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ix

        Preface to the Second Edition   

  a scientific book  is an unintentional time capsule. It has no sell-by date, which 
oft en means that readers will evaluate its theories, facts, and evidence, many years aft er 
publication, and do so with the omniscience of hindsight.  Th e Number Sense , a book 
I wrote fi ft een years ago, in my late twenties, is no exception to this rule. 

 I was lucky to start work on  Th e Number Sense  in the early 1990s, at a time when 
number research was in its infancy. A handful of laboratories had only just begun to 
scratch the surface of the fi eld. Some focused on how infants perceived sets of objects. 
Others specialized in the way schoolchildren learn their multiplication tables, or studied 
the bizarre behavior of patients suff ering from brain lesions that disrupted calculation. 
Finally, some, like me, made the fi rst forays into brain imaging research to fi nd out which 
brain areas lit up when students were asked a simple arithmetic question, like, is 6 larger 
than 5? Only a few of us, at the time, could see how all these studies would one day be 
pulled together into a single fi eld, mathematical cognition, with multifaceted techniques 
all aimed at answering Warren McCulloch’s stimulating query: 

  “What is a number, that a man may know it, and a man, that he may know a 
number?”    

  Th e Number Sense  was written with this single goal in mind: to assemble all the avail-
able facts on how the brain does elementary arithmetic, and prove that a new and promis-
ing fi eld of research, ripe with empirical fi ndings, was dawning. I also hoped that it might, 
perhaps, shed light on ancient philosophical disputes that questioned the very nature of 
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mathematics. During the three years that it took me to put together all the diff erent lines 
of research in the fi eld, my enthusiasm increased as I realized how all the pieces of this 
complex puzzle fi tted together into a coherent whole. Animal research on number 
pointed to an age-old competence for processing approximate quantities. Th is “number 
sense,” which is also present in infants, gave humans the intuition of number. Cultural 
inventions, such as the abacus or Arabic numerals, then transformed it into our fully-
fl edged capacity for symbolic mathematics. It was therefore obvious that a careful look at 
the brain structures for the number sense could shed much light on our understanding of 
mathematics. It provided a clear view of how evolution had proceeded, and reconnected 
our human abilities for mathematics to the way monkeys’ and even rats’ and pigeons’ 
brains represent numbers. 

 Since this book was written, some fi ft een years ago, a fl urry of innovative research 
has given this area a stronger impetus that I ever imagined. Mathematical cognition is 
now a well-established domain in cognitive science, and is no longer centered exclusively 
on the concept of number and its origins but has expanded into the related domains of 
algebra and geometry. Several research topics that were merely outlined in  Th e Number 
Sense  have become fully-fl edged areas of research: number sense in animals, brain imag-
ing of numerical computations, the nature of the impairment in children with mathemat-
ical diffi  culties …  One of the most exciting breakthroughs has been the discovery of single 
neurons that code for number in the monkey brain, at a precise site in the parietal lobe 
that appears to be a plausible homolog of the human area that activates when we calcu-
late. Another rapidly developing area has to do with the application of this knowledge to 
education: we are beginning to understand how schooling develops the understanding of 
exact number and arithmetic, and how children who are at risk of developing dyscalculia 
can be helped with very simple games and soft ware. 

 When I reread the fi rst edition of this book, I was pleased to see that all of these ideas 
were already germinating, albeit somewhat speculatively, fi ft een years ago. Now that 
research fi ndings have solidly grounded them, I am convinced that a new edition of 
 Th e Number Sense  is in order. To be sure, several excellent books had been published 
since 1997, among them Brian Butterworth’s  Mathematical Brain  (1999), Rafael Núñez 
and George Lakoff ’s  Where Mathematics Comes From  (2000), and Jamie Campbell’s 
edited  Handbook of Mathematical Cognition  (2004). But none of them captures the full 
range of what we understand today about number and the brain. 

 I am grateful to my agents, Max and John Brockman, and to my editors, Abby Gross 
and Odile Jacob, for encouraging me to embark on this new version and for helping me 
to decide what form it should take. We quickly agreed that to rewrite the past would be 
awkward or even presumptuous. It seemed important to give the reader an appropriate 
sense of how the fi eld came into being twenty years ago, what motivated our current 
hypotheses, and how experimental methods had evolved since then, either to fl esh out 
our theories — or, occasionally, but fortunately not too oft en, to refute them. Th us, 
we conceived a second edition that would leave the original untouched but would 
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 supplement it with new references and, above all, a long, new, fi nal chapter outlining the 
most outstanding discoveries that have been made since the fi rst edition appeared. 
Selecting the fi ndings that belonged in this chapter was an arduous task, since the fi eld 
has literally exploded in the last fi ft een years. Indeed, there are now hundreds of scientifi c 
fi ndings that would have been relevant. Nevertheless, I decided to stick to a small list 
of surprising facts that, I believe, illuminate what arithmetic is at the brain level, and 
therefore how we should teach it. 

 Most mathematicians, overtly or covertly, are Platonists. Th ey picture themselves as 
explorers of a continent of ideas independent of the human mind, older than life and 
immanent in the very structure of the Universe. In his treatise on  Th e Nature and Meaning 
of Numbers , the great mathematician Richard Dedekind, however, thought otherwise. 
Numbers, he said, are “free creations of the human mind,” “an immediate emanation from 
the pure laws of thought.” I could not agree more — but then the burden of elucidation 
clearly falls upon psychologists and neuroscientists, who will have to fi gure out how 
a fi nite brain, a mere collection of nerve cells, can conceive such abstract thoughts. 
Th e present book should be considered as a modest contribution to this fascinating 
question. 

 S.D. 
 Palaiseau, France 

 July 2010    
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        Preface to the First Edition   

  we are surrounded  by numbers. Etched on credit cards or engraved on coins, 
printed on pay checks or aligned on computerized spread sheets, numbers rule our lives. 
Indeed, they lie at the heart of our technology. Without numbers, we could not send 
rockets roaming the solar system, nor could we build bridges, exchange goods, or pay our 
bills. In some sense, then, numbers are cultural inventions only comparable in impor-
tance to agriculture or to the wheel. But they might have even deeper roots. Th ousands 
of years before Christ, Babylonian scientists used clever numerical notations to compute 
astronomical tables of amazing accuracy. Tens of thousands of years prior to them, 
Neolithic men recorded the fi rst written numerals by engraving bones or by painting 
dots on cave walls. And, as I shall try to convince you later on, millions of years earlier 
still, long before the dawn of humankind, animals of all species were already registering 
numbers and entering them into simple mental computations. Might numbers, then, 
be almost as old as life itself ? Might they be engraved in the very architecture of our 
brains? Do we all possess a “number sense,” a special intuition that helps us make sense 
of numbers and mathematics? 

 Around the age of sixteen, as I was training to become a mathematician, I became 
fascinated by the abstract objects I was taught to manipulate, and above all by the sim-
plest of them — numbers. Where did they come from? How was it possible for my brain 
to understand them? Why did it seem so diffi  cult for most people to master them? 
Historians of science and philosophers of mathematics had provided some tentative 
answers, but to a scientifi cally oriented mind their speculative and contingent character was 
unsatisfactory Furthermore, scores of intriguing facts about numbers and mathematics 
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were left  unanswered in the books I knew of. Why did all languages have at least some 
number names? Why did everybody seem to fi nd multiplications by seven, eight, or 
nine particularly hard to learn? Why couldn’t I seem to recognize more than four objects 
at a glance? Why were there ten boys for one girl in the high-level mathematics classes 
I was attending? What tricks allowed lightning calculators to multiply two three-digit 
numbers in a few seconds? 

 As I learned increasingly more about psychology, neurophysiology, and computer 
science, it became obvious that the answers had to be looked for, not in history books, 
but in the very structure of our brains — the organ that enables us to create mathematics. 
It was an exciting time for a mathematician to turn to cognitive neuroscience. New exper-
imental techniques and amazing results seemed to appear every month. Some revealed 
that animals could do simple arithmetic. Others asked whether babies had any notion 
of 1 plus 1. Functional imaging tools were also becoming available that could visualize 
the active circuits of the human brain as it calculates and solves arithmetical problems. 
Suddenly, the psychological and cerebral bases of our number sense were open to experi-
mentation. A new fi eld of science was emerging: mathematical cognition, or the scien-
tifi c inquiry into how the human brain gives rise to mathematics. I was lucky enough to 
become an active participant in this quest. Th is book provides a fi rst glance at this new 
fi eld of research that my colleagues in Paris, and several research teams throughout the 
world, are still busy developing. 

 I am indebted to many people for helping me complete the transition from mathemat-
ics to neuropsychology. First and foremost, my research program on arithmetic and the 
brain could never have developed without the generous assistance of three outstanding 
teachers, colleagues, and friends who deserve very special thanks: Jean-Pierre Changeux 
in neurobiology, Laurent Cohen in neuropsychology, and Jacques Mehler in cognitive 
psychology. Th eir support, advice, and oft en direct contribution to the work described 
here have been of invaluable help. 

 I would like to acknowledge my many research companions of the past two decades, and 
particularly the crucial contribution of the many students and post-docs, many of whom 
became essential collaborators and, quite simply, friends that count: Rokny Akhavein, Serge 
Bossini, Marie Bruandet, Antoine Del Cul, Raphaël Gaillard, Pascal Giraux, Ed Hubbard, 
Véronique Izard, Markus Kiefer, André Knops, Étienne Kœchlin, Sid Kouider, Gurvan 
Leclec’H, Cathy Lemer, Koleen McCrink, Nicolas Molko, Lionel Naccache, Manuela 
Piazza, Philippe Pinel, Maria-Grazia Ranzini, Susannah Revkin, Gérard Rozsavolgyi, Elena 
Rusconi, Mariano Sigman, Olivier Simon, Arnaud Viarouge, and Anna Wilson. 

 For the fi rst edition of this book, I also benefi ted from the advice of many other emi-
nent scientists. Mike Posner, Don Tucker, Michael Murias, Denis Le Bihan, André Syrota, 
and Bernard Mazoyer shared with me their in-depth knowledge of brain imaging. 
Emmanuel Dupoux, Anne Christophe, and Christophe Pallier advised me in psycholin-
guistics. I am also grateful for ground-shaking debates with Rochel Gelman and Randy 
Gallistel, and for judicious remarks by Karen Wynn, Sue Carey, and Josiane Bertoncini 
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on child development. Th e late professor Jean-Louis Signoret had introduced me to the 
fascinating domain of neuropsychology. Subsequently, numerous discussions with 
Alfonso Caramazza, Michael McCloskey, Brian Butterworth, and Xavier Seron greatly 
enhanced my understanding of this discipline. Xavier Jeannin and Michel Dutat, fi nally, 
assisted me in programming my experiments. 

 For this second edition, many additional collaborators, in France and abroad, helped 
me progress in my research: Hillary Barth, Eliza Block, Jessica Cantlon, Laurent Cohen 
Jean-Pierre Changeux, Evelyn Eger, Lisa Feigenson, Guillaume Flandin, Tony Greenwald, 
Marc Hauser, Antoinette Jobert, Ferath Kherif, Andrea Patalano, Lucie Hertz-Pannier, 
Karen Kopera-Frye, Denis Le Bihan, Stéphane Lehéricy, Jean-François Mangin, 
J. Frederico Marques, Jean-Baptiste Poline, Denis Rivière, Jérôme Sackur, Elizabeth Spelke, 
Ann Streissguth, Bertrand Th irion, Pierre-François van de Moortele, and Marco Zorzi. 
I also gratefully acknowledge all the colleagues who, across the years and the oceans, through 
relentless discussions, helped me sharpen my thoughts and correct my errors. An exhaustive 
list is impossible, but my thoughts go fi rst and foremost to Elizabeth Brannon, Wim Fias, 
Randy Gallistel, Rochel Gelman, Usha Goswami, Nancy Kanwisher, Andreas Nieder, 
Michael Posner, Bruce McCandliss, Sally and Bennett Shaywitz, and Herb Terrace. 

 My research on numerical cognition received a massive boost when I received a 
ten-year Centennial Fellowship grant from the McDonnell Foundation, which played 
an essential role in my career. It was also supported by INSERM (French Institute for 
Health and Medical Research, CEA (Atomic Energy Commission), Collège de France, 
Paris XI University, the Fyssen foundation, the Bettencourt-Schueller Foundation, the 
Volkswagen foundation, the Louis D. Foundation of the Institut de France, and the French 
Foundation for Medical Research. Th e preparation of this book greatly benefi ted from the 
close scrutiny of Brian Butterworth, Robbie Case, Markus Giaquinto, and Susana Franck 
for the English edition, and of Jean-Pierre Changeux, Laurent Cohen, Ghislaine Dehaene-
Lambertz and Gérard Jorland for the French edition. Warm thanks go also to Joan Bossert 
and Abby Gross, my editors at Oxford University Press, John Brockman, my agent, and 
Odile Jacob, my French editor. Th eir trust and support was very precious. 

 I would also like to thank the publishers and authors who kindly granted me the 
permission to reproduce the fi gures and quotes used in this book. Special thanks go 
to Gianfranco Denes for drawing my attention to the remarkable section of Ionesco’s 
 Lesson  that is cited in Chapter 8. 

 Last but not least, a word of thanks cannot suffi  ce to express my feelings for my family, 
Ghislaine, Oliver, David, and Guillaume, who patiently supported me during the long 
months spent exploring and writing about the universe of numbers. Th is book is dedi-
cated to them. 

 S.D. 
 Piriac, France 
 August 1996    
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        Introduction    

   as i first  sat down to write this book, I was faced with a ridiculous problem of arith-
metic: If this book is to have 250 pages and nine main chapters, how many pages will each 
chapter have? Aft er thinking hard, I came to the conclusion that each should have slightly 
fewer than 30 pages. Th is took me about fi ve seconds, not bad for a human, yet an eternity 
compared to the speed of any electronic calculator. Not only did my calculator respond 
instantaneously, but the result it gave was accurate to the tenth decimal: 27.7777777778! 

 Why is our capacity for mental calculation so inferior to that of computers? And 
how do we reach excellent approximations such as “slightly fewer than 30” without 
resorting to an exact calculation, something that is beyond the best of electronic calcula-
tors? Th e resolution of these nagging questions, which is the subject matter of this book, 
will confront us with even more challenging riddles:  

    •    Why is it that aft er so many years of training, the majority of us still do not know 
for sure whether 7 times 8 is 54 or 64 …  or is it 56?  

    •    Why is our mathematical knowledge so vulnerable that a small cerebral lesion is 
enough to abolish our sense of numbers?  

    •    How can a 5-month-old baby know that 1 plus 1 equals 2?  
    •    How is it possible for animals without language, such as chimpanzees, rats, and 

pigeons, to have some knowledge of elementary arithmetic?     

 My hypothesis is that the answers to all these questions must be sought at a single source: 
the structure of our brain. Every single thought we entertain, every calculation we 

Any poet, even the most allergic to 

mathematics, has to count up to twelve 

in order to compose an alexandrine.

raymond queneau



xviii  Introduction

perform, results from the activation of specialized neuronal circuits implanted in our 
cerebral cortex. Our abstract mathematical constructions originate in the coherent 
activity of our cerebral circuits, and of the millions of other brains preceding us that 
helped shape and select our current mathematical tools. Can we begin to understand the 
constraints that our neural architecture imposes on our mathematical activities? 

 Evolution, ever since Darwin, has remained the reference for biologists. In the case of 
mathematics, both biological and cultural evolution matter. Mathematics is not a static 
and God-given ideal, but an ever-changing fi eld of human research. Even our digital 
notation of numbers, as obvious as it may seem now, is the fruit of a slow process 
of  invention over thousands of years. Th e same holds for the current multiplication 
algorithm, the concept of square root, the sets of real, imaginary, or complex numbers, 
and so on. All still bear scars of their diffi  cult and recent birth. 

 Th e slow cultural evolution of mathematical objects is a product of a very special 
biological organ, the brain, that itself represents the outcome of an even slower biologi-
cal evolution governed by the principles of natural selection. Th e same selective pressures 
that have shaped the delicate mechanisms of the eye, the profi le of the hummingbird’s 
wing, or the minuscule robotics of the ant, have also shaped the human brain. From year 
to year, species aft er species, ever more specialized mental organs have blossomed within 
the brain to better process the enormous fl ux of sensory information received, and to 
adapt the organism’s reactions to a competitive or even hostile environment. 

 One of the brain’s specialized mental organs is a primitive number processor that pre-
fi gures, without quite matching it, the arithmetic that is taught in our schools. Improbable 
as it may seem, numerous animal species that we consider stupid or vicious, such as rats 
and pigeons, are actually quite gift ed at calculation. Th ey can represent  quantities men-
tally and transform them according to some of the rules of arithmetic. Th e scientists who 
have studied these abilities believe that animals possess a mental module, traditionally 
called the “accumulator,” that can hold a register of various  quantities. We shall see later 
how rats exploit this mental accumulator to distinguish series of two, three, or four 
sounds, or to compute approximate additions of two quantities. Th e accumulator mecha-
nism opens up a new dimension of sensory perception through which the cardinal of a set 
of objects can be perceived just as easily as their color, shape, or position. Th is “number 
sense” provides animals and humans alike with a direct intuition of what numbers mean. 

 Tobias Dantzig, in his book exalting “number, the language of science,” underlined the 
primacy of this elementary form of numerical intuition: “Man, even in the lower stages of 
development, possesses a faculty which, for want of a better name, I shall call  Number 
Sense.  Th is faculty permits him to recognize that something has changed in a small 
 collection when, without his direct knowledge, an object has been removed or added 
to the collection.”   1  

1  Dantzig, 1967. 
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 Dantzig wrote these words in 1954, when psychology was dominated by Jean Piaget’s 
theory, which denied young children any numerical abilities. It took twenty more years 
before Piagetian constructivism was defi nitely refuted and Dantzig’s insight was con-
fi rmed. All people possess, even within their fi rst year of life, a well-developed intuition 
about numbers. Later, we consider in some detail the ingenious experiments which dem-
onstrate that human babies, far from being helpless, already know right from birth some 
fragments of arithmetic comparable to the animal knowledge of number. Elementary 
additions and subtractions are already available to 6-month-old babies! 

 Let there be no misunderstanding. Obviously, only the adult  Homo sapiens  brain has 
the power to recognize that 37 is a prime number, or to calculate approximations of the 
number  π  .  Indeed, such feats remain the privilege of only a few humans in a few cultures. 
Th e baby brain and  a fortiori  the animal brain, far from exhibiting our mathematical 
fl exibility, work their minor arithmetical miracles only within quite limited contexts. 
In particular, their accumulator cannot handle discrete quantities, but only continuous 
estimates. Pigeons will never be able to distinguish 49 from 50, because they cannot 
represent these quantities other than in an approximate and variable fashion. For an 
animal, 5 plus 5 does not make 10, but only  about 10:  maybe 9, 10, or 11. Such poor 
numerical acuity, such fuzziness in the internal vision of numbers, prevents the emer-
gence of exact arithmetical knowledge in animals. By the very structure of their brains, 
they are condemned to an approximate arithmetic. 

 Humans, however, have been endowed by evolution with a supplementary compe-
tence: the ability to create complex symbol systems, including spoken and written 
language. Words or symbols, because they can separate concepts with arbitrarily close 
meanings, allow us to move beyond the limits of approximation. Language allows us 
to label infi nitely many diff erent numbers. Th ese labels, the most evolved of which are 
the Arabic numerals, can symbolize and discretize any continuous quantity. Th anks to 
them, numbers that may be close in quantity, but whose arithmetical properties are very 
diff erent, can be distinguished. Only then can the invention of purely formal rules for 
comparing, adding, or dividing two numbers be conceived. Indeed, numbers acquire a 
life of their own, devoid of any direct reference to concrete sets of objects. Th e scaff olding 
of mathematics can then rise, ever higher, ever more abstract. 

 Th is raises a paradox, however. Our brains have remained essentially unchanged since 
 Homo sapiens  fi rst appeared 100,000 years ago. Our genes, indeed, are condemned to a 
slow and minute evolution, dependent on the occurrence of chance mutations. It takes 
thousands of aborted attempts before a favorable mutation, one worthy of being passed 
on to coming generations, emerges from the noise. In contrast, cultures evolve through a 
much faster process. Ideas, inventions, progress of all kinds, can spread to an entire popu-
lation through language and education as soon as they have germinated in some fertile 
mind. Th is is how mathematics, as we know it today, has emerged in only a few thousand 
years. Th e concept of number, hinted at by the Babylonians, refi ned by the Greeks, puri-
fi ed by the Indians and the Arabs, axiomatized by Dedekind and Peano, generalized by 
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Galois, has never ceased to evolve from culture to culture — obviously, without requiring 
any modifi cation of the mathematician’s genetic material! In a fi rst approximation, 
Einstein’s brain is no diff erent from that of the master who, in the Magdalenian, painted 
the Lascaux cave. At elementary school, our children learn modern mathematics with a 
brain initially designed for survival in the African savanna. 

 How can we reconcile such biological inertia with the lightning speed of cultural 
evolution? Th anks to extraordinary modern tools, such as positron emission tomography 
or functional magnetic resonance imaging, the cerebral circuits that underlie language, 
problem solving, and mental calculation can now be imaged in the living human brain. 
We will see that when our brain is confronted with a task for which it was not prepared 
by evolution, such as multiplying two digits, it recruits a vast network of cerebral areas 
whose initial functions are quite diff erent, but which may, together, reach the desired 
goal. Aside from the approximate accumulator that we share with rats and pigeons, our 
brain probably does not contain any “arithmetical unit” predestined for numbers and 
math. It compensates this shortcoming, however, by tinkering with alternative circuits 
that may be slow and indirect, but are more or less functional for the task at hand. 

 Cultural objects — for instance, written words or numbers — may thus be considered 
as parasites that invade cerebral systems initially destined to a quite diff erent use. 
Occasionally, as in the case of word reading, the parasite can be so intrusive as to 
completely replace the previous function of a given brain area with its own. Th us, some 
brain areas that, in other primates, seem to be dedicated to the recognition of visual 
objects acquire in the literate human a specialized and irreplaceable role in the identifi ca-
tion of letter and digit strings. 

 One cannot but marvel at the fl exibility of a brain that can, depending on context and 
epoch, plan a mammoth hunt or conceive of a demonstration of Fermat’s last theorem. 
However, this fl exibility should not be overestimated. Indeed, my contention is that it 
is precisely the assets and the limits of our cerebral circuits that determine the strong 
and weak points of our mathematical abilities. Our brain, like that of the rat, has been 
endowed since time immemorial with an intuitive representation of quantities. Th is 
is why we are so gift ed for approximation, and why it seems so obvious to us that 10 is 
larger than 5. Conversely, our memory, unlike that of the computer, is not digital but 
works by association of ideas. Th is is probably the reason why we have such a hard time 
remembering the small number of equations that make up the multiplication table. 

 Just as the budding mathematician’s brain thus lends itself more or less easily to the 
requirements of mathematics, mathematical objects also evolve to match our cerebral 
constraints increasingly well. Th e history of mathematics provides ample evidence that 
our concepts of number, far from being frozen, are in constant evolution. Mathematicians 
have worked hard for centuries to improve the usefulness of numerical notations by 
increasing their generality, their fi elds of application, and their formal simplicity. In doing 
so, they have unwittingly invented ways of making them fi t the constraints of our cerebral 
organization. Th ough a few years of education now suffi  ce for a child to learn digital 
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notation, we should not forget that it took centuries to perfect this system before it 
became child’s play. Some mathematical objects now seem very intuitive only because 
their structure is well adapted to our brain architecture. On the other hand, a great many 
children fi nd fractions very diffi  cult to learn because their cortical machinery resists 
such a counterintuitive concept. 

 If the basic architecture of our brain imposes such strong limits on our understanding 
of arithmetic, why do a few children thrive on mathematics? How have outstanding 
mathematicians such as Gauss, Einstein, or Ramanujan attained such extraordinary 
familiarity with mathematical objects? And how do some idiot savants with an IQ of 
50 manage to become experts in mental calculation? Do we have to suppose that some 
people started in life with a particular brain architecture, or a biological predisposition 
to become geniuses? A careful examination of this supposition will show us that this is 
unlikely. At present, at any rate, very little evidence exists that great mathematicians and 
calculating prodigies have been endowed with an exceptional neurobiological  structure. 
Like the rest of us, experts in arithmetic have to struggle with long calculations and 
abstruse mathematical concepts. If they succeed, it is only because they devote a consider-
able time to this topic and eventually invent well-tuned algorithms and clever shortcuts 
that any of us could learn if we tried, and that are carefully devised to take advantage of 
our brain’s assets and get round its limits. What is special about them is their dispropor-
tionate and relentless passion for numbers and mathematics, occasionally fueled by their 
inability to entertain normal relations with other fellow humans, a cerebral disease called 
 autism . I am convinced that children of equal initial abilities may become excellent or 
hopeless at mathematics depending on their love or hatred of the subject. Passion breeds 
talent — and parents and teachers, therefore, have a considerable responsibility in devel-
oping their children’s positive or negative attitudes toward mathematics. 

 In  Gulliver’s Travels,  Jonathan Swift  describes the bizarre teaching methods used at the 
mathematics school of Lagado, in Balnibarbi Island: 

 I was at the mathematical school, where the master taught his pupils aft er a method 
scarcely imaginable to us in Europe. Th e proposition and demonstration were fairly 
written on a thin wafer, with ink composed of a cephalic tincture. Th is the student 
was to swallow upon a fasting stomach, and for three days following eat nothing but 
bread and water. As the wafer digested, the tincture mounted to his brain, bearing 
the proposition along with it. But the success hath not hitherto been answerable, 
partly by some error in the  quantum  or composition, and partly by the perverseness 
of lads, to whom this bolus is so nauseous, that they generally steal aside, and 
discharge it upwards before it can operate; neither have they been yet persuaded to 
use so long an abstinence as the prescription requires.   

 Although Swift ’s description reaches the height of absurdity, his basic metaphor of 
learning mathematics as a process of assimilation has an undeniable truth. In the fi nal 
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analysis, all mathematical knowledge is incorporated into the biological tissues of the 
brain. Every single mathematics course that our children take is made possible by 
the modifi cations of millions of their synapses, implying widespread gene expression and 
the formation of billions of molecules of neurotransmitters and receptors, with modula-
tion by chemical signals refl ecting the child’s level of attention and emotional involve-
ment in the topic. Yet the neuronal networks of our brains are not perfectly fl exible. 
Th e very structure of our brain makes certain arithmetical concepts easier to “digest” 
than others. 

 I hope that the views I am defending here will eventually lead to improvements in 
teaching mathematics. A good curriculum would take into account the assets and limits 
of the learner’s cerebral structure. To optimize the learning experiences of our children, 
we should consider what impact education and brain maturation have on the organiza-
tion of mental representations. Obviously, we are still far from understanding to what 
extent learning can modify our brain machinery. Th e little that we already know could be 
of some use, however. Th e fascinating results that cognitive scientists have accumulated 
for the last twenty years on how our brain does math have not, until now, been made 
public and allowed to percolate through to the world of education. I would be delighted 
if this book served as a catalyst for improved communication between the cognitive and 
education sciences. 

 Th is book will take you on a tour of arithmetic as seen from the eyes of a biologist, but 
without neglecting its cultural components. In Chapters 1 and 2, through an initial visit 
of animals’ and human infants’ abilities for arithmetic, I shall try to convince you that our 
mathematical abilities are not without biological precursors. Indeed, in Chapter 3 we 
shall fi nd many traces of the animal mode of processing numbers still at work in adult 
human behavior. In Chapters 4 and 5, by observing how children learn to count and to 
calculate, we shall then attempt to understand how this initial approximate system can 
be overcome, and the diffi  culties that the acquisition of advanced mathematics raises 
for our primate brain. Th is will be a good occasion to investigate current methods of 
mathematical teaching and to examine the extent to which they have naturally adapted to 
our mental architecture. In Chapter 6 we shall also try to sort out the characteristics that 
distinguish a young Einstein or a calculating prodigy from the rest of us. In Chapters 7 
and 8, fi nally, our number hunt will end up in the fi ssures of the cerebral cortex, where the 
neuronal circuits that support calculation are located, and from which, alas, they can be 
dislodged by a lesion or a vascular accident, thus depriving otherwise normal persons of 
their number sense.                
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 books on natural history have recounted the following anecdote since the eigh-
teenth century: 

 A nobleman wanted to shoot down a crow that had built its nest atop a tower on his 
domain. However, whenever he approached the tower, the bird fl ew out of gun 
range and waited until the man departed. As soon as he left , it returned to its nest. 
Th e man decided to ask a neighbor for help. Th e two hunters entered the tower 
together, and later only one of them came out. But the crow did not fall into this 
trap, and carefully waited for the second man to come out before returning. Neither 
did three, then four, then fi ve men fool the clever bird. Each time, the crow would 
wait until all the hunters had departed. Eventually, the hunters came as a party 
of six. When fi ve of them had left  the tower, the bird, not so numerate aft er all, 
confi dently came back, and was shot down by the sixth hunter.   

 Is this anecdote authentic? Nobody knows. It is not even clear that it has anything to 
do with numerical competence: For all we know, the bird could have memorized the 
visual appearance of each hunter rather than their number. Nevertheless, I decided to 
highlight it because it provides a splendid illustration of many aspects of animal arith-
metic that are the subject of this chapter. First, in many tightly controlled experiments, 
birds and many other animal species appear to be able to perceive numerical quantities 
without requiring special training. Second, this perception is not perfectly accurate, and 
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its accuracy decreases with increasingly larger numbers; hence the bird confounding 5 
and 6. Finally, and more facetiously, the anecdote shows how the forces of Darwinian 
selection also apply to the arithmetical domain. If the bird had been able to count up 
to 6, perhaps it would never have been shot! In numerous species, estimating the number 
and ferocity of predators, or quantifying and comparing the return of two sources of 
food, are matters of life and death. Such evolutionary arguments should help make sense 
of the many scientifi c experiments that have revealed sophisticated procedures for 
 numerical calculation in animals.     

   A Horse Named Hans   

 At the beginning of this century, a horse named Hans made it to the headlines of German 
newspapers.   1  His master, Wilhelm von Osten, was no ordinary circus animal trainer. 
Rather, he was a passionate man who, under the infl uence of Darwin’s ideas, had set out 
to demonstrate the extent of animal intelligence. He wound up spending more than a 
decade teaching his horse arithmetic, reading, and music. Although the results were slow 
to come, they eventually exceeded all his expectations. Th e horse seemed gift ed with a 
superior intelligence. It could apparently solve arithmetical problems and even spell out 
words! 

 Demonstrations of Clever Hans’s abilities oft en took place in von Osten’s yard. Th e 
public would form a half-circle around the animal and suggest an arithmetical question 
to the trainer — for instance, “How much is 5 plus 3?” Von Osten would then present the 
animal with fi ve objects aligned on a table, and with three other objects on another table. 
Aft er examining the “problem,” the horse responded by knocking on the ground with its 
hoof the number of times equal to the total of the addition. However, Hans’s mathe-
matical abilities far exceeded this simple feat. Some arithmetical problems were spoken 
aloud by the public, or were written in digital notation on a blackboard, and Hans could 
solve them just as easily (Figure   1.1  ). Th e horse could also add two fractions such as 2/5 
and 1/2 and give the answer 9/10 by striking nine times, then ten times with its hoof. It 
was even said that to the question of determining the divisors of 28, Hans came out very 
appropriately with the answers 2, 4, 7, 14, and 28. Obviously, Hans’s number knowledge 
surpassed by far what an elementary school teacher would expect today of a reasonably 
bright pupil! 

  In September 1904, a committee of experts, among whom fi gured the eminent German 
psychologist Carl Stumpf, concluded aft er an extensive investigation that Hans’s feats 
were real and not a result of cheating. Th is generous conclusion, however, did not satisfy 
Oskar Pfungst, one of Stumpf ’s own students. With von Osten’s help — the master was 

1  Fernald,     1984   
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fully convinced of his prodigy’s superior intelligence — he began a systematic study of the 
horse’s abilities. Pfungst’s experiments, even by today’s standards, remain a model of rigor 
and inventiveness. His working hypothesis was that the horse could not but be totally 
inept in mathematics. Th erefore, it had to be the master himself, or someone in the public, 
who knew the answer and sent the animal a hidden signal when the target number of 
strokes had been reached, thus commanding the animal to stop knocking with its hoof. 

 To prove this, Pfungst invented a way of dissociating Hans’s knowledge of a problem 
from what its master knew. He used a procedure that diff ered only slightly from the one 
described above. Th e master watched carefully as a simple addition was written in large 
printed characters on a panel. Th e panel was then oriented toward the horse in such a way 
that only it could see the problem and answer it. However, on some trials, Pfungst surrep-
titiously modifi ed the addition before showing it to the horse. For instance, the master 
could see 6  +  2, whereas in fact the horse was trying to solve 6  +  3. 

 Th e results of this experiment, and of a series of follow-up controls, were clear-cut. 
Whenever the master knew the correct response, Hans got the right answer. When, on 
the contrary, the master was not aware of the solution, the horse failed. Moreover, the 
horse oft en produced an error that matched the numerical result expected by its master. 
Obviously, it was von Osten himself, rather than Hans, who was fi nding the solution to 
the various arithmetical problems. But how then did the horse know how to respond? 
Pfungst eventually deduced that Hans’s truly amazing ability lay in detecting minuscule 
movements of its master’s head or eyebrows that invariably announced the time to 
stop the series of knocks. In fact, Pfungst never doubted that the trainer was sincere. 

      figure 1.1.  Clever Hans and his master Wilhelm von Osten strike a pose in front of an impressive 
array of arithmetic problems. Th e larger blackboard shows the numerical coding the horse used to 
spell words.    
 (Copyright  ©  Bildarchiv Preussicher Kulturbesitz.)     
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He believed that the signals were completely unconscious and involuntary. Even when 
von Osten was absent, the horse continued to respond correctly: Apparently, it detected 
the buildup of tension in the public as the expected number of hoof strokes was attained. 
Pfungst himself could never eliminate all forms of involuntary communication with the 
animal, even aft er he discovered the exact nature of the body clues it used. 

 Pfungst’s experiments largely discredited demonstrations of “animal intelligence” and 
the competence of self-proclaimed experts such as Stumpf who had blindly subscribed to 
them. Indeed, the “Clever Hans phenomenon” is still taught in psychology classes today. 
It remains a symbol of the pernicious infl uence that experimenter expectations and inter-
ventions, however small, may have on the outcome of any psychological experiment with 
humans or with animals. Historically, Hans’s story has played a crucial role in shaping the 
critical minds of psychologists and ethologists. It has drawn attention to the necessity for 
a rigorous experimental design. Since an essentially invisible stimulation, as brief as the 
blink of an eye, can infl uence the performance of animals, a well-designed experiment has 
to be devoid from the start of any possible source of errors. Th is lesson was particularly 
well received by behaviorists, such as B. F. Skinner, who dedicated a large amount of 
work to the development of rigorous experimental paradigms for the study of animal 
behavior. 

 Unfortunately, Hans’s exemplary case has also had more negative consequences on the 
development of psychological science. It has imposed an aura of suspicion onto the whole 
area of research on the representation of numbers in animals. Ironically, scientists now 
meet every single demonstration of numerical competence in animals with the same 
raised eyebrows that served as a cue to Hans! Such experiments are immediately associ-
ated, consciously or not, with Hans’s story, and are therefore suspected of a basic fl aw in 
design, if not downright forgery. Th is is an irrational prejudice, however. Pfungst’s exper-
iments showed only that Hans’s numerical abilities were a fl uke. By no means did they 
prove that it is impossible for an animal to understand some aspects of arithmetic. For a 
long time, however, the scientist’s attitude was to systematically look for some experimen-
tal bias that might explain animal behavior without resorting to the hypothesis that 
 animals have even an embryonic knowledge of calculation. For a while, even the most 
convincing results failed to convince anyone. Some researchers even preferred to attri-
bute to animals mysterious abilities such as a “rhythm discrimination” faculty, for instance, 
rather than admit that animals could enumerate a collection of objects. In brief, the 
 scientifi c community tended to throw out the baby with the bath water. 

 Before turning to some of the experiments that fi nally convinced all but the most 
 skeptical of researchers, I would like to conclude Hans’s story with a modern anecdote. 
Even today, the training of circus animals rests on methods rather similar to Hans’s trick. 
If you ever see a show in which an animal adds numbers, spells words, or some surprising 
deed of this kind, you may safely bet that its behavior rests, like Hans’s, on a hidden com-
munication with its human trainer. Let me stress again that such communication need 
not be intentional. Th e trainer is oft en sincerely convinced of his pupil’s gift s. A few years 
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ago, I came upon an amusing article in a local Swiss newspaper. A journalist had visited 
the home of Gilles and Caroline P., whose poodle, named Poupette, seemed extraordi-
narily gift ed in mathematics. Figure   1.2   shows Poupette’s proud owner presenting his 
faithful and brilliant companion with a series of written digits that it was supposed to 
add. Poupette responded without ever making an error by tapping on its master’s hand 
with its paw the exact number of times required, and then licking the hand aft er the 
 correct count had been reached. According to its master, the canine prodigy had required 
only a brief training period, which led him to believe in reincarnation or some similar 
paranormal phenomenon. Th e journalist, however, wisely noted that the dog could react 
to subtle cues from the master’s eyelids, or to some tiny motions of his hand when the 
correct count was reached. So this was indeed a case of reincarnation aft er all: the reincar-
nation of Clever Hans’s stratagem, of which Poupette’s story constituted, a century later, 
an astonishing replication.      

   Rat Accountants   

 Following the Hans episode, several renowned American laboratories developed research 
programs on animal mathematical abilities. Many such projects failed. A famous German 
ethologist named Otto Koehler, however, was more successful.   2  One of his trained crows, 
Jacob, apparently learned to choose, among several containers, the one whose lid bore a 
fi xed number of fi ve points. Because the size, the shape, and the location of the points 
varied randomly from trial to trial, only an accurate perception of the number 5 could 

2  Koehler,     1951   

      figure 1.2.  A modern canine “clever Hans”: Poupette, the dog that could supposedly add digits.     
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account for this performance. Nevertheless, the results achieved by Koehler’s team had 
little impact, partly because most of their results were published only in German, and 
partly because Koehler failed to convince his colleagues that all possible sources of error, 
such as unintentional experimenter communication, olfactory cues or the like, had been 
excluded. 

 In the 1950s and 1960s, Francis Mechner, an animal psychologist at Columbia 
University, followed by John Platt and David Johnson at the University of Iowa, intro-
duced a very convincing experimental paradigm that I shall schematically describe here.   3  
A rat that had been temporarily deprived of food was placed in a closed box with two 
levers, A and B. Lever B was connected to a mechanical device that delivered a small 
amount of food. However, this reward system did not work at once. Th e rat fi rst had 
to repeatedly press lever A. Only aft er it had pressed for a fi xed number of times  n  on 
lever A could it switch to lever B and get its deserved treat. If the rat switched too early to 
lever B, not only did it fail to get any food, but it received a penalty. On diff erent experi-
ments, the light could go off  for a few seconds, or the counter was reset so that the rat had 
to start all over again with a new series of  n  presses on lever A. 

 How did rats behave in this rather unusual environment? Th ey initially discovered, by 
trial and error, that food would appear when they pressed several times on lever A, and 
then once on lever B. Progressively, the number of times that they had to press was 
 estimated more and more accurately Eventually, at the end of the learning period, the 
rats behaved very rationally in relation to the number  n  that had been selected by the 
experimenter. Th e rats that had to press four times on lever A, before lever B would deliver 
food, did press it about four times. Th ose that were placed in the situation where eight 
presses were required waited until they had produced about eight squeezes, and so on 
(see Figure   1.3  ). Even when the requisite number was as high as twelve or sixteen, those 
clever rat accountants continued to keep their registers up to date!  

 Two details are worth mentioning. First, the rats oft en squeezed lever A a little more 
than the minimum required — fi ve times instead of four, for instance. Again, this was an 
eminently rational strategy. Since they received a penalty for switching prematurely to 
lever B, the rats preferred to play it safe and press lever A once more, rather than once less. 
Second, even aft er considerable training, the rats’ behavior remained rather imprecise. 
Where the optimal strategy would have been to press lever A exactly four times, the rats 
oft en pressed it four, fi ve, or six times, and on some trials they squeezed it three or even 
seven times. Th eir behavior was defi nitely not “digital,” and variation was considerable 
from trial to trial. Indeed, this variability increased in direct proportion to the target 
number that the rats estimated. When the target number of presses was four, the rats’ 
responses ranged from three to seven presses, but when the target was sixteen, the 
responses went from twelve to twenty-four, thus covering a much larger interval. Th e rats 

3  Mechner,     1958  ; Platt & Johnson,     1971   
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appeared to be equipped with a rather imprecise estimation mechanism, quite diff erent 
from our digital calculators. 

 At this stage, many of you are probably wondering whether I am not too liberal in 
attributing numerical competence to rats, and whether a simpler explanation of their 
behavior might not be found. Let me fi rst remark that the Clever Hans eff ect cannot have 
any infl uence on this type of experiment, because the rats are isolated in their cages and 
because all experimental events are controlled by an automated mechanical apparatus. 
However, is the rat really sensitive to the  number  of times the lever is pressed, or does it 
estimate the  time  elapsed since the beginning of a trial, or some other nonnumerical 
parameter? If the rat pressed at a regular rate, for instance once per second, then the 
above behavior might be fully explained by temporal rather than numerical estimation. 
While pressing on lever A, the rat would wait four, eight, twelve, or sixteen seconds, 
depending on the imposed schedule, before switching to lever B. Th is explanation 
might be considered simpler than the hypothesis that rats can count their movements — 
although, in fact, estimating duration and numbers are equally complex operations. 

 To refute such a temporal explanation, Francis Mechner and Laurence Guevrekian   4  
used a very simple control: Th ey varied the degree of food deprivation imposed on the 
rats. When the rats are really hungry, and therefore eager to obtain their food reward as 

4  Mechner & Guevrekian,     1962   
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      figure 1.3.  In an experiment by Mechner, a rat learns to press lever A a predetermined number 
of times before turning to a second lever B. Th e rat matches approximately the number selected by 
the experimenter, although its estimate becomes increasingly variable as the numbers get larger.    
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fast as possible, they press the levers much faster. Nevertheless, this increase in rate has 
absolutely no eff ect on the  number  of times they press the lever. Th e rats that are trained 
with a target number of four presses continue to produce between three and seven presses, 
while the rats trained to squeeze eight times continue to squeeze about eight times, and 
so on. Neither the average number of presses, nor the dispersion of the results, is modifi ed 
with higher rates. Obviously, a numerical rather than a temporal parameter drives the 
rats’ behavior. 

 A more recent experiment by Russell Church and Warren Meck, at Brown University, 
demonstrates that rats spontaneously pay as much attention to the number of events as to 
their duration. In Church and Meck’s experiment,   5  a loudspeaker placed in the rats’ 
cage presented a sequence of tones. Th ere were two possible sequences. Sequence A was 
made up of two tones and lasted a total of two seconds, whereas sequence B was made up 
of eight tones and lasted eight seconds. Th e rats had to discriminate between the two 
 melodies. Aft er each tune, two levers were inserted in the cage. To receive a food reward, 
the rats had to press the left  lever if they had heard sequence A, and the right if they had 
heard sequence B (see Figure   1.4  ).  

 Several preliminary experiments had shown that rats placed in this situation rapidly 
learned to press the correct lever. Obviously, they could use two distinct parameters to 
distinguish A from B: the total duration of the sequence (two versus eight seconds) or 
the number of tones (two versus eight). Did rats pay attention to duration, number, or 
both? In order to fi nd out, the experimenters presented some test sequences in which 
duration was fi xed while number was varied, and others in which number was fi xed while 
duration was varied. In the fi rst case, all sequences lasted four seconds, but were made up 
of from two to eight tones. In the second case, all sequences were made up of four tones, 
but duration extended from two to eight seconds. On all such test sequences, the rats 
always received a food reward, regardless of the lever they picked. In anthropocentric 
terms, the researchers were simply asking what these new stimuli sounded like to the 
rats, without letting the reward interfere with their decision. Th e experiment therefore 
 measured the rats’ ability to generalize previously learned behaviors to a novel situation. 

 Th e results are clear-cut. Rats generalized just as easily on duration as on number. 
When duration was fi xed, they continued to press the left  lever when they heard two 
tones, and the right lever when they heard eight tones. Conversely, when number was 
fi xed, they pressed left  for two-second sequences, and right for eight-second sequences. 
But what about intermediate values? Rats apparently reduced them to the closest  stimulus 
that they had learned. Th us, the new three-tone sequence elicited the same response as 
the two-tone sequence used for training, while sequences with fi ve or six tones were 
 classifi ed just as the original sequence of eight tones had been. Curiously, when the 
sequence comprised just four tones, the rats could not decide whether they should press 

5  Church & Meck,     1984   
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left  or right. For a rat, four appears to be the subjective midpoint between the numbers 
two and eight! 

 Keep in mind that the rats did not know during training that they would be tested 
subsequently with sequences that varied in duration or in number of tones. Hence, this 
experiment shows that when a rat listens to a melody, its brain simultaneously and 
 spontaneously registers both the duration and the number of tones. It would be a serious 
mistake to think that because these experiments use conditioning, they somehow teach 
the rats how to count. On the contrary, rats appear on the scene with state-of-the-art 
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      figure 1.4 .  Meck and Church trained rats to press a lever on the left  when they heard a 
short two-tone sequence, and a lever on the right when they heard a long eight-tone sequence. 
Subsequently, the rats generalized spontaneously: for equal numbers of sounds, they discriminated 
two-second sequences from eight-second sequences (top panel), and for an equal total duration, 
they discriminated two tones from eight tones (bottom panel). In both cases, four seems to be the 
“subjective middle” of 2 and 8, the point where rats cannot decide whether they should press right 
or left .   
 (Adapted from Meck and Church 1983.)     
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hardware for visual, auditory, tactile, and numerical perception. Conditioning merely 
teaches the animal to associate perceptions that it has always experienced, such as repre-
sentations of stimulus duration, color, or number, with novel actions such as pressing a 
lever. Th ere is no reason to think that number is a complex parameter of the external 
world, one that is more abstract than other so-called objective or physical parameters 
such as color, position in space, or temporal duration. In fact, provided that an animal 
is equipped with the appropriate cerebral modules, computing the approximate number 
of objects in a set is probably no more diffi  cult than perceiving their colors or their 
 positions. 

 Indeed, we now know that rats and many other species spontaneously pay attention 
to numerical quantities of all kinds — actions, sounds, light fl ashes, food morsels.   6  For 
instance, researchers have proved that raccoons, when presented with several transparent 
boxes with grapes inside, can learn to systematically select those that contain three grapes 
and to neglect those that contain two or four. Likewise, rats have been conditioned to 
systematically take the fourth tunnel on the left  in a maze, regardless of the spacing 
between consecutive tunnels. Other researchers have taught birds to pick the fi ft h seed 
that they fi nd when visiting several interconnected cages. And pigeons can, under some 
circumstances, estimate the number of times they have pecked at a target and can 
 discriminate, for instance, between forty-fi ve and fi ft y pecks. As a fi nal example, several 
animals, including rats, appear to remember the number of rewards and punishments 
that they have received in a given situation. An elegant experiment by E. J. Capaldi and 
Daniel Miller at Purdue University has even shown that when rats receive food rewards 
of two diff erent kinds — say, raisins and cereals — they keep in mind three pieces of infor-
mation at the same time: the number of raisins they have eaten, the number of pieces 
of cereals, and the total number of food items.   7  In brief, far from being an exceptional 
ability, arithmetic is quite common in the animal world. Th e advantages that it confers 
for survival are obvious. Th e rat that remembers that its hideout is the fourth to the left  
will move faster in the dark maze of tunnels that it calls home. Th e squirrel that notices 
that a branch bears two nuts, and neglects it for another one that bears three, will have 
more chances of making it safely through the winter.     

   How Abstract Are Animal Calculations?   

 When a rat presses a lever twice, hears two sounds, and eats two seeds, does it recognize 
that these events are all instances of the number “2”? Or can’t it see the link between 

6  For reviews of numerical cognition in animals, see Davis & Pérusse,     1988  ; Gallistel,     1989  ; Gallistel,     1990  ; 
Brannon & Terrace,     1998  ; Dehaene, Dehaene-Lambertz, & Cohen,     1998  ; Cantlon & Brannon,     2007  ; Jacob & 
Nieder,     2008  ; Nieder & Dehaene,     2009   

7  Capaldi & Miller,     1988   
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numbers that are perceived through diff erent sensory modalities? Th e ability to  generalize 
across diff erent modalities of perception or action is an important component of what 
we call the  number concept.  Let us suppose, as an admittedly extreme case, that a child 
 systematically utters the word “four” whenever he or she sees four objects, but randomly 
picks the words “three,” “four,” or “nine” when he or she hears four sounds or makes four 
jumps. Although performance is no doubt excellent with visual stimuli, we would be 
reluctant to grant the child knowledge of the concept of “4”, because we consider posses-
sion of this concept to entail being able to apply it to many diff erent multimodal situa-
tions. As a matter of fact, as soon as children have learned a number word, they can 
immediately use it to count their toy cars, the meows of their cat, or the misdemeanors of 
their little brother. What about rats? Is their numerical competence confi ned to certain 
sensory modalities, or is it abstract? 

 Unfortunately, any answer must remain tentative because few successful experiments 
have been done on multimodal generalization in animals. However, Russell Church and 
Warren Meck   8  have shown that rats represent number as an abstract parameter that is not 
tied to a specifi c sensory modality, be it auditory or visual. Th ey again placed rats in a cage 
with two levers, but this time stimulated them with visual as well as with auditory 
sequences. Initially, the rats were conditioned to press the left  lever when they heard two 
tones, and the right lever when they heard four tones. Separately, they were also taught to 
associate two light fl ashes with the left  lever, and four light fl ashes with the right lever. 
Th e issue was, how were these two learning experiences coded in the rat brain? Were they 
stored as two unrelated pieces of knowledge? Or, had the rats learned an abstract rule 
such as “2 is left , and 4 is right”? To fi nd out, the two researchers presented mixtures of 
sounds and light fl ashes on some trials. Th ey were amazed to observe that when they 
presented a single tone synchronized with a fl ash, a total of two events, the rats immedi-
ately pressed the left  lever. Conversely, when they presented a sequence of two tones 
 synchronized with two light fl ashes, for a total of four events, the rats systematically 
pressed the right lever. Th e animals generalized their knowledge to an entirely novel 
 situation. Th eir concepts of the numbers “2” and “4” were not linked to a low level of 
visual or auditory perception. 

 Consider how peculiar the rats’ behavior was on trials with two tones synchronized 
with two light fl ashes. Remember that in the course of their training, the rats were always 
rewarded for pressing the left  lever aft er hearing two tones, and likewise aft er seeing two 
fl ashes of light. Th us, both the auditory “two tones” stimulus and the visual “two fl ashes” 
stimulus were associated with pressing the left  lever. Nevertheless, when these two stimuli 
were presented together, the rats pressed the lever that had been associated with the 
number 4! To better grasp the signifi cance of this fi nding, compare it with a putative 
experiment in which rats are trained to press the left  lever whenever they see a square 

8  Church & Meck,     1984   
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(as opposed to a circle), and to respond left  whenever they see the color red (as opposed 
to green). If the rats were presented with a red square — the combination of both 
 stimuli — I bet that they would press even more resolutely on the left  lever. Why are the 
numbers of tones and fl ashes grasped diff erently from shapes and colors? Th e experiment 
demonstrates that rats “know,” to some extent, that numbers do not add up in the same 
way as shapes and colors. A square plus the color red makes a red square, but two tones 
plus two fl ashes do not evoke an even greater sensation of twoness. Rather, 2 plus 2 
makes 4, and the rat brain seems to appreciate this fundamental law of arithmetic. 

 Perhaps the best example of abstract addition abilities in an animal comes from work 
done by Guy Woodruff  and David Premack at the University of Pennsylvania.   9  Th ey set 
out to prove that a chimpanzee could do arithmetic with simple fractions. In their fi rst 
experiment, the chimpanzee’s task was simple: It was rewarded for selecting, among two 
objects, the one that was physically identical to a third one. For instance, when presented 
with a glass half-fi lled with a blue liquid, the animal had to point toward the identical 
glass when presented next to another glass that was fi lled up to three-quarters of its 
volume. Th e chimp immediately mastered this simple physical matching task. Th en the 
decision was progressively made more abstract. Th e chimp might be shown a half-full 
glass again, but now the options were either half an apple or three-quarters of an apple. 
Physically speaking, both alternatives diff ered widely from the sample stimulus; yet the 
chimpanzee consistently selected the half apple, apparently basing its responses on the 
conceptual similarity between half a glass and half an apple. Fractions of one-quarter, 
one-half, and three-quarters were tested with similar success: Th e animal knew that one-
quarter of a pie is to a whole pie as one-quarter of a glass of milk is to a full glass of milk. 

 In their last experiment, Woodruff  and Premack showed that chimpanzees could even 
mentally combine two such fractions: When the sample stimulus was made of one- quarter 
apple and one-half glass, and the choice was between one full disc or three- quarters disc, 
the animals chose the latter more oft en than chance alone would predict. Th ey were obvi-
ously performing an internal computation not unlike the addition of two fractions: ¼   +   
½  =  ¾. Presumably, they did not use sophisticated symbolic calculation algorithms as we 
would. But they clearly had an intuitive grasp of how these proportions should combine. 

 A fi nal anecdote concerning Woodruff  and Premack’s work: Th ough the manuscript 
reporting their work was initially titled “Primitive mathematical concepts in the chim-
panzee: proportionality and numerosity,” an editorial error made it appear in the pages of 
the scientifi c journal  Nature  under the heading  “Primative  mathematical concepts”! 
Involuntary as it was, this alteration was not so improper. For primitive, indeed, the 
 animal’s ability was not. And if “primative” was taken to mean “specifi c to primates,” then 
the neologism seemed very appropriate here, because such an abstract ability to add 
 fractions has not been observed in any other species so far. 

9  Woodruff  & Premack,     1981   
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 Addition, however, is not the only numerical operation in the animal repertoire. Th e 
ability to compare two numerical quantities is an even more fundamental ability, and 
indeed it is widespread among animals. Show a chimpanzee two trays on which you have 
placed several bits of chocolate.   10  On the fi rst tray, two piles of chocolate chips are visible, 
one with four pieces, and the other with three pieces. Th e second tray contains a pile with 
fi ve pieces of chocolate and, separate from it, a single piece. Leave the animal enough time 
to watch the situation carefully before letting it choose one tray and eat its content. 
Which tray do you think that it will pick? Most of the time, without training, the chim-
panzee selects the tray with the largest total number of chocolate chips (see Figure   1.5  ). 
Hence, the greedy primate must spontaneously compute the total of the fi rst tray 
(4  +  3 = 7), then the total of the second tray (5  +  1 = 6), and fi nally it must reckon that 7 
is larger than 6 and that it is therefore advantageous to choose the fi rst tray. If the chimp 
could not do the additions, but was content with choosing the tray with the largest single 
pile of chocolates, it should have been wrong in this particular example because, while the 
pile with fi ve chips on the second tray exceeds each of the piles on the fi rst tray, the total 
amount of chips on the fi rst tray is larger. Clearly, the two additions and the fi nal 
 comparison operation are all required for success.  

10  Rumbaugh, Savage-Rumbaugh, & Hegel,     1987   

      figure 1.5.  A chimpanzee spontaneously selects the pair of trays with the greater total number 
of chocolate bits, revealing its inborn ability to add and compare approximate numerosities.   
 (Reprinted from Rumbaugh et al. 1987.)     
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   Although chimps perform remarkably well in selecting the larger of two numbers, 
their performance is not devoid of errors. As is frequently the case, the nature of these 
errors provides important cues about the nature of the mental representation employed.   11  
When the two quantities are quite diff erent, such as 2 and 6, chimpanzees hardly ever 
fail: Th ey always select the larger. As the quantities become closer, however, performance 
systematically decreases. When the two quantities diff er by only one unit, only 70 %  of 
the chimp’s choices are correct. Th is systematic dependency of error rate on the numerical 
separation between the items is called the  distance eff ect . It is also accompanied by a 
  magnitude eff ect . For equal numerical distances, performance decreases as the numbers to 
be compared become larger. Chimpanzees have no diffi  culty in determining that 2 is 
larger than 1, even though these two quantities diff er only by one unit. However, they fail 
increasingly more oft en as one moves to larger numbers such as 2 versus 3, 3 versus 4, and 
so on. Similar distance and magnitude eff ects have been observed in a great variety of 
tasks and in many species, including pigeons, rats, dolphins, and apes. No animals seem 
able to escape these laws of behavior — including, as we shall see later,  Homo sapiens . 

 Why are these eff ects of distance and magnitude important? Because they 
demonstrate, once again, that animals do not possess a digital or discrete representation 
of  numbers. Only the fi rst few numbers — 1, 2, and 3 — can be discriminated with 
high  accuracy. As soon as one advances toward larger quantities, fuzziness increases. 
Th e  variability in the internal representation of numbers grows in direct proportion to 
the quantity represented. Th is is why, when numbers get large, an animal has problems 
distinguishing number  n  from its successor  n   +  1. One should not conclude, however, that 
large numbers are out of reach of the rat or pigeon brain. In fact, when numerical distance 
is suffi  ciently large, animals can successfully discriminate and compare very large  numbers, 
on the order of 45 versus 50. Th eir imprecision simply leaves them blind to the fi nesses of 
arithmetic such as the diff erence between 49 and 50. 

 Within the limits set by this internal imprecision, we have seen through numerous 
examples that animals possess functional mathematical tools. Th ey can add two  quantities 
and spontaneously choose the larger of two sets. Should we really be that surprised? Let 
us fi rst try to think whether the outcome of these experiments could possibly have been 
any diff erent. When a hungry dog is off ered a choice between a full dish and a half-full 
one of the same food, doesn’t it spontaneously pick the larger meal? Acting otherwise 
would be devastatingly irrational. Choosing the larger of two amounts of food is  probably 
one of the preconditions for the survival of any living organism. Evolution has been able 
to conceive such complex strategies for food gathering, storing, and predation, that it 
should not be astonishing that an operation as simple as the comparison of two  quantities 
is available to so many species. It is even likely that a mental comparison algorithm was 
discovered early on, and perhaps even reinvented several times in the course of evolution. 

11  Dehaene, Dehaene-Lambertz et coll.,     1998   
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Even the most elementary of organisms, aft er all, are confronted with a never-ending 
search for the best environment with the most food, the fewest predators, the most 
 partners of the opposite sex, and so on. One must optimize in order to survive, and 
 compare in order to optimize. 

 We still have to understand, however, by what neural mechanisms such calculations 
and comparisons are carried out. Are there minicalculators in the brains of birds, rats, and 
primates? How do they work?     

   The Accumulator Metaphor   

 How can a rat know that 2 plus 2 makes 4? How can a pigeon compare forty-fi ve pecks 
with fi ft y? I know by experience that these results are oft en met with disbelief, laughter, or 
even exasperation — especially when the audience is composed of professors of  mathematics! 
Our Western societies, ever since Euclid and Pythagoras, have placed  mathematics at the 
pinnacle of human achievements. We view it as a supreme skill that either requires painful 
education, or comes as an innate gift . In many a philosopher’s mind, the human ability for 
mathematics derives from our competence for language, so that it is inconceivable that an 
animal without language can count, much less calculate with numbers. 

 In this context, the observations about animal behavior that I have just described are 
in danger of being simply disregarded, as oft en happens with unexpected or seemingly 
 aberrant scientifi c results. Without a theoretical framework to support them, they might 
appear as isolated fi ndings — peculiar indeed, but eventually inconclusive and certainly not 
suffi  cient to question the equation “mathematics  =  language.” To sort out such  phenomena, 
we need a theory that explains, quite simply, how it is possible to count without words. 

 Fortunately, such a theory exists.   12  In fact, we all know of mechanical devices whose 
performances are not so diff erent from those of rats. All cars, for instance, are equipped 
with a counting mechanism that keeps a record of the number of miles that have accumu-
lated since the vehicle was fi rst put in circulation. In its simplest version, this “counter” is 
just a cog wheel that advances by one notch for each additional mile. At least in principle, 
this example shows how a simple mechanical device may keep a record of an accumulated 
quantity. Why could a biological system not incorporate similar principles of counting? 

 Th e car counter is an imperfect example because it uses digital notation, a symbolic 
system that is most probably specifi c to humans. In order to account for the arithmetical 
abilities of animals, we should look for an even simpler metaphor. Imagine Robinson 
Crusoe, on his desert island, alone and helpless. For the sake of argument, let us even 
 imagine that a blow to the head has deprived him of any language, leaving him unable to 
use number words for counting or calculation. How could Robinson build an  approximate 

12  Meck & Church,     1983   
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calculator using only the makeshift  means available to him? Th is is actually easier than it 
would seem. Suppose that Robinson has discovered a spring in the vicinity. He carves a 
tank from a large log, and places this accumulator next to the spring, so that water does not 
fl ow directly into it but can be temporarily diverted by using a small bamboo pipe. With 
this rudimentary device, of which the accumulator is the central component, Robinson 
will be able to count, add, and compare approximate numerical magnitudes. In essence, 
the accumulator enables him to master arithmetic as well as a rat or a pigeon does. 

 Suppose that a canoe loaded with cannibals approaches Robison’s island. How can 
Robinson, who is following this scene with a telescope, keep a record of the number of 
attackers using his calculator? First, he would have to empty the accumulator. Th en, each 
time a cannibal landed, Robinson would briefl y divert some water from the spring into 
the accumulator. Furthermore, he does this so that it always takes a fi xed amount of time 
and that the water fl ow remains constant throughout. Th us, for each attacker to be 
counted, a more or less fi xed amount of water fl ows into the accumulator. In the end, the 
water level in the accumulator will be equal to  n  times the amount of water diverted at 
each step. Th is fi nal water level may then serve as an approximate representation of the 
number  n  of cannibals who have landed. Th is is because it depends only on the number 
of events that have been counted. All other parameters, such as the duration of each 
event, the time interval between them, and so on, have no infl uence on it. Th e fi nal level 
of water in the accumulator is thus completely equivalent to number. 

 By marking the level reached by water in the accumulator, Robinson can keep a record 
of how many people have landed, and he may use this number in later calculations. Th e 
next day, for instance, a second canoe approaches. To estimate the total number of 
 attackers, Robinson fi rst fi lls the accumulator up to the level of the preceding day’s marker, 
and then adds a fi xed amount of water for each newcomer, just as he did previously Th e 
new water level, aft er this operation is completed, will represent the result of the addition 
of attackers in the fi rst canoe and in the second. Robinson can keep a permanent record 
of this computation by carving a diff erent mark on the accumulator. 

 Th e day aft er, a few savages leave the island. To evaluate their number, Robinson  empties 
his accumulator and repeats the above procedure, adding some water for each departing 
cannibal. He realizes that the fi nal water level, which represents the number of people who 
have left , is much lower than the previous day’s mark. By comparing the two water levels, 
Robinson reaches the worrisome conclusion that, in all likelihood, the number of natives 
that have left  is smaller than the number of natives that have arrived in the past two days. 
In brief, Robinson, using his rudimentary device, can count, compute simple additions, 
and compare the results of his calculations, just like the animals in the above experiments. 

 A clear drawback of the accumulator is that numbers, although they form a discrete 
set, are represented by a continuous variable: water level. Given that all physical systems 
are inherently variable, the same number may be represented, at diff erent times, by 
 diff erent amounts of water in the accumulator. Let us suppose, for instance, that water 
fl ow is not perfectly constant and varies randomly by between 4 and 6 liters per second, 
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with a mean of 5 liters per second. If Robinson diverts water for two-tenths of a second 
into the accumulator, one liter on average will be transferred. However, this quantity will 
vary from 0.8 to 1.2 liters. Th us, if fi ve items are counted, the fi nal water level will vary by 
between 4 and 6 liters. Given that the very same levels could have been reached if four or 
six items had been counted, Robinson’s calculator is unable to reliably discriminate the 
numbers 4, 5, and 6. If six cannibals land, and later only fi ve depart, Robinson is in danger 
of failing to notice that one of them is missing. Th is, by the way, is exactly the situation 
that confronted the crow in the anecdote I mentioned at the beginning of this chapter! 
Robinson clearly will be better able to discriminate numbers that are more diff erent; this 
is the distance eff ect. Th is eff ect will be exacerbated as the numbers become larger, thus 
reproducing the magnitude eff ect that also characterizes animal behavior. 

 One might object that the imaginary Robinson I am describing is not particularly 
clever. What prevents him from using marbles instead of imprecise amounts of water? 
Dropping in a bowl a single marble for each counted item would provide him with a 
discrete and precise representation of their number. In this manner, he would avoid errors 
even in the most complex of subtractions. But Robinson’s machine is used here only as a 
metaphor for the animal brain. Th e nervous system — at least the one that rats and pigeons 
possess — does not seem to be able to count using discrete tokens. It is fundamentally 
imprecise, and seems unable to precisely keep track of the items that it counts; hence its 
increasing variance for larger and larger numbers. 

 Although the accumulator model is described here in a very informal manner, it is 
 actually a rigorous mathematical model, the equations of which accurately predict 
 variations in animal behavior as a function of number size and numerical distance.   13  Th e 
accumulator metaphor thus helps us to understand why rat behavior is so variable from 
one trial to the next. Even aft er considerable training, a rat seems unable to press exactly 
four times on a lever, but it can press four, fi ve, or six times on diff erent trials. I believe that 
this is due to a fundamental inability to represent numbers 4, 5, and 6 in a discrete and 
individualized format, as we do. To a rat, numbers are just approximate magnitudes, 
 variable from time to time, and as fl eeting and elusive as the duration of sounds or the 
saturation of colors. Even when an identical sequence of sounds is played twice, rats 
 probably do not perceive the exact same number of sounds, but only the fl uctuating level 
of an internal accumulator. 

 Of course, the accumulator is nothing more than a vivid metaphor that merely 
 illustrates how a simple physical device can mimic, in considerable detail, experiments on 
animal arithmetic. Th ere are no taps and recipients in the brains of rats and pigeons. 
Would it be possible, however, to identify, within the cerebrum, neuronal systems that 
might occupy a function similar to the components in the accumulator model? Th is is a 
completely open question. Currently, scientists are merely beginning to understand how 

13  Meck & Church,     1983  , and for a more recent treatment, Dehaene,     2007   
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certain parameters are modifi ed by various pharmacological substances. Injecting rats 
with metamphetamine, for instance, seems to accelerate the internal counter.   14  Th e rats 
injected with this substance respond to a sequence of four sounds as if they had been fi ve 
or six. It is as if the fl ow of water to the accumulator were accelerated by metamphet-
amine. For each item counted, an amount of water larger than usual reaches the accumu-
lator, thus making the fi nal water level too great. Th is is how a 4 in the input may end up 
looking like a 6 at the output. We still have little knowledge, however, of the brain regions 
in which metamphetamine produces its accelerating eff ect. Cerebral circuitry is far from 
having revealed all its secrets.     

   Number-Detecting Neurons?   

 Although the cerebral circuits for number processing remain largely unknown, neural 
network simulations can be used to speculate on what their organization may be like. 
Neural network models are algorithms that run on a conventional digital computer, but 
emulate the kinds of computations that may go on in real brain circuits. Of course, the 
simulations are always vastly simplifi ed when compared to the overarching complexity of 
real networks of neurons. In most computer models, each neuron is reduced to a digital 
unit with an output level of activation varying between 0 and 1. Active units excite or 
inhibit their neighbors, as well as more distant units, via connections with a variable 
weight, which are analogous to the synapses that connect real neurons. At each step, each 
simulated unit sums up the inputs it receives from other units, and switches on or off  
depending on whether the sum exceeds a given threshold. Th e analogy to a real nerve cell 
is crude, but one crucial property is preserved: the fact that a great many simple computa-
tions take place at the same time in several neurons distributed within multiple circuits. 
Most neurobiologists believe that such massive parallel processing is the key property 
that enables brains to perform complex computations in a short time using relatively slow 
and unreliable biological hardware. 

 Can parallel neuronal processing be used to process numbers? With Jean-Pierre 
Changeux, a neurobiologist at the Pasteur Institute in Paris, I have proposed a tentative 
neural network simulation of how animals extract numbers from their environment 
quickly and in parallel.   15  Our model addresses a simple problem that rats and pigeons 
routinely solve: given an input retina on which objects of various sizes are displayed, and 
given a cochlea on which tones of various frequencies are played, can a network of simu-
lated neurons compute the total number of visual and auditory objects? According to the 
accumulator model, this number can be computed by adding to an internal accumulator 

14  For recent review, see Williamson, Cheng, Etchegaray, & Meck,     2008   
15  Dehaene & Changeux,     1993  . Th is model has been later elaborated by others: Verguts & Fias,     2004  ; Verguts, 

Fias, & Stevens,     2005  . See also Dehaene,     2007  , and Pearson, Roitman, Brannon, Platt, & Raghavachari,     2010   



Talented and Gift ed Animals  21

a fi xed quantity for each input item. Th e challenge is to do this with networks of simu-
lated nerve cells, and to achieve a representation of number that is independent of the size 
and location of visual objects, as well as of the time of presentation of auditory tones. 

 We solved the problem by fi rst designing a circuit that normalizes the visual input with 
respect to size. Th is network detects the locations occupied by objects on the retina, and 
allocates to each object, regardless of size and shape, an approximately constant number 
of active neurons on a location map. Th is normalization step is crucial because it allows 
the network to count each object as “one,” regardless of size. As we shall see below, in 
mammals this operation may be achieved by circuits of the posterior parietal cortex, 
which are known to compute a representation of object location without taking exact 
shape and size into account. 

 In our simulation, a similar operation is also performed for auditory stimuli. Regardless 
of the time intervals at which they are received, auditory inputs are accumulated in a single 
memory store. Once these normalizations for size, shape, and time of presentation have 
been accomplished, it is easy to estimate number — one simply has to evaluate the total 
neuronal activity in the normalized visual map and in the auditory memory store. Th is total 
is equivalent to the fi nal water level in the accumulator, and it provides a  reasonably reliable 
estimate of number. In our simulation, the summation operation is taken care of by an array 
of units that pool activations from all the underlying visual and auditory units. Under 
 certain conditions, these output units fi re only when the total activity they receive falls 
within a predefi ned interval that varies from one neuron to the next. Each of these simu-
lated neurons, therefore, works as a number detector that reacts only when a certain approx-
imate number of objects is seen (Figure   1.6  ). One unit in the network, for instance, responds 
optimally when presented with four objects — be they, for instance, four visual blobs, four 
sounds, or two blobs and two sounds. Th e same unit reacts infrequently when presented 
with three or fi ve objects, and not at all in the remaining cases. It therefore works as an 
abstract detector of number 4. Th e entire number line can be covered by such  detectors, 
each tuned to a diff erent approximate number, with the precision of tuning decreasing as 
one moves to increasingly larger numbers. Because the simulated neurons process all visual 
and auditory inputs simultaneously, the array of number detectors responds very quickly —
 it can estimate the cardinal of a set of four objects in parallel over the entire retina, without 
having to orient in turn toward each item as we do when we count.  

 Astonishingly, the number-detecting neurons that the model predicts seem to have 
been identifi ed at least once in an animal brain. In the 1960s, Richard Th ompson, a neu-
roscientist at the University of California at Irvine, recorded the activity of single neu-
rons in the cortex of cats while the animals were presented with series of tones or of light 
fl ashes.   16  Some cells fi red only aft er a certain number of events. One neuron, for instance, 
reacted aft er six events of any kind, regardless of whether this was six fl ashes of light, 

16  Th ompson, Mayers, Robertson, & Patterson,     1970   
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six brief tones, or six longer tones. Sensory modality did not seem to matter: Th e neuron 
apparently cared only about number. Unlike a digital computer, it did not respond in a 
discrete all-or-none manner, either. Rather, its activation level grew aft er the fi ft h item, 
reached a peak for the sixth, and decreased for larger numbers of items, a response profi le 
quite similar to that of the simulated neurons in our model. Several similar cells, each 
tuned to a diff erent number, were recorded in a small area of the cat’s cortex. 

 Th us, there might well be a specialized brain area, equivalent to Robinson’s accumu-
lator, in the animal brain. Unfortunately, Th ompson’s study, published in the prestigious 
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      figure 1.6.  A computer-simulated neural network incorporates “numerosity detectors” 
that respond preferentially to a specifi c number of input items (top panel). Each curve shows the 
response of a given unit to diff erent numbers of items. Note the decreasing selectivity of responses 
as input numerosity increases. In 1970, Th ompson and his colleagues recorded similar “number-
coding” neurons in the association cortex of anesthetized cats (bottom panel). Th e neuron 
illustrated here responds preferentially to six consecutive events, either six fl ashes of light one 
second apart, or six tones one or four seconds apart.   
 (Top, adapted from Dehaene and Changeux 1993; bottom, Th ompson et al. 1970. Copyright  ©  1970 by American 
Association for the Advancement of Science).     
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scientifi c journal  Science  in 1970, did not receive further attention. We still have no idea 
whether the number-detecting neurons are connected in the way our model predicts, or 
whether cats’ brains extract number using some other method. Th e fi nal word on this 
story will no doubt belong to those neurophysiologists who will dare to continue the 
quest for the neuronal bases of animal arithmetic using modern neuronal recording 
tools.   17      

   Fuzzy Counting   

 Whatever its exact neuronal implementation, if the accumulator model is correct, two 
conclusions must necessarily follow. First, animals can count, since they are able to 
increase an internal counter each time an external event occurs. Second, they do not 
count exactly as we do. Th eir representation of numbers, contrary to ours, is a fuzzy one. 

 When we count, we use a precise sequence of number words, leaving no room for 
errors to creep in. Each item counted corresponds to a move of one step forward in the 
number sequence. Not so for rats. Th eir numbers are the fl oating levels of an analogical 
accumulator. When a rat adds one unit to its running total, the operation bears only a 
vague resemblance to the logical rigorousness of our “  +  1.” It is more like adding a bucket 
of water to Robinson’s accumulator. Th e rat’s condition is somewhat reminiscent of 
Alice’s arithmetical embarrassment in  Th rough the Looking Glass : 

 “Can you do Addition?” the White Queen asked. “What’s one and one and one 
and one and one and one and one and one and one and one?” 

 “I don’t know,” said Alice. “I lost count.” 
 “She can’t do Addition,” the Red Queen interrupted.   

 Presumably, although she lacked enough time to count verbally, Alice would have been 
able to estimate the total to within a few units. Likewise, rats have to resort to approxi-
mate counting without words or digital symbols. Th e diff erence with our verbal counting 
is so enormous that we should perhaps not talk about “number” in animals at all, because 
by number we oft en imply a discrete symbol. Th is is why scientists, when they describe 
perception of numerical quantities, speak of “numerosity” or “numerousness” rather than 
number. Th e accumulator enables animals to estimate how numerous some events are, 
but does not allow them to compute their exact number. Th e animal mind can retain 
only fuzzy numbers. 

17  For fulfi llment of this prophetic remark, see Part IV and Nieder,     2005  ; Nieder & Dehaene,     2009  . Th ere is now 
direct empirical support for the existence of number neurons in the monkey brain, and highly suggestive 
 evidence for their presence in the human brain 
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 Is it really impossible to teach animals a symbolic notation for numbers? Couldn’t we 
teach them to recognize a discrete set of numerical labels similar to our digits and number 
words, and then inculcate to them that these labels refer to precise quantities? In fact, 
several such experiments have met with mitigated success. In the 1980s, a Japanese 
researcher, Tetsuro Matsuzawa, taught a chimpanzee named Ai the use of arbitrary signs 
to describe sets of objects (Figure   1.7  ).   18  Th e small drawings that played the role of words 
occupied the cells of a computerized pad. Th e chimp could press any cells that he chose 
in order to describe what he saw. Aft er a long training period, Ai learned to use fourteen 
object symbols, eleven color symbols and, most important for us, the fi rst six Arabic 
numerals. When it was shown three red pencils, for instance, the chimp fi rst pointed 
toward a square symbol adorned with a black diamond, which conventionally meant 
“pencil,” then toward a diamond crossed by a horizontal bar (“red”), and fi nally toward 
the written digit “3.”  

 Th is sequence of gestures may have been only some elaborate form of rote motor refl ex. 
However, Matsuzawa showed that the drawings did, to some extent, function like words 
that could, through their combinations alone, describe novel situations. If, for instance, 
the chimpanzee was taught a new symbol for “toothbrush,” it was partially able to apply 
it to novel contexts such as “fi ve green toothbrushes” or “two yellow toothbrushes.” Still, 
this ability to generalize remained fraught with frequent errors. 

 Since 1985, when Matsuzawa fi rst reported his results, his chimpanzee Ai has made 
constant progress in arithmetic. It now knows the fi rst nine digits, and can enumerate sets 
with 95 %  accuracy. Recordings of his response times suggest that, like a human, Ai uses 
serial counting for numbers greater than 3 or 4. It has also learned to order the digits 

18  Matsuzawa,     1985  ,   2009   
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      figure 1.7.  Th e Japanese primatologist Matsuzawa taught his chimpanzee Ai a vocabulary of 
visual signs, of which only a small subset is presented here. Ai could thus report the identity, the 
color and the numerosity of small sets of objects.   
 (Aft er Matsuzawa, 1985; copyright  ©  1985 by Macmillan Magazines Ltd.)     
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according to their magnitude — although again, it took years to establish this novel 
 competence. 

 Since Matsuzawa’s early experiments, the learning of numerical labels has been 
 replicated in several chimpanzees from at least three diff erent primate training centers. 
Similar abilities have even been demonstrated in species much more distant from us. 
Dolphins have been trained to associate arbitrary objects with precise numbers of fi sh. 
Aft er about 2,000 trials, they were able to select, among two objects, the one that was 
associated with the larger amount of fi sh.   19  Irene Pepperberg, at the University of Arizona, 
has taught her parrot Alex a large vocabulary of English words, among which are the fi rst 
few number words.   20  Experiments with Alex are quite remarkable in that signs or plastic 
tokens are unnecessary: More or less standard English can be used to formulate oral 
 questions, which the animal immediately answers by uttering recognizable words! When 
it is  presented with an array of objects comprising, for instance, green keys, red keys, 
green toys, and red toys, Alex can answer questions as complex as, “How many red keys?” 
Naturally, his training took a long time — almost twenty years. However, the results 
clearly prove that numerosity labeling is not exclusively a mammal’s privilege. 

 In more recent work, chimpanzees have been shown to be partially able to calculate 
using numerical symbols. Sarah Boysen, for instance, taught her chimpanzee named 
Sheba to perform simple numerical additions and comparisons.   21  She started by teaching 
Sheba the quantities associated with the Arabic digits 0 through 9. Experiments of this 
kind require unfailing patience. For two years, the animal was progressively exposed to 
increasingly complex tasks. At fi rst, it simply had to place one biscuit in each of the six 
squares of a checkerboard. It was then shown sets of between one and three biscuits, and 
asked to select, among several cards, the one that bore as many black marks as there were 
biscuits on the checkerboard. It therefore learned to match a set of biscuits with a set of 
marks by focusing only on their numerosity. In a third stage, the cards with marks were 
progressively replaced with the corresponding Arabic digits. Th e chimp therefore learned 
to recognize the digits 1, 2, and 3, and to point to the appropriate digit when it saw the 
corresponding number of biscuits. Finally, in the last stage, Sarah Boysen taught her 
 protégé the converse: It had to choose, among several sets of objects, the one whose 
numerosity matched a given Arabic digit. 

 Using similar strategies, the knowledge of the animal was progressively extended to the 
entire set of digits, from 0 through 9. At the end of this training period, Sheba could fl u-
ently move back and forth between a digit and the corresponding quantity. Th is can be 
considered as the essence of symbolic knowledge. A symbol, beyond its arbitrary shape, 
refers to a covert meaning. Symbol comprehension implies accessing this meaning from 

19  Mitchell, Yao, Sherman, & O’Regan,     1985  ; Kilian, Yaman, von Fersen, & Gunturkun,     2003   
20  Pepperberg,     1987   
21  Boysen & Berntson,     1989  ; Boysen, Bernston, Hannan, & Cacioppo,     1996   
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shape alone, while symbol production requires recovering the arbitrary shape from 
knowledge of the intended meaning. Obviously, the chimpanzee Sheba had managed, 
through long and painstaking training, to master both of these transformations. 

 An important property of human symbols, though, is that they can be combined 
into sentences whose meaning derives from the meaning of the constituent words. 
Mathematical symbols, for instance, can be combined to express equations such as 
2  +  2 = 4. Could Sheba also combine multiple digits into a symbolic calculation? To fi nd 
out, Boysen designed a symbolic addition task. She hid oranges at several places in Sheba’s 
cage — for instance, two oranges under a table and three in a box. Th e chimpanzee fi rst 
explored the various places where the oranges might be hidden. Sheba then came back to 
the starting point and was supposed to pick, among several Arabic digits, the one that 
matched the total number of oranges found. From the very fi rst trial, the animal  succeeded. 
A symbolic version of it was immediately tried. Th is time, as it wandered through the 
cage, the animal did not discover oranges, but Arabic digits such as digit 2 under the table 
and digit 4 in the box. Again, right from the start, the chimpanzee was regularly able to 
report, when its exploration was over, the total of the digits that it had seen (2  +  4 = 6). 
Th is implied that it could recognize each of the digits, associate them mentally with 
quantities, fi gure out the result of adding together all these quantities, and fi nally retrieve 
the visual appearance of the corresponding digit. Never had an animal come any closer to 
the symbolic calculation abilities exhibited by humankind. 

 Even species far less clever than the chimpanzee can learn to perform elementary 
mental operations with numerical symbols. For instance, two macaques named Abel and 
Baker, trained by David Washburn and Duane Rumbaugh at Georgia State University, 
have shown remarkable abilities for comparing the numerical quantities conveyed by 
Arabic digits.   22  Pairs of Arabic digits such as “2 4” appeared on a computer screen. Using 
the joystick, the animal could choose one digit. An automated dispenser then delivered a 
corresponding number of fruit candies, a delicacy that primates are particularly fond of. 
If the animal chose digit 4, it could savor four candies, whereas if it selected digit 2, 
it would only get two. Th e drive toward choosing the larger digit was therefore quite 
important. Indeed, the task was rather similar to the above-described comparison task, 
except that the animal was not directly confronted with food, but only with a symbolic 
representation of its amount using Arabic digits. It had to retrieve from memory the 
meaning of the digit symbols — namely, the quantity with which they were associated. 

 I should mention that Abel and Baker, unlike Sheba, had not received any training with 
Arabic digits before the test started. Th is is why they needed several hundred trials to learn 
to choose the larger digit with some regularity. Sheba, who already knew the quantity 
associated with digits, answered correctly on the very fi rst trial of a similar number 
 comparison task. Aft er training, Abel and Baker also succeeded very well. Th ey made no 

22  Washburn & Rumbaugh,     1991  . See also Beran,     2004  ; Harris, Washburn, Beran, & Sevcik,     2007   
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mistakes at all when the digits were suffi  ciently distant, but they failed up to 30 %  of the 
time when the digits diff ered by only one unit. We recognize here the now-familiar  distance 
eff ect, which reveals a tendency to confound quantities that are numerically close. 

 Following this performance with digit pairs, Abel and Baker went on successfully to 
triplets, quadruplets, and even quintuplets of digits between 1 and 9. Clearly, the animals 
had not learned the answers to all possible pairs of digits by rote. Even when they were 
presented with new, randomly ordered sets of digits, such as “5 8 2 1”, the animals picked 
out the larger digit with a much higher success rate than chance alone would have 
 predicted. 

 I cannot leave this topic without mentioning the curious diffi  culties that Sheba met 
when she had to pick the  smaller  of two numbers.   23  Th e experimental situation seemed 
quite simple: Th e animal was shown two sets of food, and when it pointed to one, the 
experimenter gave it to another chimp while Sheba received the  other  food set. In this 
novel situation, it was in Sheba’s interests to designate the smaller quantity, so that she 
would then receive the larger one. However, the chimpanzee never succeeded. She 
 continued to point to the larger set, as if choosing the maximum amount of food was an 
irrepressible response. Sarah Boysen then thought of replacing the actual piles of food 
with the corresponding Arabic digits. Immediately, from the fi rst trial, Sheba chose the 
smaller digit! Numerical symbols seemed to liberate Sheba from immediate material 
 contingencies. Th ey enabled her to act without being infl uenced by the parasitic impulse 
that otherwise compelled her to always pick out the larger amount of food.     

   The Limits of Animal Mathematics   

 How signifi cant are such demonstrations of symbolic calculation in animals? Should 
they be viewed simply as circus acts extorted at the expense of an intensive training that 
turns animals into performing machines, but eventually tells us nothing about their 
normal abilities? Or, are animals almost as gift ed as humans in their ability to do mathe-
matics? Without diminishing the importance of the above experiments, one is forced to 
admit that the mental manipulation of symbolic numerical labels in animals remains an 
exceptional fi nding. Although I have mentioned experiments with parrots, dolphins, and 
macaques, no cases of symbolic addition are known in any species other than the chim-
panzee. Even their performance seems quite primitive when compared to that of a human 
child. It took Sheba several years of trial and error before she could master the digits 0 
through 9. In the end, the chimpanzee still made frequent errors in using them, as did all 
the animals trained on number tasks. A young child, by contrast, spontaneously counts 
on its fi ngers, can oft en count up to 10 before the age of three, and rapidly moves on to 

23  Boysen et al.,     1996   
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multidigit numerals whose syntax is much more complex. Th e developing human brain 
seems to absorb language eff ortlessly — quite the opposite of animals, which always seem 
to need hundreds of repetitions of the same lesson before they retain anything. 

 What should we therefore remember about animal arithmetic? First, an undisputed 
and widespread ability to apprehend numerical quantities, to memorize, to compare, and 
even to add them approximately. Second, a considerably lesser ability, probably confi ned 
to a few species, for associating a repertoire of more or less abstract behaviors, such as 
pointing to an Arabic digit, to numerical representations. Th ese behaviors may eventually 
serve as labels for numerical quantities — the “symbols.” It is as if some animals could learn 
to grade the levels of the internal accumulator that they use to represent numbers. 
A lengthy training period enables them to memorize a list of behaviors: If the level of the 
accumulator is between  x  and  y , then point to digit “2”; if it is between  y  and  z , then point 
to digit “3”; and so on. Th is may just be a list of conditioned behaviors that is only 
remotely related to the extraordinary fl uency that humans show when using the word 
“two” in contexts as diff erent as “two apples,” “two and two equal four,” or “two dozen.” 
While we may marvel at animals’ ability to manipulate approximate representations of 
numerical quantities, teaching them a symbolic language seems to go against their natural 
proclivities. Indeed, the acquisition of symbols in animals never occurs in the wild.     

   From Animal to Human   

 Evolution is a conservative mechanism. When a useful organ emerges through random 
mutations, natural selection works to pass it on to the next generations. Indeed, the 
 preservation of favorable traits is a major source of the organization of life. Th erefore, if 
our closest cousins, the chimpanzees, possess some competence for arithmetic, and if 
 species as diff erent as rats, pigeons, and dolphins are not devoid of numerical abilities, 
it is likely that we  Homo sapiens  have received a similar heritage. Our brains, like the rat’s, 
are likely to come equipped with an accumulator that enables us to perceive, memorize, 
and  compare numerical magnitudes. 

 Many outstanding diff erences separate human cognitive abilities from those of other 
animals, including chimpanzees. For one thing, we have an uncanny ability to develop 
symbol systems, including a mathematical language. We are also endowed with a cerebral 
language organ that enables us to express our thoughts and to share them with other 
members of our species. Finally, our ability to devise intricate plans for actions, based on 
both a retrospective memory of past events and a prospective memory of future possi-
bilities, seems to be unique in the animal kingdom. Does that mean, however, that in 
other respects, our cerebral hardware for number processing should be very diff erent 
from that of other animals? Th e simple working hypothesis that I am defending through-
out this book postulates that we are in fact endowed with a mental representation of 
quantities very similar to the one that can be found in rats, pigeons, or monkeys. 
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Like them, we are able to rapidly enumerate collections of visual or auditory objects, to 
add them, and to compare their numerosities. I speculate that these abilities not only 
enable us to quickly work out the numerosity of sets, but also underlie our comprehen-
sion of symbolic numerals such as Arabic digits. In essence, the number sense that we 
inherit from our evolutionary history plays the role of a germ favoring the emergence of 
more advanced mathematical abilities.   24  

 In the next chapters, we will scrutinize human mathematical abilities, looking for  vestiges 
of the animal mode of apprehending numbers. Th e fi rst and perhaps the most dramatic cue 
that we will study is the remarkable competence of human infants in  arithmetic, long 
before they fi rst sit in a classroom — in fact, long before they can sit at all!                                                                      

24  For a recent update of this view, called  neuronal recycling , and its possible extension to reading and language 
skills, see Dehaene & Cohen,     2007  ; Dehaene,     2009   



 dο babies have any abstract knowledge of arithmetic at birth? Th e question seems 
 preposterous. Intuition suggests that babies are virgin organisms, initially devoid of any 
kind of competence other than the ability to learn. Yet if our working hypothesis is 
 correct, the human brain is endowed with an innate mechanism for apprehending 
 numerical quantities, one that is inherited from our evolutionary past and that guides the 
acquisition of mathematics. To infl uence the learning of number words, this protonu-
merical module must be in place before the period of exuberant language growth that 
some psychologists call the “lexical explosion,” which occurs around a year and a half of 
age. In the fi rst year of life, then, babies should already understand some fragments of 
arithmetic.     

   Baby Building: Piaget’s Theory   

 Only since the early 1980s the subject of babies’ numerical competence been examined 
empirically. Before this period, developmental psychology was dominated by construc-
tivism, a view of human development that made the very notion of arithmetic in the fi rst 
year of life sound inconceivable. According to the theory fi rst set forth some 50 years 
ago by Jean Piaget, the founder of constructivism, logical and mathematical abilities are 
 progressively constructed in the baby’s mind by observing, internalizing, and abstracting 

 BABIES WHO COUNT         

            2 

        Th e soul, as being immortal, and having been 

born again many times, and having seen all things 

that exist, whether in this world or in the world 

below, has knowledge of them all; and it is no 

wonder that she should be able to call to 

remembrance all that she ever knew about 

virtue, and about everything. 

 plato,  Meno   
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regularities about the external world.   1  At birth, the brain is a blank page devoid of any 
conceptual knowledge. Genes do not grant the organism any abstract ideas about the 
environment in which it will live. Th ey merely instill simple perceptual and motor devices, 
and a general learning mechanism that progressively takes advantage of the interactions 
of the subject with its environment to organize itself. 

 In the fi rst year of life, according to constructivist theory, children are in a “sensorimo-
tor” phase: they explore their environment through the fi ve senses, and they learn to 
control it through motor actions. In this process, Piaget argues that children cannot fail 
to notice certain salient regularities. For instance, an object that disappears behind a 
screen always reappears when the screen is lowered; when two objects collide, they never 
interpenetrate; and so on. Guided by such discoveries, babies progressively construct 
a series of ever more refi ned and abstract mental representations of the world in which 
they are growing up. In this view, then, the development of abstract thought consists in 
climbing a series of steps in mental functioning, the Piagetian stages, that psychologists 
may identify and classify. 

 Piaget and his colleagues speculated a good deal about how the concept of number 
develops in young children. Th ey believed that number, like any other abstract represen-
tation of the world, must be constructed in the course of sensorimotor interactions with 
the environment. Th e theory goes something like this: Children are born without any 
preconceived idea about arithmetic. It takes them years of attentive observation before 
they really understand what a number is. By dint of manipulating collections of objects, 
they eventually discover that number is the only property that does not vary when objects 
are moved around, or when their appearance changes. Here is how Seymour Papert, in 
1960, described this process:   2  

 For the infant, objects do not even exist; an initial structuration is needed to 
 organize experience into  things.  Let us stress that the baby does not  discover  the 
existence of objects like an explorer discovers a mountain, but rather like someone 
discovers music: he has heard it for years, but before then it was only noise to his 
ears. Having “acquired objects,” the child still has a long way to go before reaching 
the stage of classes, seriations, inclusions and, eventually, number.   

 Piaget and his many collaborators had seemingly collected proof upon proof of young 
children’s inability to understand arithmetic. For instance, if you hide a toy under a cloth, 
10-month-old babies fail to reach for it — a fi nding that Piaget thought meant that babies 
believe that the toy ceases to exist when it is out of sight. Would this apparent lack of 
“object permanence,” in Piagetian jargon, not imply that babies are fully ignorant of the 

1  Piaget,     1948  /    1960  ; Piaget,     1952   
2  Papert,     1960   
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world they live in? If they do not realize that objects continue to exist when they are out 
of sight, how could they ever know anything about the more abstract and evanescent 
properties of number? 

 Other observations by Piaget seemed to indicate that the number concept does not 
begin to be understood before the ages of four or fi ve. Before then, children fail in what 
Piaget called the “number conservation” test. First, they are shown equally spaced rows of 
six glasses and six bottles. If they are now asked whether there are more glasses or more 
bottles, children will reply, “It’s the same thing.” Th ey apparently rely on the one-to-one 
correspondence between objects in the two rows. Th e row of glasses is then spread so that 
it becomes longer than the row of bottles. Obviously, number is not aff ected by this 
manipulation. Yet when the earlier question is repeated, children now systematically 
respond that there are more glasses than bottles. Th ey do not seem to realize that moving 
the objects around leaves their number unchanged. Psychologists would say that they do 
not “conserve number.” 

 When children eventually pass the number conservation test, constructivists still do 
not grant them much conceptual understanding of arithmetic. Until they are seven or 
eight, it is still easy to entrap them with simple numerical tests. Show them, for instance, 
a bunch of eight fl owers with six roses and two tulips, and ask them a silly question: Are 
there more roses or more fl owers? Most of them will tell you that the roses are more 
numerous than the fl owers! And Piaget readily concludes that prior to the age of reason, 
children lack knowledge of the most elementary bases of set theory, which many mathe-
maticians believe to provide a foundation for arithmetic: Th ey seemingly ignore that a 
subset cannot have more elements than the original set from which it was drawn. 

 Piaget’s fi ndings have had a considerable impact on our education system. His 
 conclusions have instilled a pessimistic attitude, and a wait-and-see policy among 
 educators. Th e theory states that the regular climbing of Piagetian stages progresses 
according to an immutable process of growth. Before the age of six or seven, the child is 
not “ready” for arithmetic. Hence, precocious teaching of mathematics is a vain or even 
harmful  enterprise. If it is taught early on, the number concept cannot but be distorted 
in kids’ heads. It will have to be learned by rote, without any genuine understanding. 
Failing to grasp what arithmetic is about, children will develop a strong feeling of anxiety 
about mathematics. According to Piagetian theory, it is best to start by teaching logic and 
the ordering of sets, because these notions are a prerequisite to the acquisition of the 
concept of number. Th is is the main reason why, even today, children in most preschools 
spend much of their day piling up cubes of decreasing sizes, long before they learn to 
count. 

 Is such pessimism reasonable? We have seen that rats and pigeons readily recognize a 
certain number of objects, even as their spatial confi guration varies. We know already 
that a chimp will spontaneously choose the larger of two numerical quantities. Is it 
 conceivable that human children before the age of four or fi ve lag so far behind other 
animals in arithmetic?     
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   Piaget’s Errors   

 We now know that this aspect of Piaget’s constructivism was wrong. Obviously, young 
 children have much to learn about arithmetic, and obviously their conceptual understanding 
of numbers deepens with age and education — but they are not devoid of  genuine mental 
representations of numbers, even at birth! One merely has to test them using research  methods 
tailored to their young age. Unfortunately, the tests that Piaget favored do not enable 
children to show what they are really capable of. Th eir major defect lies in their reliance on 
an open dialog between experimenters and their young subjects. Do children really under-
stand all the questions that they are being asked? Most important, do they interpret these 
questions as adults would? Th ere are several reasons to think not. When children are placed 
in situations analogous to those used with animals, and when their minds are probed  without 
words, their numerical abilities turn out to be nothing less than considerable. 

 Take, for instance, the classical Piagetian test of number conservation. As early as 
1967, in the prestigious scientifi c journal  Science,  Jacques Mehler and Tom Bever, then 
at the department of psychology at MIT, demonstrated that the results of this test 
changed radically according to context and to the children’s level of motivation.   3  Th ey 
showed the same children, 2 to 4 years old, two series of trials. In one — similar to the 
classical conservation situation — the experimenter set up two rows of marbles. One row 
was short but consisted of six marbles, and the other, although longer, had only four 
marbles (Figure   2.1  ). When the children were asked which row had more marbles, most 
3- and 4-year-olds got it wrong and selected the longer but less numerous row. Th is recalls 
Piaget’ s  classical nonconservation error.  

 In the second series of trials, however, Mehler and Bever’s ruse consisted in replacing 
marbles with palatable treats (M&Ms). Instead of being asked complicated questions, the 

3  Mehler & Bever,     1967   

Before transformation After transformation

     figure 2.1.  When two rows of items are in perfect one-to-one correspondence (left  panel),
a three-or four-year-old child states that they are equal. If one now transforms the bottom row both 
by shortening it and by adding two items (right panel), the child declares that the top row has more 
items. Th is is the classical error fi rst discovered by Piaget: Th e child responds on the basis of row 
length rather than number. Yet when the rows are made up of M&Ms, Mehler and Bever (  1967  ) 
proved that children spontaneously choose the bottom row. Hence, the Piagetian error is not 
imputable to children’s incompetence in arithmetic, but merely to the disconcerting conditions 
of number conservation tests.   
 (Aft er Mehler and Bever,   1967  .)    
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children were allowed to pick up one of the two rows and consume it right away. Th is 
procedure had the advantage of sidestepping language comprehension diffi  culties, while 
increasing the children’s motivation to choose the row with the most treats. Indeed, when 
candy was used, a majority of children selected the larger of the two numbers, even when 
the length of the rows confl icted with number. Th is provided a striking demonstration 
that their numerical competence is no more negligible than their appetite for sweets! 

 Th at 3- and 4-year-old children select the more numerous row of candy is perhaps not 
very surprising, even though it confl icts directly with Piaget’s theory. But there is more. 
In Mehler and Bever’s experiment, the youngest children, who were about 2 years old, 
succeeded perfectly in the test, both with marbles and with M&Ms. Only the older 
 children failed to conserve the number of marbles. Hence, performance on number 
 conservation tests appears to drop temporarily between 2 and 3 years of age. But the 
 cognitive abilities of 3- and 4-year-olds are certainly not less well-developed than those of 
2-years-olds. Hence, Piagetian tests cannot measure children’s true numerical compe-
tence. For some reason, these tests seem to confuse older children to such an extent that 
they become unable to perform nearly as well as their younger brothers and sisters. 

 I believe that what happens is this: 3- and 4-year-olds interpret the experimenter’s 
questions quite diff erently from adults. Th e wording of the questions, and the context in 
which they are posed, mislead children into believing that they are asked to judge the 
length of the rows rather their numerosity. Remember that, in Piaget’s seminal experi-
ment, the experimenter asks the very same question twice: “Is it the same thing, or does 
one row have more marbles?” He fi rst raises this question when the two rows are in 
 perfect one-to-one correspondence, and then again aft er their length has been modifi ed. 

 What might children think of these two successive questions? Let us suppose for a 
moment that the numerical equality of the two rows is obvious to them. Th ey must fi nd 
it quite strange that a grown-up would repeat the same trivial question twice. Indeed, it 
constitutes a violation of ordinary rules of conversation to ask a question whose answer is 
already known by both speakers. Faced with this internal confl ict, perhaps children fi gure 
out that the second question, although it is superfi cially identical to the fi rst, does not 
have the same meaning. Perhaps something like the following reasoning goes on in their 
heads: 

 If these grown-ups ask me the same question twice, it must be because they are 
expecting a diff erent answer. Yet the only thing that changed relative to the previous 
situation is the length of one of the rows. Hence, the new question must bear on the 
length of the rows, even though it seems to bear on their number. I guess I’d better 
answer on the basis of row length rather than on the basis of number.   

 Th is line of reasoning, although quite refi ned, is well within the reach of 3- and 4-year-
olds. In fact, unconscious inferences of this type underlie the interpretation of a great 
many sentences, including those that a very young child may produce or comprehend. 
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We all routinely perform hundreds of inferences of this sort. Understanding a sentence 
consists in going beyond its literal meaning and retrieving the actual meaning initially 
intended by the speaker. In many circumstances, the actual meaning can be the direct 
opposite of the literal sense. We speak of a good movie as being “not too bad, isn’t it?” 
And when we ask, “Could you pass the salt?” we are certainly not satisfi ed when 
the answer is a mere “yes”! Such examples demonstrate that we constantly reinterpret the 
sentences that we hear, by performing complex unconscious inferences concerning the 
other speaker’s intentions. Th ere is no reason to think that young children are not doing 
the same when they converse with an adult during these tests. In fact, this hypothesis 
seems all the more plausible, since it is precisely around three or four years of age — the 
point at which Mehler and Bever fi nd that children begin not to conserve number — that 
the ability to reason about the intentions, beliefs, and knowledge of other people, which 
psychologists call a “theory of mind,” arises in young children.   4  

 Two developmental psychologists from the University of Edinburgh, James McGarrigle 
and Margaret Donaldson, directly tested the hypothesis that children’s failure to 
“conserve number” on Piagetian tests is linked to their misunderstanding of the experi-
menter’s intentions.   5  In their experiment, half of the trials were of the classical type, where 
the experimenter modifi ed the length of one row and then asked, “Which has more?” 
In the other half of the trials, however, the length transformation was performed fortu-
itously by a teddy bear. While the experimenter was conveniently looking elsewhere, a 
teddy bear lengthened one of the two rows. Th e experimenter then turned and exclaimed, 
“Oh no! Th e silly teddy bear has again mixed up everything.” Only then did the researcher 
again ask the question “Which has more?” Th e underlying idea was that, in this situation, 
this query seemed sincere and could be interpreted in a literal sense. Since the bear had 
messed up the two rows, the adult did not know anymore how many objects there were, 
and hence was asking the child. In this situation the vast majority of children responded 
correctly on the basis of number, without being infl uenced by row length. Th e same 
 children, however, failed by systematically responding on the basis of length when the 
transformation was performed intentionally by the experimenter. Th is proves two points: 
First, even a young child is capable of interpreting the same exact question in two quite 
diff erent ways, depending on context. Second, Piaget notwithstanding, when the  question 
is asked in a context that makes sense, young children get the answer right — they can 
conserve number! 

 I would not want to leave this discussion on a misunderstanding. I certainly do not 
consider the children’s failure on Piagetian conservation tasks to be a trivial matter. On 
the contrary, this is an active domain of research that still attracts many researchers 

4  Frith & Frith,     2003  . We now know that, in simpler nonverbal tests, even younger children show evidence 
of representing the minds of others; see Onishi & Baillargeon,     2005   

5  McGarrigle & Donaldson,     1974   
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throughout the world. Aft er hundreds of experiments, it is still unclear exactly why 
 children are so easily deceived by fallacious cues, such as row length, when they have to 
judge number. Some scientists think that failure on Piagetian tasks refl ects the continu-
ing maturation of the prefrontal cortex, a region of the brain that enables us to select a 
strategy and to hold fi rm to it despite distraction.   6  If this theory turns out to be correct, 
Piagetian tests could take on a new meaning as a behavioral marker of children’s ability to 
resist distraction. However, developing such ideas would be the matter of another book. 
My purpose here is more modest. My sole objective is to convince you that we now know 
what Piagetian tests are  not  about. Contrary to what their inventor thought, these are not 
good tests of when a child begins to understand the concept of number.     

   Younger and Younger   

 Th e experiments that I have described so far, challenge the Piagetian time scale for 
 numerical development by suggesting that children “conserve number” at a much earlier 
age than was once thought possible. Yet, do they refute the whole of constructivism? Not 
really. Piaget’s theory is much more subtle than I can possibly describe in a few  paragraphs, 
and it allows several ways in which he might have accommodated the above results. 

 He might have argued, for instance, that by removing some of the confl icting cues 
from his original number conservation test, the modifi ed experiments made the 
children’s task too simple. Piaget was well aware that his number conservation test misled 
 children — in fact it was  purposely  designed so that row length confl icted with number. In 
his view, children really mastered the conceptual underpinnings of arithmetic only when 
they could predict which row had the most items on a purely logical basis, by refl ecting 
on the logical consequences of the operations that had occurred, and without letting 
themselves be distracted by irrelevant changes in row length or in the way the experi-
menter phrased the questions. Resistance to misleading cues, it seems, was part and parcel 
of Piaget’s defi nition of what it meant to have a conceptual understanding of number. 

 Piaget might also have argued that choosing the largest number of candies does not 
require a  conceptual  understanding of number, but only a sensorimotor coordination that 
allows the child to recognize the greater pile and orient to it. Th roughout his work, Piaget 
ceaselessly stressed young children’s sensorimotor intelligence, so he might well have 
 happily accepted that children discovered the “choose-the-larger” strategy at an early age. 
He would have insisted, however, that this strategy was used without any understanding 
of its logical basis; only later, he claimed, would children refl ect on their sensorimotor 
abilities and arrive at a more abstract construal of number. Typical of this attitude is 
Piaget’s reaction when he heard about Otto Koehler’s work on perception of numerosity 

6  Goldman-Rakic, Isseroff , Schwartz, & Bugbee,     1983  ; Diamond & Goldman-Rakic,     1989   
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in birds and squirrels — he accepted that animals could acquire “sensorimotor numbers,” 
but not a conceptual understanding of arithmetic. 

 Before the 1980s, the experiments that challenged Piaget’s theory did not really address 
his central hypothesis that babies were devoid of a genuine concept of number. Aft er all, 
the youngest children who sat for Mehler and Bever’s marble test were already two years 
old. Th is still left  a long time for learning to have taken place. In this context, scientifi c 
studies of infants suddenly became of paramount theoretical importance. Could it be 
shown that even babies, under one year of age, have already mastered some aspects of the 
number concept, before they have had any chance of abstracting them from interactions 
with the environment? Th e answer is yes. In the 1980s, numerical abilities were observed 
in 6-month-old infants and even in newborns. 

 Obviously, in order to reveal numerical competence at such an early age, verbal 
 questioning will not do. Scientists have, therefore, relied on babies’ attraction to novelty. 
Any parent knows that when a baby sees the same toy over and over again, it eventually 
loses interest in it. At this point, introducing a new toy can revive the baby’s interest. Th is 
elementary observation — which is obviously in need of being replicated in the laboratory 
and in a tightly controlled situation — proves that the child has noted the diff erence 
between the fi rst and the second toy. Th is technique can be extended to ask babies all 
sorts of questions. It is in this way that researchers have been able to demonstrate that, 
very early in life, babies and even newborns can perceive diff erences in color, shape, size, 
and, more to the point, number. 

 Th e fi rst experiment to establish that babies recognize small numbers took place in 
1980 in Prentice Starkey’s laboratory at the University of Pennsylvania.   7  A total of 72 
babies, aged between 16 and 30 weeks, were tested. Each baby, seated on its mother’s lap, 
faced a screen on which slides were projected (Figure   2.2  ). A video camera focusing on 
the babies’ eyes fi lmed its gaze, enabling an associate, who was blind to the exact condi-
tions of the experiment, to measure exactly how long the baby spent looking at each slide. 
When the baby started looking elsewhere, a new slide appeared on the screen. Initially, 
the content of the slides was essentially the same: two large black dots, more or less spread 
out horizontally from trial to trial. In the course of trials, the baby started to look more 
and more briefl y at this repetitive stimulus. Th e slides were then changed without  warning 
to new slides containing three black dots. Immediately, the baby started to fi xate longer 
at these unexpected images. Th e fi xation time, which was 1.9 seconds just prior to the 
switch, jumped to 2.5 seconds on the very fi rst new slide. Hence, the baby detected the 
switch from two dots to three dots. Other children, tested in the same manner, detected 
the switch from three to two dots. Initially, these experiments were performed with 6- or 
7-month-olds, but a few years later, Sue Ellen Antell and Daniel Keating, from the 

7  Starkey, Cooper, & Jr.,     1980   
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University of Maryland in Baltimore County, demonstrated with a similar technique 
that even newborns could discriminate numbers two and three a few days aft er birth.   8   

 How can one make sure that it is really the change in number that is noticed by the 
babies, rather than any other physical modifi cation of the stimulus? In their initial exper-
iments, Starkey and Cooper had aligned the dots so that the global fi gure that they 
formed provided no cue to number (in other arrangements, number is oft en confounded 
with shape, because two dots form a line and three dots a triangle). Th ey also varied the 
spacing between the dots so that neither their density, nor the total length of the line, 
would suffi  ce to discriminate two from three. Later, Mark Strauss and Lynne Curtis, at 
the University of Pittsburgh, introduced an even better control.   9  Th ey simply used color 
photographs of common objects of all kinds. Th e objects were small or large, aligned or 
not, and were photographed from near or far. Only their number remained constant: 
Th ere were two objects in one half of the experiment, and three in the other. Not the least 
aff ected by such variability in all the possible physical parameters, the babies continued 
to notice the change in number. More recently, the experiment has even been replicated 
by Eric Van Loosbroek and Ad Smitsman, two psychologists from the Catholic University 

8  Antell & Keating,     1983  . For a recent demonstration of numerical competence in newborns, see Izard, Sann, 
Spelke, & Streri,     2009   

9  Strauss & Curtis,     1981   

or

Habituation Test

     figure 2.2.  To prove that infants discriminate the numerosities 2 and 3, they are fi rst repeatedly 
shown collections with a fi xed number of items, say two (left ). Following this habituation phase, 
infants look longer at collections of three items (right) than at collections of two items. Because 
object location, size, and identity vary, only a sensitivity to numerosity can explain infants’ renewed 
attention.   
 (Top, stimuli used by Starkey and Cooper   1980  ; bottom, stimuli similar to those used by Strauss and Curtis   1981  .)    
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of Nijmegen in the Netherlands, with moving displays — random geometrical shapes 
that occasionally hide one another in the course of their trajectory.   10  In the fi rst few 
months of life, babies appear to notice the constancy of objects in a moving environment 
and extract their numerosity.     

   Babies’ Power of Abstraction   

 It remains to be seen whether this precocious sensitivity to numerosity merely refl ects the 
power of the babies’ visual system, or whether it betrays a more abstract representation of 
number. With very young children, we have to ask the very same questions as those raised 
with rats and chimpanzees. Are they able to extract the number of tones in an auditory 
sequence, for instance? Most important, do they know that the same abstract concept “3” 
applies to three sounds and to three visual objects? Finally, can they mentally combine 
their numerical representations to perform elementary calculations such as 1  +  1 = 2? 

 To answer the fi rst question, scientists simply moved the original experiments on the 
visual recognition of number to the auditory modality. Th ey bored babies by repeating 
sequences of three sounds over and over again, and then ascertained whether a later, novel 
sequence of two sounds was able to renew their interest. One of these experiments is 
especially instructive because it suggests that, as early as four days of age, a baby can 
decompose speech sounds into smaller units — syllables — that it can then enumerate. But 
at such a young age, it is easier to use sucking rhythm rather than gaze orientation as an 
experimental tool. So, Ranka Bijeljac-Babic and her colleagues at the Laboratory for 
Cognitive Science and Psycholinguistics in Paris have babies suck on a nipple connected 
to a pressure transducer and a computer.   11  Whenever the baby sucks, the computer notices 
it and immediately delivers a nonsense word such as “bakifoo” or “pilofa” through a 
 loudspeaker. All the words share the same number of syllables — three, for instance. When 
a baby is fi rst placed in this peculiar situation where sucking yields sound, it shows an 
increased interest, which is translated into an elevated sucking rate. Aft er a few minutes, 
however, sucking drops. As soon as the computer detects this drop, it switches to 
 delivering words with only two syllables. Th e baby’s reaction? It immediately goes back to 
sucking vigorously in order to listen to the new word structure. To ensure that this 
 reaction is related to the number of syllables, rather than to the mere presence of novel 
words, with some babies novel words are introduced while the number of syllables is left  
unchanged. In this control group, no reaction is perceptible. Since the duration of words 
and the rate of speech are highly variable, the number of syllables is indeed the only 
parameter that can enable babies to diff erentiate the fi rst list of words from the second. 

10  van Loosbroek & Smitsman,     1990   
11  Bijeljac-Babic, Bertoncini, & Mehler,     1991   



40  Th e Number Sense

 Very young children, therefore, pay equal attention to the number of sounds and to the 
number of objects in their environment. We also know, thanks to a recent experiment by 
Karen Wynn, that at six months of age they will discriminate numbers of actions, such as 
a puppet making two jumps versus three jumps.   12  Yet, are they aware of the “correspon-
dence” between sound and sight, to paraphrase the French poet Baudelaire? Do they 
anticipate that three strokes of lightning should predict an equal number of thunder-
claps? In brief, do they access an abstract representation of number, independent of the 
visual or auditory modality that mediates it? Th anks to remarkably clever experiments 
designed by American psychologists Prentice Starkey, Elizabeth Spelke, and Rochel 
Gelman, we can now give a positive answer to this question.   13  I rank their work highly in 
my personal pantheon of experimental psychology, because prior to the cognitive revolu-
tion of the 1980’s it would have seemed virtually impossible to ask such a complex 
 question about a baby’s mind. 

 In this multimedia experiment, a 6-, 7-, or 8-month-old baby is seated in front of two 
slide projectors. On the right, the slide shows two common objects, randomly arranged. 
On the left , a similar slide shows three objects. Simultaneously, the baby hears a sequence 
of drum beats played by a central loudspeaker placed between the two screens. Finally, 
as usual, the baby is watched by a hidden video camera that enables experimenters to 
measure how much time the baby spends looking at each slide. 

 Initially, the baby is attentive and explores the images visually. Obviously, those with 
three objects are more complex than those with only two, so the baby dedicates a little 
more time and attention to them. Aft er a few trials, however, this bias fades, and a  fascinating 
result emerges: Th e baby looks longer at the slide whose numerosity matches the sequence 
of sounds that it is hearing. It consistently looks longer at three objects when hearing three 
drumbeats, but now prefers to watch  two  objects when hearing two drumbeats. 

 It therefore seems likely that the baby can identify the number of sounds — even though 
it varies from trial to trial — and is capable of comparing it to the number of objects before 
its eyes. If the two numbers are mismatched, the baby decides not to delve any longer into 
this slide, but rather to take a peek at the other one. Th e very fact that a child only a few 
months of age applies a strategy as sophisticated as this implies that its numerical repre-
sentation is not tied to a low level of visual or auditory perception. Th e simplest explana-
tion is that the child really perceives numbers rather than auditory patterns or geometrical 
confi gurations of objects. Th e very same representation of number “three” seems to fi re in 
its brain, whether it sees three objects or hears three sounds. Th is internal, abstract, and 
amodal representation enables the child to notice the correspondence between the 
number of objects on one slide and the number of sounds that are simultaneously heard. 

12  Wynn,     1996   
13  Starkey, Spelke, & Gelman,     1983  ; Starkey, Spelke, & Gelman,     1990  . Véronique Izard even demonstrated 

a  similar competence in newborns; see Izard et al.,     2009   
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Remember that animals behave in a very similar way: Th ey too seem to possess neurons 
that respond equally well to three sounds or three light fl ashes. Babies’ behavior may well 
refl ect an abstract module for number perception, implanted by evolution ages ago, deep 
within the animal and human brains.     

   How Much Is 1 plus 1?   

 Let us momentarily pursue the comparison between the behavior of babies and that 
of other animal species. We have seen in the preceding chapter that a chimpanzee can 
compute the approximate total of a simple addition such as two oranges plus three 
oranges. Might this also be true of young infants? At fi rst sight, this seems a rather daring 
hypothesis. We are more inclined to think that the acquisition of mathematics starts in 
the preschool years. It was not until the 1990s that a question as iconoclastic as the exis-
tence of calculation abilities in the fi rst year of life received an empirical evaluation. By 
then, the scientifi c community had been suffi  ciently prepared by the many experiments 
on numerical perception, both in infants and in animals, for an experiment of this type to 
be attempted and for its results to receive attention. 

 In 1992, Karen Wynn’s famous article on addition and subtraction by 4- and 5-month-old 
infants appeared in the journal  Nature.    14  Th e young American scientist had employed a simple 
yet ingenious design that relied on infants’ ability to detect physically impossible events. 
Several earlier experiments had shown that, in their fi rst year of life, infants express strong 
puzzlement when they witness “magical” events that violate the fundamental laws of physics.   15  
For instance, if they see an object remain mysteriously suspended in midair aft er losing its 
support, babies watch this scene with incredulous attention. Likewise, they express surprise 
when a scene suggests that two physical objects occupy the same location in space. Finally, if 
one hides an object behind a screen, babies fi nd it astounding not to see it again when the 
screen later drops. In passing, note that this observation proves that, as early as fi ve months 
and contrary to Piaget’s theory, “out of sight” is not “out of mind.” We now know that the 
failure of children under one year in Piaget’s object permanence task is linked to the immatu-
rity of their prefrontal cortex, which controls their reaching movements. Th e fact that they 
can’t reach properly toward a hidden object does not imply that they believe it to be gone.   16  

 In all such situations, infants’ surprise is demonstrated by a signifi cant increase in the 
amount of time they spend examining the scene, relative to a control situation in which 
the laws of physics have not been violated. Karen Wynn’s knack resides in adapting this 

14  Wynn,     1992a  . For replications and extensions, particularly to larger numbers, see Simon, Hespos, & Rochat,    
 1995  ; Koechlin, Dehaene, & Mehler,     1997  ; McCrink & Wynn,     2004  ,   2009  . For limits and for discussion, see 
Feigenson, Carey, & Spelke,     2002  ; Feigenson, Dehaene, & Spelke,     2004   

15  E.g. Gelman & Tucker,     1975  ; Gelman & Gallistel,     1978  . For review, see Wang & Baillargeon,     2008   
16  Baillargeon,     1986  ; Diamond & Goldman-Rakic,     1989   
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idea to probe infants’ number sense. She showed them events that could be interpreted as 
numerical transformations — for instance, one object plus another object — and tested 
whether infants expect the precise numerical outcome of two objects. 

 Upon arrival in the laboratory, the 5-month-old participants discovered a little puppet 
theater with a rotating screen up front (Figure   2.3  ). Th e hand of the experimenter came 
out on one side, holding a toy Mickey Mouse, which it placed on stage. Th en the screen 
came up, masking the location of the toy. Th e hand appeared on the scene a second time 
with a second Mickey Mouse, deposited it behind the screen, and left  empty. Th e entire 
sequence of events stood for a concrete depiction of the addition 1  +  1: Initially, there was 
only one toy behind the screen, and then a second one was added. Children never saw the 
two toys together, but only one aft er the other. Would they have inferred, nevertheless, 
that there should be two Mickeys behind the screen? 

  To fi gure this out, the screen was lowered, revealing an unexpected result: Only one 
Mickey could be seen! Unbeknownst to the subjects, one of the two toys had been 
removed through a hidden trap door. In order to estimate the infants’ degree of surprise, 
the time that they spent fi xating this impossible situation “1  +  1 = 1” was measured and 
compared to the fi xation time for the expected outcome of two objects (“1  +  1 = 2”). On 
average, infants looked one second longer at the false addition 1  +  1 = 1 than at the possible 
event 1  +  1 = 2. One might still object that the kids were not really computing additions, 
but were simply looking longer at a single object than at two identical ones. However, this 
explanation is not tenable, because the results were reversed in a second group of babies 
who were presented with the operation 2  −  1 instead of 1   +   1. In this group, the babies 
were now surprised to discover two objects behind the screen (2  −  1 = 2), and they exam-
ined this situation as much as three seconds longer than the possible event, 2  −  1 = 1. 

 As Wynn herself observes, if one wants to play the devil’s advocate, these results still 
need not imply that babies can perform exact computations. Th ey may just know that 
the numerosity of a set changes when objects are added or removed. Hence, they might 
fi gure out that 1   +   1 cannot possibly equal 1, nor 2  −  1 equal 2, without necessarily knowing 
the exact result for these operations. Yet, even this contrived explanation does not stand 
up to empirical testing. One merely has to replicate the addition situation 1  +  1 with 
outcomes of either two or three objects. Karen Wynn ran this replication and observed 
that, again, 5-month-old babies looked longer at the impossible outcome of three objects 
than at the possible outcome of two objects. Th e demonstration is irrefutable: Babies 
know that 1  +  1 makes neither 1 nor 3, but exactly 2. 

 Th is knowledge puts infants on a par with the rats we looked at, or with Sheba, the 
chimp prodigy whose computing abilities were described in the previous chapter. In fact, 
the exact design of Karen Wynn’s experiment has now been replicated by Harvard 
 psychologist, Mark Hauser, with rhesus monkeys in the wild.   17  When a monkey, intrigued 

17  Hauser, MacNeilage, & Ware,     1996   
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2. Screen comes up1. First object is placed on stage

3. Second object is added

5. Screen drops...

5. Screen drops...

Revealing 2 objects

Revealing 1 objects

Possible outcome: 1+1=2

Impossible outcome: 1+1=1

4. Hand leaves empty

Initial sequence: 1+1

     figure 2.3.  Karen Wynn’s experiment shows that 4 ½-month-olds expect 1 plus 1 to make 2. 
First, a toy is hidden behind a screen. Th en a second identical toy is added. Finally, the screen drops, 
sometimes revealing the two toys, and sometimes only one (the other toy having been surreptitiously 
taken away). Infants look systematically longer at the impossible event “1  +  1 = 1” than at the 
possible one “1  +  1 = 2,” suggesting that they were expecting two objects.   
 (Adapted from Wynn, 1992.)    

by Hauser’s presence, volunteered to look at him, Hauser successively hid two eggplants 
in a box. Th en, in some trials only, he sneaked one off  before opening the box, while a 
colleague fi lmed the animal to measure its degree of surprise. Th e results of this wild 
scene were important and fascinating. Th e monkeys reacted even more strongly than 
babies: On the “magic” trials in which one of the expected eggplants was missing, they 



44  Th e Number Sense

spent considerable time scrutinizing the box. Obviously, human infants are at least as 
gift ed as their animal cousins in arithmetic, confi rming that elementary numerical 
 computations can be performed by organisms devoid of language. 

 Still, Karen Wynn’s experiments give no clue as to how abstract infants’ knowledge 
really is. Infants may keep a vivid and realistic image of the objects hidden behind the 
screen — a kind of mental photograph suffi  ciently precise for them to immediately notice 
any missing or supernumerary objects. Alternatively, they may only keep a memory of the 
number of objects added to or subtracted from behind the screen, without caring about 
their location and identity. To fi nd out, one may prevent children from building a precise 
mental model of the objects’ location and identity, and see whether they can still antici-
pate their number. Th is idea has served as the basis for an experiment recently conducted 
by Etienne Koechlin in our laboratory in Paris.   18  Th e design is quite similar to Wynn’s 
studies, except that objects are now placed on a slowly rotating turntable that keeps them 
in constant motion even when they are hidden behind the screen. It is therefore impos-
sible to predict where they will be when the screen drops. Babies cannot conjure up a 
precise mental image of the predicted scene; all they can construct is an abstract represen-
tation of two rotating objects with unpredictable locations. 

 Th e results, amazingly, show that 4-and-a-half-month-old infants are not in the least 
confused by object motion. Th ey still fi nd the impossible events 1  +  1 = 1 and 2  −  1 = 2 
 surprising. Hence, their behavior does not depend crucially on the expectation of precise 
object locations. Th ey do not expect to fi nd a precise confi guration of objects behind the 
screen, but merely two objects — no more, no less. A psychologist at the Georgia Institute 
of Technology, Tony Simon, and his colleagues have even shown that infants do not 
attend to the exact identity of the objects behind the screen when computing their 
 number.   19  Unlike older children, 4- and 5-month-olds are not surprised much by changes 
in object appearance in the course of arithmetical operations. If two Mickey Mouse toys 
are placed behind the screen, they are not shocked to discover two red balls instead of the 
original toys when the screen drops. Yet, their attention is highly aroused if only one ball 
is to be seen. Mickey Mouse turning into a ball, or the toad changing into a prince, is an 
acceptable transformation as far as the baby’s number processing system is concerned. As 
long as no object vanishes or is created  de novo,  the operation is judged to be numerically 
correct and yields no surprise reaction in babies. In contrast, the disappearance of an 
object or its inexplicable replication, as in the miracle of the loaves and fi shes, seems 
miraculous because it violates our deepest numerical expectations. Not only is keeping 
track of a small number of objects child’s play, but the child’s number sense is suffi  ciently 
sophisticated to avoid being deceived by object motion or by sudden changes in object 
identity.     

18  Koechlin et al.,     1997   
19  Simon et al.,     1995   
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   The Limits of Infant Arithmetic   

 I hope that these experiments have convinced you that young children have natural talent for 
numbers. Th is does not mean, however, that you should enroll your youngest toddler in 
evening math classes. Neither do I recommend consulting a child neurologist if your kids 
make astronomical mistakes in elementary additions. Shame on me if my rebuttal of Piaget 
has served as a pretext for the charlatans who claim they can arouse intelligence in the fi rst 
year of life by presenting infants with additions written in Arabic digits, or even with Japanese 
characters, which they are of course totally unable to understand. While young children’s 
numerical abilities are real, they are strictly limited to the most elementary of arithmetic. 

 In the fi rst place, their abilities for exact calculation do not seem to extend beyond the 
numbers one, two, three, and perhaps four. Whenever experiments involve sets of two or 
three objects, infants are found to discriminate them. However, only occasionally are 
they shown to diff erentiate three versus four. And never can a group of babies under one 
year of age distinguish four dots from fi ve, or even from six.   20  Apparently, babies only 
have an accurate knowledge of the fi rst few numbers. Th eir competence, in this domain, 
may well be inferior to that of adult chimpanzees, whose performance remains above 
chance even when they have to choose between six versus seven pieces of chocolate. 

 Let us not jump too quickly to the conclusion that number four marks the confi nes of 
the baby’s arithmetic universe. Th e experiments available to date have concentrated on 
the exact representation of small integers in the baby’s mind. Babies, however — like rats, 
pigeons, or monkeys — most likely possess only an approximate and continuous mental 
representation of numbers. Th is representation probably obeys the distance and size 
eff ects found in rats and in chimpanzees. We should therefore expect babies to be unable, 
beyond some limit, to discriminate a number  n  from its successor  n    +   1. Th is is indeed 
what is observed beyond number four. However, we should also expect them to recog-
nize numbers beyond this limit, provided that they are contrasted with even more distant 
numbers. Th us, babies may not know whether 2   +   2 is 3, 4, or 5, yet they may still be 
 surprised if they see a scene suggesting that 2   +   2 is 8. To my knowledge, this prediction 
has not yet been put to a test.   21  If proved correct, it would considerably extend the 
 numerical knowledge attributed to very young children. 

 Baby arithmetic has a second major limitation. In situations where an adult would 
automatically infer the presence of several objects, babies do not necessarily draw the 
same conclusion. Let me explain. Suppose that you alternatively see a small red truck, and 
then a green ball, popping out from behind a screen. You would immediately conclude 
that at least two objects are hiding there, and you would be much puzzled to discover 

20  Feigenson et al.,     2004   
21  Since 1997, several experiments have proven this point, see e.g. McCrink & Wynn,     2004  ,   2009   
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only one object, say the green ball, when the screen is removed. Young children react 
 diff erently. Whether one or two objects are visible when the screen drops, 10-month-old 
infants do not show any sign of surprise.   22  Apparently, babies do not consider the fact 
that quite diff erent shapes and colors alternatively come out from behind the screen as a 
suffi  cient clue to the presence of several objects. Babies fail even when the experiment is 
performed with highly familiar objects such as the subject’s own bottle or their favorite 
doll. Only at 12 months of age do they start to expect two objects. Even then, the experi-
ment works only with objects of diff erent shapes. If only color or size varies, even a 
12-month-old thinks that seeing a large ball popping out of one side of a screen, and a 
small one on the other side, is not suffi  cient to infer the presence of two diff erent objects 
behind the screen. 

 Th e only clue that babies seem to fi nd conclusive is the trajectory followed by objects 
(Figure   2.4  ).   23  Th us, when the same experiment is repeated with not just one, but  two  
screens separated by a void, if an object alternatively pops out from the right screen and 
from the left  screen, babies infer the presence of two objects, one behind each screen. 
Th ey know that it would be impossible for a single object to move from one screen to 
the other without appearing, even for a short moment, in the space separating them. If, 
 however, an object does appear in this space at the appropriate time, then the babies’ 
preference switches, and they again expect only one object. And, conversely, if there is 
only one screen but the babies are shown the two objects together on the stage for only 
two seconds at the beginning of the experiment, then they expect to fi nd two objects at 
the end.  

 Information about the spatial trajectories of objects thus provides a crucial cue to 
numerosity perception. Note that this conclusion does not contradict in any way the 
results of the turntable experiment I described above, which showed that babies did not 
care whether the objects behind the screen moved or stood still. In fact, there is every 
reason to believe that in that experiment, too, trajectory information is crucial. In the 
“1   +   1 = 2” condition, for instance, just aft er a fi rst Mickey Mouse toy has been placed 
on the turntable behind the screen, an identical toy appears in the experimenter’s hand to 
the right of the screen. It is physically impossible for it to be the same toy as before, for 
this toy could not possibly leave from behind the screen without being seen. Hence, 
infants conclude that there is a second Mickey, superfi cially identical to the fi rst — and 
therefore expect a total of two objects. It does not matter if the toys are subsequently 
moved around until their locations are unpredictable. Once the abstract representation 
of “two” has been activated, it can resist this type of modifi cation. Spatial information 
about the  location of discrete objects in space and time is critical to set up the representation 

22  Xu & Carey,     1996   
23  For validation of this statement and its limits, see Bonatti, Frot, Zangl, & Mehler,     2002  ; Xu, Carey, & Quint,    

 2004  ; Krojgaard,     2007   
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of number in the baby’s brain; but it is not needed once this representation has been 
 activated. 

 In summary, babies’ numerical inferences seem to be completely determined by 
the spatiotemporal trajectory of objects. If the motion that they see could not possibly be 
caused by a single object without violating the laws of physics, they draw the inference 

     figure 2.4 .  Infants’ numerical expectations are based on object trajectory, not on object identity. 
In the top situation, a duck and a truck alternately appear at the right and left  of a screen. Despite 
the change in object identity, infants show no surprise when the screen drops and reveals a single 
object. In the bottom situation, a window is cut in the screen, making it physically impossible for an 
object to move from right to left  without appearing in this window for a short while. In this situation, 
infants expect two objects and are surprised if only one is found when the screen drops.   
 (Adapted from Xu and Carey,   1996  .)    
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that there are at least two objects. Otherwise, they stick to the default hypothesis that 
there is only one object, even if that implies that the object is constantly changing in 
shape, size, and color. Th us, the baby’s numerical module is both hypersensitive to infor-
mation about object trajectory, location, and occlusion, and completely blind to changes 
in shape or color. Never mind the identity of the object; only location and trajectory 
matter. 

 Only a rather foolish detective neglects half of the available cues. Because we have been 
accustomed to a much higher standard of performance in babies, however, we have to ask 
whether this strategy is not more clever than it appears. Is the baby’s line of reasoning 
defi cient, or does it attest, on the contrary, to a wisdom worthy of a Sherlock Holmes? 
Aft er all, everyone knows that a criminal can disguise himself to be a number of diff erent 
people. Such is also the case with many common objects whose aspect varies. Th e profi les 
and faces of people, for instance, are very dissimilar visual objects, yet babies have to learn 
that they are merely diff erent views of the same persons. How could a child know before-
hand that a truck cannot turn itself into a ball, while a tiny piece of red rubber readily 
transforms itself into a big pink balloon when someone blows in it? Th is kind of anec-
dotal information cannot be known in advance. It has to be learned piece by piece, on 
each encounter with a new object. Yet in order to learn something, one must not be too 
prejudiced. Th is might explain why babies default on the hypothesis that only one object 
is out there. As good logicians, they maintain this hypothesis until there is clear proof to 
the contrary, even if they witness curious transformations in object shape and color. 

 From an evolutionary viewpoint, it is rather remarkable that nature founded the bases 
of arithmetic on the most fundamental laws of physics. At least three laws are exploited 
by the human “number sense.” First, an object cannot simultaneously occupy several 
 separate locations. Second, two objects cannot occupy the same location. Finally, a 
 physical object cannot disappear abruptly, nor can it suddenly surface at a previously 
empty location; its trajectory has to be continuous. We owe child psychologists Elizabeth 
Spelke and Renée Baillargeon the discovery that even very young babies understand these 
laws.   24  Indeed, in our physical environment they admit very few exceptions, the most 
prominent being caused by shadows, refl ections, and transparencies. (Perhaps this may 
explain the fascination and the confusion that these “objects” exert on young children.) 
Th ese principles, therefore, provide a fi rm foundation for the small amount of number 
theory that the animal and human brains seems to be endowed with. Th e infant brain 
relies exclusively on them to predict how many distinct objects are present. It stubbornly 
refuses to exploit other cues to number that may be accidental, such as the visual appear-
ance of objects. Th is attests to the antiquity of babies’ “number sense,” for only evolution, 

24  Baillargeon,     1986  ; Baillargeon & DeVos,     1991  ; Spelke, Breinlinger, Macomber, & Jacobson,     1992  ; Spelke, Katz, 
Purcell, Ehrlich, & Breinlinger,     1994  ; Spelke & Tsivkin,     2001   
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with its millions of years of trial and error, could possibly sort out the fundamental and 
the anecdotal properties of physical objects. 

  Indeed, the tight link between discrete physical objects and numerical information 
endures up to a much older age, where it eventually has a negative impact on some aspects 
of mathematical development. If you know a 3- or 4-year-old child, try the following 
experiment.   25  Show him the picture on Figure   2.5   and ask him how many forks he can 
see. You will be surprised to discover that he reaches an erroneous total, because he counts 
every single piece of a fork as one unit. He counts the broken fork twice and announces a 
total of six. It is extremely diffi  cult to explain to him that the two separate pieces should 
be counted as one unit. Likewise, show him two red apples and three yellow bananas, and 
ask him how many diff erent colors there are, or how many diff erent kinds of fruit he can 
see. Obviously, the correct response is two. Yet, up to a relatively advanced age, children 
cannot help counting every single object as one unit and therefore reach the erroneous 
total of fi ve. Th e maxim, “Number is a property of sets of discrete physical objects” is 
deeply embedded in their brains.     

   Nature, Nurture, and Number   

 Th roughout this chapter, I have spoken of babies as though they were inert organisms 
with rigid performances. When discussing experiments with young children, we easily 
forget that age groups can vary from a few days up to 10 or 12 months of age. In fact, the 
fi rst year of life is when the baby’s brain possesses maximal plasticity. During this period, 
babies absorb an impressive amount of new knowledge, day aft er day, and can therefore 

25  Shipley & Shepperson,     1990   

     figure 2.5.  Th ree- to four-year-olds believe that this set comprises six forks. Th ey cannot avoid 
counting each discrete physical object as one unit.   
 (Adapted from Shipley and Shepperson   1990  .)    
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hardly be considered as a static system whose performance is stable. Right aft er birth, they 
learn to recognize their mother’s voice and face; they begin to process the language 
spoken in their surroundings; they discover how to command their body movements; 
and the list could go on forever. We have no reason to believe that numerical develop-
ment escapes this general outburst of learning and discovery. 

 To do justice to the fl uidity of babies’ intelligence, the numerical abilities that I have 
described in this chapter should be situated within a dynamic framework — a perilous 
exercise, given that we still know so little about the logic with which the representation of 
number evolves in the fi rst year of life. But at least we can try to sketch a tentative scenario 
of the order and the way in which these abilities mature with the passing months. 

 Let us start with birth, an age at which number discrimination abilities have already 
been amply demonstrated. Newborns readily distinguish two objects from three, and 
perhaps even three from four, while their ears notice the diff erence between two and 
three sounds. Hence, the newborn’s brain apparently comes equipped with numerical 
detectors that are probably laid down before birth. Th e plan required to wire up these 
detectors probably belongs to our genetic endowment. Indeed, it is hard to see how 
 children could draw from the environment suffi  cient information to learn the numbers 
one, two, and three at such an early age. Even supposing that learning is possible before 
birth, or in the fi rst few hours of life — during which visual stimulation is oft en close to 
nil — the problem remains, because it seems impossible for an organism that ignores 
everything about numbers to learn to recognize them. It is as if one asked a black-and-
white TV to learn about colors! More likely, a brain module specialized for identifying 
numbers is laid down through the spontaneous maturation of cerebral neuronal  networks, 
under direct genetic control, and with minimal guidance from the environment. Since 
the human genetic code is inherited from millions of years of evolution, we probably 
share this innate protonumerical system with many other animal species — a conclusion 
whose plausibility we have judged in the preceding chapter. 

 Th ough the newborn may be equipped with visual and auditory numerosity detectors, 
no experiment to date proves that these two input modalities communicate and share 
their numerical cues right from birth. At present, only in 6- to 8-month-old babies has 
the connection between two sounds and two images, or three sounds and three images, 
been demonstrated. While waiting for conclusive experiments with younger children, it 
remains possible to maintain that learning, rather than brain maturation, is responsible 
for the baby’s knowledge of numerical correspondence between sensory modalities. By 
dint of hearing single objects emit only one sound, pairs of objects emit two sounds, and 
so on, the baby may discover the nonarbitrary relationship between a number of objects 
and a number of sounds. Yet, is such a return to constructivism plausible? Some objects 
generate more than one sound, others no sound at all. Environmental cues are therefore 
not devoid of ambiguity, and it is highly unclear that they would support any form of 
learning. I therefore suspect that the babies’ preference for a correspondence between 
sounds and objects stems from an innate, abstract competence for numbers. 
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 A similar uncertainty reigns over addition and subtraction abilities. Karen Wynn’s 
1   +   1 and 2  −  1 experiments have been performed only with babies who were four 
months and a half at youngest. Th is lapse of time may be suffi  cient for the baby to empir-
ically discover that when one object and then a second disappear behind a screen, two 
objects will be found if one cares to look for them. In that case, Piaget would be partially 
right aft er all: Babies would have to extract the elementary rules of arithmetic from their 
 environment — although they would do so at a much more precocious age than he 
 imagined. Yet, this knowledge may, rather, be inborn, built into the very architecture of 
the baby’s brain, and become manifest as soon as the ability to memorize the presence of 
objects behind a screen emerges, at around four months of age. 

 Whatever its origin, a rudimentary numerical accumulator clearly enables infants 
as early as six months of age to recognize small numbers of objects or sounds, and to 
combine them in elementary additions and subtractions. Curiously, the one simple arith-
metical notion that they may be lacking is the ordering of numbers. At what age do we 
know that three is larger than two? Few experiments have studied this question in very 
young children, and none is really convincing. Yet their results suggest that no noticeable 
ordinal competence is found before the age of about 15 months. At this age, children 
start to behave like the macaques, Abel and Baker, or the chimpanzee, Sheba: Th ey spon-
taneously select the larger of two sets of toys. Younger babies seem unaware of the natural 
ordering of numbers. It is as if their numerical detectors, programmed to respond to one, 
two, or three objects, entertained no particular relationship to one another. Perhaps we 
can liken the babies’ representation of the numbers one, two, and three, to our adult 
knowledge of the colors blue, yellow, and green. We can recognize these colors, and we 
may even know how they combine (“blue plus yellow makes green”), yet we have abso-
lutely no concept of an order in which to sort them. Likewise, babies can recognize one, 
two, or three objects and even know that 1 plus 1 makes 2, without necessarily realizing 
that three is larger than two, or that two is larger than one. 

 If these preliminary data can be trusted, then the concepts of “smaller” and “greater” 
are among the slowest to be put in place in the baby’s mind. Where would they arise 
from? Probably from an observation of the properties of addition and subtraction.   26  
Th e “greater” number would be the number that you can reach by adding, and the 
“smaller” number the one that you can reach by subtracting. Babies would discover that 
the same relation “greater than” exists between 2 and 1 as between 3 and 2, because the 
same  addition operation, “  +   1”, enables one to move from 1 to 2 and from 2 to 3. By 
 practicing successive additions, children would see the detectors for 1, 2, and 3 light up 
in a  reproducible order in their mind, and would thus learn about their position in the 
series of numbers. 

26  Cooper,     1984   
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 But this is still a hypothetical scenario. A whole series of experiments would have to be 
performed before it could be confi rmed or rejected. Th e one thing that we do know, at 
this stage, is that babies are much better mathematicians than we thought only fi ft een 
years ago. When they blow out the fi rst candle on their birthday cake, parents have every 
reason to be proud of them, for they have already acquired, whether by learning or by 
mere cerebral maturation, the rudiments of arithmetic and a surprisingly articulate 
“number sense.”                                                                                  
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 i have long been intrigued by Roman numerals. Th ere is something of a contradiction 
between the simplicity of the fi rst numerals and the perplexing complexity of the others. 
Th e fi rst three numerals, I, II, and III, follow a self-evident rule: Th ey simply contain as 
many bars as there are units. Number IV however, breaks the rule. It introduces a new 
sign, V whose meaning is far from obvious, and a subtraction operation, 5  −  1, that seems 
arbitrary — why not 6  −  2, 7  −  3, or even 2  ×  2? 

 Looking at the history of numerical notation, we fi nd that the fi rst three Roman numer-
als are like living fossils — they draw us back to a remote time when humans had not yet 
invented a way of writing down numbers, and found it suffi  cient to keep track of numbers 
by engraving a stick with as many notches as the sheep or camels they owned. Th e series of 
notches preserved a durable record of a past accounting. Th is was indeed the very begin-
ning of a symbolic notation, because the same row of fi ve notches could  symbolize any set 
of fi ve objects.Th is historical reminder, however, only thickens the  mystery surrounding 
the fourth Roman numeral. Why did people abandon a notation that was so useful and 
simple? How did the arbitrariness of IV, which puts a burden on the attention and 
memory of the reader, come to replace the simplicity of IIII, which enabled the average 
shepherd to understand numbers? More to the point, if, for one reason or another, some 
revision of the number notation system was required, why did the fi rst numerals I, II, and 
III escape it? 

 Is it just a historical accident? Some chance events must have presided over the fate of 
Roman number notation and its survival up to the present time. And yet, the singularity 
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        I recommend you to question all your 

beliefs, except that two and two make four. 
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of the Roman numerals I, II, and III, has a universal character that transcends the mere 
history of Mediterranean countries. Georges Ifrah, in his comprehensive book on the 
history of numerical notations,   1  shows that in  all  civilizations, the fi rst three numbers 
were initially denoted by repeatedly writing down the symbol for “one” as many times as 
necessary, exactly as in Roman numerals. And most, if not all, civilizations stopped using 
this system beyond the number 3 (see Figure   3.1  ). Th e Chinese, for instance, denote the 
numbers 1, 2, and 3 using one, two, and three horizontal bars — yet they employ a radi-
cally diff erent symbol for number 4. Even our own Arabic digits, although they seem 
arbitrary, derive from the same principle. Our digit 1 is a single bar, and our digits 2 and 
3 actually derive from two or three horizontal bars that became tied together when they 
were deformed by being handwritten. Only the Arabic digits 4 and beyond can thus be 
 considered as genuinely arbitrary.  

 Dozens of human societies around the world have progressively converged on the same 
solution. Nearly all of them have agreed to denote the fi rst three or four numbers by an 
identical number of marks, and the following numbers by essentially arbitrary symbols. 
Such a remarkable cross-cultural convergence calls for a general explanation. It seems 
clear enough that aligning nineteen marks to denote number 19 would impose an unbear-
able burden on number writing and reading: Writing down nineteen strokes is a time-
consuming and error-prone operation, and how could the reader possibly distinguish 
nineteen from eighteen or twenty? Th e emergence of number notations more compact 

1  Ifrah,     1998  . See also Menninger,     1969  ; Ifrah,     1985   
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Etruscan notation
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Handwritten arabic

Modern “arabic” notation 2 3 4 5

     figure 3.1.  Across the world, humans have always denoted the fi rst three numbers by series of 
identical marks. Almost all civilizations abandon this analog notation beyond the numbers 3 or 4, 
which mark the limits of man’s “immediate” apprehension of number.   
 (Redrawn from Ifrah 1994.)    
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than mere rows of bars, therefore, seemed inevitable. Yet, this still does not explain why 
all nations have consistently elected to get rid of this system beyond the number 3, rather 
than, say, 5, 8, or 10. 

 At this point, it is tempting to draw a parallel with infants’ number discrimination 
abilities. Human infants readily discriminate between one and two objects, or between 
two and three objects, but their abilities do not extend much beyond this point. Obviously, 
infants do not contribute much to the evolution of number notations. Yet, suppose that 
number discrimination abilities remained unchanged in human adults. Th is might  provide 
the fi rst elements of an explanation: Beyond number 3, the bar notation would no longer 
be legible, because we would be unable to distinguish IIII from IIIII at a glance. 

 Roman numerals, then, lead us to examine to what extent the protonumerical abilities 
found in animals and human babies extend to human adults. In this chapter, we hunt for 
living fossils and other cues, such as Roman numerals, which draw us back to the very 
foundations of human arithmetic. Indeed, we fi nd many indications that the protonu-
merical representation of quantities still lives within us. Although mathematical language 
and culture have obviously enabled us to go way beyond the limits of the animal numeri-
cal representation, this primitive module still stands at the heart of our intuitions about 
numbers. It retains a considerable infl uence on our way of perceiving, conceiving, writing 
down, or speaking about numbers.     

   1, 2, 3, and Beyond   

 Th e fact that there is a strict limit on the number of objects that we are able to enumerate 
at once has been known to psychologists for more than a century. In 1886, James McKeen 
Cattel, in his laboratory at Leipzig, demonstrated that when subjects were briefl y shown 
a card bearing several black dots, they could enumerate them with unfailing precision 
only if their number did not exceed three.   2  Beyond this limit, errors accumulated. H. C. 
Warren, then at Princeton, and later Bertrand Bourdon, at the Sorbonne in Paris, each 
developed new methods of investigation to accurately measure the time required to 
quantify sets of objects.   3  In 1908, Bourdon did not have any high-tech experimental 
equipment at his disposal. His experiments, most oft en performed on himself, involved 
the tinkering of special tools. Let me quote from his original publication: 

 Th e numbers, which were composed of horizontally aligned bright dots, were one 
meter away from my eyes. A sheet of copper with a rectangular opening, falling from 
a fi xed height, let them be visible for a very short time  …  . To measure response times, 

2  Cattell,     1886   
3  Warren,     1897  ; Bourdon,     1908   
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I used a carefully adjusted Hipp chronoscope [an electromechanical  chronometer 
accurate to within one thousandth of a second]. Th e electrical circuit through the 
chronoscope was closed when the dots started to become visible. Within this circuit 
was inserted a buccal switch, which consisted for the most part in two separate 
copper leaves, one side of which was covered with fi ber to insulate them from the 
mouth; I held these leaves between my teeth, clenching them so that the leaves 
would touch; then I would name the numbers as fast as possible as soon as I had 
recognized them, and for this purpose I had to unclench my teeth, which inter-
rupted the circuit.   

 It was with this rudimentary apparatus that Bourdon discovered the fundamental law 
of visual quantifi cation in humans. Th e time required to name a number of dots grows 
slowly from 1 to 3, and then suddenly increases sharply beyond this limit. At the very 
same point, the number of errors also jumps abruptly. Th is result, which has been repli-
cated hundreds of times, remains valid to this day. It takes less than half a second to per-
ceive the presence of one, two, or three objects. Beyond this limit, speed and accuracy fall 
dramatically (Figure   3.2  ).  

 A careful measurement of the response time curve reveals several important details. 
Between three and six dots, the increase in response time is  linear,  which means that it takes 
a fi xed additional duration to enumerate each additional dot. It takes an adult about 200 or 
300 milliseconds to identify each dot beyond three. Th is slope of 200 to 300  milliseconds 
corresponds roughly to the time it takes an adult to recite numbers when counting aloud 
as fast as possible. In children, the speed of reciting numbers drops to one number every 
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     figure 3.2.  Enumerating a collection of items is fast when there are one, two or three items, but 
starts slowing down drastically beyond four. Errors begin to accumulate at the same point.   
 (Redrawn from Mandler and Shebo   1982  .)    
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one or two seconds — and the slope of the response time curve increases by the same 
amount. Th us, to enumerate a set comprising more than three dots, adults and children 
alike have to count the dots at a relatively slow rate. 

 But then why is the enumeration of numbers 1, 2, and 3 so fast? Th e fl attening of the 
response time curve within this region suggests that the fi rst three dots do not have to 
be counted one by one. Th e numbers 1, 2, and 3 seem to be recognized without any 
 appearance of counting. 

 While psychologists are still pondering over how such enumeration without counting 
might work, they have at least conceived of a name for it. It is called the “subitization” or 
“subitizing” ability, a name deriving from the Latin  subitus,  which means sudden.   4  Th is is 
something of a misnomer, since subitization, however fast, is anything but instantaneous. 
It takes about fi ve- or six-tenths of a second to identify a set of three dots, or about the 
time it takes to read a word aloud or identify a familiar face. Neither is this duration 
 constant: It slowly increases from 1 to 3. Hence, subitization probably requires a series of 
visual operations, all the more complex the greater the number to be recognized. 

 What are these operations? A widely held theory supposes that we recognize small sets 
of one, two, or three objects rapidly because they form easily recognizable geometrical 
confi gurations: One object forms a dot, two make a line, and three, a triangle. Th is 
hypothesis, however, cannot explain the observation that we still subitize small sets whose 
objects are perfectly aligned, thus destroying all geometrical cues. Indeed, it is hard to see 
what geometrical parameters distinguish the Roman numerals II and III — yet we readily 
subitize them. 

 Psychologists Lana Trick and Zenon Pylyshyn, however, found a situation in which 
subitizing fails: when the objects are superimposed, so that their locations are not readily 
perceptible.   5  When viewing concentric circles, for instance, we have to count in order to 
determine whether there are two, three, or four of them. Th us, the subitizing procedure 
seems to require objects to occupy distinct locations — a cue that, as we saw earlier, is also 
exploited by babies to determine how many objects are present. 

 I therefore believe that subitizing in human adults, like numerosity discrimination 
in babies and animals, depends on circuits of our visual system that are dedicated to 
 localizing and tracking objects in space. Th e occipitoparietal areas of the brain contain 
neuronal ensembles that rapidly extract, in parallel across the visual fi eld, the locations of 
surrounding objects. Neurons in these areas seem to encode the location of objects 
regardless of their identity, and even to maintain a representation of objects that have 
been hidden behind a screen. Hence, the information they extract is ideally abstract to 
feed an approximate accumulator. During subitizing, I believe that those areas quickly 

4  Jensen, Reese, & Reese,     1950  ; Mandler & Shebo,     1982  ; Piazza, Mechelli, Butterworth, & Price,     2002  ; Piazza, 
Giacomini, Le Bihan, & Dehaene,     2003   

5  Trick & Pylyshyn,     1993  ; Trick & Pylyshyn,     1994   
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parse the visual scene into discrete objects. It is then easy enough to tally them up in order 
to obtain an estimate of their numerosity. Th e neural network simulation I developed 
with Jean-Pierre Changeux, which was described in Chapter 1, shows how this computa-
tion can be implemented by simple cerebral circuits.   6  

 Why would this mechanism introduce a discontinuity between 3 and 4? Remember 
that the accuracy of the accumulator decreases with numerosity; hence, it is increasingly 
diffi  cult to distinguish a number  n  for its neighbors  n   +  1 and  n   −  1. Number 4 seems to 
be the fi rst point where our accumulator starts to make a signifi cant number of discrim-
ination errors, confusing it with 3 or 5. Th is is why we have to count beyond the limit of 
4 — our accumulator still provides us with a numerosity estimate, but one that is no longer 
accurate enough to select a unique word for naming. 

 Th e theory of a “parallel accumulation of object locations” that I just sketched is not 
the only available theory of subitization, however. According to UCLA psychologists 
Randy Gallistel and Rochel Gelman, when we subitize, even if we are not aware of it, we 
always count the elements one by one — but very quickly.   7  Subitizing would thus be a 
kind of fast serial counting without words. Although this seems counterintuitive, subiti-
zation would actually require the orienting of attention toward each object in turn, and 
would therefore rely on a serial, step-by-step algorithm. Th is is where the major testable 
diff erence with my hypothesis lies. My model suggests that, during subitizing, all the 
objects in the visual fi eld are processed simultaneously and without requiring attention —
 what in cognitive psychologists’ jargon is called “parallel preattentive processing.” In my 
network simulation, number detectors start to respond at about the same time, whether 
one, two, or three objects are present (although as the input numerosity gets larger, they 
do take a slightly longer time to stabilize to the precise activation pattern that is needed 
for naming). Most importantly, in contrast to Gelman and Gallistel’s fast counting 
hypothesis, my number detectors do not require each object to be singled out in turn by 
any mental “spotlight” or tagging process — all are taken in at once and in parallel. 

 Although the jury is still out on this issue, perhaps the best evidence that subitizing 
does not require serial orienting of attention comes from human patients who, following 
a cerebral lesion, are unable to attentively explore their visual environment and, therefore, 
unable to count.   8  Mrs. I, whom I have examined together with Dr. Laurent Cohen at the 
hôpital de la Salpêtrière in Paris, suff ered from a posterior cerebral infarct due to high 
blood pressure during her pregnancy. One year later, the aft er-eff ects of this lesion on her 
visual perception abilities were still present. Mrs. I had become unable to recognize 
 certain visual shapes, including faces, and she also complained of curious distortions of 
her vision. When we asked her to describe a complex image, she oft en omitted important 

6  Dehaene & Changeux,     1993   
7  Gallistel & Gelman,     1992   
8  Dehaene & Cohen,     1994   
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details and did not perceive the meaning of the whole. Neurologists call this defi cit 
“simultanagnosia.” It made counting impossible for her. When four, fi ve, or six dots were 
briefl y fl ashed on a computer screen, she almost always forgot to count some of them. She 
attempted to count, but failed to orient toward each object in turn. Once she had counted 
about half of the items, she stopped because she thought that she had counted them all. 
Another patient with a similar defi cit sank into an opposite pattern of error: She failed to 
take good note of the items that she had already counted, and she kept on counting the 
same items over and over again. She would tell us, without batting an eyelid, that there 
were twelve points when in fact there were only four! 

 Despite their terrible counting handicap, however, these two patients experienced 
astonishingly little diffi  culty in enumerating sets of one, two, or even three dots. With 
small numbers, they responded quite rapidly, confi dently, and almost always fl awlessly. 
Mrs. I, for instance, made errors only 8 %  of the time when enumerating three items, but 
she erred 75 %  of the time when enumerating four items. Th is dissociation is one we have 
oft en observed: Th e perception of small numerosities can remain intact, even though a 
cerebral lesion makes it totally impossible for the patient to sequentially orient attention 
toward each object in turn. Th is strongly suggests that subitizing does not involve 
 sequential counting, but merely a parallel and preattentive extraction of objects in the 
image.     

   Approximating Large Numbers   

 In the motion picture  Rain Man,  in which Dustin Hoff man plays Raymond, an autistic 
man with prodigious abilities, a peculiar event occurs. A waitress drops a box of tooth-
picks on the fl oor, and Raymond immediately utters “82  …  82  …  82  …  that’s 246!” as if he 
had counted the toothpicks by groups of 82 in less time than it would take us to say “2 
and 2, 4.” In Chapter 6, we will analyze in detail the feats that have been attributed to 
calculating prodigies such as Raymond. Let me say right now, however, that in this par-
ticular case, I do not believe that Dustin Hoff man’s performance should be taken at face 
value. A few anecdotal reports have been made of fast enumeration in some autistic 
patients; but there have been no response time measurements that I know of that might 
help  determine whether these people do indeed count. My own experience is that simu-
lating Rain Man’s performance is relatively easy by starting to count in advance, by men-
tally adding groups of dots, and by bluffi  ng a bit. ( Just one success at guessing the exact 
number of people in a room is oft en suffi  cient to turn you into a legend!) Th e most likely 
possibility, then, is that the subitizing limit of three or four items applies equally to all 
humans. 

 But what is the nature of this limit? Are our parallel enumeration abilities really 
 paralyzed when a set comprises more than three items? Do we necessarily have to count 
when this limit is reached? In fact, any adult can estimate, within a reasonable margin 
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of uncertainty, numbers way beyond three or four.   9  Th e subitizing limit is therefore not 
an insurmountable barrier, but a mere borderline beyond which there is a universe of 
approximation. When confronted with a crowd, we may not know whether there are 81, 
82, or 83 people, but we can estimate eighty or one hundred without counting. 

 Such approximations are generally valid. Psychologists do know of situations in which 
human estimations systematically deviate from the real value (Figure   3.3  ). For instance, 
we all tend to overestimate numerosity when the objects are regularly spread out on a 
page, and, conversely, we tend to underestimate sets of irregularly distributed objects, 
perhaps because our visual system parses them into small groups.   10  Our estimations are 

 9  Dehaene,     1992  ; Izard & Dehaene,     2008  ; Revkin, Piazza, Izard, Cohen, & Dehaene,     2008   
10  Frith & Frith,     1972  ; Ginsburg,     1976  ,   1978   

     figure 3.3.  Th e diff erence between 2 and 3 items (top left ) is immediately perceptible to us, but 
we cannot distinguish 5 from 6 (top right) without counting. Our perception of large numbers relies 
on the density of items, the area they occupy, and the regularity of their distribution in space. In the 
middle “solitaire illusion,” fi rst described by Uta and Christopher Frith in 1972, our perceptual 
apparatus incorrectly convinces us that there are more white dots than black dots, probably because 
the white dots are more tightly grouped. Bottom, randomly distributed dots seem less numerous 
than regularly spaced ones; each disk actually has 37 dots.    
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also sensitive to context, leading us to underestimate or overestimate the very same set of 
30 dots, depending on whether it is surrounded by sets of 10 or of 100 dots. As a rule, 
however, our approximations are remarkably accurate, especially considering the rarity of 
occasions in which we can verify their correctness in everyday life. How oft en indeed do 
we get exact feedback as to whether a crowd is made up of 100, 200, or 500 people? Yet, 
in a laboratory experiment, it has been shown that one single exposure to veridical 
numerical information — such as a set of 200 dots, dutifully labeled as such — suffi  ces to 
improve our estimations of sets of between 10 and 400 dots.   11  To calibrate our number 
estimation system, only a handful of precise measurements are required.  

 Far from being exceptional, our perception of large numbers follows laws that are 
strictly identical to those that govern animal numerical behavior.   12  We are subject to a 
distance eff ect: We more easily distinguish two distant numerosities, such as 80 and 100, 
than two closer numbers such as 81 and 82. Our perception of numerosity also exhibits a 
magnitude eff ect: For an equal distance, we have a harder time discriminating two large 
numerosities, such as 90 and 100, than two small ones, such as 10 and 20. 

 Th ese laws are remarkable for their unfailing mathematical regularity, an unusual 
 fi nding in psychology. Suppose that a given person can discriminate, with an accuracy of 
90 % , a set of 13 dots from another reference set of 10 dots (hence, a numerical distance 
of 3). Let us now double the size of the reference set to 20 dots. How far from this 
 numerosity do we have to move to again reach 90 %  correct discrimination? Th e answer 
is quite simple: one merely has to double the numerical distance to 6, and hence to pres-
ent a set of 26 dots. When the reference number doubles, so does the numerical distance 
that humans can discriminate within a fi xed level of performance. Th is multiplication 
prin ciple is also known as the “scalar law” or “Weber’s law,” aft er the German psychologist 
who discovered it. Its remarkable similarity to the laws that govern animal behavior 
proves that, inasmuch as the approximate perception of numerosity is concerned, humans 
are no diff erent from rats or pigeons. All our mathematical talent is useless when it comes 
to perceiving and estimating a large number.     

   The Quantity Behind the Symbols   

 Th at our apprehension of numerosity does not diff er much from that of other animals 
may seem unremarkable. Aft er all, mammals share a fundamentally similar visual and 
auditory perception apparatus. In some domains, such as olfaction, human perceptual 
abilities even turn out to be quite inferior to those of other species. But when it comes to 
language, one might think that our performance should set us apart from the rest of the 

11  Krueger & Hallford,     1984  ; Krueger,     1989  ; Izard & Dehaene,     2008   
12  
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animal kingdom. Obviously, what distinguishes us from other animals is our ability to 
use arbitrary symbols for numbers, such as words or Arabic digits. Th ese symbols consist 
of discrete elements that can be manipulated in a purely formal way, without any fuzzi-
ness. Introspection suggests that we can mentally represent the meaning of numbers 1 
through 9 with equal acuity. Indeed, these symbols seem equivalent to us. Th ey all seem 
equally easy to work with, and we feel that we can add or compare any two digits in a 
small and fi xed amount of time, like a computer. In summary, the invention of numerical 
symbols should have freed us from the fuzziness of the quantitative representation of 
numbers. 

 How misleading these intuitions can be! Although numerical symbols have provided 
us with a unique door to the otherwise inaccessible realms of rigorous arithmetic, they 
have not severed our roots with the approximate animal representation of quantities. 
Quite to the contrary, each time we are confronted with an Arabic numeral, our brain 
cannot but treat it as a analogical quantity and represent it mentally with decreasing 
 precision, pretty much as a rat or chimpanzee would do. Th is translation from symbols 
to quantities imposes an important and measurable cost to the speed of our mental 
 operations. 

 Th e fi rst demonstration of this phenomenon dates back to 1967. At that time, it was 
judged so revolutionary as to deserve the honor of publication in the journal,  Nature .   13  
Robert Moyer and Th omas Landauer had measured the precise time an adult took to 
decide which of two Arabic digits was the largest. Th eir experiment consisted in fl ashing 
pairs of digits such as 9 and 7 and asking the subject to report where the larger digit was 
located by pressing one of two response keys. 

 Th is elementary comparison task was not as easy as it appeared. Th e adults oft en took 
more than half a second to complete it, and the results were not error-free. Even more 
surprising, performance varied systematically with the numbers chosen for the pair. 
When the two digits stood for very diff erent quantities such as 2 and 9, subjects responded 
quickly and accurately. But their response time slowed by more than 100 milliseconds 
when the two digits were numerically closer, such as 5 and 6, and subjects then erred 
as oft en as once in every ten trials. Moreover, for equal distance, responses also slowed 
down as the numbers became increasingly larger. It was easy to select the larger of the two 
digits 1 and 2, a little harder to compare digits 2 and 3, and far harder to respond to the 
pair 8 and 9. 

 Let there be no misunderstanding: Th e people that Moyer and Landauer tested 
were not abnormal, but individuals like you and me. Aft er experimenting on number 
 comparison for more than ten years, I still have yet to fi nd a single subject who compares 5 
and 6 as quickly as he or she compares 2 and 9, without showing a distance eff ect. I once 
tested a group of brilliant young scientists, including students from the top two 

13  Moyer & Landauer,     1967   
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 mathematical colleges in France, the Ecole Normale Supérieure and the Ecole Poly-
technique. All were fascinated to discover that they slowed down and made errors when 
attempting to decide whether 8 or 9 was the larger. 

 Nor does systematic training help. In a recent experiment, I attempted to train some 
University of Oregon students to escape the distance eff ect. I simplifi ed the task as much 
as possible by presenting only the digits 1, 4, 6, and 9 on a computer screen. Th e students 
had to press a right-hand key if the digit they saw was larger than 5, and a left -hand key if 
it was smaller than 5. One can hardly think of a simpler situation: If you see a 1 or a 4, 
press left , and if you see a 6 or 9, press right. Yet even aft er several days and 1,600 training 
trials, the subjects were still slower and less accurate with digits 4 and 6, which are close 
to 5, than with digits 1 and 9, which are further away from 5. In fact, although the 
responses became globally faster in the course of training, the distance eff ect itself — the 
diff erence between digits close to 5 and far from 5 — was left  totally unaff ected by train-
ing. 

 How are we to interpret these number comparison results? Clearly, our memory does 
not preserve a stored list of responses for all possible digit comparisons. Were we to learn 
all possible combinations of digits by rote — for instance, that 1 is smaller than 2, 7 larger 
than 5, and so on — comparison times should not vary with number distance. Where, 
then, does the distance eff ect come from? As far as physical appearance is concerned, 
digits 4 and 5 are no more similar than digits 1 and 5. Hence, the diffi  culty in deciding 
whether 4 is smaller or larger than 5 has nothing to do with a putative diffi  culty in recog-
nizing the shapes of digits. Obviously, the brain does not stop at recognizing digit shapes. 
It rapidly recognizes that at the level of their  quantitative meaning,  digit 4 is indeed 
closer to 5 than 1 is. An analogical representation of the quantitative properties of Arabic 
numerals, which preserves the proximity relations between them, is hidden somewhere 
in our cerebral sulci and gyri. Whenever we see a digit, its quantitative representation is 
immediately retrieved, and leads to greater confusion over nearby numbers. 

 One more striking demonstration of this fact is what occurs when we compare two-
digit numerals.   14  Suppose you had to decide whether 71 was smaller or larger than 65. 
One rational approach is to initially examine only their left most digits, 7 and 6, to note 
that 7 is larger than 6, and to conclude that 71 is larger than 65 without even considering 
the identity of the rightmost digits. Indeed, this sort of algorithm is used by computers to 
compare numbers. But this is not how the human brain does it. When one measures the 
time it takes to compare several two-digit numbers with 65, a smooth continuous curve 
is found (Figure   3.4  ). Comparison time increases continuously as the numbers to be com-
pared become increasingly close to the reference number 65. Both the left  and the right 
digits contribute to this progressive increase. Th us, it takes more time to fi gure out that 
71 is larger than 65 than to reach the same decision for 79 and 65, although the left most 

14  Hinrichs, Yurko, & Hu,     1981  ; Dehaene, Dupoux, & Mehler,     1990  ; Pinel, Dehaene, Riviere, & LeBihan,     2001   
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digit 7 is the same in both cases. Furthermore, responses are not disproportionately 
slowed when the decades change: Comparing 69 with 65 is just a bit slower than compar-
ing 71 with 65, whereas it should be much more diffi  cult if we were indeed selectively 
attending initially to the left most digit only.  

 Th e only explanation I can come up with is that our brain apprehends a two-digit 
numeral as a whole, and transforms it mentally into an internal quantity or magnitude. 
At this stage, it forgets about the precise digits that led to this quantity. Th e comparison 
 operation is concerned only with numerical quantities, not the symbols that convey them.     

   The Mental Compression of Large Numbers   

 Th e speed with which we compare two Arabic numerals does not depend solely on the 
distance between them, but also on their size. It takes much more time to decide that 9 is 
larger than 8 than to decide that 2 is larger than 1. For equal distance, larger numbers are 
more diffi  cult to compare than smaller ones. Th is slowing down for large numbers is 
again reminiscent of the perceptual abilities of babies and animals, which are similarly 
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     figure 3.4 .  How long does it take to compare two numbers? Th irty-fi ve adult volunteers 
classifi ed all two-digit Arabic numerals between 31 and 99 as being smaller or larger than 65, 
while their responses were timed to the nearest millisecond. Each black dot shows the average 
response time to a given number. Responses become increasingly slow as the target numeral 
gets closer to 65: the distance eff ect.   
 (Data from Dehaene, Dupoux and Mehler 1990.)    
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aff ected by numerical distance and size eff ects. Such an astonishing parallel confi rms that, 
starting with a symbol such as an Arabic numeral, our brain retrieves an internal 
 representation of quantities remarkably similar to the one present in animals and young 
children. 

 In fact, just as in animals, the parameter that governs the ease with which we distin-
guish two numbers is not so much their absolute numerical distance, but their distance 
relative to their size. Subjectively speaking, the distance between 8 and 9 is not identical 
to that between 1 and 2. Th e “mental ruler” with which we measure numbers is not 
 graduated with regularly spaced marks. It tends to compress larger numbers into a smaller 
space. Our brain represents quantities in a fashion not unlike the logarithmic scale on a 
slide rule, where equal space is allocated to the interval between 1 and 2, between 2 and 
4, or between 4 and 8. As a result, the accuracy and speed with which calculations can be 
performed necessarily decreases as the numbers get larger. 

 Many an empirical result may be summoned to support the hypothesis of the mental 
compression of large numbers.   15  Some experiments are based solely on introspection.   16  
What number subjectively rates as being closer to 5: 4 or 6? Although the question seems 
farfetched, most people respond that for equal distance, the larger number 6 seems to 
diff er less. Other experiments have used more subtle and indirect methods. For instance, 
let us pretend that you are a random number generator and that you have to select 
 numbers at random between 1 and 50. Once this experiment is performed on a large 
number of subjects, a systematic bias emerges: Instead of responding randomly, we tend 
to produce smaller numbers more frequently than larger ones — as if smaller numbers 
were overrepresented in the “mental urn” from which we were drawing.   17  Th is should 
persuade us to never draw anything at random without relying on an “objective” source 
of randomness, such as dice or a real random number generator! 

 I suspect that this bias for small numbers has far-reaching and sometimes pernicious 
consequences for the way we use our intuition to conduct and interpret statistical analyses. 
Consider the following problem.   18  Two series of numbers have been generated at random 
by a computer. Without making any calculations, your task is to rate how  randomly and 
evenly each series seems to sample the interval of numbers between 1 and 2,000: 

 Series A: 879 5 1,322 1,987 212 1,776 1,561 437 1,098 663 
 Series B: 238 5 689 1,987 16 1,446 1,018 58 421 117 

 Most people respond that the numbers in Series B are more evenly spread out and 
therefore “more random” than those in Series A. In Series A, large numbers seem to 

15  For review and discussion, see Dehaene,     2007   
16  Shepard, Kilpatrick, & Cunningham,     1975   
17  Banks & Hill,     1974   
18  Banks & Coleman,     1981  ; Viarouge, Hubbard, Dehaene, & Sackur,     2008   
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appear much too oft en. And yet from a mathematical point of view, it is A, and not B, 
that samples the continuum of numbers between 1 and 2,000 best. Th e numbers in Series 
A are regularly spaced by just over 200 units, whereas those in Series B are exponentially 
distributed. Th e reason why we prefer Series B is that it fi ts best with our mental idea of 
the number line, which is pictured as a compressed series in which larger numbers are less 
conspicuous than smaller ones. 

 A compression eff ect is also perceptible in the way we select units of measurement. On 
April 17, 1795, of the French republic — Germinal 18th, year III, of the “revolutionary 
calendar” — the metric system was instituted in Paris. Aiming at universality, its units 
covered a whole range of powers of 10, from nanometer to kilometer. Even though each 
power of 10 received a specifi c name — millimeter, centimeter, decimeter, meter, and so 
on — these units were still spaced too far apart to be practical for everyday use. So the 
French lawmakers stipulated that “each decimal unit shall have its double and its half.” 
From this stipulation derived the regular series 1, 2, 5, 10, 20, 50, 100 … , still in use today 
for coins and banknotes. It fi ts our number sense because it approaches an exponential 
series, while comprising only small round numbers. In 1877, similar constraints led 
Colonel Charles Renard to adopt a method for the normalizing of industrial products, 
such as bolt diameters or wheel sizes, that was based on another quasi-logarithmic series 
(100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1,000). As soon as a continuum needs to 
be divided into discrete categories, intuition dictates the selection of a compressed scale, 
most oft en logarithmic, which tightly matches our internal representation of numbers.     

   Refl exive Access to Number Meaning   

 An Arabic numeral fi rst appears to us as a distribution of photons on the retina, a pattern 
identifi ed by visual areas of the brain as being the shape of a familiar digit. Yet, the many 
examples that we have just described show that the brain hardly pauses at recognizing 
digit shapes. It rapidly reconstructs a continuous and compressed representation of the 
associated quantity. Th is conversion into a quantity occurs unconsciously, automatically, 
and at great speed. It is virtually impossible to see the shape of digit 5 without immedi-
ately translating it into quantity fi ve — even when this translation is of no use at all in the 
current context. Understanding numbers, then, occurs as a refl ex.   19  

 Suppose you were shown two digits side by side and were asked to tell, as fast as you 
can, whether they were the same or diff erent. Surely you’d think that you might base your 
decision exclusively on the visual appearance of the digits — whether or not they share the 
same shape. But measurement of response times shows that this supposition is wrong.   20  

19  Henik & Tzelgov,     1982  ; den Heyer & Briand,     1986  ; Tzelgov, Meyer, & Henik,     1992  ; Dehaene & Akhavein, 
    1995  ; Dehaene, Naccache et al.,     1998  ; Girelli, Lucangeli, & Butterworth,     2000  ; Naccache & Dehaene,     2001a   

20  Duncan & McFarland,     1980  ; Dehaene & Akhavein,     1995   
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Deciding that 8 and 9 are diff erent digits takes systematically longer than reaching the 
same decision for digits 2 and 9. Once again, numerical distance governs our speed of 
responding. Quite unconsciously, we are reluctant to respond that 8 and 9 are diff erent 
digits because the quantities that they represent are so similar. 

 A similar “comprehension refl ex” also aff ects our memory for digits.   21  Memorize the 
following list of digits: 6, 9, 7, 8. Done? Now tell me whether digit 5 fi gured in the list. 
And what about digit 1? Does the fi rst question seem harder than the second? Although 
the correct response is “no” in both cases, formal experiments show that the more distant 
the probe digit is from the memorized list, the shorter the response time. Th e list is 
 obviously not memorized only as a series of arbitrary symbols, but also as a swarm of 
quantities close to 7 or 8 — which is why we can immediately tell that 1 is not in the set. 

 Is it ever possible to inhibit the comprehension refl ex? To answer this question, 
subjects can be placed in a situation where it is really advantageous for them  not to 
know  the meaning of digits. Two Israeli researchers, Avishai Henik and Joseph Tzelgov, 
 presented pairs of digits of diff erent sizes such as 1 and 9 on a computer screen.   22  Th ey 
measured how much time subjects required to indicate the symbol that was printed in 
larger font. Th is task requires subjects to focus their attention on physical size and to 
neglect, as much as possible, the numerical size of the digits. Once again, however, an 
analysis of response times shows how automatic and irrepressible the comprehension of 
numerals is. It is much easier for subjects to respond when the physical and numerical 
dimensions of the stimuli are congruent, as in the pair 1 9, than when they are confl icting, 
as in the pair 9 1. We apparently cannot forget that the symbol “1” means a quantity 
smaller than nine. 

 Even more surprisingly, access to numerical quantity can occur in our brains under 
conditions in which we are not even aware of having seen a digit.   23  By presenting a symbol 
on a computer for a very short period of time, it can be made to appear invisible. One 
technique that psychologists call “sandwich priming” consists in preceding and following 
the word or digit one desires to hide by a meaningless character string. One may, for 
instance, show “#######,” then the word “fi ve,” then “#######,” and fi nally the word 
“SIX.” If the fi rst three strings are each presented only for one twentieth of a second, the 
prime word “fi ve,” sandwiched between the other strings, becomes invisible — not just 
diffi  cult to read, but vanished from the stream of consciousness. Under the right condi-
tions, even the programmer of the experiment cannot tell whether the hidden word is 
present or not! Only the fi rst string “#######” and the word “SIX” remain consciously 
visible. Yet for 50 milliseconds, a perfectly normal visual stimulus “fi ve” was present on 

21  Morin, DeRosa, & Stultz,     1967   
22  Henik & Tzelgov,     1982  ; Tzelgov et al.,     1992   
23  Dehaene, Naccache et al.,     1998  ; Reynvoet & Brysbaert,     1999  ; Naccache & Dehaene,     2001a  , 2001b; Reynvoet, 
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the retina. In fact unbeknownst to the subject, it even contacted a whole series of mental 
representations in his or her brain. Th is can be proved by measuring the time taken to 
name the target word “SIX”: It varies systematically with the numerical distance between 
the prime word and the target word. Naming the word “SIX” is faster when it is preceded 
by a close prime such as “fi ve” than when it is preceded by a more distant prime such as 
“two.” Hence, the comprehension refl ex unfolds in this situation too: Although the word 
“fi ve” has not been consciously seen, it is still interpreted by the brain as “a quantity close 
to six.” 

 Although we are not aware of all the automatic numerical computations that are 
 continuously being handled in our brain circuits, their impact in our daily lives is certain 
and can be illustrated in numerous ways. In a major train station in Paris, the platforms 
are numbered, but the design of the station, which is divided into several distinct zones, 
imposes a disruption in the number sequence: Platform 11 is next to platform 12, but 
platform 13 is far away. So deeply is the continuity of numerical quantities engraved in 
our minds that this design throws many travelers into disarray. Our intuition imposes 
that platform 13 be next to platform 12. 

 Along the same lines, here is a factoid guaranteed to catch your attention: 

 “St. Th eresa of Àvila died during the night between the 4th and 15th of 
October 1582.”   

 No, this is not a typo! As luck would have it, the saint died on the very night on which 
Pope Gregory XIII abrogated the ancient Julian calendar, instituted by Julius Caesar, and 
replaced it with the Gregorian calendar still in use. Th e adjustment, which was made 
necessary by the progressive shift  of calendar dates from astronomical events, such as 
solstices, over the course of centuries, deemed that the day aft er October 4 became 
October 15 — a punctual decision, but one that profoundly upsets our sense of the 
 continuity of numbers. 

 Th e automatic interpretation of numbers is also exploited in the fi eld of advertising. If so 
many retailers take the trouble to mark price tags at $399 instead of $400, it is because they 
know that their clients will automatically think of this price as being “about 300  dollars”; 
only on refl ection will they realize that the actual sum is very close to 400 dollars. 

 As a fi nal example, let me report on my own experience of having to adapt to 
the Fahrenheit temperature scale. In France, where I was born and raised, we use only 
the centigrade scale, in which water freezes at 0 °  and boils at 100 ° . Even aft er living in the 
United States for two years, I still found it diffi  cult to think of 32 ° F as cold, because 
for me 32 °  automatically evoked the normal temperature on a very warm sunny day! 
Conversely, I suppose that most Americans traveling in Europe are shocked by the idea 
that anything as small as 37 °  can represent the temperature of the human body. Th e 
 automatic attribution of meaning to numerical quantities is deeply embedded in our 
brains, and an adult can revise it only with great diffi  culty.     
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   A Sense of Space   

 Numbers do not just evoke a sense of quantity; they also elicit an irrepressible feeling of 
extension in space. Th is intimate link between numbers and space was apparent in my 
number comparison experiments.   24  As you may remember, subjects had to classify 
 numbers as smaller or larger than 65. To this end, they held two response keys, one in the 
left  hand and the other in the right hand. Being a rather obsessive experimenter, I system-
atically varied the side of response: Half of the subjects responded “larger” with their 
right hand and “smaller” with their left  hand, while the other group of subjects followed 
the opposite instructions. Surprisingly, this seemingly innocuous variable had an impor-
tant eff ect: Subjects in the “larger-right” group responded faster and made fewer errors 
than those in the “larger-left ” group. When the target number was larger than 65, subjects 
pressed the right-hand key faster than the left -hand key; the opposite was true for  numbers 
smaller than 65. It was as if, in the subject’s mind, large numbers were sponta neously 
associated with the right-hand side of space and small numbers with the left -hand side. 

 To what extent this association was automatic, it remained to be seen. To fi gure this 
out, I used a task that had little to do either with space or with quantity: Subjects now 
determined whether a digit was odd or even.   25  Subsequently, other researchers have used 
even more arbitrary instructions such as discriminating whether a digit’s name starts with 
a consonant or a vowel, or whether it has a symmetrical visual shape.   26  Regardless of 
instructions, the same eff ect occurs: Th e larger the number, the faster right-hand responses 
are, compared with left -hand responses. And, conversely, the smaller the number, the 
greater the bias toward responding faster on the left . As a tribute to Lewis Carroll, I called 
this fi nding the SNARC eff ect — an acronym for “Spatial-Numerical Association of 
Response Codes.” (Carroll’s wonderfully nonsensical poem, “Th e Hunting of the Snark,” 
tells of the relentless quest for a mythical creature, the Snark, that no one has ever seen 
but whose behavior is known in exquisite detail, including its habit of getting up late and 
its fondness for bathing-machines — a very appropriate metaphor for scientists’ obstinate 
pursuit of ever more accurate descriptions of nature, be they termed quarks, black holes, 
or universal grammars. Unfortunately, I could not think of a meaningful acronym for 
Carroll’s original spelling of Snark!) Th e fact that the SNARC eff ect occurs whenever 
a digit is seen, even when the task itself is nonnumerical, confi rms that it refl ects the 
 automatic activation of quantity information in the subject’s brain. 

24  Dehaene et al.,     1990   
25  Dehaene, Bossini, & Giraux,     1993   
26  Fias, Brysbaert, Geypens, & d’Ydewalle,     1996  . An enormous amount of research has been dedicated to the 
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 Across the many experiments in which my colleagues and I “hunted the SNARC,” we 
made a number of interesting discoveries.   27  First, the absolute size of the numbers does 
not matter. What counts is their size relative to the interval of numbers used in the exper-
iment. Numbers 4 and 5, for instance, are preferentially associated with the right if the 
experiment comprises only numbers from 0 to 5, and with the left  if only numbers from 
4 to 9 are used. Second, the hand used for responding is also irrelevant: When subjects 
respond while crossing the hands, it is still the right-hand side of  space  that is associated 
with larger numbers, even though right-sided responses are made using the left  hand. 
And of course subjects are completely unaware of responding faster on one side than on 
the other. 

 Th e fi nding of an automatic association between numbers and space leads to a simple 
yet remarkably powerful metaphor for the mental representation of numerical quantities: 
that of a number line. It is as if numbers were mentally aligned on a segment, with each 
location corresponding to a certain quantity. Close numbers are represented at adjoining 
locations. No wonder, then, that we tend to confound them, as refl ected by the numerical 
distance eff ect. Furthermore, the line can be metaphorically thought of as being oriented 
in space: Zero is at the extreme left , with larger numbers extending toward the right. Th is 
is why the refl ex encoding of Arabic numerals as quantities is also accompanied by an 
automatic orientation of numbers in space, small ones to the left  and large ones to the 
right. 

 What is the origin of this privileged axis oriented from left  to right? Is it linked to a 
biological parameter such as handedness or hemispheric specialization, or does it depend 
only on cultural variables? Exploring the fi rst hypothesis, I tested a group of  left -handers — 
but they did not diff er from right-handers, and still associated large numbers with the 
right. Turning then to the second hypothesis, my colleagues and I recruited a group of 
twenty Iranian students who had initially learned to read from right to left , contrary to our 
Occidental tradition. Th is time, the results were more conclusive. As a group, Iranians did 
not show any preferential association between numbers and space. In each individual, 
however, the direction of the association varied as a function of exposure to Western cul-
ture. Iranian students who had lived in France for long showed a SNARC eff ect just like 
that of native French students, while those who had emigrated from Iran only a few years 
before tended to associate large numbers with the  left -hand  side of space rather than 
the right-hand side. Th us, it seems that cultural immersion is a major factor. Th e direction 
of the association between numbers and space seems to be related to the direction of 
 writing.   28  

 A minute of refl ection shows that indeed, the organization of our Western writing 
system has pervasive consequences on our everyday use of numbers. Whenever we write 

27  Dehaene et al.,     1993   
28  Dehaene et al.,     1993  . For more direct proof, see Ito & Hatta,     2004  ; Zebian,     2005  ; Shaki & Fischer,     2008   
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down a series of numbers, small numbers appear fi rst in the sequence and hence to the 
left . In this way, left -to-right organization is imposed on rulers, calendars, mathematical 
diagrams, library bookshelves, fl oor signals above elevator doors, computer keyboards, 
and so on. Th e internalization of this convention starts in childhood: Young American 
children already explore sets of objects from left  to right, while Israeli children do the 
opposite. When counting, Occidental children almost always start on the left . Th e  regular 
association of the beginning and ending points of counting with diff erent directions of 
space then becomes internalized as an integral characteristic of the mental representation 
of number. 

 When this implicit convention is violated, we suddenly become painfully aware of 
its importance. Travelers entering Terminal 2 of the Charles de Gaulle airport in Paris 
experience a confusing situation: Th e gates bearing small numbers extend to the right, 
while those bearing large numbers extend to the left . I have observed many travelers, 
including myself, heading in the wrong direction aft er being assigned a gate number — a 
spatial disorientation that even repeated visits does not fully dissipate. 

 Although this had not yet been studied empirically, numbers are also probably 
 associated with the vertical axis. I once stayed with colleagues at a hotel hanging from a 
cliff  above the Adriatic Sea near Trieste, in Italy. Th e entrance was on the top fl oor, and 
perhaps for this reason successive fl oors were numbered from top to bottom. Confusion 
was always great when we took the elevator. Going up, we unconsciously expected the 
lighted fl oor numbers to increase, but the opposite occurred, perplexing us for a few 
 seconds. We even had trouble fi guring out which button to press to go one fl oor up! My 
hope is that architects and ergonomists, if they ever read this book, will adopt in the 
future a systematic rule of numbering from left  to right and from bottom to top, for this 
is indeed a convention that our brains have come to expect, at least in our Western 
 culture.     

   Do Numbers Have Colors?   

 Th ough a majority of people have an unconscious mental number line oriented from 
left  to right, some have a much more vivid image of numbers. Between 5 %  and 10 %  of 
humanity is thoroughly convinced that numbers have colors and occupy very precise 
 locations in space.   29  In the 1880s already, Sir John Galton remarked that several acquain-
tances, most of them women, gave numbers extraordinarily precise and vivid qualities that 
were incomprehensible to anybody else.   30  One of them described numbers as a ribbon 
undulating rightward, richly colored in shades of blue, yellow, and red (Figure   3.5  ). 

29  Seron, Pesenti, Noël, Deloche, & Cornet,     1992   
30  Galton,     1880   
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     figure 3.5.  Th ese drawings describe the “number forms” experienced by two of Galton’s subjects. 
One of them sees a colorful ribbon extending rightward. Th e second places numbers on a twisting 
curve whose initial section resembles the face of a clock.   
 (Reprinted from Galton   1880   by permission of the publisher; copyright  ©  1880 by Macmillan Magazines Ltd.)    

Another claimed that numbers from 1 to 12 coiled in a vaguely circular curve, with a 
slight break between 10 and 11. Beyond 12, the curve took off  toward the left  with distinct 
curls for each decade. A third person maintained that numerals from 1 to 30 appeared 
written in a vertical column in his mind’s eye, and that the following decades progressively 
shift ed to the right. According to him the numerals were “about half an inch long, of a 
light grey colour on a darker brownish grey colour.”  

 Such “number forms,” however outlandish, were not just inventions springing from the 
fertile minds of Victorians eager to please Galton’s passion for numbers. A recent survey, 
conducted a century aft er Galton’s, found similar images of numbers in modern univer-
sity students — the same curves in some, the same straight lines in others, the same abrupt 
changes around decade boundaries, and so on.   31  Furthermore, associations between num-
bers and colors are systematic: Most people associate black and white with either 0 and 1, 

31  Seron et al.,     1992  ; Hubbard et al.,     2005  ; Hubbard, Ranzini, Piazza, & Dehaene,     2009   
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or 8 and 9; yellow, red, and blue with small numbers such as 2, 3, and 4; and brown, 
purple, and gray with larger numbers such as 6, 7, and 8.   32  

 Th ese statistical regularities suggest that most people who claim to experience number 
forms are sincere. Th ey seem to faithfully describe a genuine percept, which can be 
extremely precise. One such person was given fi ft y colored pencils in order to couch her 
images of numbers on paper. On two diff erent occasions, separated by one week, she 
selected almost exactly the same shades of color. For some numbers, she even felt the need 
to mix the hues of several pencils to better depict her exact mental image. 

 Despite their rarity and strangeness, number forms share many properties with the 
“normal” representation of numerical quantities. Th e series of integers is almost always 
represented by a continuous curve, 1 falling next to 2, 2 next to 3, and so on. Only occa-
sionally does one fi nd abrupt changes in direction, or small discontinuities at decade 
boundaries — for instance, between 29 and 30. Not a single person has yet claimed to see 
a jumbled image of numbers in which, say, primes or squares are grouped together on the 
same curve. Th e continuity of numerical quantities is the major parameter along which 
number forms are organized. 

 Relations between numbers and space are also respected. In most number forms, 
increasing numbers extend toward the top right. Finally, most people claim that their 
number form becomes increasingly fuzzy for larger numbers. Th is is reminiscent of 
the magnitude or compression eff ect that characterizes animal and human numerical 
 behavior, and limits the accuracy with which we can mentally represent large numbers. 

 In essence, then, number forms can be likened to a conscious and enriched version of 
the mental number line that we all share. While most people’s mental number line is 
apparent only in subtle reaction time experiments, number forms are readily available to 
awareness and are also richer in visual details, such as color or a precise orientation in 
space. Where do these illuminations come from? When questioned, the bearers of 
number forms either claim that they emerged spontaneously before the age of eight, or 
that they have had them for as long as they can remember. Sometimes several members 
of a family share the same type of number form. Yet, this does not necessarily mean that 
a common genetic component is involved: Th e familial environment could also be a 
 determinant. 

 My own speculation leads me to suppose that number forms may have something to do 
with how cortical maps of space and number are formed during development. As we have 
seen in Chapter 2, babies may already possess a “mental map” of numerosity. Between the 
ages of three and eight, with schooling, the initial number line must be considerably 
enriched in order to accommodate the child’s increasing knowledge of large numbers, 
and of numeration in base 10. One might speculate that the acquisition of arithmetic is 
accompanied by a progressive expansion of the amount of cortex dedicated to the 

32  Seron et al.,     1992  ; Cohen Kadosh & Henik,     2006a   
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“number map” (such increases have indeed been observed in sensorimotor brain areas 
when an animal learns a fi ne manual task). As we shall see in Chapters 7 and 8, the  inferior 
parietal cortex, a lateral and posterior brain region nearing the junction between the 
 parietal, occipital, and temporal lobes, is a plausible candidate for where in the brain this 
expansion of the neural networks for arithmetical knowledge might occur. Because the 
total number of neurons remains constant, the growth of the numerical network must 
occur at the expense of the surrounding cortical maps, including those coding for color, 
form, and location. In some children, perhaps the shrinkage of nonnumerical areas may 
not reach its fullest term. In this case, some overlap between the cortical areas coding for 
numbers, space, and color may remain. Subjectively, this might translate into an irrepress-
ible sensation of “seeing” the color and location of numbers. A similar account might 
explain the related phenomenon of synesthesia — the impression, familiar to poets or 
musicians, that sounds have shapes and that tastes evoke colors. 

 Speculative as it may be, this theory of how the cortex gets colonized by an increasingly 
refi ned map of numbers has some evidence in its favor. Th e neuropsychologists J. Spalding 
and Oliver Zangwill have described a 24-year-old patient whose visual image of numbers 
disappeared suddenly when he experienced a lesion in the left  parieto-occipital area, a 
region that has long been suspected to play a central role in mental arithmetic.   33  Indeed, 
the patient suff ered from severe diffi  culties both in calculating and in orienting in space 
(this neurological syndrome is discussed in more detail in Chapter 7). Hence, this case 
confi rms that the subjective feeling of “seeing numbers” rests on the simultaneous coding 
of numerical and spatial information, side by side, in the same cerebral region. 

 Further, the idea that cortical maps may overlap and engender strange subjective sensa-
tions has been validated in studies of amputees.   34  Following amputation of one arm, the 
region of the somatosensory cortex that represented this arm becomes vacant and is colo-
nized by surrounding representations, such as the head. In rare cases, it is then possible, by 
stimulating certain points of the face, to create sensations that feel as if they are coming from 
the missing arm, thus giving patients an irresistible impression of possessing a “phantom 
limb.” A drop of water dripping on the face, for instance, feels as if the nonexistent arm were 
immersed in a bucket! I believe that the phenomenon of number forms, in which numbers 
evoke phantom colors and shapes, has a similar origin in overlapping cortical maps.     

   Intuitions of Number   

 It is now time to recapitulate the essential message of this chapter. Th ese observations on 
Roman numerals, on the time it takes to compare Arabic numerals, and on some people’s 

33  Spalding & Zangwill,     1950   
34  Ramachandran, Rogers-Ramachandran, & Stewart,     1992  ; Ramachandran & Hubbard,     2001   
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bizarre numerical hallucinations, shed light on the fascinating peculiarities of our mental 
representation of numbers. An organ specialized in the perception and representation of 
numerical quantities lies anchored in our brains. Its characteristics unequivocally connect 
it to the protonumerical abilities found in animals and in infants. It can accurately code 
only sets whose numerosity does not exceed three, and it tends to confuse numbers as 
they get larger and closer. It also tends to associate the range of numerical quantities with 
a spatial map, thus legitimizing the metaphor of a mental number line oriented in space. 

 Obviously, compared to babies and animals, human adults have the advantage of being 
able to convey numbers using words and digits. We will see in the next chapters how 
language eases the computation and communication of precise numerical quantities. 
However, the availability of precise number notations does not obliterate the continuous 
and approximate representation of quantities with which we are endowed. Much to the 
contrary, experiments show that the adult human brain, whenever it is presented with a 
numeral, rushes to convert it into an internal analogical magnitude that preserves the 
proximity relations between quantities. Th is conversion is automatic and unconscious. It 
allows us to retrieve immediately the meaning of a symbol such as 8 — a quantity between 
7 and 9, closer to 10 than to 2, and so on. 

 A quantitative representation, inherited from our evolutionary past, underlies our 
intuitive understanding of numbers. If we did not already possess some internal  nonverbal 
representation of the quantity “eight,” we would probably be unable to attribute a mean-
ing to the digit 8. We would then be reduced to purely formal manipulations of digital 
symbols, in exactly the same way that a computer follows an algorithm without ever 
understanding its meaning. 

 Th e number line that we use to represent quantities clearly supports a limited form of 
intuition about numbers. It encodes only positive integers and their proximity relations. 
Perhaps this is the reason not only for our intuitive grasp of the meaning of integers, but 
also for our lack of intuition concerning other types of numbers. What modern mathema-
ticians call “numbers” includes zero, negative integers, fractions, irrational numbers such 
as  π  ,  and complex numbers such as  i = −1.    Yet, all of these entities, except perhaps the 
simplest fractions such as 1/2 or 1/4 ,  posed extraordinary conceptual diffi  culties to math-
ematicians in centuries past — and they still impose great hardship on today’s pupils. 

 For Pythagoras and his followers, fi ve centuries before Christ, numbers were limited to 
positive integers, excluding fractions or negative numbers. Irrational quantities such as 

2    were judged to be so counterintuitive that a legend says Hippasus of Metapontas was 
thrown overboard for proving their existence and thus shattering the Pythagorean view 
of a universe ruled by integers. Neither Diophantes, nor later Indian mathematicians, 
despite their mastery of calculation algorithms, accepted negative numbers for the 
 solution of equations. For Pascal himself, the subtraction 0–4, whose result is negative, 
was pure nonsense. As for complex numbers — which were invented by Jerome Cardan in 
Italy in 1545, and which involve taking the square root of negative numbers — their status 
unleashed a storm of protest that lasted over a century. We owe to Descartes, who rejected 
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them, the epithet of “imaginary numbers,” while De Morgan judged them to be “devoid 
of meaning, or rather self-contradictory and absurd.” Only aft er solid mathematical foun-
dations were established did these types of numbers gain acceptance in the mathematical 
community. 

 I would like to suggest that these mathematical entities are so diffi  cult for us to accept, 
and so defy intuition, because they do not correspond to any preexisting category in our 
brain. Positive integers naturally fi nd an echo in the innate mental representation of 
numerosity; hence, a 4-year-old can understand them. Other sorts of numbers, however, 
do not have any direct analogue in the brain. To really understand them, one must piece 
together a novel mental model that provides for intuitive understanding. Th is is exactly 
what teachers do when they introduce negative numbers with such metaphors as tem-
peratures below zero, money borrowed from the bank, or simply a left ward extension of 
the number line. Th is is also why the English mathematician John Wallis, in 1685, made a 
unique gift  to the mathematical community when he introduced a concrete representa-
tion of complex numbers — he fi rst saw that they could be envisioned as a plane where the 
“real” numbers dwelled along a horizontal axis. To function in an intuitive mode, our 
brain needs images — and as far as number theory is concerned, evolution has endowed 
us with an intuitive picture only of positive integers.                                                                                                  
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 suppose that our only mental representation of number were an approximate 
accumulator similar to the rat’s. We would have rather precise notions of the numbers 1, 
2, and 3. But beyond this point, the number line would vanish into a thickening fog. We 
could not think of number 9 without confusing it with its neighbors 8 and 10. Even if we 
understood that the circumference of a circle divided by its diameter is a constant, the 
number  π  would only be known to us as “about 3.” Th is fuzziness would befuddle any 
attempt at a monetary system, much of scientifi c knowledge, indeed human society as we 
know it. 

 How did  Homo sapiens  alone ever move beyond approximation? Th e uniquely human 
ability to devise symbolic numeration systems was probably the most crucial factor. 
Certain structures of the human brain that are still far from understood enable us to use 
any arbitrary symbol, be it a spoken word, a gesture, or a shape on paper, as a vehicle for a 
mental representation. Linguistic symbols parse the world into discrete categories. Hence, 
they allow us to refer to precise numbers and to separate them categorically from their 
closest neighbors. Without symbols, we might not discriminate 8 from 9. But with the 
help of our elaborate numerical notations, we can express thoughts as precise as “Th e 
speed of light is 299,792,458 meters per second.” It is this transition from an approximate 
to a symbolic representation of numbers that I intend to describe in this chapter — a 
 transition that occurs both in cultural history and in the mind of any child who acquires 
the language of numbers.     

 THE LANGUAGE OF NUMBERS         

 4  

        I observe that when we mention any great 

number, such as a thousand, the mind has 

generally no adequate idea of it, but only a 

power of producing such an idea by its 

adequate idea of the decimals, under which 

the number is comprehended. 

 david hume,  a Treatise 
Of Human Nature   



80  Th e Number Sense

   A Short History of Number   

 When our species fi rst began to speak, it may have been able to name only the numbers 
1, 2, and perhaps 3. Oneness, twoness, and threeness are perceptual qualities that our 
brain computes eff ortlessly without counting. Hence, giving them a name was probably 
no more diffi  cult than naming any other sensory attribute, such as red, big, or warm. 

 Th e linguist James Hurford has gathered considerable evidence for the antiquity 
and special status of the fi rst three number words.   1  In languages with case and gender 
infl ections, “one,” “two,” and “three” are oft en the only numerals that can be infl ected. For 
instance, in old German, “two” can be  zwei, zwo,  or  zween  depending on the grammatical 
gender of the object that is being counted. Th e fi rst three ordinals also have a particular 
form. In English, for instance, most ordinals end with “th” (fourth, fi ft h, etc.), but the 
words “fi rst,” “second,” and “third” do not. 

 Th e numbers 1, 2, and 3 are also the only ones that can be expressed by grammatical 
infl ections instead of words. In many languages, words do not just bear the mark of the 
singular or plural. Distinct word endings are also used to distinguish two items ( dual  ) 
versus more than two items ( plural  ), and a few languages even have special infl ections for 
expressing three items ( trial  ). In ancient Greek, for instance, “o hippos” meant the horse, 
“to hippo” the two horses, and “toi hip-poi” an unspecifi ed number of horses. But no 
language ever developed special grammatical devices for numbers beyond three. 

 Finally, the etymology of the fi rst three numerals also bears testimony to their  antiquity. 
Th e words for “2” and “second” oft en convey the meaning of “another,” as in the verb  to 
second,  or the adjective  secondary.  Th e Indo-European root of the word “three” suggests 
that it might have once been the largest numeral, synonymous with “a lot” and “beyond 
all others” — as in the French  très  (very) or the Italian  troppo  (too much), the English 
 through,  or the Latin prefi x  trans–.  Hence, perhaps the only numbers known to Indo-
Europeans were “1,” “1 and another” (2), and “a lot” (3 and beyond). 

 Today we fi nd it hard to imagine that our ancestors might have been confi ned to 
 numbers below three. Yet this is not implausible. Up to this very day, the Warlpiris, an 
aboriginal tribe from Australia, have names only for the quantities 1, 2, some, and a lot.   2  
In the domain of colors, some African languages distinguish only between black, white, 
and red. Needless to say, these limits are purely lexical. When Warlpiris come into contact 
with Occidentals, they easily learn English numerals. Th us, their ability to conceptualize 
numbers is not limited by the restricted lexicon of their language, nor (obviously) by 
their genes. Although there is a dearth of experiments on this topic, it seems likely that 

1  Hurford,     1987   
2  Ifrah,     1998  . See also Gordon,     2004  ; Pica, Lemer, Izard, & Dehaene,     2004  ; Butterworth, Reeve, Reynolds, & 

Lloyd,     2008   
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they possess quantitative concepts of numbers beyond three, albeit nonverbal and 
perhaps approximate ones. 

 How did human languages ever move beyond the limit of 3? Th e transition toward 
more advanced numeration systems seems to have involved the counting of body parts.   3  
All children spontaneously discover that their fi ngers can be put into one-to-one corre-
spondence with any set of items. One merely has to raise one fi nger for the fi rst item, two 
for the second, and so on. By this mechanism, the gesture of raising three fi ngers comes 
to serve as a symbol for the quantity three. An obvious advantage is that the required 
symbols are always “handy” — in this numeration system the digits are literally the speak-
er’s digits! 

  Historically then, digits and other parts of the body have supported a body-based lan-
guage of numbers, which is still in use in some isolated communities. Many aboriginal 
groups, who lack spoken words for numbers beyond three, possess a rich vocabulary of 
numerical gestures fulfi lling the same role. Th e natives of the Torres Strait islands, for 
instance, denote numbers by pointing to diff erent parts of their body in a fi xed order 
(Figure   4.1  ): from the pinkie to the thumb on the right hand (numbers 1 to 5), then up 
the right arm and down the left  arm (6 to 12), through to the fi ngers of the left  hand 
(13 to 17), the left  toes (18 to 22), the left  and right legs (23 to 28), and fi nally the right 
toes (29 to 33). A few decades ago, in a school in New Guinea, teachers were puzzled to 
see their aboriginal pupils wriggling during mathematics lessons, as if calculations made 
them itch. As a matter of fact, by rapidly pointing to parts of their bodies, the children 
were translating into their native body language the numbers and calculations being 
taught to them in English. 

 In more advanced numeration systems, pointing is not needed anymore: Naming a 
body part suffi  ces to evoke the corresponding numeral. Th us, in many societies in New 
Guinea, the word  six  is literally “wrist,” while nine is “left  breast.” Likewise, in countless 
languages throughout the world, from Central Africa to Paraguay, the etymology of the 
word  fi ve  evokes the word  hand . 

 A third step bridges the gap that separates these body-based languages from our modern 
“disembodied” number words. Body-pointing suff ers from a serious limitation: Our 
 fi ngers form a fi nite set, indeed a rather small one. Even if we count toes and a few other 
salient parts of our bodies, the method is hopeless for numbers beyond thirty or so. It is 
highly impractical to learn an arbitrary name for each number. Th e solution is to create a 
syntax that allows larger numerals to be expressed by combining several smaller ones. 

 Number syntax probably emerged spontaneously from an extension of body-based 
numeration. In societies such as the native tribes of Paraguay, the number 6, instead of 
being given an arbitrary name such as “wrist,” is expressed as “one on the other hand.” 
Since the word “hand” itself means 5, by the very nature of their body language these 

3  For aspects of the history of number notations, see Dantzig,     1967  ; Hurford,     1987  ; Ifrah,     1998   
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people are led to express 6 as “5 and 1.” Similarly, the number 7 is “5 and 2,” and so on all 
the way to 10, which is simply expressed as “two hands” (two 5s). Behind this elementary 
example lurk the basic organizing principles of modern number notations: the choice 
of a base number (here number 5), and the expression of larger numbers by means of 
a combination of sums and products. Once discovered, these principles can be extended 
to arbitrarily large numbers. Eleven, for instance, might be expressed as “two hands and a 
fi nger” (two 5s and 1), while 22 will be “four hands and two fi ngers.” 

 Most languages have adopted a base number, such as 10 or 20, whose name is oft en a 
contraction of smaller units. In the Ali language, for instance, the word “mboona,” which 
means 10, is a contraction of “moro boona” — literally “two hands.” Once the new form is 
frozen, it can itself enter into more complex constructions. Th us the word for 21 could be 
expressed as “two 10s and 1.” A similar process of contraction accounts for the irregular 
construction of some numerals such as 11, 12, 13, or 50 in present-day English. Th ese 
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words were once transparent compounds — “1 (and) 10,” “2 (and) 10,” “3 (and) 10,” “5 
10s” —  before they were distorted and contracted. 

 As for base 20, it probably refl ects an ancient tradition of counting on fi ngers and toes. 
Th is explains why the same word oft en denotes number 20 and “a man,” as in some Mayan 
dialects or in Greenland Eskimo. A number such as 93 may then be expressed by a short 
sentence such as “aft er the fourth man, 3 on the fi rst foot” — a twisted syntax indeed, but 
hardly more so than the modern French expression “quatre-vingt-treize” (4  ×  20  +  13). 
It is through such means that humans eventually learned to express any number with 
perfect accuracy.     

   Keeping a Permanent Trace of Numerals   

 Beyond giving numbers a name, to keep a durable record of them was also vital. For 
 economical and scientifi c reasons, humans quickly developed writing systems that could 
maintain a permanent record of important events, dates, quantities, or exchanges —  
anything, in brief, that could be denoted by a number. Th us, the invention of written 
number notations probably unfolded in parallel with the development of oral numera-
tion systems. 

 To understand the origins of number writing systems, we have to travel far back in 
time. Several bones from the Aurignacian period (35,000 to 20,000 BC) refl ect the 
oldest method of writing numbers: the representation of a set by an identical number of 
notches.   4  Th ese bones are engraved with series of parallel notches, sometimes grouped 
in small packets. Th is might have been early humans’ way of keeping a hunting record 
by carving one notch for each animal captured. Th e patient decoding of the periodic 
 structure of notches on a slightly more recent bone plaque even suggests that it might 
have been used as a lunary calendar that kept track of how many days had elapsed between 
two full moons (Figure   4.2  ). 

  Th e principle of one-to-one correspondence has been reinvented over and over again, 
throughout the world, as one of the simplest and most basic of numerical records. Th e 
Sumerians fi lled spheres of clay with as many marbles as the objects they counted; 
the Incas recorded numbers by tying knots on strings, which they kept as archives; and 
the Romans used vertical bars to form their fi rst three digits. Even recently, some bakers 
still used notched sticks to keep track of their clients’ debts. Th e word “calculation” itself 
comes from the Latin word  calculus,  which means “pebble,” and draws us back to the time 
when numbers were manipulated by moving pebbles on an abacus. 

 Despite its deceptive simplicity, the one-to-one correspondence principle is a 
 remarkable invention. It off ers a durable, precise, and abstract representation of numbers. 

4  Marshack,     1991   



84  Th e Number Sense

A series of notches can serve as an abstract numerical symbol and stand for any collection 
of items, be it livestock, people, debts, or full moons. It also enables humans to overcome 
the limitations of their perceptual apparatus. Humans, like pigeons, cannot distinguish 
forty-nine objects from fi ft y. Yet, a stick engraved with forty-nine notches keeps a 
 permanent track of this exact number. To verify whether a count is correct, one merely 
has to go through the objects one by one and move forward by one notch for each object. 
One-to-one correspondence, therefore, provides a precise representation of numbers too 
large to be accurately memorized on the mental number line. 

 Obviously, one-to-one correspondence also has its limitations. Series of notches are 
notoriously inconvenient to read or to write. As we have seen earlier, the human visual 
system is unable to apprehend at a glance the numerosity of a set of more than three 
items. Hence, an undiff erentiated series of 37 notches is as diffi  cult to perceive as the set 
of 37 sheep it stands for! Humans were therefore quickly drawn to breaking the monot-
ony of number series by grouping the notches and by introducing novel symbols, in eff ect 
breaking a large number into something easier to read at a glance. Th is is exactly what we 
do when we strike out each group of fi ve strokes, thus turning them into a visually salient 
group. Using this technique, the number 21 looks like |||| |||| |||| |||| |, undeniably a more 
readable notation than |||||||||||||||||||||. 

 However, this system is convenient only on paper. When engraving a stick, carving 
in the wood’s length is tedious. Cutting the wood at an angle is so much easier, and that 
is exactly the method that shepherds adopted thousands of years ago: Th ey invariably 
selected symbols made up of oblique bars, such as V or X, to denote the numbers 5 
and 10. As you may guess, this is the origin of Roman numerals. Th eir geometric shapes 
were determined by how easily they could be carved on a wooden stick. Other writing 
media have imposed diff erent shapes. For instance, the Sumerians, who wrote on sheets 

     figure 4 .2.  Th is small bone plaque was unearthed in 1969 from the Grotte du Taï in southern 
France. Dated from the Upper Paleolithic (ca. 10,000 BC), it is engraved with regularly aligned 
marks. Because some of the notches are grouped into subsets of about 29, the plaque is thought 
to have recorded the number of days elapsing between two lunations.   
 (Reprinted from Marshack   1991   by permission of the publisher; copyright  ©  1991 by Cambridge University Press.)    
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of soft  clay, adopted for their numerals the simplest shapes that could be formed with a 
pencil — namely, round or cylindrical notches, as well as the famous nail-shaped or “cune-
iform” characters. 

 By adding together several of these symbols, other numbers may be formed. In Roman 
notation, 7 is written as 5  +  1  +  1 (VII). Th is additive principle, according to which the 
value of a number is equal to the sum of its component digits, underlies many number 
notations, including those of the Egyptians, Sumerians, and Aztecs. Additive notation 
saves time and space, because a number such as 38, which requires thirty-eight identical 
symbols in any concrete notation based on one-to-one correspondence, now mobilizes 
only seven Roman digits (38 = 10  +  10  +  10  +  5  +  1  +  1  +  1 or XXXVIII). Still, reading 
and  writing remain a tedious chore. Compactness can be improved a bit by introducing 
 special symbols such as numbers L (50) and D (500). Repetitions may be totally avoided 
if one is willing to use a distinct symbol for each of the numbers 1 to 9, 10 to 90, and 100 
to 900. Th is solution was adopted by the Greeks and the Jews, who used letters of the 
alphabet instead of numbers. Using this trick, a number as complex as 345 can be written 
with only three letters (TME in Greek, or 300  +  40  +  5). Th e user, however, pays a heavy 
cost: Considerable eff ort is needed to memorize the numerical value of the 27 symbols 
required to express all numbers from 1 to 999. 

 In retrospect, it seems obvious that addition alone cannot suffi  ce to express very large 
numbers. Multiplication becomes indispensable. One of the fi rst hybrid notations, 
mixing addition and multiplication, appeared in Mesopotamia over four millennia ago. 
Instead of expressing a number such as 300 by repeating the symbol for 100 three times, 
as in Roman numerals (CCC), the inhabitants of the city of Mari simply wrote down the 
symbol for “three” followed by the symbol for “hundred.” Unfortunately, they still wrote 
units and decades using the addition principle, so their notation remained far from 
 concise. Th e number 2,342, for instance, was literally written down as “1  +  1 thousand, 
1  +  1  +  1 hundred, 10  +  10  +  10  +  10, 1  +  1”. 

 Th e power of the multiplication principle was refi ned in later number notations. In 
particular, fi ve centuries ago, the Chinese invented a perfectly regular notation that has 
been preserved up to this day It consists of only 13 arbitrary symbols for the digits 
1 through 9 and the numbers 10, 100, 1,000, and 10,000. Th e number 2,342 is simply 
written down as “2 1000 3 100 4 10 2”, a word-for-word transcription of the oral expres-
sion “two thousand three hundred forty-two” (forty being “four ten” in Chinese). Th us 
writing, at this stage, becomes a direct refl ection of the oral numeration system.     

   The Place-Value Principle   

 One fi nal invention greatly expanded the effi  cacy of number notations: the place-value 
principle. A number notation is said to obey the place-value principle when the quantity 
that a digit represents varies depending on the place it occupies in the number. Th us, 



86  Th e Number Sense

the three digits that make up number 222, though identical, refer to diff erent orders of 
 magnitude: two hundreds, two tens, and two units. In a place-value notation, there is a 
privileged number called the  base . We now use base 10, but this is not the only possibility. 
Successive places in the number represent successive powers of the base, from units 
(10 0  = 1), to tens (10 1  = 10), hundreds (10 2  = 100), and so on. Th e quantity that a given 
number expresses is obtained by multiplying each digit by the corresponding power of 
the base, and then adding up all the products. Hence number 328 represents the quantity 
3  ×  100  +  2  ×  10  +  8  ×  1. 

 Place-value coding is a must if one wants to perform calculations using simple  algorithms. 
Just try to compute XIV  ×  VII using Roman numerals! Calculations are also inconvenient 
in the Greek alphabetical notation, because nothing betrays that number Ν (50) is ten 
times greater than number Ε (5). Th is is the main reason the Greeks and the Romans 
never performed computations without the help of an abacus. By contrast, our Arabic 
numerals, based on the place-value principle, make the magnitude relations between 5, 50, 
500, and 5,000 completely transparent. Place-value notations are the only ones that reduce 
the complexity of multiplication to the mere memorization of a table of products from 
2  ×  2 up to 9  ×  9. Th eir invention revolutionized the art of numerical computation. 

 While four civilizations seem to have discovered place-value notation, three of 
them never quite reached the simplicity of our current Arabic numerals. For this, nota-
tion only becomes highly effi  cient in conjunction with three other inventions: a symbol 
for “zero,” a unique base number, and the discarding of the addition principle for the 
digits 1 through 9. Consider, for instance, the oldest place-value system known, devised 
by Babylonian astronomers eighteen centuries before Christ. Th eir base number was 60. 
Hence a number such as 43,345, which is equal to 12  ×  60 2    +   2  ×  60   +  25, was expressed 
by concatenating the symbols for 12, 2, and 25. 

 In principle, sixty distinct symbols would have been needed, one for each of the “digits” 
0 to 59. Yet, obviously, it would have been impractical to learn sixty arbitrary symbols. 
Instead, the Babylonians wrote down these numbers using an additive base-10 notation. 
For instance, the “digit” 25 was expressed as 10   +  10  +  1  +  1  +  1  +  1  +  1. Eventually, the 
number 43,345 was thus rendered by an obscure sequence of cuneiform characters that 
literally meant 10  +  1  +  1 [implication  ×  60 2 ], 1  +  1 [implication  ×  60], 10  +  10  +  1  +  1  +
  1  +  1  +  1. Such a mixture of additive and place-value coding, with two bases 10 and 60, 
turned the Babylonian notation into an awkward system understandable only to a culti-
vated elite. Still, it was a remarkably advanced numeration for its time. Th e Babylonian 
astronomers used it very skillfully for their celestial calculations, whose accuracy remained 
unsurpassed for more than a thousand years. Its success was due in part to its simple rep-
resentation of fractions: Because 2, 3, 4, 5, and 6 are divisors of the base 60, the fractions 
1/2, 1/3, 1/4, 1/5, and 1/6 all had a simple sexagesimal expression. 

 Judged by today’s standards, the Babylonian system had one fi nal drawback: For fi ft een 
centuries, it lacked a zero. What is a zero good for? It serves as a placeholder that denotes 
the absence of units of a given rank in a multidigit numeral. For instance, in Arabic 
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 notation, the number “503” means fi ve hundreds, no tens, and three units. Lacking a zero, 
Babylonian scientists simply left  a blank at the place where a digit should have appeared. 
Th is meaningful void was a recurring source of ambiguities. Th e numbers 301 (5  ×  60  +  1), 
18,001 (5  ×  60 2   +  l) and 1,080,001 (5  ×  60 3   +  1) were confusedly expressed by similar strings: 
51, 5 1 (with one blank), and 5 1 (with two blanks). Hence the absence of a zero was the 
cause of many errors in calculation. Worse, an isolated digit such as “1” had multiple mean-
ings. It could mean quantity 1, of course, but also “1 followed by a blank” or 1  ×  60, or even 
“one followed by two blanks” or 1  ×  60 2  = 3,600, and so on. Only the context could deter-
mine which interpretation was correct. Not until the third century before Christ did the 
Babylonians fi nally introduce a symbol to fi ll this gap and explicitly denote absent units. 
Even then, this symbol served only as a placeholder. It never acquired the meaning of a 
“null quantity” or of “the integer immediately below 1” which we attribute to it today. 

 While Babylonian astronomers’ place-value notation was apparently lost in the  collapse 
of their civilization, three other cultures later reinvented remarkably similar systems. 
Chinese scientists, in the second century before Christ, devised a place-value code devoid 
of the digit 0 and using the bases 5 and 10. Mayan astronomers, in the second half of the 
fi rst millennium, computed with numbers written in a mixture of base 5 and 20 and with 
a fully fl edged digit 0. And Indian mathematicians, fi nally, bequeathed humanity the 
place-value notation in base 10 that is now in use throughout the world. 

 It seems a bit unfair to call “Arabic numerals” an invention originally due to the 
 ingenuity of the Indian civilization. Our number notation is called “Arabic” merely 
because the Western world discovered it for the fi rst time through the mathematical 
 writings of the great Persian mathematicians. Many of the modern techniques of numer-
ical calculation derived from the work of Persian scientists. Th e word “algorithm” was 
named aft er a work by one of the them, Mohammed ibn Musa al-Khuwarizmi. His most 
famous book was a treatise for solving linear equations,  Al-jabr w’al muqâbala  ( On 
Reducing and Simplifying ), one of the few books whose publication founded a new 
 science, “algebra.” Yet for all their inventiveness, the discoveries of the Persians could not 
have seen the light without the help of the Indian number notation. 

 A particular homage should be paid to a unique innovation in the Indian notation, 
one that was lacking in all other place-value systems: the selection of ten arbitrary digits 
whose shapes are unrelated to the numerical quantities they represent. At fi rst glance, one 
might think that using arbitrary shapes should be a disadvantage. A series of strokes seem 
to provide a more transparent way of denoting numbers, one that is easier to learn. And 
perhaps this was the implicit logic of the Sumerian, Chinese, and Mayan scientists. 
However, we have seen in the preceding chapter that it is incorrect. Th e human brain 
takes longer to count fi ve objects than to recognize an arbitrary shape and associate it 
with a meaning. Th e peculiar disposition of our perceptual apparatus for quickly retriev-
ing the meaning of an arbitrary shape, which I have dubbed the “comprehension refl ex,” 
is admirably exploited in the Indian-Arabic place-value notation Th is numeration tool, 
with its ten easily discernible digits, tightly fi ts the human visual and cognitive system.     
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   An Exuberant Diversity of Number Languages   

 Nowadays, when people of almost any country write down a number, they adopt the 
same convention and employ the base-ten Arabic notation. Only the shape of digits 
remains slightly variable. Instead of our Arabic digits, some Middle Eastern countries, 
such as Iran, use another set of shapes referred to as “Indian digits.” Even there, however, 
the standard Arabic notation is gaining ground. Its victory has little to do with imperial-
ism or the establishment of commercial norms. If the evolution of written numeration 
converges, it is mainly because place-value coding is the best available notation. So many 
of its characteristics can be praised: its compactness, the few symbols it requires, the ease 
with which it can be learned, the speed with which it can be read or written, the  simplicity 
of the calculation algorithms it supports. All justify its universal adoption. Indeed, it is 
hard to see what new invention could ever improve on it. 

 No such convergence is found for oral numeration. Although the vast majority of 
human languages possess a number syntax based on a combination of sums and products, 
in detail the diversity of numeration systems is striking. First of all, a variety of bases are 
used. In the Queensland district of Australia, some aborigines are still confi ned to base 2. 
Number 1 is “ganar,” 2 is “burla,” 3 “burla-ganar,” and 4 “burla-burla.” In old Sumer, by 
contrast, bases 10, 20, and 60 were concurrently used. Hence number 5,566 was expressed 
as “sàr (3,600) ges-u-es (60  ×  10  ×  3) ges-min (60  ×  2) nismin (20  ×  2) às (6)”, or 3600  +  
60  ×  10  ×  3  +  60  ×  2  +  20  ×  2  +  6 = 5,566. Base 20 also had its adepts: It ruled the Aztec, 
Mayan, and Gaelic languages, and is still in use in Eskimo and Yoruba. Traces of it can still 
be found in French, in which 80 is  quatre-vingt  (four twenties), and in Elizabethan 
English, which oft en counted in scores (twenty). 

 Although base 10 has now taken over most languages, number syntax remains highly 
variable. Th e prize for simplicity goes to Asian languages such as Chinese, whose  grammar 
is a perfect refl ection of decimal structure. In such languages there are only nine names 
for numbers 1 through 9 (yī, èr, sān, sì, wǔ, liù, qī, bā, and jiǔ), to which one should add 
four multipliers 10 (shí), 100 (bǎi), 1,000 (qiān), and 10,000 (wàn). In order to name 
a number, one just reads its decomposition in base 10. Th us 13 is “shí sān” (ten three), 
27 “èr shí qī” (two ten seven), and 92,547 “jiǔ wàn èr qiān wǔ bǎi sì shí qī” (nine myriads 
two thousands fi ve hundreds four tens seven). 

 Th is elegant formalism contrasts sharply with the 29 words needed to express the same 
numbers in English or in French. In these languages, the numbers 11 through 19 and the 
decades from 20 to 90 are denoted by special words (eleven, twelve, twenty, thirty, etc.) 
whose appearance is not predictable from that of other numerals. No need to mention the 
even stranger peculiarities of French, with its awkward words “soixante-dix”  (sixty-ten, 
or 70) and “quatre-vingt-dix” (four-twenty-ten, or 90). French also has confusing elision and 
conjunction rules involving the number 1: one says “vingt- et -un” (twenty-and-one) rather 
than “vingt-un,” yet 22 is “vingt-deux” rather than “vingt- et -deux,” and 81 is  “quatre-vingt-un” 
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and not “quatre-vingt- et -un.” Likewise, 100 is “cent” rather than “un cent.” Another 
 eccentricity is the systematic reversal of decades and units in Germanic languages, where 
432 becomes “vier hundert zwei und dreißig” (four hundred two and thirty). 

 What are the practical consequences of this exuberant diversity of numerical 
languages? Are all languages equivalent? Or, are some number notations better adapted 
to the structure of our brains? Do certain countries, by virtue of their numeration system, 
start out with an advantage in mathematics? Th is is no trivial matter in the current period 
of fi erce international competition, in which numeracy is a key factor to success. As adults, 
we are largely unaware of the complexity of our numeration system. Years of  training have 
tamed us into accepting that 76 should be pronounced “seventy-six” rather than, say, 
“seven ten six” or “sixty-sixteen.” Hence, we can’t objectively compare our  language with 
others anymore. Rigorous psychological experiments are needed to  measure the relative 
effi  cacy of various numeration systems. Surprisingly, these experiments repeatedly 
 demonstrate the inferiority of English or French over Asian languages.     

   The Cost of Speaking English   

 Read the following list aloud: 4, 8, 5, 3, 9, 7, 6. Now close your eyes and try to memorize 
the numbers for twenty seconds before reciting them again. If your native language is 
English, you have about a 50 %  chance of failure. If you are Chinese, however, success is 
almost guaranteed. As a matter of fact, memory span in China soars to about nine digits, 
while it averages only seven in English.   5  Why this discrepancy? Are speakers of Chinese 
more intelligent? Probably not, but their number words happen to be shorter. When we 
try to remember a list of digits, we generally store it using a verbal memory loop (this is 
why it is diffi  cult to memorize numbers whose names sound similar, such as “fi ve” and 
“nine” or “seven” and “eleven”). Th is memory can hold data only for about two seconds, 
forcing us to rehearse the words in order to refresh them. Our memory span is thus 
 determined by how many number words we can repeat in less than two seconds. Th ose of 
us who recite faster have a better memory. 

 Chinese number words are remarkably brief. Most of them can be uttered in less than 
one-quarter of a second (for instance, 4 is “sì” and 7 “qī”). Th eir English equivalents — 
“four,” “seven” — are longer: pronouncing them takes about one-third of a second. Th e 
memory gap between English and Chinese apparently is entirely due to this diff erence in 
length. In languages as diverse as Welsh, Arabic, Chinese, English, and Hebrew, there is a 
reproducible correlation between the time required to pronounce numbers in a given 
language and the memory span of its speakers. In this domain, the prize for effi  cacy goes 

5  For a review of linguistic eff ects on numerical cognition, see Ellis,     1992   
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to the Cantonese dialect of Chinese, whose brevity grants residents of Hong Kong a 
rocketing memory span of about 10 digits. 

 In summary, the “magical number 7,” which is so oft en heralded as a fi xed parameter of 
human memory, is not a universal constant. It is merely the standard value for digit span 
in one special population of  Homo sapiens  on which more than 90 %  of psychological 
studies happen to be focused, the American college undergraduate! Digit span is a 
 culture- and training-dependent value, and cannot be taken to index a fi xed biological 
memory size parameter. Its variations from culture to culture suggest that Asian  numerical 
notations, such as Chinese, are more easily memorized than our Western systems of 
numerals, because they are more compact. 

 If you do not speak any Chinese, there is still hope. Several tricks are available to 
increase your memory for digits. First of all, always memorize numbers using the shortest 
possible sequence of words. A long number such as 83,412 is oft en best recalled by  reciting 
it digit by digit, as with a phone number. Second, try grouping the digits into small blocks 
of two or three. Your working memory will jump to about twelve digits if you group them 
in four blocks of three. Phone numbers in the United States, with their division into a 
three-digit area code and then three groups of three, two, and two digits, as in “503 485 
98 31,” already make use of these stratagems. In France, by contrast, we have the bad habit 
of expressing phone numbers with two-digit numerals. For instance, we read 85 98 31 as 
“eighty-fi ve ninety-eight thirty-one” — probably the most memory-ineffi  cient method 
that one could think of ! 

 A third trick is to bring the number back to familiar ground. Look for increasing or 
decreasing series of digits, familiar dates, zip codes, or any other information that you 
already know. If you can recode the number using only a few familiar items, you should 
easily remember them. Aft er about 250 hours of training under the guidance of psychol-
ogists William Chase and K. Anders Ericsson, an American student was able to extend 
his memory span up to an extraordinary eighty digits using this recoding method.   6  He 
was an excellent long-distance runner and had compiled a large mental database of record 
running times. He therefore stored the eighty digits to be remembered, broken down 
into groups of three or four, as a series of record times in long-term memory! 

 Using these guidelines, you should have little diffi  culty memorizing phone numbers. 
But unless you are Chinese, you are still in for a hard time. Number names also play a 
critical role in counting and calculating, and here again bad marks can be attributed to 
languages with the longest number names. For instance, it takes a Welsh pupil one second 
and a half more than an English pupil, on average, to compute 134  +  88. For equal age 
and education, this diff erence seems solely due to the time taken to pronounce the prob-
lem and the intermediate results: Welsh numerals happen to be considerably longer than 
the English. English is certainly not the optimum, though, because several experiments 

6  Chase & Ericsson,     1981   
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have shown that Japanese and Chinese children calculate much faster than their American 
peers. 

 It can be diffi  cult, of course, to tease apart the eff ects of language from those of 
 education, number of hours at school, parental pressure, and so on (in fact, good  evidence 
exists that the organization of Japanese mathematics lessons is in many ways superior to 
that of the standard U.S. school system). However, many such variables can be left  aside 
by studying language acquisition in children who have not yet been to school. All  children 
are confronted with the challenging task of discovering, by themselves, the lexicon and 
grammar of their maternal language. How do they ever acquire the rules of French 
or German by mere exposure to phrases such as “soixante-quinze” or “fünf und sießig”? 
And how can a French child discover the meanings of “cent deux” and “deux cent”? Even 
if the child is a born linguist and if, as postulated by Noam Chomsky and Steven Pinker, 
the brain comes equipped with a language organ that makes learning the most abstruse 
 linguistic rules a matter of instinct, the induction of number formation rules is by no 
means instantaneous, and varies from language to language. 

 In Chinese, for instance, once you have learned the number words up to ten, the others 
are easily generated by a simple rule (11 = ten one, 12 = ten two  … , 20 = two ten, 21 = two 
ten one, etc.). In contrast, American children have to learn by rote, not just the numerals 
from 1 to 10, but also those from 11 to 19, and also the tens numbers from 20 to 90. Th ey 
must also discover for themselves the multiple rules of number syntax that specify, for 
instance, that “twenty forty” or “thirty eleven” are invalid sequences of number words. 

 In a fascinating experiment, Kevin Miller and his colleagues asked matched groups 
of American and Chinese children to recite the counting sequence.   7  Startlingly, the 
 linguistic diff erence caused American children to lag as much as one year behind their 
Chinese peers. When they were four, Chinese children already counted up to 40 on 
 average. At the same age, American children painfully counted up to 15. It took them one 
year to catch up and reach 40 or 50. Th ey were not just globally slower than the Chinese; 
up to the number 12, both groups stood on an equal footing. But when they reached the 
special numbers “13” and “14,” American children suddenly stumbled, while the Chinese, 
helped by the unfailing regularity of the language, moved right along with much less 
trouble (Figure   4.3  ).  

 Th e Miller experiment shows beyond a doubt that the opacity of a numeration system 
takes an important toll on language acquisition. Another proof comes from the analysis 
of counting errors. Haven’t we all heard American children recite “twenty-eight, twenty-
nine, twenty-ten, twenty-eleven,” and so on? Such grammatical errors, telltale signs of a 
poor induction of the rules of number syntax, are unheard of in Asian countries.   8  

7  Miller, Smith, Zhu, & Zhang,     1995   
8  Fuson,     1988   
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 Th e infl uence of numeration systems carries through into subsequent school years. Th e 
organization of spoken Chinese numerals directly parallels the structure of written 
Arabic numerals. Hence, Chinese children experience much less diffi  culty than their 
American counterparts in learning the principles of place-value notation in base ten.   9  
When asked to form number 25 using some unit cubes and some bars of 10, Chinese 
schoolboys readily select two bars of 10 and fi ve units, suggesting that they understand 
base ten. At a matched age, American children behave diff erently. Most of them labori-
ously count twenty-fi ve units, thus failing to take advantage of the shortcut provided by 
the groups of 10. Worse yet, if one provides them with a bar comprising twenty units, 
they use it more frequently than two bars of ten. Th us they seem to attend to the surface 
form of the word “twenty-fi ve,” while the Chinese already master their deeper base-10 
 structure. Base 10 is a transparent concept in Asian languages, but is a real headache for 
Western children. 

 Th ese experimental fi ndings impose a strong conclusion: Western numeration systems 
are inferior to Asian languages in many respects — they are harder to keep in short-term 
memory, slow down calculation, and make the acquisition of counting and of base ten 
more diffi  cult. Cultural selection should long have eliminated constructions as absurd as 
the French “quatre-vingt-dix-sept.” Unfortunately, the normalization eff orts of our 
schools and academies have put a stop to the natural evolution of languages. If children 

9  Miller & Stigler,     1987   
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     figure 4 .3.  Kevin Miller and his colleagues asked American and Chinese children to recite 
numbers as far as they could. At a matched age, Chinese children could count much farther than 
their American counterparts.   
 (Adapted from Miller et al.   1995   by permission of the publisher; copyright  ©  1995 by Cambridge University Press.)    
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could vote, they would probably favor a widespread reform of numerical notations and 
the adoption of the Chinese model. Would such a revision be less utopian than the 
ill-fated spelling reforms? We have at least one historical example of a successful major 
linguistic reform. At the beginning of the twentieth century, the Welsh willingly relin-
quished their old numeration system, which was more complex even than present-day 
French, and selected instead a simplifi ed notation quite similar to Chinese. Unfortunately, 
Welsh changed only to fall prey to another error: Th e new Welsh number words, while 
grammatically regular and thus easy to learn, are so long that memory suff ers! Psychological 
experiments would probably dictate the adoption of a well-tested numeration system 
such as Mandarin Chinese, but national interests make this a rather distant and unlikely 
prospect.     

   Learning to Label Quantities   

 Acquiring a number lexicon and syntax is not everything. It is not particularly useful 
to know that “two hundred and thirty” is a valid English phrase while “two thirty and 
hundred” is not. Above all, children must learn what these numerals mean. Th e power of 
numeration systems stems from their ability to establish precise links between linguistic 
symbols and the quantities they express. A child may well recite numerals up to 100, but 
is only parroting unless he or she also knows what magnitudes they stand for. How, then, 
do children ever learn the meaning of “wan”, “siks” or “eit”? 

 A fi rst basic problem confronting a child is to recognize that these words refer to 
number rather than to color, size, shape, or any other dimension of the environment. 
Consider the phrases “the three sheep” and “the big sheep.” A child who hears them for 
the fi rst time, and who does not know the meaning of the words “three” and “big,” has no 
way of telling that “big” refers to the physical size of each sheep, while “three” refers to the 
cardinal of the set of sheep. 

 Experiments show that by two and a half years of age, American children already 
 diff erentiate number words from other adjectives.   10  When given a choice between a 
 picture of a single red sheep and another showing three blue sheep, children readily point 
to the fi rst when they are told, “Show me the red sheep,” and to the second when told, 
“Show me the three sheep.” By that age, children already know that “three” applies to a 
collection of items rather than to a single item. At the same age, children also order number 
words and other adjectives correctly. Th ey say “three little sheep,” but never “little three 
sheep.” Early on, then, children know that number words belong to a special  category 
distinct from other words. 

10  Wynn,     1990  ; Wynn,     1992b   
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 How did they fi nd this out? Probably by exploiting all the available cues, be they 
 grammatical or semantic. Grammar alone may be of precious help. Suppose that a mother 
tells her baby, “Look, Charlie, three little doggies.” Baby Charlie may then infer that the 
word “three” is a special kind of adjective because other adjectives such as “nice,” are 
always said with an article — “the nice little doggies.” Th e fact that the word “three” does 
not require an article may suggest that “three” applies to the entire collection of little 
 doggies, and that therefore it may be a number, or a quantifi er like “some” or “many.” 

 Of course, such reasoning is of little help for determining the precise quantity to which 
the word “three” refers. Indeed, it appears that for a whole year, children realize that the 
word “three” is a number without knowing the precise value it refers to. When they are 
ordered, “Give me three toys,” most of them simply grasp a pile without caring about the 
exact number. If one lets them choose between a group of two and a group of three toys, 
they also respond at random — although they never select a card showing a single object. 
Th ey know how to recite number words, and they sense that these words have to do with 
quantity, but they ignore their exact meaning.   11  

 Semantic cues are probably critical in order to overcome this stage and to determine 
the precise quantity that is meant by the word “three.” With a little luck, Baby Charlie 
will see the three little doggies his mom is talking about. His perceptual system, whose 
sophistication we have discussed in Chapter 2, may then analyze the scene and identify 
the presence of several animals, of a small size, noisy, moving, and numbering about three. 
(By this I do not mean, of course, that Charlie already knows that the word “three” applies 
to this numerosity; I only mean that Charlie’s internal nonverbal accumulator has reached 
the state of fullness that is typical of sets of three items.) 

 In essence, all Charlie has to do, then, is to correlate these preverbal representations 
with the words he hears. Aft er a few weeks or months, he should realize that the word 
“three” is not always uttered in the presence of small things, of animals, of movement, 
or of noise; but that it is very oft en mentioned when his mental accumulator is in a 
 particular state that accompanies the presence of three items. Th us, correlations between 
number words and his prior nonverbal numerical representations can help him deter-
mine that “three” means 3. 

 Th is correlation process can be accelerated by the “principle of contrast,” which 
 stipulates that words that sound diff erent have diff erent meanings. If Charlie already 
knows the meaning of the words “doggie” and “small,” the principle of contrast guaran-
tees him that the unknown word “three” cannot refer to the size or the identity of the 
animals. Narrowing down the set of hypotheses enables him to fi nd out even faster that 
this word refers to numerosity 3.     

11  Wynn,     1990  ; Wynn,     1992b  ; Sarnecka & Carey,     2008   
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   Round Numbers, Sharp Numbers   

 Once children have acquired the exact meaning of number words, they still have to grasp 
some of the conventions governing their use in language. One of them is the distinction 
between round numbers and sharp numbers. Let me introduce it with a joke: 

 At the museum of natural history, a visitor asks the curator, “How old is this dino-
saur over here?” “Seventy million and thirty-seven years” is the answer. As the visi-
tor marvels at the accuracy of the dating, the curator explains: “I’ve been working 
here for 37 years, you know, and when I arrived I was told that it was 70 million 
years old”!   

 Lewis Carroll, well-known for his ingenious word games based on logic and mathe-
matics, oft en spiced his stories with “numerical non-sense.” Here is an example from his 
little-known book,  Sylvie and Bruno Concluded : 

 “Don’t interrupt,” Bruno said as we came in. “I’m counting the Pigs in the fi eld!” 
 “How many are there?” I enquired. 
 “About a thousand and four,” said Bruno. 
 “You mean ‘about a thousand,’” Sylvie corrected him. “Th ere’s no good saying 

‘and four’: you ca’n’t be sure about the four!” 
 “And you’re as wrong as ever!” Bruno exclaimed triumphantly. “It’s just the four 

I can be sure about; ‘cause they’re here, grubbling under the window! It is the 
 thousand I isn’t pruffi  ckly sure about!”   

 Why do these exchanges sound eccentric? Because they violate an implicit and  universal 
principle governing the use of numerals. Th e principle stipulates that certain numerals, 
called “round numbers,” can refer to an approximate quantity, while all other numerals 
necessarily have a sharp and precise meaning. When one states that a dinosaur is 70  million 
years old, this value is implicitly understood to within 10 million years. Th e rule is that a 
number’s accuracy is given by its last non-zero digit starting from the right. If I maintain 
that the population of Mexico City is 39,000,000, I mean that this number is correct to 
within a million, whereas if I give you a value of 39,452,000 inhabitants, I implicitly admit 
that it is correct to give or take a thousand. 

 Th is convention sometimes leads to paradoxical situations. If a precise quantity  happens 
to fall exactly on a round number, just asserting it is not suffi  cient. One must supplement 
it with an adverb or locution that makes its accuracy explicit — for example, “Today, Mexico 
has  exactly  39 million inhabitants.” For the same reason, the sentence “nineteen is about 
20” is acceptable, while “twenty is about 19” isn’t. Th e phrase “about 19” is a contradiction 
in terms, for why use a sharp number such as 19 if one wants to state an estimation? 
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 All the languages of the world seem to have selected a set of round numbers. Why this 
universality? Probably because all humans share the same mental apparatus and are, 
therefore, all confronted with the diffi  culty of conceptualizing large quantities. Th e larger 
a number, the less accurate is our mental representation of it. Language, if it wants to 
be a faithful vehicle for thought, must incorporate devices that express this increasing 
uncertainty. Round numbers are such a device. Conventionally, they refer to approximate 
quantities. Th e sentence “Th ere are twenty students in this room” remains true even if 
there are 18 or 22 students because the word “twenty” can refer to an extended region of 
the number line. Th is is also why speakers of French fi nd it so natural that “fi ft een days” 
means “two weeks,” although the exact number should be 14. 

 Approximation is so important to our mental life that many other linguistic mecha-
nisms are available to express it. All languages possess a rich vocabulary of words for 
expressing various degrees of numerical uncertainty — about, around, circa, almost, 
roughly, approximately, more or less, nearly, barely, and so on. Most languages have also 
adopted an interesting construction in which two juxtaposed numbers, oft en linked by 
the conjunction “or,” express a confi dence interval: two or three books, fi ve or ten people, 
a boy aged 12 or 15 years, 300 or 350 dollars. Th is construction allows us to communicate 
not just an approximate quantity, but also the degree of accuracy that should be granted 
to it. Th us, the same central tendency can be expressed with increasing uncertainty by 
saying 10 or 11, 10 or 12, 10 or 15, or 10 or 20. 

 A linguistic analysis by Th ijs Pollmann and Carel Jansen shows that two-number 
 constructions follow certain implicit rules.   12  Not all intervals are equally acceptable. At 
least one of the numbers must be round: One can say “twenty or twenty-fi ve dollars” but 
not “twenty-one or twenty-six dollars.” Th e other number must be of a similar order of 
magnitude: “Ten or one thousand dollars” sounds very strange indeed. Another Lewis 
Carroll quote illustrates this point: 

 “How far have you come, dear?” the young lady persisted. 
 Sylvie looked puzzled. “A mile or two, I think,” she said doubtfully. 
 “A mile or three,” said Bruno. 
 “You should not say ‘a mile or three,’” Sylvie corrected him. 
 Th e young lady nodded approval. “Sylvie’s quite right. It isn’t usual to say ‘a mile 

or three.” 
 “It would be usual — if we said it oft en enough,” said Bruno.   

 Bruno is wrong — “a mile or three” would never sound right, because it violates the basic 
rules of the two-number construction. Th ese rules are understandable if one  considers 
which representations we intend to communicate. Th ese representations are fuzzy  intervals 

12  Pollmann & Jansen,     1996   
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on a mental number line. When we say “twenty, twenty-fi ve dollars,” we actually mean “a 
certain fuzzy state of my mental accumulator, somewhere around 20 and with a variance 
of about 5.” Neither the interval from 21 to 26, nor that from 10 to 1,000, or from 1 to 3, 
are plausible states of the accumulator, because the former is too accurate while the latter 
two are too imprecise.     

   Why Are Some Numerals More Frequent Than Others?   

 Would you like to try a bet? Open a book at random and note the fi rst digit that you 
encounter. If this digit is either 4, 5, 6, 7, 8, or 9, you win ten dollars. If it is 1, 2, or 3, I win 
this amount. Most people are ready to take this bet, because they believe that the odds are 
6:3 for them to win. And yet the bet is a loser. Believe it or not, the digits 1, 2, and 3 are 
about twice as likely to appear in print than all other digits combined!   13  

 Th is is a strongly counterintuitive fi nding, because the nine digits seem equivalent and 
interchangeable. But we forget that numbers that appear in print are not drawn from a 
random number generator. Each of them represents an attempt to transmit a piece of 
numerical information from one human brain to another. Hence, how frequently each 
numeral is used is determined in part by how easily our brain can represent the corre-
sponding quantity. Th e decreasing precision with which numbers are mentally repre-
sented infl uences not just the perception, but also the production of numerals. 

 Jacques Mehler and I have systematically looked for number words in tables of word 
frequency.   14  Such tables tally up how oft en a certain word, say “fi ve,” appears in written or 
spoken texts. Frequency tables are available in a great variety of languages, from French to 
Japanese, English, Dutch, Catalan, Spanish, and even Kannada, a Dravidian language 
spoken in Sri Lanka and southern India. In all of these languages, despite enormous 
 cultural, linguistic, and geographic diversity, we have observed the same results: Th e 
 frequency of numerals decreases systematically with number size. 

 In French, for instance, the word “un” appears once every 70 words or so, the word “deux” 
once every 600 words, the word “trois” once every 1,700 words, and so on. Frequency decreases 
from 1 to 9, but also from 11 to 19, and for tens numbers from 10 to 90. A similar decrease is 
observed for written or spoken numerals, for Arabic numerals, and even for ordinals from 
“fi rst” to “ninth.” It is accompanied by a few deviations that are also universal: the very low 
frequency of the word “zero,” and the elevated peaks for 10, 12, 15, 20, 50, and 100 (Figure 
  4.4  ). Remarkably, such cross-linguistic regularities  persist in the face of pronounced diff er-
ences in the way numbers are expressed, such as the absence of teen words in Japanese, the 

13  Benford,     1938  ; Dehaene & Mehler,     1992   
14  Dehaene & Mehler,     1992   
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inversion of tens and units in Dutch, or the cryptic base 20 of the French words 70, 80, 
and 90. 

  I contend that, once again, these linguistic regularities refl ect the way our brain 
 represents numerical quantities. Yet, before jumping to this conclusion, several  alternative 
explanations have to be examined. Ambiguity may be a possible source of this fi nding. In 
many languages the word for “one” is indistinguishable from the indefi nite article “a.” 
Th is probably contributes to the elevated frequency of the word “un” in French — but 
obviously not in English, where “one” can only be a number word. Ambiguity is also not 
a problem beyond “two,” and yet frequency decreases sharply beyond this point. 

 Another contributing factor is our propensity for counting, which implies that many 
objects in our environment are numbered starting at 1. In any city, more houses bear 
number 1 than number 100, merely because all streets have a number 1, but some don’t 
reach number 100. Again, this eff ect certainly contributes to the elevated frequency of 
small numerals, but quick calculation shows that by itself, it cannot account for the 
 exponential drop of number frequency even in the interval from 1 to 9. 

 Purely mathematical explanations of the eff ect should also be given some 
consideration. Few people know the following  very  counterintuitive mathematical law: 
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    f igure 4 .4 .  In all languages, the frequency with which number words are printed or uttered 
decreases with magnitude, aside from local increases for the round numbers 10,12, 15, 20, 50, and 
100. For instance, we read or hear the word two about ten times more oft en than the word nine.   
 (Aft er Dehaene and Mehler   1992  .)    
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If you draw several random numbers from essentially any smooth distribution, the 
 numbers will start more oft en with 1 than with 9. Th is singular phenomenon is called 
Benford’s law.   15  Frank Benford, an American physicist, made a curious observation: At 
his university’s library, the fi rst pages of the tables of logarithms were more worn out than 
the last. Now, surely people did not read tables of logarithms like a bad novel, stopping 
halfway through. Why did his colleagues have to consult the beginning of the table more 
oft en than the end? Could it be that small numbers were used more oft en than large 
ones? To his own bewilderment, Benford discovered that numbers of all origins — the 
surface of American lakes, his colleagues’ street addresses, the square root of integers, and 
so on — were about six times more likely to start with digit 1 than with digit 9. About 31 %  
of numbers started with 1, 19 %  with 2, 12 %  with 3, and the percentages decrease with 
each successive number. Th e probability that a number started with digit  n  was very accu-
rately predicted by the formula  P ( n ) = log 10 ( n   +  l)  −  log 10 ( n ). 

 Th e exact origin of this law is still poorly understood, but one thing is certain: Th is is a 
purely formal law, due solely to the grammatical structure of our numerical notations. It 
has nothing to do with psychology: A computer reproduces it when it prints random 
numbers in Arabic notation, or even spells them out. Th e only constraint seems to be that 
the numbers be drawn from a suffi  ciently smooth distribution spread over several orders 
of magnitude — for instance, from 1 to 10,000. 

 Benford’s law certainly contributes to amplifying the frequency of small numbers 
in natural language. Yet, its explanatory power is limited. Th e law applies only to the 
 frequency of the left most digit in a multidigit numeral, and so it does not have any 
 infl uence on how frequently we refer to the quantities 1 through 9. But the measurements 
that Jacques Mehler and I have performed show, quite straightforwardly, that the human 
brain fi nds it more important to talk about quantity 1 than about quantity 9. Contrary 
to Benford’s law, this fact has nothing to do with the production of large multidigit 
numerals. 

 If it is not the grammar of numerical notations that drives us to produce small 
numbers, could it be Mother Nature herself ? Aren’t small collections of objects excep-
tionally  frequent in our environment? To take just one example, discussing the number of 
one’s children nowadays usually only requires number words below 3 or 4! Yet, as a 
 general explanation of the decreasing frequency of numerals, this account is misguided. 
Philosophers Gottlob Frege and W.V.O. Quine have long demonstrated that, objectively 
speaking, small numerosities are no more frequent than larger ones in our environment.   16  
In any situation, a potential infi nity of things might be enumerated. Why do we prefer to 
speak of  one  deck of cards rather than 52 cards? Th e notion that the world is mostly made 

15  Benford,     1938   
16  Frege,     1950  ; Quine,     1960   
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up of small sets is an illusion imposed on us by our perceptual and cognitive systems. 
Nature isn’t made that way, no matter what our brain may think. 

 To prove this point without resorting to philosophical arguments, consider the 
 distribution of words with a numerical prefi x, such as “ bicycle ” or “ triangle .” Just as the 
word “two” is more frequent than “three,” there are more words that begin with the prefi x 
 bi  (or  di  or  duo ) that with  tri.  Crucially, this remains true even in domains where there is 
arguably little or no environmental bias for small numbers. Consider time. My English 
dictionary lists fourteen temporal words with the prefi x  bi  or  di  (from “biannual” to 
“diestrual”), fi ve words with the prefi x  tri  (from “triennial” to “triweekly”), fi ve words with 
a prefi x expressing fourness, and only two expressing fi veness (the uncommon words 
“quinquennial” and “quinquennium”). Hence, increasingly fewer words express increas-
ingly large numbers. Could this be due to an environmental bias? In the natural world, 
events do not recur particularly oft en with a two-month period. No, the culprit is our 
brain, which pays more attention to events when they concern small or round numbers. 

 If a lexical bias for small numbers can emerge in the absence of any environmental bias, 
conversely, there are situations in which an objective bias fails to be incorporated in the 
lexicon. Many more vehicles have four wheels than two, yet we have a number-prefi xed 
word for the latter (bicycle) but not for the former (quadricycle?). Numerical regularities 
in the world seem to be lexicalized only if they concern a small enough numerosity. 
For instance, we have number-prefi xed words for plants with three leaves (trifoliate, 
 trifolium; trèfl e in French), but not for the many other plants or fl owers with a fi xed but 
large number of leaves or petals. Words like “octopus” that explicitly refer to a precise 
large numerosity are rare. As a fi nal example,  Scolopendra morsitans,  an arthropod with 
twenty-one body segments and forty-two legs, is commonly called a centipede (one 
 hundred feet) in English and a “mille-pattes” (thousand-legs) in French! Clearly, we pay 
attention to the numerical regularities of nature only inasmuch as they fi t in with our 
cognitive apparatus, which is biased toward small or round numerosities. 

 Human language is deeply infl uenced by a nonverbal representation of numbers that 
we share with animals and infants. I believe that this alone explains the universal decrease 
of word frequency with number size. We express small numbers much more oft en than 
large ones because our mental number line represents numbers with decreasing accuracy. 
Th e larger a quantity is, the fuzzier our mental representation of it, and the less oft en we 
feel the need to express that precise quantity. 

 Round numbers are exceptions, because they can refer to an entire range of magni-
tudes. Th is is why the frequency of the words “ten,” “twelve,” “fi ft een,” “twenty,” and 
 “hundred” is elevated compared to their neighbors. All in all, both the global decrease and 
the local peaks in number frequency can be explained by a labeling of the internal number 
line (Figure   4.5  ). As children acquire language, they learn to put a name on each range of 
magnitudes. Th ey discover that the word “two” applies to a percept that they know from 
birth; that “nine” pertains only to the precise quantity 9, which is diffi  cult to represent 
exactly; and that people oft en use the word “ten” to mean any quantity  somewhere 
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between 5 and 15. In turn, they therefore utter the words “two” and “ten” more oft en than 
“nine,” hence perpetuating the lawful distribution of number frequencies. 

 One last detail: Our study showed that, in all Western languages, the frequency of 
number 13 was lower than that of 12 or 14. Th is seems the result of the “Devil’s dozen” 
superstition, which assigns a malefi cent power to number 13 and is known to such a 
degree that many American skyscrapers have no 13th fl oor. In India, where this supersti-
tion is unknown, the frequency of the number 13 does not show any notable drop. Th e 
frequency of numerals appears to faithfully refl ect their importance in our mental lives, 
even in their most trivial details.     

   Cerebral Constraints on Cultural Evolution   

 What does the analysis of numerical languages reveal about the relationship between 
mathematics and the brain? It shows that numeration systems have evolved both  through  
the brain and  for  the brain. Th rough the brain, because the history of number notations 
is clearly limited by the inventiveness of the human brain and its ability to fathom new 
principles of numeration. For the brain, because numerical inventions have been trans-
mitted from generation to generation only when they closely matched the limits of 
human perception and memory, and therefore increased humankind’s computational 
potential. 

 Th e history of numerals is obviously not driven merely by random factors. It exhibits 
discernible regularities that transcend the fortunes of history. Across borders and oceans, 
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     Figure 4 .5.  Th e decreasing frequency of numerals is due to the organization of our mental 
representation of quantities. Th e larger a number, the less accurate our mental representation of it; 
hence, the less oft en we need to use the corresponding word. As for round numbers like 10, 12, 15 or 
20, they are uttered more frequently than others because they can refer to a greater range of 
quantities.   
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men and women of all colors, cultures, and religions have regularly reinvented the same 
notation devices. Th e place-value principle was rediscovered, with an interval of about 
three thousand years, in the Middle East, on the American continent, in China, and in 
India. In all languages, frequency decreases with number size. In all languages, too, round 
numbers are contrasted with sharp numbers. Th e explanation of these striking cross-
cultural parallels does not reside in dubious exchanges between remote civilizations. 
Rather, they discovered similar solutions because they were confronted with the same 
problems and have been endowed with the same brain for solving them. 

 Let me sketch a summary of humankind’s slow march toward greater numerical 
 effi  cacy — a summary that must remain highly schematic, given that history is rarely linear 
and that some cultures may have skipped several steps.  

   1.   Evolution of Oral Numeration   
   Starting point:  Th e mental representation of numerical quantities that we 

share with animals  
   Problem:  How to communicate these quantities through spoken language?  
   Solution:  Let the words “one,” “two,” and “three” refer directly to the subitized 

numerosities 1, 2, and 3.  
   Problem:  How to refer to numbers beyond 3?  
   Solution:  Impose a one-to-one correspondence with body parts (12 =  pointing 

to the left  breast).  
   Problem:  How to count when the hands are busy?  
   Solution:  Turn the names of body parts into number names (12 = “left  

breast”).  
   Problem:  Th ere is only a limited set of body parts, compared with an infi nity 

of numbers.  
   Solution:  Invent number syntax (12 = “two hands and two fi ngers”).  
   Problem:  How to refer to approximate quantities?  
   Solution:  Select a set of “round numbers” and invent the two-word 

construction (e.g., ten or twelve people).  
   2.   Evolution of Written Numeration   

   Problem:  How to keep a permanent trace of numerosities?  
   Solution:  One-to-one correspondence. Engrave notches on bone, wood, and 

so on (7 = |||||||).  
   Problem : Th is representation is hard to read.  
   Solution : Regroup the notches (7 = ||||  ||). Replace some of these groups with 

a single symbol (7 = VII).  
   Problem : Large numbers still require many symbols (e.g., 37 = XXXVII).  
   Impasse  1: Add even more symbols (e.g., L instead of XXXXX).  
   Impasse  2: Use distinct symbols to denote units, tens, and hundreds 

(345 = TME).  
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   Solution : Denote numbers using a combination of multiplication and addi-
tion (345 = 3 hundreds, 4 tens, and 5).  

   Problem : Th is notation still suff ers from the repetition of the words “hun-
dreds” and “tens.”  

   Solution : Drop these words, resulting in a shorter notation ancestral to 
modern place-value notation (437 = 4 3 7).  

   Problem : Th is notation is ambiguous when units of a certain rank are lacking 
(407, denoted as 4 7, is easily confused with 47).  

   Solution : Invent a placeholder, the symbol zero.     

 Th e cultural evolution of numeration systems testifi es to the inventiveness of 
humanity. Across centuries, ingenious notation devices have been invented and  constantly 
refi ned, the better to fi t the human mind and improve the usability of numbers. Th e 
 history of number notations is hard to reconcile with the Platonist conception of 
numbers as ideal concepts that transcend humankind, and give us access to mathematical 
truths independent of the human mind. Contrary to what the Platonist mathematician 
Alain Connes has written,   17  mathematical objects are not “untainted by cultural 
associations” — or at the very least this is not true of numbers, one of the most central of 
all mathematical objects. What has driven the evolution of numeration systems is 
 obviously not an “abstract concept” of number, nor an ethereal conception of mathe-
matics. If this were the case, as generations of mathematicians have noted, binary 
notation would have been a much more rational choice than our good old base 10. At 
least a prime number such as 7 or 11, or perhaps a number with many divisors, such as 12, 
should have been selected as the base of numeration. But more prosaic criteria governed 
our ancestors’ choices. Th e preponderance of base 10 is due to the contingent fact that we 
have ten fi ngers; the bounds of our subitization procedure account for the structure of 
Roman numerals; and the sharp limits of our short-term memory explain the constant 
drive toward a compact notation for large numbers. Let us leave the last word to the 
 philosopher Karl Popper: “Th e natural numbers are the work of men, the product of 
human language and of human thought.”                                                                

17  Changeux & Connes,     1995   



 ambition, distraction, uglification, and derision. Th ese are the mischievous 
names the Reverend Charles Lutwidge Dodgson, a mathematics professor better known 
to us as Lewis Carroll, gave to the four arithmetical operations. Obviously, Carroll did 
not  cherish too many illusions about his pupils’ calculation abilities. And perhaps he was 
right. While children easily acquire number syntax, learning to calculate can be an ordeal. 
Children, and even adults, oft en err in the most elementary of calculations. Who can say 
that they never get 7  ×  9 or 8  ×  7 wrong? How many of us can mentally compute 113 – 37 
or 100 – 24 in less than two seconds? Calculation errors are so widespread that far from 
stigmatizing ignorance, they attract sympathy when they are admitted publicly (“I’ve 
always been  hopeless  at math!”). Many of us can almost identify with Alice’s plight as she 
attempts to calculate while traveling through Wonderland: “Let me see: four times fi ve is 
twelve, and four times six is thirteen, and four times seven is — oh dear! I shall never get 
to twenty at that rate!” 

 Why is mental calculation so diffi  cult? In this chapter, we examine the calculation 
algorithms of the human brain. Although our knowledge of this issue is still far from 
complete, one thing is certain: Mental arithmetic poses serious problems for the human 
brain. Nothing ever prepared it for the task of memorizing dozens of intermingled 
 multiplication facts, or of fl awlessly executing the ten or fi ft een steps of a two-digit 
 subtraction. An innate sense of approximate numerical quantities may well be embedded 
in our genes; but when faced with exact symbolic calculation, we lack proper resources. 
Our brain has to tinker with alternate circuits in order to make up for the lack of a  cerebral 
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 four and four make eight 

 eight and eight make sixteen 
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organ specifi cally designed for calculation. Th is tinkering takes a heavy toll. Loss of speed, 
increased concentration, and frequent errors illuminate the shakiness of the mechanisms 
that our brain contrives in order to “incorporate” arithmetic.     

   Counting: The ABC of Calculation   

 In the fi rst six or seven years of life, a profusion of calculation algorithms see the light.   1  
Young children reinvent arithmetic. Spontaneously, or by imitating their peers, they 
imagine new strategies for calculation. Th ey also learn to select the best strategy for each 
problem. Th e majority of their strategies are based on counting, with or without words, 
with or without fi ngers. Children oft en discover them by themselves, even before they are 
taught to calculate. 

 Does this imply that counting is an innate competence of the human brain? Rochel 
Gelman and Randy Gallistel, from the psychology department of UCLA, have 
 championed this point of view.   2  According to them, children are endowed with unlearned 
principles of counting. Th ey do not have to be taught that each object must be counted 
once and only once, that the number words must be recited in fi xed order, or that the last 
number represents the cardinal of the whole set. Gelman and Gallistel maintain that such 
counting knowledge is innate, and even precedes and guides the acquisition of the 
number lexicon. 

 Few theories have been as harshly debated as that of Gelman and Gallistel’s. For many 
psychologists and educators, counting is a typical example of learning by imitation. 
Initially, it is just a rote behavior devoid of meaning. According to Karen Fuson, children 
initially recite “onetwothreefourfi ve” as an uninterrupted chain.   3  Only later do they learn 
to segment this sequence into words, to extend it to larger numerals, and to apply it to 
concrete situations. Th ey progressively infer what counting is about by observing other 
people count. Initially, according to Fuson, counting is just parroting. 

 Th e truth, which is being progressively unveiled aft er years of controversy and tens of 
experiments, seems to stand somewhere between the “all innate” and the “all acquired” 
extremes. Some aspects of counting are mastered quite precociously, while others seem to 
be acquired by learning and imitation. 

 As an example of an amazingly precocious competence for counting, consider the 
 following experiment by Karen Wynn.   4  At two and a half, children have probably not 
had many occasions to see someone count sounds or actions. Yet, if one asks them to 
watch a  Sesame Street  videotape and count how many times Big Bird jumps, they easily 

1  Gelman & Gallistel,     1978  ; Fuson,     1982  ,   1988   
2  Gelman & Gallistel,     1978   
3  Fuson,     1982  ,   1988   
4  Wynn,     1990   
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lend themselves to this task. Likewise, they can count sounds as diverse as trumpeting, a 
bell, a splash, and a computer beep that have been recorded on tape, and whose source is 
not visible. So children seem to understand, quite early on and without explicit teaching, 
that counting is an abstract procedure that applies to all kinds of visual and auditory 
objects. 

 Here is another precocious competence: As early as three and a half years of age, 
 children know that the order in which one recites numerals is crucial, while the order in 
which one points toward objects is irrelevant as long as each object is counted once and 
only once. In an innovative series of experiments, Gelman and her colleagues presented 
children with situations that violate the usual conventions of counting.   5  Th e results 
 indicate that three-and-a-half-year-olds can identify and correct rather subtle counting 
errors. Th ey never fail to notice when someone recites numerals out of order, forgets to 
count an item, or counts the same item twice. Most important, they maintain a clear 
distinction between such patent errors and other correct, though unusual, ways of 
 counting. For instance, they fi nd it perfectly acceptable to start counting at the middle of 
a row of objects, or to count every other object fi rst, as long as one eventually counts all 
items once and only once. Better yet, they are willing to start counting at any point in a 
row, and they can even devise strategies to systematically reach a pre-designated object in 
third position. 

 What these experiments show is that by their fourth year, children have mastered the 
basics of how to count. Th ey are not content with slavishly imitating the behavior of 
others: Th ey generalize counting to novel situations. Th e origins of this precocious 
 competence remain poorly understood. From where does a child draw the idea of reciting 
words in a perfect one-to-one correspondence with the objects to be counted? Like 
Gelman and Gallistel, I believe that this aptitude belongs to the genetic endowment of 
the human species. Reciting words in a fi xed order is probably a natural outcome of the 
human faculty for language. As to the principle of one-to-one correspondence, it is 
 actually widespread in the animal kingdom. When a rat forages through a maze, it tries 
to visit each arm once and only once, a rational behavior that minimizes exploration time. 
When we look for a given object in a visual scene, our attention is oriented in turn toward 
each object. Th e counting algorithm stands at the intersection of these two elementary 
abilities of the human brain — word recitation and exhaustive search. Th at is why our 
children easily dominate it. 

 Th ough children rapidly grasp the  how to  of counting, however, they seem to initially 
ignore the  why .   6  As adults, we know what counting is for. To us, counting is a tool that 
serves a precise goal: enumerating a set of items. We also know that what really matters is 

5  Gelman & Gallistel,     1978  ; Gelman & Meck,     1983  ,   1986   
6  Fuson,     1988  ; Greeno, Riley & Gelman,     1984  ; Le Corre, Van de Walle, Brannon, & Carey,     2006  ; Le Corre & 

Carey,     2007  ; Sarnecka & Carey,     2008   
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the fi nal numeral, which represents the cardinal of the entire set. Do young children have 
this knowledge? Or do they just view counting as an entertaining game in which one 
recites funny words while pointing to various objects in turn? 

 According to Karen Wynn, children do not appreciate the meaning of counting until 
the end of their fourth year.   7  Let your three-year-old daughter count up her toys and then 
ask her, “How many toys do you have?” Chances are, she will give a random number, not 
necessarily the one she just reached. Like all children of this age, she does not seem to 
relate the “how many” question to her previous counting. She may even count everything 
up again, as if the act of counting itself was an adequate answer to a “how many” question. 
Likewise, ask a two-and-a-half-year-old boy to give you three toys. Most likely he will 
pick a handful at random, even if he can already count up to fi ve or ten. At that age, 
although the mechanisms of counting have largely fallen into place, children do not seem 
to understand what counting is for, and they do not think of counting when the situation 
commands it. 

 Around age four, the meaning of counting eventually settles in. But how? Th e  preverbal 
representation of numerical quantities probably plays a crucial role in this process. 
Remember that right from birth, way before they start to count, children have an internal 
accumulator that informs them of the approximate number of things that surround them. 
Th is accumulator can help bring meaning to counting. Suppose that a child is playing 
with two dolls. His accumulator automatically activates a cerebral representation of the 
quantity 2. Th anks to the processes described in an earlier chapter, the child has learned 
that the word “two” applies to this quantity, so that he can say “two dolls” without having 
to count. Now suppose that for no particular reason, he decides to “play the counting 
game” with the dolls, and recites the words “one, two.” He will be surprised to discover 
that the last number of the count, “two,” is the very word that can apply to the entire set. 
Aft er ten or twenty such occasions, he may soundly infer that whenever one counts, the 
last word arrived at has a special status: It represents a numerical quantity that matches 
the one provided by the internal accumulator. Counting, which was only an entertaining 
word game, suddenly acquires a special meaning: Counting is the best way of  saying 
how many !     

   Preschoolers as Algorithm Designers   

 Understanding what counting is for is the starting point of an outburst of numerical 
inventions. Counting is the Swiss Army knife of arithmetic, the tool that children spon-
taneously put to all sorts of uses. With the help of counting, most children fi nd ways of 
adding and subtracting numbers without requiring any explicit teaching. 

7  Wynn,     1990  ; Wynn, 1992 
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 Th e fi rst calculation algorithm that all children fi gure out for themselves consists in 
adding two sets by counting them both on the fi ngers. Ask a very young child to add 2 
and 4. She will typically start by counting up to the fi rst number, 2, while successively 
raising two fi ngers. Th en she will count up to the second number, 4, while raising four 
other fi ngers. And fi nally she will recount them all and reach a total of 6. Th is fi rst  “digital” 
algorithm is conceptually simple but very slow Executing it can be truly awkward: At the 
age of four, to compute 3  +  4, my son would put up three fi ngers on the left  hand and four 
on the right hand. Th en he would proceed to count them using the only pointing device 
that remained at his disposal — the tip of his nose! 

 Initially, young children fi nd it diffi  cult to calculate without using their fi ngers. Words 
vanish as soon as they have been uttered, but fi ngers can be kept constantly in sight, 
 preventing one from losing count in case of a temporary distraction. Aft er a few months, 
though, children discover a more effi  cient addition algorithm than fi nger counting. 
When adding 2 and 4, they can be heard muttering “one  two   …  three  …  four  …  fi ve  …   six .” 
Th ey fi rst count up to the fi rst operand, 2, then move forward by as many steps as speci-
fi ed by the second operand, 4. Th is is an attention-demanding strategy because it implies 
some sort of recursion: In the second phase, one has to count how many times one counts! 
Children oft en make this recursion explicit: “one  two  …   three is one  …  four is two  …  fi ve 
is three  …  six is four  …   six”  Th e diffi  culty of this step is refl ected by a drastic slowing and 
extreme concentration. 

 Refi nements are quickly found. Most children realize that they need not recount both 
numbers, and that they can compute 2  +  4 by starting right from the word “two.” Th ey 
then simply say “two  …  three  …  four  …  fi ve  …   six .” To shorten calculation even further, 
they learn to systematically start with the larger of the two numbers. When asked to 
compute 2  +  4, they spontaneously transform this problem into the equivalent 4  +  2. As 
a result, all they now have to do is count a number of times equal to the smaller of the two 
addends. Th is is called the “minimum strategy.” It is a standard algorithm that underlies 
most of children’s calculations before the onset of formal schooling. 

 It is rather remarkable that children spontaneously think of counting from the larger 
of the two numbers to be added.   8  Th is indicates that they have a very precocious under-
standing of the commutativity of addition (the rule that  a  +  b  is always equal to  b  +  a ). 
Experiments show that this principle is already in place by 5 years of age. Never mind the 
legions of educators and theorists who have claimed that children couldn’t possibly 
understand arithmetic unless they fi rst received years of solid education in logic. Th e 
truth is just the opposite: As children count on their fi ngers, years before going to school, 
they develop an intuitive understanding of commutativity, whose logical foundations 
they will come to appreciate only much later (if ever). 

8  Gallistel & Gelman,     1992   
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 Children select their calculation algorithms with an extraordinary fl air. Th ey quickly 
master many addition and subtraction strategies. Yet, far from being lost in this abun-
dance of possibilities, they learn to carefully select the strategy that seems most suited for 
each particular problem. For 4  +  2, they may decide to count on from the fi rst operand. 
For 2  +  4, they will not forget to reverse the two operands. Confronted with the more 
diffi  cult 8  +  4, they might remember that 8  +  2 is 10. If they manage to decompose 4 into 
2  +  2, then they’ll be able to simply count “ten, eleven,  twelve. ” 

 Calculation abilities do not emerge in an immutable order. Each child behaves like a 
cook’s apprentice, who tries a random recipe, evaluates the quality of the result, and 
decides whether or not to proceed in this direction. Children’s internal evaluation of 
their algorithms takes into account both the time it takes them to complete the computa-
tion, and the likelihood that they have reached the correct result. According to child 
psychologist Robert Siegler, children compile detailed statistics on their success rate with 
each algorithm.   9  Little by little, they acquire a refi ned database of the strategies that are 
most appropriate for each numerical problem. Th ere is no doubt that mathematical 
 education plays an extremely important role in this process, both by inculcating new 
algorithms into children and by providing them with explicit rules for selecting the best 
strategy. Yet, the best part of this process of invention followed by selection is established 
in most children before they even reach their preschool years. 

 Would you like a fi nal example of children’s shrewdness in designing their own 
 calculation algorithms? Consider the case of subtraction. Ask a young boy to compute 
8-2, and you may hear him muttering: “eight  …  seven is one  …  six is two  …   six ”: He counts 
backward starting from the larger number 8. Now ask him to solve 8-6. Does the child 
have to count backward “eight seven six fi ve four three two”? No. Chances are, he will 
fi nd a more expeditious solution: “six  …  seven is one  …  eight is two  …   two !” He counts the 
number of steps it takes to go from the smaller number to the larger. By cunningly 
 planning his course of action, the child realizes a remarkable economy. It takes him the 
same number of steps — only two — to compute 8  −  2 and 8  −  6. But how does he select 
the appropriate strategy? Th e optimal choice is dictated by the size of the number to be 
 subtracted. If it is greater than half the starting number, as in 8  −  5, 8  −  6, or 8  −  7, the 
second strategy is the winner; otherwise, as in 8  −  1, 8  −  2, or 8  −  3, backward counting is 
faster. Not only is the child a suffi  ciently clever mathematician to spontaneously discover 
this rule, but he manages to use his natural sense of numerical quantities to apply it. Th e 
selection of an exact calculation strategy is guided by an initial quick guess. Between the 
ages of 4 and 7, children exhibit an intuitive understanding of what calculations mean 
and how they should best be selected.     

9  Siegler,     1987  ,   1989  ; Siegler & Jenkins,     1989   
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   Memory Appears on the Scene   

 Take a stopwatch and measure how long a 7-year-old child takes to add two numbers. You 
will discover that the calculation time increases in direct proportion to the smaller 
addend, a sure sign that the child is using the minimum algorithm.   10  Even if the child 
betrays no evidence of counting, either verbally or on his fi ngers, response times indicate 
that he is reciting the numbers in his head. Computing 5  +  1, 5  +  2, 5  +  3, or 5  +  4 takes 
him an additional four-tenths of a second for each additional unit: At that age, each 
counting step takes about 400 milliseconds. 

 What happens in older subjects? When they fi rst conducted this experiment in 1972, 
Carnegie-Mellon University psychologist Guy Groen and his student John Parkman 
were puzzled to discover that even in college students, the duration of an addition is 
 predicted by the size of the smaller addend.   11  Th e only diff erence is that the size of the 
time increment is much smaller: 20 milliseconds per unit. How should this fi nding be 
interpreted? Surely even talented students cannot count at the incredible speed of 
20 milliseconds per digit, or 50 digits per second. Groen and Parkman thus proposed a 
hybrid model. On 95 %  of trials, the students would directly retrieve the result from 
memory. On the remaining 5 %  of trials, their memory would collapse, and they would 
have to count at the speed of 400 milliseconds per digit. On average, therefore, addition 
times would increase by only 20 milliseconds for each unit. 

 Despite its ingenuity, this proposal was quickly challenged by new fi ndings. It was 
soon realized that students’ response time did not increase linearly with the size of the 
addends (Figure   5.1  ).   12  Large addition problems such as 8  +  9 took a disproportionately 
long time. Th e time to add two digits was actually best predicted by their product or by 
the square of their sum — two variables that were hard to reconcile with the hypothesis 
that the subjects were counting. Th e fi nal blow against the counting theory came when it 
was discovered that the time to  multiply  two digits was essentially identical to the time 
taken to add them. In fact, addition and multiplication times were predicted by the very 
same variables. If subjects counted, even on only 5 %  of trials, multiplication should have 
been much slower than addition.  

 Th ere was only one way out of this conundrum. In 1978, Mark Ashcraft  and his 
 colleagues at Cleveland State University proposed that young adults hardly ever solve 
addition and multiplication problems by counting.   13  Instead, they generally retrieve the 
result from a memorized table. Accessing this table, however, takes an increasingly longer 

10  Ashcraft ,     1982  ; Ashcraft  & Fierman,     1982  ; Ashcraft ,     1992  ; Levine, Jordan, & Huttenlocher,     1992   
11  Groen & Parkman,     1972   
12  Ashcraft  & Battaglia,     1978  ; Ashcraft ,     1992  ; Ashcraft ,     1995   
13  Ashcraft  & Battaglia,     1978   
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     figure 5.1.  Th e problem-size eff ect: Th e time for an adult to solve an addition problem increases 
sharply with the size of the addends.   
 (Reprinted from Ashcraft    1995   by permission of the author and publisher; copyright  ©  1995 by Erlbaum (UK), Taylor 
& Francis, Hove, UK.)    

time as the operands get larger. It takes less than a second to retrieve the result of 2  +  3 or 
2  ×  3, but about 1.3 seconds to solve 8  +  7 or 8  ×  7. 

 Th is eff ect of number size on memory retrieval probably has multiple origins. As 
explained in previous chapters, the accuracy of our mental representation drops quickly 
with number size. Order of acquisition may also be a factor, because simple arithmetic 
facts, which involve small operands, are oft en learned before more diffi  cult ones with 
large operands. A third factor is the amount of drilling. Because the frequency of 
numerals decreases with size, we receive less training with larger multiplication problems. 
Mark Ashcraft  and his colleagues have tallied up how oft en each addition or multiplica-
tion problem appears in children’s textbooks. Th e outcome is surprisingly inane: Children 
are drilled far more extensively with multiplications by 2 and by 3 than by 7, 8, or 9, 
although the latter are more diffi  cult. 

 Th e hypothesis that memory plays a central role in adult mental arithmetic is now 
universally accepted. Th is does not imply that adults do not also have many other calcula-
tion strategies at their disposal. Indeed, most adults confess to using indirect methods 
such as computing 9  ×  7 as (10  ×  7)   −  7, a factor that also contributes to slowing down the 
resolution of large addition and multiplication problems. It does mean, however, that 
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a major upheaval in the mental arithmetic system occurs during preschool years. Children 
suddenly shift  from an intuitive understanding of numerical quantities, supported by 
simple counting strategies, to a rote learning of arithmetic. It is hardly surprising if this 
major turn coincides with the fi rst serious diffi  culties that children encounter in mathe-
matics. All of a sudden, progressing in mathematics means storing a wealth of numerical 
knowledge in memory Most children get through as best as they can. But, as we will see, 
they oft en lose their intuitions about arithmetic in the process.     

   The Multiplication Table: An Unnatural Practice?   

 Few lessons are drilled as extensively as the addition and multiplication tables. We have 
all spent a portion of our childhood learning them, and as adults we constantly appeal to 
them. Any student executes tens of elementary calculations daily. Over a lifetime, we 
must solve more than ten thousand multiplication problems. And yet, our arithmetic 
memory is at best mediocre. It takes a well-trained young adult considerable time, oft en 
more than 1 second, to solve a multiplication such as 3  ×  7. Error rates average 10 to 15 
percent. On the most diffi  cult problems, such as 8  ×  7 or 7  ×  9, failure occurs at least once 
in every four attempts, oft en following more than 2 seconds of intense refl ection. 

 Why is this? Multiplications by 0 or 1 obviously do not have to be learned by rote. 
Furthermore once 6  ×  9 or 3  +  5 are stored, the responses to 9  ×  6 and 3  +  5 easily follow 
by commutativity. Th is leaves us with only forty-fi ve addition and thirty-six multiplica-
tion facts to be remembered. Why is it so diffi  cult for us to store them? Aft er all, hun-
dreds of other arbitrary facts crowd our memory. Th e names of our friends, their ages, 
their addresses, and the many events of our lives occupy entire sections of our memory. At 
the very age when children labor over arithmetic, they eff ortlessly acquire a dozen new 
words daily. Before adulthood, they will have learned at least twenty thousand words and 
their pronunciation, spelling, and meaning. What makes the multiplication table so 
much harder to retain, even aft er years of training? 

 Th e answer lies in the particular structure of addition and multiplication tables. 
Arithmetic facts are not arbitrary and independent of each other. On the contrary, they 
are closely intertwined and teeming with false regularities, misleading rhymes, and 
 confusing puns.   14  What would happen if you had to memorize an address book that 
looked like this:  

    •   Charlie David lives on George Avenue.  
    •   Charlie George lives on Albert Zoe Avenue.  
    •   George Ernie lives on Albert Bruno Avenue.     

14  Stazyk, Ashcraft , & Hamann,     1982  ; Campbell & Oliphant,     1992  . See the chapters in Campbell,     2004   
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 And a second one for professional addresses like this:  

    •   Charlie David works on Albert Bruno Avenue.  
    •   Charlie George works on Bruno Albert Avenue.  
    •   George Ernie works on Charlie Ernie Avenue.     

 Learning these twisted lists would certainly be a nightmare. Yet they are nothing but 
addition and multiplication tables in disguise. Th ey were composed by replacing each of 
the digits 0, 1, 2, 3, 4  …  by a surname (Zoe, Albert, Bruno, Charlie, David  … ). Home 
address was substituted for addition, and professional address for multiplication. Th e six 
above addresses are thus equivalent to the additions 3  +  4 = 7, 3  +  7 = 10, and 7  +  5 = 12, 
and to the multiplications 3  ×  4 = 12, 3  ×  7 = 21, and 7  ×  5 = 35. Seen from this unusual angle, 
arith metic tables regain for our adult eyes the intrinsic diffi  culties that they pose for chil-
dren who fi rst discover them. No wonder we have trouble remembering them: Th e most 
 amazing thing may well be that we  do  eventually manage to memorize most of them! 

 We haven’t quite answered our question, though: Why is this type of list so diffi  cult to 
learn? Any electronic agenda with a minuscule memory of less than a kilobyte has no 
trouble storing them all. In fact, this computer metaphor almost begs the answer. If our 
brain fails to retain arithmetic facts, that is because the organization of human memory, 
unlike that of a computer, is  associative : It weaves multiple links among disparate data. 
Associative links permit the reconstruction of memories on the basis of fragmented 
information. We invoke this reconstruction process, consciously or not, whenever we try 
to retrieve a past fact. Step by step, the perfume of Proust’s madeleine evokes a universe of 
memories rich in sounds, visions, words, and past feelings. 

 Associative memory is a strength as well as a weakness. It is a strength when it enables 
us, starting from a vague reminiscence, to unwind a whole ball of memories that once 
seemed lost. No computer program to date reproduces anything close to this “addressing 
by content.” It is a strength again when it permits us to take advantage of analogies and 
allows us to apply knowledge acquired under other circumstances to a novel situation. 
Associative memory is a weakness, however, in domains such as the multiplication table, 
where the various pieces of knowledge must be kept from interfering with each other at 
all costs. When faced with a tiger, we must quickly activate our related memories of lions. 
But when trying to retrieve the result of 7  ×  6, we court disaster by activating our knowl-
edge of 7  +  6 or of 7  ×  5. Unfortunately for mathematicians, our brain evolved for millions 
of years in an environment where the advantages of associative memory largely compen-
sated for its drawbacks in domains like arithmetic. We are now condemned to live with 
inappropriate arithmetical associations that our memory recalls automatically, with little 
regard for our eff orts to suppress them. 

 Proof of the pernicious infl uence of interference in associative memory is easy to 
come by. Th roughout the world, scores of students have contributed hundreds of thousands 
of response times and tens of thousands of errors to the scientifi c study of calculation 
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processes. Th anks to them, we now know precisely which calculation errors are the most 
frequent.   15  Multiply 7 by 8. It is probable that instead of 56, you will answer 63, 48, or 54. 
Nobody ever replies 55, although this number is only one unit off  the correct result. 
Practically all errors belong to the multiplication table, most oft en to the same line or 
column as the original multiplication problem. Why? Because the mere presentation 
of 7  ×  8 is enough for us to not only recall the correct result 56, but also its tightly 
associated neighbors 7  ×  9, 6  ×  8, or 6  ×  9. All of these facts compete in gaining access to 
speech  production processes. All too oft en we try to retrieve 7  ×  8 and the result of 6  ×  8 
pops up. 

 Th e automatization of arithmetic memory starts at a young age. As early as seven, 
whenever we see two digits, our brain automatically cranks up their sum. To prove this, 
psychologist JoAnne Lefevre and her colleagues at the University of Alberta in Canada 
concocted a clever experiment.   16  Th ey explained to subjects that they were going to see a 
pair of digits such as 2 and 4 that they had to memorize for a second. Th ey would then see 
a third digit and were to decide whether it was identical to one of the fi rst two numbers. 
Th e results revealed an unconscious addition process. When the target digit was equal to 
the sum of the pair (6), although the subjects generally responded correctly that it was 
not equal to any of the initial digits, there was a noticeable slowing of responses, which 
was not seen for neutral targets such as 5 or 7. In a recent study by Patrick Lemaire and 
collaborators, this eff ect was replicated with children as young as seven.   17  Apparently, the 
mere fl ashing of the digits 2 and 4, even without a plus sign, suffi  ces for our memory to 
automatically retrieve their sum. Subsequently, because this number is active in our 
memory, we are not quite sure whether we have seen it or not. 

 Here is another striking demonstration of the automaticity of arithmetic memory that 
you can try for yourself. Answer the following questions  as fast as you can : 

   2  +  2? 
   4  +  4? 
   8  +  8? 

   16  +  16? 

 Now quick! Pick a number between 12 and 5. Got it? 

 Th e number you picked is 7, isn’t it? 
 How did I read your mind? Th e mere presentation of the numbers 12 and 5 seems 

enough to trigger an unconscious subtraction 12  −  5 = 7. Th is eff ect is probably amplifi ed 
by the initial addition drill, the reversed order of the numbers 12 and 5, and the  ambiguous 

15  Ashcraft ,     1992  ; Campbell,     2004   
16  LeFevre, Bisanz, & Mrkonjic,     1988   
17  Lemaire, Barrett, Fayol, & Abdi,     1994   
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phrase “between 12 and 5” that may incite you to compute the distance between 
the two numbers. All these factors conspire to enhance the automatic activation of 12  −  5 
up to a point where its result enters consciousness. And you believed that you were 
 exercising your “free will” when selecting a digit! 

 Our memory also has a hard time keeping addition and multiplication facts in distinct 
compartments. Not infrequently do we automatically answer an addition problem with 
the corresponding multiplication fact (2  +  3 = 6); more rarely, the contrary occurs 
(3  ×  3 = 6). It also takes us longer to realize that 2  ×  3 = 5 is false than to reject 2  ×  3 = 7 
because the former result would be correct under addition. 

 Kevin Miller, at the University of Texas, has studied how such interference evolves 
during the acquisition of new arithmetic facts.   18  In third grade, most pupils already know 
many additions by heart. As they start to learn multiplication, the time they take to solve 
an addition temporarily  increases , while the fi rst memory slips of the 2  +  3 = 6 kind begin 
to appear. Th us, the integration of multiple arithmetic facts in long-term memory seems 
to be a major hurdle for most children.     

   Verbal Memory to the Rescue   

 If storing arithmetic tables in memory is so diffi  cult, how does our brain eventually catch 
up? A classic strategy consists in recording arithmetic facts in verbal memory “Th ree 
times seven, twenty-one” can be stored word for word alongside “Twinkle twinkle little 
star” or “Our Father who art in Heaven.” Th is solution is not unreasonable, because verbal 
memory is vast and durable. Indeed, who does not still have a head full of slogans and 
songs heard years earlier? Educators have long realized the huge potential of verbal 
memory. In many countries, recitation remains the prime method for teaching arithme-
tic. I still remember the ungracious chorus at elementary school as my fellow budding 
mathematicians and I loudly recited multiplication tables in perfect synchrony. 

 Th e Japanese seem to have pushed this method even further. Th eir multiplication table 
is made up of little verses called “ku-ku.” Th is word, which literally means “nine-nine,” is 
directly drawn from the last verse of the table, 9  ×  9 = 81. In the Japanese table, times and 
equal symbols are silent, leaving only the two operands and the result. Th us 2  ×  3 = 6 is 
learned as “ni san na-roku” — literally, “two three zero six.” Several conventions have been 
consecrated by history. In ku-ku, numbers are pronounced in their Chinese form, and 
their pronunciation varies with context. For instance, eight is normally “hashi,” but can 
be abbreviated as “hap” or even as “pa,” as in “hap-pa roku-ju shi,” 8  ×  8 = 64. Th e resulting 
system is complex and oft en arbitrary, but its singularities probably ease the load on 
memory. 

18  Miller & Paredes,     1990   
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 Th e fact that arithmetic tables are learned verbatim seems to have an intriguing 
 consequence: Calculation becomes tied to the language in which it is learned at school.   19  
An Italian colleague of mine, aft er spending more than 20 years in the United States, is 
now an accomplished bilingual. He speaks and writes in fl uent English, with a rigorous 
syntax and an extensive vocabulary. Yet, when he has to calculate mentally, he can still be 
heard mumbling numbers in his native Italian. Does this mean that aft er a certain age, the 
brain loses its plasticity for learning arithmetic? Th is is a possibility, but the real explana-
tion may be more trivial. Learning arithmetic tables is so laborious that it may be more 
economical for a bilingual to switch back to the mother tongue for calculation, rather 
than relearn arithmetic from scratch in a new language. 

 Non-bilinguals can experience the same phenomenon. We all fi nd it hard to refrain 
from naming numbers aloud when we have to perform complex calculations. Th e crucial 
role played by the verbal code in arithmetic becomes fully apparent when one is asked 
to calculate while simultaneously reciting the alphabet aloud. Try it, and you will easily 
 convince yourself that this is quite hard, because speaking saturates the cerebral language 
production systems necessary for mental calculation, 

 Yet a better proof of the verbatim coding of the multiplication table comes from the 
study of calculation errors. When confronted with 5  ×  6, we oft en mistakenly respond 
“36” or even “56” as if the 5 and the 6 of the problem contaminated our response. Our 
cerebral circuits tend to automatically read the problem as a two-digit number: 5  ×  6 
 irrepressibly evokes the words “fi ft y-six.” Most strangely, this reading bias interacts in a 
complex way with the plausibility of the result. One never observes gross blunders such 
as 6  ×  2 = 62 or 3  ×  7 = 37. Most of the time, we mistakenly read the operands only when 
the resulting two-digit number is a plausible result that belongs to the multiplication 
table (for instance, 3  ×  6 = 36 or 2  ×  8 = 28). Th is suggests that reading errors do not 
occur  aft er  multiplication retrieval, but  during  it — at a time when the reading bias can 
still infl uence access to arithmetic memory without completely overriding it. Hence, 
reading and arithmetic memory are highly interconnected procedures that make use of 
the same verbal encoding of numbers. For the adult brain, multiplying merely means 
reading out 3  ×  6 as “eighteen.” 

 In spite of its importance, verbal memory is not the only source of knowledge to be 
exploited during mental calculation. When confronted with the diffi  cult task of memo-
rizing arithmetic tables, our brain uses every available artifi ce. When memory fails, it falls 
back on other strategies like counting, serial addition, or subtraction from some reference 
(for instance, 8  ×  9 = (8  ×  l0)  −  8 = 72). Above all, it never misses any opportunity to take 
a shortcut.   20  Please verify whether the following calculations are true or false: 5  ×  3 = 15, 
6  ×  5 = 25, 7  ×  9 = 20. Do you have to calculate to reject the third multiplication? Probably 

19  Dehaene, Spelke, Pinel, Stanescu, & Tsivkin,     1999   
20  Ashcraft  & Stazyk,     1981  ; Dehaene et al.,     1999   
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not, for at least two good reasons. First, the proposed result, 20, is grossly false. Experiments 
have shown that response time drops as the degree of falsehood increases. Results whose 
magnitude departs considerably from the truth are rejected in less time than it would 
take to actually complete the operation, suggesting that in parallel to calculating the exact 
result, our brain also computes a coarse estimate of its size. Second, in 7  ×  9 = 20, parity is 
violated. Since both operands are odd, the result should be odd. An analysis of response 
times shows that our brain implicitly checks the parity rules that govern addition and 
multiplication, and quickly reacts whenever a violation is found.   21      

   Mental Bugs   

 Let us now briefl y tackle the issue of multidigit calculations. Suppose that you have to 
compute 24  +  59. No computer would need more than a few microseconds, yet it will take 
you more than two seconds, or at least a hundred thousand times longer. Th is problem 
will mobilize all your power of concentration (as we will see later on, the prefrontal 
 sectors of the brain, which are involved in the control of nonautomated activities, are 
highly active during complex calculations). You will have to go carefully through a series 
of steps: Isolate the rightmost digits (4 and 9), add them up (4  +  9 = 13), write down the 
3, carry the 1, isolate the left most digits (2 and 5), add them up (2  +  5 = 7), add the carry 
over (7  +  1 = 8), and fi nally write down the 8. Th ese stages are so reproducible that given 
the magnitude of the digits, one can estimate the duration of each operation and predict, 
to within a few tenths of a second, at which point you will fi nally lift  your pen.   22  

 At no time during such a calculation does the meaning of the unfolding operations seem 
to be taken into account. Why did you carry the 1 over to the left most column? Perhaps 
you now realize that this 1 stands for 10 units and that it must therefore land in the tens 
column. Yet this thought never crossed your mind while you were computing. In order to 
calculate fast, the brain is forced to ignore the meaning of the computations it performs. 

 As another example of the divorce between the mechanical aspects of calculation and 
their meaning, consider the following subtraction problems, which are quite typical of a 
young child: 

21  Krueger & Hallford,     1984  ; Krueger,     1986  . But see Lochy, Seron, Delazer, & Butterworth,     2000   
22  Ashcraft  & Stazyk,     1981  ; Widaman, Geary, Cormier, & Little,     1989  ; Timmers & Claeys,     1990   

         

  54  54  612  317  
   −   23     −   28     −   39     −   81   

 31  34  627  376  
 (correct)  (false)  (false)  (false)  
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  Do you see the problem? Th is child is not responding at random. Every single answer 
obeys the strictest logic. Th e classical subtraction algorithm is rigorously applied, digit 
aft er digit, from right to left . Th e child, however, reaches an impasse whenever the top 
digit is smaller than the bottom. Th is situation calls for carrying over, but for some reason 
the child prefers to invert the operation and subtract the top digit from the bottom one. 
Little does it matter that this operation is meaningless. Indeed, the result oft en exceeds 
the starting number, without disturbing the pupil in the least. Calculation appears to him 
as a pure manipulation of symbols, a surrealist game largely devoid of meaning. 

 John Brown, Richard Burton, and Kurt Van Lehn, from Carnegie-Mellon University, 
studied mental subtraction with such meticulous scrutiny that they wound up collecting 
the responses of more than a thousand children to tens of problems.   23  In this way, 
they discovered and classifi ed dozens of systematic errors similar to the ones we’ve just 
 examined. Some children have diffi  culties only with zeroes, while others fail only with 
the digit 1. A classical error consists in a left ward shift  of all carry-overs that apply to the 
digit 0. In 307  −  9, some children correctly compute 17  −  9  =  8, but then fail to subtract 
the  carryover from 0. Instead, they wrongly simplify the task by carrying over the 1 into 
the hundreds column; “therefore,” 307  −  9  =  208. Errors of this kind are so reproducible 
that Brown and his colleagues have described them in computer science terms: Children’s 
subtraction algorithms are riddled with “bugs.” 

 Where do these bugs come from? Strange as it might seem, no textbook ever describes 
the correct subtraction recipe in its full generality. A computer scientist can vainly search 
his kid’s arithmetic manual for instructions precise enough to program a general subtrac-
tion routine. All school manuals are content with providing rudimentary instructions 
and a panoply of examples. Pupils are supposed to study the examples, analyze the 
 behavior of their teacher, and derive their own conclusions. It is hardly surprising, then, 
that the algorithm they arrive at is not correct. Textbook examples generally do not cover 
all possible cases of subtraction. Hence, they leave the door open to all sorts of ambigui-
ties. In due course, any child is confronted with a novel situation where he or she will have 
to improvise, and gaps in his or her understanding of subtraction will show up. 

 Consider this example studied by Kurt Van Lehn: A child subtracts correctly, except 
that each time he has to subtract two identical digits, he wrongly carries 1 over to the next 
column (e.g., 54  −  4 = 40; 428  −  26 = 302). Th is child has correctly fi gured out that one 
must carry over whenever the top digit is smaller than the bottom. However, he wrongly 
generalizes this rule to the case where the two digits are equal. Most likely, this particular 
case was never dealt with in his textbook. 

 Another edifying example: Many arithmetic textbooks illustrate only the subtraction 
procedure with two-digit numerals (17  −  8, 54  −  6, 64  −  38, etc.). Initially then, pupils 
only learn to carry over to the tens column, which is always the fi rst column from the left . 

23  van Lehn,     1986  ,   1990   
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Hence the fi rst time they are confronted with a three-digit subtraction, many children 
wrongly decide to carry over to the left most column, as they have in the past (e.g., 
621  −  2  =  529). How could they guess, without further instruction, that one should 
always carry over from the column  immediately left  of the present one , rather than from the 
left most column? Only a refi ned understanding of the algorithm’s design and purpose 
can help. Yet, the very occurrence of such absurd errors suggests that the child’s brain 
registers and executes most calculation algorithms without caring much about their 
meaning.     

   Pros and Cons of the Electronic Calculator   

 What coherent picture emerges from this panorama of human arithmetic abilities? 
Clearly, the human brain behaves unlike any computer that we currently know of. It has 
not evolved for the purpose of formal calculation. Th is is why sophisticated arithmetic 
algorithms are so diffi  cult for us to faithfully acquire and execute. Counting is easy, 
because it exploits our fundamental biological skills for verbal recitation and one-to-one 
correspondence. But memorizing the multiplication table, executing the subtraction 
algorithm, and dealing with carryovers are purely formal operations, without any 
 counterpart in a primate’s life. Evolution can hardly have prepared us for them. Th e 
 Homo sapiens  brain is to formal calculation what the wing of the prehistoric bird 
 Archaeopteryx  was to fl ying: a clumsy organ, functional but far from optimal. To comply 
with the requirements of mental arithmetic, our brain has to tinker with whatever 
circuits it has, even if that implies memorizing a sequence of operations that we do not 
 understand. 

 We cannot hope to alter the architecture of our brain, but we can perhaps adapt our 
teaching methods to the constraints of our biology. Since arithmetic tables and calcula-
tion algorithms are, in a way, counter-natural, I believe that we should seriously ponder 
the necessity of inculcating them in our children. Luckily, we now have an alternative — 
the electronic calculator, which is cheap, omnipresent, and infallible. Computers are 
transforming our universe to such an extent that we cannot confi ne ourselves thought-
lessly to the educational recipes of yesteryear. We have to face this question: Should 
our pupils still have to spend hundreds of hours reciting multiplication tables, as their 
grandparents did, in the hope that arithmetic facts will eventually be engraved in their 
memories? Would it not be wiser to give them early training in electronic calculators and 
computers? 

 Reducing the part played by rote arithmetic at school may be judged a heresy. Yet there 
is nothing sacred in the way arithmetic is currently taught. Until recently, in many 
 countries, the abacus and fi nger counting were the privileged vectors of arithmetic. Even 
today, millions of Asians pull out their “soro-ban,” the Japanese abacus, whenever they 
have to calculate. Th e most experienced of them practice the “mental abacus”: By  visualizing 
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abacus moves in their heads, they can add two numbers mentally in less time than 
it takes us to type them into a calculator!   24  Th ese examples show that there are alternatives 
to the rote learning of arithmetic. 

 One might object that electronic calculators atrophy children’s mathematical 
 intuitions. Th is opinion has been vehemently defended, for instance, by the famous 
French mathematician and Fields Medal winner René Th orn, who wrote, “In primary 
school we learned the addition and multiplication tables. It was a good thing! I am 
 convinced that when children as young as six or seven are allowed to use a calculator, 
they eventually attain a less intimate knowledge of number than the one we reached 
through the practice of mental calculation.” 

 Yet, what may have been true for schoolboy Th orn need not hold for the average 
child today. Anyone can judge for himself the purported ability of our schools to teach 
an “intimate knowledge of number.” When a pupil readily concludes, without batting 
an eyelid, that 317 – 81 is 376, perhaps there is something rotten in the educational 
 kingdom. 

 I am convinced that by releasing children from the tedious and mechanical constraints 
of calculation, the calculator can help them to concentrate on meaning. It allows them to 
sharpen their natural sense of approximation by off ering them thousands of arithmetic 
examples. By studying a calculator’s results, children can discover that subtraction always 
yields a result smaller than the starting number, that multiplying by a three-digit number 
always increases the size of the starting number by two or three digits, and thousands 
of similar facts. Th e mere observation of a calculator’s behavior is an excellent way of 
developing number sense. 

 Th e calculator is like a road map for the number line. Give a calculator to a 5-year-old, 
and you will teach him how to make friends with numbers instead of despising them. 
Th ere are so many fascinating regularities to be discovered about arithmetic. Even the 
most elementary of them looks like pure magic to children. Multiplying by 10 adds a zero 
on the right. Multiplying by 11 duplicates a digit (2  ×  11 = 22, 3  ×  11 = 33, etc.). Multiplying 
by 3, then by 37, makes three copies of it (9  ×  3  ×  37 = 999). Can you fi gure out why? 
Because these childish examples might leave mathematically advanced readers unsatis-
fi ed, here are some more sophisticated ones:  

    •   11  ×  11 = 121; 111  ×  111 = 12321; 1111  ×  1111 = 1234321; and so on. Do you see why?  
    •   12345679  ×  9 = 111111111. Why? Note that the 8 is lacking!  
    •   11  −  3  ×  3 = 2; 1111  −  33  ×  33 = 22; 111111  −  333  ×  333 = 222; and so on. Prove it!  
    •   1  +  2 = 3; 4  +  5  +  6 = 7  +  8; 9  +  10  +  11   +   12 = 13  +  14  +  15; and so on. Can you 

fi nd a simple proof ?     

24  Hatano & Osawa,     1983  ; Stigler,     1984  ; Hatano, Amaiwa, & Shimizu,     1987   
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 Do you fi nd these arithmetic games barren and dull? Do not forget that before the age 
of six or seven, children do not yet despise mathematics. Everything that looks mysterious 
and excites their imagination feels like a game to them. Th ey are open and ready to 
develop a passion for numbers, if only one were willing to show them how magical arith-
metic can be. Electronic calculators, as well as mathematical soft ware for children, hold 
the promise of initiating them to the beauty of mathematics; a role that teachers, all too 
occupied in teaching the mechanics of calculation, oft en do not accomplish. 

 Th is being said, can and should the calculator serve as substitute to rote mental 
 arithmetic? It would be foolish to pretend that I have the defi nitive answer. Reaching for 
a pocket calculator in order to compute 2  ×  3 is obviously absurd, but no one is pushing 
toward such extremes. Yet it should be acknowledged that today, the vast majority of 
adults never perform a multidigit calculation without resorting to electronics. Whether 
we like it or not, division and subtraction algorithms are endangered species quickly 
 disappearing from our everyday lives — except in schools, where we still tolerate their 
quiet oppression. 

 At the very least, using calculators in school should lose its taboo status. Mathematics 
curricula are not immutable, much less perfect. Th eir sole objective should be to improve 
children’s fl uency in arithmetic, not perpetuate a ritual. Calculators and computers are 
only a few of the promising paths that educators have begun to explore. Perhaps we 
should study the teaching methods used in China or Japan in a less condescending 
manner. Recent studies by psychologists Harold Stevenson, from the University of 
Michigan, and Jim Stigler, from UCLA, suggest that these methods are oft en superior in 
many ways to those used in most Western countries.   25  Just consider this simple example: 
In the West, we generally learn multiplication tables line aft er line, starting with the 
“times two” facts and ending with the “times nine” facts, for a total of 72 facts to be 
remembered. In China, children are explicitly taught to reorder multiplications by 
 placing the smallest digit fi rst. Th is elementary trick, which avoids relearning 9  ×  6 when 
one already knows 6  ×  9, cuts the amount of information to be learned by almost one half. 
It has a notable impact on calculation speed and error rates of Chinese pupils. Obviously, 
we do not have the monopoly on a well-conceived curriculum. Let us keep our eyes 
open to all potential improvements, whether they come from computer science or 
 psychology.     

   Innumeracy: Clear and Present Danger?   

 In the Western educational system, children spend much time learning the mechanics of 
arithmetic. Yet there is a growing suspicion that many of them reach adulthood without 

25  Stevenson & Stigler,     1992   
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having really understood when to apply this knowledge appropriately. Lacking any deep 
understanding of arithmetic principles, they are at risk of becoming little calculating 
machines that compute but do not think. John Paulos has given their plight a name: 
innumeracy , the analogue of illiteracy in the arithmetical domain.   26  Innumerates are 
prompt in drawing hazardous conclusions based on a reasoning that is mathematical only 
in appearance. Here are a few examples:  

•    1
5

2
5

3
10

+ =    because 1  +  2 = 3 and 5  +  5 = 10.  

•   0.2   +   4 = 0.6 because 4  +  2 = 6.  
•   0.25 is greater than 0.5 because 25 is greater than 5.  
•   A basin of water at 35 ° C, plus another basin of water at 35 ° C, makes for a tub of 

very hot water at 70 ° C (stated by my 6-year-old son)  
•   Th e temperature is in the 80s today, twice as warm as last night, when the 

 temperature was 40 ° F.  
•   Th ere is a 50 %  chance of rain for Saturday, and also a 50 %  chance of rain for 

Sunday, so there is a 100 %  certainty that it will rain over the weekend (heard on 
the local news by John Paulos).  

•   One meter equals 100 centimeters. Since the square root of 1 is 1, and the square 
root of 100 is 10, shouldn’t one conclude that 1 meter equals 10 centimeters?  

•   Mrs. X is alarmed: the new cancer test that she took was positive. Her doctor 
certifi es that the test is highly reliable and reads positive in 98 %  of cancer cases. 
So Mrs. X is 98 %  certain of having cancer. Right? [Wrong. Th e available infor-
mation supports absolutely  no  conclusion. Suppose that only one person in 
10,000 ever develops this type of cancer, and that the test yields a 5 %  rate of false 
positives. Of 10,000 people taking the test, about 500 will test positive, but only 
one of them will really suff er from cancer. In that case, despite her results, Mrs. X 
still only has one chance in 500 of developing cancer.]     

 In the United States, innumeracy has been promoted as a cause for national concern. 
Alarming reports suggest that, as early as preschool, American children lag way behind 
their Chinese and Japanese peers. Some educators view this “learning gap” as a potential 
threat to American supremacy in science and technology. Th e designated culprit is the 
educational system, its mediocre organization, and the poor training of its teachers. On 
the French side of the Atlantic, about every other year a similar controversy announces a 
new drop in children’s mathematical achievement. 

26  Paulos,     1988   
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 A French mathematics educator, Stella Baruk, has shrewdly analyzed the share of 
 responsibility that is borne by the educational system in children’s mathematical  diffi  culties.   27  
Her favorite example is the following Monty Pythonesque problem: “Twelve sheep and 
thirteen goats are on a boat. How old is the captain?” Believe it or not, this problem was 
offi  cially presented to French fi rst- and second-graders in an offi  cial survey, and a large 
proportion of them earnestly responded “Twenty-fi ve years, because 12  +  13 = 25” — an 
 amazing example of innumeracy! 

 Th ough there are serious reasons for being concerned by the widespread incompetence 
in mathematics, my own belief is that our school system is not the only one to blame. 
Innumeracy has much deeper roots: Ultimately, it refl ects the human brain’s struggle for 
storing arithmetical knowledge. Th ere are obviously many degrees of innumeracy, from 
the young child who thinks that temperatures can be added to the medical student who 
fails to compute a conditional probability. Yet, all such errors share one feature: Th eir 
victims directly jump to conclusions without considering the relevance of the computa-
tions they perform. Th is is an unfortunate counterpart to the automatization of mental 
calculation. We become so skillful at the mechanics of calculation that arithmetic opera-
tions sometimes start automatically in our heads. Check your refl exes on the following 
problems:  

    •   A farmer has eight cows. All but fi ve die. How many cows remain?  
    •   Judy owns fi ve dolls, which is two fewer than Cathy. How many dolls does 

Cathy have?     

 Did you feel an impulse to answer “three” to both problems? Th e mere presentation of 
the words “fewer than” or “all but” suffi  ces to trigger an automatic subtraction scheme in 
our minds. We have to fi ght against this automatism. A conscious eff ort is needed to 
analyze the meaning of each problem and form a mental model of the situation. Only 
then do we realize that we should  repeat  the number 5 in the fi rst problem, and  add  5 and 
2 in the second problem. Th e inhibition of the subtraction scheme mobilizes the anterior 
portion of the brain, a region called the prefrontal cortex, which is involved in imple-
menting and controlling nonroutine strategies. Because the prefrontal cortex matures 
very slowly — at least up to puberty, and probably beyond — children and adolescents are 
most vulnerable to arithmetical impulsiveness. Th eir prefrontal cortical areas have not 
yet had much opportunity to acquire the large repertoire of refi ned control strategies 
required to avoid falling into arithmetic traps. 

 My hypothesis, then, is that innumeracy results from the diffi  culty of controlling the 
activation of arithmetic schemas distributed in multiple cerebral areas. As we shall see in 
Chapters 7 and 8, number knowledge does not rest on a single specialized brain area, but 

27  Baruk,     1973   



124  Th e Number Sense

on vast distributed networks of neurons, each performing its own simple, automated, and 
independent computation. We are born with an “accumulator circuit” that endows us 
with intuitions about numerical quantities. With language acquisition, several other 
 circuits that specialize in the manipulation of number symbols and in verbal counting 
come into play. Th e learning of multiplication tables recruits yet another circuit special-
ized for rote verbal memory; and the list could probably go on for a long while. Innumeracy 
occurs because these multiple circuits oft en respond autonomously and in a disconcerted 
fashion. Th eir arbitration, under the command of the prefrontal cortex, is oft en slow to 
emerge. Children are left  at the mercy of their arithmetical refl exes. Regardless of whether 
they are learning to count or to subtract, they focus on calculation routines and fail to 
draw appropriate links with their quantitative number sense. And so innumeracy sets in.     

   Teaching Number Sense   

 If my hypothesis is correct, innumeracy is with us for a long time, because it refl ects one of 
the fundamental properties of our brain: its modularity, the compartmentalization of 
mathematical knowledge within multiple partially autonomous circuits. In order to 
become profi cient in mathematics, one must go beyond these compartmentalized  modules 
and establish a series of fl exible links among them. Th e numerical illiterate  performs 
 calculations by refl ex, haphazardly and without any deep understanding. Th e expert 
 calculator, on the contrary, juggles mentally with number notations, moves  fl uently from 
digits to words to quantities, and thoughtfully selects the most appropriate algorithm for 
the problem at hand. 

 From this perspective, schooling plays a crucial role not so much because it teaches 
children new arithmetic techniques, but also because it helps them draw links between 
the mechanics of calculation and its meaning. A good teacher is an alchemist who gives a 
fundamentally modular human brain the semblance of an interactive network. 
Unfortunately, our schools oft en do not quite meet this challenge. All too oft en, far from 
smoothing out the diffi  culties raised by mental calculation, our educational system 
increases them. Th e fl ame of mathematical intuition is only fl ickering in the child’s mind; 
it needs to be fortifi ed and sustained before it can illuminate all arithmetic activities. But 
our schools are oft en content with inculcating meaningless and mechanical arithmetical 
recipes into children. 

 Th is state of aff airs is all the more regrettable because, as we have seen, most children 
enter preschool with a well-developed understanding of approximation and counting. In 
most math courses, this informal baggage is treated as a handicap rather than as an asset. 
Finger counting is considered a childish activity that a good education will quickly do 
away with. How many children try to hide when they count on their fi ngers because “the 
teacher said not to”? Yet the history of numeration systems repeatedly proves that fi nger 
counting is an important precursor to learning base 10. Likewise, failing to retrieve 6  +  7 = 13 
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from rote memory is considered an error, even if the child later proves his or her excellent 
command of arithmetic by recovering the result indirectly — for instance, by remembering 
that 6  +  6 is 12 and that 7 is one unit aft er 6. Blaming a child for calling on indirect 
 strategies blatantly ignores that adults use similar strategies when their memory fails. 

 Despising children’s precocious abilities can have a disastrous eff ect on their 
subsequent opinion of mathematics. It accredits the idea that mathematics is an arid 
domain, detached from intuition and ruled by arbitrariness.   28  Pupils feel that they are sup-
posed to do as the teacher does, whether or not they can make any sense of it. 
A random example: Developmental psychologist Jeff rey Bisanz asked 6- and 9-year-old 
pupils to calculate 5  +  3  −  3.   29  Th e 6-year-olds oft en responded 5 without calculating, rightly 
noting that   +  3 and   −  3 cancel each other. However, the 9-years-olds, although they were 
more experienced, stubbornly performed the calculation in full (5  +  3 = 8, then 8  −  3 = 5). 
“It would be cheating to take shortcuts,” explained one of them. 

 Th e insistence on mechanical computation at the expense of meaning is reminiscent of 
the heated debate that divides the formalist and intuitionist schools of mathematical 
research. Th e formalist trend, which was founded by Hilbert and was pursued by major 
French mathematicians grouped under the pseudonym of Bourbaki, set as its goal the 
anchoring of mathematics on a fi rm axiomatic base. Th eir objective was to reduce 
 demonstration to a purely formal manipulation of abstract symbols. From this arid vision 
stemmed the all-too-famous reform of “modern mathematics,” which ruined the mathe-
matical sense of a generation of French pupils by presenting, according to an actor of this 
period, “an extremely formal education, cut from any intuitive support, presented on the 
basis of artifi cial situations, and highly selective.” For instance, the reformers thought 
that children should be familiar with the general theoretical principles of numeration 
before being taught the specifi cs of our base-10 system. Hence, believe it or not, some 
arithmetic textbooks started off  by explaining that 3  +  4 is 12 — in base 5! It is hard to 
think of a better way to befuddle children’s thinking. 

 Th is erroneous conception of the brain and of mathematics, in which intuition is 
 discouraged, leads to failure. Studies conducted in the United States by David Geary and 
his colleagues at the University of Missouri-Columbia indicate that about 6 %  of pupils 
are “mathematically disabled.” I cannot believe that a genuine neurological handicap 
aff ects that many children.   30  Although cerebral lesions can selectively impair mental 
 calculation, as we will see in Chapter 7, they are relatively infrequent. It seems more likely 
that many of these “mathematically disabled” children are normally abled pupils who 
got off  to a false start in mathematics. Th eir initial experience unfortunately convinces 
them that arithmetic is a purely scholastic aff air, with no practical goal and no obvious 

28  Baruk,     1973  ; Fuson,     1988   
29  Bisanz,     1999   
30  Geary,     1990  ; Shalev, Auerbach, Manor, & Gross-Tsur,     2000   
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meaning. Th ey rapidly decide that they will never be able to understand a word about it. 
Th e already considerable diffi  culties posed by arithmetic to any normally constituted 
brain are thus compounded by an emotional component, a growing anxiety or phobia 
about mathematics. 

 We can fi ght these diffi  culties if we ground mathematical knowledge on concrete 
 situations rather than on abstract concepts. We need to help children realize that math-
ematical operations have an intuitive meaning, which they can represent using their 
innate sense of numerical quantities. In brief, we must help them build a rich repertoire 
of “mental models” of arithmetic. Consider the example of an elementary subtraction, 
9  −  3 = 6. As adults, we know of many concrete situations to which this operation applies: 
a set scheme (a basket containing nine apples, from which one takes away three apples, 
now only has six), a distance scheme (in any board game, in order to move from cell 3 to 
cell 9, six moves are required), a temperature scheme (if it is 9 degrees and the tempera-
ture drops 3 degrees, then it will be only 6 degrees), and many others. All such mental 
models seem equivalent to our adult eyes, but they are not so to the child who must 
 discover that subtraction is the operation suited to all of them. Th e day the teacher 
 introduces negative numbers and asks pupils to compute 3 – 9, a child who only masters 
the set scheme judges this operation impossible. Taking 9 apples from 3 apples? Th at’s 
absurd! Another child who relies exclusively on the distance scheme concludes that 
3  −  9 = 6, because indeed the distance from 3 to 9 is 6. If the teacher merely maintains 
that 3  −  9 equals “minus six,” the two children run the risk of failing to understand 
the  statement. Th e temperature scheme, however, can provide them with an intuitive 
picture of negative numbers. Minus six degrees is a concept that even fi rst-graders 
can grasp. 

 Consider a second example: the addition of two fractions 1/2 and 1/3 .  A child who 
has in mind an intuitive picture of fractions as portions of a pie — half a pie, and then 
another third of a pie — will have little diffi  culty fi guring out that their sum falls just 
below 1. He or she may even understand that the portions must be cut into smaller, iden-
tical pieces (i.e., reduced to the same denominator) before they can be regrouped in order 
to  compute the exact total 1/2   +   1/3 = 5/6. In contrast, a child for whom fractions have 
no intuitive meaning, and are merely two digits separated by a horizontal bar, is likely to 
fall into the classic trap of adding the numerator and denominator: 1/2   +   1/3 = (1  +  1)/
(2  +  3) = 2/5! Th is error may even be justifi ed by a concrete model. Suppose that in the 
fi rst period, Michael Jordan scores once in two shots, for an average of 1/2 ,  and that in 
second period he scores once in three shots, for an average of 1/3 .  Over the entire game 
he would have scored twice in fi ve shots. Here is a situation in which 1/2 “plus” 1/3 
equals 2/5! When one teaches fractions, it is vital to let the child know that one has a 
“portion of pie” scheme in mind rather than a “scoring average” scheme. Th e brain is not 
content with abstract symbols: Concrete intuitions and mental models play a crucial role 
in mathematics. Th is is probably why the abacus works so well for Asian children; it pro-
vides them with a very concrete and intuitive representation of numbers. 
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 But let us leave this chapter with a note of optimism. Th e craze for “modern mathe-
matics,” based on a formalist vision of mathematics, is losing momentum in many 
 countries. In the United States, the national council of teachers of mathematics is now 
de-emphasizing the rote learning of facts and procedures and is focusing instead on 
 teaching an intuitive familiarity with numbers. In France — the country that was most 
directly struck by “Bourbakism” — many teachers no longer wait for a psychologists’ 
advice to tell them to head back to a more concrete approach to mathematics. Schools 
have slowly readopted concrete educational material such as Maria Montessori’s bicol-
ored bars, Seguin’s tables, unit cubes, ten bars, hundreds plaques, dice, and board games. 
Th e French Ministry of Education, aft er several reforms, seems to have dropped the idea 
of turning each schoolchild into a symbol-crunching machine. Number sense — indeed, 
common sense — is making a comeback. 

 In parallel to this welcome change, education psychologists in the United States have 
demonstrated empirically the merits of an arithmetic curriculum that stresses concrete, 
practical, and intuitive mental models of arithmetic. Sharon Griffi  n, Robbie Case, and 
Robert Siegler, three North American developmental psychologists, have joined eff orts 
to study the impact of diff erent educational strategies on children’s understanding of 
arithmetic.   31  Th eir theoretical analysis, like mine, emphasizes the central role played by an 
intuitive representation of quantities on the mental number line. On this basis, Griffi  n 
and Case designed the “RightStart” program, an arithmetic curriculum for kindergart-
ners that comprises entertaining numerical games with varied concrete pedagogical 
materials (thermometers, board games, number lines, rows of objects, etc.). Th eir goal 
was to teach children from low-income inner-city neighborhoods the rudiments of 
 arithmetic: “Th e central objective of the program is to enable children to relate the world 
of numbers to the world of quantity, and consequently to understand that numbers have 
meaning and can be used to predict, to explain, and to make sense of the real world.” 

 Most children spontaneously understand the correspondence between numbers and 
quantities. Underprivileged children, however, may not have grasped it before entering 
preschool. Lacking the conceptual prerequisites for learning arithmetic, they run the risk 
of losing ground in mathematics courses. Th e RightStart program attempts to set them 
back on the right path using simple interactive arithmetic games. For example, in one 
section of the program, children are invited to play a simple board game that teaches 
them to count their moves, to subtract in order to fi nd out how far they are from the goal, 
and to compare numbers in order to discover who is closest to winning the game. 

 Th e results are remarkable. Griffi  n, Case, and Siegler have tried their program in  several 
inner-city schools in Canada and the United States, mostly with immigrant children 

31  Griffi  n, Case, & Siegler,     1986  ; Griffi  n & Case,     1996  . See also Case,     1985  ,   1992  . For recent extensions, see 
Wilson, Dehaene et al.,     2006  ; Wilson, Revkin, Cohen, Cohen, & Dehaene,     2006  ; Ramani & Siegler,     2008  ; 
Siegler & Ramani,     2008  ; Siegler & Ramani,     2009  ; Wilson, Dehaene, Dubois, & Fayol,     2009   
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from low-income families. Children who were lagging behind their peers participated in 
forty 20-minute sessions of the RightStart program and were propelled to the top of their 
class as of the next semester. Th ey even outranked pupils with a better initial command 
of arithmetic, but who had followed a more traditional curriculum. Th eir advance was 
consolidated in the next school year. Th is extraordinary success story should bring some 
consolation to the teachers and parents who feel that their children are allergic to 
 mathematics. In fact, most children are only too pleased to learn mathematics if only 
one shows them the playful aspects before the abstract symbolism. Playing snakes and 
ladders may be all children need to get a head start in arithmetic.                                                                                 
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 one of the most romantic episodes in the history of mathematics occurred one morning 
in January 1913, when professor G. H. Hardy received a strange-looking letter from India.   1  
At thirty-six, Hardy was a renowned mathematician, probably England’s most brilliant. 
Professor at Trinity College in Cambridge, he had recently been elected a fellow of the 
Royal Society. Th ere, he oft en conversed on equal terms with minds as remarkable as 
Whitehead and Russell. So one can imagine his growing irritation as he skimmed through 
this letter posted in Madras. In rudimentary syntax, an unknown Indian named Srinavasa 
Ramanujan Iyengar requested his opinion on several theorems. 

  Despite his unforgiving contempt for amateur mathematicians, Hardy quickly 
became fascinated as he began to decipher with increasing attention his correspondent’s 
 mysterious mathematical formulas (Figure   6.1  ). Some were long-established theorems — 
but why on earth did the man present them as if they were his? Others were derived, 
sometimes via indirect routes, from deep mathematical results that Hardy knew very well 
for having personally contributed to them. Th e last few formulas, however, were unheard 
of, long strings of square roots, exponentials, and continuous fractions mixed in a unique 
cocktail whose origins remained incomprehensible. 

1  Kanigel,     1991   

 GENIUSES AND PRODIGIES         
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        An expert is a man who has stopped 

thinking — he knows! 

 frank lloyd wright  
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 Never had Hardy seen anything like this. It could not be a hoax: He was assuredly 
 confronted with a fi rst-rate genius. As he later explained in his autobiography,   2  “Th e 
 formulas had to be true because, if they were not, no one would have had the imagination 
to invent them.” Th e following day, Hardy resolved to help Ramanujan come to 
Cambridge. Th is was the starting point of an extremely fertile collaboration that 
 culminated with Ramanujan’s election to the Royal Society a few years later, and ended 
tragically with his death on April 26, 1920, at the age of 32. 

 One could argue, with only a pinch of irony, that Ramanujan’s genius overran Isaac 
Newton’s, because he had seen farther than any other mathematician without sitting on 
anybody’s shoulders. Born to a poor Brahmin family, Ramanujan had received only nine 
years of study at Kumbakonam’s local school, in South India, and had never obtained a 
university degree. Early on in his childhood, however, his genius was already apparent. 
He had rediscovered on his own the famous Euler formulas that link trigonometric and 
exponential functions, and by the time he was twelve he had already mastered S. Loney’s 
 Plane Trigonometry.  

 At sixteen, Ramanujan encountered a second book that decided his mathematical 
bent. It was G. S. Carr’s  Synopsis of Elementary Results in Pure and Applied Mathematics  — a 
compilation of 6,165 theorems with only sketchy demonstrations. By dint of studying 
this austere volume, and reinventing for himself the mathematics of past centuries, 
Ramanujan acquired a singular genius that no mathematician before or aft er him seems 
to have  possessed to the same degree: an uncanny sense of the right formula, a refi ned 
intuition of numerical relations. He was unmatched in his ability to envision novel 

2  Hardy,     1940   
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 arithmetical relations that nobody had dreamt of previously, and which he generally 
accepted on the basis of intuition alone — to the great despair of his fellow mathemati-
cians who, until very recently, have been at pains to provide rigorous proofs or refutations 
for the hundreds of formulas that fi lled his notebooks. 

 Ramanujan claimed that his theorems were “written on his tongue” during the night 
by the goddess Namagiri. On getting out of bed, he would oft en feverishly write down 
some unexpected result that would later stun his colleagues. Personally, I am rather 
 skeptical about the central role played by Indian divinities at the forefront of mathe-
matical research. But the ball is in the neuropsychologist’s court — can psychology or 
 neurology propose at least an embryo of an explanation for the extraordinary fertility of 
this unique mind? 

 Almost fi ft y years aft er Ramanujan’s death, England saw the birth of another genius 
whose talent was, in several respects, the exact parallel and yet the opposite of Ramanujan’s. 
Michael is a profoundly retarded autistic young man who was studied for years by two 
English psychologists, Beate Hermelin and Neil O’Connor.   3  As a child, he suff ered from 
macrocephalia and had convulsions that probably betrayed early brain damage. He was 
an upset and destructive child, oblivious to danger, who seemed to live in a shut-down 
and self-centered world. Never did he wave good-bye or point to objects — gestures that 
very young children normally acquire spontaneously. Never did he show any interest in 
the company of adults. 

 Although Michael is now in his twenties, he still cannot speak. He never learned sign 
language and shows no evidence that he understands words. His verbal IQ is not measur-
able in any test that requires the use of words. Even in a nonverbal test, his IQ only reaches 67 .  
He fails essentially on all tests tapping everyday knowledge of objects. 

 Why compare this severely handicapped autistic man with an Indian mathematical 
genius? Because despite his dramatic mental retardation, Michael is extraordinarily 
 conversant in arithmetic. Around the age of six, he learned to copy some letters and the 
ten Arabic digits. Since then, adding, subtracting, multiplying, dividing, and factoring 
numbers have been his favorite pastimes. Money clocks, calendars, and maps also fasci-
nate him. When measured with logical tests, his IQ reaches 128, way above the normal 
mean. Here is a young man who cannot name a car or a rabbit, but who immediately 
perceives that 627 can be decomposed into 3  ×  11  ×  19! It takes Michael only a little over 
one second to determine that a three-digit number is prime (which means that it cannot 
be expressed as the product of two smaller numbers). A psychologist with a mathematics 
diploma who attempted this task took ten times longer. 

 How can one be mute, mentally retarded, and a lightning calculator? How can one 
grow up in a poor Indian family and become a top-level mathematician with only the 

3  Hermelin & O’Connor,     1990  . See also O’Connor & Hermelin,     1984  ; Hermelin & O’Connor,     1986b  ,   1986a  ; 
Howe & Smith,     1988   
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help of two books largely devoid of demonstrations? Psychologists now know hundreds 
of “idiot savants” similar to Michael throughout the world. Some can tell you the day of 
the week for any past or future calendar date. Others can mentally add two 6-digit num-
bers in less time than it would take us to dial them on a phone. Yet these people are oft en 
totally devoid of social intelligence and may even lack language. Does not the very 
 existence of such prodigies jeopardize the theory that I sketched in previous chapters? 
How do they escape the calculation diffi  culties that we are all confronted with? What is 
the nature of the “sixth sense” that confers on them such a soundness of intuition in the 
numerical domain? Should we grant them a special form of cerebral organization, an 
innate gift  for arithmetic?     

   A Numerical Bestiary   

 Th e role of memory in mathematics is easily underestimated. Each of us unconsciously 
garners hundreds of numerical facts — consider, for instance, the evocative power of the 
numbers 1492, 800, 911 or 2000. Th e size of this numerical memory store is undoubtedly 
one of calculating prodigies’ main strengths. Th eir familiarity with numbers is so refi ned 
that, for them, hardly any number is random. What appears to us as an ordinary series of 
digits assumes a singular meaning for them. As explained by the lightning calculator 
G. P. Bidder:   4  “Th e number 763 is represented symbolically by three fi gures 7–6–3; but 
763 is only one quantity, one number, one idea, and it presents itself to my mind just as 
the word ‘hippopotamus’ presents the idea of one animal.” 

 Each calculating genius maintains a mental zoo peopled with a bestiary of familiar 
numbers. Being on familiar terms with numbers, knowing them inside out, is the  hallmark 
of these expert arithmeticians. “Numbers are friends to me, more or less,” says Wim Klein. 
“It doesn’t mean the same for you, does it, 3.844? For you it’s just a three and an eight and 
a four and a four. But I say: ‘Hi, 62 squared!’ ” 

 Abundant biographical anecdotes confi rm the extreme familiarity with which great 
mathematicians manipulate the tools of their trade, be they numbers or geometrical 
 fi gures. Th e following dialog took place between Hardy and Ramanujan while the Indian 
mathematician was slowly dying of tuberculosis in a sanitarium.   5  “Th e taxi that I hired to 
come here bore the number 1729,” said Hardy. “It seemed a rather dull number,” “Oh no, 
Hardy,” retorted Ramanujan. “It is a captivating one. It is the smallest number that can be 
expressed in two diff erent ways as a sum of two cubes” — 1.729 = 1 3    +  12 3  = 10 3    +  9 3 ! 

 Gauss, another exceptional mathematician, as well as a calculating prodigy, is credited 
with a similar performance at a young age. His teacher asked his class to add all numbers 

4  Th is and subsequent citations are from Smith,     1983   
5  Kanigel,     1991   



Geniuses and Prodigies  133

from 1 to 100, probably hoping to keep his pupils quiet for a half-hour. But little Gauss 
immediately raised his slate with the result. He had rapidly perceived the symmetry of the 
problem. By “mentally folding” the number line, he could group 100 with 1, 99 with 2, 
98 with 3, and so on. Hence the sum was reduced to 50 pairs, each totaling 101, for a 
grand total of 5.050. 

 Th e French mathematician François Le Lionnais stresses how “the aptitudes for mental 
calculation and for mathematics  …  have in common a certain sensibility to what I shall 
call the personality of each number.” In 1983, Le Lionnais published a little book called 
Remarkable Numbers,  in which he listed several hundred numbers with special mathe-
matical properties.   6  His fascination for numbers started at the age of fi ve. Aft er studying 
the multiplication table printed on the back of his notebook, he was awed to discover 
that the multiples of 9 ended with the digits 9, 8, 7, 6, and so on (as in 9, 18, 27, 36 ,  etc.; 
can you see why?). As a schoolboy, a student, and eventually as a professional mathe-
matician, he spent the rest of his life hunting for genuinely “odd” numbers and other deep 
mathematical results. His fi les were lost when he was deported to a German camp during 
World War II, but he started all over again from memory and added ever more gems to 
his collection, year aft er year. 

 In the end, his list of remarkable numbers reveals a signifi cant amount of what a 
top-level mathematician must know in arithmetic. Most of his bestiary will remain 
 forever opaque to the profane. For instance, 244,823,040, one of the few numbers to 
which he grants three stars, is described by him in standard mathematical language as “the 
order of group M 24 , the ninth sporadic group, an example of which is the group of Steiner 
automorphisms with indices (5,8,24)” — a defi nition that leaves most of us cold! Here are 
some of the most accessible monuments in this Fodor’s guide to the number line:  
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•   the famous “golden section” that supposedly underlies many works of art, such as 
the Parthenon. Enter it in your pocket calculator and then press the “1 /x” or “x 2

keys. Th e result will surprise you.  
•   4: the minimum number of colors needed to color any planar map so that no 

two neighboring countries have the same color. Not unlike Kasparov’s loss in 
chess to an IBM computer, the “four-color theorem” is famous in mathematics 
for marking the limits of human reasoning: Its proof calls for the successive 
examination of so many special cases that only a computer can complete it.  

6  Le Lionnais,     1983   
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•   81: the smallest square that can be decomposed into a sum of three squares 
(9 2  = l 2    +   4 2    +   8 2 ).  

•    ep 163    a real number that falls remarkably close to an integer: Its fi rst twelve 
decimals are all 9s (another of Ramanujan’s contributions).  

•   Th e number formed by writing down 317 times the digit 1, which is a prime  
•   1,234,567,891, also a prime  
•   And even 39, the smallest integer with no remarkable mathematical properties —

 which, as Le Lionnais himself notes, raises a paradox: Doesn’t it make number 39 
remarkable aft er all?         

   The Landscape of Numbers   

 As one browses through Le Lionnais’s surrealist inventory, one cannot but think that 
some mathematicians must be more familiar with the number line than with their own 
backyards. Indeed, the metaphor of a “panorama of mathematics” seems particularly apt 
at capturing their vivid introspection. Most of them feel that mathematical objects have 
an existence of their own, as real and tangible as that of any other object. Says Ferrol, a 
well-known calculating prodigy: “I oft en feel, especially when I am alone, that I dwell in 
another world. Ideas of numbers take on a life of their own. Suddenly, questions of any 
kind rise before my eyes with their answers.” 

 Th e same conception is found in the writings of the French mathematician Alain 
Connes:   7  “Exploring the geography of mathematics, little by little the mathematician 
perceives the contours and structure of an incredibly rich world. Gradually he develops a 
sensitivity to the notion of simplicity that opens up access to new, wholly unsuspected 
regions of the mathematical landscape.” 

 Connes thinks that expert mathematicians are endowed with a clairvoyance, a fl air, a 
special instinct comparable to the musician’s fi ne-tuned ear, or to the wine taster’s experi-
enced palate, that enables them to directly perceive mathematical objects: “Th e evolution 
of our perception of mathematical reality causes a new sense to develop, which gives us 
access to a reality that is neither visual nor auditory, but something else altogether.” 

 In  Th e Man Who Mistook His Wife for a Hat,  Oliver Sacks describes two autistic twins 
whom he once caught exchanging very large prime numbers. His interpretation also 
appeals to a certain “sensibility” about the mathematical world:   8  

 Th ey are not calculators, and their numeracy is “iconic.” Th ey summon up, they 
dwell among, strange scenes of numbers; they wander freely in great landscapes of 

7  Changeux & Connes,     1995   
8  Sacks,     1985  . Note that the reality of the twins’ feat has been severely criticized by Yamaguchi,     2009   
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numbers; they create, dramaturgically, a whole world made of numbers. Th ey have, 
I believe, a most singular imagination — and not the least of its singularity is that 
it can imagine only numbers. Th ey do not seem to “operate” with numbers non-
iconically, like a calculator; they “see” them directly, as a vast natural scene.   

 For René Th om, the renowned creator of the mathematical theory of catastrophes, an 
intuitive perception of mathematical spaces is so essential that any mathematician who 
reaches the limits of his intuition feels unspeakable anxiety: 

 “I do not feel easy with infi nite dimensional spaces. I know that these are well-
charted mathematical objects, whose many states are perfectly known, yet I do not 
like to be in a space with infi nitely many dimensions.” (Is it distressing?) “Certainly  … . 
It is a space, precisely, that defi es intuition.”   9    

 One can almost hear Pascal — another precocious mathematical prodigy — who stated 
in his  Pensées:  “Th e eternal silence of these infi nite spaces frightens me.” 

 Th e tight link between mathematical and spatial aptitudes has oft en been empirically 
demonstrated. Strong correlation exists between a person’s mathematical talent and his 
or her scores on spatial perception tests, almost as if they were one and the same ability. 
Beate Hermelin and Neil O’Connor   10  recruited a group of children between 12 and 14, 
who were judged by their teachers as particularly gift ed in mathematics. Th ey presented 
the children with problems that challenged their sense of spatial relations. Here is a small 
selection:  

    •   How many diagonals can one draw on the surface of a cube?  
    •   A painted wooden cube with a 9-centimeter edge is cut up into little cubes with 

a 3-centimeter edge each. Th ere are thus twenty-seven such little cubes. How 
many of them will have only two painted sides?     

 Mathematically talented children were brilliant in this test. Th eir classmates with a 
standard level of achievement in mathematics, although they had an equivalent overall 
IQ, obtained fl atly lower scores — even those that were remarkably gift ed in the arts. But 
perhaps it is not surprising that spatial competence correlates so strongly with success in 
mathematics. Ever since Euclid and Pythagoras, geometry and arithmetic have been 
tightly linked. Establishing a spatial number map is a fundamental operation in the 
human brain. As we will see later on, the cerebral areas that contribute to number sense 
and to spatial representations occupy neighboring convolutions. 

 9  Th om,     1991   
10  Hermelin & O’Connor,     1986b   
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 Many mathematical geniuses have claimed to possess a direct perception of mathe-
matical relations. Th ey say that in their most creative moments, which some describe as 
“illuminations,” they do not reason voluntarily, nor think in words, nor perform long 
formal calculations. Mathematical truth descends on them, sometimes even during sleep, 
as in Ramanujan’s case. Poincaré oft en declared that his intuitions convinced him of the 
veracity of a mathematical result, although it later took him hours of calculation to prove 
it formally. But it is probably Einstein himself who, in a letter published by Hadamard in 
his famous  Essay on the Psychology of Invention in the Mathematical Field,  articulated 
most clearly the role of language and intuition in mathematics:   11  “Words and language, 
whether written or spoken, do not seem to play any part in my thought processes. Th e 
psychological entities that serve as building blocks for my thought are certain signs or 
images, more or less clear, that I can reproduce and recombine at will.” 

 Th is conclusion would certainly not be challenged by Michael, the lightning-fast 
 autistic calculating genius who lacks language. Great mathematicians’ intuitions about 
numbers and other mathematical objects do not seem to rely so much on clever symbol 
manipulations as on a direct perception of signifi cant relations. In that respect, calculat-
ing prodigies and talented mathematicians perhaps diff er from the average human being 
only in the size of the repertoire of number facts that they can mobilize in a fraction of a 
second. In Chapter 3, we saw how all humans are endowed with an intuitive representa-
tion of numerical quantities, which is automatically activated whenever we see a number, 
and which specifi es that 82 is smaller than 100 without requiring any conscious eff ort. 
Th is “number sense” is embodied in a mental number line oriented from left  to right. 
Only 5 %  to 10 %  of people experience it consciously as a spatial extension with varied 
colors and a twisted shape. Perhaps the great human calculators are one step further on 
this continuum. Th ey seem to also oft en perceive numbers as a spatially extended domain, 
but with an even greater resolution and an amazing wealth of detail. In the mind of the 
calculating prodigy, each number does not just light up as a point on a line, but rather as 
an arithmetical web with links in every direction. Faced with the number 82, Ramanujan’s 
brain instantly evokes 2  ×  41, 100  −  18, 9 2   +  l 2 , and sundry other relations that are as obvi-
ous to his eyes as “smaller than 100” is to ours. 

 We still have to explain, however, where this prodigious intuitive memory of numbers 
comes from. Is it an innate gift , product of an unusual form of cerebral organization? Or 
does it merely result from years of training in arithmetic?     

11  Hadamard,     1945   
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   Phrenology and the Search for Biological Bases of Genius   

 Scientists have long been intrigued by calculating prodigies. Several theories accounting 
for their genius, many of them eccentric, have been put forward in the popular press. 
Popular candidates are gift s of God, inborn knowledge, thought transmission, or even 
reincarnation. Even Alfred Binet, the famous psychologist who invented the fi rst intelli-
gence tests, conformed to this all-out search for an explanation. In 1894, in his infl uential 
book on  Th e Psychology of Great Calculators and Chess Players,  which is still frequently 
cited, he discusses the origins of the talent of perhaps the most famous calculator of that 
time, Jacques Inaudi.   12  Binet then cites, “with all the reservations that one might expect,” 
the following anecdote: 

 It appears that Inaudi’s mother, while pregnant, went through psychological 
 hardship. She watched her husband squander their meager fortune and foresaw 
that money would soon be lacking to face the many bills that were soon falling 
due. Fearing that their possessions might be seized, she computed mentally how 
much she should save to honour their commitments. Her days were spent buried in 
numbers, and she had become a calculating maniac.   

 Binet, being a conscientious scientist, dutifully asked himself: “Is this report accurate? 
And if so, could the mother’s mental state have had any real infl uence on her son?” Th at 
Binet took this issue so seriously shows clearly how the Lamarckian theory of the inheri-
tance of acquired traits was still very much alive in 1894, despite the publication of 
Darwin’s  Origins of Species  in 1859. 

 In fact, earlier in the nineteenth century, a scientifi c theory of intellectual talent had 
already been proposed, and was a recurring topic of intense discussions — the phreno-
logical theory of mental organs. As early as 1825, Franz-Joseph Gall published his 
theory of “organology,” later christened “phrenology” by Johann Caspar Spurzheim. His 
 proposal clearly affi  rmed a materialistic vision of mind and brain that, although oft en 
ridiculed, had a profound infl uence on many eminent neurophysiologists, among them 
Paul Broca and John Hughlings Jackson. Gall’s organology postulated a division of the 
brain into a large number of specialized regions constituting as many independent innate 
“mental organs.” Each organ supposedly subtended a precise mental faculty: the instinct 
of reproduction, the love of one’s progeny, the memory for things and facts, the language 
instinct, the memory of persons, and so on. Twenty-seven faculties, which were quickly 
extended to 35 in later versions of the theory, were assigned to specifi c cerebral territories, 

12  Binet,     1981   
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oft en on a purely fanciful basis. In this list, the “sense of number relations” fi gured amid 
the many organs that were attributed to frontal brain areas (Figure   6.2  ).  

 Given that mental faculties were innate, how could one explain their variability from 
one individual to the other? Gall postulated that the relative size of cerebral organs 
 determined each person’s mental dispositions. In great mathematicians, Gall reasoned, 
the amount of tissue dedicated to the organ of number relations was way above average. 
Of course, the size of cerebral convolutions was not directly accessible to measurement. 
But Gall proposed a simplifying assumption: Th e cranial bone, shaped by cortex during 
its growth, directly refl ected the size of the underlying organs with humps and hollows. 
Mathematical talent could therefore be detected during childhood by “craniometry,” the 
measurement of the deformations of the cranium. In contemporary French, a popular 
saying for a person highly talented in mathematics is that he or she has a “bump for 
math” — an expression directly inherited from phrenology. 

 Under the infl uence of Gall’s theory, nineteenth-century scholars expended 
 considerable eff ort on comparing the size and shape of skulls from people of diff erent 
races, occupations, and intellectual levels — a scientifi c epic that Stephen Jay Gould has 

     figure 6.2.  A highly fi gurative vision of the various cerebral organs postulated by phrenologists. 
Th e “sense of numerical relations,” better known as the “math bump,” was arbitrarily placed, behind 
the eye.    
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brilliantly narrated in  Th e Mismeasurement of Man.   13   Many renowned scientists fell under 
the spell of this fad and bequeathed their heads to science so that, in a morbid postmor-
tem competition, the volume of their brain matter could be compared to that of collea-
gues and average men. In Paris, the  Société Anthropologique  dedicated numerous sessions 
to Georges Cuvier, the famous French zoologist and paleontologist. Th e dimensions of 
his skull, and even of his hat, fueled a heated debate between Broca, an ardent supporter 
of craniometry, and Gratiolet, who contested it. Gauss’s brain, which was of an average 
weight but was thought to have more convolutions than an ordinary German worker’s 
brain, seemed to support Broca (Figure   6.3  ). Broca also noted, according to Binet, that 
“the young Inaudi’s head was very bulky and irregular,” while Charcot himself found “a 
slight protrusion of the right frontal hump and, on the back, a left  parietal protrusion” 
as well as “a longitudinal crest of 0 m. 02 formed by the raised right parietal bone.” Th e 
purported smaller size of the encephalon in “Negroes,” women, and gorillas was inter-
preted as an additional proof of the tight correlation between brain size and intelligence. 

13  Gould,     1981   

     figure 6.3.  A drawing dating from the end of the nineteenth century shows many more 
convolutions in the brain of the genial mathematician Carl Friedrich Gauss than in an “average” 
German worker — an unlikely diff erence that probably owes more to the engraver’s imagination 
and selection biases than to real cerebral anatomy.    
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Needless to say, all these analyses were fraught with blatant errors that Gould, among 
others, has repeatedly denounced.  

 A century and a half later, what remains of phrenology and craniometry? Although 
some racists from all political sides periodically attempt to revive it, the hypothesis of a 
direct link between brain size and intelligence has been refuted time and again. (Gall’s 
brain itself weighted only 1,282 grams, or 520 grams less that Cuvier’s!) Th e legacy of 
Gall’s organology however, is less clear-cut. In fact, the functional specialization of 
 cerebral areas is no longer a disputed hypothesis. It is now an established fact that every 
square millimeter of cortex contains neurons highly specialized for processing specifi c 
information. Indeed, we will see later how cerebral lesion studies and new methods of 
functional brain imaging now enable neuroscientists to draw up a sketchy map of the 
cerebral networks involved in mental calculation. 

 While these recent results undoubtedly surpass Gall’s and Spurzheim’s wildest dreams, 
they do not confi rm their theory of the localization of “mental faculties.” Contrary to 
phrenological theory, modern images of the brain never pinpoint a complex faculty such 
as language or calculation to a single, monolithic brain area. On contemporary maps of 
the brain, only very elementary functions — the recognition of a fragment of a face, the 
invariance of color, or the command of a motor gesture — can be assigned to a narrow 
cerebral region. Th e simplest mental act, such as reading a word, requires the orchestra-
tion of multiple assemblies of neurons distributed in diverse brain regions. It will never be 
possible to isolate  the  language area, even less the convolution that controls abstract 
thought, or the region specialized in religious devotion — with all due respect to the 
researchers who still pursue the search for an area in charge of consciousness or  altruism! 

 Another durable, though dubious, legacy from Gall’s theory is the hypothesis that intel-
lectual talent derives from an inborn gift , a biological predisposition to genius. In 1894, 
Binet thought that an “innate aptitude” accounted for the achievements of  calculating 
prodigies. “Th e emergence of their faculty recalls a sort of spontaneous generation,” he 
affi  rmed.   14  Yet, the study of gift ed and retarded children later changed his mind. A decade 
later, he denied that intelligence was innate and became an ardent supporter of special 
education as a means of compensating for mental retardation. To many other scientists, 
however, the concept of an “innate gift ” was hard to kill. Even today, one of the foremost 
experts on “idiot savants,” Neil O’Connor, perpetuates this tradition, going as far as to 
state that “the abilities involved [in autistic prodigies] are like innate programs of skill 
which come about independently of any eff ort of learning.” 

 Th e belief that intellectual abilities are biologically determined is deeply anchored in 
Western thought, especially in the United States. To take just one example, psychologists 
Harold Stevenson and Jim Stigler have studied how American and Japanese parents 
rate the infl uence of their children’s eff orts versus inborn abilities in their performance 

14  Binet,     1981   
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at school.   15  In Japan, the amount of eff ort and the quality of teaching are heralded as the 
most critical parameters. In the United States, on the other hand, most parents and even 
children themselves consider that success or failure in mathematics depends mostly on 
one’s innate talents and limitations. A nativist bias is perceptible even in our vocabulary 
when we speak of talent as a “gift ” (from whom?) or a “disposition” (set by whom?). Th e 
word “talented,” indeed, is oft en considered as the opposite of “hardworking.” 

 Until recently, even the supporters of nativist theories of intelligence scoff ed at Gall’s 
simplistic hypothesis that talent was directly proportional to the size of certain cerebral 
convolutions. In the last few years, however, this organological conception has made a 
surprising comeback in the forefront of neuroscience research. Two articles in the best 
international scientifi c journals have reported that high levels of musical competence are 
accompanied by an unusual extension of certain cortical areas. In musicians with perfect 
pitch — the ability to accurately identify the absolute pitch of a single note — a region of 
left -hemispheric auditory cortex named the  planum temporale  appears to be larger than 
that of control subjects who are devoid of this talent, regardless of whether or not they 
play an instrument.   16  And in string players, the region of the sensory cortex dedicated to 
the tactile representation of the fi ngers of the left  hand shows an exceptional expansion.   17  
Has musical talent been mapped? 

 In fact, such correlational data do not necessarily support nativist theories  à la  Gall. 
Studies of brain plasticity have revealed that experience may deeply modify the internal 
organization of brain areas. Th e architecture of the adult brain results from a slow process 
of epigenesis that extends beyond puberty, and during which cortical representations 
are modeled and selected as a function of their use for the organism. Practicing the violin 
for several hours a day since early childhood may, therefore, substantially alter a young 
musician’s neuronal networks, their extension, and perhaps even their macroscopic 
 morphology. Th is is considered the most likely explanation for the expansion of soma-
tosensory cortex in string players, because the younger the age at which the instrument 
was played, the greater the eff ect. Similar radical experience-dependent alterations in 
 cortical topography have been repeatedly observed in the sensory cortex of monkeys.   18  
Modern neuroscience thus completely overturns Gall’s hypothesis. Phrenologists 
 considered the cortical surface allocated to a given function as an innate parameter that 
ultimately determined our level of competence. Quite the contrary, neuroscientists now 
think that the time and eff ort one dedicates to a domain modulates the extent of its 
 representation in the cortex. 

15  Stevenson & Stigler,     1992   
16  Schlaug, Jancke, Huang, & Steinmetz,     1995   
17  Elbert, Pantev, Wienbruch, Rockstroh, & Taub,     1995   
18  Jenkins, Merzenich, & Recanzone,     1990   
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 A decade ago, new studies of Einstein’s brain aroused the attention of the media. Most 
anatomical measures of that mythical organ, which is preserved in a jar of formaldehyde, 
were disappointing: Th e inspired founding father of modern physics seemed to be 
equipped with a very unexceptional encephalon. Its weight, for instance, was only about 
1,200 grams, which is not much even for an old man. However, in 1985, two researchers 
reported an above-average density of glial cells in a posterior region of the brain called 
the  angular gyrus,  or  Brodmann’s area 39 , which belongs to the inferior parietal lobule.   19  
Th is area, as we shall see later on, plays a critical role in the mental manipulation of 
numerical quantities. Hence, it was perhaps not unreasonable that its cellular organiza-
tion should distinguish Einstein from average humans. Had the biological cause of 
Einstein’s excellence fi nally been exposed? 

 In fact, this research is plagued by the same ambiguities as the studies of musicians’ 
cortical topography. Even granting that Einstein’s cellular density exceeded the normal 
variability between individuals, which is not yet proved, how can one separate causes 
from consequences? Einstein may have been endowed from birth with a phenomenal 
number of inferior parietal cells, predisposing him to learn mathematics. But in the 
 current state of our knowledge, the opposite seems equally plausible: Th e constant use of 
this cerebral region may have deeply modifi ed its neuronal organization. Ironically 
enough, the biological determinants of relativity theory, if any, are thus forever lost in this 
chicken-and-egg conundrum. Who said that all was relative?     

   Is Mathematical Talent a Biological Gift?   

 One argument that has oft en been exploited to validate the search for the genetic bases of 
mathematical talent derives from the correlation between the mathematical achieve-
ments of siblings, especially between Homozygous twins.Homozygous twins, who have 
the same genotype, oft en seem to exhibit similar levels of performance in mathematics. 
Heterozygous twins, who share only half of their genes, appear to be more variable; occa-
sionally, one soars in mathematics while the other stays at a mediocre level. By comparing 
achievement across many pairs of homozygotic and heterozygotic twins, a measure of 
“heritability” can be computed. According to studies conducted in the 1960s by Steven 
Vandenberg, heritability in arithmetic would amount to about 50 %  — implying that 
about half the variance in arithmetical performance is due to genetic diff erences among 
individuals.   20  

19  Diamond, Scheibel, Murphy, & Harvey,     1985  . Th e tribulations of Einstein’s brain continue to this day. See 
Anderson & Harvey,     1996  ; Witelson, Kigar, & Harvey,     1999   

20  Vandenberg,     1962  ,   1966   
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 Th is interpretation, however, remains hotly contested. Indeed, the twins method is at 
the mercy of many trivial infl uences. For instance, studies have shown that homozygotic 
twins receive identical education, in the same classroom, with the same teacher, more 
oft en than heterozygotic twins.   21  Th e fact that they are similarly talented may thus be due 
to the shared features of their education, rather than to their genes. Another potential 
confound: In their mother’s uterus, close to 70 %  of homozygotic twins share a single 
placenta or a single set of membranes. Th is, of course, is never the case for heterozygotic 
twins, who are born from two separate ova. Th us, the comparable biochemical composi-
tion of the uterine environment may perhaps impose common regularities on the 
 developing brains of homozygotic twins. Finally, even if the genetic heritability of math-
ematical talent were proved, the twins method provides no indication of the genes 
involved. Th ese could very well have no direct relation to mathematics. To take an extreme 
example, suppose that a gene infl uences body size. It could have a negative infl uence on 
mathematical abilities simply because its bearers play basketball more oft en, and their 
mathematics education suff ers! 

 In the search for the biological bases of mathematical talent, another intriguing though 
ambiguous cue is provided by diff erences between men and women. High-level mathe-
matics are almost exclusively a masculine realm. Of the 41 calculating prodigies described 
by Steven Smith in his well-documented book on great mental calculators, only three are 
female. In the United States, Camilla Benbow and her colleagues have administered a test 
initially designed for teenagers, the Scholastic Aptitude Test for Mathematics (SAT-M), 
to a large group of 12-years-olds.   22  Th e average grade is usually around 500 points. For 
every girl who already exceeds this score in her twelft h year, two boys do. Th is ratio 
reaches 4:1 when the grade is raised to 600 points, and to 13:1 beyond 700 (Figure   6.4  ). 
Hence, the proportion of males increases dramatically as one considers increasingly 
bright populations of mathematical students. Th is advantage for males is observed in 
all countries, from China to Belgium. Men’s supremacy in mathematics is a worldwide 
 phenomenon.  

 Th e importance of this phenomenon for the general population must be qualifi ed, 
however. Only the mathematical elite is almost exclusively made up of men. In the popu-
lation as a whole, men’s supremacy is weaker. Th e impact of gender on a psychological test 
is measured statistically by dividing the mean diff erence between men and women by the 
dispersion of the scores within each gender. In adolescents, this value typically does not 
exceed one-half, meaning that the distributions of male and female scores overlap consid-
erably: One-third of the men fall below the average female score, or, conversely, one-third 
of the women fall above the average male score. Th e male advantage also varies with the 

21  For an in-depth discussion of gender eff ects in mathematics and for further references, see Benbow,     1988   and 
Hyde, Fennema, & Lamon,     1990  ; see also Benbow, Lubinski, Shea, & Eft ekhari-Sanjani,     2000   

22  Benbow,     1988   
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content of the tests. In mathematical problem solving, men clearly take the lead, but in 
mental calculation, women rank fi rst by a narrow margin. Finally, while a discrepancy 
between boys and girls emerges from preschool on, no systematic advantage seems detect-
able before schooling starts. Babies’ precocious abilities for arithmetic, in particular, are 
no more prevalent in males than in females. 

 In spite of these qualifi cations, the male hegemony in high-level mathematics raises 
important issues. Mathematics serves as a fi lter at several critical stages in our educational 
systems, and each time, more boys make it than girls. In the end, our society leaves women 
few opportunities to acquire top-level training in mathematics, physics, or engineering. 
Sociologists, neurobiologists, and politicians alike would like to know whether this 
 distribution of educational resources justly refl ects the natural talents of each gender, or 
whether it merely serves to perpetuate the biases of our male-governed society. 

 No doubt, many psychological and sociological factors disfavor women in mathe-
matics. Surveys have shown that, on average, women show greater anxiety than men in 
mathematics courses; they are less confi dent in their capacities; they view mathematics as 
a typically masculine activity that will be of little use in their professional careers; and 
their parents, especially their fathers, share this feeling. Of course, these stereotypes 
aggregate into a self-fulfi lling prophecy. Young women’s lack of enthusiasm for mathe-
matics, and their conviction that they will never shine in this domain, contribute to their 
neglect of mathematics courses and, hence, their lower level of competence. 

 Very similar stereotypes account for the discrepancies in mathematical achievement 
according to social class. I am convinced that the prejudices that our societies convey 
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     figure 6.4 .  In Camilla Benbow’s sample of talented seventh-grade students, standard aptitude 
tests reveal a small but consistent advantage for males over females in mathematics. Verbal scores, in 
contrast, are distributed identically for males and for females.   
 (Reprinted from Benbow   1988   by permission of the publisher; copyright  ©  1988 by Cambridge University Press.)    
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about mathematics are largely responsible for the gap that separates the mathematical 
scores of men and women, as well as those of rich and poor — a gap that could partially be 
fi lled by political and social changes in attitudes toward mathematics. In China, for 
instance, the most gift ed female teenagers obtain mathematical scores that exceed not 
only those of American female teenagers, but also those of American  male  teenagers — a 
clear proof that the diff erence between men and women is small compared to the impact 
of educational strategies. A recent meta-analysis of dozens of publications suggests that 
the average gap between American men and women has been reduced by one-half during 
a 30-year period, an evolution that parallels the concomitant improvement in the female’s 
status over the same period. 

 Th is being said, do biological gender diff erences play any role in the remaining gap? 
Although no clear neurobiological or genetic determinants of the male advantage in 
mathematics have been found yet, a bundle of convergent clues fuels a growing suspicion 
that biological variables do contribute to mathematical talent, however remotely. In a 
population of children exceptionally gift ed in mathematics, one fi nds thirteen boys for 
one girl. Compared to an unselected group of boys and girls, gift ed children are also twice 
as likely to suff er allergies, four times as likely to be myopic, and twice as likely to be 
left -handed. More than 50 %  of these budding mathematicians are either left -handers or 
ambidextrous, or are right-handers with left -handed siblings. Finally, 60 %  of them are 
fi rst-born children. Obviously, the archetype of the scholar as a single child, gauche, 
sickly, and wearing glasses is not totally unfounded! 

 One might perhaps explain away the association of myopia with mathematical talent 
by appealing to some attitudinal cause — maybe short-sighted children delve into mathe-
matics books more willingly because they are poor at, say, baseball. A similar argument 
might be proposed for birth order: Perhaps fi rst-borns receive a subtly diff erent  education 
that somehow encourages mathematical thinking. But allergies and handedness do not 
easily lend themselves to such a “soft ” explanation. Furthermore, there are conclusive, 
though admittedly more extreme, cases in which mathematical capacities are clearly 
aff ected by a sex-related neurogenetic anomaly. For instance, a majority of calculating 
prodigies of the “idiot savant” kind suff er from autism, a neurological disease that strikes 
boys four times more oft en than girls. Indeed, autistic symptoms are associated with 
genetic anomalies of the X chromosome, such as the “fragile X” syndrome. Conversely, 
Turner’s syndrome is a genetic disease that aff ects only women, and is linked to a missing 
X chromosome. As it turns out, in addition to certain physical malformations, women 
with Turner’s syndrome suff er from a profound and specifi c cognitive defi cit in 
 mathematics and in the mental representation of space, even though their IQ may be at a 
normal level.   23  Th eir handicap is caused, in part, by an abnormally feeble secretion of sex 

23  Mazzocco,     1998  ; for recent research using both behavioral and brain-imaging analyses, see Molko et al.,     2003  ; 
Bruandet, Molko, Cohen, & Dehaene,     2004  ; Molko et al.,     2004   
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hormones due to an atrophy of the ovaries. Indeed, early hormonal treatment is known 
to improve their mathematical and spatial performance. 

 We still do not have a satisfactory explanation for these mysterious links between 
gender, the X chromosome, hormones, handedness, allergies, birth order, and mathe-
matics. All we can do today is paint an impressionist picture of some of the more plausible 
causal chains — which some scientists have dubbed “just so stories”! According to neurop-
sychologist Norman Geschwind and his colleagues,   24  exposure to an elevated level of 
 testosterone during gestation might simultaneously aff ect the immune system and the 
diff erentiation of the cerebral hemispheres. Testosterone may slow down the develop-
ment of the left  hemisphere. One can imagine that the likelihood of being left -handed 
should then increase, as should the ability to manipulate mental representations of space, 
a function that is more dependent on right-hemispheric processing. Th is refi ned sense of 
space, in turn, would ease the manipulation of mathematical concepts. Because testos-
terone is a male hormone, this putative cascade of eff ects could have stronger conse-
quences for males than females. Not implausibly, either, it may also be under the partial 
genetic control of the X chromosome, which may account for the heritability of mathe-
matical and spatial dispositions. 

 Among the bundles of clues that gravitate around this still-fuzzy scenario are these: 
Androgens are known to directly infl uence the organization of the developing brain; 
alterations of the processing of space and mathematics have been demonstrated in  subjects 
exposed to an abnormal level of sex hormones during development, as well as in females 
at various points in the menstrual cycle; in rats, the spatial abilities of hormonally treated 
females exceed those of untreated females, and catch up with those of untreated males; 
and, fi nally, the concentration of sex hormones in the womb is higher during the fi rst 
pregnancy (remember that the majority of mathematical prodigies are fi rst-born). Shaped 
in this variable hormonal bath, the male brain is probably organized slightly diff erently 
from the female brain. Neuronal circuits may be subtly altered in a manner that remains 
largely unknown so far, but which may explain men’s slightly swift er motility in abstract 
mathematical spaces. 

 It is frustrating to be unable, given the current state of knowledge, to go beyond 
 theoretical fuzziness and to exhibit a simple, determinist account of mathematical talent. 
But it would surely be naive to expect direct links from genes to genius. Th e gap is so wide 
that it can only be fi lled by a multiplicity of twisted causal chains. Genius emerges from 
an improbable confl uence of multiple factors — genetic, hormonal, familial, and educa-
tional. Biology and environment are intertwined in an unbreakable chain of causes and 
eff ects, annihilating all hopes of predicting talent through biology, or of giving birth to a 
baby Einstein by crossbreeding two Nobel Prize winners.     

24  Geschwind & Galaburda,     1985   
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   When Passion Produces Talent   

 Th e limits of a biological account of talent are nowhere more evident than in the case of 
those remarkable children pejoratively called “idiot savants” and who exhibit a minuscule 
island of genius in an ocean of incompetence. Consider the case of Dave, a 14-year-old 
boy who has been studied by Michael Howe and Julia Smith.   25  In an instant, Dave can 
give the day of the week corresponding to any past or future date. But his IQ does not 
reach 50, he reads at the level of a 6-year-old, and he hardly speaks. Moreover, unlike 
Michael, whom I described earlier in this chapter, Dave knows close to nothing about 
mathematics. He is even totally unable to multiply. What biological parameter could 
 possibly have given Dave both a gift  for “calendrology” and an aversion to reading and 
calculation? How could the brain be predisposed to acquire the Gregorian calendar, 
which has existed in its present form only since 1582? Dave’s gift , if there is one, must 
reside in some generic parameter, such as memory or powers of concentration. To explain 
the narrowness of his talent, one must obviously appeal to learning. Neither genes nor 
hormones can instill innate knowledge about the month of December. 

 It turns out that Dave spends hours at a time scrutinizing the kitchen calendar and 
drawing it from memory, in part because playing with other children is beyond his social 
competence. Dave suff ers from severe autism. Like a Robinson Crusoe lost in an aff ective 
desert, his only companions in solitude are called Friday or January. Suppose that he 
 dedicates three hours a day to calendars (surely an underestimate). In ten years, his 
 training would amount to ten thousand hours of extreme concentration — an enormous 
duration that may explain both his deep understanding of the calendar and the consider-
able gaps in his knowledge of all other domains. 

 From calendar to mental calculation, a similar obsessive concentration characterizes all 
calculating prodigies, past or present. Why should anyone dedicate all his energy to such 
a narrow fi eld? Among the great mental calculators, perhaps we should distinguish three 
main categories: the professionals, the idle, and the mentally defi cient. Th e fi rst are 
 mathematicians in full possession of their mental powers, whose profession requires an 
in-depth knowledge of arithmetic. For them, calculation can become second nature. 
Gauss, by his own account, oft en found himself counting his steps without any conscious 
intention. As for Alexander Aitken, another brilliant mathematician, he claimed that 
 calculations were set off  automatically in his mind:   26  “If I go for a walk and if a motor car 
passes and it has the registration number 731, I cannot but observe that it is 17 times 43.” 
Not infrequently, as in Gauss’s case, such mathematicians lose part of their calculation 
abilities as they move on to more abstract spheres of the mathematical universe. 

25  Howe & Smith,     1988   
26  As cited by Smith,     1983   
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 In the second category, the idle, I would place calculators whose profession is so dull 
that they delve in calculation as a pastime. A typical example: Jacques Inaudi and Henry 
Mondeux,   27  both shepherds, who reinvented much of arithmetic in their lonesome pas-
tures. Both never ceased to count — not only their sheep but also pebbles, their steps, the 
time spent balancing on a stool. 

 Finally, the third category, the mentally defi cient, consists of mentally retarded people 
such as Dave or Michael, who live in an autistic world, and whose passion for numbers or 
calendars is pathological and symptomatic of their lack of interest for human relations. 
Jedediah Buxton, an eighteenth-century English calculating prodigy, was most probably 
autistic. Alfred Binet thus describes Buxton’s fi rst night at the theater, where  Richard III  
was playing:   28  

 He was later asked if the performance had pleased him: he had only seen in it an 
 occasion to calculate; during the dances, he had focused his attention on the number 
of steps: they numbered 5,202; he had also counted the number of words that 
the actors had pronounced: this number was 12,445  …  and all this was found to 
be exact.   

 Whatever its motivation, could such an infusion of numbers, year aft er year, suffi  ce to 
explain the blossoming of an extraordinary talent for calculation? Could anyone, with 
suffi  cient training, turn into a calculating prodigy, or does it take a special, biological 
“gift ”? To tease apart nature from nurture, a few researchers have tried to turn average 
students into calculating or memory prodigies through intensive training. Th eir results 
prove that passion breeds talent. K. Anders Ericsson, for instance, has shown that 
100 hours of training suffi  ce to expand one’s digit span to at least 20 digits — 80 digits in 
one particularly persevering subject.   29  Another psychologist, J. J. Staszewski, has taught a 
handful of students several strategies for fast calculation.   30  Aft er 300 hours of training 
spread over two or three years, their calculation speed quadrupled: Th ey took only about 
30 seconds to compute mentally 59,451  ×  86. 

 Th ese learning experiments are in line with the intuitions of the great calculators 
 themselves, who declare that they have to practice daily or else see their talent decline. 
According to Binet,   31  for instance, “Having dedicated one month to studying books, 
[Inaudi] saw that he was losing much of his mental powers. His mental calculation 
 abilities only remain stable thanks to ceaseless training.” 

27  Binet,     1981   
28  Binet,     1981   
29  See Chase & Ericsson,     1981   
30  Staszewski,     1988  ; see also Obler & Fein,     1988   
31  Binet,     1981   
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 Alfred Binet also reports a comparison of Jacques Inaudi’s calculating speed with that 
of professional cashiers at the  Bon Marché  in Paris. Prior to automated cash registers, 
cashier was a respected profession. Genuine human calculators spent 8 to 10 hours a day, 
6 days a week, adding up purchases and multiplying lengths of linen by the price per 
meter. Although most were hired between the ages of 15 and 18, with no particular 
 aptitude for arithmetic, they quickly became lightning calculators. Binet found that they 
were no slower than Inaudi. Indeed, one of them took only four seconds to compute 
638  ×  823, clearly better than Inaudi’s six seconds. Th e sheer extent of his memory, 
however, enabled Inaudi to win the race in more complex calculations. 

 Th e case of the  Bon Marché  cashiers illustrates the absence of any sharp demarcation 
between professionals whose talent derives from intense training, and geniuses who 
 supposedly owe their feats to an innate gift . Indeed, until recently, the Center for Nuclear 
Research in Geneva employed Wim Klein for his arithmetic powers; and Zacharias Dase, 
in the nineteenth century, contributed greatly to mathematics by establishing a table 
of natural logarithms for numbers 1 through 1,005,000 and by factoring all numbers 
between 7 and 8 million. 

 Today, society no longer values mental calculation. Great show-business human 
 calculators are hard to come by. Th us, the professionals of centuries gone by appear all 
the more prodigious. Nowadays, in the West at least, whoever forced a child to calculate 
several hours a day would expose himself to a lawsuit — though our society condones the 
dedication of the same amount of time to piano or chess playing. Oriental societies do 
not share our value scales. In Japan, it is a well-accepted practice to send children to 
 evening arithmetic courses where they learn the secrets of the “mental abacus.” At the age 
of ten, the most enthusiastic of them can apparently exceed the performance of our 
Occidental calculating prodigies.     

   Ordinary Parameters for Extraordinary Calculators   

 A talent for calculation thus seems to arise more from precocious training, oft en 
 accompanied by an exceptional or even pathological capacity to concentrate on the 
narrow domain of numbers, than from an innate gift . Th is conclusion fi ts in with the 
thinking of two of the past centuries’ greatest geniuses: Th omas Edison, for whom “genius 
is 1 percent inspiration and 99 percent perspiration,” and the French naturalist Buff on, 
who confessed — with counterfeit humility? — that “genius is but a greater aptitude for 
patience.” 

 Supporting this thesis, psychometric studies have not detected any major modifi cation 
in the fundamental parameters of cerebral functioning of lightning calculators. Outside 
of their specialty, these prodigies’ information-processing speed turns out to be average or 
slower. Consider Shakuntala Devi, a female Indian calculator with astounding speed. 
(Th e  Guinness Book of World Records  grants her the ability to multiply two 13-digit 
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 numbers in thirty seconds, although this may be exaggerated.) Th e psychometrician 
Arthur Jensen — who has oft en championed the biological determinism of intelligence in 
the past — invited her to his laboratory in order to measure her performance on some 
classical tests. Jensen’s article hardly conceals his disappointment:   32  Th ere was nothing 
exceptional in the time it took this arithmetic genius to detect a light fl ash, or to select 
one motor action out of eight. Devi’s performance in a so-called “intelligence” test, 
Raven’s progressive matrices, did not depart much from average. And when she had 
to search for a visual target, or look for a number in memory, she was abnormally  slow.  To 
borrow a computer science metaphor, Devi’s calculation feats were obviously not due to 
a global speed-up of her internal clock; only her arithmetic processor ran with lightning 
speed. 

 In the preceding chapter, we saw that one can predict with remarkable precision the 
time a normal subject will require to do a multiplication. Th e more elementary the 
 operations needed, and the larger the digits concerned, the slower the calculation. In this 
respect, too, calculating prodigies are no diff erent from the average person. A century 
ago, Binet timed Inaudi while he was solving multiplication problems.   33  Here are some of 
his results: 

  Th e column on the right shows how many elementary operations are needed in the 
traditional multiplication algorithm. Th is quantity predicts Inaudi’s calculation time 
rather well, with the exception of the most complex multiplication problems, which are 
disproportionately slow because of the greater memory load. It would be remarkable if 
Inaudi had been able to multiply two 3-digit numbers in barely more time than two 
single digits. Th is would indicate that he was using a radically diff erent algorithm, per-
haps allowing for the execution of multiple operations in parallel. But this is not the case 

32  Jensen,     1990   
33  Binet,     1981   

         

  Calculation Time 
 in Seconds 

 Number of 
 Operations  

 3  ×  7  0.6  1  
 63  ×  58  2.0  4  

 638  ×  823  6.4  9  
 7,286  ×  5,397  21  16  

 58,927  ×  61,408  40  25  
 729,856  ×  297,143  240  36  
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for Inaudi, nor for any other arithmetic genius that I know of. Great calculators struggle 
with great calculations like the rest of us. 

 One fi nal characteristic may bespeak an inborn talent: the extraordinary memory 
exhibited by most lightning calculators. For Binet, this issue was beyond discussion: 
“In my opinion, memory is the calculating prodigy’s essential characteristic. By his 
memory he is inimitable and infi nitely superior to the rest of humanity.” 

 Binet distinguished two kinds of prodigies — the visual calculators, who memorize a 
mental image of written numbers and calculations, and the auditory ones, like Inaudi, 
who claim that they remember numbers by hearing them recited in their head. Perhaps 
one should also add a third category, the “tactile” calculators, since at least one blind 
lightning calculator, Louis Fleury, maintained that he manipulated numbers mentally as 
though he were holding some cubarithms, the tactile numerical symbols used by the 
blind. Regardless of its modality, however, great calculators’ memory span is oft en no less 
than astounding. Inaudi, for instance, could repeat 36 random digits without error aft er 
having heard and repeated them only once. At the end of his daily exhibitions, he never 
failed to repeat in full the 300-some digits that the public had dictated to him through-
out the show. 

 Undeniably, Inaudi’s memory span reached astounding heights, but does this imply 
that it was innate? Aside from countless anecdotes whose reliability is oft en questionable, 
we know little about the childhoods of these prodigies. As yet, nothing proves that they 
possessed amazing memory abilities at an early age. It seems to me equally plausible that 
their fantastic memory is the result of years of training, as well as their great familiarity 
with numbers. 

 Steven Smith, who has carefully studied the lives of dozens of calculating prodigies, 
reaches the same conclusion:   34  “Mental calculators, no less than other mortals, are subject 
to short-term memory limitations. Where they diff er is in their ability to treat groups of 
digits as single items in memory.” 

 Memory span, indeed, is not an invariant biological parameter, such as blood group, 
that can be measured independently of all cultural factors. It varies considerably with the 
meaning of the items to be stored. I can easily remember a 15-word sentence in French, 
my fi rst language, because its meaning helps. In Chinese, however, which I do not under-
stand, my memory span drops to about seven syllables. Likewise, perhaps the reason why 
great calculators manage to store vast amounts of digits is that numbers are almost their 
mother tongue. Th ere is hardly a combination of digits that does not make sense to them. 
In Hardy’s memory, the taxi license plate 1729 was probably registered as four indepen-
dent digits because it looked like any random number. For Ramanujan, however, 1729 
was a childhood friend, a familiar character that occupied only one cell in his memory. In 
general, I think, the extreme familiarity that calculating prodigies have with digits suffi  ces 

34  Smith,     1983   
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to explain their huge memory span, without having to postulate a hypothetical biological 
gift  for number memory.     

   Recipes for Lightning Calculation   

 In order to defi nitely shake off  the myth of a “born calculator,” however, I must explain what 
algorithms great calculators actually use. Unless I do so, the mental multiplication of 5,498 
by 912, or the immediate recognition that 781 is 11  ×  71, will always be enshrouded in a spell 
of mystery. Most of us, indeed, have not the slightest idea of how to solve such problems 
mentally. In fact, several expedients radically simplify even the most  insurmountable-
looking arithmetical puzzles. 

 So, how can one compute mentally the product of two multidigit numbers? Scott 
Flansburg, who became known as “the human calculator,” makes no secret of it: His 
exploits are entirely based on simple recipes that anyone can learn, and which he unveiled 
in his 1993 bestseller.   35  Like all other calculators, he uses calculation algorithms similar to 
those taught at school. However, the order in which he performs each operation is 
 carefully optimized. For addition, he recommends computation from left  to right. For 
multiplication, he always computes the most signifi cant digits of the result fi rst. Each 
subproduct is immediately added to the running total, thus avoiding memorization of 
several long intermediate results. Th ese diverse strategies are headed toward a single 
goal — minimizing memory load — and they succeed because only a single provisional 
estimate of the result must be stored and refi ned, step aft er step. 

 More rarely, some calculators memorize all or part of the multiplication table for all 
possible pairs of two-digit numbers. Th is allows them to multiply by groups of two digits 
as if they were one. Finally, all calculators possess a huge repertoire of shortcuts based on 
simple algebraic tricks. To give just one example, the product of 37  ×  39 is immediately 
identifi ed as 38 2    −  l using the formula (n  +  1) (n  −  1) = n 2    −  1; 38 2  itself equals 36  ×  40  +  4, 
since n 2  = (n  −  2)(n  +  2)   +  2 2 . One needs only to retrieve from memory the product of 
36  ×  4, which any experienced calculator recognizes as 12 2  = 144, to which one adjoins 
the digit 3 (4  −  1), to conclude that 37 times 39 is 1,443! With a little training, applying 
this method becomes as fast as a refl ex. 

 In brief, great calculators obviously do not rely on any “magical” arithmetic methods. 
Like us, they rely heavily on stored tables of multiplication facts, whose only original 
features are their extent and, occasionally, their nonverbal format (since some calculators, 
such as Michael, do not appear to have acquired any language). Like us, they execute their 
calculations serially, digit aft er digit, thus explaining Binet’s response time measurements. 
Like us, fi nally, they quickly select the best means of reaching the result in minimal time, 

35  Flansburg,     1993   
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from the multiple strategies at their disposal. In this respect, only the number of strategies 
that they master diff erentiates them from the 6-year-old who already spontaneously 
 simplifi es 8  +  5 into (8  +  2)  +  3. 

 What about more complex arithmetical abilities, though? A single glance is enough 
for Shakuntala Devi to notice that the seventh root of 170,859,375 is 15 (which means 
that this number is 15 to the seventh power, or 15  ×  15  ×  15  ×  15  ×  15  ×  15  ×  15). Th e 
extraction of roots of integers belongs in the classical repertoire of professional calcula-
tors. Naive  spectators are always awed by what they consider as a particularly diffi  cult 
feat, especially for high-order roots. In fact, however, easy shortcuts can dramatically 
reduce the calculations. For instance, the rightmost digit directly informs us of the cor-
responding digit of the result. When a number ends with 5, so does its root. In the case of 
fi ft h roots, the  starting number and its root always end with the same digit. In all other 
cases, there is a correspondence which is easily learned, and which gets even simpler if one 
considers the last two digits instead of just one. Th e fi rst digits of the result, on the other 
hand, can oft en be found by trial and error using simple approximations. For instance, the 
seventh root of 170,859,375 can only be 15 because 25, the next candidate ending with 5, 
would obviously yield much too large a number, once raised to the seventh power. In 
brief, extracting the roots of integers, which appears at fi rst sight as a superhuman perfor-
mance, can be reduced to the careful application of simple recipes. 

 Th e ability to rapidly factorize numbers, and to identify prime numbers, is a more 
impressive feat. Remember Michael, the autistic man who promptly recognized that 389 
is a prime number, and that 387 can be decomposed into 9  ×  43? Th e twins whom Oliver 
Sacks described were even stranger. Th eir pastime, it was claimed, consisted of taking turns 
and exchanging increasingly larger primes up to six, eight, ten, or even twenty digits long! 

 While this ability seems truly amazing, and is still far from being fully understood, 
several tentative explanations may be proposed.   36  First of all, contrary to a widespread 
notion, the concept of a prime number is not the pinnacle of mathematical abstraction. 
Primality is a very concrete notion that merely indicates whether a collection of objects 
can be divided into several equal groups. Twelve is not prime because it can be divided 
into three groups of 4 or two groups of 6. Th irteen is a prime because no such grouping is 
possible. Hence, prime numbers are so common that children manipulate them unknow-
ingly when they try to organize square blocks into a rectangle — they quickly fi nd that it 
can be done with twelve blocks, but not with thirteen. No wonder, then, that a retarded 
young man like Michael, with an uncanny passion for arithmetic, can spontaneously dis-
cover some of their properties. 

 Finding out whether a number is prime remains a diffi  cult mathematical problem. Yet, 
the role of memory should not be neglected. Th ere are only 168 prime numbers under 
one thousand, and 9,592 prime numbers under a hundred thousand. Once memorized, 

36  See also Yamaguchi,     2009   
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they can serve to compute the remaining primes up to ten billion, using an obvious algo-
rithm called the  sieve of Eratosthenes . Finally, simple recipes known to any schoolboy, 
such as casting out the 9s, make it easy to determine whether a number is divisible by 2, 
3, 4, 5, 6, 8, 9, or 11. Such elementary tricks are apparently all that Michael was using, 
since he oft en erred with numbers that looked prime but were in fact the product of fac-
tors that exceeded his sagacity (for instance, 391 = 17  ×  23). What of the twins? 
Unfortunately, no details are available about the precise numbers they were exchanging, 
or about their potential errors. So we will never know if the method they employed was 
any more precise than Michael’s. 

 Researchers also oft en claim that some calculating prodigies can evaluate an exact 
number of objects at a glance. Binet, for instance, asserted that one could drop a fi stful of 
marbles before Zacharias Dase, and that he immediately reported their exact number. 
Unfortunately, I do not know of any serious psychological study on this purported 
 phenomenon. Th ere have been no measurements of response times, which are the only 
way to assess whether a person is counting or is really perceiving large numbers “instanta-
neously.” My feeling is that great calculators’ enumeration powers do not diff er from ours. 
Confronted with a collection of marbles, their visual system, like ours, rapidly parses it 
into small groups of one, two, three, or four marbles. Th eir apparent speed may come 
from their ability to add all these numbers in a fl ash, while we are at best reduced to 
counting by twos. 

 Finally, many prodigies develop a special ability for calendar calculation. Can this 
also be attributed to simple strategies? Several well-known algorithms allow one to 
compute the day of the week for any past or future date. Th e simpler of them require 
only a few additions and divisions, and professional calculators no doubt rely on 
such formulas. However, this explanation does not fi t autistic children who become 
calendrical prodigies. Most of them have never had access to a perpetual calendar. One 
blind boy’s talent developed even though he never had access to a Braille calendar! 
Furthermore, some prodigies, such as Dave, are unable to perform even the simplest 
of calculations. What, then, are the tricks through which they compute the days of 
the week? 

 By timing the responses of several autistic prodigies, Beate Hermelin and Neil 
O’Connor have discovered that their response time is generally proportional to the dis-
tance that separates the requested date from the present.   37  Th is suggests that most of 
these “human calendar calculators” use a very simple method: Starting with a recent date, 
they proceed by degrees and progressively extrapolate to the nearby weeks, months, or 
years. Many regularities facilitate this extrapolation process: Th e calendar repeats itself 
every 28 years; weeks shift  by one day for each regular year, and two days for leap years; 
March and November always start on the same day, and so on. Most idiot savants use 

37  Hermelin & O’Connor,     1986a   
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such knowledge to jump directly from, say, March 1996 to November 1968. Th us they 
can instantly retrieve from memory the requested page of the calendar, from which they 
merely have to read the appropriate date. 

 How can such an algorithm, however simple, be invented and faultlessly executed by 
an idiot savant whose IQ does not exceed 50? Dennis Norris, a Cambridge researcher, 
has developed an interesting computer simulation of the acquisition of calendrical knowl-
edge in a neural network.   38  His simulated network comprises several hierarchical 
neuronal assemblies that successively receive inputs coding for the day, the month, and 
the year of a random date between 1950 and 1999. At the output, seven units code for the 
seven days of the week. Initially, the network does not know what day it should associate 
with a given date. As it receives more and more examples — Monday, April 22, 1996, or 
Sunday, February 3, 1969, and so on — it progressively adjusts the weight of its simulated 
synapses, in order to adapt to the diffi  cult task of predicting on what day each date will 
fall. Aft er several thousand trials, not only does it retain these examples, but it also 
responds correctly to more than 90 %  of the novel dates that it has never learned. Hence, 
the fi nal network exhibits good knowledge of the mathematical function that relates 
dates and days of the week — knowledge that is only implicit, since its synapses ignore 
anything about subtraction and addition, or even the number of days in a year or the 
existence of leap years. 

 According to Norris, the nervous system is equipped with learning algorithms far 
superior to those he used in his simulation. It thus appears entirely plausible that an 
 autistic child, even one severely retarded, who spends years studying the calendar, may 
extract a mechanical, automated, and unconscious knowledge of it by mere induction on 
many examples.     

   Talent and Mathematical Invention   

 In the fi nal analysis, where does mathematical talent come from? Th roughout this 
chapter, every track that we have explored has led us to a plausible source. Genes probably 
play a part. But, by themselves, they cannot supply the blueprint of a phrenological 
“bump” for mathematics. At best, together with several other biological factors, perhaps 
including precocious exposure to sex hormones, genes may minimally bias cerebral 
 organization to aid the acquisition of numerical and spatial representations. Biological 
factors, however, do not weigh much when compared to the power of learning, fueled by 
a passion for numbers. Great calculators are so passionate about arithmetic that many 
prefer the company of numbers to that of fellow humans. Whoever dedicates that much 

38  Norris,     1990   
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time to numbers must succeed equally well in increasing memory, and in discovering 
effi  cient calculation algorithms. 

 If only one lesson might be drawn from this analysis of talent, it would be that  high-level 
mathematics departs radically from its popular portrayal as a dryly rational discipline, 
dominated by sheer deductive power, on which emotions have no bearing. Quite the 
contrary, the most potent of human emotions — love, hope, pain, or despair — hold sway 
over the relationship these mathematicians entertain with their number friends. When 
there is a passion for mathematics, talent does not lag very far behind. If, conversely, a 
child develops math anxiety, this phobia can prevent even the simplest of mathematical 
concepts from falling into place. 

 My survey of mathematical talent has given equal footing to Ramanujan and Michael, 
Gauss and Dave, the genius and the idiot savant. Yet, can one really compare the giants 
that extend the frontiers of mathematics and the autistic prodigies that shine only because 
of the striking contrast between their mathematical abilities and their profound mental 
retardation? My choice is justifi ed by the many characteristics that geniuses and calculat-
ing prodigies share — from their passion for mathematics to their vision of a landscape 
populated by numbers. In my opinion, it would be unfair to deny Inaudi or Mondeux the 
name of “genius” under the pretext that they merely rediscovered well-known mathe-
matical results. When a shepherd, alone in his pasture, rediscovers Pythagoras’s theorem, 
his talent is no less than that of his renowned predecessor, to whose work he was never 
exposed. 

 In this chapter, I have deliberately avoided dwelling on the psychological and neuro-
biological preconditions that underlie mathematical creativity. Th e fl ash of invention is 
so brief that it can hardly be studied scientifi cally At best one can speculate, as did Jean-
Pierre Changeux and Alain Connes, that scientifi c discovery involves the more or less 
random association of old ideas, followed by a selection based on the harmony and 
 adequacy of a newly formed combination. Paul Valéry said, “It takes two persons to 
invent: one forms the combinations, the other chooses and recognizes what is desired or 
relevant among the set of products of the fi rst.” Augustine likewise noted that  cogito  
means “to shake together,” while  intelligo  means “to select among.” 

 Jacques Hadamard, in his major investigation of invention in mathematics, distin-
guishes stages of preparation, incubation, illumination, and verifi cation.   39  Incubation 
consists of an unconscious search through fragments of demonstrations, or original 
 combinations of ideas. In support of this central idea, Hadamard quoted Henri Poincaré: 
“Most striking at fi rst is this appearance of sudden illumination, a manifest sign of long, 
unconscious prior work. Th e role of this unconscious work in mathematical invention 
appears to me incontestable.” 

39  Hadamard,     1945   
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 Some day we will perhaps understand the cerebral bases of this “cognitive 
unconscious.” Th e spontaneous activity of neuronal circuits below the threshold of 
consciousness, the unleashing of automatic calculation mechanisms during sleep — these 
must have measurable physiological traces that we can hope to assess with modern brain 
imaging tools. At present, however, we can only heed the question that Hadamard asked 
already, half a century ago: “Will it ever happen that mathematicians will know enough 
about the physiology of the brain, and neurophysiologists enough of mathematical 
 discovery, for effi  cient cooperation to be possible?” 

 Indeed, we will now look into brain physiology — not in the hope of uncovering the 
biological bases of creativity, which would be a utopian dream, given the current state of 
our knowledge; but at least to try to explain how the rudimentary paraphernalia of 
 neurons, synapses, and receptor molecules incorporate into the brain’s circuits the  routine 
of calculation and the meanings of numbers.                                                                                                          
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 is it possible that one could forget what 3 minus 1 means, while remaining able to read 
and write 4-digit numerals? Can you imagine being able to multiply digits that appear on 
your right, but not those that appear on your left ? Is it possible, fi nally, for someone with 
normal vision to fail on written additions as simple as 2  +  2, while easily solving the same 
problems when they are read aloud? 

 Strange as they may seem, such phenomena are routinely observed in neurology.   1  Cerebral 
lesions of various origins can have a devastating and sometimes surprisingly specifi c impact 
on arithmetic abilities. Everybody knows that a lesion in the motor areas of the brain can 
cause paralysis to one side of the body only. By the same mechanism, brain damage confi ned 
to the cerebral areas involved in language or number processing can alter only a very narrow 
domain of competence. Th e lesion seems to have few repercussions until the patient is asked 
to subtract or to read an unusual word, and then a  profound defi cit is unveiled. 

 As early as 1769, the French philosopher Denis Diderot anticipated the specifi city of 
neurological impairment. In  D’Alembert’s Dream,  he made this premonitory statement: 

 According to your principles, it seems to me that with a series of purely mechanical 
operations, I could reduce the greatest genius in the world to a mass of unorganized 

1  For a review of early studies, see Dehaene & Cohen,     1995  ; see also Lemer, Dehaene, Spelke, & Cohen,     2003  ; 
Dehaene, Molko, Cohen, & Wilson,     2004   
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fl esh  …  [Th e operation] would consist in depriving the original bundle of some of 
its threads and shuffl  ing up the rest  … . Example: take away from Newton the two 
auditory threads, and he loses all sense of sound; the olfactory ones, and he has no 
sense of smell; the optic ones, and he has no notion of colors; the taste threads, and 
he cannot distinguish fl avors. Th e others I destroy or jumble, and so much for the 
organization of the man’s brain, memory, judgment, desires, aversions, passions, 
willpower, consciousness of self.   

 Cerebral lesions are indeed devastating events that can destroy the brightest minds. 
Yet to neuroscientists, these “experiments of nature” also off er a unique glimpse into the 
workings of the normal human brain. Cognitive neuropsychology is the scientifi c disci-
pline that takes advantage of data from patients with brain lesions to gather knowledge 
about the cerebral networks that serve cognitive functions. Th e neuropsychologist’s 
touchstone is  dissociation,  or the fact that aft er cerebral damage, one domain of compe-
tence becomes inaccessible while another remains largely intact. When two mental abili-
ties are thus dissociated, one may oft en safely infer that they involve partially distinct 
neuronal networks. Th e fi rst ability is deteriorated, because it normally requires the 
 contribution of a cerebral area that has been damaged and is now unable to perform. Th e 
second remains intact, because it rests on cerebral networks that have been spared by 
the lesion. Of course, neuropsychologists must beware that more trivial explanations for 
a dissociation exist. For instance, one task might simply be easier than the other, or the 
patient might have relearned one ability but not the other aft er the lesion occurred. 
When care is taken to reject such alternative accounts, cognitive neuropsychology 
 supports remarkable inferences about cerebral organization. 

 Let us consider a concrete example. Michael McCloskey, Alfonso Caramazza, and 
their colleagues have described two patients with severe diffi  culties in reading Arabic 
numerals.   2  Th e fi rst patient, known to us only by his initials H. Y., occasionally misreads 
number 1 as “two” or 12 as “seventeen.” A careful study of his errors shows that while 
H. Y. oft en replaces one numeral with another, he never errs in the decomposition of a 
number into hundreds, tens, and units. For instance, he reads 681 as “six hundred  fi ft y -
one” — the structure of the string is correct except for the substitution of  fi ft y  for  eighty.  
Conversely, the second patient, J. E., never takes 1 for “two” or 12 for “seventeen,” but he 
misreads 7,900 as “seven thousand ninety” or 270 as “twenty thousand seventy.” Unlike 
H. Y., J. E. does not substitute one number word for another. Instead, the whole gram-
matical  structure of the numeral is wrong. He recognizes individual digits, but they 
wander from the hundreds to the decades or the thousands column. 

 Patients H. Y. and J. E. together realize a  double dissociation.  Schematically, the 
 grammatical structure of numerals is intact in H. Y. and deteriorated in J. E., while the 

2  McCloskey, Sokol, & Goodman,     1986  ; McCloskey & Caramazza,     1987   
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selection of individual words is intact in J. E. and defi cient in H. Y. Th e very existence of 
two such patients suggests that some of the cerebral regions engaged in reading Arabic 
numerals aloud contribute more heavily to number grammar, while others are more 
 concerned with accessing a mental lexicon for individual number words. If the lesion were 
small enough — unfortunately, an infrequent event with vascular lesions — its  location 
could even provide valuable indications as to exactly where in the brain these areas lie. 

 In interpreting such observations, one must of course beware of falling back into 
 phrenology. If patient J. E. errs in the grammar of numerals, this does not mean that his 
lesion knocked out “the grammar area.” Broad cognitive faculties such as “grammar” are 
complex and integrated functions that likely imply the concerted orchestration of several 
distributed areas of the brain. Most likely, J. E.’s lesion aff ected a highly specialized 
 elementary neuronal process essential to the production of a grammatical sequence of 
number words, but not for the selection of its component words. 

 Th e extreme modularity of the human brain stands out as the main lesson to be 
 gathered from studies of cerebral pathology. Each small region of the cortex appears to be 
dedicated to a specifi c function, and may thus be viewed as a mental “module” specialized 
in processing data from a distinct source. Cerebral lesions, and the bizarre dissociation 
patterns they provoke, provide us with a unique source of information on the organiza-
tion of these modules. Th anks to dozens of handicapped patients such as H. Y. and J. E., 
who generously agreed to participate in scientifi c experiments, our knowledge of the 
cerebral areas involved in number processing has been undergoing a quantum leap in the 
1980s and 1990s. To be sure, the exact circuits used in complex arithmetic operations still 
escape us. Yet, an increasingly refi ned map of the cerebral pathways for numerical infor-
mation is slowly taking shape. Even the rudimentary knowledge we currently have of the 
neurology of number processing already has considerable bearing on our understanding 
of the relations between mathematics and the brain.     

   Mr. N, the Approximate Man   

 As Mr. N enters the examination room on a morning in September 1989, the devastating 
eff ects of his cerebral lesion are obvious.   3  His right arm is in a sling, and his crippled right 
hand betrays a severe motor handicap. Mr. N speaks slowly, with eff ort. Occasionally, he 
searches with growing irritation for a very common word. He cannot read a single word, 
and he fails to understand such moderately complicated commands as “Place the pen on 
the card, then put it back in its original location.” 

 Mr. N was once married and is the father of two daughters. He held a position of 
 responsibility as a sales representative in a major fi rm, and he doubtless was profi cient in 

3  Dehaene & Cohen,     1991   
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arith metic. We know little about the circumstances in which his world shattered. He 
apparently suff ered a bad fall at home, perhaps due to sudden brain hemorrhaging. Upon 
his arrival at the hospital, he suff ered from an enormous hematoma, and an emergency 
operation was performed. Th ese dramatic events left  him with a vast lesion of the  posterior 
half of the left  hemisphere. Th ree years later, his language and motor control handicaps 
are still so devastating that he cannot lead an independent life, and lives with his elderly 
 parents. 

 My colleague, Dr. Laurent Cohen, invited me to meet Mr. N because he suff ers from 
exceptionally severe  acalculia,  the neurologist’s technical term for a defi cit in number 
processing. We ask him to calculate two plus two. Aft er pondering for a few seconds, he 
answers “three.” He easily recites the rote numerical series 1, 2, 3, 4  …  and 2, 4, 6, 8  … , but 
when we ask him to count 9, 8, 7, 6  …  or 1, 3, 5, 7  … , he fails completely. He also fails to 
read the digit 5 when I fl ash it before his eyes. 

 Given this distressing clinical picture, it would tempting to conclude that Mr. N’s 
arithmetic abilities are as good as gone, as is most of his competence for language. Yet, 
several observations contradict this hypothesis. First is Mr. N’s strange reading behavior. 
When I make him see the digit 5 for an extended period of time, he manages to tell me 
that it is a digit, not a letter. Th en he starts counting on his fi ngers — “one, two, three, four, 
fi ve, it’s a fi ve!” Obviously, he must still recognize the shape of the digit 5 in order to 
count up to the appropriate numeral. But why can’t he then immediately utter it? When 
I ask him how old his daughter is, he behaves similarly. Unable to access the word “seven” 
instantly, he covertly counts up to this numeral. He appears to know right from the start 
what quantities he wishes to express, but reciting the number series seems to be his only 
means of retrieving the corresponding word. 

 In passing, I notice a similar phenomenon when Mr. N attempts to read words aloud. 
He oft en gropes around for the appropriate meaning, without fi nding the right word. 
While unable to read the handwritten word  ham,  he manages to tell me, “It’s some kind 
of meat.” Th e word  smoke  is equally unreadable, but evokes a sense of “having a fi re, 
 burning something.” He confi dently reads the word  school  as “classroom.” Th e direct path-
way that enables any of us to move straight from the sight of digit 5 to its pronun ciation 
“fi ve,” or from the letters h–a–m to the sound “ham,” seems to have vanished from Mr. N’s 
mind. Nevertheless, in one way or another, the meaning of these printed characters is not 
totally lost for him, and he clumsily attempts to express it using circumlocutions. 

 Following up this lead, I next show Mr. N a pair of digits, 8 and 7. It would take him 
several seconds to “read” them by counting on his fi ngers. Yet in a twinkling, he readily 
points out that 8 is the larger digit. Much the same occurs with two-digit numerals, which 
he experiences no diffi  culty in classifying as larger or smaller than 55 .  Mr. N obviously 
remembers the quantity represented by each Arabic numeral. His only errors occur when 
the quantities are similar, like 53 and 55 .  It is as if he only knows their approximate mag-
nitude. He also manages to place two-digit numerals at their approximate location on a 
vertical line labeled “1” at the bottom and “100” at the top, which is presented to him as 
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a thermometer. His responses, however, are far from being digitally accurate. He places 10 
at the lower quarter, while 75 lands much too close to 100. Operating fi ner classifi cations 
is impossible to him. Deciding whether a number is odd or even, in particular, widely 
exceeds his capacities. 

 In experiment aft er experiment, a striking regularity emerges: Th ough Mr. N has lost 
his exact calculation abilities, he can still approximate. Every task that calls only for an 
approximate perception of numerical quantities poses no diffi  culty for him. On the one 
hand, he easily judges whether a certain quantity is roughly appropriate to a concrete 
situation — for example, nine children are in a school: Is this too few, just right, or too 
many? On the other hand, he has obviously lost all precise memory for numbers. He 
judges that a year comprises “about 350 days” and an hour “about 50 minutes.” According 
to him, a year has 5 seasons, a quarter of an hour is “10 minutes,” January has “15 or 20 
days,” and a dozen eggs make for about “6 or 10 eggs” — responses that are both clearly 
false and yet not that far from the truth. Even his immediate memory has not been spared. 
When I fl ash the digits 6, 7, and 8 at him, a second later he cannot remember if he has 
seen a 5 or a 9. Yet he is quite confi dent that neither 3 nor 1 were among the initial set, 
because he quickly realizes that these numbers represent too small a quantity. 

 Th e dissociation between exact and approximate knowledge is nowhere more 
apparent than in addition. Mr. N does not know how to add 2  +  2. His random responses, 
3, 4, or 5, testify to his profound acalculia. Yet he never off ers a result as absurd as 9. 
Likewise, when presented with a slightly wrong addition, such as 5  +  7 =  11, he judges it 
to be correct more than half of the time, thus confi rming that he cannot compute its 
exact result. Yet, he can rapidly reject with total confi dence and complete success a grossly 
false answer such as 5  +  7 = 19. He apparently still knows its approximate results, and he 
quickly detects that the proposed quantity, 19, departs from it by a lot. Interestingly, the 
larger a quantity, the fuzzier it seems to be in Mr. N’s mind. Th us, he rejects 4  +  5 = 3 but 
accepts 14  +  15 = 23. Multiplication problems, however, seem to exceed the scope of his 
approximation abilities. He answers them in a seemingly random fashion, even accepting 
as correct an operation as absurd as 3  ×  3 = 96. 

 In a nutshell, Mr. N suff ers from a peculiar affl  iction: He is unable to go beyond 
approximation. His arithmetic life is confi ned to a strange, fuzzy universe in which 
 numbers fail to refer to precise quantities and have only approximate meanings. His 
 torments refute the cliché of the unfailing precision of mathematics, so elegantly expressed 
by the French writer Stendhal: “I used to love, and still love, mathematics for themselves 
as a domain that does not admit  hypocrisy  and  vagueness,  my two pet aversions.” 

 With all due respect to Stendhal, vagueness is an integral part of mathematics — so 
central, in fact, that one may lose all exact knowledge of numbers and yet maintain a 
“pure intuition” of numerical quantities. Wittgenstein was closer to the truth when he 
maliciously observed that 2  +  2 = 5 is a reasonable error. But if an individual asserts that 
2  +  2 make 97, then this cannot just be a mistake: this person must be operating with a 
logic totally diff erent from our own. 
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 In earlier chapters, I drew a distinction between two categories of arithmetic skills: the 
elementary quantitative abilities that we share with organisms devoid of language, such as 
rats, apes, and human babies, and the advanced arithmetic abilities that rest on symbolic 
notations of numbers and on the strenuous acquisition of exact calculation algorithms. 
Mr. N’s case suggests that those two categories rely on partially separate cerebral systems. 
One can be abolished while the other remains intact. 

 It would obviously be absurd and reductive to equate patient N’s performance with 
that of Sheba, Sarah Boysen’s gift ed chimpanzee whom I described in the fi rst chapter. 
For all his handicaps, Mr. N remains a fully-fl edged  Homo sapiens.  In arithmetic, 
however, his cerebral lesion has thrown him back to a rudimentary level of competence. 
Like Sheba, Mr. N can go from a numerical symbol to the corresponding quantity — 
although his repertoire of symbols is evidently much larger than the chimp’s. Like her, he 
is also able to select the larger of two quantities and to compute an approximate addition. 
Th at these operations remain accessible to an aphasic and acalculic patient, with a drasti-
cally impaired left  hemisphere, confi rms that they do not depend much on linguistic 
abilities. Exact calculation, on the other hand, calls for the integrity of neuronal circuits 
specifi c to the human species and localized, at least in part, in the left  hemisphere. Th is is 
why Mr. N, with his extended left -hemispheric lesion, can neither read numbers aloud, 
nor multiply them, nor judge whether they are odd or even.     

   A Clear-Cut Defi cit   

 Mr. N’s case does not allow for very strong conclusions about the cerebral localization 
of numerical approximation. Given the extent of his lesion in the left  hemisphere, his 
residual abilities may well rest on intact areas of the right hemisphere. However, the 
 possibility remains that part of his left  hemisphere has remained functional enough to 
allow for number comparison and approximation, if not exact calculation. 

 Other neurological pathologies are better suited to pinpointing the arithmetic abilities 
of each hemisphere. Th e corpus callosum is a massive bundle of nerve fi bers that connects 
the two hemispheres, and that serves as the main pathway for communicating informa-
tion between them. Occasionally, this bundle can be disconnected. Sometimes it is 
 partially interrupted by a focal brain lesion. More frequently, it is purposely severed 
 surgically in an eff ort to control severe epilepsy in patients not amenable to any other 
form of treatment. In either case, the result is a human being with a cortex divided in two, 
or a  split-brain  patient. Th e two cerebral hemispheres remain in full working order, but it 
is now practically impossible for them to exchange any information.   4  

4  For an early description of split-brain patients, see Gazzaniga & Hillyard,     1971  . For in-depth analyses of their 
numerical abilities, see Gazzaniga & Smylie,     1984  ; Seymour, Reuter-Lorenz, & Gazzaniga,     1994  ; Cohen & 
Dehaene,     1996  ; Colvin, Funnell, & Gazzaniga,     2005   
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 In everyday life, these patients appear deceptively sound in body and mind. Th eir 
behavior seems entirely normal — except for very rare episodes where their left  hand 
undoes what their right hand is doing. A simple neurological examination, however, suf-
fi ces to reveal clear-cut defi cits. If the patients close their eyes, and a familiar object is 
placed in their left  hand, they are unable to name it, though they can demonstrate its use 
through gestures. Likewise, if a picture is fl ashed within their left  visual fi eld, they swear 
that they haven’t seen anything but their left  hand manages to select the appropriate 
 picture among many others. 

 Th is odd behavior can easily be accounted for. Th e major neuronal projection  pathways 
that connect the external sense organs to primary sensory cortices are crossed, so that a 
tactile or visual stimulation from the left  side is initially processed by the sensory areas of 
the right hemisphere. Th us, when an object is placed in the left  hand, the right hemi-
sphere is fully informed of the identity of the stimulus and can retrieve its shape and 
function. Yet, in the absence of the corpus callosum, this information cannot be transmit-
ted to the left  hemisphere. In particular, the cerebral areas that control language produc-
tion, whose lateralization to the left  hemisphere has been known since the work of Broca 
in the last century, are given no indication of what the right hemisphere feels or sees. Th e 
left -hemispheric language network thus denies having seen anything. If it is compelled 
to provide an answer, it selects a response at random or borrows it from previous trials. 
Th at was the case in my testing of a patient who, while blindfolded, had just named a 
hammer placed in her right hand. When I placed a corkscrew in her left  hand, she imme-
diately said “another hammer” — and all the while, her left  hand mimicked unscrewing 
a bottle. 

 Patients with a severed corpus callosum are a gold mine for neuropsychologists because 
they allow for a systematic assessment of the cognitive abilities available in each hemi-
sphere. Suppose that one asks a split-brain patient to multiply a digit by 2, and point at 
the appropriate result placed among several other numbers. By presenting the digit 
 visually either to the right or to the left  of the patient’s gaze, and by fl ashing it so briefl y 
that it is gone before the eyes have had time to move, one can ensure that the input 
remains confi ned to a single hemisphere. Using this trick, it becomes possible to assess 
whether either hemisphere can identify numbers, multiply them by 2, or allow the patient 
to point toward a given number. 

 Let us start with the simplest operation: identifying digits. Flash two digits on a screen 
and ask a split-brain patient whether they are identical or diff erent. When one digit 
appears to the right and the other to the left , even this simple same–diff erent judgment is 
not feasible. Th e patient responds at random, sometimes deciding that 2 and 2 are diff er-
ent, and sometimes that 2 and 7 are identical. Th e severance of interhemispheric connec-
tions makes comparing the digits on the left  and right impossible. Th is is so, even if each 
hemisphere on its own can identify them. Indeed, when the two digits appear in the same 
visual fi eld, either both on the right or both on the left , the patient responds with almost 
perfect accuracy. 
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 Th e two hemispheres do not stop at recognizing digit shapes. Th ey can also interpret 
them as referring to a certain quantity. To prove this, one can present a digit together with 
a set of dots rather than a pair of digits. When both the digit and the dot pattern appear 
in the same visual fi eld, the patient easily determines whether they match. Th us, each 
hemisphere knows that 3 and  ∴   represent one and the same number. 

 Both hemispheres also appreciate the ordinal relation between numbers. Whether a 
digit is presented to the right or to the left , split-brain patients can quickly decide whether 
it is smaller or larger than some reference number. And when a pair of digits is fl ashed, 
they can point toward the larger (or toward the smaller). Comparison merely seems to be 
a bit slower and less accurate in the right hemisphere than in the left , but the diff erence is 
small. Hence, each hemisphere appears to host a representation of numerical quantities 
and a procedure for comparing them. 

 But this similarity of the two hemispheres vanishes when one tackles the issue of 
 language and mental calculation. Th ese functions are the left  hemisphere’s indisputable 
privilege. Using the same experimental procedures as just described, the right hemisphere 
appears unable to identify written numerals. Its visual abilities include the recognition of 
simple shapes such as the digit 6, but not of alphabetical stimuli such as  six.  In most 
people, the right hemisphere is also mute: It cannot produce most words aloud. Th us, if 
one fl ashes the digit 6 on the left -hand side of a computer screen, the vast majority of 
split-brain patients behave exactly as Mr. N would: Th ey cannot name the digit, although 
they can indicate with the left  hand that this number is larger than 5. 

 Some particularly ingenious patients manage to circumvent their right hemisphere’s 
incapacity to produce speech. For instance, Michael Gazzaniga and Steven Hillyard have 
studied a patient called L. B. who, aft er several seconds, managed to name digits  presented 
to his right hemisphere.   5  Unlike a normal person, his naming time increased linearly with 
digit size: it took him two seconds to name digit 2, but almost fi ve seconds to name digit 
8. Like Mr. N, L. B. appeared to recite the number sequence slowly and covertly until he 
had reached a numeral that “stuck out” — those were his own words — and which he then 
uttered aloud. Nobody knows exactly how the right hemisphere managed to signal that 
the number it had seen had been reached. It might have been some kind of hand move-
ment, a contraction of the face, or some other cueing artifi ce that split-brain patients 
oft en devise for themselves. Anyhow, the very fact that the patient resorted to counting 
in order to name digits presented in the left  visual fi eld indicates that his right hemisphere 
was devoid of normal speech production abilities. 

 Th e right hemisphere is also ignorant of mental arithmetic. When an Arabic digit is 
presented in the right visual fi eld, and therefore contacts the left  hemisphere, the patient 
experiences no apparent diffi  culty adding 4 to it, subtracting 2 from it, multiplying it by 3, 
or dividing it by 2. Such calculations, however simple, are strictly impossible when the 

5  Gazzaniga & Hillyard,     1971   
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digit appears on the left  side and is therefore processed by the right hemisphere. Th is 
profound calculation defi cit persists even when the patient is asked to point toward the 
result rather than say it. 

 Although the right hemisphere is worthless for exact calculation, can it nevertheless 
approximate? To assess this possibility, my colleague Laurent Cohen and I asked a patient 
with partially disconnected hemispheres to verify visually presented addition problems.   6  
Even when the operation was as obviously wrong as 2  +  2 = 9, when it was perceived by the 
right hemisphere the patient seemed to respond randomly and judged it to be correct on 
about half of the trials. During one series of trials, however, she suddenly had a run of 15 
correct responses out of 16. Th e probability that such an event could occur by chance is 
less than 1 in 4,000. I therefore believe that her right hemisphere could estimate simple 
additions, but managed to express this competence only during this single block of 
sixteen trials. Indeed, it is not enough for the right hemisphere to possess a certain  ability; 
it must also understand the experimenter’s instructions and be given a chance to respond 
before the left  hemisphere takes over. 

  Jordan Grafman and his colleagues have studied another patient who brings further 
support to the hypothesis that the right hemisphere is good only at very elementary 
 calculations.   7  A young American soldier, J. S., lost most of his left  skull and underlying 
cortex, at the age of 22, during combat in Vietnam (Figure   7.1  ). Somehow, J. S. survived 
the many surgical operations, repetitive infections, and severe epilepsy that ensued. He 
now lives a semi-independent life with a single right hemisphere (in the left  hemisphere, 
only the occipital lobe is spared). As can be expected, J. S. is profoundly impaired in 
spoken language comprehension and production. He can neither read nor write, and he 
cannot name any object — defi cits that coincide exactly with the known limitations of the 
isolated right hemisphere in patients with a severed corpus callosum. His results on tests 
of number processing are also in keeping with those of other split-brain studies. J. S. 
 recognizes Arabic numerals and knows how to compare them and estimate the  
numer osity of a set of objects. He occasionally reads aloud a few digits and some 2-digit 
 numbers. He can solve only about half of the single-digit addition and subtraction 
 problems set to him. Multiplication, division, and multidigit calculation constitute an 
insurmountable challenge for him.     

   A Champion in Numerical Non-sense   

 Th e split-brain patients we have seen, together with patient J. S., indicate that although 
only the left  hemisphere can perform exact calculation, both the left  and the right 

6  Cohen & Dehaene,     1996   
7  Grafman, Kampen, Rosenberg, Salazar, & Boller,     1989   
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 hemispheres incorporate representations of numerical quantities. Can the brain areas 
implicated in this quantitative representation be localized? Is the mental number line 
associated with a specifi c cerebral circuit that occupies a precise cortical location? And, 
what would our mental life be like if a brain lesion made us lose our number sense? To 
answer these questions, I turn to patients with smaller lesions that aff ect a more specifi c 
piece of brain circuitry. 

 When the famous writer Eugene Ionesco was working on his masterpiece,  Th e Lesson , 
he probably had few pretensions other than a love of humor and nonsense. Yet, in this 
play, he unknowingly sketched a remarkably realistic portrait of an acalculic patient 
devoid of any quantitative intuition: 

  professor:  Let us arithmetize a little now  …  How much are one and one? 
  pupil:  One and one make two. 
  professor:   marveling at the Pupil’s knowledge:  Oh, but that’s very good. You 

appear to me to be well along in your studies. You should easily achieve the total 
doctorate, miss  … . Let’s push on: how much are two and one? 

  pupil:  Th ree. 

     figure 7.1.  Despite the loss of his left  hemisphere during combat in Vietnam, patient J. S. can still 
identify and compare Arabic numerals. Exact calculation, however, poses him extreme diffi  culties.   
 (Reprinted from Grafman et al.   1989   by permission of the publisher.)    
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  professor:  Th ree and one? 
  pupil:  Four. 
  professor:  Four and one? 
  pupil:  Five  … . 
  professor:  Magnifi cent. You are magnifi cent. You are exquisite. I congratulate 

you warmly, miss. Th ere’s scarcely any point in going on. At addition you are a 
past master. Now, let’s look at subtraction. Tell me, if you are not exhausted, how 
many are four minus three? 

  pupil:  Four minus three? …  Four minus three? 
  professor:  Yes. I mean to say: subtract three from four. 
  pupil:  Th at makes  …  seven? 
  professor:  I am sorry but I’m obliged to contradict you. Four minus three does 

not make seven. You are confused: four plus three makes seven, four minus three 
does not make seven  …  Th is is not addition anymore, we must subtract now. 

  pupil,   trying to understand:  Yes  …  yes  …  
  professor:  Four minus three makes  …  How many?  …  How many? …  
  pupil:  Four? 
  professor: N o ,  miss, that’s not it. 
  pupil:  Th ree, then. 
  professor:  Not that either, miss  …  Pardon, I’m sorry  …  I ought to say, that’s not 

it  …  excuse me. 
  pupil:  Four minus three  …  Four minus three  …  Four minus three? …  But now 

doesn’t that make ten? …  
  professor:  Count then, if you will, please. 
  pupil:  One  …  two  …  and aft er two, comes three  …  then four  …  
  professor:  Stop there, miss. Which number is larger? Th ree or four? 
  pupil:  Uh  …  Th ree or four? Which is the larger? Th e larger of three or four? In 

what sense larger? 
  professor:  Some numbers are smaller and others are larger. In the larger numbers 

there are more units than in the small  … . 
  pupil:  Excuse me, Professor  …  What do you mean by the larger number? Is it the 

one that is not so small as the other? 
  professor:  Th at’s it, miss, perfect. You have understood me very well. 
  pupil:  Th en, it is four. 
  professor:  What is four — larger or smaller than three? 
  pupil:  Smaller  …  no, larger. 
  professor:  Excellent answer. How many units are there between three and 

four?  …  Or between four and three, if you prefer? 
  pupil:  Th ere aren’t any units, Professor, between three and four. Four comes imme-

diately aft er three; there is nothing at all between three and four!  …  
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  professor:  Look here. Here are three matches. And here is another one, that 
makes four. Now watch carefully — we have four matches, I take one away, now 
how many are left ? 

  pupil:  Five. If three and one make four, four and one make fi ve.  *      

  Did Ionesco ever visit a neurology clinic?  Th e Lesson ’s pupil is not an imaginary 
 character, but someone whom I have met in person. For several hours, I attempted to 
teach arithmetic to Mr. M, a 68-year-old acalculic patient with a lesion of the inferior 
parietal cortex (Figure   7.2  ).   8  Like Ionesco’s pupil, this person could still solve simple 
 additions, but he was totally unable to subtract and had trouble determining the larger of 

8  Dehaene & Cohen,     1997   

     figure 7.2.  Th is lesion of the right inferior parietal cortex caused Mr. M to lose his sense of 
numerical quantities. (Note that a confusing neurological convention makes the right-hemisphere 
lesion appear on the left  of horizontal sections.)   
 (From Dehaene and Cohen,   1997  .)    

  *  Source: E. Ionesco,  Th e Lesson , (translated by Donald M. Allen). English translation copyright  © 1958 
by Grove Press Inc. Used by permission of Grove/Atlantic Inc.
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two digits. Ionesco’s dialogue rings so true that it could almost be a verbatim transcrip-
tion of my surrealistic conversations with Mr. M. In the professor’s lines, I recognize my 
own clumsy attempts at teaching Mr. M elementary arithmetic: my disproportionate 
encouragement when he succeeded, and my barely concealed discouragement in front of 
his recurring failures. In the pupil’s words, I can almost hear my patient’s confusion as he 
tried, with an unfailing willingness, to answer questions that he no longer understood. 
Even the play’s subtitle — “a comical drama” — fi ts to a T Mr. M’s unfortunate predica-
ment, a genuine case of numerical nonsense. 

 Mr. M’s impairment is, in fact, typical of patients who suff er from a selective defi cit of 
the quantitative representation of numbers, the mental number line that gives meaning 
to Arabic numerals and number words. Mr. M has essentially lost every intuition about 
arithmetic. Th is is why he is unable to compute four minus three, or even to fi gure out 
what this subtraction might mean. Nevertheless, because his other cerebral circuits 
remain intact, he can still perform routine symbolic calculations, while at the same time 
failing to understand them. 

 Let us consider Mr. M’s dissociated abilities one at a time. Mr. M speaks quite fl uently, 
and can read words and numbers to perfection. He initially suff ered from some diffi  culty 
with writing, but this handicap has long since receded. His modules for identifying 
words, both visually and auditorily, and for speaking or writing them, must therefore be 
intact, as are the bundles of connections that connect them. In passing, Mr. M’s case 
forcefully suggests that there are direct pathways in the human brain for transforming 
numerals from one notation to the other — networks capable of turning 2 into  two  
 without caring about the meaning of the symbols. 

 Indeed, Mr. M does not understand the numbers he reads so well. In a task of number 
comparison that calls for pointing to the larger of two Arabic numerals, he fails once in 
every six trials. His errors, though relatively infrequent, are gross. For instance, he once 
maintained, without blinking, that 5 was larger than 6. In a test of number proximity, 
which consists of deciding which of two numbers is closer to a third, he also fails once in 
every fi ve trials. 

 His handicap is most fl agrant in subtraction and in number bisection tests. Th e 
 bisection test consists in deciding which number falls exactly in the middle of a given 
interval. Mr. M’s responses verge on complete nonsense. Between 3 and 5, he places 3, 
then 2; between 10 and 20, he places 30, only to later correct his answer to 25 with this 
telling apology: “I do not visualize numbers very well.” 

 A similar confusion reigns over subtraction. He fails to solve about three subtraction 
problems out of four. And indeed, his mistakes have an eerie resemblance to those of 
lonesco’s pupil. Two minus one makes two, he affi  rms. Nine minus eight is seven “because 
there is one unit.” Th ree minus one “makes four, no there is one unit, a modifi cation of 
one unit makes three, doesn’t it?” For six minus three, he writes down nine, but  comments 
in a rare moment of lucidity: “I am adding when I should be subtracting. Subtracting 
means taking away; adding means summing up.” Th is knowledge, however, is nothing 
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more than a theoretical veneer. Mr. M has lost all sense of the structure of integers, and of 
which operations are required to move from one quantity to another. 

 In  Th e Lesson,  the pupil who cannot subtract three from four suddenly turns out to be 
a calculating prodigy: 

  professor: H ow   much, for example, are three billion seven hundred fi ft y-fi ve 
 million nine hundred ninety-eight thousand two hundred fi ft y one, multiplied 
by fi ve billion one hundred sixty-two million three hundred and three thousand 
fi ve hundred and eight? 

  pupil,   very quickly:  Th at makes nineteen quintillion three hundred ninety 
 quadrillion two trillion eight hundred forty-four billion two hundred nineteen 
million one hundred sixty-four thousand fi ve hundred and eight … . 

  professor,   stupefi ed:  But how did you know that, if you don’t know the  principles 
of arithmetical reasoning? 

  pupil:  It’s easy. Not being able to rely on my reasoning, I’ve memorized all the 
products of all possible multiplications.   

 All things considered, Mr. M exhibits a similar, though necessarily less spectacular, 
 dissociation. He who confi dently asserts that 3  −  2 = 2 still knows most of the multiplica-
tion table by heart. His rote verbal memory is intact, and allows him to blurt out “three 
times nine is twenty-seven” like an automaton, without understanding what he is saying. 
He also appeals to this intact memory in order to solve more than half of the one-digit 
addition problems posed to him. He fails, however, whenever the result of an addition 
goes beyond ten. Th e strategy used by most adults, which consists in decomposing, say, 
8  +  5 into (8  +  2)  +  3, is out of his reach. Mr. M’s arithmetic knowledge starts to dwindle 
at the point where his rote memory stops. His inferior parietal lesion prevents him from 
having recourse to the number sense when his memory fails.     

   Inferior Parietal Cortex and the Number Sense   

 Th e inferior parietal area, which is the seat of Mr. M.’s lesion, remains a  terra incognita  of 
the human brain. Th is cortical area, particularly its posterior convolution called the 
“angular gyrus” or “Brodmann’s area 39,” plays a crucial role in the mental representation 
of numbers as quantities. It might well be the depository of the “number sense” to which 
this book is dedicated, an intuition of quantities present ever since the dawn of human-
kind. Anatomically, it lies in what neuroscientists used to call the “high-level plurimodal 
association cortex.” Th e neurologist Norman Geschwind called it an “association area 
of association areas.” Its neural connections indeed place it at the convergence of highly 
processed data streams stemming from vision, audition, and touch — an ideal location for 
arithmetic, because the number concept applies equally well to all sensory modalities. 
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 Almost 60 years have elapsed since the German neurologist J. Gerstmann fi rst described 
the tetrad of defi cits that a lesion of the left  inferior parietal region can cause: acalculia, 
needless to say, but also diffi  culties in writing, in representing the fi ngers of the hand, 
and in distinguishing left  from right.   9  Immediately aft er his vascular accident, Mr. M 
 exhibited all these defi cits. Th ere was, however, one additional complication: Mr. M’s 
lesion was located in the  right  hemisphere. We believe that this patient, who was strongly 
left -handed, fell into a minority of people whose brain is organized in a mirror image 
of its normal architecture and whose right hemisphere is involved in language processing, 
rather than the left . But the loss of quantitative number sense can also be found in 
more classical patients whose Gerstmann’s syndrome stems from a  left   inferior parietal 
lesion. 

 What is the relationship between numbers, writing, fi ngers, and space? Th is issue is a 
matter of considerable debate. Th e tetrad of defi cits called Gerstmann’s syndrome may 
not mean much. It could merely refl ect the clustering of an odd assortment of indepen-
dent cerebral modules in the same cortical neighborhood. Indeed, researchers have 
observed for decades that the four elements making up the syndrome, though frequently 
found together, can also be dissociated. Some relatively uncommon patients show 
isolated acalculia with no apparent impair in distinguishing their fi ngers, or vice versa. 
Hence, the inferior parietal region is probably subdivided into microregions highly 
 specialized for numbers, for writing, for space, and for the fi ngers. 

 It is nevertheless tempting to look for a deeper explanation for this grouping within 
the same general brain region. Aft er all, as we saw in previous chapters, the association 
between numbers and space is indisputably close. In Chapter 1, we saw that numerosity 
can be extracted from a spatial representation of sets of items, provided this map specifi es 
the presence of objects regardless of their size and identity. In Chapter 3, the mental 
 representation of integers on a left -to-right oriented number line turned out to play a 
central role in numerical intuition. In Chapter 6, fi nally, tight relationships were found 
between mathematical talent and spatial abilities. Little wonder, then, if we fi nd that a 
lesion can simultaneously destroy mental representations of space and of numbers. 

 My feeling is that the inferior parietal region hosts neural circuitry dedicated to the 
representation of continuous spatial information, which turns out to be ideally suited to 
the coding of the number line.   10  Anatomically, this area stands at the top of a pyramid 
of occipitoparietal areas that construct increasingly abstract maps of the spatial layout 
of objects in the environment. Number emerges, naturally, as the most abstract represen-
tation of the permanence of objects in space — in fact, we can almost defi ne number 

 9  Gerstmann,     1940  . For case presentations and reviews, see Benton,     1961  ; Benton,     1987  ; Benton,     1992  ; 
Mayer et al.,     1999  ; Rusconi et al.,     2009   

10  Th is conclusion has received much experimental support lately. See for instance Pinel, Piazza, Le Bihan, & 
Dehaene,     2004  ; Hubbard et al.,     2005  ; Tudusciuc & Nieder,     2007  . For a similar proposal, see Walsh,     2003   
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as the only parameter that remains constant when one removes object identity and 
 trajectory. 

 Th e links between numbers and fi ngers are also obvious. All children in all cultures 
learn to count on their fi ngers. It thus seems plausible that in the course of development, 
the cortical representations of fi ngers and of numbers come to occupy neighboring 
or tightly interrelated cerebral territories. Furthermore, the cerebral representations of 
numbers and the layout of the hand, even if they are dissociable, obey very similar 
 principles of organization. When Mr. M wiggles his index fi nger even though I have 
asked him to move his middle fi nger, his error seems to be the exact analogue of his 
inability to visualize the respective locations of numbers 2 and 3 on the number line. 
From this perspective, which remains highly speculative, body maps, spatial maps, and 
the number line would all result from a single structural principle governing the connec-
tivity in the inferior parietal cortex.     

   Seizures Induced by Mathematics   

 Another enigmatic pathology demonstrates the extent to which the inferior parietal area 
is specialized for arithmetic.  Epilepsia arithmetices  is a syndrome fi rst reported in 1962 by 
the neurologists D. Ingvar and G. Nyman.   11  During a routine electroencephalographical 
examination of an epileptic girl, they discovered that whenever their patient solved arith-
metic problems, even very simple ones, her brain waves showed rhythmic discharges. 
Calculation triggered epileptic fi ts, while other intellectual activities such as reading had 
no eff ect. 

 Nimal Senanayake, a Sri Lankan physician, paints a fascinating and terrifying portrait 
of these “seizures induced by thinking:”   12  

 A 16-year-old school girl had been experiencing sudden jerky movements of her 
right arm during the past year, accompanied by transient thought block when 
studying; in particular, when studying mathematics. During the term test, she began 
to develop jerks about 30 minutes aft er starting the mathematics paper. Th e pen 
dropped out of her hand and she found it diffi  cult to concentrate. She completed 
the 1-hour paper with diffi  culty but during paper 2 the jerks became more 
 pronounced and in 45 minutes she had a grand mal convulsion and lost conscious-
ness. [Following anti-epileptic medication,] there was some improvement but she 
 continued to have occasional jerks during mathematics lessons. About 9 months 
aft er the fi rst major seizure she had to sit the main examination. Again, during the 

11  Ingvar & Nyman,     1962   
12  Senanayake,     1989   
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mathematics paper, she started to jerk within 15 minutes. She forced herself to 
 continue, but halfway through the paper she had a grand mal convulsion.   

 More than a dozen similar cases of “arithmetic epilepsy” are now known throughout 
the world. Th e victims’ electroencephalogram frequently presents anomalies in the 
 inferior parietal region. Most likely, this area houses an incorrectly wired and hyperexcit-
able network of neurons that, when put to use during arithmetic problem solving, 
 transmits an uncontrollable electrical discharge to other brain areas. Th at this epileptic 
focus only breaks out during calculation gives an indication of the extreme specialization 
of this cerebral area for arithmetic.     

   The Multiple Meanings of Numbers   

 Mr. M’s case also provides ample proof of the amazing specialization of the inferior 
 parietal area.   13  Although his parietal lesion has devastated his number sense, Mr. M main-
tains an excellent knowledge of nonnumerical domains. Most strikingly, although he 
cannot tell which number falls between 3 and 5, the very same bisection task applied to 
other areas does not give him any diffi  culty. He knows very well which letter falls between 
A and C, which day comes between Tuesday and Th ursday, which month falls between 
June and August, and which musical note is found between do and mi. Knowledge 
of these series is fully intact. Only the series of numbers — the only one that refers to 
quantity — seems to be aff ected. 

 Even with regard to numbers, Mr. M has not lost his wealthy store of “encyclopedic” 
knowledge. Th is talented artist, now retired, can still lecture for hours on the events of 
1789 or 1815. He has even told me, with a wealth of numerical detail, the history of the 
 Hôpital de la Salpêtrière  where I test him. Number 5, which he so readily judges to be 
greater than 6, evokes in him a profusion of mystical references to the “fi ve pillars of 
Islam.” He reminds me that odd numbers, according to the Pythagoreans, were the only 
ones that found favor in the gods’ eyes. And the patient humorously refers me to a 
whimsical quote by the French humorist Alphonse Allais: “Number 2 rejoices in being so 
odd.” No doubt, then, Mr. M’s erudition has survived brain damage, even in regard to 
dates and the history of numbers and mathematics. 

 Another dimension of Mr. M’s impairment is that it varies according to the abstract-
ness or concreteness of the problems he is asked to solve. Th e numbers that are manipu-
lated in arithmetic are highly abstract concepts. When solving 8  +  4, there is no point in 
wondering whether one is talking about eight apples or eight children. Mr. M’s handicap 
seems confi ned to this understanding of numbers as abstract magnitudes. His numerical 

13  Dehaene & Cohen,     1997   
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performance improves considerably whenever he fi nds a concrete referent or mental 
model to cling to, rather than having to work with numbers in the abstract. For instance, 
he can still estimate unfamiliar but concrete magnitudes such as the duration of 
Columbus’s trip to the New World, the distance from Marseilles to Paris, or the number 
of spectators at a major football game. During one examination, he failed to divide 4 by 2 
(he mechanically responded, “Four times three is twelve”). Attempting to understand 
the source of his failure, I placed four marbles in his hand and asked him to share them 
between two children. He immediately divided this concrete set by grabbing two marbles 
in each hand, without even a shadow of indecision. 

 Later on I questioned him about his daily schedule and found that he judiciously uses 
time labels. Mr. M easily explained how he got up at fi ve in the morning and then had two 
hours of work before breakfast, which was served at seven, and so on. Moving mentally 
on the concrete line of time was a breeze for him, compared to dwelling on the abstract 
number line. Remarkably, he was able to perform computations with time labels that he 
was completely unable to perform in the abstract. For instance, he could tell me how 
much time elapsed, say, between 9 a.m. and 11 a.m. — an operation equivalent to 
 subtraction, which he had so much diffi  culty with. One peculiarity of the French system 
of time is that we use both a 12-hour format and a 24-hour format for time — for instance, 
we say that 8 p.m. is literally “20 o’clock.” Mr. M experienced no diffi  culty at all convert-
ing back and forth between these two formats, although such a conversion is formally 
equivalent to adding and subtracting 12. As expected, he experienced a bitter setback 
when I presented him numerically equivalent operations such as 8  +  12 in the abstract 
context of an arithmetic test. 

 Th ese dissociations illustrate how useless it would be to seek  the  brain area for 
number meaning. Numbers have multiple meanings. Some “random” numbers such as 
3,871 refer only to a single concept, the pure quantity that they convey. Many others, 
however,  especially when they are small, evoke a host of other ideas: dates (1492), hours 
(9:45 p.m.), time constants (365), commercial brands (747), zip codes (90210, 10025), 
phone numbers (911), physical magnitudes (110/220), mathematical constants (3.14  … ; 
2.718  … ), movies (2001), games (21), and even drinking laws (21 again!). Th e inferior 
parietal cortex seems to encode only the quantitative meaning of numbers, which is what 
Mr. M has trouble with. Distinct brain areas must be involved in coding the other 
 meanings. 

 In Mr. G, another patient with massive damage to the left  hemisphere, the 
contribution of these parallel pathways for number meaning is particularly evident.   14  
Mr. G suff ers from a major reading defi cit. Th e direct reading pathway that converts 
written letters or digits into the corresponding sounds is totally disrupted, preventing 

14  Cohen, Dehaene, & Verstichel,     1994   
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him from reading most words and numbers. Yet, some strings still evoke fragments of 
meaning:  

    •   1789: It makes me think of the takeover of the Bastille  …  but what?  
    •   Tomato: It’s red  …  one eats it at the beginning of a meal  …      

 Sometimes this semantic approach allows him to recover the pronunciation of a word 
in a very indirect way:  

    •   504 [a famous model of Peugeot car]: Th e number of the cars that win  …  it was 
my fi rst car  …  it begins with a P  …  Peugeot, Renault …  it’s Peugeot  …  403 [another 
Peugeot!]  …  no 500  …  504!  

    •   Candle: One lights it to light up a room  …  Candle!     

 On other occasions, conversely, the retrieved meaning leads him astray:  

    •   1918: the end of World War I …  1940  
    •   Giraff e: zebra     

 Th ough pure quantities can reasonably be related to inferior parietal cortex, nobody 
knows yet which cerebral areas take on the other, nonquantitative, meanings of numbers. 
Among the many unsolved issues that the cognitive and neural sciences will have to 
address in the next ten or twenty years, this one certainly stands out: According to what 
rules does our brain endow a linguistic symbol with meaning?     

   The Brain’s Numerical Information Highways   

 Th e meaning of numbers is not the only knowledge that is distributed among several 
brain regions. Th ink of all the arithmetic know-how you command: reading and writing 
numbers, in Arabic or in spelled-out notation; understanding them and producing them 
aloud; addition, multiplication, subtraction, division — and the list can go on. Th e study 
of cerebral lesions suggests that each of these abilities rests on a swarm of highly special-
ized neuronal networks communicating through multiple parallel pathways. In the 
human brain, division of labor is not an idle concept. Depending on the task that we plan 
to accomplish, the numbers that we manipulate go down diff erent “cerebral information 
highways.” A small part of these networks is tentatively schematized in Figure   7.3  .  

 Consider reading. Do we use the same neuronal circuits to identify the Arabic digit 5 
and the word  fi ve?  Probably not. Visual identifi cation as a whole rests on cerebral areas in 
the posterior part of both hemispheres, in a region called the  inferior occipitotemporal 
cortex . However, this region is highly fragmented into specialized subsystems. Th e study 
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of split-brain patients indicates that the visual system of the left  hemisphere recognizes 
both Arabic numerals and spelled-out words, while that of the right hemisphere 
 recognizes only simple Arabic numerals. Furthermore, even within the posterior left  
hemisphere, diff erent categories of visual objects — words, Arabic digits, but also faces 
and objects — seem to be processed by dedicated neuronal pathways. Hence, certain 
lesions of the left  occipitotemporal region impair only the visual identifi cation of words. 
Th ese patients suff er from a syndrome called “pure alexia” or “alexia without agraphia.”   15  
 Alexia  means that they cannot read a word (though they understand spoken language 
perfectly);  without agraphia  means that they can still write words and sentences — though 
they are totally unable to read their own writing, only seconds aft er having written. Here 
is a typical transcript of a pure alexic patient attempting to read the word  girl:  

  Patient:  Th at’s on  …  that’s ‘O, N’  …  ‘on’  …  is that what it is? Well there’s three 
letters, like an ‘E, B’  …  I don’t know what that says  …  I can’t see it that well  …  
I have to give up, I can’t. 

  Examiner:  Try to read the letters one by one. 
  Patient:  Th ese? It’s  …  ‘B’ …  ‘N’  …  ‘I’  …  I don’t know.   

15  For a general description of pure alexia, see Déjerine,     1892  ; Damasio & Damasio,     1983  ; Cohen et al.,     2004  . 
For a description of residual numerical abilities in pure alexia, see Cohen & Dehaene,     1995  ,   2000   
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     figure 7.3.  A partial and still hypothetical diagram of cerebral areas involved in number 
processing. Both hemispheres can manipulate Arabic numerals and numerical quantities, but only 
the left  hemisphere has access to a linguistic representation of numerals and to a verbal memory of 
arithmetic tables.   
 (Aft er Dehaene and Cohen   1995  .)    
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 Th ough incapable of identifying words, such patients oft en maintain excellent face 
and object recognition abilities. Th us, visual identifi cation is not impaired as a whole. 
Instead, only a subsystem specialized for strings of characters goes awry. Most important 
for our present purposes, even the identifi cation of Arabic digits is frequently preserved. 
One of the fi rst diagnosed cases of pure alexia, reported by the French neurologist Jules 
Déjerine in 1892, involved a man who could not decipher words nor, oddly enough, 
musical notation, but was still able to read Arabic digits and numerals and even carry out 
long series of written calculations.   16  In 1973, the American neurologist Samuel Greenblatt 
described a similar case in which, in addition, the patient still had fully intact visual fi elds 
and color vision.   17  

 Th e converse dissociation is also on record. Lisa Cipolotti and her colleagues at the 
National Hospital in London recently observed a defi cit in reading Arabic numerals in a 
patient who experienced no diffi  culty reading words.   18  Such cases imply that word and 
number identifi cation rest on distinct neuronal circuits in the human visual system. 
Because they lie in neighboring anatomical areas, they frequently deteriorate simultane-
ously. In some rare cases, however, we can demonstrate that they are in fact distinct and 
dissociable. 

 Similar patterns of dissociation are found between writing down numbers and saying 
them aloud. Patient H. Y., whom I described briefl y at the beginning of this chapter, 
mixed up number words when he had to say them aloud.   19  Yet he experienced no diffi  -
culty in writing them in Arabic notation. Th us, he might say that “two times fi ve is thir-
teen,” but he always wrote down 2  ×  5 =  10 correctly. He clearly had preserved a memory 
for multiplication tables. He failed only when he tried to retrieve the pronunciation of 
the result. Frank Benson and Martha Denckla similarly described a patient who, when 
solving 4  +  5, said  eight  and wrote down 5 — yet could still point to the correct result, 9, 
among several other digits!   20  Th is patient’s cerebral routines for the spoken and written 
production of numerals were both deteriorated, yet visual identifi cation and calculation 
remained unaff ected. 

 Th e extraordinary selectivity of cerebral lesions seems perpetually to catch us off  guard. 
Patrick Verstichel, Laurent Cohen, and I studied a patient who, when trying to speak, 
emits an incomprehensible jargon (“I margled the tarboneek placidulagofalty stoch  …  ” ).    21  
A careful analysis of errors shows that a specifi c stage of speech production, which 
 assembles the phonemes making up the pronunciation of words, is irremediably impaired. 

16  Déjerine,     1892   
17  Greenblatt,     1973   
18  Cipolotti, Butterworth, & Denes,     1991   
19  McCloskey, Caramazza, & Basili,     1985   
20  Benson & Denckla,     1969   
21  Cohen, Verstichel, & Dehaene,     1997   
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Yet, number words somehow escape this jargon. When the patient tries to say a numeral, 
say  twenty-two,  he never produces muddled speech like “bendly daw.” Like H. Y., however, 
he occasionally substitutes one number word for another and says  fi ft y-two  (such whole-
word substitutions rarely, if ever, occur with words other than numerals). Th us, even deep 
down within the stream of cerebral areas for speech production, specialized neuronal 
 circuits deal with the assembling of numerals. 

 A very similar dissociation is found in writing. Steven Anderson, and Antonio and 
Hannah Damasio, have described a patient who had suddenly become unable to read or 
write aft er a minuscule lesion destroyed part of her left  premotor cortex.   22  When she was 
asked to write down her name or the word  dog,  all she could produce were illegible 
scrawls. Yet, reading and writing of Arabic numerals remained fully intact. Th e patient 
could still solve complex arithmetic problems in the same neat handwriting that she had 
possessed before the lesion (Figure   7.4  ).  

 An inescapable conclusion from this series of analogous cases is that at almost all levels 
of processing — visual identifi cation, language production, writing — the cerebral areas 
that handle numerals are partially distinct from those that deal with other words. Many 
of these areas are not shown on Figure   7.3  , for the simple reason that we do not yet know 
much about their anatomical substrate. But their dissociation following a cerebral lesion 
proves, at least, that they do exist. 

 Let us now talk about calculation. We have already described at length the crucial role 
of the inferior parietal cortex in the quantitative processing of numbers and, in particular, 
in their subtraction. But what about addition and multiplication tables? My colleague 
Laurent Cohen and I believe that another neuronal circuit may be involved — a cortico-
subcortical loop involving the basal ganglia of the left  hemisphere.   23  Th e basal ganglia are 
neuronal nuclei located below the cortex. Th ey collect information from several cortical 
regions, process it, and send it back through multiple parallel circuits passing through the 
thalamus. Although the exact function of these cortico-subcortical loops remains poorly 
understood, they are involved in the memorization and reproduction of automatic motor 
sequences, including verbal sequences. Laurent Cohen and I think that one of those 
 circuits is activated during multiplication and automatically blurts out, say, the result 
“ten” as a complement to the word sequence “two times fi ve.” More precisely, the activity 
of a distributed population of neurons coding for the sentence “two times fi ve” activates 
neurons within circuits of the basal ganglia that, in turn, light up a population of neurons 
coding for the word “ten” within cortical language areas. Other verbal automatisms such 
as proverbs, poems, or prayers may be stored in a similar fashion. 

 Our speculations are supported by several cases of acalculia stemming from a left  
 subcortical lesion. Damage to the deep neuronal pathways of the left  hemisphere, which 

22  Anderson, Damasio, & Damasio,     1990   
23  Dehaene & Cohen,     1995  ,   1997   
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leaves the cortex intact, occasionally causes arithmetic impairments. I recently examined 
a patient, Mrs. B, whose left  basal ganglia had been damaged.   24  In spite of this lesion, the 
patient can read numbers and write them to dictation. Her circuits for identifying and 
producing numbers are fully intact. Th e subcortical lesion has had a drastic impact on 
calculation, however. In fact, Mrs. B’s memory for arithmetic tables is so severely disorga-
nized that she now makes mistakes even on problems as simple as 2  ×  3 or 4  ×  4. 

 In sharp contrast with Mr. M, who had lost number sense, Mrs. B still shows an 
 excellent understanding of numerical quantities (her inferior parietal cortex has been 

24  Dehaene & Cohen,     1997  . For a similar case, explored in more detail, see Lemer et al.,     2003   

     figure 7.4 .  Following a small lesion of the left  premotor cortex, this woman became unable to 
read or write words, but could still read and write Arabic numerals. Th e scribbles refl ect the patient’s 
attempt to write her name, the letters A and B, and the word dog. Sample calculations show that her 
writing of Arabic numerals was fully spared.   
 (Reprinted from Anderson et al.   1990  ; copyright  ©  1990 by Oxford University Press.)    
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fully spared). She can compare two numbers, fi nd which number falls in between them, 
and even recalculate 2  ×  3 by mentally counting three groups of two objects. She also 
 experiences no diffi  culty in solving simple subtractions such as 3  −  l or 8  −  3. Th e narrow 
domain in which Mrs. B is impaired concerns the retrieval of familiar word sequences 
from rote memory. She can no longer recall strings of words that once were highly 
 familiar, such as “three times nine is twenty-seven” or “two four six eight ten.” In a memo-
rable working session, I asked Mrs. B to recite the multiplication table, the alphabet, some 
prayers, some nursery rhymes, and some poems, and discovered that all of these forms of 
rote verbal knowledge are impaired. Mrs. B experiences profound defi ciencies when she 
recites  Au clair de la lune,  a nursery rhyme that is about as famous in France as  Twinkle 
twinkle little star  is in the United States. She cannot recite the alphabet beyond A B C D. 
She also mixes up the words of the Confi teor, the Apostles’ Creed, and the Our Father 
(which she once ended thus: “and do not forgive but may thy kingdom come”). Th ese 
defi cits are all the more striking because Mrs. B is a devout Christian and a recently retired 
schoolteacher. Th us, she had spent a lifetime reciting these words. Whether multiplica-
tion tables, prayers, and nursery rhymes are stored in exactly the same circuits is unclear. 
But at the very least, they seem to recruit parallel, probably neighboring, neuronal 
 networks of the basal ganglia that were destroyed simultaneously by Mrs. B’s subcor-
tical lesion. 

 Up to now, this book has been concerned only with elementary arithmetic. But what 
about more advanced mathematical abilities, such as algebra? Should we postulate 
yet other neuronal networks dedicated to them? Recent discoveries by the Austrian 
neuropsychologist Margarete Hittmair-Delazer seem to suggest so.   25  She has found that 
acalculic patients do not necessarily lose their knowledge of algebra. One of her patients, 
like Mrs. B, lost his memory of addition and multiplication tables following a left  subcor-
tical lesion. Yet, he could still recalculate arithmetic facts by using sophisticated mathe-
matical recipes that indicated an excellent conceptual mastery of arithmetic. For instance, 
he could still solve 7  ×  8 as 7  ×  10   −   7  ×  2. Another patient, who had a PhD in chemistry, 
had become acalculic to the point of failing to solve 2 × 3, 7  −  3, 9 ÷ 3, or 5  ×  4. He could 
nevertheless still execute abstract formal calculations. Judiciously making use of the 
commutativity, associativity, and distributivity of arithmetic operations, he was able to 

simplify  
a b
b a

   into 1 or a  ×  a  ×  a into a 3 , and he recognized that the equation  
d
c

a
d a
c a

+ =a
+

is generally false. Although this issue has been the matter of very little research to date, 
these two cases suggest, against all intuition, that the neuronal circuits that hold algebraic 
knowledge must be largely independent of the networks involved in mental calculation.     

25  Hittmair-Delazer, Sailer, & Benke,     1995  ; Delazer & Benke,     1997   
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   Who Orchestrates the Brain’s Computations?   

 Th e scattering of arithmetic functions in a multitude of cerebral circuits raises a central 
issue for neuroscience: How are these distributed neuronal networks orchestrated? 
How do dispersed cerebral regions recognize that they all code for the same number in 
diff erent formats? Who or what decides to activate such-and-such circuits, in a precise 
order, as a function of the required task? How does the unity of consciousness, the feeling 
that we experience of executing a calculation one step aft er the other, emerge from the 
collective functioning of multiple parallel neuronal assemblies, each holding a small 
 fraction of arithmetic knowledge? 

 Neuroscientists have not reached a defi nite answer yet. Th e current theory, however, is 
that the brain dedicates specifi c circuits to the coordination of its own networks. Th ese 
circuits largely rely on areas located in the front of the brain, notably the prefrontal cortex 
and the anterior cingulate cortex.   26  Th ey contribute to the supervision of novel, nonauto-
mated behaviors — planning, sequential ordering, decision making, and error correction. 
It has been said that they constitute a kind of “brain within the brain,” a “central  executive” 
who autonomously regulates and manages behavior. 

 Some of these terms are so vague that they barely belong in our scientifi c vocabulary 
yet. Th ey sometimes recall the infamous  homunculus,  the little man dear to Tex Avery and 
Walt Disney who, comfortably seated at the command post of brain, directs the other 
body organs — but who directs him? Another  homunculus?  For most researchers, these 
models are but provisional metaphors. Th ey are destined to be heavily revised as the 
 frontal sectors of the brain are progressively divided into well delimited areas, each assum-
ing a restricted and manageable function. Without doubt, no such thing as  the  frontal 
system exists. Prefrontal areas comprise a multitude of networks specialized for working 
memory, error detection, or setting a course of action. Th eir collective behavior ensures 
the appearance of a supervised coordination of cerebral activity. 

 Prefrontal areas play a key role in mathematics, including arithmetic. As a rule, a 
 prefrontal lesion does not aff ect the most elementary operations, but it can yield a specifi c 
impairment in executing a series of operations in the appropriate order.   27  Not infrequently, 
neuropsychologists come across frontal patients who have become unable to use the 
 multiplication algorithm. Th ey add when they should multiply, they do not process digits 
in the correct order, they forget to carry over when needed, or they mix up intermediate 
results — oft en the telltale signs of a basic inability to supervise a sequence of operations. 

 Prefrontal cortex is especially vital for the on-line maintenance of the intermediate 
results of a calculation. It provides a “working memory,” an internal representational 

26  See for instance Miller & Cohen,     2001  ; Fuster,     2008   
27  Luria,     1966   
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workspace that allows the output of a computation to become the input to another. Th us, 
an excellent test of frontal lesions consists in asking a patient to subtract 7 successively 
starting from 100. Although frontal patients generally get the fi rst subtraction right, they 
oft en jumble the following ones or fall prey to some repetitive response pattern such as 
100, 93, 83, 73, 63, and so on. 

 Arithmetic word problems of the type used in elementary schools worldwide also 
reveal the contribution of prefrontal areas. Frontal patients fail to design a reasoned 
 resolution strategy. Rather, they oft en impulsively rush to the fi rst calculation that jumps 
to mind. A typical case was described by the famous Russian neuropsychologist Aleksandr 
Romanovitch Luria: 

 A patient with a lesion of the left  frontal lobe was given the problem just stated: 
“there were 18 books on two shelves, and there were twice as many books on one as 
on the other. How many books were on each shelf ?” Having heard (and repeated) 
it, the patient immediately carried out the operation 18 ÷ 2 = 9 (corresponding to 
the portion of the problem “there were 18 books on two shelves”). Th is was  followed 
by the operation 18  ×  2 = 36 (corresponding to the portion “there were twice as many 
on one shelf ”). Aft er repetition of the problem and further questioning, the patient 
carried out the following operations: 36  ×  2 = 72; 36  +  18 = 54, etc. Characteristically, 
the patient himself is quite satisfi ed with the result obtained.   

 Tim Shallice and Margaret Evans have shown that many frontal patients also 
experience diffi  culties in “cognitive estimation”.   28  Th ey frequently provide absurd answers 
to simple numerical questions. One patient declared that the highest building in London 
was between 18,000 and 20,000 feet tall. When his attention was drawn to the fact that 
this was higher than the 17,000 feet he had previously attributed to the highest mountain 
in Britain, he merely reduced his estimate of the highest building to 15,000 feet! 
According to Shallice, such simple but unusual questions simultaneously call for the 
invention of novel strategies for numerical estimation, and for an evaluation of the plau-
sibility of the retrieved result. Both components — planning and verifi cation — seem to be 
pivotal functions of the “central executive” to which prefrontal regions make a main 
 contribution. 

 With my American colleagues Ann Streissguth and Karen Kopera-Frye, I assessed 
numerical estimation in teenagers whose mothers drank heavily during pregnancy.   29  
Intrauterine exposure to alcohol can have dramatic teratogenic eff ects. Not only does it 
alter body development (children born of an alcoholic mother have characteristic facial 
features that confer a family resemblance on them); it also tampers with the laying down 

28  Shallice & Evans,     1978   
29  Kopera-Frye, Dehaene, & Streissguth,     1996   



Losing Number Sense  187

of cerebral circuits, causing microcephalia and abnormal neuronal migration patterns 
in various brain regions, including prefrontal cortex. Indeed, the teenagers we tested, 
although they could all read and write numbers and perform simple calculations, 
provided truly nonsensical numerical responses in cognitive estimation tasks. Th e size of 
a large kitchen knife? Six feet and a half, said one of them. Th e duration of a drive from 
San Francisco to New York? An hour. Curiously, although their numerical answers were 
oft en quite wrong, the patients almost always selected appropriate units of measurement. 
Sometimes they even seemed to know the answers, yet they still selected an inappropriate 
number. When asked to estimate the height of the tallest tree in the world, one patient 
correctly reported “redwood,” then generously granted it precisely 23 feet and 2 inches! 

 Th e prefrontal cortex, so adept at executive functioning, is one of the cerebral regions 
most unique to humans. Indeed, the emergence of our species was accompanied by a 
huge increase in the size of frontal areas, to such an extent that they represent about a 
third of our brain. Th eir synaptic maturation is particularly slow — evidence shows that 
prefrontal circuits remain fl exible at least up to puberty, and probably beyond. Th e 
 prolonged maturation of prefrontal cortex might explain some of the systematic errors to 
which all children in certain age groups fall prey I am thinking in particular of the 
Piagetian tests that tap into the “nonconservation of number.” Why do young children 
impulsively respond on the basis of the length of a row of objects, even when they are so 
competent in number processing? Th e fault may well lie in the immaturity of their 
frontal cortex, which makes them unable to inhibit a spontaneous but incorrect  tendency. 
An immature “central executive” may also account for class inclusion errors in which 
children judge that, in a bunch of fl owers made up of eight roses and two tulips, there are 
more roses than fl owers. Such “childishness” may well be symptomatic of a lack of super-
vision of behavior by the prefrontal cortex. And conversely, the frontal region is among 
the fi rst to feel the eff ects of cerebral aging. We can recognize several aspects of the  frontal 
syndrome in “normal” aging: inattention, defi ciencies in planning, and perseveration of 
error, with a preservation of daily routine activities.     

   At the Origins of Cerebral Specialization   

 Let me now sketch a summarized model of how the human brain incorporates  arithmetic. 
Numerical knowledge is embedded in a panoply of specialized neuronal circuits, or 
“modules.” Some recognize digits, and others translate them into an internal quantity. 
Still others recover arithmetic facts from memory, or prepare the articulatory plan that 
enables us to say the result aloud. Th e fundamental characteristic of these neuronal 
 networks is their modularity. Th ey function automatically, in a restricted domain, and 
with no particular goal in sight. Each of them merely receives information in a certain 
input format and transforms it into another format. 
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 Th e computational power of the human brain resides mostly in its ability to connect 
these elementary circuits into a useful sequence, under the sway of executive brain areas 
such as the prefrontal cortex and the anterior cingulate. Th ese executive areas are respon-
sible, under conditions that remain to be discovered, for calling the elementary circuits in 
the appropriate order, managing the fl ow of intermediate results in working memory, 
and controlling the accomplishment of calculations by correcting potential errors. Th e 
specialization of cerebral areas allows for an effi  cient division of labor. Th eir orchestra-
tion, under the aegis of the prefrontal cortex, brings about a fl exibility that is invaluable 
for the design and execution of novel arithmetic strategies. 

 Where might the extreme specialization of several cerebral areas for number process-
ing come from? Since time immemorial, approximate numerical quantities have been 
represented in the animal and human brains. A “quantitative module,” which may include 
circuits within the inferior parietal cortex, therefore belongs to the genetic envelope of 
our species. But what should we think of the specialization of occipitotemporal cortex 
for the visual recognition of digits and letters, or of the implication of the left  basal  ganglia 
in multiplication? Reading and calculation have been with us only a few thousand years, 
much too short a lapse of time for evolution to have instilled in us a genetic predisposi-
tion for these functions. Such cognitive abilities of recent origin must, therefore, invade 
cerebral circuits initially assigned to a diff erent use. Th ey take them over so thoroughly 
that they seem to become the circuit’s new dedicated function. 

 Th e basis for such changes in the function of cerebral circuits is  neuronal plasticity:  the 
ability of nerve cells to rewire themselves, both in the course of normal development and 
learning, and following brain damage. Neuronal plasticity, however, is not unlimited. In 
the fi nal analysis, the adult pattern of cerebral specialization must therefore result from a 
combination of genetic and epigenetic constraints. Certain regions of the visual cortex, 
initially involved in object or face recognition, progressively become specialized for read-
ing when a child is raised in a visual universe dominated by printed characters. Patches of 
cortex entirely dedicated to digits and to letters emerge, perhaps by virtue of a general 
learning principle ensuring that neurons coding for similar properties will tend to group 
together on the cortical surface. Likewise, the primate brain comprises innately specifi ed 
circuits for learning and executing motor sequences. When a child acquires multiplica-
tion tables, these circuits are naturally called upon, and therefore tend to specialize for 
calculation. Learning probably never creates radically novel cerebral circuits. But it can 
select, refi ne, and specialize preexisting circuits until their meaning and function depart 
considerably from those Mother Nature initially assigned them. 

 Flagrant limits to cerebral plasticity are seen in children who suff er from  developmental 
dyscalculia,  a seemingly insurmountable defi cit in arithmetic acquisition.   30  Some of these 
children, although their intelligence is normal and they obtain good results at school in 

30  Butterworth,     1999  ; Shalev et al.,     2000   
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most subjects, suff er from an exceedingly narrow handicap that recalls the neuropsycho-
logical defi cits seen in brain-damaged adults. Th e odds are that they were subject to a 
precocious neuronal disorganization within cerebral areas that should have normally 
 specialized for number processing. Here are three remarkable examples brought to 
us by the English neuropsychologist Christine Temple   31  and the psychologist Brian 
Butterworth:   32   

    •   S. W. and H. M. are teenagers of normal intelligence who attend a conventional 
school. Both speak fl uently. H. M. is dyslexic, but her reading handicap does not 
extend to numbers: Like S. W., she can read Arabic numerals aloud and compare 
them. Yet, H. M. and S. W. exhibit a double dissociation within calculation. 
S. W. knows his arithmetic tables to near perfection and can add, subtract, or 
multiply any two digits. However, he repeatedly fails in multidigit calculations: 
He errs in the order and nature of the component operations, and he carries over 
without rhyme or reason. Since childhood, he has suff ered from a selective  defi cit 
of calculation procedures so severe that even a specialized rehabilitation program 
has not been able to compensate it. Conversely, H. M. is a master in multidigit 
calculation algorithms, but she could never learn the multiplication table. At age 
19, she still requires more than seven seconds to multiply two digits, and the 
result that she reaches is incorrect in more than half of the trials.  

    •   S. W. and H. M.’s highly selective defi cits are unlikely to be due to their laziness, 
or to major fl aws in their education. A neurological origin is more likely. Since 
childhood, S. W. has suff ered from tuberous sclerosis and epileptic fi ts. His CT 
scan shows an abnormal mass of nerve cells in the right frontal lobe, an anomaly 
that may well account for his insurmountable inability to perform sequential 
 calculations. As to H. M., although she suff ers from no known neurological 
 disorder, it would be well worth examining with modern brain imaging tools the 
extent to which her parietal lobe and subcortical circuits are intact.  

    •   Paul is an 11-year-old boy of normal intelligence. He suff ers no known neuro-
logical disease, has a normal command of language, and uses an extensive vocab-
ulary. Yet from his earliest youth, Paul has experienced exceptionally severe 
diffi  culties in arithmetic. Multiplication, subtraction, and division are impossible 
to him. At his best, he occasionally succeeds in adding two digits by counting on 
his fi ngers. His defi cit even extends to reading and writing numbers. When 
taking numbers down in dictation, instead of 2 he writes down 3 or 8! He also 
fails dramatically when reading Arabic numerals or spelled-out number words 
aloud: 1 is read as “nine,” and  four  as “two.” Only numerals are subject to these 

31  Temple,     1989  ,   1991   
32  Butterworth,     1999   
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strange word substitutions. Paul can read even the most complex and irregular 
English words, such as  colonel.  He even fi nds a plausible pronunciation for 
 fi ctitious words such as  fi be  or  intertergal . Why then does he read the word  three  
as “eight”? Paul apparently suff ers from a complete disorganization of number 
sense, comparable in severity to Mr. M’s predicament. Th is defi cit occurred so 
early on that it seems to have prevented Paul from attributing any meaning to 
number words.  

    •   C. W. is a young man in his thirties. His intelligence is normal, although he never 
really shone in school. Although he can more or less read and write numerals 
under three digits long, their quantitative meaning escapes him. Adding or 
 subtracting two digits takes him more than three seconds. In order to multiply, 
he resorts to repeated addition. He succeeds only when both operands are smaller 
than 5, and can therefore be portrayed with the fi ngers of one hand. More 
 surprising still, he cannot tell without counting which of two numbers is the 
larger. He thus shows an  inverse  distance eff ect: in contrast to a normal person, it 
takes him  less  time to compare 5 and 6 than to compare 5 and 9, because the 
larger the numerical distance, the longer he has to count. Even the subitizing of 
very small sets of objects is beyond his reach. When three dots appear on a com-
puter screen, he has no immediate notion of their numerosity unless he counts 
them one by one. C. W. seems to have been devoid from childhood of any rapid 
and intuitive perception of numerical quantities.     

 Th ese remarkable cases call into question the extent of cerebral plasticity in the 
developing brain. Although neuronal circuits are highly modifi able, especially in young 
children, they are not ready to assume any function. Some circuits, whose main connec-
tion patterns are under genetic control, are biased to become the neuronal substrate 
of narrowly defi ned functions such as the evaluation of numerical quantities, or the 
 storage of rote multiplication facts. Th eir destruction, even in the very young, can cause 
a selective defi cit that is not always open to compensation by neighboring brain areas. 

 Th is observation brings us back once more to a recurrent theme in this book: the 
strong constraints that our cerebral architecture imposes on the mental manipulation 
of mathematical objects. Numbers do not have full latitude to invade any available 
 neuronal networks of the child’s brain. Only certain circuits are capable of contributing 
to calculation — either because they are part of our innate sense of numerical quantities, 
such as, perhaps, some areas of the inferior parietal cortex, or because although they were 
initially destined for some other use, their neural organization turns out to be suffi  ciently 
fl exible and close to the desired function so that they can be “recycled” for number 
 processing.                                                                                           
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 nobel prize winner Richard Feynman once remarked that the physicist who analyzes 
 subatomic collisions in a particle accelerator is not very diff erent from someone who sets 
out to study clockmaking by smashing two watches together and examining the remains. 
Th is tongue-in-cheek remark applies equally well to neuropsychology. It, too, is an indirect 
science in which the normal organization of cerebral circuits is inferred from the way they 
function aft er having been damaged — an awkward enterprise, not unlike trying to deduce 
the inner workings of a clock from the examination of hundreds of broken movements. 

 Even if most brain scientists trust neuropsychological inferences, there comes a time 
when they would like to “open the black box” and observe the neural circuits underlying 
mental calculation directly. It would be an extraordinary step forward if we could some-
how measure the cellular fi ring patterns that code for numbers. Jean-Pierre Changeux 
maintains this forcefully:   1  “Th ese ‘mathematical objects’ correspond to physical states of 
our brain in such a way that it ought  in principle  to be possible to observe them from the 
outside looking in, using various methods of brain imaging.” 

 Th is neurobiologist’s dream is now becoming a reality.   2  In the past two decades, 
new tools — positron emission tomography, functional magnetic resonance imaging, 

1  Changeux & Connes,     1995   
2  An excellent introduction to brain imaging is Posner & Raichle,     1994  . For an in-depth update on magnetic 

resonance imaging, see Huettel, Song, & McCarthy,     2008   
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waves are being recorded while he is asked to 

“think about relativity.” 

 roland barthes,  Mythologies   
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and electro- and magnetoencephalography — have begun to provide pictures of brain 
activity in living, thinking humans. With modern brain imaging tools, a short experi-
ment is now suffi  cient to examine which brain regions are active while a normal subject 
reads, calculates, or plays chess. Recordings of the electrical and magnetic activity of the 
brain, with millisecond accuracy, allow us to unveil the dynamics of cerebral circuits and 
the precise moment when they become active. 

 In several respects, the new pictures of the active brain are complementary to the 
results gathered from neuropsychology. Several cerebral areas long failed to be appreci-
ated by neuropsychologists, either because they were rarely lesioned or because their 
destruction was very damaging or lethal. Today, an entire network can be visualized in a 
single experiment. In the past, it was also diffi  cult to study the temporal organization of 
cerebral circuits in the damaged brain, which oft en undergoes a profound reorganiza-
tion. Modern imaging is able to disclose the propagation of neuronal activity to many 
successive regions of the normal human brain, almost in real time. 

 We now have amazing equipment worthy of an Isaac Asimov novel at our disposal. 
How can one fail to marvel at the idea that we can visualize the physiological changes that 
support our thoughts? Since this new world has been made accessible to scientists, dozens 
of experiments have explored the cerebral basis of functions as diverse as reading, motion 
perception, verbal associations, motor learning, visual imagery, and even our sense of 
pain. It would be impossible to review in full all the discoveries that this methodological 
revolution has permitted. In this chapter, I focus exclusively on studies that reveal human 
cerebral activity during mental arithmetic.     

   Does Mental Calculation Increase Brain Metabolism?   

 To retrace the heroic beginning of brain imaging, we must temporarily forget all about 
modern technologies and head far back into the history of neuroscience. In 1931, a report 
by William G. Lennox from the department of neuropathology at Harvard, soberly 
titled, “Th e cerebral circulation: the eff ect of mental work,” was the fi rst to boldly probe 
the impact of arithmetic activity on brain function.   3  Lennox raised the critical issue of 
the infl uence of cognitive processing on the energy balance of the brain. Does mental 
calculation involve a measurable expenditure of energy? Does the brain burn more 
oxygen when the computations it performs increase in intensity? 

 Th e experimental method that Lennox devised was innovative but appalling. It 
 consisted of drawing blood samples from the internal jugular vein and measuring their 
oxygen and carbon dioxide content. Th e article did not report whether the 24 subjects, 
epileptic patients who were being treated at Boston City Hospital, had been informed 

3  Lennox,     1931   
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of the risk that they incurred and of the nontherapeutic objectives of the research. In the 
1930s, ethical standards were still quite lenient. 

 Lennox’s experimental design, however, was clever. In a fi rst group of 15 subjects, he 
took three consecutive blood samples. Th e fi rst was taken aft er the subjects had rested for 
half an hour with their eyes closed. Th ey were then given a sheet covered with arithmetic 
problems and, fi ve minutes later, while they struggled to solve them, a second blood 
sample was taken. Finally, the subjects were allowed to rest for ten to fi ft een minutes 
before the fi nal sample was taken. Th e results are striking: Among the three measures, the 
one that had been performed during mental calculation showed a marked increase in 
oxygen content (Figure   8.1  ). Lennox did not report any statistical test on this fi nding, but 
my own calculations from the raw data evaluate to only about 2 %  the likelihood that this 
large variation across samples could be due to chance. 

  One objection, however, had to be refuted. Th at was, in the author’s own words, “It is 
diffi  cult for the subject either to ‘make his mind a blank’ or to concentrate on the prob-
lems set before him while a needle is being inserted deeply into his neck (sic!). Th e degree 
of apprehension or of discomfort may not have been the same each time that blood was 
withdrawn.” 

 To meet this criticism, Lennox took the precaution of repeating the same series of 
three measures on another group of 9 subjects that remained at rest throughout the test. 
For these subjects, the oxygen content remained practically constant. Th us, the intense 
eff orts required by mental calculation had to be responsible for the increase observed in 
the experimental group. Th e fi nding opened revolutionary perspectives. For the fi rst 
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     figure 8.1.  As early as 1931, William Lennox showed that intense mental calculation changes the 
oxygen content of blood samples taken from the internal jugular vein.   
 (Aft er Lennox,   1931  .)    
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time, an objective measurement of the energy consumed by intellectual eff ort could be 
envisaged. 

 In detail, however, the results raised an apparent paradox that Lennox did not fail to 
notice. Blood was drawn from the internal jugular vein; hence,  aft er  it had irrigated the 
cerebrum. But mental activity was expected to increase the consumption of oxygen. Th us, 
for equal cerebral blood fl ow, the oxygen content of the venous blood should have 
decreased rather than increased during intellectual work. To resolve this contradiction, 
Lennox exhibited remarkable anticipation powers by stating, as early as in 1931, a  principle 
that has remained valid to this day: “Th e result can be explained by a dilatation of 
cerebral vessels with a resulting increase in the speed of blood fl ow through the brain, a 
factor that outweighs the increased consumption of oxygen.” 

 Th e most recent studies in functional brain imaging have confi rmed this postulate, 
which lies at the heart of the modern method of functional magnetic resonance imaging. 
Th e regulation system that accelerates cerebral blood fl ow in response to a local increase 
in neuronal activity does indeed bring in more oxygen than the brain can consume. Th e 
reasons for this curious phenomenon still remain poorly understood. Th at Lennox 
 managed to foresee it shows the extent to which one can trust his work, despite the 
 primitive and invasive technique on which it is based. 

 To close this historical discussion, it should be noted that a subsequent study by Louis 
Sokoloff  and his colleagues at the University of Pennsylvania, in 1955, did not manage to 
replicate Lennox’s results (though it relied on a slightly diff erent method).   4  Looking back 
on it, several criticisms also come to mind. First, the increase in the oxygen content that 
Lennox observed may have had little to do with mental calculation. It could simply have 
been due to the intense perceptual and motor activity required to scrutinize a sheet fi lled 
with mathematical signs and to give the numerical results. In other words, nothing proves 
that Lennox really measured the physiological bases of a purely  mental  activity, as opposed 
to greater visual or motor work. 

 To a modern reader, however, the article’s most obvious defi ciency lies in its total 
neglect of the issue of cerebral localization. During calculation, does cerebral blood fl ow 
increase throughout the cerebrum? Or are the changes circumscribed to specifi c brain 
regions? And in the latter case, could cerebral blood fl ow serve as a tool to localize areas 
dedicated to distinct mental processes on the cortical surface? Lennox’s article did not 
even mention whether the blood samples had been drawn from the left  or the right 
 internal jugular vein, a fact that might have supported conclusions about the hemispheric 
lateralization of mental calculation procedures. Improvements in spatial localization, and 
the production of genuine pictures of human brain activity, were obliged to wait until 
the 1970s and 1980s, which fi nally saw the advent of reliable functional brain imaging 
 techniques.     

4  Sokoloff , Mangold, Wechsler, Kennedy, & Kety,     1955   
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   The Principle of Positron Emission Tomography   

 Following Lennox’s pioneer work, several studies have confi rmed that the brain is  amazingly 
voracious in its need for energy. Indeed, it alone is responsible for almost a quarter of the 
energy expended by the entire body. Its local energy consumption,  however, is not a  constant. 
It can suddenly rise, in a matter of seconds, when a cerebral region is put to use. Sokoloff  was 
the fi rst to demonstrate the direct relations between cerebral blood fl ow, local metabolism, 
and the degree of activity of cerebral areas.   5  If I decide to rapidly wiggle my right index 
fi nger, for instance, neurons start to fi re within the minuscule patch of left  motor cortex 
dedicated to the command of the muscles driving that fi nger. A few seconds later, glucose 
consumption increases in this area of cerebral tissue. In parallel, cerebral blood fl ow increases 
within the vessels and capillaries that irrigate the region. Th e increased volume of circu-
lating blood meets and even exceeds the local increase in oxygen consumption. 

 In the last twenty years, these regulation mechanisms have been exploited to  determine 
which brain regions are active during various mental activities. At the heart of these 
 innovative brain imaging techniques is an extremely simple idea: If one can measure local 
glucose metabolism or blood fl ow in a given brain area, one should immediately obtain 
an indication of recent neural activity. But the implementation of this idea is tricky. How 
can one assess blood fl ow or the quantity of degraded glucose at each point in the brain? 

 Sokoloff  found a solution for animals. His now classical autoradiography technique 
consists in injecting a molecule marked with a radioactive tracer, such as fl uorodeoxyglu-
cose, and then having the animal perform the desired task (say, moving the right paw). 
Th e radioactive fl uorine atom, attached to the glucose molecule, is preferentially depos-
ited in the cerebral regions that burn up the most energy. Subsequently, the animal’s brain 
is cut into thin slices. Each slice is placed in darkness against a photographic fi lm, which 
gets exposed only directly opposite the zones where radioactivity is concentrated. Th e 
series of slices thus permits reconstruction of the three-dimensional extent of the areas 
that were active at the time of the injection. 

 Th e spatial resolution of autoradiography is excellent, but obvious reasons make it 
unsuitable for research with humans: Neither brain slicing nor the injection of high doses 
of radioactivity are likely to meet the subject’s approval. Th ese diffi  culties can be circum-
vented, however, by the magic of three-dimensional reconstruction methods derived 
from physics and computer science. Experiments with humans only use radioactive 
 tracers with a short half-life span, anywhere between a few minutes and a few hours. As 
soon as the experiment is over, all radioactivity quickly vanishes. Th e injected doses of 

5  See for instance Reivich et al.,     1979  ; Sokoloff ,     1979  . Another pioneer was David Ingvar, who fi rst applied brain 
imaging to visualize human cognitive networks in normal volunteers and schizophrenics patients. See for 
instance Ingvar & Schwarz,     1974   
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radioactivity are harmless unless exposure is repeated frequently. Th us, the experiment is 
no more dangerous for the subject than the typical X-ray and no more painful than a 
regular intravenous injection. In order for the experiment to proceed in accordance with 
medical ethics, subjects are fully informed of the objectives and methods used in the 
research before they volunteer. 

 Only one problem remains: how to detect the concentration of radioactivity within 
the physically inaccessible volume of the skull? Positron emission tomography, also known 
as “PET scanning,” provides a high-tech solution. Consider for a moment the nuclear 
physics of a subject who has just been injected with a tracer that emits  positrons — 
for instance, a water molecule in which the usual oxygen atom has been replaced by an 
unstable atom of oxygen 15 (H 2  

15 O). Aft er an unpredictable delay ranging from seconds to 
minutes, this atom emits a positron, an antimatter particle denoted as e  +   whose proper-
ties are exactly symmetrical with those of the familiar electron e − . Th e subject’s head, his 
whole body in fact, is thus turned into an antimatter generator! As you may guess, this 
state of aff airs cannot last very long. Only a few millimeters away, the positron collides 
with its twin the electron, which abounds in normal matter. Th e two annihilate each 
other by emitting two high-energy gamma rays of opposite polarization that exit from the 
scalp without interacting much with the surrounding atoms. 

 Th e secret of PET scanning consists in detecting the photons emitted by the subject’s 
brain. To this end, hundreds of crystals coupled to photomultipliers are arranged into a 
circle around the head, and they detect any suspect disintegration. In the older technique 
of single photon emission tomography, only isolated gamma rays emitted by a radioactive 
source such as Xenon ( 133 Xe) were of interest. In positron emission tomography, it is the 
simultaneous occurrence of two gamma rays that is sought. Th e quasi-simultaneous 
detection of two photons by diametrically opposite detectors is an almost sure sign that 
a positron has disintegrated. Th e alignment of the detectors, sometimes combined with 
an analysis of the minuscule lag between the two detections (“time of fl ight”), helps locate 
this disintegration in all three dimensions. As indicated by its etymology, the tomograph 
thus produces a “sliced picture” of the distribution of radioactivity in a given volume of 
brain tissue. Th is quantity of radioactivity is a good indicator of local cerebral blood fl ow, 
which is itself a good indicator of the average neuronal activity in that area. 

 Practically speaking, a typical experiment using positron emission tomography runs as 
follows: A volunteer, lying in the tomograph, starts to perform the requested task (moving 
the index fi nger, multiplying digits, etc.). At the same time, a cyclotron produces a small 
quantity of a radioactive tracer. As soon as it is available, the tracer must be injected 
immediately, or else its radioactivity rapidly decreases below the detectable level. Th e 
subject continues mental activity for one or two minutes aft er the injection. Th roughout 
that period, the tomograph reconstructs the spatial distribution of radioactivity in the 
subject’s brain. Th e volunteer then rests for ten to fi ft een minutes until radioactivity falls 
back to an undetectable level. Th e procedure can then be repeated up to 12 times in the 
same subject, possibly with diff erent task instructions on each injection.     
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   Can One Localize Mathematical Thought?   

 Although the fi rst pictures of the active brain date back to the 1970s, our quest for images 
of the calculating brain takes us back only as far as 1985. Th at year, two Swedish  researchers, 
P. Roland and L. Friberg, published a result that fi lls many of the gaps left  by Lennox’s 
work.   6  Th e fi rst sentences of their article set the framework: 

 Th ese experiments were undertaken to demonstrate that pure mental activity, 
thinking, increases the cerebral blood fl ow, and that diff erent types of thinking 
increase the regional cerebral blood fl ow in diff erent cortical areas. As a fi rst 
approach, thinking was defi ned as  brain work in the form of operations on internal 
information, done by an awake subject .   

 In order to pinpoint “thought processes,” Roland and Friberg meticulously controlled 
the tasks that they asked subjects to perform. In the task most relevant to this discussion, 
the subjects had repeatedly to subtract 3 from a given number (50  −  3 = 47, 47  −  3 = 44; 
etc.). Th e calculations were silent. Only aft er a few minutes did the experimenter inter-
rupt the subjects and asked them to say what number they had reached. Th roughout the 
measurement interval, mental operations thus proceeded in a purely internal manner, 
with no detectable sensory or motor activity. 

 In addition to this mental calculation task, two other tests studied either spatial 
 imagery (picture in your mind the route that you would follow if you left  home and took 
alternate right or left  turns) or verbal fl exibility (mentally recite a word list in an unusual 
order). Th e brain regions that were active during each task were determined by compari-
son to a measure of cerebral blood fl ow obtained while the subject was at rest, thinking 
about nothing in particular. Th e brain imaging procedure used by Roland and Friberg, 
now outdated, called for an injection of radioactive Xenon ( 133 Xe) in the internal carotid 
artery and the detection of single photons. Without attaining the accuracy of PET 
 scanning, the method visualized local increases in blood fl ow near the cortical surface. 

 In each of eleven volunteers, the cerebral activations during mental calculation were 
concentrated in two major brain areas: a vast prefrontal region and a most restricted 
inferior parietal region near the angular gyrus (Figure   8.2  ). Both regions were found 
active in the left  and right hemispheres, although the activation was slightly greater on 
the left  than on the right.  

 Th e anatomical precision of this early experiment was far from perfect. In 1994, 
 however, confi dence in its conclusions increased when its results were replicated by 
Jordan Grafman, Denis Le Bihan, and their colleagues at the National Institutes of 

6  Roland & Friberg,     1985   
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     figure 8.2.  In 1985, Roland and Friberg published the fi rst images of cerebral activity during 
mental calculation. At the time, their method could only visualize one hemisphere at a time. Each 
image thus represents the data from one volunteer. When compared to a rest period, repeated 
subtraction yields bilateral activations in the inferior parietal cortex (arrow) as well as in multiple 
regions of the prefrontal cortex.   
 (Adapted from Roland and Friberg   1985  ; copyright  ©  1985 by American Physiological Society.)    
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Health with a much more accurate method called  functional magnetic resonance  imaging .   7  
Bilateral activations of the prefrontal and inferior parietal cortices were again found in all 
subjects during repeated subtraction, although the number of activated pixels was larger 
in the left  hemisphere than in the right. I served as a subject in a very similar pilot experi-
ment in Orsay, near Paris. Figure   8.3   shows a slice of my brain while I struggle with the 
repeated subtraction task. Bilateral parietal and prefrontal activations are clearly visible.  

 Th e results from the other conditions of Roland and Friberg’s experiment suggested 
that parietal and prefrontal activations were related to diff erent aspects of the task. Th e 
prefrontal region was found in all mental manipulation tasks, not just those involving 
mental subtraction. Roland and Friberg ascribed it a very general role in the “organiza-
tion of thought.” By contrast, the inferior parietal region seemed specifi c to mental calcu-
lation, since it did not activate during spatial imagery or verbal fl exibility tasks. Th e two 
researchers attributed to it a specialization for mathematical thought, and in particular 
for the retrieval of subtraction results from memory. 

 Roland and Friberg’s experiment played a crucial role in drawing the attention of the 
scientifi c community to the power of functional imaging, a full three years before Michael 
Posner, Steve Petersen, Peter Fox, and Marcus Raichle’s celebrated demonstration of 

7  Appolonio et al.,     1994  . See the fi nal chapter for a complete update on neuroimaging studies of calculation 
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     figure 8.3.  A slice through the author’s brain during a replication of Roland and Friberg’s 
experiment. Cerebral regions whose activity increases whenever I subtract were determined by 
high-fi eld (3 Tesla) functional magnetic resonance imaging and were superimposed on a classical 
anatomical MR image. Activations are visible in the inferior parietal cortex (white arrows) and 
the prefrontal cortex.   
 (Dehaene, Le Bihan, and van de Moortele, unpublished data,   1996  .)    
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 distinct brain activations for diff erent aspects of language processing.   8  Th e Swedish team’s 
work indeed proved that the new techniques could resolve brain activation diff erences 
related to distinct cognitive tasks. What should one make, however, of their general 
 conclusions concerning “thinking”? Can one really localize a cerebral area of “mathe-
matical thought” in the human brain? 

 Personally, I take Roland and Friberg’s functional labels with a pinch of salt. Th e very 
notion that “thought” is a valid object of scientifi c study, and that it can be localized to a 
small number of cerebral areas, recalls an old discipline that was once relegated to the 
museum but is making an insidious comeback: Gall and Spurzheim’s phrenology, or the 
hypothesis that the brain contains a panoply of organs, each dedicated to a very complex 
function such as the “love of one’s progeny.” Phrenology has been abandoned for more 
than a century. It would be surely unfair to accuse Roland and his colleagues, who 
 pioneered the fi eld of brain imaging, of trying to revive it. Yet it takes little sagacity to 
observe that many recent experiments in brain imaging are conceived in a “neo- 
phrenologic” framework. Th eir only objective seems to be the labeling of cerebral areas. 
Positron emission tomography is implicitly treated by many research groups as a simple 
mapping tool that directly discloses the cerebral areas underlying a given function, be it 
mathematics, “thought,” or even consciousness. Th e method supposes a clear and unique 
relationship between cerebral areas and cognitive abilities: Calculation rests on the  inferior 
parietal region, the organization of thought is taken care of by frontal cortex, and so on. 

 We have every reason to think that the brain does not work this way. Even seemingly 
simple functions call for the coordination of a large number of cerebral areas, each making 
a modest and mechanical contribution to cognitive processing. Ten or twenty cerebral 
areas are activated when a subject reads words, ponders over their meaning, imagines a 
scene, or performs a calculation. Each region is responsible for an elementary operation 
such as recognizing printed letters, computing their pronunciation, or determining the 
grammatical category of a word. Neither an isolated neuron, nor a cortical column, nor 
even a cerebral area can “think.” Only by combining the capacities of several million 
 neurons, spread out in distributed cortical and subcortical networks, does the brain attain 
its impressive computational power. Th e very notion that a single cerebral region could 
be associated with a process as general as the “organization of thought” is now obsolete. 

 How, then, should one reinterpret Roland and Friberg’s results? As we saw in Chapter 7, 
the inferior parietal area is the region that is impaired in Gerstmann’s syndrome. Damage 
to it was responsible for the loss of number sense in patient Mr. M, who was so impaired 
that he could no longer compute 3  −  1 and believed that 7 fell between 2 and 4. Hence, 
this region probably contributes to a narrow process: the transformation of numerical 
symbols into quantities, and the representation of relative number magnitudes. It does not 
play a generic role in arithmetic, since damage to it does not necessarily aff ect the rote 

8  Posner, Petersen, Fox, & Raichle,     1988   
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retrieval of simple arithmetic facts (2  +  2=4), nor the rules of algebra ((a  +  b) 2  = a 2    +   2ab 
 +  b 2 ), nor the encyclopedic knowledge of numbers (1492 = Columbus’s discovery). It is 
involved only in the representation of numerical quantities and their positioning on a 
mental number line. Its activation during repeated subtraction in normal subjects thus 
provides a nice confi rmation of its crucial role in processing quantities. 

 As for the extended prefrontal activation reported by the Swedish team, it probably 
embraces several areas, each with its own function: sequential ordering of successive oper-
ations, control over their execution, error correction, inhibition of verbal responses, and, 
above all, working memory. In a sector of prefrontal cortex called the dorso-lateral region 
or “area 46,” neurons are known to be involved in the on-line maintenance of past or 
anticipated events in the absence of any external input (as when we rehearse a phone 
number, for instance). Remarkable experiments by Joachim Fuster and Patricia Goldman-
Rakic, among others, have shown that prefrontal cortical neurons maintain a sustained 
level of fi ring when a monkey holds information in memory for several seconds.   9  All three 
tasks employed by Roland and Friberg relied heavily on this type of working memory. In 
the repeated subtraction task, for instance, subjects had constantly to keep in mind the 
number that they had reached, and update it aft er each subtraction. Th is important 
memory load likely explains the involvement of prefrontal circuits in this task.     

   When the Brain Multiplies or Compares   

 Roland and Friberg’s experiment probed only a single complex arithmetical task, with the 
aim of identifying the areas involved in arithmetic. Th is was just a fi rst step. Neuropsy-
chological dissociations lead us to expect a much fi ner-grained fragmentation of cerebral 
areas. Depending on the requested arithmetic operation, very diff erent  cerebral networks 
should activate. In the early 1990’s, my colleagues and I were the fi rst to evaluate this hypoth-
esis by examining how cerebral activity changes in the course of number comparison and 
multiplication.   10  

 Th e experiment was performed in Orsay at a medical research center well equipped for 
measuring cerebral metabolism. Eight medical students served as volunteers. Upon their 
arrival at the hospital in the morning, high-resolution magnetic resonance anatomical 
images of their brains were made. Later in the aft ernoon, positron emission tomography 
provided us with the fi rst detailed images of the areas that were activated while they 
 processed numbers. 

 Remember Mr. N, the patient who could not multiply but could still tell which of 
two numbers was larger? Th e goal of our study was to investigate whether the neuronal 

9  For review, see Fuster,     2008   
10  Dehaene et al.,     1996   
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 circuits involved in multiplication and comparison did partially rest on distinct brain 
areas, as we had postulated based on Mr. N’s results. We thus presented subjects with a 
series of pairs of digits that they either had to compare or multiply mentally. In both 
cases, the result of the operation — either the larger of the two digits, or their product — 
had to be named covertly, without actually moving the lips. Cerebral blood fl ow during 
those two tasks was contrasted to a third measure obtained while the subjects were 
at rest. 

 As we expected, several brain regions were equally active during multiplication, and 
during comparison relative to the rest period. Th ese regions most probably support 
 functions common to both tasks, such as extracting visual information (occipital cortex), 
or maintaining gaze fi xation and the internal simulation of speech production (supple-
mentary motor area and precentral cortex). 

 Th e inferior parietal cortex, so crucial to quantitative number sense, was also active. 
Oddly, it was intensely active in both hemispheres during multiplication, while its  activity 
during comparison was small and on the verge of being undetectable. We had expected 
the reverse: Comparison calls for the processing of numerical quantities, and simple 
multi plication requires only access to verbal memory. However, not all the multiplica-
tion problems we used were simple. Th e list included problems such as 8  ×  9 or 7  ×  6 on 
which our subjects oft en hesitated or failed altogether. Since their verbal memory for 
arithmetic facts seemed unreliable, we speculate that they were oft en forced to resort to 
backup strategies, heavily dependent on the inferior parietal cortex, to provide a plausible 
answer. Conversely, the number comparison task we used was probably too easy because 
the numbers ranged only from 1 to 9. Finding the larger digit may have been too simple 
to stimulate intense inferior parietal activation. Perhaps we also left  the subjects too much 
time to respond, which may have diluted the activations to the point of rendering them 
too small to detect. At any rate, inferior parietal cortex seemed to activate in direct 
 proportion to the diffi  culty of the numerical tasks that the subjects performed. 

 Th e most interesting results emerged, however, when we directly contrasted number 
comparison with multiplication. Several temporal, frontal and parietal regions showed a 
notable shift  in hemispheric asymmetries. During multiplication, cerebral activity was 
more intense in the left  hemisphere, but during comparison it was equally distributed 
across the two hemispheres, or even shift ed to the right. Th is observation is in agreement 
with the notion that multiplication, but not comparison, rests in part on the language 
abilities of the left  hemisphere. Contrary to multiplication, number comparison does not 
have to be learned by rote. A mental representation of number magnitude emerges, with-
out explicit teaching, in young children and even in animals. Hence, the brain does not 
need to convert digits to a verbal format in order to compare them. Functional brain 
 imaging confi rms that the comparison of numerical magnitudes is a nonlinguistic activity 
that rests at least as much on the right hemisphere as on the left . Each hemisphere can 
recognize digits and translate them into a mental representation of quantities to  compare 
them. 



     figure 8.4 .  Positron emission tomography reveals wide networks of cerebral areas whose blood 
fl ow changes when subjects rest with their eyes closed, multiply pairs of Arabic digits, or compare 
the very same digits.   
 (Aft er Dehaene et al.   1996  .)    
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 A subcortical nucleus, the left  lenticular nucleus, was also more active during multipli-
cation than during comparison. We know from Chapter 7 that a lesion in this area can 
dramatically impair memory for multiplication facts and other verbal automatisms. 
Remember Mrs. B, who had forgotten how to recite “three times nine is twenty-seven,” 
the alphabet, and the Our Father? Her lesion was right in this area. Th e lenticular nucleus 
belongs to the basal ganglia, which are generally thought to contribute to the routine 
aspects of motor behavior. Functional brain imaging suggests that they also contribute to 
more elaborate cognitive functions. Perhaps arithmetic tables are stored in the form of 
automatic word sequences, so that recalling them becomes mechanical. Reciting the 
 multiplication table at school may imprint every word of it in our deep brain structures. 
Th is would explain why even the most fl uent bilinguals still prefer to calculate in the 
language in which they acquired arithmetic. 

 Th e diversity of cerebral areas involved in multiplication and comparison underlines 
once more that arithmetic is not a holistic phrenological “faculty” associated with a single 
calculation center. Each operation recruits an extended cerebral network. Unlike a 
 computer, the brain does not have a specialized arithmetic processor. A more appropriate 
metaphor is that of a heterogeneous group of dumb agents. Each is unable to accomplish 
much alone, but as a group they manage to solve a problem by dividing it among them-
selves. Even an act as simple as multiplying two digits requires the collaboration of 
 millions of neurons distributed in many brain areas.     

   The Limits of Positron Emission Tomography   

 Positron emission tomography is a wonderful tool, but it has some unfortunate limits. 
To verify our hypotheses on the cortical and subcortical processing of numerical informa-
tion, we would ideally like to observe the time course of cerebral activations during calcu-
lation. If possible, we would want to obtain a new image of brain activity every hundredth 
of a second. We could then follow the propagation of neuronal activity from the posterior 
visual areas all the way to the language areas, the circuits controlling memory, the motor 
regions, and so on. Yet, though PET scanning is a remarkable tool for identifying active 
anatomical regions, its excellent spatial resolution is accompanied by a deplorable tem-
poral resolution. Each image depicts the average blood fl ow over a period of at least forty 
seconds. Th us, PET is almost totally blind to the temporal dimension of brain  activity. 

 Th ere are two main reasons for this technical limitation. First, the photomultipliers 
that tally up positron disintegrations must detect a minimum number of events before a 
signifi cant picture emerges. Yet the number of disintegrations per second is a direct func-
tion of the dose of injected radioactivity, which, for ethical reasons, cannot be raised much 
beyond today’s limits. Second, even if the duration of each measurement could be short-
ened, temporal accuracy would remain fundamentally limited by the delayed response of 
cerebral blood fl ow to a change in neural activity. When neurons in a given area start 
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to fi re, several seconds elapse before blood fl ow starts to rise. Even the technique of func-
tional magnetic resonance imaging, which can acquire images of blood fl ow in a fraction 
of a second, suff ers to a similar extent from the slowness of blood fl ow responses. 

 In a nutshell, here is the crux of the problem. Th e brain detects, computes, refl ects, and 
reacts in a fraction of a second. Functional techniques based on blood fl ow reduce this 
complex sequence of activity to a static picture. It is comparable to photographing the 
fi nish of a horse race with an exposure time of several seconds. Th e fuzzy picture might 
show which horses made it past the fi nish line, but the order in which they arrived would 
be lost. What we need is a technique that could take a series of snapshots of cerebral 
 activity, and later replay the movie in slow motion.     

   The Brain Electric   

 Electro- and magnetoencephalography are the only techniques that currently come close 
to meeting this challenge. Both take advantage of the fact that the brain behaves like a 
generator of electric current. To better understand how they work, a quick reminder of 
how nerve cells communicate might help. Any nervous system, whether it belongs to a 
human or a leech, consists primarily of a packed bundle of cables. Each neuron has an 
axon, a long cable that conveys information through waves of depolarization called  action 
potentials . Each neuron also possesses a bushy arborization of dendrites that receive the 
signals coming from other nerve cells. When an action potential reaches a synapse — the 
contact zone between one neuron’s axon terminal and another’s dendrite — neurotrans-
mitter molecules are released from the nerve terminal, and tie on to other specialized 
molecules, called  receptors,  inserted within the dendritic membrane. Th is causes the 
receptors to alter their shape. Th ey switch to an “open” confi guration in which a channel 
opens through the cell membrane, letting ions fl ow into the cell. Very schematically, this 
is how a nerve impulse crosses the barrier of the cellular membrane and is transmitted 
from one neuron to the next. 

 Since ions carry an electric charge, their movement across the cellular membrane and 
within the dendritic tree produces a very small amount of current. Each neuron thus 
behaves as a tiny electric generator. Indeed, the electric organ of fi sh such as the torpedo 
ray is nothing but a giant synapse in which such electrochemical units are arranged into a 
powerful battery. From the torpedo’s electrical organ to the human nervous system, the 
molecular mechanism is so similar that an almost identical receptor molecule is found in 
both. Molecular neurobiologists were thus able to make an important step forward when 
a concentrate of torpedo fi sh provided a suffi  cient amount of the receptor to characterize 
its molecular structure. 

 Coming back to the human brain, each active cerebral area thus produces an electro-
magnetic wave form that is transmitted by volume conduction all the way to the scalp. 
More than fi ft y years ago, Hans Berger fi rst put this knowledge into practice by affi  xing 
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electrodes on the scalp of several volunteers and recording an electric signal — the fi rst 
electroencephalogram. Th is signal, which results from the synchronous activation of 
 several million synapses, is very weak: only a few millionths of a volt. It is also highly 
chaotic, and shows seemingly random oscillations. However, when one synchronizes the 
recording with an external event, such as a visually presented digit, and when one  averages 
across many presentations, a reproducible sequence of electric activity called the  event-
related potential  emerges from the chaos. Th is sequence conceals a wealth of temporal 
information. Th e signals are propagated almost instantaneously to the scalp surface, 
where they can be recorded in real time — for instance, every millisecond. A continuous 
record of cerebral activity is then available, which faithfully refl ects the order in which 
each brain region was activated. 

 Modern technologies now make it possible to record event-related potentials from up 
to 64, 128, or even 256 scalp electrodes. Th eir shape varies from electrode to electrode, 
and this spatial distribution provides precious indications about the location of active 
brain areas. In this respect, however, the method remains unsatisfactory. Th e anatomical 
accuracy of electroencephalographic recordings is poor, because a fundamental physical 
ambiguity precludes their direct attribution to an identifi able anatomical structure. At 
best, the approximate state of activity of an extended cortical region can be reconstructed 
by making more or less plausible inferences. A similar diffi  culty aff ects the slightly more 
precise, but considerably more expensive, method of magnetoencephalography, in which 
one records magnetic fi elds rather than electric potentials. Both methods, however, 
 possess an unsurpassed capacity to determine the exact time when diff erent cerebral areas 
come into play during mental computations.     

   The Time Line of the Number Line   

 Any of us takes about four-tenths of a second to decide whether a given digit is larger or 
smaller than 5. Yet, this time corresponds to the total duration of a whole series of opera-
tions, from the visual identifi cation of the target digit to the motor response. Can it be 
decomposed into small steps? Electroencephalography turns out to be an ideal method 
for measuring, with millisecond accuracy, how long it takes our brain to decide that 4 is 
smaller than 5. 

 In one of my recent experiments, Arabic digits or number words were fl ashed on a 
computer screen.   11  Volunteers were asked to press one key for numbers smaller than 5, 
and another for numbers larger than 5. Th eir event-related potentials were recorded from 
64 electrodes spread out on the scalp. Special soft ware allowed for the reconstruction, 

11  Dehaene,     1996   
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frame by frame, of the evolution of surface potentials in the various conditions of the 
experiment (Figure   8.5  ).  

 Th e movie starts at the exact moment when the number appears before the subject’s 
eyes. For several tens of milliseconds, the electric potentials remain close to zero. At 
around 100 milliseconds, a positive potential called the P1 appears on the rear of the 
scalp. It refl ects the activation of visual areas of the occipital lobe. At this stage, no diff er-
ence between Arabic digits and number words is perceptible: only low-level visual proce-
dures are engaged. But suddenly, between 100 and 150 milliseconds, the two conditions 
diverge. While words such as  four  generate a negative potential almost completely lateral-
ized to the left  hemisphere, digits such as  4  produce a bilateral potential. As we had 
inferred from the performance of split-brain patients, the two hemispheres are simulta-
neously implied in the visual identifi cation of Arabic digits. Number words, however, are 
recognized only by the left  hemisphere. 

 Over the left -hand side at the back of the scalp, the event-related potentials evoked by 
words and digits appear virtually identical. More precise recordings suggest, however, 
that they may originate from distinct but contiguous brain regions of the left  hemisphere. 
In some epileptic patients, neurosurgeons insert a panoply of electrodes right on the cor-
tical surface, in order to improve the spatial localization of the recordings by avoiding the 
deformation of electric responses by the skull. Truett Allison, Gregory McCarthy, and 
their colleagues at Yale University have exploited this situation to accurately record the 
responses of ventral occipitotemporal areas to diff erent categories of visual stimuli such 
as words, digits, pictures of objects, and pictures of faces.   12  Th eir results demonstrate an 
extreme specialization. Occasionally, an electrode shows an electric deviation to words 
exclusively, while a second electrode, one centimeter away, reacts only to Arabic digits, 
and a third only to faces (Figure   8.6  ). Th ese highly specifi c responses, which appear in less 
than 200 milliseconds, confi rm that a whole collection of visual detectors, grouped 
according to their preferred stimuli, covers the bottom surface of the visual cortex.  

 Around 150 milliseconds, then, a mosaic of specialized visual areas recognizes the 
shape of numerical symbols. At that point, however, the brain has not yet recovered their 
meaning. It is only around 190 milliseconds that one sees a fi rst indication that numerical 
quantity is being encoded. Th e distance eff ect suddenly emerges on electrodes located 
over the inferior parietal cortex. Digits that are close to 5, and therefore more diffi  cult to 
compare, generate an electric potential of greater amplitude than digits that are far from 5. 
Th e eff ect is seen over both hemispheres, although it is stronger on the right-hand side. 
It thus takes only 190 milliseconds for the brain to activate the “networks of number 
sense” that rest on the inferior parietal sectors of both hemispheres. Detailed analyses 
show that the electrical distance eff ect has a similar topography for Arabic digits and for 

12  Allison, McCarthy, Nobre, Puce, & Belger,     1994  ; Puce, Allison, Asgari, Gore, & McCarthy,     1996   
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      figure 8.5.  By recording the minute changes in scalp voltage generated by cerebral activity 
(electroencephalography), the sequence of cerebral activations during numerical comparison can be 
reconstructed. In this experiment, volunteers pressed keys with their left  or right hand, as fast as they 
could, to indicate whether the numbers they saw were larger or smaller than 5. At least four 
processing stages were identifi ed: 1. visual identifi cation of the target Arabic digit or number word; 
2. representation of the corresponding quantity and comparison with the memorized reference; 
3. programming and execution of the manual response; and 4. correction of occasional errors.   
 (Aft er Dehaene   1996  .)     
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number words. Th is confi rms that the inferior parietal region is not concerned with the 
notation in which numbers are presented, but rather with their abstract magnitude. 

 Farther along in our computer animation, we reach the time at which the  programming 
of the motor response begins. An important voltage diff erence emerges on the electrodes 
located over the premotor and motor areas of both hemispheres. When subjects prepare 
to respond with the right hand, a negative potential appears over left -hemisphere elec-
trodes; conversely, when they get ready for a left -hand response, it is the right-hand side 
of the scalp that turns negative (remember that the left  motor cortex controls the move-
ments of the right half of the body, and vice versa). Th is lateralized readiness potential 
fi rst appears as early as 250 milliseconds aft er the digit fi rst appears on screen, and it 
reaches its maximum around 330 milliseconds. By that time, number comparison must 
have been completed because the  larger  or  smaller  answer is already available. It thus takes 
between a quarter and a third of a second to recognize the visual shape of a digit and 
access its quantitative meaning. 

 On average, the subject’s response occurs around 400 milliseconds, aft er an additional 
time lag during which the muscles contract and the subject actually executes the selected 
response. Yet nothing precludes continuing the analysis beyond this point. In fact, a very 

1

Nonwords
Pseudowords

N200

2

1

N20050 μV

2

0 400 800

Arabic numberals
Concrete nouns

Illegal nonwords
False fonts

Faces

MSEC

Faces
Content words

     figure 8.6.  Intracranial electrodes reveal a very fi ne specialization of the ventral occipito-
temporal region for the visual recognition of diff erent categories of stimuli. Th e cortex underlying 
site 1 responds to letter strings (whether they spell words or not), but not to faces. A neighboring 
electrode at site 2 deviates only during the presentation of Arabic digits, but not offi  ces or letter 
strings.   
 (Redrawn from Allison et al.   1994  ; copyright  ©  1994 by Oxford University Press.)    
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interesting electric event occurs right aft er the motor response. Even in a task as elemen-
tary as digit comparison, we occasionally make mistakes. Most errors are due to an  incorrect 
anticipation of the response and are immediately detected and corrected. Event-related 
potentials betray the origin of this correction.   13  Immediately following an error, a nega-
tive electric signal of great intensity suddenly pops up over the electrodes at the front of 
the skull. No such signal is found following a correct response. Hence, this activity must 
refl ect the detection or attempted correction of the error. Its topography suggests a 
 generator located within the anterior cingulate cortex, a cerebral area involved in the 
attentional control of actions and in the inhibition of unwanted behavior. Its response is 
so fast — less than 70 milliseconds aft er pressing the wrong key — that it cannot be due to 
feedback from sense organs. Furthermore, in my experiment, no feedback was provided 
as to whether a response was or was not correct. Th e anterior cingulate cortex is thus 
activated in an endogenous manner whenever subjects detect that the action they are 
 currently performing does not match the response they intend to give. 

 Let me stress again that all the events I have just described — number identifi cation, 
access to magnitude information, comparison, response selection, execution of the motor 
gesture, and detection of potential errors — occur within half a second. Information 
passes from one cerebral area to the next with remarkable speed. At present, only electro- 
and magnetoencephalography provide an opportunity of following this exchange in 
real time.     

   Understanding the Word “Eighteen”   

 Let us consider another example of the speed of numerical information processing in the 
human brain. Take a look at the words EIGHTEEN and EINSTEIN. A fraction of a 
second suffi  ces to notice that the fi rst is a numeral and the second a famous physicist. It is 
equally easy to notice that EXECUTE is a verb, ELEPHANT an animal, and EKLPSGQI 
a meaningless string of letters. What cerebral areas are involved in the categorization of 
words of an arbitrary appearance, but with radically diff erent meanings? Could the 
recording of event-related potentials reveal the activation of areas implicated in the 
 representation of word meaning? And would the inferior parietal cortex be activated 
during the mere reading of the word  eighteen , even if no calculation is required? 

 When volunteers pay attention to the semantic category to which words belong, scalp-
recorded potentials show a remarkable sequence of cerebral activation.   14  Initially, visual 
areas of the left  hemisphere are equally activated by the printed strings EIGHTEEN, 

13  Gehring, Goss, Coles, Meyer, & Donchin,     1993  ; Dehaene, Posner, & Tucker,     1994  . For review, see Taylor, 
Stern, & Gehring,     2007   

14  Dehaene,     1995   
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EINSTEIN, or EKLPSGQI. Aft er about a quarter of a second, however, posterior visual 
areas discriminate actual words from meaningless strings of letters that do not obey the 
normal rules of word formation in English. Slightly later, around 300 milliseconds aft er 
the word appeared on screen, diff erent categories of words also begin to diverge. Once 
more, numerals such as EIGHTEEN produce an electrical wave form localized in the 
left  and right inferior parietal cortex — as if the brain had to recreate a quantitative repre-
sentation of their location on the number line in order to check that these are indeed 
numbers. 

 Other word categories, by contrast, activate very diff erent cerebral regions. Verbs, 
 animals, and famous people all cause an extended activation of the left  temporal region, 
which has been long-suspected of playing a special role in the representation of word 
meaning. Yet, subtle variations appear across categories. Most notably, the names of 
famous persons — whether EINSTEIN, CLINTON, or BACH — are the only stimuli to 
activate the inferior temporal region, which other experiments have targeted in the 
 recognition of familiar faces. Several other recent experiments suggest that this is not 
an isolated fi nding. Many categories of words — animals, tools, verbs, color words, body 
parts, numerals, and so on — have been found to rely on distinct sets of regions spread 
throughout the cortex. In each case, to determine the category to which a word belongs, 
the brain seems to activate in a top-down manner the cerebral areas that hold nonverbal 
information about the meaning of that word.     

   Numerate Neurons   

 In spite of its major contributions, electroencephalography remains an indirect and 
imprecise method. Tens of thousands of neurons must be activated synchronously before 
their electrical eff ect becomes detectable on the scalp. Th us, neuroscientists continue to 
dream of a technique that would let them examine the temporal pattern of activity of a 
single neuron in the human brain, as is routinely done with animals. To some extent, 
however, this technique is already available. Occasionally, electrodes are implanted 
directly into the human cortex — but the technique is so invasive that it is justifi ed only 
under very exceptional circumstances. In some patients suff ering from intractable 
epilepsy, neurosurgery is needed to remove the abnormal brain tissue from which the 
seizures originate. Implanting intracranial electrodes is still the best way of pinpointing 
the exact location of that tissue. Th e method consists of inserting thin needles, each with 
multiple electrical recording sites, deep within the cortex and subcortical nuclei. Th ese 
electrodes are oft en left  in place for several days in order to gather suffi  cient data about 
the recurring epileptic fi ts. With the patient’s consent, nothing precludes taking advan-
tage of this setting to study neural information processing in the human brain. Th rough 
the implanted electrodes, one can directly record electric activity in the brain while the 
patient reads words or performs simple calculations. Depending on the characteristics 
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of the electrode, one measures the average activity of only a few cubic millimeters of 
cortex, or even of a single neuron. 

 At the brain research center in Saint Petersburg, Yalchin Abdullaev and Konstantin 
Melnichuk thus recorded the activity of several single neurons in the human parietal 
cortex of a patient performing arithmetic and linguistics tasks.   15  In one condition, a series 
of digits appeared on a screen, and the patient had to compute their running total; this 
was contrasted to a control situation in which the patient merely had to read the same 
digits aloud. In a second condition, numbers such as 54 and 7 had to be added or 
 subtracted; again, the control consisted of reading one of the two numbers aloud. Finally, 
the third task, which had nothing to do with arithmetic, consisted in deciding whether a 
letter string such as  house  or  torse  is a valid English word, or not. 

 Th e results were clear-cut. In both hemispheres, inferior parietal neurons fi red only 
when numbers were presented. Most neurons also discharged more during calculation 
than during the mere reading of numbers. However, the right parietal cortex contained a 
few neurons whose fi ring frequency increased even during the reading of digits 1 and 2. 
When the subject was reading, these neurons fi red for only a brief interval aft er the onset 
of the digit, from 300 to 500 milliseconds. But when the subject was adding or  subtracting, 
activity lasted up to 800 milliseconds aft er the visual presentation (Figure   8.7  ).  

15  Abdullaev & Melnichuk,     1996   
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     figure 8.7.  A neuron from the human parietal cortex responds selectively during number 
processing. Th e arrow indicates the time of presentation of Arabic digit I or 2. Th e intervals during 
which the fi ring frequency deviates signifi cantly from baseline are shown in black. Neuronal activity 
lasts longer when the subject adds the digit to a running total than when he merely reads it aloud.   
 (Aft er Abdullaev and Melnichuk   1996  . Courtesy Y. Abdullaev.)    
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 Cellular recording thus provides direct support for the inferences we’ve drawn from 
the methods of neuropsychology, positron emission tomography, and electroencepha-
lography As soon as we have to manipulate numerical quantities mentally, the neural 
circuits of the inferior parietal cortex play an essential and very specifi c role. 

 Of course, the scattered experiments that have been reported in this chapter represent 
the very beginning of brain imaging. Tools for visualizing the active human brain only 
became widespread in the 1990s. Even within the domain of arithmetic, dozens of issues 
remained unexplored. Do parietal neurons respond specifi cally to certain numbers? Is 
the inferior parietal region organized topographically, with increasingly large numerical 
magnitudes systematically mapping to distinct patches of cortex? Do addition, subtrac-
tion, and comparison recruit distinct circuits? Does their organization vary with age, 
education in mathematics, or talent for mental calculation? To which other regions does 
the inferior parietal area project, and how does it communicate with the areas involved in 
identifying and naming words and Arabic numerals? 

 So little is known about this vast domain that our list of open questions could go on 
and on. With the new brain imaging tools now available, our scientifi c explorations of 
the human brain are really just beginning. From neural circuit to mental computation, 
from single neurons to complex arithmetic functions, cognitive neuroscience has begun 
to weave increasingly tighter links among brain regions, revealing a more complex and 
more intriguing picture than we could have imagined. We have only caught the fi rst few 
glimpses of how neural tissue can become, in the words of Jean-Pierre Changeux and 
Alain Connes, “matter for thought.”   16  Stay tuned, as the next ten years of brain research 
are most likely to yield many more exciting insights about that special organ that makes 
us human.                                                                  

16  Changeux & Connes,     1995   
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 “what is a number, that a man may know it, and a man, that he may know a number?” 
Th is question, magnifi cently formulated by Warren McCulloch in 1965,   1  is one of the 
oldest issues in the philosophy of science — one of those that Plato and his disciples regu-
larly explored on the benches of the fi rst academy twenty-fi ve centuries ago. I oft en 
wonder how the great philosophers of the past would have welcomed the recent data 
from neuroscience and cognitive psychology. What dialogues would the images of posi-
tron emission tomography have inspired in Platonists? What drastic revisions would the 
experiments on neonate arithmetic have imposed on the English empiricist philosophers? 
How would Diderot have received the neuropsychological data that demonstrates the 
extreme fragmentation of knowledge in the human brain? What penetrating insights 
would Descartes have had if he had been fed with the rigorous data of contemporary 
neuroscience instead of the fl ights of fancy of his time? 

 We are close to the end of our exploration into arithmetic and the brain. Now that we 
have a better grasp of how the human brain represents and manipulates numbers, perhaps 
we should summarize to what extent these empirical data aff ect our understanding of the 
brain and of mathematics. How does the brain acquire mathematics? What is the nature 
of mathematical intuition, and can one improve it? What are the relations between math-
ematics and logic? Why is mathematics so effi  cient in the physical sciences? Th ese are not 

1  McCulloch,     1965   
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just the academic ruminations of philosophers hidden in their ivory towers. Th e answers 
we give to them have a profound impact on our educational policies and research 
 programs. Piaget’s constructivism and Bourbaki’s austere rigor have left  their marks on 
our schools. Will such trenchant educational theories ever give way to more serene and 
better optimized teaching methods, based on a genuine understanding of how the human 
brain does mathematics? Only a thorough consideration of the neuropsychological bases 
of mathematics may move us closer to achieving that crucial goal.     

   Is the Brain a Logical Machine?   

 What sort of machine is the human brain, that it can give birth to mathematics? Warren 
McCulloch thought he knew part of the answer. Being a mathematician himself, he was 
eager to understand “how such a thing as mathematics could have seen the light.” As early 
as 1919, he moved toward the study of psychology and, later, neurophysiology, with the 
personal conviction that the brain is a “logical machine.” In 1943, in an infl uential article 
coauthored with Walter Pitts, he stripped neurons of their complex biological reactions 
and reduced them to two functions: summing their inputs and comparing this sum to a 
fi xed threshold. He then demonstrated that a network made up of many such intercon-
nected units can perform calculations of an arbitrary complexity. In computer science 
jargon, such a network has the computational power of a Turing machine — a simple 
formal device, invented by the brilliant British mathematician Alan Turing in 1937, which 
captures the essential operations at work in computers for reading, writing, and trans-
forming digital data according to mechanical operations. McCulloch’s work thus showed 
that any operation that can be programmed on a computer can also be performed by an 
adequately wired network of simplifi ed neurons. In a nutshell, he proclaimed, “A nervous 
system can compute any computable number.” 

 McCulloch thus followed in the footsteps of George Boole who, in 1854, had set out 
as a research program for himself “to investigate the fundamental laws of those operations 
of the mind by which reasoning is performed, to give expression to them in the symbolic 
language of a calculus, and upon this foundation to establish the science of logic and 
construct its method.”   2  

 Boole is the inventor of “Boolean” logic, which describes how the binary values  true  
and  false,  denoted by 1 and 0, should be combined in logical computations. Today, 
Boolean algebra is seen as belonging to mathematical logic or to computer science. But 
Boole himself considered his research as a central contribution to psychology — an 
 Investigation of the Laws of Th ought,  as his book was titled. 

2  Boole,     1854   
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 Th e metaphor of the brain as a computer had now acquired immense popularity, 
not only with the general public but even among specialists in cognitive science. It lies 
at the heart of the so-called “functionalist” approach to psychology, which advocates 
studying the algorithms of the mind without caring about the workings of the brain. 
A classical functionalist argument stresses that any digital algorithm computes exactly 
the same result, regardless of whether it runs on a supercomputer or on a pocket elec-
tronic calculator. Does it matter, then, that the computer is made of silicon and the brain 
of nerve cells? For functionalists, the soft ware of the mind is independent of the hard-
ware of the brain — and the mathematical results of Alonzo Church and Alan Turing 
guarantee that all functions that are computable by a human mind can also be computed 
by a Turing machine or a computer. In 1983, Philip Johnson-Laird went as far as to state 
that “the physical nature [of the brain] places no constraints on the pattern of thought,” 
and that as a consequence, the brain-computer metaphor “need never be supplanted.”   3  

 Is the brain really nothing more than a computer or a “logical machine”? Does its 
 logical organization explain our mathematical abilities, and should it be studied indepen-
dently of its neural substrate? I will not surprise you much if I confess that I suspect that 
functionalism provides too narrow a perspective on the relations between mind and 
brain.   4  On purely empirical grounds, the brain computer metaphor simply does not 
 provide a good model of the available experimental data. Th e preceding chapters abound 
in counterexamples that suggest that the human brain does not calculate like a “logical 
machine.” Rigorous calculations do not come easily to  Homo sapiens.  Like so many other 
animals, humans are born with a fuzzy and approximate concept of number that has little 
in common with the digital representations of computers. Th e invention of a numerical 
language, and of exact calculation algorithms, belongs to the recent cultural history of 
humanity — and, in several respects, it is an unnatural evolution. Th ough our culture has 
invented logic and arithmetic, our brain has remained surprisingly refractory even to the 
simplest algorithms. By way of proof, one merely needs to consider the diffi  culty with 
which children assimilate arithmetic tables and calculation rules. Even a calculating 
 prodigy, aft er years of training, takes tens of seconds to multiply two 6-digit numbers — 
a thousand to a million times slower than the most sluggish personal computer. 

 Th e inadequacy of the brain–computer metaphor is almost comical. In domains in 
which the computer excels — the faultless execution of a long series of logical steps — our 
brain turns out to be slow and fallible. Conversely, in domains in which computer science 
meets its most serious challenges — shape recognition and attribution of meaning — our 
brain shines by its extraordinary speed. 

 At the level of the neural circuits themselves, comparing the brain to a “logical 
machine” does not stand up to scrutiny. Each neuron implements a biological function 

3  Johnson-Laird,     1983   
4  See Changeux & Dehaene,     1989   
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considerably more complex than the simple logical addition of its inputs (although 
McCulloch and Pitts’s formal neurons sometimes provide a useful approximation to 
real neurons). Above all, real networks of neurons depart from the rigorous assembly of 
transistors in the electronic chips of modern computers. Although it is technically 
 possible to assemble formal neurons to build up logical functions, as shown by McCulloch 
and Pitts, this is not how the central nervous system works. Logical gates are not primi-
tive operations of the brain. If one had to look for a “primitive” function in the nervous 
system, it would perhaps be the ability of a nerve cell to recognize an elementary “shape” 
in its inputs by weighing the neuronal discharges it receives from thousands of other 
units. Th e recognition of approximate shapes is an elementary and immediate property 
of the brain, while logic and calculation are derived properties, accessible only to the 
brain of a single, suitably educated species of primate. 

 In all fairness, it should be said that many functionalist psychologists do not adhere 
to the simplistic equation “brain = computer.” Th eir position is more subtle. Th ey do 
not necessarily identify the brain with any of the serial types of computers that we cur-
rently use, but they merely conceive of it as an  information-processing device.  According to 
them, psychology should be exclusively concerned with the characterization of the trans-
formations that cerebral modules apply to the information they receive. Even if these 
transformation algorithms are not understood yet, and even if no extant computer is able 
to implement them, brain functions in principle will eventually be reduced to them. Th at 
prospect makes the study of neurons, synapses, molecules, and other properties of the 
mind’s “wetware” irrelevant to psychology. 

 Even this more subtle brand of functionalism remains questionable, however. Not 
that it is wrong to study the algorithms of the brain, or the activities of humans, at a purely 
behavioral level — one can learn a lot about a machine by determining the fundamental 
principles on which it is based. But doesn’t one make even more progress when one 
 discovers how the machine itself is built? Th e history of science abounds with examples 
where the understanding of the physical or biological substrate of a phenomenon has 
caused a sudden advance in the understanding of its functional properties. Th e discovery 
of the molecular structure of DNA, for instance, has radically modifi ed our conception 
of the “algorithms” of heredity that were discovered years before by Mendel. Likewise, 
new brain imaging tools are currently revolutionizing our knowledge of cerebral func-
tioning. Wouldn’t it be absurd if psychologists were to listen to the functionalists and 
dismiss these tools as unimportant for our understanding of cognition? As a matter 
of fact, the vast majority of them, far from turning their backs on neuroscience research, 
view it as making a vital contribution to the progress of experimental and clinical 
 psychology. 

 Th e functionalists’ insistence on the computable aspects of cerebral processing also has 
another unfortunate consequence. It leads them to neglect other facets of brain function 
that do not easily fi t within the formalism of computer science. Th is may well be the main 
reason why cognitive psychology has largely left  aside the complex issue of the role of 
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emotions in intellectual life. Yet, emotions surely should have a place in any theory 
of cerebral function, including our present quest for the neural bases of mathematics. 
Anxiety about mathematics can paralyze children to such an extent that they become 
unable to acquire even the simplest arithmetical algorithms. Conversely, a passion 
for numbers can turn a shepherd into a calculating prodigy. In a recent book called 
 Descartes’ Error,  the neuropsychologist Antonio Damasio demonstrates how emotions 
and reason are tightly linked, to the extent that a lesion of the neural systems responsible 
for the internal evocation of emotions can have a dramatic impact on the ability to make 
rational decisions in everyday life.   5  Th e brain–computer metaphor does not easily put 
up with such observations, which suggest that cerebral function is not confi ned to the 
cold transformation of information according to logical rules. If we are to understand 
how mathematics can become the object of so much passion or hatred, we have to grant 
as much attention to the syntax of emotions as to the computations of reason.     

   Analog Computations in the Brain   

 Th e pitfalls of the brain–computer metaphor have not escaped the sagacity of all 
 computer scientists. As early as 1957, John Von Neumann, one of the founding fathers 
of computer science, said in  Th e Brain and the Computer,  “Th e language of the brain 
[is] not the language of mathematics.”   6  Let us not reduce machines to solely digital 
 computers, he recommended. Advanced calculations can be performed by analog 
machines that ignore mathematical logic entirely A machine is said to be “analog” when 
it performs computations by manipulating continuous physical quantities analogous to 
the variables being represented. In Robinson Crusoe’s calculator, for instance, the level 
of water in the accumulator serves as an analog of number, and addition of water is 
 analogous to numerical addition. Von Neumann had the remarkable insight that the 
brain is probably a mixed analog–digital machine in which symbolic and analogical 
codes are seamlessly integrated. Whatever limited abilities our brain exhibits for logic 
and mathematics may just be the visible result of neural architecture that follows 
 nonlogical rules. In Von Neumann’s own words, 

 When we talk about mathematics, we may be discussing a  secondary  language, 
built upon the  primary  language truly used by the central nervous system. Th us, 
the outward forms of  our  mathematics are not absolutely relevant from the point 
of view of evaluating what is the mathematical or logical language  truly  used by 
the central nervous system.   

5  Damasio,     1994   
6  von Neuman,     1958   
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 Th e way in which we compare numbers indeed suggests that we are more similar to 
an analog machine than to a digital computer. Anyone who writes computer 
 programs knows that the operation of number comparison belongs to the basic set 
of instructions of the processor. A single calculation cycle of constant duration, oft en 
shorter than one microsecond, is enough to assess whether the content of one register is 
smaller than, equal to, or larger than the content of another. Not so for the brain. In 
Chapter 3, we saw that an adult takes almost half a second to compare two numbers, or 
any two physical quantities. While a few transistors can implement comparison in an 
electronic chip, the nervous system has to recruit vast networks of neurons and invest 
a lot of time to reach the same result. 

 Moreover, the comparison method that we use is not so easily implemented in a 
 digital computer. Remember that we suff er from a distance eff ect: It systematically 
takes us more time to compare two close numbers, such as 1 and 2, than two distant 
 numbers such as 1 and 9. In modern computers, by contrast, comparison time is constant 
regardless of the numbers involved. 

 Inventing a digital algorithm that reproduces the distance eff ect is something of 
a  challenge. In a Turing machine, a simple way of coding numbers consists in 
repeating the same symbol  n  times. Th us, 1 is represented by an arbitrary character  a,  2 by 
the string  aa,  and 9 by  aaaaaaaaa.  But the machine can process such strings only 
character by character. Hence most comparison algorithms respond in a time propor-
tional to the smaller of the two numbers to be compared, totally independent of the 
distance between them. One can program a Turing machine to count how many symbols 
distinguish the two numbers, but the simplest algorithm of this kind takes increasingly 
 less  time as the numbers to be compared get increasingly close, contrary to what holds 
for the brain. 

 Binary notation is another simple way of representing numbers in a digital computer. 
Each number is then coded as a string of bits made up of 0s and 1s. For instance, 
6 is coded as 110, 7 as 111, and 8 as 1000. With an internal code of this kind, however, 
things take a strange turn: Comparison takes more time for numbers 6 and 7, whose last 
bit is diff erent, than for the numbers 7 and 8, which diff er outright from the fi rst 
bit. Needless to say, this singular mathematical property fi nds no echo in psychological 
observations, which indicate, on the contrary, that 6 and 7 are slightly  easier  to compare 
than 7 and 8. 

 Th us the distance eff ect, a fundamental characteristic of number processing in 
the human brain, is not a property that holds of most digital computers. Are there 
any other types of machines for which a distance eff ect comes about spontaneously? 
Th e answer is yes. Almost any  analog  machine can model the distance eff ect. Consider the 
simplest of them: a pair of scales. Place a 1-pound weight on the left  plate and a 9-pound 
weight on the right. As soon as you let go, the scales immediately tip to the right, indicat-
ing that 9 is larger than 1. Now replace the nine pounds with two pounds, and start 
the experiment again. Th e scales now hit the right side aft er a greater length of time. 
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Hence scales, just like brains, fi nd it more diffi  cult to compare 2 and 1 than 9 and 1. 
Indeed, the time that it takes scales to tip over is inversely proportional to the square 
root of the diff erence in weight, a mathematical function that fi ts nicely with the time 
it takes us to compare two numbers. 

 Th us, our mental comparison algorithm can be likened to a pair of scales that “weigh 
up numbers.” Th e arithmetic abilities of our brain are more easily simulated by an 
analog machine, such as scales, than by a digital program. One might object that it is 
always possible to  simulate  the behavior of an analog device on a digital computer. True 
enough (although some chaotic physical systems cannot be simulated with absolute 
 precision). But the principles on which the computer is designed then do not capture 
any signifi cant regularity about the brain: Th e properties of the system are fully defi ned 
by the physical system that one chooses to emulate. 

 Th e peculiar way in which we compare numbers thus reveals the original principles 
used by the brain to represent parameters in the environment, such as a number. Unlike 
the computer, it does not rely on a digital code, but on a continuous quantitative internal 
representation. Th e brain is not a logical machine, but an analog device. Randy Gallistel 
has expressed this conclusion with remarkable simplicity: “In eff ect, the nervous system 
inverts the representational convention whereby numbers are used to represent linear 
magnitudes. Instead of using number to represent magnitude, the rat [like the  Homo 
sapiens! ] uses magnitude to represent number.”   7      

   When Intuition Outruns Axioms   

 Yet another argument militates against the hypothesis that the brain does mathematics 
like a “logical machine.” Since the end of the nineteenth century, several mathematicians 
and logicians — Dedekind, Peano, Frege, Russell, and Whitehead, among others — have 
attempted to found arithmetic on a purely formal basis.   8  Th ey designed elaborate logical 
systems whose axioms and syntactic rules attempted to capture our intuition of what 
numbers are. However, this formalist approach came up against serious problems that are 
quite revealing about how diffi  cult it can be to reduce brain function to a formal system. 

 Th e simplest of these formalizations of arithmetic was provided by Peano’s axioms. 
Sparing you any mathematical jargon, these axioms essentially reduce to the following 
statements:  

    •   1 is a number.  
    •   Every number has a successor, denoted as S n  or simply as  n   +  1.  

7  Gallistel,     1990   
8  For a detailed survey of the history of mathematics, see Kline,     1972  ,   1980    
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    •   Every number but 1 has a predecessor (assuming that we consider only the 
 positive integers).  

    •   Two diff erent numbers cannot have the same successor.  
    •   Axiom of recurrence: If a property is verifi ed for number 1, and if the fact that 

it is verifi ed for  n  implies that it is also verifi ed for its successor  n   +  1, then the 
property is true of any number  n .     

 Th ese axioms may seem complex and gratuitous. All they do, however, is formalize 
the very concrete notion of the chain of integers 1, 2, 3, 4, and so on. Th ey satisfy 
our intuition that this chain has no ending: Any number can always be followed by 
another number that diff ers from all the preceding ones. Finally, they also allow for a very 
simple defi nition of addition and multiplication: Adding a number  n  means repeating 
the successor operation  n  times, and multiplying by  n  means repeating the addition 
 operation  n  times. 

 But this formalism has one major problem. While Peano’s axioms provide a good 
description of the intuitive properties of integers, they also allow for other monstrous 
objects that we are reluctant to call “numbers,” but that satisfy the axioms in every 
respect. Th ese are called “nonstandard models of arithmetic,” and they raise considerable 
diffi  culties for the formalist approach. 

 It is diffi  cult, in only a few lines, to explain what a nonstandard model looks like, but for 
present purposes a simplifi ed metaphor should suffi  ce. Let us start with the set of usual 
integers 1, 2, 3, and so on, and let us add other elements that we can picture as being 
“larger than all other numbers.” To the numerical half-line formed by the numbers 1, 2, 3, 
and so on, let us for instance add a second line spreading toward infi nity on both sides: 

 To prevent any confusion, we denote the members of this second number line with 
a star. Th us  − 3 * ,  − 2 * ,  − 1 * , 0 * , 1 * , 2 * , 3 * , and so on, are all members of this second set. 
Now let us form the reunion of standard integers and these new elements, and call it 
the set of “artifi cial integers”:

A ={ }∗ − ∗ ∗ ∗− ∗ − ∗ ∗ .

 Set A truly deserves its name. It is a chimera that does not correspond to anything 
intuitive. Its elements are the last things that we would want to call “numbers.” And 
yet they verify all of Peano’s axioms (with the exception of the axiom of recurrence — 
this is where my metaphor is oversimplifi ed). Indeed, there is an artifi cial number 1 that 

1

–5* –4* –3* –2* –1* 0* 1* 2* 3* 4* 5* 6*

2 3 4 5 6
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is not the successor of any other artifi cial number, and every artifi cial number has a unique 
and distinct successor in A. Th e successor of 1 is 2, that of 2 is 3, and so on; and likewise 
the successor of  − 2 *  is  − 1 * , that of  − 1 *  is 0 * , that of 0 *  is 1 * , and so on. From a purely 
formal point of view, then, set A provides a fully adequate representation of the set 
of integers as defi ned by Peano’s axioms — it is a “nonstandard model of arithmetic.” 
In fact, there are an infi nity of such models, many of them much more exotic than A. 

 Nonstandard models are so extravagant that in order to provide a more vivid idea 
of what they imply, I have to resort to a somewhat farfetched metaphor. In the last 
 century, the classifi cation of animal species seemed well established until a “monster” was 
discovered in remote Australia: the platypus. Zoologists had not foreseen that some 
of the criteria they used to classify birds — species having a beak, laying eggs — would 
also apply to this strange mammal that nobody in the world would want to call a bird. 
Likewise, Peano could not anticipate that his defi nition of integers would also apply 
to mathematical monsters that depart radically from usual numbers. 

 Th e discovery of the platypus led zoologists to revise some of their principles. Why 
wouldn’t mathematicians follow their lead? Couldn’t they keep adding more axioms 
to Peano’s list until the revised formal system applied to the “true” integers and only 
to them? We are now reaching the heart of the paradox. A powerful theorem in mathe-
matical logic, fi rst proved by Skolem and deeply related to Gödel’s famous theorem, 
shows that the addition of new axioms can never abolish nonstandard models. As far 
as they are willing to push the axiomatic formalism, mathematicians will constantly 
 continue to meet new “platypuses” — monsters that will verify all imaginable formal 
 defi nitions of integers without being identical to them. 

 In all truth, matters are a trifl e more complex, because only a certain version of 
Peano’s axioms that mathematicians call “fi rst-order Peano arithmetic” suff ers from this 
infi nite expansion of nonstandard models. Yet this version is generally thought to be the 
best axiomatization of number theory that we have. Th us, our best system of axioms fails 
to capture, in a unique way, our intuitions of what numbers are. Th e rules behind these 
axioms seem to fi t the “natural” integers tightly; but we later discover that very diff erent 
objects, which I have called “artifi cial integers,” also verify them. Th us, our “number 
sense” cannot be reduced to the formal defi nition provided by these axioms. As was noted 
by Husserl in his  Philosophy of Arithmetic,    9  providing a univocal formal defi nition of 
what we call numbers is essentially  impossible:  Th e concept of number is primitive and 
undefi nable. 

 Th is conclusion seems implausible. We all have a clear idea of what we mean by an 
integer, so why should formalizing it be so diffi  cult? Yet, all our attempts to provide a 
formal defi nition go nowhere. We might try to state, for instance, that integers are 
obtained by counting: just start with 1 and repeat Peano’s “successor” operation as many 

9  Husserl,     1891  /    2003   
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times as needed. As many times as needed? But surely not more than a fi nite number of 
times; otherwise we would again end up in the strange land of artifi cial integers! Th e 
circularity of the defi nition becomes obvious:  Numbers  are what one obtains by repeating 
the successor operation a fi nite  number  of times. 

 In  Science and Method,  Poincaré took great pleasure in ridiculing his contemporaries’ 
attempts to defi ne integers through set theory.   10  “Zero is the number of elements in the 
null class,” the mathematician Louis Couturat proposed. “And what is the null class?” 
Poincaré replied. “It is that class containing no element.” Poincaré later charged: “Zero is 
the number of objects that satisfy a condition that is never satisfi ed. But, as  never  means 
 in no case,  I do not see that any great progress has been made.” Or again, in a biting 
response to Couturat, who defi ned 1 as the number of elements of a set in which any 
two elements are identical: “I am afraid that if we asked Couturat what two is, he would 
be obliged to use the word one.” 

 Ironically, any 5-year-old has an intimate understanding of those very numbers that 
the brightest logicians struggle to defi ne. No need for a formal defi nition: We know 
 intuitively what integers are. Among the infi nite number of models that satisfy Peano’s 
axioms, we can immediately distinguish genuine integers from other meaningless and 
artifi cial fantasies. Hence our brain does not rely on axioms. 

 If I insist so strongly on this point, it is because of its important implications for 
 education in mathematics. If educational psychologists had paid enough attention to the 
primacy of intuition over formal axioms in the human mind, a breakdown without 
 precedent in the history of mathematics might have been avoided. I am referring to the 
infamous episode of “modern mathematics,” which has left  scars in the minds of many 
schoolchildren in France, as well as in many other countries. In the 1970s, under the 
 pretext of teaching children greater rigor — an undeniably important goal! — a new 
 mathematical curriculum was designed that imposed a heavy burden of obscure axioms 
and formalisms on pupils. Behind this educational reform stood a theory of knowledge 
acquisition that was based on the brain–computer metaphor, and that viewed children as 
little information-processing devices largely devoid of preconceived ideas, and capable of 
ingurgitating any axiomatic system. A group of elite mathematicians known as “Bourbaki” 
reasoned that teachers should start right away by introducing children to the most 
 fundamental formal bases of mathematics. Indeed, why let pupils lose precious years 
 solving simple, concrete arithmetic problems, when abstract group theory summarizes 
all such knowledge in a much more concise and rigorous way? 

 Th e previous chapters clearly expose the fallacies behind that line of reasoning. 
Th e child’s brain, far from being a sponge, is a structured organ that acquires facts only 
insofar as they can be integrated into its previous knowledge. It is well adapted to the 
representation of continuous quantities, and to their mental manipulation in an  analogical 

10  Poincaré,     1914  /    2007   
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form. Evolution never prepared it, however, for the task of ingurgitating vast systems of 
axioms, nor of applying lengthy symbolic algorithms. Th us, quantitative intuition primes 
over logical axioms. As John Locke astutely observed, as early as 1689, in his  Essay on 
Human Understanding:  “Many a one knows that 1 and 2 are equal to 3 without 
having thought on any axiom by which it may be proved.” 

 Th us, bombarding the juvenile brain with abstract axioms is probably useless. A more 
reasonable strategy for teaching mathematics would appear to go through a  progressive 
enrichment of children’s intuitions, leaning heavily on their precocious understanding of 
quantitative manipulations and of counting. One should fi rst arouse their curiosity with 
some amusing numerical puzzles and problems. Th en, little by little, one may introduce 
them to the power of symbolic mathematical notation and the shortcuts it provides — but 
at this stage, great care should be taken never to divorce such  symbolic knowledge from 
the child’s quantitative intuitions. Eventually, formal axiomatic systems may be intro-
duced. Even then, they should never be imposed on the child, but rather they should 
always be justifi ed by a demand for greater simplicity and eff ectiveness. Ideally, each 
pupil should mentally, in condensed form, retrace the history of  mathematics and its 
motivations.     

   Platonists, Formalists, and Intuitionists   

 We are now ready to discuss McCulloch’s second question: “What is a number, that 
a man may know it?” Twentieth-century mathematicians have been profoundly 
divided over this fundamental issue concerning the nature of mathematical objects. 
For some, traditionally labeled “Platonists,” mathematical reality exists in an abstract 
plane, and its objects are as real as those of everyday life. Such was the conviction 
of Hardy, Ramanujan’s discoverer: “I believe that mathematical reality lies outside us, 
that our function is to discover or  observe  it, and that the theorems which we prove, 
and which we describe grandiloquently as our ‘creations,’ are simply our notes of our 
observations.” 

 An astonishingly similar profession of faith is found in the French mathematician 
Charles Hermite: “I believe that the numbers and functions of analysis are not the 
 arbitrary product of our spirits; I believe that they exist outside of us with the same 
 character of necessity as the objects of objective reality; and we fi nd or discover them 
and study them as do the physicists, chemists, and zoologists.” 

 Th ese two quotations are drawn from Morris Kline’s book,  Mathematics: Th e Loss of 
Certainty,  which contains dozens of similar excerpts.   11  Platonism, indeed, is a prevalent 
belief system among mathematicians, and I am convinced that it accurately describes 

11  Kline,     1980   
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their introspection: Th ey really have the  feeling  of moving in an abstract landscape of 
numbers or fi gures that exists independently of their own attempts at exploring it. Yet 
should this feeling be taken at face value, or should we just consider it as a psychological 
phenomenon that needs to be explained? For an epistemologist, a neurobiologist, or a 
neuropsychologist, the Platonist position seems hard to defend — as unacceptable, in 
fact, as Cartesian dualism is unacceptable as a scientifi c theory of the brain. Just as the 
dualist hypothesis faces insurmountable diffi  culties in explaining how an immaterial soul 
can interact with a physical body, Platonism leaves in the dark how a mathematician in 
the fl esh could ever explore the abstract realm of mathematical objects. If these objects 
are real but immaterial, in what extrasensory ways does a mathematician perceive them? 
Th is objection seems fatal to the Platonist view of mathematics. Even if mathematicians’ 
introspection convinces them of the tangible reality of the objects they study, this feeling 
cannot be more than an illusion. Presumably, one can become a mathematical genius only 
if one has an outstanding capacity for forming vivid mental representations of abstract 
mathematical concepts — mental images that soon turn into an illusion, eclipsing the 
human origins of mathematical objects and endowing them with the semblance of an 
independent existence. 

 Turning their back on Platonism, a second category of mathematicians, the “formal-
ists,” view the issue of the existence of mathematical objects as meaningless and void. For 
them, mathematics is only a game in which one manipulates symbols according to precise 
formal rules. Mathematical objects such as numbers have no relation to reality: Th ey are 
defi ned merely as a set of symbols that satisfy certain axioms. According to David Hilbert, 
head of the formalist movement, instead of stating that only one line can go through any 
two points, one could say that only one table goes through any two glasses of beer — this 
substitution would not change any of the theorems of geometry! Or according to 
Wittgenstein’s famous statement: “All mathematical propositions mean the same thing, 
namely nothing.” 

 Th ere is certainly some truth in the formalists’ idea that a large part of mathematics is 
a purely formal game. Indeed, numerous questions in pure mathematics have arisen from 
what, at fi rst sight, may seem to be fanciful ideas. What would happen if that axiom were 
replaced by its negation? Or if one turned this “plus” sign into a “minus” sign? Or if 
taking the square root of a negative number were suddenly allowed? Or if there were 
integers larger than all others? 

 And yet I do not believe that the whole of mathematics can thus be reduced to 
an exploration of the consequences of purely arbitrary choices. Th ough the formalist 
position may account for the recent evolution of pure mathematics, it does not provide 
an adequate explanation of its origins. If mathematics is nothing more than a formal 
game, how is it that it focuses on specifi c and universal categories of the human mind 
such as numbers, sets, and continuous quantities? Why do mathematicians judge the laws 
of arithmetic to be more fundamental than the rules of chess? Why did Peano go to great 
pains to propose a few well-chosen axioms rather than a series of haphazard defi nitions? 
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Why did Hilbert himself select only a restricted subset of elementary numerical reason-
ings to serve as a tentative foundation for the rest of mathematics? And, above all, why 
does mathematics apply so tightly to the modeling of the physical world? 

 I believe that most mathematicians do not just manipulate symbols according to purely 
arbitrary rules. On the contrary, they try to capture in their theorems certain physical, 
numerical, geometrical, and logical intuitions. A third category of mathematicians is thus 
that of the “intuitionists” or “constructivists,” who believe that mathematical objects are 
nothing but constructions of the human mind.   12  In their view, mathematics does not 
exist in the outside world, but only in the brain of the mathematician who invents it. 
Neither arithmetic nor geometry nor logic predate the emergence of the human species. 
It would even be conceivable for another species to develop radically diff erent mathemat-
ics, as Poincaré or Delbrück have suggested. Mathematical objects are fundamental, 
 a priori  categories of human thought that the mathematician refi nes and formalizes. 
Th e structure of our mind forces us, in particular, to parse the world into discrete 
objects; this is the origin of our intuitive notions of set and of number. 

 Th e founders of intuitionism have stressed the primitive and irreducible nature 
of numerical intuition. Poincaré spoke about “this intuition of pure number, the 
only intuition which cannot deceive us,” and he confi dently proclaimed that “the 
only natural objects of mathematical thought are the integers.” For Dedekind, too, 
number was an “immediate emanation from the pure laws of thought.” 

 As demonstrated by the mathematics historian Morris Kline, the roots of intuitionism 
go back to Descartes, Pascal, and of course to Kant. Although Descartes championed the 
systematic questioning of one’s beliefs, he did not go as far as to challenge the obviousness 
of mathematics. He confessed in his  Meditations:  “I counted as the most certain the 
truths which I conceived clearly as regards fi gures, numbers, and other matters which 
pertain to arithmetic and geometry, and in general to pure and abstract mathematics.” 

 Pascal extended that view even further: “Our knowledge of the fi rst principles, such 
as space, time, motion, number, is as certain as any knowledge we obtain by reasoning. 
As a matter of fact, this knowledge provided by our hearts and instinct is necessarily 
the basis on which our reasoning has to build its conclusions.” 

 For Kant, fi nally, number belonged to the synthetic  a priori  categories of the mind. 
More generally, Kant stated that “the ultimate truth of mathematics lies in the possibility 
that its concepts can be constructed by the human mind.” 

 Among the available theories on the nature of mathematics, intuitionism seems to 
me to provide the best account of the relations between arithmetic and the human 
brain. Th e discoveries of the last few years in the psychology of arithmetic have brought 
new arguments to support the intuitionist view that neither Kant nor Poincaré could 

12  For lucid analyses of intuitionist and constructivist conceptions of the epistemology of mathematics, see 
Poincaré,     1907  ; Kitcher,     1984   
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have known. Th ese empirical results tend to confi rm Poincaré’s postulate that number 
belongs to the “natural objects of thought,” the innate categories according to which 
we apprehend the world. What, indeed, did the preceding chapters reveal about 
this natural number sense?  

    •   Th at the human baby is born with innate mechanisms for individuating objects 
and for extracting the numerosity of small sets.  

    •   Th at this “number sense” is also present in animals, and hence that it is indepen-
dent of language and has a long evolutionary history.  

    •   Th at in children, numerical estimation, comparison, counting, simple addition 
and subtraction, all emerge spontaneously without much explicit instruction.  

    •   Th at the inferior parietal region of both cerebral hemispheres hosts neuronal 
 circuits dedicated to the mental manipulation of numerical quantities.     

 Intuition about numbers is thus anchored deep in our brain. Number appears as 
one of the fundamental dimensions according to which our nervous system parses the 
external world. Just as we cannot avoid seeing objects in color (an attribute entirely made 
up by circuits in our occipital cortex, including area V4) and at defi nite locations in space 
(a representation reconstructed by occipitoparietal neuronal projection pathways), in 
the same way numerical quantities are imposed on us eff ortlessly through the specialized 
circuits of our inferior parietal lobe. Th e structure of our brain defi nes the categories 
according to which we apprehend the world through mathematics.     

   The Construction and Selection of Mathematics   

 Although the empirical data from neuropsychology seem to provide support for 
 intuitionism, in a form similar to that advocated by Poincaré, this position should 
be clearly dissociated from an extreme form of intuitionism, the constructivism ardently 
defended by the Dutch mathematician Luitzen Brouwer. In his zeal to found mathe-
matics on pure intuitions alone, Brouwer went too far, according to many of his col-
leagues. He took exception to certain logical principles that were very frequently used 
in mathematical demonstrations, but that he felt did not conform to any simple intu-
ition. In particular he was led to reject, for reasons that cannot possibly be explained in 
full here, the application to infi nite sets of the law of excluded middle — an innocent-
looking principle of classical logic that states that any meaningful mathematical state-
ment is either true or false. Th e rejection of that postulate led to the development of 
a new branch of mathematics called  constructivist  mathematics. 

 It is certainly not for me to decide whether classical mathematics or Brouwer’s con-
structivist mathematics provides the most coherent and productive pathways for research. 
Th e decision ultimately belongs to the mathematical community, and psychologists must 
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confi ne themselves to the role of observer. Nevertheless, in my opinion both theories are 
compatible with the broader hypothesis that mathematics consists in the  formalization 
and progressive refi nement of our fundamental intuitions. As humans, we are born with 
multiple intuitions concerning numbers, sets, continuous quantities,  iteration, logic, and 
the geometry of space. Mathematicians struggle to reformalize these intuitions and turn 
them into logically coherent systems of axioms, but there is no  guarantee that this is at all 
possible. Indeed, the cerebral modules that underlie our  intuitions have been indepen-
dently shaped by evolution, which was more concerned with their  effi  ciency in the real 
world than about their global coherence. Th is may be the reason why mathematicians 
diff er in their choice of which intuitions to use as a foundation and which to relinquish. 
Classical mathematics are based on an intuition of the dichotomy between truth and 
falsehood (and as such, as noted by Brouwer, they indeed run the risk of going beyond 
our intuitions about fi nite and infi nite sets). Brouwer, on the contrary, adopts the 
primacy of fi nite constructions or reasonings as a fundamental principle. In the fi nal 
analysis, his version of mathematics, although it is sometimes called “intuitionism,” is 
certainly not more intuitive than others — it is merely based on a partially distinct set of 
intuitions. 

 In this framework, then, what remains to be explained is how, on the basis of the 
innate categories of their intuition, mathematicians elaborate ever more abstract 
symbolic constructions. In line with the French neurobiologist Jean-Pierre Changeux,   13  
I would like to suggest that an evolutionary process of construction followed by selec-
tion is at work in mathematics. Th e evolution of mathematics is a well-attested fact 
of history. Mathematics is not a rigid body of knowledge. Its objects, and even its modes 
of reasoning, have evolved over the course of many generations. Th e edifi ce of mathemat-
ics has been erected by trial and error. Th e highest scaff oldings are sometimes on the 
verge of collapsing, and reconstruction follows demolition in a never-ending cycle. 
Th e  foundations of any mathematical construction are grounded on fundamental intu-
itions such as notions of set, number, space, time, or logic. Th ese are almost never ques-
tioned, so deeply do they belong to the irreducible representations concocted by our 
brain. Mathematics can be characterized as the progressive formalization of these intu-
itions. Its purpose is to make them more coherent, mutually compatible, and better 
adapted to our experience of the external world. 

 Multiple criteria seem to govern the selection of mathematical objects and their 
 transmission to future generations. In pure mathematics, noncontradiction but also 
 elegance and simplicity are the central properties that warrant the preservation of a math-
ematical construction. In applied mathematics, an important criterion is added: the 
 adequacy of mathematical constructs to the physical world. Year aft er year, mathematical 

13  Changeux & Connes,     1995   



What Is a Number?  229

constructions that are self-contradictory, inelegant, or useless are ruthlessly tracked down 
and eliminated. Only the strongest stand the proof of time. 

 We fi rst met an example of how selection takes place in mathematics in Chapter 4, 
when we examined the evolution of number notations. Our remote ancestors probably 
named only the numbers 1, 2, and 3. Th en a series of inventions successively emerged: 
body-pointing numeration, number names up to ten, and eventually a complex number 
syntax based on addition and multiplication rules; and in writing, notch-based notation, 
additive numeration, and eventually positional notation in base 10. Each step saw a small 
but consistent improvement in the readability, compactness, and expressive powers of 
numerals. 

 A similar evolutionary history could be written for the continuum of real numbers. 
In Pythagoras’s time, only integers and ratios of two integers were considered to be 
 numbers. Th en came the stupefying discovery of the noncommensurability of the diago-
nal of the square:  2    cannot be expressed as the ratio of two integers. Soon, an infi nity 
of such irrational quantities was constructed. For more than 20 centuries, mathemati-
cians struggled to fi nd a formalism adequate for them. Th ere were false starts — the 
 infi nitesimals — apparent solutions that were actually riddled with contradictions, 
and several returns to square one. Finally, only a century ago, Dedekind’s work began to 
provide a satisfactory defi nition of the set of real numbers. 

 According to the evolutionary viewpoint that I defend, mathematics is a human 
 construction and hence a necessarily imperfect and revisable endeavor. Th is conclusion 
may seem surprising. Such an aura of purity surrounds mathematics, so oft en heralded 
as the “temple of rigor.” Mathematicians themselves marvel at the power of their 
 discipline — and rightly so. But don’t we all tend to forget that fi ve millennia of eff orts 
have presided over its birth? 

 Mathematics is oft en called the only science that is cumulative — its results, once 
acquired, are never questioned or revised. One look into past mathematics books, 
 however, provides many counterexamples to this view. Monumental volumes have 
become obsolete with the advent of general methods for solving polynomial equations of 
the second, third, and fourth degree. A demonstration, which is once found valid, may 
be judged inadequate or downright false by the next generation of mathematicians. Isn’t 
it amazing, for instance, that the infi nite sum 1 − 1  +  1 − 1  +  1  … , infi nitely alternating 
the addition and subtraction of 1, paralyzed mathematicians for more than a century? 
Today, any university student can prove that this sum has no meaningful value (it 
oscillates between 0 and 1). Yet in 1713, a mathematician as talented as Leibniz  proved  — 
incorrectly, of course — that this infi nite sum was equal to 1/2! 

 If you fi nd it hard to believe that faulty reasoning can remain hidden from the best 
minds for decades, take the time to work on the problem depicted in Figure   9.1  . It is 
proved,  in a few steps, that any two lines meet at a right angle! Th e demonstration is 
wrong, of course, but the error is so subtle that it can be sought for several hours without 
success. What to say, then, of the recent demonstrations that sometimes cover hundreds 
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of pages in mathematical journals? Academies throughout the world have received dozens 
of false demonstrations of Fermat’s last theorem; even the fi rst convincing proof by 
Andrew Wiles contained an incorrect statement whose rectifi cation took him almost 
a year of eff ort. And what are we to think of the newer demonstrations that call for 
the exhaustive examination of billions of combinations by a computer? Some mathemati-
cians object to this practice, for they fear that we have no proof that the computer 
 program is errorless. To this day, then, the edifi ce of mathematics is not fully stabilized. 
We have no guarantee that some of its pieces will not, like Leibniz’s infi nite sum, be 
thrown out a few generations from now. 

 Nobody can deny that mathematics is an extraordinarily diffi  cult activity. I have 
 attributed this diffi  culty to the architecture of the human brain, which is poorly adapted 
to long chains of symbolic operations. As children, we already face severe diffi  culties 
learning multiplication tables or the multidigit calculation algorithms. Images of 
 cerebral activity during repeated subtractions of digit 3 show intense bilateral activation 
of parietal and frontal lobes. If an operation as elementary as subtraction already 
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     figure 9.1.  Th e human brain is ill-adapted to the long chains of logical steps required in 
mathematical demonstrations. In the following proof, although each step seems correct, the 
fi nal conclusion is obviously wrong since it states that any angle is a right angle! Can you spot 
the error? Demonstration: Let ABCD be a quadrilateral with two equal sides AB and CD and with a 
right angle δ = ∠ BAD. Th e angle δʹ = ∠ ADC is arbitrary—yet we shall prove that it is always equal to 
the right angle δ.
Draw L, the mediator of AD and Lʹ, the mediator of BC. Call O the intersection of L and Lʹ. 
By construction, O is equidistant fr om A and D (OA = OD), and also fr om B and C (OB = OC). Since 
AB = CD, the triangles OAB and ODC have equal sides and are therefore similar. Hence their angles are 
equal: ∠ BAO = ∠ ODC = α.
Since OAD is an isosceles triangle, ∠ DAO = ∠ ODA = β.
Hence δ = ∠ BAD = ∠ BAO − ∠ DAO = α − β; and δʹ = ∠ ADC = ∠ ODC − ∠ ODA = α − β; which 
implies that δ = δʹ. QED.
Where is the error? See the answer on page 279.    
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mobilizes our neuronal network to such an extent, one can imagine the concentration 
and the level of expertise needed to demonstrate a novel and truly diffi  cult mathematical 
conjecture! It is not so surprising, then, that error and imprecision so oft en mar mathe-
matical constructions. Only the collective activity of tens of thousands of mathemati-
cians, accumulated and refi ned over centuries, can explain their present success. Th is 
conclusion was aptly captured by the French mathematician Evariste Galois: “[Th is] 
 science is the work of the human mind, which is destined rather to study than to know, 
to seek the truth rather than to fi nd it.”     

   The Unreasonable Effectiveness of Mathematics   

 To affi  rm that arithmetic is the product of the human mind does not imply that it is 
 arbitrary and that, on some other planet, we might have been born with the idea that 
1  +  1 = 3. Th roughout phylogenetic evolution, as well as during cerebral development in 
childhood, selection has acted to ensure that the brain constructs internal representa-
tions that are adapted to the external world. Arithmetic is such an adaptation. At our 
scale, the world is mostly made up of separable objects that combine into sets according 
to the familiar equation 1  +  1 = 2. Th is is why evolution has anchored this rule in our 
genes. Perhaps our arithmetic would have been radically diff erent if, like cherubs, we had 
evolved in the heavens where one cloud plus another cloud was still one cloud! 

 Th e evolution of mathematics provides some insights into what still stands out as 
one of mathematics’ greatest mysteries: its ability to represent the physical world with a 
remarkable precision. “How is it possible that mathematics, a product of human 
thought that is independent of experience, fi ts so excellently the objects of physical  reality?” 
Einstein asked in 1921. Th e physicist Eugene Wigner spoke of the “unreasonable eff ective-
ness of mathematics in the natural sciences.”   14  Indeed, mathematical concepts and physical 
observations sometimes seem to fi t as tightly as pieces in a jigsaw puzzle. Witness Kepler 
and Newton discovering that bodies subjected to gravity follow smooth trajectories in the 
shape of ellipses, parabolas, or hyperbolas — the very curves according to which Greek 
mathematicians, two millennia earlier, classifi ed the various intersections of a plane and a 
cone. Witness the equations of quantum mechanics predicting the mass of the electron to 
the umpteenth decimal. Witness Gauss’s bell-shaped curve  matching, to near perfection, 
the observed distribution of the fossil radiation originating from the “Big Bang.” 

 Th e eff ectiveness of mathematics raises a fundamental problem for most mathemati-
cians. From their point of view, the abstract world of mathematics should not have to 
adjust so tightly to the concrete world of physics, because the two are purportedly 
 independent. Th ey perceive the applicability of mathematics as an unfathomable 

14  Wigner,     1960   
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mystery, which leads some of them to mysticism. For Wigner, “the  miracle  of the appro-
priateness of the language of mathematics to the formulation of the laws of physics is a 
 wonderful gift   which we neither understand nor deserve.” According to Kepler, “the 
 principal object of all research on the external world should be to uncover its order and 
rational harmony which were  set by God  and which he  revealed  to us in the language of 
mathematics.” Or listen to Cantor: “Th e highest perfection of God lies in the ability to 
create an infi nite set, and its  immense goodness  leads Him to create it.” Ramanujan follows 
on the same tracks: “An equation for me has no meaning unless it expresses a  thought 
of God ”  (in all these quotations, the emphasis is mine). Th ese statements are not just 
relics of nineteenth-century mysticism. One version of the anthropic principle, 
recently adopted by famous contemporary astrophysicists, affi  rms that the universe was 
created by design so that humans would eventually emerge from it and be able to 
 understand it. 

 Was the universe purposely designed according to mathematical laws? It would 
be foolish to pretend that I can settle an issue that clearly belongs to metaphysics, one 
that Einstein himself saw as the universe’s ultimate mystery. One can at least wonder, 
however, why eminent scientists feel the need to assert, in the very context of their 
research, their faith in a universal design and their submission to nonobservable entities, 
regardless of whether they call them “God” or “the mathematical laws of the universe.” 
In biology, the Darwinian revolution taught us that the fi nding of organized structures 
that seem designed for a clear purpose need not point to the works of a Great Architect. 
Th e human eye, seemingly a miracle of organization, results from millions of years of 
blind mutations sorted by natural selection. Darwin’s central message is that each time we 
see evidence for design in an organ such as the eye, we have to ask ourselves whether there 
ever was a designer or whether selection alone could have shaped it in the course of 
evolution. 

 Th e evolution of mathematics is a fact. Science historians have recorded its slow 
rise, through trial and error, to greater effi  ciency. It may not be necessary, then, to postu-
late that the universe was designed to conform to mathematical laws. Isn’t it rather our 
mathematical laws, and the organizing principles of our brain before them, that were 
selected according to how closely they fi t the structure of the universe? Th e miracle of the 
eff ectiveness of mathematics, dear to Eugene Wigner, could then be accounted for by 
selective evolution, just like the miracle of the adaptation of the eye to sight. If today’s 
mathematics is effi  cient, it is perhaps because yesterday’s ineffi  cient mathematics has 
been ruthlessly eliminated and replaced. 

 Pure mathematics does seem to raise a more serious problem for the evolutionary 
view I am defending. Mathematicians claim that they pursue some mathematical 
issues only for beauty’s sake, with no applications in sight. Yet decades later, their results 
are sometimes found to fi t some hitherto unsuspected problem in physics like a glove. 
How can one explain the extraordinary adequacy of the purest products of the human 
mind to physical reality? In an evolutionary framework, perhaps pure mathematics 
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should be compared to a rough diamond, raw material that has not yet been submitted to 
the test of selection. Mathematicians generate an enormous amount of pure mathematics. 
Only a small part of it will ever be useful in physics. Th ere is thus an overproduction 
of mathematical solutions from which physicists select those that seem best adapted to 
their discipline — a process not unlike the Darwinian model of random mutations 
followed by selection. Perhaps this argument makes it seem somewhat less miraculous 
that, among the wide variety of available models, some wind up fi tting the physical world 
tightly. 

 In the fi nal analysis, the issue of the unreasonable eff ectiveness of mathematics loses 
much of its veil of mystery when one keeps in mind that mathematical models rarely 
agree  exactly  with physical reality. Kepler notwithstanding, planets do not draw 
ellipses. Th e earth would perhaps follow an exact elliptic trajectory if it were alone in 
the solar system, if it was a perfect sphere, if it did not exchange energy with the sun, and 
so on. In practice, however, all planets follow chaotic trajectories that merely resemble 
ellipses and are impossible to calculate precisely beyond a limit of several thousand years. 
All the “laws” of physics that we arrogantly impose on the universe seem condemned to 
remain partial models, approximate mental representations that we ceaselessly improve. 
In my opinion, the “theory of everything,” the current stuff  of physicists’ dreams, is 
unlikely ever to be attained. 

 Th e hypothesis of a partial adaptation of mathematical theories to the regularities 
of the physical world can perhaps provide some grounds for a reconciliation between 
Platonists and intuitionists. Platonism hits upon an undeniable element of truth when it 
stresses that physical reality is organized according to structures that predate the human 
mind. However, I would not say that this organization is mathematical in nature. Rather, 
it is the human brain that translates it into mathematics. Th e structure of a salt crystal is 
such that we cannot fail to perceive it as having six facets. Its structure undeniably existed 
way before humans began to roam the earth. Yet, only human brains seem able to attend 
selectively to the set of facets, perceive its numerosity as 6, and relate that number to 
others in a coherent theory of arithmetic. Numbers, like other mathematical objects, are 
mental constructions whose roots are to be found in the adaptation of the human brain 
to the regularities of the universe. 

 Th ere is one instrument on which scientists rely so regularly that they sometimes forget 
its very existence: their own brain. Th e brain is not a logical, universal, and optimal 
machine. While evolution has endowed it with a special sensitivity to certain parameters 
useful to science, such as number, it has also made it particularly restive and ineffi  cient in 
logic and in long series of calculations. It has biased it, fi nally, to project onto physical 
phenomena an anthropocentric framework that causes all of us to see evidence for design 
where only evolution and randomness are at work. Is the universe really “written in 
 mathematical language,” as Galileo contended? I am inclined to think instead that this is 
the only language with which we can try to read it.                                              
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       fifteen years have elapsed since I proposed my  number sense  hypothesis — the pecu-
liar idea that we owe our mathematical intuitions to an inherited capacity that we share 
with other animals, namely, the rapid perception of approximate numbers of objects. 
How does such a preposterous notion hold up aft er fi ft een years of intense scrutiny? 
Surprisingly well, I would say. Number sense is now recognized as one of the major 
domains of human and animal competence, and its brain mechanisms are constantly 
being dissected in increasing detail. In this postface, I will pinpoint a few of the most 
exciting fi ndings in this quickly growing fi eld. 

 For a simple demonstration, stare at the cross at the center of Figure   10.1  , which shows 
a set of 100 dots on the left  and 10 dots on the right. Wait 30 seconds, then turn to the 
fi gure on the next page and stare at the cross again. You should experience a strong 
numerical illusion: the right display will seem to have more dots than the left . Aft er a 
while, the illusion will fade and the truth will emerge: both sides present exactly the same 
arrangement of 40 dots! Th e illusion resists all sorts of manipulations of the size, density, 
shape, or color of the dots—only their number seems to count. Th is is a perfect illustra-
tion of the number sense. Number perception imposes itself immediately, automatically, 
and without conscious control: even once we  know  that numbers are equal, our eyes, or 
rather our brain, tells us the contrary. As David Burr and John Ross, who discovered this 

 THE NUMBER SENSE,  FIFTEEN YEARS LATER         

 10  



238  Th e Number Sense

illusion, note   1 , “just as we have a direct visual sense of the reddishness of half a dozen ripe 
cherries, so we do of their sixishness.” 

 But what do we now know about the brain circuits that underlie this number 
 perception?     

   Numbers in the Brain   

 Chapter 8 of  Th e Number Sense  is fully dedicated to the brain imaging techniques that 
existed in 1997. “Stay tuned,” I then wrote, “as the next ten years of brain research are most 
likely to yield many more exciting insights about that special organ that makes us human.” 
It is striking, in retrospect, to see how rudimentary these techniques still were in the 1990s. 
In fact, one of the most important advances of the past fi ft een years has been the explo-
sion of human neuroimaging research, using increasingly refi ned techniques. Functional 
magnetic resonance imaging (fMRI for short) has become the dominant method. It pro-
vides images of brain activation on a millimetric scale. Snapshots of the whole brain at 
work can be taken repeatedly every one or two seconds. As a result, 20 seconds’ worth of 
fMRI data are equivalent to results from a 3-hour experiment using positron emission 
tomography — and this without having to inject a foreign substance into the participant’s 
bloodstream, because the imaging relies solely on the omnipresent hemoglobin molecule. 
Th e sensitivity of magnetic resonance is also remarkable. For instance, if we monitor the 
activity of a participant’s motor cortex, we can tell which button has been pressed, on 

1  Burr & Ross,     2008   

+

     figure 10.1.  A numerical illusion reveals the power and automaticity of number sense. First stare 
at the center cross for 30 seconds. Th en turn the page and stare again, trying to decide which of the 
two sets is larger. As you are exposed to the fi rst display, your number system adapts to a large 
quantity on the left  and a small quantity on the right, causing an erroneous bias in the opposite 
direction for the second display   
 (Aft er Burr et al.,   2008.  )    
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any trial, with 95 %  accuracy.   2  It is hardly surprising, then, that tens of thousands of 
experiments have now been published, including hundreds on the brain mechanisms of 
arithmetic. 

 Results from all these experiments confi rm that a narrow and specifi c strip of the 
cortex, in the left  and right parietal lobes, makes a special contribution to number pro-
cessing.   3  Figure   10.2   shows you exactly where this region is located, deep in a groove in 
the back of the brain called  the intraparietal sulcus . My colleagues and I termed it the 
“hIPS” region, for “horizontal part of the intraparietal sulcus.” It consistently activates, in 
all the subjects we have ever scanned, whenever we ask them to attend to a number. Mental 
calculation is the best way to activate this region, for instance by asking a person to sub-
tract individual digits on a screen from the number 13.   4  However, such complex arithme-
tic is not really necessary. If the person merely attends to a stream of letters, colors, and 
digits, and is instructed to look for specifi c targets (e.g., red color, letter A, and digit 1), 
the hIPS activates each time a number appears   5  but does not react if the stimulus is a 
letter or a patch of color. Th us, its association with number sense is very close — it seems 
that we cannot think about a number without activating this brain area. 

 Th ere are many indications that this region is indeed intimately involved with quan-
tity, as opposed to other aspects of number. First of all, it responds to all the modalities of 
number presentation — whether the person is watching a set of dots, as you just did, or 
looking at a symbol, like the Arabic numeral 3 or the written or the spoken word “three.” 
Th is simple criterion, places the hIPS in what neuroscientists call “plurimodal” or 
“amodal” sectors of cortex — brain regions which, unlike the sensory areas, are not 
attached to a specifi c sensory modality, such as vision or touch, but lie at the meeting 
point of many input routes. If a brain region is to encode an abstract concept, one that is 
not tied to specifi c sensations, it is essential that it respond to all of the relevant modali-
ties of stimulation in which the concept can be communicated. 

 Indeed, a second criterion confi rms that the hIPS is exclusively involved with the con-
cept of number: its activation does not change whether numbers are spoken or written, 
but it varies according to whether the numbers are small or large, close or distant. 
Consider, for instance, the number comparison task. Here, you have to decide whether a 
target number, such as 59, is smaller or larger than some given reference, say 65. As I 
explained in Chapter 3, our responses on this task are entirely driven by the proximity of 
the quantities. We are much faster when the numerical distance is large, for instance when 
we compare 19 and 65, than when it is small, as in 59 versus 65. Strikingly, the hIPS region 
demonstrates the same distance eff ect: its degree of activation varies monotonically 

2  Dehaene, Le Clec’H et al.,     1998   
3  Dehaene, Piazza, Pinel, & Cohen,     2003   
4  Chochon, Cohen, van de Moortele, & Dehaene,     1999  ; Simon, Mangin, Cohen, Le Bihan, & Dehaene,     2002   
5  Eger, Sterzer, Russ, Giraud, & Kleinschmidt,     2003   
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     figure 10.2.  Localization of the parietal region for number sense. Th e top row shows slices 
through a human brain. Th e bilateral regions shown in black on the central slice belong to the hIPS 
(horizontal segment of the intraparietal sulcus), the site that activates in a variety of arithmetic tasks, 
including number comparison, addition, subtraction or approximation. Th e bottom shows that 
detection of a number alone suffi  ces to activate this region—as the curves indicates, numbers, 
whether presented visually or auditorily, activate it much more than letters or colors   
 (Aft er Dehaene, Piazza et al.,   2003  ; and Eger et al.,   2003  .)    

+

figure 10.1. Continued
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depending on the distance between the numbers. Activation is low when the distance is 
large and the comparison easy, and increases gradually as the distance shrinks.   6  Th e hIPS 
region continues to code for numerical distance even when the numbers are presented 
as complicated written words, for instance “forty-seven” versus “sixty-one.” Th is region 
does not appear to care about the specifi cs of the input, but only about the concept of 
quantity. 

 In 1999, my colleagues and I published an article in the journal  Science  that provided a 
striking demonstration of the parietal lobe’s focus on quantity.   7  We started from the 
simple idea, described in  Th e Number Sense , that some arithmetic calculations require 
specifi c thinking about quantities, while others only require rote memory of arithmetic 
facts. For instance, most of us have a stored “mental table” of multiplication facts, but 
somehow have to compute the answer for a subtraction of two digits, because we do not 
know the answer by heart. Even  within  the same operation, such as addition, we can 
adopt one of two attitudes: either try to retrieve the result from verbal memory, or try to 
compute it by manipulating quantities. Consider, for instance, the equation 15  +  24 = 
99: Your sense of the magnitudes involved immediately makes you realize that the equa-
tion is false, way before you can decide whether the correct result is 39 or 49, using exact 
calculation and your verbal memory of stored arithmetic facts. A very simple prediction 
ensues: If a subject is asked to compute an exact addition, brain activation should be 
observed in areas related to serial eff ortful tasks and to verbal memory; but if we ask for 
an approximation, greater activation should appear in the left  and right parietal regions 
coding for quantity (hIPS). When we monitored brain activation with fMRI and with 
event-related potentials, our results were in close agreement with this simple prediction. 
When people are given an exact addition with a choice of two very close answers (e.g., 
4  +  5 = 7 or 9?), there is greater activation in left -hemisphere regions concerned with 
language processing; while in the approximation condition, where both choices are 
wrong but one is close (e.g., 4  +  5 = about 8 or about 3?), our favorite area, the hIPS, is 
markedly more active. 

 To be sure, the diff erence is one of degree. Both sets of regions systematically collabo-
rate when we do arithmetic — but the presence of the hIPS is more blatant when quantity 
processing is required. In particular, training changes the balance between brain areas. 
When we are fi rst asked to compute complicated arithmetic operations, such as 23  +  39, 
the hIPS is maximally active. Progressively, as drilling stores the facts in our memory, 
brain activity decreases in the hIPS and increases in the left -hemisphere regions that pro-
cess language, particularly in a region called the angular gyrus.   8  Altogether, these results 

6  Pinel et al.,     2001  . Likewise, increasing the size of the numbers involved, in a calculation task, also makes the hIPS 
activation increase in parallel with calculation times (see e.g., Stanescu-Cosson et al.,     2000  ) 

7  Dehaene et al.,     1999   
8  Delazer et al.,     2003  ; Ischebeck et al.,     2006   
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mesh well with the notion of two systems for number: a core representation of magni-
tudes, associated with the intraparietal region of both hemispheres, which is systemati-
cally present across culture and education; and a distinct left -hemisphere circuit associated 
with language and education-specifi c strategies for storing and retrieving arithmetic 
facts. 

 Th e interconnection between the hIPS and the left  hemisphere region for language is 
so effi  cient that whenever we see a digit or a number word, our brain quickly converts it 
into the parietal quantity code. Th is conversion even occurs unconsciously.   9  In Chapter 3, 
I described how cognitive psychologists designed a clever way to render words invisible, 
by sandwiching them between masks of random letter strings or pound signs. In this way, 
a number can be fl ashed on a screen for up to about one-twentieth of a second, without 
the participant noticing it — all he sees are the fl ickering characters. Nevertheless, the 
person’s brain clearly registers the hidden word, computes its meaning, and represents it 
in the hIPS. Even more surprisingly, if he is asked whether another, visible number, imme-
diately following the invisible one, is larger or smaller than 5, brain imaging reveals that 
the hidden number infl uences the response. Th e subject has no idea what the number 
was, but his brain has been informed whether it was larger or smaller than 5! Even 
his motor cortex behaves as if he were computing how he should have responded to the 
invisible target. 

 A fundamental question, however, is whether any part of the hIPS region is truly 
dedicated to number. Does the hIPS region behave like a specialized “number module,” 
as proposed by Brian Butterworth,   10  where neurons are involved with nothing but arith-
metic? Sometimes the brain does indeed dedicate an entire patch of cortex to a very pre-
cise and important function, for instance the recognition of faces.   11  However, for number, 
the answer is more complex. Some of the neuronal circuits in the hIPS deal specifi cally 
with number, but are intermingled with neurons that focus on other parameters such as 
object size or location.   12  We have to face this complex reality — the human brain is neither 
an isotropic “white paper,” where all regions are equivalent, nor a neat arrangement of 
tightly specialized and well-separated modules. 

 Many experiments prove that the hIPS is certainly not a fully generic region that 
activates whenever someone thinks of an abstract concept, or performs any sort of com-
parison operation. Th is point was nailed down by Belgian psychologist Marc Th ioux.   13  
He used a clever design in which participants were scanned at diff erent times while they 
performed identical comparison and classifi cation tasks, either with numbers or with 

 9  Dehaene, Naccache et al.,     1998  ; Naccache & Dehaene,     2001a  , 2001b; Reynvoet & Ratinckx,     2004   
10  Butterworth,     1999   
11  Tsao, Freiwald, Tootell, & Livingstone,     2006   
12  Pinel et al.,     2004  ; Tudusciuc & Nieder,     2007   
13  Th ioux, Pesenti, Costes, De Volder, & Seron,     2005   
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animal names. For instance, in the comparison runs, they had to decide whether each 
animal presented was more or less ferocious than a dog — and this was later contrasted 
with having to decide whether each number was larger or smaller than fi ve. In the 
 classifi cation task, participants had to judge whether a number was odd or even, or if an 
animal was a mammal or not. Finally, in the most straightforward case, they were simply 
asked to decide whether the word was written in upper or in lower case. In all cases, the 
hIPS was activated when the person saw a number but did not react for an animal name. 
Th is region is manifestly turned on by the abstract dimension of quantity, but not by the 
equally conceptual notion of ferocity. Th is conclusion, furthermore, is fully convergent 
with studies carried out with brain-damaged patients, which indicate that knowledge of 
animals and knowledge of arithmetic can be fully dissociated by a brain insult.   14  
Alzheimer’s suff erers can be severely demented, to the point of not knowing the diff er-
ence between a dog and a giraff e, and yet excel with numbers. And, conversely, patients 
with acalculia, oft en due to a brain lesion at or very near the hIPS region, can lose all 
understanding of number, yet remain perfectly rational with other categories of words. 
Th us, there is no doubt that the brain treats number like a specifi c category of knowledge 
requiring its own neurological apparatus in the parietal lobe.     

   Numbers in Space and Time   

 When it comes to subtler distinctions, such as number versus length, space, or time, how-
ever, the specifi city of the hIPS vanishes. No part of the hIPS appears to be involved in 
numerical computations alone. We know this from experiments where people were asked 
to compare not only numbers, but also other continuous sensory dimensions such as 
physical size, location, angle, or luminance.   15  In this case, activations do not cluster neatly 
into distinct regions specifi c to each parameter but overlap broadly all along the intrapa-
rietal sulcus. Th is overlap is particularly marked for number and location and for number 
and size — indeed, children and even adults frequently mix up these dimensions. 
Remember, we discussed the interactions of number and size in chapter 3 – and you can 
try your hand at this by deciding which of these numbers is the larger of the pair: 

 2 or 4 

 9 or 5 

 5 or 6 

 Did you notice that you were abnormally slow and even made errors in this simple 
task? Th ese observations are a direct testimony to the fact that physical size and numerical 

14  Cappelletti, Butterworth, & Kopelman,     2001  ; Lemer et al.,     2003   
15  Fias, Lammertyn, Reynvoet, Dupont, & Orban,     2003  ; Pinel et al.,     2004  ; Cohen Kadosh et al.,     2005  ; Kaufmann 

et al.,     2005  ; Cohen Kadosh & Henik,     2006b  ; Zago et al.,     2008   



244  Th e Number Sense

magnitude overlap in your brain.   16  Size, location and number are all treated in a similar 
region of parietal cortex. Th ere is also considerable overlap between activations induced 
by number and letter comparisons,   17  probably because letters and numbers share princi-
ples of order and temporality, at least when we recite them in a fi xed order. Letter and 
number concepts are dissociable — they do not make use of exactly the same neurons   18  — 
but they are so intermingled as to create interference in our minds. 

 In a nutshell, a specifi c region of the parietal is active when we do arithmetic, but the 
concept of number is closely linked to those of space and time in this brain area. Th e 
neurons that deal with these dimensions are intermixed within the same patches of 
cortex. Furthermore, they do not form a neat and tight cluster or “module,” but seem to 
be broadly distributed over several centimeters of cortex. Far from being a problem, or 
even a surprise, this fi nding helps to explain a great many of the observations that have 
been made about the number sense; for instance, the fact that we use spatial words to 
speak of numbers that are “close” or “far” from each other. Patients with parietal lesions 
oft en suff er from a simultaneous loss of number and other temporal concepts, or ordered 
categories such as the days of the week (one patient even misnamed 1 as Monday and 2 as 
Tuesday!). Other patients suff ering from spatial neglect — the inability to attend to the 
left  side of space, typically due to a right-hemisphere lesion — exhibit an attentional bias 
that extends to the spatial representation of numbers. A standard test of their impairment 
consists in asking them to point to the middle of a horizontal segment: Because they 
“neglect” the left  side, their perceived midpoint is generally far to the right. Surprisingly, 
the same thing occurs with numbers: When neglect patients are asked to report the 
middle of a numerical interval, say, “what’s between 11 and 19?” they respond with an 
exceedingly large number like 17 or 18 — or, in the most severe cases, a number outside 
the original interval, such as 23!   19  Th eir answers seem absurd. Th ey can only be under-
stood if we bear in mind that, during a bisection task, we rely on our spatial attention to 
mentally explore the number line. Patients whose spatial attention system is impaired 
drift  haphazardly in this internal space. 

 Th e past fi ft een years have produced a fl urry of demonstrations of how number, space, 
and time interact in the brain, in ways far more diverse than I ever expected.   20  Children and 
even 8-month-old infants can apparently already make associations between these dimen-
sions.   21  One of the most remarkable fi ndings in this domain is that thinking about a number 
aff ects how we distribute attention in space.   22  To demonstrate this in the laboratory, 

16  Pinel et al.,     2004   
17  Fias, Lammertyn, Caessens, & Orban,     2007   
18  Facoetti et al.,     2009   
19  Zorzi, Prift is, & Umilta,     2002   
20  Hubbard et al.,     2005   
21  de Hevia & Spelke,     2009  ; de Hevia & Spelke,     2010  ; Lourenco & Longo,     2010   
22  Fischer, Castel, Dodd, & Pratt,     2003   
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you must fi rst fl ash a number at the center of a computer screen and then, immediately 
aft erwards, present a small dot to the left  or right. Although the number would appear to 
be totally irrelevant to the task, the time taken to detect the dot depends on the size of the 
number: a large number attracts attention to the right, and speeds up detection in that 
part of space, while a small number attracts attention to the left . Th is is a nice variant 
of the Spatial-Numerical Association of Response Codes, or SNARC eff ect, which I 
described in Chapter 3, and which shows a robust link between the concepts of number 
and space. Strong links between time, space, and number have now been identifi ed in 
innumerable experiments. For example, aft er you see a large number, if you have to make 
a hand movement, your hand will shift  toward the right-hand side.   23  If you have to grasp 
an object, your fi ngers will open to a slightly larger size than needed.   24  If you have to judge 
temporal duration, a numerically larger number seems to last longer on the screen than a 
smaller number.   25  Th e association also works in the reverse direction. If you ask some-
one to generate random numbers, and you’d like to guess the approximate size of their 
answers, look at their eye movements: before generating a large number, their eyes will 
oft en move toward the top right, while they go to the bottom left  when they think of a 
small number.   26  

 What is the reason for this peculiar association between number size and the direction 
of gaze and attention? Our brain imaging research has revealed that it comes from a sys-
tematic “leakage” of neural activity in the parietal lobe.   27  When we evoke a mental repre-
sentation of some numerical magnitude, brain activation starts in the hIPS, but also 
expands into nearby regions that code for location, size, and time. As a result, when we 
see a number, our space perception, and even our hand and eye movements, are aff ected 
by the slightly biased estimates that we make of these parameters. 

 As an example, my postdoctoral student André Knops and I recently described how 
mental calculation creates a crosstalk between numerical and eye-movement areas of the 
parietal lobe.   28  We fi rst identifi ed the eye movement regions of the brain by simply asking 
participants to move their eyes left  or right while they were being scanned. Two neatly 
defi ned regions emerged in the left  and in the right posterior parietal cortex. With a 
machine-learning algorithm, we then showed that the state of activation in these regions 
could tell us, with 70 %  accuracy, where the eye had moved on a given trial. Th is is a form 
of “brain reading” which simply indicates that a map of all the possible directions of our 
gaze exists in this area — if we can see where activation is occurring on the map, we can tell 

23  Song & Nakayama,     2008   
24  Lindemann, Abolafi a, Girardi, & Bekkering,     2007   
25  Dormal, Seron, & Pesenti,     2006   
26  Loetscher, Bockisch, Nicholls, & Brugger,     2010   
27  Hubbard et al.,     2005  ; Knops, Th irion, Hubbard, Michel, & Dehaene,     2009  ; Ranzini, Dehaene, Piazza, & 

Hubbard,     2009   
28  Knops, Th irion et al.,     2009  ; Knops, Viarouge, & Dehaene,     2009   
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where the person will move his eyes. However, in a more creative continuation of this 
experiment, we then examined what these eye-movement areas were doing in a second 
block of trials, where our participants computed approximate additions and subtractions. 
Surprisingly, the pattern of brain activation during additions resembled that of an eye 
movement to the right. Conversely, when our participants subtracted numbers, the pat-
tern corresponded to that of a left ward eye movement. We verifi ed that the eyes were 
not moving — so why were these regions active at all? When you compute, say, that 
32  +  21 is about 50, your internal attention moves from the fi rst number 32 to the larger 
number 50, which is on the “right” side of the number line in our left -to-right reading 
culture. Likewise, when you compute 32 – 21, your attention moves “left ” to the smaller 
number 11. Th us, addition moves attention to the right, and subtraction to the left  — and 
we can detect these covert shift s of attention by monitoring the state of activation in the 
brain. 

 Although these studies are entertaining, their conclusions are also far-reaching. When 
we think about numbers, or do arithmetic, we do not rely solely on a purifi ed, ethereal, 
abstract concept of number. Our brain immediately links the abstract number to con-
crete notions of size, location and time. We do not do arithmetic “in the abstract.” Rather, 
we use brain circuits to accomplish mathematical tasks that also serve to guide our hands 
and eyes in space — circuits that are present in the monkey brain, and certainly did not 
evolve for mathematics, but have been preempted and put to use in a diff erent domain. 
Th is is a perfect illustration of the  neuronal recycling principle , which I introduced in 
my recent book.  Reading in the Brain.    29  I posit that recent human inventions, including 
letters, numbers, and all the concepts of mathematics, have to fi nd their niche in a human 
brain that did not evolve to accommodate them. Th ey have had to squeeze themselves 
into the brain by invading cortical territories dedicated to closely related functions. In the 
case of arithmetic, we start out with a sense of approximate number that we share with 
other animals, and which involves the parietal lobes. As our arithmetic expands to entirely 
novel and uniquely human functions, such as two-digit addition, these novel concepts 
can only be represented in the brain, at least in part, because existing functions in the 
nearby cortex are  recycled  for this new use. Th us, arithmetic invades the nearby areas 
coding for space and eye movements.     

29  Dehaene,     2009   
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   Neurons for Number    

 Mathematics rests upon certain intuitions that may be the product of what our sense organs, 
brains, and the external world are like. 
 morris kline , Mathematics : Th e loss of certainty   

 Although knowledge of the brain areas involved in arithmetic is essential, it is only a begin-
ning. Th e methods for imaging the human brain area are still too rough to provide some 
indication about how mathematical functions are encoded at the level of single neurons. 
Yet, neurons are the ultimate computing units of the cortex, and we can’t claim to have 
understood arithmetic computations until we can describe, step by step, how these surpris-
ingly complex cells manage to encode, for example, the fact that 2 is smaller than 3. 

 When I wrote the fi rst version of  Th e Number Sense , I proposed a very specifi c model: 
Th e parietal lobe probably contains neurons that are approximately tuned to each incom-
ing number — diff erent cells thus fi re for 2 and for 3, providing an internal neural code for 
number. At the time, I stressed how speculative this proposal was. Th e only direct evi-
dence in its favor was the handful of neurons recorded by Richard Th ompson in anesthe-
tized cats, described in an article published in the journal  Science  in 1970. Many other 
animal species, including macaque monkeys, were clearly attending to number in their 
environment, so my model predicted that they too must be equipped with neurons tuned 
to number — but nobody had ever seen them. Th is area seemed ripe for intense investiga-
tion, and I concluded by stating: “Th e fi nal word on this story will no doubt belong to 
those neurophysiologists who will dare to continue the quest for the neuronal bases of 
animal arithmetic using modern neuronal recording tools.” 

 Unfortunately, even the macaque cortex contains several billion neurons. To have even 
a slight hope of recording those relevant to number processing, electrophysiologists 
needed at least a rough idea of where to place their electrodes. My colleagues and I always 
thought that our human brain-imaging experiments could play an important role here. 
Aft er all, the human brain is a large primate brain — although with a few added features! —
 and therefore, its organization could no doubt provide useful indications for animal 
research. Our studies always pinpointed the hIPS region, deep in the parietal area, as a 
systematic correlate of human arithmetic. It thus seemed likely that the same groove, 
called the  intraparietal sulcus , which is also present in monkeys, was also concerned with 
number in the monkey brain. In 2002, we published a brain-imaging study which made 
this proposal more precise.   30  We showed that the human parietal lobe contains a system-
atic geometric map of numerical and spatial abilities. In all human brains, number-related 
activation always falls in the same position between two landmarks. In front of it lies an 
area that activates when we grasp objects. Behind it is another region that cares about eye 
movements. Crucially, similar grasping and eye-movement regions also exist in the much 

30  Simon et al.,     2002  ; Simon et al.,     2004   
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smaller monkey brain. In the front of the monkey’s intraparietal sulcus, there are neurons 
that discharge only when the monkey grasps objects of a certain shape, and in the back, 
other neurons deal with where the monkey is attending and plans to focus its eyes. We 
were not certain that these monkey areas were true evolutionary precursors of the human 
areas — in fact, their homology is still subject to debate, in part because the human brain 
appears to have many more such areas than the monkey brain. However, if we assumed a 
rough homology, our map implied that the hypothetical number neurons in the monkey 
brain might also be positioned at an intermediate point between these two landmarks. 
Th is inference led us to expect to fi nd them in a monkey area named “ventral intrapari-
etal,” or VIP for short, which lies deep in the monkey intraparietal sulcus. 

 A few months aft er we fi rst voiced our hypothesis, this specifi c region indeed turned 
out to be a Very Important Place! Two independent groups of scientists had fi nally iden-
tifi ed the predicted number neurons.   31  Although these cells were fairly broadly spread 
out over the parietal lobe, most of them were observed at the precise location where our 
human studies had led us to expect them: in the depths of the intraparietal sulcus, inside 
area VIP, or just next to it. Other number neurons were also recorded in a much more 
anterior area of the brain, the dorsolateral prefrontal cortex. Th ese neurons, however, 
appeared to be subtly diff erent: Th eir responses were slower and they reacted most 
strongly at a late stage, where monkeys stored number in working memory. Indeed, pre-
frontal cortex as a whole is a much more generic area that is active whenever information 
must be kept in mind for a few seconds. Th us, the current thinking is that the parietal 
neurons are the specialized units that constitute the primary number code, with the 
slower neurons in prefrontal cortex simply storing this information if it is to be recalled 
at a later point. 

 To prove that these neurons really code for number, Andreas Nieder and Earl Miller, 
then at MIT, trained monkeys with a diffi  cult number task, which required them to 
attend to numerical equality. On each trial, the monkey fi rst saw a set of one to fi ve dots, 
followed by a blank screen. It knew, however, that a second set would soon appear, and 
that it would have to decide whether the number of dots was the same as in the previous 
set or not. Th e way the monkeys performed left  no doubt that they understood the task: 
Th ey succeeded extremely well in this same–diff erent judgment, only making errors 
when the numbers were close to each other (e.g., 4 versus 5). Furthermore, they were 
certainly attending to number and not to other parameters, such as the size of the items. 
Th e experimenters proved this by changing all other aspects of the display, such as the 
size, the color, or the arrangement of the items. Th e monkey’s behavior was very obvi-
ously unconnected with these irrelevant parameters, and depended solely on the distance 
between the two numbers. 

31  Nieder, Freedman, & Miller,     2002  ; Sawamura, Shima, & Tanji,     2002  ; Nieder & Miller,     2003  ,   2004  . For reviews, 
see Nieder,     2005  ; Nieder & Dehaene,     2009   
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 Once this behavior had been established, Nieder and Miller started to record brain 
activity and were very quickly able to identify a fraction of the neurons, about 20 %  in 
the parietal lobe, whose discharge pattern refl ected the number that had been presented 
(see Figure   10.3  ). Each of them was tuned to a particular number of objects in the input. 
For instance, one set of neurons fi red most each time a single object was presented; 
a greater number of objects on the scene only made them discharge less. Another set of 
neurons peaked at number 2; others preferred number 3, 4 or 5. In recent work, Andreas 
Nieder has even found neurons that are concerned with numbers in the twenties 
and thirties.   32  Like the monkeys themselves, these neurons only attend to number, and 

32  Nieder & Merten,     2007   
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     figure 10.3.  Number neurons in the monkey brain. Th e monkey was trained to memorize the 
numerosity of a set, then decide whether it matched the numerosity of a second set. In the prefrontal 
and intraparietal cortex, a large proportion of neurons cared about number. Th eir tuning curves, 
shown at right, indicate that each neuron fi red maximally to a specifi c number of items   
 (Aft er Nieder et al.,   2003 ,  2004  .)    
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their behavior does not vary depending on the particulars of the display. Th ey seem to be 
genuinely tuned to number!  

 Based on the theoretical model that I proposed with Jean-Pierre Changeux in 1993, 
and which is described in chapter 1, we had very precise expectations about these neurons. 
Not only should there be a fi ring peak for a given number, but there should be a bell-
shaped curve around the peak, thus demonstrating a preference for an approximate range 
of numbers. Furthermore, we predicted that the widths of the bell curves would be the 
same for all neurons, regardless of which number they preferred, once the data had been 
plotted on the appropriate “compressed” axis for number (mathematically speaking, it 
should be a logarithmic axis). Th is property simply means that each neuron responds to 
a fi xed percentage of numbers around its preferred value: It fi res for all numbers within 
an interval of, say, plus or minus 30 %  of its favorite number. Amazingly, Andreas Nieder’s 
data were so precise that it was possible to test these mathematical predictions with great 
accuracy, and they all fi tted perfectly with our expectations. You can see this for yourself 
in Figure   10.3  . Th e neurons that care about sets of 4 items, for instance, also respond to 
3 or 5 objects, but fi re far less for a single object. Th ese characteristics of the neurons’ tuning 
curves are exactly as they should be, to explain monkeys’ numerical confusions (and those 
of humans as well). As noted in Chapter 3, we tend to confuse numbers that represent 
similar quantities, such as 4 and 5. Furthermore, the range over which these confusions 
occur increases with number, so that it can be described as a fi xed percentage of uncertainty 
around the mean. Th us, we confuse numbers 4 and 5 at about the same level as we confuse 
40 and 50. Th e tuning curves of the monkey neurons have exactly the same metric. 

 Collectively, number neurons form what we call a “distributed representation” or a 
“population code” for number: Each number is not coded exactly, by a few precise 
neurons, but only approximately, by a whole array of roughly tuned neurons, and with 
an imprecision that increases with number. Th e neural code that was identifi ed by Nieder 
and Miller in the macaque monkey is precisely what I expected from my behavioral 
research in humans. In recent years, I have developed a mathematical model to close the 
gap between neurons and behavior.   33  Starting from the hypothesis that we have neurons 
that are tuned to number, and that our decisions are based on optimal inferences from 
this internal code, my model demonstrates how we can make a detailed reconstruction of 
the characteristics of human numerical judgments. For instance, when numbers get closer 
to each other, we become increasingly slow and less accurate at comparing two numbers. 
Th e precise shape of this “distance eff ect” can be derived mathematically from the 
neurons’ approximate tuning curves. With such bridging laws from neurons to behavior, 
psychology comes increasingly close to being an exact science. 

 At the time of this writing, it is not clear how parietal number neurons acquire 
their tuning curves to number. However, notable headway was made in 2007 when 

33  Dehaene,     2007  . For a related proposal, see Pearson et al.,     2010   
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Michael Platt and his colleagues at Duke University discovered a second type of neural 
code for number.   34  Th ese neurons are found in another region, called LIP, right behind 
the VIP region. Th ey do not behave like the VIP neurons discovered by Nieder and Miller 
in several respects. First, LIP neurons are not tuned to number. Rather, their fi ring rate 
varies monotonically with number. In some of them, fi ring increases sharply with the 
number of objects in the neuron’s receptive fi eld, while in others it peaks for one object 
and decreases progressively for larger numbers — but in this area, one does not seem to 
fi nd neurons with a peak for intermediate numbers. A second diff erence is that these LIP 
neurons have a limited view of the retinal image (small “receptive fi elds”). Th ey do not 
respond to the total number of objects across the whole scene, but rather to the local 
number in a certain window. 

 Why would two quite distinct codes — monotonic versus tuned cells — coexist in the 
same brain? One possibility is that the monotonic cells are needed to compute the tuned-
cell representation. Th is hypothesis would mean that the monotonic and tuned codes 
constitute two distinct stages in the computation of a stable representation of number. 
In fact, such a two-step process corresponds closely to Jean-Pierre Changeux’s and my 
initial model of number neurons. Our computer simulations started out with neurons 
coding for the location of objects, regardless of their identity and size. We then had neu-
rons add up the activation on this object location map — these “accumulation neurons” 
yielding a representation of the approximate number. Finally, by thresholding this activa-
tion at increasingly higher levels, we obtained a bank of “numerosity detectors”: neurons 
that were each tuned to a specifi c numerosity. Recent discoveries suggest that these two 
successive steps in the extraction of number may correspond to what areas LIP and VIP 
actually do. Accumulation neurons, with their monotonic responses to number, corre-
spond rather well to LIP cells, while VIP cells tuned to specifi c numbers fi t exactly with 
the numerosity detectors we postulated. Furthermore, we know from anatomy that LIP 
neurons project directly to VIP neurons. Finally, LIP number neurons are sensitive to 
location (they have “receptive fi elds”), whereas VIP number neurons seem to respond to 
the numerosity of an entire display, consistent with the hypothesis that they receive 
inputs from a whole array of LIP neurons. 

 In brief, electrophysiological recordings have brought remarkably strong support to 
our theoretical model. Monkeys clearly encode number using populations of neurons, 
and it may well be true that they do so by fi rst summing across the locations occupied by 
objects, and then dedicating specifi c neurons to the individual values included in the 
sum. Plausible as this model seems, confi rmation of its key hypotheses will still require 
considerable eff ort. A major problem with the current data is that both types of numerical 
codes (monotonic and tuned cells) have been found in diff erent labs, in diff erent areas of 
the brain, using diff erent monkeys trained to perform diff erent tasks. Th us, it remains to 

34  Roitman, Brannon, & Platt,     2007   
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be seen whether these two codes do actually coexist in the same animals. It is interesting, 
however, that the monotonic number code uncovered in LIP neurons has all the proper-
ties needed to account for the visual illusion with which I started this chapter,   35  where 
we adapt to a certain number and then perceive a new one as larger or smaller than it 
 actually is. Like LIP neurons, the adaptation is specifi c to a certain location on the retina 
(Figure   10.1   shows how we adapt diff erently to numbers seen on the left  or right). 
Furthermore, it extends across a large range of numbers: Adaptation to 200 dots changes 
our perception of 40 dots. Th is would be impossible if adaptation was due solely to cells 
tuned to those specifi c quantities, but makes sense if a monotonic code is also adapted. 
Th us, it is likely that the human brain also possesses a monotonic code for numerical 
magnitudes, in addition to neurons tuned to specifi c numbers. 

 I must stress that these conclusions are merely extrapolations based on the probable 
homology between the monkey brain and the human brain. No one has actually seen a 
single neuron tuned to number in the human brain — for the very good reason that we 
cannot fi nd volunteers willing to have fi ne electrodes inserted into their brains! Th ere are 
very few conditions where single-neuron recordings are made in the human brain. One 
of them is when a patient is epileptic. In this case, neurologists occasionally rely on elec-
trodes implanted deep in the brain to identify the site of epilepsy. Beautiful data from 
human neurons have been recorded in this manner, including fascinating cells discharg-
ing only to the sight of the Sidney Opera House, or the Hollywood actress Hale Berry!   36  
Unfortunately, epilepsy mostly concerns the temporal role, and there are far fewer record-
ings in the human parietal lobe, where number neurons lie. Th us, to this date human 
number neurons have yet to be identifi ed. 

 In the absence of direct recordings, we had to be more creative. Indirect means of iden-
tifying our beloved number neurons do, of course, exist. Functional MRI cannot see indi-
vidual neurons — but its signal does sweep across several thousand cells and can, therefore, 
to some degree, refl ect their average tuning. One good trick is to examine how the signal 
adapts when the same item is repeated over and over again.   37  We know that under such 
conditions, neurons do habituate: Th eir discharges progressively diminish with succes-
sive repetition, as if they got bored seeing the same stimulus innumerable times. Because 
most neurons display this kind of adaptation, it turns into a macroscopic signal that we 
can pick up with brain imaging — we literally see the signal from this brain region dimin-
ish with time. We can then test whether the signal recovers when a new item is presented. 

35  Burr & Ross,     2008   
36  Th e uncontested leader in this fi eld is the neurosurgeon Itzhak Fried, who developed the techniques for single-

cell human recordings and, with many colleagues, applied them to many important questions in human cogni-
tive neuroscience. See for instance Quiroga, Reddy, Kreiman, Koch, & Fried,     2005  ; Quiroga, Mukamel, Isham, 
Malach, & Fried,     2008  ; Fisch et al.,     2009   

37  fMRI adaptation, also called the « priming method », has been proposed as a general means of studying neural 
codes in the human brain. See Grill-Spector & Malach,     2001  ; Naccache & Dehaene,     2001a  ; and for a cautious 
note, see also Sawamura, Orban, & Vogels,     2006   
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Such recovery must mean that this patch of cortex contains neurons that diff erentiate the 
fi rst item from the second. 

 My colleague Manuela Piazza and I applied the adaptation trick to number, with beau-
tiful results (Figure   10.4  ). We fi rst adapted human volunteers to a boring series of displays 
where they saw the same number repeated over and over again. For instance, in one run 
they almost always saw sets of 16 circles — their size and arrangement could vary, but the 
number and the shape were always the same. At specifi c times, however, we introduced 
deviant images, either with a new shape (triangles) or with a new number, ranging from 
8 to 32. Just as we predicted, the intraparietal cortex reacted to numerical novelty: its activa-
tion shot up whenever the new number was suffi  ciently distant from the old (Figure   10.4  ). 
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     figure 10.4 .  Evidence for number tuning in the human parietal lobe. During brain imaging, 
participants were repeatedly exposed to the same number of objects, leading to a reduced brain 
activation to this number (adaptation). When novel numbers were occasionally introduced, the 
activation recovered in direct relation to the distance of the old and new numbers, thus tracing a 
tuning curve reminiscent of monkeys’ number neurons. Th ese responses to number change were 
independent of whether the shape of the object also changed or not.   
 (Aft er Piazza et al.,   2004  .)    
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Th is numerical response was found precisely where we expected: on the banks of the 
intraparietal sulcus, bilaterally in both hemispheres, and nowhere else in the brain. Th e 
curves were also exactly as they should be if this region of cortex contains number neu-
rons similar to the monkeys’: the parietal cortex appears to be “tuned” around the number 
that was repeated, and recovered when a new number was presented, with a bell-shaped 
function similar to the individual neurons’ tuning curve. Furthermore, the parietal cortex 
did not just respond to any form of novelty. When we changed the shape, nothing hap-
pened in this region, but other brain areas in the visual and prefrontal cortex reacted. 
Th us, we were able to prove that the human parietal cortex, just like the monkey’s, does 
not care about shape but is well attuned to changes in number. Th ere is now little doubt 
that our human brains, like those of our macaque cousins, house very similar mechanisms 
for extracting the numerical magnitude of a set of objects.      

   Numbers in Babies   

 Th e beauty of the adaptation technique is that it does not require any complex instruc-
tions. Th ere is no need for any explicit calculation or response, as the participant in an 
experiment merely has to watch a series of slides. Th is method is thus ideal for the study 
of the brains of young children, who cannot yet do mental arithmetic but may already 
have a number sense. Indeed, the brain-imaging adaptation technique is almost identical 
to the behavioral habituation method that is used to demonstrate a surprise reaction to 
numerical novelty in babies.   38  Even in the fi rst weeks of life, when babies see a constant 
number of objects repeated, say, 8 items, they look longer when the display changes from 
8 to 16 objects. To record this at the level of cortex, however, has the additional advantage 
of allowing us to identify which brain areas are involved in this feat. Is the parietal cortex 
already responsible for number sense at this early age? 

 Th e fi rst number adaptation experiment with children was performed by Jessica 
Cantlon and her colleagues at Duke University,   39  not with babies but with 4-year-olds. 
Th ese preschoolers had not yet received any training with arithmetic, but their parietal 
lobe already demonstrated the same numerical reaction as that observed in adults: a 
strong increase in activation whenever the number that had been repeated was replaced 
by a new one. Th is response was particularly evident in the right hemisphere. Indeed, 
there are now several indications that the right parietal region may be functional very 
early in life, and underlie children’s nonverbal intuition of number before any education 
in arithmetic.   40  Th e results also showed that the child’s brain is already organized into 

38  Xu & Spelke,     2000   
39  Cantlon, Brannon, Carter, & Pelphrey,     2006   
40  Rivera, Reiss, Eckert, & Menon,     2005  ; Ansari & Dhital,     2006  ; Pinel & Dehaene,     2009   
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specifi c streams dedicated to number and shape: the parietal cortex reacted to a change in 
the set’s numerosity, but not to the shapes of the objects in the set, while ventral visual 
cortex responded to shape change and not to number change. 

 When these amazing results were reported, my colleagues Véronique Izard and 
Ghislaine Dehaene-Lambertz and I decided that it was time to try this method with very 
young babies.   41  We focused our work on 3-month-old infants, whose attention can be 
almost hypnotically engaged by using attractive visual displays. Véronique designed col-
orful sets of animals and faces that captured the babies’ attention. We did not attempt to 
put them in an fMRI machine, but instead relied on recordings of their brain waves by 
placing a net, equipped with wet sponges containing small electrodes, on their heads. As 
expected, aft er habituation to the repeated presentation of several slides displaying four 
ducks, we saw the babies’ brains react electrically the moment eight ducks appeared. 
About 400 milliseconds aft er the onset of this new slide, the brain potentials diverged. 
Th e response was similar for diff erent ranges of numbers (2 versus 3, 4 versus 8, and 4 
versus 12), but a completely diff erent brain response occurred when the shape was 
changed. We thus concluded that, even at a few months, the brain is already organized 
into two distinct streams for shape and number. 

 Precise identifi cation of the cortical regions involved was diffi  cult, because of the noto-
riously complex “inverse problem” of inferring the source location within the brain from 
a signal acquired on the scalp. However, we used an advanced method that reconstructs 
a smoothed approximation of the full distribution of electrical activity on the surface of 
the cortex, based on an accurate model of the infant’s cortical folds. Happily, the results 
made sense. Th ey suggested that the right parietal cortex responds to numerical novelty, 
while the left  ventral visual cortex reacts to object novelty. Th is dissociation is again 
similar to what has been found in adults and 4-year-olds. It appears that, right from the 
start, even in infants, number belongs to the parameters that are quickly extracted by the 
parietal cortex. 

 Véronique Izard persevered in this direction, and by observing only the babies’ behav-
ior, was able to prove that even  newborns  possess an abstract sense of number.   42  At a mean 
of 49 hours of age, the infants could not, of course, attend for very long. Th ey merely lis-
tened to a stream of the same number of syllables for two minutes, for instance, four: 
“tu-tu-tu-tu,” “bi-bi-bi-bi,” etc. Th ey were then shown a few test images with sets of 
brightly colored pictures, for instance 12 yellow ducks. Half of the images matched the 
number displayed earlier, while the number in other half was radically diff erent. 
Véronique’s ploy was to use numbers that were distant enough (4 versus 12) to ensure that 
even a very immature and imprecise infant system could detect the diff erence. Th e babies’ 

41  Izard, Dehaene-Lambertz, & Dehaene,     2008  . For other results indicating a brain response to number in chil-
dren and babies, see Temple & Posner,     1998  ; Berger, Tzur, & Posner,     2006   

42  Izard et al.,     2009   
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reaction clearly indicated that they noticed the numerical relationships in the stimuli, in 
spite of a radical change in the mode of presentation. 

 A great many careful experiments have now been run that demonstrate sensitivity 
to number in the fi rst year of life.   43  At the close of the last century, these fi ndings were 
momentarily contested, creating some confusion. A series of published studies using 
stringent controls for nonnumerical confounds failed to replicate the earlier fi ndings, and 
it was suggested that the babies’ performance was not driven by a high-level representa-
tion of abstract number, but by low-level confounds such as the total amount of 
color or luminance.   44  Fortunately, this debate is now closed. Recent results indicate greater 
cognitive development in infants than we initially imagined: they are able to attend either 
to number or to other parameters, such as size, and they appear to do so 
to a variable extent depending on the details of the experimental design. So, for instance, 
if all the objects on a screen are identical, young infants focus on their identity rather 
than on their number. Infants will attend to numerosity, however, even in a range of from 
1 to 3 items, as long as the sets consist in very diff erent objects, rather than in identical 
replicas of the same object.   45  Extensive research work by Sara Cordes and Elizabeth 
Brannon at Duke University now suggests that attending to number is just one of the 
options available to infants.   46  Th ese authors even go as far as to suggest that infants are 
better attuned to number than to other physical parameters, because they detect fi ner 
changes in number than, say, in the size of the objects. It would thus appear that number 
is one of the primary attributes that allow us to make sense of the outside world, right 
from birth.     

   The Special Status of Numbers 1, 2, and 3    

 An error can become exact, depending on whether the person who committed it got it 
wrong or not. 
 pierre dac, French humorist  

 Most of the recent research that I have described so far strongly supports the Number 
Sense hypothesis. I must confess, however, that there is one point where I got it wrong. 
In Chapter 3, I described “subitizing,” or the remarkable capacity that we all have to iden-
tify 1, 2, or 3 items at a glance. I was correct in suggesting that we all can “subitize” with-
out counting — a whole stream of novel publications has confi rmed this point with a 

43  See e.g. Feigenson et al.,     2004  ; McCrink & Wynn,     2004  ,   2007   
44  Mix, Levine, & Huttenlocher,     1997  ; Simon,     1999  ; Xu & Spelke,     2000  ; Feigenson et al.,     2004   
45  Feigenson,     2005   
46  Cordes & Brannon,     2008   
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variety of methods.   47  However, I was wrong in suggesting that subitizing is essentially a 
form of “precise approximation.” My original idea was that, in the range of very small 
numbers 1, 2, and 3, the tuning curves of number neurons are sharp enough to encode a 
precise value. Our number neurons, although approximate, would thus be precise enough 
to diff erentiate 1 from 2 and 2 from 3 at a glance and with 100 %  accuracy. Beyond this 
range, such subitizing would be impossible because the large overlap in neural fi ring 
would prevent the fast separation of two consecutive numbers. At this point, if we needed 
to assess an exact number, we would be reduced to counting. According to this view, 
shared at the time by several other scientists,   48  subitizing is not a distinct process, but just 
the low end of our approximation system. 

 In 2008, Susannah Revkin, in my laboratory, performed an experiment that disproved 
this seductive idea about subitizing.   49  Our premise was simple: if the human mind is 
equipped with only one approximation system, with a fi xed percent uncertainty over 
the entire range of numbers, then it should be equally easy to distinguish any numbers 
separated by the same ratio. Th us, telling 1 from 2 should be just as easy as telling 10 from 
20, or 20 from 40. To test this prediction, we set up two closely coupled experiments. 
Th e fi rst was a classic subitizing task, where participants saw sets containing between 
1 and 8 dots and had to identify their number as quickly as possible. In the other, every-
thing was scaled up by a factor of 10. Participants were told that they would only see 10, 
20, 30, 40, 50, 60, 70, or 80 dots — and never any other quantities. All they had to do was 
utter the number corresponding to the decade, as fast as they could. We gave them exten-
sive training and feedback to make sure that they understood the task and performed as 
optimally as possible. Nevertheless, the results were clear cut: Performance with decade 
numbers 10, 20, and 30 was dramatically worse than with numbers in the subitizing range 
(1, 2, and 3). Our hypothesis predicted that we should be excellent at discriminating 10, 
20 or 30 dots — just as good, in fact, as with the numbers 1, 2, and 3. In reality, however, 
these decades were not processed better or faster than 40 or 50. Over the whole range of 
numbers tested, only the numbers 1, 2, and 3 provided diff erent results from the others: 
with these small numbers, people were sometimes as much as 200 milliseconds faster at 
naming, and they were also almost perfectly accurate. Our results leave no doubt that a 
distinct process deals with the subitizing range of numbers — a conclusion that has also 
been supported by brain imaging research.   50  

 Why is this point so important? Because it indicates that our number sense is a patch-
work of multiple core processes. Th e current consensus is that we have not just one, but 

47  Piazza et al.,     2003  ; Arp, Taranne, & Fagard,     2006  ; Watson, Maylor, & Bruce,     2007  ; Demeyere, Lestou, & 
Humphreys,     2010  ; Maloney, Risko, Ansari, & Fugelsang,     2010   

48  Gallistel & Gelman,     1991  ; Cordes et al.,     2001   
49  Revkin et al.,     2008   
50  Piazza et al.,     2003  ; Hyde & Spelke,     2009   
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 two  systems for representing a number of objects without counting.   51  Th e small-number 
system, sometimes called the “object tracking” system, only represents sets of 1, 2, or 3 
items. It lets us track their trajectories quite precisely, and therefore gives us an exact 
mental model of what happens when one object moves in or out of a small set. Th e 
approximation system, on the other hand, can represent any number, large or small. 
It allows us to compare them or to combine them into approximate operations. 

 Th e diff erence between the two number systems lies in their ability to represent large 
numbers: the object-tracking system breaks down when the number of objects exceeds 
3 or 4. Surprisingly, however, the small numbers 1, 2, and 3 appear to be simultaneously 
represented mentally by both systems. We can subitize them, but we also approximate 
them and place them at the appropriate location on the approximate mental number line. 
Th us, there is no discontinuity in our mental representation, no need to “stitch” the 
number line across the small-numbers divide — the entire range of small and large num-
bers is represented on the approximate mental number line. Th is feature can explain why 
monkeys trained to order sets according to their number, even when training is limited to 
sets of 1 to 4 items, immediately generalize to larger sets of up to nine items.   52  With the 
approximation system, we have an immediate intuition about the continuity of numbers. 
Th e small-number system, on the other hand, lets us zoom in on the very small numbers 
1, 2, and 3 and gain an exact understanding of their arithmetic — how these numbers are 
changed by adding or subtracting an object. 

 Infant research indicates that both of these number systems are already available during 
the fi rst days of life, and that their combination may play a crucial role in the acquisition 
of arithmetic. Indeed, some of the best evidence for a distinct system for small numbers 
comes from infant research. In many experiments, infants succeed  only  when the num-
bers are small enough to be subitized. Consider, for instance, a simple experiment per-
formed by Lisa Feigenson and her colleagues, then at New York University.   53  Two empty 
boxes are fi rst introduced on stage, and then the baby sees the experimenter hide two 
crackers in one box (one at a time) and then three in the other. It is then encouraged to 
reach towards one of the two boxes. Unsurprisingly, the baby chooses the box containing 
larger number of crackers more than 80 %  of the time. But then comes the surprising fi nd-
ing. In another part of the experiment, two crackers are placed in one box, and four in the 
other. Now the baby fails miserably: its percentage of success is a meager 50 % , essentially 
a random choice. Why does the infant succeed on 2 versus 3, and fail with 2 versus 4, 
a larger and seemingly more obvious diff erence? Th e evidence indicates that babies also 
fail on 1 versus 4, 3 versus 6, or just about any experiment in which one of the numbers 

51  Feigenson, Carey, & Hauser,     2002  ; Feigenson et al.,     2004   
52  Brannon & Terrace,     1998  ,   2000   
53  Feigenson, Carey, & Hauser,     2002  . Monkeys behave in exactly in the same manner: Hauser, Carey, & Hauser,    
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exceeds 3. Th e only plausible explanation appears to be that more than four events satu-
rate the infants’ memory until it collapses. Th ree crackers placed in a box fi t easily within 
the subitizing range. One additional cracker is enough to exceed this limit, and the babies 
suddenly lose track of how many items are in the box. Th eir approximation system seems 
to be of no use, because the crackers are introduced one at a time, and thus the entire set 
is never seen all at once. Sequential presentation prevents the use of the approximation 
system, leaving the child with a limited sense of the numbers 1, 2, and 3.     

   How Does Subitizing Work?   

 How subitizing actually works remains something of a mystery. One interesting clue, 
however, is that contrary to what we once thought, it is not independent of our attention. 
Subjectively, subitizing seems to be automatic: One glance at a set seems enough to eff ort-
lessly recognize that it contains 1, 2 or 3 objects. Th is is an illusion, however.   54  Sets that 
are presented when our mind is temporarily occupied elsewhere, for instance because we 
are asked to memorize a letter, are no longer accurately perceived, even when they com-
prise only 2 or 3 items. Far from being “pre-attentive” and eff ortless, subitizing requires 
attention. We can select a small number of items, and even track them through time and 
space, but this taxes our attention. 

 So how does subitizing work? Current research suggests that we have 3 or 4 memory 
slots where we can temporarily stock a pointer to virtually any mental representation.   55  
Th is memory store is called “working memory” — a transient supply that keeps the objects 
of thought on-line for a brief moment. We use it, for instance, to remember which shapes 
appear on a fl ash card: Th ree or four objects can be neatly stored in this mental fi ling 
cabinet, each with all of its perceptual properties. When we keep information in this way, 
we also get their number for free, because the system implicitly encodes the number of 
slots that are occupied at a given moment. To understand this, imagine that you have 
three shoe boxes, a green, a red and a blue one, that you use in a set order when packing 
your running shoes before going on trips. Because the boxes are used in a fi xed order, a 
glance at their colors allows you to determine the number of pairs you have taken. If only 
the green box is used, it means that you took only one pair, green  +  red means two, and 
green  +  red  +  blue means three. Such a fi ling system is a good metaphor for how subitiz-
ing might work: When we attend to objects, our perceptual system immediately places 
their properties in the available slots of an object-tracking device. To subitize, all we have 
to do is link the contents of this mental fi le to the names of numbers one, two or three. 

54  Railo, Koivisto, Revonsuo, & Hannula,     2008  ; Trick,     2008  ; Vetter, Butterworth, & Bahrami,     2008  ; Xu & Liu,    
 2008  ; Vetter, Butterworth, & Bahrami,     2010   
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 What is unique about the subitizing code is that it provides a  discrete  cipher for each of 
the small numbers 1, 2, and 3. Each addition of a new object opens a new memory slot —
 an additional notch in the mind that clearly indicates the move to a new number. Th is 
coding principle is radically diff erent from the way that numbers are encoded on the 
approximate mental number line. Here, numbers are represented through noisy distribu-
tions of activation, such that seven and eight overlap, while two and eight do so far less. 
Th ere is nothing in the approximate number system to support a system of exact arithme-
tic with discrete numbers. With the object fi le system, however, we can track each object 
precisely (as long as their number does not exceed three). Th e concept of “natural 
number,” the cornerstone of our arithmetic system, probably arises from our remarkable 
capacity to track small numbers of objects, combined with our intuitive number sense, 
which tells us that any set, however large, has a cardinal number. Somehow, around the 
age of 3 or 4, these two systems snap together. Suddenly, children infer that any set must 
have a  precise  number, and that 13 is therefore a distinct concept, radically diff erent from 
its neighbors 12 and 14. Th is mental revolution, unique to  homo Sapiens , is the fi rst step 
on the way to higher mathematics.     

   Numbers in the Amazon Jungle    

 Th e knowledge of mathematical things is almost innate in us … Th is is the easiest of sciences, 
a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly 
illiterate know how to count and reckon. 
 roger bacon  

 We still do not know precisely what occurs in the child’s mind when he suddenly under-
stands that there is a discrete infi nity of exact numbers. However, we do now know that 
the transition is not automatic and somehow triggered by the maturation of the human 
brain. It is a  cultural  invention .  Th e great mathematician Leopold Kronecker was wrong 
when he claimed that “God made the integers; all else is the work of man”. Even the inte-
gers are manmade. Th ey only exist in cultures that invented the notion of counting. 
Humanity had to come up with a counting system of number words before it could 
represent that 13 was diff erent from 12. 

 We owe our awareness of the cultural nature of exact arithmetic to the courage of 
researchers like the linguists Pierre Pica and Peter Gordon, who took the pains to travel 
great distances in order to investigate the mathematical competence of remote cultures in 
the backwaters of the Amazon.   56  What they observed was remarkable. Far from being 
incompetent, even Indians living isolated from our world, with no formal education or 

56  Gordon,     2004  ; Pica et al.,     2004  ; Dehaene, Izard, Pica, & Spelke,     2006  ; Dehaene, Izard, Spelke, & Pica,     2008  ; 
Franks,     2008   
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mathematical vocabulary, possess a refi ned sense of approximate number. Th ey seem to 
be lacking, however, in a sense of  exact  integers. 

 It has been my intellectual good fortune for the past ten years to work with Pierre Pica 
on how Mundurukú Indians represent numbers. I was the proverbial armchair scientist 
on this project. I have actually never been to the Amazon – but year aft er year, Pierre Pica 
made his way relentlessly across the jungle, a portable computer and solar-powered bat-
teries in hand, to test the hypotheses that Véronique Izard, Elizabeth Spelke and I con-
ceived in Paris. We designed PowerPoint animations and mathematical soft ware, in a 
programming language aptly called “Python,” so that they could be shipped to the jungle 
and played back to people who had never seen a computer screen. 

 Th e Mundurukú are particularly interesting because their language does not have a full 
counting system. It only possesses a few number words, going up to about fi ve: “pũg” means 
one, “xep xep” is two, “ebapũg” three, “ebadipdip” four, and “pũg põgbi,” which means “one 
hand” or “a handful,” is fi ve. Beyond this point, their number system essentially comes down 
to “a few” (“adesũ”) versus “many” (“ade”). Surprisingly, these numbers are never used for 
counting – the Mundurukú cannot reel them at full speed as we would (“onetwothree-
fourfi ve … ”), and they usually do not match them one by one to objects in a set. Rather, the 
number words seem to be used as adjectives for a certain quantity, much as we might say 
that a set looks “fi vish” or close to “a dozen”. One of our fi rst experiments, indeed, consisted 
in showing the Indians sets of dots and asking them how many items were present. Th ey 
never counted, but essentially labeled the sets with an approximate word. When one, two 
or three items were present, they frequently uttered the correct “pũg,” “xep xep,” or “ebapũg”. 
With four items, however, they already began to make mistakes, saying there were fi ve or 
three. Starting at about 5 or 6 items, they used “a few,” and by 10 or 12 they simply said 
“many.” Clearly, they had no means of precisely naming exact cardinal numbers. 

 We then asked ourselves what impact this lexical limitation had on their understanding 
of arithmetic. Th e number sense hypothesis predicted that they should be far from stupid. 
Even though they had never been to school, had never heard of addition or subtraction, 
and could not even name numbers beyond fi ve, we predicted that they would be very 
competent with approximate numbers. Like any of us, they inherited a capacity to under-
stand how sets of objects behave in operations analogous to addition and subtraction. 
What they should not do is discriminate exact numbers, because their culture is confi ned 
to an early, non-counting stage of the construction of arithmetic. 

 In a fi rst set of tasks, we demonstrated that the Mundurukú’s are indeed remarkably 
competent at approximate number. Th ey easily decide which of two sets of dots is the 
more numerous, even with numbers ranging up to 80, and even in the presence of consid-
erable variation in nonnumerical parameters such as object size or density. Th ey can even 
perform approximate calculation: when shown two sets of objects being successively 
hidden in a jar, they can estimate their sum and compare it to a third number. Amazingly, 
these isolated Indians, with no formal education and a limited language, are almost as 
accurate as educated French adults on this approximation task (Figure   10.5  ).  
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 Where they are diff erent, however, is in exact calculation. We presented them with 
concrete examples of very simple subtraction problems such as 6–4, by hiding six objects 
in a jar and then drawing out four (Figure   10.5  ). Th e fi nal result was always 0, 1, or 2, 
easily within the Mundurukú naming range (although they do not have a word for zero, 
they can use paraphrases such as “nothing is left ”). In one test, we asked participants to 
name the result, and in another we made it even easier by asking them to point to a pic-
ture showing the correct outcome (zero, one or two objects in the jar). On both tasks, 
the Mundurukú failed to calculate the exact result. Th ey performed relatively well with 
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     figure 10.5.  Even in the absence of education and a vocabulary for large numbers, Indians from 
the remote Amazonian Mundurukú culture possess a well-developed number sense. Th ey perform 
approximate additions and comparisons of large numbers at about the same level as educated French 
controls (top). Th ey fail, however, when the task involves an exact computation, such as calculating 
5-4 (bottom).   
 (Aft er Pica et al.,   2004  .)    
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numbers below three, but they failed increasingly oft en as the numbers got larger, 
not faring over 50 %  correct as soon as the initial number exceeded 5. A mathematical 
model showed that they performed exactly as one would expect, given their capacity to 
approximate — they  approximated  an operation as simple as 5–3! 

 Overall, our studies of the Mundurukú demonstrate that linguistic labels are not 
necessary in order to master the major concepts of arithmetic (quantity, larger–smaller 
relations, addition, subtraction) and to perform approximate operations. Th e arithmeti-
cal intuition provided by number sense amply suffi  ces. A system of symbolic numerals, 
however, seems essential in order to go beyond this evolutionarily ancient system and to 
perform exact calculations. 

 Th ere has been a lot of controversy surrounding the theoretical interpretation of 
these results. While we focused on the Mundurukú, Peter Gordon, a linguist from 
Columbia University, studied another group of Indians called the Pirahã, whose language 
is even more limited : they only have number words for one and two, and these also 
seem to be synonymous with “few” and “many,” and “small” versus “large”! Published in 
the same issue of  Science  as ours, his study showed essentially the same result: When asked 
to place batteries in one-to-one correspondence with a set of objects, the Pirahã could 
not provide an exact numerical match, but they always approximated the correct quan-
tity. Gordon’s claims, however, were much more extreme than ours. He expressed 
the view that the Pirahã language is utterly “incommensurate” with ours, and cited posi-
tively the linguist Benjamin Lee Whorf ’s view that language determines conceptual 
structure: 

  We are thus introduced to a new principle of relativity, which holds that all observers 
are not led by the same physical evidence to the same picture of the universe, unless their 
linguistic backgrounds are similar, or can in some way be calibrated.  

 Benjamin Whorf,  Language, Th ought and Reality  (1956, p. 214)   

 I disagree with this interpretation, which to my mind is overblown. What limits the 
Mundurukú and the Pirahã is not the lack of conceptual knowledge. Th ey have concepts 
of approximate number and arithmetic — and in that sense their culture is fully 
“commensurate” with ours, inasmuch as we share a common measure of approximate 
number. Indeed, our language, with approximation terms like “dozen” and expressions 
like “ten–fi ft een books,” isn’t that diff erent from theirs. 

 All in all, our experiments do not provide support for the Whorfi an hypothesis that 
language determines thought. On the contrary, they argue forcefully for the universality 
of the number sense and its presence in any human culture, however isolated and educa-
tionally deprived. What they show is that arithmetic is a ladder: We all start out on the 
same rung, but we do not all climb to the same level. Progress on the conceptual scale 
of arithmetic depends on the mastery of a toolkit of mathematical inventions. Th e lan-
guage of numerals is just one of the cultural tools that broaden the panoply of available 
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cognitive strategies and allow us to resolve concrete problems. In particular, the mastery 
of a sequence of number words enables us to rapidly count any number of objects. 

 In my opinion, language is not even unique for counting — we can count almost as 
effi  ciently without number names, either by indicating points on the body, by using an 
abacus or some tally marks. Mastering at least one such system, however, is essential in 
order to move beyond approximation. Recent experiments carried out by Lisje Spaepen 
at Harvard show that, in the absence of a counting system, even a perfectly well-integrated 
person can fail to develop a capacity for exact arithmetic. Lisje studied isolated deaf adults 
from Nicaragua, who lived in speaking communities that failed to teach them sign 
language and counting. Th ese people held jobs, earned money, and their families did not 
suspect that they had diffi  culties with arithmetic. Nonetheless, Spaepen’s experiments 
showed that they behaved much like the Mundurukú — they were unable to match a pre-
cise number of objects with another set of items. Although they held up a certain number 
of fi ngers when shown a set of objects, these gestures did not operate as true “symbols”: 
they were not fi xed, and their match to the number in the set was oft en only approximate. 
In brief, when deprived of a counting device, even an adult integrated into Western soci-
ety can be unable to fully grasp one of its key tenets, the concept of exact number. 

 In our more recent work with the Mundurukú, we see another trace of the cognitive 
changes induced by counting. Remember that Western adults represent quantities as a 
mental “number line,” a linear space extending continuously from small to larger num-
bers. We wondered whether the Mundurukú would have the same intuitions as we do. 
Would they spontaneously think of numbers as spreading out over a linear scale? Would 
they know that any number falls “between” its smaller and its larger neighbors — a purely 
spatial concept? Th e number sense hypothesis predicted that they should. 

 To test our hypothesis, we showed the Mundurukù a line segment on a computer 
screen, with one dot on the left  and 10 dots on the right (Figure   10.6  ). We gave them only 
two training trials, where we told them that the quantity one belonged on the left  extrem-
ity, and the quantity 10 on the right. Aft er that, we presented them with all the intermedi-
ate numbers and asked them where they belonged. Th ey were free to point anywhere on 
the line, and could choose a broad variety of response strategies — for instance, they could 
group all the odd numbers on the left  and all of the even numbers on the right. Th is is not 
what they did, however. Like us, they immediately grasped that number and space should 
map regularly onto each other. Th e vast majority of them produced a monotonic repre-
sentation of numbers, with a clear understanding of the fact that 1 should be close to 2, 2 
closer to 3, and so on. Th us, they obviously share our intuitions about quantities and how 
they map onto space.  

 One aspect of their responses, however, was quite unusual. If we were asked to do this 
task, we would spontaneously place number 5 close to the middle between 1 and 9. 
Indeed, we tested control subjects from the Boston area, and they produce a nice rectilin-
ear representation of the number line, with equally spaced marks for the successive inte-
gers, and with 5 plumb in the middle of 1 and 9. But the uneducated Mundurukú did 
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not; instead, their subjective middle fell closer to 3. Th eir entire pattern of response was 
curved, not linear (Figure   10.6  ). Th ey seemed to think that 8 is much closer to 9 than 
1 is to 2. In fact, their representation was closely approximating a logarithm function, 
not a line. 

 What is behind the Indians’ sophisticated response pattern? Th e answer can be found 
in Chapter 3. Th e spontaneous representation of approximate number that we and other 
animals share is mentally compressed. Two large sets, with 8 versus 9 items, seem more 
similar than two small ones comprising, say, 1 versus 2 items. In the animal number sense, 
numbers are organized in terms of their ratios: A set of three objects is to one, as nine is 
to three; hence, number three falls, in a certain sense, “in the middle” of 1 and 9. Obviously, 
the Mundurukú know nothing about the abstract properties of the logarithm function, 
which was invented by the Scottish mathematician John Napier in the sixteenth century. 
However, because they order their spatial responses according to numerical ratios or 
percentages, their number lines spontaneously match a compressive logarithmic law. 
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     figure 10.6.  Understanding how numbers map onto space changes with education. Young 
children and uneducated Mundurukú adults map numbers in a curved and compressed manner, 
thinking that 3 falls in the middle of 1 and 9, and that 8 and 9 are closer together than 1 and 2. With 
education, the mapping becomes strictly linear, with 5 falling in the middle of 1 and 9.   
 (Aft er Dehaene, Izard et al.,   2008  ; and Siegler and Opfer,   2004  .)    
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 Th is intuitive understanding of number is remarkably resistant to change. Even bilin-
gual Mundurukú adults who can count in Portuguese, and map Portuguese words onto 
the segment in a linear manner, still map sets of dots and Mundurukú number words 
using a logarithmic scale. Similar behavior is seen in young children in our own cultural 
environment. When asked to point toward the correct location of a spoken number word 
in a line segment labeled with 1 at the left  and 100 at the right, kindergarteners under-
stand the task and systematically place smaller numbers on the left  and larger numbers on 
the right. However, like the Mundurukú, they do not distribute the numbers evenly and 
linearly. Rather, they devote more space to small numbers, thus imposing a compressed 
mapping. For instance, they place the number 10 near the middle of the interval 1 through 
100.   57  A shift  from logarithmic to linear mapping occurs later in development, between 
fi rst and fourth grade depending on experience and the range of numbers tested. It takes 
a long time for a child to grasp that numbers 1 and 2 are separated by the same interval as 
8 and 9, or indeed any pair of consecutive numbers. Th is profound understanding of the 
successor function, a foundation of exact arithmetic, does not appear spontaneously, but 
is the result of culture and education.     

   From Approximation to Exact Numbers    

 Number …  is one of the most abstract and metaphysical ideas which the mind of man is 
capable of forming. 
 adam smith,  Considerations concerning the fi rst formation of languages   

 Because it requires an exact one-to-one pairing of objects and a sequence of numerals or 
tally marks, counting seems to promote a conceptual integration of approximate number 
representations, discrete object representations, and the verbal code.   58  Nobody knows 
exactly how this occurs, but around the age of 3 or 4, Western children’s number process-
ing undergoes an abrupt change.   59  Th ey suddenly realize that each count word refers to 
a precise quantity. Th is “crystallization” of discrete numbers out of an initially approxi-
mate continuum of numerical magnitudes seems to be exactly what the Mundurukú do 
not have. 

 One clue to this change comes from quantitative studies of how number sense devel-
ops with age. Variants of our Mundurukú experiments can easily be turned into an exact 
measurement device to assess the precision of the number sense. Manuela Piazza and 
I designed an elementary test, simple enough for a 3-year-old, in which participants see 

57  Siegler & Opfer,     2003  ; Siegler & Booth,     2004  ; Booth & Siegler,     2006  ;Berteletti, Lucangeli, Piazza, Dehaene, 
& Zorzi,     2010   

58  Carey,     1998  ; Spelke & Tsivkin,     2001   
59  Wynn,     1990   
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two sets of dots, one on the left  and one on the right, and are asked to point to the larger 
set. If we modify the distance between the numbers very slightly, we can make this task 
arbitrarily easy or diffi  cult, and thus ascertain the smallest detectible numerical diff erence 
(Figure   10.7  ). As with the optician’s chart, the test provides a fi ne-grained estimate of 
each person’s “acuity” for numbers. Surprisingly, this value improves very sharply with 
age.   60  A 6-month-old requires a 100 %  change, in other words a doubling of the number, 
before it systematically spots the larger number. By the age of 3, this value has dropped to 
40 % , and will continue to drop in subsequent years.  

 Th e most marked change in numerical acuity occurs before the age of three, and it is very 
tempting to relate it to the child’s emerging capacity for learning number words. Th e refi ned 
precision of number sense acts like a lens that progressively brings numbers into sharper 
focus. It may be the key factor that makes it possible for the child to discern  discrete “crys-
tallized” categories in what is initially a continuum of numerosity, and to assign them 

60  Halberda & Feigenson,     2008  ; Berteletti et al.,     2010  ; Piazza et al.,     2010   
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     figure 10.7.  Number sense improves with age and education. In their fi rst year of life, 
children already discriminate two numbers when they diff er by a large enough ratio (for instance 
8 versus 16, a 100 %  change). Numerical acuity improves continuously with age, and as adults we can 
discriminate very small changes, on the order of 15 %  (for instance 14 versus 16, as illustrated in the 
example). However, in the absence of schooling, adults from the Mundurukú tribe in the Amazon 
can only discriminate a 30 %  change in number, very close to the acuity observed in preschoolers, 
suggesting that education strongly refi nes our intuitions of quantities. While extraordinarily simple, 
this non-verbal test also identifi es children with developmental dyscalculia—at the age of 11, they 
still show the numerical acuity of a 5 year old   
 (Redrawn from data in Piazza et al.,   2010  .)    
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numerical labels. Th e progressive refi nement of numerical acuity may explain why it takes 
such a long time for children to acquire the number word “one,” then months later the word 
“two,” and again the word “three”: Since the number line is compressed, larger numbers, 
which are conceptually closer together, come into focus at a later point in life. 

 In return, learning number words also seems to have an impact on the precision of the 
number sense. In Western adults, the fi nal precision attained is about 15 % –20 % ; without 
counting, we can tell the diff erence between 30 and about 36. In the absence of educa-
tion, Mundurukú adults exhibit values closer to 30 %  — they need almost twice the diff er-
ence before they begin to discriminate two numbers.   61  Th is is clearly the result of 
education, because Mundurukú who have had the benefi t of schooling and have made it 
into the third grade, when number concepts and counting are introduced, see their acuity 
drop to the Western value of 15 % –20 % . 

 In brief, during the preschool years, the establishment of a two-way dialog between our 
number sense and our counting system leads to a very closely integrated and improved 
system, where each numerical symbol is automatically attached to an increasingly precise 
meaning. We are only now beginning to understand how this change occurs at the brain 
level. Aft er studying how monkey neurons encode the numerosity of sets of dots, Andreas 
Nieder and his team performed a daring but very revealing experiment: they trained their 
monkeys with Arabic numerals.   62  Every day, over a period of a few months, two macaque 
monkeys were trained to match the shapes of the Arabic digits 1, 2, 3, and 4 with the 
corresponding quantities of dots. In the end, the primates performed quite well. 
Interestingly, a numerical distance eff ect was still perceptible: when shown a digit, they 
tended to confuse it with the nearby magnitudes, suggesting that they were indeed judg-
ing the associated quantities. 

 Once the monkeys had become experts, Nieder and his colleagues started to record 
from single neurons, both in the parietal cortex where the fastest neurons sensitive to 
numerosity had been found, and in the frontal cortex, which contains slower memory 
cells. Remarkably, they found some neurons with tuning curves to the  symbols  at both 
places. For instance, one neuron fi red strongly when the digit 4 was displayed, a bit less 
for 3, much less for 2, and not at all for 1. Other neurons preferred digits 1, 2, or 3. It is 
obvious, then, that the neurons were not only responding to the shapes — they cared 
about the quantities associated with those shapes, and did so very regularly, on the basis 
of the similarity of their meanings. 

 Surprisingly, in the parietal lobe, a vast majority of neurons showed distinct prefer-
ences for digits and for sets of dots: Th ey were either tuned to the symbols or to sets, but 
not to both at once. It is only in the prefrontal cortex that a relatively large proportion 
of neurons encoded numerical values irrespective of whether they were presented as a 

61  Dehaene, Piazza, Izard and Pica, research in progress, 2010 
62  Diester & Nieder,     2007   
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specifi c number of dots or as an Arabic digit. Nieder termed them “association neurons,” 
because they alone appeared to provide the direct association between digits and quanti-
ties needed for success on the matching task. Moreover, the association neurons’ level of 
activity predicted the monkeys’ performance: Whenever the monkeys failed to respond 
correctly on a trial, the cells’ tuned responses collapsed. In contrast, only two percent of 
the cells in the parietal cortex associated digits with quantities, and then these responses 
were quite weak and late. 

 What these fi ndings suggest is that, in the initial stages of symbol learning, the 
prefrontal cortex plays an essential role in putting “2” and “ •• ” together. Th is region in 
all likelihood provides a space for mental synthesis, gathering dispersed information and 
forming novel combinations.   63  Its connections fan out to many other high-level brain 
areas, including the inferior temporal regions that categorize shapes and the parietal 
regions that care about magnitudes, thus making it ideally suited for assembling them 
into a unifi ed concept of number. Bear in mind, moreover, that prefrontal neurons 
can keep information on-line by fi ring for a long duration, and thus serve as a working-
memory buff er that permits the confrontation of two pieces of information presented at 
diff erent times. Th is feature is probably essential in allowing the monkeys to learn the 
association between a digit and a quantity, even when the two elements are presented 
several seconds apart. 

 Another crucial feature of the prefrontal cortex is that it is engaged in conscious, 
eff ortful learning. We use it when we attend to new information, design a new strategy, 
or become aware of a new connection.   64  When routine sets in, because knowledge is 
transferred to more automatic circuitry, prefrontal activation vanishes. It is likely that 
Andreas Nieder’s monkeys never reached this routine stage. Symbol learning probably 
stretches the limits of all nonhuman primates, and their prefrontal areas seem to remain 
strongly mobilized by this demanding task even aft er months of training. Human chil-
dren are diff erent. A few years of schooling suffi  ce to automatize the links between digits 
and magnitudes, to the extent that even a fl ashed and barely visible numeral quickly 
evokes the corresponding quantity in the child’s mind.    65  

 Brain imaging has now been used to track brain activity when children learn Arabic 
numerals and arithmetic.   66  Initially, the pattern of activation resembles that of monkeys. 
In contrast to adults, young children who lack expertise with number symbols have a 
high level of prefrontal activity whenever they do arithmetic. With age and profi ciency, 

63  Dehaene & Changeux,     1995  ; Dehaene, Kerszberg, & Changeux,     1998  ; O’Reilly,     2006   
64  For an introduction to the modern science of consciousness and its relation to a distributed “global neuronal 

workspace” involving prefrontal cortex as a key node, see Dehaene & Naccache,     2001  ; Dehaene, Changeux, 
Naccache, Sackur, & Sergent,     2006  ; Del Cul, Dehaene, Reyes, Bravo, & Slachevsky,     2009   

65  Girelli et al.,     2000  ; Mussolin & Noel,     2008   
66  Ansari, Garcia, Lucas, Hamon, & Dhital,     2005  ; Rivera et al.,     2005  ; Ansari & Dhital,     2006  ; Kaufmann et al.,    

 2006  ; Kucian, von Aster, Loenneker, Dietrich, & Martin,     2008   
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however, as automaticity sets in, prefrontal cortex vanishes and activation shift s to the 
parietal and occipitotemporal areas, particularly in the left  hemisphere.   67  Th e prefrontal 
cortex thus seems to be the fi rst cortical area to establish the symbolic associations of 
Arabic numerals, which progressively relocate to the parietal cortex during childhood. 

 If this account is correct, it leads to a simple prediction: human adults who have 
become expert at understanding digits and number words should have “association neu-
rons” in their parietal cortex. In educated brains, a common neural code should be acti-
vated by the sight of 20 dots, the word “twenty” or the number 20. How can we test this 
prediction? As I explained earlier, we cannot really see individual neurons in the normal 
human brain, but we can use indirect tricks. Manuela Piazza and I used the adaptation 
trick again. We bored subjects with dot patterns whose numerosity always fell in the same 
ballpark — for instance, 17, 19, 18, and so on. We then fl ashed occasional numbers that 
could be very close (20) or very far (50) — but this time, crucially, the numbers could be 
shown as Arabic numerals. We conjectured that the neuroimaging signal from the parietal 
cortex would fi rst adapt to 20 dots, then stay low when seeing the numeral 20, but would 
recover for the numeral 50. Th is pattern of adaptation would mean that the same neurons 
encode symbolic and nonsymbolic numbers — they recognize the covert conceptual iden-
tity of twenty dots and the numeral 20. And this is exactly what we found, thus proving an 
important aspect of the neuronal recycling theory: Th e manipulation of learned cultural 
symbols recycles areas previously involved in evolutionary older arithmetic operations 
with concrete sets. 

 An even more direct way of proving this point now exists. With high-resolution fMRI, 
we can detect distinct patterns of activity on the surface of the human cortex, and attach 
each one to a certain meaning — for instance, a particular number. Th is method has been 
called “brain decoding,” and it is feasible because the neurons coding for diff erent num-
bers, although arbitrarily intermixed, tend to form random clusters in the cortex. Th us, 
number 4 evokes a discernible activity pattern on the cortical surface, while number 8 
evokes another. Th e patterns may look indiscriminate to the naked eye, but a sophisti-
cated computer learning algorithm can be trained to separate the signal from the noise, 
and identify which parts of the evoked activity is reliably associated with each number. 
Th e outcome is a cortical decoding machine, which uses images of brain activation 
as input and produces as output a guess about which number had been presented to 
the subject. 

 Amazingly, such brain decoding works quite well.   68  Evelyn Eger, in my laboratory, 
designed a decoder that succeeds in telling which of two numbers have been presented 
about 75 %  of the time (whereas a chance response would achieve 50 %  success only). 
Even more impressively, once a decoder has been trained with Arabic numerals, it can 

67  Rivera et al.,     2005  ; Kucian et al.,     2008   
68  Eger et al.,     2009   
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generalize to sets of dots. Th us, when we discriminate digit 2 from digit 4, we rely at least 
in part on the same neurons that can tell the diff erence between two dots and four dots. 
By scanning a large chunk of the parietal and frontal lobes, Evelyn saw that the intrapari-
etal hIPS region is, once again, the best region for decoding numbers. In well-trained 
adults, at least, parietal cortex is the place where quantities and symbols meet. Education 
provides us with a shared neuronal code for numerosities and symbols. 

 Th ere is a remaining diffi  culty with this theory, however. If our symbols were mere 
labels for approximate quantities, they should not be very diff erent from the Mundurukú 
words for “fi vish,” “few,” or “many.” Obviously, however, our Western number toolkit goes 
much beyond approximation. Arabic numerals and number words allow us to refer to 
precise numbers, and to distinguish categorically between, say, 13 and 14. Th us, the quan-
tity code is not only rendered accessible by education; it must also be extremely refi ned. 
A theoretical model, framed as a model network of neurons, sheds light on how this 
may work.   69  When the network is exposed to sets of dots, it develops cells roughly tuned 
to approximate quantities, much like Andreas Nieder’s number neurons. When it is 
jointly exposed to numerical symbols, however, the neurons break up into much smaller 
groups, each sharply focused on a specifi c number. In the model, the very same neurons 
are used to encode approximate magnitudes and exact number symbols, but the neurons’ 
tuning curves diff er. Symbols tune the neurons far more sharply, thus allowing them 
to encode a precise quantity. In other words, a set of dots evokes broad and fuzzy activa-
tion in the parietal neurons, while symbols induce fi ring in a smaller but highly selective 
subgroup. 

 At present, there is only modest, yet suggestive, evidence to support this theory.   70  
Subtly asymmetric patterns for adaptation and for decoding suggest that the predicted 
refi nement in number coding may occur specifi cally in the  left   parietal cortex. Th is fi nd-
ing makes sense. Only the left  parietal region simultaneously holds a quantity code and 
the direct connections needed to link it to the language and symbol systems of the left  
hemisphere. Furthermore, there is direct evidence that this region becomes increasingly 
lateralized to the left  hemisphere in the course of numerical development, and does so in 
tight correlation with the lateralization of the language network.   71  But what is particu-
larly appealing about the theory is that it immediately explains why even young children 
can have intuitions about number words. As soon as these words are mapped onto the 
parietal number neurons, they acquire a numerical meaning and can enter into intuitive 
calculations, even prior to any schooling. Because the same neurons are used, any Arabic 
numeral, say 8, adopts the properties of the mental representation of the corresponding 
magnitude.     

69  Verguts & Fias,     2004   
70  Piazza, Izard, Pinel, Le Bihan, & Dehaene,     2004  ; Piazza, Pinel, Le Bihan, & Dehaene,     2007  ; Eger et al.,     2009   
71  Rivera et al.,     2005  ; Pinel & Dehaene,     2009   
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   Understanding Individual Differences and Dyscalculia    

 Th e greatest unsolved theorem in mathematics is why some people are better at it 
than others. 
 howard eves,  Return to mathematical circles   

 Th ere is now direct evidence that the integration of quantities and number words is what 
provides preschoolers with intuitions of arithmetic. Camilla Gilmore and Elizabeth 
Spelke proved this point in a very daring experiment: Th ey asked 5- and 6-year-old kin-
dergartners to solve 2-digit addition and subtraction problems!   72  At this age, children 
have not yet learned to add, so how is this possible? Th e trick, as seen in Figure   10.8  , is 
that the test only requires an approximate understanding of quantities. For instance, the 
child is told that “Sarah has 64 candies, she gives 13 of them away; John has 34 candies; 
who has more?” Although the problem is framed in words, the answer involves convert-
ing these words into quantities, and thinking about their relations, without ever perform-
ing any exact calculation.  

 Th e children’s performance on the Gilmore and Spelke test suggests that this is exactly 
what they did. Th eir responses show all the signatures of the approximate number system: 
Th eir answers are only statistically correct (about 70 %  of the time), but they improve 
as the distance between the two choices increases. Furthermore, they are worse with 
 subtraction than with addition, exactly as predicted by a mathematical theory of the 
approximation process.   73  

72  Gilmore, McCarthy, & Spelke,     2007   
73  Dehaene,     2007   

“Sarah has 21 candies.” “She gets 30 more.” “John has 34 candies.
Who has more?”

     figure 10.8.  Number sense is a powerful source of mathematical intuitions in young children. In 
this experiment, preschoolers were asked about their intuitions of how large symbolic numbers 
combine into additions and subtractions. Although they had never been taught anything about 
2-digit numerals, addition or subtraction, they performed much better than chance, regardless of 
their sex or social origins. Th ey relied on their approximate intuitions of quantities, and only 
succeeded if the distance between the numbers was suffi  ciently large, as in this example. Success in 
this approximation test was a good predictor of the children’s later scores in mathematics   
 (Aft er Gilmore et al.,   2007  ).    
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 Gilmore and Spelke’s experiment is fundamental, inasmuch as it validates a central 
tenet of the number sense hypothesis: Even kindergartners are competent in arithmetic 
prior to schooling, and their understanding of symbolic arithmetic is founded upon an 
early intuition of magnitudes. Even if they are never taught the meaning of 64 and 13, 
they learn to connect these words to approximate quantities. At this point, formal addi-
tion of 2-digit Arabic numerals is still clearly beyond their grasp — but they can use their 
prior knowledge of how quantities combine to get at an approximate answer for 64–13. 

 Strikingly, young children’s acuity on such approximate tasks is an excellent predictor 
of success in the classical mathematical curriculum, even when intelligence, general school 
achievement, and socioeconomic level are factored out.   74  In slightly older children, from 
6 to 8 years of age, variability in numerical acuity is predictive of mathematic achieve-
ment, but not of reading achievement.   75  Across an even larger time span, a correlation 
exists between mathematical scores in school and numerical acuity at the age of 14.   76  
More importantly, reduced numerical acuity can identify children who struggle with 
mathematics: In Manuela Piazza’s acuity test, 10-year-old children with specifi c impair-
ments in arithmetic scored at the same level as 5-year-olds. 

 Th ese fi ndings provide direct evidence that diff erences in individual abilities for arith-
metic correspond to diff erences in number sense. Indeed, it is even possible to detect such 
individual diff erences at the brain level: in their early teens, children who score higher on 
math tests have detectably more effi  cient connections between the number-sense area of 
the left  intraparietal cortex and the frontal lobe (see Figure   10.9  ).   77  Th e causal relation, 
however, still remains to be fully established. Does a sharper number sense predispose 
some children to arithmetic? Or, vice versa, does early exposure to arithmetic education 
foster number sense? Th e truth is likely to be both. I strongly suspect that child develop-
ment involves bidirectional or “spiral” causality: Early number sense fosters arithmetic 
understanding, which itself boosts numerical acuity, in an ever-ascending virtuous spiral. 
Conversely, children whose number sense lags behind that of their peers are likely to 
progressively lose ground in other areas of mathematics. For them, the spiral becomes a 
vicious circle: As their performance fails to improve normally, the learning gap increases 
and they drop further behind other children in their age group. 

 Since the fi rst edition of  Th e Number Sense , remarkable progress has been achieved in 
understanding the brain mechanisms behind developmental dyscalculia. Back in 1997, 
I only briefl y mentioned that many children (around 3–6 percent   78 ), oft en with normal 
perception, language, and intelligence, exhibited disproportionate diffi  culties with 

74  Gilmore et al.,     2007  ; Gilmore, McCarthy, & Spelke,     2010   
75  Holloway & Ansari,     2008   
76  Halberda, Mazzocco, & Feigenson,     2008   
77  Tsang, Dougherty, Deutsch, Wandell, & Ben-Shachar,     2009   
78  Kosc,     1974  ; Badian,     1983  ; Shalev et al.,     2000   
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number processing and arithmetic. Th ey are labeled as  dyscalculic  — the equivalent of 
dyslexic in the domain of arithmetic. In many of them, the defi cit impacts on very basic 
tasks. Even deciding whether a set is made up of two or three objects, or which of 5 or 6 
is the larger number, may be compromised. Furthermore, and although this was initially 
debated, there is now growing evidence that their sense of numerosity is impaired — their 
subitizing of the small numbers 1, 2, and 3 is abnormal, they frequently misjudge sets of 
dots, and their acuity in numerical approximation is reduced.   79  

 A natural hypothesis concerning this defi cit is thus, that the parietal quantity system 
has been aff ected, either by a genetic disease or by an early brain insult. Th is hypothesis 
was recently vindicated by several brain imaging studies. In one, young adolescents born 
premature were sorted into two groups: those who suff ered from dyscalculia during their 
childhood and those who did not.   80  Magnetic resonance imaging was used to estimate 
the density of gray matter throughout the cortex. Only the dyscalculics suff ered from a 
selective reduction in gray matter density in the left  intraparietal sulcus, at the precise 
location where brain activity is generally observed during mental arithmetic. 

 Premature children seem to be especially prone to dyscalculia, and to other defi cits of 
the parietal lobe such as spatial disorientation or dyspraxia (clumsiness in movements) —
 probably because perinatal brain insults frequently aff ect the posterior periventricular 
zone underlying the parietal cortex. But we also know of cases of “pure dyscalculia” in 

79  Landerl, Bevan, & Butterworth,     2004  ; Price, Holloway, Rasanen, Vesterinen, & Ansari,     2007  ; Landerl, 
Fussenegger, Moll, & Willburger,     2009  ; Mussolin, Mejias, & Noel,     2010  ; Piazza et al.,     2010   

80  Isaacs, Edmonds, Lucas, & Gadian,     2001  . Th is study was partially replicated in pure dyscalculics by Rotzer 
et al.,     2008  , but now with a focus of decreased gray matter in the  right  parietal cortex 
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     figure 10.9.  Can one infer mathematical skills from a look at the brain? In this recent magnetic 
resonance study, children who scored high on a test of approximate arithmetic also showed a better 
fi ne-grained organization of specifi c brain connections. Th e relevant fi ber tract, shown at left , 
connects the left  intraparietal region, including the number sense area, to frontal cortex. As such, 
it presumably facilitates the explicit manipulation and memorization of numbers. However, whether 
the observed diff erences are genetic or experience-dependent cannot be determined by this method   
 (Aft er Tsang et al.,   2009  .)    
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which children lack a solid number sense in spite of a normal birth. Here again, the pari-
etal cortex seems to be disorganized, because it fails to activate normally when children 
are asked to perform simple number-sense tasks.   81  

 We strongly suspect that, just like for dyslexia, a genetic component is involved in dys-
calculia. In families with at least one dyscalculic child, the prevalence of dyscalculia in 
fi rst-degree relatives is ten times greater than in the rest of the population.   82  With identi-
cal twins, in 70 %  of cases, if one twin is aff ected the other is also impaired.   83  No candidate 
gene has been identifi ed yet, but we know of several genetic diseases in which dyscalculia 
is very frequent.   84  One of them is Turner’s syndrome, a chromosomal anomaly in which 
women are born with just one X chromosome. When Nicolas Molko and I scanned 
Turner’s syndrome patients, we observed an abnormal activation of the right parietal 
cortex during the computation of additions with large numbers.   85  Th e pattern of cortical 
folds was also disorganized. Th is observation is important, because cortical folds start to 
form during the third trimester of pregnancy, and hence an anomaly in this area points to 
an early genetic impairment of brain development.     

   From Numerical Cognition to Education   

 Th e fact that there is a category of children with normal intelligence and schooling, but a 
disproportionate defi cit in arithmetic, disproves the notion that education always involves 
domain-general learning mechanisms. Rather, a dedicated representation of numerosity, 
with a specifi c brain substrate, serves as the foundation for mathematical learning. One 
should be careful, however, about exaggerating conclusions from dyscalculia studies. 
We do not know how many dyscalculic children actually have identifi able brain insults. 
Most likely, many of those who struggle with arithmetic do not have any biological 
impairment — they just have not been taught using appropriate methods. Indeed, some 
children with calculation defi cits have a perfectly normal number sense, but cannot access 
it from number symbols.   86  Th is mechanism seems to be a plausible reason for the reduced 
mathematical abilities of children from low socioeconomic backgrounds, who may have 
had less experience with number symbols than more privileged children. 

 Even with children suff ering from genuine dyscalculia, a genetic defi cit is not a lifetime 
sentence. Unlike adult brain lesions, developmental disorders rarely leave brain systems 

81  Kucian et al.,     2006  ; Price et al.,     2007  ; Mussolin, De Volder et al.,     2010   
82  Shalev et al.,     2001   
83  Alarcon, DeFries, Light, & Pennington,     1997   
84  Dyscalculia is frequent in Williams syndrome, Turner syndrome, and Fragile X syndrome. For a study of calcu-

lation in Fragile X, see Rivera, Menon, White, Glaser, & Reiss,     2002   
85  Molko et al.,     2003   
86  Rubinsten & Henik,     2005  ; Rousselle & Noel,     2007  ; Wilson et al.,     2009   
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totally destroyed. Th e child’s brain presents a large degree of plasticity, and even very 
severe defi cits can oft en be overcome with intensive remedial training spread over several 
weeks or months. In the case of dyslexia, much research has demonstrated the benefi cial 
eff ects of programs that focus precisely on the children’s exact cognitive defi cits. Brain 
imaging before and aft er training shows a considerable degree of recovery, both within 
the areas that were originally underactivated, and in additional compensatory circuits, 
particularly in the right hemisphere.   87  

 Although research on dyscalculia progresses more slowly, there is no reason to believe 
that exhaustive training cannot do a lot to overcome the problem. Th e fi rst edition of 
 Th e Number Sense  emphasized how school-based number games can focus children’s 
attention on the intuitions behind number symbols — and this has been fully confi rmed 
by recent research.   88  But we are now in the era of computer games. Can computers con-
tribute to arithmetic training? Without ever replacing teachers, educational soft ware 
presents many advantages. Intelligent games can provide intense, relentless training, day 
aft er day, and do so in an attractive, entertaining way that is fun for the child. More 
importantly, they can be made adaptive: Th e soft ware automatically identifi es the chil-
dren’s weak points and stresses them during training, while ensuring that the child wins 
games suffi  ciently oft en and is not discouraged. 

 Anna Wilson and I developed the fi rst adaptive computer game for basic arithmetic: 
the “number race”, a fun game that involves racing against the computer to the end of a 
number line.   89  On each trial, the child chooses the larger of two numbers, and then uses 
it to move an equivalent number of slots along a race track. By varying the distance 
between the numbers, the speed of the decision, and also the format of display, from dots 
to complicated calculations such as choosing between 9–6 and 5–1, game diffi  culty can 
be fi ne-tuned and adjusted to each child’s needs. Th e soft ware, indeed, is designed to 
train every important aspect of early arithmetic: the rapid assessment of quantities, the 
counting routine, the quick link between symbols and quantities, and the understanding 
that number and space are closely linked. We made the soft ware open source, so that 
anybody can use it or transform it. Indeed, it has now been translated into eight 
languages, and is starting to be used in several controlled studies. 

 Th e results obtained with our game are modest, but signifi cant.   90  Children’s perfor-
mance improves on several diff erent tasks, going from subitizing to subtraction. Th e best 
results are obtained with young children from poor neighborhoods, who do not oft en 

87  See Kujala et al.,     2001  ; Simos et al.,     2002  ; Temple et al.,     2003  ; Eden et al.,     2004  . For a review of reading and 
dyslexia, see my other book  Reading in the brain  (Penguin, 2009) 

88  Wilson, Revkin et al.,     2006  ; Wilson et al.,     2009   
89  For a review of the game design and its underlying cognitive principles, see Wilson, Dehaene et al.,     2006  . To 

download the game, click on “Th e Number Race” on   http://www.unicog.org/    
90  Wilson, Revkin et al.,     2006  ; Ramani & Siegler,     2008  ; Siegler & Ramani,     2008  ; Siegler & Ramani,     2009  ; 

Wilson et al.,     2009   

http://www.unicog.org/


Th e Number Sense, Fift een Years Later  277

play this kind of board game. Playing on only a few occasions is enough to decrease their 
number comparison errors by a factor of two. 

 From a cognitive viewpoint, much remains to be understood about how these training 
games actually work, and how they can be made optimal. We know that any computer 
intervention improves attention and cognition across the board. Th is is an optimistic 
fi nding but it implies that, whenever we test a game that is specifi cally designed to address 
arithmetic defi cits, we must compare it to control soft ware with a diff erent content. 
In the case of “the number race,” we showed that its positive eff ects on numerical com-
parison were uniquely related to its numerical content and could not be obtained if we 
used reading soft ware as a control. 

 Still, since our soft ware is stuff ed with numerical knowledge, running the gamut from 
subitizing to counting and estimation, we cannot be sure which of these aspects is essen-
tial. Fortunately, Geetha Ramani and Robert Siegler, from Carnegie Mellon, have 
designed a far more subtle manipulation.   91  Half of the children play a simple numerical 
game, in which they race against each other on a 10-square number line by turning a spin-
ner labeled with 1 or 2, and advance by adding this amount to the player’s cell number. 
Th e other half of the children play a very similar game, on the same board, where the only 
diff erence is that the spinner has colors and, at each step, the children must move to the 
square with the same color. Th e fi rst game specifi cally trains children on how the num-
bers 1–10 map onto a linear scale, while the second game fully controls for all of its other 
spatial, social, and rewarding contents.   92  With this simple approach, Ramani and Siegler 
demonstrated that playing a numerical board game has a massive positive impact on 
arithmetic understanding. Large improvements are seen in a variety of number tasks, 
including digit naming, magnitude comparison, addition, and number line tests. Th e 
benefi ts remain signifi cant aft er two months. Obviously, children who play board games 
are given a head start that may have a long-term, snowball eff ect on their mathematical 
abilities and confi dence.     

   Conclusion   

 As David and Ann Premack note,   93  “a theory of education could only be derived from 
understanding the mind that is to be educated.” Indeed, we now possess a refi ned under-
standing of the budding mathematician’s mind. Great strides have been made in our 

91  Ramani & Siegler,     2008  ; Siegler & Ramani,     2008  ; Siegler & Ramani,     2009   
92  Another, even tighter control consisted in contrasting a linear board game with a circular one, where numbers 

are arranged in a clock-like pattern. Number sense improves only in the children trained with the linear board 
game, thus proving that the understanding of number as a metaphorical “line” extending from left  to right is an 
essential element of the training program. See Siegler & Ramani,     2009   

93  Premack & Premack,     2003  , p. 227 
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understanding of how arithmetic is implemented in the brain. Applications of cognitive 
neuroscience to education are therefore no longer “a bridge too far.”   94  On the contrary, 
many conceptual and empirical research methods are now available. Innovative educa-
tional programs can be introduced, and we have all the tools in hand to study their impact 
on children’ brains and minds. 

 Th e classroom should be our next laboratory.                                                                                                                                                                                                                                       

94  Bruer,     1997   
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            appendix a         

        Correction of the “proof ” in Figure 9.1. Figure 9.1 was deliberately drawn incorrectly. Th ough the 
triangles OAB and ODC are indeed similar, their relations are quite diff erent from those  suggested 
by Figure 9.1 Point O, the intersection of L and L′, is actually much higher (see the above fi gure). 
Hence it is true that  δ  =  α   −   β , but  δ ′ = 2 π   −   α   −   β . Th ese relations obviously aff ord no conclusion 
as to the value of angle  δ  ′ .                     
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            appendix b         

   Useful Web Resources   

       •   Dehaene Laboratory: INSERM-CEA Cognitive Neuroimaging Unit ( http://www.
unicog.org )     

 Contains summaries of our recent research and provides access to a list of published articles on 
number, reading and consciousness  

    •   Digital interventions for dyscalculia and low numeracy ( www.low-numeracy.ning.com )     

 Contains various simple number games, a forum, and useful discussions  

    •   Number Race Soft ware ( http://www.unicog.org/numberrace/number_race_index.html )     

 A computer-game designed by Anna Wilson and myself and which has been shown to help 
teach elementary arithmetic to children. Free download and complete access to source code.  

    •   Dyscalculia primer and resource guide ( http://www.oecd.org/document/8/0 ,3343,en_
2649_35845581_34495560_1_1_1_1,00.html)     

 A series of simple questions and solid answers on dyscalculia, with useful references  

http://www.unicog.org
http://www.unicog.org
www.low-numeracy.ning.com
http://www.unicog.org/numberrace/number_race_index.html
http://www.oecd.org/document/8/0,3343,en_2649_35845581_34495560_1_1_1_1,00.html
http://www.oecd.org/document/8/0,3343,en_2649_35845581_34495560_1_1_1_1,00.html
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    •   About Dyscalculia ( http://www.aboutdyscalculia.org/ )     

 More information on dyscalculia, with separate sections for parents, teachers and researchers  

    •   Center for Educational Neuroscience ( http://www.educationalneuroscience.org.uk/ )     

 A reference site for on-line seminars and discussion of research on neuroscience and 
 education       

http://www.aboutdyscalculia.org/
http://www.educationalneuroscience.org.uk/
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