example, who while a great
philosopher was a poor scientist. Aristotle can be blamed, for example, for
lending support to the erroneous idea that heavy objects fall faster than light
objects. He arrived at this conclusion by pure thinking, and apparently never
bothered to observe how real objects actually fall. Some disagreed with Aris-
totle’s geocentric view, notably the Greek astronomer Aristarchus, who about
260 b.c. stated that the Sun was the center of all heavenly motions, but their
views were dismissed as “obviously” fantastic.

The Earth-as-center view was the one supported in Ptolemy’s Almagest and
it was to hold sway for more than a thousand years. Its hold on the human
mind is a bit hard to understand today, because the Earth-centered view has so
many observational difficulties. The most obvious problem is that the planets
appear, from time to time, to stop temporarily their smooth eastward motions
across the night sky and to retrace their paths, i.e., to loop backwards. As early
as the fourth century b.c., Greek astronomers were able to “explain” such
puzzling retrograde motions, all the while retaining the “perfection” of Aris-
totle’s circular paths, by the mechanism of nested, rotating, invisible crystal
spheres centered on the Earth. That is, each of the observed heavenly bodies
was imagined to be fixed to one of the inner surfaces of such celestial spheres,
which rotated about the Earth at various inclined angles. By adjusting the
number of such spheres, and which bodies are stuck on which sphere, the
sphere angles, and the sphere rotation rates, the observed motions could then
be explained. Of course, as more bodies were more accurately observed more
spheres were needed; at one time at least fifty-seven nested spheres were
being invoked. How the Greek astronomers explained comets, that swooped
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in from far out in space and then vanished once again into the night sky, is
more of a mystery—they seem not to have been bothered by the question of
why such comets did not smash the celestial spheres to pieces.

This situation gradually began to appear ever more ludicrous—would a
sane God make such a nightmarish universe?—and resistance to blindly ac-
cepting Ptolemy as the last word developed. In 1543, just before he died, the
Polish astronomer Nicolaus Copernicus (1473–1543) published his book On
the Revolutions of the Heavenly Bodies, in which he championed the helio-
centric or Sun-centered view. The traditional view is that he held back on
publishing his book because he feared religious persecution with such a radi-
cal departure from tradition. The Bible, for example, says (in Joshua 10:12–
13) that Joshua bade the Sun stand still, not the Earth, an argument used by
Martin Luther to refute Copernicus. Modern thought, however, has a more
benign view of the Church’s position on astronomy at the time of Copernicus’
death. During the early stages of the Reformation, the Church had not yet felt
sufficiently threatened to have to smash all thought that ran counter to its
teachings. Copernicus, in fact, was probably at least as fearful of ridicule from
his fellow astronomers (who still took Aristotle as gospel) as he may have
been of the Church. Corpernicus was almost certainly correct, however, to be
at least cautious of religious fanaticism. That caution is perhaps reflected in
the book’s presentation of Sun-centered circular orbits as simply a convenient
way to calculate the future positions of the planets, and not as physical reality.

That particular bit of philosophical weaseling was not Copernicus’ doing,
however. The preface to the book was actually written by another, who wrote
of Copernicus’ work “To be sure, [the author’s] hypotheses are not necessarily
true; they need not even be probable. It is completely sufficient that they lead
to a computation that is in accordance with the astronomical observations.”
Copernicus’ readers thought those were his words, and not until 1854 was it
discovered that they were written by another—with whom Copernicus had
specifically argued over this very issue—even as the great astronomer lay
dying. One subtle bit of weaseling, if that is what it is, was due to
Copernicus—the very title of his book. On the Revolutions of the Heavenly
Bodies can be interpreted as implying that only the other planets revolve, i.e.,
move. It could be thought that such a title retains the idea of a stationary Earth.

Copernicus himself certainly held no such view, but he might have been
trying to leave himself some “wiggle room” if threatened by the intellectual
thugs of the Inquisition. Despite that philosophical squirming, and the dedica-
tion of the treatise to Pope Paul III, when the controversy over Galileo’s en-
dorsement of the Copernican view erupted the book was placed on the Catho-
lic Church’s Index of forbidden books from 1616 until 1757. By 1615 the
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Reformation had advanced to the point of a schism in the Church (and the
formation of the Protestant movement) and all non-Church teachings were
viewed as threats. Copernicus’ book had no immediate effect on science, but it
did mark the beginning of the end for Ptolemy’s geocentric view.

Just three years after Copernicus’ death, the Danish astronomer Tycho
Brahe (1546–1601) was born, and over the course of his life he made magnifi-
cently accurate observations of the orbits of the planets with his unaided
eyes—the telescope would not be invented until six years after his death.
Tycho, who like Galileo is for some reason always referred to by his first
name (pronounced Tee-Ko), made a giant leap backwards, however, by sup-
porting the Earth-centered view. In his last years he had an assistant, the
German astronomer Johann Kepler (1571–1630), who inherited the mass of
observational data so painstakingly gathered by Tycho. It was Kepler who,
after years of studying Tycho’s numbers, finally uncovered the rules for how
the planets, including Earth, move around the Sun.

In 1609, in his book New Astronomy, Kepler announced the first two of his
laws of planetary motion: law 1: Each planet moves along an elliptical, not
circular orbit with the Sun at one focus, and law 2: The line joining the Sun
with any planet sweeps over equal areas in equal intervals of time. The second
law tells us, for example, that as a planet approaches the Sun—and so the line
joining the two becomes shorter—the planet must travel faster. In 1619, in his
book The Harmony of the Worlds, Kepler gave his third law: law 3: The ratio
of the cube of the semi-major axis of the elliptical orbit to the square of the
orbital period is the same for all the planets.

While all the planetary orbits are ellipses, some are more elliptical than
others. Recall that if 2a and 2b are the major and minor axes of an ellipse,
respectively, and if 2c 5 2Ïa2 2 b2 is the separation of the two foci, then E
5 c/a 5 Ï1 2 (b/a)2 is called the eccentricity of the ellipse. Obviously, if c
5 0 then E 5 0, and the two foci coexist at the center of a circle with diameter
2a 5 2b. The eccentricity of the Earth’s orbit is 0.0167, which means b/a 5
0.99986. Mercury’s orbit, on the other hand, has eccentricity 0.2056, which
means b/a 5 0.9786. These orbits are “almost” Copernicus’ circles.

Newton deduced both the inverse-square force law for gravity, and the di-
rection of that force, from Kepler’s second and third laws. Then, using that
deduction, he showed how the first law of elliptical orbits is not an indepen-
dent statement but rather can be derived as a necessary consequence. Deriving
Kepler’s elliptical law using only geometry is not easy. In fact, when the
physics Nobel prize winner Richard Feynman attempted to prepare a lecture
on Kepler’s laws for undergraduate students at Caltech, he found he could not
follow all of Newton’s arguments, which are based on arcane properties of
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second-degree curves. So Feynman worked out his own geometry-only
proof,4 and it is not easy. As Feynman himself put it, all you need is “infinite
intelligence.” With these three laws, the science of astronomy can be said to
have begun. Now, let me show you how all the above can be explained using
both Newton’s physics and complex exponentials (which is not how Newton,
born twelve years after Kepler’s death, did it). I’ll also show you in the next
section, using complex numbers, why the planets can seem to go backward.

Referring to figure 5.2, the complex number position vector z from the
origin to the moving mass m has instantaneous length r and makes the instan-
taneous angle  with the real axis. “Instantaneous” is an indirect way of saying
that r and  are functions of time, i.e., r 5 r(t) and  5 (t). That is,

uzu 5 r and z 5 rei .

If we write v 5 v(t) and a 5 a(t) as the velocity and acceleration, respectively,
of the mass m, then
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Notice, carefully, that z, v, and a are all vectors, i.e., that all are complex
and so have components, i.e., projections along both the real and imaginary

Figure 5.2. The position vector to the moving mass m.
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axes. Notice, too, that I haven’t had to define and introduce the complicating
concept of unit vectors that bedevils so many freshman physics students, be-
cause the complex exponential automatically takes care of their role for us, of
pointing in the right direction.

Now, imagine that there are two masses, M and m, which interact gravita-
tionally according to Newton’s inverse-square law. That is, each mass experi-
ences the same force F whose magnitude is given by

F G
Mm

r
= 2 ,

where G is the so-called universal gravitational constant (first measured in
1798 by the English chemist and physicist Henry Cavendish) and r is the
distance between the masses. If the physical extensions of the masses are
small compared to their closest approach to each other, then we can generally
assume the masses to be point masses. If M and m are spherical masses with
radially symmetric densities, as is approximately true for the Sun and the
planets, then we can say r is the distance between the centers of M and m, even
if r is small. That this is so was one of the first results Newton obtained
through the use of his new calculus. Let us agree to put M at the origin of our
coordinate system, and to assume that M .. m; for example, the Sun com-
pared to any one of the planets, or the Earth compared to any artificial satel-
lite. This last assumption allows us to ignore the motions of M compared to
the motions of m. Finally, let us assume that both M and m are spheres of
uniform mass density.

Now, Newton’s law of gravitation actually tells us more than just uFu. It also
says that it is a radial or central force, i.e., that it acts along the line joining M
and m. Further, it is an attractive force and so, with M at the origin, the force
on m is always directed toward the origin. These facts immediately allow us to
write the force vector F on m as

F G
Mm

r
ei= − 2

θ .

Inserting the 2ei  factor, with magnitude unity, gives us the correct value for
uFu as well as the correct direction, i.e., it places F along the position vector z
but with the opposite direction, which is what we want because gravity is
attractive.

Newton’s gravitational theory tells us the force exerted by M on m. New-
ton’s laws of motion tell us how m will respond to that force. In particular, F
5 ma where, as defined earlier, a is the acceleration vector of m. That is,
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a
d z

dt

F

m
G

M

r
ei= = = −

2

2 2
θ .

F � ma is true only if m � m(t). More generally, and as Newton himself
stated this law of motion in the Principia, force is the time derivative of
momentum (or the motion, to use his term), which reduces to F � ma for the
special case of m constant. Time-varying mass is not an uncommon condition,
e.g., a rocket, during launch, is continually losing mass. For the planets orbit-
ing the Sun, of course, it is a pretty good approximation to assume that m is
not changing.

We can simplify much of the numerical work in gravitational calculations
by referencing everything to the surface of M. There, the gravitational force
on a mass m at the surface is precisely what is called the weight of the mass m.
That force is given by Newton’s law of motion as mg, where g is the accelera-
tion of gravity; for example, about 32 feet/second2 if M is the Earth. But
Newton’s law of gravity also tells us what this force is, too, and so if R is the
distance of the surface of M from the center of M, e.g., about 3,960 miles �
2.1 
 107 feet if M is the Earth, then

mg G
mM

R
= 2 .

Thus

G
M

=
2

and so
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2
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where it is of course understood that r 	 R, i.e., that the mass m is not inside
the mass M. If we simply write k � gR2, then we have

a
k

r
e k gRi= − =2

2θ , .

But we know a, the acceleration vector of mass m, from our earlier work, and
so we have as the differential equation of motion for mass m:
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This differential equation is perhaps rather intimidating, but actually it is
not at all difficult to solve. First, equating the real and imaginary parts of each
side, it separates into two simpler differential equations:

2

2
d

dt

dr

dt dt

θ θ
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dt
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dt
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2

2

2

2
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.

Focusing your attention on the first of these two equations, first multiply
through by r to get

2 02
2

2r
d

dt
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dt
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dt

θ θ+ = ,

and then notice that this can be written as

d

dt
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θ⎧
⎨
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⎫
⎬
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= .

You can verify this last statement by simply doing the differentiation. This
equation is, of course, integrable by inspection, giving

r
d

dt
c2

1
θ = ,

where c1 is the arbitrary constant of indefinite integration. This result is Kep-
ler’s law 2 and it states that the line joining M and m sweeps over equal areas
in equal intervals of time. You can see that this is so because if the mass m
moves through the differential angle d� in differential time dt, then the arc
length traveled by m is rd�. The value of r is essentially constant over the
differential time dt, and so the differential area dA swept over by the line of
length r from M to m is in the shape of a narrow triangle: dA � ��(r)(rd�) �

��r2d�. Dividing through by dt gives

dA

dt
r

d

dt
c= =1

2

1

2
2

1
θ

 (= a constant).

Thus, in equal time intervals equal areas will be swept over. If we assume the
mass m traverses its orbit in a CCW way, then d�/dt 	 0 and so c1 	 0. I will
assume that this is the case from this point on.

Now, combining this last equation with the earlier equation for the accelera-
tion of mass m, we have

− r

2 + = 0r
d
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which can be integrated once—again, by inspection—to give

dz
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k

c
e Ci= +

1

θ ,

where C is the arbitrary constant of indefinite integration. As you’ll soon
appreciate, it will be helpful to actually write C as ic2ei

0, where c2 and 0 are
both real, non-negative constants, i.e.,

dz
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If you equate this expression for dz/dt to the one I wrote at the very beginning
of this mathematical analysis, then we have
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or, after dividing through by ei  which is never zero,
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As before, notice that this is really two differential equations, i.e., equating
the real and imaginary parts of both sides separately gives

dr

dt
c= −2 0sin( ),θ θ

and

r
d

dt

k

c
c

θ θ θ= + −
1

2 0cos( ).

Remembering the mathematical statement of Kepler’s area law derived ear-
lier, we have d /dt 5 c1/r2 and so the second of the last two equations be-
comes

c

r

k

c
c1

1
2 0= + −cos( )θ θ

and thus, at last, we have the orbital equation, in polar form, for the mass m:
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This equation represents a closed, repeating, i.e., periodic, elliptical orbit
with the mass M at the origin, which is also a focus. That is, we have Kepler’s
law 1 if certain conditions are satisfied. First, as a start to seeing what these
conditions are, let me point out the physical significance of 0: when  5 0

the cosine is at its maximum value and so r is at its minimum value (assuming
c1c2/k $ 0, which means c2 $ 0), i.e., m is at its closest approach to M. This
closest-approach distance, called perigee if M is the Earth and perihelion if M
is the Sun, is

r
c k

c c

k

P =
+

1
2

1 21

/
.

When  5 0 1 p the cosine is at its minimum value and so r is at its maxi-
mum value, i.e., m is at its maximum distance from M, called apogee if M is
the Earth and aphelion if M is the Sun, and

r
c k

c c

k

A =
−

1
2

1 21

/
.

We can always orient our coordinate system so as to have the closest approach
occur when the orbit crosses the real axis, i.e., we can assume o 5 0 with no
loss of generality, and I will do that now.

Notice that if we are to have a closed, repeating orbit we must always have r
finite and so c1c2/k , 1, or else r will, for some values of , become arbitrarily
large and/or negative. The value of c1c2/k 5 E is called the eccentricity of the
elliptical orbit, and obviously if E 5 0 the ellipse degenerates into a circle.
More precisely, the orbit is a conic with eccentricity E: it is an ellipse if 0 , E
, 1, a parabola if E 5 1, and a branch of an hyperbola if E . 1. We know c1

. 0, and so we must have c2 5 0 for zero eccentricity. From the units of c1

(distance2/time), c2 (distance/time), and k (distance3/time2), it is clear that E
is dimensionless and that c1

2/k is a distance. To see how I arrived at these
various units, simply look back at the equations in which c1, c2, and k first
appear and make the dimensions balance on each side of the equality. This
idea, fundamental to dimensional analysis, is a powerful tool for engineers
and scientists. We can combine all these observations and summarize what we
have by writing
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We can now derive Kepler’s law 3. To keep things simple, let’s suppose
E 5 0 and so we have a circular orbit. Then r 5 ro and

d
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If T is the period of the orbit of m, i.e., the time required for  to vary from 0 to
2p, then
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That is, for a circular orbit, the square of the orbital period is proportional to
the cube of the orbital radius. The proportionality constant k in the equation
for T2 depends only on the mass M (recall the definitions of g and R) and so
any mass m in a circular orbit with radius ro will have the same orbital period,
e.g., when an American astronaut goes for a space walk while in orbit around
the Earth, he moves right along in step with the Shuttle even though his mass
is far less than that of the Shuttle. This result is true even if E ± 0, but that
more general derivation requires the evaluation of the somewhat more diffi-
cult integral

d

E

θ
θ

π

{ cos( )}
.

1 2
0

2

+∫

In chapter 7 I will show you how to evaluate this integral using Cauchy’s
theory of contour integration in the complex plane. If, however, you simply
can’t wait until then to verify Kepler’s third law for E ± 0, then here’s the
value of the integral for you to play with: 2p/(1 2 E2)3/2.

5.4 Why and When the Other Planets
Sometimes Appear to Go Backward

When observed from the Earth, the other planets (ancient Greek astronomers
knew of five: Mercury, Venus, Mars, Jupiter, and Saturn) periodically seem, at
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various times, to reverse direction temporarily in their motions across the
night sky. The ancient astronomers could “explain” these mysterious retro-
grade motions with Ptolemy’s crystal spheres, but in fact these motions are
simply illusions caused by watching one moving thing (a planet) from another
moving thing (the Earth). Kepler knew this, and was the first to explain the
illusion using diagrams to illustrate his qualitative reasoning. Complex expo-
nentials, however, make the mathematics of what is happening easy to under-
stand as well. Here’s how.5

By definition, the Earth has an orbital period of one year. Also by definition,
the Earth’s average distance from the sun of 93,000,000 miles is one astro-
nomical unit (A.U.). So, with the Sun as the center of our coordinate system,
and making the good approximation of a circular orbit, we can write the posi-
tion vector of the Earth as

zSE 5 ei2pt.

Notice carefully that this expression also involves the assumption that we
have set up our coordinate system such that time t 5 0 defines an instant when
Earth’s orbit crosses the positive real axis, as shown in figure 5.3.

Now, let’s add a second planet to the problem, one that is at distance a from
the Sun and that has orbital period 1/a (a and 1/a are in the units of A.U.’s
and Earth years, respectively). When a . 1 this second planet has a shorter

Figure 5.3. Stationary (the Sun) and rotating (the Earth)
coordinate system origins.
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orbital period than one year, and so must be one of the inner planets (Venus or
Mercury). In this case, obviously, a , 1. For the outer planets, the situation is
the equally obvious a , 1 and a . 1. These obvious statements all follow
mathematically from Kepler’s third law, which says

1

1 1

2 3/α



 = 





a

or a3a2 5 1. Note carefully that figure 5.3 makes the implicit assumption that
the orbits of both the Earth and the other planet are in the same plane. This is
not strictly true, but it is almost true. All of the other planets in the solar
system do, in fact, have their orbital planes inclined only slightly with respect
to the Earth’s. With the exception of Pluto—which many astronomers believe
is not a true planet but rather is a former satellite of Neptune—the various
orbital inclinations do not exceed Mercury’s 78.

Now, there will in fact be infinitely many instances of time when a line
joining the Sun to the Earth will also pass through the second planet. We can
take one of these instants as time t 5 0, i.e., we can always pick our coordinate
system so that at t 5 0 the Earth and the second planet are both crossing the
positive real axis. Thus, the position vector of the second planet is

zSP 5 aei2apt.

with the Sun as the origin of the coordinate system. By picking a negative we
could model a planet that orbits the Sun in the sense opposite that of Earth. In
fact, however, all the planets orbit in the same sense, and so it is generally true
that a . 0.

Referenced to the Earth (the geocentric view) the position vector of the
other planet is

zEP 5 zSP 2 zSE 5 aei2apt 2 ei2pt 5 r(t)ei (t).

The orbital radii of the Earth and the other planet from the Sun are constants,
given the approximation of circular orbits, but of course the distance r(t) from
the Earth to the other planet will be a function of time. This varying distance
manifests itself to observers on the Earth as a time-varying brightness. The
planet will also appear to move across the sky in one direction if (t) becomes
either ever larger or ever smaller. But if (t) should reverse its direction of
change, i.e., if d /dt should change its sign, then the other planet would appear
at that instant to reverse direction in its travel across the sky. And that is the
retrograde motion we are interested in. So let us see what we can learn about
d /dt.



M O R E  U S E S  O F  C O M P L E X  N U M B E R S

123

We have
ln( ) ln( )z r iEP = + θ

and so
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Thus, d�/dt is the imaginary part of (1/zEP)(dzEP/dt). But
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which becomes, after a little algebra,
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If we expand the right-hand side and keep only the imaginary part, then we
have

dt
π= −

2
2

2 .

We can make this look a little “cleaner” by recalling the earlier statement from
Kepler’s third law which tells that a(�a)2 � 1, or that

αa
a

= 1
.

Substituting this, we arrive at

d

dt

a a

a a t

θ π
π α

= + − +
+ − −

2
1 1

1 2 2 12
( /

cos{ ( ) }
.

Notice that the denominator is always positive for all positive a � 1 (can
you prove this?) and so d�/dt changes sign if and only if the numerator
changes its sign. That happens at the instants when the numerator equals zero,
i.e., d�/dt changes sign at the solutions to

1
1

2 1 0+ − +⎛
⎝⎜

⎞
⎠⎟

− =a a
a

tcos{ ( ) } ,π α

in other words, at the solutions to

cos{ ( ) } .2 1
1

π α− = +
+

t
a a

a a

dθ 1 + αa − αa cos{2π(1 − α)t} − a cos{2π(1 α)t}

1 2+ −a a cos{2π α(1 − )t}

a ) cos{2π(1 − α)t}
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For any a . 0 the right-hand side is less than or equal to one (can you prove
this?), and so there are always real solutions to this equation, which means
that all of the planets will exhibit retrograde motion when observed from the
Earth. This last equation allows us to calculate when this will happen, and for
how long as well.

For example, consider the case of Mars. Mars has an orbital period of 687
Earth days and an average distance from the Sun of 141,600,000 miles, and so
the values of a and a for that planet are 0.53 and 1.52, respectively. The above
equation then becomes

cosh2p(0.47)tj 5 0.958,

where t 5 0 means, as you’ll remember, that Mars and the Earth are on a
common line drawn from the Sun. That is, at t 5 0 the Earth is between the
Sun and Mars, a situation called opposition because the Sun and Mars are on
the opposite sides of the Earth. The first solution to the equation is t 5 0.0985
Earth years 5 36 days, which means from t 5 0 days to t 5 36 days Mars will
appear to move in one direction, and then after 36 days it will reverse its
motion. Mars will continue to move in the new direction until the next solu-
tion, at t 5 2.0295 Earth years 5 741 days, at which time Mars will again
reverse its direction. It is not difficult to confirm that it is during the shorter
time period that d /dt , 0, i.e., that that period is the period of retrograde
motion. By the symmetry of the cosine function, it is clear that Mars would
have been in retrograde motion for 36 days before t 5 0, as well. And so on,
i.e., at times separated by somewhat longer than two years, Mars will, accord-
ing to the previous calculations, periodically display retrograde motion for a
duration of about 72 days.

How well does the calculation done above agree with the actual observed
motion of Mars? In one college astronomy text6 that I consulted, after wonder-
ing about this question myself, I found an illustration showing the orbit of
Mars in the summer and fall of 1988. During that period Mars exhibited retro-
grade motion between August 26 and October 30, a total of 66 days compared
to the 72 calculated here. How might we improve the agreement? The next
obvious complication to introduce into this analysis is to use the actual ellipti-
cal, not circular, orbits for both Mars and the Earth. Such a more sophisitcated
model should result in intervals between the episodes of retrograde motion
that are not constant, and the durations of the retrograde motions themselves
would not be of equal length. Both of these complicated behaviors are, in fact,
observed to occur.

Now, take a look back at the last two sections and I think you’ll be aston-
ished, as I am continually, at how much has so easily come from a use of
complex exponentials.
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5.5 Complex Numbers in Electrical Engineering

Note: In this example, and only in this example, I will not use i 5 Ï21. Rather,
because I will be using the symbol i (with various subscripts) to denote various
electrical currents, I will be writing j 5 Ï21. This is in accordance with standard
electrical engineering practice and so that is what I will do here.

I want to show you now a problem that was a great puzzle until quite late in
the nineteenth century. It interested an intellect as elevated as that of Lord
Rayleigh, the physics Nobel prize winner in 1904. Rayleigh, whose given
name was John William Strutt (1842–1919), was one of the very big men of
English science from 1870 until his death half a century later, and his genius
cut across practically every aspect of the physics of his day. And yet, in the
early days of the study of alternating electrical currents—the well-known
“ac”—he ran into a situation that, in his word, was “peculiar.” With complex
exponentials, however, Rayleigh’s puzzle is not too hard to resolve—and that
was exactly how Rayleigh himself was able to explain matters.

First, however, a little survey of what you need to know here about electric-
ity. The popular view of electricity two hundred years ago, and a not uncom-
mon one today, was that of a fluid of some mysterious nature, flowing along a
“pipe” of wire. Oliver Lodge (1851–1940), one of Rayleigh’s English con-
temporaries, derisively called this the “drainpipe theory” of electricity but, in
fact, for constant electrical currents —the well-known “d-c”—flowing in
purely resistive circuits (I’ll define what they are, soon) the fluid view is
enough to get by on. For ac, however, it simply won’t do—and that was
Lodge’s point.

For certain kinds of materials, such as metals and carbon, it is found experi-
mentally that the rate at which electrical charge is transported through the
material is directly proportional to the applied voltage. Indeed, the rate is the
current, as I’ll elaborate soon. This statement is called Ohm’s law, after the
German physicist Georg Ohm (1789–1854) who first published it in 1827.
Ohm was a high school teacher who hoped to use his discovery to get a
university appointment. This eventually did happen, but not until after a great
deal of debate over the merits of his work. Today, of course, every youngster
over the age of nine who tinkers with electricity knows Ohm’s law and thinks
it is obvious. Well, it wasn’t always so. It really is not even a law, as is the
conservation of energy, for example, because it applies only to a limited num-
ber of materials.

At this point you might well be thinking to yourself that all this is interest-
ing but still, it might make just a bit more sense to know exactly what charge
and voltage are. Charge is the easier of the two. Just as mass is the property of
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matter that we say is the basis for gravitational effects (such as falling apples),
electrical charge is the property of matter that we say is the basis for electrical
effects (such as sparks). Electrical charge is quantized, appearing as integer
multiples of the tiny quantum of charge that is the electronic charge: the
charge on one electron is 1.6  10219 coulombs, named in honor of the
French physicist Charles Coulomb (1736–1806) who discovered Coulomb’s
law (1785), which describes the nongravitational force between two electri-
cally charged pieces of matter.

Coulomb’s force law is analogous to Newton’s inverse-square law for grav-
ity. One simply substitutes q and Q for m and M, and uses a different constant
in place of the gravitational constant G. As with Newton’s law, the force is
along the line joining the two charges, but the one great difference is that
while masses are always positive (the gravity force is always attractive), elec-
trical charges can be either negative or positive and so the electrical force can
be either attractive (the product qQ , 0) or repulsive (qQ . 0). Another
implication of the fact that electrical charges come in both signs is that even
matter electrically neutral in the large is still chock-full of electricity—equal
amounts of positive and negative electricity that mutually cancel each other’s
effects.

The movement of charge creates a current. If there is charge moving
through a conductor—in metals the charge carriers are electrons, present in
truly enormous quantity—then a current of one ampere is said to be flowing
through a cross-section of the conductor if one coulomb of charge passes
through the cross-section each second. The unit of electrical current is named
after the French mathematical physicist Andre-Marie Ampere (1775–1836),
who studied the magnetic fields generated by electrical currents, which play a
big role in this example as you will soon see. One ampere is neither a big
current nor a small one. The electrical currents in common gadgets like radios
and home computers are typically less than one ampere, while the current
supplied by an auto battery to the starter motor during the few seconds of
cranking can easily exceed several hundred amperes.

Now, a central question. What makes charge move? The answer is an elec-
tric field, a concept I’ll pursue no further except to say that such fields are
produced between the terminals of a battery or an electrical generator. The
voltage or potential difference between the terminals is what creates an elec-
tric field in a conductor, and it is the field that makes the electrons carrying
charge in the conductor move (I’ll come back to this point in about two para-
graphs), and the moving charges are the current. If current can be likened to
water moving through a drainpipe then voltage is analogous to the pressure. A
common flashlight battery produces a potential difference of 1.5 volts, while
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generators can produce voltages of any value over a wide range, from a few
volts to many thousands of volts. When Hoover Dam, on the Colorado River
in Nevada near Las Vegas went on line in 1936, for example, it delivered
electrical energy to Los Angeles at a potential of 275,000 volts. The unit of
voltage is named after the Italian physicist Alessandro Volta (1745–1827),
who constructed the first battery in 1800.

The simplest electrical circuits contain only resistors, an electrical compo-
nent commonly made of carbon in the form of a small cylinder with a wire
terminal at each end by which it can be connected to other components. It is
mathematically defined to be any device that obeys the relationship v 5 iR,
i.e., Ohm’s law, where v is the instantaneous voltage difference between the
two terminals, i is the instantaneous current in the resistor, and R is the value
of the resistor. R is measured in ohms if v and i are measured in volts and
amperes, respectively.

There are two other two-terminal components that are commonly found in
electrical circuits, the capacitor and the inductor. They obey the relationships
shown in figure 5.4, where C and L denote the values of those components, in
farads and henrys, respectively. The figure also shows the symbols used by
electrical engineers when drawing circuit diagrams. The details of how these
various components are physically constructed are not important in this
example—we’ll be interested only in their mathematical definitions. These
units are named in honor of the American physicist Joseph Henry (1797–
1878) and the English physicist and chemist Michael Faraday (1791–1867).
The voltage-current relationships for the various components give us a physi-
cal interpretation of what is meant by saying a capacitor has a value of 20
microfarads (20  1026 F), or that an inductor has a value of 500 millihenrys
(500  1023 H). The first case means any electrical device that has the prop-
erty of conducting twenty amperes of current at a particular instant of time if,
at that instant, the voltage drop across the device’s terminals is changing at the
rate of one million volts per second, and such high rates of change are not at
all uncommon in certain electronic circuits for very brief intervals of time.

Figure 5.4. The three standard electrical components used in circuits.
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The second case means any electrical device that has the property of produc-
ing a one volt potential difference between its terminals if the current through
it is changing at the rate of two amperes per second.

It is important to notice in figure 5.4 that the current i flows in the direction
of the voltage drop, i.e., in the direction of going from the 1 terminal to the 2
terminal. The plus/minus symbology can be confusing, as the symbols do not
really mean plus and minus. Rather, the 1 terminal is simply at a higher
voltage than is the 2 terminal. Both terminals could, in fact, actually be posi-
tive when compared to some standard reference, usually called ground, which
may indeed be the ground of Earth, e.g., 17 volts and 13 volts, and in that
case we would mark the 17 volt terminal as 1 and the 13 volt terminal as 2.
The voltage drop is 14 volts as we move from 1 to 2 (or a voltage rise of 14
volts as we move from 2 to 1).

Now, one final comment about electric fields and the movement of charge.
Electric and magnetic fields are vector fields, because at every point in space
they have both a magnitude and a direction. Electric fields point in the direc-
tion of the voltage drop, i.e., from the 1 terminal to the 2 terminal. A mass m
carrying a positive electric charge, when placed in an electric field, will expe-
rience a force in the direction of the field and so, according to Newton’s F 5
ma formula, will move in that direction. This is consistent with the rule that
“like charges repel”; a positive charge at the 1 terminal will move to the 2
terminal because it is being repelled. Thus, in electric circuits, the conduction
electrons with their negative charge will actually move in the opposite direc-
tion, against the field, from the 2 terminal to the 1 terminal. That is, the
current directions shown in figure 5.4 are opposite to the directions of the
actual physical charge carrier motion. No doubt you are thinking this is all
the work of madmen—and many beginning electrical engineering students
would agree with that assessment —but if you are careful in thinking about
what is going on then everything works out.

Now, there are just two things more that I need to tell you about electricity
and then you will be ready for Rayleigh’s puzzle. In any analysis of an electri-
cal circuit, physicists and electrical engineers use two laws named after the
German physicist Gustav Kirchhoff (1824–87). These two so-called
Kirchhoff laws are actually the fundamental conservation laws of energy and
electric charge—charge and energy can neither be created nor destroyed—
when applied to the special case of electric circuits. The laws, illustrated in
figure 5.5, are easy to state.

Voltage law: In any circuit, at every instant of time, the sum of all the
voltage drops across the components that form any closed loop is zero.

Current law: In any circuit, at every instant of time, the sum of all the
currents flowing into any given point is zero. Alternatively, the sum of all the
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Figure 5.5. Kirchhoff ’s two circuit laws.

currents flowing into any point equals the sum of all the currents flowing out
of that point.

Kirchhoff ’s laws are very powerful and useful, and will be invaluable in
solving Rayleigh’s problem. In circuits involving just resistors and batteries,
the laws are in agreement with most people’s intuition. Intuition and the laws
often are not in agreement for ac circuits with capacitors and/or inductors
present, and in those cases the laws are right and intuition is simply out of
luck! For example, consider the circuit shown in figure 5.6. The battery volt-
age of 1.5 volts appears across both halves of the right-hand side of the circuit.
Using Kirchhoff ’s current law we have I 5 I1 1 I2. From Ohm’s law, for the
four resistors, we have
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Vab 5 voltage drop from a to b 5 0.25I1,
Vbd 5 1.25I1,
Vac 5 1.25I2,
Vcd 5 1.75I2.

And finally, from Kirchhoff ’s voltage law, we have

1.5 5 Vab 1 Vbd 5 1.5I1

1.5 5 Vac 1 Vcd 5 3I2.

So I1 5 1 ampere and I2 5 0.5 ampere, and thus the battery current is I 5 1.5
amperes. It may seem silly to you for me to say this, but notice that I1 and I2

are both less than I. Well, you might say, of course that must be so because we
got I by adding I1 and I2. Hold that thought.

Now, at last, you are ready for Rayleigh’s puzzle. It involves an extension
of the simple circuit of figure 5.6 to the one shown in figure 5.7, where I have
included all three kinds of electrical components and replaced the battery with
an ac voltage generator operating at radian frequency v. That is, v has the
units of radians per second. This means that if v(t) is a sinusoidal voltage with
maximum amplitude of V volts, then we can write v(t) 5 Vcos(vt). The volt-
age v(t) varies through one complete period, or executes one cycle of oscilla-
tion, as vt varies from 0 to 2p. Thus, one cycle of oscillation requires a time
interval of 2p/v seconds. Or, alternatively, in one second there will be
1/(2p/v) 5 v/2p cycles, a quantity that electrical engineers call the fre-

Figure 5.6. A simple resistor circuit.
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Figure 5.7. Rayleigh’s current-splitting puzzle.

 and denote by f, i.e.,  � 2�f. The unit of frequency was for many
years the obvious cycle per second. It is now the hertz, named for the German
physicist Heinrich Hertz (1857–94), who was the experimental discoverer of
electromagnetic radiation just a few years before his early death. The fre-
quency of the power lines that distribute electrical energy for ordinary house-
hold uses is 60 hertz, while AM broadcast radio uses frequencies between

The three circles marked M, M1, and M2 in figure 5.7 represent current
meters with indicator needles that point to the current value on marked scales
beneath the needles. Such meters were invented in 1882 by the French bio-
physicist Arsène D’Arsonval (1851–1940), who needed a device to measure
the tiny electrical currents in animal and human muscle tissue. Called moving
coil D’Arsonval meters, they utilize the magnetic field generated by a current
in a wire. The idea is quite simple in theory, yet delicate to actually imple-
ment. A coil of wire is suspended via very-low-friction supports in the mag-
netic field of a permanent magnet. The current to be measured is passed
through the coil, and its magnetic field interacts with the permanent field to
produce a force. The whole arrangement is mechanically such that the force

535,000 hertz and 1,635,000 hertz.

quency
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produces a torque that rotates the coil, which moves a needle attached to the
coil. The force or torque is directly proportional to the instantaneous coil
current. If this current is constant, or varies slowly, the coil/needle can vary
along with the current, but if the current varies too rapidly then the mechanical
inertia of the coil smooths out the variation and so the meter responds to the
average value of the current. Such a situation is useless for measuring ac
currents, of course, as their average value is zero.

A clever change in the meter design solves that problem, however. The
permanent magnet is replaced with an electromagnet, i.e., with a second coil
around some iron to concentrate and intensify the magnetic field created by
the current to be measured. The current also still passes through the rotating
coil, as well. The two magnetic fields now pulsate together in response to the
ac current. The instantaneous torque is proportional, just as before, to the
product of the fields, i.e., to the square of the ac current, and so at “high”
frequencies the meter needle deflection is proportional to the average of the
squared current —which is nonzero even for ac.

What I will now do is calculate, as I did for the simple battery/resistor
circuit of figure 5.6, the currents i1 and i2 for figure 5.7. What we’ll find, and
what Rayleigh noticed as far back as 1869, is that while of course i 5 i1 1 i2
always, as demanded by Kirchhoff ’s current law, it is nevertheless still pos-
sible for the individual currents i1 and i2 to both appear larger than i! That is,
the M1 and M2 meter needles can point to larger numbers on their scales than
does the M meter needle. Rayleigh himself understood what was going on
(indeed, he used complex exponentials almost as I am about to do), but it took
a long time before the average electrical engineer on the street felt comfort-
able with such a nonintuitive phenomenon. The circuit of figure 5.7 is not
exactly the one Rayleigh analyzed, nor is my use of complex exponentials
exactly like his. But the differences are all minor details.

We can write the following expressions for figure 5.7, using Kirchhoff ’s
laws and the defining relations for resistors, capacitors and inductors:

i i i
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Differentiating the last of these equations, and using the equation for i1, gives
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This, together with

v i R L
di

dt
= +2

2 ,

gives us two differential equations, one each for the currents i1 and i2. If we
assume v is sinusoidal, then complex exponentials make the solution of these
differential equations straightforward.

Suppose that, for each of two different v’s (say vx and vy), we know the
solutions for i1 (say i1x and i1y). Then, by direct substitution in the differential
equation for i1, it is clear that the solution for the case of v � vx � vy is just i1
� i1x � i1y. The same is equally true for i2. This observation is central to what
comes next. In particular, let us write

v(t) � 2Vcos(t) � Vejt � Ve�jt,

where I have included the factor of 2 to avoid a factor of �� through all the
equations that follow. Since ej� represents a vector in the complex plane mak-
ing angle � with the real axis, then ejt is a vector making angle t which is
continually increasing with t, i.e., with time, because  	 0. That is, ejt is a
rotating vector, one in fact rotating counterclockwise at positive frequency
/2� hertz. Similarly, e�jt is a vector rotating clockwise at the same fre-
quency. Electrical engineers often write this as ej(�t) � ejt

� 0, i.e., e�jt represents a vector rotating counterclockwise at a negative
frequency.

What I will do now is calculate i1 and i2 for just the first term of v(t), i.e., for
the Vejt term, and call the results i1� and i2�. Then, I will repeat the analysis
for the second term, i.e., for the Ve�jt term, and call the results i1� and i2�.
Then, from the observation that opened the previous paragraph, the solutions
for v(t) � 2Vcos(t) will be

i1 � i1� � i1�,
i2 � i2� � i2�.

It seems reasonable to assume that if v� � Vejt then i1� � I1
�ejt and i2� �

I2
�ejt, where I1

� and I2
� are constants. Substituting v�, i1�, and i2� into the two

differential equations gives

Vj e RI j e
C

I e

Ve RI e Lj I e

j t j t j t

j t j t j t

ω ω

ω

ω ω ω

ω ω ω

= +

= +

+ +

+ +

1 1

2 2

1
,

,

or, upon canceling the common ejt factors that occur in every term,

, where ̂ � �ˆ



C H A P T E R  F I V E

134

j V j R I
C

I

V R I j L I

ω ω

ω

= +

= +

+ +

+ +

1 1

2 2

1
,

,

Alternatively,

I
V

R j
C

I
V

R j L

1

2

1
+

+

=
−

=
+

ω

ω

,

.

Now, if you repeat these steps for v2 5 Ve2jvt, with i12 5 I1
2e2jvt and i22 5

I2
2e2jvt, you’ll quickly find with no difficulty that the results are

I
V

R j
C

I
V

R j L

1

2

1
−

−

=
+

=
−

ω

ω

,

.

Thus, the currents i1 and i2 are, for v(t) 5 2Vcos(vt),

i I e I e
V

R j
C

e
V

R j
C

ej t j t j t j t
1 1 1 1 1= + =

−
+

+

+ − − −ω ω ω ω

ω ω

and

i I e I e
V

R j L
e

V

R j L
ej t j t j t j t

2 2 2= + =
+

+
−

+ − − −ω ω ω ω

ω ω
.

The two expressions for i1 and i2 certainly look complex with all the j 5
Ï21 factors in them, but in fact they are both purely real. We know this must
be so for two reasons, one physical and one mathematical. The physical rea-
son is simply that if we apply the real voltage v(t) 5 2Vcos(vt) to a circuit
made of real (i.e., physically constructable) hardware, then all the resulting
voltages and currents must be real, too. What, after all, would a complex
current mean? And mathematically, notice that both i1 and i2 are the sums of
two terms which are complex conjugates. Such a sum is just twice the real part
of either term. Since the expressions for i1 and i2 are the currents for v(t) 5
2Vcos(vt), then the currents for v(t) 5 Vcos(vt) are half as much, and so we
have



M O R E  U S E S  O F  C O M P L E X  N U M B E R S

135

i
V

R j
C

e

i
V
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⎩
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⎫

⎬
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⎭
⎪

=
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⎧
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⎩

⎫
⎬
⎭
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Re .

ω

ω

ω

ω

After a little elementary algebra that I’ll leave for you these expressions
become

i
V

R
C

R t
C

t

i
V

R L
R t L t

1
2

2

2 2 2

1

1=
+ ⎛

⎝
⎞
⎠

−⎡
⎣⎢

⎤
⎦⎥

=
+

ω

ω
ω

ω

ω
ω ω ω

cos( ) sin( ) ,

( )
[ cos( ) sin( )].

For a and b constants, we have the trigonometric identity

a t b t
b

a
cos( ) sin( ) ,ω ω+ = ⎛

⎝
⎞
⎠

⎧
⎨
⎩

⎫
⎬
⎭

−2 2 1

and so the currents i1 and i2 become [for v(t) � Vcos(t)]

i
V

R
C

t RC

i
V

R L

1

2
2

1

2 2 2

1

1
1=

⎛
⎝

⎞
⎠

=
+

−

−

ω

ω ω

ω
ω ω

cos{ tan ( / )},

( )
cos{ tan ( / )}.

Thus, i1 and i2 are sinusoidal currents with squared maximum values I1
2 and

I2
2, respectively, given by

I
V

R
C

I
V

R L

1
2

2

2
2

2
2

2

2 2

1
=

+ ⎛
⎝

⎞
⎠

=
+

ω

ω

,

( )
.

The reason for squaring the magnitudes of i1 and i2 is that that gives the
quantities to which a D’Arsonval current meter responds.

Suppose now that we specify the frequency . In particular, suppose  �

1/�LC. Then it is easy to show that

–

+

t L R

+

a + b cos ωt tan

+

–
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So, at the specific frequency of  � 1/�LC, our earlier results for I1
2 and I2

2

become equal, i.e.,

I
V

R
L

C

I1
2

2

2
2
2=

+
= ,

and, from the last calculation, at  � 1/�LC the squared maximum value for
i, denoted by I2, is

I
V

R
L

C

L

R C

2
2

2
2

4

1
=

+⎛
⎝

⎞
⎠ +⎛
⎝

⎞
⎠

.

From these expressions it is easy to see that I2 � I1
2 � I2

2 when L/(R2C) 	 3.
That is, under that condition (at  � 1/�LC), meter M in figure 5.7 will point
to a smaller value than do meters M1 and M2, even though it is the splitting of
the current in M that forms the currents in M1 and M2.

It was a long time before electrical engineers felt comfortable with nonin-
tuitive results like this, which is the reason why ac circuits were thought to be
somehow different from battery-powered dc circuitry. All circuits obey ex-
actly the same physical and mathematical laws, however, and the break-
through in understanding this for electrical engineers came in 1893. That year
Charles Steinmetz (1865–1923) presented a famous paper at the International
Electrical Congress in Chicago titled “Complex Quantities and Their Use in
Electrical Engineering.” Steinmetz’s paper was introduced to the audience
with the following words:

1 +2

+

�
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We are coming more and more to use these complex quantities instead of using
sines and cosines, and we find great advantage in their use for calculating all
problems of alternating currents, and throughout the whole range of physics.
Anything that is done in this line is of great advantage to science.

Steinmetz, who just five years before had fled Germany, literally in the middle
of the night, to avoid arrest for his Socialist beliefs, had almost completed
studies for a doctorate in mathematics. His knowledge of advanced mathemat-
ics, combined with a genius for practical engineering, was a rare talent in the
nineteenth century. He quickly came to the attention of the General Electric
Company, where he spent the rest of his life educating electrical engineers to
the power of complex numbers in advancing the state of technology. He even-
tually became known as “the wizard who generated electricity from the square
root of minus one.” As the final calculation of this chapter let me show you an
application of Ï21 that Steinmetz did not live to see, but which really does
generate a special electrical signal from Ï21.

5.6 A Famous Electronic Circuit That Works
Because of Ï21

The square box in figure 5.8 with the A inside represents an amplifier, an
electronic gadget that produces an output voltage across its right pair of termi-
nals (v) that is A times larger than the voltage across its left pair of terminals

Figure 5.8. An electronic oscillator. The variables v, x, y, and u are voltages, while all
the i variables are currents. The bottom terminals at both the input and the output are
defined to be the reference with respect to which all other voltages are measured (no-
tice that these two terminals are directly connected together). This is equivalent to
saying that the bottom input and output terminals are connected to a common ground
potential of zero volts.
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(u). That is, A is the voltage gain of the amplifier. The details of how to
construct such a gadget are unimportant to us. All that is important for us to
know is that amplifiers do exist and are, in fact, not at all difficult to build.
As a basic assumption, I will take it to be true that our amplifier requires so
little input current to operate that I can take it to be no current. This ideal
assumption is closely approached in actual amplifiers, which can operate
with input currents of only billionths of an ampere. To be an amplifier, of
course, requires only that uAu . 1 but, in its most elementary form, it is
easier and cheaper to achieve A , 0 rather than A . 0. Now, down to
business.

The circuit shown in the figure has the rather interesting feature that its
input signal comes from the resistor/capacitor arrangement that gets its input
voltage from the amplifier’s output. That is, the entire circuit is a closed loop.
Can this circuit do anything interesting? This perhaps odd circuit is, in fact,
the circuit that started a company that, as I write (1997), has a stock market
valuation of over forty billion dollars.

To anticipate physically what I will show you next mathematically, let us
suppose a few things. First, imagine that at the amplifier’s input there are tiny
amounts of voltage present, at any frequency (v) you want. In fact, imagine
that such tiny voltages at all frequencies are all present at once. This will be
the case in any circuit because of the reality of electrical noise, which is
electrical engineering jargon for the random voltages that are always ines-
capably present. For example, if you tune your television set to a channel
where there is no local station broadcasting you will still see rapidly flickering
images of black and white dots on the screen, which represent video noise,
often called snow. Every one of those tiny voltages passes through the ampli-
fier and emerges at the output terminals multiplied by the gain A; that is, uAu
times larger and inverted because A is negative. For example, a tiny input
voltage with, let’s say, microscopic amplitude m and a frequency of v, i.e., u
5 mcos(vt), will come out of the amplifier as v 5 2uAumcos(vt). That voltage
then passes through the three resistors and three capacitors and, of course,
something will happen to both the amplitude and what electrical engineers call
the phase angle, i.e., the voltage will emerge as u 5 2uAumG(v)cos[vt 1

f(v)], where G(v) . 0 tells us what the resistors and capacitors do to the
amplitude of v, and f(v) is what I called the phase angle. I have written both
G and f as functions of v because, most generally, precisely what does hap-
pen is a function of frequency.

Next, just suppose that there is a particular v 5 vo such that f(vo) 5 p.
Then u(vo) 5 2uAumG(vo)cos(vot 1 p) 5 uAumG(vo)cos(vot). And finally,
just suppose we build our amplifier so that uAu is sufficiently large that
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uAuG(vo) 5 1, i.e., that uAu 5 1/G(vo). Then u 5 mcos(vot). But that is exactly
the same voltage we supposed at the input of the amplifier when we started all
this “supposing”! That is, the voltage at frequency vo is self-sustaining around
the loop. All other voltages at all other frequencies will travel around the loop
and arrive back out of phase and therefore tend to cancel themselves, and so
will not self-sustain. Only at v 5 vo will the self-sustaining process occur.
Thus, this circuit will generate a voltage that is a sinusoid at frequency vo, i.e.,
it is a circuit that oscillates at a single frequency. It was the invention, at the
beginning of the twentieth century, of the electronic vacuum tube that made
the construction of such so-called feedback oscillators possible, which in turn
made modern radio possible.7

Of course, the above is really only provocative and not at all analytic. An
electrical engineer would demand some mathematics to back it all up—for
example, just what is vo?—and that is what I will do next. The key to under-
standing what is happening is in the G(vo) of the resistor/capacitor part of the
circuit, so let us write down the equations that describe that part. Using the
notation of figure 5.8, Kirchhoff ’s laws, and the voltage-current relations for
resistors and capacitors, we have the following set of expressions:

i i i i C
d

dt
v x i

x

R
i i i

i C
d

dt
x y i

y

R
i C

d

dt
y u i

u

R

= + = − = = +

= − = = − =

1 2 1 2 3 4

2 3 4 4

,   ( ),   ,  ,

( ),   ,   ( ),   .

With a total of eight equations in nine variables we can solve for the ratio of
any two, and the particular ratio of interest for our circuit is u/v. One way to
do this is to first manipulate the above equations to eliminate all the variables
except for u and v. This is not difficult to do, but it is rather detailed, and so I
will just give you the answer and encourage you to verify it:

d v

dt

d u

dt RC

d u

dt RC

du

dt RC
u

3

3

3

3

2

2 2 3
6 5 1= + + +

( ) ( )
.

To see what this third-order differential equation can tell us, let us next use
our old trick of first writing u1 5 U1ejvt and v1 5 V1ejvt. If you substitute
these expressions into the differential equation you will find that

U

V

j

RC RC
j

RC

+

+ = −




 − − −











ω
ω ω ω

3

3 2

2
21 6 5

( )

.

Next, write u2 5 U2e2jvt and v2 5 V2e2jvt, substitute, and conclude that
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Notice that both of these ratios are purely real if the real parts of the two
denominators are zero, i.e., if in both cases  � ̂, where

1 6
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For that particular frequency we have
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and similarly, at  � ̂,

U

V

−

− = − 1

29
.

Think carefully about what these results are telling us. At  � ̂ the real and
the imaginary parts of u are both precisely equal to ����th of the real and the
imaginary parts of v, respectively. Thus, if the real voltage 2cos(̂t) � (eĵt �

e�ĵt) enters the resistor/capacitor circuitry at the left, it will emerge at the
right as ����cos(̂t). If the amplifier is designed to have A � �29, the voltage
output of the amplifier will self-sustain at  � ̂. That is, o � ̂. Notice, too,
that the value of o is determined by R and/or C, and so by varying either all
three identical capacitors or the identical resistors together, via a common
mechanical linkage, we can tune this circuit to oscillate at any frequency we
want over a wide range of frequencies, typically from less than one hertz up to
as high as a megahertz or so. For example, the physically reasonable compo-
nent values of R � 26,000 ohms and C � 0.001 �F give a frequency of fo �

o/2� � 2,500 hertz, a tone right in the middle of the frequency interval that
most adults can hear.

This particular feedback oscillator circuit, called a phase-shift oscillator,
was the basis for the first product developed by two young electrical engineer-
ing graduates of Stanford University in the late 1930s, William Hewlett and
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David Packard. They used it to make variable-frequency sound generators and
sold them to Walt Disney, who used them to create the audio effects in his
classic 1940 film Fantasia. Today the circuit is so well known that it is often
used as the basis for undergraduate laboratory experiments. As I write, in fact,
I am teaching two sections of the third-year electrical engineering laboratory
at the University of New Hampshire, and one of the experiments asks students
to compare theoretical calculations (like those here) with in-lab measure-
ments on a real, operational oscillator. These comparisons routinely agree to
within a few percent.
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C H A P T E R S I X

Wizard Mathematics

6.1 Leonhard Euler

While it is general practice today to date the beginning of the modern theory
of complex numbers from the appearance of Wessel’s paper, it is a fact that
many of the particular properties of Ï21 were understood long before
Wessel. The Swiss genius Leonhard Euler (1707–83), for example, knew of
the exponential connection to complex numbers. The son of a rural pastor, he
originally trained for the ministry at the University of Basel, receiving, at age
seventeen, a graduate degree from the Faculty of Theology. Mathematics,
however, soon became his life’s passion. He remained a pious man, but there
was never any doubt that he was, first, a mathematician.

Nothing could keep him from doing mathematics, not even blindness for
the last seventeen years of his life. Euler had a marvelous memory—it was
said he knew the Aeneid by heart—and so after losing his sight he simply did
monstrously difficult calculations in his head. His reputation among his con-
temporaries was such that he was known as “analysis incarnate.” Many years
after his death the nineteenth-century French astronomer Dominique Arago
said of him “Euler calculated without apparent effort, as men breathe, or as
eagles sustain themselves in the wind.” When he died he had written more
brilliant mathematics than had any other mathematician, and to this day he
still holds that record.

While a student at Basel Euler studied with the mathematician John Ber-
noulli (1667–1748) and, along the way, became friends with two of his sons,
Nicolas and Daniel, who were also mathematicians. Several years older than
Euler, both soon recognized the younger man’s talents, and so when the two
Bernoulli boys went off to the Imperial Russian Academy of Sciences in St.
Petersburg in 1725 they began to lobby for a spot there for Euler as well.
Nicolas died in 1726, but Daniel continued his efforts and in 1727 Euler, too,
arrived in Russia. This first of two stays in Russia would see his first great
success, and in just a few years (1731) he was named an Academy Professor.

A few days before Euler first set foot in Russia, however, the Tsarina Cath-
erine I (widow of Peter the Great) died and the throne passed to a twelve year
old boy. The regency that then ran the country had little sympathy for the
intellectual and expensive Academy, which was viewed as a collection of
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foreign scientists meddling in Russian culture, and Euler no doubt found the
place less than totally congenial. When Euler was invited by Frederick the
Great of Prussia to leave the Russian Academy and to take up a similar post in
the Berlin Academy, he was happy to accept, and there he stayed from 1741 to
1766. He left Berlin because four years earlier Catherine the Great ascended
the Russian throne, the intellectual climate there once again became attractive
(and Euler was allowed to write his own, generous contract), and his personal
relationship with Frederick had deteriorated. And so Euler returned to St.
Petersburg. There he remained until his sudden death of a stroke as he sat one
evening doing what he loved most—mathematics.

6.2 Euler’s Identity

In a letter dated October 18, 1740 to his one-time teacher John Bernoulli,
Euler stated that the solution to the differential equation

d y

dx
y y y

2

2 0 0 2 0 0+ = = ′ =,   ( ) , ( ) and  

(where the prime notation denotes differentiation) can be written in two ways;
namely,

y x x

y x e ex x

( ) cos( ),

( ) .

=

= +− − −

2

1 1

The truth of Euler’s statement is evident by direct substitution into the differ-
ential equation, and the evaluation of each y(x) for the given x 5 0 conditions.
Euler therefore concluded that these two expressions, each apparently so un-
like the other, are in fact equal, i.e., that

2cos(x) 5 eix 1 e2ix.

It is evident from that same letter that Euler also knew that

2i sin(x) 5 eix 2 e2ix.

Just a year after his letter to Bernoulli, Euler wrote another letter (dated De-
cember 9, 1741) to the German mathematician Christian Goldbach, in which
he observed the near-equality

2 2

2

10

13

1 1− − −+ ≈ .
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Indeed, using the approach sketched in box 3.2 it is easy to show that the left-
hand side is cos(ln 2); that and !a)d do not begin to differ until the sixth decimal
place—only a genius or a quack would notice such a thing, I think, and Euler
was no quack!

One mathematician who definitely did have something of the quack to him,
and who was fascinated by the mystical appearance of the mathematical sym-
bols in Euler’s equations, was the Polish-born Józef Maria Hoëné-Wroński
(1776–1853), who became a French citizen. He once wrote that the number p
is given by the astounding expression

4

1
1 1 1 11 1∞

−
+ − − − −{ }∞ ∞( ) ( ) ./ /

What could he have meant by writing such a thing? Wroński’s entry in the
Dictionary of Scientific Biography uses such words as “psychopathic” and
“aberrant,” and notes that he had “a troubled and deceived mind,” but if one
replaces all the infinity symbols with n, writes ( 1 6 i) in polar form, i.e., as
Ï2e6ip/4, uses Euler’s formulas to expand the complex exponentials, and
finally takes the limit as n → `, then Wroński’s bizarre expression does re-
duce to 2p. (Not p, as claimed, but perhaps Wroński was thinking of the
leftmost infinity as being generated by !sn, not just n—who can say now what
that odd thinker was thinking?)1

Finally, in 1748, Euler published the explicit formula

e6ix 5 cos(x) 6 i sin(x)

in his book Introductio in Analysis Infinitorum. To mathematicians, electrical
engineers, and physicists this is universally known today as Euler’s identity,
but as you will soon see he was not the first to either derive it or publish it.

Euler’s confidence in this astonishing expression was enhanced by his
knowledge of the power series expansion of ey,

e y y y y y
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 . . . .

If you set  then

 . . . .

I am admittedly using this power series expansion for ey, with y real, in a
rather daredevil manner when I substitute an imaginary quantity for y. I am
ignoring the question of convergence. I’m doing this because the issue is
addressed in great detail in any good book on analysis, where it is shown that
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the series converges for all z, including complex values, and I simply don’t
want to turn this book into a textbook. Rest assured, all of the series that I
write and treat as convergent in this book do converge.

Continuing by collecting real and imaginary parts, we arrive at

e x x i x x xix = − + +⎛
⎝

⎞
⎠ + − + +⎛
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! ! ! !
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But the expressions in the parentheses are the power series expansions for
cos(x) and sin(x), respectively (known to mathematicians since at least New-
ton’s time), and so Euler’s identity is derived in a new way. The sine series, by
the way, provides the proof to a statement I asked you just to accept back in
section 3.2. Thus we have
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and so, with x � (1/2n) �, we have
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as claimed.
The power series expansion of ey was used by both Bernoulli and Euler in

some breathtaking calculations. In 1697, for example, John Bernoulli used it
to evaluate the mysterious-looking integral �l

0 xxdx. Here’s how he did it.
First, using the trick I used in box 3.2 to calculate (1 � i)1�i, he wrote

xx � eln(xx) � exln(x),

and then set y � x ln(x). The power series expansion then gave him

x dx
k
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k
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k k
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( ln ) .

Using integration by parts it is easy to show that

( ln )
( ) !

( )
,x x dx

k

k
k

k

k= −
+∫ +

0

1

1

1

1

a result which is not hard to arrive at if you remember or look up, at the proper
time, limx→0 x lnx � 0. From this it immediately follows that

( ln x)x
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x dxx = − + − + − =∫ 1
1

2

1

3

1

4

1

5
0 783432 3 4

0

1

5
 . . .  . . . ..

6.3 Euler Makes His Name

Bernoulli’s integral was a brilliant calculation, but his former student Euler far
surpassed that achievement by using the power series expansion of sin(y), the
imaginary part of eiy, to accomplish what today is still considered a world-
class tour de force. All he did was solve a problem that had stumped mathe-
maticians for centuries! It also led him to write down a new function, called
the zeta function today, that is behind the greatest unsolved problem in all of
complex number theory; indeed, in all of mathematics. And that was so even
before Fermat’s last theorem was laid to rest in 1995. Here’s what he did.

A mathematical problem of long standing has been the summation of the
infinite series of the integer powers of the reciprocals of the positive integers.
That is, the evaluation of

S
n

pp p
n

= =
=

∞

∑ 1
1

1

  for  2,  3,  . . . .,

The answer for p 5 1, which results in the so-called harmonic series, has been
known since about 1350 to diverge, a result first shown by the medieval
French mathematician and philosopher Nicole Oresme (1320–82).

This conclusion for S1 surprises most people when they first encounter it,
but Oresme’s proof of it is beautifully simple. One simply writes S1 as

S1 1
1

2

1

3

1

4

1

5

1

6
1

1

2

1

3

1

4

1

5

1

6

1

7

1

8
= + + + + + + = + 



 + +



 + + + +



 + . . .  . . . 

and then replaces each term in each grouping on the right with the last (small-
est) term in that grouping; notice that this last term will always be of the form
1/2m where m is some integer. This process gives a lower bound on S1, and so
we have

S1 1
1

2

1

4

1

4

1

8

1

8

1

8

1

8
1

1

2

1

2

1

2
> + + +



 + + + +



 + = + + + + . . .  . . . .

That is, we can add !s to the lower bound on S1 as many times as we wish,
which is just another way of saying that the lower bound itself diverges. But
then S1 must diverge, too.

The divergence is incredibly slow, however. For the partial sum of S1 to
exceed 15, for example, requires well over 1.6 million terms; after 10 billion
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terms the partial sum is only about 23.6, and to reach 100 requires over 1.5 
1043 terms. Finally, because of its connection to Euler, I should tell you that in
1731 he found that, if S1

(n) is the nth partial sum of S1, then limn→` hS1
(n) 2

ln(n)j does converge, to a number g now called Euler’s constant, which is g 5
0.577215664901532 . . . . After p and e, g is perhaps the most important
mathematical constant not appearing in elementary arithmetic. In 1735 Euler
calculated g to the fifteen correct decimal places given above, while in modern
times it has been calculated to many thousands of places.

There is an elegant way to express g in terms of Sp, using the power series
expansion for ln(1 1 z). This expansion is easily derived for all real z such that
21 , z , 1, just as the Danish mathematician Nicolaus Mercator (1619–87)
did it in his 1668 book Logarithmotechnia. Write 1/(1 1 z) 5 1 2 z 1 z2 2 z3

1 z4 2 ⋅ ⋅ ⋅ , which you can verify by long division. Then integrating both
sides gives

ln( ) ,1
1

2

1

3
2 3+ = − + +z z z z K . . . 

where K is the indefinite constant of integration. But since at z 5 0 we have
ln(1) 5 0, we must then have K 5 0, and we are done.

If you now successively substitute the values of z 5 1, !s, !d, !f, . . . into the
above expression, you can write the following formulas:
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If you add these relations together then all the logarithmic terms cancel
except one (the sum is said to telescope), and you will get
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So, at last, we have the following exotic double summation (which doesn’t
converge very rapidly, unfortunately) for 	:

γ = − +{ } = − ⎧
⎨
⎩

⎫
⎬
⎭

= −

→∞ =

∞

=

∞

=

∞

∑ ∑

∑

lim ln( )
( )

( )
.

( )

n

n
p

p
p

n

p

p
p

S n
p n

p
S

1
2 1

2

1
1 1

1

The theoretical importance of 	, and its connection to Sp, explains why the
values of Sp are important.

The value of the very next sum after S1, that is, of S2, however, baffled all
mathematicians who attempted its evaluation, including John Wallis and John
Bernoulli. The question of S2 became widely known in France and England
through the 1650 book Novae Quadraturae Arithmeticae by the Italian Pietro
Mengoli (1625–86), and then from Wallis’ Arithmetica Infinitorum five years
later. Both writers were stumped by the calculation, and they weren’t alone.
Indeed, the eighteenth-century French historian of mathematics Jean Montucla
called the calculation of S2 “the despair of analysts.” One such analyst was
Leibniz who, when studying under Christian Huygens as a student in Paris, had
declared he could sum any infinite series that converged whose terms followed
some rule. But when Leibniz met the English mathematician John Pell (1611–
85) in 1673, Pell stopped the exuberant youth dead in his tracks with S2. And
then, suddenly, Euler solved the problem in 1734 with a derivation using the
power series expansion of the sine that is breathtaking in its boldness.

Euler wrote, in essence, the infinite-degree polynomial equation

f y
y

y
y y y( )

sin( )

! ! !
,= = − + − + =1

1

3

1

5

1

7
02 3 . . .

and observed that its roots occur when sin(�y) � 0, except that y � 0 is not a
root because, as shown in the previous section, sin(�y)/�y � 1 at y � 0, not
0. That is, the roots are at integer multiples of � (excluding 0), i.e., at �y �

n� where n is any nonzero integer, or at y � �2, 4�2, 9�2, . . . . Now, if we
look at just polynomial equations of finite degree, of general form f (x) � anxn

� an�1xn�1 � ⋅ ⋅ ⋅ � a1x � 1 � 0, with the n roots r1, r2, . . . , rn, then it is
plausible (and true) that

f x
x

r

x

r

x

rn

( ) ,= −
⎛

⎝
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⎞

⎠
⎟ −
⎛
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⎞
⎠⎟

−
⎛
⎝⎜

⎞
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=1 1 1 0
1 2

 . . . 
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since this expression obviously has the same roots and both forms of f (x) are
such that f (0) 5 1.

Using the same reasoning as in Box 1.2, it is clear that the coefficient a1 can
be written as

a
r r rn

1
1 2

1 1 1= − + + +






 . . . .

Euler then reasoned that since this is true for any finite n, no matter how large,
it also holds for his infinite-degree polynomial—this is the shaky part of the
derivation. Thus, as a1 5 21/3! 5 21/6 in the series for f (y), then

− + + +



 = −1 1

4

1

9

1

62 2 2π π π
 . . .

or

1

1

1

2

1

3 62 2 2 2

2

+ + + = = . . . S
π

.

That’s it! It is no great task to write a simple computer program to calculate
the partial sums of S2 and to watch them approach 1.644934 . . . , which is,
indeed, p2/6. What an incredible result to flow from a knowledge of the
power series of the sine function. Euler’s method, in fact, allowed him to do
much more, to evaluate Sp for all even p. It was this calculation, early in his
career at St. Petersburg, that marked Euler as a superstar, and it had much to
do with establishing his enormous reputation. For p odd, however, the method
fails and those sums remain unknown today. It will take a new Euler, with a
new idea, to crack them. Euler tried for many years to calculate Sp for p odd,
but in a 1740 paper he could only conjecture that Sp 5 Npp, that N is rational
when p is even, and that N will involve ln(2) when p is odd. In a 1772 paper he
did manage to derive2 a remarkable formula that, while not S3, is tantalizingly
close:

1

1

1

3

1

5 4
2 23 3 3

2

0

2

+ + + = + ∫ . . . 
π π

ln( )   ln{sin( )} .
/

x x dx

Essentially the only progress made since Euler occurred when the French
mathematician Roger Apéry showed (in a paper published in 1979) that S3,
whatever its value may be, is irrational. It is interesting to note that the irra-
tionality of S2 wasn’t known until Legendre proved the irrationality of p2 in
1794, sixty years after Euler calculated S2.
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6.4 An Unsolved Problem

Once one has the idea of Sp, it is just one more step to considering the sums of
the reciprocals of the positive integers raised to a variable power. This Euler
did in 1737, writing what is now called the zeta function:

ζ( )  z
nz z

n
z z z= = + + + + +

=

∞

∑ 1
1

1

2

1

3

1

4

1

51

 . . . .

Euler considered z to be a real integer variable, subject only to the constraint z
. 1 to insure convergence of the sum. It is clear that the Sp are special cases of
the zeta function, e.g., (2) 5 S2 5 p2/6. More generally, we could think of z
as any real number, not necessarily just an integer.

Now, a brief digression. As you almost surely recall from high school math-
ematics, the primes are all the integers greater than one that have no integer
divisors other than one and themselves, i.e., they are not factorable. The se-
quence of the primes starts with 2, 3, 5, 7, 11, 13, . . . and, as Euclid showed in
his Elements of about 350 b.c., they are infinite in number although their
frequency does decrease as we look at ever larger intervals of numbers. The
only fact about the primes that you need to know, to understand what Euler
did with (z), is what is called the unique factorization theorem. This theorem
states that every positive integer can be written, in exactly one way, as the
product of primes. This important result was also known, implicitly, to Euclid.
It is easy to prove, a proof can be found in any good book on elementary
number theory, and we will take it on faith here.

What Euler did was show that there is an intimate connection between (z),
a continuous function of z, and the primes—which, as integers, are the very
signature of discontinuity. It is typical “out of left field, how did he think of
that?” Eulerian brilliance.

To begin, multiply through the definition of (z) by 1/2z, to get
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12z z z z z z zzζ( ) = + + + + + +  . . . ,

and so, subtracting this from (z), we have
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1
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 = + + + + +z z z z z zzζ( )  . . . .

Next, multiply this last result by 1/3z, to get
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1
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and so, subtracting this from (1 � 1/2z)�(z), we have

1
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2
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1

3
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⎝
⎞
⎠ −⎛
⎝

⎞
⎠ = + + + +z z z z zzζ( )  . . . .

Next, multiply this last result by 1/5z and so on . . . well, you see the pattern
now, I’m sure.

As we repeat this process over and over, multiplying through our last result
by 1/pz, where p denotes successive primes, we relentlessly subtract out all the
multiples of the primes. You may recognize this as essentially the technique
called Eratosthenes’ sieve, developed by the third century b.c. Greek mathe-
matician Eratosthenes of Cyrene as an algorithmic procedure for finding all of
the primes in the first place. If we imagine doing this multiplication-and-
subtraction process for all of the primes, then when we are done—after an
infinity of operations, of course—we will have removed every term on the
right-hand side of the last expression above exactly once because of the
unique factorization theorem. Thus, using � as the product symbol as in chap-
ter 3,

  ( )1
1

1−
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∞
1

1 1
1

1

1prime

  Re

where Re(z) � 1 means the “real part of z � 1” (to insure convergence of the
sum)—this is anticipating the further extension of z from being purely real to
being complex. This is the so-called Eulerian product form of the zeta func-
tion.

What an incredible result! It is, I think, so unexpected that nobody could
possibly have just made it up. It had to be discovered. It is typical of so many
of Euler’s calculations, as it leaves a student almost stunned at the heights
some human brains have reached. As an immediate result, it gave Euler an
entirely new proof of the infinity of the primes, the first since Euclid’s from
two thousand years before. It is very short: simply recall that �(1) � S1 � �.
To be consistent with this, however, the above product must have an infinite

ζ( )z =
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number of factors, each of which is between 1 and 2, i.e., there must be an
infinity of primes.

Euler actually went far beyond this and proved that �n prime 1/n � �, which
is much stronger than merely showing the primes are infinite in number. After
all, there are an infinite number of squares, too, and yet, as Euler showed, S2 �

��
n�1 1/n2 
 �. In some sense, then, there are more primes than there are

squares! This result follows from Euler’s product formula, again for the case
of z � 1. Then,

 .
1

1
1

1
1

1

n
S

pn p

= = −
⎛
⎝⎜

⎞
⎠⎟=

∞ −

∑ ∏
prime

Taking logarithms of both sides, we have (since the log of a product is the sum
of the logs)

ln( ) .S
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⎛
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Putting z �  1/p into Mercator’s power series expansion of ln(1 � z) gives
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 finite value.

prime

prime

The finite value follows because the terms beyond 1/p can be replaced with
larger terms that form a geometric series, which is easily summed using the
trick from section 5.2, and from that it is a final, easy step to the finite-value
conclusion. Now, since S1 � � then ln(S1) � � and so �p prime 1/p � �, too, a
result that is, I think, vastly more counterintuitive than is the divergence of the
harmonic series, which itself is pretty nonintuitive.

In 1859 the brilliant German mathematician Georg Riemann (1826–66)
extended �(z) to complex values of z. He did this in the course of his study of
�(x), the integer-valued function that is equal to the number of primes not
exceeding x, e.g., obviously �(��) � 0 and �(6) � 3, and not so obviously
�(4 � 1016) � 1,075,292,778,753,150. Riemann conjectured, but was unable
to prove (and nobody else has, either), that all the complex zeros of �(z) are

−

−
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“very likely” of the form z 5 !s 1 ib. A zero is a value of z such that (z) 5 0.
That is, what has become known as the Riemann hypothesis states that all the
complex zeros are on the vertical line in the complex plane, called the critical
line, with real part equal to !s. (There are an infinity of real zeros at the nega-
tive, even integers, i.e., at z 5 22, 24, . . . , a result that will be easy to see by
the end of this chapter. So easy, in fact, that the real zeros are often called the
“trivial zeros.”) Because of the Eulerian product form of (z), which con-
verges for Re(z) . 1, it is clear that (z) has no complex zeros strictly to the
right of the vertical line Re(z) 5 1. Otherwise, at least one of the factors in the
product would have to be zero, and it is clear that no factor of the form 1 2
1/pz can be zero. Riemann’s hypothesis is consistent with this, saying that
there are no complex zeros for Re(z) . 1 because all the complex zeros are on
the line Re(z) 5 !s.

If you have read all this carefully then perhaps you think you’ve spotted an
inconsistency with Riemann’s conjecture. How can I talk, you ask, of z 5 !s 1
ib when (z) is defined only for Re(z) . 1? This valid objection is taken care
of by extending the definition of (z) to all z through a technical process called
analytic continuation. This is a topic beyond the level of this book, but here is
a simple way of getting the spirit of what’s involved. Consider the function

f z
n

n

z
n

z z z z( )
( )= − = − + − + −
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=

∞

∑ 1
1

1
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1
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1

5

1

1

 . . . ,

which looks (except for the alternating signs) like (z). Unlike (z), however,
f (z) does converge for Re(z) . 0, precisely because of the alternating signs.
Now, for Re(z) . 1, where both (z) and f (z) are defined, there is a simple
connection between f (z) and (z), namely, that

f z z
n z

n

( ) ( )
( )

,= −
=

∞

∑ζ 2
1

21

which can be manipulated to the form f (z) 5 (1 2 212z) (z). So, when 0 ,
Re(z) , 1, instead of using the divergent series for (z) we simply calculate (1
2 212z)21f (z), which is defined for Re(z) , 1, and call the result the value of
the extended Riemann zeta function—because it was Riemann, not Euler, who
first used the zeta symbolism.

In 1914 the English mathematician G. H. Hardy (1877–1947) proved that
(z) has an infinity of complex zeros on the critical line, but that does not

prove that all the complex zeros are there. More recently, in 1989, it was
shown that at least two-fifths of the complex zeros are on the critical line. But
that does not say all of them are. There is also “very suggestive evidence”
from computational studies in 1986, using more than one thousand hours on a
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supercomputer, that the hypothesis may be true because the first 1.5  109

complex zeros above the real axis have actually been calculated and every
single one has a real part of !s. But, again, that does not prove all the complex
zeros are on the critical line.

In fact, most mathematicians attach little significance to such calculations
because number theory is full of examples where early numerical work gave
results “very suggestive” of the wrong conclusion. A prime example of the
danger in reading too much into numerical results can be found in the history
of p(x). Riemann’s interest in the complex zeros of (z) developed while he
was attempting to find a formula for p(x). Now, since the time of Gauss it has
been known that the logarithmic integral

li x
du

u

x

( )
ln( )

= ∫
2

is an excellent approximation to p(x), e.g.,
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1 000
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0 94382
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100 000

9 592

9 630
0 99605

100 000 000

100 000 000

5 761 455

5 762 209
0 99987

li

li
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= =

= =

= =

In an 1849 letter Gauss claimed to have known of this property of li(x) since
1792 or 1793, when he was fifteen. These numerical results are very sugges-
tive of the conjecture limx→` p(x)/li(x) 5 1, which is a more precise version
of the original statement of the so-called prime number theorem, first proven
to be true in 1896. Indeed, the theorem was proven that year simultaneously
and independently by Hadamard in France and Charles-Joseph de la Vallée-
Poussin (1866–1962) in Belgium, each using very advanced arguments from
complex function theory applied to the zeta function.

Another famous conjecture based on the same numbers, however, is false.
This was the conjecture that p(x) is always less than li(x), and that the differ-
ence between the two increases as x increases. Gauss, and Riemann too, be-
lieved this to be so. In fact, for all values of x for which both p(x) and li(x) are
known i.e., for x up to 1018, both of these assertions are true. And yet the
conjecture is false in general, as was proven in 1914 by Hardy’s friend, the
English mathematician J. E. Littlewood (1885–1977). Indeed, Littlewood
showed that the sign of p(x) 2 li(x), which at first and for so long is negative,
actually reverses infinitely often as x increases without bound. So much for
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“suggestive” numerical results then, and near the end of his life Littlewood
stated his personal belief that the Riemann hypothesis itself is also false. To
disprove the Riemann hypothesis, of course, one needs to show only that there
is at least one complex zero not on the critical line. Nobody has been able to
do that, either. As mentioned before, there are no complex zeros of (z) for
Re(z) . 1, and both Hadamard and Vallée-Poussin showed there are no com-
plex zeros on the vertical line Re(z) 5 1. To go from no complex zeros on
Re(z) 5 1 to all complex zeros on Re(z) 5 !s, however, has proven, so far, to
be too big a gap to jump.

In 1900, at the Second International Congress of mathematicians held in
Paris, the great German mathematician David Hilbert (1862–1943) presented
a talk titled “Mathematical Problems.” During this talk he discussed a number
of unsolved problems that he felt represented fruitful directions for future
research. These problems become famous challenges, and a mathematician
who could solve one could make a career on the resulting acclaim. All were
attacked by some of the world’s finest mathematical minds. Number eight on
the list of twenty-three was the Riemann hypothesis. Hilbert felt that any
method that cracked the Riemann hypothesis might, for example, also give
insight into the infinity (or not) of the twin primes, i.e., primes that are adja-
cent odd integers, such as 11 and 13, which is still an open question. To this
day, however, the hypothesis remains unbreached, and it is said that Hilbert,
when asked what would be the first thing he would say upon awaking after
sleeping for five hundred years, replied “I would ask, ‘Has somebody proved
the Riemann hypothesis?’” It is, in fact, the greatest unsolved problem in
mathematics today.

One last story about this problem is particularly amusing. Once, after visit-
ing a mathematician friend in Denmark, Hardy found he would have to take
his usual trip home by boat over a particularly rough North Sea. Hoping to
divert catastrophe, Hardy quickly, before boarding, wrote and mailed a post-
card to his friend declaring, “I have a proof for the Riemann hypothesis!” He
was confident, Hardy said later, after reaching England safely, that God would
not let him die with the false glory of being remembered for doing what he
really had not achieved. Hardy, it should be noted, was a devout atheist in all
other aspects of his life.

6.5 Euler’s Infinite Product for the Sine

There is one more thing we can do here with the power series expansion of the
sine. Instead of expanding sin(Ïy)/Ïy into a product, let us do sin(y)/y. Then,
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which is Euler’s famous product formula for sin(y) that appeared in his 1748
Introductio in Analysis Infinitorum. Now, let y � �/2. Then,
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which is Wallis’ product formula for �, mentioned in chapters 2 and 3.
If you take the logarithm of Euler’s product formula, which of course trans-

forms the product into a sum, and then differentiate, it is only a line or two of
algebra to derive the famous series
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Differentiating again, another famous series immediately follows:
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These and similar series, all of which come from the power series expansion
of the sine, were known to Euler as early as 1740. Euler’s nifty little trick for
expanding sin(y) as an infinite product can be repeated to show that
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As a hint for how to do this, notice that
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has its roots at odd integer multiples of !sp.

6.6 Bernoulli’s Circle

Long before 1748, long before Euler wrote e6ix 5 cos(x) 6 isin(x), the spe-
cific calculation of ii or its equivalent had been accomplished with the use of
other, specialized, astonishingly clever calculations.3 One such calculation
was alluded to by Euler himself, in a letter (dated December 10, 1728) that he
wrote to John Bernoulli. In that letter Euler cited a result due to Bernoulli
himself. In modern terms what Bernoulli had done was to consider the circle
of unit radius centered on the origin, i.e., the equation x2 1 y2 5 1, and then he
wrote the integral for the area of the first quadrant of the circle. This is, today,
a standard problem in freshman calculus, and if we denote the area by A
(which is, of course, p/4) we have

A y dx x dx= = −∫ ∫ .
0

1
2

0

1

1

Now, change variables to u 5 ix. Then, x 5 2iu and so dx 5 2i du, which
leads to

A iu idu i u du
i i

= − − − = − +∫ ∫1 12

0

2

0

( ) ( )  .

From integral tables we can write
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Thus, iln(i) � ����, from which we immediately have, as before, ii � e��/2,
although this last step was not taken by either Bernoulli or Euler at that time.

6.7 The Count Computes ii

But even this near calculation of ii was not the first. In 1719 the Italian Giulio
Carlo dei Toschi Fagnano (1682–1766) carried out a circle calculation super-
ficially resembling Bernoulli’s, only Fagnano worked with the circumference
rather than with the area. Born into a noble family that included a pope, Fag-
nano was made a count in 1721 by Louis XV, and Pope Benedict XIV ele-
vated him to marquis in 1745. A member of both the Royal Society of London
and the Berlin Academy of Sciences, he enjoyed an excellent reputation
throughout Europe as a creative mathematician. The following calculation
helped make that reputation.

What Fagnano did was to begin with the unit circle and to observe that the
arc length L, subtended by a central angle of �, is simply �. That is, with t as a
dummy variable of integration, he wrote

L dt= = ∫θ
θ

.
0

Then, manipulating the integrand (which could hardly be more elementary as
it stands) with simple algebra, we can make it look far more complicated. This
certainly seems a silly thing to do, yes, but be patient—there is method to the
apparent madness. Thus,
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Next, change variables to x � tan(t), which says dx � dt/cos2(t), and so

L
dx

x
=

+∫ 1 2
0

.
tan( )θ
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Since L equals one-fourth of the circle’s circumference when  5 p/2, then
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=
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∫
dx

x
.

This result is considered elementary today as the indefinite integral is com-
monly shown in freshman calculus to be tan21(x), and of course tan21(x)u0` 5
p/2. The weird manipulations I just went through are a way to arrive at the
definite integral without having to know the indefinite answer. But that was
not the motivation for Fagnano.

The reason Fagnano got the integral for L into this form is that he could
now use a clever trick due to John Bernoulli. In 1702, Bernoulli had shown
that the integrand in the integral for L can be factored into imaginary compo-
nents and then split into what is today called a partial fraction expansion. That
is,
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Now, the two resulting integrals on the right are easy to do, as they are the
well-known logarithmic integrals. That is,
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ln( ) ln( ) ln .

Bernoulli was utterly fascinated by this approach, as it showed the intimate
connection between the arctangent and the logarithmic functions. He gave it
the special name of logarithme imaginaire. It was in that same year of 1702
that Leibniz said of such factoring of polynomials into imaginary components
that they are “an elegant and wonderful resource of divine intellect, an unnatu-
ral birth in the realm of thought, almost an amphibium between being and
non-being.” Bernoulli and Count Fagnano would certainly have agreed with
that.

Now, continuing on with the Count’s calculation, if we assume we can
ignore the i in x 6 i as x becomes arbitrarily large, then we have
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ln [ln( ) ln( )] ln ln( )

[ ln( ) ln( )] ln( )

or, once again, ii 5 e2p/2. Once again, like Bernoulli, the Count did not take
this last step, but rather concluded his analysis with the amazing expression
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But it is easy to show this to be equivalent to ii 5 e2p/2.
If you are perhaps wondering why I’ve written out all of the tedious, inter-

mediate steps in the evaluation of the imaginary logarithm, it is because there
is conceivably an alternative way of doing so which leads to a different an-
swer! That is, why not write
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and so ii 5 ep/2? This goes wrong at the step where 21 is replaced with i2,
because that step is ambiguous; we could, just as reasonably, replace 21 with
(2i)2. That alternative replacement would also lead to the correct result. The
way I evaluate the Count’s expression, however, is unambiguous at every
step, and that’s the only way to be sure the final result is correct.

In 1712 Bernoulli used his partial fraction idea to calculate tan(n ) in terms
of powers of tan( ), as follows. Define x and y as x 5 tan( ) and y 5 tan(n ).
Then,
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Differentiating the last statement with respect to x,
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Now, using the trick of factoring into imaginary components,
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and integrating indefinitely (i.e., no specific limits) the partial fraction expan-
sion of each side, we have
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Writing K as the so-called arbitrary constant of integration (this is abso-
lutely crucial to the rest of the analysis, as you’ll soon see),
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As I stated earlier, it is vital to manipulate such expressions, always, in an
unambiguous way to solve for K correctly. For example, never replace �i/i
with �1 followed by using i2 for the �1. If you follow this advice you’ll find
that K � ln�(�1)n�1�. That is, K is not “arbitrary” at all. Continuing, we
have
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So, since (�1)n�1 � 1 when n is odd, and (�1)n�1 � �1 when n is even,
we have
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 even (2,  4,  6,  . . . ).

Solving for y gives us what we want:
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These expressions can be expanded using the binomial theorem to remove
all the i’s, but I’ll leave that as an exercise for you. For any given “small”
value of n, the expressions are easy to evaluate directly. For example, for n �

4 and n � 5, respectively, these formulas give

�
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expressions that can be found in any comprehensive mathematics handbook.
Care with the constant of integration K is, as I have emphasized, of central

importance in this analysis. Even Bernoulli himself could fall into this trap.
For example, in a correspondence during 1712–13 with Leibniz, Bernoulli
claimed that since dx/x 5 2dx/2x 5 d(2x)/(2x), then integration gives
log(x) 5 log(2x). Thus, since log(1) 5 0 then it follows that log(21) 5 0.
And since log(21) 5 logh(Ï21)2j 5 2 log(Ï21), then log(Ï21) 5 0, too.
Bernoulli’s error here is, of course, as you must now suspect, that he has
forgotten the constant of integration. Leibniz felt Bernoulli was wrong, but for
the wrong reason. He argued that log(21) could not be zero because if it were
then log(Ï21) would be half of that, which is right, but certainly (said Leib-
niz) log(Ï21) does not have any value—he called log(Ï21) “imaginary,”
which is right in today’s terminology, but Leibniz actually meant “nonexist-
ent” by that word.

6.8 Roger Cotes and a Lost Opportunity

Of all of Newton’s English contemporaries, one of the least well known to
modern engineers and scientists is Roger Cotes (1682–1716), whose death
from a violent fever one month before his thirty-fourth birthday cut short what
was truly a promising life. You’ll recall we encountered him, or at least one of
his theorems, back in chapter 4. A professor at Cambridge by age twenty-six,
he was also editor of the second edition of Newton’s masterpiece Principia, a
work that revolutionized physics. It was reported that, after his death, Newton
himself said of Cotes “If he had lived we might have known something.”

Actually, Newton was wrong. Before he died Cotes had already published,
in 1714, a result that told the world something of great significance, and which
would have earned him immortal fame—if only he had written a bit more
clearly. This result, also discovered by another of Newton’s friends, Abraham
De Moivre, who, it seems, knew the result years before, and then later by
Euler, is nothing less than what I called Euler’s identity at the start of this
chapter. With just a little more attention by Cotes to his prose, however, it
could easily be known today as Cotes’ identity, and he would be a celebrated
saint to all electrical engineers, physicists, and mathematicians. As it is, most
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of them have heard of him perhaps only once or twice, and then have promptly
forgotten just why his name came up in the first place.

As were nearly all mathematicians of his day, Cotes was a geometer by
nature and his derivations are shot through with drawings of lines, circles, and
other more complicated curves, and much talk of geometric construction.
What I’ll show you here, however, is a modern, analytical presentation of how
I have reconstructed what Cotes did. Imagine, then, an ellipse given by the
usual formula

x

a

y

b

2

2

2

2 1+ =

where a and b are the lengths of the semi-axes. If you take just that part of the
ellipse in the first quadrant and revolve it around the y-axis, then you will
generate the surface of the top half of an ellipsoid. What Cotes did was to
derive a formula for the surface area of this “surface of revolution.” Indeed, he
derived two such formulas. From this rather ordinary beginning comes a sin-
gularly astonishing result.

The surface area generated is, with reference to the notation of figure 6.1,

A x ds ds dx dy= = +∫ 2 2 2π  ,  ( ) ( ) ,

Figure 6.1. Cotes’ ellipse.



C H A P T E R  S I X

164

the y-axis. Letting x � a cos(�) and y � b sin(�), we have dx � �a sin(�) �

and dy � b cos(�) �, and so ds � �a2sin2(�) � b2cos2(�) �. Thus,

a a a b d= +∫ 2 2 2 2 2
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Notice, carefully, that up to this point nothing has been said about the rela-
tive magnitudes of a and b. I drew figure 6.1 with a � b, but I could just as
well have drawn it with a 
 b. There are, in fact, two choices open to us here.
So, if we wish to express A in terms of real integrals, here is what we must
write:
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From integral tables you can verify that
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Using the first of these formulas on the a � b case [with c2 � b2/(a2 � b2)
and applying a little algebra, it is routine to show that
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And using the second of the integration formulas on the a 
 b case [now with
2 2 2 2c � b /(b � a )], we arrive at

d
dd

where ds is the differential of arc length along the ellipse being revolved about

Now, let u � sin(�) and so du � cos(�) �. Then,d
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It is important to understand why I have written two expressions for A—it is
purely for the reason of having only real quantities in each equation. But that
is simply an arbitrary motivation, as either expression is correct for both a . b
and a , b. If one does get imaginaries at one point in evaluating one of the
equations for A, then there will be another imaginary somewhere else that will
“eliminate” the first one. A, a physical area, must be real.

Now, continuing on, let’s define the quantity f such that

sin( ) .φ = − = −b a

b

i a b

b

2 2 2 2

In either case, cos(f) 5 a/b. With this we can now write our two expressions
for A as
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Comparing these two expressions, which represent the same physical quan-
tity, it is immediately obvious that 2if 5 ln [cos(f) 2 i sin(f)], or

e2if 5 cos(f) 2 i sin(f),

or, equivalently,

eif 5 cos(f) 1 i sin(f).

Thus could Cotes have discovered Euler’s identity.
But Cotes did not take this last step and his 2if 5 ln [cos(f) 2 i sin(f)]

simply appears embedded, in almost unbelievably obscure language, in the
only paper he wrote for publication in his entire life (“Logometria,” which
appeared in the March 1714 issue of the Philosophical Transactions of the
Royal Society).4 This paper is notable, too, for Cotes’ calculation of both e
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and 1/e (each correct to twelve decimal places) using power series expan-
sions. This was in 1714, remember, decades before Euler calculated e to
twenty-three places in 1748. Cotes was clearly an enormously gifted intellect,
but still, after reading Cotes I think you’ll agree that to say he was “obscure” is
generous.

Even when “Logometria” was combined with other of Cotes’ work and
published posthumously as the book Harmonia Mensurarum (1722), its bril-
liant contents apparently went unnoticed, or at least the ellipsoidal calculation
certainly did. After a final comment about multiplying a quantity by Ï21,
which certainly must have puzzled some readers in 1714, Cotes breaks off his
derivation with the odd words “but I leave this to be examined in more detail
by others who think it worthwhile.” For nearly two centuries after, nobody
thought it was. Indeed, it went unnoticed for 185 years, until a Russian mathe-
matician brought it to the world’s attention in an 1899 book on the history of
functions. The reasons for such a monumental oversight are not completely
clear, but Cotes was well known for giving the answers to problems while
providing almost no explanation for his readers about where they came from.
His readers at the time probably simply didn’t understand what Cotes meant.
Let this be a lesson in the value of clear exposition!

6.9 Many-Valued Functions

At this point I should tell you that while it is now clear that Euler was not the
first to consider ii, it was Euler who first observed that ii is real and has an
infinity of values. That is, e2p/2 is just one possible value. This is because of
the geometric fact that, starting with any angle, adding or subtracting any
multiple of 2p radians to it simply swings you through an integer number of
complete rotations about the origin and you end up back where you started.
We saw the same sort of thing back in box 3.2. Thus, with n any integer
(positive, negative, or zero),

i e e ei
i n

i
n n

=
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 − +





1

2
2

1

2
2

1

2
2π π π π π

.

It is customary to call the n 5 0 case the principal value of ii, but it isn’t the
only value. For n 5 21, 1, and 2, for example, we get, respectively, 111.3178,
3.882  1024, and 7.2495 x 1027.

Even more astonishing, perhaps, is that 1p—a real number to a real
power—has an infinity of distinct complex values, i.e.,



W I Z A R D  M A T H E M A T I C S

167

1� � cos(2�2n) � i sin(2�2n), n � 0, �1, �2, . . . .

Only for n � 0, the principal value, is 1� real. This surprising result is due to
� being irrational, a result (1761) due to the German mathematician Johann

2

never be an integer—if it could be then � would be rational. Since, except for
n � 0, 2�n can never be an integer, then sin(2�2n) can never vanish, i.e., 1�

will always have a nonzero imaginary part (except for n � 0, of course).
Further, using the same general argument, it is easy to show that there are no
distinct integer values for n that result in either the real or imaginary parts of
1� repeating. Again, if there were, � would be rational. Finally, since Euler
showed (1737) that e is irrational, then 1e has an infinity of distinct complex
values, too, as does 1�n where n is any positive, nonsquare integer greater

tant to understand that the complex nature of 1irrational is a theoretical result, a
result that no actual computer made of a finite amount of matter could ever
exhibit. In any physically constructable machine, using a finite number of
digits to represent numbers, all numbers are necessarily rational.

In the same way as with 1irrational, it is now easy to see that the logarithm is
a multivalued function, too. Thus, write the arbitrary complex number a � ib
in polar form as

a ib a b
b

a
+ = + ∠ ⎛

⎝
⎞
⎠

−2 2 1  tan .

We have, with n any integer,

a � ib � �a2 � b2 ei�tan�1(b/a)�2�n�.

Thus,

ln( ) ln( ) tan ,  ,  ,  ,  a ib a b i
b

a
n n+ = + + ⎛

⎝
⎞
⎠ +⎧

⎨
⎩

⎫
⎬
⎭

= ± ±−1

2
2 0 1 22 2 1 π . . . .

Also, as before, the n � 0 case gives the so-called principal value of the log
function. So, for example, the principal value of ln(1 � i) � ��ln(2) � i�/4 �
0.346573 � i0.785398.

6.10 The Hyperbolic Functions

With the discovery by Euler of the exponential expressions for the sine and
cosine trigonometric functions, sense could then be made of complex angles,

Lambert (1728–77). This is because 2� n � �(2�n), and for n � 0 2�n can

than one (recall Theaetetus’ irrationality result from section 2.1). It is impor-
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even though we can not actually draw, or even visualize, such angles. That is,
if we simply plunge right into the symbols, we have

cos( )

{cos( ) sin( )} {cos( ) sin( )}

cos( ) sin( )

cos( ) cosh( ) sin( )sinh( ),

( ) ( )

x iy
e e e e e e

e x i x e x i x

x
e e

i x
e e

x y i x y

i x iy i x iy ix y ix y

y y

y y y y

+ = + = +

= + + −

= +







− −







= −

+ − + − −

−

− −

2 2

2

2 2

where the hyperbolic cosine and hyperbolic sine are defined to be, respec-
tively,

cosh( ) ,

sinh( ) .

y e e

y e e

y y

y y

= +{ }
= −{ }

−

−

1

2
1

2

In the same way, you can easily verify that

sin(x 1 iy) 5 sin(x)cosh(y) 1 i cos(x)sinh(y).

Notice that if x 5 0 then cos(iy) 5 cosh(y) and sin(iy) 5 isinh(y), i.e., the
cosine of an imaginary angle is real, while the sine of an imaginary angle is
also imaginary. Finally, in analogy to the ordinary trigonometric identity of
tan( ) 5 sin( )/cos( ), we can define the hyperbolic tangent as

tanh( )
sinh( )

cosh( )
.x iy

x iy

x iy
+ = +

+

The hyperbolic functions are so useful in science and engineering that they
have been tabulated in mathematical handbooks, and are available as special
key functions on any scientific electronic pocket calculator costing more than
fifteen dollars. They were introduced into general use by the Italian mathe-
matician Vincenzo Riccati (1707–75), in his two-volume work Opusculorum
ad Res Physicas et Mathematicas Pentinentium (1757–62). The term “hyper-
bolic” comes from the fact that if we define the Cartesian coordinates of a
point to be x 5 cosh(t) and y 5 sinh(t), where t is a so-called parametric
variable (generally, 2` , t , `), then elimination of t leads to the equation
x2 2 y2 5 1, the equation of an hyperbola. The “sine” and “cosine” come both
from the suggestive similarity of the hyperbolic functions’ exponential defini-
tions to those of the sine and cosine of the circular trigonometric functions,
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and from the superficial similarity of the circle’s equation, x2 1 y2 5 1, to that
of the hyperbola.

One of the virtues of the hyperbolic functions is that they allow us to re-
move the usual restrictions of usin( )u # 1 and ucos( )u # 1, restrictions you
may recall made back in Section 1.6 when discussing Viète’s trigonometric
solution for cubic equations. These restrictions hold only if  is real—if  is
allowed to be complex (whatever that might mean), well then, things get inter-
esting! As an example, let us calculate the angle that has a cosine of 2, i.e., the
complex value of  such that cos( ) 5 2. Looking back at the expression for
cos(x 1 iy), we can set its real part equal to 2 and the imaginary part to zero,
i.e.,

sin(x)sinh(y) 5 0,
cos(x)cosh(y) 5 2.

These two conditions are satisfied by picking x 5 2pn (with n any integer)
and cosh(y) 5 2. This leads immediately to the equation

e2y 2 4ey 1 1 5 0,

which is a quadratic in ey. Thus, y 5 ln(2 6 Ï3). The answer to our original
question, then, is

 5 cos21(2) 5 2pn 1 i ln(2 6 Ï3).

A natural feeling at this point is that we are perhaps playing some kind of
symbol-pushing game here, simply writing down equations without regard for
whether or not they make sense. One way to demonstrate the usefulness of
hyperbolic functions is to actually calculate something we can verify by other
means. So, to that end, let me illustrate what I am talking about by first show-
ing you a related calculation: suppose you are asked to calculate the value of

S
nn

= 





−

=

∞

∑ tan .1
2

1

2

This particular problem has a long history, dating from its first appearance in
the scholarly literature in 1878. By the early 1900s the Indian genius Srinivasa
Ramanujan (1887–1920) took enough interest in it to work out the value of S.
We’ve even seen something similar to it in chapter 2, in connection with
Theodorus’ spiral of triangles. Today we can write a simple computer pro-
gram to evaluate S in a flash (the computer answer is 2.356), but is there an
analytical solution? There is indeed.

Define the two angles a and b to be such that tan(a) 5 n 1 1 and tan(b) 5
n 2 1. Then, using the trigonometric identity for tan(a 2 b), we have
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tan( )
tan( ) tan( )

tan( ) tan( )

( ) ( )

( )( )
.α β α β

α β
− = −

+
= + − −

+ + −
=

1

1 1

1 1 1

2
2

n n

n n n

Thus,

α β− = + − − = 





− − −tan ( ) tan ( ) tan1 1 1
21 1

2
n n

n

and so

S n n
n

= + − −− −

=

∞

∑{tan ( ) tan ( )}.1 1

1

1 1

Writing this out term by term, you can easily verify that the Nth partial sum is

SN 5 tan21(N 1 1) 1 tan21(N) 2 tan21(1) 2 tan21(0).

So

S S
N

N= = + − = =
→∞

lim .
1

2

1

2

1

4

3

4
2 35619π π π π  . . . ,

which agrees with the computer answer. The fact that we are able to calculate
S using the tangent and inverse tangent functions and get a numerical result
that agrees with direct computer computation certainly enhances one’s “feel-
ings of comfort” about those particular trigonometric functions. Wouldn’t it
be nice to be able to do something similar with the hyperbolics?

Suppose, then, that a seemingly slight change is made in the problem. Now
you are to calculate

T
nn

= 





−

=

∞

∑ tan .1

1
2

1

Again, this is duck soup for a computer, and simply changing the program
code from 2/n2 to 1/n2 leads to the computed answer of T 5 1.4245. But now
the little algebraic trick I used to express tan21(2/n2) in terms of tan21(n 1 1)
and tan21(n 2 1) doesn’t work. What to do?

Visualizing a right triangle with a base of 1 and a height of 1/n2 allows us to
write tan21(1/n2) as the polar angle of the complex number 1 1 i1/n2. Thus,

T
n

i
nn n

= 



 = ∠ +





−

=

∞

=

∞

∑ ∑tan   .1

1
2 2

1

1
1

1

While it may not be instantly obvious why the following will be useful, it
certainly is true that, as you can quickly verify,
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1
1

1
1 2

2

2

2 2+ = + +
i

n

i

n

{ ( ) / }
.

π
π

Now, since the angle of a product of complex numbers is the sum of the
individual angles of each complex number factor, then

T i
n

i

nn n

= ∠ +



 = ∠ + +









=

∞

=

∞

∑ ∏    
{ ( )/ }

.1
1

1
1 2

2
1

2

2 2
1

π
π

This last expression may look familiar to you—it is of the same form as
Euler’s product for sin(y) if we write

y2 5 2hp(1 1 i)/Ï2j2.

Thus,

T
y

y

i i

i i
= ∠ = ∠ +

+
 
sin( )

 
sin[ { ( ) / }]

{ ( ) / }
.

π
π

1 2

1 2

The numerator of the last expression is the sine of a complex argument, and so
we expect hyperbolics to appear. In fact, since sin(x 1 iy) 5 sin(x) cosh(y) 1
i cos(x) sinh(y), then

T

i

i

i

i
= ∠

− +





− +
= ∠

−











+ 



















− +

sin sin cosh cos sinh

.

π π

π π

π π π π

π π
2 2

2 2

2 2 2 2

2 2

The angle of the ratio of two complex numbers is, of course, the difference
between the angles of the numerator and the denominator. The denominator
angle is clearly #fp since the denominator is a complex number in the second
quadrant. And a careful evaluation of the numerator shows it to be a complex
number in the third quadrant. That is,

T i= ∠ − − −

= + 







−

= + =

−

{ . . }

tan
.

.

. .

3 711536874 2 759617006
3

4
2 759617006

3 711536874

3

4

1

4
0 639343615 1 424741778

1

π

π π

π  . . .  . . . .

This calculated value of T is very close to the program-computed value of T,
and we got it with hyperbolics and the sine of a complex angle.
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Finally, we can write the hyperbolics as infinite products by substituting iy
for y, e.g., from section 6.5 we have

sin( ) sinh( )iy i y iy
y

nn

= = +




=

∞

∏ 1
2

2 2
1 π

or

sinh( ) .y y
y

nn

= +




=

∞

∏ 1
2

2 2
1 π

To test this on a programmable calculator, I compared sinh(2) 5 3.62686 with
the result of using the first 10, and then the first 1,000 factors, of the product:
the results were, respectively, 3.48972 and 3.62537. The convergence is clear,
but it is slow.

6.11 Calculating p from Ï21

Amazingly, the quite formal and “mysterious formula” of p 5 (2/i) ln(i), as
Benjamin Peirce called it, can be used to calculate the numerical value of p.
That might seem like getting something out of thin air, but this astonishing
fact was pointed out long ago by the German mathematician and educator
Karl Heinrich Schellbach (1809–90) in 1832. Schellbach wrote

πi
i

i

i
i i

2

1

1
1 1= = +

−




 = + − −ln( ) ln ln( ) ln( )

and then expanded the two logarithms into their power series. That is, even
though i is not real he simply substituted z 5 i into Mercator’s formula from
section 6.3

ln( )1
1

2

1

3

1

4
2 3 4+ = − + − +z z z z z  . . . ,

which gives

ln( )1
1

2

1

3

1

4

1

5

1

6
+ = + − − + + −i i i i  . . . .

Similarly,

ln( )1
1

2

1

3

1

4

1

5

1

6
− = − + + − − + +i i i i  . . . .
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Thus,

πi
i i i

2
2

2

3

2

5
= − + −  . . .

or

π
4

1
1

3

1

5

1

7

1

9

1

11
= − + − + − +  . . . 

a result discovered by an entirely different method in 1674 by Leibniz, after
whom the series is usually named, although in fact it was known even
earlier—the Scottish mathematician James Gregory (1638–75), for example,
discovered it for himself in 1671.

The Leibniz-Gregory series is, while beautifully elegant in appearance, ut-
terly worthless for numerical calculations since it converges very slowly.
Using the first fifty-three terms, for example, is not sufficient to give even just
two correct, stable decimal digits. When running a program that continually
displays the partial sums on a monitor screen while summing the terms of a
convergent series, you will of course see all the digits flicker wildly at first.
But, gradually, the digits will settle down from left to right and stop changing
no matter how many more terms of the series are subsequently included.
When a digit stops changing, it is stable. Don’t confuse the error in the value
of a partial sum with the number of correct digits—the two are quite different
things. A result in the theory of convergent series, such as the Leibniz-
Gregory series, says that a partial sum is correct within an error less than the
first term neglected. That is, if we keep the first five terms of the Leibniz-
Gregory series then the partial sum is 0.8349206, and that is within aQa—which
is less than 0.1—of the true value of p/4 5 0.7853982. . . . But notice that
not a single digit of the partial sum, not even the first, is correct.

Now, what Schellbach went on to show was how his method gives other
series for p that converge much faster than does the Leibniz-Gregory series.
For example, he wrote

πi
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i i
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ln

and then, as before, expanded the logarithms. This gives
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π
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⎞
⎠ +  . . . ,

which clearly converges faster than does the Leibniz-Gregory series. Indeed,
notice that this new series is the Leibniz-Gregory series, but with the terms
multiplied by factors less than one which are, themselves, rapidly approaching
zero. If we keep the first five terms of this series the partial sum is 0.7854353
and we have three correct, stable digits. If you keep just four more terms
(0.7853983) then you’ll have six correct, stable digits.

There is no need to stop with this series, however. One can continue on,
indefinitely, using even more complicated expressions for the i in the ln(i) in
the original “mysterious” formula. Schellbach suggested, for example, the two
expressions

π = + − +
− − −

⎧
⎨
⎩

⎫
⎬
⎭

= + − + − +
− − − − −

⎧
⎨
⎩

⎫
⎬
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2 5 239

5 239
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i i i

i i i
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( ) ( )

( ) ( )
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( ) ( ) ( )

( ) ( ) ( )
.

If the first expression is expanded in the way I’ve done earlier, then you can
show that

π
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. . . . . . ,

a result discovered in 1706, using entirely different means, by the London
astronomer John Machin (1680–1752), who used it to calculate � to one hun-
dred decimal places. This result is actually only a slightly disguised form of a
result from section 3.1, where I asked you to use Wessel’s “add the angles”
rule in multiplying complex numbers, to confirm the formula

π
4

4
1

5

1

239
1 1= ⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠

− −tan tan .

The Schellbach/Machin formula is simply this result with the inverse tangent
functions expanded as power series. Nearly 250 years after Machin, the
world’s first electronic computer (ENIAC, for Electronic Numerical Integrator
And Calculator) used the same formula to calculate � to over two thousand
decimal places. What a miracle this all is, with the ever-changing decimal
digits for � flowing endlessly from the square root of minus one.

6.12 Using the Complex to Do the Real

As dramatic illustrations of the utility of complex numbers before Wessel, let
me give you some more examples of the genius of Euler. Imagine it is 1743

8 4

8 4
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and you are a mathematician at the peak of your powers. You are confronted
by the following integrals, integrals never before encountered by mathemati-
cians:

I s ds I s ds1
2

2
0

2

0

= =
∞ ∞

∫ ∫sin( )     cos( ) .and

How would you proceed? I don’t think it’s at all obvious just what to do.
While primarily a mathematician, Euler was often stimulated in his mathe-

matics by questions raised during the study of physical problems. In this case,
the above two integrals occurred in an analysis of the physics of a coiled
spring.5 Much later, in 1815, the French mathematicians Cauchy and Poisson
developed equivalent integrals in certain hydrodynamical applications.6 Three
years later, in 1818, the French scientist Augustin Jean Fresnel (1788–1827)
also ran up against I1 and I2 in his study of the diffraction of light, and today
they are usually called the Fresnel integrals. One does still see them also
called the Euler integrals, however, and it was Euler who first evaluated them.
But it wasn’t easy to do these evaluations, even for a man with Euler’s power-
ful intellect. As he wrote of them in 1743, “We must admit that analysis will
make no small gain should anyone find a method whereby, approximately at
least, the value of [these integrals] would be determined. . . . This problem
does not seem to be unworthy of the best strength of geometers.”

The best that even Euler could do in 1743, however, was to find convergent
infinite series for I1 and I2 that allowed him to make numerical calculations;
nearly forty years later he solved the problem exactly using complex quan-
tities. What I will show you next is essentially what Euler reported to the St.
Petersburg Academy on April 30, 1781, but which was published only years
after his death. The key idea to evaluating I1 and I2 is to start with yet another
of Euler’s creations, with what today is called the gamma function.7 It is
defined as

Γ( ) ,  .n e x dx nx n= >− −
∞

∫ 1

0

0

That is, n is restricted to be any positive number. It is clear, for n 5 1, by
direct integration, that

Γ( ) .1 1
0

= =−
∞

∫ e dxx

It is also not hard to show, using integration by parts, the so-called functional
formula

G(n 1 1) 5 nG(n).
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So, for n a positive integer, we have a connection between G(n) and the facto-
rial function:

Γ Γ
Γ Γ
Γ Γ

Γ

( ) ( ) !

( ) ( ) ! !

( ) ( ) ! !

( ) ( ) ( )! ( )!

2 1 1 1 1 1

3 2 2 2 1 2

4 3 3 3 2 3

1 2 1

= ⋅ = ⋅ =
= ⋅ = ⋅ =
= ⋅ = ⋅ =

⋅
⋅
⋅

= − ⋅ − = −n n n n

Setting n 5 1, the last statement says G(1) 5 0!, but since we have already
shown G(1) 5 1 then we have 0! 5 1, as claimed back in section 3.2.

We can extend the result G(n) 5 (n 2 1)! to all real n, including negative n,
by using the recursion relation G(n) 5 (1/n) G(n 1 1) to work backwards into
the negative values of n. For example,

Γ Γ−



 =

−





 = −1

2

1
1

2

1

2
2 π ,

because, as I’ll show you next, G(!s) 5 Ïp. It is curious to note that a
closely related result was anticipated by John Wallis long before Euler. The
result (!s)! 5 !sÏp, which follows from G(Dw ) 5 ( !s)! 5 !sG(!s) 5 !sÏp, was
known to Wallis even though he, of course, knew nothing of the gamma
integral. Here’s how he knew this. After doing some specific evaluations of
the integral e1

0(x 2 x2)ndx for particular integer values of n, Wallis deter-
mined that the general value of this integral is (n!)2/(2n 1 1)! He also knew
the value for the fractional case of n 5 !s, i.e., e0

1(x 2 x2)1/2dx 5 p/8, be-
cause this integral physically represents the area enclosed by the top half of
the circle centered on the x-axis at x 5 !s with a diameter of one, and the
x-axis. Then, making the giant assumption that the general formula for inte-
ger n holds for fractional n as well, Wallis wrote h(!s)!j2/2! 5 p/8, from
which it follows that ( !s)! 5 !sÏp.

In Euler’s integral definition for G(n), of course, n does not have to be
restricted to integer values. Indeed, it was the question of how to interpolate
the factorial function (e.g., what is (5!s)!?) that motivated Euler to develop the
integral definition in the first place. The integral definition allows the calcula-
tion of noninteger factorials. For example, we can write something as myste-
rious looking as (2!s)! and actually have it mean something, i.e., for n 5 !s we
have
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⎛
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⎝
⎞ −∞

x

x

Now, this might look as though we have replaced one mystery [what is
(���)!?] with another (what is the integral?), but this integral can be evaluated.
There is a pretty little trick to the calculation, and it is worth examining the
details because I’ll actually use the value of ⎡(��) in completing Euler’s evalua-
tion of the Fresnel integrals via complex numbers.

Begin by making the change of variable x � t2. Then dx � 2t dt and so

⎡ 1
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.

where

Of course, the only difference between the various integral expressions for I is
the trivial one of the particular symbol—t, u, or v—used for the dummy
variable of integration. Now, write

I e du e dv e du dvu v u v2
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This does look pretty horrible, but there’s a nifty trick that every mathe-
matician, engineer, and physicist should know that melts away all the apparent
difficulty. The double integral is, geometrically, the integration of a function
f (u,v) over the first quadrant of the u,v-plane, i.e., over 0 � u 
 �, 0 � v 
 �,
with dudv as the differential area in Cartesian coordinates. We will obviously
change nothing physically by a change in coordinates. If we change to polar
coordinates, in particular, then the mathematics simplifies tremendously. So,
let us write u � r cos(�) and v � r sin(�), with the corresponding differential
area now rdrd�. To cover the first quadrant we require 0 � r 
 � and 0 � � 


�/2. Since u2 � v2 � r2, then
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The interior r-integral is elementary, i.e.,
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and so

I d2
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That is, I 5 !sÏp and as G(!s) 5 2I then
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Looking back at the start of this calculation we see that another way of
writing this result is as

I e duu= =−
∞

∫
2
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1

2
 ,π

or as

e dxx−

−∞

∞

∫ =
2

 .π

This result was known to De Moivre since at least 1733, during the course of
his studies in the theory of probability. There is a marvelous story that once,
when giving a lecture to engineering students, Lord Kelvin used the word
“mathematician” and then stopped, looked at his class, and asked “Do you
know what a mathematician is?” He then wrote the above integral on the
blackboard and said “A mathematician is one to whom that is as obvious as
that twice two makes four is to you.” I think Kelvin was reaching if he really
said that, but still, if he didn’t he should have because it is a great story!

Up to this point the gamma function has been interpreted as purely real.
Euler’s great next leap was to extend it to complex values by changing vari-
ables. Thus, defining

u
x

p iq
=

+

where p and q are real, positive constants results in
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− +
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∞
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0
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There is just a little cheating here, I must tell you. That is, while the original
G(n) integration path is along the real x-axis, the integration path of the
transformed integral is along the u-line in the complex plane at angle a 5

2tan21(q/p) to the real axis. I’ll ignore this “subtle” concern here because
such formal symbolic manipulations do lead to correct results, but later,
when we get to Cauchy’s theory of contour integration in the complex
plane, I’ll be much more careful about just where our integration paths are
located. It was just this sort of devil-may-care looseness with complex
changes of variable in integrals by Euler that motivated Cauchy’s work, in
fact.

Now, after changing the dummy variable of integration from u back to x,
for no particular reason other than consistency of notation, we arrive at

x e e dx
n

p iq
n px iqx

n
−

∞
− −∫ =

+
1

0

Γ( )

( )
.

Euler then wrote p 1 iq in polar form, i.e., as

p 1 iq 5 r / a 5 rhcos(a) 1 i sin(a)j 5 reia,

where

r p q
q

p
= + =







−2 2 1,  tan .α

Thus,

x e e dx
n

r e

n

r
en px iqx

n in n
in−

∞
− − −∫ = =1

0
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Finally, using Euler’s identity to expand e2iqx and e2ina into real and imag-
inary parts, and equating the real and imaginary parts of both sides of the last
equation, we have

x e qx dx
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α

Euler was now within sight of his original goal of evaluating the integrals I1

and I2. To this end he set n 5 !s, p 5 0 and q 5 1. Since this gives a 5

tan21(1/0) 5 tan21(`) 5 p/2 and r 5 1, then
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Now, as I showed earlier in this section, ⎡(��) � �� and so
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But if you make the change of variable x � s2 in the original I1 and I2 inte-
grals, you should be able to quickly show that
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and so I1 � I2 � ����/2. What a genius Euler was—but he wasn’t through yet!
Sometime between 1776 and his death in 1783, Euler showed, using com-

plex numbers, that
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∫ = π

This is an important integral, appearing over and over again all through
physics and mathematics and in the theory of the electronic transmission of
information. This wonderful calculation was published only years after Eu-
ler’s death. What I’ll actually show you here is a way to derive a somewhat
more general result, also using complex numbers, with Euler’s result as a
special case.

Consider the complex integral �0
�e(�p�iq)xdx, with p � 0 to insure the inte-

gral exists. This is easily integrated to give the formal result (p � iq)/(p2 �

q2). If Euler’s identity is used to separate both sides of the result into their real
and imaginary parts, then
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Fixing our attention on the first of these two statements, let us next integrate
both sides with respect to q, i.e., let us treat q as a variable and p as a constant.
Thus, with a and b arbitrary limits,
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Next, reversing the order of integration in the double integral on the left, we
have
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To justify the reversal of the order of integration, it is necessary to demon-
strate that the integrand obeys certain conditions on continuity and conver-
gence, a result shown in any good book on calculus. For this book, which has
no pretensions to being a rigorous textbook, I’ll skip such a demonstration.
But be assured, the reversal is okay here. The single integral on the right-hand
side of the previous equation is also easy to integrate; simply make the change
of variable u 5 q/p [and so du 5 (1/p)dq] and write
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If we set b 5 0 in these two (equal) expressions we have
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Letting p → 0, we have
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Finally, assuming we can interchange the limiting and integration operations,
we arrive at
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a result called Dirichlet’s discontinuous integral (the discontinuity is at a 5 0),
after the German mathematician Gustav Peter Lejeune Dirichlet (1805–59),
who was Gauss’ successor to the mathematics professorship at Göttingen
upon Gauss’ death in 1855. When he had finished his calculation of this inte-
gral for the special case of a 5 1 Euler was justifiably proud, noting that “up
to the present [it] has defeated all known artifices of calculation.”

6.13 Euler’s Reflection Formula for G(n), and the
Functional Equation for (n)

In this section I will show you how the complex numbers can be used to
derive a result due to Euler, and another due to Riemann, that are among the
most famous identities in mathematics. Recall from the previous section that
the gamma integral is defined as

Γ( )  .n e x dxx n= −
∞

−∫
0

1

As I did in that section, make the change of variable x 5 t2 and so

Γ( ) ,( )n e t t dtt n= −
∞

−∫
2

0

2 1 2

from which it immediately follows by replacing n with 1 2 n that

Γ( ) .1 2
2

0

2− = −
∞

−∫n e t t dtt n

The product G(n)G(1 2 n) is particularly interesting because of the property
G(n) 5 (n 2 1)! That is,

nG(n)G(1 2 n) 5 (2n)! (n!),

and if we could evaluate the product G(n)G(1 2 n) then we would have an
expression from which we could calculate (2n)! from n!, where n $ 0.

So, let’s write
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where I have used different symbols, x and y, for the dummy variables of
integration to avoid subsequent confusion. Now, there is no doubt that this is
an expression that makes most people weak in the knees on first glance. But its
apparent difficulty melts away when attacked with the same ingenious trick I
used in the previous section to calculate G(!s).

So, as before, let us change to polar coordinates and write x 5 r cos( )
and y 5 r sin( ), with the corresponding differential area now rdrd . To
cover the first quadrant we require, as before, 0 # r , ` and 0 #  # p/2.
Since
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The r-integral is again elementary, i.e.,
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Now make a new change of variable, s 5 cot( ), which transforms the integral
into
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This is not a trivial integral but, in chapter 7, I’ll show you how to do
integrals like this one using De Moivre’s theorem from chapter 3, combined
with the nineteenth-century invention of the theory of integration in the com-
plex plane. In particular, you’ll see that
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and so for our problem here, with b 5 2, we have the surprising, unexpected,
indeed astonishing result that
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This beautiful identity, due to Euler (1771), is called the reflection formula for
the gamma function.

For n 5 !s we have G2(!s) 5 p, or G(!s) 5 Ïp, which was calculated directly
in the previous section during the analysis of the Fresnel integrals. From the
first part of this section we also have the elegant-appearing expression
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In 1859 Riemann showed that there is an equally elegant formulation for
the product G(s) (s), i.e., for the product of the gamma and the zeta functions.
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(It is traditional to write s for the complex variable in this analysis, rather than
z. This, on the surface, appears to be a trivial point—it’s just notation, after
all—but in fact there is a deeper issue involved, and I will elaborate on it
when we get to chapter 7.) Now, from the definition of the gamma function it
follows that, if you make the change of variable u 5 nx,
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Then, summing over both sides,
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If we assume that we can interchange the integration and summation opera-
tions on the far left (be bold!), then we have
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and, since the sum is just a geometric series, it is easy to do. The result is
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So, just as with the product G(n)G(1 2 n), for this new product we also arrive
at a rather “non–freshman calculus looking” integral. And, just as before, the
integral can be done by complex plane integration, and that is exactly how
Riemann actually did it. I’ll come back to this integral in section 7.8 but, not to
leave you unsatisfied here, the result that Riemann arrived at is the wonder-
fully mysterious-appearing functional equation for the zeta function, one of
the crown jewels of mathematics:

(s) 5 (1 2 s)G(1 2 s)2sps21 sin(!sps).

Here is a pretty application of the functional equation. Let s 5 22n, where
n is a non-negative integer. Then,

(22n) 5 2 (1 1 2n)G(1 1 2n)222np2(2n11)sin(np) 5 0

because all the factors on the right are finite positive numbers except for
sin(np) which is, of course, zero. Thus, all the even, negative integers are
zeros of the zeta function, as mentioned in section 6.4. We must exclude n 5
0, however, as for that case (1 1 2n) 5 (1) 5 S1 5 `, and it can be shown
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that this infinity is sufficient to cancel the zero of sin(0). Indeed, it can be
shown that (0) 5 2!s.

Remember—the gamma reflection formula and the zeta functional equation
both follow if you can do those two non–freshman calculus looking integrals,
and you will be able to do them once you see how complex integrals are done
in chapter 7.
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C H A P T E R S E V E N

The Nineteenth Century,

Cauchy, and the Beginning of

Complex Function Theory

7.1 Introduction

With the completion of the previous chapter we have really, I think, done
pretty much everything we can do with just the imaginary Ï21 itself, and its
extension to complex numbers. To continue on, the next logical step is to
consider functions of variables that are complex valued, i.e., functions f (z)
where z 5 x 1 iy. But then the question is, where do I stop? There is, today, an
absolutely enormous literature in complex function theory, much of it purely
mathematical, and just as much again of a practical, applications-oriented na-
ture. Physicists and engineers, I believe, probably use complex variables and
function theory more than do mathematicians. This book is not a textbook, but
to jump into all of what we could jump into would turn this book into a huge
textbook, perhaps one with a couple of thousand pages. You wouldn’t buy it,
and I certainly don’t believe I would live long enough to write it.

So what I am going to do is show you just the very beginnings of modern
complex function theory, complex integration, as initiated by the French ge-
nius Augustin-Louis Cauchy (1789–1857) in an 1814 memoir to the French
Académie des Sciences.1 I am going to do this for three reasons. First, as I’ve
already stated, we can’t do everything in a book like this one. Second, to begin
at the beginning is really what I should do in a book that has a strong historical
flavor. And third, I’m going to tell you about Cauchy’s initial work simply
because it is so beautiful.

When I first went off to Stanford to study electrical engineering, a story I
told in the preface, I naturally began to take all the usual engineering math
courses, such as differential and integral calculus, ordinary and partial differ-
ential equations, and even set theory. All of these courses were interesting to
me, and in each one I quickly came to appreciate the power I was gaining in
my ability to solve difficult problems. But it wasn’t until my first course in
complex function theory, in the autumn of 1960, that I experienced a totally
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new emotion—the pure pleasure of learning mathematics that was, in and of
itself, “pretty.”

Everything in that course snapped together crisply, cleanly, and with no
spaces between the pieces, just like a well-made if complex puzzle. Things fit
together in calculus, too, certainly, but there is a certain utilitarian feeling to
all of it—at least there is for me, which perhaps is a character flaw. In com-
plex function theory, however, the fundamental theorems are not only power-
ful in their generality but they are also surprising. For me, complex function
theory was a revelation bordering on a mystical experience—another charac-
ter flaw?

The part of complex function theory that fascinated me the most was its
very first historical application, integration in the complex plane, or what is
called contour integration. With Cauchy’s theory of complex integration one
could, almost without effort, calculate the values of a seemingly endless num-
ber of incredibly odd, strange, and downright wonderfully mysterious-looking
definite real integrals. I learned how to show, for example, that

cos( )
.

x

x
dx

e1 2+
=

−∞

∞

∫
π

Such calculations were to me, then, seemingly possible only if one had the
powers of a sorcerer. But I was wrong—the theory behind such calculations
was actually developed by a man no more sinister than a quirky, devout Chris-
tian supporter of the traditional line of French kings.

7.2 Augustin-Louis Cauchy

When the Reign of Terror swept Paris in 1793 Cauchy’s father, a high-ranking
government official, fled with his family to a countryside village where he
found other intellectuals who had also gotten out of the city until the heads
stopped falling and the blood stopped flowing. One of the neighbors who also
narrowly escaped the guillotine, for example, was Laplace, who was as great a
political survivor as he was a mathematical physicist. The temporary, hasty
move may even have been stimulating, as Cauchy evidently gave early indica-
tions of his genius. The great French mathematician, Lagrange, for example,
is said to have told Cauchy’s father that his son would one day be a scientific
star, but warned against letting the boy see an advanced mathematical book
before reaching seventeen!

His early training was as a civil engineer, and by 1810 he was involved with
the construction of a naval base from which Napoleon intended to launch



C O M P L E X  F U N C T I O N  T H E O R Y

189

attacks against England. For unknown reasons of health—which may in fact
have been due to the years of childhood malnutrition he suffered during his
family’s absence from Paris—Cauchy abandoned the physical rigors of the
military engineering life in 1811 and began his spectacularly productive ca-
reer as a mathematician. By the time he died he had written more than eight
hundred papers and seven books, an output second only to Euler’s.

The memoir of 1814 came just three years after he started his new career,
and it would have been the pride of any mathematician twice his age. It was
not seen that way at first, however, by the elders who reviewed it. They gener-
ally endorsed it—although Legendre, in particular, critized Cauchy’s evalua-
tion of an integral Legendre had just published in his new Exercises du Calcul
Intégral because their answers were different (Cauchy was correct)—but they
also failed to recognize that Cauchy was about to launch an entirely new
branch of mathematics, that of complex function theory. This failure was al-
most certainly due to Cauchy’s stated reasons for writing his memoir, which
were twofold and somewhat mundane. First, he was attempting to explain
why the value of an iterated integral might be different, depending on the
order in which the individual integrations are performed, a difference he
called the residue. And a second goal was to place on firmer ground the rather
carefree way earlier mathematicians had evaluated certain definite integrals
with tricks involving complex numbers, e.g., Euler’s evaluation of the Fresnel
integrals, discussed in chapter 6. The man who did all this was no one-
dimensional personality, but rather was a highly complex individual.

Although born only weeks after the storming of the Bastille and the birth of
the French Revolution, Cauchy was an almost fanatical supporter of the Bour-
bon dynasty all his life. When Lazare Carnot and Carnot’s former mathemat-
ics professor, Gaspard Monge, were expelled from the Académie des Sciences
in 1816 for political reasons, for example, Cauchy happily accepted a non-
elected appointment in Monge’s place. Monge had been an old crony of the
usurper Napoleon, and Carnot’s role, in particular, in voting for the execution
of Louis XVI twenty-three years before, no doubt made this decision easy for
Cauchy—it bothered him not at all to see a supporter of a false king, and a
regicide, in disgrace.

As a person Cauchy seems to have been somewhat lacking in common
sense, with a reputation for naive, childish, even boorish behavior. For exam-
ple, when the July Revolution of 1830 put the Orleans “Citizen-King” of the
bourgeoisie, Louis-Philippe, on the throne, an oath of allegiance was required
for Cauchy to retain his three academic chairs at as many different institutions.
Cauchy refused to so swear (he wasn’t against kings and their class in general,
just those who weren’t Bourbon kings) and went into self-imposed exile along
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with the deposed Charles X. Perhaps he feared another bloody revolution, but
it does seem odd that he left his family behind for four years. He finally
returned to France in 1838. And earlier, when the Norwegian mathematician
Niels Abel visited Cauchy in 1826, he wrote that he found the man a religious
“bigot” and worse. This is not to say Cauchy was a “terrible” person. It seems
improbable that a man who could write the following love poem to his even-
tual wife could really be all that bad:

I shall love you, my tender friend,
Until the end of my days;
And since there is another life
Your Louis will love you always.

But what does Cauchy’s personality matter today?—it is his mathematics
that is beautiful. Just hours before his death Cauchy had been talking with the
Archbishop of Paris about his (Cauchy’s) plans for charity work—yet another
curious twist to his unusual character. The Archbishop recalled that Cauchy’s
last words to him were “Men pass away but their deeds abide.” Cauchy’s
deeds will last as long as people study mathematics.

There is direct evidence from Gauss’ own private notes and letters (pre-
dating 1814) that he knew much, if not all and more, of what is in Cauchy’s
1814 memoir. But as was Gauss’ style, he sat on it all until he could get
everything “just right” and so the glory is rightfully all Cauchy’s. As the
nineteenth-century German mathematician Leopold Kronecker wrote long
after both Cauchy and Gauss were dead, there is “a big difference between
someone who publishes a mathematical proof and an indication of its com-
plete scope, and another who only incidentally communicates it privately to
a friend. Therefore the theorem [what is called the first integral theorem in
section 7.5] can rightly be designated as the Cauchy theorem.” But, of
course, Cauchy did not do everything, and there was an already established
foundation that he could build upon. For example, Cauchy’s paper opens
with the assumption that his readers understood, in essence, what is meant
today by saying the complex function f (z) is analytic in a region of the com-
plex plane.2 So let me start the last technical development of this book by
explaining what that is all about.

7.3 Analytic Functions and the Cauchy-Riemann Equations

To begin, I want to emphasize that x and y will be our most primitive vari-
ables, with both of them real. x defines the real axis, and y roams along the
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imaginary axis which is not just y, of course, but iy. The next step up in
sophistication is the complex variable z 5 x 1 iy. And finally, when I write of
a complex function I mean f (z), e.g., f (z) 5 f (x 1 iy) 5 z2, or f (z) 5 f (x 1 iy)
5 ez. The function f (z) has, of course, real and imaginary parts, which in turn
are functions of x and y. For example,

f (z) 5 z2 5 (x 1 iy)2 5 x2 2 y2 1 i 2xy

and

f (z) 5 ez 5 ex1iy 5 e xcos(y) 1 i e xsin(y).

In general, I’ll write f (z) 5 u(x,y) 1 iv(x,y) and so, in the case of f (z) 5 z2, we
have u(x,y) 5 x2 2 y2 and v(x,y) 5 2xy. Be very clear on this in your mind:
both u and v are real functions of the real variables x and y.

The start of complex function theory is found in the answer to the following
question: what is the derivative of f (z)? The formal answer is precisely what
you would expect, recalling how the derivative of a function of a single real
variable is defined in freshman calculus. So, formally, the answer is that if f (z)
has a derivative f 9(z) at z 5 zo, then

′ = = + −
= →

f z
df

dz

f z z f z

zz z z
( ) lim

( ) ( )
.0

0

0 0

0 ∆

∆
∆

The vanishing of Dz is not so straightforward as it is in the case of a single real
variable, however. In that simpler case, where we let Dx → 0 to calculate
f 9(x), Dx only has to vanish on the one-dimensional real axis because the
single real variable x exists only on the real axis. But since z exists anywhere
in the two-dimensional complex plane, then Dz has infinitely many more ways
open to it to vanish. So how does Dz → 0?

The answer is that we want to have the most condition-free definition pos-
sible for f 9(z), and so we will insist that it shouldn’t matter how Dz → 0. This
is a philosophical position, of course. Why do we want the most condition-free
definition? Well, in mathematics we are of course free to define anything any
way we please, but it is always best when the particular definitions we do use
turn out to be useful, i.e., allow us to solve difficult problems. It will turn out
that defining f 9(z) this way will do exactly that for us. Still, there is no such
thing as a free lunch, and by insisting on this freedom we will find that we
have imposed some restrictions elsewhere. To anticipate matters, let me tell
you that we will find that there are conditions on u(x,y) and v(x,y), the real and
imaginary parts of f (z), if f 9(z) is to exist at z 5 zo no matter how Dz → 0.
These conditions are given by the Cauchy-Riemann partial differential equa-
tions; the equations are
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∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u

x

v

y

u

y

v

x

,

,

evaluated at z 5 zo.
The Cauchy-Riemann or C-R equations are necessary and almost sufficient

conditions on u and v, where f 5 u 1 iv, for f to have a unique derivative at z
5 zo. Here’s how to show necessity. Write zo 5 xo 1 iyo and Dz 5 Dx 1 iDy.
Then, Dz → 0 is equivalent to requiring both Dx → 0 and Dy → 0. Thus,

′ = + + −
+→

→

f z
f x x y y f x y

x i yx
y

( ) lim
( , ) ( , )

.0
0

0 0 0 0

0
∆
∆

∆ ∆
∆ ∆

Now, out of all of the infinity of ways that both Dx and Dy can vanish, let us
consider just two. First, let us assume Dy 5 0 and so Dz 5 Dx, i.e., z ap-
proaches zo parallel to the real axis. Second, let us assume Dx 5 0 and so Dz 5
iDy, i.e., z approaches zo parallel to the imaginary axis. If f 9(zo) is to be
unique, independent of the details of just how Dz → 0, then these two particu-
lar results must certainly be equal.

In the first case we have

′ = + −

= + + + − +

= + − +

→

→

→

f z
f x x y f x y

x
u x x y iv x x y u x y iv x y

x
u x x y u x y i v

x

x

x

( ) lim
( , ) ( , )

lim
{ ( , ) ( , )} { ( , ) ( , )}
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{ ( , ) ( , )} { (

0
0

0 0 0 0

0

0 0 0 0 0 0 0 0

0

0 0 0 0

∆
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∆

∆
∆

∆ ∆
∆
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In the second case we have

′ = + −

= + + + − +

= + −

→

→
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f x y y f x y

i y

u x y y iv x y y u x y iv x y
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Equating the real and imaginary parts of these two expressions for f 9(zo) gives
the two C-R equations.

That analysis shows necessity, but to show sufficiency we would next have
to show that any other way that Dz might vanish, not just the two ways consid-
ered here, leads to the same f 9(zo). This isn’t a terribly hard thing to do, but for
that I’ll refer you to any good textbook on complex function theory. Here,
we’ll take it on faith that if the C-R equations are satisfied and if the partial
derivatives are continuous then the function f (z) is analytic.

Riemann, of zeta function fame, was the first to use the mathematical argu-
ment I’ve presented here, in his 1851 doctoral dissertation. It is now the stan-
dard textbook approach. In fact, however, the C-R equations had been discov-
ered from physical considerations long before either Cauchy or Riemann. In
1752 d’Alembert arrived at expressions equivalent to the C-R equations
through a study in hydrodynamics, specifically the determination of necessary
conditions for a spinning mass of fluid to be in equilibrium. Arguing that such
a fluid both is incompressible and has no internal currents led d’Alembert to
the equations. But that, of course, is physics and not the pure mathematics that
a mathematician wants.

If f (z) 5 u 1 iv satisfies the C-R equations, not only at z 5 zo but at all
points in a region (or domain or neighborhood) surrounding z 5 zo, then f (z)
is said to be analytic in that region. To pick perhaps the simplest nontrivial
f (z) as an example, suppose f (z) 5 z 5 x 1 iy. Thus, u 5 x and v 5 y, and so

∂
∂

= ∂
∂

=

∂
∂

= ∂
∂

=

u

x

v

y

u

y

v

x

1 1

0 0

,  ,

,  ,

and obviously the C-R equations are satisfied for all x and y, i.e., f (z) 5 z is
analytic in the domain of the entire finite complex plane; indeed, such a func-
tion is called an entire function. The caveat of “finite” is important, as uf (z)u
blows up as uzu → `. So f (z) 5 z certainly cannot be analytic at infinity. In fact,
there is a theorem that states the only complex functions that are entire over
the infinite plane are constants—all four partial derivatives then are identi-
cally zero.

Not all f (z) are analytic. To see this, suppose now, for a second example,
that f (z) 5 z̄ 5 x 2 iy. Then, u 5 x and v 5 2y, and so

∂
∂

= ∂
∂

= −u

x

v

y
1 1,  ,

and obviously one of the C-R equations is never satisfied, i.e., f (z)5 z̄ is
analytic in no region of the complex plane. It is astonishing, I think, that such
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an apparently minor change in f (z) makes such an enormous difference in the
analyticity of the function.

Let me now show you an implication of the C-R equations that hints at the
value of complex function theory in physics and engineering. If you differenti-
ate the C-R equations to form all possible second derivatives, then you have

∂
∂ ∂

= ∂
∂

∂
∂ ∂

= − ∂
∂

∂
∂

= ∂
∂ ∂

∂
∂

= − ∂
∂ ∂

2 2

2

2 2

2

2

2
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x y
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 .

The first and last expressions give
∂
∂

+ ∂
∂

=
2

2

2

2 0
v

x

v

y

and the middle two give

∂
∂

+ ∂
∂

=
2

2

2

2 0
u

x

u

y
.

Both of these equations are Laplace’s equation—after the French mathe-
matical physicist Pierre Simon de Laplace (1749–1827), who was Cauchy’s
neighbor during the Terror—which occurs in such diverse applications as
fluid dynamics, electrostatics, and optics. The fact that the real and the imagin-
ary parts of every analytic function each are solutions to Laplace’s equation
can be used to solve many important problems with physical origin. This was
first shown in Riemann’s seminal doctoral dissertation. The real and imagin-
ary parts, u and v, are called harmonic conjugates of each other.

Analytic functions are clearly a rather special subset of all possible complex
functions, but certain broad classes of functions do make the cut. They in-
clude:

1. Every polynomial of z is analytic.
2. Every sum and product of two analytic functions is analytic.
3. Every quotient of analytic functions is analytic except at those values of z

where the denominator is zero.
4. An analytic function of an analytic function is analytic.
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Thus, from (1) f (z) 5 z2 and f (z) 5 ez are analytic: the first case because it is a
polynomial and the second case because the exponential can be expanded in a
power series polynomial. From (2) f (z) 5 z2ez is analytic, and from (3) f (z) 5
ez/(z2 1 1) is analytic except at z 5 6i, which are called the singularities of
f (z) because, for those values of z, f (z) is infinite. Historically, an analytic
function was taken to be any function that can be expanded as a power series.

7.4 Cauchy’s First Result

Suppose we start with the function f (z) 5 e2z2. If you work out the real and
imaginary parts of this function you can show with little difficulty first that

u(x,y) 5 e2x2 ey2 cos(2xy),
v(x,y) 5 2e2x2 ey2 sin(2xy),

and then that these two functions satisfy the C-R equations for all finite x and
y. That is, f (z) is analytic everywhere in the finite complex plane and so is an
entire function. Now, what Cauchy did in his 1814 memoir was to calculate
the integral of this f (z) around the closed rectangular path shown in figure 7.1,

Figure 7.1. The rectangular contour from Cauchy’s 1814 memoir.
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an expression I’ll write as rCf (z)dz. The C denotes the rectangular contour
that is the path of integration. The circle through the integral sign means the
contour is closed. Such integrals are often called line or contour integrals.
“Contour” is usually reserved for paths that are closed, while “line” may or
may not mean that the start and end of the integration path are the same point.

The notation of a contour integral may look a little odd, but as you’ll soon
see the actual mechanics of calculating such expressions is not at all dif-
ficult. You should not be surprised that, when writing the integrals of
complex-valued functions, we have to specify the path C. This is because
unlike real functions, which have their integration intervals confined to the
real axis, complex functions have the entire complex plane available to the
variable z over which to roam. This additional freedom does bring some new
problems with it—and I’ll show you some when we get to them—but it also
opens up tremendous new possibilities, too. As I will show you, for exam-
ple, simply picking different C’s for the same f (z) can lead to quite different
conclusions.

A famous example of this possibility was discussed in 1815 by the French
mathematician Siméon-Denis Poisson (1781–1840) and published in 1820, in
the form of the integral I 5 e1

21dx/x. By a symmetry argument one is tempted
to say this integral is zero because 1/x is an odd function, i.e., there is infinite
negative area from 21 to 0 and infinite positive area from 0 to 1. This leaves
an uncomfortable feeling of pulling a swindle, however, because ` 1 (2`)
can be anything, not just zero.3 A problem is caused, as it turns out, by inte-
grating along the real axis right through a point—the origin—where the inte-
grand blows up. Poisson, however, observed that there is another way to get
from 21 to 11 which avoids the integrand explosion. That is, if we change
variables to x 5 2ei , with 0 #  # p radians, then the integral becomes

I
ie d

e
i d i

i

i= −
−

= =∫ ∫
θ

θ

π πθ θ π
0 0

.

The integrand is always well defined now because the integration path swings
around the fatal point x 5 0, along a semicircular arc in the upper half of the
complex plane.

In what appears to be an unintentional touch of humor in Kolmogorov and
Yushkevich (see note 1) on Poisson’s idea, we read “It is obvious that Poisson
was on the right path.” The calculation is interesting, yes, indeed so, but it is a
little early yet to see what it may be trying to tell us. Historically, however,
this is particularly interesting because Poisson’s 1820 paper represents the
first time an integration path not on the real axis had explicitly appeared in
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print; Cauchy’s 1814 memoir was not published until 1825. I should add,
however, that Poisson had seen Cauchy’s 1814 memoir when it was originally
submitted to the French Academy.

Now, let’s get down to the real business at hand. Why did Cauchy calculate
his particular contour integral? Surprisingly, it wasn’t to learn the answer—he
already knew it was zero. He knew this because the contour integral around
any non-self-intersecting closed path C, of a function that is analytic every-
where inside and on C, is always zero. That is,

f z dz
C

( ) =∫ 0

if C and its interior is an analytic domain of f (z). This astonishing result is
Cauchy’s first integral theorem, and I will show you its beautiful proof in just
a bit. For the rest of this section let’s assume the truth of the theorem.

So, you probably are asking again, why did Cauchy bother to calculate this
contour integral if he already knew the result had to be zero? The answer is
that, yes, the whole integral is zero, but we will be able to break it up into
several parts and, as you know, several different quantities that are not zero
can add to zero. By doing the contour integral Cauchy could calculate the
values of the several parts, and it is the values of the parts that we are going to
be especially interested in knowing. The calculation using the particular f (z)
that opened this section was done right at the beginning of Cauchy’s 1814
paper, and the result is a generalization of the famous integral that I discussed
in section 6.12 that Lord Kelvin was so enthusiastic about. Here’s what
Cauchy did, in essence.

We start by writing

f z dz u i v dx i dy

u dx v dy i v dx u dy I i I

C C

C

( ) (  )(  )

(   )  (   )  ,

∫ ∫

∫ ∫

= + +

= − + + = +1 2

with

I u dx v dy

I v dx u dy

C

C

1

2

0

0

= − =

= + =

∫

∫

(   ) ,

(   ) .

I1 and I2 must each be zero because a complex quantity I1 � iI2 is zero only if
both real and imaginary parts vanish separately. Now, recalling the expres-
sions for u and v at the start of this section and looking at figure 7.1 again, we

C
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can write the following as we start at the origin and travel counterclockwise
around C—there are obviously two ways to integrate around a closed curve,
and by convention the standard choice is CCW:

(0,0) → (a,0): y 5 0 and dy 5 0, and so u 5 e2x2, v 5 0.
(a,0) → (a,b): x 5 a and dx 5 0, and so u 5 e2a2 ey2 cos(2ay),

v 5 2e2a2 ey2 sin(2ay).
(a,b) → (0,b): y 5 b and dy 5 0, and so u 5 e2x2 eb2 cos(2bx),

v 5 2e2x2 eb2 sin(2bx).
(0,b) → (0,0): x 5 0 and dx 5 0, and so u 5 ey2, v 5 0.

Writing out I1 in detail, as we go around C, using the above expressions, we
have I1 as the sum of several real integrals:

I e dx e e ay dy e e bx dxx
a

a
b

y x

a

b
1

0 0

0
2 2 2 2 2

2 2 0= + + =− − −∫ ∫ ∫sin( )  cos( )  ,

or, rearranging and remembering that e0
a 5 2ea

0,

e dx e e bx dx e e ay dyx
a

b x
a

a y
b

− − −∫ ∫ ∫= −
2 2 2 2 2

0 0 0

2 2 cos( ) sin( )  .

Now, let a → `, i.e., let C become an infinitely wide rectangle. Since the
height b remains finite, then the rightmost integral is finite but its coefficient of
e2a2 goes to zero, and so we end up with

e dx e e bx dxx b x−
∞

−
∞

∫ ∫=
2 2 2

0 0

2 cos( )  

or

e bx dx e e dxx b x−
∞

− −
∞

∫ ∫=
2 2 2

0 0

2cos( )   .

But the integral on the right is just Lord Kelvin’s favorite integral from section
6.12, equal to !sÏp, and so we have

e bx dx ex b−
∞

−∫ =
2 2

0

2
1

2
cos( )  ,π

a generalization of Lord Kelvin’s favorite integral (to which it reduces when
b 5 0).4

Isn’t that incredible? The result just seems to come out of nowhere. Of
course, it really doesn’t—Cauchy’s first integral theorem is what gave Cauchy
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the muscle to do this wonderful calculation. Now, what about I2, what is it
equal to? You can go through the details of I2 just as I did for I1 and show, just
as Cauchy did in his 1814 memoir, that the I2 integral leads to the result

e bx dx e e dyx b y
b

−
∞

−∫ ∫=
2 2 2

0 0

2sin( )  .

This reduces to the trivial 0 5 0 when b 5 0, but other than that we simply
have one integral in terms of another integral. It’s a true statement, sure, but
not nearly as useful a result as the I1 integral. To evaluate the right-hand side
of this identity requires a power series expansion, which was worked out by
George Stokes in an 1857 paper.5

Now, to really dazzle you, let me show you how simply changing the con-
tour C from the rectangle of figure 7.1 to the pie-shaped wedge of figure 7.2
will result in a pretty derivation of the Fresnel integrals that, following Euler’s
lead, I did in chapter 6. As before, f (z) 5 e2z2. The wedge contour is a chunk
out of a circular pie with radius R. Since 0 #  # p/4 radians, it is more

Figure 7.2. A different contour for deriving the Fresnel integrals.
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precisely one-eighth of the pie. Now, along the real axis we have z � x and so
dz � dx. Along the circular arc I’ll write z in polar form, as z � Rei�, and so dz
� iRei�d�. And on the final part of C that closes the integration path we have z
� (1 � i)x and so dz � (1 � i)dx. So, from Cauchy’s first integral theorem, we
can write

f z dz e dx e i d e dx i
C

x
R

R e i i x

R

i

( )  Re  ( )∫ ∫ ∫ ∫= = + + +− − −0 1
2 2 2 2
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4
2

2

0
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π

θ θ

Now, let R → �. As shown in box 7.1  the second integral vanishes as
R → � and so

B O X  7 . 1
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Or, at last, �I� 	 R �o

/4 e�R2cos(2�)d�. Changing variables to � � 2�,

we have �I 	 �� R�o

/2 e�R2cos(�)d�. From geometry we have cos(�) �
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/2 � �) for 0 	 � 	 
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e dx e i dx
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Equating real and imaginary parts of the last integral to the purely real value
of !sÏp gives

cos( )  sin( )  2 22
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∞ ∞
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Thus,
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or, upon changing variables to s2 5 2x2, this becomes

cos( )  sin( )  ,s ds s ds2

0

2
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4
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1

2 2

∞ ∞

∫ ∫= = =π π

just as Euler had deduced thirty years before.
All of this section depends on Cauchy’s first integral theorem, which I have

so far asked you simply to take on faith. Let me now demonstrate that your
faith has not been given in vain.

7.5 Cauchy’s First Integral Theorem

Given a complex function f (z) that is analytic everywhere on the contour C
and everywhere in the region R that C is the edge of, as shown in figure 7.3,
Cauchy’s first integral theorem says

f z dz
C

( ) .=∫ 0

In an 1811 letter to a friend Gauss wrote “This is a beautiful theorem whose
simple proof I shall give on a suitable occasion.” This he failed to do and so it
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Figure 7.3. A simple curve, with an inside and an outside.

is Cauchy who gets the credit. By convention we take the direction of the
contour integration, as I mentioned before, to be counterclockwise (CCW),
i.e., as we move on C around R, R is always on our left. This defines the
interior of C. If we travel on C in the opposite sense then the algebraic sign of
the integral will be reversed.

The idea that a closed, non-self-intersecting curve, called a simple curve,
separates an “inside” from an “outside” is obvious to most people, but it
turns out to be not so easy to prove. Stated as a theorem it is called the
Jordan curve theorem, after the French mathematician Camille Jordan
(1838–1922), who offered an erroneous proof of it in 1887. The first correct
proof did not appear until 1905. In this book all the simple curves we will
consider are so simple, e.g., rectangles and circles, that I’ll take the Jordan
curve theorem to be obviously true. The interior of a simple curve is a sim-
ply connected region, which geometrically means every closed curve in the
region, simple or not, encloses only points in the region. If a region is not
simply connected then it is called multiply connected—a simple (oh, the
limitations of prose!) example of a multiply connected region is a simply
connected region that then has a hole cut in it. The points “in the hole” are
then part of the outside.

To prove Cauchy’s theorem, write
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f z dz u x y iv x y dx i dy

u dx v dy i v dx u dy

u dx v dy i v dx u dy
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= + +

= − + +

= − + +

The last two contour integrals separately vanish if the C-R equations hold,
which they do because we have assumed that f (z) is analytic. To prove this
statement, I will invoke a famous result, called Green’s theorem, which says
that if P(x,y) and Q(x,y) are two real functions of x and y, then
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Now, just as I did before for Cauchy’s first integral theorem, I’m going to ask
you to believe this result for just a bit. I will, I promise you, prove this impor-
tant result soon—in the very next section.

In his 1814 memoir Cauchy did not use Green’s theorem for the simple
reason that Green hadn’t published it yet. Cauchy used an entirely equivalent
approach, but since Green’s theorem is much more transparent that is what
I’m using here. Cauchy clearly had the same opinion, because in a later pre-
sentation (1846) he adopted Green’s theorem. When you look at the next
section for the proof of Green’s theorem you will see precisely what the de-
tails are of integrating over the region R (over the inside of C) as given by the
above double integral on the right, but for our purposes here such details don’t
come into play. That’s because for our first contour integral in Cauchy’s theo-
rem, rC(udx 2 vdy), we have P 5 u and Q 5 2v and so by Green’s theorem
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But the C-R equations tell us that 2v/x 2 u/y 5 0 and so

(   ) .u dx v dy
C

− =∫ 0

Similarly, for the second contour integral in Cauchy’s theorem, rC(vdx 1
udy), we have P 5 v and Q 5 u and so by Green’s theorem
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But the C-R equations tell us that u/x � v/y � 0 and so

(   ) ,u dx u dy
C

+ =∫ 0

which completes the proof of Cauchy’s first integral theorem.
When you read the next section for the proof of Green’s theorem you will

see that I assume not only that f �(z) exists, but also that it is continuous. It was

cian Edouard Goursat (1858–1936) showed that the first integral theorem is
true even if f �(z) is not continuous. Earlier (1886),  the Italian Giacinto Morera
(1856–1909) showed that the converse to Cauchy’s first integral theorem is
also true. That is, if f (z) is a continuous function in a simply connected region,
and if for any simple curve C in that region �Cf (z)dz � 0, then f (z) is analytic
in the region.

7.6 Green’s Theorem

The theorem used in the last section to prove Cauchy’s first integral theorem,

  ,
Q

x

P

y
dx dy

C R

∂
∂
− ∂
∂

⎛
⎝⎜

⎞
⎠⎟∫ ∫∫

where the contour C is the boundary edge of the two-dimensional region R in
the complex plane, is named after the self-educated English mathematician
George Green (1793–1841). This is the name the theorem generally goes
under, although I have also seen various textbook authors call it Gauss’ theo-
rem or Stokes’ theorem. These authors are all referring to the above statement,
however, so why the multiplicity of names?

In fact, theorems relating contour, surface, and volume integrals were all
the rage in the first half of the nineteenth century. As the historian of mathe-
matics Jesper Lützen has written, “any mathematician working in [the theories
of electricity or gravitation] stumbled on some theorems relating volume and
surface [Lützen might have added line, as well] integrals. Therefore, the his-
tory of Green’s, Gauss’s, and Stokes’s theorems are full of independent dis-
coveries.”6 Gauss probably was the first to arrive at the theorem, but as was
his style he did not publish it. What Gauss didn’t publish would have made the
reputations of ten mathematicians.

In 1828 Green did publish the theorem, in the privately printed “Essay on
the Application of Mathematical Analysis to the Theories of Electricity and

( )Pdx + =Qdy

not until 1900, many years after Cauchy’s death, that the French mathemati-
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Magnetism.” By the very fact that it did not appear in an archival journal,
Green’s “Essay” quickly became rare, almost extinct.7 After Green was ad-
mitted to Cambridge University in 1833 as a formal student, and his talent was
appreciated by the established academics there, his “Essay” became a docu-
ment that everybody had heard about but few had seen. In 1839 Green became
a Fellow at Cambridge himself, but his career ended abruptly just two years
later with his early death from either alcoholism or lung disease. Then, in
1845 and just after his graduation from Cambridge, William Thomson (later
Lord Kelvin) asked his mathematics tutor about Green’s “Essay” and was
promptly given three copies of it.

Clearly Thomson knew of Green’s theorem in 1845, but in a postscript to a
letter (dated July 2, 1850) that he wrote to an academic friend at Cambridge,
George Stokes (1819–1903), Thomson mentioned the theorem but neither
gave a proof of it nor mentioned Green’s authorship. In February 1854 Stokes
made the proof of the theorem an examination question at Cambridge—on a
test, it is amusing to note, taken by a youthful James Clerk Maxwell. Maxwell
(1831–79) later developed the mathematical theory of electromagnetics in his
1873 masterpiece Electricity and Magnetism where, in a footnote to article 24,
he attributes the theorem to Stokes. So, today, the theorem is often called—
you guessed it—Stokes’ theorem.

So, just whose theorem is it? If first publication is the criterion for deciding,
then the answer has to be Green and he, in fact, seems to be the overwhelming
choice by textbook writers, too. But what of Cauchy, you may ask? As best I
have been able to untangle this whole business, the fundamental idea of
Green’s theorem is in Cauchy’s 1814 memoir. But Cauchy’s use of it is em-
bedded in a paper whose central subject is complex integration, while Green
made the theorem itself an explicit issue. Cauchy did, eventually, use the
approach I am going to show you to prove the first integral theorem but, as I
mentioned before, only after Green’s “Essay” had been published.

To really add some spice to all this, recall that I mentioned earlier that
Maxwell attributed what I am calling Green’s theorem to Stokes in his Elec-
tricity and Magnetism. And yet, in article 96 of that book Maxwell does write
of a Green’s theorem—and he cites the “Essay.” But there he is writing of the
integral theorem that relates a double (surface) integral not to the single (line)
integral around the edge of an open surface, but rather to a triple (volume)
integral over the space enclosed by a closed surface. This is, today, usually
called Gauss’ theorem. And finally, I should tell you that, in Russia, Green’s
theorem goes by the name of Ostrogradski’s theorem, after Mikhail Ostro-
gradski (1801–62), a Parisian acquaintance of Cauchy’s in the 1820s who
independently discovered it in 1831. Confused? Don’t worry about it—the
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important thing is to know the theorems, not their names. With all that said,
let’s prove the theorem.

I am going to start by making the very simplifying assumption that R is a
rectangular patch oriented parallel to the x and y axes as shown in figure 7.4,
and that its boundary is C 5 C1 1 C2 1 C3 1 C4—which simply means the
boundary consists of four sides. Then, at the end, I’ll try to convince you that
the proof is actually far more general than this initial assumption may appear.
So let us start by first considering the eRe 2 (P/y)dxdy term of the right-
hand side of Green’s theorem. We have
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∂













= − −{ } = +

= +

∫∫ ∫∫

∫ ∫ ∫

∫ ∫

P

y
dx dy

P

y
dy dx

P x y P x y dx P x y dx P x y dx

P x y dx P x y dx

R y

y

x

x

x

x

x

x

x

x

C C

   

( , ) ( , ) ( , ) ( , )

( , ) ( , ) .

0

1

0

1

0

1

0

1

1

0

1 3

1 0 0 1

Notice carefully that in the last two integrals I have dropped the subscripts
on yo and y1 that I did include in the previous integrals. I can do that because

Figure 7.4. The prototype region for proving Green’s theorem.
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the subscripts were there to distinguish between integration along the lower
edge (yo) or along the upper edge (y1) of the rectangle’s boundary, and that job
is now done in the last two integrals by writing C1 (lower edge) and C3 (upper
edge) beneath the appropriate integral. Notice, too, that writing ey

yo
1(P/y)dy

5 P(x,y1) 2 P(x,yo) makes the implicit assumption that there is no discon-
tinuity in P/y, i.e., that the derivative is continuous. This is, in fact, nothing
less than the fundamental theorem of integral calculus.

Similar integrals with respect to x can be written for the other two edges (C2

and C4) as well and, because they are vertical, along them we know dx 5 0.
Those two integrals, then, must vanish and we can formally add them to the
C1 and C3 integrals without changing anything. So

− ∂
∂

= + + +

=

∫∫ ∫ ∫ ∫ ∫

∫

P

y
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If you repeat the above for the eRe(Q/x)dxdy term in Green’s theorem,
and observe that dy 5 0 along the horizontal edges C1 and C3, you can easily
show that

∂
∂

=∫∫ ∫
Q

x
dx dy Q x y dy

R C

( , ) .

And that completes the proof of Green’s theorem for our nicely oriented rect-
angle. In fact, however, the above proof extends easily to other much more
complicated shapes for R.

In figure 7.5, for example, I have shown a semicircular disk that can be built
up out of many very thin rectangles—the thinner they each are the more of
them there are, but that’s okay; make them each as thin as the finest onion-skin
paper—that very closely approximates the half-disk. If the boundary edge of
the half-disk is denoted by C, and the boundary edges of the rectangles are
denoted by C1, C2, C3 . . . , then obviously

( ) ( ) ( )

  ( )

Pdx Qdy Pdx Qdy Pdx Qdy

Pdx Qdy

C C C

C

+ = + + +

+ + +

∫ ∫ ∫

∫
1 2

3

 . . . ,

because those edges of the individual rectangular boundaries that are parallel
to the x-axis are traversed twice, once in each sense (CW and CCW), and so
their contributions to the various integrals on the right-hand side cancel



C H A P T E R  S E V E N

208

Figure 7.5. Approximating a simply connected region with arbitrarily many rectangles.

(you’ll see this trick again before the chapter is over). The only exception is
the very bottom horizontal edge, C1. Only the integrations along the individ-

7.6 Cauchy’s Second Integral Theorem

o

o

o

o o

o
2

o
3

o

1/z

ual rectangular edges that are vertical avoid cancellation. If we make the rect-
angles really thin, the union of those vertical edges is C. The only shapes for R
that I am going to use in this chapter are just rectangles, half-disks, and disks,
and so what we have is now enough. But, in fact, Green’s theorem applies to
far more complicated shapes than I can possibly draw.

Now you are ready for the really wonderful result from Cauchy’s 1814 mem-
oir. What happens, Cauchy asked, if we integrate a complex function around a
contour that contains one (or more) points where the function is not analytic?

z ) blows up. z  is what is called a first-order singularity or a simple pole. The
term “first-order” is self-explanatory, I think, and by extension f (z)/(z � z )
and f (z)/(z � z ) have second- and third-order singularities at z � z . You
can even run into infinite-order singularities, e.g., the power series expansion
of the exponential shows that the function e

z )
inside of C and which includes   the point Then f (z)/(z �f (zo

 has one at z � 0.

)z � z , 0.

To be precise, suppose f (z) is analytic everywhere in the region that is the

is also analytic everywhere in that region except at z � z , where f (z)/(z �

�
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Calling z 5 zo a pole, however, probably needs some explanation. The story
I heard while an undergraduate electrical engineering student goes like this:
Imagine a three-dimensional plot, with the real (x) and imaginary (y) axes
using up two dimensions to form the complex plane, and u f (z)u plotted on the
third axis. The plot of u f (z)u will form a surface in the space above the complex
plane, undulating up and down as z varies in the plane below, much like a
circus tent does above the performing arena. And the tent pokes upward par-
ticularly high at the location of the tent poles. Who says technical people
aren’t poets?8

Cauchy’s question, then, was:

f z

z z
dz

C

( )
?

−
=∫

0

Cauchy’s answer to this question is his second integral theorem and, in my
opinion, it is one of the most beautiful, profound, indeed mysterious results in
all of mathematics. It is also easy to derive—but then, everything is easy
when you see how someone of genius did it first!

In figure 7.6 I have drawn C and, in its interior, the point z 5 zo. In addition,
C* is a circle centered on z 5 zo, with a radius r that is sufficiently small that

Figure 7.6. A simple contour enclosing a first-order singularity,
connected to an inner circle with a cross-cut.
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C* is always inside of C. Now, imagine that we start our journey around C at
some point A and move counterclockwise until we reach point a, whereupon
we travel inward to point b on C*. Once on C* we travel clockwise (i.e., in the
negative sense) until we return to point b. Then, we travel outward back to
point a, retracing our original inward path, and continue the original inter-
rupted trip around C until we return to our starting place, point A. Now here’s
the first really important thing about what we’ve done—this path has always
kept the annular region between C and C* to our left, i.e., this path is the edge
of a region in which the point z 5 zo is always on the outside. In that annular
region, from which z 5 zo has by construction been excluded, f (z)/(z 2 zo) is
analytic everywhere. Thus, by Cauchy’s first integral theorem, since z 5 zo is
outside of C then

f z

z z
dz

C ab C ba

( )

, , *,
−

=
−
∫ 0

0  .

Now, here’s the second important observation about this integration path.
The two trips along the ab connection between C and C* are in opposite
directions, and so their individual contributions to the overall integral
cancel—this two-way connection path between C and C* is called a cross-cut
by mathematicians. Thus, we can simplify the last statement I wrote to
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or, in a form perhaps more revealing,
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The reason for the minus sign in front of the C* contour integral is that the
actual trip around C* was done in the negative sense (which is why I previ-
ously wrote 2C*), but in the last expression the two integrals are both in the
positive sense. That is, I’ve simply moved the minus sign from 2C* to the
front of the integral itself.

Let me remind you here that C is an arbitrary simple (non-self-intersecting)
curve enclosing z 5 zo, while C* is a circle of radius r centered on z 5 zo.
Thus, on C* we can write z 5 zo 1 rei  and so dz 5 irei d  and therefore, as 
varies from 0 to 2p radians on one trip around C*,
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If the integral on the far left, i.e., the integral that is the original target of our
interest, is to have a value, then whatever it is must be independent of the
value of r. After all, the integral on the left has no r in it! So the value of the
integral on the far right must be independent of r, too, and we can use any
value we want—we will use one that’s convenient. In fact, let us use a very
small r. Indeed, we can pick r so small as to make the difference between f (z)
and f (zo), for all z on C*, as small as we like. This is so because since f (z) is
analytic then it has a derivative everywhere inside of C (including at z 5 zo)
and so it is certainly continuous. Thus, as r → 0 we can argue that f (z) 5 f (zo)
all along C* and so it is legal to pull the constant f (zo) out of the integral and
write our answer: if z 5 zo is inside C then

f z

z z
dz if z d if z

C
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02θ π
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Alternatively, we can write this as
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−∫π

a form that tells us that the value of the analytic function f (z) at the arbitrary
interior point z 5 zo is completely determined by just the values of f (z) along
the boundary edge C. This intimate connection of the values of f (z) inside C to
the values of f (z) on C is another illustration of the very special nature of
analytic complex-valued functions, compared to just any old function written
down at random. In fact, it is the global reach of an analytic function, from one
part of the complex plane to another part, that is behind the property of ana-
lytic continuation that I discussed back in section 6.4. Now, let me show you
what we can do with this result, called Cauchy’s second integral theorem.

Let us evaluate the contour integral

e

b z
dz

iaz

C
2 2+∫ ,

where C is the contour shown in figure 7.7, with a and b positive constants, for
the limiting case as R → `. You’ll see that this leads to an interesting result.
Along the real axis part of C we have z 5 x(dz 5 dx), and along the semicircu-
lar arc we have z 5 Rei (dz 5 iRei d ) where  5 0 at x 5 R and  5 p
radians at x 5 2R. So

e

b z
dz

e

b x
dx

e

b R e
i d

iaz

C

iax

R

R ia

i
i

i

2 2 2 2 2 2 2
0

+
=

+
+

+∫ ∫ ∫
−

(Re )

Re .

θ

θ

π
θ θ



C H A P T E R  S E V E N

212

Figure 7.7. Another simple contour enclosing a single first-order singularity.

The integrand of the original contour integral, on the left-hand side, can be
written as
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Since the integrand of the second contour integral on the left-hand side is
analytic everywhere inside of C—that integrand does have a singularity, yes,
but it’s at z � �ib, which is outside of C, as shown in figure 7.7—then we
know from Cauchy’s first integral theorem that the contour integral is zero.
Thus,
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And, once R � b (remember, I’m eventually going to let R → �) then the
singularity for the remaining contour integral integrand is inside C, at z � ib.
This integrand looks exactly like f (z)/(z � zo), with f (z) � eiaz and, of course,
zo � ib. Cauchy’s second integral theorem tells us that, if R � b, the contour

dz
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integral is equal to 2pif (zo), and so the left-hand side of the last equation is
equal to
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Now, if we at last let R → ` then, using the same sort of argument given in
box 7.1, you can show that the second integral on the left vanishes. Thus,
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Equating real and imaginary parts we arrive at
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which is no surprise since the integrand is an odd function of x, and also, for
a,b . 0,
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which is, I think, quite a surprise! It had, in fact, been discovered by different
means in 1810 by Laplace. For the special case of a 5 b 5 1 this reduces to
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the integral I tantalized you with in the opening section to this chapter. Now,
let’s do a harder integral.

In his 1814 memoir Cauchy derived many interesting formulas to demon-
strate the power of contour integration. One of the more famous of these
calculations is the evaluation of

x

x
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where m and n are both non-negative integers, with n . m. The answer is both
surprising and beautiful. What I will show you now is how to use Cauchy’s
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second integral theorem to do this, using the modern approach (you can find
the details of Cauchy’s original and somewhat awkward9 analysis in Ett-
linger’s paper—see note 1).

I will begin with the contour integral

z

z
dz

m

n
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21 +∫  ,

where C is a contour that contains some but not all the singularities of the
integrand. I’ll be more specific about the precise form of C in just a bit. Now,
the singularities of the integrand are simply the solutions to the cyclotomic
equation 1 1 z2n 5 0, which you know from the discussion of De Moivre’s
formula in Chapter Three are just the 2n 2nth roots of 21 5 1 / 1808 5 1 /
p radians. You know from that discussion that these roots are evenly spaced
around the unit circle, with one of them the obvious 1 / p/2n radians. The
others are spaced at intervals of 2p/2n radians, and so the 2n roots are at
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If this sounds familiar, it should—it is the same argument I used in section 3.3
when I factored the cyclotomic polynomial z2n 2 1.

As I argued there, it is clear by symmetry that half of these roots are in the
upper half of the complex plane (those for k 5 0, 1, . . . , n 2 1), and half are
in the lower half of the complex plane (those for k 5 n, n 1 1, . . . , 2n 2 1).
The real axis, in fact, neatly separates these two halves—you can easily con-
vince yourself that there are no roots on the real axis by showing that there is
no integer k that gives a root angle of either zero or p radians. Now, let us pick
the integration contour C to be that of figure 7.7, and so C will enclose only
half of the singularities of the integrand, with the other half (in the lower part
of the complex plane) excluded. You might think we aren’t using all the infor-
mation contained in the integrand by doing this, but don’t forget the roots of 1
1 z2n 5 0 are conjugate pairs, i.e., if you know where the upper half-plane
poles are then you automatically know where the lower half-plane poles are,
too. Thus,
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where CR is the semicircular arc. On the arc z 5 Rei  and so
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Since n . m, then R2n is at least one degree greater than R2m11 and so, as R
→ `, the magnitude of the CR integral will go to zero at least as fast as 1/R.
Thus,
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So, if we can do the contour integral on the left, then we will have done the
real integral on the right, and we can do the contour integral using Cauchy’s
second integral theorem. Here’s how.

Since the integrand denominator can be written as
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in which each factor in the product is of the first degree, then the singularities
of the integrand are all simple poles. Now, I claim that the integrand can be
written as a partial fraction expansion, i.e., as
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where the N’s are constants. I will prove this by the direct approach of actually
calculating them.

But before doing that, you should understand why I’m going to do it. Sup-
pose, in fact, that I already knew the N’s. Then I could write
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Since zo through zn21 are inside C, and since zn through z2n21 are outside C,
then Cauchy’s first integral theorem says that all of the integrals in the right-
most braces vanish, and Cauchy’s second integral theorem says that the inte-
grals in the first set of braces are just 2piNo, 2piN1, . . . , 2piNn21, i.e., that
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This follows from the fact that
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if zo is inside C, with the interpretation in Cauchy’s second integral theorem of
f (z) 5 1 and so, in particular, f (zo) 5 1. The answer to our problem is then
simply
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That’s why the N’s are important to us. Here is how to calculate them.
Let us target one specific N, say Np, where 0 # p # n 2 1. Multiplying

through the partial fraction expansion for the integrand by (z 2 zp), we get
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We can solve for Np by letting z → zp, a process that makes every term on the
right vanish, except for the Np term that has no (z 2 zp) factor to carry it to
zero. That is,
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Since p is arbitrary I have, in fact, thus found all of the N’s. This limit has the
indeterminate form 0/0, and so we can use L’Hôpital’s rule to evaluate it. This
rule, proved in every freshman calculus textbook, says that if limx→xo

f (x)/g(x)
5 0/0 then the limit is limx→xo

f 9(x)/g9(x) unless this also gives an indetermi-
nate result (which means that one applies the rule once again). The rule was
first published in the 1696 textbook Analyse des Infiniment Petits, authored by
the Marquis Guillaume F. A. de L’Hôpital (1661–1704). It was originally
discovered, however, by Euler’s mentor John Bernoulli, who had communica-
ted the rule to L’Hôpital in a letter.

Continuing, then,
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That is,
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The summation is a geometric series with common factor between adjacent
terms of ei
2(2m�1)/2n. If you are careful in your algebra (remember the trick
in section 5.2), and remember Euler’s identity, you should be able to show that
the sum is
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Multiplying this by �
i/2n we finally arrive at the result
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It is standard today to actually write 2m � 1 � � and 2n � � so that the
integral becomes
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a result that Euler had derived (by other means) in 1743. You’ll recall that I
used this result back in section 6.13 in deriving the reflection formula for
Euler’s gamma function. Notice that, for the special case of � � 1 (m � 0)
and � � 2 (n � 1), the integral reduces to
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which agrees with the well-known definite integral

dx
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− −∫ tan (  tan ( ) tan ( )) ⏐

0

π

(e.g., look back at the discussion in section 6.7 of Count Fagnano’s definite
integral).

uation of improper definite integrals of the form ��
�� f (x)dx. There are two

steps, in fact, in doing such integrals by contour integration in the complex
plane: first, the selection of the proper complex function, and second the selec-
tion of a contour that, after some limiting process, includes the entire finite
real axis as the z � x part of the integration path. Along the real axis the
complex function must reduce to f (x). There are a number of complications
that can occur in this process that I have not discussed, and that is what I
meant in the introduction to this chapter when I asked the question “Where to
stop?” Well, we’re getting close to stopping, but not quite yet. There is one,
last calculation I want to show you, both illustrating how to do an entirely
different kind of definite, proper integral and tidying up a point I left undone
in chapter 5.

7.7 Kepler’s Third Law: The Final Calculation

In chapter 5 I told you that

d

E E
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This integral occurs in the general derivation of Kepler’s third law, which I
did only for the special case of circular orbits, i.e., orbits with eccentricity E �

0. So, as my very last example of a specific contour integral, let me show you
how to use complex functions to evaluate the above trigonometric integral as a
function of E.

The limits of 0 to 2
 radians on the integral are a strong hint of a closed-
loop trip around some contour in the complex plane, but what contour and
with what complex function? We can answer both of these questions at the
same time by taking our cue from Euler’s identity and writing z � ei�. Then,
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( / )θ

θ θ
= + = +−e e z zi i

2

1

2

By now you have certainly spotted the general idea behind Cauchy’s eval-
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and

dz � i ei� d� � izd�.

Thus,
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where C is the contour �z� � 1, i.e., C is the boundary edge of the unit circle.
After some elementary algebra you can get this into the form
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That is, the integrand has two singularities, each second order, at

z
E E

= ± −1 1
12 .

Since we are interested specifically in closed, repeating (periodic) satellite
orbits, we then know 0 	 E � 1, and so both poles are on the negative real
axis. There is, however, a crucial difference between these two poles: the one
at �1/E � �1/E2 � 1 is outside C while the one at �1/E � �1/E2 � 1 is
inside C. Thus, our integral has the form
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where f (z) is analytic everywhere on and inside C, i.e.,
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But we seem to have a problem! The integral is not of the form in Cauchy’s
second integral theorem because the denominator is not just (z � zo), but
rather (z � zo)2. That is, we have a second-order pole, not a simple one. So,
what do we do now? As it turns out, we really don’t have to do very much
more at all.

Writing Cauchy’s second integral theorem out again, we have, for zo any
arbitrary point inside C,

−
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Then, plugging this into the definition of the derivative of f (z),
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Or, at last, we have
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Now our original integral looks just like the contour integral on the left of
this equation. This trick for getting Cauchy’s second integral theorem, derived
for a simple pole, into a form involving a second-order singularity, can obvi-
ously be generalized for any order of singularity. Just keep differentiating.
The general result is that

f z
n

i

f z

z z
dzn

n
C

( ) ( )
! ( )

( )
,0

0
12

=
− +∫π

where f (n)(zo) denotes the nth derivative of f (z) evaluated at the integrand pole
z 5 zo which, of course, is inside C. In his 1814 memoir, Cauchy considers
only simple poles. For our problem we have
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and then evaluate the result at z 5 zo, you will find that
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the answer I gave you in chapter 5.

7.8 Epilog: What Came Next

Contour integration before Cauchy?

After his 1814 memoir, Cauchy spent the next three and a half decades slowly
laying the foundations of complex function theory. He didn’t do everything,
of course, but nearly so. Even in the pioneering work of others Cauchy was
influential. This is illustrated by the important contribution of Pierre Alphonse
Laurent (1813–54). Like Cauchy, Laurent was originally trained as a civil
engineer and he worked for some years on hydraulic construction projects as
an officer in the French military engineering corps. Before Laurent’s second
career as a mathematician began, Cauchy was unaware of the power series
expansion form for analytic functions. Then, in 1843, Laurent made great
progress in this area (“Laurent series” is a topic in every undergraduate text-
book on complex variables), but his work was known during his lifetime only
because Cauchy wrote about it to the French Academy, and encouraged pub-
lication. For some reason that was not to happen, however, until 1863, long
after the deaths of both men.

Other nineteenth-century work in analytic function theory that was destined
to have enormous impact on twentieth-century technology includes conformal
mapping, and the theory of system stability. I will say just a few, brief words
about both, but each could easily have a complete book all to itself—and,
indeed, each has had many books. First, conformal mapping. This is the gen-
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eral method of taking a complicated shape in the complex plane and then
trying to discover a transformation equation that maps (or redraws) the bound-
ary of that shape into some much simpler shape, e.g., a circle or a rectangle.
One reason this is important is because Laplace’s equation is often easy to
solve for such simple shapes, where u and v of the complex function f (z) � u
� iv are defined along the boundary edge. (It can be shown, in fact, that this
also defines u and v at all points inside the shape, as well.) Then, applying 
the conformal transformation equation, one arrives at the solution to Laplace’s
equation for u and v, both along and inside the boundary of the original compli-

cated shape. The names of the Germans Herman Amandus Schwarz (1843–1921)

and Elwin Bruno Christoffel (1829–1900)—the latter was one of Dirichlet’s 

students—are associated with this technique. It is treated  in detail in all good

undergraduate textbooks on complex variables.10

Stability theory, as studied by physicists and engineers, inevitably leads to
time functions of the form e(��i�)t, where � and � are both real. This form
blows up as t → � if � � 0, and so � 	 0 is the condition for a finite (or
stable) behavior for the system being analyzed. Now, it often turns out to be
the case that s � � � i� is a complex root of some equation f (s) � 0. If
f (s) is a polynomial, then f (s) is analytic. Often, the question is not what are
the specific value(s) of �, but rather simply whether all the values of � 	 0.
That condition insures the stability of the system. The problem of determin-
ing if all the solutions to f (s) � 0 have nonpositive real parts was posed in
1868 by Maxwell (who became interested in stability problems while study-
ing the dynamics of Saturn’s rings in the middle 1850s). It was solved by
algebraic means in 1877 by Maxwell’s rival at Cambridge, Edward John
Routh (1831–1907). Later, in 1895, the German mathematician Adolf Hur-
witz (1859–1919) solved the problem using complex function ideas. Today,
all electrical engineers are taught the Routh-Hurwitz method for polynomial
system stability.

Even before Cauchy’s 1814 memoir, the early part of the nineteenth century
saw the momentous work of Jean Baptiste Joseph Fourier (1768–1830), in
1807, on Fourier series expansions of periodic signals, and Fourier integrals
for nonperiodic signals. In more advanced books it is shown that the Fourier
integral is really a contour integral in the complex plane. That work, and its
close relation, the Laplace transform, are used by physicists and electrical
engineers all around the world, every day. I am not going to bother even to try
to define these new terms, however, because this is, really and truly, where the
book ends.

I simply want to conclude by telling you that by 1850 complex function
theory was highly advanced—to the point that when Maxwell wrote Electric-



C O M P L E X  F U N C T I O N  T H E O R Y

223

ity and Magnetism in 1873 he could open Article 183 with the following terse
passage, with no further explanation: “Two quantities � and � are said to be
conjugate functions of x and y, if � � ��1 � is a function of x � ��1 y. It
follows from this definition that

d

dx

d

dy

d

dy

d

dx

α β α β= + = and 0.”

These are, of course, just the Cauchy-Riemann equations. But they certainly
do not follow from Maxwell’s definition of a complex function unless he
could safely assume that all his readers understood the requirement for the
derivative to be independent of how �x and �y vanish. Apparently, by 1873,
just two decades after Riemann had first made that argument in his doctoral
dissertation, Maxwell could make such an assumption.

In his 1851 doctoral dissertation Riemann, who succeeded Dirichlet as Pro-
fessor of Mathematics at Göttingen upon Dirichlet’s early death in 1859, set
off yet another explosion of growth, following Cauchy’s, with his discovery
of the connection between multivalued complex functions (e.g., the log func-
tion) and topology. We saw just a hint of how topology comes into play with
complex functions in the discussion in section 7.5 on simply and multiply
connected regions. It was just such an advance in theory that was needed to do
Riemann’s integral that occurs in the derivation of the functional equation for
the zeta function (presented in section 6.13). And, by the way, you can now
appreciate why s is traditionally used as the complex variable in that integral.
To evaluate the integral using contour methods we would replace the real
dummy variable x with the complex dummy variable z, i.e., there are two
complex variables involved in this integral, and so we need two symbols
(s and z).11 But all that is for another book.

In the November 1942 issue of the science fiction pulp magazine Super
Science Stories, Isaac Asimov published a story called “The Imaginary.”12

This fanciful tale concerns an alien psychologist who has discovered how to
model mental processes by pure mathematics, mathematics involving ��1.
One of his colleagues is critical of this work, however, claiming that such
equations couldn’t possibly have any meaning. To this, a supporter of the new
theory replies:

Meaning! Listen to the mathematician talk. Great space, man, what have mathe-
matics to do with meaning? Mathematics is a tool and as long as it can be
manipulated to give proper answers and to make correct predictions, actual
meaning has no significance.

To that another doubter says:
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“I guess so. I guess so. But using imaginary quantities in psychological equa-
tions stretches my faith in science just a little bit. Square root of minus one!” He
shuddered.

A second supporter ends the discussion with

Do you suppose he cares how many imaginaries there are in the intermediate
steps if they all square out into minus one in the final solution. All he’s inter-
ested in is that they give him the proper sign in the answer. . . . As for its
physical significance, what matter? Mathematics is only a tool, anyway.

I have mixed feelings about this fictional discussion. Mathematics is a tool for
practical engineers and applied scientists, of course, but I suspect that even the
purest of mathematicians finds a mental image of the symbols being manipu-
lated helpful. It was the great Gauss himself, after all, who finally made the
case for the geometric interpretation of Ï21. I’ll leave you with this meta-
physical question, for you to arrive at your own personal conclusion. For me,
however, the connection of rotation in the complex plane and multiplication
by Ï21 is unbreakable.

The intimate connection of Ï21 to physical reality is still not always ap-
preciated, however, even by educated people who claim to know quite a bit
about mathematics. Consider, for example, these words—words that sound
very much like Auden’s couplet in section 1.2—from “celebrity intellectual”
Marilyn vos Savant:

The square root of 11 is a real number because 11  11 5 11; however, the
square root of 21 is imaginary because 21 times 21 would also equal 11,
instead of 21. This appears to be a contradiction. Yet it is accepted, and imag-
inary numbers are used routinely. But how can we justify using them to prove a
contradiction?13

Vos Savant’s words reveal a curious lack of sophistication in her understand-
ing of the complex plane. The real numbers, of which she apparently has no
fear, are no more (or less) trustworthy than are the complex ones.

Well, perhaps vos Savant simply had a bad few weeks when she wrote
(perhaps she should have taken a little more time to write her book). So, with a
rueful chuckle at how even those blessed with a high IQ can write nonsense,
this then is the end of this book. We have, indeed, covered a lot of ground
between Heron and his “impossible” pyramid, Cardan’s cubic formula, and
Cauchy’s contour integrals. And it is all the result of the question that opened
this book—just what does Ï21 mean? As I hope this book has convinced
you, it means a great deal. In May 1799 Thomas Jefferson received a letter
from a correspondent who had just finished a study of Euclid. The writer
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wished to learn of what other mathematics an educated man about to enter the
nineteenth century should be knowledgeable. In a long and detailed letter
dated June 19, 1799 Jefferson replied from his home Monticello, writing that
trigonometry “is most valuable to every man,” and also that “the extraction of
square and cube roots, algebra as far as the quadratic equation, the use of
logarithms are of value . . . but all beyond these is but a luxury; a delicious
luxury indeed, but not to be indulged in by one who is to have a profession to
follow for his subsistence.”14 Jefferson wrote these words just two years after

Figure 7.8. Modern computers have made the visualization of functions of complex
variables easy to achieve. For example, the above image is the three-dimensional sur-
face defined by f 5 sin (uzu)/uzu. It is sometimes called the “splash” or the “rock-in-the-
pond” function, for the obvious reason. It was created on my IBM ThinkPad 365ED
laptop computer (using an 80486 processor chip 6 75 MHz) while running the power-
ful mathematical programming language MATLAB. To construct the image required
295,000 floating-point arithmetic operations, which the computer performed in less
than two seconds. Do you think Euler, Cauchy, and Riemann would have had fun with
a gadget that can do things like this?
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Wessel had written his great paper on Ï21, and surely Jefferson would have
thought Ï21 a “luxury.”

One can only wonder at what Jefferson would have thought of our modern
times (what would he have thought of figure 7.8?), in which so many use
Ï21 in the pursuit of their profession and subsistence. I think he would have
thought any such claim of things to come the result of a fevered brain, and
would have called such a prophecy “an imaginary tale.” But now, as you close
this book, you can appreciate the ironic truth in the fact that there is nothing at
all imaginary about Ï21.
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A P P E N D I X A

The Fundamental Theorem of Algebra

The theorem that is the subject of this appendix is easy to state, plausible,
and not so easy to prove. Indeed, it is difficult enough that the problem was
central to Gauss’ 1799 doctoral dissertation. Gauss’ 1799 proof is considered
to be unacceptable by modern standards because he made an assumption in his
proof that he thought “obvious,” but which was not actually established until
1920. Gauss obviously had some reservations himself, as he later returned to
the problem, and by the end of his life had offered three other proofs.1 What
the theorem says is that every nth-degree polynomial equation

f (z) 5 anzn 1 an21zn21 1 ⋅ ⋅ ⋅ 1 a1z 1 ao 5 0,

where the a’s are arbitrary numbers—perhaps even complex, as was first
pointed out by Argand, not Gauss—and n is any positive integer, always has
exactly n roots in the complex number system. An important detail is that if
there are identical roots of multiplicity m, then they count as m roots, not just
one.2

Mathematicians long before Gauss had believed the theorem to be true. For
example, Descartes stated in his La Geometrie (1637) “Every equation can
have as many distinct roots (values of the unknown quantity) as the number of
dimensions of the unknown quantity in the equation.” Descartes’ “proof” of
the fundamental theorem, as an intuitive one, is easily grasped. It simply says
that every root r of the polynomial equation f (x) 5 0 must appear as the factor
(x 2 r) in the factorization of f (x). And if f (x) has degree n, then it will require
n such factors (and hence n roots) to give the required xn term. Descartes then
simply illustrates this idea in La Geometrie with several specific examples, but
offers no general proof.

Even earlier, his fellow countryman Albert Girard (1590–1632) wrote, in
his L’Invention Nouvelle en L’Algebra (1629), “Every equation of algebra has
as many solutions as the exponent of the highest term indicates.” In particular,
Girard discusses the roots of the equation x4 2 4x 1 3 5 0 and observes that,
along with the double real root of 1, there are two additional complex roots,
21 6 iÏ2, thus giving the required four roots. Before Gauss, some other
famous mathematicians had tried their hands at actually proving the funda-
mental theorem, including d’Alembert, Euler, and Lagrange. All failed.
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To summarize, the fundamental theorem is easy to understand and believe,
but its proof was a tough nut to crack. We will take it on faith in this book. Not
nearly so hard to prove, however, is another result that is of great value in
working with complex numbers. It is the claim that when complex roots do
appear as solutions to the polynomial equation f (z) � 0 with real coefficients,
they appear as conjugate pairs. That is, if z � x � iy is a root, then so is z̄ � x
� iy. This was first shown by d’Alembert in 1746. To prove this assertion it
will be helpful first to establish the preliminary result that the conjugate of the
sum or product of two complex numbers, z1 and z2, is the sum or product of
their conjugates. That is,

z1 � z2 � z̄1 � z̄2,
z1z2 � z̄1 z̄2.

The most direct way to show this is simply by direct algebraic substitution.
That is, write z1 � a1 � ib1 and z2 � a2 � ib2, evaluate both sides of the
claimed equalities, and observe that the results are equal.

Now, suppose that all the a’s in the polynomial equation f (z) � 0 are real.
From the very structure of f (z), made up of just products and sums of complex
numbers, we immediately have the result f (z̄) � f̄ (z) because of the two pre-
liminary results established in the previous paragraph. Suppose next that z1 is
a solution to f (z) � 0. Then z̄ is also a solution because f (z̄1) � f̄ (z1) � 0̄ � 0,
i.e., like any real number, zero is its own conjugate. Do you see now why the
a’s must be real for the roots to appear as conjugate pairs? It is because when
we form f̄ (z) we generate the conjugates of the a’s, too, as well as of z and its
powers, and to keep them from mixing things up we need every ā � a, i.e.,
every a real. Thus, the complex roots of a polynomial equation of any degree
with real coefficients (this proviso is important3) occur as complex conjugate
pairs. In particular, the three roots to a cubic polynomial either must all be
real, or there must be one real root and one conjugate pair. There cannot be
three complex roots because then there would have to be one complex root
without a conjugate mate.

To Be Read after Reading about Wessel’s Work in Chapter Three

As a final comment on conjugates, notice that it is also true for any complex
number z � x � iy that

k kx iy x iy+  .+ �
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That is, the conjugate of the kth root is the kth root of the conjugate. This is
most easily shown using the polar form. Thus, we can write, with n any inte-
ger,

x � iy � �x2 � y2 ei�tan�1( y/x)�2�n�

and so

k k i k n kx iy x y e+ = +
− + ( )  ./ {( / ) tan ( ) / }2 2 1 2 1 21 π

Thus

k k i k n kx iy x y e+ = + − +−
  ( )  ./ {( / ) tan ( ) / }2 2 1 2 1 21 π

If you write out
k x iy+ in polar form in the same way, then you’ll find you

get the same result.
For example, since 1 � ��3 and 1 � ��3 are conjugates, their square

roots are also conjugates, and so Leibniz’s famous expression (stated at the
end of chapter 1) becomes obvious. Leibniz was so fascinated by this behav-
ior, without really knowing why it is always so, that his unpublished papers
contain many similar results. Of this the Caltech mathematician and historian
of mathematics Eric Temple Bell wrote “He was . . . astonished by a . . .
verification of the expression of a real [number] as a sum of conjugate com-
plexes. The truly astonishing thing historically about Leibniz’s performances
with complex numbers is that less than three centuries ago [in 1940, when Bell
first wrote these words] one of the greatest mathematicians in history should
have thought that [this] outcome was more unexpected than is that of turning a
tumbler upside down twice in succession.”4 With these arrogant words, of
course, Bell is practicing Whig history, sneering at the ignorance of the past
from the vantage point of the three hundred years of progress that came after
Leibniz died.

y/x

y/x
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A P P E N D I X B

The Complex Roots of a Transcendental Equation

In this appendix I will show you how complex numbers can be used to
determine the nature of the roots of an equation without actually solving the
equation. The example I will use is based upon one 1920s mathematician’s
interest in a purely technical issue that he read about in the contemporary
physics literature. I’ll stick here to the purely mathematical aspects of the
problem, and let you look up the inspiration for it all, if you’re interested.1 The
lesson to be learned from this example is not how to solve a particular equa-
tion for its particular roots. Rather, it is to see the sort of reasoning and argu-
ments, based on complex numbers, that can lead to much information about
the nature of an equation’s roots without calculating the roots at all.

The equation to be studied is f (z) 5 (1 1 2z)ez 2 z 5 0. Since the power
series expansion of ez developed in chapter 6 has all powers of z present, then
we have an equation of infinite degree and we can expect there to be an
infinity of roots. First, let us establish that, in this infinity, there is not a single
real root. To do this, suppose z 5 x where x is real. Then,

e
x

x
x =

+1 2

and figure B.1 shows sketches of the left- and right-hand sides of this equa-
tion. As shown in the figure, the curves for ex and x/(1 1 2x) have no intersec-
tions and so there is no real x. This may or may not seem “obvious” to you.
Pierpont wrote of these curves, “we see at once [that they] do not meet in a
real point,” but I didn’t see it in an instant and if you need a hint, too, perhaps
the following will help.

The two branches of the hyperbola x/(1 1 2x) (A and C in figure B.1) have
the asymptotes shown in dashed lines. It is clear, I think, that the exponential
curve (B) does not intersect A. The case of the exponential curve and branch C
is just slightly less clear. Since ex is less than !s for x , 2ln(2) ø 20.69, then
the only a priori possible interval for an intersection (i.e., a real root) would be
in the interval 2ln(2) , x , 20.5. The slope of the exponential is ex, and so
at x 5 2ln(2) the slope is !s. The slope of branch C is 1/(1 1 2x)2, and so at x
5 2ln(2) the slope is approximately 1/(1 2 2  0.69)2 5 1/(0.38)2 . 1. In
fact, the slope of the exponential is always less than that of branch C, and
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Figure B.1. Geometric statement that f (z) 5 (1 1 2z)ez 2 z 5 0 has no real roots.

since C is above the exponential at x 5 2ln(2) then the two curves can never
intersect.

Since there are no real roots, then all the roots must be complex. In fact, we
can say something even stronger; all the roots are off the imaginary axis, i.e.,
there are no purely imaginary roots. To see this, suppose that there are imag-
inary roots z 5 iy, where y is real. Then,

(1 1 2iy)eiy 5 iy,

and if we take the absolute value of both sides we have

u(1 1 2iy)eiyu 5 u1 1 2iyu ueiyu 5 uiyu.

But, as ueiyu 5 1 then this says that 1 1 4y2 5 y2 or 3y2 5 21. This is, of
course, not possible for y real. This contradiction means that the original as-
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sumption that z 5 iy must be false, and so all of the roots of f (z) 5 0 have
nonzero real parts. Thus, all the roots are of the general form z
5 x 1 iy, x ± 0.

But, once again, we can say even more. As I’ll show you next, each of the
roots has a conjugate mate, i.e., if z is a root then so is z̄. Writing z 5 x 1 iy
and inserting into the original equation for f (z), we have

[1 1 2(x 1 iy)]ex1iy 2 (x 1 iy) 5 0.

If you expand all of this out using the connection between complex exponen-
tials and the trigonometric functions—Euler’s identity from chapter 3—and
collect the real and imaginary parts together (each of which must separately
vanish, of course), you will find that

[(1 1 2x)cos(y) 2 2ysin(y)]ex 2 x 5 0,
[(1 1 2x)sin(y) 1 2ycos(y)]ex 2 y 5 0.

Now, if the replacements x → x and y → 2y are made, which obviously
represent a change from z to z̄, then you find that these two statements are
unchanged. That is, if z is a root, then so is z̄.

To summarize what we’ve learned so far, the roots of f (z) 5 (1 1 2z)ez 2 z
5 0 are infinite in number, are all complex with nonzero real parts, and each is
one-half of a conjugate pair. But there still remains much more information to
be mined. For example, I will next demonstrate for you that x , 0 for every
root. Since we know x 5 0 is impossible, then either x . 0 or x , 0. To set
things up, first observe that, for z a root,

e
z

z− = +2
1

and that the right-hand side is always defined since z ± 0 (because x ± 0) for
every root.

For notational convenience, let us write T 5 e2z and t 5 2 1 1/z. Then,
T 5 t and so, of course, uTu 5 utu. Now,

uTu 5 ue2(x1iy)u 5 ue2xu ue2iyu 5 ue2xu 5 e2x.

Suppose now that x. 0. Then uTu , 1. What I will do next is to show you that
this leads immediately to a contradiction. We have

t
x iy

x

x y
i

y

x y
= +

+
= +

+
−

+
2

1
2 2 2 2 2 .
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Thus,

t
x

x y

y

x y
2

2 2

2

2 2

2

2= +
+







+
+







,

which, for x . 0, says utu2 . 4, or utu $ 2. That is, under the assumption of x .
0, we have concluded that uTu , 1 and utu . 2, which violates the condition of
uTu 5 utu. Therefore, we conclude that the premise of x . 0 must be false. So it
must be true that x , 0, i.e., all the roots must lie strictly to the left of the
imaginary axis.

The same sort of reasoning will tell us, however, that the roots cannot be
just anywhere in the left half of the complex plane. There are further restric-
tions on the roots. For example, let us write the roots of f (z) 5 0 as z 5 2x 1
iy, with x . 0. Then uTu 5 ex. Also,

t
x iy

x

x y
i

y

x y
= +

− +
= −

+
−

+
2

1
2 2 2 2 2

and so

t
x

x y

y

x y
2

2 2

2

2 2

2

2= −
+







+
+







.

Or, upon expanding,

t
x

x y x y
2

2 2 2 2 2 24 4
1= −

+
+

+( ) ( )
.

Thus, as the second term is always positive (since we are assuming that
x . 0), we have

t
x y x

2
2 2 2 44

1
4

1< +
+

< +
( )

,

and so, if x . 1, it would be true that

t
x

e< + < < < =4
1

5 2 5 2 7184 . ( .  . . . ).

But, as shown before, uTu 5 ex and so, for x . 1, we have uTu . e. Again we
have a violation of uTu5 utu, and so the premise of x . 1 must be false. Thus,
the roots z 5 x 1 iy must all be such that 21 , x , 0, i.e., all of the infinity of
roots of f (z) 5 0 lie in the vertical strip defined by 21 , x , 0, parallel to the
imaginary axis.
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There is, in fact, a lot more yet that can be said about the roots of f (z) 5 0,
and Professor Pierpont says it all in his paper, but this is as far as I’ll go with
the discussion. You will have to read his paper for the rest of it. But don’t you
think it absolutely astonishing how much information on the nature of the
roots Professor Pierpont cleverly teased out of his equation, without ever com-
ing anywhere near to actually calculating anything?
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A P P E N D I X C

(Ï21)(Ï21) to 135 Decimal Places,

and How It Was Computed

Question: Is (21)Ï2163 an integer? Don’t be too hasty in rejecting such a
possibility—after all, as shown in section 3.3, the perhaps even more
complicated-looking expression epÏ21 is an integer. The answer is given at
the end of note 4 for this appendix, but don’t look there until you’ve read
through what follows. If you do that, your appreciation of the surprising an-
swer will be vastly greater than if you “peek.”

It seems to be a common trait among curious, inventive minds to be fasci-
nated by the calculation of certain special numbers. The cases of p and e in
this respect are well known, particularly p, which has been calculated to many
millions of decimal places. When Isaac Newton was developing his calculus,
he used it to derive a convergent series for p which he then used to calculate
the number p to sixteen places. He later wrote, as the explanation for why he
did this, “I am ashamed to tell you to how many figures I carried these compu-
tations, having no other business at that time.”1 The great Gauss was attracted
to equally detailed calculations as well, and after his death manuscripts were
found in which he had calculated such numbers as ep/2 and 2e29p to dozens of
decimal places.

In 1921 an even longer calculation was performed that greatly extended
Euler’s wonderful calculation of (Ï21)Ï21, and the method of calculation is
at least as interesting as the result.2 In that year the Yale physicist Horace
Scudder Uhler (1872–1956) published the value of ii out to more than fifty
decimal places. Before continuing with how he did this, I must tell you that
Professor Uhler was no dilettante at number crunching. It was a life-long,
serious obsession. In 1947, for example, he turned his attention to the largest
decimal number that can be written using just three digits (9(99)), which is
known to have 369,693,100 digits. He calculated the logarithm of this monster
to 250 decimal places. Why? He said he found such doings relaxing, and I
think we should take him at his word.

Now, back to ii. The obvious, brute force approach is to simply take a very
long decimal value for p and use it to calculate e2p/2 via the power series
expansion for ex—using a very extensive table of logarithms. However, to
avoid any dependency on such decimal values and the risk of being done in by
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unknown errors that might be lurking in tabulated values, Uhler took a differ-
ent, unexpected approach. At least, he said he did it “in order to avoid the use
of any table of mathematical constants,” but I suspect he did what he did just
to have a bit of fun doing something that had never been done before.

What Uhler did was to define the function f (x) 5 esin21(x) and expand it into
a power series. He did this because, for x 5 6!s, he observed that f (6!s) 5
e6p/6. Then, cubing this, he had e6p/2 (and so he had ii 5 e2p/2 without
knowing p explicitly). He describes in his paper how he first determined that

f x x x x x

t x t xk
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He used these general formulas to calculate eighty-five terms, each, for the
even and odd powers of x, with each term rounded to fifty-four decimal places
(5  10255 was rounded up to 1  10254). Uhler concluded that this process
gave him fifty-two correct decimal places of e6p/6. His confidence in the
calculations was enhanced when he separately calculated f (!s) 5 ep/6 and
f (2!s) 5 e2p/6 and then multiplied the two results together—to fifty-two deci-
mal places the result was exactly unity.

Years later, however, Uhler expressed some concern over the “prohibitively
slow convergence” of his power series,3 at least as far as it being of use in
calculating additional digits beyond the fiftieth place. So, for a new, even
more heroic computation, Uhler changed his approach to the “obvious” one I
mentioned earlier, that of using 137-place tables of logarithms to calculate ex

from its power series expansion. Indeed, he used two different tables and
checked the results from each table against the other with the goal of catching
printing errors in the tables.

From one table he calculated both ep/2 and e2p/2 and checked the results by
computing their product—he got 150 consecutive 9s after the decimal point.
Then, with the other table, he calculated e2p/192 and by successive squaring
determined e2p/6 and e2p/3. Finally, multiplying these last two numbers to-
gether gave him, once again, a value for e2p/2. This he compared to the value
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he had obtained from the other table. He found the two in perfect agreement
out to the 139th place, with the first discrepancy in the 140th place. Because of
this Uhler wrote that he “felt justified in guaranteeing the accuracy of 136”
places. My personal opinion is that Professor Uhler is correct beyond any
reasonable doubt in this assertion.4

Can you imagine the effort involved in doing all this? I quote Uhler: “The
most error-sensitive part of the work consisted as usual in multiplying to-
gether mentally [remember, in 1947 Bill Gates, Microsoft, and a personal
computer in every room were a long way in the future] the binomial factors as
obtained from the logarithms. Hence, this set of operations was performed
three times.” The only explanation I have for this is that, for Uhler, playing
with numbers was like a preschool kid playing with mud.

With no further discussion then, here is the value of ii to 135 decimal
places, where the final digit of 3 is the result of simply truncating the 136th
digit of 9. Euler himself would surely have been impressed.

−( ) = =
−( )

1 0 20787 95763 50761 90854 69556 19834 97877 00338

77841 63176 96080 75135 88305 54198 77285 48213

97886 00277 86542 60353 40521 77330 72350 21808

19061 97303 74663

1
ii .

.
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Solving Clausen’s Puzzle

In THE SECOND math line of box 3.3 we have

e = e1+i2πn.

There is nothing wrong at this point, but then the very next line raises both
sides to the 1 + i2�n power to get

e1+i2πn = {e1+i2πn}1+i2πn

or, replacing the left-hand side with e, we get (that is, Clausen gets)

Let’s take a closer look at this.
Suppose that z is an arbitrary complex number, i.e., z = x + iy. Then, because

ei2�n = 1 for any integer n, we have

ez = ex+iy = ex · eiy = ex · eiy · ei2πn

or,

ez = ex · ei(y+2πn).

Raising both sides to the z power,

or,

We can now see that something curious has happened because, if we sup-
pose that z is real (i.e., if we take y = 0), then we have

(ex)x

on the left, but on the right we have

ex2

e0
# ei2πnx = ex2 # ei2πnx.

1ez2z =
ex2

ey2+2πny
# ei(2xy+2πnx).

= ex2+ ixy # eixy-y2+ i2πnx-2πny

1ez2z = 5ex # ei1y+2πn26x+ iy = ex1x+ iy2 # ei1y+2πn21x+ iy2

e = e11+ i2πn22.



That is, (ex)x is not equal to for all x unless ei2�nx = 1. And ei2�nx = cos(2�nx) +
i sin(2�nx) = 1 means cos(2�nx) = 1 and sin(2�nx) = 0, both of which are so
only if nx is an integer. And that can be true for all x only if n = 0. You can see
the same conclusion follows from supposing that z is pure imaginary, i.e., if we
take x = 0. Then we get

which, arguing as before, can be true for all y only if n = 0.
So, more generally, (ez)z is equal to , which is what is being assumed

when we go from

{e1�i2πn}1�i2πn

to

,

only for the specific case of n = 0, which is precisely the “tomato surprise” that
Clausen’s puzzle seemingly produces out of nowhere. But now we can see
where that tomato comes from: Clausen’s astonishing conclusion is produced
by the insertion of that benign-looking ei2�n ( = 1) factor at the step where we
wrote ez = ex+iy = ex · eiy · ei2�n.

e11+ i2πn22

ez2

1eiy2iy = e-y2
= e-y2 # ei2πny

ex2

S O LV I N G  C L A U S E N ’ S  P U Z Z L E
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A P P E N D I X  E

Deriving the Differential Equation 

for the Phase-Shift Oscillator

TO “SOLVE” the eight equations in nine variables on page 139, to arrive at the
differential equation in the text that connects the voltages v and u, can be a
frustrating calculation because of the time derivatives scattered throughout
those equations. This suggests that one way to approach the problem is to sim-
ply get rid of those differentiations through the use of the Laplace transform.
The transform can do this because it has the wonderful property of converting
the differentiation operation into the simpler one of multiplication, i.e., it
transforms a differential equation into an algebraic equation. This process is
analogous to how logarithms transform multiplication into the simpler opera-
tion of addition, i.e., log(xy) = log(x) + log(y). Here’s how it works.

If f (t) is a time function such that f (t) = 0 for t � 0, then the Laplace trans-
form of f (t), written as £{ f (t)}, is defined as

(1)

where s is the transform variable (s is a complex variable, usually written
as � + i�). It actually doesn’t really matter if f (t) � 0 for t � 0 as the inte-
gral ignores what f (t) is doing for negative time, but the restriction gives a
unique association between f (t) and F(s). From a practical engineering
point of view, every f (t) that represents a voltage or a current in a real cir-
cuit that we could actually construct is zero if we go back far enough in
time (e.g., to before the circuit is made!), and that time shift defines the
instant we’ll call t � 0.

What makes the definition in (1) so useful is the following property: if f (0) � 0,
then

(2)

More sophisticated uses of the Laplace transform do not need the f (0) � 0
assumption, but for our phase-shift oscillator problem this assumption
helps keep the algebra from getting out of hand. We can derive (2) with

£e
df

dt
f = 3

q

0

e-st df

dt
dt = sF1s2.

£5f1t26 = 3
q

0

e-st f1t2 dt = F1s2,
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integration-by-parts. That is, in the traditional notation used in all calculus
texts,

where we write (and so 

du = �se�stdt). Thus,

That is,

(3)

We now argue that the first term on the right of (3) is zero. That term is equal,
at the lower limit, to simply f (0), which we have already argued is zero. At the
upper limit we formally have f (�) multiplied by lim t→� e�st. We’ll take f (�)
as finite, which is always a safe assumption for the voltages and currents in
any circuit we can actually build. And if we take the real part of s (�) as pos-
itive, then limt→� e�st = 0, too. So, as claimed, we have (2). One can repeat
these arguments indefinitely to show that the Laplace transform of the nth
derivative of f(t) is

(4)

One other property of the Laplace transform that we’ll use is its linearity,
i.e., if g(t) and f (t) are two time functions then, with a and b arbitrary
constants,

(5)

This follows immediately from the very definition of the transform in (1).
Notice the convention of using lowercase letters to denote time functions, and
uppercase for the associated transforms.

£5ag1t2 + bf1t26 = aG1s2 + bF1s2.

£e
dnf

dtn
f = 3

q

0

e-st dnf

dtn
dt = snF1s2.

£e
df

dt
f = 5 f1t2e-st ƒ 0

q + sF1s2.

= {f1t2e-st ƒ0
q + s 3

q

0

e-st f1t2dt.

£e
df

dt
f = 5f1t2e-st ƒ0

q - 3
q

0

f1t21-se-stdt2

dv =
df

dt
dt = df 1and  so v = f 2  and u = e-st

3
q

0

u dv = 1uv�0
q -3

q

0

v du,



So, here’s how all of the above works for us. If we Laplace transform the
eight so-called time-domain equations on page 139, we get the following
s-domain algebraic equations:

(6) I � I1 + I2 (7) I � CsV � CsX

(8) (9) I2 � I3 � I4

(10) I2 � CsX � CsY (11)

(12) I4 � CsY � CsU (13)

Combining (12) and (13) we have

which, with a little algebra, gives

(14)

Next, combining (9), (10), (11), and (13) gives

which becomes

(15)

Using the expression for Y in (14), (15) becomes

(16)

Combining (6) and (7) we have

I1 � I2 = CsV � CsX,

which becomes, using (8) and (10),

1

R
X + CsX - CsY = CsV - CsX,

X = B 11 + RCs22

1RCs22
+

1

RCs
RU.

X =
1 + RCs

RCs
Y +

1

RCs
U.

CsX - CsY =
1

R
Y +

1

R
U,

Y =
1 + RCs

RCs
U.

1

R
U = CsY - CsU,

I4 =
1

R
U.

I3 =
1

R
Y

I1 =
1

R
X
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which in turn becomes, with a little more algebra,

(17)

Then, using (16) for X and (14) for Y, (17) becomes

which, again with a bit more algebra, becomes

(18)

Expanding out the terms in the numerator of (18), performing all possible sim-
plifications, and then multiplying through by s3, we arrive at

(19)

Then, finally, we return to the time domain by using (4), term-by-term, and (5),
on (19) to write by inspection the third-order differential equation on page 139:

d3v

dt3
=

d3u

dt3
+

6

RC

d2u

dt2
+

5

1RC22
du

dt
+

1

1RC23
u.

s3V = s3U +
6

RC
s2U +

5

1RC22
sU +

1

1RC23
U.

V =
11 + 2RCs211 + RCs22 + 11 + 2RCs2RCs - 11 + RCs21RCs22

1RCs23
U.

V =
1 + 2RCs

RCs
B 11 + RCs22

1RCs22
+

1

RCs
RU -

1 + RCs

RCs
U,

V =
1 + 2RCs

RCs
X - Y.
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A P P E N D I X  F

The Value of the Gamma Function 

on the Critical Line

As DERIVED in section 6.13, the reflection formula for the gamma function is

where the gamma function is defined (on p. 175) as

In the discussion in the book n is taken as a positive real quantity, but if we
ignore that detail and just formally proceed by writing n = 1⁄2 � ib then

�(n) = �(1⁄2 � ib)

and

�(1 � n) = �(1⁄2 � ib).

Since the only difference in �(n) and �(1 � n) on the critical line is the sign
of i, we see that �(1⁄2 � ib) and �(1⁄2 � ib) are a complex conjugate pair. Thus,
on the critical line,

�(1⁄2 � ib) �(1⁄2 � ib) = | �(1⁄2 � ib) |2

and this equals

From Euler’s identity we have

=
ei1π>22 # e-πb - e-i1π>22 # eπb

2i

 sin511>2 + ib2π6 =
ei511�2+ ib2π6 - e-i511�2+ ib2π6

2i

ƒ
π

sin511>2 + ib2π6
ƒ =

π
ƒsin511>2 + ib2π6 ƒ

.

≠1n2 = 3
q

0

e-xxn-1dx.

≠1n2≠11 - n2 =
π

sin1nπ2
,



signs on the sine and write

or,

as was to be shown.

ƒ ≠1z2 ƒ z= 1�2+ ib =
A

π
cosh1π b2

ƒ ≠11�2 + ib2 ƒ2 =
π

cosh1π b2

=
ie-πb + ieπb

2i
=

e-πb + eπb

2
= cosh1πb2.
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Since cosh(�b) is never negative for any real b, we can drop the absolute value
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PREFACE TO THE PAPERBACK EDITION

1. H. M. Edwards, Riemann’s Zeta Function, Academic Press 1974, p. 166.

2. Ibid.

3. For more on this, see Aleksandar Ivić, The Riemann Zeta-Function, Wiley-

Interscience 1985, particularly p. 197.

PREFACE

1. There was a science fiction hook in me for just �1, too, all by itself, even before

taking its square root. Before Popular Electronics entered the picture I was a devoted

fan of the 1950s weekly radio drama “X Minus One.” Once a week, at 9:30 p.m., 

I listened to the opening of that program, to the announcer saying, “From the far hori-

zons of the unknown come transcribed tales of new dimensions in time and space.

These are stories of the future, adventures in which you’ll live in a million could-be

years and a thousand maybe worlds. The National Broadcasting Company, in cooper-

ation with Galaxy Science Fiction magazine, presents . . . ” And then came spine-

chilling words, words reverberating in my darkened bedroom (when I was supposed

to be asleep), “X x x x, minus, minus, minus, minus, one, one, one, one,” followed by

spooky music. Ah, those were the days!

INTRODUCTION

1. Richard J. Gillings, Mathematics in the Time of the Pharaohs, MIT Press 1972,

pp. 246–47.

2. George Sarton, A History of Science (volume 1), Harvard University Press 1952, p. 39.

3. For interesting speculations on how the Egyptians might have reasoned, see

Gillings (note 1), pp. 187–93, and B. L. van der Waerden, Science Awakening,

P. Noordhoff 1954, pp. 34–35. This last book has a photograph of the frustum calcula-

tion portion of the MMP.

4. W. W. Beman, “A Chapter in the History of Mathematics,” Proceedings of the

American Association for the Advancement of Science 46 (1897):33–50.

5. The definitive work on Diophantus is still Sir Thomas L. Heath’s Diophantus

of Alexandria: A Study in the History of Greek Algebra, first published in 1885 and

revised in 1910 (the revision is available today as a Dover reprint). This classic

work contains the complete Arithmetica as Heath knew it, along with Heath’s very

extensive and helpful footnotes. In more recent times additional books have been



discovered—see Jascques Sesiano, Books IV to VII of Diophantus’ Arithmetica,

Springer-Verlag 1982.

6. The Ganita-Sara-Sangraha of Mahaviracarya (with English translation and notes

by M. Rangacarya), The Government Press, Madras 1912, p. 7 (of the translation).

CHAPTER ONE

The Puzzles of Imaginary Numbers

1. This is not to say mathematicians didn’t know what to make of, say, 7 � 5. The

distinction is between the use of the minus sign to denote the operation of subtraction

(which was understood), as opposed to denoting a number less than zero or nothing

(which was mysterious). Thus, 5�7 would have been a problem, since the answer of

�2 would have had no physical significance to the mind of a mathematician at the start

of the sixteenth century. Minus two would sometimes be called the defect of two, with

the pejorative implication of that term perhaps revealing how uncomfortable negative

numbers made mathematicians.

2. If you’re wondering why I am ignoring the negative root, that’s good. You should

be wondering. The negative root is perfectly valid, but if you use it from this point on

in the analysis you’ll find that you’ll get exactly the same answer as I will get with the

positive root. Try it and see.

3. An informative and entertaining biography of Cardan’s amazing life is the older but

still recommended book by Oystein Ore, Cardano, the Gambling Scholar, Prince-

ton 1953. Any man who is modern enough in intellect to solve the cubic, and still

medieval enough to cast the horoscope for Christ, for which he was imprisoned in 1570

on the charge of heresy, is worth reading about.

4. An English translation of Ars Magna, by T. Richard Witmer, was published in

1968 by the MIT Press, and the following quote (p. 8) is the first of three mentions of

Tartaglia by Cardan: “In our own days Scipione del Ferro of Bologna has solved the

case of the cube and the first power equal to a constant, a very elegant and admirable

accomplishment. Since this art surpasses all human subtlety and the perspicuity of

mortal talent and is a truly celestial gift and a very clear test of the capacity of men’s

minds, whoever applies himself to it will believe that there is nothing that he cannot

understand. In emulation of him, my friend Niccolo Tartaglia of Brescia, wanting not

to be out-done, solved the same case when he got into a contest with his [Scipione’s]

pupil, Antonio Maria Fior, and, moved by my many entreaties, gave it to me.” These

are hardly the words of a man stealing the work of another. I should mention that there

is some evidence that progress toward solving the cubic had been made no later than

the 1390s in Florence, by at least two Italian mathematicians whose identities are no

longer known. Indeed, del Ferro and Cardan may have been anticipated, although it is

not at all clear that either knew of the earlier work. See R. Franci and L. Toti Rigatelli,
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“Towards a History of Algebra from Leonardo of Pisa to Luca Pacioli,” Janus 72

(1985):17–82.

5. A modern student of mathematics, science, and engineering would find this claim

obvious. That is, given any complex number, its conjugate is the number with all

occurrences of � i changed to � � �i.

6. Viète was the first to express � in terms of an infinite product rather than as a

sum, in his famous formula (1593) 

Later, in chapter 3, I will show you how this beautiful result, a special case of a more

general trigonometric formula, can be derived from an elementary trigonometric iden-

tity that we can easily find with a knowledge of complex geometry. Viète’s study of

right triangles has been, in modern times, connected to the algebra of complex num-

bers, a connection he himself never made. I will discuss (in chapter 3) the known

historical development of that algebra, but you can find what has been speculated in

Stanislav Glushkov, “An Interpretation of Viète’s ‘Calculus of Triangles’ As a Precur-

sor of the Algebra of Complex Numbers,” Historia Mathematica 4 (May 1977):

127–36.

7. E. T. Bell, The Development of Mathematics (2nd edition), McGraw-Hill 1945, p. 149.

8. R. B. McClenon, “A Contribution of Leibniz to the History of Complex Num-

bers,” American Mathematical Monthly 30 (November 1930):369–74. Huygens was

just as puzzled as was Leibniz, as is shown by his reply to Leibniz: “One would never

have believed that and there is something hidden in

this which is incomprehensible to us.”

9. Gilbert Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press

1986, p. 330.

10. A nice English translation of this book by E. L. Sigler is available: The Book of

Squares, Academic Press 1987. See also R. B. McClenon, “Leonardo of Pisa and His

Liber quadratorum,” American Mathematical Monthly 26 (January 1919):1–8.

Leonardo is better known today by the sobriquet “Fibonacci,” which is most likely a

contraction for “Filiorum Bonacci” (i.e., “of the family of Bonacci”) or “Filius Bona-

cci” (i.e., “Bonacci’s son”), phrases that appear in the titles of many of his works. It is,

therefore, Leonardo Pisano after whom the famous Fibonacci sequence is named, i.e.,

the sequence 1, 1, 2, 3, 5, 8, 13, . . . , in which each number after the second is the sum

of the previous two. This is usually written as the recurrence formula un�2 � un�1 � un

with u0 � u1 �1. This sequence appears in Leonardo’s Liber abaci (1202) and it is

a special case of the more general un�2 � pun�1 � qun with p and q arbitrary con-

stants. In chapter 4 I will show you how complex numbers appear in the solution to this

recurrence for certain values of p and q.

21+1-3 + 21-1-3 = 26

2

π
= cosa

π
4
b cosa

π
8
b cosa

π
16
b cosa

π
32
b . . . .

2-12-1
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CHAPTER TWO

A First Try at Understanding the Geometry of 

1. La Geometrie was not a book in its own right, but rather it was “just” the third

illustrative appendix to Descartes’ Discourse on the Method of Reasoning and Seeking

Truth in Science. It was called “the greatest single step ever made in the progress of the

exact sciences” by John Stuart Mill, and it is a masterpiece. It is well worth the time

and effort, especially by high school geometry teachers, to read the excellent English

translation by David E. Smith and Marcia L. Latham, The Geometry of René Descartes,

Dover 1954.

2. Descartes himself offers no proof but Smith and Latham (note 1) sketch a possible

approach. Their suggestion is, I think, more involved than necessary, and there is a

much easier solution. Hint: look at the triangle NQR in figure 2.4 and use the Pythag-

orean theorem twice to find QR. Then MQ � �� a � �� QR and MR � MQ � QR.

3. When the expression for T is real, then the smaller of the two possible values, the

one given by using the minus sign, represents the time at which the man first catches

the bus. But if the man does not hop onto the bus, but rather keeps on running, he will

move out in front of the bus. You can easily verify that the man is indeed running faster

than the bus is moving—after all, that’s why he caught up to it. But the bus is acceler-

ating and so eventually, at the second larger value of T, the bus catches up to the

running man and again, for the second time, the condition xm � xb is satisfied.

4. For much more on this particular problem see Nathan Altshiller Court, “Imagin-

ary Elements in Pure Geometry—What They Are and What They Are Not,” Scripta

Mathematica 17 (1951):55–64 and 190–201. For more on the topic, in general, see 

J. L. S. Hatton, The Theory of the Imaginary in Geometry, Together with the Trigonom-

etry of the Imaginary, Cambridge University Press 1920.

5. Florian Cajori, “Historical Note on the Graphic Representation of Imaginaries

Before the Time of Wessel,” American Mathematical Monthly 19 (October–November

1912):167–71.

6. This beautiful result is a special case of an even more general theorem concerning

angles inscribed within circles, but since I’ll use only this special case again before you

are through this chapter, let me show you a quick proof of just the special case. With ref-

erence to figure 2.11, we have AC � BC � CD as all three line segments are radii of the

same circle. Since AC � BC, then the triangle ABC is isosceles, i.e., the angles k BAC

and k ABC are equal (to �). And since BC � CD, then the triangle BCD is also isosceles,

i.e., the angles k CBD and k CDB are equal (to �). Thus, � � � � (� � �) � 180º �

2(� � �), or � � � � 90º. That is, an angle inscribed on the circumference of a circle,

which subtends a diameter of that circle, is a right angle. We can now use this result to

quickly establish Descartes’ construction of the square root of a positive length. Referring

back to figure 2.1, look at the two right triangles FIG and IGH, which share the common

2-1
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side IG. We now know that the angle k FIH is 90º, and from this it immediately follows

that the triangles FIG and IGH are similar. In particular, 

and so . The construction and this proof of it were known to the Greeks.

7. Julian Lowell Coolidge, The Geometry of the Complex Domain, Oxford 1924, p. 14.

CHAPTER THREE

The Puzzles Start to Clear

1. It is traditional to call Wessel a Norwegian, but in fact when he was born Norway was

actually part of Denmark, and he spent most of his life in Denmark, dying in Copenhagen. 

2. Wessel’s paper was unearthed in 1895 by an antiquarian, and its significance

recognized by the Danish mathematician Sophus Christian Juel (1855–1935). For more on

this discovery, see Viggo Brun, “Caspar Wessel et l’introduction géométrique des numbres

complexes,” Revue d’Histoire des Sciences et de Leurs Applications 12 (1959):19–24.

3. E. T. Bell, Men of Mathematics. Simon and Schuster 1986, p. 234. A joke on this

point is the following spoof of recorded telephone company messages that electrical

engineers find amusing: “You have reached an imaginary number. If you require a real

number, please rotate your telephone by 90º, and try again.”

IG = 2GH

GH

IG
=

IG

FG
=

IG

1
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Figure 2.11. An inscribed right angle subtends a semicircle.



4. James Gleick, Genius, Pantheon 1992, p. 35.

5. See my book The Science of Radio, AIP Press 1995, pp. 173–75, for how such

expressions occur in the theory of single-sideband radio.

6. The exchanges that appeared in the Annales were reproduced by Hoüel’s book,

and much of it was again reproduced in the English translation of Hoüel’s reprint that

was prepared by Dartmouth mathematics professor A. S. Hardy, Imaginary Quantities,

D. Van Nostrand 1881.

7. Julian Lowell Coolidge, The Geometry of the Complex Domain, Oxford 1924, p. 24.

8. G. Windred, “History of the Theory of Imaginary and Complex Quantities,” The

Mathematical Gazette 14 (1929):533–41.

9. The mathematician was Sylvestre Francois Lacroix (1765–1843), who was

famous for his enormously influential textbooks.

10. It is briefly discussed by Coolidge and Windred (notes 7 and 8), with the general

assessment being that Mourey’s book (La Vraie Théorie des Quantités Négatives et des

Prétendues Imaginaires) was a work of quality.

11. See Bell’s biographical essay on Hamilton, “An Irish Tragedy,” Men of Mathematics

(note 3), pp. 340–61.

12. John O’Neill, “Formalism, Hamilton and Complex Numbers,” Studies in History

and Philosophy of Science 17 (September 1986):351–72.

13. See my Oliver Heaviside: Sage in Solitude, IEEE Press 1988, pp. 187–215, for

more on Hamilton and his quaternions. More interesting (in my opinion) than Ham-

ilton’s couples are the quadruples of numbers that form 2 � 2 matrices. For readers

who know how matrices work, notice that

plays the role of minus one, because multiplying it by any 2 � 2 matrix results in the

negative of that matrix. Then simply notice that

,

and so

plays the role of in 2 � 2 matrix theory. Such matrices, for example, are at the

heart of quantum theory.

2-1

0 21
-1 0

=
-1 2 0
0 -1

0 21
-1 0

0 21
-1 0

-1 2 0
0 -1
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14. Quoted from Umberto Bottazzini, The Higher Calculus: A History of Real and

Complex Analysis from Euler to Weierstrass, Springer-Verlag 1986, p. 96.

15. John Stillwell, Mathematics and Its History, Springer-Verlag 1991, p. 188.

16. A. R. Forsyth, “Old Tripos Days at Cambridge,” The Mathematical Gazette 19

(1935):162–79.

CHAPTER FOUR

Using Complex Numbers

1. The numerical examples used in this section are taken from Juan E. Sornito,

“Vector Representation of Multiplication and Division of Complex Numbers,” Mathe-

matics Teacher 47 (May 1954):320–22, 382.

2. See, for example, E. F. Krause, Taxicab Geometry, Dover 1986, where the so-

called city-block distance function ds � �dx� � �dy� is explored in great detail. The geo-

metric interpretation of special relativity is actually due to the German mathematician

Hermann Minkowski (1864–1909), who was at one time Einstein’s teacher. The theory,

however, is all Einstein’s.

3. See, for example, my book Time Machines: Time Travel in Physics, Metaphysics,

and Science Fiction, AIP Press 1993, pp. 287–303.

4. This is actually only true for what is called the flat spacetime of special relativity.

Curved spacetimes, such as occur in the general theory of relativity (Einstein’s theory

of gravity), have more complicated metrics. You can find more on this in my Time

Machines (note 3), p. 314.

5. For why Einstein made this assumption see my Time Machines (note 3), pp. 291

and 302–3.

6. In 1889 the Russian mathematician Sophie Kowalevski (1850–91) used complex

time to study the mechanics of a rotating mass. Her work is described in Michèle

Audin, Spinning Tops, Cambridge University Press 1996.

7. Paul R. Heyl, “The Skeptical Physicist,” Scientific Monthly 46 (March

1938):225–29.

CHAPTER FIVE

More Uses of Complex Numbers

1. See also my Time Machines: Time Travel in Physics, Metaphysics, and Science

Fiction, AIP Press 1993, pp. 341–52.

2. Edward Kasner, “The Ratio of the Arc to the Chord of an Analytic Curve Need

Not Be Unity,” Bulletin of the American Mathematical Society 20 (July 1914):524–31.

3. A brief but elegant, geometry-only derivation of the inverse square law is in

George Gamow’s Gravity, Doubleday 1962. See also S. K. Stein, “Exactly How Did

Newton Deal with His Planets?” Mathematical Intelligencer 18 (Spring 1996):6–11.
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4. See David L. and Judith R. Goodstein’s Feynman’s Lost Lecture, W. W. Norton

1996. The book comes with a compact disk recording, and so you can actually listen to

Feynman give his lecture to the Caltech freshman class on March 13, 1964. At the end

of his lecture Feynman makes the important point that exactly the same physics is at

the heart of Ernest Rutherford’s classic 1910 experiment in scattering particles with

positive electric charge off the nuclei of atoms which also have positive charge. As will

be discussed later in this chapter, the interaction force is repulsive between charges of

the same sign, not attractive as is the gravitational force between the Sun and the

orbiting planets. But this is, mathematically, simply a trivial change of algebraic sign

in the force equation.

5. The presentation in this section was inspired by Donald G. Saari, “A Visit to the

Newtonian N -Body Problem via Elementary Complex Variables,” American Mathe-

matical Monthly 97 (February 1990):105–19.

6. William J. Kaufmann III, Universe (2nd edition), W. H. Freeman 1988, p. 56.

7. See my book The Science of Radio, AIP Press 1995, for the details of how that

came to pass.

CHAPTER SIX

Wizard Mathematics

1. Wroński’s claim was not unique in the history of weird mathematics. What in

some way is an even more bizarre assertion was made at the end of the nineteenth

century, in what has since become one of the most prestigious mathematics journals in the

world. In a biographical essay on Colonel James W. Nicholson (1844–1917), who was

President and Professor of Mathematics at Louisiana State University and Agricultural and

Mechanical College, the claim is made that among his many discoveries are the identities

,

.

This is absurd, of course, as the identities are simply thinly disguised versions of Euler’s

identity, i.e., just write �1 = ei�. I have no explanation for how such a silly claim could

be printed; at first I was convinced it had to be a spoof, but I soon discovered Nicholson

was a real person. If you want to read the entire essay for yourself (in which additional

absurd claims can be found) see American Mathematical Monthly 1 (June 1894):183–87.

2. How he did this, and much more, can be found in Raymond Ayoub, “Euler and

the Zeta Function,” American Mathematical Monthly 81 (December 1974):1067–86.

See also Ronald Calinger, “Leonhard Euler: The First St. Petersburg Years (1727–

1741),” Historia Mathematica 23 (May 1996): 121–66.

sin(φ) =
(-1)φ>π - (-1)-φ>π

22-1

cos(φ) =
(-1)φ>π + (-1)-φ>π

2
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3. Much of my discussion on ii in this chapter is based on R. C. Archibald, “Histori-

cal Notes on the Relation e�(�/2)�ii,” American Mathematical Monthly 28 (March

1921):116–21.

4. For a full English translation of “Logometria” see Ronald Gowing, Roger

Cotes—Natural Philosopher, Cambridge University Press 1983.

5. R. C. Archibald, “Euler Integrals and Euler’s Spiral—Sometimes Called Fresnel

Integrals and the Clothoide or Cornu’s Spiral,” American Mathematical Monthly 25

(June 1918):276–82.

6. Historical comments about, and citations to, the work of Cauchy and Poisson

related to these integrals can be found in Horace Lamb, “On Deep-Water Waves,”

Proceedings of the London Mathematical Society 2 (November 10, 1904):371–400.

7. In two letters, dated October 13, 1729 and January 8, 1730, to one of his frequent

correspondents, the German Christian Goldbach in Moscow. The name and symbol of

gamma is, however, due to Legendre, who introduced the modern terminology in 1808.

For a tutorial on this part of Euler’s work, see Philip J. Davis, “Leonhard Euler’s

Integral: A Historical Profile of the Gamma Function,” American Mathematical

Monthly 66 (December 1959):849–69.

CHAPTER SEVEN

The Nineteenth Century, Cauchy, and the Beginning 

of Complex Function Theory

1. Much of my commentary on Cauchy’s work is based on H. J. Ettlinger, “Cau-

chy’s Paper of 1814 on Definite Integrals,” Annals of Mathematics 23 (1921–22):255–

70, and on Philip E. B. Jourdain, “The Theory of Functions with Cauchy and Gauss,”

Bibliotheca Mathematica 6 (1905):190–207. Neither Ettlinger nor I follow Cauchy’s

original presentation or notation slavishly (Jourdain does, largely), although the ideas

he developed will be pointed out. Very interesting reading, too, is the second half of

volume 2 of the series Mathematics of the 19th Century, on the history of analytic

function theory. Edited by A. N. Kolmogorov and A. P. Yushkevich, it was translated

from the Russian by Roger Cooke and published by Birkhäuser Verlag in 1996. I also

found helpful the extensive historical commentary in Morris Kline, Mathematical

Thought from Ancient to Modern Times, Oxford University Press 1972, pp. 626–70.

Some of Kline’s comments concerning the original debates over the 1814 memoir were

clarified for me in I. Grattan-Guinness, The Development of the Foundations of Mathe-

matical Analysis from Euler to Riemann, MIT Press 1979, pp. 24–45. Finally, see

Frank Smithies, Cauchy and the Creation of Complex Function Theory, Cambridge

University Press 1997.

2. Cauchy didn’t use this term, but the concept of analyticity is contained in his

memoir. And, as Ettlinger (note 1) observes, “although geometrical representation is
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now an essential feature of every presentation of the theory of functions, Cauchy used

neither figures nor geometrical language.” Following Ettlinger and all modern texts I

use both aids in this chapter a lot.

3. This very point was the central concept in a curious short science fiction story by

Stanley G. Weinbaum. Originally titled “Real and Imaginary” it appeared, after Wein-

baum’s early death, in the December 1936 issue of the pulp magazine Thrilling Wonder

Stories under the title “The Brink of Infinity.” It is reprinted in A Martian Odyssey and

Other Science Fiction Tales, Hyperion Press 1974. The plot is a simple one. A chemi-

cal expert is horribly mangled when an experiment goes wrong, and he blames the

mathematician who did the preliminary calculations. In revenge on mathematicians, in

general, he lures another mathematician to his home and, holding him at gun point,

presents him with the following problem: the madman is thinking of a “numerical

expression” and the mathematician must deduce what it is by asking no more than ten

questions. If he can’t, he’ll be shot. The first question is whether the expression is real

or imaginary, and the answer is “either”! The mathematician thinks that means the

answer must be zero, and is shocked to be told he is wrong. Another question is, “What

is the expression equal to?” and the answer is “anything.” And that’s the point here,

that eventually the mathematician figures out that the answer is “� � �,” although I

doubt this is properly called a numerical expression.

4. The fact that we had to use (as did Cauchy) the value of (known

from other means, such as was done in section 6.12) to complete the calculation of

illustrates the fact that Cauchy’s method isn’t without its drawbacks.

In fact, any integral that can be done by Cauchy’s method can be done by other

means. See, for example, Robert Weinstock, “Elementary Evaluations of , 

, and ,” American Mathematical Monthly 97 (January 1990): 39– 42.

However, if Cauchy’s method does work then it is almost always the easiest way to

evaluate an integral. On the flip side, for many years it was thought that

couldn’t be done with Cauchy’s method, but for a pretty derivation of this integral

using Cauchy’s theory, see Reinhold Remmert, Theory of Complex Functions,

Springer-Verlag 1991, pp. 413–14. More on the history of that derivation can be found

in Dragoslav S. Mitrinović and Jovan D. Keckić, The Cauchy Method of Residues,

D. Reidel 1984, pp. 158–66.

5. See volume 4 of Stokes’ Mathematical and Physical Papers, Cambridge Univer-

sity Press 1904, pp. 77–109.

6. Jesper Lützen, Joseph Liouville 1809–1882: Master of Pure and Applied Mathe-

matics, Springer-Verlag 1990, p. 586. See also the chapter on integral theorems by J. J.

Cross in Wranglers and Physicists: Studies on Cambridge Mathematical Physics in the

Nineteenth Century (P. M. Harman, editor), Manchester University Press 1985.

7. I. Grattan-Guinness, “Why Did George Green Write His Essay of 1828 on

Electricity and Magnetism?” American Mathematical Monthly 102 (May 1995):387–96.
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8. The Polish-born mathematician Mark Kac tells the following wonderfully funny

story in his autobiography Enigmas of Chance, Harper & Row 1985, p. 126. Once, when

serving on a doctoral examination committee at Cornell, Kac asked the candidate some

mathematical questions. As Kac tells it, “He was not terribly good—in mathematics at

least. After he had failed to answer a couple of questions, I asked him a really simple one,

which was to describe the behavior of the function 1/z in the complex plane. ‘The function

is analytic, sir, in the whole plane except at z � 0, where it has a singularity,’ he answered

and it was perfectly correct. ‘What is the singularity called?’ I continued. The student

stopped in his tracks. ‘Look at me,’ I said. ‘What am I?’ His face lit up. ‘A simple Pole,

sir,’ which is in fact the correct answer.” What a nice person Kac must have been!

9. Please don’t think I am being disrespectful by calling Cauchy’s solution “awkward.”

Newer, better ways of solving problems are welcomed in mathematics and, indeed, are

hoped for. The method I use in the text used to be a common textbook approach, but even

it has been improved upon. The answer derived in the text is actually valid even for non-

integer values of m and n, but the method I use does impose that restriction. You can find

more discussion on this important integral, and its more general evaluation, in Orin J.

Farrell and Bertram Ross, “Note on Evaluating Certain Real Integrals by Cauchy’s

Residue Theorem,” American Mathematical Monthly 68 (February 1968):151–52.

10. Such a book is the one by A. David Wunsch, Complex Variables with Applica-

tions (2nd edition), Addison-Wesley 1994. Wunsch, a professor of electrical engineer-

ing at the Lowell campus of the University of Massachusetts, has done an absolutely

first-rate job of presenting the details of complex function theory, including conformal

mapping, Laurent series, and system stability. He writes in the language of the engi-

neer, while at the same time giving up none of the mathematical integrity of the sub-

ject. For the more mathematically inclined who also have an interest in keeping one

foot in physical reality, I highly recommend Tristan Needham, Visual Complex Anal-

ysis, Oxford University Press 1997.

11. For a discussion of the details of doing this integral, i.e., of evaluating 

in the complex plane, see E. C. Titchmarsh (revised by D. R. Heath-Brown), The

Theory of the Riemann Zeta-Function, Oxford University Press 1986, pp. 18–20.

12. This story is reprinted in The Early Asimov, Doubleday 1972.

13. Marilyn vos Savant, The World’s Most Famous Math Problem (the Proof of

Fermat’s Last Theorem and Other Mathematical Mysteries), St. Martin’s Press 1993,

p. 61. This book, which the author happily tells us she wrote in mere weeks, is full of

other similarly uninformed statements.

14. A reproduction of this holographic letter is in Scripta Mathematica 1 (1932):

88–90.
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APPENDIX A

The Fundamental Theorem of Algebra

1. For more on all this, see John Stillwell, Mathematics and Its History, Springer-

Verlag 1989, pp. 195–200.

2. An early, little-known dispute over the number of complex roots to a polynomial

equation took place between the Scottish mathematician Colin MacLaurin (1698–

1746) and his obscure countryman George Campbell (?–1766). A detailed discussion of

this unhappy business is given by Stella Mills, “The Controversy Between Colin

MacLaurin and George Campbell Over Complex Roots, 1728–1729,” Archive for His-

tory of Exact Sciences 28 (1983):149–64. For even more on the state of knowledge

concerning the roots of equations at that time see Robin Rider Hamburg, “The Theory

of Equations in the 18th Century: The Work of Joseph Lagrange,” Archive for History of

Exact Sciences 16 (1976):17–36.

3. For example, solve ix2 � 2x � 1 � 0 and show that x � �i � . Then

show that x � �i � and x � �i � are not a conjugate pair. In

fact, the conjugate of x � �i � is i � .

4. E. T. Bell, The Development of Mathematics (2nd edition), McGraw-Hill 1945,

p. 176.

APPENDIX B

The Complex Roots of a Transcendental Equation

1. James Pierpont, “On the Complex Roots of a Transcendental Equation Occurring

in the Electron Theory,” Annals of Mathematics 30 (1929):81–91. The inspiration for

Professor Pierpont was G. A. Shott, “The Theory of the Linear Oscillator and Its Bear-

ing on the Electron Theory,” Philosophical Magazine 3 (April 1927):739–52.

APPENDIX C

to 135 Decimal Places and How It Was Computed

1. Newton (1642–1727) derived his fast-convergent series for � during 1665–66,

when he fled plague-ridden London to return home to the family farm at Woolsthorpe in

Lincolnshire. Thus, his series predates the one due to Leibniz-Gregory (discussed in

chapter 6), but it did not appear in print until many years later, in the 1736 posthumous

publication of an English translation (The Method of Fluxions and Infinite Series) of his

original Latin manuscript. It was during this same period in Woolsthorpe that Newton

discovered but didn’t publish the power series expansion for ln(1 � x) before Mercator

(see the discussion in section 6.3). This is the series used by Schellbach to calculate �

from —again, as discussed in chapter 6—and which Newton used to calculate

various “interesting” numbers out to as many as sixty-eight decimal places.

2-1

a2-1(2-1)b

2-1 + i2-1 - i Z - i -2-1 + i

2-1 + i2-1 + i

2-1 + i
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2. H. S. Uhler, “On the Numerical Value of ii,” American Mathematical Monthly 28

(March 1921):114–16. 

3. Horace S. Uhler, “Special Values of eK�, COSH(K�) and SINH(K�) to 136 Fig-

ures,” Proceedings of the National Academy of Sciences 33 (February 1947):34–41.

4. With the development of powerful mathematical programming languages such as

MATLAB (see figure 7.8), the calculation of ii can be done in a flash with a digit count

far beyond Uhler’s. For example, the single line of code

vpa(�i � i�, 140) 

invokes the variable-precision arithmetic command which tells MATLAB to print ii to

140 digits. My little laptop did that in less than a second; the displayed answer was

exactly Uhler’s. And now you can see how to calculate the answer to the question that

opens this appendix. To begin, notice that there are two values for the expression, i.e.,

since �1 � e�i� and since , then . We

can immediately reject as an integer, because it is both greater than zero and

less than one. But what of ? It is obviously pretty big, but is it an integer?

Writing the MATLAB command 

vpa(�exp(pi * sqrt(163))�, 37) 

gives the value of

= 262, 537, 412, 640, 768, 743.99999999999925007,

and so the answer is no, the expression is not an integer. It is, in fact, transcendental.

But it misses being an integer by oh so very, very little! For a theoretical explanation of

what is behind this result, see Philip J. Davis, “Are There Coincidences in Mathemat-

ics?” American Mathematical Monthly 88 (May 1981):311–20.

1-122-163

e�2163
e-�2163

1-122-163 = e��21632-163 = �i2163
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Name Index

Abd er-Rassul, Ahmed and Mohammed, 3
Abel, Niels, 190
Airy, George, 83
Ampere, Andre-Marie, 126
Apéry, Roger, 149
Arago, Dominique, 142
Argand, Jean-Robert, 73–74, 76–78, 227
Aristarchus, 111
Aristotle, 111
Asimov, Isaac, 223
Auden, Wystan Hugh, 13–14, 224

Bannister, Roger, 15
Bell, Eric Temple, 78, 229
Beman, Wooster Woodruff, 4
Benedict XIV (Pope), 158
Bernoulli, Daniel, 142
Bernoulli, John, 91, 142–43, 145, 148, 157–

60, 162, 216
Bernoulli, Nicolas, 142
Bombelli, Rafael, 18–19, 22–25, 31, 58
Boole, George, 83
Brahe, Tycho, 113
Buée, Adrien-Quentin, 75–77

Campbell, George, 258n
Cardan. See Cardano, Girolamo
Cardano, Girolamo (“Cardan”), 16–19, 24,

74, 224, 248 (n.3, n.4)
Carnot, Lazare, 75–76, 189
Carnot, Sadi, 75
Catherine I (Tsarina of Russia), 142
Catherine the Great (Tsarina of Russia), 143
Cauchy, Augustin-Louis, 53, 73, 120, 175,

179, 187–90, 193, 195, 197, 203, 208,
213–14, 221, 225, 255n, 256n, 257n

Cavendish, Henry, 115
Charles I (King of England), 41
Charles X (King of France), 190
Christ, 240
Christina (Queen of Sweden), 34
Christoffel, Elwin Bruno, 222

Clausen, Thomas, 79
Collins, John, 42
Copernicus, Nicolaus, 112–13
Cotes, Roger, 86, 91, 162–63, 165–66
Coulomb, Charles, 126
Cromwell, Oliver, 41

d’Alembert, Jean le Rond, 78, 193, 227–
28

D’Arsonval, Arsène, 131
de Broglie, Louis, 79
del Ferro, Scipione, 8–13, 14–15, 248n
De Moivre, Abraham, 56–57, 162, 178
DeMorgan, Augustus, xxiv, 82
Descartes, René, 6, 31–32, 34–37, 40, 43,

46, 227, 250n
Diderot, Denis, vii
Diophantes, 4–8, 26, 247n
Dirichlet, Gustav-Peter Lejeune, 182, 223
Disney, Walt, 141

Einstein, Albert, 97, 101, 103–5, 253n
Eratosthenes (of Cyrene), 151
Euclid, 4–5, 80, 150–51, 224
Euler, Leonhard, 10, 12, 14, 57, 78, 110,

142–47, 149–52, 157- 58, 166–67, 174–
80, 182, 189, 201, 216–17, 225, 227, 235,
237, 254n, 255n

Fagnano, Giulio Carlo dei Toschi, 158–60,
218

Faraday, Michael, 127
Feynman, Richard, 67, 113–14, 254n
Fibonacci. See Pisano, Leonardo
Fior, Antonio Maria, 15, 248n
Fontana, Niccolo (“Tartaglia”), 15–16, 74,

248n
Fourier, Jean Baptiste Joseph, 222
Francais, Francois, 73
Francais, Jacques, 73–74, 77
Fredrick the Great (of Prussia), 143
Fresnel, Augustin Jean, 175
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Galilei, Galileo, 100–101, 112–13
Gamow, George, 6, 92–93
Gates, Bill, 237
Gauss, Carl Friedrich, 57, 79, 81–83, 154,

182, 190, 201, 204, 224, 227, 235
Girard, Albert, 227
Gleick, James, 67

Golenishelev, V. S., 3
Goursat, Edouard, 204
Green, George, 204–5
Gregory, James, 42, 173

Hadamard, Jacques, 70, 154–55
Hamilton, William Rowan, xxiv, 73, 75, 77,

79–81, 252n
Hankel, Hermann, 74
Hardy, Godfrey Harold, 153–55
Heath, Thomas L., 239
Heinlein, Robert, xxi
Henri III (King of France), 22
Henri IV (King of France), 22
Henry, Joseph, 127
Heron (of Alexandria), 3–4, 6–7, 224
Hertz, Heinrich, xxiii, 131
Hewlett, William, 140
Hilbert, David, 155
Hippocrates, 8
Hoëné-Wro , 254n
Hoüel, Guillaume-Jules, 73–74, 252n
Hurwitz, Adolf, 222
Huygens, Christian, 24, 148, 249n

Jefferson, Thomas, 224–26
Jordan, Camille, 202
Juel, Sophus Christian, 251n

Kac, Mark, 9, 257n
Kant, Immanuel, 80
Kasner, Edward, 105–7
Kelvin, Lord. See Thomson, William
Kepler, Johann, 113–14, 121
Kirchhoff, Gustav, 128
Kowalevski, Sophie, 253n
Kronecker, Leopold, 190

Lacroix, Sylvestre Francois, 252n
Lagrange, Joseph Louis, 59–60, 188, 227

Lambert, Johann, 167
Laplace, Pierre-Simon, 82, 188, 194, 213
Laurent, Pierre Alphonse, 221
Legendre, Adrien-Marie, 73–74, 149, 189,

255n
Leibniz, Gottfried, 24–26, 41, 90, 148, 159,

162, 173, 229, 249n
L’Hôpital, Guillaume F. A. de, 216
Littlewood, John Edensor, 154–55
Lodge, Oliver, 125
Lorentz, Hendrik Antoon, 101
Louis-Philippe (King of France), 189
Louis XV (King of France), 158
Louis XVI (King of France), 189
Lützen, Jesper, 204

Mach, Ernst, 47
Machin, John, 174
MacLaurin, Colin, 258n
Mahaviracarya, 6
Marconi, Guglielmo, xxiii
Maxwell, James Clerk, 101, 205, 222–23
Mengoli, Pietro, 148
Mercator, Nicolaus, 147, 258n
Mill, John Stewart, 250n
Minkowski, Hermann, 104, 253n
Monge, Gaspard, 189
Montucla, Jean, 148
Morera, Giacinto, 204
Mourey, C. V., 77, 252n

Napoleon I (Emperor of France), 188–89
Newton, Isaac, 14, 41, 56–57, 98, 110–11,

113–16, 235, 258n
Nicholson, James W., 254n

Ohm, Georg, 125
Oresme, Nicole, 146
Ostrogradski, Mikhail, 205

Pacioli, Luca, 8
Packard, David, 141
Paul III (Pope), 112
Peirce, Benjamin, 67–68, 172
Pell, John, 148
Pemberton, Henry, 91
Peter the Great (Tsar of Russia), 142

ński, Jozef Maria, 144´

Goldbach, Christian, 143, 255n
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Pierpont, James, 230, 234, 258n
Pisano, Leonardo (“Fibonacci”), 26, 94, 97,

249n
Plato, 33–34
Poisson, Siméon-Denis, 175, 196, 255n
Ptolemy (of Alexandria), 56, 111–13, 121
Pythagoras (of Samos), 44

Ramanujan, Srinivasa, 169
Rayleigh, Lord. See Strutt, John William
Riccati, Vincenzo, 168
Riemann, Georg, 152, 154, 182, 184–85,

193–94, 223, 225
Routh, Edward John, 222
Rutherford, Ernst, 254n

Schellbach, Karl Heinrich, 172–74, 258n
Schrödinger, Erwin, 79
Schwarz, Herman Amandus, 222
Servois, Francois-Joseph, 74
Smith, Robert, 91
Steinmetz, Charles, 136–37
Stokes, George, 199, 205
Strutt, John William (“Lord Rayleigh”), 125,

132
Sundman, Karl F., 110

Tartaglia. See Fontana, Niccolo
Theaetetus, 33, 167
Theodorus (of Cyrene), 33–34, 169
Thomson, William (“Lord Kelvin”), 178,

197–98, 205
Truel, Henri Dominique, 54

Uhler, Horace Scudder, 235–37, 259n

Vallée-Poussin, Charles-Joseph de la, 154–
55

van Roomer, Adrian, 62
Viète, Francoise, 22–24, 58, 61–62, 169,

249n
Volta, Alessandro, 127
vos Savant, Marilyn, 224

Wallis, John, 14, 41–47, 49–50, 148, 176
Wang, Quidong, 110
Warren, John, 77
Weinbaum, Stanley G., 256n
Wessel, Caspar, 48–54, 56–57, 65–66, 69,

73, 75–78, 82, 174, 226, 251n
Wunsch, A. David, 257n
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absurd root of an equation. See roots of an
equation, negative

ac (alternating current), 125, 132
acceleration, 97, 114, 116–17
Acta Eruditorum (Leibnitz), 90
Algebra (Bombelli), 18–19, 24, 31
Algebra (Euclid), 14
Algebra (Euler), 12, 14, 31
Algebra (Wallis), 42
Almagest (Ptolemy), 111
amplifier, electrical, 137–38
Analyse des In niment Petits

(L’Hôpital), 216
analytic: continuation, 153, 211; function,

190, 193–95, 208, 221, 255n
aphelion, 119
apogee, 119
argument, of a complex number, 49
Arithmetica (Diophantus), 4–5, 247n
Arithmetica In nitorium (Wallis), 14, 41,

148
Ars Magna (Cardan), 16, 248n
astronomical unit, 121

Bernoulli’s integral, 145–46
binomial: coef cient, 61–62, 69; 

theorem, 61, 161

capacitor, 127
Cardan formula, for a cubic equation, 16–20,

22–24, 41, 56, 58, 61, 224, 248n
Cauchy’s integral theorems. See

Cauchy-Riemann equations, 191–94, 223
charge, electric, 125–26
Clausen’s puzzle, 238–39
complex plane, 49, 65–66, 73, 82, 107–9,

133, 153, 209
conformal mapping, 221–22
conic section, 119
conjugate, 19, 25–26, 60, 134, 214, 228–29,

232, 249n

contour, 195–96, 201–2, 209–10
contour integration, 120, 179, 184, 187–88,

195–221, 256n
contrapolar power, xxii–xxiii
cosine, in nite product form, 157
Coulomb’s law, 126
couple, 80–81, 252n. See also quaternion
cross-cut, 209
current, electric, 125–26
cyclotomic equation, 58–60, 70–71,

91, 214–15

dc: average of a function, 62; direct current,
125, 129–30

De Moivre’s theorem, 56–65, 184, 214
derivative, of a complex function, 191–92,

220, 223
dimensional analysis, 119
Dirichlet’s discontinuous integral, 180–82
distance function, 98, 101–3, 109, 253n
Doctrine of Chances, The (De Moivre), 57

eccentricity, of an ellipse, 113, 218
electricity, laws of, 125–29. See also

Kirchhoff’s laws
Electricity and Magnetism (Maxwell), 205,
222 23

Elements (Euclid), 4–5, 80, 150
equation: cubic, 8–25, 28–30; cyclotomic
(see cyclotomic equation); quadratic, xxiii,
5–6, 8, 17, 25, 27–28, 34–39
Essay on the Geometrical Interpretation of

Imaginary Quantities (Argand), 73
Euler’s constant, 147
Euler’s identity, 67, 143–45, 157, 162–65,

179, 217–18, 232, 244, 254n
Exercises du calcul Intégral (Legendre),

189
exponential: form of complex numbers,

65–72, 79, 108–9, 114–16, 118, 121–23,
125, 132–33; form of trigonometric func-
tions, 68–70, 143, 167–68, 218

Subject Index

integral 
theorems

fi

fi

fi

fi
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factorial function, 62, 176. See also gamma
function

false: root of an equation. See roots of an
equation, negative

fictitious: root of an equation. See roots of an
equation, negative

Fourier integral, 222
frequency, 130–31, 133, 138, 140
Fresnel integrals, 175–80, 184, 189, 199–201
frustum, of a pyramid, 3–4, 224, 247n
functional equation: gamma, 175; zeta, 185–

86, 223
fundamental theorem: of algebra, 227–28; of

calculus, 207

Galaxy Science Fiction magazine, 247n

255n; reflection formula, 182 84, 217,

Gamow’s problem, 92–94
Gauss’ theorem. See integral theorems
geocentric, 111–13
geometric series, 108, 217
Géométrie de Position (Carnot), 75–76
Geometrie, La (Descartes), 6, 31–32, 41, 43,

227, 250n
genius, Kac’s definition of, 9
gravity, 110, 115–16
Green’s theorem. See integral theorems

Hamiltonian, 79
Harmonia Mensurarum (Cotes/Smith), 91,

166
Harmony of the Worlds (Kepler), 113
harmonic function, 194. See also Laplace’s

equation
harmonic series, 146–47, 152
heliocentric, 112
Hilbert’s Eighth Problem. See Riemann hy-

pothesis
hyperbolic function, 167–72
hypercomplex. See quaternion
hyperspace, 105–6

imaginary root, of an equation. See roots of
an equation, imaginary

inductor, 127
integral theorems: Cauchy’s, 190, 197, 201–

4, 208–12, 214–16, 219–21; Gauss’, 204;
Green’s, 203–8; Ostrogradski’s, 205;
Stokes’, 204

Introductio in Analysis Infinitorum (Euler),
144, 156

invariance, 98
inverse square law: electricity (see Cou-

lomb’s law); gravity, 110, 115, 126,
253n

i: perpendicularity, 47, 75–76; rotation oper-
ator, 53–54, 81, 92, 94, 104, 224

ii, 67–68, 77–78, 158; Euler, 166; Fagnano,
158–60; Uhler, 235–37

Jordan’s theorem, 202

Kepler’s laws, of planetary motion, 113,
117–20, 122, 218

Kirchhoff ’s laws, of electrical circuits, 128–
30, 132

Laplace’s equation, 194, 222. See also har-
monic function

Laplace transform, 222, 240–43
Laurent series, 221
L’Hôpital’s rule, 216
Liber abaci (Pisano), 249n
Liber quadratorum (Pisano), 26
Linear Associative Algebra (Peirce), 68
L’Invention Nouvelle en L’Algebra (Girard),

227
logarithm: of a negative number, 67; power

series expansion, 147, 152, 172, 258n
Logarithmotechnia (Mercator), 147

many-valued functions, 78, 166–67, 223;
principle value, 78, 166–67

MATLAB, 225, 259n
matrix, 252n
mean proportional, 42–45, 47
meter, electrical, 131–32, 136
metric. See distance function
modulus, 49, 73
Moscow Mathematical Papyrus, 3, 5, 247n
motion, Newton’s laws of, 115–16

numbers: completeness of, 66, 82; complex,
10, 12, 49–50; ordering of, 12

n-body problem, 109–10

. See also factorial function

gamma function, 175–76, 182–84, 244,

244
–
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New Astronomy (Kepler), 113
Novae Quadraturae Arithmeticae (Mengoli),

148

Ohm’s law, 125, 127
On the Revolutions of the Heavenly Bodies

(Copernicus), 112
One, Two, Three, . . . , Infinity (Gamow), 6,

92
Opusculorum ad Res Physicas et Mathe-

maticas Pentinentium (Riccati), 168
orbital equation, 118–20
oscillator, electrical, 137–41

perigee, 119
perihelion, 119
phase, 138–39
pi, 53, 149, 235; power series expansion,

172–74, 258n; Wallis’ product, 41, 156;
Viète’s product, 63–64, 249n

polar, form of complex number, 49–50, 52–
53, 55–58, 70–71, 144, 167, 170–71, 179,
229

pole: simple, 208, 212, 215, 257n; high or-
der, 208, 219

Popular Electronics magazine, xxi,
xxiii–xxiv, 247n

potential difference. See voltage
prime number theorem, 154
prime numbers: infinity of, 150–52; unique

factorization of, 150–51
Principia (Newton), 91, 110, 116, 162
Pythagorean theorem, 90, 98

quadratic. See equation
quadrature, of the circle, 8
quaternion, 81, 252n

rainbow, 34
Rayleigh’s puzzle, of splitting alternating

currents, 125–37
recurrence equation, 94–97, 249n
relativity: special theory of, 97–104, 253n;

general theory of, 105, 253n
residue, 189
resistor, 127, 129–30
retrograde motion, of the planets, 111, 120–

24

Riemann hypothesis, 153–55
roots of an equation: complex, xxiii, 6, 17, 

27–30, 34–38, 258n; negative, 5–6, 
13–14, 23, 35

sine, infinite product form, 155–56
singularity. See pole
skepticism, toward imaginary numbers, 6–7,

31, 81–83, 224
sophisticated root of an equation. See roots

of an equation, imaginary
Space and Geometry (Mach), 47
Space Shuttle, 120
spacetime, 80, 97–103, 253n
stability, 221–22
Stargate film, 105
Star Trek television program, 80
Stereometria (Heron), 4
Stokes’ theorem. See integral theorems
subtle root of an equation. See roots of an

equation, imaginary
Summa de Arithmetica, Geometria, Propor-

tioni et Proportionalita (Pacioli), 8

Theodorus’ spiral, 33–34
Theory of the Moon’s Motion (Euler), 110
Thrilling Wonder Stories magazine, 256n
time, imaginary, 75, 103, 253n
transformation equations: Galilean, 100;

Lorentzian, 101
Treatise on the Geometrical Representation

of the Square Roots of Negative Quantities
(Warren), 77

vector: algebra, 50–53, 84–85, 108; radius or
position, 49, 55, 114–15, 121–22; unit,
114–15

velocity, 114
Viète’s trigonometric formula, for the cubic

equation, 22–24, 58, 61, 169
voltage, 126–28

wormholes. See hyperspace

“X-Minus One” radio program, 247n

zeta function, 146, 150–55. See also
Riemann hypothesis
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An 
Imaginary 

Tale 

The 
Story 

PaulJ. Nahin 

Today complex numbers have such widespread 
practical use—from electrical engineering to aero
nautics—that few people would expect the story 
behind their derivation to be filled with adventure 
and enigma. In An Imaginary Tale, Paul Nahin tells 
the 2000-year-old history of one of mathematics' 
most elusive numbers, the square root of minus 
one, also known as i, re-creating the baffling math
ematical problems that conjured it up and the col
orful characters who tried to solve them. 

In 1878, when two brothers stole a mathe
matical papyrus from the ancient Egyptian burial 
site in the Valley of Kings, they led scholars to the 
earliest known occurrence of the square root of a 
negative number. The papyrus offered a specific 
numerical example of how to calculate the volume 
of a truncated square pyramid, which implied the 
need for i In the first century, the mathematician-
engineer Heron of Alexandria encountered i in a 
separate project, but fudged the arithmetic; 
medieval mathematicians stumbled upon the con
cept while grappling with the meaning of negative 
numbers, but dismissed their square roots as non
sense. By the time of Descartes, a theoretical use 
for these elusive square roots—now called "imagi
nary numbers"—was suspected, but efforts to 
solve them led to intense, bitter debates. The noto
rious i finally won acceptance and was put to use in 
complex analysis and theoretical physics in 
Napoleonic times. 

Addressing readers with both a general 
and scholarly interest in mathematics, Nahin 
weaves into this narrative entertaining historical 
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facts, mathematical discussions, and the applica
tion of complex numbers and functions to impor
tant problems, such as Kepler's laws of planetary 
motion and ac electrical circuits. This book can be 
read as an engaging history, almost a biography, of 
one of the most evasive and pervasive "numbers" 
in all of mathematics. 

PaulJ. Nahin is Professor of Electrical Engineering 
at the University of New Hampshire. He is the 
author of Oliver Heaviside, Time Machines, and 
The Science of Radio, and of two dozen short sci
ence fiction stories, published in Omni, Analog, 
and Twilight Zone magazines. 

"Paul Nahin delivers more than the story of i. His 
book is a hymn to the power of complex analysis—in 
mathematics, physics, and engineering. The histori
cal passages and personal anecdotes are well told, 
with the right touch of wit, while the applications to 
interesting problems in physics and engineering will 
appeal to theoretically and practically minded 
readers alike." 

—Arturo Sangalli, author of 
The Importance of Being Fuzzy 
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"The histories of two of the most famous numbers in mathemat
ics, n and e, have been written for the general public, but that of i 
was, until now, buried in scholarly works. In this engaging book, 
Paul Nahin provides us with the missing link. Dispelling many 
common myths about the origin of the mystic 'imaginary' unit, 
Nahin tells the story of i from a historic as well as human per
spective. His enthusiasm and informal style easily catch on to the 
reader. An Imaginary Tale is a must for anyone curious about the 
evolution of our number concept." 

—Eli Maor, author of Trigonometric Delights, e: The Story of 
a Number, and To Infinity and Beyond 

"Paul Nahin—famous for his clear, witty, and profound science 
books—brings us yet another jewel. When imaginary numbers 
were first considered, many people were not sure of their validity. 
What real-world significance could they have? Today, amazingly, 
imaginary numbers are everywhere in science—from hydrody
namics to electrical theory. The Space Shuttle's flight software 
uses them for navigation. They're used by protein chemists for 
spatially manipulating models of protein structure. 

Rarely does one come across books on mathematics with 
such breadth, beauty, and insight. Nahin's work includes fascinat
ing and valuable information—not only for curious students and 
laypeople—but also for the seasoned researcher. The eclectic 
Nahin is both a mathematician and a poet, and with the cold logic 
of the one and the inspired vision of the other, he selects topics 
sure to stimulate readers' imagination and sense of wonder at the 
incredible vastness of our mathematical universe." 

—Clifford Pickover, author of Strange Brains and Genius 

"Are you happy with negative numbers even though you have 
never seen minus two dogs? For centuries, even mathematicians 
gave negative numbers a wide berth, but now, due to their famil
iarity and usefulness, everyone accepts them without a second 
thought. But what about i? If your progress in mathematics has 
reached high school senior or freshman college levels, but you are 
still just a little bit hesitant about accepting V-l into the family of 
numbers on a fully equal footing with say v2, then this book is for 
you. In it Paul Nahin relates the fascinating story of how i liter
ally forced its way into a world reluctant to accept it and how, when 
its true meaning was finally recognized, it opened up a whole new 
world of glorious mathematics. The book abounds with beautiful 
examples of the power of i to produce relationships between 
trigonometric quantities and to bring seemingly intractable geo
metric problems to their knees with almost embarrassing ease. 
The historical perspective lends a delightfully human touch to the 
increasingly challenging complex-number adventures within and, 
although it is advisable to have pencil and paper 'at the ready' as 
you proceed, the gems of both mathematics and physics that pass 
by make any detailed verifications that you feel the need to make 
along the way well worth the effort By the end of the book, not 
only will i feel like a trusted and true member of the family of 
numbers, but you will find it difficult to imagine that anything of 
true mathematical elegance was ever produced without it" 

—Malcolm E. Lines, author of On the Shoulders of Giants, Think 
of a Number, and A Number for Your Thoughts 
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