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Scope 
Mathematics and science education are in a state of change. Received models of 
teaching, curriculum, and researching in the two fields are adopting and developing 
new ways of thinking about how people of all ages know, learn, and develop. The 
recent literature in both fields includes contributions focusing on issues and using 
theoretical frames that were unthinkable a decade ago. For example, we see an 
increase in the use of conceptual and methodological tools from anthropology and 
semiotics to understand how different forms of knowledge are interconnected, how 
students learn, how textbooks are written, etcetera. Science and mathematics edu-
cators also have turned to issues such as identity and emotion as salient to the way 
in which people of all ages display and develop knowledge and skills. And they use 
dialectical or phenomenological approaches to answer ever arising questions about 
learning and development in science and mathematics. 
 The purpose of this series is to encourage the publication of books that are close 
to the cutting edge of both fields. The series aims at becoming a leader in providing 
refreshing and bold new work—rather than out-of-date reproductions of past states 
of the art—shaping both fields more than reproducing them, thereby closing the 
traditional gap that exists between journal articles and books in terms of their sali-
ence about what is new. The series is intended not only to foster books concerned 
with knowing, learning, and teaching in school but also with doing and learning 
mathematics and science across the whole lifespan (e.g., science in kindergarten; 
mathematics at work); and it is to be a vehicle for publishing books that fall be-
tween the two domains—such as when scientists learn about graphs and graphing 
as part of their work. 
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GILA HANNA 

THE ONGOING VALUE OF PROOF 

Over the past thirty years or so proof has been relegated to a less prominent role in 
the secondary mathematics curriculum in North America. This has come about in 
part because many mathematics educators have been influenced by certain devel-
opments in mathematics and in mathematics education to believe that proof is no 
longer central to mathematical theory and practice, and that in any case its use in 
the classroom will not promote learning. As a result many educators appear to have 
sought relief from the effort of teaching proof by avoiding it altogether. 
 In mathematics itself the use of computer-assisted proofs, the growing recogni-
tion accorded mathematical experimentation, and the invention of new types of 
proof that do not fit the standard mould have led some to argue that mathemati-
cians will come to accept such forms of mathematical validation in place of deduc-
tive proof. The influence of these developments in mathematics has been strongly 
reinforced by the claims of some mathematics educators, inspired in part by the 
work of Lakatos, that deductive proof is not central to mathematical discovery, that 
mathematics is “fallible” in any case, and that proof is an authoritarian affront to 
modern social values. 
 This state of affairs has caused great concern among other mathematics educa-
tors. One of them was Greeno (1994), who laid the blame squarely on misconcep-
tions as to the nature of proof: 

Regarding educational practice, I am alarmed by what appears to be a trend 
toward making proofs disappear from precollege mathematics education, and 
I believe that this could be remedied by a more adequate theoretical account 
of the epistemological significance of proof in mathematics. (pp. 270–271) 

This chapter holds that none of the developments mentioned really undermines the 
value of proof, and that many of the assertions made in their wake are either simply 
wrong or based upon misunderstandings (primarily on the part of mathematics 
educators). It maintains that proof deserves a prominent place in the curriculum 
because it continues to be a central feature of mathematics itself, as the preferred 
method of verification, and because it is a valuable tool for promoting mathemati-
cal understanding. 

THE INFLUENCE OF DEVELOPMENTS IN MATHEMATICS 

A number of recent developments in mathematical practice, most of them reflec-
ting in some way the growing use of computers, have caused some mathematicians 
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and others to call into question the continuing importance of proof or indeed to 
announce its imminent death. John Horgan (1993), a staff writer of Scientific 
American, makes this prediction in his article “The death of proof” that appeared in 
its October 1993 issue.  

Computer Proofs and a Potential Semi-Rigorous Culture 

One of the developments that prompted Horgan’s announcement is the use of com-
puters to create or validate enormously long proofs, such as the recently published 
proofs of the four-colour theorem (Appel and Haken) or of the solution to the party 
problem (Radziszowski and McKay). These proofs require computations so long 
they could not possibly be performed or even verified by a human being. Because 
computers and computer programs are fallible, then, mathematicians will have to 
accept that assertions proved in this way can never be more than provisionally true. 
 This is a limitation in principle, but computing also has practical limitations, for 
all its ever-increasing power. There will always be tasks that take too long or are 
thought too expensive. Computer proofs are no exception, and so mathematicians 
have explored the implications that these limitations might have for mathematical 
practice. One prediction is that mathematicians, in the face of impractical times or 
prohibitive cost, will come to settle for “semi-rigour.” 
 In an article published in 1993 in the Notices of the American Mathematical 
Society entitled “Theorems for a price: Tomorrow’s semi-rigorous mathematical 
culture,” the mathematician Doron Zeilberger predicts that with the advent of com-
puter proofs a “new testament is going to be written.” As “absolute proof becomes 
more and more expensive,” he maintains, mathematicians will use proofs which are 
less complete, but cheaper. He points to the example of algorithmic proof theory 
for hypergeometric identities, where there is no lack of well-known algorithms. 
The problem is that some cases require computations which even on tomorrow’s 
computers would take so long that they would exhaust the budget, if not the life-
time, of the researcher. He concludes that mathematicians will choose to limit the 
amount of computation allocated even to theorems which, in principle, are easily 
provable, opting for a less costly “almost certainty.” Furthermore, he predicts that 
mathematicians as a whole will come to accept such “semi-rigour” as a legitimate 
form of mathematical validation. 
 A mathematical conjecture has always been considered no more than a conjec-
ture until proven, so it is not surprising that Zeilberger’s comments were quickly 
challenged by another mathematician. In an article published in the Mathematical 
Intelligencer (1994) with the dismissive title: “The death of proof ? Semi-
rigorous mathematics? You’ve got to be kidding!” George Andrews maintains that 
Zeilberger’s evidence is simply not convincing. That certain algorithms may prove 
too expensive to execute, he says, does not mean that mathematicians will now 
give up the idea of absolute proof with its “concomitantly great insight and, dare 
I say it, beauty” (p. 17). 
 And others have already pointed out that cheaper, non-rigorous proofs may 
prove costly in the long run. Saunders MacLane (1996) reported that in Italy during 
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the years 1880–1920 several results in algebraic geometry were published without 
careful proving. The situation became so bad that “unverified rumour seems to 
have it that a real triumph for an Italian algebraic geometer consisted in proving a 
new theorem and simultaneously proposing a counter-example to the theorem” 
(p. 2). Italian results in algebraic geometry were discredited until several mathema-
ticians, including Emmy Noether, cleared up the difficult points by applying much 
more rigorous standards of proof.  

New Types of Proof 

Doubts about proof as a whole have also been raised by new types of proof that 
have little in common with traditional forms. A particularly fascinating develop-
ment is the recently introduced concept of zero-knowledge proof (Blum, 1986), 
originally defined by Goldwasser, Micali and Rackoff (1985). This is an interactive 
protocol involving two parties, a prover and a verifier. It enables the prover to pro-
vide to the verifier convincing evidence that a proof exists, without disclosing any 
information about the proof itself. As a result of such an interaction the verifier is 
convinced that the theorem in question is true and that the prover knows a proof, 
but the verifier has zero knowledge of the proof itself and thus is not in a position 
to convince others. 
 In principle a zero-knowledge proof may be carried out with or without a com-
puter. In terms of our topic, however, the most significant feature of the zero-
knowledge method is that it is entirely at odds with the traditional view of proof as 
a demonstration open to inspection. This clearly thwarts the exchange of opinion 
among mathematicians by which a proof has traditionally come to be accepted. 
 Another interesting innovation is that of holographic proof (Babai, 1994; Cipra, 
1993). Like zero-knowledge proof, this concept was introduced by computer scien-
tists in collaboration with mathematicians. It consists of transforming a proof into a 
so-called transparent form that is verified by spot checks, rather than by checking 
every line. The authors of this concept have shown that it is possible to rewrite a 
proof (in great detail, using a formal language) in such a way that if there is an error 
at any point in the original proof it will be spread more or less evenly throughout the 
rewritten proof (the transparent form). Thus to determine whether the proof is free 
of error one need only check randomly selected lines in the transparent form. 
 By using a computer to increase the number of spot checks, the probability that 
an erroneous proof will be accepted as correct can be made as small as desired 
(though of course not infinitely small). Thus a holographic proof can yield near-
certainty, and the degree of near-certainty can be precisely quantified. Neverthe-
less, a holographic proof, like a zero-knowledge proof, is entirely at odds with the 
traditional view of mathematical proof, because it does not meet the requirement 
that every single line of the proof be open to verification.  
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Experimental Mathematics 

Zero-knowledge proofs, holographic proofs and the creation and verification of 
extremely long proofs such as that of the four-colour theorem are feasible only 
because of computers. Yet even these innovative types of proof are traditional, in 
the sense that they remain analytic proofs. More and more mathematicians appear 
to be doing all their work outside the bounds of deductive proof, however, confir-
ming mathematical properties experimentally. A case in point is the Geometry 
Center at the University of Minnesota, where mathematicians use computer graph-
ics to examine the properties of four-dimensional hypercubes and other figures, or 
to study transformations such as the twisting and smashing of spheres.  
 Even today one does not usually associate mathematics with empirical investi-
gations, yet mathematicians have long carried out experiments to formulate and 
test conjectures (knowing full well that such testing did not constitute proof). Ear-
lier mathematicians, limited to testing a small number of cases, would undoubtedly 
have done even more extensive experimentation if they had had the means. Thus 
today’s experimental mathematics would not seem to differ in principle from what 
has been done all along. 
 What does seem to be new is that more and more mathematicians spend their 
time almost exclusively on experimentation, and so naturally wish to assert a claim 
to its importance in its own right. Horgan quotes several mathematicians who as-
sert that experimental methods have acquired a new respectability. These methods 
have certainly received increased attention and funding following the growth of 
graphics-oriented fields such as chaos theory and non-linear dynamics.  
 Certainly many more mathematicians have come to appreciate the power of 
computers in communicating mathematical concepts. Some of them are going well 
beyond communication, however. In a clear departure from previous practice, 
some now see it as legitimate to engage in experimental mathematics as a form of 
mathematical justification. Horgan maintains that: 

… some mathematicians are challenging the notion that formal proofs should 
be the supreme standard of proof. Although no one advocates doing away 
with proofs altogether, some practitioners think the validity of certain propo-
sitions may be better established by comparing them with experiments run on 
computers or with real-world phenomena. (p. 94) 

The implication of such a view is that experimentation is not only a prestigious 
mathematical activity, but also an alternative to proof, an equally valid form of 
mathematical confirmation. This would seem to redefine “experimental mathemat-
ics” as a new discipline, one which is no longer subject to the criteria by which 
mathematical truth has traditionally been judged. 
 The founding of Experimental Mathematics in 1991 might be seen as a portent 
of such a new and independent discipline. This new quarterly does differ markedly 
from traditional journals, in that it publishes the results of computer explorations 
rather than theorems and proofs. But does this mean that its editors think proof is 
dead? This would not seem to be the case. In their paper “Experimentation and 
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proof in mathematics” the editors of Experimental Mathematics, Epstein and Levy, 
first point out the enhanced potential of experimentation in the age of the com-
puter: “the use of computers gives mathematicians another view of reality and an-
other tool for investigating the correctness of a piece of mathematics through 
investigating examples” (1995, p. 674). They then go on, however, to make very 
clear how they believe experimentation fits into the mathematical scheme of 
things: 

Note that we do value proofs: experimentally inspired results that can be 
proved are more desirable than conjectural ones.… The objective of Experi-
mental Mathematics is to play a role in the discovery of formal proofs, not to 
displace them (p. 671).… We believe that, far from undermining rigor, the 
use of computers in mathematics research will enhance it in several ways. 
(p. 674) 

A New Division of Labour within Mathematics? 

Many mathematicians are nevertheless very concerned that the recognition of ex-
perimentation as a valid full-time mathematical activity may obscure the fact that 
its results cannot be considered to have been proven. They do not agree on what, if 
anything, should be done about this. Some propose separation: that heuristic results 
be isolated as a clearly separate category. 
 Jaffe and Quinn (1993), for example, in their paper “Theoretical mathematics: 
Toward a cultural synthesis of mathematics and theoretical physics,” stress how 
important it is to distinguish unequivocally between results based on rigorous proof 
and those based on heuristic arguments. They even suggest labels for the two ac-
tivities, proposing the former be called “rigorous mathematics” and the latter 
“theoretical mathematics,” by which they mean heuristic or speculative. 
 Jaffe and Quinn are motivated by a concern for standards of rigour, which they 
propose to preserve by isolating rigorous from non-rigorous mathematics through a 
new division of labour. They suggest that non-rigorous mathematics (“theoretical 
mathematics”) be considered a valid branch of mathematics in its own right, and 
that mathematicians be evaluated by the standards of the branch to which they 
choose to belong. 
  The suggestion that mathematicians be divided into two camps brought swift 
and varied reactions, sixteen of them in the Bulletin of the American Mathematical 
Society (1994). William Thurston, for example, responded in an eighteen-page 
essay entitled “On proof and progress in mathematics,” in which he opposes the 
division suggested by Jaffe and Quinn. In his view the important question is not 
“how do mathematicians prove theorems?” or “how do mathematicians make pro-
gress in mathematics?” but how they “advance human understanding of mathe-
matics,” and accordingly he believes it wrong to split mathematics on the basis of 
standards of rigour. Though he does not question the role of proof in validation, 
he sees its main value in its ability to communicate ideas and generate understand-
ing. Accordingly he proposes to mathematicians, who have traditionally gained 
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recognition among their peers primarily by proving theorems, that they all under-
take to recognize and value the entire range of activities that advance understand-
ing in their common discipline. 
 Fifteen other prominent mathematicians gave shorter responses. Most rejected 
the proposal put forward by Jaffe and Quinn to recognize two separate branches of 
mathematical activity (Atiyah et al., 1994). James Glimm wrote that if mathematics 
is to cope with the “serious expansion in the amount of speculation” it will need to 
adhere to the “absolute standard of logically correct reasoning [which] was devel-
oped and tested in the crucible of history” (p. 184). 
 Though driven, as were Jaffe and Quinn, by the growth of experimental mathe-
matics and by a concern for rigour, it is clear that Glimm has come to precisely the 
opposite conclusion. While Jaffe and Quinn seem to believe that identifying and 
welcoming heuristic mathematics as a separate (though perhaps lesser) discipline 
would prevent it from establishing itself as a method of mathematical confirmation 
equal in value to rigorous proof, Glimm appears to fear that such isolation would 
have the opposite effect of allowing heuristics to stake this parallel claim. 
 But the responses also revealed differing views on the role of rigorous proof. 
Saunders MacLane stated that “mathematics does not need to copy the style of 
experimental physics. Mathematics rests on proof—and proof is eternal” (p. 193), 
while Atiyah conceded that “Perhaps we now have high standards of proof to aim 
at but, in the early stages of new developments, we must be prepared to act in more 
buccaneering style” (p. 178). And, not surprisingly, Mandelbrot asserted that rigour 
is “besides [sic] the point and usually distracting, even when possible.” 
 Mandelbrot also takes exception in his response to the customary practice of 
awarding credit only to those who prove conjectures, slighting those who came up 
with them in the first place. Indeed, one cannot ignore that the recent controversies 
over the place of experimentation and other heuristic approaches may be motivated 
as much by a concern for professional recognition as by disagreement over the 
nature of mathematical truth. 
 Certainly in these controversies the issue of the importance and prestige of heu-
ristics has become intertwined, often confusingly, with the issue of the role of 
proof as the arbiter of mathematical truth. In the recent discussion triggered by 
Jaffe and Quinn, however, there is a perhaps surprising degree of agreement. All 
the participants would seem to agree with Albert Schwartz that heuristic mathe-
matics is an important and legitimate part of their discipline. But none suggested 
that mathematicians carry out their work without a view to the ultimate test of 
proof. Those who agreed, as most did, that mathematicians should accord more 
recognition to those who come up with interesting and productive heuristic results, 
were nevertheless of the opinion that such results remain conjectures until vali-
dated by proof. 

THE INFLUENCE OF LAKATOS 

Mathematics educators in North America have been propelled in the direction 
of a diminished role for proof in the curriculum, however, not only by the recent 
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developments in mathematical practice discussed above, but also by interpretations 
given to the work of Imre Lakatos. His thinking, published first as a dissertation in 
1961 and finally as Proofs and refutations in 1976, provoked much discussion 
among philosophers, and in particular among philosophers of mathematics (Agassi, 
1981; Feyerabend, 1975; Hacking, 1979; Lehman, 1980; Steiner, 1983). Whatever 
their assessment of his claims as a whole, they tended to accept Lakatos’ principal 
insight that the critique of mathematical results by others has been the motive force 
in the growth of mathematical knowledge. 
 Practising mathematicians were impressed by his work as well, in particular by 
his detailed study of how the proof of Euler’s theorem had evolved over time. This 
study shed light upon many previously unappreciated aspects of mathematical ac-
tivity, and for many mathematicians Lakatos’ account of the dynamics of mathe-
matical discovery rang true. 
 Lakatos’ ideas were brought to the attention of North American mathematics 
educators primarily by Davis and Hersh (1981) in their book The Mathematical 
Experience. Their enthusiastic exposition of Lakatos’ approach gained for it broad 
acceptance among these educators, who assumed this approach to be more widely 
applicable in mathematics itself than in fact it is. 
 It is not surprising that such a fascinating new way of looking at mathematical 
discovery diverted attention from its weaknesses. The method of proof analysis is 
admittedly engaging, but the case for it as a general method rests upon two exam-
ples, one of which is the study of polyhedra—an area in which it is relatively easy 
to suggest the counterexamples required. This method does not even begin to ex-
plain some important cases of mathematical discovery, however. It has nothing to 
say about set-theory research and the acceptance of the Zermelo-Fraenkel axioms, 
or about the emergence of non-standard analysis, or in fact about the many mathe-
matical discoveries that did not start with a primitive conjecture. 
 It is not difficult, in fact, to cite cases in which a proof was found or a mathe-
matical discovery made in a way radically different from the process of heuristic 
refutation described in Proofs and refutations. Even in the proof of Euler’s theorem 
cited by Lakatos, for example, refutation is redundant; as soon as adequate defini-
tions have been formulated the theorem can be proved for all possible cases with-
out further discussion. Indeed, whenever mathematicians work with adequate 
definitions (or an adequate “conceptual setting,” to use Bourbaki’s term), the proc-
ess of proof is not one of heuristic refutation. In “A renaissance of empiricism in 
the recent philosophy of mathematics” (1978, p. 36), Lakatos himself says:  

Not all formal mathematical theories are in equal danger of heuristic refuta-
tions. For instance, elementary group theory is scarcely in any danger; in this 
case the original informal theory has been so radically replaced by the axio-
matic that heuristic refutations seem to be inconceivable. 

In Proofs and Refutations Lakatos defines proof as a “thought experiment…a de-
composition of the original conjecture into subconjectures or lemmas” (p. 9). For 
example, in his interpretation of the history of Euler’s theorem for a polyhedron 
(V–E+F=2, where V is the number of vertices, E the number of edges, and F the 
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number of faces), Lakatos describes a thought experiment in which one imagines 
stretching a rubber polyhedron and observing the effects of its manipulation. He 
goes on, however, to describe a broader process which allows proofs and refuta-
tions to interact, generates counter-examples and “informal falsifiers,” gives rise to 
happy guesses, and ends with a well-formulated result. 
 This approach can be viewed as an attempt to examine mathematics from  
Popper’s point of view, to erect a critique of deductivism in mathematics parallel to 
Popper’s critique of inductivism in the physical sciences. Taking “induction” to 
mean the verification of general laws on the basis of observational data, Popper 
hoped to show that “empirical science does not really rely upon a principle of in-
duction” (Putnam, 1987). Similarly, Lakatos hoped to show that verification in 
mathematics does not rely on “Euclidean deductivism.” In describing the heuristic 
process, Lakatos constantly attacks what he calls the “Euclidean programme,” 
which in his opinion aims at making mathematics “certain and infallible.” 
 But the truth is, first of all, that when mathematicians have undertaken the heu-
ristic method which Lakatos describes, or one similar to it, it has almost always 
been for the purpose of arriving at certainty. In the case of Euclid’s theorem, for 
example, the long heuristic process did lead, in fact, to a proof which satisfies 
the accepted criteria of mathematical certainty. As Ian Hacking (1979) put it: 
“Critical discussion can enable a conjecture to evolve into logical truth. In the be-
ginning Euler’s theorem was false; in the end it is true. The theorem has been ‘ana-
lytified’.” 
  Secondly, the concept of fallibilism would seem to be a red herring. Mark 
Steiner has shown that in the eyes of present-day topologists Euler’s theorem is 
“not about a polyhedron so much as about the underlying space the polyhedron 
divides” (p. 514). (He also shows that the modern proof is more explanatory than 
the one from the 19th century which Lakatos studied.) Steiner comes to the conclu-
sion that the history of Euler’s theorem in the 20th century not only provides a case 
in which Lakatos’ model does not work, but, more importantly, demonstrates that 
we “can have progress without fallibilism” (p. 521). He also states that “despite the 
title of his book, Lakatos’ mathematical realism can be profitably disengaged, not 
only from his fallibilism, but from the method of proofs and refutations itself!” 
(p. 510). 
 John Conway has remarked recently that Lakatos’ Proofs and Refutations “is a 
very interesting book, but I fear is definitely misleading as regards mathematics in 
general” (Sept. 1995, request for advice, www.forum.swarthmore.edu). And in 
words which seem to sum up the present discussion, Conway adds:  

It is misleading to take this example (Euler’s) as typical of the development 
of mathematics. Most mathematical theorems do get proved, and stay proved; 
the original proof may not be quite satisfactory according to later standards of 
proof, but that is a fairly trivial matter. In many cases there has been a sig-
nificant omission or error in the first attempt at a proof, which later had to be 
corrected; but there have been very few cases like Euler’s theorem, in which 
the discussion continued for several centuries. 
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Let us now turn to the manner in which Lakatos’ ideas have come to influence the 
curriculum, at least in North America. Lakatos chose, perhaps with good reason, to 
put some of his ideas rather dramatically. Some mathematics educators would 
seem to have taken such assertions literally and sought to translate them directly 
into classroom practice (Dawson, 1969; Lampert, 1990).  
 Lakatos dismissed certainty and infallibility with the dramatic assertion “we 
never know, we only guess,” for example, and this has led some to consider 
mathematical knowledge to be provisional. Ernest (1996), for example, stated that 
“mathematics knowledge is understood to be fallible and eternally open to revision, 
both in terms of its proofs and its concepts” (p. 808). In addition, the very terms 
“informal falsifier” and “fallibility” of mathematics seem to have led many mathe-
matics educators to propose downplaying “formal” mathematics in the curriculum 
(Dossey, 1992; Hersh, 1986). 
 Echoes of Lakatos’ thinking can be heard quite clearly in the curriculum guid-
ance developed in the United States by the National Council of Teachers of 
Mathematics. In response to wide-spread concern for the quality of the mathemat-
ics curriculum, the NCTM has published Standards for curriculum and evaluation 
and Professional standards for teaching mathematics, covering the entire range 
from kindergarten through Grade 12 (NCTM, 1989, 1991). There is no national 
curriculum in the United States or Canada, where education is the responsibility of 
each state or province, but the NCTM Standards, though not binding, are very in-
fluential in both countries.  
 The authors of these guidelines, in their desire to reflect a modern view of 
mathematics, incorporated into them a position of relativism. According to John 
Dossey (1992), president of NCTM at the time the Standards were being drafted, 
“[T]he leaders and professional organisations in mathematics education are pro-
moting a conception of mathematics that reflects a decidedly relativistic view of 
mathematics” (p. 45). 
 It may have been these views that led the NCTM Standards to give short shrift 
to proof, avoiding almost all mention of the term. The only explicit reference to 
proof, in fact, is in the context of preparation for post-secondary education, where 
the document states that “… college-intending students can … construct proofs for 
mathematical assertions, including indirect proofs and proofs by mathematical in-
duction.” The implication is that students who do not intend to pursue post-
secondary studies need not encounter the concept of proof. 
 Some of its recommendations (such as the development of short sequences of 
theorems, and the use of deductive arguments expressed orally and in sentence 
form) do offer a faint glimmer of proof (pp. 126–127). But the NCTM explicitly 
recommended decreased attention to proof even in the geometry curriculum, sug-
gesting, as topics to be de-emphasized, two-column proofs, proofs of incidence, 
proofs of betweenness theorems, and Euclidean geometry as an axiomatic system.  
 This tendency to downplay the role of proof in mathematics is surely misguided. 
In the first place, formal proof arose as a response to a persistent concern for justi-
fication, a concern reaching back to Aristotle and Euclid, through Frege and Leib-
niz. There has always been a need to justify new results (and often previous results 
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as well), not always in the limited sense of establishing their truth, but rather in the 
broader sense of providing adequate grounds for their plausibility. Formal mathe-
matical proof has been and remains one quite useful answer to this concern for 
justification. 
 Secondly, it is a mistake to think that the curriculum would be more reflective of 
mathematical practice if it were to limit itself to the use of informal counter-
examples. The history of mathematics clearly shows that it is not the case, as Laka-
tos seems to have implied, that only heuristics and other “informal” mathematics 
are capable of providing counterexamples. Indeed, formal proofs themselves have 
often provided counterexamples to previously accepted theories or definitions. For 
instance, as Mark Steiner (1983, p. 502-521) points out, Peano provided a counter-
example to the definition of a curve as the path of a continuously moving point by 
showing formally that a moving point could fill a two-dimensional area. 
 Gödel’s famous incompleteness proofs are another example, with an interesting 
and ironic twist. In this case formal proofs were employed to demonstrate that the 
axiomatic method itself has inherent limitations. Gödel could not have produced 
these proofs without using a comprehensive system of notation for the statements 
of pure arithmetic and a systematic codification of formal logic, both developed in 
the Principia for the purpose of arguing the Frege–Russell thesis that mathematics 
can be reduced to logic. His proofs could certainly not have been produced in in-
formal mathematics or reduced to direct inspection.  
 Nor does it seem reasonable to assume that Gödel’s conclusions could have 
been arrived at through a discovery of counterexamples (“monster-barring”) fol-
lowed by a denial (“monster-adjusting”), or by finding unexplained exceptions 
(“exception-barring”) or unstated assumptions (“hidden lemmas”). Curiously 
enough, however, when some educators make a case that formal proof and rigour 
should be downplayed in the curriculum they rest their case on Gödel’s most for-
mal proof. 

THE INFLUENCE OF SOCIAL VALUES 

In the minds of many mathematics educators in North America the status of proof 
has also been called into question by the claim put forward, primarily by other edu-
cators, that it is a key element in an authoritarian view of mathematics (Confrey, 
1994; Ernest, 1991; Nickson, 1994). This claim owes something to Lakatos (1976), 
who not only challenged the “Euclidean programme” for an “authoritative, infalli-
ble, irrefutable mathematics,” as noted, but also wrote of the dangers of elitism in 
mathematics. But it surely owes its prominence and its degree of acceptance pri-
marily to the prevailing wind of “relativism” that seems to dominate the North 
American “intellectual” climate. 
 Indeed, supporters of this claim would say that the “Euclidean” view is in con-
flict with the present values of society, which dictate not only that one need not 
defer to authority, but also that one should not regard any knowledge as infallible 
or irrefutable. Some even appear to see proof in general, and rigorous proof in par-
ticular, as a mechanism of control wielded by an authoritarian establishment to 
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help impose upon students a body of knowledge that it does regard as infallible and 
irrefutable.  
 It must be stressed that such views are not in the first instance a protest against 
authoritarianism in the classroom, but rather a projection upon the curriculum de-
bate of attitudes that have their origins in the popular culture of the United States. 
Discussing these attitudes, the philosopher of science Larry Laudan says: 

The displacement of the idea that facts and evidence matter by the idea that 
everything boils down to subjective interests and perspectives is—second 
only to American political campaigns—the most prominent and pernicious 
manifestation of anti-intellectualism in our time. (1990, p. x)  

Of course mathematics has sometimes been taught in an authoritarian way, as have 
other subjects, but one could hardly maintain that there has been a recent consensus 
among educators that it should be. One can only despair to find that proof has be-
come the target of what would seem to be no more than a misguided desire to im-
pose a sort of “political correctness” on mathematics education. 
 It is not easy to refute such a view of mathematics. In the first place, it is not 
easy to understand what it means to say that mathematics or a mathematical proof 
is “authoritative.” Certainly a proof offered by a very reputable mathematician 
would initially be given the benefit of the doubt, and in that sense the fact that this 
mathematician is considered an “authority” by other mathematicians would play 
some role in the eventual acceptance of the proof. But the claim seems to be that 
the very use of proof is authoritarian, and this claim is hard to fathom. 
 In fact the opposite is true. A proof is a transparent argument, in which all the 
information used and all the rules of reasoning are clearly displayed and open to 
criticism. It is in the very nature of proof that the validity of the conclusion flows 
from the proof itself, not from any external authority. Proof conveys to students 
the message that they can reason for themselves, that they do not need to defer 
to authority. Thus the use of proof in the classroom is, if anything, actually  
anti-authoritarian. 
 In the second place, it is hard to understand how the use of proof strengthens the 
idea that mathematics is infallible. Looking at the issue first from the point of view 
of theory, it is clear that any mathematical truth arrived at through a proof or series 
of proofs is contingent truth, rather than absolute truth, in the sense that its validity 
hinges upon other assumed mathematical truths and rules of reasoning. Nor would 
infallibility seem to be an issue from the point of view of mathematical practice. 
Mathematicians are as prone to making errors as almost anyone else, in proof and 
elsewhere. The history of mathematics can supply many examples of erroneous 
results which had to be subsequently corrected. Thus the concept of “infallibility” 
would seem to be irrelevant to the teaching of mathematics in general and the 
teaching of proof in particular. 
 The use of proof in the classroom has also been called into question on the 
grounds that it would encourage the idea that mathematics is an a priori science. 
The supporters of this claim see a conflict between this idea and their own view 
that mathematics is “socially constructed” (Ernest, 1991). Though their use of the 
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term a priori is not entirely clear, it would seem that what they reject is not that 
mathematics is a priori in the sense of being analytic (non-empirical), but rather 
that it is a priori in the sense of given, pre-existing, waiting to be discovered. Of 
course this is a view of mathematics that they might well see as standing in opposi-
tion to “socially constructed.”  
 On this point, however, Kitcher (1984) is surely right when he says that the pur-
suit of proof and rigour in mathematics does not carry with it a commitment to 
looking at mathematics as a body of a priori knowledge. Nor need it do so in 
mathematics education. As Kitcher put it: “To demand rigor in mathematics is to 
ask for a set of reasonings which stands in a particular relation to the set of reason-
ings which are currently accepted” (p. 213). Whether the set of reasonings cur-
rently accepted is regarded as given a priori or as socially constructed has no 
bearing on the value of proof in the classroom.  
 Those who challenge the use of proof in general would challenge even more 
strongly the use of rigorous proof in particular. Yet in mathematical practice the 
level of rigour is often a pragmatic choice. Kitcher states that it is quite rational to 
accept unrigorous reasoning when it proves its worth in solving problems, as it has 
in physics. Mathematicians worry about defects in rigour, he adds, only when they 
“come to appreciate that their current understanding is so inadequate that it pre-
vents them from tackling the urgent research problems that they face” (p. 217). 
When is it rational to replace non-rigorous with rigorous reasoning? Kitcher’s an-
swer is: “when the benefits it [rigorization] brings in terms of enhancing under-
standing outweigh the costs involved in sacrificing problem-solving ability.” 
(Mathematics educators, whose goal is surely to enhance understanding, would be 
well advised to adopt this guideline.) 
 Rigour is a question of degree in any case. In the classroom one need provide 
not absolute rigour, but enough rigour to achieve understanding and to convince. 
An argument presented with sufficient rigour will enlighten and convince more 
students, who in turn may convince their peers. It is the teacher who must judge 
when it is worthwhile insisting on more careful proving to promote the elusive but 
most important classroom goal of understanding.      

CODA: PROOF IN THE CLASSROOM 

With today’s stress on making mathematics “meaningful,” teachers are being en-
couraged to focus on the explanation of mathematical concepts and students are 
being asked to justify their findings and assertions. This would seem to be pre-
cisely the right climate to make use of proof, not only in its role as the ultimate 
form of mathematical justification, but also as an explanatory tool. But for this to 
succeed, students must be made familiar with the standards of mathematical argu-
mentation; in other words, they must be taught proof. (The value of proof as an 
explanatory tool has been explored in some detail by a number of authors, among 
them Hanna (1990, 1995), who discusses “proofs that explain;” Wittmann and 
Müller (1990), who talk about the “inhaltlich-anschaulicher Beweis;” and Blum 
and Kirsch (1991), who emphasize the use of “preformal proofs.”)  
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 Teaching students to both recognize and produce valid mathematical arguments 
is certainly a challenge. We know all too well that many students have difficulty 
following any sort of logical argument, much less a mathematical proof. But we 
cannot avoid this challenge. We need to find ways, through research and classroom 
experience, to help students master the skills and gain the understanding they need. 
Our failure to do so will deny us a valuable teaching tool and deny our students 
access to a crucial element of mathematics. 

NOTES 

Previously published in Zentralblatt für Mathematik Didaktik, (97), 2/3, 171–185. 
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PAOLO BOERO 

THEOREMS IN SCHOOL: AN INTRODUCTION 

WHY THIS BOOK? 

The idea of this book emerged during the Annual Conference of the International 
Group for the Psychology of Mathematics Education (PME-XXI) in Lahti, 1997.  
 The Forum Presentation on “Theorems in school” by some of the authors of this 
book, and related discussions involving other authors, showed that there were suit-
able conditions to start preparing a book that meant to support the renewed interest 
for proof and proving in mathematics education.  
 In the meantime, reconsideration of the importance of proof in mathemat-
ics education was leading to important changes in the orientations for curricula in 
different countries all over the world. In particular, this movement led, in the 
NCTM Standards published in 2000, to revalue proof and proving in mathematics 
curricula, and to recommendations to develop proof-related skills since the begin-
ning of primary school.  
 The general reasons for these changes are presented in the chapter written by 
Gila Hanna, the Preface of this book. 
 But how to approach the development of proving skills (by students) and teach 
proof in school?  
 Old teaching models (essentially based on learning and repetition of proofs of 
relevant theorems as they are written in textbooks) do not fit the current needs of 
students and teachers. Moreover those models showed their inefficiency in the at-
tempt to understand the role of proof in mathematics and the development of skills 
related to the production of conjectures and the construction of proofs by students. 
Such inefficiency was one of the reasons for getting rid of proof or reducing its 
importance in secondary school curricula in some countries, like the USA at the 
beginning of the last decade, or Sweden, Italy and other European countries in the 
last two decades. 
 Therefore entirely new approaches are needed. And these approaches must take 
into account the actual complexity of the subject: it is not wise to replace the old, 
structured teaching of proof with naive alternatives; the unavoidable bad results 
would bring teachers back to old methods!  
 This book, addressing mathematics educators, teacher-trainers and teachers, 
is published as a contribution to the endeavour of renewing the teaching of proof 
(and theorems) on the basis of historical-epistemological, cognitive and didactical 
considerations.  
 What led us to choose such a broad scope, embracing so different disciplines 
and perspectives? How does this choice affect and shape the plan of this book? 
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PART I: THE HISTORICAL AND EPISTEMOLOGICAL DIMENSION 

First of all, both teacher training and mathematics teaching and learning need to 
consider how theorems and proofs (and the ways of conceiving them in mathemat-
ics) developed in the history of mathematics.  
 Both teacher trainers and teachers need to be aware that proof and proving were 
viewed under different perspectives by mathematicians, and are still viewed from 
different perspectives in the schools of different countries as well as within 
mathematics. 
 This awareness is necessary in order to avoid that one particular epistemological 
position (that might be related to a peculiar situation—e.g., the diffusion of some 
textbooks—or depend on peculiar theories in the field of mathematics education) 
induces teachers to make educational choices that might be in contrast with the 
needs of students to become familiar with one of the crucial aspects of mathemat-
ics. Another crucial reason for the relevant role of epistemology and history in a 
book like this, is to prepare the ground for an in-depth analysis of the differences 
between proof and proving.  
 In this context proof is considered as a product shaped in school by the con-
straints posed by the community of mathematicians and by the community of 
mathematics educators; proving is viewed as an individual process that develops 
under the constraint of yielding a product with given characteristics (according to 
students’ conceptions and their understanding of proof).  
 For the listed reasons, we believe that the historical and epistemological dimen-
sions need to be dealt with by authors who look at specific research results already 
produced in the history and epistemology of mathematics with an eye to crucial 
issues related to educational choices. 
 In his chapter, G. Arsac deals with different hypotheses elaborated by historians 
about the origin of proof in Greek mathematics, in particular those accounting for 
internal necessities related to the development of mathematics, and those referring 
to external influences related to the development of Greek society and culture (in 
particular, Greek philosophy). The crucial role of the problem of irrationality of the 
square root of 2, and of the incommensurability between the diagonal and the side 
of the square is stressed. It appears as a possible common point of interest for 
mathematics and philosophy, with relation to the early development of proof in 
Greece, as it raises simultaneously the problem of the kind of reasoning appropriate 
to mathematics and that of the status of mathematical objects, not belonging to the 
sensible world. Some links are made with educational problems (in particular, 
those related to the approach to proof—in what field of mathematics? With what 
aims, “convincing” or “explaining”?). 
 F. Arzarello’s chapter deals with mathematical proof in the 20th century. The 
notion of proof is investigated from an epistemological point of view. Its meaning 
is scrutinised through a comparison of the contributions of a number of different 
philosophies about the nature of mathematical knowledge. The main idea underly-
ing this chapter is that only by knowing what a proof is (or can be) can one face the 
didactical problem of its teaching in the classroom.  
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 Therefore this chapter tries to make some aspects of the debate about the nature 
of proof, relevant for educational choices, accessible to mathematics educators and 
mathematics schoolteachers. Technical formalisms are avoided, although some 
technical aspects must be taken into account in order to understand the real content 
of the debate. 
 The goal of the chapter by G. Harel is to describe how Harel and Sowder’s psy-
chological framework of “proof schemes,” elaborated for examining students’ un-
derstanding of mathematical proof, was revised with an almost exclusive focus on 
historical and philosophical considerations. The chapter provides an example about 
how history and epistemology of mathematics can be exploited to develop tools 
that are useful to analyse students’ performances in the domain of proof. 
 Other contributions on the historical and epistemological ground are brought by 
authors of chapters which mainly focus on other subjects. In particular, I suggest 
considering the links with epistemological issues that are made in the chapters 
written by R. Duval and N. Douek, and some epistemological assumptions and 
reflections that are made in the chapters in Part IV. 

PART II: CURRICULAR CHOICES, HISTORICAL TRADITIONS AND  
LEARNING OF PROOF: TWO NATIONAL CASE STUDIES 

How does epistemology of proof influence curricular choices? How do learning of 
proof in school, and in particular students’ conceptions about proof, relate to his-
torical traditions and epistemological assumptions underlying curricula? The chap-
ters by C. Hoyles and L. Healy, and by J. Szendrei-Radnai and J. Török deal with 
the relationships between curriculum choices concerning proof (and the related 
implicit or explicit epistemological assumptions and historical traditions and val-
ues) in a given school system (within UK and Hungary, respectively), and the ef-
fective teaching and learning of proof in schools in those countries. 
 In their systematic study, C. Hoyles and L. Healy deal with the conceptions of 
proof held by students who had followed the National Curriculum introduced 
in England and Wales since the late 1980s. The authors aimed to investigate the 
characteristics of arguments recognized as proofs by high-attaining students, aged 
14–15 years, the reasons behind their judgements and the ways they constructed 
proofs for themselves. The reported data concern proof in geometry (while the ma-
jor focus of the curriculum was on reasoning and its separation from geometry). 
 J. Szendrei-Radnai and J. Török provide the reader with a historical glance at 
the (intended and real) situation of proof in the Hungarian school, with some re-
cent data that provide a partial, yet interesting image concerning students’ concep-
tions about proof when entering university. This chapter also provides a look at the 
existence, in Hungary, of alternative situations and “agents” (outside the school 
setting: mathematical contexts, mathematical journals for students) which contrib-
ute to providing good opportunities for some students to deal with proof in a  
consistent way. 
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PART III: ARGUMENTATION AND PROOF 

Cognitive aspects (in a broad sense, embracing both the individual cognition and 
the social construction or transmission of knowledge in the classroom) are impor-
tant in order to avoid the didactical choices not fitting the needs and the potentiali-
ties of learners.  
 As concerns cognitive aspects, the choice was to first deal with the features of 
reasoning related to proof within two chapters (those by R. Duval and N. Douek) 
mainly concerning the relationships between argumentation and proof.  
 The natural continuation was then to concentrate on some crucial cognitive as-
pects of the development of proof from the early approach in primary school, to 
high school and university in Part IV of this book. 
 In his chapter, R. Duval analyses the cognitive working of reasoning in the case 
of proof. He deals with students’ difficulties in understanding both the mathemati-
cal processes characterising a proof and the double awareness inherent in it (con-
cerning how a proof really works, and how one becomes truly convinced by 
proofs). The importance of the formal aspects of proof (those related to the logical-
deductive enchaining of propositions according to their operational status) is 
stressed. Some educational implications are derived regarding the variables to be 
used in order to give rise to the above mentioned double awareness. 
 In her chapter, N. Douek takes R. Duval’s analysis of the functioning of proof as 
a reference point to stress the need for considering other aspects of the process of 
proof construction within mathematics. Some examples are provided to show how 
the concrete process of proof construction develops out of a strict reference to the 
ideal shape of the formal proof. Some educational implications are derived. As 
such, Duval’s and Douek’s chapters present two complementary perspectives: the 
former depending on the logical constraints that bind the final product (proof), the 
latter concerning the real process of proof construction. 

PART IV: DIDACTICAL ASPECTS 

Didactical aspects are clearly related in a very direct way to the title of this book. 
The choice was to present an example of a stimulating activity related to proof per-
formed at the level of teacher training (in the chapter by G. Winicki-Landman), 
then examples taken from teaching experiments and projects developed in primary 
and secondary schools. The aim of these examples is to encourage teachers and 
teacher trainers to change their view about students’ difficulties in accessing theo-
rems in school. We will show how suitable didactical proposals within appropriate 
educational contexts can match the great (yet, underestimated!) students’ potenti-
alities in approaching theorems and proof and developing mathematical theories 
from primary school onwards. 
 In her chapter, G. Winicki-Landman presents an exploratory study aimed at col-
lecting, describing and analysing student-teachers’ understanding of the notion of 
“mathematical impossibility”. This notion is strongly connected with the idea 
of proof and the author’s approach relies on students’ claims as well as on their 
performances when producing proofs and refutations of mathematical statements 



THEOREMS IN SCHOOL: AN INTRODUCTION 

23 

involving impossibility. The contribution brought by this chapter can suggest pro-
ductive activities in teacher training programmes to encourage teachers to reflect 
on the meaning of “truth” and the role of “proof” in mathematics. 
 Coming to classroom activities, the chapter by C. A. Maher, E. M. Muter and 
R. D. Kiczek presents some results (concerning the approach to proof) of a long-
term longitudinal study (from primary to high school) regarding the development 
of mathematical ideas in students. Reported results concern how students come to 
construct proofs and the identification of some conditions that support the devel-
opment of proof making. 
 The subsequent six chapters deal with a co-ordinated set of teaching experi-
ments that were performed in Italy in primary and secondary schools by the re-
search groups of Genoa, Modena, Pisa and Turin. These chapters constitute an 
expansion of the Forum Presentation on “Theorems in school” at Lahti (during the 
PME-XXI Conference), which originated the idea of this book. 
 The short chapter by M. Bartolini Bussi, P. Boero, F. Ferri, R. Garuti and 
M. A. Mariotti presents the common framework and general guidelines of the 
teaching experiments reported in the other chapters. 
 The examples concerning primary and lower secondary schools show the feasi-
bility of an early approach to geometry theorems and proving skills, provided that 
some conditions are fulfilled regarding the choice of specific didactical situations 
and the previous development of argumentative skills. 
 M. G. Bartolini Bussi, M. Boni and F. Ferri present classroom activities dealing 
with geometric construction problems in grade V. Students had already performed 
(under the guidance of the teacher) the collective construction of a germ-theory (an 
embryo of theory that has an expansive potency to develop into a fully-fledged 
one). In this context students are able to manage construction problems concerning 
the geometry of a circle. 
 In their chapter, P. Boero, R. Garuti and E. Lemut deal with an approach to ge-
ometry theorems in school in grade VIII. They stress the importance of some con-
ditions inherent in the choice of the context of where to set appropriate tasks 
(mainly in order to avoid low-level forms of validation, like measurements, and 
enhance the dynamic exploration of the problem situation), and of other conditions 
inherent in the a-priori analysis of the solving process. In particular, they point out 
how, in a situation of continuity between conjecturing and proving, students can be 
facilitated in their approach to the proving process. 
 In their chapter, L. Parenti, M. T. Barberis, M. Pastorino and P. Viglienzone 
report a long-term teaching experiment showing the feasibility of an early approach 
(in grades VII–VIII) to geometry theorems and proving in the geometric domain. 
In particular, students move progressively from the observation of regularities in 
the relationships between three-dimensional objects and their two-dimensional 
representations (for instance, the transformation of straight segments into straight 
segments or points), to the formulation of some axioms, the production of conjec-
tures and the construction of related proofs concerning the geometry of central  
projection and the geometry of parallel projection. 
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 The two subsequent chapters deal with the transition (in a suitable learning envi-
ronment) to more advanced levels of proof making and awareness about the func-
tioning of proof and mathematical theories in secondary school. 
 M. Alessandra Mariotti analyses the potential of the Cabri learning environment, 
on the one hand to develop a dialectic interaction between the figural and the con-
ceptual aspects in dealing with definitions and geometry theorems, on the 
other hand to construct a theoretical framework within which this interaction is 
accomplished. 
 F. Arzarello, C. Micheletti, F. Olivero, D. Paola and O. Robutti present the main 
ideas and some experimental outcomes concerning proof within a project at the 
secondary level aimed at approaching theories in the field of geometry. A theoreti-
cal model (based on the notion of ascending and descending control) is elaborated 
in order to analyse the transition to formal proof and compare students’ behaviours 
in different learning environments. 
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GILBERT ARSAC 

1. ORIGIN OF MATHEMATICAL PROOF 

History and Epistemology 

INTRODUCTION: WHAT IS A MATHEMATICAL PROOF? 

Mathematical proof occupies a central place in mathematics as it is the validation 
method whose systematic use characterizes this discipline among other scientific 
ones. Consequently, it appears as a privileged object of study for mathematical 
education all the more so as it is at the origin of difficulties for many pupils. Any 
research about its teaching raises the problem of its history, as for any other 
mathematical concept, even if proof is not exactly a concept but rather a technique. 
This chapter is devoted to investigating the origin of mathematical proof, from a 
point of view which will be specified later. We shall also tackle the question of 
its subsequent evolution, that is to say the question of the history of rigour in 
mathematics. But on this problem, we refer the reader to Lakatos (1976) and its 
rich bibliography. 
 First, me must specify what we mean by mathematical proof. The generally 
suggested definitions gather about two poles: 

• a formal pole in which mathematical proof is characterized by its form, as a text 
which respects some precise rules, as for instance Balacheff (1977) states: a 
statement is known to be true, or is deduced from the precedents using an infer-
ence rule taken in a well defined set of rules; 

• a social, or cultural, pole in which mathematical proof is characterized as the 
proceedings for validation used by mathematicians. So a text is a mathematical 
proof if it is recognized as valid by mathematicians.  

We can remark that the formal definition emphasizes that a mathematical proof 
must be written, and that the cultural one adds that it must be published, and, as a 
rule, within the reach of everyone. 
 The two poles are not independent: the rules that a proof must fulfil arise from 
an agreement between mathematicians. It is a fact that there exist debates about 
some mathematical proofs, but in fact, they fall into two categories: 

• does this particular proof fulfil the rules usually admitted by  
mathematicians? 

• this proof uses new rules, can they be accepted? 
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The existence of this second kind of debate emphasizes the fact that the rules that a 
mathematical proof must fulfil have historically changed. 
 Of course, each of the two poles can be specified and give rise to several defini-
tions; for instance, the most celebrated formal definition, that of Hilbert, requires 
writing in an entirely formalized language, as well regarding logical rules as 
mathematical content, but this is only an extreme position in the formal family in 
which we can class all definitions or practices which put emphasis on conformity 
with certain rules. Reading Euclid shows that, in his elements, mathematical proof 
satisfies a very precise form (Netz, 1999), but this form appears only through prac-
tice, not in a treatise on what a proof must be. 
 On the other hand, historic and contemporary experience of mathematics shows 
that, as soon as we leave a theoretical point of view, as Hilbert’s one, the concrete 
implementations are quite varied, depending on mathematical context. Agreement 
on the rules is often a theoretical agreement. 
 If we follow the cultural definition of mathematical proof, such proofs appear in 
all the mathematic traditions, in the sense that there are necessarily means of vali-
dation on which mathematicians agree and which are relatively constant, as can be 
seen for instance at the moment in studies on Chinese mathematics. We will re-
strict our study to the western tradition whose origin takes place in Greece, and 
which is continuing in Arabic science then in western countries, and this for sev-
eral reasons: it is the origin of all contemporary mathematics, and it is the first that 
makes systematic use of proof in a fixed and even stereotyped way. Actually, 
Greece is the place of a radical transformation of mathematics which simultane-
ously characterised the objects of this science by defining them axiomatically as 
idealities, ideal objects, and rules of their handling, particularly mathematical proof 
which allows true statements to be distinguished. In the western mathematical tra-
dition, the pattern provided by Euclid’s elements, the proof “in the way of an-
cients” was considered up to the eighteenth and even nineteenth century as a 
standard which could not be exceeded. As a matter of fact, we see Leibniz, the 
founder of differential calculus, and its promoter the Marquis de L’Hôpital, assert-
ing that they would be able to prove in the style of Euclid, despite the fact that their 
practice was very different. This tradition contributed to make geometry the privi-
leged place for teaching and learning mathematical proof. 

CHARACTERISTICS OF THE EUCLIDEAN PROOF 

It is out of the question to study this extensively here; for this see Heath (1908) 
or Vitrac (1990) or Netz (1999), but we will recall, from the point of view that is 
of interest for us, some features of the organization and writing of the Euclidean 
treatise. 
 There is a list of axioms: 

• There are no undefined terms: some words or expressions of the mathematical 
language are defined (point, line, angle …) and others (greater than, …) appear 
without comment, their signification is obviously supposed to be known by the 
reader. This imprecision is curious as Euclid’s work is subsequent to Aristotle’s, 
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who clearly specifies that it is impossible to define all the words used in a given 
science. 

• The proofs given by Euclid use not only the preceding results and axioms: some 
properties are identified through the drawing; this is well known as it appears as 
early as in the first proposition of book I in which it is admitted, for the purpose 
of constructing an equilateral triangle, that, given two distinct points A and B, 
the two circles centred in A (resp B) and passing through B (resp A) necessarily 
meet. Similarly, Pasch’s axiom has its origin in the observation that Euclid im-
plicitly uses the result stated in this axiom. So, in his proofs, Euclid refers to 
what is seen on the drawing. 

• The logic employed is merely that underlying usual language (Gardies, 1997, 
pp. 49–75), with a large use of reductio ad absurdum. There are no reasoning er-
rors, but an analysis using propositional calculus shows that the author appears 
to be unaware of some logical rules such as the equivalence between a statement 
and its contraposition (pp. 49-75). There is some evidence that Euclid does not 
separate in his proofs “what is pure logic and the part which is not” (pp. 49-75). 
We can also notice that Hilbert’s “foundations of geometry” follow the same 
way, using a logic not made explicit, underlying current language. 

• The very writing form of proofs is very stereotyped, as is easy to see with a 
rapid glance at Euclid’s work (cf. Netz, 1999), and we know from the work of 
Autolycus de Pitane (1979) that this form is in fact prior to Euclid. 

CONTEXT OF APPEARANCE OF MATHEMATICAL PROOF IN GREECE 

Historians of Thought point out that the emergence of mathematical proof in 
Greece is quite contemporary to that of democracy and philosophy. 

Certainly, it is not a matter of chance if reason arises in Greece as a conse-
quence of this so original form of political institutions called the city. With the 
city, and for the first time in history, the human group considers that its com-
mon affairs can be settled, decisions of general interest taken, only after a pub-
lic and contradictory debate, open to everybody, in which argumented 
discourses conflict with each other. If rational reasoning appeared in Greek cit-
ies of Asia Minor such as Miletus, it is because the rules of the political 
game—public debate, argued and contradictory—had also begun the rules for 
the intellectual game. (Vernant, 1979, p. 97, translated from French.) 

Szabo (1978) specifies this idea by ascribing to the Eleatic school of Parmenides 
and Zeno the origin of the radical transformation of mathematics which took place 
in Greece. This thesis appears to be essentially externalist as it searches for this 
origin not first in internal necessities of mathematical development, but in external 
influences. 
 Nevertheless, this explanation which finds in an influence external to mathemat-
ics the origin of their transformation and even, in some sense, of their emergence 
as an autonomous area of thinking, with its proper rules of validation, conflicts 
with the idea, commonly admitted among mathematicians, that it is problem solv-
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ing which is at the origin of advances in mathematics, particularly advances in rig-
our (Lakatos, 1976). More widely, that explanation is contradictory with the “logic 
economy principle” which says that “one does not use more logic than needed for 
the practical use” (Bourdieu, 1980). Now, history tells us that the emergence of 
mathematical proof in Greece is contemporary with the solution of the irrationnal-
ity and incommensurability problem, that is to say a double discovery: on one 
hand, 2 has no rational square root, on the other hand, square’s diagonal is inc-
ommensurable with its side. And precisely, we shall see that the mathematical 
proof, but also the whole Greek approach to mathematics and to the status of their 
objects, is an indispensable tool to overcome these difficulties in the manner of 
Greek mathematicians. 
 Now there comes a problem: no historical document tells us the period of emer-
gence of mathematical proof in Greece, nor the reasons for it. It is true that Proclus 
relates that Thales was the first to “prove” that a diameter divides a circle into two 
equal parts, but nobody knows what “prove” means here, especially because Pro-
clus reports that Thales went further than the Egyptians “sometimes in abstract 
generalization, sometimes in empirical investigation”. Similarly, Simplicius left us 
some passages of Eudeme’s mathematics history, describing the quadrature of 
three kinds of lunes by Hippocrates of Chio, and it really seems that in this work 
there was a deductive process predating Euclidean proof, but we are far from being 
able to restore the original text of Hippocrates (Heath, 1921). This lack of historical 
documents is in particular due to the fact that in opposition to the Babylonians, 
whose tablets can still be studied, Greeks wrote on perishable materials so we have 
no direct document about origins: we know them only through what is said by the 
Greek historians and philosophers whose works have been preserved. So we will 
begin our study with an a priori analysis, that is to say, without direct reference to 
documents, of the links between irrationality and mathematical proof, using only 
mathematics and general historical knowledge about the evolution of Greek 
thought; only later shall we go back to the few historical indications directly con-
cerning our subject. 

AN ANALYSIS OF THE QUESTIONS RAISED BY THE  
INCOMMENSURABILITY PROBLEM 

Mathematical Analysis 

Let us consider the figure formed by a square and its diagonal. A priori, examining 
this drawing by no means leads to the discovery of the incommensurability be-
tween the side and the diagonal. On the contrary, as Aristotle notes, one will rather 
conclude that it is actually possible to measure the diagonal using the side as a unit: 
according to measuring precision, we will find 1.4 or 1.41. 
 Nevertheless, Pythagoras’ theorem shows that, if the diagonal’s length, taking 
the side as unity, is d, then d2=2. A classical argument, that we find in Euclid, 
shows then that if d could be written p/q, where the fraction is supposed to be irre-
ducible, number q would be even and odd at the same time: indeed, since p2=2q2, 
p is even, p=2p′, so q must be odd, as the fraction is irreducible, but q2=2p′2, so q 
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must also be even. So we have proved the two results quoted above: the number 2 
has no rational square root and the diagonal is incommensurable with the side. This 
proof clearly implies a “change of setting” (Douady, 1986), that is to say that one 
has to go from the geometric frame to the arithmetic frame, and a reductio ad ab-
surdum, not easy to avoid when one has to show that a number is not rational. 
 As we saw that this incommensurability property cannot be verified by direct 
reading on the figure, it necessarily concerns ideal segments, represented by those 
we can see on the figure but which cannot be identified with them. So the mere 
statement of the incommensurability property supposes a change of status for geo-
metrical objects, a problem to which their axiomatic definition, in the Greek sense, 
gives a solution. We can note that we find in the Meno by Plato a proof dealing 
with square duplication which takes place entirely in a geometrical setting and rests 
on evidence read on the drawing: it is easy to see on it (Figure 1) that to obtain a 
square whose area is twice that of a given square, one must take the square having 
the diagonal of the given square as its side. The figure also shows why the idea of 
doubling the side leads to a square whose area is actually four times that of the 
given square. 

 

 

Figure 1. 

This type of proof, using the subdivision of areas, that we abundantly find in 
Euclid from Book I, is also known in prehellenic mathematics (for instance, there 
are Chinese and Indian proofs of Pythagoras’ theorem resting on this principle). 
The incommensurability proof that we recalled cannot be directly reduced to such a 
proof by geometric evidence; so the drawing in Meno gives an example of a figure 
on which Euclid will allow himself to read certain geometric evidence related to 
area ratios, but on which appear squares and their diagonals without possibility of 
reading on this same figure the incommensurability property. 
 But this last remark raises a question: how did the idea occur to man that inc-
ommensurable segments can exist and even how is it possible to think of a defini-
tion of incommensurability, as the hypothesis that two segments are always 
commensurable is indeed (implicitly) present in the whole of prehellenic mathe-
matics. So the first question is: how does the incommensurability problem occur? 
To answer this question, we have to make a detour by the history of mathematics 
looking into what we know about Pythagorean mathematics. 
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Analysis According to Pythagorean Mathematics 

It is possible to summarize Pythagorean very briefly thought from the point of view 
which is of interest to us, by the following phrase: all things in nature can be ex-
pressed by ratios (logos) of integers. Moreover, Pythagoreans base their study of 
numbers on the dialectics between odd and even. So there is nothing in this thought 
leading one to imagine the phenomenon of incommensurability. Greek tradition 
nevertheless says that it is really to Pythagoreans that we owe the discovery of irra-
tionality of √2, but also mentions that it was considered a secret. So we 
have to understand how Pythagoreans had the opportunity to face the question of 
irrationality. 
 The answer usually accepted among historians appeals to the anthyphairesis 
process, that is to say to the geometrical version of Euclid’s algorithm which con-
sists in operating by “successive subtractions”. This is what we shall now develop. 
 Given an initial pair of two segments AB and CD, with AB≥CD, we “replace” 
AB by AB–CD that is to say we consider a new pair (A1B1,C1D1) where 
A1B1=AB–CD and C1D1=CD, if CD≤AB–CD, and A1B1=CD, C1D1=AB–CD in the 
opposite case. 
 If initial segments were commensurable, repeating the same process leads, 
through a finite number of such operations, to a pair (AkBk,CkDk) with AkBk=CkDk, 
and after that to (AkBk,0). Then, AkBk is the largest segment contained an integer 
number of times both in AB and CD. It is then easy to deduce, by reading the op-
erations in an inverse order, what was the value of the ratio of initial segments. If 
AB and CD are incommensurable, the process is infinite. But in this case also, it is 
necessary to distinguish carefully between theory and practice: if we consider it as 
a graphic process, it always converges very quickly. For instance, if we apply it to 
two segments, one being the diameter of a circle and the other the length of its cir-
cumference, we rapidly find that π=22/7. The infinite characteristic of anthyphaire-
sis is not easy to see on the drawing! 
 For Pythagoreans, as all things can be expressed by way of ratios (logos) of in-
tegers, the process is always finite. Actually, there exist in geometry some cases in 
which one can meet “naturally,” that is to say, without presupposing it, an infinite 
anthyphareisis, and, by an irony of fate, pointed out by K. Von Fritz, this case ac-
tually occurs when studying the emblematic figure of Pythagoreans: the star with 
five branches, that is to say the star-shaped regular pentagon. 
 Using notations of Figure 2 below, applying anthyphairesis to the pair (AD,AE) 
leads to replace it by the pair (B′E′,B′A′), using only one intermediary (B′E,EA′), 
and mathematical knowledge attributed to that age is enough to perform the two 
stages; in fact we can consider that it is a matter of proof by visual evidence of the 
same kind as that of Meno. So the initial problem is reduced to the same problem 
for the smaller regular pentagon A′B′C′D′E′, hence the process is infinite, unless 
assuming the existence of an absolute minimum among lengths, which is dismissed 
by knowledge of the fact that there exists a middle for each segment. 
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Figure 2. 

Nevertheless, recognizing the infinite character of the process supposes one admits 
that all regular pentagons share the same properties. It is what we do teaching ge-
ometry when we speak about the properties of “the figure,” assuming implicitly 
properties of similar figures, which are particularly evident in the case of regular 
polygons. 
 So, thinking about the pentagon case leads one to consider that the two segments 
AD and AE have no common measure using a thought process which shows, and 
in the meanwhile partially exploits, the fact that the ratio AD/AE is equal to 
A′D′/A′E′ and so recurs indefinitely with smaller and smaller terms. Each reflection 
about properties of similarity aiming to improve more rigorous proofs of the used 
properties will necessarily be based on the hypothesis of universal commensura-
bility of length ratios and hence leads either to a vicious circle or to the fearful task 
of defining a new notion of ratios for segments. We shall see further that this was 
probably tried first in a not quite rigorous way. 
 Regarding the square, the infinite character of the anthyphareisis applied to its 
diagonal and side is less evident, but can be put in evidence with the mathematical 
tools of the epoch with the same problems of circular reasoning (Caveing, 1982). 
On the other hand, in the case of the square, a change of setting leads, as we saw, 
to a proof in the frame of arithmetic, which, all things considered, rests uniquely on 
properties of the couple (even, odd) familar to Pythagoreans and on the use of re-
ductio ad absurdum. So, it allows one to escape geometric setting, a place where 
contradictions and questions about evidence arise, and to join the arithmetic field, a 
place where evident facts are more stable. Assuming that the irrationality of √2 has 
been proved in the arithmetic setting, one has, if not an explanation, at least 
a result which makes less unlikely for Greek mathematicians the difficulties en-
countered with the diagonal of the square. Nevertheless, in the geometrical setting, 
contradiction remains until its solution using Eudoxus’ ratios theory explained in 
Euclid’ Book V. We shall now examine, using the history of Greek thought, possi-
ble means of raising the contradiction .  
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POSSIBLE ANSWERS ACCORDING TO THOUGHT HISTORY 

The Sophistic School 

The sophistic school was interested in the whole set of knowledge and although 
sophists were never considered as mathematicians, they worked in mathematics in 
a sufficiently explicit manner to give us a rather precise idea of the status they gave 
to geometrical figures. 

• For instance, Protagoras maintains “against geometers” that, in accordance with 
what we can notice on the drawing, a circle and its tangent have more than one 
common point. We can remark that pupils around twelve have the same point of 
view: the circle and its tangent touch together on a whole length. For Protagoras, 
the world is really contradictory, we must accept meeting contradictions without 
taking refuge in an ideal world. Adopting this position, we can confine ourselves 
to the real figure, and refuse firmly to consider an ideal figure; for Protagoras, 
there is nothing behind appearance. 

• Other sophists, such as Hippias or Antiphon, probably preferred to confine 
themselves to the possibility of actually solving concrete problems: Hippias in-
vents a curve, that we can trace in an approached manner since we can construct 
an infinite number of points of it, which succeed in resolving the problem of 
squaring a circle; as for Antiphon, aiming to compute the length of a circle, he 
does not hesitate to confuse it with an inscribed regular polygon when the latter 
has a great number of sides. Graphically, such approximations are quite accept-
able, and such practical solutions are still used now in certain trade associations. 
Similarly, vedic geometry, whose goal, building altars made of bricks, is both 
practice and ritual, mixes exact and approached solutions. 

We must notice that these sophistic solutions are clearly linked with the philoso-
phical positions of their authors: the sophist’s opposition to handling ideal objects 
is linked to their disagreements with Plato. Among the sophists there is a refusal of 
the research of an absolute truth, which for them is necessarily of religious essence, 
they prefer a relative truth which agrees better with democracy and the search for 
arguments which lead to the success of a thesis over another but without paying 
great attention to the problem of truth. There is also, on another level, the refusal, 
shared between sophists and Pythagoreans, to question the knowledge resulting 
only from the use of our senses.  

The Eleatic School and Mathematical Proof 

Founded by Parmenides, the Eleatic school conflicts with the sophists, and  
foreshadows Plato who, although he differs from this school, is its heir. For the 
Eleatics, the sensible universe, that of appearances and phenomena, cannot be the 
object of real knowing, without contradictions. Truth is inaccessible to observation, 
it is accessible only by pure thinking: for the Eleatics, whenever evidence given by 
our senses is contradictory with our reasoning necessities, these necessities will 
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prevail (Zafiropulo, 1950). More detailed information about eleatism can be found 
in Zafiropulo (loc. cit.) or Caveing (1982). 
 So, according to the Eleatics, the objects of the sensation are continually trans-
forming and changing into their contradictory, they are essentially contradictories. 
Conversely, the objects of pure thinking are the only ones that are not contradic-
tory, so it is possible to prove a statement about them by showing that its negation 
implies contradiction (reductio ad absurdum). So, reductio ad absurdum appears as 
the convenient tool for handling these objects, whereas it would not be the case for 
sensible objects. On this point, there is an agreement between Eleatics and Plato 
that Szabo regards to be an heir of Eleatic thought. In “the Parmenides,” Plato pre-
sents Parmenides, Zeno and Socrates, and attributes to Parmenides the following 
praise of Socrates: 

I must say that I was delighted with a remark that you did, when you said that 
you did not want to let the survey become lost in visible things and apply to 
them, but focus on objects of thought those that we grasp first by thinking 
and that we can consider as forms. 

 And Socrates answers:  

Indeed, I consider that it is not at all difficult to prove in this way that visible 
things are at the same time similar and dissimilar and susceptible of all the 
opposites. Quite true, says Parmenides; but there is still another thing to do. It 
is not enough to assume than an object exists and examine the consequences 
of this assumption, we must as well assume that this object does not exist, if 
you want to carry on with your gymnastics … 

We can remark how the program described in this text, which foreshadows the 
study of the problem of the « one » and of the « being », applies exactly to the 
problem of incommensurability: if the segments which come into play in the figure 
constituted by the square and its diagonal, or in that of the pentagon, belong to the 
visible world, there is nothing surprising in the fact that they are “susceptible of all 
contraries,” and agreeing on this point would have been sufficient for a sophist. On 
the other hand, transferring geometrical objects to the world of forms will allow 
them to be objects of true knowledge, whose existence is ensured by the fact that 
their properties are not contradictory. Breaking away from reality is the condition 
which allows geometry to rank among real knowledge, perhaps against what a con-
temporary mind would maintain! 
 There remains the question of reductio ad absurdum, which is necessary to solve 
the irrationality problem. The first primitive example appears in the “poem” by 
Parmenides where it is used in the theory of being: “as regards the decision on that, 
it is contained in the following alternative: either it is or it is not”. Further, this kind 
of reasoning is systematically used by Zeno that Aristotle considers as the father 
of dialectic. What is to be understood by this? Aristotle himself gives a detailed 
definition of dialectic from which we extract what follows: dialectic trains reason-
ing, it is a deduction which starts with granted ideas and draws from them contra-
dictory consequences aiming to refute the initial hypothesis. Since Plato, dialectic 
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has also been known as a means to raise thoughts from sensible things to intelligi-
ble ones. We must note, and we will go back to this later, that Aristotle claims that 
Pythagoreans did not know about dialectic. 
 Well, we can be tempted to conjecture, as Szabo (1978) does, that the solution 
of the incommensurability problem was based on an “application” of eleatics ideas 
to mathematics. Nevertheless we have no proof of direct intervention of eleatics in 
mathematics, unlike the sophists. 

TRACES OF TRIALS AIMING TO SOLVE THE IRRATIONALITY PROBLEM 

As we said before, it is quite unlikely that only being aware of the problem imme-
diately leads to solving it. Many trials and errors must have preceded, around the 
fifth century BC, the working-out of the final solution. As far as these trials mean 
steps on the way to rigour, they are of interest for us. Our intellectual guide here 
will be Lakatos as the irrationality concept clearly falls into the category of the 
“proof generated concept” (Lakatos, 1976). Indeed, as we saw, the phenomenon of 
incommensurability cannot be expected in a geometrical setting if it has not been 
met, and in some sense proved; it is even only at the end of the whole building of 
deductive mathematics, building caused by the problem that the concept can take 
place, and that the initial contradiction is overcome. Meanwhile, in accordance 
with the description of the play between conjectures and refutations, mathematics 
will have continued developing, either by leaving aside this awkward case, or by 
getting round the obstacle, or elaborating partial solutions, or going completely 
wrong. If we accept Knorr’s dating (Knorr, 1975), this phase would have lasted for 
a century, from –430 (acknowledgement of incommensurability phenomenon) to  
–330 (axiomatization by Eudoxus). 
 Despite the difficulty already mentioned of finding historical documents about 
the beginning of mathematics, the quest in this field is not quite unsuccessful and 
we have traces of trials which preceded the final solution by Eudoxus to the con-
ceptual problem of incommensurability, rigorously defining the ratio of two magni-
tudes, which allows one to assert that the ratio of two segments always exists. 
 A first indication is given by a text from Plato in “the Republic” (book VIII, 
546c). This famous text, dealing with the “wedding number,” is of interest for us as 
it uses the length of the square diagonal in the following passage: “one hundred 
squares of rational diagonals of five, each reduced of one, or one hundred squares 
of irrational diagonals, reduced of two …” Interpreting this text does not bring dif-
ferences between translators: the square of side 5 has a diagonal of length 5 √2, 
irrational, whose approached integer value is 7 since 72=49, and the quoted sen-
tence expresses that 100(72–1)=100(50–2). At the expense of certain anachro-
nisms, we can say briefly that the “irrational diagonal” refers to √50, while the 
“rational diagonal” refers to 7. 
 But what is interesting and escapes the reader of this translation, is actually the 
Greek word used by Plato and translated by irrational: it is not the word employed 
later by Euclid which means “incommensurable regarding to the length”. Plato 
uses a word which etymologically means “impossible to enunciate”. Similarly, the 
word translated in this text by rational means “possible to enunciate” (cf. Szabo, 
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1977, or Caveing, 1977, p. 1205, who translates into French by “exprimable,” that 
is to say “expressible”). A very attractive idea is to see here a trace of a stage of 
mathematics where the impossibility to attribute a rational measure to the diagonal 
of the square of side 5 was discovered, but without any definition of the incom-
mensurability concept. Moreover, we can remark that the text avoids the problem 
by reasoning on the square of the diagonal which is rational. This leads us to the 
second indication. 
 This second indication is underlined by Caveing (1977, p. 1270 and 1982, 
p. 183). He remarks that several traces remain from a time in which mathemati-
cians attempted to circumvent the difficulty of incommensurability by reasoning on 
areas of squares constructed upon segments: the work of Hippocrates of Chio, the 
author of the famous squaring of lunes, of which fortunately we have an extract, 
shows evidence of this stage (Caveing, 1977, p. 692). The very possibility of this 
stage implies a rigour level which is not that of the Euclidean proof, as such 
mathematicians simultaneously use properties of similar magnitudes while they are 
not able to define clearly similarity. Certainly, this time is a period in which in-
commensurability difficulty is recognized, but not cleared up. A trace of this time 
can probably be found in Euclid (book X, definitions) when, given a unit segment, 
he partitions, by a definition, other segments into rational and irrational ones, but 
not in the contemporary way, as he ranks in the first class not only segments com-
mensurable with the unit, but also those for which the area of the square con-
structed on them is rational. This confirms the existence of the stage which can be 
illustrated by Hippocrates of Chio, and also suggests the idea that a first hope of 
surpassing the incommensurability problem may have been the hypothesis that two 
segments are always commensurable by means of their squares, which partly saved 
the Pythagorean ideas, and was naturally suggested by the example of the square 
and its diagonal. 
 A third indication is related by Aristotle (Topics, 158B30) when he quotes the 
identity of their anthyphareisis as a definition for equality of two ratios. Clearly, 
this third indication supports the idea that geometric incommensurability was dis-
covered by the way of anthyphareisis and confirms this process was of practical 
use. Nevertheless, without the Eudoxian definition of ratios of magnitudes, it gives 
evidence of a stage of mathematics in which dealing with ratios was certainly spoilt 
by circular reasonings, as we explained on the pentagon example, as a result of the 
inevitable use of ratios and similarity (for a reconstruction of this stage, cf. Fowler, 
1979 and 1980, and Knorr, 1975, VIII and IX). 
 We shall now conclude this brief survey which, in this particular case, supports 
the assertion that overcoming a contradiction is not contained in the terms in which 
it is expressed. This study could gone into more deeply by trying, on the pattern of 
Lakatos (1976), to refine the analysis of various behaviours adopted to surpass the 
contradiction; it is not the principal matter of the present work. Nevertheless we 
must emphazise one point: the classical solution by Eudoxus was not the only con-
ceivable one, and its success did not solve all the problems: that of the ratio be-
tween the circumference and the diameter of a circle remained open, and still 
remained so for a long time.  
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CONCLUSION: A DIALECTIC BETWEEN MATHEMATICS ANS  
PHILOSOPHY AT THE ORIGIN OF MATHEMATICAL PROOF? 

The set of historical data leaves the door open to divergent conclusions. We’ll now 
specify Szabo’s conclusions (Szabo,1978), then we’ll set out Caveing’s. 
 Szabo’s thesis specifies the idea that the rise of mathematical proof is the result 
of philosophical debate; it recognizes in the incommensurability problem a ques-
tion internal to mathematics whose solution would have been supplied by philoso-
phy, and more precisely by the eleatic school. In Szabo’s opinion indeed, it is 
unimaginable that refusal of empiricism and the use of reductio ad absurdum 
would have spontaneously appeared among Greek mathematicians. As these ways 
of thinking are characteristic of the eleatic philosophy whose prominent representa-
tives are Parmenides and Zeno, Szabo is naturally induced to refer to them for  
the origin of the change in mathematics. This leads him to propose the following 
outline. 

• In a first stage, contradictory properties according to the very old theory of even 
and odd, and concerning the rational number supposed to represent the ratio be-
tween the diagonal and the side of a square, would have been noted. The ancient 
terms whose English translations are “impossible to enunciate” or “possible to 
enunciate” would go back to that stage, that would indicate an obstacle within 
mathematics. 

• In a second stage, characterized by the rejection of sensory experience and intui-
tion and the call on a way of thinking, inspired by the philosophers of the eleatic 
school, conceiving mathematical objects as purely ideal ones, dealt by rigorous 
reasoning, first uniquely the reductio ad absurdum, one could have succeeded in 
defining and proving incommensurability (both processes coincide) in that case. 
So the obstacle, internal to mathematics, was overcome with the help of an ex-
ternal contribution, but at the expense of a total overhaul of mathematics. 

To support his thesis concerning the introduction of abstraction, the reductio ad 
absurdum, in mathematics by eleatic thought, Szabo (1978) supplies some further 
arguments, belonging essentially to the philological field. Nevertheless, it is not so 
easy to decide if the eleatic influence appeared directly or essentially through the 
intermediary of Plato; Theaetatus and Eudoxus were his disciples and are precisely 
the mathematicians who, according to the Greek tradition of the history of mathe-
matics, finally solved the irrationality problem (Knorr, 1975, ch. II, III). So we will 
simply admit the hypothesis of an eleatic, that is to say external origin, of the re-
ductio ad absurdum, but we shall not follow Szabo in his extreme conclusions 
when he goes so far as to state that mathematics were merely a part of dialectic and 
that the Eleatics were mathematicians (Szabo’s opinion seems dangerous: 
cf. Caveing’s appreciation, 1979). 
 Contrary to Szabo’s, Caveing’s work does not deal with the rise of mathematical 
proof, but rather with the origin of the status of mathematical objects, of their “ide-
ality,” “putting together the four characteristics of objectivity, not belonging to the 
sensible world, perfection and intelligibility” (Caveing, 1977). Nevertheless, as we 
noticed in the introduction, this definition of mathematical objects, which at the 
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same time constitutes mathematics as an autonomous science, is necessarily con-
temporary with the rise of mathematical proof used systematically as a validation 
tool. 
 Caveing’s point of view on the interaction between mathematics and philosophy 
is rather opposed to that of Szabo, whom he moreover criticizes (Caveing, 1979). 
For him, the irrationality problem, to which he equally recognizes a crucial role, 
led to the creation of mathematical idealities which would have been used later as 
models by philosophers, essentially Plato and Aristotle. So, the trend is reversed, 
here mathematics imparts philosophy. Caveing also makes a detailed study of 
Zeno’s thought: after doing so, he concludes that Zeno’s argumentation was essen-
tially directed against Pythagoreans and especially against physico-mathematical 
Pythagorean syncretism: arguments like Achilles and the turtle, or the arrow, which 
are the best known, apparently aimed to show, using the reductio ad absurdum, that 
is to say dialectic in the Greek sense, that the Pythagorean ideas did not enable one 
to conceive motion or a geometric continuum without contradictions. Even re-
stricted to the preceding facts, the Eleatic’s influence and particularly Zeno’s 
would remain of great importance, as all in all, Zeno would have, perhaps inde-
pendently of the incommensurability problem, but certainly simultaneously, chal-
lenged Pythagorean principles and especially their ideas about geometrical objects. 
We can also remark that the dialectical technique, which always begins with clari-
fying the opponent’s presuppositions, as completely as possible, led to express 
completely, and so to specify, the foundations of Pythagorism, the initial nature of 
which we already showed to be probably fuzzy and largely implicit. 
 We will retain Caveing’s idea that a change in mathematics is first due to the 
internal problems of incommensurability and irrationality; first because of the ar-
guments that we set out at the end of the introduction against Szabo’s excessively 
externalist position, but also because the historical reconstitution in the mathemat-
ics setting of the appearance and the attempts to solve the incommensurability 
problem, appears to us to be the more likely.  
 We do not know any convincing historical argument enabling us to choose be-
tween the two previous theses. Nevertheless, it appears that a minimal conclusion 
can be drawn, compatible with both, taking the form of two negative statements: 

• without the irrationality problem, the transformation of mathematics would not 
have occurred, even in Greek society;  

• in another social context, even faced with the same problem, mathematics would 
not have changed in the same way. 

SOME REMARKS ABOUT THE SUBSEQUENT EVOLUTION OF  
THE MATHEMATICAL PROOF 

The mathematical proof, “in the way of the Ancients,” as Euclid and Archimedes 
did it, remained a model for centuries, but the history of mathematics shows that 
mathematicians are largely unfaithful to it, first in their practices, then by their 
criticisms. As it is out of the question to give here a detailed account of this com-
plex story, we’ll only recall some limits of the Euclidean proof which explain the 
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quick rise (from Diophant’s time onwards) of divergent practices. We’ll also recall 
the criticism of the Euclidean thought processes. 

The Limits of the Euclidean Way of Proving 

One of the first typical features and limits of the Euclidean mathematical proof is 
its quite linguistic nature, which completely distinguishes it from a contemporane-
ous proof in algebra or arithmetic and even in geometry. Indeed, it does not include 
any notation, or any ideogram, which allows calculation. The expansion of algebra, 
which is essentially a calculation upon symbols, was not possible while respecting 
the Euclidean tradition. 
 A second limit is the lack of a method for discovery and the large place given to 
the reductio ad absurdum. Both things are linked, as reductio ad absurdum is possi-
ble only given a conjecture whose truth is to be proved, but does not offer any way 
of checking this conjecture. This problem is particularly evident when reasoning by 
exhaustion: it allows one to prove rigorously area equivalences, but it does not give 
any way of discovering them. Archimedes, a great authority of the subject, con-
firms: he left us a book, “about the method,” in which he describes the “mechani-
cal” reasoning he uses to discover the formulas he is looking for, and he 
completely distinguishes these reasonings from the proofs by exhaustion, that he 
gives later in accordance with the Euclidean tradition. The progress in calculating 
plane areas and tangents to curves which has been made since the seventeenth cen-
tury, and culminating in the equivalent methods of Leibniz and Newton’s also led 
to replacing Euclidean proof by a calculation, and give a larger place to effective-
ness in solving problems rather than to the Euclidean rigour. So, in analysis also, 
looking for calculation methods and effective formulas will overcome the rules of 
Euclidean proof.  

DIDACTICAL REMARKS 

Several kinds of questions arise following this study. We shall restrict ourselves to 
three of them. They are simple but important ones. 

Convincing or Explaining Proofs? 

The Euclidean proof clearly aims to convince the reader; later on it will be criti-
cized as it does not shed light on the solution, or give a method to find it. The de-
bate reappears when dealing with the teaching of mathematical proof: what 
function of proof must first be emphasized, especially for an initiation? Concerning 
this question, we can remark that the first proofs of irrationality and incom-
mensurability, to which we attributed a historically basic role, are not so easy to 
classify in these categories. It is possible indeed, to claim that the indirect proof of 
the irrationality for √2, considered separately, convinces without explaining, 
whereas if we look at it in its historical context, it can appear as an explanation for 
the phenomenon of infinite anthyphareisis. At least it shows a link between irra-
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tionality and the incommensurability problem, or even suggests a first idea of con-
nection between geometry and the properties of an underlying set of numbers. So 
we can conclude that convincing, explaining, enlightening, are not only mutually 
exclusive, but also have value only in respect to a certain state of knowledge. 

Proof and Evidence 

Euclidean mathematics is also characterized by wanting to prove everything, and 
contemporaries were already arguing against this: what is the point in proving tri-
angle inequality, Epicureans asked, when it is evident, even for a donkey who is 
going for its food, that the shortest way is the straight line? The debate re-emerges 
at the level of the teaching of mathematical proof: what shall we choose to prove? 
What is to be considered evident? Regarding this point, we must recall that, even in 
Euclid’s work, there is a call to evidence, even if it is implicit. 

Limits of Geometrical Proof 

Finally, is it necessary to follow the tradition according to which geometry is the 
privileged place for mathematical proof, despite the difficulty in defining the role 
of figures clearly, to delimit what can be noted on them and what must be proved, 
when it is also possible to see it on the figure? We met several examples of these 
very complicated subtleties in using drawings: proofs such as that of Meno, which 
use visual evidence, are numerous in Euclid’s work, whereas triangle inequality 
needs a proof, and irrationality contradicts visual evidence. Moreover, as we re-
marked, geometrical proofs make little use of calculation, lay stress on the linguis-
tic aspects of mathematical proof, and can even lead pupils and teachers to believe 
that proof only exists in geometry. 
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FERDINANDO ARZARELLO 

2. THE PROOF IN THE 20TH CENTURY 

From Hilbert to Automatic Theorem Proving Introduction 

In this chapter the notion of proof is investigated from an epistemological point of 
view. Specifically, its meaning will be scrutinised comparing the contributions of 
some different philosophies about the nature of mathematical knowledge. The main 
idea is that only knowing what a proof is (or can be), one can face the didactical 
problem of its (possible) teaching in the class.  
 The chapter is divided into five sections: in the first the dichotomy formal–
informal in mathematics is tackled; in the second the notion of logical consequence 
is defined in a precise way as the core of mathematical proofs; in the third, the dis-
cussion developed in the first two is used to criticise (quasi-) empiristic positions; 
the fourth and fifth sections sketch two important topics in proof: the role of com-
puters and that of perception.   

PROOFS AND DERIVATIONS 

The Notion of Formal in Mathematics 

The word formal is used in mathematics with different meanings.  
 One ( form1) concerns the form of mathematical sentences, as structured syntac-
tical objects independently of their intertextual contexts: for example, Aristotle’s 
theory of syllogism considers only the structure of sentences like (a) “every A is 
B,” (b) “some C are not B,” (c) “some A are not C” and explains the reason why 
(c) is a consequence of (a) and (b) not in terms of their semantics but in virtue of 
their syntactic form1. 
 A second ( form2) concerns the way mathematics is presented as a final product, 
in a formalised language, generally contrasted with that after which results are 
found by mathematicians: the arguments in the creative phase may be informal, 
semi-formal, formalised, drawn, sketched, based on intuition and so on, while the 
final product is built up in a neat and very formal way. 
 A third ( form3) concerns the very notion of logical consequence, which will 
be discussed in §2, namely what does it mean that a mathematical sentence, 
e.g., “2+2=4,” the theorem of Pythagoras or Riemann hypothesis, is valid within 
arithmetic, geometry, analysis and so on. This must be contrasted with the analo-
gous problem of sentences in experimental sciences, e.g., what does it mean that 
the First Principle of Thermodynamics holds?  
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 All these and other aspects have been scrutinised with different tools and ideas 
in the course of centuries, sometimes without distinguishing carefully among them; 
in particular, the nature of formal mathematics has been investigated studying its 
logical aspects. Roughly speaking, we can classify such researches with respect to 
the given solutions in three main streams (see Cellucci, 1998; Feferman, 1978 and 
Lolli, 1987): 
 
A. Some scholars have seen the formal1,2 logic only as a justificative tool, claim-

ing that intuitive and creative aspects of mathematicians’ work elude a formal 
scaffolding and generally leave them to psychology (Frege, Feferman). For ex-
ample, according to Frege, the formal1,2 logic is his Begriffschrift, that is the 
science which studies the laws of correct inference, whilst the natural logic con-
cerns the ways after which inference concretely is performed and as such per-
tains more to psychology than to logic and is based upon empirical principles 
and not upon necessary and universal rules (Frege, 1969, Logik, p. 4 and 
Grundgesetze der Arithmetik, vol. 1, p. XIV). The relationship between the ac-
knowledgement of the truth, which is a thought, as such not purely formal, 
and the developing of the proving process, is very complex. Frege, in a letter to 
Hilbert in 1895 (Frege, 1976, p. 58) uses the metaphor of lignification: a proof 
to develop must be built by the truth acknowledgement, as a tree to develop in 
those points where it lives and grows up must be soft and juicy; but the infer-
ence must become something mechanical to develop strongly, as a tree to be-
come high must lignify its juices. In this sense Frege develops the ideas of 
Leibniz about a characteristica universalis and a calculus ratiocinator (as he ex-
plicitly says in the Introduction to his Begriffschrift).  

B. Some people have argued in favour of a scientific and formal1 logic, which does 
capture the essence of mathematics, namely its justificative aspects as well its 
creative features (Aristotle, Leibniz, Couturat, Hilbert,1 Gentzen, Hintikka). For 
example, the difference between Frege and Leibniz consists mainly in the fact 
that for Leibniz formal logic concerns also the discovery of new results: for the 
latter logic is useful “not only for judging what is proposed but also for discov-
ering what is hidden” (Leibniz, 1965, VII, p. 523, letter to G. Wagner, 1696). 
The formal method is a mechanical substitute of thought, insofar it “discharges 
imagination”.  

C. Many scholars distinguish between a scientific logic, which generally is formal1 
(but has also some of the other features), and a natural logic, which goes beyond 
all aspects of formality (Descartes, Frege, Peirce, Dedekind). Some have also 
tried to study the natural logic, as a distinct “discipline” from formal1,2 logic; 
they have investigated both the origin of mathematical ideas (Dedekind) as well 
as the features of mathematical discovery (Plato, Descartes, Peirce, Poincaré, 
Polya, Lakatos, Hintikka and Remes). For example, Descartes illustrates the 
needs of a new logic of discovery (see Barbin, 1988) which cannot be embodied 
any longer in the formal1 logic of Scholastics: the Aristotelian logicians “cannot 
skilfully form a syllogism, which entails the truth, if they have not previously 
had its matter, that is, if they have not already known in advance that very truth 
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which is deduced in it” (Descartes, 1998, p. 47, Regulae ad directionem ingenii, 
Regula X). The Aristotelian logic is “useless for investigating the truth of things, 
but it can only be useful for exposing to the others the reasons which are already 
known, hence it must be shifted from philosophy to rhetoric” (p. 47, here 
the form2 aspect is stressed more). To ascend to the top of human knowledge 
people need a new logic (Regula II). The new logic has roots different 
from Aristotle and Euclid, in particular is not formal1,2, but based on the intui-
tive grasping of ideas and elementary facts; in fact it goes back to Pappus and 
Diophantus (Regula IV), namely to the so-called analytic method.  

 
The same root, namely the analytic method of Pappus, is invoked by many people 
who pursue anti-formalistic issues. For example, the last chapter of Lakatos’ Dis-
sertation at Cambridge (1961) is devoted to the method of analysis-synthesis, as 
well as an address at a Conference in Finland (1973), in reply to a paper of  
Hintikka on the subject (all together, they constitute chapter 5 of Lakatos, 1978). 
Lakatos uses Pappus’ and Proclos’ definition of analysis to describe the process of 
discovery in mathematics, in particular that of criticising proofs and improving 
conjectures (Lakatos, 1976, pp. 9 and 75). The method, that Lakatos calls thought-
experiment or quasi-experiment (from Szabo, 1958), consists in decomposing “the 
original conjecture into sub conjectures or lemmas, thus embedding it in a possible 
quite distant body of knowledge” (Szabo, 1958.).  
 Polya (1954, 1990) rephrases Pappus’ method (he was called a second Pappus 
by Hintikka and Remes): for him analysis is not a method upon which one can 
build up criticism to the formal way mathematical truths are presented in books 
after Euclid, namely with “finality-certainty requirements [which] survive in 
mathematics until today as the requirement of necessary and sufficient conditions” 
(from Lakatos, 1978, p. 75). Instead, it is an auxiliary method, which helps in 
building up the rigorous formal proof: it helps in generating “a better understand-
ing of the mental operations which typically are useful to solve problems” (p. 75.), 
and as such it is introduced as a useful pedagogical tool. 

Formal and Informal Mathematics 

In the historical development of ideas about proof in this century, Hilbert is crucial, 
insofar as his position, known as (a variety of) formalism, is a landmark in the his-
tory of logic and moreover his claims are the target of many people akin to quasi-
empirical or anti-formalistic positions (e.g., Lakatos).2 “Formalism denies that 
mathematics is knowledge of some reality, and claims that is more akin to a deduc-
tive activity. There are many variants of formalism. … Hilbert’s formalism was a 
shrewd position: for him the presentation of theories as formal systems was only a 
technical move to allow the use of formal tools of mathematical logic to prove their 
consistency. Notwithstanding the failure of Hilbert’s program, by his authority 
most mathematicians became convinced that his approach (or, loosely, formalism) 
was the right mathematically acceptable foundations (which anyway is another 
matter than practice)” (Lolli, 2000, p. 15). This conviction was at the origin of a 
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comedy of errors, according to which formalism would say that mathematical prac-
tice is formal (in the sense 1 and 2): and many times the criticism of anti formalists, 
in particular that of Lakatos, was against this last claim. Hilbert asserted only the 
possibility of a technical translation of such a practice into suitable formal systems. 
In fact, Hilbert, as well as Frege, faced the problem of the relationships between 
proofs, that is conceptual proofs with a semantic content, as usual in mathematical 
practice, and derivations, that is syntactic objects of some formal system.  
 Let us give a very well known example, to illustrate the situation; namely, con-
sider the sentence that prime numbers are infinite and contrast:  

i. the proof given by Euclid (Book IX, Proposition 20; see Heath, 1956);  
ii. the proof given by Euler (see Ribenboim, 1988, chap. 1);  
iii. proofs given in books of analytic number theory (for an example see  

Rademacher, 1964);  
iv. its derivation in a formalised version of Peano arithmetic (e.g., as in Schütte, 

1977, chap. VII). 

If one tries to translate proofs (i), (ii), (iii) into some formal system, one must face 
increasing difficulties. For example, the notion of finite cannot be fully captured 
within systems of arithmetic using first order predicate language (because of 
Lowenheim-Skolem theorems, which imply the non categoricity in power of the 
models of the theory): so there is a derivation within Peano arithmetic which mim-
ics proof (i), but its semantic counterpart requires some reflection (for example to 
formalise everything within set theory and to use it as a basic theory to found 
arithmetic, but this makes the derivation very far from the original Euclid proof). 
Proof (ii) requires many translations of new concepts within arithmetic (for exam-
ple the notion of rationals, of infinite sum, of its convergence), so that the deriva-
tion becomes involved and very far from the original proof of Euler; proof 
(iii) poses more problems, as all proofs which are not elementary (Hilbert called 
them impure): in fact, to formalise analysis one must introduce more powerful  
machinery, which again makes the derivation in (iii) far from the original proof.  
On the other hand, the relationships between formal systems, let us say of  
Peano arithmetic and analysis, may be investigated with logical machinery. The  
so-called conservativity results allow us to investigate when, given a derivation of 
an arithmetic statement within analysis (that is by impure methods), there also  
exists a derivation within elementary arithmetic (even if one does not always know 
how to produce it). This is a truism for the Euclid proposition, but it is not always 
so: for example the fundamental theorem on prime numbers (the number of primes 
up to N is asymptotically of the same order as N/logN) had an impure proof in 
1896 by de la Vallée Poussin and only in 1949 an elementary proof was found by 
Erdös and Selberg (see Ribenboim, 1988). 
 The example illustrates the differences between proofs and derivations. At this 
point of the discussion, a precise definition of what is a proof is not possible:3 it is 
possible to enumerate its functions4 or to investigate its epistemic contribution to the 
validity of mathematical sentences,5 but only at an informal level. On the contrary, it 
is possible to give a precise definition of a derivation within a formal system (gener-
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ally as a finite sequence of sentences of its language, each obtained from the previous 
ones or from the axioms of the system by means of precise deduction rules). 
 As Rav points out, “the relation between proofs and derivations is in a limited 
sense analogous to the relation between the non-technical term of effectively com-
putable function and the technical term of partially recursive function” (Rav, 1999, 
p. 11). In the latter case, the adequacy between the two notions is assured by the 
so-called Church Thesis. Is there an analogous bridge between proofs and deriva-
tions? (the terminology is from Rav). Hilbert thought in the affirmative; his claim 
was that, not only every formal derivation can be seen as a proof (soundness of the 
formal system with respect to mathematical reasoning: the derivation can seem far 
from human reasoning, but at the end one must recognise it as a proof), but also 
every proof is represented by a formal derivation within a suitable formal system 
(completeness): in other words, formal derivations capture the human reasoning, at 
least indirectly. In fact, as we have seen, the derivation may be very far from the 
original proof and from its ideas; sometimes it can be so far that it should be im-
possible to make the reverse way, namely to restore the original proof from the 
derivation self.  

Anti-Formalistic Criticism 

It is well known that Hilbert’s programme failed when Gödel proved his incom-
pleteness theorems: in fact, for any formal system which formalises some piece P 
of mathematics (containing at least some part of arithmetic), there are statements in 
the language of P, that are mathematically meaningful but are also undecidable 
(namely neither the statement nor its negation is provable in the system). 
 Now, the main criticism of anti-formalists, in particular of quasi-empiricists, is 
to challenge the bridge between proofs and derivations and to deny the interest of 
the latter and sometimes of the former. To support their argument, they generally 
invoke Gödel theorems and the failure of Hilbert’s programme; say that the formal 
aspects (generally form1 and form2) do not concern proofs; what is important con-
sists in the informal aspects of genuine proving processes of mathematicians. Em-
phasis is on the different epistemic functions and semantic features of proofs which 
are not incorporated in derivations, which for such a reason become uninteresting.  
 Here are some typical examples of their arguments:  

• Lakatos underlines that the dialectic between conjectures and refutations is es-
sential to the never-terminating genesis of proofs but is missing in the crystal-
lised formal derivations according to the Euclidean style.  

• Other people attack derivations (but generally they do not distinguish them from 
proofs) insofaras they do not convince of the truth of what they prove: they are 
not feasible, not holistic, nor surveyable and so on (for an extreme position, see 
Horgan, 1993). 

The conclusion is sometimes that (not only derivation but) the same process of 
proof is not interesting and needs deep revision (Kolata, 1976). This has been 
stressed by influential scientific journalists as well as by mathematicians: Horgan 
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(1993) says that Wiles proof of Fermat’s last theorem was a “splendid anachro-
nism,” while Zeilberger (1993) says that the age of semi-rigorous mathematical 
culture and of theorems which are “probably true” is coming.6 
 The manifesto of people arguing against the proof can be sketched as follows: 

i. derivations and proofs (generally confused together) are useless for grasping 
mathematical truths; 

ii. formalistic aspects are not relevant for genuine mathematical practice; on the 
contrary, this has an intuitive character which is lost if one shifts to the formal; 
possibly only reasons of communication are at the root of the final products of 
mathematicians structured according to semi-formal2 standards; 

iii. the nature of mathematics is essentially empiric:7 “trial and error procedures, 
conjectures and refutations, searches with computers, quasi-experimental meth-
ods are sufficient to establish mathematical results … the main consequence of 
the empiricists’ outlook is that mathematics is mutilated with the elimination of 
proofs … at best, proofs are seen as part of a falsificationist procedure, a Pop-
perian conjectures-and-refutations strategy, as in Lakatos” (Lolli, 2000, p. 14); 

iv. Gödel’s theorems show the uselessness of formalisation. 

Let us discuss such claims. First of all, the distinction between proofs and deriva-
tions is fundamental, as it is important to remember that proof theory is a branch of 
logic which studies derivations as mathematical structures (as indicated by Hil-
bert). The study of proofs requires different methodologies, even if the results of 
the former discipline may be interesting for the latter. If one has not clarified this 
distinction, it is easy to throw away the baby with the water. “The usual proof gen-
erated by a mathematician does not involve the careful application of a specifically 
formalised rule of inference, but rather involves a somewhat large jump from 
statement to statement based on formal technique and on intuitions about the sub-
ject matter at hand” (Arbib, 1990, p. 55). Hence the problem is how to analyse such 
large jumps from a chunk of mathematics to another. To do that, it is necessary to 
discuss briefly the notion of logical consequence.  

THE NOTION OF LOGICAL CONSEQUENCE8 

Lolli (2000, p. 54) with arguments similar to those of Arbib, points out that “to 
expose, or to find, a proof people certainly argue, in various ways, discursive or 
pictorial, possibly resorting to rhetorical expedients, with all the resources of con-
versation, but with a special aim which is foreign to the lawyer, that of letting the 
interlocutor see a certain pattern, a series of links connecting chunks of knowledge. 
The chunks may be more or less large, according to the mathematical sophistica-
tion of the discussants. The links are logical … A logical link is not a small 
step corresponding to some rule, but the subsistence of the relation of logical  
consequence”. 
 This notion was given by mathematicians (Pasch, Poincaré, Hilbert, Enriques, 
Peano) at the turning of the century: they said more or less that every theorem is a 
statement B for which there is another statement A (generally a conjunction of 
statements, which possibly are among the axioms of some theory), such that B is a 
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logical consequence of A (which we can write “A→B,” where the arrow has only 
an iconical function and does not mean formal implication). Another way of saying 
that is that A→B is “logically true”. “Logically true means ‘true under any inter-
pretation whatsoever’” (Lolli, 200, p. 54.): that is in whichever way the relation-
ships, functions, etc. of the statement A→B are interpreted (e.g., within set theory 
or a system of objects or also a translation of a language into another), each time 
that A is satisfied in that structure then also B is satisfied.9 This same notion of  
theoremhood used informally by mathematicians has been taken and investigated 
by logicians. It is precisely in this sense that mathematics is formal3: in fact our 
definition of logical consequence gives a reason why the mathematical statements 
hold. In this sense, it is certainly true that they are timeless truths very different 
from empirical ones. 
 A statement B can be a theorem only relative to some theory; it is senseless to 
say that it is a theorem (or a truth) in itself: even a proposition like “2+2=4” is a 
theorem in a theory A (e.g., some fragment of arithmetic). 
 The activity of proving made by mathematicians consists in entering into the 
relationship A→B and for doing that they argue: “in trying to understand the au-
thor’s claim, one picks up paper and pencil and tries to fill up the gaps; after some 
reflection on the background theory, the meaning of the terms and using one’s gen-
eral knowledge of the topic, including eventually some symbol manipulation, one 
sees a path from A to A1, from A1 to A2, …, and finally from An to B. This analy-
sis can be written schematically as follows: 

A→A1, A1→A2,......, An→B. 

Explaining the structure of the argument to a student or non-specialist, the other 
may still fail to see why, for instance A1 ought follow from A. So again we inter-
polate A→A′, A′→A1. But the process of interpolations for a given claim has no 
theoretical upper bound. In other words, how far has one to analyse a claim of the 
form ‘from property A, B follows’ before assenting it depends on the agent”. 
A similar picture is given in Polya (1954, 1990), where he points out the non linear 
and multi-directional features of this process.  
 This is the basis for the following definition of proof (see Lolli, 2000): A proof 
is an ordered set of statements of the form Ai→Ai+1, which are linked by transitiv-
ity. There is only one rule: write Ai→Ai+1, whenever Ai+1 is a logical conse-
quence of Ai. The set may have a linear order, but also more complex types of 
order, like the observations of Polya stress (see Arzarello et al., 1999). 
 The real problem consists in the fact that the relationship of logical consequence 
is undecidable. That is, there does not exist any machine like that dreamed of by 
Leibniz, which can compute for any statement A→B, if this is logically true or not. 
Hence the mathematicians look for good reasons why a statement like A→B holds, 
or not, and this job requires ingenuity. These reasons constitute the proof: “the 
proof is nothing more than a decomposition of the consequence relation in a chain 
of instances of the same relation (granted transitivity) which are easier to see, until 
people agree that they see them”. In other words a proof is a discourse, which can 
refer to every possible chunk of mathematical knowledge that the agent(s) think 
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useful and productive for ascertaining that B is indeed a consequence of A. Proving 
is a dialogic process of the subject with an interlocutor (possibly virtual): this has 
important consequences for the didactics of proof (see: Balacheff, 1988; Duval, 
1992).  
 It is clear that a priori a proof has no finitary character: it is not necessarily a 
finite object. This point must be discussed briefly with respect to two basic  
results of logic, both due to Gödel, namely the completeness and the incomplete-
ness theorems.10 
 Because of the former, for each proof of A→B there is a derivation of the same 
statement, that is a finitary object (see the definition of derivation at p. 51 of this 
chapter) which “proves” formally A→B within a formal system. As we have un-
derlined, this does not mean that the formal proof corresponds verbatim to the in-
formal one (even it may be so in many cases). Moreover, the finiteness of the 
derivation is such in line of principle; in concrete cases the length of the derivation 
would be enormous, hence the derivation would not be perspicuous, surveyable, 
elegant, etc., properties which mathematicians like the best in their informal proofs. 
 Because of the latter, the mathematical truths can be only approximated step by 
step by the finitary means of formal systems. As Rav says: “There is no theoretical 
reason to warrant the belief that one ought to arrive at an atomic claim C⇒D which 
does not allow or necessitate any further justifying steps between C and D. This is 
one of the reasons for considering proofs as infinitary objects. Both Brouwer and 
Zermelo, each for different reasons, stressed the infinitary character of proofs”. As 
Rav observes, it was Kreisel (1970, footnote 22, p. 511) who pointed out that 
“properly interpreted, Gödel’s theorems can be used to support this insight [that 
proofs are of infinite character], just as they are used to refute  
Hilbert’s assumption that finite formal derivations reflect faithfully the structure of 
mathematical reasoning”.11 
 The first consequence of such an analysis is of a didactical nature. In fact, our 
discussion shows that the conditionality of statements characterises the same proc-
ess of proof and that to prove a conditional statement one must enter into an infini-
tary game of interpretation (see also note 15 below). Hence a major problem in the 
class becomes the generation of conditionality and the transition to proving proc-
esses. For further elaboration about that, see Arzarello et al. (1999), Boero et al. 
(1999), and their chapter in this book. 
 The second consequence is a radical criticism of those who claim the useless-
ness of proof. 

A RADICAL CRITICISM TO QUASI-EMPIRICISTS (AND OTHERS)  

Let us remember the headlines of the anti-proof manifesto: 

i. derivations (proofs) are useless for grasping mathematical truths; 
ii. formalistic aspects are not relevant for genuine mathematical practice (possibly 

except communication); 
iii. the nature of mathematics is (quasi-)empiric; 
iv. Gödel’s theorems show the uselessness of formalisation. 
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The previous technical discussion has put forward the following points: 

i. distinction between proofs and derivations; 
ii. proofs concern assertions like “B is a logical consequence of A,” where form3 is 

crucial (form1, form2 are not so pertinent); 
iii. proofs as such are infinitary objects, which concern the undecidable relationship 

of logical consequence: hence it is necessary to look for perspicuous proofs. 

Critical consequences: 

1. the argument (iv) is false: in fact (c) is the theoretical basis which gives sense to 
the process of continuous research of proofs made by mathematicians.12 

2. (ii) is false, because of (b): proofs are formal3; assertion (ii) is based on other 
notions of formal (namely formal1, formal2), which do not capture the genuine 
mathematical notion. In fact proofs have a lot of functions (see note 2): it is an 
ill posed problem to investigate if these belong also to derivations: derivations 
are another thing from proofs and can be used essentially to study a mathemati-
cal counterpart of proofs; the connections between the two worlds are very 
complex (see: completeness–incompleteness).  

3. Claim (i) can be accepted in a weak form, that is only restricted to derivations 
and with some proviso. It is certainly true that a proof gives meaning to a 
mathematical statement, putting it into the network of mathematical knowledge. 
The points (b)+(c) show that there is no previous crystallised form of entering 
into the interpretive process of producing an assertion like A⇒B and to prove it. 
All heuristics are good! The point is that a proof has not the aim of convincing 
but of entering in one (or more) perspicuous way(s) into the formal3 reasons 
why such a logical consequence is valid. Convincing is not to be one of the 
functions of the proof (see note 2). This is a crucial point for the didactic of 
proof, pointed out by Balacheff (1982).13 Some people seem not to be always 
aware of that; for example they compare proofs with legal arguments, and seem 
to forget the essentially different epistemic values of statements in the two fields 
(see Alchourron and Martino, 1987). On the contrary, the (different levels 
of) form2 aspects are important in the communication process, according to a 
complex pattern of interaction among mathematicians, which has been described 
in a fascinating way in Thurston (1994). Moreover, one must not forget the main 
point, discussed above: the completeness theorem, which assures that the se-
mantic notion of logical consequence makes sense, is provable because deriva-
tions exist. Paradoxically, we do not need derivations because, using them, we 
have proved that informal proofs are enough. 

4. Claim (iii) is contradicted by facts.14 Our previous discussion and particularly 
sentences under (b) and (c) show that the essence of mathematical practice con-
sists in conjecturing and proving statements of the form A Æ B, namely in pur-
suing suitable hypotheses and reasons for the so-called mathematical truths 
(whose origin may be very variegate, also from empirical facts).  

The game of hypothesis and of interpretation which features mathematical re-
search15 has a completely different dynamic than that described by Lakatos and his 



FERDINANDO ARZARELLO 

52 

supporters (see Boero et al., 1999). The proof whose death has been announced in a 
big rumour some years ago (Horgan, 1993) is not the proof but some virtual crea-
ture, a pale imitation of real proofs. The examples in papers of Rav (1999) and 
Lolli (1985, 2000) and the increasing numbers of proofs published each year 
in the scientific magazines give both theoretical and experimental support to this 
observation.  
 The main consequence of the above discussion is that if one’s concern is the 
teaching of mathematics, one must teach proofs, as it is also argued widely in the 
contribution by Hanna. The reason is not because one wants students to mimic 
what professional mathematicians do, but because under the list of the functions of 
proof (note 2) one finds many of the headlines of a reasonable agenda for the learn-
ing of mathematics (from computations to powerful ideas, through problem solv-
ing). Our epistemological analysis gives a solid basis to the proof as a crucial 
activity within mathematical practice, putting also in the right perspective its con-
nections with the formal systems, which are studied by logicians. In fact, our foun-
dational basis is different from Lakatos’ claim that mathematics is purely 
conjectural.16 “Mathematical knowledge is cohesively soldered thanks to the meth-
odological and logical components of proofs. Proofs as we know them are the heart 
of mathematics, the generators, bearers, and guarantors (modulo collective verifi-
cations) of mathematical knowledge” (Rav, 1999, p. 31). The didactical analysis 
made in the contribution by Boero et al. (Boero et al., 1997), shows the essential 
role of proof within the didactics of mathematics, as a route to theoretical thought 
in the students. 
 But if our epistemological discussion and the contributions by Hanna and Boero 
in this volume show the opportunity of teaching the proof, it leaves open the ques-
tion of what it means to teach proof in the class, which implies the necessity of 
considering the problem from a didactical and a cognitive perspective. 
 The chapter by Boero et al., answers this question within our epistemological 
framework. However, it is still necessary to discuss here two general points, which 
are of interest when approaching proof in the class. 
 First, which is the role of derivations in the didactics of proof ? In fact, if it is 
true that they are very different from proofs, in many elementary cases there is an 
isomorphism between proofs and derivations. In such cases the use of a suitable 
formalism could help students in understanding the meaning of what they are prov-
ing. In fact, as is well known,17 the capability of using a suitable symbolism can 
help and support students in their way to understanding mathematics, provided that 
the symbolism is acquired through suitable experiences which do not prune its se-
mantic counterpart.18 
 Second, which is the role that perception can play in the game of hypothesis and 
interpretation, within which pupils build up their proofs?  
 Such questions are particularly interesting nowadays, when the new technolo-
gies allow one to tackle them with fresh and promising ideas. These points will 
be elaborated in subsequent chapters, where the discussion will also face some 
cognitive problems.  
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THE MACHINE AS A METAPHOR AND AS A REAL OBJECT 

Approaching proofs, the notion of logical consequence is basic,19 but it is difficult 
to grasp and to communicate it, even in the long run (see for example, the discus-
sions in Harel and Sowder, 1998). In fact it has no ostensive20 counterpart (except 
possibly in mathematical logic21). This may explain its substitutes, which we find 
both at epistemological and at didactical level, namely the rhetorical form2 
as well as the syntactic form1, which both can be based on some language of  
representation and manipulations (for example that of mathematical logic, or the 
double columns proofs used in some schools). Didactics of proof based on such 
“shifted” meanings can be dangerous in the long run, as Duval (1992) and Mariotti 
(1996) have pointed out. As appears in their experimentations, a possible way to 
create a didactic situation suitable for proof is to introduce in the class some kind 
of ostensives to interpret and manipulate,22 which are meaningful for the students.  
 In this chapter I shall discuss briefly how the computer can give some help for 
teaching proofs in the class. 
 A major question is: how are computers linked with proofs? Here are some pos-
sible answers: 

i. Each derivation within a formal system is a computation and vice versa;23 that 
is, a derivation can be represented by a program (and conversely, each program 
is a derivation). 

ii. Like there is a complex relationship between proofs and derivations, so there is 
an analogous correspondence between algorithms and programs.24 

iii. Computers allow students to access and manipulate specific ostensives concern-
ing proofs.25 

iv. The interactions students–computers in the context of proof (e.g., in software for 
dynamical geometry26) may facilitate the generation of dynamic ways of reason-
ing, that is of those transformational schemes which are so important for devel-
oping mathematical reasoning abilities (see: Simon, 1996; Harel & Sowder, 
1998 and Harel’s contribution in this volume). 

v. The interaction students–computers entails the perceptual level in a massive 
way, hence opening new routes to theoretical knowledge within a concrete envi-
ronment, which is meaningful for the student. 

One of the reasons why the computer is so intriguing in the didactics of proof is 
that it can be used as a cultural artefact (see Saxe, 1992, 1994) which mediates in a 
“natural” way the problem of coding. Hence it puts on the table some relevant 
questions, which risk remaining hidden, when looking exclusively at proofs. As we 
have seen discussing the bridge between proofs and derivations, coding makes 
things mathematically precise but sometimes anti-intuitive: this contradiction is 
one of the main features when switching back and forth from proofs to derivations 
or from algorithms to programs. To solve a problem in a feasible way,27 both the 
generation of an algorithm and its implementation with a program are required. 
The dynamic is similar to the proving strategies: finding an algorithm is a particu-
lar case of finding a proof (see note 24). In fact, people describe both with the same 
words. For example, a key point is given by the so-called “strategic moves”: see 
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for example the concept of pivot in Leron (1985) for the proofs and that of strategic 
moves within the generation of algorithms in Arzarello et al. (1993).  
 A second key point is the interplay between the two types of languages that en-
ter in the game, when thinking algorithmically.28 Namely, that of the problem 
where one has (a more direct representation of) the involved objects (for example, 
numbers, graphs, and so on) and that of pseudo-programs. That is a general lan-
guage of programs (not yet a specific language), within which one generally writes 
down algorithms and that will be the starting point for writing a concrete program 
within a specific language.29 At a first glance, the language of objects has a more 
semantic nature, whilst in that of programs the syntactic aspects prevail: the inter-
play between the two is complex, since they are not isomorphic. But a general 
point which concerns us is the following: the above interplay does not happen in 
two steps, namely first there are the strategic moves and then their translation into 
the general language of programs; the two are both alive from the very beginning 
and the one deeply influences the other. It is the cognitive and epistemological na-
ture of this interplay (see Arzarello et al., 1993) which makes possible and visible a 
game of settings, in the sense of Douady (1991), and that can have positive conse-
quences for the learning of mathematics.  
 Summarising, one can say: 

1. for algorithms the general language of programs as well the computer upon 
which one imagines to make dry runs naturally mediate amongst  the problem, 
students’ knowledge and the algorithm to find; that is, they can support the stu-
dents cognitively, while scaffolding the idea-pivot upon which to develop the 
algorithm and successively the program. One can assert that such an environ-
ment may create suitable fields of experience (in the terminology of Boero et al., 
1995) as well as didactic space-time of production and communication (SP in 
short, see Arzarello et al., 1995).  

2. For proofs, no natural mediator seems to exist at first glance: the researches of 
Boero and his school are concerned exactly with the problem of finding suitable 
fields of experience for the teaching of proof: the problem is discussed in his 
contribution to the volume. In what follows, I shall elaborate some complemen-
tary idea, focusing on the possibility of using the computer as a possible source 
of fields of experiences or SP30 and as a suitable mediator within them. There 
are practical and theoretical reasons for this. Practically, the process has already 
begun: symbolic manipulators as well as dynamic software for geometry 
are forcing all teachers to approach mathematics within these new technological 
environments. Theoretically, the computer, as a universal interpreter, incorpo-
rates the abstract notion of algorithm-derivation and, as a cultural artefact, 
makes accessible:  

i. ostensives concerning the abstract notion of logical consequence;  
ii. perceptual objects which with their dynamicity are ostensives for the same 

notion of ‘generic’ and ‘general’ object,31 which is crucial in the transition of 
students from empirical to theoretical arguments.   
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I shall sketch only the last points. First some comments about the fact that a com-
puter incorporates algorithms-derivations. The revolution of computers has fasci-
nating technological and mathematical roots, namely transistors, microcircuits and 
the idea of a universal interpreter. Roughly speaking, the latter means that one does 
not need different machines, one for each type of task; in fact, there exists a ma-
chine that can mimic every other machine. This is possible via the representation of 
algorithms and machines themselves through programs (in some language): be-
cause of this, one can code each program say with a number, and build an algo-
rithm that can de-code such a number, get the real program and execute it 
(universal interpreter). This conceptual revolution was made by Turing in 1937 
(see Hodges, 1983), when he invented the (virtual) machine which has his name. 
The physical revolution was realised with programmable computers: a PC is noth-
ing more than a concrete universal machine, which accomplishes its task more or 
less efficiently, according to its technological sophistication.  
 The idea that a machine incorporates some piece of abstract mathematics is very 
old. For Greek geometry, (ideal) ruler and compass incorporate the meaning of 
geometric constructions, of which many propositions of Euclid constitute the ab-
stract and discursive counterpart. Descartes invented a new (ideal) machine (see 
Figure 1) for drawing curves:32 it incorporated a wider abstract notion of geometric 
object (namely, that of algebraic curve), whose discursive counterpart are the ma-
nipulations on the algebraic equations, that is the new ostensives of such objects.33 

 

Figure 1 

Before Turing revolution, the machines incorporated some mathematical and ab-
stract ideas, but proofs were outside them.34 With Turing a piece of hardware 
(namely a specific machine) could be interpreted also as a piece of software 
(namely a program): via coding, every machine could become the input of another 
machine (the universal interpreter). Hence proofs could enter the machines as pro-
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grams, in the same way as they could be translated into derivations. As a conse-
quence, proofs (or at least derivations) are no longer outside the machines. The 
personal computer that I am using to type this manuscript incorporates also 
mathematical derivations (hence, indirectly, proofs).35 But this is not so explicit at 
a first glance. Some specific software is required that makes this visible, so that the 
instructions corresponding to the axioms of a theory become explicit. This has been 
realised at different levels by software like Sketchpad, Cabri, Cabri-Euclid (see 
Luengo, 1997), GEX (see Gao, 1998). Some examples that are in Chapter 15 show 
a concrete didactical translation of this idea. 

PERCEPTION AND PROOF 

Let us now discuss the interplay between perceptual and conceptual features in 
proofs, particularly in geometry. The problem has been studied by many people in 
the far and near past and has recently been discussed in Otte (1999): “Mathematical 
perception depends on representations. This implies that mathematics deals with 
intensional objects. … For instance, in Cabri-geometry two triangles which seem to 
be completely the same (or congruent) may behave differently when being pulled 
around, because they have been constructed in different ways (they are intension-
ally different). [But] Mathematics is interested in truths about real objects and 
therefore is fundamentally interested in extensionality. … [It] depends on ostensive 
demonstration and indexicality and thus, like any empirical science, once more on 
perception”. According to Otte, it has been our humanistic and philosophic culture 
which has pointed out the prevailing role of the language in mathematics, namely 
its discursive aspects, underestimating its intuitive and perceptive aspects.36 
 On the contrary, as we have seen, the mathematics develops through “large 
jumps from statement to statement based on formal technique and on intuitions 
about the subject matter at hand” (p. 7), namely the game of hypothesis and prov-
ing goes on through a dialectic between formal and perceptual or observational 
facts (or anything else that, within the intended matter, can help in that moment to 
make the large jump). Among the heuristics used by mathematicians many times 
the visual and perceptual aspects are crucial, as has been very well known for a 
long time (a detailed discussion concerning Euclidean geometry is made in Arsac, 
1998; see also his contribution to this volume). 
 But modern technology also points out other aspects where perception is in-
volved: for example the interaction between subjects and the figures at the com-
puter screen through a mouse within an environment for dynamic geometry 
involves not only vision but also motion and tactile senses. So the interplay be-
tween the activity of conceptualisation, proving etc. and perception becomes more 
complex and intriguing. As Otte (1999) underlines, “the function of the logical 
development of mathematical concepts … consists above all in transforming a dy-
namic blend, a chaotic motion of activities and temporal processes, into images or 
forms which can be examined”. The books by Jakobs (1990) and Berthoz (1997) 
and the project Geometry Cognition (see Longo et al., 1999) give some examples 
of this type of analysis. 
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 This approach seems very promising both from an epistemological and from a 
practical point of view. A concrete worked-out example is given in the contribution 
of my group to this volume. The focus on the relationships between perception (in 
a wide sense), cognition and mathematical concepts, which is now entering the 
didactics of mathematics, underlines a new line of research, which still needs theo-
retical analysis and experimental research.37 

NOTES 
1 The position of Hilbert is particular (see § 1.2): for him symbolism does not coincide with mathemati-

cal thinking; it is only a representation through a code, which in its turn can be studied mathemati-
cally (for a wide discussion see Lolli, 1987). 

2 The different epistemological positions concerning mathematics (see: Benacerraf and Putnam, 1964; 
Schirn, 1998) are usually divided into Platonism (Gödel), Logicism (Frege), Formalism (Hilbert),  
Constructivism (Brouwer), Empiricism (Lakatos), Naturalism (Quine). In the debate within the di-
dactics of mathematics there is much discussion, particularly about Formalism and Empiricism, 
above all for the relative success of Lakatos’ thesis (see Ernest, 1994).  

3 Rav (1999, p. 13) proposes the following definition, which we accept as a working hypothesis: “Proofs 
are the mathematician’s way to display the mathematical machinery for solving problems and to jus-
tify that a proposed solution to a problem is indeed a solution”; for more a technical definition, see 
p. 8. 

4 Lolli (2000) enumerates the following functions of proof and says that the list is not exhaustive: 
“avoiding or replacing computations, controlling instruments, anticipating outcomes of experiments, 
prevision, economy of thought and of memory, reliability through visualisation, suggesting generali-
sations, generalising, explanation (through axioms or by subsuming under a general case), transport-
ability, correctness of algorithms, problem solving, extracting algorithms, constructing figures, 
making life easier, having fun, showing impossibility, disproving, finding counterexamples, invent-
ing concepts, conceptual analysis, refining and correcting intuition, validating intuition”. 

5 Rav (1999, p. 20), observes: “The whole arsenal of mathematical methodologies, concepts, strategies, 
and techniques for solving problems, the establishment of connections between theories, the sys-
tematisation of results—the entire mathematical know-how is embedded in proofs. … Theorems in-
dicate the subject matter, summarise major points, and as every research mathematician knows, they 
are usually formulated after a proof-strategy was developed, after innovative ideas were elaborated 
in the process of ‘tossing ideas around’. Proofs are for the mathematician what experimental proce-
dures are for the experimental scientist: in studying them one learns of new ideas, new concepts, 
new strategies. … Think of proofs as a network of roads in a public transportation system, and re-
gard statements of theorems as bus stops; the site of the stops is just a matter of convenience”.  

6 For a discussion of this point and particularly of misunderstandings concerning probabilistic algo-
rithms see Rav (1999); for more discussion see also: Andrews (1994), Kranz (1994), Thurston 
(1994). 

7 On quasi-empiricism and antiformalistic trend see: Hersh (1979), Davis and Hersh (1981), Feferman 
(1981), Lolli (1985), Tymoczko (1986). 

8 I am deeply indebted to G. Lolli for the elaboration of this chapter. 
9 As a simple example, consider the statements of groups. To say that the statement B=“the inverse of 

an element is unique” is a theorem means to show that in every system of objects that satisfy the 
axioms A for groups also the statement B is satisfied (and this is achieved by making some computa-
tions, possible within that system of objects, since it satisfies the axioms for groups).  

10 Roughly speaking: 
• The former says that whenever A→B is logically true, then there is a derivation of it within a 

logical system for predicate logic. 
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• The second (at least one of the versions of the so-called first incompleteness theorem, see also p. 
5) says that arithmetical truths (namely statements of arithmetic which are satisfied by the system 
of natural numbers) cannot all be obtained as theorems within any formal theory of numbers. 
This result applies to a lot of mathematical structures. 

11 Kreisel quotes the following papers as a source of the idea that proofs are infinitary: Brouwer (1927), 
footnote 8; Zermelo (1935), p. 145. 

12 This continuous elaboration is complex and does not fit with the picture given in Lakatos (1967); in 
fact it happens at two levels:  
• First, within a theoretical context, by seeking new ideas for simpler and more perspicuous proofs 

of some statement. This may also cause the search for new and deeper definitions of the mathe-
matical objects involved in the statement. At a certain point the crystallisation within the theory is 
reached and a proof of that statement is acquired in a definitive way. That is, the process of ap-
proximation of the infinitary aspects of proofs comes to an end (at least within that theoretical 
context). 

• Second, at the level of theoretical contexts and theories, which can be changed because of more 
general theoretical reasons. As an example think of the three different proofs of the infinity of 
primes: each points out some relevant reason why such a statement holds, within different 
mathematical contexts.  

13 Especially when an approach is pursued, which is based on the so-called “scientific debate” in the 
class: see the discussion in the last part of the chapter and Alibert and Thomas (1991). 

14 This point is discussed in detail in Arzarello (1992).  
15 I take the expression “game of hypothesis” from Ferrari (1992), who uses it in the context of proof, 

and the expression “game of interpretation” from Arzarello et al. (1995), who discuss the semiotic 
process of interpretation within an algebraic context; for an example of semiotic interpretation 
within the context of proof, see Duval (1992). 

16 Our analysis shows also the weakness of the notion of heuristic falsifier (apart the unclear way in 
which Lakatos defines it, see Lakatos, 1967): since the picture of a dialectic between proofs and 
derivations is not genuine, since only the proving process is essential in mathematics, the idea of a 
heuristic falsifier loses its interest. In fact, heuristic falsifiers live within the concrete process of 
proof; generally, they mean the necessity of deepening the analysis in a more rigorous way, for ex-
ample changing the definitions of the mathematical objects involved (like in the well-known exam-
ples on polyhedra or uniform continuity, illustrated in Lakatos, 1976) or even changing the theory of 
reference (the story of the Last Fermat Theorem illustrates this widely: see Aczel, 1998).  

17 G. Hanna writes (Hanna, 1991, p. 61): “Formalism should not be seen as a side issue, but as an impor-
tant tool for clarification, validation and understanding. When a need for justification is felt, and 
when this need can be met with an appropriate degree of rigour, learning will be greatly enhanced”. 

18 A typical example is the language of algebra: in fact any algebraic computation is a derivation—
possibly a meaningful proof—within a formal system, for example the theory of fields. 

19 It is the mathematical counterpart of what Boero et al. (1997) call the theoretical sense of mathemat-
ics; some other people say simply that this means to know why mathematical sentences are true: see 
Dreyfus (1996). 

20 The notion of ostensive is discussed widely in Chevallard et al. (1997). 
21 Compare the situation for proofs and mathematical logic with that for numbers and algebra: our dis-

cussion above shows that mathematical logic is not for proof what algebra is for numbers and other 
structures; to put it succinctly “mathematicians’ errors are corrected, not by formal symbolic logic, 
but by other mathematicians” (De Millo et al., 1979). Mathematical logic and derivations are used 
mainly to make meta-assertions about theorems, axiom systems, and so on. Of course, this position 
would not be shared by those people who think that logical sytems incorporate the proofs of mathe-
matical practice (see list of names under b, p. 44); but as we have seen, this strong position is not 
tenable.  

22 This point of view is already present in Descartes (see the first pages of his Geometrie, 1983): the idea 
of substituting figures with algebraic equations in geometry means also the possibility to have suit-
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able ostensives and explicit manipulation rules which could substitute the proofs made in the 
Euclidean style; it was usual in the books of analytic geometry made in different places to diffuse 
the new ideas to underline the perfect isomorphism between the new method (algebraic calculations) 
and the Euclidean proofs (see Freguglia, 1999).  

23 In fact, via coding, the set of theorems of a formal system becomes a recursively enumerable set of 
numbers (that code the provable sentences), that is the set of images of a total recursive function 
(things can be arranged so that the first generated numbers are the axioms of the system, provided 
this is finitely axiomatizable); conversely every total recursive function can be interpreted as a suit-
able formal system (see Schütte, 1977, Chap. I).  

24 An algorithm corresponds to a strategy for solving a problem (generally for computing a certain func-
tion defined in some conceptual way), with the proof that it really does that. As such, an algorithm is 
made of ideas, strategic moves and so on, exactly like a proof. The program is a translation of the 
found algorithm into some precise language, which can be “read” by a machine. It corresponds to 
derivations; hence we can pursue the following analogy: proof: derivation=algorithm: program.  

25 See for examples Luengo (1997), Gao et al. (1998).  
26 For example, Cabri, Sketchpad, GEX. 
27 That means the concrete production of an algorithm which solves the problem, with the justification 

that it really does that job; feasible can be contrasted with effective: a pure existential proof of such 
an algorithm shows that there is an effective solution, but possibly the concrete algorithm is not yet 
known. A further problem, which generally is faced when writing the program, is the complexity of 
the algorithms, for example how its computation time grows as a function of the length of the inputs.  

28 The presence of a double register is less evident with proofs, where the impression may be of working 
mainly at a semi-informal level within a single language. For example in synthetic geometry, the 
discourse seems to remain within one language (but there is also the language of figures, which acts 
at different levels, see Laborde, 1993); on the contrary, within elementary arithmetic, the double reg-
ister between the semi-formal languages of arithmetic and of algebra is more visible (see Arzarello, 
1996). 

29 For examples, see the book by Maurer and Ralstons (1991). 
30 Also the geometry of coordinates which was introduced by Descartes as a powerful substitute to 

Euclidean proofs is not seen in the school as such, at least in Italy. 
31 See Harel and Tall (1991) for a discussion on these concepts, and Balacheff (1988), for a detailed 

analysis of the notion of generic as crucial in the transition from an empirical to an intellectual ap-
proach to mathematical truths.  

32 The so-called compass with shifting straight-edges, of which he already speaks in his Cogitationes 
Privatae (1619–20).  

33 The dialectic between mathematics and machines is described widely in Bartolini et al. (1997) and 
llustrated in Bartolini (1998); for further comments, see her contribution to this volume.  

34 It was the dream of Leibniz to have a theorem prover and it was the ingenuity of Descartes to intro-
duce the algebraic language to represent the geometric objects and the algebraic computations as a 
new revolutionary method of proof (see Freguglia, 1999). 

35 Of course there are serious physical limitations which make such an assertion true only within a lim-
ited range of sentences. Neither does the claim mean that, in principle, all mathematical sentences 
are decidable using a computer (which is false). 

36 He writes: “after Greek Antiquity, mathematics are a science of the eye and of the form, hence a 
visual art. However, since the Renaissance ideas about the matter have started to get confused” 
(ibid.). 

37 For an example of a theoretical analysis see Arzarello et al. (1999), where, following Peirce (1960) 
(Vol. II, Book III, Chap. 5, pp. 372–388), the concept of abduction is considered from a “perceptual” 
point of view. 
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3. STUDENTS’ PROOF SCHEMES REVISITED 

INTRODUCTION 

A psychological framework, informed by historical, philosophical, and cultural 
analyses, for examining students’ conceptions of proof (called proof schemes) 
was offered in Harel and Sowder (1998). The framework was based on extensive 
observations from a sequence of teaching experiments with college stu-
dents (mostly mathematics majors) in three mathematical areas: geometry, linear 
algebra, and elementary number theory. The goal in Harel and Sowder (1998) was 
to characterize students’ proof schemes and to provide evidence for the existence 
of such schemes. It was designed to sketch the landscape and define vocabulary to 
describe findings. Additional empirical data—mainly from interview analyses and 
classroom observations—and historical and epistemological considerations have 
led to a refinement of this proof schemes framework. The goal of this chapter is to 
describe the revised proof schemes framework, focusing mostly on historical-
philosophical observations that have contributed to the revision of the original 
framework. 

PROVING, PROOF, AND PROOF SCHEME 

The triad “proving, proof, proof scheme” is an instantiation of a more general triad, 
“mental act, way of understanding, way of thinking.” The latter triad is discussed 
extensively in Harel (in press a, in press b), and so it will only be mentioned briefly 
in this chapter. 
 The notion of mental act refers to such acts as interpreting, conjecturing, infer-
ring, proving, explaining, generalizing, applying, predicting, classifying, searching, 
and problem solving. This chapter concerns one single mental act—that of proving. 
Proving is defined as the process of removing or instilling doubts about an asser-
tion. It is worth distinguishing between two processes of proving: the process of 
ascertaining and the process of persuading. Ascertaining is a process an individual 
employs to remove her or his own doubts about the truth of an assertion, and per-
suading is a process an individual employs to remove others’ doubts about the truth 
of an assertion. Clearly, these two processes are not independent—in ascertaining 
for oneself, one is likely to consider how to persuade others, and in the process of 
persuading others one’s own certainty is likely to be affected. 
 Proving, by this definition1, is not unique to mathematics; people prove asser-
tions in many areas of their everyday and professional life. A critical difference 
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among professionals in relation to the proving act is in the characteristics of this 
act. For example, while both a biologist and mathematician prove assertions, the 
characteristics of their proving are different: a biologist’s proving is characteristi-
cally empirical while a mathematician’s proving is characteristically deductive. 
A characteristic of a mental act is referred to as a way of thinking, and a way of 
thinking associated with the proving act is called a proof scheme. Thus, proving 
empirically and proving deductively are examples of proof schemes (other proof 
schemes will be discussed later in this chapter). 
 Mental acts may be inferred by observing people’s statements and actions. 
A person’s statements and actions are products of her or his mental acts; they rep-
resent the person’s ways of understanding associated with those mental acts. In this 
respect, a proof—a particular statement one offers to ascertain for oneself or con-
vince others—is a way of understanding: it is the person’s ways of understanding 
why an assertion is true or false.    
 The above definitions are deliberately student-centered for the important rea-
son that instruction must take into account students’ current proof schemes in de-
signing and implementing mathematics curricula. Despite the subjective stance 
taken in these definitions, the goal of instruction must be unambiguous; namely, to 
gradually refine students’ current proof schemes toward the proof scheme shared 
and practiced by contemporary mathematicians. This claim is based on the prem-
ise that such a shared scheme exists and is part of the ground for advances in 
mathematics. 

THE NEW PROOF SCHEME FRAMEWORK 

The proof scheme framework presented here is a revision of the framework pre-
sented in Harel and Sowder (1998). The two frameworks will be referred to as the 
new framework and original framework, respectively. In this section the focus is on 
the new framework. A discussion of the changes made and the rationale for making 
them will be presented in the next section. 
 While both empirical and theoretical considerations have led to the revision of 
the original proof scheme framework, in this chapter I will address almost exclu-
sively historical–epistemological considerations. Some of the definitions here are 
repetitions of the definitions given in Harel and Sowder (1998); others are new. It 
is recommended that in reading this chapter, the reader consult Harel and Sowder 
(1998).   
 As the old framework, the new framework consists of three main classes of 
proof schemes. In the new framework they are labeled the external conviction 
proof scheme class, the empirical proof scheme class, and the deductive proof 
scheme class.  

The External Conviction Proof Scheme Class 

Proving within the external conviction proof schemes class depends (a) on an au-
thority such as a teacher or a book, (b) on strictly the appearance of the argument 
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(for example, proofs in geometry must have a two-column format), or (c) on sym-
bol manipulations, with the symbols or the manipulations having no potential co-
herent system of referents (e.g., quantitative, spatial, etc.) in the eyes of the student 
(e.g., (a + b)/(c + b) = (a + b)/(c + b) = a / c). Accordingly, we distinguish among 
three proof schemes within the external conviction proof scheme class: the authori-
tative proof scheme, the ritual proof scheme, and the non-referential symbolic 
proof scheme. 

The Empirical Proof Scheme Class 

Schemes in this class are marked by their reliance on either (a) evidence from ex-
amples (sometimes just one example) of direct measurements of quantities, substi-
tutions of specific numbers in algebraic expressions, etc. or (b) perceptions. 
Accordingly, we distinguish between two proof schemes: the inductive proof 
scheme, and the perceptual proof scheme. 

The Deductive Proof Scheme Class 

The deductive proof scheme class consists of two subcategories, each consisting of 
various proof schemes: The transformational proof scheme category and the axio-
matic proof scheme category. 
 All the transformational proof schemes share three essential characteristics: 
generality, operational thought, and logical inference. The generality characteristic 
has to do with an individual’s understanding that the goal is to justify a “for 
all” argument, not isolated cases and no exception is accepted. Evidence that op-
erational thought is taking place is shown when an individual forms goals 
and subgoals and attempts to anticipate his/her outcomes during the proving proc-
ess. Finally, when an individual understands that justifying in mathematics must 
ultimately be based on the rules of logical inference, the logical inference charac-
teristic is being employed. It should be noted that, although evidence in mathemat-
ics rests on logical inferences rules, it is almost never the case that one develops a 
proof by reasoning with these rules alone; inductive and abductive reasoning, for 
example, are often integral parts of the proving process. In the course of proving 
arguments, as well as in generating hypotheses, one applies mental operations to 
transform images from one state of knowledge into another. These transformations 
and the entities to which they apply are part of one’s mathematical reality. 
 The axiomatic proof schemes share the three characteristics that define the trans-
formational proof schemes, and include others. For now, it is sufficient to define an 
axiomatic proof scheme as a transformational proof scheme which acknowledges 
that in principle any proving process must start from accepted principles (axioms). 
The situation is more complex, however, as we will see shortly. 
 We will now discuss the different instantiations of the transformational proof 
scheme category and the axiomatic proof scheme category. 
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TRANSFORMATIONAL 

The images in the transformational proof schemes are of human idealized physical 
reality; they govern the deduction process and usually include at least one of three 
restrictions: (a) restriction of the context of the argument, (b) restriction of the gen-
erality of the argument’s justification, or (c) restriction of the mode of the justifica-
tion. Accordingly, depending on the kind of restriction, we called the proof scheme 
contextual, generic, or causal. We begin with causal restriction. 

Causal 

“We do not think we understand something until we have grasped the why of it. … 
To grasp the why of a thing is to grasp its primary cause,” asserts Aristotle in Pos-
terior Analytics. Some 16–17th-century philosophers argued that mathematics is 
not a perfect science because “implication” in mathematics is a mere logical con-
sequence rather than a demonstration of the cause of the conclusion. To illustrate 
the nature of this argument, consider Euclid’s Proposition I.32 and its proof: 

 Theorem: The sum of the three interior angles of a triangle is equal to 180º. 

Proof: Construct CE parallel to AB (Figure 1). Then the alternate angles BAC and 
ACE are congruent and the corresponding angles ABC and ECD are congruent. 
Hence, m(ABC)+m(BAC)+m(ACB)=m(ECD)+m(ACE)+m(ACB)=180º. 
 

B D

A

C

E

 
 

Figure 1. Euclid’s construction. 

What is the cause of the property that is proved here, asked these philosophers? 
The proof appeals to two facts about the auxiliary segment CE and the external 
angle ACD. But these facts, they argued, cannot be the true cause of the property. 
For the property holds whether or not the segment CE is produced and the angle 
ACD considered.  
 Another argument against the scientific nature of mathematics was this: If 
mathematical proofs were scientific (i.e., causal), then proofs for “A if and only if 
B” statements entail that A is the cause of B and B is the cause of A. Hence, A is 
the cause of itself, which is absurdity, because nothing can be its own cause. Since 
the basis of proof by exhaustion is proof by contradiction, it too was unsatisfactory 
to many mathematicians of the 16th and 17th centuries. They felt that the ancients, 
who broadly used proof by exhaustion to avoid explicit use of infinity, failed to 
convey their methods of discovery.   
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 If we are to draw a parallel between the individual’s epistemology of mathemat-
ics and that of the community, the following questions are of paramount impor-
tance: Was the causality issue of marginal significant concern to the mathematics 
of the 16th and 17th centuries? To what extent did the practice of mathematics in 
the 16th and 17th centuries reflect global epistemological positions that can be 
traced back to Aristotle’s specifications for perfect science? Mancosu (1996) ar-
gues that the practice of Cavalieri, Guldin, Descartes, Wallis, and other important 
mathematicians reflects a deep concern with these issues. He shows, for example, 
how two of the major works of the 1600s—the work by Cavalieri on indivisibles 
and that by Guldin, his rival, on centers of gravity—aimed at developing mathe-
matics by means of direct proofs. These two mathematicians, argued Mancosu, 
explicitly avoided proofs by contradiction in order to conform to the Aristotelian 
position on what constitutes perfect science—a position Aristotle articulated in his 
Posterior Analytics. 
 Mancosu (1996) also argued convincingly that Descartes, whose work repre-
sents the most important event in 17th-century mathematics, was heavily influ-
enced by these developments. Descartes appealed to a priori proofs against proofs 
by contradiction because they show how the result is obtained and why it holds, 
and they are causal and ostensive. 
 It should be noted, however, that not all philosophers of the time held this posi-
tion. Barozzi, for example, argued that some parts of mathematics are more scientific 
(causal) than others; but that proof by contradiction is not a causal proof, and there-
fore it should be eliminated from mathematics. Others, like Barrow for instance,  
argued that all mathematics proofs are causal including proof by contradiction. 
 Examples of students’ causal proof schemes. The proofs of the Linear Depend-
ence Theorem and the Eigenvalues Eigenvectors Theorem below are examples of 
proofs to which some students—always the more able students in the class—
responded in a manner that has perplexed us. (These examples were also discussed 
in Harel, 1999.)   
 Linear Dependence Theorem: Prove that any three vectors in 2R  are linearly  
dependent. 
Proof: (given by the instructor) 
Proof : (given by the instructor) 

Let 
, ,

a c e
b d f
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ be three vectors in 

2¡ ,  

and consider the system 0AX = , where 

a c e
A

b d f
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  . 

 The system AX=0 has at least one free variable: therefore, it has a non-zero solu-
tion, [ ]1 2 3X x x x= . Since (1)

1x A +
(2)

2x A +
(3)

3 0x A = , and 1 2 3x x x are not 
all zero, one of the columns of A must be a linear combination of the others. Hence 
the columns of A are linearly dependent. 
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 These students seemed to understand each step in the proof, and yet responded 
something to the effect: What if the system weren’t homogeneous? Your answer 
is dependent on the fact that the system is homogeneous. If the system weren’t 
homogeneous, you wouldn’t be able to prove that vectors are dependent. 
 We encounter a similar situation when the following theorem and proof were 
presented: 
Eigenvalues Eigenvectors Theorem:  Let T  be a square matrix, and let 

1 2, , , kv v vK  be eigenvectors of T that correspond to eigenvalues 1 2, , , kλ λ λK .  

If  1 2, , , kλ λ λK  are all distinct, then 1 2, , , kv v vK  are linearly independent.  

Proof :  Assume  1

0
k

i i
i

a v
=

=∑
.  We should show that 0ia =  for each i . 

Let 
( ) ( )

k

j j
i j

p x x λ
≠

= −∏
 for 1,2, ,j k= K . 

By the Spectral Mapping Theorem,  

1

0 ( ) ( )
k

i j i i j j j j
i

a p v a p vλ λ
=

= =∑
 

Since 
( ) 0j j jp vλ ≠

, 1

0 ( )0
k

i i ij i i i
j

p T a v a vδ
=

= = =∑
,  

Hence, 0ai = for each i. 
 The response by some of the students to this proof was something to the effect: 
“What if you chose different polynomials? Just because you chose these polynomi-
als, you could prove that v1, v2, …, vk  are independent. Maybe if we choose differ-
ent polynomials, the vectors wouldn’t be independent.” 
 What is the conceptual base for these responses? What really is the question 
these students are asking? While further research is needed to answer these ques-
tions, in what follows we will offer a conjecture. The history of the development of 
the concept of proof may suggest that our current understanding of proof was born 
out of an intellectual struggle during the Renaissance about the nature of proof—a 
struggle in which Aristotelian causality seem to have played a significant role. If 
the epistemology of the individual mirrors that of the community, we should expect 
the development of students’ conception of proof to include some of the major 
obstacles encountered by the mathematics community through history. We conjec-
ture that Aristotelian causality is one of these obstacles. Causality is more likely to 
be observed with able students, who seek to understand phenomena in depth, than 
with weak students, who usually are satisfied with whatever the teacher presents. It 
is possible that, for example, students’ responses to the Linear Dependence Theo-
rem Problem and the Eigenvalues Eigenvectors Theorem are a manifestation of the 
causality phenomenon. The students who responded to the proof by saying “What 
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if the system weren’t homogeneous?” had interpreted the homogeneous system 
0AX =  to be the cause for the independency of the vectors 

, ,
a c e
b d f
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , and so they desired to understand the exact causality relation-
ship. Similarly, the students who responded to the other proof by saying “What if 
you took different polynomials” sought to understand the cause–effect relationship 
between the Lagrange polynomials,  

( ) ( )
k

j j
i j

p x x λ
≠

= −∏
, and the theorem’s assertion about the independency of the 

eigenvectors. 
 I will conclude this section with another observation that can be interpreted in 
terms of effect of the causality scheme. A group of eight inservice teachers were 
presented with two proofs of Proposition I.32: Euclid’s original and the following 
proof which was originally offered by a preservice teacher (Amy) taking a course 
in college geometry (reported in Harel and Sowder, 1998): 

Amy demonstrated to the whole class how she imagines the theorem, 
“The sum of the measures of the interior angles in a triangle is 180°.” 
Amy said something to the effect that she imagines the two sides AB and AC 
of a triangle ABC being rotated in opposite directions around the vertices B 
and C, respectively, until their angles with the segment BC are 90° (Figure 
2a, b). This action transforms the triangle ABC into the figure A′ BCA′′, where 
A'B and A′′C are perpendicular to the segment BC. To recreate the original 
triangle, the segments A'B and A′′C are tilted toward each other until the 
points A' and A′′ merge back into the point A (Figure 2c). Amy indicated that 
in doing so she “lost two pieces” from the 90° angles B and C (i.e., angles A' 
BA and A′′ CA) but at the same time “gained these pieces back” in creating 
the angle A. This can be better seen if we draw AO perpendicular to BC: an-
gles A′ BA and A′′ CA are congruent to angles BAO and OAC, respectively 
(Figure 2d). 

All eight teachers preferred Amy’s proof to the standard Euclid’s proof, saying that 
it shows why the sum of the angles in a triangle is 180°. They indicated that 
through Amy’s proof they could see how the construction of the triangle “made” 
the sum of the angles 180°. For these teachers, I suggest, Amy’s proof was a causal 
proof—an enlightening proof that gives not just mere evidence for the truth of the 
theorem but the cause of the theorem’s assertion. 

Constructive 

In the constructive proof scheme, students’ doubts are removed by actual construc-
tion of objects—as opposed to mere justification of the existence of objects. 
This scheme is reminiscent of the constructivist mathematics philosophy 
founded by Brouwer at the turn of the 20th century, which viewed the natural 
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numbers as the fundamental objects that are irreducible to further basic notions, 
and so any meaningful mathematical proof must ultimately be based constructively 
on the natural numbers. A corollary of this premise is that one cannot establish 
the truth of an argument by showing that its negation leads to a contradiction, 
for no construction that is based on the natural numbers is involved in such a  
demonstration. 
 Indeed proof-by-contradiction was another reason for the denial of the scientific 
nature of mathematics by 16–17th century philosophers, in the eyes of whom this 
method of proof did not qualify as causal proofs. When a statement “A implies B” 
is proved by showing how not-B (and A) leads logically to an absurdity, we do 
not learn anything about the causality relationship between A and B. Nor, these 
philosophers continued to argue—do we gain any insight of how the result was 
obtained. 
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Figure 2. Student’s demonstration. 

Generic 

In a generic proof scheme, conjectures are interpreted in general terms but their 
proof is expressed in a particular context. This scheme reflects students’ inability to 
express their justification in general terms, as is demonstrated in several episodes 
in Harel and Sowder (1998). 

Contextual 

In his book, Greek mathematical thought and the origin of algebra, Klein (1968) 
argues that the revival and assimilation of Greek mathematics during the 16th cen-
tury resulted in fundamental conceptual changes that ultimately defined modern 
mathematics. He focuses primarily on the ancient Greeks’ conception of number 
and its crucial transformation during the Renaissance. The process of this concep-
tual transformation, Klein argues, culminated in Vieta’s work of symbolic algebra, 
where the distinction between modern mathematics and Greek mathematics began 
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to crystallize. In Greek science, concepts are formed in continual dependence on 
their “natural” foundations, and their scientific meaning is abstracted from “natu-
ral,” pre-scientific experience. In modern science, on the other hand, what is in-
tended by the concept is not an object of immediate insight. Rather, it is an 
object whose scientific meaning can be determined only by its connection to other 
concepts, by the total edifice to which it belongs, and by its function within this 
edifice. 
 One of the questions we addressed in our studies was: Do undergraduate 
mathematics majors possess the axiomatic conception at any level? For example, 
do students understand that axioms in geometry require no specific interpretation? 
In particular, can students consider their own intuitive space (i.e., the Euclidean 
space) as a specific system that may or may not satisfy the structure at hand? Our 
research has shown that the answers to these questions are negative (Harel and 
Sowder, 1998). When students are unable to detach from a specific context, 
whether it is the context of intuitive Euclidean space in geometry or the context of 

nR in linear algebra, we call that conception “contextual.” And so, with the con-
textual conception, general statements are interpreted (and proved) in terms of a 
specific context.  

Greek Axiomatic 

The axiomatic method—that is, the notion of deductive proof from some accepted 
principles—was conceived by the Greeks. However, it is important to note that the 
Greeks had one single type of mental objects in mind, namely, objects that are ide-
alizations of physical reality, such as a line, plane, triangle, etc. Accordingly, with 
the intuitive axiomatic proof scheme, the student is able to handle only axioms that 
correspond to her/his intuition. For example, the statement “One and only one line 
goes through two points” is understood only in the context of personal geometric 
intuition. Here the objects, which are derived from an idealization of the physical 
reality, determine the set of axioms.  

Arithmetical Symbolic 

In the arithmetical symbolic proof scheme, letters used to express the unknowns 
are isolated signs that obey no independent operation rules, but the rules dictated 
by the specific meaning of the quantities they represent. Diophantine algebra, for 
example, obeys the arithmetical proof scheme conditions.  
 In Diophantus’ conception, a number must always mean a number of something.  
Accordingly, “a fraction” always refers to a number of fractional parts of whatever 
the unit of calculation happens to be. By way of this conception, it is quite impos-
sible, therefore, to arrive at the concept of “negative numbers” and “irrational 
numbers.” In order to avoid these kinds of numbers as solutions to an equation, 
Diophantus introduced a restrictive condition by which an equation that leads to 
such solutions is declared “impossible.” In Diophantus’ sense, an unknown is de-
fined as an indeterminant multitude of units, but it is indeterminant only for the 
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solvers. In each problem a completely determined number of units exists a priori as 
its solution. The Diophantine procedure operates with the number sought as with 
something already given or granted. The construction of an equation is a process 
by which the conditions of a problem are expressed in a form which enables us to 
ignore whether the magnitudes occurring in the problem are known or unknown. 
The equation then is transformed into a canonical form from which the number 
sought is obtained. If the final computations result in an “impossible number” (e.g., 
a negative solution), then the problem itself is impossible. 

MODERN AXIOMATIC 

Generally speaking, the modern axiomatic proof scheme is a scheme by which one 
understands that in principle any deductive proof must start from accepted princi-
ples (axioms). This definition, however, does not capture other critical cognitive 
and epistemological processes. Like the transformational proof scheme, the modern 
axiomatic proof scheme is characterized by three conditions: (a) consideration of 
the generality aspects of the conjecture, (b) application of mental operations that 
are goal-oriented and anticipatory—an attempt to predict outcomes on the basis of 
general principles—and most critically (c) a set of (arbitrary) rules that governs the 
transformations of images in the evidencing process. Note that the transformational 
proof scheme and the modern axiomatic proof scheme share exactly the same first 
two conditions, but differ diametrically in the third. In addition, unlike the trans-
formational proof scheme, the modern axiomatic is free from all three restrictions 
in the transformational proof scheme: contextual, generic, and causal. 
 The discussions in the previous sections together with the subsequent ones will 
capture the essential differences between the transformational proof scheme and 
the modern axiomatic proof scheme. 

Structural 

The idea that the objects are determined by a set of axioms was a revolutionary 
way of thinking in the development of mathematics, and has shed light on some of 
the difficulties we observed with students. A clear manifestation of this revolution 
is the distinction between Euclid’s Elements and Hilbert’s Grundlagen. While the 
Elements is restricted to a single interpretation—namely that its content is a pre-
sumed description of human spatial realization—the Grundlagen is open to differ-
ent possible realizations, such as Euclidean space, the surface of a half-sphere, 
ordered pairs and triples of real numbers, etc.—including the interpretation that the 
axioms are meaningless formulas. In other words, the Grundlagen characterizes a 
structure that fits different models. This obviously is not unique to geometry. In 
algebra, a group or a vector space is defined to be any system of objects satisfying 
certain axioms that specify the structure under consideration. The structural proof 
scheme, therefore, is the understanding that definitions and theorems represent 
situations from different realizations that share a common structure determined by 
a permanent set of axioms. 
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Structural Symbolic 

The structural symbolic proof scheme is better understood by contrasting it with 
the “algebra” of Diophantus discussed earlier. The latter is merely “algebra of ab-
breviations” not “symbolic algebra”; the symbol the Greeks used for an unknown 
is merely a word abbreviation, not a symbolic representation. That is to say, a letter 
is never a “symbol” in the sense that that which is signified by the symbol is in 
itself a “general” object. A letter does not symbolize a value that may vary, a vari-
able; rather, it merely names the value that is a priori determined. Nor does a letter 
lend itself to being an object that can be operated on. 
 Symbolic algebra was born with the inception of the idea of representing 
the problem statement symbolically (e.g., by an equation) and, similarly, represent-
ing each operation by a special sign. Thus, in the structural symbolic proof scheme 
the focus is on the symbolic representation, not on the problem statement, in that 
the symbolic representation alone dictates the possible solutions, which may be 
meaningless in the context of the problem statement. This proof scheme has two 
distinctive characteristics that set it apart from the ancient method: (a) the object is 
identified with, rather than referenced to by, its representation and (b) the repre-
senting symbol signifies possible determinacy, rather than real determinacy, of the 
object. 
 The modern notion of “number,” is a critical case in point. This notion was born 
when symbols representing no specific objects were conceived as conceptual enti-
ties, as a cognitive object for which the mental system has procedures that can take 
the object as an argument, as an input, independent of any specific reference. Fur-
ther, the procedures are the operation rules—constituting an axiom system—that 
define the objects to which they apply. A number in this sense is no longer a num-
ber of units that is always determined but an object with unlimited possibilities of 
ciphering, according to rules of calculation. 
 The modern notion of “number” was born when symbols representing no spe-
cific reality were treated as objects that can be operated upon by certain rules. 
These objects are defined not by what they represent but by an a priori set of rules. 
Not all mathematicians of the 17th century shared this new way of thinking; some 
raised serious doubts about its intelligibility and viability. How is it possible to 
reason about symbols without a concrete referent and especially without a geomet-
rical referent, as in the case of imaginary numbers and negative numbers? How is it 
possible, asked Arnauld, a 17th-century mathematician, to subtract a greater quan-
tity from a smaller one, where the mental image of “quantity” is nothing else but a 
physical amount or a spatial capacity? Moreover, how is it possible to under-
stand such a statement as (–1)/1=1/(–1), where the quantity 1 is larger than the 
quantity –1, and therefore, the division of 1 by –1 must be smaller than the division 
of –1 by 1? 
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Axiomatizing 

In the structural conception, the axioms that define the structure are permanent, and 
one studies the structure itself, not just the axiom system. So, for example, one 
studies real analysis on the basis of the axioms of a complete ordered field, or one 
studies the theory of vector spaces on the basis of the vector space axioms, etc. Our 
data suggest that the structural conception is a cognitive prerequisite to the axioma-
tizing proof scheme—a conception by which a person is able to investigate the 
implications of varying a set of axioms, or to understand the idea of axiomatizing a 
certain field. 

SUMMARY AND CONCLUSIONS 

The new framework we present here is a revision of the framework presented in 
Harel and Sowder (1988), which will be referred to as the original framework. 
Each of the frameworks consists of three classes of proof schemes. The first two 
classes—the external proof schemes class and the empirical proof scheme class—
are identical, except that the symbolic proof scheme was renamed non-referential 
symbolic proof scheme. The third class was renamed “deductive” because logical 
deduction is an essential ingredient in each of its proof scheme categories. This 
change reflects our position that a proof scheme can—and in a certain stage in the 
student’s intellectual development should—be deductive without necessarily being 
axiomatic. 
 Underlying the change in the third class is our observation that certain epistemo-
logical obstacles with our students seem to parallel critical obstacles in the devel-
opment of mathematics. Of particular importance are two such observations: The 
first observation is that some students’ proof schemes are reminiscent of the 16th–
17th century conception of mathematics, where the practice of mathematics reflects 
global epistemological positions that can be traced back to Aristotle’s specification 
that explanations in science must be causal. The addition of the causal proof 
scheme to the transformational proof scheme category is an expression of this ob-
servation. The second observation is that students’ proof schemes—viewed in rela-
tion to those of their instructors—seem to parallel the Greek conception of 
mathematics—viewed in relation to that of modern days. The latter observation is 
expressed (a) by renaming the axiomatic proof scheme modern axiomatic proof 
scheme, (b) by renaming the intuitive axiomatic proof scheme Greek axiomatic 
proof scheme, and (c) by relocating the latter as an instantiation of the contextual 
proof scheme. 
 Finally, the internalized proof scheme and the interiorized proof scheme in the 
new framework are viewed as stages of conceptual development rather than as in-
stantiations of the transformational proof scheme. They are part of the new frame-
work in that each of the proof schemes is either internalized—encapsulated into a 
proof heuristic—or interiorized—has been reflected upon by the person possessing 
it so that he or she becomes aware of it. 
 Analyses of data from teaching experiments (Harel and Sowder, 1998; Harel, 
1999) and from a longitudinal study (Sowder and Harel, in press), show that the 
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proof scheme framework remains stable; namely, with the exception of one proof 
scheme—“causality,” which is discussed here—no additional categories of proof 
schemes were discovered and none of the existent categories of proof schemes has 
been altered. Further, the works of other researchers who have used our framework 
to interpret their findings of students’ conceptions of proof (e.g., Csikos, 1999) 
provide additional confirmation of the validity and stability of the framework. 
 The new framework, therefore, continues to serve the old framework’s original 
purpose—a tool for identifying and encoding students’ proof schemes. Further, the 
new framework goes beyond this function in that it suggests a conceptual basis for 
the epistemological obstacles that students encounter in developing and restructur-
ing their proof schemes. 
 Historical/philosophical analyses of the concept of mathematical proof point to 
possible parallelisms between certain obstacles encountered by students and those 
encountered in the course of the history of mathematics. We say “possible parallel-
ism” because our research has not fully established such a parallelism. Further re-
search, which we hope this chapter will generate, is still needed to fully understand 
the conceptual and epistemological basis for students’ proof schemes in relation to 
the historical epistemology of proof. 
 

NOTE 
1 Here and elsewhere in this chapter the verb “to prove,” in all forms, is in the sense of the definition of 

“proving” stated above. 
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CELIA HOYLES AND LULU HEALY 

4. CURRICULUM CHANGE AND GEOMETRICAL 
REASONING 

INTRODUCTION: STUDENTS’ CONCEPTIONS OF PROOF 

Proof has traditionally appeared in school mathematics in exercises involving the 
formal confirmation of Euclidean geometry theorems (see for example, Hanna, 
1995). As Harel and Sowder (1998, p. 428) noted: “the idea of proof as a reductive 
process where hypotheses lead to conclusions, has traditionally been stressed in the 
teaching of geometry but not in the teaching of algebra”. Despite numerous at-
tempts to teach students to prove conjectures in the context of geometry, there is 
overwhelming evidence of persistent confusion and misunderstandings (for re-
views see Harel & Sowder, 1998; Hoyles, 1997). To summarise these difficulties: 
students tend to regard proof as no more than the confirmation of a few examples 
(see Martin & Harel, 1989), tend not to appreciate the significance and generality 
of a deductive proof, interpret proof as no more than evidence (Chazan, 1993;  
Fischbein & Kedem, 1982; Vinner, 1983) and, most fundamentally, tend to see 
proving not as a process that is central to mathematical activity but rather as a ritual 
disconnected from the construction of knowledge or understanding (see 
Schoenfeld, 1989). 
 Several attempts have been made to describe the interrelated facets that make up 
students’ conceptions of proof. Harel and Sowder (1998) have proposed a typology 
of students’ proof schemes that consists of external proof schemes (including ritual 
authentication and symbolic argument), empirical proof schemes (including induc-
tive and perceptual argument) and analytical proof schemes (including transforma-
tional, generic and axiomatic justifications). An alternative approach starting from 
the mathematical practices of students is suggested by Balacheff (1988), who dis-
tinguished pragmatic from conceptual proofs, where the former are controlled by 
actions and the latter by properties and theory. Within these two general categories, 
Balacheff identified several subcategories; in the former, taking an empirical ap-
proach and using crucial experiments; in the latter, engaging in thought experi-
ments and making inferences from statements, with the use of generic examples 
suggested as important in negotiating the passage between pragmatic and concep-
tual proofs. 
 Proving in mathematics is undoubtedly a complex process. It not only involves 
logical and deductive argument coordinated with visual or empirical evidence 
and mathematical results and facts, but is also influenced by intuition and belief, 
by perceptions of authority and personal conviction, and by the social norms that 
regulate what is required to communicate a proof in any particular situation. The 
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failure of traditional geometry teaching in schools stemmed at least partly from a 
lack of recognition of this complexity. In particular, the standard practice was sim-
ply to present formal deductive proof (often in a ritualised two-column format) 
without regard to its function or how it might connect with students’ intuitions of 
what might be a convincing argument: “deductivity was not taught as reinvention, 
as Socrates did, but [that it] was imposed on the learner” (Freudenthal, 1973, 
p. 402). 
 In the light of the problems students experienced, new approaches to introducing 
proof have been proposed. These new approaches aim to guard against the danger 
of proof becoming an empty ritual. One popular line of attack has been to priori-
tise, for teaching purposes, the role of proof in explaining and illuminating mathe-
matical ideas and to place rather less emphasis on its role in verification (see for 
example deVilliers, 1990; Hanna & Jahnke, 1993). One method, proposed by 
Whittman (1998), is systematically to exploit non-symbolic representations of phe-
nomena that can serve an explanatory function within what he calls operative 
proofs. Another method seeks to avoid the fragmentation of problem solving from 
proving through the use of extended and collaborative projects in geometry: for 
example by introducing a theorem as a cognitive unity of three elements, state-
ment, proof and theory (see Mariotti et al., 1997). By contrast, research in the U.S 
into geometrical reasoning, influenced by the van Hiele model (see Clements & 
Battista, 1992, for a summary) proposes that, for instruction to be effective, it must 
take account of the hierarchical levels of student understanding in geometry and 
build in sequence from the lowest level of perceptual recognition up to analysis, 
deduction and axiomatic proof. 
 From this brief review it is apparent that a huge amount is known about stu-
dents’ conceptions of proving and proof in geometry. It is also clear that students 
can be led to engage in geometrical reasoning and proof within particular teaching 
situations, as evidenced in chapters in this book. What more needs to be investi-
gated that might contribute to either theoretical or didactical knowledge in this 
area? The contribution of the study reported in this chapter is to move beyond 
analyses that focus only on the individual student or classroom and to begin to 
identify curricula and school influences on geometrical reasoning. The research 
set out to analyse students’ geometrical reasoning after following a curriculum 
approach that was rather different from the traditional Euclidean methods men-
tioned at the beginning of this chapter; that is where the verification role of proof 
in geometry was introduced only after several years during which students 
had been encouraged to explain patterns in data arising from non-geometric  
contexts. 

A New Approach to Proof in the Curriculum 

In England and Wales, the main response in the 70s and 80s to the evidence of 
students’ poor grasp of mathematical proof was to develop an approach to proving 
in which students would have opportunities to test and refine their own conjectures 
and gain personal conviction of why they were true alongside experiences of  



CURRICULUM CHANGE AND GEOMETRICAL REASONING 

83 

presenting generalisations and evidence of their validity. In the language of 
Goldenberg, Cuoco and Mark (1998), the curriculum aimed to promote the devel-
opment of mathematical habits of mind where students would tinker, conjecture, 
test informally and explain, but in numerical or algebraic contexts rather than geo-
metric ones. The aim of the research reported in this chapter was to analyse how 
this approach to proving impacted upon students’ proof conceptions in geometry. 
Thus we not only analysed individual student conceptions but also looked system-
atically at school and curriculum factors that might have played a role in shaping 
them. In order to make sense of our analysis, it is important for the reader to under-
stand the position of proof and of geometry in the curriculum in operation at the 
time of the study. 
 At the time of the study that forms the main focus of this paper (1995–1999), the 
National Curriculum in Mathematics for England and Wales (Department of Edu-
cation and Science, 1995) had been in operation for almost 10 years. This curricu-
lum is statutory, and “delivered” by all state schools across the country. The 
curriculum in 1996 was organized into four attainment targets, with geometry lo-
cated in the target, Space, Shape and Measures (AT3). In order to encourage teach-
ers to pay specific attention to the process objectives of conjecturing, testing and 
explaining, rather than simply concentrating on the delivery of procedures and con-
tent, mathematical reasoning appeared under a separate attainment target, Using 
and Applying Mathematics (AT1). Associated with each attainment target were 
eight level descriptors, against which students would be tested, with descriptors 
added to classify students of “exceptional performance”.1 This imposition of levels 
on AT1 inevitably meant that proof would be introduced in a hierarchical way with 
an initial focus on empirical investigation with formulating, testing and refining 
conjectures coming later, to be followed finally for older children by explanation 
and proof. 
 In the National Curriculum documentation, there were strong exhortations that 
teachers should help students to make connections across levels and across targets in 
the curriculum, and in particular to link the reasoning processes developed in AT1 
with the applications of proofs (in AT3). But what were the consequences of the em-
phasis in the curriculum on reasoning but its separation from geometry? Did the hab-
its of mind that AT1 aimed to cultivate actually spill over into the geometry context 
and if they did what were the outcomes in terms of student conceptions? Were stu-
dents who had followed AT1 able to exploit the expertise in argumentation and  
explanation that they had gained in this attainment target as glue to link conjecture 
and deduction in geometry? Did students no longer display the major confusions 
identified in the past between empirical verification and general truth? What also 
were the consequences for student attitudes to proof and their judgements as to the 
nature of mathematical proof? 
 Since the curriculum set in place in England and Wales was to some extent 
unique, not fitting neatly into any of the categories described by Goldenberg, 
Cuoco and Mark (1998),2 there was rather little evidence to draw on as a basis 
from which to address these questions. The aims of the study we designed were 
therefore broad and overarching: to identify shifts in the landscape of student con-
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ceptions of geometrical reasoning following systemic curriculum change where 
students were engaged in proving activities largely outside geometry; and, given 
this analysis, to point to implications for future curriculum planning. 
 In 2000, the National Curriculum was revised. Although the structure of the 
curriculum was not radically altered and it continued to be organised in terms of 
the same four attainment targets with their corresponding level descriptors, the 
programmes of study relating to the first attainment target, Using and Applying 
Mathematics, became integrated into the programmes of study for the other three 
attainment targets. This chapter focuses mainly on data collected before the cur-
riculum change. However, given its potential influence on students’ conceptions in 
geometry (as reasoning was now intended to be developed in the attainment target, 
Space, Shape and Measures), we have included in a postscript at the end of 
this chapter some data from a subsequent research project that included some of 
the questions described here, in order to throw some light on the impact of this 
curriculum change. 

RESEARCHING STUDENTS’ GEOMETRICAL REASONING 

In the research project, Justifying and Proving in School Mathematics,3 we set out 
to analyse the conceptions of proof held by students who had followed the  
National Curriculum, described above. Specifically, we aimed to investigate the 
characteristics of arguments recognised as proofs by high-attaining students, aged 
14–15 years, the reasons behind their judgements and the ways they constructed 
proofs for themselves. We focused on high-attainers (around the top 20% of the 
age cohort), as it was this group of students who would have covered most of the 
process objectives and levels of reasoning specified in the curriculum. The study 
investigated proof in two domains, arithmetic/algebra and geometry. This chapter 
reports the findings from the latter study only (for a discussion of the results from 
the algebra study, see Healy & Hoyles, 2000). We used a combination of quantita-
tive and qualitative methods: a nationwide survey to obtain a picture of student 
conceptions set against teacher and school data and student and teacher interviews 
to seek interpretations of the patterns found in the quantitative data. 

The Research Instruments 

To collect the quantitative data, we designed a student proof questionnaire to pro-
vide, first, an overview of students’ views of what comprised a proof, its role, and 
its generality and, second, an indication of students’ competencies in constructing 
proofs. 
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G1.  Amanda, Barry, Cynthia, Dylan, Ewan and Yorath were trying to prove 
whether the following statement is true or false: 

 When you add the interior angles of a triangle the sum is always 180°. 

 

Figure 1: continued next page
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Figure 1 continued 

 

Figure 1: Amanda, Barry, Cynthia, Dylan, Ewan and Yorath’s answerst 

Students’ Views of Proof 

The proof survey included several items designed to probe student views of proof 
from a variety of perspectives. First, students were asked to describe in an open 
format what they thought about proof and its purposes. Their responses were 
coded according to a simplified version of deVillier’s classification of the func-
tions of proof, using the categories, truth (verification), explanation and discov-
ery together with a fourth category “none/other” if students wrote nothing or if 
their contributions appeared to be irrelevant. Second, students were presented 
with mathematical conjectures and a range of arguments in support of them in a 
multiple-choice format. They were asked to make two selections from these argu-
ments: the argument that would be nearest to their own approach and the argument 
they believed would receive the best mark from their teacher. Third, students were 
asked to judge all the arguments according to their validity and how far they were 
convincing and explained the conjecture. Two conjectures were included in geome-
try, one familiar and the other unfamiliar. In the interests of simplicity, we present 
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in this chapter only the analysis of student responses to the familiar conjecture, G1; 
that the sum of the interior angles of a triangle is 180° (see Figure 1).4 
 The theoretical framework that governed the choice of arguments presented 
as proofs to this conjecture drew on the analyses of van Dormolen (1977) and 
Balacheff (1988) and the operationalisation of Balacheff’s framework by Coe and 
Ruthven (1994). There were pragmatic arguments characterised as specific, em-
pirical, or requiring an action or concrete demonstration (Amanda’s and Dylan’s 
arguments); an argument that relied on common properties or a generic case 
(Yorath’s argument); and deductive proofs that presented a logical argument with 
links explicitly made between premises and conclusions. Since we were interested 
in the extent to which students distinguished the logical structure of a proof from 
the form in which it was presented, we included two arguments in this final cate-
gory, one that was valid (Cynthia’s) and one that was not (Barry’s). Barry’s argu-
ment displays a common problem; namely that the statement to be proved is used 
as part of the argument. We also included a narrative argument (Ewan’s) by means 
of exterior angles that is commonly used in English textbooks, follows rather natu-
rally from the curriculum definition of angle as “turn,” and is easily generalised to 
proofs about the sum of the interior angles of other polygons. 
 We developed these arguments over three phases prior to the pilot study. First, 
we studied the National Curriculum specifications and looked through the text-
books in widespread use. Second, we asked 68 high-attaining 14–15-year-old stu-
dents to prove the conjecture given in G1 in order to obtain a bank of appropriate 
arguments. And, third, if there were no arguments in our bank that fitted a category 
in our framework, we filled the gap by modifying a student production or writing 
an argument from scratch. 
 To obtain more evidence of students’ views of the functions of proof, we asked 
them to assess the correctness and generality of each of the arguments presented in 
G1. Did they think it contained a mistake? Did they believe that it was always true 
or only held for a specific case or cases? These questions were inspired by our wish 
to test how far students exposed the confusions found in previous research and 
summarised earlier. The format used, as applied to Amanda’s argument, is shown 
in statements 1 to 3, in Figure 2. The correctness of students’ evaluations was 
scored by what was called a student’s validity rating (VR): an entirely correct pro-
file of responses for any given argument scored 2, a profile in which the student 
correctly noted if the argument was general, specific or wrong but was unsure of 
other factors obtained a rating of 1, and all other profiles scored 0. 
 Because of the importance accorded to the function of explanation in proving, 
both in the curriculum and in the research literature, we asked students to assess 
how far each argument in G1 explained the conjecture and convinced them of its 
truth. An example, again relating to the assessment of Amanda’s argument, is 
shown in statements 4 and 5 in Figure 2. These assessments were combined to give 
a score, called the argument’s explanatory power (EP). If students agreed with both 
statements, their EP for that argument was 2, if they agreed with one or other of the 
statements that the EP was 1, otherwise the EP was 0. 
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 Finally, we were interested in following up Chazan’s finding (Chazan, 1993) 
that many students in the context of geometry believed proof merely to be evi-
dence. We therefore sought to assess students’ feelings for the generality of a 
proven statement by asking them whether or not a valid proof for the conjecture G1 
automatically held for a given subset of cases. The actual question, G2, is pre-
sented in Figure 3. 
 

agree don’t

know 

disagree 

Amanda’s answer 

Has a mistake in it 1 2 

2 

2 

2 

2 

3

Shows that the statement is 
always true 

1 3

Only shows that the statement is 
true for some triangles 

1 3

Shows you why the statement is 
true 

1 3

Is an easy way to explain to 
someone in your class who is 
unsure 

1 3

 

Figure 2. Assessing the validity and explanatory power of Amanda’s answer. 

G2.         Suppose it has now been proved that, when you add the interior angles of 

any triangle, your answer is always 180˚. 
 
Zoe asks what needs to be done to prove whether, when you add the interior angles 

of any right-angled triangle, your answer is always 180˚. 

Tick either A or B. 
(A) Zoe doesn’t need to do anything, the first statement has already proved this.

(B) Zoe needs to construct a new proof. 

 

Figure 3. Assessing the generality of a proven statement in geometry. 

Student Proof Constructions 

The proof survey included questions with an open format where students were 
asked to construct their own proofs, again one for a familiar conjecture, G4, and 
another for an unfamiliar one, G7. These two conjectures are presented in Figure 4. 
The order of the questions in the survey was such that it was possible to use 
the conjecture presented in the multiple-choice question or to modify one of 
the arguments presented in this question as part of a later proof construction. For 
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example, arguments used in G1 for proving that the sum of the angles of a trian-
gle is 180° could be modified to build a proof about the sum of the angles of a 
quadrilateral. 
The familiar statement to be proved was 
G4. Prove that if you add the interior angles of any quadrilateral, your answer is 
always 360°. 
 
The unfamiliar statement to be proved was: 
G7. A is the centre of a circle and AB is a radius. C is a point on the circumfer-
ence where the perpendicular bisector of AB crosses the circle. Prove whether it is 
true or false that triangle ABC is always equilateral. Write your answer in a way 
that would get you the best mark. 
 
All students’ constructed proofs were scored for correctness using a modification 
of Coe and Ruthven’s (1994) classification: 0 for no basis for proof, 1 for relevant 
information (such as confirming examples) but no deductions, 2 for a partial proof 
with some attempt to present reasons or an explanation, and 3 for a complete proof, 
in which sufficient relevant facts, results and deductions were mentioned but the 
presentation did not necessarily follow any particular format. The main form of 
argument used in the student response was also recorded as empirical, formal, nar-
rative, or visual. 

 

Figure 4. The familiar and unfamiliar statements to be proven. 

The School and Teacher Surveys 

In order to tease out any causes of different types of student conceptions that went 
beyond either the individual or the curriculum, we needed to set student responses 
against information about their school and about their teachers. The proof survey 
was to be administered to whole classes of students so it was reasonable to hy-
pothesise that there would be a class or teacher effect. Thus, simultaneously with 
the development of the student proof survey, we designed school and teacher ques-
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tionnaires. The first obtained data about a school—the type of school, its selection 
and setting procedures, the hours spent on mathematics per week, the textbooks 
adopted and the examinations entered. The teacher of the class who had an-
swered the proof survey completed the other questionnaire. It sought data on 
teacher gender and qualifications, the percentage of the class who were to be en-
tered for the GCSE higher tier,5 the teacher’s reactions to the place of proof in the 
National Curriculum, and the approach adopted to introducing proving and proof in 
the classroom. The teachers were also asked to consider each of the conjectures 
presented with multiple proofs and asked to select the proof nearest to the one they 
personally would use, and the proof that they predicted their students would be-
lieve would receive the best mark from them. Finally, the schools provided the Key 
Stage 3 test scores6 (KS3) of all the students who completed the proof survey in 
order to provide a baseline assessment of mathematics attainment. This national 
test of attainment in mathematics predominantly tests procedures and calculations 
and includes no items on proving and proof. 

METHODS 

After piloting the survey with 182 students in eight schools and making appropri-
ate modifications, it was administered to 2459 students from 94 classes in 90 
schools, with the 94 class mathematics teachers completing the teacher and school 
questionnaires. The schools were spread across England and Wales, 29 in urban, 25 
in rural and 36 in suburban settings. The sample of 2459 students was made up of 
1305 girls and 1154 boys, with a mean Key Stage 3 score of 6.56.7 
 The purposes of the analyses of the data from the survey were fivefold: to de-
scribe students’ views of the role and generality of proof, to categorise their 
choices and assessments of different arguments, to score their constructions and 
evaluations of proofs, to establish factors associated with these responses, and fi-
nally, to examine how these factors varied between schools. To achieve these 
goals, descriptive statistics based on frequency tables, simple correlations and tests 
of significance were produced, followed by multilevel statistical analysis with a 
two-level structure; student variables at Level 1 and class, teacher, school and cur-
riculum variables at Level 2 (see Goldstein, 1995). The latter analysis was used to 
identify first statistical correlates and second deviations from the general picture of 
responses at school and student level (for example, schools in which performance 
was significantly better than predicted, or students who gave rather different re-
sponses from those characteristic of his/her class). Finally, we sought to contextu-
alise these trends in the quantitative data through interviews with a sample of 
teachers and students. 
 In the following sections we present an overview of the findings and then a se-
lection of interview data along with the multilevel analysis to suggest underlying 
causes. 
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Choosing a Proof of a Familiar Conjecture 

In Table 1 we present the distribution of students’ and teachers’ responses to the 
multiple-choice question, G1 (see Figure 1). 
 Clearly there was marked variation between the choices students made when 
selecting an argument they felt most closely resembled their own approach and 
when choosing the one they believed would receive the best mark from their 
teacher. The arguments that were the most popular for the students’ own approach 
turned out to be the least popular when it came to choosing for best mark, and vice 
versa. In G1, nearly half the students chose pragmatic proofs (Amanda or Dylan) 
for their own approach, while only 9% made these choices for best mark. These 
differences were statistically significant. Conversely, students were less likely to 
choose as the way they would approach the question, a proof that was presented as 
a chain of deductions (either Cynthia’s correct argument or Barry’s incorrect one), 
although these arguments dominated choices for best mark. Again the differences 
were significant in both cases. 

Table 1. Distribution of Students’ and Teachers’ Choices of Proofs of Familiar Conjecture 

 Argument chosen 

 Amanda  Dylan  Cynthia  Barry  Yorath  Ewan 

Criterion for choice No. %  No. %  No. %  No. %  No. %  No. % 

Students’ own 
approach 

615 25  516 21    516 21  369 15  246 10  197   8 

Students’ best  
mark 

123   5    98 4  1180 48  369 15  369 15  320 13 

Teachers’own  
approacha  

  24 26      5 5      47 50      0   0  * *    16 17 

Teachers’ best mark 
prediction 

  21 22      3 3      59 63      1   1  * *    10 11 

  Notes: *Teachers were not given Yorath’s option. aMissing data for 2 teachers’ own ap-
proach. 

These descriptive statistics show that the distribution of choices of argument was 
significantly influenced by the criterion of choice—own approach or best mark. 
However, the two distributions were not completely independent, as evidenced from 
the construction of cross-tables of student choices where significant correlations 
were found. Thus there was a reciprocal influence between the argument believed to 
receive the best mark and a student’s choice for his/her approach, with the exact 
nature of this influence varying between the arguments in question. 
 We also investigated whether either the validity rating, VR, or the explanatory 
power, EP, accorded to any argument were associated with a student’s choice for 
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his/her own approach. In both cases, the pattern was consistent: students who chose 
a valid argument for their own approach were more likely to appreciate its general-
ity than those who had not made this choice. Additionally, irrespective of its valid-
ity, an argument that was felt to convince or explain was more likely to be selected 
as a student’s own approach than one that was not. 
 These simple statistics indicate that students seemed simultaneously to hold two 
views of proof in geometry; they preferred a pragmatic approach for themselves 
while recognising that a more formal deductive presentation would be required to 
receive a good mark. In fact nearly two-thirds of the students had “picked up” that 
a presentation that included statements and reasons was regarded highly by their 
teachers, a finding that was somewhat surprising given that rather little emphasis 
on this way of presenting geometric proofs was evident in the curriculum the stu-
dents had followed. However, it seems that presentation was not the only factor 
influencing choice, as many more students chose the correct rather than the logi-
cally confusing formal approach. This finding contrasts with the situation we found 
in algebra, where students chose any proof for best mark that appeared to include 
algebra (or rather included letters), regardless of the logic of the argument (see 
Healy & Hoyles, 2000). 
 These descriptive statistics suggest that the curriculum orientation to geometric 
proof had to some extent been modified in practice and values instilled that may 
not have been specified in the curriculum documents. As further evidence, we pre-
dicted that Ewan’s proof that sets out a reasoned argument in a way that was famil-
iar and encouraged in the curriculum would have proved popular for both own 
approach and for best mark. In neither situation was this the case. Given the prefer-
ence among students’ choices of argument nearest to their own approach for prag-
matic approaches, we might conjecture that rather little of the explanatory 
narratives encouraged in AT1 had spilled over into a geometry context. We seek 
further evidence for this conjecture in the next section. 

OPENING WINDOWS ON STUDENTS’ GEOMETRICAL REASONING 

To shed light on the trends identified in the data and to provide a more multi-
faceted view on student conceptions, we first turn to student responses to other 
questions in the survey along with some interview responses and then report the 
data on the mathematics teachers in the survey. 

Reasons for Student Choices 

The question G2 (see Figure 3) was included in the survey to obtain data about 
how students assessed the generality of a valid proof. The majority of students 
(84%) agreed that having proved that the sum of the interior angles of a triangle 
was 180°, no further work was necessary to prove that this held for right-angled 
triangles. This finding may at first sight appear to be of rather little interest. Yet, in 
a comparable study in Taiwan where students were asked the same question (see 
Lin & Chen, 1999) the number of students who judged that they had to produce a 
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new proof was considerably increased (from 16% to 24%). How far these differ-
ences in comparative statistics are significant is difficult to assess given inevitable 
differences in sample (although the age of the students was the same) Nonetheless 
they do at least suggest that students who have been taught about geometry proof 
in the traditional Euclidean way (as in Taiwan) may have a different meaning for 
specialising the results of a given proof than students who had followed the more 
process-oriented approach. 
 Second, to obtain further insight into how students may have perceived the two 
most popular choices for their own approach to G1, Dylan and Amanda’s argu-
ments, and their most popular choice for best mark, Cynthia’s argument, we turn to 
the students’ validity scores for these three questions. Were students able to assess 
whether each of these arguments showed that the statement was true for all trian-
gles or just for some triangles? In fact, nearly three quarters of the students be-
lieved that Dylan’s and Amanda’s argument showed the statement was true for all 
triangles (73% and 72% respectively) indicating some confusion about the limita-
tions of pragmatic demonstrations. Additionally, nearly one quarter of the students 
(21%) thought Cynthia’s proof was only true for specific triangles, a finding that is 
food for thought given that so many students had chosen this as the argument that 
would receive the best mark! These data suggest that it may not have been the gen-
erality of the formal proof that had appealed to the students. Was it therefore its 
logical character? This seems doubtful given that the analysis of validity scores 
showed that only 1% of the students believed that Barry’s argument was incorrect. 
 Third, following the survey we interviewed several students who had made 
these common choices in G1, that is selected Amanda’s or Dylan’s argument for 
own approach and Cynthia’s for best mark. Our aim in the interviews was to probe 
why they had made these decisions. The interviews showed still more clearly the 
complexity of the proving process and how the reasons underlying choices not only 
concerned an appreciation of proof but also were related to beliefs about mathe-
matics and teaching mathematics. Take T, whose choices were based neither on the 
logic or the generality of the argument selected. He chose Cynthia’s argument for 
best mark because he did not understand it and Amanda’s argument for own ap-
proach, because it was easy, as illustrated in the extract below: 

Q. Let’s go on. Geometry, why would you do Amanda? You chose Amanda, 
you said the best mark would go to Cynthia. 
T.  Probably because I wouldn’t be as clever as Cynthia—I don’t know! 
Q. Let’s have a look. 
T.  Probably because that’s the easiest to do. Amanda’s. 
… 
Q. So you thought Cynthia’s was probably the best one, but you didn’t think 
you’d be able to do it? 
T.  No, I just think I couldn’t be bothered to do that, I just don’t quite follow it 
… Amanda’s would be the easiest. 

Later, when asked which of the arguments presented were indeed proofs, T seemed 
to understand the importance of the generality of an argument but exhibited some 
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confusion about whether Cynthia’s argument was general or not, apparently trig-
gered by the presence of the diagram. The letters in Cynthia’s response also proved 
to have implications that we did not predict. It was these letters that suggested to T 
that the argument would have high status. 

Q. Let’s go again, which ones do you think are proofs? (pointing to the ar-
guments presented in G1) 
T.  That’s not a proof (Amanda’s), what I said. 
Q. Because why? 
T. It only shows for some. This (Barry’s) only shows it for an isosceles. 
This … Cynthia’s. It doesn’t really, no, Cynthia’s doesn’t show it for every 
triangle. But she’s saying why p, why q there’s proof in there somehow and 
that is important … but it doesn’t really prove that for all of the triangles—
she’s just done that one (pointing to diagram) … but it does kind of … 

A similar concern for the generality of Cynthia’s argument was expressed by an-
other student, again because of the presence of a diagram that was interpreted as 
showing just one case. In contrast to T, C’s was a more sophisticated response, that 
did not accord high status to Cynthia’s proof because of the letters in the diagram 
but rather because the argument mentioned properties she had come across in 
mathematics lessons. 

C. This one (Cynthia’s) … I think this one’s better, but I’m not sure. I think 
it’s a proof in a way, but because they only use … it’s only showing that one, 
that one triangle. Actually it does show for all … I’m not sure really. … 
I think that one’s … It is a proof because just by using these reasons to show 
that that … these are like parallel lines … alternate angles … 

At this point C seemed to gain conviction about the nature of a proof as she 
shifted her attention during the interview to the properties used in the argu-
ment and away from the particular characteristics of the diagram: 

Q. OK, so now you said before that you thought it was only true for some. 
C. No, I don’t agree with that now. 
Q. You don’t agree with that now, you think it’s true for all? And why do you 
think it’s true for all? 
C. Because it’s using, like, because it’s got, using things like the parallel lines 
to show that the angles are equal, and alternate angles as well, it doesn’t actu-
ally matter what the angles are. I think I got confused because you see they 
put only one triangle in the picture there, only one … 

These extracts throw light on some of the reasons why students might have chosen 
Cynthia’s argument for best mark, not only as we might have predicted because of 
the generality of a proof that follows the deductive process, but rather because of 
the algebra used or the explicit mention of geometrical properties. A mixture of 
these points was alluded to by another girl, A: 

Q. But why did you think Cynthia would … [receive the best mark]? 
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A. Because she was like using algebra, and talking about alternate angles and 
how their lines … 
A had also chosen Amanda’s argument as nearest to her own approach, be-
cause she “knew that way” and was convinced by it. She also thought that 
Amanda’s argument was general, partly because Amanda had tried several 
cases, but also because she was beginning (as shown in her last comment) to 
“see” how it would always work: 
A. Because I already knew that [referring to Amanda’s argument], and it 
was more straightforward, I thought. 
Q. You knew that? How do you mean, you knew it, you’d done it? 
A. Yes, I’d done that before, I’d come across it. 
Q. What, you’ve torn up angles, and so you liked it? 
A. Yes. 
Q. What we’re interested in, you chose Amanda, and you said … that 
Amanda’s argument shows that the statement is always true. You’re 
happy that this shows it’s always true? Is that right? You stick by that? It 
does show it’s always true? 
A. Yes, I think so, because she’s tried it with an equilateral triangle and 
isosceles, and I think this angle … 
Q. She’s tried it for equilateral and isosceles. 
A. Yes. And even if this angle got bigger that one would get smaller as 
well, so it would always get to 180. 

So A’s choice was guided by her familiarity with the argument but also by the fact 
that she could “see” its generality. This was also true for her assessment of Dylan’s 
argument which seemed so perfectly accurate, although in this case she was less sure: 

Q. What about Dylan? You also say this shows that it’s always true. Dylan 
did measuring, drew lots of angles, drew lots of triangles, measured them and 
made a table, and you thought that was always true, showed that it’s always 
true. Do you still think it’s always true, from Dylan? 
A. It kind of shows, I mean, it’s probably not like, you couldn’t say that it’s 
always going to be true, that you’re not going to have one case, or something, 
but it looks quite, looks like it does show … because, I don’t know, they’re 
all … 
Q. They’re all what? 
A  They’re all perfectly 180. 

K, from the same school, chose Amanda’s argument for her own approach, again 
for reasons of simplicity, arguing that she could follow it, she understood it and 
found it convincing—even though she was sure that it did not prove the statement 
for every triangle. The lack of generality was not a priority for her. 

K. (long pause) I think that the one I would choose [Amanda] … it is pretty 
simplistic but it seems to show me, but it can’t show for every single one. 
Q. Which one’s that? 
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K. I think Amanda’s answer would help me to understand that … it would 
help understand it, but it doesn’t prove it for every single one. 
K’s thinking about Cynthia’s argument was interesting. She was impressed 
by the letters but this threw up another difficulty; she was unsure whether the 
argument was true, at least partly because she could not follow the logic in 
the algebra: 

K. Because even though she’s put a,b,c, they are set … Well, with the z 
it will be always true, and so that … I don’t know how she can tell what 
they are though. Oh because they’ll make … adding them all up will 
equal 180. 
Q. You don’t see why that follows? 
K. Yes. “alternate angles between 2 parallel lines …” 
Q. You’re happy with p=s aren’t you? 
K. Angles on a straight line. 
Q. Do you know that? 
K. p, q and r … yes, but I don’t see how it would make s, t and r. 
Q. You’re happy that p+q+r=180? You don’t see that it therefore fol-
lows that s+t+r=180? 
K. Exactly, yes. I mean, I know that, but … 
Q. You know that because you know the sum of the angles … 
K. But I don’t see how it can just follow on like that. 

We were surprised that K could not see that if she substituted a variable in an ex-
pression with an equal variable then she could deduce that the expression remained 
unchanged. Clearly this way of thinking and making “small” deductions using 
known results in geometry was not familiar to K and indeed many other students. 
 In summary, student choices of argument were influenced by criteria for choice 
(own approach or best mark) and by a range of factors, some central to proof such 
as generality and logic, but others more concerned with presentation, such as the 
existence of a diagram, references made to properties taught in mathematics les-
sons or letters used as labels for unknown angles. We now turn to how teachers 
evaluated the arguments presented in the multiple-choice questions as another pos-
sible influence on student choices. 

The Influence of the Teacher 

Referring to the teachers’ choices of argument in G1, presented in Table 1, the first 
point that can be made is that in contrast to the student data, for the teachers the 
differences between the two distributions of their own approach and prediction of 
their students’ choice of best mark were not significant: the most popular choice 
for the teacher’s own approach, Cynthia’s formal correct argument, was also the 
most frequently selected as the argument which was believed to be the students’ 
choice for highest mark. This latter prediction certainly matched the students’ re-
sponses. It is heartening that no teacher failed to see the incorrect logic in Barry’s 
argument. However, it is of interest that about one quarter of the teachers chose 
Amanda’s ‘folding’ approach as what they would do. This result may reflect a lack 
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of familiarity with geometrical reasoning amongst teachers, many of whom would 
have learnt rather little geometry themselves because of the decline in geometry in 
the school curriculum since the 70s. It might also stem from the importance teachers 
give to arguments that are felt to explain, with teachers believing Amanda’s actions 
to be a particularly good way of thinking about the property being considered and 
valuing this over a deductive argument. Also of interest is that 22% of the teachers 
chose Amanda’s argument as the prediction for students’ choice of best mark, a 
prediction that is strange given the students were nearly 15 years old and high at-
tainers. It is even stranger when one notes (in Table 1) that only 5% of students ac-
tually made this choice for best mark themselves. Teachers in this case were 
apparently “not in touch” with the aspirations of their students. Some idea as to why 
this might have been the case can be gleaned from the interviews with a sample of 
teachers who chose Amanda’s argument. We present some illustrative extracts: 

Q. Here, you’ve gone for Amanda [choice for her view of students’ choice 
for best mark]. Why was that? 
A. Because that’s the way I teach it. 
Q. So that’s actually within the curriculum … tearing up… 
A. Because they can always remember a whole turn and a half turn therefore 
the straight line, it’s a nice, simple … and they can actually physically do it. 
Q. Yes. Do you think they would choose Amanda mainly because they’ve ac-
tually done it, so it’s recognition … 
A. Yes, probably because they recognise it. 
Q. What about the issue of the fact that there’s, I mean, it is one triangle? 
A. Ah well, I normally get the whole class to draw a different triangle. 
Q. Right, so there’s lots of them … 
A. Cut it out, yes, so I make a point that I didn’t know what triangles you 
were going to draw, and you’ve all done different and … 

This teacher herself seems to accept the generality of “trying many cases” although 
in her final remark she hinted at the issue of making a random choice of triangle. 
Nonetheless, it does appear that the main influence on this teacher’s choice was the 
fact that Amanda’s proof had been taught and (presumably)  
Cynthia’s had not. 
 This same argument was echoed in another teacher interview: 

Q. Another thing that I was quite interested in is that, when you filled in 
yours, again we picked up that you were quite a formal person, but here you 
thought that a lot of them (your students) would go for Amanda [for best 
mark], which is the ripping up one. 
A. Mmm. 
Q. In fact, they don’t seem to like that at all. 
A. Interesting that. In Year 7, we started teaching—I don’t normally teach 
Year 7—but when they come to that, they normally do it that way with them. 
Q. Right. So that was the reason that you thought they’d go for that. 
A. Yes. 
Q. In fact they didn’t, they were much more likely to go for the formal. 
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A. That’s interesting (muttering: We’re wasting our time!) 

So a large minority of teachers not only chose a pragmatic argument for themselves 
but also chose it for best mark, apparently because that was how they had taught 
the students so they could not (should not?) expect anything else. It was a matter of 
coverage. Many students though had somehow picked up another  
message, as evidenced in their choices of best mark, and it would be interesting to 
investigate if students were aware of the fact that more often than not they had not 
actually been taught how to make the deductive presentations that they believed 
would receive the best marks. 

PROOF CONSTRUCTIONS IN GEOMETRY 

We now turn to our analysis of students’ own proof constructions in order to assess 
how well they were done from a mathematical perspective, how far they satisfied 
the criteria implicit in the students’ own choices and how they were presented. The 
distributions and means of the students’ scores for both the familiar and unfamiliar 
conjectures, G4 and G7 respectively, are presented in Table 2. 
 Not surprisingly, students constructed better proofs for the familiar conjecture 
than for the unfamiliar one. However, even in the former case, only 19% presented 
what we assessed as a complete proof and a remarkably small additional number 
(5%) included at least some deductive reasoning in their argument. Where the con-
tent was unfamiliar, 62% of students were unable to provide even the basis for a 
correct proof; they produced nothing at all or wrote nothing of any relevance. From 
a comparison of the total number of students who selected an argument represent-
ing what we deemed to be a correct proof with the total number of students who 
constructed either a partial or complete proof, we can deduce that students were 
significantly better able at choosing correct proofs than constructing them 
(χ2=961.29, df=1, p<0.0001). To construct a proof, students need to mobilise 
mathematical knowledge as well as organise an argument. What were the major 
obstacles in proving these geometrical conjectures? Did students have no intuitions 
about the relevant premises in the conjecture, or were they simply not able to come 
up with any sort of chain of argument? 
 To try to tease out some explanations, we looked in more detail at what students 
actually produced. As well as assigning a score to the student proofs, we had also 
classified them according to the argument used: whether it only included relevant 
examples, whether it was presented in a narrative style (that is comprised an argu-
mentation written in everyday language that did not make the logical process ex-
plicit) or whether it was formal (that is attempts were made to present the argument 
in deductive steps). In the familiar question, the most common approach was em-
pirical, adopted by 35% (861) students. Given our interest in the effects of the Na-
tional Curriculum structure on geometrical reasoning, we noted an influence of 
AT1 on these empirical student responses—not in terms of their reasoning, as we 
would have hoped, but rather in terms of their presentation. In AT1, data have to be 
collected, tabulated, a pattern spotted and if possible explained and proved. We 
found that this “ritual” was transposed by many students to the geometry context: 
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artificial data that satisfied the statement were tabulated and then used to show the 
statement to be true! A typical example is given in Figure 5. 
 

Table 2. Distribution of Students’ Scores for Proofs to  
Familiar and Unfamiliar Conjectures 

 Constructed proof score Familiar  
conjecture (G4) 

 Unfamiliar  
conjecture (G7) 

  No. % No. % 

0 No basis for the construction of a correct 
proof  

586 24  1531 62 

1 No deductions but relevant information  
presented 

1289 52  690 28 

2 Partial proof, including all information 
needed but some reasoning omitted 

118 5  121 5 

3 Complete proof 466 19  117 5 
 Total 2459 100  2459 100 
 Mean score  1.188 0.522    
 Standard deviation 1.005 0.796    

 
For the proof of the unfamiliar conjecture, the distribution of responses was rather 
different. As mentioned earlier, 62% made no relevant responses but, in contrast to 
answers to G4, few students (5%) tried to justify the conjecture through empirical 
examples, by for instance measuring the sides and showing that they all were the 
same. We can only speculate as to why this was the case. It may have been that in 
this unfamiliar situation the students were unable to identify the starting points or 
“givens” as these were properties embedded in the figure. Or maybe they were 
unsure of the properties necessary for an equilateral triangle. 
 In contrast to the differences in numbers of students adopting empirical ap-
proaches in the two questions, we did find some similarities in the distribution of 
scores for narrative and formal approaches in the two cases. For both questions, by 
far the most popular mode of response was narrative (28% and 23% in G4 and G7 
respectively) with only a small number of students attempting any formal presenta-
tion (6% and 10% respectively). Thus most of the students who did more than pro-
duce data tried to present a reasoned argument in a narrative style—maybe a subtle 
influence of the process approach to proving in the curriculum. 
 Given the relatively large number of narrative responses to both questions, we 
now consider the percentage distribution of scores, (1, 2, 3), when proofs were 
presented in this narrative mode, as shown in Table 3. 
If we first look at narrative responses to G4, we find that it was among these argu-
ments that the majority of correct proofs were located: 60% of the narrative argu-
ments were complete proofs. In fact by far the majority of the narrative proofs  
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Figure 5. An empirical argument for the proof of the familiar conjecture, G4. 

Table 3. Distribution of Scores for Proofs in Narrative Mode 

 Familiar  
conjecture (G4) 

 Unfamiliar  
conjecture (G7) 

    No. %      No. % 
1 193 (8) 28  453 (18) 80 
2   76 (3) 11    68 (3) 12 
3 416 (17) 60    45 (2)   8 
Total 689 (28)   566 (23)  
Note. The numbers in parentheses represent the percent-

age of the total student population in this category. 

 
for G4 (400 of the 463 correct proofs) used the familiar method by which the quad-
rilateral is divided into two triangles, as illustrated in Figure 6. The remaining 63 
students modified Ewan’s argument in G1 and used exterior angles as illustrated in 
Figure 7. We interpret that it was in these narrative responses to G4 that students 
showed how they were striving to achieve the general proof that they knew was 
required. They used the battery of argumentation at their disposal but in an infor-
mal way, giving little attention to premises and deductive steps. Yet, we would 
argue that the lines of argument and the geometric facts used in the examples  
presented are clear to the reader. 
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Figure 6. A narrative proof of G4.    Figure 7. Adapting Ewan’s proof in G1 to prove 
G4. 

There was in fact considerable ingenuity exhibited in many answers to G4 that is 
hard to capture in bare statistics. This creativity has been illustrated in the figures 
already presented but we show a few more examples to provide the reader with a 
taste for the wealth of different approaches taken. Many students attempted to gen-
eralise from a specific case, as illustrated in Figure 8. 
 Others tried to adapt the arguments given previously in G1. Figure 9 shows an 
adaptation of Amanda’s enactive method and Figure 7 (shown previously) is an 
adaptation of Ewan’s proof. 
 In trying to prove the second unfamiliar geometry conjecture, again the most 
common construction was narrative in style (28% of the sample). But, in contrast 
to G4, only 8% of these narrative arguments could be assessed as complete proofs. 
One example of such a proof is given in Figure 10, in which again we would argue 
that the line of argument is clear. The response indicates that the student appreci-
ates the steps in the proof—although there are certainly flaws in the way the  
reasoning is presented. 
 Eighty percent of the responses described some (but not all) of the relevant 
properties of the figure (see Table 3), for example, simply specifying the equality 
of the radii. Again what the numbers are unable to show is the range and richness 
of the student proofs—or in this case the limited range and absence of richness. In 
contrast to responses to G4, there was rather little creativity and insight displayed 
in the student responses to G7; few students attempted to adapt the arguments pre-
sented in the previous multiple-choice question (which would have been possible), 
and few attempted idiosyncratic but relevant solutions. In this question, possibly 
due to its unfamiliarity, the students seemed only able to mobilise a small number 
of arguments or intuitions to help them grapple with the problem, in contrast to the 
wealth of methods used in the familiar question, G4. 
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Figure 8. Generalising from a specific case.   Figure 9. Adapting Amanda’s proof in G1 
to prove G4. 

Given the importance of formal presentation for best mark in the eyes of the stu-
dents as shown by our analysis of the multiple-choice question, we next consider 
the distribution of scores (1, 2, 3) for G4 and G7, when the proofs were presented 
formally (see Table 4). 
 These data indicate that, although more students attempted a formal presentation 
as a proof for the unfamiliar conjecture than for the familiar one (10% as compared 
to 8%), the percentages scoring 1, 2 and 3 were surprisingly consistent across the 
two questions, in particular a similar percentage (around one third) of those at-
tempting a formal proof for the two conjectures, achieved a maximum score. 
 We now turn to the multilevel analysis to try to draw out factors that might ex-
plain some of the trends in these responses by reference to teacher and school data 
collected in the survey. 
 

 

Figure 10. A narrative proof of G7 (typed from original student work). 
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Table 4. Distribution of Scores for Proofs in Formal Mode 

 Familiar  
conjecture (G4) 

 Unfamiliar  
conjecture (G7) 

    No. %      No. % 
1 5 (2) 40  113 46 
2 36 (1) 24  59(2) 24 
3 52 (2) 35  74 (3) 30 
Total 148 (8)   246 (10)  

Note. The numbers in parentheses represent the percentage of the total student population in 
this category. 

Explaining Students’ Responses 

From the analysis of the descriptive statistics given earlier, we found that student 
choices for their own approaches correlated with their choices for best mark, and 
their views about the generality and explanatory role of the arguments. However, 
this analysis may be misleading as interactions between input variables are not 
identified and any clustering of responses associated with shared classroom experi-
ences was not taken into account. We did not wish only to seek explanations for 
student responses in terms of student “ability” or even attainment in the curricu-
lum, but rather to try to take account of individual differences, such as student gen-
der or attitude to proof. We also wanted to look beyond the individual, to attempt 
to assess whether variables concerned with teachers, curriculum and school were 
related to student performance, to look at whether student performance was uni-
form across the sample or whether there were variations according to school. As 
mentioned earlier this involved the use of multilevel modelling techniques to take 
into account the two-level structure of the data set: with school (including school, 
curriculum, teaching and teacher factors) at Level 28 and students at Level 1. 
 First we describe the models for the following output measures: students’ 
choices on the multiple-choice question for their own approach, and students’ 
scores on the two constructed proofs. A total of 34 input variables were tested for 
association with each output measure and those that were significantly associated 
with at least one output and which suggested a relationship that we can interpret 
from a broader or theoretical perspective, are shown in Table 5. 
 The analysis presented in Table 5 shows that only one variable, Key Stage 3 test 
score, was significantly associated with all the output measures and its estimated 
effects on proof scores were much larger than the other variables. It might only be 
expected that being able to prove would be strongly associated with a general 
measure of mathematics attainment, or with knowledge of mathematical facts and 
procedures. Key Stage 3 test score also clearly influenced the choice of argument 
for a student’s own approach; as this score increased so did a student’s preference 
for an argument that was not empirical. 
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Table 5. Variables Significantly Associated with Output Measures 

Variables  Output measures 

  Choices for own approacha   Constructed proof scores  

  Familiar  
conjecture, G1 

 Familiar  
conjecture, 
G4 

Unfamiliar  
conjecture, 
G7 

Level 1:      
Student characteristics      
Gender  *    
Key Stage 3 test score  *  * * 

Responses to  
questionnaire 

     

Best mark  *    
Proof as general  
(geometry) 

   * * 

Validity ratings (VR)  *    
Explanatory power (EP)  *    

Level 2:      
Curriculum factors      
% GCSE higher tier     * 
Approaches to teaching 
proof 

     

Write geometry proofs    *  
a The construction of a multinomial model of a categorical outcome involves selecting one 

category as a fixed base or comparison category and comparing responses to this with 
responses to the other categories. In fact, estimates of the logarithms of the ratio of the 
number of students choosing any category to the number of students choosing the com-
parison category are obtained. In all cases we chose the empirical category as the basis 
for comparison. 

 
However, it is of interest that other factors apart from general mathematics compe-
tence were also exerting significant influence on proof responses. For example, 
gender was a factor, with girls making significantly different choices than boys 
with similar Key Stage test scores in G1. Many of the trends indicated in the de-
scriptive statistics mentioned earlier were also supported by the models: students 
were more likely to choose an argument for their own approach if they believed it 
would receive the best mark, if it could be correctly evaluated and if it was felt to 
convince or explain. 
 Turning to Level 2 variables, we found no variation in student response accord-
ing to teacher qualifications, gender and teaching experience. Additionally, no sig-
nificant associations were found when the teachers’ choices were added to the 
multinomial models, suggesting students’ choices were not the same as their teach-
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ers’, and student choice patterns seemed not to be influenced by differential prefer-
ences amongst their teachers. 
 We also modelled students’ choices for best mark in question G1. It is not nec-
essary to present all the findings here but it is worth noting that we found a similar 
set of explanatory variables, with the exception that Key Stage 3 test score did not 
play a significant role. Somehow, for this familiar conjecture, there was substantial 
agreement among all students regardless of attainment about the answers that 
would gain the best marks from their teachers. At Level 2, a range of factors 
proved to be significant, but again teachers’ predictions of their students’ choices 
for best mark were not significant, against a plausible expectation that there would 
be some agreement between teachers and students as to the most highly valued 
proof. The previous discussion over teachers’ responses to Amanda’s argument 
throws some light on this paradox. Clearly some teachers’ preferences for the 
pragmatic proof both as a predicted choice for best mark and for their own ap-
proach were out of line with their students’ partiality for formal presentation. 
 Turning to the constructed proof scores, it is noteworthy that the variable, 
proof as general, was significantly associated with both constructed proofs. This 
refers to the responses to question G2 discussed earlier. Maybe it is this apprecia-
tion of generality that provided some basis for success in the narrative style proofs 
in G4 and the formal presentations in G7. It is also of interest that students in 
classes with a larger proportion taking the higher- rather than the middle-tier GCSE 
paper9 were better at constructing proofs for the unfamiliar conjecture and the ex-
perience of writing proofs improved scores for the proofs of the familiar conjec-
ture. Both factors point to the influence of teaching. The latter points to the 
importance of familiarity in setting down an argument in geometry. The former 
suggests that teachers may have a rather different approach to teaching about prov-
ing if there is a majority of students in the class who are highly motivated to take a 
challenging test at the end of the year. The point is that this influence can be de-
tected among all students in the class regardless of prior mathematics attainment 
and regardless of whether (or not) the student was actually due to sit the challeng-
ing test. Maybe it is only in these classes that students have gained enough famili-
arity with simple geometrical content and language to be able to begin to engage in 
argumentation? Maybe it is only in these classes that students are given some in-
struction in organising an argument in Euclidean geometry? 

School Differences 

To test if there were schools in which students obtained higher (or lower) scores 
than would be expected after adjustment according to the significant variables in 
our models, we analysed the variation in response between students from different 
schools. 
 We found that for both the constructed proof scores, there was substantially 
more variation in the performances of students within schools than between 
schools. This is illustrated in Figure 11, where 95% uncertainty intervals around 
the residual estimates for each school have been plotted, showing clearly that, after 
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adjusting for the significant variables, there was considerable overlap between 
schools. 
 

 

Figure 11. School deviations from predicted means: 95% uncertainty intervals around  
estimates for each school. 

In Table 6 we show the results of random effects of the models of scores in the two 
questions G4 and G7. It shows that the highest intra-school correlation of schools 
was obtained for the scores on the unfamiliar geometry question, G7, indicating 
that there was a larger proportion of the total unexplained between-schools vari-
ance for this question than for G4. In fact, the plot of school residuals associated 
with student scores on G7 (given in Figure 11), shows a rather sharp increase in the 
gradient at the upper extremes, suggesting that, in a handful of schools, students 
were performing especially well. It is interesting to note that this pattern mirrored 
that identified by the multinomial modelling of student choices. In this model it 
was again found that unexplained school variation was largest among the choices 
of argument for the unfamiliar geometry conjecture, and that the school attended 
could enhance students’ preferences for a formal argument (whether or not it was 
correct).10 These findings together suggest that, for unfamiliar geometry questions, 
schools were influencing students’ responses in ways not captured by any variables 
in the models. Thus, although there was little between-school variation in stu-
dents scores for constructed proofs, there were some schools whose students scored 
better (or worse) than predicted. It is these “outlier” schools which would be inter-
esting to study in depth to find out more about their policies and practices.11 

Table 6. Random Effects in Models of Scores for Proofs to the Familiar and  
Unfamiliar Conjectures 

Random effects Score for proof of familiar 
conjecture (G4) 

Score for proof of  
unfamiliar conjecture (G7) 

Level 1 variation 0.85 (0.026) 0.52 (0.016) 

Level 2 variation 0.05 (0.013) 0.05 (0.011) 

Intra-school correlations 5.6% 8.7% 

Note. Standard errors shown in parentheses. 
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CONCLUSIONS 

So what light does our research throw on the questions raised at the beginning of 
this chapter? Are students still exhibiting the same difficulties with proof as docu-
mented in studies of their responses after following a more traditional course where 
proof is introduced in the context of geometry and taught with little emphasis on 
explanation? How far do the proof processes explicitly addressed in a statutory 
National Curriculum spill over and shape responses to geometrical content in the 
separate attainment target? 
 With respect to the first question, it is clear that students were still experiencing 
many of the same difficulties in constructing proofs that have been identified in 
previous research. Even among our high-attaining sample, the fact that so few 
could use their experience in explanation to come up with any deductive argument 
in geometry can only be disappointing. Most students seemed unable to describe 
and distinguish mathematical properties relevant to proving a given geometry 
statement and fewer still could construct logical arguments to connect them. The 
majority appeared content to rely on inductive inference rather than any logical 
argument to determine the truth of mathematical statements. When this was not 
possible, that is, when they could not come up with examples for themselves, the 
vast majority were unable to begin the process of proving. 
 Unsurprisingly, the students revealed many of the same problems around appre-
ciation of the generality of proofs as reported in previous research and reviewed 
earlier—with diagrams often being a source of confusion when a formal geometry 
proof was merely presented. Students also rarely produced watertight deductive 
arguments or noted flaws in a given deductive argument. Yet other factors were 
revealed by our interviews as possibly conferring status on a proof, quite apart 
from its generality or logical nature, such as the presence of named geometrical 
facts or relationships and the inclusion of algebra. Ironically, these same facets 
seemed to have rendered the proofs harder to follow, and paradoxically resulted in 
them gaining high status. 
 What may well be different from responses in other countries is that students 
who had followed our curriculum preferred to construct a proof to a familiar con-
jecture in a narrative style, and in the process frequently showed considerable indi-
viduality and creativity. They rarely if ever acted out meaningless formal rituals 
when producing proofs, as reported in studies when students had followed a more 
traditional curriculum. Rather, their proofs were the products of struggle to mould 
their informal, even private, explanations into a more public communication of the 
lines of their arguments. The students displayed less creativity in the face of unfa-
miliar conjectures in geometry: they wanted their own proofs to satisfy the crite-
rion of convincing and explaining but, unlike in the familiar case, could not find 
ways to express these needs. 
 It seems that the majority of our sample were not entirely satisfied with prag-
matic verification of conjectures. At least, very few of them felt that their teachers 
would value such arguments, although surprisingly, nearly a quarter of their teach-
ers would indeed have done so. Most students felt that formally expressed argu-
ments would receive the best marks, regardless of their own attainment and the fact 



CELIA HOYLES AND LULU HEALY 

108 

that this approach was likely not to have been taught. However students rarely 
chose or use such an approach themselves—they would find it too hard but also it 
would not satisfy their need to stay engaged, or to be convinced. 
 This study does point to the effects of the National Curriculum—not surprising 
given its statutory nature and the fact that many textbooks at that time were divided 
into sections according to the National Curriculum attainment targets. Before the 
curriculum changes in 2000, the curriculum specifications had meant that geometry 
had been largely separated from mathematical reasoning. Reasoning on the other 
hand had become strangely transformed and became dominated by data-driven 
activity and pattern-spotting, where the majority of students did not seem be moti-
vated to think about the structures underpinning the patterns—many of which 
ironically are geometrical. The influence of this curriculum change was 
mainly evident in the survey in many of the students’ empirical proofs to a familiar 
conjecture. 
 On the positive side, those students who did not opt for an empirical approach or 
a familiar pragmatic proof, did display a myriad of creative attempts to prove a 
familiar conjecture, which, while sometimes falling short of a complete proof, 
showed their willingness to engage with the problem in experimental and thought-
ful ways. Our statistical models also indicated that success in proving was en-
hanced if students had gained a feeling for the generality of a proven statement, 
and if there were high expectations for the classes’ performances (that is, they were 
in a group with a larger proportion entering higher-tier examinations). Scores in 
proving were also related to general mathematics attainment. This competence 
measure would not only be more likely to guarantee a basic knowledge of geome-
try facts and language (not widespread in the student population), but also might 
well be associated with confidence and risk taking. 
 The findings of this research raise questions for curriculum planning. They sug-
gest that if proving in whatever form or function is to have a place in geometry, (as 
opposed to or as well as in other areas of the mathematics curriculum), then the 
curriculum must explicitly be designed to achieve this goal. Building skills in ar-
gumentation might have considerable benefits for students in encouraging them to 
seek to understand and explain their mathematical ideas, but in order to exploit 
these skills most effectively considerable work has to be done in the context of 
geometry. How this might be done is a matter of drawing on research that has 
documented a variety of effective approaches and building systematic plans around 
these approaches that are long term and progressive. Our teacher data also pointed 
to the need for teachers to develop their own expertise and confidence in geome-
try—an issue that might face other countries where, as in England, geometry has 
long been neglected in the curriculum. 
 Overall the research has confirmed the complexity of the process of proving in 
geometry; there are no short cuts or easy solutions. For any teaching to be success-
ful in the complex area of proof, it must build connections between informal intui-
tive argumentation and more formal proof practices, between analytic and synthetic 
approaches. Teaching has to enable students to control their work by theoretical 
considerations while not losing sight of their intuitive problem solving. But what 
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our study has shown is that consideration of the conceptual and cognitive issues 
alone might be necessary but not sufficient for success and other factors must be 
taken into account, not least the content and structural organisation of the curricu-
lum and the expectations it engenders about basic geometry, the process of proof 
and what is “good mathematics”. 
 Proving for our students was not a ritual as was so often the case with traditional 
geometry teaching, and may still be the case in other countries. Proving was 
about explaining in general terms; it was part of seeking understanding. Clearly 
this emphasis along with confidence in investigative practices shaped students’ 
choices and attempts at proofs. But our evidence suggests that students also recog-
nise a high status geometry proof and value a deductive approach, paradoxically 
even despite what they might have been taught or what their teachers think 
they would value. The benefits accruing from a process approach to proving with 
a focus on explanation can be found in situations concerning generalisation and 
algebra, as documented in Healy and Hoyles (2000). In this domain, a way forward 
can clearly be envisaged where students might learn to use algebra as their lan-
guage to explain phenomena. Geometry presents a separate and more complex is-
sue. But unless activities and curriculum are designed with clear mathematical and 
pedagogical goals in this context, the general introduction of a process approach 
could actually turn out to be to the detriment of developing geometrical intuition 
and explanation. 

POSTSCRIPT 

As mentioned earlier, the National Curriculum for Mathematics was revised in the 
year 2000, with changes introduced that particularly affected the attainment target 
related to proof and reasoning. As a result of this revision, geometrical reasoning 
was given a more explicit place in the statutory document, since the programmes of 
study associated with the attainment target Using and Applying Mathematics were 
integrated in sections on Number and Algebra, Shape, Space and Measures and 
Handling Data. In 2002, as part of a second research project, the Longitudinal 
Proof Project,12 the development of student proof conceptions over a three year 
period was investigated through annual proof surveys (for an overview of this pro-
ject, see Hoyles et al., 2005) . A proof test, including some of the items used in 
1996 reported here, was administered to 1512 students, aged 14–15 years in the 
final year of this later study. Although the curriculum revisions were still relatively 
recent, we present some comparisons of the distribution of responses of teachers 
and students in the two studies to throw light on what might be the effects of the 
changes. Clearly such comparisons must be treated with caution given different 
samples, but nonetheless we believe they are worthy of attention. Figure 12 shows 
the distributions of student choices on the familiar multiple-choice question (Figure 
1) for own approach in 1996 and in 2002. Generally speaking the two distributions 
are remarkably similar. Amongst both student groups, the two pragmatic proofs 
were the most popular choices, although there seems to have been a slight shift 
away from Amanda’s enactive argument in 2002 in favour of Dylan’s set of exam-
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ples. The arguments chosen least frequently in both 1996 and 2002 were Ewan’s 
reasoned argument and Yorath’s visually presented one, with the biggest change 
between the two samples being the drop in the percentage of students opting for the 
visual argument (from 10% in 1996 to 1% in 2002). The number of students indi-
cating they were likely to attempt to construct arguments presented as a chain of 
deductions did in fact increase from 1996 to 2002, but only marginally from 36% 
to 39%. 
 Figure 12 also suggests no major changes in the distributions of best mark 
choices in the two data sets: the two formally presented arguments, and particularly 
Cynthia’s correct deductive proof, continued to be the most popular and the  
pragmatic proofs were chosen only rarely by the students in both samples. Perhaps 
surprisingly, it was students in the 1996 sample who seemed to be slightly better at 
determining which of the two formally presented proofs was correct. 
 

 

Figure 12. Percentage distributions of students’ choices for the familiar conjecture in 1996 
and 2002. 

While the distributions in students’ choices were similar in 1996 and 2002, the 
same was not true for their teachers, as shown in Figure 13. Amongst the 1996 
sample, as discussed earlier, a substantial minority (26%) opted for Amanda’s 
pragmatic proof, which involved tearing up a triangle and organising the angles to 
form a straight line, as the argument closest to the own approach. In the 2002 sam-
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ple this percentage dropped substantially to only 10%. Similarly, in 2002 only 
6% of the teachers felt their students would choose this argument as best mark in 
comparison to 22% in 1996. To compensate for the drop in the percentage select-
ing a pragmatic proof, either for own approach or best mark in 1996, there was a 
corresponding increase in teachers opting for Cynthia’s deductive argument. It 
could be that, whereas the curriculum changes had not yet motivated substantial 
changes in the mathematics classroom, the more explicit emphasis on deductive 
reasoning in the programmes of study for geometry had some impact on how 
teachers judged geometrical proofs. It should be noted, however, that for the choice 
of best mark, the 2002 group of teachers substantially overestimated the prefer-
ence, as choice for best mark, for the correct option of the two arguments presented 
as deductive steps, with 76% believing that their students would choose Cynthia 
and only 1% indicated Barry as the probable choice. Figure 12 shows as well that 
there was a slight increase in the proportion of students who chose Barry in the 
second sample (21% as compared to 15% in the 1996 sample). This points to the 
risk that an increased attention to geometrical can lead students to value form at  
the expense of content. 
 

 

Figure 13. Percentage distributions of teachers’ choices for the familiar conjecture in 1996 
and 2002. (* Yorath’s argument has been excluded from the graph as it was not given to 

teachers in 1996. In 2002, it was chosen by 1% of teachers for both own approach and best 
mark.) 
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Turning to student proof constructions, Figure 14 shows the distribution of student 
scores for the familiar and unfamiliar conjectures (G4 and G7, as presented 

in Figure 4) in both 1996 and 2002 (for details of the scoring system, see Table 2). 

 

Figure 14. Percentage distributions of scores for students’ proof constructions for the  
familiar and unfamiliar conjectures in 1996 and 2002 

 
In both samples the percentage of students who managed to construct complet-
proofs (scored 3) was low. In relation to the familiar conjecture, there was a 
slight improvement with 23% managing a correct proof in 2002 as compared to 
19% in 1996. For the unfamiliar proof there was no difference in the percentage of 
students producing complete proofs (5% in both groups). There were however 
some further differences worth noting given the particular curricula revision made 
and its effects on the contexts in which reasoning would first be met by students; 
that is a change away from proving being introduced in the context of investiga-
tions where empirical data are collected. Among the students who completed the 
proof test in 1996, 52% scored 1 for the familiar conjecture, and this group in-
cluded a large number of students (42% of the overall sample) who constructed an 
argument similar to Amanda’s or Dylan’s pragmatic proofs (7% and 35% respec-
tively). In 2002 the percentage obtaining a score of 1 fell to 38%. This fall also 
corresponded to a drop in arguments similar to the two pragmatic options (5% like 
Amanda’s and 26% like Dylan’s). The number of students obtaining a score of 1 in 
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relation to the unfamiliar conjecture also fell, from 28% in 1996 to only 5% in 
2002. One more positive trend was the increase in students who included at least 
some deductive reasoning in their attempts to prove the unfamiliar conjecture, 
that is obtained a score of 2, from 5% in 1996 to 21% in 2002. The percentage 
of students who scored 2 for their attempts to prove the familiar conjecture also 
increased from 1996 to 2002, although this increase (from 5% to 10%) was not as 
marked. On the other hand, the percentage of students who scored 0 also increased 
from 1996 to 2002, up from 24% to 29% for the familiar conjecture and from 62% 
to 68% for the unfamiliar. 
 Despite the limitations in this comparative analysis because of obvious problems 
in equivalence of samples of students and teachers, it does appear that the process 
approach to proof that characterised the pre-2000 version of the curriculum en-
couraged the production of empirical examples, which, though limited as not nec-
essarily giving any focus to analytical or deductive argument, did have the 
advantage of affording to students some entry point into examining conjectures in 
geometry. The comparison also points to some risks in simply giving increased 
curriculum emphasis to geometrical reasoning, and leaves us with the challenge of 
finding a curriculum approach that allows teachers to support students in negotiat-
ing the passage from evidence that illuminates geometrical conjectures to reason-
ing which justifies them. 
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NOTES 
1 It is worth noting that this division of the targets into eight levels was not based on any analysis of 

stages of progression in a subject area. Rather it was imposed on all subjects in the National Curricu-
lum, in order that the levels could serve as a mechanism to measure and compare the achievement of 
students, teachers and schools. 

2 In an analysis of different geometry courses, Goldenberg, Cuoco and Mark (1998) distinguished three 
types: “faithful replicas of Euclid,” “Euclid without proof with emphasis on applications,” and “in-
ductive geometry where conclusions are drawn from experiments” (p. 41). 

3 Research funded by the Economic and Social Sciences Research Council (ESRC), grant number 
R000236178. 

4 The analysis of the responses to the unfamiliar conjecture in fact adds rather little to that presented 
here. It can be found in Healy and Hoyles (1998). 

5 GCSE (General Certificate of Secondary Education) is the public examination taken by students in 
England and Wales at the end of their compulsory schooling (age 16 years). Teachers decide which 
students are to be entered to one of three levels in the examination—foundation, middle or higher. 
Although there is overlap in the grades obtainable from taking the different tiers, there are ceiling 
grades for the lower tiers. 

6 Key Stage 3 tests are national tests administered in the summer term to all Year 9 students (age 13/14 
years). The scores are organised into Levels 1 to 8. At Key Stage 3, about 20% of students achieve 
each of Levels 5 and 6, 10% Level 7, and 2% Level 8. 
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7 The distribution of scores according to National Curriculum Levels was: 1 Level 4, 133 Level 5, 920 
Level 6, 1109 Level 7, 162 Level 8 and 133 unknown. 

8 Since we obtained responses from 2 classes in only 4 schools, it is impossible to distinguish between 
school and class effects. 

9 The GCSE is the public examination taken by students in England and Wales at the end of their com-
pulsory schooling (age 16 years). Students are entered to one of three levels in the examination, the 
foundation, middle or higher tier. Although there is overlap in the grades obtainable from taking the 
different tiers, there are ceiling grades for the lower tiers. 

10 This model is not shown here in the interests of simplicity. 
11 The identification and study of outlier schools over a period of 4 years was one of the focuses of the 

Longitudinal Proof Project (1999-2003), funded by the Economic and Social Sciences Research 
Council (ESRC), project number R000237777.  

12 This project was directed by one of the authors, Celia Hoyles, together with Dietmar Küchemann. 
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JULIANNA SZENDREI-RADNAI AND JUDIT TÖRÖK 

5. THE TRADITION AND ROLE OF PROOF IN 
MATHEMATICS EDUCATION IN HUNGARY 

When we were offered the opportunity to write this paper for a book on “Theorems 
in school,” we considered three main reasons for it: the relevance of mathematics 
in Hungarian culture, the good reputation for teaching of mathematics in Hungary, 
and the important contributions brought by Hungarian mathematicians to the  
development of mathematics in the last two centuries. Then we considered the  
importance of teaching proof in our schools. In 1983–84 a program “Budapest  
Semesters in Mathematics,” started with the intention to offer undergraduate 
courses conveying the tradition of Hungarian mathematics for foreign students. 
A one-semester course had the title “Conjecture and Proof ”; it referred to the late 
Hungarian mathematician Paul Erdös’ slogan, or imperative: “conjecture and 
prove!” (Lackovich 1998). 
 By analyzing the syllabuses, curricula and more than one hundred textbooks of 
the last century and considering also the implicit content of them as well as the 
unwritten shared knowledge of professionals, we could get a picture about the offi-
cial and informal features of proof in Hungarian schools. A questionnaire and our 
personal experiences about proof in school will help us to better appreciate the gap 
between official aims and students’ knowledge of proof. 
 This chapter focuses on teaching and learning proof in Hungary. Aims of school 
teaching of proof are compared with results and then reasons for unsatisfactory 
results and students’ related difficulties are discussed. 
 Alternative routes to proof (through journals and books for interested students) 
are considered. The personal experience of one of the authors is revisited, as a syn-
thesis for the arguments presented in this chapter. 

PROOF: THE OFFICIAL SIDE AND THE REALITY 

During the last century in Hungary the style and the content of mathematics educa-
tion has changed a lot. Quite naturally all these changes enhanced the role and im-
portance of proofs and reasoning. However at present the two major areas where 
proofs are concerned seem to be teaching the proofs of classical theorems as a cul-
tural knowledge, and using proper arguments during problem solving tasks as  
development of individual proving skills. 
 According to most teachers and documents, in Hungary the teaching proofs in 
school mathematics is important for many reasons: 
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• it is a major characteristic and inherent part in mathematics as a discipline; 
• classical theorems and their proofs are part of human culture; 
• proofs provide tools and methods for reasoning; 
• proofs can clarify the meaning and domain of validity of statements for both the 

author and the “audience” of the proof; 
• a proof can work as a generic example of a logical structure; 
• crucial aspects of mathematics can be “taught by proofs” where the meaning of 

concepts and their relations are revealed by the context of the proof; 
• techniques or even art of proving provide the possibility of mental, social etc. 

development of individuals; 
• proof as a tool can help communication between human minds; 
• the teaching of proving raises the level of clarity and helps to avoid ambiguity; 
• proofs are examples where decisions are based neither on authority nor on  

democracy. 

But what is Present Reality about Proof in School? 

Using the items of a parallel inquiry performed by Paolo Boero in Italy, we had the 
possibility of getting some information (concerning a small sample of students) 
about this question: does the teaching of proof satisfy some of the above expecta-
tions? Moreover there was the opportunity of a rough comparison between the an-
swers of Italian and Hungarian first-year university students. Populations were 
rather different, but some relevant analogies and differences emerged. The admini-
stration of questionnaire in Italy—University of Eastern Piedmont in Alessandria, 
first-year chemistry students—happened at the beginning of the first year, while in 
Hungary it happened in the middle of the first semester. In Hungary three groups of 
first-year students were involved (65 students altogether): two groups of prospec-
tive primary teachers (for grades I–IV) and one group of prospective mathematics 
teachers (for grades V–VIII). 

The Questionnaire 

Please decide for each statement if it is true or not. Give a short explanation of your 
choices. 
 
A. A fifteen years old student produces a new proof of the Pythagorean Theorem, 
needing only some elementary geometrical constructions. In order to establish if 
the proof is valid, 
A1. is the competence of a 17-year-old student, good in mathematics,  
sufficient? 
A2. is the competence of a high school mathematics teacher sufficient? 
A3. is it necessary to ask the opinion of a mathematician? 
B. In order to establish in a rigorous way that a conjecture is not true, 
B1. is it sufficient to find a counter-example? 
B2. is it necessary to prove that the conjecture is false in general? 
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C. In order to establish that a conjecture is true, 
C1. is it sufficient to find no counter-example? 
C2. is it sufficient to verify it in a large number of cases? 
C3. is it necessary to prove it in general? 
 
D. “To prove by reductio ad absurdum” means: 
D1. to prove that the contrary of the hypothesis is false? 
D2. to prove that the contrary of the thesis is false? 
D3. to prove that if the thesis is assumed as false, also the hypothesis is false? 

In Hungarian 

Kérem, egyenként válassza ki, hogy igazak-e az alábbi állítások! Adjon rövid in-
doklást is! 
 
A Egy tizenöt éves tanuló a Pitagorasz tétel új bizonyítását készítette el úgy, hogy a 
bizonyítás során csak elemi geometriai eszközöket használt fel. Annak eldöntésére, 
hogy a bizonyítás helyes-e 
A1. elegendõ egy 17 éves, a matematikában kiváló tanuló kompetenciája. 
A2. elegendõ egy középiskolai matematikatanár kompetenciája. 
A3. Az szükséges, hogy megkérdezzük egy matematikus véleményét. 
 
B. Ahhoz, hogy tudományosan bebizonyítsuk azt, hogy egy sejtés nem igaz 
B1. elegendõ egy ellenpéldát találnunk. 
B2. általános bebizonyítást kell adnunk arra, hogy a sejtés nem igaz. 
 
C. Ahhoz, hogy egy sejtésrõl bebizonyítsuk azt, hogy igaz, 
C1. elegendõ az, hogy nem találunk ellenpéldát. 
C2. elegendõ elég sok esetre megmutatni, hogy a sejtés igaz. 
C3. általános bizonyítást kell rá adni. 
 
D. Az indirekt bizonyítás azt jelenti, hogy 
D1. azt bizonyítjuk be, hogy nem teljesül a tételben szerepl Õ kiindulási feltétel. 
D2. azt bizonyítjuk be, hogy nem teljesül a tételben szereplõ következmény. 
D3. azt bizonyítjuk be, hogy amennyiben feltesszük, hogy a következmény nem 
teljesül, akkor a feltételek sem teljesülhetnek. 

Students’ Answers 

Answers for question A in Hungary showed that many students think that the valid-
ity of a proof depends on the authority (of a teacher or a mathematician), not on a 
logic check accessible to a sufficiently competent student. 
 Comments gave an insight about students’ expectations toward the role of a 
mathematics teacher. 
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A high school teacher has to be able to decide if the proof is correct or not. 
(A2) 

We have to ask one who has the largest knowledge. (A3) 

The truth of a new proof must be validated at the highest level. (A3) 

Who has to decide? I do not know. (This student did not choose any of the 
answers.) 

The pupil obviously did not prepare the proof for his/her own purposes. If 
this is true then a scientifically appreciated person is needed in order to make 
the proof known for others. (A3) 

The proofs of theorems are made by mathematicians. (A3) 

One cannot ask the opinion of anybody while preparing a new proof. (A3) 

I have chosen this because I think that a 17-year old (however clever he or 
she is) does not have as much mathematical knowledge as a teacher. On the 
other hand this is not serious enough to turn to a mathematician. (A2) 

Answers for question B showed significant difference between the groups of stu-
dents; 100% of the group of prospective mathematics teachers chose B1 while 69% 
of the prospective primary teachers and 30% of the Italian chemistry students think 
that it is necessary to prove in general that a conjecture is not true. The reason for 
100% for the first group can be the result of their university lessons where the “one 
counter-example is sufficient” slogan is frequent. The 69% seems to be surpris-
ingly high and shows strong misconceptions. On one hand there is a gap between 
theory and practice in their minds. They probably think that one counter-example 
can be enough in practice, in ordinary problem solving, but from a theoretical point 
of view mathematical truth must be proven in general. On the other hand this phe-
nomenon shows the overestimation of the role of general proofs in mathematics. 
One of the underlying reasons can be that during their school experiences they had 
encountered only statements which required general proofs. 

It is not sufficient to find a counter-example because a scientific verification 
was asked for. 

General proof is necessary because we have to consider all the possibilities. 
(Naturally this might come from another slogan: one example is not  
evidence.) 

Counter-example is only evidence but not a scientific proof. 

One counter-example is not sufficient because it is possible that we have 
found only one exception. 

I have chosen B1 because we had done something similar during the course. 
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If we are not talking about a theorem but only a conjecture then one single 
counter-example is enough to refuse the conjecture. For a theorem we should 
give a general proof. 

For scientific proof this (general proof) is necessary, for a non-professional 
one counter-example is obviously sufficient. 

It is also possible that for some students the meaning of “the conjecture is not true” 
is that the opposite of the conjecture is true. 

Answers for question C showed some differences between the Hungarian and Ital-
ian students: 
 
C1 was chosen by 36% of Italian and 9% of Hungarian students. 
C2 was chosen by 15% of Italian and 3% of Hungarian students. 
C3 was chosen by 49% of Italian and 80% of Hungarian students. 
8% of Hungarian students chose two answers. 
 
Some students remarked that if they have checked all the possibilities without find-
ing a counter-example then the statement is true, and we have to give a general 
proof only if it is impossible to check all the possibilities. 
 Choosing C2 can be quite reasonable if someone thinks an existence-type  
statement. 
 Answers for question D showed that most Hungarians did not understand the 
meaning of the given sentences. Many of them, instead of choosing one of the 
given possibilities, gave his or her own definition. Some others made their choices 
but their comments were not coherent with their choices. The situation was com-
pletely different in Italy: most students engaged in the answer and showed them-
selves familiar with the technical expressions (even if several answers revealed 
lack of reflection about “proof by reductio ad absurdum”). 
 Summary: We can summarize the information obtained through the question-
naire by saying that in Hungary the situation of the mastery of proof at the end of 
secondary school seems to be rather far from the claims of official documents and 
the expectations of teachers and mathematics educators. The situation seems better 
in Hungary than in Italy for some aspects (see results about C) and worse for  
others. 
 The most relevant difference (in favor of Italian students) concerns the answers 
to question D. The reasons for Hungarian students’ difficulties mostly concern the 
language. 

LANGUAGE ASPECTS 

From the answers to the questionnaire and from other experiences we think that 
(with some exceptions; see later) Hungarian students are not very conscious about 
the logical structure of (theorems and) proofs. Even those who are quite skilful at 
constructing proofs would be embarrassed if one asked them to explain what they 
did and why. Expressions like “condition,” “hypothesis,” “thesis” are missing from 
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the vocabulary of secondary school teaching. Some of them have no Hungarian 
equivalent. In 60–80-year old books we can find Latin words with Hungarian spell-
ing (at that time Latin was compulsory in secondary schools), but nowadays these 
words are absolutely out of fashion: even most of the mathematics teachers would 
not understand them. Some other expressions have Hungarian translations but the 
meaning of them is different from the mathematical meaning or ambiguous. For 
example the Hungarian word “hypothesis” means “conjecture” rather than “hy-
pothesis” of a theorem, etc. The lack of proper expressions makes the teaching of 
several subjects and mathematical discussions difficult. For example it is difficult 
to deal with negation of statements, opposite of statements, a theorem and its  
converse theorem, etc. Probably this is the reason why George Polya dedicates a 
chapter on “How to solve it?” to these logic-linguistic issues: 

The principal parts of a “problem to find” are the unknown, the data, and the 
condition”. Condition links the unknown of a “problem to solve” to the data. 
In this meaning, it is a clear, useful and unavoidable term. It is often neces-
sary to decompose the condition into several parts. Now each part of the con-
dition is usually called a condition. This ambiguity which is sometimes 
embarrassing could be easily avoided by introducing some technical term to 
denote the parts of the whole condition; for instance, such a part could be 
called a “clause” (p. 155). 

Hypothesis denotes an essential part of a mathematical theorem of the more 
usual kind … The term, in this meaning, is perfectly clear and satisfactory. 
The difficulty is that each part of the hypothesis is also called a hypothesis so 
that hypothesis may consist of several hypotheses. The remedy would be to 
call each part of the whole hypothesis a “clause” or something else. (1.201). 

With the lack of proper and common expression of the mother tongue, the lan-
guage of teaching of proving greatly enlarges the role of the teacher in the learning 
process of students. 
 When students are requested to reproduce proofs of classical theorems one can 
experience a great amount of anxiety. Pupils cannot discuss the learned proof in 
their own words partly because of the language and partly because they are uncer-
tain even of the proper order of the words. Instead of giving them a useful access to 
mathematics, this practice means only a piece of “memoriter” (=text to learn by 
heart) to learn by heart for many of them. The expression “mathematical proof” 
frequently becomes the symbol of school anxiety. We read in a pamphlet of the 
famous Hungarian writer, Frigyes Karinthy, 

Write it, then, [says the teacher] 

The bad learner turns to the blackboard. 

“minus b plus minus square root b squared minus four times a times c divided 
by two times a” 

And the bad learner obediently starts to write (…), He knows what it is. The 
theorem reminds him of something that he read that night when he fell asleep 
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over the book, and when he had no idea what it was all about. Yes, he 
vaguely suspects, some quadratic equation—but what will come out from all 
this? 

The word “proof” sounds frightening even for university students. Before each 
written examination they ask whether there will be proof tasks or only problem 
solving. This question shows that the meaning of proof for them is restricted to the 
proofs of known theorems or similar statements. Justifications of the steps of nor-
mal problem solving tasks are easier for them and do not belong to their conception 
of proof. One element of the underlying reasons can be the usage of language. 
Careful examination of mathematics books written in the Hungarian language 
shows two different types of phenomena. 
 In the case of rules, theorems, definitions, or explanations the language of the 
book (and consequently the teacher) uses exclamation mode quite often. Com-
mands like prove (Bizonyítsuk be! Mutassuk meg! Lássuk be! Igazoljuk! etc.) are 
more common concerning reproduction of traditional pieces of knowledge than 
concerning problem solving situations. Statements show certainty. At the same 
time questions can be detected only in the preparatory process or applications of 
traditional statements. On the contrary in problems many questions appear. One 
can observe a major difference between the level of grammatical complexity of 
sentences and the “polish” of them. 
 The language of textbooks concerning proof is rather an archaic Hungarian (it 
does not reflect today’s language). 

SOME INTERESTING EXAMPLES OF REASONING, ARGUING  
AND PROVING IN SCHOOL PRACTICE IN THE LAST DECADE 

Primary School (Grades I–VIII) 

A typical feature of the first appearance of logical reasoning concerning arithmeti-
cal calculations is the following. 
 During the period devoted to exercises concerning arithmetical calculations (in 
order to reach automatism) in a usual class situation the teacher asks the pupils to 
explore the method of obtaining the result of e.g. 7+8 (naturally several pupils are 
not able to construct or reconstruct their argument). 
 On a video taken in a first-grade class (age 6–7) at the end of the school year the 
pupils gave the following answers: 

Pupil A: 7+8 makes 15 because 8 is 3+5, I know that 7+3 makes 10, so 
7+8 makes 15. 

Pupil B: 7+8 makes 15 because I know that 7+7 makes 14 and 8 is one 
bigger than 7, so the result is 15. 

We can see that both examples refer to some earlier stable knowledge that students 
are sure of. They thought of a number in the form of a sum or a difference and they 
tried to link this with the original problem. Besides developing strategies of calcu-
lations the consequent demand of arguments from the part of the teacher creates an 
atmosphere which is similar to the one of deductions. The continuous appearance 
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of verbalization of reasoning helps the pupils to learn ideas from each other, and 
makes them more aware of their own possible thinking processes. In a communica-
tion situation, being able to express one’s own way of thinking produces “a chain 
of thoughts,” and provides the possibility of doing the same in the group as will be 
done later in the form of a conscious individual “inner speech”. This is a necessary 
step for the interiorization of the need of the “chain of thoughts” in learning 
mathematics and perhaps in everyday life (see Vygotsky, 1978). 
 In the upper primary classes (grades VI–VIII) students often encounter problems 
which connect different topics of mathematics. The following example, which is 
quite popular amongst Hungarian math teachers, can be considered as a problem in 
geometry (concerning area and perimeter) as well as an exercise for Diophantine 
equations. 

The lengths of the sides of a rectangle are a cm and b cm, where a and b are 
integers. The area is the same number in square cm as the perimeter in cm. 
What are the lengths of the sides? 

The usual solution is to solve the Diophantine equation ab=2(a+b). This can be 
done in several ways. For example, we discover that the equation can be separated 
in the form (a–2)(b-2)=4. From the factorizations of 4 we get two positive solutions 
for a and b, namely, a=4, b=4 and a=6, b=3 (or vice versa). 
 There are other types of solution, however. The following reasoning has also 
occurred. 
 The measure of the area of the rectangle is equal to the number of all the unit 
squares within the borderline. The measure of the length of the perimeter of the 
rectangle is equal to the number of the unit squares that lie along the borderline, 
with the condition that the unit squares at the corners should be counted twice. We 
have 4 corners; consequently, the measure of the area is equal to the measure of the 
length of the perimeter if and only if there are exactly 4 squares in the inside of 
the rectangle. The 4 squares must not have any side which lies on the borderline of 
the rectangle. This can be done in two ways: either there is a 2×2 square in the in-
side, and the whole rectangle is a 4×4 square; or there is a 1×4 rectangle in the 
middle, and the whole rectangle is a 3×6 rectangle. 

Another problem situation that can stimulate a proof reasoning is the following: 

Two taxicab companies are working in our town. At the first one, the bill of 
fare starts from 70 Hungarian Forints (HUF for short), and a further 160 HUF 
for each kilometer. At the other company, the data are 2000 HUF and 140 
HUF, respectively. I have three favorite spots where I usually go by taxi, one 
is 5 km from home, the other 10 km, and the third 15 km. Shall I stick to one 
company or not? 

There is a wide variety of reasoning on the part of the students. Some of them de-
termine the value of the bill for each route. Others solve the relevant inequality 
algebraically or graphically to prove that up to 6 km the first company is the good 
choice; from 6 km up, the second. 
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PROOFS IN TEXTBOOKS 

By analyzing the textbooks of the 20th century one can see the following. Until 
1950 the high school mathematical textbooks were rather similar to the books for 
mathematician both in the level of complexity of language and in typographical 
solutions. In 1950 a new series of textbooks started in mathematics by Rózsa Peter 
and Tibor Gallay. The major change affected the topic “proof”. This was the first, 
and until the early 80s, also the only textbook which dedicated a special chapter to 
proving methods for 14-year old pupils. The language of this book was much more 
informal; by using the language of everyday life it started a dialog with the reader 
instead of declaring definitions, theorems, proofs and problems for application of 
the theorems. The typographical solutions were designed to underline the meaning 
and facilitate the understanding of the topics. Unfortunately the teachers of that 
period were not ready to teach according to the spirit of this book and even if the 
textbook was present in the schools the teaching methods followed the style of 
previous books. The following series of textbooks again became more traditional. 
In the early 80s the series of textbooks (for grades V–VIII) prepared for the new 
curriculum under the guidance of the late Tamás Varga and one series of secondary 
books (for grades IX–XII) prepared under the guidance of the late Rózsa Peter tried 
to deeply involve the learner to understand the idea and practice of proving, but at 
the end of the 20th century this kind of textbook was rarely used in compulsory 
mathematics education. 

PROOFS IN JOURNALS FOR STUDENTS 

For more than 100 years we have had the monthly journal Középiskolai Matemati-
kai Lapok (Mathematical Journal for Secondary Schools) for the talented student 
in mathematics and physics. From the very beginning this journal, the second of its 
kind all over the world, published high-level mathematical problems and articles, 
with detailed solutions of the problems which were published in the previous issue. 
In addition those pupils who were successful in solving problems have their name 
published every month. Year by year the journal runs a competition in problem 
solving (problems and exercises). Besides these there are both easier and more 
difficult mathematics problems. The editors publish various solutions regarding the 
same problem and report the names of students who produced those solutions. 
 The fact that pupils can buy this journal and read the solutions to problems of-
fers the opportunity to increase their problem solving abilities and learn the style 
and level of proofs that is required by the journal. Many great Hungarian mathema-
ticians remember the journal as a part of their training. For example we can read in 
an interview with Paul Erdös: 

Do you feel that your mathematical development was affected by the high 
school mathematics newspaper (Középiskolai Matematikai Lapok)? 

Yes, of course. You actually learn to solve problems there. And many of the 
good mathematicians realize very early that they have ability. 
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(Peter J. O’Halloran, Journal of the World Federation of National Competi-
tions, Vol. 5, No. 1, June 1992) 

BOOKS FOR SPECIAL COURSES AND INTERESTED STUDENTS 

Besides journals, in Hungary the special mathematics courses were and still are 
popular in secondary schools. A great number of books were published especially 
for the purposes of these courses. These books are written in a style which can be 
understood by 10–18-year old readers without the help of the teacher. Pupils who 
start reading these books have a better opportunity not to see mathematical proofs 
as magic things. The position of weaker (or less interested) students who use only 
the textbooks is much more difficult! Usually the language of these books is easier 
than the language of textbooks even if the mathematical content is rather deep. Not 
textbooks, but this kind of alternative books, continued the style and spirit of the 
Peter–Gallay textbook! 

COMPETITIONS, CONTEXTS 

Each year there are several type of contests in mathematics. The problems of the 
Eötvös Competition (it started in 1894 and ended in 1947) were published with 
their detailed solutions for the first time in 1929, under the title Matematikai 
versenytételek (Problems for Mathematical Contests), by József Kürschák. He used 
the best solutions of the students and added his remarks. Problems and solutions 
for the period 1929–1947 were collected in further volumes. 
 At the beginning of the 50s the National Olympiads were announced for the 
upper two grades of the secondary schools. At the beginning of the 60s the János 
Bolyai Mathematical Society organized a nationwide contest under the name 
Dániel Arany Contest for the lower two grades and at the beginning of the 90s the 
Tamás Varga Contest for elementary schools (up to year 14). All these contests 
allowed pupils to use any kind of book during the solution of problems. When a 
student uses a not-well-known theorem he is obliged to refer to the book in which 
he has found the proof of that particular theorem. This rule creates a climate 
in which the ability of reproducing the proofs of known theorems is considered 
marginal. 

A PROOF-CV 

Finally, one of the authors of this paper, Julianna, would like to provide the reader 
with an excursus about the role of proof in her mathematical thinking; “a proof-
CV,” if you prefer. We hope that such an account gives you a clearer picture of the 
atmosphere of mathematics teaching in Hungary during recent decades (in particu-
lar as concerns proof). In particular, we will illustrate again (in a personal case) the 
gap between the opportunities offered in normal school courses and the need for 
understanding proof and experiencing challenging proof situations. 
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Kind of School 

My high school was a “humanistic secondary school” (in contrast with “science 
secondary school”), with more stress on arts and literature, and less on mathemat-
ics. We studied psychology and logic in the last grade, when we were 18-year old. 

Kind of Learner 

I was a prototype of “conformist” learner at that time. I was able to solve a com-
plex logarithmic equation, although I was aware that logarithms meant nothing for 
me but an abstract word, a magic thing without any reference to real-world applica-
tions in physics or chemistry or other disciplines. It remained for me an enigmatic 
thing, a strange word even in my undergraduate days. I did not cease to formally 
understand it; and I did not feel the need for a deeper understanding. That was just 
enough to please my teachers, and to gain good marks at my exams. 

Proof 1 (first year at secondary school, age: 14) At this age I already had the 
feeling that proving was necessary. 
 This feeling was aroused by my math teacher who urged me, a good grader, to 
participate in special math courses. The teacher during his course did his best to 
demonstrate that proving was important. “You must not believe your eyes,” he said, 
and showed us the following two figures which apparently “prove” that 64=65: 
 

 

Figure 1. The square paradox. 

I was convinced of not believing my eyes any more. He introduced the process of 
proving to me at a mathematical ceremony. We were shown elegant and under-
standable proofs, mainly in the field of Combinatorics. This was the first time for 
me to encounter the expression “Q. E. D.” which seemed to me to be a magic key 
to the world of adults. The other person who introduced the proving ceremony to 
me was my teacher in Hungarian literature. She knew a lot about Mathematics 
Olympiad problems. Her personality was a message for me to view proofs in prob-
lem solving situations as part of human culture as a whole. 
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Proof 2 (at the age of about 18–19 years, last year in secondary school, first year 
at the university) Proving ceremony was a question of good manners for me, like 
eating with fork and knife. For the oral part of the maturity examination I learned 
by core all the proofs that were required at that time. After the maturity examina-
tion I went to study maths and physics at the Roland Eötvös University at Budapest 
to become a secondary school math and physics teacher. Proofs played a central 
role in our studies. 
 Naturally, our professors demonstrated for us the aims and goals of proofs; but I 
was totally bewildered by questions which I asked but found nobody to answer 
them: “Who were the people who could create the statements to be proved?” “Who 
were the people whose truths we must prove?” “How did these questions become 
important for them?” But as a conformist learner I quickly overcame these doubts, 
I learned the proofs as I was expected to learn, and my professors were quite satis-
fied. I had only one teacher who took great pains during her algebra lectures to 
create the need for proofs. She showed us that a series of preliminary theorems 
or lemmas were indispensable before we could carry out the proof for the main 
theorem. 

Proof 3 (approximately second year at the university) At this stage, proof became 
a marketing tool, something that was necessary to sell your theory to another per-
son, in mathematics and in physics. The task was to convince another person, not 
myself. This was something that reminded me of my studies on models in physics. 
We were not interested if a model was proper, we were careful only about being 
not improper. 

Proof 4 (approximately in the third university year) The proving ceremony had 
grown to be something like the following: I was delighted with myself because I 
was able to use what I had learned in logic at 18. The subject of logic initially ap-
peared to me as learning about some trivial facts which were obvious to good 
sense. Later on, logic became a tool to manage with in geometry and other sub-
jects; to create counter-examples about certain properties of a figure without any 
help from the teacher; and to slowly and gradually convince myself that I was go-
ing in the right direction. Proving became a kind of compass for me. But I was not 
really satisfied with my progress. I only felt safe if I was expected to reproduce an 
accomplished proof. I focused on my presentation regarding the proof; I wanted to 
convince my professors that I deeply understood the central ideas and was able to 
use the right mathematical terms in the right place. 

Proof 5 One of my compulsory courses at the fourth university year was The 
Foundations of Geometry. At that time the major part of our studies consisted of 
compulsory courses. After the first two lectures I realized that I knew nothing of 
the proving ceremony as related to the course. For the first time in my life I had to 
break away from the conformist learner attitude, and create a philosophy for my 
personal use, as an aid for a conformist learner in an emergency. The philosophy 
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was: Concepts do not exist as such; concepts are only sentences and conventions. 
In order to see, to draw the concept or to have a pragmatic use of it, one does not 
need to really understand it. Concepts are created by people; they are but parts of a 
nice intellectual game. This approach helped me have some ideas about Bolyai-
Lobachevskian geometry. 

Proof 6 Then I began to study probability. We started with the concept of the 
relative frequency of an event, followed (after some lectures) by the Kolmogorov 
probability theory. Mathematics totally collapsed with me at that time. I had no 
idea about what “mathematics” could mean. I found no way of filling the gap be-
tween “tossing the coin” and the Kolmogorov theory. 

Proof 7 I tried to hide my failure to handle my philosophical problems, while 
I was teaching mathematics at secondary level, and writing math papers on various 
topics. 
 The problems were solved, and the gap filled, with the help of Professor Rózsa 
Péter. I met her when I and a colleague of mine were invited to give a four-day-
long summer course on probability for primary teachers. The course seemed to 
remain “on the side of coin tossing” of the gap, so I felt quite secure about my 
problems. At the beginning of the first session, Professor Rózsa Péter entered the 
room. She was a striking personality, sometimes very kind, sometimes terrifying, 
but always ready to overtly express her opinions. I knew very well that she hated 
probability in schools. She always said: “Probability teaching is not mathematics 
teaching, it is like physics.” In the fifth minute of my lecture, her presence inspired 
me to say to my audience that “all our experiments would only serve for creating a 
mathematical model of a real coin and other real events, by our experiments we 
will help ourselves to create the mathematical coin in our thinking.” I added: “Ac-
tually, we know nothing about the probability of tossing a real coin. Math has 
nothing to say about that. We will predict the behaviour of a real coin by replacing 
it with the mathematical one in our thinking. But math is not to be blamed, because 
probability theory is not about a real coin”. When I finished the course I definitely 
felt better than before. 

Proof 8 During the years teaching at different level of schools and teaching 
courses for undergraduate students involved in initial teacher training, I realized 
that the “enjoyment of mathematical proofs during the understanding process of 
Bolyai-Lobachevskian geometry” are quite independent from the learning process 
of mathematics. Such kinds of proofs still please me, but like a nice piece of music. 
I had to realize that the polished proofs of genius minds gives a misinterpretation 
about mathematics itself in the mind of pupils/students. And I started to love less 
the books with nice problems and their elegant proofs. I started to search for the 
works of teachers, writers who put a strong stress on the meaning of the concepts 
itself, and on the context from which the problems may arise. Even in the cases of 
traditional problems of mathematics history I tried to describe or reinvent situations 
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for my students which could clarify why these problems could be relevant and in-
teresting for those who first had created them. In those years I had a lot of doubts, 
started to believe that I am not a real mathematician, maybe I do not really like 
mathematics, etc. The appearance of the Hungarian translation of the book by Imre 
Lakatos, “Proofs and Refutations,” let me “recover my breath” again. 
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APPENDIX 

The obligatory theorems of the maturity examinations for proof are the following: 

1. Prove the following identities (a and b are real numbers, n and k are positive 
integers): 

 a) (ab)n = anbn 

 b) ( )
n n

n
a a

b b
= , ( 0)b =  

 c) (an)k = ank 

2. Prove that 2  is irrational. 

3. Prove the following identities: 

 a) n n nab a b= ; 

 b) ;
n

n
n

a a

b b
=  

 c) ( )n kn na a=  

What are the conditions for a, b, n and k? 

4. Prove the following identities: 

 a) logaxy = logax + logay; 
 b) loga

x
y  = logax – logay; 

 c) logaxk = klogax 

What are the conditions for x, y, a and k? 

5. Prove the formula for the roots of the general quadratic equation. 

6. Prove the connections between the roots and the coefficients of the general 
quadratic equation. 

7. Prove that in a triangle opposite to a bigger side there is a bigger angle. 

8. Prove that the perpendicular bisectors of the sides of a triangle are concurrent. 

9. Prove that the bisectors of the inner angles of a triangle are concurrent. 

10. Prove that the altitudes of a triangle are concurrent. 
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11. Prove Thales theorem and its reverse. 

12. Prove that a quadrilateral in the plain is a tangent quadrilateral if and only if the 
sums of its opposite sides are equal. 

13. Prove that a quadrilateral is a chord quadrilateral if and only if the sums of its 
opposite angles are 180°. 

14. Prove that the angle at the circumference of a circle belonging to an arc is half 
of the angle at the center belonging to the same arc. 

15. Prove that the sum of interior angles of an n-sided convex polygon is (n–2)180º 
and the number of its diagonals is n(n–3)/2. 

16. Prove the theorem for the arithmetic and geometric means of two positive 
numbers. 

17. Prove that the medians of a triangle are concurrent. 

18. Prove Pythagoras’ theorem and its reverse. 

19. Prove that a bisector of the angle in a triangle divides the opposite side with the 
ratio of the neighboring sides. 

20. Let’s consider two similar polygons and two similar pyramids where the ratio 
is k in both cases. Prove that the ratio of the areas of the polygons is k2 and the ratio 
of the volumes of the pyramids is k3. 

21. What is the connection between the base area of a pyramid and the area of a 
section of it parallel to the base? Prove it. 

22. Prove that in a right triangle the length of a side is the geometric mean of the 
length of the hypotenuse and the length of the segment which is the perpendicular 
projection of the side to the hypotenuse. 

23. In a right triangle the altitude belonging to the hypotenuse divides the hypote-
nuse into two segments. Prove that the length of the altitude is the geometric mean 
of the lengths of the two segments. 

24. Draw a tangent line and an intersecting line to a circle from the same outer 
point. Prove that the length of the tangent segment is the geometric mean of the 
lengths of the two segments of the intersecting line. 

25. Prove the following identity: 

 sin2α+cos2α=1 for any real α. 

26. The angle of planes S1 and S2 is α. The area of a triangle in S1 is t1, the area of 
its perpendicular projection to S2 is t2. Prove that t2=t1cos α. 
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27. Prove that if r is the length of the radius of a circle, a is the length of a chord 
and α is the angle at the circumference belonging to the chord, then a=2r sin α. 

28. Prove the sine rule. 

29. Prove the cosine rule. 

30. Prove the following identities: 

sin(α+β)=sin α cos β+cos α sin β and 

cos(α+β)=cos α cos β–sin α sin β. 

31. Prove that any vectors a, b, c (a+b)c=ac+bc. 

32. Write a formula for the distance between points A(a1; a2) and B(b1; b2) and 
prove its validity. 

33. Express the coordinates of the half point and the third point of a segment 
with the coordinates of the endpoints of the segment and prove the validity of your 
formulae. 

34. The coordinates of the vertices of a triangle are given. Prove that the coordi-
nates of the centroid of the triangle are the arithmetic means of the corresponding 
coordinates of the vertices. 

35. Prove that the equation of a line going through the point Po(xo; yo) with the di-
rection vector v(v1; v2) is 

 v2x–v1y=v2xo–v1yo. 

36. Prove that the equation of a line going through the point Po(xo; yo) with the 
normal vector to it n(n1; n2) is 

 n1(x–xo)+n2(y–yo)=0. 

37. Prove that the equation of a line going through the point Po(xo; yo) with the di-
rection tangent m is y–yo=m(x–xo). 

38. Prove that the equation of a circle with the center C(u; v) and radius r is 

 (x–u)2+(y–v)2=r2. 

39. Prove that if the focus of a parabola is F(0; p/2), its vertex is the origin and its 
axes is the y-axes, then its equation is x2=2py. 

40. The length of the major axes of an ellipse is 2a, the length of the minor axes is 
2b (a>b), the major axes lies on the x-axes and the minor axes lies on the y-axes. 
Prove that the equation of the ellipse is 
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41. Prove that the sum of the first n square numbers is 
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42. The first element of an arithmetic sequence is a1, the common difference is d. 

Prove that  an = a1 + (n–1)d and 1

2
n

n
a a

S n
+

= . 

43. The first element of a geometric sequence is a1, the quotient is q. Prove that 

 an = a1qn–1 and 1
1

1

n

n
q

S a
q

-
=

-
. 

44. Prove that if |q|<1 then the geometric series 1 + q + q2+ … +qn + … is conver-
gent. Determine the S sum to infinity. 

45. Prove that 
sin

lim 1
0

x
x x

=
®

. 

46. Prove that the derived function of cos x is sin x for all real numbers. 

47. Prove that the derived function of xn is nxn–1. 

48. Prove that the derived function of sinx is cosx for all real numbers. 

49. Prove the Newton–Leibniz rule for integration. 

50. Prove that if the base area of a prism is T and its height is m, then its volume is
 V = Tm. 

51. Prove that the volume of a cylinder with base of radius r and height m is 

 V = r2πm. 

52. Prove that the volume of a pyramid with base area T and height m is V = Tm/3. 

53. Prove that the volume of a frustum of a pyramid with bases T and t and height 
m is 

 ( )
3

m
V T Tt t= + + . 
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RAYMOND DUVAL 

6. COGNITIVE FUNCTIONING AND THE 
UNDERSTANDING OF MATHEMATICAL PROCESSES 

OF PROOF 

Proof constitutes a crucial threshold in the learning of mathematics. Why do so 
many students not succeed in truly crossing it? Though proving cannot be reduced 
to reasoning, this major didactical problem concerns the variety of approaches for 
what is designated commonly as “reasoning,” mainly when reasoning is required 
within the framework of a scientific or a mathematical activity. Three great trends 
have gradually emerged in research on the development of student’s reasoning. 

• The psychological strand in which the models of reasoning are logical forms of 
valid reasoning such as Aristotelian syllogisms or material implication with use 
of connectors for truth-functions (Piaget & Inhelder 1955; Johnson-Laird 1983, 
Rips 1988). 

• The didactical trend in which the models are those of explanation-researching, 
mainly in geometrical situations requiring an interaction between a visual explo-
ration of figures and an application of few theorems and definitions which have 
to be used as “tools” of “justification”. The goal is to determine the truth of a 
statement which is put forward as a conjecture at first and to convince other 
people. In this strand considerable attention is given to the successive at-
tempts and explanations of students and therefore to their discursive productions 
(Lakatos 1976; Balacheff 1987). 

• The Artifical Intelligence strand in which the models of reasoning are rules of 
conditions-action working as “inference engines”. This trend must be further 
subdivided into a cognitive model of proof for tutor conceptions (Anderson 
1987) and the construction of micro-worlds for dialectic interactions with stu-
dents (Luengo 1997). 

What is common to these different approaches is that they start from some external 
characteristics of reasoning—either logical or mathematical—and take them as 
references in order to model the reasoning activity. Consequently, the real under-
standing of how this activity works, how it can be different from spontaneous rea-
soning in everyday life or in areas other than mathematics, is completely forgotten. 
The cognitive working of reasoning is not the image or the reproduction of logical 
or mathematical patterns. Thus Schoenfeld, after an experiment in the classroom 
made in 1984 over one semester, correctly pointed out: “perhaps what is needed, 
and what has been lacking, is an understanding of how proof really works” 
(Schoenfeld 1986, p. 253). Such an understanding is based on the perception of the 
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meaning of propositions in any proof: the difficulty of this perception is due to the 
multidimensionality of the meaning of propositions. Students must become aware 
of the different components of the meaning of propositions. And this multidimen-
sionality is closely connected to the different ways of organizing propositions in 
one discourse which can be either an ordinary argumentation or a proof or a formal 
reasoning, though the wording is sometimes similar. It is why something like a 
double awareness is required. It is what makes students able to understand “how 
proof really works” and to become truly convinced by proofs. This chapter will set 
out the main characteristics of the cognitive functioning of reasoning. Then it will 
examine the consequences for the didactical problem of learning to prove. Finally, 
it will examine the variables to use in order to give rise to the double awareness. 

OVERVIEW OF THE COGNITIVE COMPLEXITY OF REASONING WORKING 

In order to analyze the cognitive complexity of mathematical reasoning activity, 
some prior distinctions are required. Some are well known such as the distinction 
of operative status of proposition in deduction (hypotheses, theorem, etc.), but the 
main ones, which can seem needless, such as the distinction between truth value 
and epistemic value, have come to the surface through observation of students dur-
ing proof teaching experiments. The students’ explanations, the sudden change of 
their text productions, showed that the gap they had to bridge was to become aware 
of the implicit complexity of proposition meaning within the different possible 
organizations of propositions which underlie the various types of reasoning (Duval 
1991, pp. 247–253). 

Characteristics of Reasoning: A Meaning Space for the  
Discursive Organization of Propositions 

Any reasoning, implicitly or explicitly, works with propositions, that is with state-
ments which have a value for themselves and a status in relationship to one an-
other. Value and status are specific components of any proposition’s meaning. 

The internal components of the meaning of a proposition First of all, the meaning 
of any proposition is more complex than the meaning of any word. The meaning of 
a proposition is determined with respect to several dimensions: a semantical di-
mension through its content, a knowledge dimension through its epistemic value 
(obvious, likely, absurd, unreal, possible, necessary, etc.) and a logical dimension 
through its truth values (true, false, undecidable, etc.). The epistemic value is 
closely connected to the way somebody understands the content of a proposition: it 
depends on the subject’s knowledge basis. For example, this way of understanding 
can be “theoretical,” that is with a background of definitions, theorems and deduc-
tive practice, if the subject is an expert mathematician, or it can be only “semanti-
cal,” that is reflecting ordinary language understanding, if the subject is a young 
learner. For example, any proposition whose content focuses on mathematical 
properties which can be immediately seen on a figure (parallelism, perpendicular-
ity, etc.) can have quite different epistemic values: visually obvious for the student 
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but only possible or, maybe, impossible from a mathematical point of view. 
A mathematical property involves the necessity of its statement. How to become 
aware of its necessity and how to make students aware of it? 
 

 

Figure 1. Problem given to 13–14-year-old students. 

The content of the proposition “the straight lines (OD) and (CI) are parallel” can be 
checked on the figure. Understanding what this proposition means, it is just a mat-
ter of seeing something obvious. What else can be wanted in order to know that it 
is true? 
 The distinction between epistemic value and truth value is important. It enables 
us to explain what reasoning achieves. The outcome of any reasoning is not only to 
produce new information but also, and above all, to change the epistemic value of 
a proposition whose truth we want to prove or attempt to convince somebody else 
of. If the truth of a proposition seems possible, reasoning shows it to be necessary 
or, on the contrary, impossible; if a proposition is thought to be absurd, reasoning 
makes its claim likely or necessary, and so on. The key point for proving and for 
understanding how a proof works in mathematics is the connection between the 
various epistemic values and the logical value “true”. Here we must take into 
account two specific features. 
 The first one is epistemological. While in other fields such as botany, in history, 
etc. the logical value “true” may be connected to different epistemic values in rela-
tionship with data from perception or from some technical devices or from testi-
monies, in mathematics the only agreed connection is this one between the logical 
value “true” and the epistemological value “necessary”! The second one is cogni-
tive. While usually epistemic values are directly connected to the understanding of 
the proposition content, it is quite different in mathematics: epistemic values de-
pend on the status of propositions and not first of all on their content. That means 
we cannot change a spontaneous epistemic value of a proposition into the value 
“necessary” by reasoning if there is no comprehension of status as one of the com-
ponents of the proposition meaning. 
 
Status and functional differences between propositions within a discursive devel-
opment (reasoning, argumentation, proof, etc.) Thus, reasoning can be described 
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as being like steps from propositions to other ones, or like a “logical linking” of 
propositions, like putting forward propositions in order to justify a claim, etc. 
In order to understand reasoning, we need to perceive the functional differences 
between each proposition it mobilizes. There is no reasoning without a discursive 
organization ruled by functional differences between its constituent propositions. 
We shall call “status” the specific function, the particular role of each proposition 
within the set of the other propositions which are required or stated to get a 
proof or to produce an argumentation. For instance, “hypothesis,” “premise,” “con-
clusion,” “claim” “argument,” etc. refer to the possible status of proposition in a 
reasoning. The status is the third meaning component of a proposition with regard 
to discursive proposition organization (Figure 4 below). Therefore, we must distin-
guish status which is intrinsic to any reasoning organization like premise, hypothe-
sis, conclusion, etc. from that which is intrinsic to a theoretical framework like 
axiom, definition, theorem, conjecture, principle, rule, etc. We call the first one 
“operative” status and the second one “theoretical” status. Operative status refers to 
the level of a local proof, that is to an organization of propositions. Theoretical 
status refers to a higher level of organization, such as an axiomatic linking of local 
proofs, like the one in the first book of Euclid or in Hilbert’s Grundlagen der Ge-
ometrie. Of course there are interactions between these two levels. But anyone who 
does not understand how a local proof works cannot understand why a proof 
proves, just like someone who cannot understand any page or episode of a book 
cannot understand the whole book (Duval 2001). 
 In the classroom, students were trained to write proofs in which they made 
the status of each proposition explicit, by using three terms: hypotheses, property, 
conclusion. 
 The real problem for teaching is that such a lack of discrimination between the 
different operative status of propositions remains even when there is no longer any 
superficial confusion or circularity in expressions. Many students, without making 
any apparent mistakes, do not grasp exactly how functional differences between 
propositions inside a discourse or an “explanation” work in a mathematical proof. 
They do not see why and how the operative statuses, and not only the theoretical 
statuses (definitions, theorems), are tools to develop reasoning in a quite different 
way from argumentation in natural language. The same incomprehension has been 
observed with 15–16-year-old students. 

The Specific Cognitive Functioning of a Mathematical Proof 

There are different ways to step from one or several propositions to another. But 
they do not all allow a legitimate proof to be constructed. A proof requires a valid 
reasoning. That means the conclusion of each step must be necessary and be-
tween two steps no gap can be found. It is this kind of reasoning, often called 
“deductive,” which is used in any geometry proof. So from the previous distinc-
tions we must ask two questions: what kind of proposition organization does such a 
valid reasoning require and what meaning component of propositions does it bring 
to the fore? 
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Hypothesis: (OD) is perpendicular to [AB]

Property: If a straight line is perpendicular to a

segment in its midpoint then it is the median of

this segment

Conclusion: (OD) is perpendicular to [AB]  

c

�

�

�
�

o

 

Figure 2. Script of a 13-year-old student. 

Any deductive reasoning involves two quite different levels of discursive organiza-
tion: the level of organization of several propositions in one deduction step and the 
level of the organization of several steps into a proof. 
 At the level of a deduction step, each proposition gets one of the following 
three operative status categories: premise, conclusion, third statement. Very often, 
teachers used to say “property” instead of “third statement”. But this is a mislead-
ing term, because what is called “property” is in fact a theorem, that is a statement 
which has the bipartite organization of any IF–THEN rule: one or several condi-
tions to check and whenever they are fulfilled, an action must be performed or a 
proposition must be brought out. In this way, contrary to most psychological mod-
els (Johnson-Laird 1983, Rips 1988) a deduction step operates quite differently 
from the classical syllogisms or from the explanations in ordinary speech with the 
background of semantical networks. And this frequent assimilation corresponds to 
one of the blind spots for many students. For them using a theorem means only 
referring to a simple argument, it is not using a bipartitioned statement in order to 
check the required premises and to assert the conclusion (Bourreau et al., 1998, 
p. 13, 25). The lack of discrimination between a theorem and its converse is a 
symptom of this blind spot (Duval 1991, pp. 237–239). 
 This operative way of using theorems, definitions, or axioms, involves a crucial 
semantical consequence. The links between the propositions inside any step de-
pend only on their operative status, which means that connectors (if, then, there-
fore, etc.) between premise and conclusion are not required. When connectors are 
used, they are only linguistic cues of the operative status. And this operative status 
is previously determined by the theoretical status. 
 At the level of step organization, steps are linked by proposition overlapping: 
some conclusions of the latest steps are taken up as premises for the next step. It is 
because of this that there is no gap between two steps. At this level the use of con-
nectors is not relevant. This specific way of linking produces a discursive treelike 
expansion and not a linear sequential organization. 
 We can visualize the articulation of these two quite different levels of  
deductive organization, with their specific kind of links, by the following  
propositional graph. 
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If two straight lines are  perpendicular to the same straight line,
then they are parallel to one another

CI and OD are parallel

If a point I is on a circle 
of diameter BC, 
then the triangle IBC
is right angled at I 

CI is perpendicular to AB

I is on the circle of diameter [BC]

The perpendicular bisectors of the sides
of a triangle intersect in a single point O,
the circumcenter of the triangle

O is the center of the

circumscribed circle

around the triangle ABC 

OD is perpendicular to AB

D is the midpoint of AB

(THEREFORE)

 

Figure 3. The two levels of deductive organization in any valid reasoning. 

A real understanding of mathematical proof requires both comprehension of the 
operative way of using theorems within each step (roman, italic and bold type in 
the figure above corresponds to the three operative status categories) and compre-
hension of steps linking by overlapping each other. Proof construction involves a 
continual bottom-up and top-down focusing between these two levels, which obvi-
ously presupposes a previous awareness of their particular organization. 
 However, from an epistemological point of view, one very often looks at proofs 
from a third level: the theoretical level. This level involves a scale change: from 
the local deduction of a proposition to the global deduction within a set of proposi-
tions. Thus, for example, we jump from the understanding of any proposition proof 
in Euclid’s Elements to the evaluation of the deductive derivation, without gaps or 
external support, of all the propositions of the first book of the Elements. At this 
scale we can find some gap in the string of local proofs. But this third level is be-
yond the capabilities of learners, because it requires, at the same time, that they 
have already understood how a deductive organization of propositions runs and 
that they can take into account a set of local proofs! This epistemological require-
ment comes up against the didactical problem classically known as “hermeneutical 
circle”. 

Shifting the Focus within the Meaning Space 

Comprehension of this specific functioning of a mathematical proof requires a 
change of focus on the predominant component of a proposition’s meaning. Ac-
cording to the kind of discourse (ordinary talk or debate, description, explanation, 
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argument, or valid deduction, etc.) they are not the same features of the different 
components of a proposition’s meaning which are taken into account. For example, 
epistemic values do not matter within description or explanation, but they are in 
the foreground with every kind of reasoning. And between argument and valid 
deduction the difference lies in the role assigned to status. So, in any debate, we 
can get convincing argument without proving, that is to say without making it nec-
essary to assert a proposition. For such a necessity to exist, status must 
be prevailing, because functional differences then become the operating process, 
as we have just pointed out. Generally whenever we change the kind of dis-
course, we change both the meaning dimension predominant in each proposi-
tion and the way the propositions are organized into a purposeful thought process. 
 In ordinary speech and social interactions the only meaning features activated 
for any uttered proposition are its content (report) and its pragmatic value of com-
munication. On the other hand, epistemic values become the predominant meaning 
features in reasoning, because reasoning plays with differences of epistemic values 
between propositions. And then the question arises of where the different epistemic 
values come from. From content? From logical values? From status? The cognitive 
ways of functioning for reasoning are as many as the components and features in 
the space of meanings of a proposition. So we can easily describe the gap between 
reasoning as argument and reasoning as valid deduction. 
 In deductive organization, it is the status of propositions which is the predomi-
nant meaning component, rather than their content. The operative status of 
each proposition is fixed by its theoretical status and therefore its epistemological 
value becomes dependent on its theoretical value and not on its content. It is almost 
the opposite of what occurs in an argumentation or an explanation in ordinary 
speech. 
 Unlike ordinary speech, reasoning mobilizes the three possible components of 
each proposition’s meaning, but they are combined in quite specific ways for ar-
gument and for mathematical proof. Argument does not run like a valid deduction, 
because content overrides the other components as it does in ordinary speech. In 
argument or in ordinary speech, the “warrant” does not operate like any other 
mathematical third statement. No specific operation is required to verify first 
whether the different clauses of the IF-part of a theorem are met and next to detach 
the THEN-part as conclusion. A semantical inclusion or a verbal association is 
sufficient to “draw conclusion or make claim” (Toulmin 1958, p. 98). Moreover, 
“conditions of exception or rebuttal” are possible too and are integrated in the 
step to draw the conclusion (p. 101). In fact, within the Toulmin model of the use 
of arguments, there is no distinction between two levels of deduction organization. 
For mathematical proof, on the left side of Figure 5, we can recognize all the mean-
ing features which we have circled in Figure 4 above. Thus we can see why the 
cognitive process underlying the comprehension of valid reasoning required in 
mathematical proof is not primarily a matter of logic or of formal language as it 
was assumed in some mental models or in some cognitive researches. 
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1.Epistemic:
obvious, absurd,
possible, likely,
or sure, etc.

1. Report: description of observable
objects or situations

2. Theoretical: relations stated in
reference to all possible situations 

Semantic:
according to
the knowledge basis
of the subject

2. Logical  truth:
true,  false or 
undecidable

theoretical or
normative:
according to the
knowledge 
framework
 chosen 

3.Communication:
order, promise,
question, statement,
or assertion 

Local context of
uttered discourse

Global context
of uttered 
discourse

Social situation
of interlocutors

1.Operative status:
premise, conclusion,
third statement

2. Rhetorical status:
example, comment,
interpolated clause, etc.

1. Theoretical status
(framework of
preliminary propositions): 
definition, axiom, 
theorem, conjecture, etc.

2.Normative status:
common beliefs or rules 

functions other than 
the ones of cognitive 
processes

I. CONTENT

II. VALUE

THE THREE COMPONENTS
OF THE MEANING OF AN
UTTERED PROPOSITION

in relation to 
speech objects

in relation to
enunciation 

III. STATUS

in relation to all the other
uttered propositions
in the discourse organisation

MEANING FEATURES
ACTIVATED

DISCOURSE
FACTORS  

 

Figure 4. Possible variations within a proposition’s meaning space. 
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ARGUMENT     

Ordinary practice of language: one pays 
more attention to evoked objects and 
words than to propositions

Semantical
epistemic
VALUE 

CONTENT Normative STATUS

PROOF

one pays more attention to  the predominant
relationships between the propositional
meaning components  than to objects which   
are evoked in the content:

Theoretical  STATUS 

Operative STATUS

Epistemic VALUE

1
1 2 32

?  ?

new epistemic value 
of NECESSITY
for conclusion content

Convincing change of
epistemic value for the  
thesis?

3

 

Figure 5. Required shifting of focus on meaning components for  
understanding deductive reasoning. 

This raises immediately the crucial problem from a cognitive point of view and 
therefore for teaching: does the passage from one way of operating to the other 
happen naturally? Is it easy for students to notice it or does it require a specific 
approach to learning (Duval 1993)? Very often teachers believe that this passage is 
easy because they feel the main difficulty is to discover what “properties” to use, or 
to get the right ideas (the suggestive images) in order to provide a proof. And 
they believe that next it is only necessary to explain or to write in as few words as 
possible. But in fact things happen differently. 

Reasoning and Language: Two Kinds of Variation 

This is the most controversial topic in mathematics education. We have two oppo-
site claims: “mathematics is independent of any language,” “mathematics intrinsi-
cally needs some symbolic or representational device for object-processing 
(computation, visualization, reasoning, etc.) and not only for communication”. To 
support the first claim reference is made to mathematical introspection or to con-
ceptual Piagetian theory, and, for the second claim, the difficulties are highlighted 
that most students encounter systematically with the variety of the representational 
and symbolic devices used in mathematics. This debate underlies the choices made 
in the teaching of mathematical proof. For example, if one believes that mathemat-
ics is independent of any language, one can consider that learning to prove lies in 
solving problems. Then, the basic activity is heuristic: when an answer is found, 
nothing significant remains to be done, only to communicate this answer. But if we 
take into account that mathematical thinking involves, even in its mental represen-
tation, some semiotic activity, we must consider that learning to prove also requires 
specific work in order to discover the changes in proposition meaning and discur-
sive organization needed to move from standard argumentation to proof (Figures 3 
and 5 above). Either way, there is no valid reasoning without language, be-
cause only propositions can be true and because there is no proposition without 
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statements. Therefore the problem of the relationship between reasoning and ex-
plicit wording cannot be ignored, especially in mathematics education. What are 
the interactions between reasoning as specific proposition organization and word-
ing, or expression, as explicit utterance in a particular language? 

Two kinds of variation characterize these interactions: 

1. At the level of deduction step, the expression in native language can involve 
many degrees of freedom towards some proposition organization. First, it is not 
necessary that each proposition of a step should be explicitly uttered in one sen-
tence, or even in one clause. Very often, for economic reasons, some proposi-
tion, either a premise or the third statement, is left implicit. Or all the 
propositions of a step can be uttered in one sentence (Duval and Egret 1993, 
pp. 127–129). We must utter quickly in order to grasp the whole step organiza-
tion and to not get lost in the details of each step. There are also many ways to 
express the status of each proposition. We can use logical connectors, proposi-
tional attitudes or even the only succession order of propositions. These linguis-
tic cues are also used in ordinary argumentation and explanation. Sometimes the 
connective “if … then …” is used in order to point out the premises and the 
conclusion. But this connective also expresses the entailment relation, that is an 
organization which is intrinsic to a proposition and not to the step organization. 
Thus these free variations can generate very different texts for the same proposi-
tion organization and can be a source of misunderstanding for learners. And all 
the more so as great variations can be observed from one teacher to another. 
Hence this understanding problem: how can a learner distinguish between valid 
and not valid reasoning, if the expression of both has a similar surface structure? 

2. Other kinds of representation registers are also used for expression in mathemat-
ics: formal or symbolic language, networks, configurations, etc. Technically 
formal languages and algebraic symbols are more powerful and rigorous than 
native language, and in some areas are essential. In these registers proof is per-
formed through computation and proof methods can be described. That is why 
proving in these more technical registers can appear less complicated than de-
ductive reasoning in a native language. But it has often been noticed that stu-
dents lose the meaning of the processes and operations they are performing 
within these registers, because, for them, there is often no coordination between 
these different representation registers (Duval 1995a, 1996). 

It is through native language that learners can become aware of what is required for 
and what produces a mathematical proof. For a simple reason. Reasoning in a na-
tive language requires that one takes explicitly into account the status and the epis-
temic value of every proposition at once! It is only in this way that reasoning can 
work as a real reasoning for a subject, that is to say as a convincing reasoning. In 
contrast to this, in computation the important thing is to focus on the rules of use 
and substitution for every symbol (variables, quantifiers, operators, relations, etc.). 
Status and the epistemic value of symbolic expressions do not matter. From a cog-
nitive point of view it is the deep difference: computation is easier than reasoning. 
And it is the reason why the claim that reasoning is “nothing more than computa-
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tional processes” (Johnson-Laird 1983, p. 12) is false from a cognitive point of 
view and useless from an educational point of view. 

HOW CAN THE PROBLEM OF LEARNING TO PROVE BE STATED? 

The cognitive processes which make a student able to understand how a mathe-
matical proof works, and able to prove, depend on a double awareness: one con-
cerns the discrimination between different causes for the feeling of necessity which 
can be experienced and the other concerns the discrimination between different 
organization processes in a discursive development. But this double awareness 
goes against two familiar and common practices. 

Becoming Aware of the Discrepancy between a Valid Reasoning and a 
 Non-Valid Reasoning: A Shift in the Common Epistemological Practice 

Everybody knows that the feeling of necessity has been the main line of Piaget’s 
research into the child’s cognitive development. It is a change in the sensitivity to 
new kinds of causes in the child’s experience of necessity which indicates the 
stages of concrete and formal operations. But one knows also that reaching the 
formal operations stage is induced from spontaneous experimental activity (disso-
ciation or combination of parameters in application of the principle of the control 
of variables: to make a variable vary while keeping the others constant (Piaget & 
Inhelder 1955), and that is far from being sufficient in order to understand mathe-
matical proof. And since the goal of proof is not only to find out further informa-
tion but also to change the epistemic value of the information stated in a 
proposition, we cannot avoid the question: what makes the necessity of asserting 
some proposition? 
 That question is not a matter of logic, but it is a matter of the subject’s cognitive 
structures: what are the prerequisites for sensitivity to what makes a mathemati-
cal proof? In order to find these prerequisites we must start from these two  
requirements: 

1. only a valid reasoning can produce the necessity of the utterance of a  
proposition; 

2. in mathematics, truth can be only connected to an intrinsic discursive derivation 
of this epistemic value. 

But, and here lies the rub, we have different possible causes which drive a person 
to recognize the necessity of an utterance, and therefore different kinds of necessity 
meaning. 
 
Three quite different experiences leading to awareness of necessity The first ex-
perience leading to the awareness of the necessity of some proposition is that its 
content corresponds to sensory data, perceived with or without instruments. 
There we can check what is said by looking at what can be perceived. That is the 
common epistemological practice. In this way, the best common proof is direct 
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observation: “regardez, ça se voit sur le figure!,” “look, it is obvious from the fig-
ure!”. Nothing else is needed. For everyone this practice is the most natural and it 
is difficult to understand why it cannot be used in geometry as, for example, in 
botany, geology, etc. Here, the cognitive roots of necessity are extrinsic and not 
intrinsic to reasoning. Here, the roots of necessity and conviction are in experience, 
and reasoning must work as an accurate description of observed relations. It is 
what Leibniz called the “physical necessity” as opposed to “logical or geometrical 
necessity” (Leibniz 1969, p. 51; Piaget 1967, pp. 60, 188). 
 The second experience leading to the assertion of the necessity of some proposi-
tion lies in the fact that others agree to its truth. This cause can be strong enough to 
change the individual judgement in a group as experiments have shown: each sub-
ject changes his or her estimation of the autocinectic illusion when he or she is 
informed of the others’ estimation. Here the roots of the feeling of necessity are in 
the normative regulation of interactions between members of any group: each one 
must reduce divergences and conflicts in order to keep the group’s cohesion or 
their own individual integration. What is thus acknowledged becomes a consensual 
necessity. 
 The third experience occurs whenever one sees that uttering some proposition is 
the only possible conclusion from what has previously been asserted, even though 
it goes against perceptual evidence or general agreement. But here teaching can 
lead students astray. When teachers emphasize problem-solving, what is high-
lighted is the search for appropriate theorems to use in the proof. In this case, the 
meaning of necessity can be tied to the use of such or such a theorem to solve a 
given problem: in this problem, one “must” use these theorems as tools. Here it is 
only a “methodological necessity,” because we can find other mathematical ways 
to solve a problem: such a necessity concerns only what is relevant in order to get 
the solution when we take up some theoretical framework. It does not concern the 
way a theorem leads to necessarily uttering one proposition as conclusion. Here we 
get an intrinsic discursive necessity: whatever the used theorem, from what has 
already been said and agreed there is no choice but to utter this proposition. Instead 
of “logical necessity” we prefer to call it “discursive operating necessity”. It is on 
such a necessity immanent in thinking that any theoretical explanation can be de-
veloped or derived. But this kind of necessity can remain hidden to students, even 
when they quote the relevant theorems, if they have never had the opportunity of 
engaging in a specific activity to realize it. 
 
A  functional classification of proofs  In the first systematic investigation of 
mathematical proof from an educational point of view, Balacheff distinguished 
between four kinds of proofs (1987, pp. 163–166; 1988, p. 55): naïve empiricism, 
crucial experiment, generic experiment and mental experiment. The two first ones 
are pragmatic proofs because they focus on the observation: “it works”. The two 
last ones are intellectual because they aim at the “necessary character” of assertion. 
Between the pragmatic and the intellectual proofs, there is a “break” (1988, p. 55). 
A distinction between two kinds of explanation must be added to the distinction 
between four kinds of proofs (1987, pp. 147–148; 1988, pp. 28–30) according to 
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the fact that intellectual proofs require both “language tools” and the control of 
possible contradictions. Thus we get the distinction between “proof” as “an expla-
nation acknowledged by a community … in relation to a validation system com-
mon to interlocutors” and “demonstration” (apodeixis) as “a sequence of state-
ments organized according to specific rules”. 
 This classification corresponds to the different kinds of necessity which one can 
get experience of. If we exclude naïve empiricism from this classification, because 
it is confined to the obviousness of any immediate perception, we can notice that 
“crucial experiment” rests on “physical necessity,” “proof as an acknowledged 
explanation” rests on “consensual necessity,” and “demonstration” rests on “dis-
cursive operating necessity”. Such a classification is mainly functional and it 
leaves the means and the process for proving aside. However, these means and 
processes not only depend on the kind of proof but they change according to the 
area of knowledge too. 
 In the framework of such a functional classification, the issue becomes one 
about the cognitive passage from one kind of proof to the other. In a Piagetian way, 
the hypothesis of a cognitive “hierarchy and direct line” between the kinds of proof 
is put forward (1988, pp. 565–566). But the expected passage from “mental ex-
periment” to “demonstration” (mathematical proof), or from a social interaction to 
demonstration, raises difficulties (1987, p. 166; 1988, pp. 451, 461). Why? 

Becoming Aware of what is Specific in Valid and Creative Organization of  
Propositions: A Shift in the Discursive Practice of Speech 

In any debate, in any discussion, and, more generally, whenever social interac-
tions are oral interactions, we never argue in the way which is required by a 
mathematical proof. Oral social interactions run according to a quite different or-
ganization of propositions than that of a sequence of statements according to rules 
of valid reasoning (Duval, 1993, 2001). 
 We have highlighted above that deductive reasoning joins two levels of discur-
sive organization and in particular that the way of functioning is different for each 
level. At the first level there is a reversal in the usual predominance between con-
tent and status of propositions (Duval, 1993, pp. 44–45). But this reversal is diffi-
cult to realize, because it involves an implicit substitution: the theoretical epistemic 
value must repress the pregnant semantical value! For a learner, the right and sig-
nificant use of any theorem depends at first on the awareness of this reversal. Oth-
erwise, steps are understood as binary organizations in which one does not need to 
check the premises in order to apply theorems. Hence, among other significant 
mistakes, there is the risk of making circular arguments without noticing them or of 
confusing a theorem and its converse (Figure 6). At the second level, the linking 
between two steps is based on the explicit or implicit re-using of propositions al-
ready uttered as conclusions or as given hypotheses, but with a change of status 
from one step to the next, what we have called a “recycling”. Therefore reasoning 
can move forward from one conclusion to another conclusion without a gap. Hence 
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another quite different failure: proof is not really a proof because there is a gap 
which has not been noticed. 
 All that which concerns the cognitive conditions of comprehension is in 
bold type (right hand column in Figure 6). All these kinds of misunderstanding are 
connected with the organization specific to a mathematical proof and its way of 
running. 
 

The functioning of valid
reasoning 

Kinds of misunderstanding 

I.
Organizing
propositions 
into a 
deductive 
step
by taking 
into account
three kinds 
of status   

(1) A shift of focusing about
what is taken as the first
component of the meaning of
proposition: status instead of
content.

(2) Making the theorem work:
detachment of its “then” part.
A theorem is not an argument.  

Dysfunctional:
- Mixing up hypothesis
(given) with conclusion,
- Confusing a statement with
its converse, or inverse 

-Non-checking of application  
conditions of theorems 

II. 
Organizing 
deductive 
steps 
into a proof 
of … 

Making deductive steps
overlap. Two conditions:
(1) The conclusion of one step
must be the premise of another
one. Hypothesis and premise 
do not refer to the same level.
(2) Use all the mathematical 
properties relevant to the 
problem. 

-No discrimination of the
mechanism of substitution 

Gap in the progress of proof:
- No perception of all the
constraints of the problem to
be solved.  

 

Figure 6. Indicators of incomprehension of the “demonstration” organization. 

At the surface level of natural language valid deduction cannot be differentiated 
from spontaneous argument The deductive organization of a proof and its spe-
cific way of functioning are not visible through explanation in natural language. 
For example, the two levels of deductive organization are evidently mixed up in 
the linear surface expressions. But the spontaneous way of wording obscures this. 
Two features characterize the spontaneous way of wording. First, the speaker de-
scribes what he or she has seen or has made, by making explicit only what he or 
she was planning over its action or what he or she noticed. And the speaker is led 
by associations, which are often activated and guided by semantic networks. In this 
spontaneous way the speaker focuses only on the outcomes of his or her operations 
whereas mathematical proof requires focusing on discursive operations which the 
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speaker is performing. These discursive operations cannot be confused with word-
ing, although this is very often done in the field of mathematics education through 
oppositions between concepts, or mental representations, and language. Discursive 
operations are operations which are not directed towards the objects but towards 
the different possibilities of naming objects, to assert propositions about objects 
and, mainly, about the multidimensional space of meaning opened up by proposi-
tions. In this spontaneous way of wording, taking into account the status of propo-
sitions can only be of no significance. 
 We can see, then, why wording a mathematical explanation does not depend on 
the same cognitive processes and does not correspond to similar short cuts in a 
mathematician and in a young learner. When the wording is used by a teacher or by 
a mathematician there is the concern to make the top-down and bottom-up focusing 
as fluent as possible, while also taking the theoretical level into account. In these 
circumstances there is little chance for any young student to discover what an in-
trinsic valid discursive production is. Even though one asks students to state explic-
itly the status of propositions by naming them (hypotheses, property, etc.) or by 
using connectors, it could be only a screen. The specific organization of a deduc-
tion step can only be realized through the articulation of the two different proposi-
tion organizations. 
 Finally, outside mathematics, the only really conceived organization of proposi-
tions for a step is a binary one and not a ternary one. We have either a statement 
and its justification as the presentation of an exhibit or the word of a property and 
its natural derivation as a semantic inference. But there is no differentiation be-
tween different kinds of organization of propositions, that is between different 
kinds of structures for the process of reasoning and proving. So it is amazing to see 
that mental models of thinking refer to the classical syllogisms taken as patterns of 
deduction (Johnson-Laird 1983) whereas these syllogisms have a binary organiza-
tion and work as semantic inferences, without any theorem or another third state-
ment (Duval, 1995a, pp. 238–241, 251–255)! 

The key point: a complete reversal of the predominant component meaning of 
propositions We have highlighted above (1.3) that the kind of discourse organiza-
tion depends on the predominant component and features of the propositions’ 
meanings uttered within the discourse. Being able to discriminate a mathematical 
proof from an argument under similar wording, or under the same verbal marks 
(grammatical and logical connectors), involves a reversal of focusing about what is 
taken as the first component of the propositions’ meanings: their status instead of 
their content. Becoming aware of this reversal is the condition for understanding 
how a mathematical proof runs and what changes it brings about in knowledge. 
 Now we can remind ourselves that the different kinds of proof can be classified 
according to the various experiences of necessity they are based on. We must add 
that such experiences require specific means and processes and cannot be dissoci-
ated from them. In other words the jump from an experience of physical necessity, 
and/or from experience of consensual necessity, to an experience of “logical or 
geometrical necessity,” is a change in the kind of proof. This change involves a 
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structural break in the way of reasoning because “logical or geometrical necessity,” 
which is in fact a discursive operating necessity, can only be experienced in the 
understanding of a valid deduction. In order to realize that a valid reasoning pro-
duces the necessity of the utterance of propositions as conclusion, a shift in the 
focus of attention is required, but this shift goes against the common epistemologi-
cal practice: the necessity of asserting some proposition cannot come from experi-
ence as is usual but from an intrinsic valid discursive production, which is not the 
case in the other fields of knowledge. 
 This whole analysis raises a crucial educational issue: what is the implication of 
this structural reversal for the introduction of proof within mathematics teaching 
and curriculum? We have quite opposite alternatives. N. Balacheff emphasized the 
importance of teachers themselves taking charge of all that concerns the status of 
propositions uttered during a debate (1988, pp. 450, 462, 531). In the same vein  
J. R. Anderson put forward a geometrical tutor in which students did not need to 
take into account the status of propositions, and where the construction of a proof 
graph focused mainly on “subgoals” (1987, pp. 113–117). In this way students 
cannot be faced with the possibility of dysfunctional misunderstandings (Figure 6 
above). In the opposite alternative, making students aware of the decisive role of 
status becomes a decisive objective for teaching. Thus V. Luengo integrated this 
into the interplay between students and the Cabri-geometry tutor (1997). 
 The distinction between different kinds of proof raises the educational issue of 
the cognitive passage from one kind of proof to another, and primarily from argu-
ment within a social interaction to a mathematical proof. It is a deep change in the 
kind of proof because mathematical proof calls for the experience of a quite differ-
ent kind of necessity. Such an experience cannot take place or be discovered within 
oral interactions. And being asked to write about what has been explained in any 
debate, in order to make explicit the status of the uttered propositions, is of no use 
(Figure 2 above). We can now state the problem of proof learning: what factors 
must be brought into play to make the students experience a shift both in their dis-
cursive practice of speech and in their common epistemological practice, and thus 
make them achieve the double awareness? That is, this double awareness which is 
the intrinsic source of conviction and the real heuristic guide. The factors must 
depend on the subject’s cognitive architecture and must match with the basic con-
ditions for mathematics learning.  

HOW TO LEAD STUDENTS INTO THE COGNITIVE FUNCTIONING OF 
DEDUCTIVE REASONING? 

This way of stating the requirements for learning to prove leads us away from the 
classical conceptions on this topic. Thus in order to learn to prove many teachers 
believe it is necessary and sufficient to learn various proof methods (reductio ad 
absurdum, division of possible cases, etc.) or various mathematical ways to prove a 
proposition (geometrical, vectorial, analytic, etc.). And if it is not quite sufficient, 
they believe it is what matters most. We do not contest that. But it requires the ac-
quisition of several capabilities. For example, producing different mathematical 
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proofs of a proposition requires different mathematical frameworks and to change 
the framework very often involves a representation register change. But here we 
come up against a well-known difficulty: the different representation registers re-
main for most students isolated one from another. Moreover that does not resolve 
the initial and basic problem of discriminating a valid deductive reasoning from a 
non-valid one, mainly in native language. Another classical conception emphasizes 
the research activity about stimulating problems. Here, it can be difficult to dis-
criminate between the ways to make a conjecture and those to prove or to refute a 
conjecture. These classical conceptions, which refuse to stand back a bit from the 
mathematical processes, lie beyond the real problems of learning to prove. 

The Need of a Detour in Order to Respect the Two Basic Conditions for  
Mathematics Learning: The Differentiation and Coordination between  

Semiotic Representation Registers 

When one examines closely the mathematics learning of 10–16-year-old students, a 
fact is always compelling: many students do not think to perform, or do not under-
stand how to perform, the different actions which are required to solve a problem, 
or to apply some already-acquired knowledge even though the asked tasks can 
seem simple, obvious, natural to teachers and to mathematicians! What seems sim-
ple or natural for the fulfillment of any mathematical activity involves in fact 
an implicit complex differentiation and coordination of semiotic representation 
registers in a way which is not generally required in other fields of mental activity 
(Duval, 1996). 
 Learning mathematics occurs through the construction of a subject’s cognitive 
architecture, that is never, or too rarely, achieved as the outcome of learning such 
or such content (concepts, algorithms, or even ways of representation as graphics, 
numerical systems, etc.). In other words, understanding does not follow the order 
of mathematical construction of knowledge, but supposes the development of some 
specific skills, which are also fruitful for other fields. One cannot teach mathemat-
ics, at the lower level, without taking into account the basic requirements to de-
velop the subject’s cognitive architecture. And that is particularly true for 
mathematical proof. 
 According to the mathematical field and according to its elementary or complex 
character, a proof can be constructed in native language or can require specific 
notations of formal language, for example the use of quantifiers. That is one of the 
two great kinds of variations in the interactions between reasoning and language, as 
discussed above. First, if we confine ourselves to native language, we have just 
seen that two quite different discursive expansion processes generate different deep 
proposition organizations. And that is not always visible through their surface ex-
pression. One cannot imagine a reliable teaching of proof which avoids having 
these two uses of native language differentiated by students. However, in some 
cases, reasoning depends on using a symbol system in order to make explicit the 
extensional aspect of sentences: connectors of negation, of material implication for 
propositions, universal and existensial for variables and predicates (Carnap, 1958). 
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Here we change semiotic representation registers for the discursive processes: 
something else becomes necessary besides the understanding of how to use if–then 
rules for an operation of detachment. But if a mathematical proof can play with 
different semiotic registers, it remains the case that the specific way discursive 
expansion works must be discovered. And for symbol systems or formal language, 
the understanding of how a proof functions requires too a coordination with the 
native language (Duval, 1995a, pp. 151–155). 
 In order to lead students into understanding how a proof works, mathematical 
activities must be organized or split into three stages: a first stage of free explora-
tion, a second stage of specific investigation into the deductive organization of 
propositions in a non-discursive register, and a last stage of verbal description or of 
verbal explanation of the deductive organization which has been discovered. This 
amounts to split first on what is ordinarily considered as heuristic activity, or a 
matter of intuition, and then on what is considered either as a logical activity or a 
communication activity. Why is there such a double splitting and what awareness 
does it make possible for students and also for teachers? 

The Variable Triggering this Double Splitting: To Change the  
Representation Register of Working 

Gathering together the relevant properties or theorems for proof construction 
The first stage of free exploration is standard. Very often this exploration takes 
place in small groups. That can help the many students who do not succeed in dis-
criminating the relevant “properties” and theorems to use, or even realize why 
some theorem is relevant and another is not! But it is not always sufficient and a 
general confrontation is necessary in order to make the key ideas emerge from the 
various productions of each small group. Then, all seems nearly over, since there is 
nothing left, except for producing a written record of the proof. That can be true 
from mathematical perspective. But it is deceptive from the learner’s perspective. 
Knowing all the theorems which are to be used in a proof does not help the learner 
to understand why they prove and thus gain insight into why a proposition is true 
and thus become really convinced. The real usefulness of this stage is to make the 
students enter into the problem and to provide them with the relevant “properties” 
as data for a specific research into the deductive organization of propositions. We 
are at the starting point. 

Research into the deductive organization and its functioning If we confine this to 
the field of elementary geometry, the mathematical activity in this first stage is 
carried out in the mixing of two registers: the geometrical figure register in order to 
“see” and the natural language register in order to “explain” (most often in an oral 
way!). We must remember that theorems and definitions, which are uttered or for-
mulated in the natural language, do not work as statements in ordinary practice. 
This mixing is very often inextricable for most students. So a third register appears 
necessary in order to make visible the discursive operations involved in organizing 
propositions into a deduction. 
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 The most natural one might seem to be the graph representation register. At 
least, it has often been put forward in psychological or didactical research, under 
various names. But this register has no more value than the others: it is a blind al-
ley. What really matters is what this register is used for and what the student has to 
do with it. Briefly, propositional graph construction can be undertaken from a 
heuristic perspective: the propositional graph is used in order to trigger forward 
and backward processes (Anderson et al., 1987; Rips 1988), and what the student 
has to do is only to find the “path” between the hypotheses and the conclusion by 
choosing the relevant theorems. In this case the frame of the propositional graph is 
already fixed, since hypotheses and conclusion are already placed at the top and at 
the bottom of the screen: the task is focused on the choice of the relevant theorems 
to find out the links. That means that the task of taking account of the status of 
propositions becomes a dormant activity which disappears from view: the student 
has only to choose the relevant theorems, that is to go no further than the content of 
propositions. 
 But a propositional graph construction can also be asked in a deductive or-
ganization perspective: graph representation construction is used in order to dis-
criminate the status from the content of propositions and also to differentiate 
between the use of theorems from natural argumentative justifications or from 
physical explanations, etc. In this case no frame is fixed beforehand! Then what the 
student has to do is to choose the propositions according to their status in order to 
construct the whole graph, since the relevant theorems are known from the first 
stage. The student only has to cope with three rules of construction which deal only 
with the discrimination of status. These construction rules focus exclusively on the 
representation of a proposition’s status: 

1. From an hypothesis, an arrow starts but an arrow can never arrive. 
2. One or several arrows arrive at a theorem but only one can start from it. 
3. One or several arrows arrive at the target conclusion (what is to be proved) and 

no arrow can start from it. 

To construct a graph which represents how the use of theorems solves the problem, 
students have only to use arrows in order to link two statements according their 
status. Through this task, which rests on a change of representation register, the 
awareness process is started. 
 In every teaching experiment, one finds the same evolution in the behavior of 
students and the same deep transformation in their production over several didacti-
cal sequences. First of all, students can be disconcerted by this kind of task, but 
above all they seldom succeed. All the latent misunderstandings about mathemati-
cal deduction, often hidden by linguistic formulations which are neither false nor 
precise nor explicit, appear: confusion between hypotheses and conclusion, be-
tween a theorem and its converse or, more subtle and deeper, confusion between 
class inclusion (natural part–whole relation) and propositional implication, non-
taking into account the conditions that apply to a theorem, reduction of reasoning 
to only the linear linking of sentences through connectors, unmindfulness of the 
possibility of gaps, etc. For example, among the first productions of students we 
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have found graphs of this kind, which corresponds to a wrong understanding about 
the mathematical organization of proof: 
 
Hypothesis. 1 → Hyp.2 → Hyp. N → Theorem A → Theorem B → Conclusion 
 
The construction rules provide students with the means to construct the proposi-
tional graph and also to check for themselves the validity of their construction, but, 
above all, they help students to become aware of where and why they were mis-
taken (Egret & Duval, 1989). All these misunderstandings appear through the con-
structed graphs and become obvious just as easily to students as to teachers. And it 
is at this moment that students become aware of the specificity of deductive rea-
soning and can begin a true investigation of how a propositional deductive organi-
zation works through new graph constructions. And for the choice of proofs, the 
teacher can make use, through graph constructions, of variations in the complexity 
of the organization: the proof is more or less arborescent, the givens are, or are not, 
needed only for the initial steps, etc. (Bourreau-Billerait et al., 1998). 

A new representational situation for wording The third stage can begin only 
when the students can organize a whole propositional graph, that is to check them-
selves the validity of links, according to each proposition status, and to realize what 
is a gap in a proof reasoning. Then the teacher can ask a second change register: to 
describe or to explain the propositional graph they have constructed. It is a quite 
different cognitive situation for wording. There is a shifting in the data reference 
for wording: it is no longer the geometrical figure as in the first stage but the dis-
cursive organization that is represented by a diagram. Thus a step back from the 
visual obviousness of the geometrical figure is created by the way of this transi-
tional representation. Now wording makes students become aware of the epistemic 
value of propositions and, above all, of the epistemic value transformation which is 
carried out through the deductive reasoning: what was only visually obvious, or 
what seemed not possible, is becoming theoretically necessary. This is not the 
place to speak about the processes of this new awareness (Duval, 1995a, pp. 223–
231). What matters is perhaps the following question: why resort to natural lan-
guage for that? For two well-known reasons. First, it is only in natural language 
that epistemic values can be uttered. Second, it is only in natural language that a 
subject can become aware of what is involved in his or her activity (here, the pro-
positional graph construction) as Piaget (1967) explained. Understanding, in 
mathematics learning, cannot be truly reached through the exclusion of natural 
language. 
 For this third stage one also finds an evolution. When confronted by the daunt-
ing sight of the deductive organization they have found, students may write more 
than necessary and thus their proof texts seem wordy. But gradually their expres-
sion becomes more concise and they do not feel the need for the propositional 
graph construction. Then students have attained the ability to master a valid de-
ductive reasoning which is more complex than any simple syllogism (besides, 



COGNITIVE FUNCTIONING 

157 

most syllogisms are not valid reasoning, as Aristotle (1964) has explained at 
length!). 

What is Aimed at through this Double Splitting: A Register Coordination 

Operations which appear simple from a mathematical standpoint are very often like 
submerged summits. Below we have the synergy between several heterogeneous 
cognitive systems, some of them requiring a transitional specific practice. In other 
words, what is simple does not lie at the start of learning sequences but at the end. 
Hence what we have called the needful cognitive detour. 
 In the field of elementary geometry, proof requires the coordination between 
two representation registers: the geometrical figure register in order to “see” and 
the natural language register in order to “explain” (most often in an oral way!). The 
introduction of a third register, for a temporary detour, seems to highlight the dis-
cursive presentation of proof to the detriment of its exploration and construction 
which are often reduced to the first stage. But nothing of the sort happens; rather it 
is the opposite. In this way students get to truly discriminate the discursive appre-
hension of a geometrical figure (through given hypotheses, definitions, etc.) from 
its merely perceptive apprehension and realize the priority of the discursive appre-
hension over the perceptive one. In other words, they gain a framework to guide 
their investigations in the field of geometry: there is no real figural intuition with-
out some deductive basis. With that perspective the introduction of a third register 
supports the development of a coordination between the geometrical figure register 
and natural language. When such an explicit coordination begins, students feel 
released from mental mutism, which can bring about an irreversible lack of interest 
in mathematical problem-solving or even a complete withdrawal in many young 
students. 
 But if we want also to develop an intuition skill, mainly for the first stage, when 
the aim is to find the relevant properties or theorems needed for constructing a 
proof, or even for problem solving, specific training is likewise required in the 
geometrical figure register. For example how does one find the relevant theorems 
for solving the problem given above (Figure 1)? Perhaps we cope here with some 
“hermeneutical circle” about the role of the figure in finding the relevant theorems. 
 Each of these three subfigures corresponds to one of the three theorems used to 
construct a proof (Figure 3). If these subfigures are needed to make properties 
come to mind, how can students discriminate and recognize them in the starting 
figure? If, on the other hand, the theorems are needed to see the subfigures, then 
what are the subfigures used for? This raises the more global issue about the cogni-
tive interactions between visualization, construction and reasoning which are in-
volved in any geometrical activity (Duval, 1998, 2005). And from this more global 
viewpoint proving in geometry requires the ability to activate fluently either state-
ments or their figural representations. But most students cannot untangle this com-
plex and hidden interplay, which is completely unconscious or automatic for 
mathematicians! 
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 Whatever geometrical task (analyzing figures, proving, construction, etc.) is 
commonly given to students, there overlaps a very broad spectrum of heterogene-
ous processes. Learning in geometry requires tasks that are designed to make stu-
dents discriminate and practice each of theses heterogeneous processes. Thus it is 
the same for geometrical figures as for natural language: the mathematical way of 
looking at a figure, or of describing its construction, differs from the perceptual 
way of looking at and interpreting it. In a figure belonging to a given task, there are 
different factors which trigger or inhibit the visibility of the pertinent subfigures 
which show the key ideas for solving the problem. Students must become aware of 
the play of these factors in any geometrical visualization too (Duval, 1995b). 
 

 

Figure 7. What are the cognitive conditions for a heuristic role of the figure? 

Of course, the question is whether there is an order of acquisition or some hierar-
chy in the “skills”. Unlike others models which assume this, we can see that there 
is no order of acquisition between visualization and reasoning, since geometrical 
activity is based on a synergy between various cognitive systems which must run in 
parallel. And it would be an illusion and cul de sac in mathematics education to 
promote one register as being easier than all the others. Comprehension of geomet-
rical activity mobilizes, implicitly or explicitly, several representation registers and 
emerges in the same time as their synergy. 

CONCLUSION 

In mathematics education, understanding as well as learning must be examined not 
only from a mathematical point of view but also from a cognitive point of view, 
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because there may be a discrepancy in the conditions of understanding between 
one point of view and the other: what can appear simple from one point of view 
can hide a true complexity that is visible from the other. In this chapter we have 
highlighted the underlying complexity of the cognitive processes for the steps in-
volved in learning to prove, even for mathematical situations which seem easy be-
cause they seem close to natural perceptual situations and do not require technical 
tools or a specific representation register (logical symbolic notations, algebraic 
writing, etc.). It can appear like a complicated detour. But the nature of students’ 
recurrent mistakes and failures highlights the necessity of such a detour. We have 
distinguished two kinds of failures: 

1. Dysfunctions in valid reasoning, such as status confusion, non-distinction be-
tween a statement and its converse, etc. They can be explicit or remain implicit, 
hidden by omissions or by clumsily expressed explanations or even by clumsy 
formal presentation of proofs. 

2. Gaps or deficiencies in the progress of a proof: some can be obvious and easy to 
detect while others may require close scrutiny. 

We must add to these failures, this well-known and widespread behavior: 

3. Mental block and mental mutism in response to being asked to construct a proof 
which can lead students to withdraw from any proof activity or to develop a 
greater or lesser aversion. 

Mathematicians and teachers focus mainly on the second kinds of failure (2) be-
cause these reflect the complexity of mathematical properties and objects. From 
this point of view the difficulties can change with each mathematical situation: 
also, it seems possible to find situations or problems where proofs are within the 
reach of everyone. And from this point of view, one tries to overcome mental 
blocks (3) by suggesting key ideas. In contrast to this, we have focused on the first 
kinds of failure (1) because they are persistent whatever the mathematical problem 
given to students! As long as students remain unaware of the specific way deduc-
tive reasoning runs, they cannot go beyond latent dysfunction and therein lies the 
true deep reason for mental blocks. Moreover, a proof cannot work as proof as long 
as there is no comprehension of the specific deductive organization of discourse 
which determines even the mathematical way of defining. 
 The first advantage of the double splitting and of the change register is to make 
them apparent before the eyes of students and teachers. The second advantage is to 
provide a tool to reveal what lies beneath seemingly natural ways of wording and 
visualizing. 
 The issue here is not to oppose mathematical and cognitive points of view in 
mathematics education, but to articulate them. One can learn to prove only in 
mathematical situations. But one cannot learn to prove if the learning situations are 
not organized according to the cognitive variables. Each time these variables have 
been taken into account, students have experienced an overstepping in their prac-
tice of reasoning and research. 
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 The significance of elementary geometry for discovering what is a mathematical 
proof is due to the fact that it mobilizes two multifunctional registers: the one of 
natural language and the one of gestalt configurations. In this way what is at stake 
first of all in proof learning is to discover that reasoning in mathematics does not 
function in the same way as reasoning within discussion that aims to convince 
other people, outside mathematics. Moreover, becoming aware of the functioning 
of valid reasoning is absolutely essential whenever deduction has to compensate 
for the limitations of vision and visualization. This is the case, for example, for 
reasoning ad absurdum (and for three-dimensional geometry, where the support of 
figures shows itself to be more complex and more limited than in plane geometry). 
It is within their practice of speech organization that students can truly experience 
original change and strength of mathematical proving. 
 The use of quantifiers is distinctive of discursive registers and cannot be consid-
ered separately from the use of negation. Omnipresent in natural language, but 
often implicitly, they become explicit in formal language. But difficulties of rea-
soning with quantifiers in relation to negation (no language without negation) arise 
within the monofunctional register where the treatments are those of predicate cal-
culus. Here we are facing a specific problem of learning in order to make students 
both connect and disconnect the ways of referring to objects and to quantify within 
both natural and formal languages. And that is especially needed since statements 
in calculus (for definitions, theorems) employ a mixed use of natural and formal 
language. But such a learning of quantification can be meaningless for students 
who have not yet realized what valid reasoning is and how it functions. 
 It is obvious that proofs in most fields of mathematics are not founded and de-
veloped as in elementary geometry, because one does not work with the same rep-
resentation registers, i.e., with geometrical figures and natural language. So what 
can the contribution of this learning be to the general mathematical education of 
students? Two experiences seem basic for further learning. First, the discovery of 
what valid reasoning is, which is as important as accuracy is in computation. Sec-
ond, the awareness of different ways of working with natural language and with 
configurations of gestalts. Natural language and gestalt representation are not tech-
nical representation registers in mathematics. But no technical representation regis-
ter can be introduced in mathematics education without a coordination with one or 
other of these two primitive registers, in order to highlight similarities and differ-
ences, congruence and non-congruence, in the ways of referring to objects and of 
processing information. 
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NADIA DOUEK 

7. SOME REMARKS ABOUT ARGUMENTATION  
AND PROOF 

INTRODUCTION 

The general motivation for this study comes from the need to call into question the 
idea, widely shared among teachers and mathematics educators, that there are pro-
found differences between mathematical thinking and thinking in other domains, 
and that these differences produce many difficulties in learning mathematics. In 
particular, some mathematics educators think that one of the main difficulties stu-
dents face in approaching mathematical proof (one of the most characteristic and 
important mathematics subjects) lies in their inability to grasp the differences be-
tween ordinary argumentation and mathematical proof. This position has been 
clearly presented by Duval (1991): 

Deductive thinking does not work like argumentation. However these two 
kinds of reasoning use very similar linguistic forms and propositional con-
nectives. This is one of the main reasons why most of the students do not un-
derstand the requirements of mathematical proof. 

I will refer to that article, since Duval’s analysis offers a precise cognitive perspec-
tive for “formal proof” (i.e., proof reduced to a logical calculation). And this is 
very helpful to widen the analysis to the various activities involved by mathemati-
cal proof. It suggests the following questions: 

• What are the relationships between formal proof and proofs really performed in 
mathematics, in school mathematics as well as in the history of mathematics and 
the mathematics of modern-day mathematicians? 

• What are the relationships between mathematical proof (as a written communi-
cation product), and the working mathematician’s process of proving? 

• In spite of the superficial analogies and profound differences between argumen-
tation and formal proof, aren’t there some deep connections between argumenta-
tion and mathematical proof (as products and as processes)? 

• If those connections do exist, how can we take them into account, in order to 
manage the approach of students to mathematical proof? 

In this chapter I will try to explore only some aspects of these questions and show 
their relevance for the “culture of mathematical proof,” which should be developed 
in teacher training and also for some direct educational implications. In particular I 
will try to show how proving and arguing, as processes, have many common as-
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pects from the cognitive and epistemological points of view, though significant 
differences exist between their outcomes as socially situated products. 
 Regarding the process of construction of proof in school context, we meet 
the problem of recourse to “meaning”. This problem is also part of mathemati-
cians’ concerns since the beginning of the last century. Meaning was negated as a 
possibility or even a necessity by some mathematicians, see Whitehead (1925) for 
instance. According to Whitehead, mathematics is thought moving in the sphere of 
complete abstraction from any particular instance of what it is talking about. 
 But other mathematicians did not deny its importance, like Hardy, who says that 
a formal proof is a kind of X-ray picture of an actual or possible piece of reasoning, 
revealing the bones [the form] but making the flesh [the content, the meaning] in-
visible (Hardy, 1929). 
 I will develop the analysis of the need for meaning amongst mathematicians by 
referring to more recent positions (specially by Thurston and Lakatos). I will also 
show the need for semantically rooted arguments in students’ production, and ar-
gue that this need is part of the mathematical activity. This position results from 
my interest in Duval’s hypothesis that argumentation relies on need for meaning. 
I came to compare proof and argumentation from this perspective. Particularly, 
I compared the cognitive activity involved in the process of searching for a proof 
and elaborating it, on one hand, with the process of elaborating an argumentation, 
on the other. 
 My analysis will be mainly inspired by Thurston (1994) as concerns modern-
day mathematical proofs and the way mathematicians debate them. I will also refer 
to Lakatos (1985) as concerns definitions and proofs in the history of mathematics; 
Balacheff (1988), Mariotti et al. (1997), Arzarello et al. (1998), Arzarello (2000), 
Bartolini et al. (1999), Simon (1996), Boero et al. (1996) and Harel and Sowder 
(1998) as concerns some epistemological, cognitive and educational aspects of 
proving; Lakoff and Nunez (1997) as concerns the idea of everyday experience as 
“grounding metaphor” for mathematics concepts; and Granger (1992) as concerns 
the relationships between formal proof and verification in mathematics. 
 The theoretical construct of Theorem, by Mariotti, seems to be appropriate to 
frame theorems in this chapter. According to her (see Mariotti et al., 1997) a “theo-
rem” is a statement, its proof and the reference theory—distinguishing between 
axioms, definitions and theorems of the specific theory in play, on the one hand, 
and general meta-knowledge about proving and theorems, on the other. In the same 
perspective I will consider “Cognitive unity of theorems”: this theoretical construct 
of Garuti’s (Garuti et al., 1996, 1998) concerns the links that can exist between the 
activity of conjecturing (especially as concerns the production of arguments for the 
plausibility of the conjecture) and the activity of proving. 
 I will consider how argumentation and mathematical proof “live” in different 
settings, today and in the past. 
 I shall start by a case study concerning the mathematical activity of conjecturing 
and proving. I will exploit a corpus of texts written by Italian undergraduate 
mathematics students; they wrote their reasoning while trying to generalise a prop-
erty concerning the system of natural numbers and then prove the generalised 
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property. In particular I will try to seek for the ways students exploited and repre-
sented their mathematical knowledge. This case study will offer some hints about 
the links between mathematical argumentation, conjecturing and proving and re-
lated educational implications. Then I will move to more general considerations 
about argumentation and proof by considering both mental processes and their out-
comes. Some educational implications will be discussed in the final section. 

A CASE STUDY 

The Educational Context 

I will study written production of conjectures and their proofs in a task related to 
elementary number theory. The output in question was produced by 43 university 
students over four consecutive years (from 1996 to 1999) while completing their 
undergraduate studies in mathematics at Genoa University. At this level the stu-
dents master the mathematical knowledge and the rules of algebraic calculation 
they must deal with. They are following a mathematics education course and work 
under a contract (explicitly established with their teacher) that requires them to 
write down every idea that comes to them during their work, even if they change 
their mind about its validity or its usefulness. This contract is intended to obtain 
productions regularly for use by the whole group for didactical and cognitive 
analyses of problem solving activities. 

The Task 

The students were to generalise a proposition (The sum of two consecutive odd 
numbers is divisible by four), then prove the generalised proposition. The fact that 
they had to build up their own conjectures makes their work very different from 
ordinary school proving, where students have to gather arguments to support a 
proposition they might never have thought of before. In our case we may suppose 
that the act of forming a conjecture fixes the conjecture very firmly in their minds, 
and the proof can be strongly influenced by the steps that led to the insight of the 
conjecture (see Garuti et al., 1998: “cognitive unity of theorems”). 

Modes and Criteria of Analysis of Students’ Performances 

I considered 14 texts (by the 1997/98 students) in particular detail, and then 
checked analogies and possible differences with the whole set of 43 texts. Refer-
ence will only be made to the 14 texts analysed in detail, but the aspects described 
are recurrent in the other texts as well. Some excerpts from two texts (by Students 
[1] and [2]), chosen as representatives of opposite behaviours, are reported (see 
Appendix). 
 Bearing in mind the aim of this study and the theoretical framework, each text 
has been analysed according to the following modes and criteria: 
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• Overall account of student’s conjecturing and proving (global effectiveness of 
their performance, etc.). 

• Implicit and explicit reference knowledge backing students’ argumentation. 
I distinguished (see Mariotti et al., 1997: “theorems”) between: content refer-
ence knowledge; meta-knowledge about the operations that the task called for 
(generalising, etc.). I also analysed the external representation of explicit refer-
ence knowledge. Concerning this issue, our attention focused particularly on 
personal (verbal, schematic, etc.) expressions that would be unusual in a nor-
mally acceptable written mathematical production. This kind of analysis was 
meant to explore in depth how these undergraduate mathematics students used 
their knowledge, as it might reveal their personal implication in the search of 
meaning or of tools for interpretation. 

• Occurrence of algebraic-syntactic or semantically based steps of reasoning and 
the relationships between them. This analysis was needed in order to understand 
better how the two kinds of reasoning are functionally linked and connected to 
the resolution of the problem. 

• Relationships between the proving process and the proof as a product (and the 
consequences of matching the former with the latter). 

Students’ Behaviour 

Overall account of students’ work Within the 14 texts, only four (Students [1], 
[2], [11], [13]) tried to prove something distinctly: two (Students [1] and [11]) 
prove their conjectures; and Student [13] a partial result of a confused conjecture. 
Student [2] (see Doc. 2) tries to prove a result that is stronger than the conjecture 
expressed in words; his proof lacks a fundamental step (justification of the formula 
used, which derived by generalisation from numerical examples). Let us call these 
four students the “proof group”. But as we can hardly distinguish the processes of 
construction of conjectures from construction of proofs in the work of the students, 
we may as well study more texts from the perspective of proof construction. An-
other important argument to support this shift in the study from proof to conjecture 
construction is that five students do not achieve their proofs (even though they 
were on the right track) probably because of a lack of active mathematical practice 
combined with the unusual situation of having to build their own conjectures. So 
we can consider the constructive work of nine students (we may call “conjecture 
group,” which includes the “proof group”) and take, as comparative examples, 
elements of the work of the other five (“failure group”). 

Reference knowledge and its representation The task called for elementary con-
tent reference knowledge: elementary arithmetic, algebraic language and its 
rules of calculation. Some students tried to use other reference knowledge such as 
functions and series. Concerning algebra, we may remark that the process of for-
malization (i.e., the passage from content to formula) was not easy for many stu-
dents, especially when they wanted to write the sum of K odds: for instance, some 
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of them wrote (2n+1)+(2n+3)+…+(2n+?) and then stopped; few were able to ex-
press? as 2K-1: see (E) in Doc. 1. Writing the result of the sum was not easy either: 
it demanded a semantically rooted conversion of a known formula (the formula for 
the sum of the first n natural numbers—cf. Szeredi & Torok, 1998), or the re-
construction of an ad-hoc formula: see (F) in Appendix, Doc. 1. 
 As concerns the external representation of content reference knowledge, I have 
found various organisations of data and schemas with visual effects that reveal 
regularities and help to express some arithmetic relations in an algebraic way; for 
instance, symmetries in the disposition of data and formulas provided hints for the 
calculus (see figures in Appendix, Doc. 1 for two examples). 
 We may remark that re-organising data reflects a type of knowledge that is im-
portant for solving problems, but not always recognised or valued, though it is it-
self constructed knowledge (cf. Briand, 1993, for similar remarks concerning 
counting strategies). We may also remark that in other fields of mathematics (such 
as numerical analysis or category theory) schemas and organisational schemes are 
crucial tools. 
 Meta-mathematical knowledge was made explicit especially when it was almost 
algorithmic (see Student [2]) or referred to the task (“What does it mean ‘to gener-
alize’ ”), but appeared only implicitly when it was complex (actually richer) and 
nearer to the mathematicians’ behaviour (see Thurston, 1994). Summing up the 
analyses dealing with meta-mathematical knowledge, I may say that the range of 
shared explicit knowledge was much narrower than the actual knowledge used 
globally by the group. I found that eight students referred explicitly to methods for 
solving problems of this kind, but, to take an example, “organization of data” was 
never mentioned even when methods were partially made explicit, though it was a 
key strategy for four students and useful for three of them. Only one of the fourteen 
students (Student [12]) seemed to have no idea of possible strategies for solving 
problems of this kind: she seemed lost, mixed up different steps undertaken and 
produced several unfinished propositions. For Students [1] and [13] (“proof 
group”), I detected very rich implicit meta-mathematical knowledge about how to 
solve the problem. 
 The implicit problem-solving methods I could detect globally were: change of 
representation; interpreting calculations in words and vice versa; visually organiz-
ing data and calculations, up to a geometrical regularity. I could also detect 
changes of mathematical frames: arithmetic, algebra, series, etc, which is common 
in the process of proving for mathematicians. 

Algebraic-syntactic or semantically based steps of reasoning I have listed numer-
ous breaks during calculations. They were needed to re-interpret the mathematical 
content of calculus in words. This can be seen as a sign of the primacy of semanti-
cal content over algebraic calculation during the process of conjecture and proof 
construction. As an example, we can consider the need of Student [1] to express 
algebraic propositions in words when seeking to recognise possible conjectures. 
This attitude displays the search for a semantically consistent grasp of the algebraic 
signs. We can interpret it by saying that constructive-reflective work in mathemat-
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ics cannot evolve only within formal expression. 
 On the other hand, if we observe the students who did not express the results of 
their calculation in words richly (five of the fourteen students), three of them (Stu-
dents [3], [4], [12]) are in the “failure group” of five students and two ([2] and 
[13]) in the “conjecture group” of nine students. So the majority of the “conjecture 
group” (seven out of nine) needed semantic interpretations to pursue their work. I 
recall that Student [2] did not recognise the strong result obtained, and that [13] 
was confused in expressing his conjecture—it was not clear to this student what 
was proved by the calculation. 

Proof as product and proof as process Let us compare two examples that are 
representative of some others in the whole group of 43: in the first (student [2]), 
proof as a product is close to proof as a process, while in the other (student [1]) the 
distance is great. 
 Student [2] is considered skilful (good notes, etc.), but sticks very closely to her 
explicit method and her presentation is very close to that of a final presentation. 
This approximation to a formally correct mathematical text (cf. Hanna, 1989) 
seems to bear negative consequences on the productivity of the student’s work: her 
research is linear and no change of strategy is found at any level. There are long 
repetitive arithmetic calculations, quite astonishing for the only student in the 
group who usually managed algebraic tools very well; more remarkably, the stu-
dent arrives algebraically at a strong conjecture and interprets it in words as much 
weaker. And finally she does not produce a complete proof. 
 Analysing the text of Student [1], we can observe frequent changes of strategy, 
organisation of data and calculations, as well as a frequent effort to interpret in 
words. This variety, this need for change might help technically, but these were 
also “interpretation” efforts. They helped understanding and often stimulated the 
development of new ideas. These moves in students’ ideas can be recognized as 
“transformational reasoning” (see Harel & Sowder, 1998; Simon, 1996). Some of 
these very useful forms disappeared in the final draft of the proof (P), where the 
logical link between the propositions became a priority. In addition, justification of 
the research method disappeared from the product (while examples of the inter-
woven presence of meta-mathematical arguments in mathematical reasoning were 
frequent in the construction stage). Her conjecture is strong and her proof is almost 
complete. 

Some Hints from the Case Study 

We have seen that important reference knowledge remained implicit in students’ 
proving processes and that some of the references concerned the content, while 
others related to the meta-knowledge about the activity to be performed. These 
references are not all part of an institutionalised (or “institutionalisable”) corpus of 
mathematical references, or axioms. 
 We have also seen how non-standardised, appropriate representation of explicit 
reference knowledge had an important role in students’ performances. In particular 
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we may infer that they were means of interpretation. In this same perspective, we 
have seen that when elaborating a productive process many students found syntac-
tic arguments insufficient, and so semantically rooted arguments became critical, 
thus revealing search of meaning of the various steps. 
 Finally, we have collected some experimental evidence about the negative con-
sequences of subordinating the proving process to the requirements of proof as a 
final product. 

ABOUT ARGUMENTATION AND PROOF 

This section is intended to provide the reader with reference definitions and basic 
ideas for the following sections. The general aim is to relate the results of students’ 
behaviour in our case study to mathematicians’ behaviour and try to develop a gen-
eral view about the need for meaning in mathematical proof. 

What Argumentation are we Talking About? 

We cannot accept any discourse as an argumentation. In this chapter the word “ar-
gumentation” will indicate both the process which produces a logically connected 
(but not necessarily deductive) discourse about a given subject: (from Webster Dic-
tionary: “1. The act of forming reasons, making inductions, drawing conclusions, 
and applying them to the case under discussion”) and the text produced by that 
process (Webster Dictionary: “3. Writing or speaking that argues”)—the linguistic 
context will allow the reader to select the appropriate meaning. 
 The word “argument” will be used as “A reason or reasons offered for or against 
a proposition, opinion or measure” (Webster), and may include verbal arguments, 
numerical data, drawings, etc. In brief, an “argumentation” consists of one or 
more logically connected “arguments,” and the discoursive nature of argumenta-
tion does not exclude the reference to non-discoursive (for instance, visual or  
gestural) arguments. 

Formal Proof 

This chapter will consider “formal proof” as a proof that approaches a logical cal-
culation. Concerning its cognitive characteristics, it will refer to Duval’s descrip-
tion (1991) by quoting his “cognitive analysis of deductive organisation versus 
argumentative organisation of reasoning” as concerns “inference steps”: in argu-
mentative reasoning, “semantic content of propositions is crucial,” while in deduc-
tive reasoning “propositions do not intervene directly by their content, but by their 
operational status” (defined as “their role in the functioning of inference”); as con-
cerns “enchaining steps”: argumentative reasoning works “by reinforcement or 
opposition of arguments” (p. 233). “Propositions assumed as conclusions of pre-
ceding phases or as shared propositions are continuously reinterpreted”. “The tran-
sition from an argument to another is performed by extrinsic connection”. On the 
contrary, in deductive reasoning “the conclusion of a given step is the condition of 
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application of the inference rule of the following step”. The proposition obtained as 
the conclusion of a given step is “recycled” as the entrance proposition of the fol-
lowing step. Enchaining makes deductive reasoning similar to a chain of calcula-
tions; as concerns the “epistemic value” (defined as the “degree of certainty or 
conviction attributed to a proposition”): in argumentative reasoning “true proposi-
tions have not the same epistemic value,” while in mathematics “true propositions 
have only one, specific epistemic value […] that is, certainty deriving from neces-
sary conclusion”; and “proof modifies the epistemic value of the proved proposi-
tion: it becomes true and necessary”. This modification constitutes the 
“productivity of proof”. 

Mathematical Proof 

We could start by saying that mathematical proof is what in the past and today is 
recognised as such by people working in the mathematical field. This approach 
covers Euclid’s proof as well as the proofs published in high-school mathematics 
textbooks, and current modern-day mathematicians’ proofs, as communicated in 
specialized workshops or published in mathematical journals (for the differences 
between these two forms of communication, see Thurston, 1994). Furthermore, we 
can recognize some common features between argumentation and proof, in particu-
lar: a common function, i.e., the validation of a statement; the reference to an es-
tablished knowledge (see the definition of “theorem” as “statement, proof and 
reference theory” in Mariotti et al., 1997); and some common requirements, like 
the enchaining of propositions. 
 The distinction between the process of proof construction (i.e., “proving”) and 
the result (as a socially acceptable mathematical text, as proposed in the introduc-
tion, and preceding considerations point out the fact that mathematical proof and 
the proving process can be considered as particular cases of argumentation (accord-
ing to the preceding definition). However, in this chapter “argumentation” will 
exclude “proof” when comparing them. 
 Concerning the relationships between formal proof and proofs currently pro-
duced by mathematicians, I quote Thurston: 

We should recognize that the humanly understandable and humanly check-
able proofs that we actually do are what is most important to us, and that they 
are quite different from formal proof. For the present, formal proofs are out 
of reach and mostly irrelevant: we have good human processes for checking 
mathematical validity. (p. 121) 

We may also consider some examples of theorems in mathematical analysis (e.g., 
Rolle’s Theorem, Bolzano-Weierstrass’ Theorem, etc.) whose usual proofs 
in current university textbooks are formally incomplete: completion would bring 
students far from understanding; for this reason semantic (and visual) arguments 
are frequently exploited in order to fill the gaps existing at the formal level. 
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Argumentation in Mathematics 

Argumentation can be performed in pure and applied mathematical situations, as in 
any other area. Argumentations are usually held informally between mathemati-
cians to develop, discuss or communicate mathematical problems and results, but 
are not recognised socially in a research paper presenting new results: in that case 
proofs and “rigorous” constructions (or counter-examples) are needed. As concerns 
“communication,” Thurston (1994) writes: 

Mathematical knowledge can be transmitted amazingly fast within a subfield 
of mathematics. When a significant theorem is proved, it often (but not al-
ways) happens that the solution can be communicated in a matter of minutes 
from one person to another within the subfield. The same proof would be 
communicated and generally understood in an hour’s talk to members of the 
subfield. It would be the subject of a 15- or 20-page paper, which could 
be read and understood in a few hours or perhaps days by the members of 
the subfield. Why is there such a big expansion from the informal discus-
sion to the talk, to the paper? One-to-one, people use wide channels of com-
munication that go far beyond formal mathematical language. They use 
gestures, they draw pictures and diagrams, they make sound effects and use 
body language. (p. 166) 

As concerns “rigour,” it is considered here because it appears as a requirement of 
mathematical texts although it needs to be defined, or rather to be questioned and 
put into a historical perspective—see Lakatos (1985). The problem of rigour will 
be reconsidered later with the question of the epistemic value of statements. 

Reference Corpus 

The expression “reference corpus” will include not only reference statements but 
also visual and, more generally, experimental evidence, physical constraints, etc. 
assumed to be unquestionable (i.e., “reference arguments,” or, briefly, “refer-
ences,” in general). In the Subsection “About the Reference Corpus”, I will discuss 
the social determination of the fact that a “reference” is not an object of doubt, as 
well as the necessary existence of references that are not made explicit. 
 The knowledge the students referred to or used implicitly, in our case study, 
forms examples of the existence of such reference corpus. 

Tools of Analysis and Comparison of Argumentation and Proof 

Aren’t there some criteria (even implicit ones) that enable us to accept or refuse an 
argumentation, as it happens for a proof? And are they not finally related to logical 
constraints and to the validity of the references, even if entangled with complex 
implicit knowledge? If we follow Duval’s analysis, for argumentation it seems as if 
there is no recognised reference corpus for argumentation, whereas for proof it 
exists systematically. I do not think that this distinction is correct. The following 
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criteria of comparison, inspired by Duval’s analysis, will help me to discuss this 
point, in the next section: the existence of a “reference corpus” for developing rea-
soning; the means by which doubts about the “epistemic value” of a given state-
ment can be dispelled; and the form of reasoning. 

ANALYSIS AND COMPARISON OF ARGUMENTATION AND  
MATHEMATICAL PROOF AS PRODUCTS 

About the Reference Corpus 

No argumentation (individual or between two or more protagonists) would be pos-
sible in everyday life if there were no reference corpus to support the steps of  
reasoning. The reference corpus for everyday argumentation is socially and histori-
cally determined, and is largely implicit. “Reference corpus” for mathematical 
proof may seem to be completely explicit and not socially determined, but we will 
see that this is not so: it obeys specific social and historical influence. 

Social and historical determination of the “reference corpus” for proof In this 
subsection I will try to support the idea that the “reference corpus” for mathemati-
cal proof is socially and historically determined. In order to do so, I will exploit 
arguments of different nature (historical and epistemological considerations as well 
as reflections on ordinary school practices) that are not easy to separate. 
 The reference corpus used in mathematics depends strongly on the users and 
their listeners/readers. For example, in secondary school some detailed references 
can be expected to support a proof, but in communication between higher-level 
mathematicians those may be considered evident and as such disregarded. As 
Yackel (1998) pointed out, the existence of jumps related to “obvious” arguments 
in the presentation of a proof can be considered as a sign of familiarity with knowl-
edge involved in that proof. On the other hand, some statements accepted as refer-
ences in secondary school are questioned and problematised at higher levels; 
questions of “decidability” may surface. We may remark that today problems of 
“decidability” are dealt with by few mathematicians and seldom encountered in 
mathematics teaching (although in my opinion simple examples concerning 
Euclidean geometry vs non-Euclidean geometries could be of great pedagogical 
value). To quote Thurston (1994): 

On the most fundamental level, the foundations of mathematics are much 
shakier than the mathematics that we do. Most mathematicians adhere to 
foundational principles that are known to be polite fictions. (p.170) 

Thus for almost all the users of mathematics in a given social context (high school, 
university, etc.) the problem of epistemic value does not exist (with the exception 
of the case: “true” after proving, or “not true” after counter-example) although it 
was and it still is an important question for mathematics as for any other field of 
knowledge. Mathematics concepts are the most stable, giving an experience of 
“truth” which should not be necessarily taken for truth. 
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 Let us now consider other aspects of the social determination of the reference 
corpus which concern the nature of references. If we consider the “references” that 
can back an argumentation for validating a statement in primary school, we see that 
at this level of approach to mathematical work references can include experimental 
facts. And we cannot deny their “grounding” function for mathematics (see Lakoff 
& Nunez, 1997), both for the long-term construction of mathematical concepts 
and for establishing some requirements of validation which prepare proving (e.g., 
making reference to acknowledged facts, deriving consequences from them, etc.). 
For instance, in primary school geometry we may consider the superposition of 
figures for validating the equality of segments or angles, and superposition by 
bending for validating the existence of an axial symmetry. Later on in secon-
dary school, these references no longer have value in proving; they are replaced 
by definitions or theorems (see Balacheff, 1988). In general, at a higher level it is a 
hypothesis or a partial result of the problem to solve that informs us of equali-
ties and not “experimental” validation (see Balacheff, 1988). At such a level the 
meaning of equality is not questioned as might (and should) happen at “lower” 
levels. We may note that, in the history of mathematics, visual evidence supports 
many steps of reasoning in Euclid’s Elements. This evidence was replaced by theo-
retical constructions (axioms, definitions and theorems) in later geometrical  
theories. 

Implicit and explicit references The reference corpus is generally larger than the 
set of explicit references. In mathematics, as in other areas, the knowledge used as 
reference is not always recognised explicitly (and thus appears in no statement): 
some references can be used and might be discovered, constructed, or recon-
structed, and stated afterwards. The example of Euler’s theorem discussed 
by Lakatos (1985) provides evidence about this phenomenon in the history of 
mathematics. The same also occurs for argumentation within areas other 
than mathematics. Let us consider the interpretations made by a psychoanalyst: we 
cannot fathom his ability unless we believe that he bases his work on chains of 
reasoning that refer to a great deal of shared knowledge about mankind and soci-
ety, this knowledge being obviously impossible to reduce to explicit knowledge. 
And, in general, we could hold no exchange of ideas, whatever area we are inter-
ested in, without exploiting implicit shared knowledge. Implicit knowledge is a 
source of important “limit problems” (especially in non-mathematical fields, but 
also in mathematics) when we come to bring them (or their effects) to conscious-
ness: in the “fuzzy” border of implicit knowledge we can meet the challenge of 
formulating more and more precise statements and evaluating their epistemic 
value. Lakatos (1985) provides us with interesting historical examples about this 
issue. 
 Note that in our case study we point out some implicit, as well as some explicit, 
references. 
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How to dispel doubts about a statement and the form of reasoning 

Thurston writes: 

Mathematicians can and do fill in gaps, correct errors, and supply more detail 
and more careful scholarship when they are called on or motivated to do so. 
Our system is quite good at producing reliable theorems that can be solidly 
backed up. It’s just that the reliability does not primarily come from mathe-
maticians formally checking formal arguments; it comes from mathemati-
cians thinking carefully and critically about mathematical ideas. (p. 170) 

And considering the example of Wiles’s proof of Fermat’s Last Theorem: 

The experts quickly came to believe that his proof was basically correct on 
the basis of high-level ideas, long before details could be checked. 

These quotations raise some interesting questions concerning the ways by 
which doubts about mathematics statements are dispelled. Formal proof “pro-
duces” (according to Duval’s analysis) the reliability of a statement (attributing 
to it the epistemic value of “truth”). But what Thurston argues is that “reliability 
does not primarily come from mathematicians formally checking formal argu-
ments”. In Thurston’s view, the requirements of formal proof represent only guide-
lines for writing a proof—once its validity has been checked according 
to ”substantial” and not “formal” arguments. The preceding considerations di-
rectly concern the form of reasoning: the model of formal proof as described by 
Duval and based on the “operational status” of propositions rather than on 
their ”semantic content” does not seem to fit the description of the activities per-
formed by many working mathematicians when they check the validity of a state-
ment or a proof. Only in some cases (for instance, proofs based on chains of 
transformations of algebraic expressions) does Duval’s model neatly fit proof as a 
product. 
 Despite the distance between the ways of dispelling doubts (and the forms of 
reasoning) in mathematics and in other fields, the preceding analysis shows many 
points of contact—even between mathematical proof process and argumentation 
in non-mathematical fields. Granger (1992) suggests the existence of deep analo-
gies that might frame (from an epistemological point of view) these points of con-
tact. Naturally, as concerns the form of reasoning visible in the final product, 
argumentation presents a wider range of possibilities than mathematical proof: 
not only deduction, but also analogy, metaphor, etc. Another significant difference 
lies in the fact that an argumentation can exploit arguments taken from differ-
ent reference corpuses that may belong to different theories with no explicit, com-
mon frame ensuring coherence. For instance, the argumentation developed in this 
chapter derives its arguments from different disciplines (history of mathematics, 
epistemology, cognitive psychology); at present there is no mean to tackle the 
problem of coherence between reference theories belonging to these domains. 
On the contrary, mathematical proof refers to one or more reference theories ex-
plicitly related to a coherent system of axioms. But I would prefer to stress the im-
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portance of the points of contact (especially from an educational point of view: see 
the next Section ). 

THE PROCESSES OF ARGUMENTATION AND CONSTRUCTION OF PROOF 

In the Introduction I proposed distinguishing between the process of construction 
of proof (“proving”) and the product (“proof”). Of what does the “proving” process 
consist? I will refer to some theoretical elaboration that can help us answer this 
question, and, in parallel, return to the case study for confirmation. 
 Experimental evidence has been provided about the hypothesis that “proving” a 
conjecture entails establishing a functional link with the argumentative activity 
needed to understand (or produce) the statement and recognising its plausibility 
(see Mariotti et al., 1997). This was reflected in the case study by the important 
recourse to semantic hints within the mathematical explorations and also by the use 
of a variety of external representation. These were part of the efforts of interpreta-
tion and developing meaning. 
 Proving needs an intensive argumentative activity, based on “transformations” 
of the situation represented by the statement, as it was through the use of a variety 
of external representation in our example. Experimental evidence about the impor-
tance of “transformational reasoning” in proving has been provided by various, 
recent studies (see Arzarello et al., 1998; Arzarello; 2000, Boero et al., 1996; 
Simon, 1996; Harel & Sowder, 1998). Simon defines “transformational reasoning” 
as follows: 

the physical or mental enactment of an operation or set of operations on an 
object or set of objects that allows one to envision the transformations that 
these objects undergo and the set of results of these operations. Central to 
transformational reasoning is the ability to consider, not a static state, but a 
dynamic process by which a new state or a continuum of states are generated. 

It is interesting to compare Simon’s definition with Thurston (1994): 

People have amazing facilities for sensing something without knowing where 
it comes from (intuition), for sensing that some phenomenon or situation or 
object is like something else (association); and for building and testing con-
nections and comparisons, holding two things in mind at the same time 
(metaphor). These facilities are quite important for mathematics. Personally, 
I put a lot of effort into “listening” to my intuitions and associations, and 
building them into metaphors and connections. This involves a kind of simul-
taneous quietening and focusing of my mind. Words, logic and detailed pic-
tures rattling around can inhibit intuitions and associations. […] We have a 
facility for thinking about processes or sequences of actions that can often be 
used to good effect in mathematical reasoning. (p. 165) 

These quotations suggest some interesting reflections about the role of metaphors 
and their links with transformational reasoning in the proving process. 
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 Metaphors can be considered as closely related to transformational reasoning. 
For a metaphor we may consider two poles (a known object, an object to be 
known) and a link between them. In this case the “creativity” of transformational 
reasoning consists in the “choice” (which may not be totally conscious) of the 
known object and the link—which allows us to know some aspects of the un-
known object as suggested by the knowledge of the known object (“abduction”) 
(cf. Arzarello et al., 1998). 
 Concerning the possible metaphors: mathematics is apparently only concerned 
by mathematical objects. Metaphors where the known pole is not mathematical are 
not acknowledged. But in many cases the process of proving needs these meta-
phors, sometimes with material, physical or even bodily referents (their traces can 
be detected when a mathematician produces an informal description of the ideas 
his proof is based on: see Subsection “Modes and Criteria of Analysis of Students’ 
Performances”, quotation from Thurston). In general, Lakoff and Nunez (1997) 
suggest that such metaphors have a crucial role in the historical and personal de-
velopment of mathematical knowledge (“grounding metaphors”). The example of 
continuity is illuminating. Simon (1996) discusses the importance of a physical 
enactment in order to check the results of a transformation in transformational rea-
soning. In some situations the mathematical object is the known object and the 
other pole concerns a non-mathematical situation: the aim is to validate some 
statements concerning this situation, exploiting the properties of the mathematical 
model. Let us also note that; in other cases it happens to relate two non-
mathematical objects (one known, the other not) by a mathematical, metaphoric 
link which sheds light on the unknown object and/or on its relationships with the 
known object. By these means, argumentative activities concerning non-
mathematical situations rely upon mathematical creations (metaphors), an observa-
tion that should be taken into account in mathematics education. 
 When our students re-organize data in a way they can better handle, we can rec-
ognize a transformational reasoning from a pure algebraic reading of the signs to a 
space reading of the relation to be built between the signs, thus leading to a possi-
bility of metaphor of the calculus procedure. As if the elements were put on a table 
and moved to be associated together. 
 The example of metaphors shows the possible “semantic” complexity of the 
process of proving—and suggests the existence of a variety of links with various 
mathematical activities and also with non-specific mathematical activities. It also 
shows the importance of transformational reasoning as a free activity (in particular, 
free from usual boundaries of knowledge). 
 Induction in general is also relevant—and the need to produce a deductive chain 
guides the search for arguments to “enchain” when coming to the writing process 
(see Boero et al., 1996). 

SOME EDUCATIONAL IMPLICATIONS 

Let us return to the processes of argumentation and proof construction as opposed 
to the final static results. An important part of the difficulties of proof in school 
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mathematics comes from the confusion of proof as a process and proof as a product 
(see Garuti et al., 1996). Students are expected to learn proof through the learning 
of text-proof writing (and organising); the research process needed to produce the 
ideas of proof were totally left to the responsibility of the students. For instance, 
we made the remark that organisation of data, which was important in students’ 
performances in our case study, is a piece of knowledge that is generally not rec-
ognised in school context. This piece of knowledge is seldom (if ever) studied in a 
meta-cognitive reflective perspective. The difficulties are often overcome by an 
authoritarian approach. Frequently, mathematics teaching is based on the presenta-
tion (by the teacher, and then by the student when asked to repeat definitions and 
theorems) of mathematical knowledge as a more or less formalised theory based on 
rigorous proofs. In this case, authority is exercised through the form of the presen-
tation (see Hanna, 1989); in this way school imposes the form of the presentation 
and values it over the thought, leading to the identification between them, and de-
mands a thinking process modelled by the form of the presentation (eliminating 
every “dynamism”). This analysis may explain the strength of the model of proof, 
which promotes an idea of “linearity” of mathematical thought as a necessity and a 
characteristic aspect of mathematics. 
 If a student (or a teacher) assumes such “linearity” as the model of mathemati-
cians’ thinking without taking the complexity of conjecturing and proving proc-
esses into account, it is natural to see “proof” and “argumentation” as extremely 
different. This may have consequences in other fields: it can reinforce a style 
of ”thinking” for which no “sacred” assumption is challenged, only “deduc-
tions” are allowed (obviously, also school practice of argumentation may suffer 
from authoritarian models!). On the contrary, giving importance to “transforma-
tional” reasoning (and, in general, to the non-deductive aspects of argumentation 
needed in constructive mathematical activities—including proving) can develop 
different potentials of thinking. On the possibility of educating manners of  
thinking other than deduction, Simon considers “transformational reasoning” and 
hypothesizes: 

[…] transformational reasoning is a natural inclination of the human learner 
who seeks to understand and to validate mathematical ideas. The inclination 
[…] must be nurtured and developed.[…]school mathematics has failed to 
encourage or develop transformational reasoning, causing the inclination to 
reason transformationally to be expressed less universally. 

I am convinced that Simon’s assumption is a valid working hypothesis, needing 
further investigation not only regarding “the role of transformational reasoning in 
classroom discourse aimed at validation of mathematical ideas” but also its func-
tioning and its connections with other “creative” behaviours (in mathematics and in 
other fields). 
 As concerns possible educational developments, the analyses performed in this 
chapter suggest some immediate consequences: 

• classroom work should include (before any “institutionalisation”) systematic 
activities of argumentation about work to be done (for instance, producing and 
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backing a conjecture), as well as work that has been done (in this case, explain-
ing, justifying and validating); 

• in particular, validation, in mathematical work and in other fields, should be 
demanded whenever it can be meaningful; 

• the fact that validation has not been done or was unsatisfactory or impossible 
should be openly recognised; 

• and, finally, references as such should be explicitly recognized, be they state-
ments, experiments or axioms (this does not mean that references are fixed as 
true once and for all, but rather that for at least a certain time we have to con-
sider them as “references” for our reasoning). This demands meta-cognitive re-
flection to become part of the usual discussion activity. 

The passage from argumentation to proof about the validity of a mathematical 
statement should openly be constructed on the basis of limitation of the reference 
corpus (see Subsection “How to dispel doubts about a statement and the form of 
reasoning”, last paragraph). It could be supported by exploiting different texts, 
such as historical scientific and mathematical texts, and different modern mathe-
matical proofs (see Boero et al., 1997, for a possible methodology of exploitation). 

NOTES 
1 He seems to refer to Godel’s proof that ordinary arithmetic contains propositions that cannot be proved 

within the system and cannot be disproved either, making them formally undecidable. 
2 Following the Pythagorean tradition, in his Mysterium Cosmographicum (1621), Kepler discussed the 

existence of precisely six planets by connecting their orbits to the existence of exactly five platonic 
solids. He believed that between each pair of spheres containing the orbits of adjacent planets, one of 
the platonic solids was inscribed. 

3 The problem she mentioned is discussed also by Grenier (2000). 
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APPENDIX 

DOC. 1: Excerpts from the text of Student [1]; it contains seven large, spatially 
organized pieces, like the two reported below, and many arrows, connecting lines 
and encirclings. 
 “I have some difficulties in understanding in what direction I must generalize. It 
might be: ‘by adding two odd or even consecutive numbers I get a number divisible 
by 4’ [she performs some numerical trials]. This does not work. I shall try to gen-
eralize in another way: 
 

 
I was looking for something that could help me but I got nothing. 
[other trials, with a rich spatial organisation: two consecutive even numbers, 
two consecutive odd numbers—here she gets divisibility by 4; then three, four, 
five, six, seven consecutive odd numbers. By performing calculations, she gets the 
following formulas: 3(2K+3); 8(K+2) 10K+25=5(2K+5); 12K+36=12(K+3); 
14K+49=7(2K+7)]. Is the result of the addition of n consecutive odd numbers 
(n odd) divisible by n? (2K+1)+(2K+3)+…(2K+ What must I put here? 
 
(E) 
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[she performs an unsuccessful trial by induction; then she considers n numbers in 
general] 
n numbers: (2K+1)+(2K+3)+…(2K+(2n-1))=2nK+1+3+5+…+(2n–1)=2nK+ (I am 
thinking of the anecdote of “young Gauss”: 
(F) it makes 2n.n/2=n2) = 2nK+n2= n(2K+n) OK!! 
[Trials performed by applying the preceding formula 2nK+n2 in the cases n=2, 
n=4, n=6, n=8: she gets: 4K+4 divisible by 4; 8K+16 divisible by 8; 
12K+36=12(K+3); 16K+64=16(K+4) divisible by 16]. Then if I add n consecutive 
odd numbers (n even), I get divisibility by 2n. Let us try a proof: (P) 
(2K+1)+(2K+3)+ …(2K+2n-1)=2nK+(1+3+2n–1)=2nK+(2n.n)/2=2nK+n2=2n(K+ 
n/2); n even implies that n/2 is an integer number: so I get divisibility by 2n. […] 
 
DOC. 2: Excerpts from the text of Student [2]; spatial organization is almost linear, 
like that in the following transcript. 
 Student [2] starts her work by checking (on numerical examples: 3+5; 5+7; 
101+103) the validity of the given property, then proves it. Then she writes: “When 
I must tackle a problem, I try to see how it works in particular cases and then I 
generalize, as I have done in this case—although I knew the solution. I reason in 
this way because the particular case allows me to understand better how I can 
reach the solution of the problem in general (and this method works even when I 
do not know the solution). Thinking in arithmetic terms and then in algebraic terms 
helps me to solve the problem. For the original property the generalization comes 
fairly automatically, because [she explains why in detail]. 
 What does it mean “to generalize”? It means considering a property in which 
there are some closed variables (two odd numbers, or divisibility by 4) and getting 
a property in which variables are open. I change the number of odd consecutive 
numbers to add. For instance, I consider 3 [crossed out] 4 consecutive odd numbers 
2n+1, 2n+3, 2n+5, 2n+7 and make the addition: 
2n+1+2n+3+2n+5+2n+7=8n+16=8(n+2)=4(2n+4). Then I find a number that is 
divisible by 8, so it is divisible by 4. I perform the addition of 6 consecutive odd 
numbers [similar calculations]=12n+36=6(2n+6). Then I find a number that is di-
visible by 12, so it is divisible by 6. I try with 8: [similar calcula-
tions]=8.2n+64=8(2n+8) Then I find a number that is divisible by 8, so it is div-
isible by 4. Following my reasoning, for an even number K of odd consecutive 
numbers I get: 2n+1+2n+3+.…+2n+15+.…=K(2n+K)=2K(n+K/2); but K is an 
even number, so it is divisible by 2 and (n+K/2) is an integer number. Then 2K is 
divisible by 4 (because K is odd). So I have found that the given property is still 
valid if I add up an even number of odd consecutive numbers. 
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GREISY WINICKI-LANDMAN 

8. MAKING POSSIBLE THE DISCUSSION OF 
“IMPOSSIBLE IN MATHEMATICS” 

Alice laughed: “There’s no use trying,” she said; “one can’t believe impos-
sible things.” 

“I dare say you haven’t had much practice,” said the Queen. “When I was 
younger, I always did it for half an hour a day. Why, sometimes I’ve believed 
as many as six impossible things before breakfast.” 

 Alice in Wonderland, Lewis Carroll 

This exploratory study is a first attempt to collect, describe and analyze students’ 
understanding of the notion of “mathematical impossibility”. This notion is 
strongly connected to the idea of proof and the approach chosen to the study relies 
on students’ declarations as well as on their performances of proofs and refutations 
of mathematical statements involving impossibility. 

INTRODUCTION 

Instead of asking students “Show that there is no” I generally ask them “Find a” 
without giving any additional information. The reader may consider I lied to them 
… I don’t. With the task formulated affirmatively, the solver will try to accomplish 
the task and only after some attempts (sometimes many attempts or even never …) 
he will suspect that the task is “very hard,” or almost “impossible”. Then, he is in 
front of a meta-mathematical decision: to keep on trying to do what he was asked 
to do or to be “insolent” and change direction trying to prove that he had been 
asked to do something that is not possibly done. From an educational point of 
view, I think it is very important to have mathematics students discuss the role of 
impossible things in mathematics. 
 First of all, it is necessary to acknowledge that there exist impossible “things” in 
mathematics. Some of the questions that lead to such “things” were asked from 
antiquity (i.e., Trisecting an angle, Doubling a cube, Squaring a circle—all of the 
above with straightedge and compass alone) and the attempts to give them an an-
swer led to the development of very important branches of mathematical knowl-
edge. As Hilbert wrote in 1900: “Sometimes it happens that we seek the solution 
under unsatisfied hypotheses or in an inappropriate sense and are therefore unable 
to reach our goal. Then the task arises of proving the impossibility of solving the 
problem under the given hypotheses and in the sense required. Such impossibility 
proofs were already given by the ancients, in showing, e.g., that the hypotenuse of 
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an isosceles right triangle has an irrational ratio to its leg. In modern mathematics 
the question of the impossibility of certain solutions has played a key role, so that 
we have acquired the knowledge that such old and difficult problems as to prove 
the parallel axiom, to square the circle, or to solve equations of the fifth degree in 
radicals have no solution in the originally intended sense, but nevertheless have 
been solved in a precise and completely satisfactory way.” (quoted in Davis, 1973) 
(my emphasis). 
 Second, the fact that there are impossible things in mathematics may be quite 
surprising. As exposed by Delahaye, “disconcerting are the mathematical results 
demonstrated since 1930 concerning the impossibility of certain demonstrations.1 
because they can assign a sort of limit to thought itself” (Delahaye as quoted in 
Young 1992). The analysis of results about impossibility may lead students to a 
more real perspective of the subject. There are even those who consider impossibil-
ity theorems as “the most remarkable theorems in mathematics. For they have a 
mystifying quality” (Richards, 1975, p. 250). 
 Third, the discussion of results of the form “It is impossible to …” may constitute 
a good opportunity to clarify the distinction between unsolved problems and un-
solvable problems. As Davis said, “There seems to be a time element at work in 
such [impossibility] statements. Actuality is here, actuality is now, it is complete; an 
impossibility seems to bargain with an uncommitted future” (Davis, 1986, p. 67). 
 In the frame of a course for pre-service secondary school mathematics teachers, 
the classic proof that there exist at most five regular solids was presented. Later on, 
during the same lesson, Kepler’s model of the Solar System2 was exposed and I 
discussed Kepler’s connections between the Platonic Solids and the orbits of the 
planets. Then the following dialog occurred: 

S [student]: At Kepler’s time only some of the planets were known. But 
nowadays, we know that there are nine planets. 
T [teacher]: Yes, … 
S: If so, isn’t it possible that in the future a new regular solid may be  
discovered? 
T [to the class] What do you think? 

Of course, the answer to the student’s question is one and only one: if the defini-
tion of regular solid is the one used in the presented proof, there are no more than 
five regular solids, so it is impossible to find another one. For the students involved 
in the lesson the word “impossible” sounded “too strong” and “very dramatic”. It 
turned on a red light on my head: How do they understand impossible statements? 
How do they prove such statements? From these questions arises another reason to 
study the students’ conceptions about impossibility in mathematics: its potential to 
highlight the students’ conceptions of proofs and to expose their approaches while 
proving mathematical impossibilities. 
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THE STUDY 

To learn more about these questions, an open questionnaire was designed and de-
livered to the students some time later. They were asked to work individually, to 
reflect about the following questions and to write down their opinions. 

1. What is the meaning of “impossible” in mathematics? 
2. Enunciate three examples of mathematical correct statements involving the idea 

of impossibility. 
3. How do you explain to your math students that something is impossible? 
4. In your opinion, do we—as mathematics educators—have to expose our stu-

dents to mathematical statements involving impossibility? If so, to what pur-
poses? If not, why? 

5. Let us define a new concept: A centrified triangle is a right triangle whose  
circumcenter is also its baricenter. Enunciate some properties of a centrified  
triangle. 

6. Prove or disprove the following statements: 

i. It is impossible for a kite to have exactly one right angle; 
ii. It is impossible for a non-special parallelogram to be a cyclic quadrilateral; 
iii. It is impossible to find three collinear points in the same circle; 
iv. It is impossible for a square to have a diagonal whose length is a rational 

number; 
v. It is impossible for a straight line which is not tangent to a parabola to have 

only one common point with the parabola; 
vi. It is impossible for a function to be odd and even at the same time. 

The questionnaire was built taking into account the following considerations: 

a) An open questionnaire allowed the students to express themselves freely, using 
their own words to expose their conceptions. 

b) The questions were diverse in order to expose different aspects of the students’ 
notion of impossibility: Question (i) explicitly asked for the students’ “defini-
tion” of the notion, Question (ii) asked for examples, enabling the exposition of 
their free associations in their own language; Questions (iii) and (iv) dealt 
with the teaching of the notion; and Questions (v) and (vi) exposed the students’ 
approaches while proving (or disproving) mathematical statements involving 
impossibility. 

c) Six statements to be proved or disproved were included in order to give the stu-
dents the opportunity to think about concrete impossibility statements, to decide 
about their correctness, and to prove or disprove them. These statements al-
lowed collecting data about the processes in which the students get engaged 
when they prove that an impossibility statement is true or false. 

d) Following Hadas and Hershkowitz (1999), the statements were chosen in order 
to have the students feel the uncertainty concerning their truth. Some of the 
statements presented are true while the others are not. The proof of (ii) and (iii) 
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may involve proof by contradiction while the refutation of the other statements 
may evoke the use of counterexamples. 

e) In mathematics, nonexistence usually is a matter of impossibility; with this idea 
in mind, the statements were chosen also considering the possibility to construct 
relatively elementary examples/counterexamples. 

f) The mathematical contents involved in the statements to be proved or disproved 
are known by the students and are directly connected to the contents they 
will teach at the secondary school (e.g., Elementary Algebra and Euclidean  
Geometry). 

RESULTS AND ANALYSIS 

This study tries to examine students’ understanding of the notion of “impossible” 
and the ways in which they prove or disprove impossibility statements. A profile of 
four students—Abi, Bernie Carmen and Dalia—will be presented, according 
to their responses to the first five questions. The analysis of the students’ an-
swers to the last question will be exposed in a future work (Winicki-Landman, in 
preparation). 

Abi 
Abi wrote that for him impossible is “when there is no object that fulfills the re-
quirements”. He developed his ideas saying that he identified impossible with the 
empty set: “If each one of the requirements is translated into the set of objects that 
fulfill it, then the objects that belong to the intersection set fulfill all the require-
ments. If this intersection set is empty, then I call the situation impossible.” In his 
search for properties of the centrified triangles (Question 5), Abi explicitly wrote 
that he identified the set of triangles for which their baricenter is also their circum-
center as the set of equilateral triangles. He wrote: 

If the baricenter of a triangle is also its circumcenter, it follows that its medi-
ans are congruent. We proved some time ago that if two medians in a triangle 
are congruent, it must be isosceles. So, our triangle is “isosceles twice,” that 
means it’s equilateral. 

Then he continued by saying: 

Since there is no triangle that is both equilateral and right-angle, I conclude 
that the set of centrified triangles is empty. So, it is impossible for a right tri-
angle to be centrified. 

Abi approached the task in a deductive way: he constructed a general triangle to 
allow his reasoning flow and he reached his conclusion in a very concise and ele-
gant way. He is a very good student, in general his proofs are original and he is 
very exigent with his own mathematical language. 
 The examples of impossibility statements Abi produced to answer Question 2 
were: 
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Since the solution set of the equation sin x=2 is empty, it is impossible to find 
a real number x for which sin x=2. 

Then he added: 
In fact, every equation without solutions is an example of an impossibility 
statement. 

When asked to explain the idea of impossibility to his students (Question 3), he 
chose two examples 

Solve the equation x=x+1 
and 

It is impossible to divide 5 by 0, since there is no number x that fulfills the 
condition 0x=5. 

In all his examples, the central idea is the idea of “nonexistence,” that is, the empty 
set. 
 When asked whether he took into account the possibility of proposing to stu-
dents mathematical statements involving impossibility, he declared he was not 
sure, but he believed 

 … the discussion of “possible” and “impossible” in mathematics may help 
students understand better the meaning of the theorems they prove and those 
they use in class. But I’m not sure that I always understand them myself. It 
seems to me that impossibility statements may be proved, in general, by us-
ing the indirect method of proof. This method is very potent but at the same 
time is very non-intuitive. But, for this kind of statements, it may constitute 
the sole way of proving, making it an essential tool in mathematics. 

Abi believes that proving by using the reductio ad absurdum method is not always 
clear for the students. Although he himself might have experienced the lack of 
clearness embedded in such proofs, he is able to appreciate it as a “potent” method 
of proof. He raised an interesting question that needs to be verified: Impossibility 
statements are proved only by this method? I believe the answer is not, but this 
belief needs logical support. 
 Another important point that arises from his words is the controversy about indi-
rect proof, in which you prove “A must be true” by proving “not A is impossible”. 
Indirect proofs accepted by classical mathematicians are rejected by intuitionists 
and constructivists (Hersh, 1997, p. 85) and I believe this controversy has to be 
studied in order to learn more about the logical and the psychological aspects of 
mathematical proof. 

Bernie 
Bernie wrote that impossible is 

… when you cannot obtain an answer to the question, when you cannot find a 
way to solve a problem, or when you cannot prove that something indeed exists. 
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It seems that, for Bernie, impossibility is a subjective property, meaning that some 
mathematical task may be impossible for him but possible for a friend. One of the 
examples of impossibility statements he mentioned was Fermat’s Last Theorem. 
He explained his choice: 

It was impossible for almost four centuries, but now it is possible. 

 It may be important to point out that the impossibility Bernie wrote about is not 
the same as the impossibility that Fermat himself wrote about. Fermat wrote in 
Latin: 

On the other hand, it is impossible for a cube to be written as a sum of two 
cubes or a fourth power to be written as a sum of two fourth powers or, in 
general for any number which is a power greater than the second to be writ-
ten as a sum of two like powers. For this I have discovered a truly wonderful 
proof, but the margin [in his copy of Diaphantus’ Arithmetic] is too small to 
contain it. (quoted by Young, 1992, p. 42). 

Fermat wrote about the non-existence of three integers that fulfill certain require-
ments and Bernie was thinking about the fact that the problem was open. It seems 
that this student confused the terms “unsolved” and “unsolvable”. 
 When Bernie was asked how to prove that a result is impossible he wrote: 

I don’t know if you can do that at all … You only prove positive statements. I 
think you cannot prove that something is impossible. If you prove something, 
then it may be, it may exist. So, I think it is impossible to prove that some-
thing is impossible. 

When asked to provide examples of impossibility statements he wrote 

5–2=7 is an impossibility statement 

and 

a>a is an impossibility statement for every real number a. 

It seems that Bernie confused the terms “false” and “impossible,” and this is con-
sistent with his reluctance to discuss the idea of impossible with his students be-
cause for him this discussion may confuse them more and they will lose their 
confidence in themselves and in the subject as a scientific endeavor. 
 His consideration of students’ anxiety is very laudable, but his comment ex-
posed another misunderstanding, this time concerning the scientific endeavor. 
 In my opinion, the fact that there are mathematical statements concerning the 
impossibility of certain constructions—for example—must be seen as natural as 
the statements of the form “For all x in X, P(x)” or “Exists an x in X for which 
P(x)”. It seems that, for Bernie, the former kind of statements is not so natural, 
even considering the fact that he met them before. For example, it’s sensible to 
assume that he proved at least once that the sum of two even numbers is an even 
number. In other words, he may have proved that it is impossible to find a pair of 
even numbers whose sum is an odd number. But he seems not to identify the 
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equivalence between the two statements. In some sense, Bernie’s answers may 
reflect the lack of his former teachers’ emphasis on developing their students’ un-
derstanding of the meaning of what had been proved. The gap between the logical 
perspective and the pedagogical perspective to proofs needs to be considered seri-
ously by teachers, and the discussion of the meaning of “impossible” in mathemat-
ics and the identification of impossibilities may constitute a springboard to skip 
this gap. 
 Bernie’s considerations may lead teachers’ educators to question the mathemati-
cal culture of future teachers. The impossibility of each one of the three classical 
constructions with just straightedge and compass are important historical facts, but 
in order to understand each one of these proofs the learner needs a background that 
is not usually available until university studies. On the other hand, there are impos-
sibility statements that may be explicitly discussed in high school, for example the 
statement “It is impossible to find three collinear points in the same circle”. It is an 
intuitive result, it may be formulated in different ways, and it may be proved with 
elementary synthetic geometry tools. Moreover, some impossibility statements 
may be refuted quite easily by finding a counterexample. Following the spirit of 
Zaslavsky and Ron (1998) and Peled and Zaslavsky (1997), this kind of tasks 
should be more frequent in secondary-school mathematics lessons since they may 
create appropriate opportunities to discuss different approaches to the production 
of counterexamples to false statements. 

Carmen 
Carmen wrote that, for her, impossible is 

… something that contradicts mathematics laws, principles and definitions, 
something that if you do it, it leads you to an absurd, something you cannot 
do in a specific framework of definitions, axioms and theorems. 

In Carmen’s words, very important aspects of the impossibility in mathematics 
may be identified: the contradiction to the mathematical structure built and the 
relativity of the notion possibility–impossibility to the system of axioms and defini-
tions chosen. One of the examples of impossibility she mentioned was 

It is impossible to take the square root of a negative number if you are talking 
about Real numbers. If you think about the Complex Numbers, it is a differ-
ent story. The same idea is true if you think about other operations defined in 
more simple sets. For example, you cannot subtract 10 from 7 if you 
are thinking of natural numbers. This operation is impossible in N but possi-
ble in Z. 

Carmen’s examples involve the idea that in some cases the non-existence of one 
thing is equivalent to existence of another thing. 

Euclid proves there’s no largest prime number—no prime number greater 
than all other primes. Non-existence! Today the usual statement of this fact 
is: There exist infinitely many primes. Infinite existence! (Hersh, 1997, 
p. 84). 
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In Carmen’s case, the non-existence of the square root of a negative real number, 
enables the creation of a new set of numbers, in which this operation is indeed pos-
sible. Yet the case of division by zero is another story. 
 When she studied the centrified triangle, she wrote: 

The centrified triangle is a right triangle, so it has all the properties of a right 
triangle: the Pythagorean Theorem, … 

Then she continued reasoning: 

Since the triangle is right-angle, the median of the hypotenuse is a radius of 
the circumscribed circle. The baricenter of a general triangle belongs to every 
one of its medians and it divides each one of them into two segments of ratio 
2:1. So, the baricenter is an inner point of each one of the medians of every 
triangle, especially in the case of the right triangle. But the circumscribed cir-
cle of a right triangle is one of the extremes of the median of the hypotenuse. 
Contradiction! It means that these two points cannot coincide in a right trian-
gle. But if the latter condition is cancelled, these triangles may exist. I think 
that in other triangles it may be possible. But in the right-angle triangle, no! 
This case is impossible. 

When asked if students should be exposed to the discussion of impossibility state-
ments Carmen answered: 

I’m not sure we have this kind of tasks in our textbooks. I believe they con-
tain just statements of the form ‘Prove that …’ But I find the idea of facing 
an uncertain statement much more charming. Some of the statements may be 
true, while others may not. I remember when you [the teacher] gave us a 
geoboard and you asked us to construct there a regular pentagon.3 The fact 
that I found it difficult to construct it led me to suspect that such a pentagon 
may not exist. I thought that I might have chosen a wrong approach to the 
construction. But after a lot of thinking, I started to feel that this construction 
is impossible. Then, I had to decide. It may have been the first time I decided 
whether I was going to prove that there is no such a pentagon or by the con-
trary, I was going to keep on looking for such a pentagon. I could not prove 
it, but I was almost sure that this construction is impossible. Then, we dis-
cussed it in class, and you [the teacher] showed us how to prove it. In that 
case, I remember that I understood from the proof why such pentagons do not 
exist. I believed it before the proof, but after it, I knew why it was true. 

Carmen’s words remind us of one of George Polya’s rules of inductive reasoning: 

You are moved to give up a task that withstands your repeated efforts. 
You desist only after many and great efforts if you are stubborn or deeply 
concerned. You desist after a few cursory trials if you are easygoing or not 
seriously concerned. Yet in any case there is a sort of inductive conclusion. 
The conjecture under consideration is: 
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A. It is impossible to do this task. 
You observe: 
B: Even I cannot do this task. 
This, in itself, is very unlikely indeed. Yet certainly 
A implies B 
and so your observation of B renders A more credible, by the fundamental 
inductive pattern. (Polya, 1968, p. 17). 

Carmen felt comfortable with this kind of thinking, she managed it quite well, and 
she was aware that her difficulties in finding an example of a regular pentagon with 
integral coordinates do not prove that such an example does not exist. She was 
convinced that such an example does not exist and she explicitly declares that for 
her, the proof does not provide conviction but explanation (De Villiers, 1990). Her 
description of the situation constitutes another testimony that conviction is not the 
unique role of proof. In that sense, a proof of an impossibility statement may con-
vince someone that the statement is really impossible, but it may also explain why 
it is so. Such a conviction may come as a result of several unsuccessful attempts to 
find an example, but a proof of this impossibility may enlighten the reasons for this 
non-existence. 

Dalia 
Dalia wrote that 

It is impossible to prove an axiom or to define a fundamental concept. 

Her example does not belong to the same category of the other mentioned exam-
ples. She wrote about an impossibility statement of the language in which mathe-
matics is written, while the other examples are theorems of mathematics (Davis, 
1986, p. 68). One of the examples she presented was: 

It is impossible for two parallel lines to meet. 

 In this case, it seems she used the definition of “parallel lines” and built a state-
ment of the form “It is not the case …”. This algorithm to build an impossibility 
statement in mathematics was frequent among other students too. 
 She wrote: 

In some sense, almost every theorem can be seen as a case of impossibility: it 
is impossible that its negation is true. 

 Her understanding of the logic involved in proof making is very strong and she 
explicitly wrote: 

If we remember that P is equivalent to Not (Not P), we may change any 
statement P for It’s impossible that Not P. For example, since we know that 
the sum of the interior angles of any triangle is equal to 180°, it is impossible 
to find a triangle with angles 30º, 30º, 100º. Well, it is a trivial example … 
But … it is surprising, I haven’t thought about it before: If I take any three 
numbers (a,b,c) I cannot always construct a triangle, I can do that only if the 
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biggest is smaller than the sum of the other two. It is also an impossibility 
statement concerning the triangle. 

Surprising is the fact that when asked if she would expose her students to this kind 
of statements she answered that she saw them just as a curiosity, as a logical game 
but without any serious value in itself. I prefer to have them learn how to prove 
“normal” statements. 
 Dalia mentioned an interesting point that needs further discussion: the logical 
equivalence between any statement P and the statement Not (Not P). This logical 
equivalence does not imply that the statements are alike from the psychological 
point of view. For example, one may be clearer or more convincing than the other, 
and while trying to construct a proof, one of the formulations may be more fruitful 
than the other. This point may be studied further, including also statements con-
cerning impossibilities. 

CONCLUDING REMARKS 

From the profiles presented many questions arise concerning proofs and the proc-
esses involved in proving. One of the problematic issues may be the connec-
tions between examples and proof. That is, a) the roles played by examples in 
the formulation of a conjecture, b) their role performing existence proofs, 
c) their power to disprove a statement, d) the processes involved in the production 
of counterexamples to a statement. Another topic for further study may be the dif-
ferent roles played by proofs specially while treating an impossibility state-
ment. Following De Villiers’ framework (De Villiers, 1990), I suggest investi-
gating: a) proof as a means for verification of the impossibility of the statement; 
b) a proof as a means for explanation, enlightening the reasons why the statement 
is impossible; c) a proof as a means of discovery, since the analysis of the proof of 
a certain result may lead to the a priori discovery—without conjecturing it before, 
without experimenting or without the trial an error involved in the inductive proc-
ess—of an impossibility concerning the mathematical objects studied; d) and the 
systematization role that a proof may play when studying the robustness of group 
of theorems. 
 Yet another area for further investigation, concerning proofs and proving, may 
be the one that was opened by Abi’s reflections concerning the different ways of 
proving an impossibility statement. He suggested that the indirect method may be 
the sole way to prove such statements. But in cases in which the problem studied 
allows an approach of a case by case exhaustive verification, the indirect method is 
not the only method available. Although in many cases there seems to be no 
choice, impossibility statements are not proved by using reductio ad absurdum 
only. 
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CAROLYN A. MAHER, ETHEL M. MUTER AND REGINA D. KICZEK 

9. THE DEVELOPMENT OF PROOF MAKING BY 
STUDENTS 

INTRODUCTION 

How do students come to make proofs? What are some of the conditions that  
support the development of proof making? As part of a long-term longitudinal 
study of the development of mathematical ideas in students, we investigated these 
and other questions about student learning of mathematics. Our data came from a 
large collection of videotapes of students working together in a community within 
which sense making was a cultural norm. We were particularly interested in ob-
serving the development of representations and explanations provided by the stu-
dents, as well as the reasoning offered to support their ideas. Some arguments, 
justifications, and proof-making contributions of five of the students are reported in 
this chapter. The data span a seven-year period, elementary through high school.1 
Individual cognition with respect to the movement of student ideas within this 
group was also traced. In this report, we present examples of: (1) the representa-
tions produced by the students; (2) the reasoning exhibited and justifications made 
for their solutions; and (3) the connections they made between their earlier and 
later ideas. 

THEORETICAL FRAMEWORK 

Our work is based on the view that children are capable of building powerful and 
lasting images of mathematical ideas when challenged to investigate problematic 
situations which are interesting to them. Facilitators play an important role in the 
process by implementing carefully crafted mathematical investigations in their 
classrooms and by being attentive to the developing ideas of the students. As stu-
dents engage in thoughtful activities and are later presented with similar tasks 
and/or extensions of them, earlier built images can be retrieved, modified, and  
extended (Davis, 1984, 1992a, 1992b; Davis & Maher, 1990, 1997; Maher, 2002, 
2005; Maher & Davis, 1990, 1995). Teachers’ awareness of their students’ think-
ing makes possible the posing of tasks that can facilitate the building of connec-
tions between and among representations. Further, a timely seizing of opportunities 
for students to revisit earlier ideas helps them to refine their thinking and, as ap-
propriate, to generalize their ideas. In soliciting explanations from their students, 
teachers can challenge them to provide appropriate justifications of their solutions. 
In this way, students’ thinking can be nurtured and extended as they continue to do 
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mathematics. Hence, fostering opportunities for students to think mathematically is 
not the objective of a single lesson, but a long-range goal. 
 Under these conditions, we study modifications and changes to earlier represen-
tations of student ideas. By tracing the development of student thinking over time, 
it is possible to understand how original ideas are built, refined, and connected as 
students attempt to solve similar, as well as new, problems. Pirie and Kieren (1992) 
also suggest that students revisit ideas and refine their conjectures. When faced 
with a new situation, students fold back to an inner level of understanding and re-
flect upon and reorganize earlier ideas in light of new information (Maher, 2005; 
Pirie & Kieren, 1992). 

BACKGROUND 

In 1984 a long-term partnership was initiated between Rutgers University and a 
school in a working-class New Jersey community. This led to several classroom 
studies of the development of mathematical ideas in students. The long-term study 
has its origin in 1988 with a class of first-grade students (Martino, 1992). Aspects 
of the study continue into its eighteenth year as new data are collected to trace the 
impact of the study on its participants. When Martino’s students entered grade 
four, they became the focus group of two National Science Foundation research 
projects through high-school.2 
 An essential condition for the study was to provide children with an opportunity 
to construct mathematical ideas as they engaged in problem-solving activities 
(Maher & Martino, 1996). The students, since grade one, were encouraged to make 
conjectures, develop theories, and justify their solutions for a variety of mathemati-
cal problems. In explaining their ideas to each other, opportunities arose for them 
to invent strategies and build justifications. As their ideas were challenged, indi-
vidual positions were sometimes reconsidered and modified, or reinforced and con-
solidated (Maher, 1991; Maher & Martino, 1997; Martino, 1992). In the course of 
these exchanges, some students built convincing arguments that took the form of 
proofs to validate their results. 

METHODOLOGY 

Classroom Investigations 

Students routinely were organized to work on their tasks with a partner. Pairs of 
students sometimes joined to form small groups. Activities varied in time from 
fifty-minute regular class sessions to two-and-a-half to three-hour extended class 
periods. Usually, the activity took place over three school days. 
 The classroom explorations provided by the researcher took the following form: 
(1) presentation of the task; (2) questioning of student pairs and small groups about 
their ideas; (3) posing task extensions on the basis of assessment of student think-
ing; (4) facilitating the sharing of ideas between pairs and/or among groups; and 
(5) encouraging whole class sharing and discussion. The expectation for argument 
and challenge among the students was the norm. The decision to allow the students 
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to have additional time to think about the problems was deliberate. Sometimes, 
original solutions were re-examined within a few days or weeks. At other times, 
the ideas were revisited over longer periods of time. 

After-School Mathematics 

When leaving their elementary school, some of the original cohort of students vol-
unteered to continue doing mathematics together after school on Fridays. The stu-
dents rearranged part-time work hours and accommodated busy sports schedules 
over several seasons (football, basketball, baseball and softball) to participate. The 
format for the investigations was: (1) presentation of the task by the researcher;  
(2) organization by the students into pairs and/or small groups; (3) sharing of ideas; 
and (4) posing of task extensions by the student(s) and/or researcher. Each session 
lasted for two-and-a-half to three hours. 

Data Source 

This report focuses on the development of mathematical thinking of a group of 
sixteen-year-old tenth-grade students: Ankur, Brian, Jeff, Michael and Romina. 
 Videotapes from grades four, five, and ten provide data that capture the children 
engaged in investigations in the area of combinatorics. The students explored com-
binatorial ideas by investigating particular problems as well as variations and  
extensions of them over the seven-year period. The investigations in grades four 
and five were whole class activities. For these sessions, three cameras were used to 
videotape student activity. The after-school grade-ten sessions were videotaped 
with two cameras, one directed on the actions of the group of students and the 
other focusing on their written work. For all sessions, a videographer and sound 
technician operated each camera and graduate students took field notes. The video-
tapes, researcher notes, and student work provided the data for the study. 

The Tasks  

A strand of investigations dealing with ideas in combinatorics was chosen because 
these problems: (1) were not a part of the regular mathematics curriculum that the 
children studied in school at that grade level; (2) afforded students opportunities to 
invent individual strategies, notations, rules and justifications; (3) provided for the 
building of isomorphisms; and (4) were later revisited at deeper levels of  
abstraction. 
 For this report, two tasks and variations of them are central in the investigations 
by the students. They involve building towers of varying heights when selecting 
from cubes of two colors and finding all pizza combinations when selecting from 
various topping choices. Variations of tower and pizza problems have been given 
extensively to many students (Maher, 2002, 2005; Maher & Martino, 1996; Maher 
& Speiser, 1997; Martino, 1992; Muter, 1999). 
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TWO EXAMPLES 

Example 1: Michael’s Use of Binary Code 

The data for this example will be reported in three episodes that come from video-
tapes of problem-solving sessions in grades five and ten. The Pizza Problem (see 
Appendix 1), a task originally explored in the fifth grade, was revisited as the first 
of a series of related combinatorics investigations in grade ten. The students were 
asked to determine the number of different pizzas that could be made when there is 
the option of selecting from among four toppings, and then to find a way to con-
vince each other that they had accounted for all possible choices. In the fifth grade, 
the students were able find a solution and justify their results. In the tenth grade, a 
coding scheme invented by one student, Michael, prompted the students to move 
beyond the solution for a particular case to a proof for the general case of  
n toppings. 

Episode 1: Ankur, Brian, Jeff, Michael and Romina’s Solution, Grade five—4/2/93 
Romina, Jeff, Brian and Ankur worked as a group on the Pizza Problem as fifth 
graders, although they used a variety of strategies and representations to produce 
the sixteen combinations. These included a partial tree diagram, lists, and an or-
ganization that systematically controlled for variables. Michael developed his own 
solution, drawing circles to represent the various pizzas and labeling each “pizza” 
with its toppings. All of the students created codes using letters or abbreviations to 
represent the four toppings (for example, pepperoni = pe; m = mushrooms) and all 
decided to code for a pizza with no toppings (plain = pl or c = cheese). 
 Ankur explained the method that was used by the students to the researcher. 

Ankur: Okay. You start with the first one, that’s P, and you mix it with the 
second one. That’s P slash S [P/S]. And then you start with the first one 
again, skip the second one and go to the next one. That’s M. P slash M 
[P/M]. Then you start with P again and mix it with the fourth one, PE. And 
then you start with the S since that’s the—’cause you can’t use plain. We 
start with S and mix it with M. 
T/R: Where’s that? 
Ankur:  S M [Ankur pointed to S/M on his paper.] 
T/R: That’s this one. Okay. 
Ankur: Then we start with S and PE, right here. And we start with M, and 
PE. S and P is right here. The first one. [He pointed to P/S.] 
T/R:  Okay. So why is it you can’t go M with P? 
Ankur: Because you already have it: P M [He pointed to P/M.]. 

The pizzas were categorized as “whole” (plain and one-topping pizzas) and 
“mixed” (two or more toppings). The students found all sixteen pizzas, justifying 
their solution by the way they organized their results. 
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Episode 2: Ankur, Brian, Jeff and Romina’s Solution, Grade ten—12/12/97 In the 
tenth-grade session, the students were asked if they recalled solving the Pizza Prob-
lem in elementary school. After some discussion, they were able to reconstruct the 
problem but chose to add a fifth topping. In the course of the work that ensued, 
they considered the cases of both four and five toppings. 
 Ankur, Brian, Jeff and Romina each started to write their own solutions, but 
soon began to collaborate. They talked aloud about combinations of toppings and 
of the patterns they were observing. They initially used a code of letters to repre-
sent the toppings. As they began to compare their lists of combinations, they 
switched their notation, using the numerals one through five. They decided that if 
five toppings were available, thirty different pizzas could be made with at least one 
topping, plus one plain cheese pizza, for a total of thirty-one. 

Episode 3: Michael’s Solution, Grade ten—12/12/97 While the other four stu-
dents worked together, Michael spent at least fifteen minutes quietly developing his 
own solution. He found there were thirty-two pizzas when choosing from five top-
pings, disagreeing with his classmates. He invented a symbolic representation 
based on a binary coding scheme which enabled him to prove his results. 

Michael: I think it’s thirty-two—with that cheese. And without the cheese, 
it would be thirty-one. I’ll tell you why. 
Ankur: Mike, tell us the one we’re missing then. 

Michael responded by explaining what the zeros and ones meant in his representa-
tion and how they are used to write base ten numbers in base two. 

Michael: Okay, here’s what I think. You know like a binary system we 
learned a while ago? Like with the ones and zeros—binary, right? The ones 
would mean a topping; zero means no topping. So if you had a four-topping 
pizza, you have four different places—in the binary system, you’d have—the 
first one would be just one. The second one would be that [he wrote 10]; 
that’s the second number up. You remember what that was? This was like 
two, and this was three [he wrote 11]. 

Jeff recalled that they had seen this before. 

Jeff: know exactly what you’re talking about. It’s the thing we looked at in 
Mr. Poe’s class [Mr. Poe was the students’ teacher in grade eight.]; it was 
with computers. 

Michael continued to relate his coding scheme to the pizza problem. 

Michael: Well, you get, I think—I have a thing in my head. It works out in 
my head … You’ve got four toppings. This is like four places of the binary 
system. It all equals up to fifteen. That’s the answer for four toppings. 

 Romina sought clarification about the meaning for the zeros and ones. Jeff re-
sponded that one indicated a single topping choice and zero meant no toppings. 
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Romina: So is the one—is that your topping? 
Jeff: Yeah. Each one is a topping. The zeros are no toppings. The ones are 
toppings. 

Michael then summarized his conclusions. 

Michael: So you go from this number [He wrote 0001], which is in the bi-
nary system; it’s one, to this number [He wrote 1111], which is fifteen, and 
that’s how many toppings you have. There’s fifteen different combinations of 
ones and zeros if you have four different places. 
Brian: Wow! [He indicated his enthusiasm for Michael’s solution.] 
Michael: I don’t know how to explain it, but it works out. That’s in my 
head—these weird things going on in my head. And if you have an extra top-
ping, you just add an extra place and that would be sixteen, that would be 
thirty-one. 

Michael’s representation using binary numbers did not include the representation 
for a plain cheese pizza [0 0 0 0]. However, he corrected for this by adding one to 
the fifteen combinations (for making pizzas when selecting from four toppings) 
and to the thirty-one combinations (for making pizzas with five toppings avail-
able), thus accounting for all possibilities. 

Jeff: And then you add the cheese? 
Michael: Plus the cheese would be thirty-two. 

With the assistance of the other students, Michael presented his binary coding 
scheme to the researcher, saying, “This is the way I interpret it into the pizza prob-
lem.” When the researcher asked questions about Michael’s solution, other stu-
dents responded. 

Researcher: What’s the difference between one, zero, zero, zero [1 0 0 0] 
and zero, one, zero, zero [0 1 0 0]? 
Jeff: Well, that would be the difference between an onion pizza and a pep-
peroni pizza. 

Jeff suggested that the others label each column with the name of a topping. Mi-
chael agreed, noting that the entry of one in a column indicated that pizza had that 
particular topping. As an extension, the students were asked to consider the case 
where ten toppings were available. While investigating this extension, the group 
recognized that a string containing all zeros represented a plain cheese pizza. Fi-
nally, they were asked to generalize to the case of n toppings. After working on the 
problem for a few minutes, they determined that there would be 2n different pizzas 
when there are n topping choices. 

Example 2: Michael and Ankur’s Connection 

Two episodes, one from grade four and the other from grade ten, describe the rea-
soning the students used to justify their answer of ten for the number of towers,3 
five-tall, that could be made using exactly two red cubes, when selecting from red 
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and yellow cubes. Data from both grade four and grade ten indicate that students 
were able to build a convincing argument for their solution. However, as tenth 
graders, the students utilized a binary code to represent the tower cases in justify-
ing their solution. Their use of the new representation enabled them to generalize 
their solution to towers n-tall. 

Episode 1: Ankur, Michael, and classmates, Grade four—2/6/92 After working 
on the task for approximately one hour, the students were asked to share their 
ideas. The researcher led the discussion of the question: “How can you be sure that 
all towers, five-tall with exactly two red have been built?” Following a short period 
of time during which the students worked together to find an answer, the researcher 
again questioned the class as a whole. 

Researcher: Now somebody at this table told me that when I looked at all 
the towers with exactly two red, there would be how many of them? 
Ankur: Ten. 
Researcher: How many got ten? Towers with exactly two red floors? How 
many? Okay. Now [what] I want you to think [about for] tomorrow is [about] 
how you can convince me that you found the ten, that there can’t be eleven, 
or twelve, or eight, or nine, or six. 

The students responded immediately to the challenge and developed a proof by 
cases. They first determined that there were exactly four where the two red blocks 
were “stuck together,” moving down one position from each tower to the next. 
When asked if “stuck together” was the only way that a tower five-high with ex-
actly two red blocks could be built, they responded by finding the three towers 
which can be built with the two red blocks separated by one yellow block. The 
following explanation was offered by Michael for Ankur’s assertion that there are 
only two towers five-tall with two red blocks separated by two yellow blocks. 

Researcher:  I’m asking you to find me exactly two reds separated by two. 
Michael: Here’s a third one, here’s a third one. [He showed another tower.] 
Ankur: There’s only two. 
Researcher:  I got that. 
Ankur: There’s only two. 
Researcher: Yes? [indicating Ankur]. 
Ankur: There’s only two. 
Researcher: Why are there only two? I see a lot of hands here. [indicating 
student enthusiasm]. 
Michael: Because if you needed one more, you would need more than five, 
because you need another one. Because 
Researcher: Wonderful! You’d need another block. So let’s put this here. Is 
there another way to have two reds? 

The discussion concluded with students determining that there could only be one 
tower with the two red blocks separated by the three yellow blocks and that no 
further towers with this particular set of requirements could be built. They deter-
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mined that exactly ten towers could be built with the condition of including exactly 
two red cubes and they made a convincing argument using a proof by cases: all 
towers with two red “stuck together,” all towers with the two red cubes separated 
by one yellow cube, all towers with the two red cubes separated by two yellow 
cubes, and all towers with the two red cubes separated by three yellow cubes. 
While the full argument was not voiced individually by either Michael or Ankur in 
this particular episode, it was convincingly put forth by several members of the 
classroom community in which the two boys were active participants. 

Episode 2: Michael and Ankur, Grade ten—12/19/97 During an after-school ses-
sion, the problem posed to them as fourth graders was again presented. The group 
quickly answered “ten” to the question of how many five-tall towers could be built 
with exactly two red cubes when selecting from red and yellow cubes. They were 
then asked to justify their answer. 
 Michael and Ankur used the coding scheme developed by Michael to solve the 
pizza problem the previous week (see Example 1, Episode 3). Using a zero to rep-
resent a yellow block and a one to represent a red block, they constructed an array 
(see Figure 1) that parallels the organization used in their fourth grade activity (see 
Example 2, Episode 1). 

1 0 0 0 1 1 1 0 0 0 
1 1 0 0 0 0 0 1 0 1 
0 1 1 0 1 0 0 0 1 0 
0 0 1 1 0 1 0 1 0 0 
0 0 0 1 0 0 1 0 1 1 

Figure 1. Ankur’s and Michael’s first array. 

Ankur, while explaining their solution, referred to a different arrangement of zeros 
and ones (see Figure 2), which indicated a red cube fixed in the top position and a 
second red block moved into successively lower positions until it reached the bot-
tom position. The fixed red was then moved into the second position and the proc-
ess was repeated until they accounted for all possible towers. 
 What is interesting to observe is that the same students, both as fourth and tenth 
graders, provided a justification for their solution that took the form of a proof by 
cases (Muter & Maher, 1998; Kiczek & Maher, 1998; Muter, 1999). However, the 
representations across years differed. It seems that the notation used in grade ten 
facilitated the building of a general solution. 

1 1 1 1 0 0 0 0 0 0 
1 0 0 0 1 1 1 0 0 0 
0 1 0 0 1 0 0 1 1 0 
0 0 1 0 0 1 0 1 0 1 
0 0 0 1 0 0 1 0 1 1 

Figure 2. Ankur’s and Michael’s second array. 
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CONCLUSIONS 

Videotape data enable us to view the same students working on problems in grades 
four and five, and again in grade ten. We have observed fourth-grade students build 
an argument for a proof by cases of a combinatorics tower-problem they had been 
investigating earlier.4 When those same students revisited the problem in grade ten, 
we observed that earlier ideas were retrieved, modified and extended. The tenth-
graders utilized arguments parallel to those seen in the fourth-grade classroom. 
However, their representations were expressed symbolically, rather than with con-
crete objects. 
 In the fifth-grade pizza problem-solving session, the original representations 
displayed by the students made use of a notation that enabled them to keep track of 
their ideas and to account for all possibilities to reach a solution. This system en-
abled them to justify their solution for finding all possible pizzas that could be 
made when selecting from four different topping choices. In the tenth grade ses-
sion, representations displayed by Romina, Jeff, Brian and Ankur were similar to 
those used earlier. Michael’s representation, however, was different, drawing from 
an image he retrieved from his eighth-grade mathematics class - a binary number 
notation using zeros and ones. The students readily adopted Michael’s notation and 
mapped their representation using numerals for topping choices into Michael’s 
representation to develop a justification for their solution, and then, to generalize to 
n-topping choices. 
 In a subsequent session, Michael’s binary notation was applied by the students 
to solve the isomorphic combinatorics tower problem. They were quickly able to 
generalize their solution to towers n-tall selecting from two colors. Later, they ex-
tended their reasoning to account for all towers n-tall when selecting from r colors 
(Muter, 1999). 
 These students worked together to build convincing arguments for their solu-
tions to problems. The findings support the importance of introducing rich investi-
gations to young children, challenging them to support their ideas, and providing 
opportunities to revisit tasks as they grow older and have more tools available to 
build upon their earlier ideas. 
 The findings suggest the following hypotheses for further study: (1) students 
propose thoughtful and strong arguments at a young age and build upon those ideas 
in later years; (2) student representations become more symbolic and abstract over 
time; (3) the structure of student arguments remains durable; and (4) student repre-
sentational systems become more elegant and powerful over time. 

NOTES 
1 We report here on the mathematical behavior of the children during the interval of grade 4 (as nine-

year olds) through grade 10 (as sixteen-year olds). 
2 The research on learning and reasoning has been funded, in part, by National Science Foundation 

awards MDR-9053597 and REC-9814846. Any opinions, findings, conclusions and recommenda-
tions expressed in this publication are those of the authors and do not necessarily reflect the views of 
the National Science Foundation. 
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3 A tower is an ordered sequence of Unifix cubes, snapped together. Each cube is called a block. The 
height of the tower is the number of its blocks. 

4 The students worked on tower problems in grades three and four (Maher & Martino, 1996). 
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APPENDIX 1: PIZZA PROBLEMS 

The Pizza Problem. Pizza Hut® has asked us to help design a form to keep track of 
certain pizza choices. They offer a cheese pizza with tomato sauce. A customer can 
then select from the following toppings: peppers, sausage, mushrooms and pepper-
oni. How many choices for pizza does a customer have? List all the possible choices. 
Find a way to convince each other that you have accounted for all possibilities. 
 
Variations include: 
 
The Capri Pizza Problem. Capri Pizza® in Kenilworth has asked us to help them 
design a form to keep track of certain pizza sales. Their standard “plain” pizza con-
tains cheese. On this cheese pizza, one or two toppings could be added to either 
half of the plain pie or the whole pie. How many choices do customers have if they 
could choose from two different toppings (sausage and pepperoni) that could be 
placed on either the whole pizza or half of a cheese pizza? List all possibilities. 
Show your plan for determining these choices. Convince us that you have  
accounted for all possibilities and that there could be no more. 
 
Another Pizza Problem. Pizza Hut® was so pleased with your help on the first 
problem that they have asked us to continue our work. Remember they offer a 
cheese pizza with tomato sauce. A customer can then select from the following 
toppings: peppers, sausage, mushrooms and pepperoni. Pizza Hut® now wants to 
offer a choice of crusts: regular (thin) or Sicilian (thick). How many different 
choices for pizza does a customer have? List all the possible choices. Find a way to 
convince each other that you have accounted for all possible choices. 
 
A Final Pizza Problem. At customer request, Pizza Hut® has agreed to fill orders 
with different choices for each half of a pizza. Remember they offer a cheese pizza 
with tomato sauce. A customer can then select from the following toppings: pep-
pers, sausage, mushrooms and pepperoni. There is a choice of crusts: regular (thin) 
or Sicilian (thick). How many different choices for pizza does a customer have? 
List all the possible choices. Find a way to convince each other that you have ac-
counted for all possible choices. 
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APPENDIX 2: TOWER PROBLEMS 

Building Towers Five-Tall. Your group has two colors of Unifix Cubes. Work to-
gether and make as many different towers five cubes high as is possible when se-
lecting from two colors. See if you and your partner can plan a good way to find all 
the towers five cubes high. 
Guess My Tower. You have been invited to participate in a TV Quiz Show and the 
opportunity to win a vacation to DisneyWorld. The game is played by choosing 
one of four possibilities for winning and then picking a tower out of a covered box. 
If the tower you pick matches your choice, you win. You are told that the box con-
tains all possible towers that are three tall that can be built when you select from 
cubes of two colors, red and yellow. 
 You are given the following possibilities for a winning tower: 
 
7. All cubes are exactly the same color. 
8. There is only one red cube. 
9. Exactly two cubes are red. 
10. At least two cubes are yellow. 

 
1. Which choice would you make and why would this choice be better than any of 

the others? 
Assuming you won, you can play again for the Grand Prize which means you 

can take a friend to DisneyWorld. But now your box has all possible towers that 
are four tall (built by selecting from the two colors yellow and red). You are to 
select from the same four possibilities for a winning tower. 

2. Which choice would you make this time and why would this choice be better 
than any of the others? 
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10. APPROACHING AND DEVELOPING THE 
CULTURE OF GEOMETRY THEOREMS IN SCHOOL 

A Theoretical Framework 

INTRODUCTION 

This chapter is based on research work regarding the approach to geometry theo-
rems and theories in schools carried out over the last ten years by teams in Genoa, 
Modena and Pisa. These studies have involved students of different age groups 
(from grade 5 to grade 12) and different thematic contexts. Although the specific 
goals of these projects differed to some extent, they did share some common fea-
tures such as general goals, research methodology, epistemological analysis and 
cultural, cognitive and educational hypotheses. A common framework has emerged 
as a result of a longstanding dialectic discussion dating back to the design of our 
teaching experiments: this framework has brought to light some of the deep yet 
implicit common motives and theoretical perspectives of our independent research 
designs. This chapter provides a unified framework of the research studies which 
have been reported in other papers (Bartolini Bussi, 1996; Bartolini Bussi et al., 
1999; Boero et al., 1996, 1999; Garuti et al., 1996, 1998; Mariotti, 1995; Mariotti 
et al., 1997). The same studies will be partially reported in the next chapters. We 
will focus on the following general points: the function of the different contexts in 
approaching geometry theorems; the role of the teacher in classroom interaction; 
and the idea of theorem as an unity of statement, proof and theory. 
 Our studies take into account the following issues in current research into the 
school approach to theorems: the present-day value of proof in mathematics and 
mathematics education (Hanna, 1989 and this book), even for very young pupils 
(Maher, 1995 and this book); the social dimensions of the approach to proof  
(Balacheff, 1991) and the distinction between argumentative reasoning and deduc-
tive reasoning (Balacheff, 1988; Duval, 1991); the classification of student proof 
schemes (Harel & Sowder, 1998 and this book) and the relevance of ‘transforma-
tional reasoning’ in the production of statements and the construction of 
proofs (Simon, 1996); the study of the potentialities of geometrical software 
(Goldenberg & Cuoco, 1995; Laborde, 1993). Inspired by the seminal work of 
Balacheff (1988) and other studies (e.g. De Villiers, 1991; Hanna & Jahnke, 1993) 
on the pragmatic of proof, we focused on the link between epistemological, cogni-
tive and didactic analysis. 
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THEORETICAL FRAMEWORK 

The general theoretical framework of our research studies is based on the construct 
of ‘field of experience’ and the construct of ‘mathematical discussion’. 
 As reported in Boero et al. (1995), a field of experience can be metaphorically 
defined as a system of three evolutive components (external context, the student’s 
internal context and the teacher’s internal context) referred to a sector of human 
culture, which the teacher and students can recognize and consider as unitary and 
homogeneous. Classroom activities within any field of experience can have differ-
ent goals: in this chapter we shall limit ourselves to those related to approaching 
geometry theorems. In this perspective, the features of a field of experience that are 
meaningful for us can be described as follows: 

• the presence of ‘concrete’ and semantically pregnant referents (external context) 
for performing concrete actions that allow the internalization of the visual field 
where dynamic mental experiments are carried out; this feature is consistent 
with Vygotski’s general theory on mental processes and with specific findings 
on the function of dynamic processes both in the production of conjectures and 
in the construction of proofs (see Polya’s idea of variational strategies, as well 
as the recent consideration of ‘transformational reasoning’ by Simon, 1996); 

• the presence of semiotic mediation tools (including excerpts from historical 
sources, documents, meaningful linguistic expressions), chosen by the teacher 
from the cultural heritage with the aim of introducing the mathematical idea of 
theorem; 

• the construction of an evolving student internal context, rooted in the dynamic 
exploration, where different processes such as conjecturing, arguing, proving 
and systematizing proofs as formal deduction are given sense and value. 

These points are consistent with general ideas about the production of geometry 
statements and the construction of proofs relying on the one hand on ‘reified’ 
(Sfard, 1991) pieces of knowledge produced by the historical evolution of mathe-
matics and, on the other, on figural (Fischbein, 1993) referents, which may be ei-
ther static or dynamic. 
 As concerns mathematical discussion, we refer to the metaphorical definition 
given by Bartolini Bussi (1996): mathematical discussion is a polyphony of articu-
lated voices on a mathematical object, which is one of the motives of the teaching–
learning activity. In this case the motive of the discussion is a specific theorem 
together with the idea of theorem itself (see below). Therefore the complex of con-
jecturing, arguing, proving and systematizing proofs related to a specific problem 
situation is taken into account by the teacher by means of mathematical discussion. 
The continuity between argumentation and proof is naturally emphasized by argu-
mentative behaviours, but at the same time the distance between argumentation and 
proof (Balacheff, 1988; Duval, 1991; Moore, 1994) is taken into account by the 
teacher’s careful management of discussion with the specific aim of the social con-
struction of the sense and value of a theorem. Concerning this issue, we believe 
that two crucial points emerge from current literature: on the one hand, the problem 
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of the motivation to proof; and on the other, the distinction between argumentation 
and mathematical proof. These two aspects are linked to each other in a complex 
way. Motivation to proof can be expressed at different levels. At the first level the 
truth of the fact is central: Is a fact true? At the second level, truth may no longer 
be in question, but a foundation of truth is needed: Why is a fact true? Hence the 
sense and the need for this grounding process (validation) is detached from the 
truth of the fact. In the first question, the truth of the fact is uncertain whilst in  
the second the truth of the fact may be certain. In our opinion, the uncertainty 
status of the truth of a statement is crucial for the initial construction of the mean-
ing of theorems and calls for the careful selection of problem-solving situations, 
where the production of a conjecture is required. A third level, which is not consid-
ered in the research studies reviewed in this chapter, concerns the release of theo-
rems from the issue of truth search. In other words, we do not deal with formal 
proofs and their release from semantics. 
 Within this general framework, we introduce two specific theoretical constructs, 
the ‘cognitive unity’ and the ‘mathematical theorem’, which may help the man-
agement of class work on geometry theorems, the functioning of problem-solving 
situations and the interpretations of student behaviour. These constructs may also 
represent instruments for analysing some difficulties students meet when following 
the traditional school approach to geometry theorems. 

Cognitive Unity of Theorems 

Analysis of work done by past and present geometers highlights the continuity that 
can exist between the process of statement production and the construction of its 
proof, as well as providing meaningful examples. This continuity is not evident at 
all in the theoretical systematization of ancient classical geometers such as Euclid 
and Apollonius, but is emphasized as from the 17th century, in documents that 
reveal the process by which a result has been obtained (Barbin, 1988). What is in 
play is the relationship between conjecturing and looking for a proof, in particular 
specifying the objects of the conjecture and determining stricter hypotheses or stat-
ing a new weaker conjecture (Alibert & Thomas, 1991; Lakatos, 1976; Thurston, 
1994). More generally, the development of the relationship between conjecturing 
and proving witnesses the longstanding process of elaboration of the idea of rigour. 
 Does a cognitive counterpart of this analysis exist? A metaphorical definition 
may be useful in analysing student processes. The continuity that can exist between 
the processes of conjecture production and proof construction, recognizable in the 
close correspondence between the nature and the objects of the mental activities 
involved, expresses a cognitive phenomenon, which will henceforth be referred to 
as ‘cognitive unity’. Some hints about ‘cognitive unity’ are given in Harel and 
Sowder’s investigation into student behaviour (Harel & Sowder, 1998). Some of 
the following chapters provide experimental evidence about ‘cognitive unity’ and 
the fact that cognitive unity can play an important role in facilitating students’ ap-
proach to construction of proofs (see Chapters 12 and 13 in this book). 
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Mathematical Theorem 

However, in mathematicians’ mathematics the aforementioned continuity between 
statement and proof is always considered in a theoretical context, even if the con-
text can change over time; the existence of a reference theory as a system of shared 
principles and deduction rules is needed if we are to speak of proof in a mathemati-
cal sense. Principles and deduction rules are intimately interrelated so that what 
characterizes a mathematical theorem is the system of statement, proof and theory. 
Historical-epistemological analysis highlights important aspects of this complex 
link and shows how it has evolved over the centuries. 
 Subsequent papers will show how the theoretical construct of “Mathematical 
theorem” can play an important role in planning long term teaching experiments 
(see Parenti et al., this book) 

TOWARDS TEACHING EXPERIMENTS 

According to the theoretical framework presented in the previous section, two cru-
cial elements characterize the approach to geometry theorems in our teaching  
experiments: the function of a particular field of experience, and the role of the 
teacher as a cultural and cognitive mediator. 
 Every field of experience has to be analysed in terms of limits and potentialities 
in fostering cognitive unity and a systemic approach to geometry theorems. His-
torical and epistemological analysis has allowed us to identify the following crite-
ria which, in the presence of a culturally relevant piece of mathematical 
knowledge, make it possible to choose a field of experience and particular activi-
ties within it: the need for concrete and semantically pregnant referents that pro-
mote dynamic processes; and the availability of tasks, meaningful to the field of 
experience, that foster cognitive unity. Dynamic exploration of the problem situa-
tion can determine the production of conditional statements and the construction of 
proofs, with strong functional relationships between these processes (Boero et al., 
1996; Bartolini Bussi et al., 1999; Garuti et al., 1996, 1998). The conditional form 
of most geometry statements, from Euclid to the present day, represents the func-
tional connection between statement and proof: actually, a proof develops, in the 
form of a deductive chain, the link (which is implicit in the statement) between 
facts that are assumed as starting points in the frame theory and the ‘thesis’ of the 
theorem, under some conditions that are given as ‘hypotheses’. 
 As far as the role of the teacher is concerned, we assume that the process of con-
struction of the meaning of theorems, although rooted in the field of experience, 
requires cultural and cognitive mediation. Actually, the teacher is responsible for 
introducing pupils to a theoretical perspective, which, although not spontaneous, is 
needed for a systemic view of mathematical theorems. In our teaching experiments, 
the construction of a theory is pursued in the form of accepted principles: invari-
ants in perspective representation; the evident properties of shadows produced by 
vertical nails; and the underlying logic of Cabri. 
 The research methodology is typical of long-term teaching experiments: class-
rooms are observed for several months (or even years), by collecting individual 
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texts and transcripts of collective discussions, together with teachers’ reports. The 
length of the process determines evolution in the general assumptions, until spe-
cific hypotheses are reached. The specific aim of these studies is on the one hand to 
single out the conditions under which students can approach geometry theorems, 
and on the other to study the mental processes involved in such an approach. For 
these reasons, the direct and productive involvement of teachers in all the phases of 
research is called for in each of the three experiments. In spite of the common fea-
tures they share, the studies deal with different didactic problems, and actually 
concern different school levels (5th, 6th, 7th, 8th, 10th, 12th grades). This requires 
completely different approaches to geometry theorems for two reasons: the differ-
ent levels of cognitive development and geometrical knowledge that pupils have 
reached (geometry is taught in Italian schools from the 1st grade); and the general 
attitude towards mathematics and its methods derived from their past experiences. 
At the outset of work on geometry theorems, younger students do not yet have a 
sufficient grasp of geometry notions. For them, the approach to geometry theorems 
is a fundamental step in the process by which geometry gradually becomes a ‘field 
of experience’ (Boero et al., 1995) and a corpus of mathematical knowledge as 
well. At high-school level, where students have a grounding in geometry, the prob-
lem is how to manage the delicate relationship between their geometrical back-
ground and a new approach to this knowledge from a deductive point of view. (See 
Chapter 14 and 15 in this book for further details about these issues.) 

An Historical Digression: the Birth of a Theory 

The history of geometry gives meaningful examples of the development of fully-
fledged theories from a long-standing tradition of spatial practices. In this section 
we shall explore a paradigmatic example: the birth of projective geometry from the 
long-standing process of assuming properties of space and vision as axioms and 
modelling definitions, and of proving practical rules of painting as theorems. 
 Natural perspective was developed from the classical age (Euclid’s Optics) on-
ward with the aim of representing objects with illusionistic effects. Practical rules 
for painting were transmitted in artists’ workshops and collected in treatises of 
practical geometry. In the 15th century natural perspective gradually gave way to 
artificial perspective. This was based first of all on the idea of the (central) vanish-
ing point or point of flight: if we consider the picture plane as a vertical window 
the spectator stands in front of, the central vanishing point is the point of the pic-
ture plane where a line from the spectator’s eye, orthogonal to the picture plane, 
cuts it. This definition is taken from a more recent treatise (by Brook Taylor) where 
the genesis from practice was already somewhat hidden. The genesis is more evi-
dent if we consider that in early treatises, which contain also a theory of vision in 
space (e.g. Piero della Francesca) the central vanishing point was named ‘eye’. The 
history of the theoretical development of artificial perspective up to projective ge-
ometry is actually the history of its progressive independence from painting prac-
tices, from Desargues’ first introduction of invariants (Field & Gray, 1987) to the 
18th century treatises of linear perspectives of Brook Taylor and Lambert (Bessot 
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& Le Goff, 1992): the incidence axioms listed by Brook Taylor gave birth to a pro-
jective approach to problems, and Lambert’s use of perspective to prove properties 
of plane configurations stated definite autonomy from painting. Within the theory 
of projective geometry, based on incidence axioms, practical rules of painting as-
sumed the status of theorems. 
 A similar analysis could be made for the genesis of other theories in the history 
of geometry (see the analysis of sunshadows in Serres, 1993 and the analysis of 
geometrical construction in Lebesgue, 1950). Actually, the above perspective has 
guided our experimental research studies into the school approach to geometry 
theorems. 
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11. CONSTRUCTION PROBLEMS IN  
PRIMARY SCHOOL 

A Case From the Geometry of Circle 

Proofs arrange propositions. They give them connection 

(Wittgenstein, Bemerkungen über die Grundlagen der Mathematik,  
Appendix 6, 1) 

INTRODUCTION 

The approach to theoretical thinking in primary school has been focused by our 
research team from the early nineties within the project Mathematical Discussion. 
We have studied, in the recent past, two cases: the kinematics of gears (Bartolini 
Bussi et al., 1999) and the representation of visible world by means of perspective 
drawing without (Bartolini Bussi, 1996) and with instruments (Bartolini Bussi 
et al., 2005). The case studies refer to two complementary ways of modelling spa-
tial experience, which produced two different geometries (mutually exclusive for 
centuries): the geometry of metric-mechanical activity and the geometry of light 
and sight. The former, related from the classical age to the development of tech-
nology, was represented in the 17th century by Descartes, who worked in Euclid’s 
tradition, whilst the latter was represented by Desargues, who laid the foundations 
of modern projective geometry, introducing into academic geometry hints from 
extramathematical fields, such as architecture and painting. The language devel-
oped is partially overlapped: for instance the word ‘line’ is used in both cases, but 
the quality of experiences is quite different, to the extent that we might well say 
that the concept of ‘line’ in the geometry of metric-mechanical activity is quite 
different from the corresponding one in the geometry of light and sight (see the 
different roles played by measure and infinity). This difference is mirrored in the 
different axiomatic theories that were developed independently and reconciled only 
at the end of the 19th century (Otte, 1997). 
 In the classroom activity, designed and implemented by our research team for 
all the experiments, the detachment from conceiving the empirical verification as 
the only tool suitable to solve conflictual situations was carefully managed by the 
teacher by means of the collective construction of germ-theories (a germ-theory is 
an embryo of theory that has an expansive potency and a tendency to develop 
into a fully-fledged one). The basic elements of germ-theories in both cases were 
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chosen from historical sources (respectively, Euclid and Heron of Alexandria for 
the former and Piero della Francesca and Alberti for the latter), some excerpts 
of which were introduced in classes too, with the purpose of guided reading and 
interpretation. 
 The approach to theorems in primary school is conceived by our team as a para-
digmatic case of approach to theoretical thinking: on the one hand, it requires the 
progressive refinement of language to avoid ambiguity, that is meant as an intro-
duction to the problem of definition; on the other hand, it requires the shift from 
empirical to argumentative validation, that is meant as an introduction to the prob-
lem of proof. In this process, new statements together with more and more refined 
argumentative explanations are produced and functionally interlaced with the col-
lective construction of the reference theory, that allows one to change their status 
into the status of theorems (i.e. triples (S, P, T)), given by a Statement and a Proof 
in a Reference Theory (see Mariotti, in this volume). 
 No research study on a didactical approach to geometry theorems could avoid 
the issue of construction problems. The distinction between problems and theorems 
(Heath 1925–1956) dates back to Euclid’s Elements and is maintained meticu-
lously by the authors of the principal treatises of classical geometry. However, a 
strict link between theorems and problems is natural: on the one side, each problem 
contains at least an implicit theorem, because it contains the proof that, within the 
given theory and under the specified conditions, the figure obtained by the con-
struction has the required properties; on the other side, most geometry theorems 
imply the solution of some construction problem, at least whenever an auxiliary 
construction is required. 
 In this chapter we shall deal with a paradigmatic construction problem concern-
ing the geometry of circle. By analysing the class processes raised by the assign-
ment of this task, we shall touch some relevant issues, such as the management of 
the delicate relationship between concrete practices and theoretical thinking, and 
we shall analyse how the shift from each other was intentionally provoked during 
class interaction. 
 Circles were introduced in the project Gears from the 3rd grade in a dynamic 
way in the process of modelling toothed wheels in gears, up to the appropriation of 
the definition of circle in both Euclid’s and Heron’s forms (see the following sec-
tion). As toothed wheels were modelled as circles (‘toothless’ wheels), the cogs of 
two wheels in gear with each other were naturally modelled as ‘the’ point of con-
tact of two tangent circles. 
 The theory was constructed collectively, by means of some introductory prob-
lems, up to the statement of some ‘postulates’ that described properties shared 
among all the pupils (Ferri et al., 1998). In this situation, a construction problem, 
that pla yed a crucial role in the sequence, was given to 5th graders: on a sheet 
where two external circles were already drawn, the pupils were asked to draw an-
other circle with a given radius touching the given ones and to explain carefully 
and justify the method used. 
 As we shall argue in the following, this problem could be solved by an adult as 
a standard application of the classical method of analysis and synthesis (see  



CONSTRUCTION PROBLEMS IN PRIMARY SCHOOL 

221 

Arzarello, in this volume). For expert problem solvers this process appears so natu-
ral, that it is easy to identify it as for the universal mental process that underlies the 
production of the procedure and its validation (actually this misunderstanding is 
supposed to permeate Heath’s presentation of the method, that is focused only on 
the logical relationship between the statements involved as hypotheses, theses or 
intermediate steps). 
 However fascinating this idea might be, it is not true, at least for novices. This 
chapter will defend the following theses; the former focuses the classroom proc-
esses, whilst the latter focuses the individual process. 
 The classical method of analysis–synthesis is not, for beginners, a model of the 
mental processes underlying the individual solution of a problem but rather a 
model of the overall long term process that is realised in the class, under teacher 
guidance; the eventual transformation of this interpsychological process into an 
intrapsychological one might be an example of the internalization, as it is meant by 
Vygotskij (1978). 
 This process of analysis–synthesis is accomplished by means of dynamic explo-
ration of the referents of the problem, provided that we admit both concrete and 
abstract referents and both physical and ideal explorations with a continuous shift 
from each other, even if, at the very end of the process, the product might well be a 
method of construction that has apparently eliminated this dynamic component; in 
this process, new pieces of theory might be produced. From the analysis of proto-
cols, the relationship between a material tool (the usual compass) and a ‘mental’ 
tool (the ‘geometric’ compass, that orient the definition of circle towards the solu-
tion of construction problems) will be emphasized. 
 The data have been collected until now in some 5th and 8th grade classes. This 
chapter will consider only the data from two 5th grade classes, which represent two 
different situations of high and low level pupils. We intend to illustrate also the 
differences in teachers’ management of the ‘same’ class activities in such different 
situations. 

THE REFERENCE CULTURE: THE GEOMETRY OF GEARS. 

The field of experience (Boero et al., 1995) of gears refers to physical objects that 
can be handled (gears and mechanisms), to their representations (figures, arrows) 
and to the explicit mathematical theories, by which modelling can be realized. 
Even if we neglect dynamics problems (like speed problems, out of the reach of 
young pupils), we have at least two different kinds of elementary problems: 
(1) construction of either a gear or a mechanism with given parts; (2) motion or 
functioning of a given gear or mechanism. Examples of the former are also 
the descriptions by words, drawing, signs of mechanisms and gears as far as 
shapes are concerned (a kind of deconstruction problem): we can have actual con-
struction (or deconstruction) with physical objects and graphical construction 
(or deconstruction) with drawing representing objects (see later in this chapter). 
Examples of the latter are the formulations of either previsional or interpretive hy-
potheses about the motion of a mechanism or of some part of it. A combination of 
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a construction problem and of a motion problem is represented by (3) the design of 
a mechanism with given parts that are to fit in a given space to realize some 
given operation (the inverse problem concerns the study of a real mechanisms with 
reference to shapes and to motion as well). A didactical approach to the theory of 
motion and functioning in primary school is described in Bartolini Bussi et al. 
(1999). 
 Modelling two wheels in gear requires circles tangent either externally or inter-
nally: an example of the former is the tape cleaner; an example of the latter is the 
kitchen centrifuge (vegetables-drier) with a large toothed wheel with teeth inside 
and a small toothed wheel with teeth outside. 
 

 
 

Figure 1. A tape cleaner. 

 
 

Figure 2. The gear of a vegetables-drier. 

The crucial situation of inserting any third wheel between two given separate co-
planar wheels is the mechanical counterpart of the geometric problem of drawing a 
circle tangent to two given circles. The germ-theory within which to search for a 
solution is constructed around one property, that can be expressed in one of the 
following ways: 

1. If two wheels are in gear with one another, the straight line joining their centres 
will pass through the point of gear (referents: wheels). 

2. If two circles touch one another, the straight line joining their centres will pass 
through the point of contact (referents: circles). 
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In Euclid’s Elements (III, 12), the latter is the statement of a theorem about  
circles, but in our teaching experiment it is assumed as a postulate of the  
germ-theory. 
 Euclidean geometry is an answer to the need of rationalizing the shapes of gears 
and mechanisms. Sometimes, plane geometry is enough, yet in other cases space 
geometry is needed. For instance, corkscrews have a pair of lateral toothed wheels 
and a central rack that are coplanar, to transform the symmetrical circular motions 
of wheels downwards into the linear motion of the cork upwards; bicycles have 
coaxial cog-wheels in parallel planes to change gear; mills have cog-wheels in or-
thogonal planes, to transform the circular motion of mill water-wheel into the cir-
cular motion of the millstone. Geometrical constructions with ruler and compasses 
are an answer to the need of producing pictures of gears with the purpose of repre-
senting or designing, at least for planar objects. As far as spatial objects are con-
cerned the need of forms of technical drawing (such as orthographic projections, 
cutaway and exploded views) might arise. 
 In the physical experience with mechanisms (and gears evocative of real 
mechanisms) the problems of construction and of motion cannot be easily sepa-
rated: actually while handling mechanisms there is both the perception of shapes 
and the awareness of the final end determined by the chain of motions. This strict 
link is actually evident also in ancient descriptions of machines where shapes, ma-
terials, practices and embryonic kinematic or dynamic theories were always inter-
twined (see Bartolini Bussi, 1993, for a discussion of this point). Actually, the 
practical experience in the fields of gears and mechanisms constitutes the prag-
matic basis (Hanna & Jahnke, 1996) of at least two complementary theories, 
namely Euclid’s geometry and Heron’s kinematics. The above theories, embodied 
by two scientists of the far past, constitute different historical voices of an ideal 
dialogue about the modelling of objects in space. 
 What seems interesting from a didactical perspective is that this dialogue is go-
ing to have a new life in the class. The reference to two complementary theories 
has interesting effects concerning the relationships with each other. Actually kine-
matics is not conceived in our project as a byproduct of geometry as it could be in a 
top-down systematization of the field: rather the relationship between geometry 
and kinematics is dialectical. So, on the one hand, geometry offers a language that 
can be used also in kinematics; on the other hand, the kinematic approach has ef-
fects also on the elements of geometry. The case of circle is exemplary. The static 
Euclid’s definition of the circle, a line such that all the straight lines falling upon it 
from one point among those lying within the figure are equal to one another, the 
point being called the centre of the circle (Euclid, Definitions 15 and 16), is com-
plemented by Heron’s dynamic definition, reconsidered later by Newton, Spinoza 
and others: 

the circle is the figure described when a straight line, always remaining in 
one plane, moves about one extremity as a fixed point until it returns to its 
first position (Heron, as quoted by Heath, 1956). 
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From a didactical perspective, this dialogue is intended to be appropriated by 
pupils. By means of suitable tasks, and under teacher guidance, the pupils be-
come able to shift from wheels to circles and vice-versa and to import freely 
exploration strategies from one context to the other (see Ferri et al., 1997). In 
the segment of the teaching experiment analysed in this chapter, the appro-
priation of this dialectial relationship was already realized and will be ob-
served at work in the solution of problems. 

THE TEACHING EXPERIMENT: THE CHRONICLE 

Introduction 

This experiment was carried out in two different 5th grade classes, taught from 
the 1st grade by two teacher–researchers of our team. The two classes will be re-
ferred to in the following as class C1 (teacher T1: Franca Ferri) and class 
C2 (teacher T2: Mara Boni). Both teachers were implementing the project on 
Mathematical Discussion, with great emphasis on the collective construction of 
knowledge. 
 A lot of care had been spent by the teachers in improving the mastery of natural 
language, verbal and written as well, since the early grades of primary school. The 
pupils had always been asked (and guided) to explain carefully on the sheet not 
only the solution but also the process for producing the solution itself: their proto-
cols had always been given great value, becoming the basis of the very important 
balance discussions (Bartolini Bussi, 1996), i.e. discussions aiming at exposing and 
evaluating different strategies and solutions, in order to come to one (or more) 
shared solution. 
 A byproduct of the teacher’s management was in both cases an emphasis on the 
search for general methods whose application might not be limited to an individual 
situation. 
 This was the common background of the two classes. Yet some differences were 
present, concerning the socio-cultural extraction of the pupils: class C1 consisted 
of pupils with rich, yet disperse, stimuli from their families, whilst class C2 con-
sisted of pupils with learning disabilities and little help, if any, from their families. 
This difference must be recalled, because it might help to analyze the different 
management strategies of the teacher for similar tasks. 
 The sequence of tasks was similar. Actually class C1 implemented the project 
first, whilst class C2 followed the same project some months later, at a slower pace 
and with slight intentional differences (these will be partly described in the follow-
ing), influenced by the analysis of the data collected in class C1. The whole se-
quence was developed over three school years (3rd, 4th and 5th grade). It consisted 
of five main phases that are outlined in Table 1. 

A dynamic approach to circle (3rd grade) In parallel with the study of the func-
tioning of gears (Bartolini Bussi et al., 1999), a dynamic approach to circle had 
been introduced in both classes. The circle was introduced by means of rotation 
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problems, concerning wheels and other objects as well. The usual compass was 
introduced and recognized as a tool that embodies the characteristic feature of the 
circle, in either static form or genetic form (see the following section. In particular, 
in class C2 the pupils invented the plane compass, made by any object (e.g. a stick) 
with a hole for the pencil, rotating around another of its points. They were really 
struck when they saw that a similar one-stick compass was drawn in an ancient 
plate together with specimens of more usual compasses The knowledge of the 
plane compass played a basic role in the further development of the experiment in 
class C2, as we shall see below. 

Table 1. The five main phases 

  C1 
(Franca Ferri) 

C2 
(Mara Boni) 

A. A dynamic  
approach to circle 

3rd  
 

3rd 

B. The germ-theory 
for construction 
problems  

4th P0 
 

T0 
  

5th 

C. The crucial  
construction  
problem 

5th P1 
 

M1 
 

P2 
 

M2 
 

5th 

D. Generalization 5th Q1 
 

T1 

Q2 
 

T2 

5th 

E. Images from  
outside the class 

5th   
D 

5th 

The Main Phases 

The germ-theory for construction problems (4th grade C1/5th grade C2) A con-
struction problem was given. According to the teacher’s aim, the pupils should 
have produced statements about externally tangent circles that model wheels in 
gear. The problem was intended to pave the way to two main statements, that 
would later have been expressed with the teacher’s help and become the postulate 
of the germ—theory (see the following section). 
 Problem P0. In a class the pupils have been given the following problem: ‘Draw 
a wheel S with a radius of 3 cm in gear with the wheel that is drawn in Figure 3 
(radius 5 cm).’ A pupil, after some attempts, has produced this drawing, but has 
noticed that there is something wrong. What is wrong? Try to solve the problem 
yourself and explain to him how to adjust his drawing. 
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Figure 3. The given (left) and the produced (right) drawing. 

The text of the problem was intentionally ambiguous, because it referred verbally 
to wheels, whilst circles were drawn; moreover also verbal expressions about 
wheels and circles were mixed. Hence two different modelling theories were re-
called, even if actually only one (i.e. circles) would have been enough in the 
graphical solution of this particular problem. 
 In both case the individual solution was followed by a balanced discussion, 
where all the solutions were compared and evaluated. Different dynamic strategies 
were observed to modify the wrong drawing in order to produce the correct one. 
After a couple of additional exercises, the following ‘theory’ was summed up (to-
gether with the translation from the case ‘circles’ to the case ‘wheels’) and written 
in pupils’ notebooks with explanatory drawings too. 
 

Theory T0 
If I have two tangent circles: 

1. the point of tangency is aligned with the two centres; 
2. the line segment joining the two centres crosses the point of tangency; 
3. the distance of the two centres is equal to the sum of radii. 
 
Vice-versa, if I have three aligned point A, T, B, the circles with centre A and ra-
dius AT, with centre B and radius BT are tangent at T. 
 

 
 

Figure 4. The theory T0. 
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Obviously, statements 1) and 3) above are equivalent for a cultured adult, but their 
sense is different, as related to different uses of the ruler (without numbers—
alignment—or with numbers—distance) . Hence we considered it important to 
emphasize both forms, postponing to a forthcoming phase (if any) any reflection on 
this equivalence. A couple of additional problems were given, concerning also cir-
cles/wheels externally tangent (see Ferri et al., 1998). 

The crucial construction problem (5th grade) Two different versions of this cru-
cial problem P1–P2 were designed with the same drawing. The differences be-
tween the forms of the two texts were intentional and depended on the choice of 
each teacher, who expressed, in this way, the intention to emphasize one set of 
referents (wheels vs. circles), that, in her opinion, had risked being overshadowed 
in the previous weeks. However, as we shall see below, this textual difference 
alone did not provoke relevant differences in the process of solution. Besides, in 
class C2, the teacher wanted to shift attention from the simple production of the 
method to its justification. She said that, because of the more limited linguistic 
abilities of her pupils (if compared with the pupils of the other class), an explicit 
question to be answered was to be posed. 

 
Problem P1 
(referent: wheels, class C1) 
Draw a wheel with a radius of 4 cm in 
gear with the given wheels. 
Explain CAREFULLY the method so 
that others can use it. 
 

Problem P2 
(referent: circles, class C2) 
Draw a circle with a radius of 4 cm tan-
gent to the given circles. Explain clearly 
the method so that others can use it. 
Explain carefully why the method 
works. 

 

 
 

Figure 5. The drawing of problems P1 and P2; Q1 and Q2. 

 
In Figure 5, the radii are 3 cm and 2 cm; the distance between the two centres is 7 
cm. Each pupil gave at least one solution (many gave two, symmetrical with re-
spect to the line joining the centres), drawing with care the wheel/circle by means 
of the compass. 
 The quality of solution (and the underlying processes) and the quality of argu-
ments will be described in the next section. 
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 A balanced discussion was designed and realized in each class, to produce and 
justify a shared method for solution. The method was institutionalized. In class C1 
Alice’s and Enzo’s method [M1] was assumed. This method is the standard method 
of finding, by means of the compass, the third vertex of a triangle with given sides 
(the protocols are in the Appendix). In class C2 the following text was produced 
collectively. 

Method M2 
We know that the distance between the centres of two tangent circles is equal 
to the sum of radii. If we rotate (with the centre of the drawn wheels) with the 
compass the sum-segments, the crossing points of the circumferences will 
give the centre(s) of the wheel(s). That point will be where the two sum-
segments touch each other. 

Then the pupils in both classes were asked to apply the method to a problem with 
different data, and they all succeeded. 

The generalization (5th grade) In both classes the problem of generalization was 
introduced. However the teachers followed different ways. With the same drawing 
of the Figure 6, two texts were given. 
 In the class C1, after the individual solutions, in the balanced discussion, the 
existence of a minimum radius was focused upon, and the conjecture made by most 
pupils about the alignmennt of all the centres was discussed and contrasted by of-
fering counterexamples. 
 In class C2, in the balanced discussion, the existence of a minimum radius and 
the non-existence of a maximum radius was discussed up to the production of a 
written text, summarising the results. The text T2, produced in the class C2, follows. 

Problem Q1 
With different radii, draw wheels in gear 
with the given ones. 
In your opinion, can we take any radius? 
Argue carefully in your answer. After 
having carefully drawn several cases, 
make a conjecture about the centres of 
the wheels: in your opinion, do they have 
some interesting property? 

Problem Q2 
1)  Draw a circle with radius 3 cm tan-

gent to the given ones. 
2)  Were the radius smaller than 3 cm, 

would you succeed all the same? Al-
ways? Why? 

3)  Were the radius larger than 3 cm, 
would you succeed all the same? Al-
ways? Why? 

Test some cases and write down your 
observations. 

Text T2 
After having compared our solutions we have understood that: 
Given two wheels with the same or different radius, not tangent, at a distance 
from one another it is not always possible to put (draw) a third wheel with 
given radius in gear with (tangent to) them. 
It is possible to draw tangent wheels if summing the two sums of radii we ob-
tain a number equal to or larger than the distance between the centres. 
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Among all the tangent wheels, there is one which has the smallest radius; its 
diameter is equal to the distance between the two circles: all the wheels 
which have a radius smaller than this one cannot be tangent to both the given 
ones. The centre of this (smallest) wheel is aligned with both the centres of 
the given wheels. 
If the given wheels have the same radius, the distance between the two cen-
tres is equal to twice the sum of radii (of the given and the smallest wheel). 
Starting from the smallest wheel, we can always draw another with a larger 
radius: the number of possible tangent wheels is infinite. 
If the given wheels are equal, the centres of the tangent wheels are aligned, 
i.e. they lie on a straight line. 

Images from outside the class (5th grade) At the very end, in both classes a copy 
of a drawing made by means of the software Cabri II was analyzed and coloured by 
all the pupils. In the drawing several pairs of circles tangent to two given ones were 
drawn together with the locus of the centres (i.e. an arch of hyperbola). 

Phase Three: Process Analysis 

Problem P1/P2 We shall sketch an adult solution of the crucial problem, accord-
ing to the method of analysis and synthesis. We shall consider a more general prob-
lem, where the two given circles are external to each other and the radii of the 
circles are not fixed. We shall present the method of construction by repeating (and 
filling the lacking steps) the method used by Euclid in his first Problem (I, 1), that 
concerns a similar task. 
 Given two circles mutually external, to construct a circle tangent to both 
 

 
 

Figure 6. The Cabri drawing. 



MARIA BUSSI, MARA BONI AND FRANCA FERRI 

230 

ANALYSIS 

Suppose the problem solved and the circle (C,c) drawn, with the given radius c and 
the centre C, tangent to the circle (A,a) at H and to the circle (B,b) at K. 
 
TRANSFORMATION. The points ABC are vertices of a triangle, with sides given: 
AB, AC=a+c, BC=b+c. 
 
RESOLUTION. But the triangle ABC is given, because its sides are given. C lies 
on two circles, the first with centre A and radius (a+c) and the second with centre B 
and radius (b+c). 

SYNTHESIS 

CONSTRUCTION. Suppose the circles (A,a) and (B,b) and the radius c given. 
With centre A and radius a+c let the circle (A,a+c) be described. Again with centre 
B and radius b+c let the circle (B,b+c) be described. Let C be one point in 
which the circles cut one another. With centre C and radius c let the circle (C,c) 
be described. I say that (C,c) is tangent to the circle (A,a) at H and to the circle 
(B,b) at K. 

DEMONSTRATION. Since the points AHC are on the same line and again the 
points BKC are on the same line, and since AC=AH+HC+a+c and again 
BK+KC=b+c, the circles (A,a) and (C,c) are tangent and again the circles (B,b) and 
(C,c) are tangent. 

CONDITIONS OF POSSIBILITY. In the analysis, I see that the solution is only 
possible on certain conditions, given by the existence of a triangle with sides of 
lengths AB, a+c, b+c (the so called triangular inequality: any triangle has two sides 
(together) greater than the remaining side). 
 This means that the circle (C,c) cannot be drawn when when c is too small, i.e. 
when 2c<EF=AB–(a+b). When 2c=EF we can draw only one circle, with the centre 
on the line AB. When 2c>EF we can draw two circles (C,c) and (C′,c) where C and 
C' are symmetrical with respect to the line AB. In other words, there is a minimum 
radius (i.e. c0=½ (EF) to have at least one solution C0. When c>c0, there are al-
ways two solutions C and C′. 

ABOUT THE NUMBER OF SOLUTIONS 

It is easy to prove that, in general, the locus of centres is an arch of hyperbola, with 
foci A and B. In fact |AC–BC|=|(a+c)–(b+c)|=|a–b|, that is constant. 
 If a=b, the locus of centres is a line (the axis of the segment AB). 
 If we accepted also the case of a circle (D,d) that contained the given ones (so 
that (A,a) and (B,b) were internally tangent to (D,d)), the other arch of hyperbola 
would be obtained. 
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Figure 7. From Euclid. 

In the TRANSFORMATION step, abduction (see Arzarello, page 310, footnote 66 
in this book) plays a fundamental role: by abduction, the solver recognises the fig-
ure as a case of triangle and chooses, amongst the available knowledge, the part 
that is expected to be useful in the solution, i.e. the method of constructing a trian-
gle with given sides, together with the conditions of application. As we shall see, at 
this point we find one of the differences between the script of this proof and the 
process constructed in the classroom by 5th graders. 

Class processes: the attack In both classes, all the pupils attacked the problem by 
trying to draw a wheel/circle with the due radius, by means of the compass. No-
body tried to draw free-hand, because of the habit of using the compass to draw 
circles precisely. 
 The process was clearly by trial and error, as the number of small holes in the 
sheet clearly showed, and as the pupils themselves admitted in the discussion. 
However, trials were not completely random: they were rather oriented towards a 
small zone of the sheet, where the centre of the wheel-circle was expected to be. 
The zones were nearly the same for all the pupils (i.e. one of the two symmetrical 
regions over and under the line joining the two centres A and B), whilst the proc-
esses to determine it were different. 
 The processes could be roughly classified according to the pupils’ representa-
tions of the problem. Because of the activity in the field of experience of gears, 
both wheels and circles were evoked: no pupil (not even in class C1) tried to solve 
the problem as a wheel problem only, because, after all, a drawing was required; 
however, independently of the particular version of the problem (wheels as in C1 
or circles as in C2), in each class there were pupils who from the very beginning 
preferred a circle interpretation, and others who maintained a dialectical interpreta-
tion wheels/circles with a continuous shift from one to the other in the search 
phase, evident from the choice of metaphors used. Some protocols are enclosed in 
the Appendix: Alessandro (C1) and Maddalena (C2) waver between wheels (i.e. 
solids, which cannot interpenetrate each other) and circles (i.e. drawings, which 
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can be overlapped), whilst Alice (C1), Enzo (C1) and Veronica (C2) choose the 
circle interpretation. 

Class processes: germ of analysis without synthesis In class C1, after having 
drawn a solution by trial and error and having justified it by means of the known 
theory, the pupils’ efforts were directed towards stating a general procedure to find 
the centre. Nearly all failed (only two pupils succeeded, see below), but neverthe-
less they stated the goal explicitly. 
 In class C2, the theory T0 played a twofold role: first, it was explicitly used to 
attack the problem, calling attention to the sum of radii; second to justify the draw-
ing obtained. However, the process was stopped with the description of the way 
in which a particular centre had been actually found, by adjusting in practice the 
sum of radii in order to have a suitable point, without any attempt to state a general 
procedure. 
 In both classes, after having drawn a solution by trial and error, some pupils 
drew the line segment joining the vertices of the three wheels–circles, obtaining a 
triangle. This transformation of the problem had different effects, such as shifting 
again the focus on the segments obtained by summing radii or suggesting the exis-
tence of a symmetrical solution. 

Class processes: synthesis without analysis In class C1, two pupils succeeded in 
stating a correct procedure, by means of the compass (see Alice’s and Enzo’s pro-
tocols in the Appendix). Both pupils claimed (in the protocol and in the further 
discussion) to have started by trial and error. However, in one case (Enzo), this 
process was completely hidden in the verbal part of the protocol and also the justi-
fication was elliptical. Not even in Alice’s protocol did we have any information 
on the process by which she had succeeded in finding the method, even if she ex-
plicitly recalled theory T0 of the sum of radii. 

Class processes: the reconstruction of analysis and synthesis In both classes the 
situation was very favourable to the implementation of a collective discussion, 
where the individual solutions could have been compared and oriented towards the 
collective production of a method and the collective construction of its proof. This 
is a typical situation of collective construction of knowledge. Several complemen-
tary ways of attacking the problems had been produced and documented; no pupil 
alone had yet produced a complete text, even if embryos of promising reasonings 
were available in the protocols. Hence the didactical problem concerned the or-
chestration of the discussion, as a polyphony of voices. 
 Even if, in both cases, the aim was the reconstruction of the whole process of 
analysis and synthesis, the fine grain design had to be different in the two classes. 
 In class C1 the teacher had to exploit the embryos of analysis and to laboriously, 
at the same time, inhibit Alice and Enzo from offering their ready-made synthesis; 
actually if the method had been proposed immediately, it could have been automa-
tized (as usually happens in the technical drawing exercises that are proposed 
in 6th or 7th grade), but not linked by the individual pupils to their own ways of 
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attacking the problem (see the collective protocols on the general method and on 
gestures and other arguments in the Appendix). 
 On the contrary, in class C2, the teacher had first to nurture the shared aware-
ness that the statement of a general method was needed and to orient the embryos 
of analysis produced towards it. She knew in advance that she could eventually 
have used, to enrich the discussion, Enzo’s or Alice’s protocols, which were avail-
able, telling the pupils that the solutions had been produced by 5th graders of an-
other class; yet this ‘emergency way out’ typical of our projects was not used in 
this case. Rather, the class succeeded, under the teacher’s guidance, in producing 
their own method, where the relationships between the analysis and the synthesis 
phases became very evident (see the protocol from Veronica’s analysis to collec-
tive synthesis in the Appendix). 

DISCUSSION 

The Pupil’s Internal Context: the ‘Mental’ Compass 

As the excerpts of the discussions show, in both classes, with different communica-
tive strategies, the teachers intentionally attained the same goal, i.e. the shift from a 
practice-oriented to a theory-oriented use of the compass. In the former, typical of 
all the previous activities of the sequence, the compass was used as a precision tool 
to draw objects (either circles or wheels) with round shapes. In the latter, the com-
pass was used as a geometry tool to select the points of the plane that are at a given 
distance from a given point. This use emphasizes also the relationships between 
Euclid’s and Heron’s definitions, and orients the definition of circle towards the 
solution of construction problems. 
 Especially, in the excerpt of the discussion of class C2, we are observing in real 
time the emergence of the latter use. The method of using the compass (i.e. the 
gesture of handling and of tracing) is the same for both precision and geometry 
tool, but the senses given by the pupils to the process (gesture) and to the product 
(drawing) are very different. When the compass is used to produce a round shape 
its main goal is communication; when the compass is used to find the points which 
satisfy a given relationship it becomes a tool of semiotic mediation (Vygotsky, 
1978), that can control—from the outside—the pupil’s process of solution of a 
problem, by producing a strategy that: 

• can be used in any situation, 
• can produce and justify the conditions of possibility in the general case, 
• can be defended by argumentations referring to the accepted theory. 

The geometric compass, embodied by the metal tool stored in every school-case, is 
no longer a material object: it has become a mental object, whose use may be sub-
stituted or evoked by a body gesture (rotating hands or arms). This fact is  
especially evident in class C2, where the shared implicit reference to the plane 
compass makes it possible to shortcut the process, by evoking the compass together 
with experiencing the gesture. 
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 The collective construction of the ‘mental’ compass is very important in this 
approach to the theoretical dimension of geometry with young learners: even if the 
link with the body experience is not cut (it is rather emphasized), the loss of mate-
riality allows distance oneself to one from the empirical facts, transforming the 
empirical evidence of the drawing that represents a solution (whatever was the ini-
tial way of producing it) into the external representation of a mental process. 
 The realization of this learning process (guided by the teacher) is consistent 
with the epistemological analysis carried out by Longo (1997), on the basis of  
neurological findings, regarding ‘geometrical abstraction’: the (geometrical) circle 
is not a generalization of the perception of round shapes, but the reconstruction, 
from memory, of a variety of acts of spatial experiences (a ‘library’ of trajectories 
and gestures). 

The Classroom Process: Analysis and Synthesis 

For this particular problem, the categories of analysis and synthesis were used to 
classify pupils’ solutions of the problem P1/P2 and to design the following bal-
anced discussion up to the statement of a general method. However, it is necessary 
to emphasize that the shared method was established by a process that only roughly 
matches the adult solution of Section 4.1. 
 First the task given to the pupils was a particularization (for given radii of the 
three circles) of the problem discussed in Section 4.1, hence no condition of possi-
bility needed to be discussed overtly, at least at the very beginning. 
 Second, and most important, even when some pupils drew the triangle with ver-
tices in the three centres of the given wheels and of the sought one, no result re-
garding the method of construction of a triangle with given sides was yet available. 
Hence the problem had simply been transformed into another problem whose solu-
tion was not yet ready made. The pupils needed to produce some additional pieces 
of theory, still lacking from their store, concerning the interpretation of the well-
known compass in a new way, i.e. as a geometry tool aiming to select the points of 
the plane that are at a given distance from a given point. 
 Whilst the adult method by analysis and synthesis applied to this particular 
(and very elementary) problem could be schematized according to the direc-
tional interpretation, i.e. to the backward reduction, the pupils method better fitted 
the configurational interpretation, where the hypothesis of the synthesis is aug-
mented, during the process, by an additional piece of theory (see Arzarello, in this 
volume). 
 This conclusion is reinforced by the a posteriori analysis of the balanced discus-
sions which effectively, in both classes, allowed the collective production of the 
method and the collective construction of the proof. The teachers did not aim at 
creating the logical chain between the statements, as we have done in the adult 
solution (reducing backward transformation and resolution into construction and 
demonstration), but rather aimed at fostering the pupils to express clearly their own 
strategies for attacking the problem and of giving time to the pupils, who have 
failed, to relive the dynamic explorations that might have produced the method. As 
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a byproduct, the (cognitive) unity between the phases of analysis (the search for a 
method) and the phases of synthesis (the justification of the method) was guaran-
teed by the recourse to the same gestures and gazes. 
 We could say that the method of analysis and synthesis for early construc-
tion problems proved to be within the zone of proximal development of most 
5th graders. Surely attacking a problem by means of analysis seems to be consis-
tent with attacking by trial and error typical of young pupils, who aim at producing 
the figure by means of all the instruments they have—both practical and theoreti-
cal. The further task is to state explicitly the method, and to offer justifications for 
its validity. 

FURTHER DEVELOPMENTS AND OPEN PROBLEMS 

In the classes we have not designed any additional task to observe whether the 
method of analysis and synthesis could have been applied to other problems. Actu-
ally it was not a goal of this research study to explore whether the method itself 
could be learned and applied elsewhere. 
 This pilot experiment, realized in two 5th grade classrooms, was later repeated 
in another 5th grade classroom (teacher: Rita Canalini) and in an 8th grade class-
room (teacher: Rossella Garuti). In these classrooms some corrections were made, 
because of the age and previous experience of the pupils. 
 For instance, in the 8th grade classroom, first, the activity to establish theory 
T0 was enriched to explore also the relationships between the different state-
ments, which mirrored statements produced by the pupils themselves: in this 
way the dependence relationships between one statement and another were 
made explicit. Second, the approach to the method of analysis and synthesis was 
emphasized by introducing an explicit reference to the different steps, by 
means of the reading of historical sources too. The intention was to foster the inte-
riorization (in the Vygotskian sense, 1978) of the method as a powerful tool to pro-
duce procedures of construction and to construct proofs of their validity 
with reference to a shared theory: in this way the method of analysis and synthe-
sis was expected to become a tool of semiotic mediation to control students’ behav-
iour from the outside, in the process of solving construction problems. The 
data have not yet been analysed, but the anecdotal evidence seems to confirm our 
theory. 
 The germ-theory (T0) proved to be a good training ground for approaching theo-
retical thinking: however, there is no doubt that it is really limited. A realistic ex-
pansion could be the introduction into primary classrooms of an explicit reference 
to the geometrical use of the ruler (without numbers), accompanied by the reading 
of Euclid’s first postulates. Making pupils aware of the differences and the rela-
tionships between geometry with measure and without measure (like the one ex-
perienced in perspective drawing, see Bartolini Bussi, 1996) is surely an ambitious, 
yet realistic, aim, that is considered now in the further development of the project 
Mathematical Discussion. 
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APPENDIX 

Individual protocols 

Pupil’s texts are in italic. Numbering in square brackets has been added in the 
translation to show the sequence in the pupil’s text; comments and field notes are 
in square brackets too. 
 
C1: Alessandro 
 

 
 

Figure 8. Alessandro’s drawing. 

[THE ATTACK: WHEEL–CIRCLE] 

[1] I try desperately to make this wheel touch the other two. 

[2] I try again and again, planting the compass. 

[3] At last a fine circle comes out with the radius of 4 cm. 

[4] As I have said, I paid much attention to make my circle touch the others. 

[5] The most difficult part is the one I have marked [i.e. close to the points of tan-
gency] because I must make the circle touch the others, but I must go on rotating 
[the compass]. 

[6] In practice I must make the compass rotate and in its rotation it must touch the 
other wheels. 
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[THE METHOD] 

Here is the method: I have opened the compass 4 cm and I have made the circle. 
But now I have discovered the TRUE METHOD (I think and hope so!). As all my 
fellows draw the triangle in the circles I try and understand what information it can 
give. Now I have understood. 

I have joined the two centres in the circles drawn by Franca. From the centre of my 
circle I make two lines leave to join the other two centres and a triangle comes out. 
Now we have two radii for each wheel; yet we must be aware that my wheel is not 
yet done. We must consider one of the two radii of my not-done wheel. 
I take the compass opened 4 cm and I plant the point in the centre. I put the lead 
close to circumference of one of the circles and then I make my circle. 
The radius of A is 3 cm. 
The radius of B is 2 cm. 
The radius of C must be 4 cm. 
3+4=7 
2+4=6 
… and I find the point. 
If I consider the radius of the A wheel I must go on 4 cm. The same for the wheel 
B. Beyond each radius I must go on 4 cm. To sum up, I say that I must draw a tri-
angle with the vertices in the centres of the wheel. The radii of C must be 4 cm. 
I take the compass, I open it 4 cm and I plant it in the centre C where I draw the 
wheel. 

C1: Alice 

 
 

Figure 9. Alice’s drawing. 
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[CIRCLE: THE ATTACK AND THE METHOD] 

From the very beginning I have understood two ways of solving the problem, one 
over and one under. 
I have opened the compass 4 cm. 

FIRST METHOD 

I have planted the compass close to the wheels 1 and 2 and the lead on the circle 2 
and then according to the way of touching I have moved the point so that it could 
touch both 1 and 2 and in this way I draw the circle 3. 
SECOND METHOD 

I measure the radius of the wheel 2, it is 3 cm and then I add 4 cm, because I must 
draw a circle with a radius of 4 cm+3 cm=7 cm. 

I open the compass 7 cm, I plant it in D and I draw the circle around the 2. The 
same procedure for the wheel 1, with a different radius, that is 6 cm. 
That done, I look at the points where the two circles cross each other. I plant the 
compass open 4 cm in the crossing point and draw the circle 4 and you will see that 
it touches perfectly both 1 and 2. 

This way is useful also to see whether the circle above is precise, because if the 
centre A is the crossing point it is right. 
In this way I have proved that we have two solutions. 

 

 
 

Figure 10. Enzo’s drawing. 
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[Then she repeats the method in formulas] 

Were the circle with a radius smaller than 4, i.e. 1, it is possible to make all the 
same: to open the compass 1 cm and to draw the circle between the circles 1 and 2. 
Were the wheels 1 and 2 precisely horizontal, the points A E C would be on the 
same straight line one under each other. 

C1: Enzo 

[CIRCLE—THE METHOD] 

I explain carefully the method. 

• first I open the compass 4 cm 
• then I name the wheels: A, B, C 

I name also the centres: 1, 2, 3. 

I name also the points of tangency: O, E. 

• Then I have measured the radii: 6 cm, 7 cm, 7 cm. 
• Then I have measured the radii: 4 cm, 2 cm, 3 cm. 
• Then I have found the vertex, i.e. the point of crossing of the two not-tangent 

circles. The vertex is the very centre of the wheel I have drawn. That must have 
a radius of 4 cm. 

 
 

Figure 11. Veronica’s drawing. 

To sum up: 

• To draw wheels in gear they must be perfectly tangent and with the points 
aligned. 

• On the contrary to find the vertex we must draw not-tangent circles, in the cross-
ing points there are the centres of the circles. 
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Observation 

I think that there are two solutions because if you draw a circle under the circles A 
and B; it is a different solution and I have discovered it by looking for the vertices, 
because with the crossing points you find the centres and you have two solutions 

C2: Veronica 

[THE ATTACK: WHEEL–CIRCLE] 

The first thing I have done was to find the centre of the wheel C. 

I have made by trial and error, in fact I have immediately found the distance be-
tween the wheel B and C. Then I have found the distance between A and C and I 
have given the right ‘inclination’ to the two segments, so that the radius of C 
measured 4 cm in all the cases. Then I have traced the circle. 

JUSTIFICATION 

I am sure that my method works because it agrees with the three theories we have 
found: 

 
I) The points of tangency H and G are aligned with St and TR; 
II) The segments St and TR meet the points of tangency H and G; 
III) The segments ST and TR are equal to the sum of the radii SG and GT, TH and 

HR; 
IV) The wheels ABC are in gear. 

C2: Maddalena 

 
 

Figure 12 Maddalena’s drawing. 
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[THE ATTACK: WHEEL–CIRCLE] 

Before starting, I have thought, looking at the drawing, that the wheels R and S had 
been put there to make the wheel Z pass in the space M, but, reading again the text, 
I have seen that it did not stay in the space M. 

So, I have looked/tried below and, after ‘3.000’ trials I have succeeded in finding 
the centre of the circle; then I have traced the segment from the centre C to the 
centre A and from the centre C to the centre B and I have constructed the circle. 

JUSTIFICATION 

My method works because, first, I have controlled again; then I know that to be 
tangent the three points ALC are aligned like the points BVC. 

Discussion Protocols 

C1: Discussion (excerpt): The general method. January the 20th, 1998. 

Present pupils: 17 (Matteo and Marco are absent). 

Teacher: Franca Ferri—External observers: Maria Bartolini Bussi, Guershon Harel 

[Some pupils have presented some ways of attacking the problem by trial and  
error] 

54 Dario: I think that there is a method, even if I have not found it, but surely it 
exists, a method to see where the circle goes. I believe it exists. 

[…] 

61 Dario: To proceed by trial and error, it’s possible and one can even find the so-
lution well, but this is not a method. We must try and find a precise method. 

62 Chiara: First you draw it, then you maybe understand the method later. 

63 Alessandro: It’s not a method and you do not understand well, not even later. 
I have made the wheel, then I have realized that I had to explain. I cannot say: OK, 
I have opened the compass 4 cm and I have drawn the wheel. Why is the centre 
there? 

64 Chiara: Yes, in this way you do not understand anything. 

65 Alessandro: You might even avoid the exact method, but you must know and 
understand it. 

66 Enzo: That is from the method you have to start. To go by trial and error is 
nothing. 

67 Chiara: When you know the method, the solution is easier. 
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68 Emanuele: . . . and faster. 

69 Dario: I remember a problem you [the teacher] gave us about several solutions 
and a method to find them all. We could go by trial and error, but we had to  
discover how to be sure of the procedure. This is the reason why we explain the 
reasoning when you give us a problem. You ask us to explain for this very reason, 
don’t you? 

70 Teacher: I do. 

71 Enzo: [Otherwise] it would be too easy. 

72 Isabella: It would be not useful, because if you are lucky you might succeed all 
the same, but you do not understand. You must try again and again and look for a 
method, a method. 

73 Chiara: By a stroke of luck you do not learn if you do not understand. 

74 Enzo: You could even copy, but if you do not know a method you do not under-
stand what you have copied. Like that joke you told us, if you do not understand 
you laugh because you are copying, but you have not understood and you need an 
explanation, a reasoning. 

C1: Discussion (excerpts): Gestures and other arguments. January the 20th, 1998. 

Present pupils: 17 (Matteo and Marco are absent). 

Teacher: Franca Ferri—External observers: Maria Bartolini Bussi, Guershon Harel. 

[The pupils have presented and commented ways of attacking the problem. They 
have talked a lot about the second (symmetrical) solution, but they are still discuss-
ing how to find the first centre. Alice has already presented her solution—
interventions 116–120—by carefully repeating her written protocol. Some pupils 
have correctly repeated the procedure but there is still somebody not convinced.] 

250 Chiara [she is at the blackboard]: We could make a big circle [with the sum of 
radii] … and then control. No [puzzled]. It does not work. I have written that I do 
not know how to make it. 

[…] 

252 Chiara: This is 7, this is 6 [she seems to speak to herself pointing at two seg-
ments obtained as sums of radii]. I do not know: where have I to plant the compass. 

253 Alessandro [from his seat, planting his elbows on the desk and rotating the 
forearms until the hands meet] You must find the meeting point. 

[There is a lot of noise, everybody wants to come and speak]. 
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254 Stefano: I am trying, I am not sure. First step: you measure the radii of the two 
circles and add 4 cm. And from the radii you go on until they meet here [he ges-
tures pointing at the blackboard where he has reproduced his drawing]. 

255 Enzo [laughing]: It’s not right. May I come? 

260 Teacher: Come, Enzo, it’s your turn eventually. 

[…] 

263 Enzo [very happy]: First. Here you have a radius of 4 cm but you must have it 
also here [He points at the two zones of tangency]. You cannot lengthen them to 
make them meet. [He draws on the blackboard two big circles with 6 cm and 7 cm 
radii around the two given ones and points out the two intersections.] 

[The pupils are struck but still incredulous.] 

274 Stefano: Yet it’s not clear yet for me how one finds the two big circles. Does 
Enzo find them by chance? 

275 Enzo: No, I don’t. [to the teacher], Franca, please, show him my sheet that is 
better than the drawing at the blackboard. 

276 Chiara: We would need to enlarge the drawing at the blackboard and to go 
through the drawing process by the rallentee. 

[Some pupils repeat the method but the implicit question is always: why does it 
work?] 

[…] 

283 Emanuele: We have a circle with, say, 5 cm radius and then you draw another, 
say, 6 cm. The circle is the whole of possible radii of 5 or 6 cm. . . . There are all 
the possible radii of 5 and 6 inside the two circles and in the overlapping zone. 
There is the contact, when you put the circles at that distance. 

[…] 

336 Alessandro: Look at my fingers. The radii look for the inclination for meeting 
each other [he now rotates only the hands with straight forefingers]. 

[…] 

345 Alessandro: Look at me [he indicates with the eyes his two forefingers]. These 
two segments do not meet each other, but we put them nearer and nearer until—
PAM!—they meet and you find the centre. 

346 Teacher: Well, until now there are three justifications. 
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[And she sums up the three arguments: Emanuele claims that the two big circles 
contain all the possible radii of 6 and 7; Alice insists that the sum of radii is main-
tained; Alessandro has explained by gestures; the discussion goes on by linking 
these three arguments.] 

C2: Discussion (excerpt): From Veronica’s analysis to collective synthesis: the 
shift from practice oriented to theory oriented compass. May the 8th, 1998. 

Present pupils: 16 (Samuele is absent). 

Discussion 

a) 10 minutes, individual reading of Veronica’s protocol (copied for each pupil), 
b) Andrea, Vincenzo and Jessica say that they have not understood, 
c) excerpt of the discussion. 

Transcripts and [field notes]  Comments 
1) Teacher: I wish that those who have 
understood ask Veronica some questions 
to see whether they have understood 
well or to clarify some small doubts.  

The teacher asks the pupils to ask ques-
tions. However she decides to involve 
first the pupils who have understood. 
This is not a typical strategy. In this case 
it is used because the teacher thinks that 
the pupils who have not understood are 
not yet able to express questions clearly 
and exactly 

2) Elisa: I am not sure to have under-
stood well the piece where you say: 
‘I have made by trial and error, in fact 
I have immediately found the distance 
between the wheel B and C’. 

This first part of the discussion (2–6) 
concerns segments, and namely the 
‘sum-of-radii’ segments.  

3) Veronica: I have said that I have 
made by trial and error, because it  
was not sure that the segments were 
perpendicular to each other and you 
would have already had the solution, 
you had rather to find the right  
inclination. 

However, they are drawn on the sheet 
but they can be given different inclina-
tions. These pupils have no familiarity 
with dynamic softwares like Cabri, 
where the very drawing can be  
dynamically transformed. 

4) Teacher: Veronica has tried to give 
the right inclination. Which segments is 
she speaking of? Many of you open the 
compass 4 cm. Does Veronica use the 
segment of 4 cm? What does she say she 
is using? 

Hence we interpret this excerpt as if the 
pupils have materialized the segment (as 
a stick) and try to give the stick the right 
inclination. 

[Veronica’s text is read again.]  
5) Jessica: She uses the two segments …  
6) Maddalena: . . . given by the sum of  
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radii 
7) Teacher: How did she make?  
8) Giuseppe: She has rotated a segment.  
9) Veronica: Had I used one segment, 
I could have used the compass. 

Veronica recalls the use of the plane 
compass, made by only one bar,  
that had been produced by the  
classroom while approaching the  
circle. 

[Some pupils point at the segments on 
Veronica’s drawing and try to ‘move’ 
them] 

The pupils pick up an ideal segment as 
if it were a stick and try to move it. 

10) Francesca B: From the wheel B 
have you thought or drawn the sum? 

Francesca is clearly posing the question 
about which referents Veronica has 
used: an ideal (thought) referent or a 
physical (drawn) referent. Veronica 
claims to have drawn. 

11) Veronica: I have drawn it.  
12) Giuseppe: Where?  
13) Veronica: I have planned to make 
RT perpendicular [she points to the base 
of the sheet] and then I have moved ST 
and RT until they touched each other 
and the radius of C was 4 cm. 

But to have allowed herself to move the 
static drawing. 

14) Alessio: I had planned to take two 
compasses, to open them 7 and 6 and to 
look whether they found the centre. But 
I could not use two compasses. 

Alessio states the link between the  
rotation of the segments (either thought 
or drawn) and the compasses that are 
nothing but materialized segments. But 
he had only one. 

15) Stefania P: Like me; I too had two 
compasses in the mind. 

Surely the previous experience of the 
plane compass offers a good bridge  
between physical and ideal  
experience. 

16) Veronica: I remember now: I too 
have worked with the two segments in 
this way, but I could not on the sheet. 

And Veronica too refers her strategy to 
the plane compass. 

[All the pupils ‘pick up’ the segments 
on Veronica’s drawing with thumb–
index of the two hands and start to  
rotate them.] 

The shared experience is strong enough 
to capture all the pupils. 

17) Elisabetta [excited]: She has taken 
the two segments of 6 and 7, has kept 
the centre still and has rotated: ah I have 
understood! 

Elisabetta and Stefania together 
by words and gestures repeat the  
procedure. 

18) Stefania P: … to find the centre of 
the wheel . . . 
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19) Elisabetta: … after having found the 
two segments … 

 

20) Stefania P: … she has moved the 
two segments. 

 

21) Teacher: Moved? Is moved a right 
word? 

The teacher encourages the correction of 
an ambiguous word. 

22) Voices: Rotated … as if she had the 
compass. 

 

23) Alessio: Had she translated them, 
she had moved the centre. 

 

24) Andrea: I have understood, teacher, 
I have understood really, look at me … 

And Andrea too has understood and 
shows it by gesturing. 

[The pupils continue to rotate the  
segments picked up with hands.] 

 

25) Voices: Yes, the centre comes out 
there, it’s true. 

 

26) Alessio: It’s true but you cannot use 
two compasses. 

Alessio still has his problem (no. 14): 
only one physical compass whilst  
the two rotations are  
contemporaneous 

27) Veronica: You can use first on one 
side and then on the other. 

But Veronica breaks the time of  
contemporaneity using the same  
compass twice. 

28) Voices: Yes, good, let’s try.  
29) Teacher: Good boys! Try and  
draw the two circles! Today we stop here. 
[All the pupils take the compass and 
find the solutions by intersecting the 
circles of radii 7 cm and 6 cm.] 
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12. APPROACHING THEOREMS IN GRADE VIII 

Some Mental Processes Underlying Producing and Proving Conjectures, 
and Conditions Suitable to Enhance Them 

INTRODUCTION 

This chapter presents the experimental study which served as a source for some 
ideas and theoretical constructs indicated in the chapter by Bartolini, Boero, Ferri, 
Garuti and Mariotti (especially the role of the dynamic exploration of the problem 
situation in the production of conjectures and the construction of their proofs, and 
the “cognitive unity” of theorems). 
 The research project reported in this chapter went on analysing mental processes 
underlying the production and proof of conjectures in mathematics. We believed 
that such analysis could give us some hints on suitable problem situations and the 
best class-work management modality for an extensive involvement of students in 
the construction of conjectures and proofs. 

SOME HYPOTHESES CONCERNING PRODUCING AND PROVING  
CONJECTURES IN THE EARLY APPROACH TO THEOREMS 

First we took into consideration the conditionality of the statements (i.e. the im-
plicit or explicit formulation of most statements in terms of “if … then …”), to 
which the logical structure of the proving process is connected. We have tried to 
formulate some hypotheses concerning the production of conditional statements 
and related proving developments. In order to do this, reference has been made to 
preceding studies, which suggested: the importance of the exploratory activity dur-
ing the production of conjectures (cf. Polya’s “variational strategies”; see also 
Schoenfeld, 1985); the relevance of mental images (as “a pictorial anticipation of 
an action not yet performed,” Piaget & Inhelder, 1967—see Harel & Sowder, 
1998) in the anticipatory processes in geometry; the possibility of deriving the hy-
pothetical structure “if … then …” from the dynamic exploration of a problem 
situation (cf. Boero et al., 1999). 
 We therefore came to the following hypotheses referred to a didactic situation 
where students are requested to solve an open problem through the production and 
proof of a conjecture. The hypotheses concern the crucial role that can be taken on 
by the dynamic exploration of the problem situation both at the stage of conjecture 
production and during the construction of proof. The hypotheses were organized as 
follows (see Boero et al., 1996): 



PAOLO BOERO, ROSSELLA GARUTI AND ENRICA LEMUT 

250 

–  as to the conjecture production, 
A) the conditionality of the statement can be the product of a dynamic explo-

ration of the problem situation during which the identification of a special 
regularity leads to a temporal section of the exploration process, which will 
be subsequently detached from it and then “crystal” from a logic point of 
view (“if … then …”); 

– as to the proof construction, 
B) for a statement expressing a sufficient condition (“if … then …”), proof 

can be the product of the dynamic exploration of the particular situation 
identified by the hypothesis; 

C) for a statement expressing a sufficient and necessary condition (“… if and 
only if …”), proving that the condition is necessary can be achieved by  
resuming the dynamic exploration of the problem situation beyond the 
conditions fixed by the hypothesis. 

We can consider these hypotheses as a partial answer to a claim by M. A. Simon, 
published in the same year (see Simon, 1996) and concerning the need for studying 
the potentialities of “transformational reasoning” in conjecturing and proving. 
 Another hypothesis stems from our previous research on the feasibility of a con-
structive approach to theorems by students. In particular, during a teaching experi-
ment concerning arithmetic theorems, students were engaged in the production and 
proof of conjectures. It was observed that students kept a keen coherence between 
the text of the statement produced by them and the proof constructed to justify it 
(see Garuti et al., 1995). This textual coherence brought forward the problem of a 
possible cognitive continuity between the statement production process and the 
proving process. A similar behaviour in a problem solving situation implying the 
necessity of formulating and justifying conjectures was observed by C. Maher in 
very young students (grade IV) (see Maher, 1995). 
 As concerns the links between conjecturing and proving, we have elaborated the 
following (see Garuti): 

Hypothesis D (“cognitive unity of theorems” as a facilitator of the student 
approach to theorems): the majority of grade VIII students can produce theo-
rems (statements and proofs) if they are placed in a condition so as to imple-
ment a process with the following characteristics: 

• during the production of the conjecture, the student progressively works 
out his/her statement through an intense argumentative activity function-
ally intermingling with the justification of the plausibility of his/her 
choices; 

• during the subsequent statement proving stage, the student links up with 
this process in a coherent way, organizing some of the justifications  
(“arguments”) produced during the construction of the statement according 
to a logical chain. 

This hypothesis, if validated and thoroughly investigated by other studies  
(cf. Garuti et al., 1998), might have important didactic consequences as to the 
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school approach to theorems, radically calling into question the teaching traditions 
(see the last section). 
 Hypothesis D has an interesting counterpart in the history of mathematics.  
Indeed history of mathematics shows remarkable similarities between the holistic 
way of producing theorems by the student, described in our hypothesis, and the 
way of producing theorems by mathematicians: despite important differences (as to 
reasoning, cultural experience, institutional bonds, etc.—see Hanna & Jahnke, 
1993), we can detect the existence of common features, in particular as to the  
intermingling between the progressive focusing of the statement and the argumen-
tative activity aimed at justifying its plausibility. At times, in the case of the history 
of mathematics, this is a long process, that involves many people for many years 
(cf. Lakatos, 1976); at times it is a personal process, traces of which are found in 
the notes or memoirs of one mathematician (cf. Alibert & Thomas, 1991). 
 Despite the undeniable differences between “deductive organization of think-
ing” and “argumentative organization of thinking” (Duval, 1991), by hypothesis D 
we want to stress some aspects of continuity, concerning the production, during the 
conjecturing phase, of the elements (“arguments”) that will be used later during the 
construction of the proof. Most of the studies on mathematical proof within 
mathematics education research, on the contrary, above all point out the elements 
of difference between argumentative reasoning and deductive reasoning (see  
Balacheff, 1988; Duval, 1991). It seems to us that the existence of differences, 
epistemological obstacles, etc. is not incompatible with the fact that students can 
construct the proof using elements arising during the argumentation that accompa-
nied the conjecture construction process. But every element of continuity implies 
the risk for students to identify processes of a different nature (cf. Duval, 1991). 
These reflections were helpful to us for the planning of our teaching experiment 
and for the analysis of students’ behaviours; in particular: 

• at the stage of construction of the teaching experiment we tried to create favour-
able conditions for the appearance of the cognitive unity assumed by us, but also 
for separation by students of the conjecture production stage from the proving 
stage, insisting in particular on the reasons for the necessity of proof as “proof 
of the statement truth”; 

• in the analysis of protocols we tried to catch the signs of attained change in stu-
dents between the perspective of the argumentation to construct the conjecture 
and the persuasion of its plausibility, and the perspective of its proof. 

The teaching experiment is described in the next section. The analysis and conclu-
sions of the teaching experiment are shown in the two subsequent sections. The 
discussion (final section) contains some reflections on our findings and indicates 
some of the developments suggested by our research. 

THE TEACHING EXPERIMENT 

The main difficulty which we had to face was that of finding experimental confir-
mation for our hypotheses. It was necessary, in particular, to create an experimen-
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tation and observation context suitable to “reveal” the nature of processes of state-
ments and proofs production and verify the potentiality conjectured by us. 
 The teaching experiment was carried out in two grade VIII classes of 20 and 16 
students, at the beginning of the third school year with the same teacher. Students 
had already interiorized the habit of producing argued hypotheses in different do-
mains (mathematical and non-mathematical), writing down their reasoning. Stu-
dents had already experienced situations of statements production in arithmetic 
and geometry; they had approached proof production in the arithmetic field (see 
Boero & Garuti, 1994; Garuti et al., 1995). 
 The task concerning the production and proof of a conjecture was contextual-
ized in the “field of experience” (Boero et al., 1995) of sun shadows. Students had 
already performed about 80 hours of classroom work in this field of experience. 
They had observed and carefully recorded the sun shadows phenomenon over the 
year (in different days) and over the morning of some days. They had approached 
geometrical modelling of sun shadows and solved problems concerning the height 
of inaccessible objects through their sun shadows. 
 The field of experience of sun shadows was chosen because it offers the possi-
bility of producing, in open problem solving situations, conjectures which are 
meaningful from a space geometry point of view, not easy to be proved and with-
out the possibility of substituting proof with the realization of drawings. The field 
of experience of sun shadows is a context in which students can naturally explore 
problem situations in different dynamical ways. In order to study the relationships 
between sun, shadow and the object which produces the shadow, one can imagine 
(and, if necessary, perform a concrete simulation of) the movement of the sun, of 
the observer and of the objects which produce the shadows. In particular, students 
had already realized some activities which needed the imagination of different  
positions of the sun and of the observer in order to produce hypotheses concerning 
the shape and the length of the shadows. 
 In the two classes the activities were organized according to the following stages 
(whole amount of time for classroom work, about 10 hours): 

a) Setting the problem: individual work or work in pairs, as chosen by the students. 
In recent years we observed that the shadows of two vertical sticks on the 

horizontal ground are always parallel. What can be said of the parallelism of 
shadows in the case of a vertical stick and an oblique stick? Can shadows be 
parallel? At times? When? Always? Never? Formulate your conjecture as a gen-
eral statement. 

Some thin, long sticks and three polystyrene platforms were provided in or-
der to support the dynamic exploration process of the problem situation. 

b) Producing conjectures: many students started to work with the thin sticks or 
with pencils. They started to move the sticks or to move themselves to see what 
happened. Other students closed their eyes. The absence of sunlight or spotlight 
in the classroom hindered the experimental verification of conjectures they were 
formulating: it was the mind’s eyes that were “looking”. Students individually 
wrote down their conjectures. 
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c) Discussing conjectures: the conjectures were discussed, with the help of the 
teacher, until statements of correct conjectures were collectively obtained which 
reflected the different approaches to the problem by the students. 

d) Arranging statements: through different discussions, under the guidance of the 
teacher, the following statements, made more precise from a linguistic point of 
view than those produced by students at the beginning, were collectively  
attained: 
• If sun rays belong to the vertical plane of the oblique stick, shadows are  

parallel. 
• If the oblique stick moves along a vertical plane containing sun rays, then 

shadows are parallel. 
• The shadows of the two sticks will be parallel only if the vertical plane of the 

oblique stick contains sun rays. 

The first two statements stand for two different ways of approaching the problem 
on the part of the students: the movement of the sun and the movement of the 
sticks; the third statement makes explicit the uniqueness of the situation in which 
shadows are parallel. 
 After further discussion the collective construction of the two statements below 
was attained: 

• If sun rays belong to the vertical plane of the oblique stick, shadows are parallel. 
Shadows are parallel only if sun rays belong to the vertical plane of the oblique 
stick. 

• If the oblique stick is on a vertical plane containing sun rays, shadows are paral-
lel. Shadows are parallel only if the oblique stick is on a vertical plane contain-
ing sun rays. 

 In order to help the students in the proving stage we preferred not to express the 
statement in its standard, compact mathematical form “if and only if …” (its mean-
ing in common Italian cannot be distinguished from the meaning of “only if …”). 

e) Preparing proof: the following activities were performed: 
• individual search for analogies and differences between one’s own initial 

conjecture and the three “cleaned” statements considered during stage d); 
• individual task: “What do you think about the possibility of testing our con-

jectures by experiment?” 
• discussion concerning students’ answers to the preceding question. During 

the discussion, gradually students realize that an experimental testing is “very 
difficult,” because one should check what happens “in all the infinite posi-
tions of the sun and in all the infinite positions of the sticks”. 

This long stage of activity (about 3 hours) was planned in order to enhance stu-
dents’ critical detachment from statements, to motivate them to prove, and to state 
that since then classroom work would have concerned the validity of the statement 
“in general”. 
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f) Proving that the condition is sufficient (activity in pairs, followed by the indi-
vidual wording of the proof text). 

g) Proving that the condition is necessary (short discussion guided by the teacher, 
followed by the individual wording of the proof text). 

h) Final discussion, followed by an individual report about the whole activity (at 
home). 

The following materials were collected: videotapes of the initial stages (a and b); 
tape-records of discussions and teacher–students interactions; all the students’ in-
dividual, written texts. The data which we are about to consider mainly concern 
stages b), f ) and g). 
 For each type of students’ behaviour one example of written texts individually 
produced by students during stages b), f) and g) will be reported entirely. At this 
stage of the research we deem it important to dwell on typical behaviour that can 
justify the plausibility of our hypotheses and to examine it more deeply (in view of 
its subsequent and more extensive confirmation). 

SOME FINDINGS 

The teaching experiment analysis seems to confirm the validity of our hypotheses, 
as proved by the behaviour of the great majority of the students of the two classes. 
All students actively took part in the production of the initial conjecture; 29 stu-
dents (over 36) were able to follow the activities (from c to h) in a productive way. 
 The elements found which confirm our hypotheses can be summarized as  
follows: 

Relevance of the dynamic exploration on the problem situation during the  
conjecture production stage (Hypothesis A) 
The analysis of the videotape shows that at least one half of students (in reality, 
probably more) performs the dynamic exploration of the problem situation in dif-
ferent ways: indicating with their hands the imagined movement of the sun, or 
moving themselves, or moving the oblique stick, or moving the platform support-
ing the sticks, etc. 
 On the other hand, in 14 individual texts (out of 36) there is explicit evidence of 
the passage from the imagined (and/or simulated) dynamic exploration of the prob-
lem situation to focusing on a temporal section, with successive transition to the 
formulation of a statement “crystallized” from a logic point of view: 

EX. 1 (Simone): If we took into consideration two sticks, of which one is ver-
tical, the shadows will be parallel when the two sticks are seen parallel by the 
sun. If we suppose that the person is in the position of the sun and looks at 
the sticks, by going round the sticks we can observe that the sticks are paral-
lel in a certain position and the shadows are also parallel since the difference 
in position of the two sticks cannot be seen from that position. Thinking 
about the shadow space we can say that the non-vertical stick seems to be 
within the shadow space. Let’s imagine an imaginary vertical stick represent-
ing the oblique one, in line with the sun rays and the same stick, the oblique 



APPROACHING THEOREMS IN GRADE VIII 

255 

one cannot be seen so it seems to be vertical, forming parallel shadows. The 
shadows can be parallel if the sun is situated along the direction of the 
oblique stick [with a gesture he indicates the vertical plane of the oblique 
stick]. 

During the subsequent discussion, Simone explains how he produced this conjec-
ture: he moves the polystyrene plane supporting the sticks “at random” (notice 
should also be paid to the generality of his reasoning) after identifying himself with 
the sun. Then, he places a new stick (which he calls “imaginary stick”) in the same 
position he described in the written text, making the polystyrene plane rotate until 
the non-vertical stick is completely hidden by the “imaginary” vertical one. At this 
point he says “well, now in this position the shadows are parallel because …”. 
 Finally, it is interesting to analyse the way in which certain initially wrong con-
jectures are overcome: at the beginning of stage b) some students hypothesize that 
shadows are always parallel, on the basis of a kind of “principle”: 

EX. 2 (Lucia): I think shadows are parallel because the oblique stick func-
tions like a normal object perpendicular to the ground, so if the rays are equal 
for all the objects, the shadows will be parallel. 

(I’ve changed my mind) 

By making a small model [they had fixed sticks to the desks with adhesive 
tape] we found that the parallelism of shadows depends on the position of the 
sun, that is, if we put the sun behind (or in front of) the sticks, the shadows 
are parallel but if the sun is placed on the side of the sticks then the shadows 
form an angle, spread apart and are no longer parallel. 

This conjecture is overcome by imagining and/or simulating the movements of the 
sun. In other cases it is overcome by moving the sticks. Those movements allow 
students to explore new alternatives. 

Relevance of the dynamic exploration of the situation determined by the hypothesis 
during the construction of the proof that the condition is sufficient (Hypothesis B). 
The following texts represent well the individual texts produced by most students: 

EX. 3 (Giovanni): The sun “moves”. At a given moment it “sees” the two 
parallel sticks and relative shadows. As the sun is far away it “sees” the two 
shadows parallel, so it imagines the oblique stick to be vertical (imaginary 
stick) [introduced by Simone during the discussion phase]. But if the imagi-
nary stick were real its shadow would cover that of the oblique stick, that is 
they are on the same line. Well, now we know that the shadows of the two 
vertical sticks are parallel and at this moment it is as if we saw two parallel 
shadows because that of the oblique stick is “under” that of the imaginary 
one. Now, if we removed the imaginary stick, the shadow of the oblique stick 
would appear again since it was “under” the parallel shadow of the imaginary 
stick, so the shadow of the oblique stick is also parallel to that of the vertical 
one. 
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Giovanni imagines being the sun and puts himself in the position identified by the 
hypothesis; he exploits the vertical stick as a “subsidiary construction,” then he 
imagines removing it. The imagined movement allows him to establish a link  
between the hypothesis and the property to be validated (contemporaneity of two 
different positions of the sticks). 

EX. 4 (Fabio): If we take two vertical sticks we know that their shadows are, 
of course, parallel. If we moved, that is inclined one of the two sticks along 
the vertical plane of the rays, the situation will not vary since the oblique 
stick along this plane seems to be another vertical stick, lower than the first. 
Consequently, their shadows are parallel. 

In this case the student moves the inclined stick along the vertical plane, then he 
identifies two consecutive positions of the same stick (the vertical position, that 
corresponds to the imaginary stick in the previous example, and the inclined one). 
In this case too the movement allows him to establish a link between the hypothe-
sis and the property to be validated (the same stick takes two different positions in 
two different times). 
 In the “Conclusions” section we will consider the different functions of the  
dynamic exploration (realised through the movements of the sticks) in the conjec-
turing phase and in the proving phase. 

Resuming the dynamical exploration of the problem situation during the construc-
tion of the proof that the condition is necessary (Hypothesis C) 
We observe that: 
1. In some cases the sun or its rays are moved: 

EX. 5 (Stefania): If the sun rays no longer belong to the vertical plane of the 
oblique stick, the sun would “see” three sticks: one vertical, one oblique and 
an imaginary vertical one that casts shadow. Taking for granted that the 
shadows of the two vertical sticks are always parallel independently from the 
position of the sun or its rays, then the sun would cast three shadows, of 
which two parallel and one oblique with respect to the other two. And if this 
shadow of the oblique stick were not aligned with that of the imaginary stick, 
it won't be parallel with the shadow of the vertical stick, so the shadows 
would not be parallel and the hypothesis would not be true” 

2. In other cases students moved the stick (beyond the vertical plane identified by 
the hypothesis): 

EX. 6 (Sandra): In order to prove the second part of the statement [the shad-
ows are parallel only if the stick moves along a vertical plane containing sun 
rays] we can move and place the oblique stick in another vertical plane so as 
to obtain two vertical planes, that of the oblique stick and that of the imagi-
nary vertical stick. With this operation the two shadows are no longer situated 
in the same line so the shadow of the oblique stick and that of the vertical 
stick are no longer parallel. In this way, I’ve denied the previous statement so 
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the shadows will be parallel only if the oblique stick is placed again along the 
vertical plane of the sun rays. 

Links between conjecturing and proving (“cognitive unity of theorems”—
Hypothesis D) 
We were interested in analysing possible links between conjecturing end proving, 
concerning linguistic aspects, kinds of movements, etc.; we considered different 
groups of students. 
 
Correct conjecture with justification (21 students) 
Underlining indicates traces of connections between conjecture production and 
proof construction. 

Formulation of the conjecture with shifting of the stick 

EX. 7 (Beatrice): I tried to put one stick straight and the other in many posi-
tions (right, left, back, front) and with a ruler I tried to create the parallel rays. 
I sketched the shadows on a sheet of paper and I saw that: if the stick moves 
right or left shadows are not parallel; if the stick is moved forward and 
back shadows are parallel. Shifting the stick along the vertical plane, for-
ward and back, the two sticks are always on the same direction, that is to say 
they meet the rays in the same way, therefore shadows are parallel. 
Whereas shifting the stick right and left the two sticks are not on the same di-
rection anymore and therefore do not meet the sun rays in the same way 
and shadows in this case are not parallel. Shadows are parallel if the oblique 
stick is moved forward and back in the direction of sunrays. 

Proof: Shadows are parallel because, as we already said, sun rays belong to 
the vertical plane of the oblique stick. 

But all this does not explain to us why this is true. First of all, though the 
sticks stand one in an oblique and the other in a vertical position, they are 
aligned in the same way and if the oblique stick is moved along its verti-
cal plane and is left in the point in which it becomes vertical itself we see 
that they are parallel and, as a consequence, their shadows must naturally be 
also parallel, and also parallel with the shadow of the oblique stick, which 
has the same direction as that produced by the imaginary, vertical stick. 

In this case the justification produced at the beginning (“meet the sun rays in the 
same way”) is the one that in the following proof makes Beatrice imagine the 
oblique stick moving along the vertical plane containing sun rays. 

Formulation of the conjecture with the movement of the sun 

EX. 8 (Sara): They could be parallel if I imagine to be the sun that sees and 
I must place myself in the position so as to see two parallel sticks. In this 
way the sun sends its parallel rays to light the sticks. But if the sun changes 
its position it will not see the parallel sticks and, therefore, their shadows will 
not be parallel either. Shadows can be parallel if the oblique stick is on the 
same vertical plane as the sun rays. 
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Proof: If the sun sees the straight stick and the oblique stick parallel it is 
as if there were another vertical stick at the base of the oblique stick. If this 
stick is in front of the oblique stick its shadow covers the shadow of the 
oblique stick. These shadows are on the same line, therefore, the oblique and 
vertical sticks shadows are parallel. 

In this case the initial idea “I imagine to be the sun” seems to suggest the main 
argument of the proof (the shadow of the imaginary, vertical stick covers the 
shadow of the oblique stick). 
 Concerning production of the statement, Beatrice’s and Sara’s texts give evi-
dence of complex mental processes corresponding to our hypothesis. 
 Concerning proof, both texts show interesting traces of detachment from  
the problem situation (e.g.: “I imagine to be …” becomes “If the sun sees” ) and 
the original statement. Students seem to be aware that it is necessary to validate the 
statement by a reasoning process (“But all this does not explain to us why this is 
true.”). Many other texts show similar aspects. 

Wrong conjecture (9 students) 
Nine students, some of high level and some of low level, produce wrong conjec-
tures probably suggested by the principle “sun rays are parallel, then …” or by 
drawings that, owing to their bidimensional nature, may be misleading, and are 
also static and so they may stick at particular situations. 

EX. 9 (Vincenzo) Conjecture: In my opinion shadows cannot be parallel if 
the two sticks are one vertical and the other not vertical. I took the two sticks, 
I put them in a vertical position and shadows were parallel, then slowly I 
moved the right-hand side stick and noticed that its shadow moved. In my 
opinion they do not remain parallel, because if I have two vertical sticks, their 
shadows are parallel because rays are parallel, that is to say they come across 
the obstacle and form the shadow. But if I move slowly, rays that were hin-
dered before now pass by, though they are hindered from another point, that 
is to say the shadow moves and, therefore, it is not parallel anymore. 

At the proving stage, after classroom discussions, 6 of these students “make up for” 
the lost grounds and it can be noticed how their proof is full of constructions and 
argumentations, as if these students had to reconstruct the conjecture to be proved: 

(Vincenzo) Proof: The statement is true because: let us imagine to have an 
oblique stick and a vertical stick. Let us imagine to draw an imaginary line, 
perpendicular to the horizontal plane, starting from the point of the oblique 
stick. Let us do the same thing with the vertical stick but the other way round, 
meaning that I draw an imaginary oblique line parallel to the oblique stick. 

It happens that I get two vertical lines with parallel shadows and two oblique lines 
with parallel shadows. The imaginary stick casts a shadow into the direction of the 
oblique stick, as a consequence the shadows between the oblique stick and the ver-
tical stick are parallel. 
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Correct conjecture without justification (6 students) 
Six students out of 36, some of high level and some of low level, formulated the 
conjecture correctly, but during the formulation did not manage to produce argu-
ments backing up their hypothesis. This fact seems somehow to affect the subse-
quent proof that turns out to be lacking in “arguments” and rather confused. 

EX. 10 (Elisabetta) Conjecture: In some cases, although the oblique stick is 
in a position different from that of the vertical stick, the parallelism is kept, 
whereas in other cases the parallelism in shadows is not kept. Therefore, 
shadows can be parallel only if the oblique stick [meaning with a gesture the 
vertical plane] is parallel to the direction of the straight stick shadow, that is 
to the sun rays. 

Proof: Our statement is true because if the vertical plane of the oblique stick 
receives the sun rays as the vertical plane of the vertical stick, then the two 
shadows will be projected on the same line. 

CONCLUSIONS 

It appears to us that the data illustrated above are consistent and make our hypothe-
ses plausible. 
 We notice that, in the cases of Beatrice and Sara, just as for the majority of stu-
dents, the dynamic process that led to the production of the statement (movement 
of the sun or movement of the stick) is found again in the proving process. Yet the 
dynamic exploration implemented during the construction of the proof, though it 
shows remarkable similarities with the one implemented during the production of 
the conjecture as to the type of movement, differs deeply as to the function as-
sumed in the thinking process: from a support to the selection and the specification 
of the conjecture, to a support for the implementation of a logical connection be-
tween the property assumed as true (“vertical sticks produce parallel shadows”) 
and the property to be validated. The movement of the stick keeps the direction of 
its shadow (since it happens in the vertical plane containing sun rays) and, there-
fore, opens the possibility to reason in a transitive way (e.g.: the real, vertical stick 
produces a shadow parallel to the one of the imaginary, vertical stick; the oblique 
stick produces a shadow aligned with that of the imaginary, vertical stick; therefore 
the oblique stick produces a shadow parallel to that of the real, vertical stick). It 
also seems interesting to underline the fact that the hypothesis fixes the vertical 
plane on which the movement takes place that allows one to relate logically the 
property to be proved with the property assumed as known. 
 The teaching experiment suggests some interesting hints about the links between 
argumentative reasoning in the phase of the production of the conjecture and proof 
construction. Actually, as concerns the production of the statement, argumentative 
reasoning fulfils a crucial function: it allows students to consciously explore differ-
ent alternatives, to progressively specify the statement and to justify the plausibility 
of the produced conjecture (see Simone and Lucia). On the other hand, students 
who produced wrong conjectures later show the need for reconstructing the valid 
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conjecture in order to produce the proof (see EX. 9). The fact that poor argumenta-
tion during the production of the statement always corresponds to lack of argu-
ments during the construction of the proof seems to confirm the close connection 
that exists between production of the conjecture and construction of the proof (see 
EX. 10). Moreover, the consistency among personal arguments provided during the 
production of statements and the ways of reasoning developed during the proof 
seems to be confirmed: 

• by the fact that the type of argumentative reasoning made during the production 
of the statement by one student is resumed by him/her (often also with similar 
linguistic expressions) in the justification of the statement subject to proof; 

• by the fact that the kind of dynamic process (movement of the sun or the stick) 
recorded at the conjecture stage is almost always the same as the one used at the 
proof stage. 

DISCUSSION AND FURTHER DEVELOPMENTS 

In our teaching experiment, the “dynamic” learning environment of sun shadows 
was chosen in order to enhance the dynamic exploration of the problem situation 
on the part of students (taking into account their background related to the same 
field of experience). The great majority of the students (29 out of 36) has produc-
tively taken part in the statement construction and subsequent proof. This fact 
raises the problem of searching for learning environments similar or even more 
effective than that of the sun shadows, as well as the problem of the transfer to 
“static” mathematics situations. 
 As regards the problem of finding suitable learning environments to develop the 
conjectures processes (dynamic exploration of problem situations), there are many 
learning environments which can be usefully compared with that of sun shadows 
(in particular, in the perspective of the “dynamic geometry” indicated by Golden-
berg & Cuoco, 1995): Cabri or Geometric Supposer or Geometer’s Sketchpad, 
even the “mathematical machines,” “gears” (Bartolini Bussi et al., 1999) and the 
“representation of the visible space” (Bartolini Bussi, 1996). Comparisons like 
these could propose different potentials and limits for the different learning  
environments. 
 With regard to the problem of the transfer from strongly contextualized theo-
rems in a dynamic environment such as that of the sun shadows geometry to the 
theorems of “context-free” mathematics, a number of confirmations derive from 
the observations that followed the teaching experiment in the two classes during 
activities with traditional geometry theorems, as well as in other classes which 
moved from activities of conjecture production and proof construction in other 
dynamic environments to “context-free” geometry (see Parenti et al., in this book). 
 A delicate matter concerns the variety of possible approaches to the condition-
ality of statements (and related connections with proving process). In fact, in 
Boero and Garuti (1994), a report dealing with the “Thales Theorem” and concern-
ing the same learning environment of “Sunshadows,” the following type of reason-
ing was identified in 3 students out of 34: “The length of the shadows is 
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proportional to the height of the sticks due to the parallelism of the sun shadows. 
… If the lines are parallel, the lengths of the segments cut on another two lines 
shall be proportional”. The process appears to be very different from that consid-
ered in our hypothesis, since in this case the student passes from a recognition of 
causal dependency between parallelism and proportionality in the physical phe-
nomenon, to the conditional statement that takes into account the possibility that 
lines cannot be parallel. This process requires therefore a detachment  from the 
physical phenomenon (that on the contrary can be deferred in the case of the ap-
proach to conditionality studied in this report). It is for this reason that we have 
formulated our hypothesis A) by emphasizing the possibility (“can”) that the condi-
tionality of statements were originated in the dynamic exploration of the problem 
situation without excluding other possibilities. Further research has supplied inter-
esting indications in this field: in Boero et al. (1999) four different processes of 
generation of conditionality were described. 
 As mentioned in the second section, hypothesis D) seems to have important didac-
tic implications, since it calls into question the traditional school approach to theo-
rems. In fact, usually in Italy and in other countries the teacher asks the students to 
understand and repeat proofs of statements supplied by him, which appears to be one 
of the most difficult and selective tasks for grade IX–X students. The teacher may 
ask students to prove statements, generally not produced by students but suggested 
by the teacher: this is a possible last stage, often reserved to the top level students 
or students choosing an advanced mathematical curriculum. Even more seldom 
students are asked to produce conjectures themselves. If our hypothesis is valid, dur-
ing this traditional path students’ difficulties can at least partly depend on the fact that 
they should reconstruct the cognitive complexity of a process in which mental acts of 
different natures functionally intermingle, starting from tasks that by their nature 
bring them to partial activities that are difficult to reassemble in a single whole. Our 
teaching experiment suggests an alternative didactic path. 
 Just for the importance of such didactic implications we deem it opportune to 
critically analyse some possible limits of the study made so far and to sketch fur-
ther developments of it. 
 First we must consider in what sense students have performed a mathematical 
activity concerning theorems. 
 The object of the experiment is a hypothesis concerning the physical phenome-
non of sun shadows; it has as a geometric counterpart, at the level of model, a 
statement of parallel projection geometry. Students produce their conjecture as a 
hypothesis concerning the phenomenon of sun shadows; when they verify their 
conjecture most of them seem to be aware of the fact that they must get the truth of 
the statement by reasoning, starting from true facts. Most of them produce a valida-
tion realized through deductive reasoning. Actually their reasoning starts from 
properties considered as true (“two vertical sticks produce parallel shadows”) and 
comes to the truth of the statement in the “scenario” determined by the hypothesis. 
 In this way, students produce neither a statement of geometry “strictu sensu,” 
nor a formal proof: objects are not yet geometric entities, deduction is not yet for-
mal derivation. But their deductive reasoning shares some crucial aspects with the 
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construction of a mathematical proof. Moreover, the whole activity performed by 
students shares many aspects with mathematicians’ work when they produce con-
jectures and proofs in some mathematics fields (e.g.: differential geometry): mental 
images of concrete models are frequently used during those activities. As to proof, 
mathematicians frequently come near to realizing the ideal of the formal proof only 
during the final stage of proof writing. During the stage of proof construction, the 
search for “arguments” to be “set in chain” in a deductive way is frequently per-
formed through heuristics, the reference to analogical models and taking into ac-
count the semantics of considered propositions (cf. Alibert & Thomas, 1991; 
Hanna, 1989; Thurston, 1994). 
 For these reasons we think that the activity performed during our teaching  
experiment may represent an approach to mathematics theorems which is correct 
and meaningful from the cultural point of view. 
 In our opinion, the continuity aspects highlighted by us represent a huge poten-
tiality for the development of the students’ ability to prove conjectures; neverthe-
less, this potentiality needs an adequate educational context in order to surface 
successfully. In planning our teaching experiment we singled out some conditions 
that are probably necessary to this end; they concern: 

• the didactic contract set up in the classroom (the production of a conjecture to 
solve an open problem, the value of an hypothesis as an “argued choice”); 

• the didactic path in which the task is inserted (particularly, in our case, the 
choice of the field of experience of sunshadows as a long term learning  
environment); 

• the management of classroom work after the task (individual activities alternat-
ing with activities in pairs and discussions; activities to prepare the proof 
stage—see item e). 

We are not yet able to establish whether all the conditions that we singled out are 
actually necessary and sufficient for the extensive implementation of the process 
that we recorded in our teaching experiment. It is necessary to ascertain what the 
actual weight of the didactic contract is, through comparisons with classes having a 
different history behind them. It is necessary to find out how much, and how, the 
cognitive unity of theorems appears also in mathematical fields other than geome-
try (and, in particular, that of “shadows geometry”). It also appears important to 
ascertain the consequences of experiences linked to the cognitive unity of theorems 
on the activity of standard theorems proving, proposed through their statements (cf. 
Arzarello, 2000). 
 Garuti et al. (1998) addressed another problem: Can the “cognitive unity” con-
struct be a tool allowing teachers and researchers to predict and interpret students’ 
difficulties when they have to prove a given statement? Can it be a tool that allows 
the teacher to select appropriate tasks that increase in difficulty, in relation to the 
increasing difficulty in establishing continuity between the statement and the prov-
ing process? 
 They produce some partial answers to these questions. In particular, they formu-
late the following hypothesis: 
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the greater is the gap between the exploration needed to appropriate the 
statement and the proving process, the greater is the difficulty of the proving 
process (p. 347). 

They present some examples that illustrate and support the validity of this perspec-
tive. These were chosen in a non-geometrical field (the elementary theory of num-
bers) in order to avoid the perspective of “cognitive unity of theorems,” which was 
elaborated in the geometrical domain, being regarded as context specific (and in 
this way the second problem is also addressed). 
 In recent years, B. Pedemonte has performed a thorough experimental investiga-
tion of the relationships between the conjecturing process and the proving process. 
She has introduced the theoretical construct of “structural unity of theorems” in 
order to study the possible continuity between the structure of argumentation in the 
conjecturing and early proving phases, and the final structure of proof. Discontinu-
ity can be an obstacle for students when they try to construct the proof (see  
Pedemonte, 2001). 
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PASTORINO AND PAOLA VIGLIENZONE 

13. FROM DYNAMIC EXPLORATION TO  
“THEORY” AND “THEOREMS”  
(FROM 6TH TO 8TH GRADES) 

INTRODUCTION 

Our long-term teaching experiment, which started in 1995, was designed to enquire 
how far and in what circumstances an entire lower secondary school class could be 
involved in production of conjectures and in an early approach to theories, theo-
rems and their proofs. 
 Our present research what peculiar conditions enabled the classes to reach good 
levels in taking part in theoretical discourses; it is also studies to study some men-
tal processes which are involved in these activities. 
 Our analysis confirms the important role the teacher plays in the approach to 
theoretical aspects of mathematics (see Bartolini Bussi et al., in this book): in 
the classroom as a cultural mediator, who raises and coordinates discussions; in the 
research group, as a member who takes part in planning activities and analysing the 
students’ mental processes. 
 This work involved (from the 6th to the 8th grades) about 80 students in four 
classes engaged in the Genoa Project for Low Secondary School (the number 
changed slightly, due to some small changes in the composition of the classes). 
Students were engaged in the experimental activities for about 15 hours in the 6th 
grade, 25 hours in the 7th grade and 16 hours in the 8th grade. As usual in Italy, 
they worked with the same teacher for three years. About one third of the students 
were school-integrated, interested, but with scarce results in learning (in mathemat-
ics as well as in the other subjects). 
 We worked on problems concerning geometry subjects which arise from 
the field of experience of “plane representation of space situations” (in the 6th 
and 7th levels) and in the field of experience of “sun shadows” (in the 8th level). 
All chosen problems offered the possibility to be tackled with dynamic explora-
tions (see theoretical framework below, and Bartolini et al., in this volume). 
From the geometric point of view, these problems can be framed, respectively, 
within the fields of experience of “geometry of the space representation” (elements 
of geometry of central projection) and “geometry of sun shadows” (elements of 
geometry of parallel projection), that is in two fields of experience that within 



LAURA PARENTI, MARIA BARBERIS, MASSIMA PASTORINO AND PAOLO VIGLIENZONE 

266 

mathematics help to build the field of experience of “geometry” (meant as “geo-
metric theories”). 
 We planned a sequence of problem situations, which cannot be solved 
merely on an empirical basis (that is just through physical experiments, measure-
ments, etc.) and therefore require a theoretic proof as the only source of validation. 
Since every theoretical validation must take place within a theory of reference (see 
theoretical framework: theorem as statement, proof and theory of reference), we 
will analyse in some detail how the students worked together (under the guidance 
of the teacher) in order to build the elements of theory of central projection, that 
they had to master. In this chapter we will show also how students’ awareness of 
their own mental dynamics and their practice in managing them can have a good 
influence on the production of conjectures and proofs. We will also stress how the 
mental processes which are involved in proving statements (meant as an activity 
related to the theory of reference and aimed at producing a deductive chain of ar-
guments) can be influenced by the dynamic approach and take place in the aware-
ness of the dynamic character of the proving process and the static character of its 
results. 

REFERENCE TO SOME ELEMENTS OF THE THEORETICAL FRAMEWORK  

The theoretical framework of our research is based upon the ideas of theorem, 
field of experience (Boero et al., 1995), mathematical discussion (Bartolini 
Bussi, 1996) and cognitive unity (as the continuity between the conjecture produc-
tion process and the proof construction process, which can exist in the most fa-
vourable situations (Garuti et al., 1996, 1998), in accordance with Boero et al., in 
this book. 
 A few words about some issues related to the theoretical framework. 
 The external context of the fields of experience is related to meaningful problem 
solving situations, which require the production of conjectures and allow mental 
experiments based on active observations. Particularly the external context in-
cludes specific linguistic expressions the teacher is supposed to introduce in order 
to build a geometric language, which is useful to express statements properly, and 
texts beside the ones the class normally uses, in order to compare the notions of 
statement, theorem and proof which are gradually drawn up by the class, under the 
teacher’s direction, with “official” formulations. 
 The students’ internal context develops especially as concerns the subject 
knowledge, the awareness to approach a culturally demanding content suitable to 
be developed further at high school level, the organization of thought and language 
which are necessary to manage this content. 
 With the teacher’s help, who leads the discussion in class, students gradually 
come to formulate general and abstract statements, by expressing them in a condi-
tional form and in a geometric language. They can also reach the awareness that 
mathematical proofs and theory are necessary to validate some statements (in ac-
cordance with Mariotti et al., 1997). 
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 Most students succeed in producing rough draft of proofs and show (in success-
ful cases) the cognitive unit between their statement production and proof construc-
tion processes (Garuti et al., 1996). 

THE TEACHING EXPERIMENT AND STUDENTS’ BEHAVIOURS  

Our teaching experiment tries to make the students achieve the following main 
aims: 

• Acquiring awareness of the existence of mental dynamics and learning how to 
manage them. Through dynamic explorations of problem situations we have ac-
customed the students to observe reality carefully and apply graphic and/or 
mental representations to find the solution of problems concerning the represen-
tation of the visible world. The critical analysis of remarkable mistakes in 
their production has enabled the students to stress in their own mental proc-
esses the existence of mental representations/dynamics which have an influ-
ence on the productions themselves. Further discussions and activities 
(comparisons between drawings, between photos and drawings, etc.) have al-
lowed students to learn how to manage one’s own mental representa-
tions/dynamics, in order to improve one’s production too (for further details see 
Parenti & Tizzani, 1996). 

• Being able to produce statements expressed in a conditional form. According to 
our hypotheses, students can formulate their first forecasting or interpretative 
conjectures, still expressed in a personal language linked to perception, when 
they manage to “isolate” within dynamic explorations of problem situations a 
peculiar “status” of one of the variables that are taken into account. We have 
therefore privileged one of the possible processes of developing conditionality, 
the one Boero et al., describe (for a survey of this and other processes of genera-
tion of conditionality of statements, see Boero et al., 1999). For this purpose 
we proposed activities of exploration of reality (representations and shadows), 
followed by the request to determine “invariants” related to the analysed 
changes. The discussions in the class have improved students’ language and 
progressively allowed them to build a common language used by the whole 
class, through which conjectures could be reformulated in a relational form, 
with the peculiar characteristics of most geometry statements (generality, ab-
straction and conditionality). 

• Approaching a “theory building” process. The elements of theory of reference 
which are necessary to validate statements that cannot be validated empirically 
(elements of geometry of central projection in the 7th level and of parallel pro-
jection in the 8th level) are built in the class by students under the guidance of 
the teacher. Through collective considerations and discussions, a few statements 
are chosen among the produced ones that are unanimously considered “true”. 
These statements are reformulated in a relational form, by using the geometric 
language that is partly known, partly suggested by the teacher: these will be the 
“postulates” of the “theory of reference” the students will have to master. 
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• Early approach to theorems and their template for proof. The students learn 
how to use the statements of the “theory of reference” within a logic deductive 
process, in order to validate other statements. The proof schema (or “template”) 
is introduced by the teacher as a common synthesis of individual trials of proofs, 
some of which have been successful. The template has been an occasion for 
everybody for an arrangement of a mathematical speech within a mathematical 
theory. 

• Succeeding in making brief remarks concerning the comparison between the 
two introduced theories. The students are requested to think about “relativity” of 
mathematical truths, by discussing the fact that a statement may be either true or 
false depending on the theory it is referred to. 

 From the Field of Experience of the “Plane Representation of Space  
Situations” to the Field of Experience of “Geometry of Space Representation” 

Our teaching experiment starts in the 6th level in the field of experience of the 
“plane representation of space situations”. Students were guided in investigating 
“How does the eye see reality?” by suggesting experiences of observation of ob-
jects, drawings and/or photos, by varying the observer’s point of view and requir-
ing a plane representation of observed objects. Through reading/drawing activities, 
the students learn to recognize the most frequent mistakes in their drawings and to 
stress remarkable differences between what they see and what they sometimes 
draw. For instance many of them draw the “roof” of the cabinet in the classroom, 
even though they cannot see it from their point of view. 
 Through a critical analysis of significant drawings, the students are gradually 
involved in a discovery/awareness about how drawings can be affected by mental 
representations/dynamics; they learn how to discuss them, by formulating conjec-
tures and by looking for means to manage them in order to improve their own rep-
resentations as well. According to our hypothesis (Parenti & Tizzani, 1996), the 
mental dynamics which play a role in the field of experience of the “plane repre-
sentation of space situations” can be read as a dynamic relationship either between 
“eye” and “moving object,” or between “moving eye” and “object,” or “moving 
eye” and “moving object”. They can be divided into:  

• space dynamics: movements a mind makes in order to represent to itself the 
subject moving in relation to the object, or vice versa in order to represent to it-
self some rotations or displacements of the object and/or movements of mental 
sizing of the drawing in order to make it fit the sizes of the sheet of paper; 

• time dynamics: these are connected with acquaintances one gained in the past 
(“when I had observed a cabinet like that …,” etc.) and acquaintances one is 
gaining presently through perception, and the relationships between them 
(Guala & Boero, 1999); 

• producer/reader dynamics: these show up when there are improvements during 
the various stages of the production of drawings (while they are usually lacking 
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when the final production shows great differences between what I “see” and 
what it actually “is”). 

In this phase of classroom work, a crucial task for students consists in observing a 
parallelepiped satchel standing on the teacher’s desk and to draw it as he/she can 
see it from his/her seat. Secondly, the student must discover the positions of the 
pupils who did the drawings chosen by the teacher.1 
 The conjectures on the drawer’s position are at first formulated in a personal 
language which is still anchored to perception, such as: 

Sara: The drawer was in the row near the door, because we can see the thick-
ness of the satchel in the right side in his/her drawing. 
Mara: In my opinion the drawer was in the second row on the door side, 
I understood it by seeing the satchel drawn only in its central front. 

All the problems connected with seeing have arisen: what I can see from the right 
side, from the front; no one should draw the roof, because it cannot be seen while 
sitting, but what must these lines be like? (when “upwards,” “downwards,” etc.); 
the nearest side is longer, the farthest one is shorter, etc. 
 At this moment, teachers organize a comparison between the photo of the 
satchel from one’s seat and the drawing one produced. The photo has shown “in an 
objective way” the course of the lines of the satchel and has enabled the students to 
re-discuss their own conjectures, possibly to a mend their drawings, by stressing 
the differences between what I “see” and what it actually “is”. 
 The following discussion concerning the conjectures that have been produced 
about the relationships between the observer’s position and the content of the ob-
servations is aimed to share the students’ explanatory hypothesis and to build a 
shared language in the class. At this stage the produced statements are of the kind: 
“If I am opposite to the satchel, I can see only a side,” “If in reality figures stand 
opposite, they maintain their own shape in perspective,” or “If a rectangle lies par-
allel to one’s sight level, it is still a rectangle”. These formulations have shown the 
awareness of the existence of dynamic relationships between the observer’s “eye” 
and the “observed” object and the attempt to fix a state of these variables in order 
to produce statements. The language is influenced by perceptive aspects (“opposite 
to,” “I can see,” “sight level,” etc.), but it is more general. Indeed it uses words 
such as rectangle, level, parallel, which belong to geometry and show the attempt 
to generalize to rectangles some argumentations, which fit the case that has been 
examined. The reasoning is richer and the conjectures are more general. 
 The work goes on in the 7th grade, by analysing two perspective representations 
(of a street in a town) and asking the students to recognize which of the observed 
figures were in reality rectangles, what kind of geometric figures they had been 
transformed into through perspective and “when” a “rectangle” in reality is still a 
rectangle in perspective.2 
 The students recognize conditions under which parallelism/perpendicularity 
among straight lines is preserved; everybody concludes that a rectangle is still such 
even in perspective “if it lies on a plane that is opposite”. The teacher explicates 
the connection between the meaning of “opposite to” and the concept of “visual 
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field”: he/she builds a shared meaning in the class, by evaluating approximately its 
wideness, by stressing relationships between the visual sphere and the plane which 
approximates it, etc. The teacher promotes a classroom discussion about the condi-
tions produced by the students. The teacher helps reformulating the hypotheses 
arising in the shared language of the class, classifying them in categories and draw-
ing a “table of invariants” (Bartolini Bussi, 1996). 
 Later the teacher proposes a problem situation that is undecidable by an empiri-
cal approach and enhances the discussion: “If a rectangle is looked at non-frontally, 
is it still a rectangle in perspective?” . 
 Then an open discussion follows; students share the idea that if the answer is 
Yes, it is sufficient to find an example and try to find examples which may help find 
a positive answer. 
 The teacher urges further: “If we cannot find any examples, are we merely 
unlucky, or does that mean the answer is No?”. Many students maintain they 
will succeed in finding an example with a large number of trials; but how many 
trials will be necessary? A few students recollect previous activities on properties 
of numbers, where it became clear that it was impossible making infinite tri-
als. Thus the teacher helps understanding that, as we cannot make infinite trials, 
it is necessary to find a few objective “rules” that enable us to come to a conclu-
sion. He points out that perception may help, but it cannot give certain results, as 
it is subjective. In this regard he reminds the students of previous activities 
about proportional drawings, where objectivity came out from the rules for 
scale reduction and from measuring and activities on photographs, where, on the 
contrary, the objectivity of the photograph on the situation which had been 
taken into account had been invalidated by the subjective reading of the photo-
graph itself. 
 As in the field of experience of the “plane representation of space situations” 
measuring is of no help; it is necessary to find new objective “rules,” which are 
formulated in terms that do not depend on measuring or perceiving. They allow 
one to validate conjectures by convincing arguments which are independent of 
experience, in those cases that cannot be decided empirically. We need a proof: a 
logical deductive process, which is valid within a reference theory and which, 
therefore, uses arguments that are independent of experience. 
 The personal meaning everyone assigns to the words perspective, theorem and 
proof is the objective of a preliminary consideration. The students are required to 
hang on a board their own definitions of these three words with the help of an Ital-
ian dictionary in order to express the meanings in a better way and to communicate 
their thoughts properly. Later on every definition was discussed collectively. As far 
as the word perspective is concerned, its definition was also applied to direct and 
accurate observation of tridimensional objects or to following outlines of houses on 
the window panes with a finger. In this way the formulations and the words that 
were too vague, imprecise or wrong arose and were replaced or integrated. The 
produced formulations were later compared with the “official” ones, which can be 
found in several high school books, in order to work out final definitions, a synthe-
sis of their thought and what is in the books. 
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 Under the guidance of the teacher, the class can arrive at producing the follow-
ing definitions: 

• perspective representation is a picture drawn according to perspective technique, 
which transfers figures into a vertical plane (plane of projection), as they are 
seen by a human eye; 

• theorem is a statement that is deduced by reasoning from true statements; 
• to prove is to show that a statement is true by reasoning and starting from true 

statements. 

As far as the words theorem and proof are concerned, the teacher’s explanatory 
interventions were more numerous; it was not possible to explain clearly the “de-
ductive” character the proof has.3 
 After explaining why a proof is necessary, the students under the teacher’s guid-
ance started building a “theory” of reference (elements of projective geometry). 
They take into account the statements which have been produced and choose 
among them those which are equivalent to one another, trying to show up connec-
tions not immediately evident. The teacher helps students to reformulate these 
statements in a general, abstract and conditional way, by using the perspective lan-
guage, which is independent of both experience and perceiving. 
 We report below the list of the “primitive” statements, called known properties, 
as they are recognized to be true by everybody. 

P1: if a rectangle lies on a plane that is parallel to the plane of projection in 
reality, then it is still a rectangle in perspective. 
P2: straight lines that are parallel both to one another and to the plane of pro-
jection are still parallel or are coincident in perspective. 
P3: straight lines that are parallel to one another but not to the plane of pro-
jection converge or are coincident in perspective. 
P4: if a rectangle is not parallel to the plane of projection in reality, then at 
least two of its sides are not parallel to the plane of projection. 

Thus students reach an elementary “modelling” of perspective. The discussions that 
have led to building the statements have displayed both the “ideal” character of the 
geometric model (the “model” of geometry of representation is an approximation 
of the phenomenon of vision—and later we will show how the “model” of geome-
try of sun shadows will be an approximation of the phenomenon of sun shadows) 
and its “usefulness”. Indeed it allows one to interpret a phenomenon in a better 
way, to transfer reasoning from the analysed situation to a simplified abstract one 
(Dapueto & Parenti, 1999), to reason by deduction, by using statements that are 
valid within the “theory” of reference, thus independently of experience, as “sure” 
facts.4 
 We have also verified that the knowledge of theoretical elements has had a good 
influence on the later drawing production and on recognition of mistakes in the 
representations themselves. 
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 The following work is thus carried out in the theoretical field of experience of 
“geometry of representation” in order to answer the question that has been put off: 
“Only if a rectangle lies on a parallel plane to the plane of projection is it still a 
rectangle in perspective?,” which is reopened by the teacher. 

The first to answer is Riccardo, middle level: In my opinion a rectangle 
which is not opposite in reality, cannot be still a rectangle in perspective, be-
cause the rectangle would not be parallel to the plane of projection, otherwise 
in perspective straight lines that are not parallel to the plane of projection 
would be coincident or convergent, so the rectangle could not keep as such. 
 Luca comes next (high level): If a rectangle is not parallel to the plane of 
projection, two of its sides are not parallel to the plane of projection and so 
they converge in perspective and this two sides are no longer parallel. 

The teacher resumes and engages in making these formulations shared by students. 
He also shows how some students’ reasoning presents characteristics which are 
similar to those of the reasoning by reductio ad absurdum. 
 He shows a shared template for proof as a synthesis of individual attempts to 
produce proofs, a few of which have proved to be successful too. It was the mo-
ment for arrangement of a mathematical reasoning within a mathematical theory. 
At last the teacher helps reformulating the statement in its complete form: 

Theorem 1: A rectangle ABCD is still a rectangle in perspective if and only if 
ABCD lies on a parallel plane to the plane of projection. 

He analyses it together with the class and shows how every conjecture, once vali-
dated, increases the number of statements which can be used to validate others. 

New empirically undecidable problem The work goes on and students discuss the 
following new empirically undecidable problem: “Some students had recognized a 
few parallelograms which are not rectangles among the rectangles that had been 
transformed by perspective. Can a point in the space be found, from which a rec-
tangle is seen in perspective as a parallelogram non-rectangle?”. After a few min-
utes of reflection the teacher declares the statement is false and asks the students 
for a personal proof that makes use of the statements. Significant answers: 

• Alessandro, high level: A rectangle cannot be a parallelogram in perspective. If 
it were parallel to the plane of projection, we could see only a rectangle accord-
ing to theorem 1; if it were not parallel to the plane of projection, it would not be 
possible, because the lines joining at a point are not parallel to one another; and 
it is not true also because it would be in conflict with P3. 

• Lara, middle level: If a rectangle ABCD lies on a plane that is parallel to the 
plane of projection, then it will be still a rectangle in perspective, according to 
P1. If we suppose a rectangle not parallel to the plane of projection, at least two 
of its sides are not parallel to the plane of projection (according to P4) thus (ac-
cording to P3) its sides either converge or are coincident in perspective, but in 
this case it is not a parallelogram. 
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• Isabella, middle/low grade: No, because according to P4 if a rectangle is not 
parallel to the plane of projection in reality, then at least two of its sides are not 
parallel to the plane of projection and P3 says that straight lines parallel to one 
another in reality that are not parallel to the plane of projection either converge 
or are coincident in perspective, so the statement is false. 

Each production is characterised by a great effort to look for logic relationships and 
to justify statements theoretically, by using "true" shared statements and a geomet-
ric language. 
 Many students, about one half, reveal an ability to build a deductive reasoning 
and to use geometric language correctly; very few do not write anything. During 
the formulation of the proof, many students moved pencils or a card in the air, oth-
ers declared they had imagined moving a card in the space and had “found out” the 
relationships that they had later expressed in the proof. 
 These facts confirm that the dynamic exploration of the problem situation and 
mental dynamics are constitutive aspects for the construction of proof. 

From the “Sun Shadows” Field of Experience to the  
“Sun Shadow Geometry” Fields of Experience 

In the 8th grade students were involved in activities aimed at a “transfer” of 
the method they had followed in the preceding two years (see previous subsec-
tion). The aims of the research were similar and were raised by the wish to ver-
ify after a while whether the students had acquired a method in activities related 
to “theory” building and proving. Our didactic purpose was also to conclude the 
three years’ work by setting up a reflection on possible comparisons between 
“theories”. 
 In the “sun shadows” field of experience we set the problem: “how can the sun 
draw its shadows?”; and we asked to find out the rules according to which the sun 
“drew its shadows” 
 The students worked on geometric problems which were introduced as dynamic 
problem situations to be explored. 
 At first we asked them to watch how the shadow of a card varied according to 
its position in the space and to make out what geometric figures the shadow might 
take on in the analysed situation, “when” the shadow of the card was still a rectan-
gle and “what” geometric properties of the rectangle the shadows of the card still 
maintained in every case or in some cases. 
 The aim of this task is to identify the Euclidean geometric properties that are in 
conflict with the sun shadows geometry, or that are in accordance with it, in order 
to rationalize the observed transformations by formalizing a few rules which “gov-
ern them”. 
 The starting conjectures were of this sort: “When the rays are perpendicular 
to the card, its shadow is a rectangle,” “When the card is opposite to the sun, …,” 
“if the sun is lateral, the shadow becomes a parallelogram,” “when the card follows 
the same direction as the sun rays, its shadow is a segment,” “when the card is per-



LAURA PARENTI, MARIA BARBERIS, MASSIMA PASTORINO AND PAOLO VIGLIENZONE 

274 

pendicular to the sun, …”; many of these conjectures were supported by drawings 
that display the students’ opinions. 
 The dynamic exploration led the students to make it clear that every result de-
pends on the position of the object (or of the geometric figures) in relation to the 
inclination of the sun rays and on the plane where the shadow is thrown. In the 
work they implicitly defined a vertical plane (wall) or a horizontal one (desk or 
floor) as planes where shadows are thrown and their works are affected by these 
choices, which will later be made explicit and clear. The students singled out the 
border-line position by themselves; they used the expressions “sun rays direction” 
or “plane containing the sun rays” or “parallel plane to the sun rays,” according to 
circumstances. We decided to fix the horizontal plane as the plane where the 
shadow is thrown. 
 We immediately noticed that such productions, which were expressed in a lan-
guage strongly connected with reality, made use of both concept-words such as 
“frontal,” “lateral,” whose meaning was common to the class, and words belonging 
to the geometric language they had learned the previous year. Some make contra-
dictory statements, others formulate conjectures equivalent to one another. In every 
class the discussion converges on parallelism of sun rays and the reflection on the 
produced conjectures defines the border-line case clearly and causes the class’s 
language to develop quickly in order to sort out conjectures everybody agrees on 
(only three hours’ work). 
 When they think of the card sides, the students say “straight lines parallel two 
by two,” when they think of the card changing into a segment, they say “when the 
straight line is in the same direction as the sun rays …”. The physics support, 
which was useful to explore the situation, is soon overcome as such and the refor-
mulation of the statement is no longer based on the phenomenon of shadows, but it 
uses the geometric language (straight line, direction, etc.). 
 The teacher engages in making the statements that have arisen shared by stu-
dents; then in cooperation with the class he sorts out the ones everybody recognizes 
as “true,” he helps to classify and reformulate these statements in a general,  
abstract and conditional way, starting to build those elements of “theory” of sun 
geometry, through which the students will be required to validate a few theorems: 

P1: The shadow of a straight line is still a straight line (or a point when the 
straight line follows the same direction as the rays). 
P2: Parallel straight lines project either distinct parallel shadows or coinci-
dent ones.  

During the discussion an unexpected incident happens in the class (and is sug-
gested in the other classes by the teachers): Riccardo (middle level, but already 
extremely interested in the activity last year) says “I see: the shadow of a rectangle 
is always either a pallelogram or a segment.” 
 The teacher asks the class to prove “Riccardo’s theorem” by using the known 
properties. So the problem of “how to prove” is made concrete through a simple 
example. We could verify that almost all students remembered how to build a sim-
ple proof. 



DYNAMIC EXPLORATION, “THEORY,” “THEOREMS” 

275 

Andrea, one of the best student: Except for the border-line case, when the 
shadows of opposite sides are coincident, the shadows a rectangular figure 
throws are always quadrilaterals. I suppose by absurdum that the shadow is 
not a parallelogram: in this case the shadow must be a trapezium, or a trape-
zoid. But according to P2 I know that parallel straight lines always project 
parallel shadows, therefore it is not possible for parallel sides to project non-
parallel sides, or to draw the shadow of a quadrilateral with non-parallel 
sides. 
 In other words [see Figure 1 below]: it is not possible for sides AB and CD 
to project non-parallel segments as well as it is absurd that projected lines BC 
and DA are not parallel. 

 

Figure 1. Picture by Andrea. 

It is useful to make use of P2 again in order to demonstrate the second part of 
the statement. 
 When the rays lie on the same plane as the sides AB and DC or AD and 
BC, the shadows they project are segments (P2), therefore the shadow of the 
whole rectangle will be a segment, when it lies on the same plane as the sun 
rays. 

The teacher discusses the students’ work and enhances the discussion on the theo-
retical ground: “How can we be sure that a quadrilateral casts a quadrilateral as a 
shadow? If we say parallel lines throw parallel shadows, that does not necessarily 
mean that, for instance, some sides may not become parallel to one another in their 
projection.” 
 The students state that a closed figure must cast a closed shadow, consecutive 
segments throw consecutive (or superposed) shadows, etc. 
 The teacher suggests the idea they need to increase the number of basic state-
ments, in order to demonstrate Riccardo’s statement in a correct and complete way. 
They must find more statements that everybody recognizes as “true,” referred to 
the simplest geometric elements. 
 A discussion follows and the students suggest statements for the necessary com-
pletion. The following stage concerning the choice and the reorganization of 
the simplest elements leads to defining all the “primitive” statements of the “sun 
geometry”. 

P0: The shadow of a point is a point. 
P1: The shadow of a straight line that does not follow the same direction as 
the sun rays is a straight line; the shadow of a straight line that follows the 
same direction as the sun rays is a point. 
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P2: If a point lies on a straight line, the shadow of the point lies on the 
shadow of the straight line. 
P3: Two straight lines locating a parallel plane to the rays cast superimposed 
shadows (except in the case they are both in the same direction as the sun 
rays). 
P4: Two distinct straight lines locating a plane non-parallel to the rays cast 
distinct shadows. 
P5: Two parallel straight lines cast parallel (either superimposed or distinct) 
shadows. 
P6: Two intersecting straight lines locating a plane non-parallel to the rays 
cast intersecting shadows. 
P7: The shadow of a quadrilateral lying on a plane non-parallel to the rays is 
a quadrilateral.5 

After assuming the previous statements to be true, teachers asked the pupils to 
prove the following theorems individually: 

T1: The shadow of a parallelogram lying on a plane non-parallel to the direc-
tion of the rays is a parallelogram. 
T2: If the shadow of a four-sided figure is a parallelogram, then that quadri-
lateral is a parallelogram individually. 

The association of (T1) and (T2) is an example of necessary and sufficient condi-
tion, which requires reasoning by reductio ad absurdum in order to prove. We de-
cided to divide our work into two phases (working on P1 before and later on P2) 
and to have a discussion, checking and communicating both the results and the 
ways to reach them between the former stage and the latter one. Eventually the 
teacher suggested a common proof frame. 

A new theorem within “sun shadow geometry” One of the aims of this work was 
to set a significant problem about the “sun shadows,” whose solution could be 
validated within “sun shadow geometry”. We chose the following problem from 
Boero et al., 1996 (see also Boero et al., 2006), also in order to compare the stu-
dents’ behaviours in two experimental situations, which were very different as to 
developing explicit elements of “theory”: 

New problem: In the previous years we learnt that the shadows of two vertical 
sticks on the horizontal ground are always parallel. What about parallelism of 
shadows in the case of a vertical stick and a not-vertical one? Can their shad-
ows be parallel? Sometimes? When? Always? Never? Make some conjec-
tures and express your conclusions in statement forms. 

Possibly by moving two pens on a desk (no sun ray in the classroom!), the students 
easily sort out situations when oblique non-parallel lines have parallel shadows, 
they describe them also in drawings, many produce a verbal description as well, 
but only a few manage to describe the identified situation by formulating a correct 
and complete statement. For example Stella (high level): “If we have two non-
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parallel lines, each of which lying on one of two planes parallel to each other and 
to the sun rays, the shadows of the two lines will be lines parallel to each other. 
Therefore parallel shadows can be originated by non-parallel lines.”6 
 The statements that have been produced are discussed in class until students 
come to a common formulation like the following one:  

If two straight lines lie on two parallel planes, both parallel to the direction of 
the sun rays, then their shadows are parallel. 

Then teachers ask for a proof of this statement within the “sun shadow  
geometry”. 
 We report a few significant examples of proofs, adding that the teacher had sug-
gested, after a few minutes of free reflection in the class, the students should fix 
one of the two lines in a vertical position. 

Andrea (high level): First of all I fix one of the two lines so that it is upright, 
in order to make my reasoning simpler. Thus only the other one can be 
moved. As the rotation of the latter one takes place on a parallel plane to the 
rays, it belongs to an infinite sequence of lines which, according to P3 
(two straight lines locating a parallel plane to the rays throw superimposed 
shadows, except in the case they are both in the same direction as the sun 
rays) throw superimposed shadows. But in this infinite sequence of straight 
lines there is a vertical line like the first one, which is fixed. As they are both 
vertical, they must be parallel to each other, but according to P5 (two parallel 
straight lines have either superimposed or distinct parallel shadows) they 
throw parallel shadows. But all the shadows the latter line throws rotating are 
superimposed on the shadow of the latter line when it is vertical, thus they are 
parallel to the shadow of the former line as well, which is vertical too. At this 
point I rotate the former line too, which is therefore no longer vertical and ac-
cording to P3 belongs to an infinite sequence of lines, which have parallel 
lines. But all these shadows, as they individualize a single straight line, will 
be parallel to the superimposed shadows which are thrown by the latter line 
one after the other. 

Maria (middle level): If two straight lines lie on two vertical planes both par-
allel to the direction of the sun rays, then their shadows are parallel. First of 
all the straight lines are still such according to P1 (the shadow of a straight 
line that does not follow the same direction as the sun rays is a straight line, 
the shadow of a straight line that follows the same direction as the sun rays is 
a point). According to P3, the two straight lines lying on two planes parallel 
to the rays throw superimposed shadows. Therefore, if I rotate only one line, 
fixing the other one, there will be a case in which it will be parallel to the 
fixed line and so, according to P5, the shadows are parallel; if I do not fix the 
other one, the lines rotating will be parallel in one case and so the reasoning 
is the same. 
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Most low level students follow correct reasoning, supported by drawings as well 
and showing they have understood the problem, but they do not succeed in shifting 
the reasoning to the theoretical level of proving. For instance: 

Omar (low level): The straight lines in the picture 1 (see Figure 2) look like 
intersecting, but they are oblique and they are parallel to the sun rays as the 
picture 2 shows. From the picture 2 (see Figure 3) we can also see that the 
shadows are parallel. 
Statement: If two oblique straight lines are parallel to the sun rays, their 
shadows are parallel. Proof: it is true, because even though they are oblique, 
the shadows are parallel to one another. 

 

 

Figure 2. Picture 1 by Omar. 

 

Figure 3. Picture 2 by Omar. 

Students’ productions show how dynamic exploration represents the fulcrum of the 
students’ thinking process during the proving phase, in accordance with Boero et 
al., 2006. 
 They also show how their awareness of a reference theory allows many students 
to formulate several quite exhaustive proofs.7 

Comparison of “Theories” 

At the end of our work we wanted to stress that mathematical truths are “rela-
tive”: a statement of a theorem can be either true or false according to the reference 
theory that has been chosen. For this purpose we asked the following question (as 
an individual task):  

Last year we proved that a rectangle never changes into a parallelogram non-
rectangle in perspective. This year we have proved that the shadow of a rec-
tangle is always a parallelogram (except in the border-line case). These re-
sults may seem contradictory, but they are both true. How can you explain 
that? 
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In general, students write: “They are two completely different things” and most of 
them explain that an eye sees parallel straight lines to converge to a point in per-
spective, while shadows depend on the sun rays that are parallel to one another. In 
particular: 

Michela (high level): Geometry is not a unitary subject at all, it includes sev-
eral disciplines which have their own rules; we have space geometry, the sun 
shadow geometry and many more which have different properties, even 
though they are connected with one another. They cannot be compared with 
one another, because they originate from different observations and starting 
data. Therefore I can say it is logical that results are different, because as to 
geometry we studied last year the main element was perspective: in the draw-
ing the parallel lines of an object had to converge towards a point and thus 
the sides of a rectangle, which were parallel in reality, became converging 
and they could not draw a parallelogram. The sun shadow geometry is based 
upon different rules and so the ones we found out last year could not fit, as 
the latter is based upon parallelism of the sun rays that keeps parallelism of 
the sides of an object in its shadow. 

Alessandro (high level) after drawing two proofs related to perspective lines 
converging and parallelism concludes: in different geometries two different 
statements can be both true, even if they may sound in contradiction, because 
they follow different rules and laws. 

Simone (middle/low level): They are two completely different things, refer-
ring to two different theories. Starting points for reasoning are different. 

CONCLUSION 

At the end of the reported long-term teaching experiment we tried to understand 
what circumstances had allowed teachers to involve the whole classes actively in 
mathematical argumentation/proof activities and to reach quite satisfactory results. 
Our analysis was performed in the perspective of performing wider experiments. 
We took the following elements into account: 
 
General conditions not depending on the planning of the teaching experiment 

• School environment. Class team’s cooperative work: surely it had a positive 
influence on the students’ classroom work (in particular as concerns the strong 
engagement in improving verbal performances, under the joint pressure of 
mathematics and language teachers); composition of classes: classes without 
any disturbing elements and with at least one particularly interested student in 
every class. They used to echo the teacher’s voice, provide an appropriate me-
diation for difficult issues through their texts and sometimes let the teacher 
change some aspects of the planned activities, in order to favour students’ un-
derstanding. 
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• Extra school environment. Teachers worked in small town schools, where de-
manding school education is highly appreciated. The families, which were rather 
homogeneous as to social and cultural status, showed confidence in the choices 
the class teams made. 

Specific and intentional conditions 
In our opinion, the main factors that let this long-term teaching experiment work 
out, and the reasons for it, are the following ones: 

• Choice of suitable experience fields. The experience fields of “plane representa-
tion of visible space” and “sun shadows” turned out to be particularly stimulat-
ing in every stage of our research, because they enabled teachers to carry out 
numerous activities implying observation, rationalization of reality and an early 
meaningful approach to tridimensional geometry (not restricted to studying tra-
ditional solids: cube, cylinder, etc.); they helped students to build (under the di-
rection of the teachers) the statements of the reference theory, as significant 
situations are easy to be tested; they allowed us to choose problem situations 
which are suitable for dynamic exploration and, on the other hand, do not allow 
an empirical solution (through measurement, physical testing, etc.); they al-
lowed as to display easily the “ideal” character of geometric models. 

• Choice to face significant geometric problems which require dynamic explora-
tions of problem situations. Dynamic exploration is one of the terms that most 
contributed to pursue our aims, also because it allows us to carry out complex 
mental experiments. We verified how analysing geometric figures on varying 
their position in the space (or on varying the observer’s point of view) helped 
the students to discover/to become aware of mental dynamics influencing their 
production, but above all it led them to recognize naturally the “rules” regulat-
ing the examined geometric transformations, considering the border-line situa-
tions as well. The following formulation of the invariant table (see Bartolini 
Bussi, 1996) and of the terms that will make up the reference “theory,” was 
positively influenced by that. For instance, “The shadow of a straight line (not 
lying in the same direction as the sun rays) is a straight line; the shadow of a 
straight line lying in the same direction as the sun rays is a point” is a formula-
tion suggested by the students. Within the chosen fields of experience, the dy-
namic exploration helped to formulate conjectures that are impossible to be 
proved only through physical experiences and thus to justify mathematical proof 
as the only possible mean to validate them. The reasoning that supported the 
students’ proofs was positively affected by the dynamical explorative feature as 
well. Moreover, we verified that all the students, when describing a specific 
“state” of the examined situation, often properly used notions  such as parallel-
ism, perpendicularity etc. (which had been built in the same “fields of experi-
ence” through previous activities). The habit of analysing geometric figures by  
varying their position in the space and their specific shape, contributed to over-
come conceptual ambiguities/problems (which are often met in the traditional 
approach to geometry) between a drawn figure and the concept it represents. 



DYNAMIC EXPLORATION, “THEORY,” “THEOREMS” 

281 

• Choice of the problem situations and their management in the classroom. The 
experience. We suggested different problems which, being significant as to their 
mathematical content and interesting as to the research of their solution, enabled 
teachers to keep the students’ interest alive for a long time. The problems were 
formulated as questions, whose answers were to be sought within diversified ac-
tivities: in the 6th level observations, drawings, photos and arguments; in the 
other classes we followed the stages: to observe  to produce conjectures and 
throwing doubts upon the formulated conjectures and suggesting knowledge 
should be organized in a different way in order to prove them (due to the fact 
that the possibility of an empirical test failed). 

• Choice of the didactic contract. The students accepted the intellectual challenge 
and the special didactic contract that was explicitly proposed. In effect the 
teacher declared they would carry out an “experimental” work on high school 
issues, thus of high standard. The students knew they would be evaluated, only 
favourably, on the grounds of their efforts and application, not of their outcome. 
Hence, every student could feel a protagonist: the low level students were not 
afraid of unfavourable evaluation and took an active part; the naughtiest stu-
dents endeavoured to follow the class work, because they were aware they could 
be as prominent as the best ones. Everybody immediately realized the best intui-
tions did not always come from the best students, so kept their initial interest in 
the long run. For instance in a class it was important that Giada and Sabrina, two 
high level girls, found it difficult to represent mentally the situations that were to 
be analysed and, therefore, by making a wrong use of a statement, they drew un-
realistic conclusions without realizing it. 

Intentional conditions relating to the general choices of the project 

• Paying attention to the language. The students were already accustomed to for-
mulate motivated hypotheses, to discuss them and to compare individual texts. 

  This ability relating to language, which had been built during previous activi-
ties of the project (for instance, in the 6th level within activities concerning 
properties of numbers, shadows or observations of objects from different points 
of view) enabled the class language to develop rapidly from a unrefined one, 
based on experience, to the geometric language. We paid great attention to logi-
cal refinement of language as to its vocabulary and its correct use (of course tak-
ing account the students’ age). In particular the use of words and expressions 
like “every,” “all,” “some,” “it may be that,” “it must me,” “if … then,” etc. was 
put into discussion. Every refinement of hypothesis coincided with a refinement 
of the language that was used to reformulate the hypothesis. So the students got 
accustomed, gradually but constantly, to revising and to improving the formula-
tions they already knew, gradually using a more and more precise language.  

  The attempt to build “theory” together with the students was very helpful to 
refine their language. In these work stages the whole class’s attention shifted 
consciously to the words that were to be used, to their meanings and to the pos-
sible ambiguity of formulation. The low attainers also succeeded in mastering 
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many elements of a correct and proper language they managed to use con-
sciously, so kept their starting interest in the long run. For instance in a class this 
was important. 

• The teacher’s role. In our work this is very important, not only as a cultural ref-
erence for families and students, but as a determinative factor in every “condi-
tion” we have taken into account. The teacher was able to establish relationships 
based on mutual trust with the students; he was able to act as a cultural mediator 
who coordinates and enhances the mathematical discussion (Bartolini Bussi, 
1996) and leads it from the empirical ground to the theoretical one. Namely he 
was able to be the “voice” of the reference culture during the stages of gradual 
and slow construction of language and of the meanings of the words “state-
ment,” “theorem,” “mathematical proof”. 

In the examined fields of experience we verified the teacher can coordinate 
the students’ attempts to issue statements, to take an active part in building a 
reference “theory” and in producing proof frames without pushing or forcing the 
phases of their learning process. 

In our research group the teacher’s role is very important in order to plan ac-
tivities and analyse the students’ mental processes (see Malara & Zan, 2002). 

In conclusion we think the activities that were carried out during our “long-term 
teaching” experiment may be a correct and culturally significant approach to “the-
ory” and mathematical “theorems”. Our outcomes seem to confirm students can be 
introduced to theorems early and unselectively, provided that activities are carried 
out in suitable contexts (fields of experience) and with a correct mediation. 
 The theoretical reference frame within which we worked (fields of experience, 
mathematical discussion and cognitive unit), together with the process we found, 
seem to have important didactic implications (seem to be didactically helpful) in 
order to help the high school 1st and 2nd grade students to overcome the difficul-
ties they may have to face in the traditional school approach to theorems. 

OPEN PROBLEMS 

One of the problems our group mostly debated was the level of generalization, ab-
straction and awareness the low attainers of the classes (about one third of the 
whole number) reached in the activities we had planned. 
 These students took part in the activities constantly and with great interest, and 
acquired quite satisfactory results as concerns mastery of geometric language. 
  They actively took part in the open discussions related to the activities of “the-
ory” construction, sticking constantly with the semantics of the statements we dis-
cussed. On the other hand we noticed that their processes of abstraction/ generali-
zation met big obstacles during proving activities: the low grade’s participation 
arose only on an empirical level, thanks to continuous concrete references. 
 We think it could be interesting to check whether an appropriate management of 
this empirical escape may be useful to allow low attainers to move towards the 
theoretical level; whether the planned activities may have better results if carried 
on for longer periods (thus attributing blockages to lack of time for approaching the 
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more demanding tasks and levels of performance); whether the lowest attainers in 
grades 7–8 of compulsory school need specifically designed activities or whether 
they are precluded from the intended levels of performance. 

NOTES 
1 The former task enhances the students’ ability to communicate meanings (position), by stressing the 

producer’s role; while the latter one puts the importance of the continuous shift of the pro-
ducer/reader roles into evidence. 

2 This task is aimed at identifying the Euclidean geometry properties that are in conflict with the geome-
try of representation, or that are in accordance with it, in order to rationalize the observed transfor-
mations by formulating a few rules which “govern them”. 

3 These activities have contributed to building the first elements of a shared idea of theorem and of a 
strict mathematical language, which is useful to find/to get rid of possible ambiguities in the formu-
lation of the statements which have been previously produced. 

4 As far as these aspects are concerned, our teaching experiment can also be considered as a prototypical 
situation where students can understand and take part in the development process of abstrac-
tion/formalization which a mathematician and, more generally, a scientist must undertake, when 
from the observation of particular facts he formulates conjectures about general behaviours that he 
must justify later within a theory of reference. 

5 These statements are superabundant and are not independent (in particular P6 and P7 can be proved by 
using P1 and P2). 

As teachers had little time at their disposal, they had not been considering that for long, also be-
cause the class had learnt since the previous year that whenever a statement is demonstrated as true, 
it can be used in order to validate some more statements. 

Because of lack of time, teachers could not complete building the geometric model and introduce 
the projective geometry elements that are necessary to compare the model with the geometry of rep-
resentation (elementary statements, correspondence between a point on a plane and its shadow, etc.). 

6 We notice that, in the experiment described in Boero et al., 1996, most students had come to correct 
and complete statements only thanks to the discussion led by the teacher. 

7 As regards this aspect we can notice remarkable progress in comparison with the preceding teaching 
experiment reported in the above-mentioned paper. 
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MARIA ALESSANDRA MARIOTTI 

14. GEOMETRICAL PROOF 

The Mediation of a Microworld 

INTRODUCTION 

Intuition and Theory 

It is common opinion that geometry is a science, deeply rooted in common experi-
ence and based on empirical data: much of the feeling of certitude and the guaran-
tee of consistency that geometry inspires has always come from these origins. 
Recent history witnesses a deep change in the attitude of mathematicians towards 
geometry, and mathematics in general: a complete autonomy of the axioms from 
their interpretation in reality was stated and a clean separation was accomplished 
between the logical and the psychological level.  
 Certainly, geometry has lost its centrality as a corpus of truths about the physical 
world that it had maintained through the centuries; after the theoretical re-
organization of mathematical knowledge geometry is now a piece of theory among 
others.  
 As soon as the theoretical aspect of mathematics, and in particular of geometry, 
prevailed a break occurred separating the formal and the intuitive level. The clarifi-
cation of the relationship between the two levels was stated in the formal distinc-
tion between truth and validation and as far as mathematics is concerned, the 
problem seemed to be solved.  
 Nevertheless, as the following passage shows, the complex link between the 
intuitive and the theoretical level cannot be neglected and mainly at the educational 
level. 

[…] the choice of the basic elements of geometry is not determined “a pri-
ori”: the simplest elements are selected with respect to psychological intui-
tion. That is, they are those elements, the notion of which is already formed 
in one’s mind as the content of the concept of space, for instance, the point, 
the line and the plane. Geometrical properties which are the basis of the axi-
oms gather around a number of notions, unquestionable, but intuitively un-
derstandable by themselves.  
(Enriques, 1920, p. 3). 

Although it is reasonable to think that for a mathematician the notion of primitive 
elements is already formed, this is not the case for our pupils. Managing the com-
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plex relationship between intuitive and theoretical dimensions constitutes one of 
the main difficulties of geometry teaching/learning.  
 Although the concepts of Euclidean geometry taught at school derive from the 
experience of realistic physical space and, in principle, do not contradict ordinary 
beliefs, complete congruence between the two systems is not always assured. 
 As far as geometrical reasoning is concerned a particular kind of mental object 
is involved; these are commonly referred to as geometrical figures. A geometrical 
figure—as it is used in geometrical reasoning—is neither a pure image nor a pure 
concept. In this sense and for this reason, Fischbein (1993) introduced the notion of 
figural concepts, referring to geometrical figures as mental entities which possess, 
simultaneously, both conceptual and figural properties. According to the theory of 
figural concepts, any simple geometrical reasoning deals with: 

a mixture of two independent, defined entities that is abstract ideas (con-
cepts), on the one hand, and sensory representations reflecting some concrete 
operations, on the other. 
(Fischbein, 1993, p. 140) 

Geometry maintains its own specificity: what is particular about geometry is that it 
conserves in the reasoning process an objective, pictorially representable property 
of reality which is space. Actually, as previous studies show, harmonizing the two 
components of figural concepts is neither spontaneous nor simple (Mariotti, 1991, 
1995, 1996a): difficulties in geometrical reasoning can be interpreted in terms of a 
rupture in the fusion between figural and conceptual aspects.  
 Besides the possible discrepancies between spontaneous conceptualization of 
space and geometrical concepts (Mariotti, 1996a), one of the main characteristics 
distinguishing geometry from intuitive cognition is the way in which they are made 
acceptable. A geometrical statement becomes acceptable only because it is sys-
tematized within a theory, with a complete autonomy from any verification or ar-
gumentation at an empirical level; in other word it becomes a theorem (Mariotti et 
al., 1997).  
 Although it is impossible to reduce mathematics (and mathematical activities) to 
formal deduction, its theoretical dimension constitutes a fundamental aspect: 
mathematical knowledge is characterized by its organization according to axioms, 
definitions and theorems.  

What does mathematics really consist of? Axioms (such as the parallel postu-
late)? Theorems (such as the fundamental theorem of algebra)? Proofs (such 
as Gödel proof of undecidability)? Definitions (such as the Menger definition 
of dimension) […] Mathematics could surely not exist without these ingredi-
ents; they are essential. It is nevertheless a tenable point that none of them is 
the heart of the subject, that a mathematician’s main reason for existence is to 
solve problems and that, therefore, what mathematics really consists of is 
problems and solutions.  
(Halmos, 1980, p. 519) 
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Thus, the complexity of the educational problem is linked to the difficulty 
of harmonizing the intuitive and the theoretical level and can be summarized 
as follows: the main objective is twofold: on the one hand to develop a dialectic 
interaction between the figural and the conceptual aspects, on the other hand to 
construct a theoretical framework within which this interaction is accomplished.  

School Geometry: Intuitive versus Deductive 

The complexity of the relationship between the intuitive and theoretical dimension 
of geometrical knowledge leads to a long-standing controversy between two oppo-
site perspectives, reflecting the basic dichotomy empirical/deductive. (Schoenfeld, 
1985). The opponents of the deductive approach hold that deductive geometry is 
meaningless without a deep intuitive understanding and this should be rooted in the 
empirical world. Thus often the accent on intuition determines a radical shift to an 
empirical approach. That means that a generic and ambiguous criterion of intui-
tiveness becomes the inspiring principle: observing and discovery become the ba-
sic geometrical activities, not much attention is paid either to developing a 
theoretical attitude, or to elaborating a coherent system of geometrical properties. 
The gap between spontaneous conceptualization of space and geometry is underes-
timated; generally speaking geometry is considered as being a natural development 
from physical experiences.  
 As a consequence, the great difficulties that students show are interpreted as 
caused by the “formal classroom exposure to geometry in its deductive–axiomatic 
form” (p. 249); the remedy is simple: banish any theoretical element and simply 
refer to intuition.  
  Actually a deductive approach to geometry has become very rare; it disap-
peared from the curricula and even in those countries, e.g. Italy, where the curric-
ula did not change, it almost disappeared from school practice. 
 In recent years the didactic problem of “proof,” and more generally the educa-
tional problem of a theoretical approach to mathematics, has exploded, as the flour-
ishing of research projects, reports and discussions testify. A shared opinion 
emerged:  

[proof] deserves a prominent place in the curriculum because it continues 
to be a central feature of mathematics itself, as the preferred method of  
verification, and because it is a valuable tool for promoting mathematical  
understanding.  
(Hanna, 1995, pp. 21–22) 

A Didactic Problem 

In the Italian school, geometry is one of the basic topics at any school level.  
 Referring to the previous discussion, it is interesting to read what official Italian 
programs state. An implicit assumption about Geometry education is recognizable: 
according to a natural development from intuition to theory, the first level of in-



MARIA MARIOTTI 

288 

struction—corresponding to 1st to 8th grades —is based on an intuitive approach 
for which reference to reality and observation is constant and is not questioned, the 
second level—corresponding to 9th to 12th grades—is devoted to a rational sys-
tematization of intuitive knowledge according to a deductive approach. 
 For instance, at the primary school level the official programs suggest the fol-
lowing: “The introduction to the study of geometry must be naturally related to 
different stimuli coming from the perception of reality. […] A rich and various 
geometrical activity is to be promoted, starting from manipulation of concrete ob-
jects and from observing and describing their transformations and mutual positions 
(emphasis is mine).”  
 As for the secondary level, the programs for junior schools state as the first topic 
of geometry: “From the objects to the geometrical concepts: study of 2-D and 3-D 
figures starting from concrete models (emphasis is mine)”. 
 At the upper secondary level, the new programs, proposed and not yet approved, 
remind us: “The basic aim of geometry is that of progressively guiding the student 
from intuition and discovery of geometrical properties to rationally describing 
them […].” 
 In the tradition of the Italian school, the beginning of the 9th grade (at the be-
ginning of high school) coincides with the introduction to deductive geometry. In 
the previous grades geometry is usually thought at an “intuitive” level, that is a 
collection of geometrical facts is presented to pupils, together with a number of 
definitions. 
 At the beginning of high school, a very difficult didactic problem arises:  

how to manage such a delicate relationship between the geometrical back-
ground that pupils have and the new theoretical approach to this knowledge.  

This relationship is usually very difficult to be managed, as everybody (and teach-
ers better than others) knows very well. Often, the pupils fail to grasp what is new 
in respect to the old, thus it becomes impossible for them to make sense of the new 
way of doing geometry. 
 A crucial point is that of changing the status of justification. 

Justifying 

One of the main points in the comparison between the intuitive and the deductive 
approach to geometry is the role played by “justification”; that is by explaining, 
arguing, corroborating, verifying a particular statement.  
 A deductive approach is deeply rooted in a practice of justification; in fact, a 
deductive approach to geometry means the construction of a system of geometrical 
properties, coherently related through appropriate argumentation. In particular, it 
means constructing a system, which is based on a number of primitive assump-
tions, often related to an intuitive interpretation of evidence (=axioms), and can be 
enlarged by introducing new statements, related to the previous ones through a 
proof (=theorems).  
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 Where proving is concerned, it is commonly accepted that arguing and proving 
do not have the same nature; arguing has the aim of convincing, but not always 
does the necessity of convincing somebody coincide with the need of stating the 
theoretical truth of a sentence.  

[…] une très grande distance cognitive entre le fonctionnement d’un raison-
nement qui est centré sur les valeur épistémiques lieés au statut théoriques 
des propositions. “…” Passer de l’argumentation à un raisonnement valide 
implique une décentration spécifique qui n’est pas favorisée par la discussion 
ou par l’interiorisation d’une discussion. […] Le developpement de 
l’argumentation même dans ses formes les plus élaborées n’ouvre pas une 
voie vers la démostration. 
(Duval, 1992–93, p. 60) 

The gap between these two modalities may be very deep and sometimes argu-
ing can become even an obstacle to a correct evolution of the very idea of proof 
(Balacheff, 1987; Duval, 1992–93, see also Mariotti, in press)  
 According to a so-called “intuitive approach” to geometry, based on observation 
and measure, pupils intuitively “discover” certain facts, most of them with a high 
degree of evidence. Often the teacher introduces geometrical facts through a “justi-
fication,” but still such supporting arguments have the specific aim of convincing 
pupils of the evidence of those facts, and in this perspective they are far from pro-
viding pupils with a basis for approaching the deductive method. Moreover, pupils 
are never asked to justify their knowledge, they must simply know the “fact,” the 
truth of which is considered immediate and self-evident, i.e. intuitive (Fischbein, 
1987). Thus, according to pupils’ experience, justifying pertains to the teacher, and 
has the aim of convincing one of the “evidence” of a certain fact; as a consequence, 
when a certain knowledge is attained, its justification is no longer necessary and is 
quickly forgotten. 
 Sometimes this phenomenon is particularly evident. Consider the case of the 
Pythagorean theorem. The common justification used by teachers to introduce it is 
based on one or two of the traditional “visual proofs” and has the aim of convinc-
ing pupils of its obviousness. However, a few months later, everybody knows the 
Pythagorean theorem and is able to apply it; nevertheless once the statement is 
learned, very few of the pupils can remember any “proof”! Actually there is no 
need to remember any justification: as soon as a statement reaches the status of 
evidence, any argument becomes useless and ready to be forgotten. According to 
its nature, intuition contrasts the very idea of justification. Stressing intuitiveness 
may become an obstacle to developing a need for justifying if the correct perspec-
tive from which the arguments make sense is not achieved. In other words, when 
intuitive properties are concerned, it is senseless to ask for supporting arguments, 
and the only way to give sense to a “proof” becomes to consider such arguments 
from a theoretical perspective. In order to express this complex of relationships a 
notion “Mathematical Theorem” was introduced (Mariotti et al., 1997). In the fol-
lowing for mathematical theorem we mean the triplet consisting in a statement, its 
proof and the theory within which the proof make sense. 
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 In summary, from a didactic point of view, when a deductive approach is con-
cerned, there are two interwoven aspects to be developed: the need of justification 
and at the same time the idea of a theoretical system within which that justification 
may become a proof. Proof makes sense in respect to a theory and vice versa; thus, 
the introduction of a deductive approach presents two problems of sense, which are 
interrelated: the sense of proof and the sense of theory. 
 In other words, the first difficulty to be overcome is related to developing the 
need of a justification, and this contrasts with the intuitive approach to which pu-
pils are used, the second difficulty is related to the possible cognitive rupture be-
tween argumentation, i.e. a set of arguments supporting the acceptance of a 
statement, and mathematical proof, validating a statement within a theory.  
 The following discussion aims to face these crucial educational points and pre-
sents the choice of a specific “field of experience” (Boero et al., 1995): geometrical 
constructions within a particular Dynamic geometry Environment (Cabri-géomètre). 

THE FIELD OF EXPERIENCE OF GEOMETRICAL CONSTRUCTIONS IN  
THE CABRI ENVIRONMENT 

Theorems and Constructions in a DGE 

A geometrical construction consists of a procedure that, through the use of specific 
tools and according to specific rules, produces a drawing. A construction is consid-
ered correct if the tools have been used according to the stated rules.  
 Despite the fact that there is a concrete counterpart of a geometrical construction 
that can be accomplished on a sheet of paper, geometrical constructions have a 
theoretical meaning, which overcomes the apparently practical objective. It is pos-
sible to state a correspondence between specific tools and their use and a set of 
axioms characterizing a piece of theory. Within this theory the validity of a con-
struction will correspond to a theorem. Construction problems belong to the classic 
tradition of geometry: the impossible problems, so important in the history of 
mathematics, clearly illustrate the theoretical aspect of constructions (Heath, 1956, 
pp. 124–31). 
 Actually, the theoretical meaning of geometrical construction problems is very 
complex, and certainly not immediate for students to be grasped (Schoenfeld, 
1985); it seems that the very nature of the construction problem makes it difficult 
to take a theoretical perspective, as shown in a completely different school context 
(Mariotti, 1996b).  
 Let us consider the drawing activity in a geometrical environment such as that 
provided by a Dynamic geometry Environment, such as “Cabri-géomètre” (Baulac 
et al., 1988).1 
 The internal logic of a Cabri-figure is not directly evident, but appears at once 
when one of the elements of the figure is moved. The particular “dragging” func-
tion permits one to move one of the elements, whilst maintaining all the geometri-
cal relationships defined by the menu commands used in its construction. The 
movement becomes an essential component of the meaning of a Cabri-figure  
(Laborde, 1993). 
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 Cabri-figures possess an intrinsic logic, which is the logic of their construction; 
the elements of a figure are related in a hierarchy of relationships, corresponding to 
the procedure of construction.  
 Figures produced by “Cabri-géomètre” are seen, but they must be conceptual-
ized in order to be managed. On the one hand, the sense of a Cabri-figure consists 
of conceiving a figure in terms of its own (characterizing) geometrical proper-
ties and accepting the dragging function as an intrinsic defining element of the 
environment. 
 But there is something more. The dynamic system of Cabri-figures embodies a 
system of relationships consistent with the broad system of a geometry theory. 
Thus, solving construction problems in Cabri means not only accepting all the po-
tentialities of the software, but also accepting a logic system within which the cor-
rectness of a construction can be validated. 
 In conclusion, two main aspects characterize the Cabri environment: one con-
cerns the correspondence between the primitives of the software and the basic 
geometrical properties, the other concerns the dynamic of manipulating Cabri-
figures which corresponds to a specific criterion of validation within a coherent 
system of those properties. According to these two basic aspects, which link the 
Cabri environment and a geometry theory, it is possible to build a correspondence 
between a construction and a theorem, so that justifying the correctness of a con-
struction corresponds to proving a particular statement in a specific theory.  
 The following discussion aims to show how the specificity of the Cabri envi-
ronment is determinant in order to make the sense of justification arise and evolve 
towards a theoretical proof. 
 In particular I’m going to discuss the construction task as it is presented within 
the Cabri environment; the analysis will refer to a long-term experimental project 
carried out over few years (Mariotti, 2000; 2001).  

Semiotic mediation in the Cabri environment  The term “field of experience” is 
used after Boero et al. (1995) to mean “the system of three evolutive components 
(external context; student internal context; teacher internal context), referred to a 
sector of human culture which teacher and students can recognise and consider as 
unitary and homogeneous” (p. 153).  
 As far as our project is concerned, the external context is determined by the 
concrete objects of the activity (paper and pencil; the computer with the commands 
of the Cabri software; signs—e.g. gestures, figures, texts, dialogues).  
 The following example will focus on the functioning of particular objects of the 
external context, offered by the Cabri environment, in relation to the evolution of 
the internal context:  

The Cabri-commands (primitives and macros), realising the geometrical rela-
tionships which characterise geometrical figures; the dragging function which 
provides a perceptual control of the correctness of the construction, corre-
sponding to the theoretical control consistent with a geometry theory. 
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In the concrete realization of classroom activity, both elements may be used by the 
teacher as instruments of semiotic mediation (Mariotti, 2002; Vygotskij, 1978) in 
order to make the internal context evolve towards a theoretical attitude to geomet-
rical knowledge.  
 The evolution of the field of experience is realized over time through the social 
practices of the classroom. In our experiment, classroom verbal interaction is real-
ized by means of “mathematical discussion, i.e. a polyphony of articulated voices 
on a mathematical object, that is one of the objects—motives of the teaching—
learning activity (Bartolini Bussi, 1996, 1998). The polyphony of voices in this 
case concerns the dialogue between the voice of practice and the voice of theory 
about graphical construction. On the one side, the concrete production of a drawing 
on a sheet of paper is a practical activity, whose correctness is definitely controlled 
by empirical verification, on the other side, geometrical constructions have a theo-
retical meaning that overcomes the apparent practical objective. The main motive 
of classroom activities proposed to the students is the development of the idea of 
geometrical construction at a theoretical level. Through the dialogue between the 
voice of the practice and the voice of the theory, the ability in creating and reading 
configurations that is continuously practised in the production of drawings in both 
environments has to be enriched with the theoretical control. 
 According to the previous discussion the crucial point is the status of justifica-
tion, both in what concerns its need and its adequacy in terms of a fixed theory. Let 
us consider a construction task, as it is conceived within the Cabri environment. 
Certainly there are figures to be drawn, but that must be done using the available 
commands on the menu, moreover the figure is controlled by the dragging func-
tion, i.e. a construction task is solved if and only if the image drawn on the screen 
passes the dragging test. As soon as the control by dragging is accepted, the neces-
sity of a justification for the solution comes from the need for explaining why a 
certain construction works (that is, it passes the dragging test), whilst other con-
structions do not.  
 Thus, a justification comes from the need of validating one’s own construction, 
in order to explain why it works and/or foresee that it will function. 
 The key point is that what must be validated is the correctness of the construc-
tion; that is, it is not the product of a procedure, but the procedure itself that must 
be validated. 
 In other words, the problem is shifted from validating by dragging, to explaining 
the “validation by dragging” itself.  
 According to our experience (Mariotti, 1996b) this change of focus is hard to be 
achieved spontaneously. The results of our teaching experiment show that the na-
ture of the particular environment may facilitate this shift, providing a context 
within which a request about the procedure becomes meaningful; nevertheless the 
context itself is not sufficient and the intervention of the teacher becomes crucial. 
The following analysis of a collective discussion aims at showing the complexity 
of the process as well as pointing out the main elements contributing to its devel-
opment. In particular, in the following section an example will be given, describing 
the functioning of the history command.  
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THE MEDIATION OF THE HISTORY COMMAND 

The episode that we are going to discuss involved one of the experimental classes 
of the project (9th grade in a scientific high school (Liceo Scientifico)). The long-
term teaching experiment was based on a sequence of activities centred on the use 
of Cabri, the following example concerns the first activity that was divided into 
two parts. 

The Scenario 

The first part took place in the computer laboratory, where pupils sat in pairs at the 
same machine. Pupils had a general expertise of the computer, but they had never 
used Cabri; after a short acquaintance with the Cabri environment—they were al-
lowed to freely explore the software for about half an hour—the following task was 
presented. 

Construct a segment on the screen. Construct a square which has the  
segment as one of its sides.  

As the teacher explained, pupils were asked to realize a figure on the screen and 
write down a description of both the procedure and their reasoning. At that point, 
the interpretation of the term construction remained ambiguous, but we did it on 
purpose: different interpretations of the task were expected. Actually, the protocols 
collected after the activity in the computer lab contained solutions obtained differ-
ently, some of them referring to geometrical properties, others referring to percep-
tual control, so that using dragging function those solutions would have been 
differently transformed. 
 The second part of the activity took place in the classroom. The teacher opened 
the discussion suggesting analysis the solution given by Group 1 (Giovanni and 
Fabio). The solution was obtained drawing four consecutive segments, carefully 
arranged in a square, using perceptual control. 
 When the teacher asked pupils to judge this solution, everybody agreed that the 
control must be exerted on the particular drawing. According to the well-known 
definition of a square, pupils suggested measuring sides and angles. The main ele-
ments, arising from the discussion, were the use of measure and the precision re-
lated to it. All the interventions showed that the shared objective concerned the 
control on the drawn square. At this point the discussion was interrupted and re-
sumed the day after. Let us analyse what happened in this second part of the dis-
cussion.  

A Semiotic Game 

After a brief summary of the previous discussion, the teacher presents the drawing 
proposed by Group 1 (Giovanni and Fabio) and drags it. The realization of the 
drawing was based on the perceptive adaptation of four segments; thus it is upset: 
everybody agrees that it is not a square any more.  
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Figure 1. The construction does not stand the dragging test. 

 

 

Figure 2. Group 3. The first steps of the construction. 

 
Another solution (Group 3, Dario and Mario) is proposed by the teacher. 

21 I: Well, I’d like to know your opinion about the construction of Dario and 
Mario 
22 Marco: They did a circle then two perpendicular lines … 
23 I: Do you know from what did they start? 
24 Michele: We can use the command “history”.  
25 I: Let’s do it . They took a segment, then they …  
[… the construction step by step follows] 
 
They drew a line perpendicular to the segment, then the circle … in your 
opinion, what is it for? What the use of it? 
 
SILENCE Is there a logic in doing so, or did they do it just because they fe-
like drawing a perpendicular line … a circle … Alex, tell us … 26 Alex: the 
measure of the segment is equal to the measure reported by the circle on the 
perpendicular line.  
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27 I: You mean that the circle is used to assure two equal consecutive seg-
ments, the first one and that on the perpendicular line … and the perpendicu-
lar … 
28 Chorus: is used … to obtain … an angle of 90° 
29 I: I know that the square has an angle of 90° and four equal sides or three 
equal angles … then let’s see if it is true … let’s go on. Intersection between 
line and circle. They (Dario and Mario) determined the intersection point be-
tween the line and the circle—why did they need that point? 
30 Chiara: the intersection point between the line and the segment … 
31 I: and what should you draw from there? 
32 Chiara: a segment, perpendicular to the line 
33 I: what else?? 
34 Chorus: parallel to the segment … 
35 I: let’s see what did they do … 

After a first attempt to describe the procedure, Michele suggests using the com-
mand “history”. The teacher immediately catches the suggestion and puts in execu-
tion the command showing the screen to the whole class. The first steps of the 
construction are successively repeated and the corresponding elements are redrawn 
on the screen; in the meantime, the teacher describes what has been done. At a cer-
tain point, she interrupts the description and asks the pupils to reflect and try to 
detect the “motivations” for those actions. This intervention (we call it the “inter-
pretation game” (23)) aims to provoke the first shift from the procedure to a justi-
fication of the procedure itself. 
 Despite the difficulty and the artificiality of the move leading from action to 
explicating the motivation of this action, the teacher presses the pupils to detect a 
“logic” in the procedure described (25). In the following interchange the function-
ing of the discussion is clearly shown in respect to its main “motive”: shifting the 
control from the description of the procedure to the motivation of the procedure.  
 Alex (26) expresses the relationship between two of the segments according to 
the series of commands previously executed and the teacher (27) reformulates his 
statement in terms of motivations: “You mean that the circle is used for assuring 
two equal consecutive segments …”. The Chorus appropriates the terms used by 
the teacher and continues in terms of motivation.  
 The discussion continues: the pupils are now asked to foresee the next step, mo-
tivate it and then compare it with the step recorded in the history. That is what we 
have called the prediction game.  
 In the following different solutions are compared, repeating the script of the 
interpretation and prediction game; this makes it possible to negotiate the accep-
tance of a Cabri figure as the correct solution of a construction task. What is most 
interesting is the fact that, together with the acceptance of a solution in terms of the 
dragging test, a new relationship to drawing is achieved: it is possible to explain 
the correctness of a construction controlling the “logic” of the procedure. In other 
terms, a new meaning of the term construction emerges, related to the use of Cabri, 
but also consistent with its geometrical meaning. 
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The Role of the Teacher 

According to our basic hypothesis pupils’ relation to drawing is modified by the 
mediation of the Cabri environment, but as clearly shown in the previous section 
the role played by the teacher is fundamental. Because of the fact that the discus-
sion is developed in the special context of Cabri constructions, in addition to the 
standard strategies (see Bartolini Bussi, 1996, 1998), specific strategies are there 
available to the teacher to manage discussions. 
 Besides the role of the dragging function which mediates the generality of a 
figure, the previous analysis reveals the key role of the “history” command; 
through its mediation the teacher may put in practice the interpretation and the 
prediction games.  

1. the interpretation game, led by questioning which could have been the intention 
or the goal of the author in making such a construction; for instance the teacher 
can ask: why did the authors choose this command? what is its use for? 

2. the prediction game, led by questioning which could have been the following 
step in this construction; for instance the teacher can ask how would you go on 
from this point?  

The presence of the history command, that is the presence in the computer of a 
decontextualized and detemporalized copy of the construction, allows the realiza-
tion of the two games avoiding explicit comments or implicit information (ges-
tures, and so on) towards the expected answer. 
 Although not simple and spontaneous, the shift from “drawing as a product” to 
“drawing as a procedure” occurred. But, although necessary, this first shift is not 
sufficient to gain a theoretical perspective and the development of the sense of jus-
tification into the meaning of proof is still far from being achieved. 

The Construction of the Theory: The Mediation of a Microworld 

As discussed above, the world of geometrical construction has seen a new revival 
in the use of dynamic softwares such as Cabri-géomètre. As a microworld (Hoyles, 
1993), Cabri embodies Euclidean geometry; in particular, it refers to the classic 
world of “ruler and compass” constructions.  
 However, the novelty of a dynamic environment such as Cabri consists in the 
possibility of direct manipulation of its figures through the dragging tool and in the 
fact that the functioning of the dragging tool is coherent with the system of Euclid-
ean geometry. The dynamics of the Cabri-figures, realized by the dragging func-
tion, preserves its intrinsic logic, i.e. the logic of its construction; the elements of a 
figure are related in a hierarchy of properties, and this hierarchy corresponds to a 
relationship of logic conditionality.  
 Because of the intrinsic relation to Euclidean geometry, the control “by drag-
ging” can be interpreted as the theoretical control—“by proof and definition”—
within the system of Euclidean geometry. In other terms, it is possible to state a 
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correspondence between the world of Cabri constructions and the theoretical world 
of geometry (for a discussion see also Mariotti, 2000, 2001).  
 In our project, the evolution of the Field of Experience is based on the potential 
correspondence between Cabri construction and geometric theorems. Once a con-
struction problem is solved, i.e. if the Cabri-figure passes the dragging test, a theo-
rem can be proved within the geometry theory. Thus, solving construction 
problems in the Cabri environment means not only accepting all the graphic facili-
ties of the software, but also accepting a logic system in which its observable phe-
nomena will make sense. The explicit introduction of this interpretation and the 
continuous reference to the parallel between Cabri enviroment and geometry the-
ory constitutes the basis of our teaching project. Our basic hypothesis is consistent 
with the idea of microworld (Hoyles, 1993) as an environment for solving prob-
lems where pupils can experience the constraints of the underlying mathematical 
system and in so doing construct their own mathematical system.  
 As far as Cabri is concerned, the complexity of the underlying mathematical 
system is very high: in fact, the complete set of commands corresponds to the 
whole of Euclidean geometry. 
 As a consequence, the logic control on the underlining system may become too 
difficult to be achieved; in particular, because of the richness of the “geometrical 
tools” available, it is difficult to state what is given (axioms) and what must be 
proved (theorems). The richness of the environment might emphasize the ambigu-
ity about intuitive facts and theorems and constitute an obstacle to the choice of 
correct hypotheses.  
 In order to overcome this difficulty, the basic idea of working inside a mi-
croworld was adapted to our specific objective. Instead of giving pupils an already-
made Cabri menu, we made pupils participate (Leont’ev, 1976/1964) in the con-
struction of an axiomatization through the construction of the corresponding menu, 
step by step. At the beginning an empty menu is presented and the choice of the 
first commands discussed, stating the correspondence with the specific statements 
selected as axioms. Then the other elements of the microworld are added, accord-
ing to new constructions and in parallel with corresponding theorems. 
 In this way the system is slowly built up, and step by step the complexity in-
creases: the aim is that of providing a complexity which can be managed by pupils; 
if the whole system is present since the beginning, there is the risk that pupils are 
not able to control the relationship between what is given and what is deduced. On 
the other hand, if the menu commands are changed too frequently it is impossible 
to grasp any systematic order. 
 According to our hypothesis, geometrical construction constitutes the key of 
accessing to a theoretical perspective. The analysis of pupils’ protocols shows the 
slow evolution of the meaning of construction. At first, a construction is conceived 
as a concrete process to reach a drawing, which has its own justification in the ac-
ceptability of the product; then, a construction is conceived as a theoretical proce-
dure which has its own justification in a theorem. 
 On the one hand, the descriptions of the procedure change, improving in clarity 
through an increasing mastery of correct terms; on the other hand, the arguments 
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supporting the correctness of the procedure approach the status of theorems; that is 
the justifications provided by the pupils assume the form of a statement and a 
proof.  

An Example: The Construction of the Perpendicular Line  

According to our basic aim of introducing pupils to “deductive” geometry, we de-
cided to build a dialectic relationship between Cabri constructions and geometrical 
theorems. A detailed analysis of the protocols is not possible here (more details can 
be found in Mariotti, 2000, 2001), none the less, the following examples aim to 
give an idea of the evolution of the meaning of justification as it is mediated by the 
Cabri environment.  
 In analogy with the Euclidean axioms, besides the primitives of the creation 
menu, in the construction menu the commands are reduced to include only “Inter-
section of objects,” “Compass” (i.e. “Report of length”) and the “Report of angle”.2 
From the theoretical point of view, this situation corresponds to the three criteria of 
congruence for the triangles and actually, that is what pupils had in their first germ-
theory (see Chapter 11  in this volume).  
 
 

r
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Figure 3. Group 1. The construction of the perpendicular line. 

The first construction was that of the “angle bisector”; after its validation and the 
enlargement of the theory by the corresponding theorem, the new command “angle 
bisector” was introduced in the Cabri “menu”. Afterwards, a perpendicular line 
was defined as the angle bisector of a straight angle. A long and articulated activity 
introduced the theorem of the isosceles triangle, which states that in a triangle the 
angle bisector of an angle is perpendicular to the opposite side if and only if the 
two sides of the angle are equal. All that represented the “theory” to which one can 
refer in his/her justifications. The following task was presented to the pupils. 
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Given a line r and a point P, construct a line passing through P and perpen-
dicular to r. Describe the construction and justify your solution geometrically. 

The pupils are grouped in pairs at the computer and asked to provide a common 
text for the solution. Let us consider the following protocol.  
 
Group A (9th grade) 
 
• Point P 
• Construction of a line through two points A and B 
• Circle centre P and point A 
• Intersection of two objects: circle radius PA and line AB, it comes out at point C 
• Construction of a triangle PAC 
• Angle bisector (angle) APC 
 
[The line] is perpendicular because: 
 
PC=AP because radii of the same circle thus one knows that the angle bisector of 
CPA is the a. bisector of an isosceles triangle that divides the opposite side perpen-
dicularly (in Italian, perpendicolarmente). 
 This is a good exemplar of solution. The theoretical meaning of a construction is 
achieved: the pupils show themselves aware of the necessity of justifying the Cabri 
construction. The parallel between the Cabri commands used in the construction 
and the hypotheses of the argument is clearly shown and that is accomplished by 
referring to pertinent pieces of theory (i.e. radius of a circle); similarly the refer-
ence to the previous theorem of the isosceles triangle is correctly linked to the use 
of the command “angle bisector”.  
 Although some details are missing, the solution is basically correct and wit-
nesses a good level of appropriation of the deductive approach.  
 The complete description of a construction, even of a simple one, reveals its 
difficulty: in fact, not all the pupils produce a schematic list of the commands used, 
followed by a justification of the correctness of the procedure; on the contrary, 
often the description of the single steps is interwoven with their motivations, with 
the result of a confusing text, difficult to interpret. That means that the elaboration 
of the solution is not yet separated from its systematization in a deductive frame. 
 It is in the collective discussion that such distinction can be achieved: discussing 
the constructions produced by others, pupils become aware of the necessity of a 
clear description of the procedure as a prerequisite to the control of the correctness. 
At the same time, during the collective discussion modalities of communication 
can be negotiated. As in every mathematical discussion (Bartolini Bussi, 1998), 
the role played by the teacher is fundamental: pupils must be introduced to the 
mathematical world with its specific way of communication, its specific discourse 
(Mariotti, 2001). A new goal emerges, strictly linked to the general objective of 
introducing pupils to a theoretical approach; the analysis of this new point over-
comes the aim of this exposition.  
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 I’d now like to come back to the basic didactic problem from which we started: 
the delicate relationship between pupils’ intuitive knowledge and a deductive  
approach.  

The Control of Intuition 

As previously discussed, pupils have a geometrical background, that is impossible 
and unreasonable to cancel; on the contrary, one of the basic aims of the project is 
that of constructing pupils’ awareness of a theoretical control of geometrical 
knowledge as it can be achieved by a deductive approach.  
 The following protocol is an example of the complexity of this process; it shows 
how pupils achieved a good theoretical control of the situation, but at the same 
time reveals the persistence of the intuitive background.  
 
Group B (9th grade Liceo Scientifico) 

What we constructed on the screen of the computer. 

We created the line R and put the point P on it, and we put the point P on it. 
We created a circle of centre P. We intersected this circle with two more cir-
cles, which are equal and opposite to one another. The points of intersection 
between the line and the first circle are the centres of these last circles, and 
the radiis are equal to the distance of point P to the “end” (in Italian, estremo) 
of the first circle, that is it is equal to its radius.  

 

P
21

Q

 

Figure 4. Group B. The construction of perpendicular line. 

With these two circles we found two more points, which are the centres of 
two circles, which have the radius equal to the radius of the first one. These 
last circles intersect in a point (Q). If we join this with the point P, we find 
the perpendicular to the given line.  
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 We can say that the line that we found is perpendicular to R because if we 
join point Q with the ends of the first circle (1,2), we find two triangles ∆QP2 
and ∆QP1, opposite in respect to the perpendicular.  
 Given that the definition of perpendicular is: the perpendicular through P 
to a given line is the angle bisector of the straight angle determined by the 
line with the vertex P, we must see whether the two triangles are equal.  
 Let say that minor catheti (in Italian, cateti minori) are equal because they 
are radii of the same circle. The major cathetus is in common, and conse-
quently is equal and the hypotenuses are equal because they are two diameters 
of two circles, which are distinct but have the same radii; we can state that the 
third criterion of congruence of triangles is valid, because given three seg-
ments there is only one triangle which has those segments as its sides. Thus, 
because of the fact that the two triangles have equal sides, they are equal and 
the perpendicular line divides the straight angle into two equal parts.  

The first description of the construction refers to the symmetry of the figure  
(opposite in respect to the “perpendicular”). Symmetry is not available as a theoreti-
cal element, it imposes itself because of its perceptual evidence, nevertheless the de-
scription of the procedure is formulated correctly in terms of circles and radii.  
 There is a general difficulty in verbalization, that is in finding the appropriate 
geometrical terms to describe the construction, thus words like “cathetus” and “hy-
potenuse” may appear helpful to overcome this difficulty. Although the pupils 
seem to maintain the control on what must be proven and do not use the fact that 
the triangles are right-angled, they cannot ignore the fact that they are right-angled. 
Similarly, since the beginning the line that is going to be proven to be the perpen-
dicular, is called “the perpendicular”. Nevertheless this property is not used in the 
argumentation, and despite the use of inappropriate terms this protocol shows a 
good level of theoretical control. 
 That shows how evident is the truth of the fact to be proven and how difficult it 
may be to accept the “fiction” of proof. Proving requires the suspension of truth’s 
evaluation, that is reasoning and behaving as if the truth of the statement to be 
proven were not so evident. Such suspension of judgement requires a control and a 
detachment from reality that takes time to be completely achieved.  

CONCLUSIONS 

The examples discussed above show that the evolution of a justification in a proof  
is possible, but they also show that this evolution is not expected to be simple and 
spontaneous.  
 The basic modification we were interested in concerned the change of status of 
justification in geometrical problems. This modification is strictly related to 
the passage from an “intuitive” geometry, as a collection of facts submitted to  
empirical verification, to a ‘theoretical’ geometry, as a system of relations among 
statements, validated by proof. According to our basic hypothesis the relation to 
geometrical knowledge is modified by the mediation of the computer. Our results 
(Mariotti, 2000, 2001) confirm that the specificity of the Cabri environment is de-
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terminant in order to make the sense of justification evolve from an empirical veri-
fication towards a theoretical proof.  
 Nevertheless the process of semiotic mediation, exploited by the teacher through 
the use of particular Cabri tools, remains fundamental. For instance, in previous 
example, the “history” command provides the basis for discussion, but it is not 
sufficient to accomplish the shift from actions to intentions: the software only 
shows the sequence of the steps, whilst the interpretation game introduces the point 
of view of motivation, which is reinforced by the prediction game. Both games are 
based on the facilities offered by the software; the history command allows the 
reconstruction “step by step” of a figure, and consequently gives access to an ob-
jectification of the construction procedure (decontextualised and depersonalized), 
through which the actions with their motivations can be reconstructed. The soft-
ware provides the teacher with a tool of semiotic mediation through which to intro-
duce the pupils into the games of motivations and to the new meaning of 
geometrical construction: keeping control, she leaves it to the pupils to make ex-
plicit the required operations and their motivations  
 It is no surprise that the interpretation and the prediction games are so effective. 
Similar games are used by the teacher in the “voices and echoes game” described 
by Boero et al., 1997, where students are asked to interpret an historical source and 
to predict which solution could have been produced by the same author in a given 
situation. In order to start the process what is needed is a “text” (the historic source, 
in the case of the “voices and echoes game” the objectified sequence of operations 
reproduced by the history command, in the case of Cabri constructions) that can be 
analysed by the pupils in a detached way, in order to play the author’s role and to 
guess the author’s intentions. It is the very presence of the software that transforms 
a personal construction into a depersonalized logical sequence of instructions that 
can be looked at by the author himself/herself in a detached way. 
 Coming back to the main educational problems previously pointed out, it is pos-
sible to state the following conclusions. Geometrical constructions within Cabri-
géomètre provide a rich field of experience where the harmony between the figural 
and the conceptual aspects can be achieved together with the development of a 
sense of theory.  
 The construction task may develop a theoretical meaning in relation to the logic 
of the software environment and provide a powerful means for introducing pupils 
to geometry. 

NOTES 
1 I will discuss the example of Cabri-géométre, but other software may be used as well, providing screen 

images controlled by geometrical logic. 
2 These are macros to copy respectively a segment and an angle; they were available in Cabri version 1 

in use at that time. 
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FERDINANDO ARZARELLO, FEDERICA OLIVERO, DOMINGO 
PAOLA AND ORNELLA ROBUTTI 

15. THE TRANSITION TO FORMAL PROOF IN 
GEOMETRY 

INTRODUCTION 

The document of the Catania ICME Congress on the teaching of geometry (edited 
by Mammana and Villani, 1998) underlines that the teaching of geometry to-
day must be re-thought considering its connections with modern technology.  
Modern technology, as well as old mechanical machines (see the contribution of 
Bartolini Bussi), make powerful conceptual tools accessible to students at a 
friendly and comfortable level. Moreover such tools incorporate at an incredibly 
deep level pieces of cultural revolutions which have happened in the far and near 
past and that are very difficult to explain without the mediation of such tools (see 
Arzarello’s contribution in the epistemological section). For example, the analysis 
of proof in the domain of (elementary) geometry today shows very deep connec-
tions between the synthetic and the analytic approach. Technology links the old 
dispute among Carnot, Poncelet, Staudt, Pasch, etc. with modern research in alge-
braic geometry as well as with symbolic computation tools, since they represent 
geometrical figures and polynomials with the same data structure, namely, acyclic 
oriented graphs: connections among ideas are based on more concrete connections 
realised in hardware. 
 Our project for teaching geometry at the secondary level (from 8th to 13th 
grade) is aimed at approaching geometry in order to embed pupils into this stream 
of thought, giving them the consciousness of what a proof means within mathemat-
ics as well as in the history of our civilisation. In such a sense we are pursuing, in 
collaboration with other teams, the deep connections among mechanical machines 
(see Bartolini Bussi), computers (see Mariotti) and theorem proving. 
 Our approach takes into account epistemological, cognitive and didactical  
features.  
 In particular, we will illustrate from these points of view the following aspects. 

A. The delicate phase of transition to the formal side, exploiting its connections 
with the informal one (see Arzarello’s contribution in the epistemological sec-
tion and the didactical experiments of Boero and Mariotti). Our research group 
has been studying the above problem for two years in the area of elementary ge-
ometry, making experiments in different environments with high-school and 
college students, as well as with their teachers. We have elaborated a theoretical 
model to investigate the transition to the formal side. It is used as a key to inter-
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pret processes of thought in pupils of different levels who solve geometrical 
problems in different environments and with different modalities. The model 
underlines an essential continuity of thought which rules the transition from the 
conjecturing phase to the proving one, through exploration and suitable heuris-
tics. The essential points are the different types of control of the subject with re-
spect to the situation, namely ascending vs. descending and the switching from 
one to another. Its main didactic consequence consists in the change that the 
control provokes on the relationships among geometrical objects (see Section 
“Towards a Model for Analysing the Transition to Formal Proof in Geometry”). 

B. The way a software like Cabri incorporates at a feasible level delicate concep-
tual points which are essential in the transition to formal proofs. The epistemo-
logical and cognitive analysis of what concretely happens with students using 
Cabri shows that the transition is deeply marked by those analytic-algebraic as-
pects which are under the apparent synthetic-Euclidean structure of the soft-
ware. In such a sense computer acts here as a cognitive tool which modifies the 
learning of mathematics because of its specificity and situativeness as a learning 
environment. Dragging, which has a complex feedback with the visual percep-
tion and the movements of the mouse, is a crucial instrument of mediation be-
tween the figural and conceptual level. While dragging, pupils who make 
constructions or explore geometric situations often switch back and forth from 
figures to concepts and an evolution of their attitudes from the empirical to the 
theoretical level can possibly be generated in the long run. This switching (and 
the generated evolution) can also be observed in pencil and paper environments, 
particularly in experts’ and clever students’ performances; it is crucial in all en-
vironments insofar as it makes it possible for pupils to manage the big gap be-
tween the status of knowledge based on drawings and the one which refers to 
geometrical concepts, sustaining them in the solution process and avoiding 
stumbling-blocks. We find that the different modalities of dragging are crucial 
for determining a productive shift to a more “formal” approach. By exploiting 
our model (see A), we classify such modalities and use them to describe proc-
esses of solution in the Cabri setting, comparing it with the pencil and paper 
ones. In fact, dragging behaviours change according to the specific epistemo-
logical and cognitive modalities after which pupils develop their control (and 
consequently make their actions); hence, looking at dragging modalities can 
give an insight into other inner and more theoretical variables. Moreover, in 
some pupils, particularly in those who produce good conjectures while explor-
ing open situations, the modality of dragging involves different specific features, 
which show a genetic structure, which underlines the evolution from conjectur-
ing to proving in a very detailed way (see the Subsection “Explorations and 
Constructions in Cabri”). 

C. Dragging modalities are also the key tool after which complex geometrical rela-
tionships are grasped by pupils in an easy way (see Subsection “Dragging by 
Lieu Muet as a Reorganiser”). Typically, the new relationship consists in the 
fact that: 
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i. a certain locus L is empirically built up thanks to a feedback given by the 
preservation of some ‘regularity’ in drawn figures and the movement of the 
mouse dragging a (draggable) point P in a suitable way; 

ii. when the point P runs on L some corresponding figures F(P) satisfy some 
regularity, invariance or rule. 

To use a mathematical language, the (usually algebraic) variety L (usually of 
dimension 1, that is a curve) parameterises (all or some of) the figures of the 
situations in a way which is perspicuous for the problem to solve. 

This parameterisation of course is given only through dragging and not by 
equations: if made explicit they would express the relationships found empiri-
cally by dragging in the language of algebra; that is to say, dragging makes rela-
tionships of logical inclusion between algebraic varieties accessible to pupils at 
a perceptual level. Different modalities of dragging support and help students to 
make conjectures: they are a perceptual counterpart of the above algebraic rela-
tionship. This dragging dialectic makes accessible a jeu de cadre, in the sense of 
R. Douady between Euclidean geometry and algebraic varieties. Clarifying the 
algebraic counterpart, in a suitable way, also makes accessible to students the 
idea of proof as a computation, that is the most formal aspect of proof (see Arza-
rello’s contribution in the epistemological section); but this happens in a con-
crete way, because of the mediation of machines (also mechanical machines are 
crucial, insofar as they incorporate in a very suitable way the notion of parame-
ters and variables and that of degree of freedom, which is essential in this alge-
braic approach to theorems and proofs). 

In all our experience, the role of the teacher is crucial, who helps students to 
achieve the new knowledge, supporting them within the environment where 
they are embedded and helping them to listen to the voices that come to them 
from history and technology (see Boero and Bartolini Bussi). 

The chapter will also frame research in the existing literature and will expose the 
main points more through the analysis of paradigmatic cases than developing a 
theoretical discourse, which would be too heavy. 

TOWARDS A MODEL FOR ANALYSING THE TRANSITION TO  
FORMAL PROOF IN GEOMETRY 

In the current literature on mathematics education, the concept of proof is exam-
ined in a wide sense, which goes beyond the narrow formal one; in fact, explora-
tions, conjectures, argumentations produced by novices and experts while solving 
problems, as well as semi-rigorous, zero-knowledge, holographic proofs (see 
Hanna, 1996), are also taken into account, because of their interest in the pragmatic 
of proof (Hanna & Jahnke, 1993). However, in real school life, even if proof is 
generally considered central in the whole mathematics, it does not enter all the cur-
riculum, but it is restricted almost exclusively to geometry (Hanna, 1996). The 
processes through which pupils and experts approach proofs are analysed 
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from different points of view and by means of different tools. First, at least two 
components are considered crucial for focusing the meaning of proof, namely a 
cognitive and a historic-epistemological one (Balacheff, 1988, 1991; Barbin, 1988; 
Harel, 1996; Mariotti et al., 1997; Simon, 1996). Of course the two components 
can be separated only for reasons of theoretical analysis; on the contrary, they are 
deeply intertwined in reality (Hanna, 1996) and both must be considered in order to 
tackle suitably the didactic of proof (even if different authors underline one of them 
more than the other.) Second, the production processes of proofs are analysed 
pointing out continuity and discontinuity features both from the epistemological 
and the cognitive point of view; the question is particularly intriguing when one 
considers the relationships between the argumentative, informal side and the dis-
cursive, formal one of a proof (in the wide sense of the word). For example, the 
transformational reasoning of Simon, 1996, the cognitive unity of Mariotti et al., 
1997, all underline a substantial continuity from a cognitive point of view. The 
issue of continuity from an epistemological point of view has been faced 
in Polya, 1957; Barbin, 1988 and Thurston, 1994. Moreover, some authors, e.g., 
Duval, 1991, mark the dramatic epistemological and cognitive gap between argu-
mentation and proof: Duval tackles it from a didactic point of view using suitable 
semiotic mediators, namely graphs for representing the formal deductions. In an 
intermediate position we find Harel, 1996 with his students’ proof schemes and 
Balacheff, 1988, who, following the analysis of Lakatos, stresses the big epistemo-
logical discontinuities, which can be overcome by pupils, insofar as they become 
able to pass from the naive-empiricist way of looking at mathematical sentences 
towards a more formal approach, through the discovering of the so-called generic 
example. The explicit or implicit attitude of the teacher towards the question conti-
nuities vs. discontinuities, both from a cognitive and an epistemological point of 
view, proves to be crucial for planning the didactic of proof in the class (for exam-
ples of concrete approaches see Balacheff, 1988; Duval, 1991; Mariotti et al., 
1997). The problem becomes even more intriguing when new technologies are 
taken into account and such softwares as Geometer’s Sketchpad, Cabri-Géomètre, 
Derive, Excel or others are used in the class as tools for exploring situations, mak-
ing conjectures and validating the same process of proving theorems. 
 Within this research issue, a crucial point consists in analysing the delicate 
phase of transition to the formal side, exploiting its connections with the informal 
one. Important variables for such an analysis are: the mathematical area, for exam-
ple geometry, algebra, analysis, etc.; the modalities after which the problem is 
given, namely exploring an open situation vs. proving a given statement; the envi-
ronment, namely paper and pencil vs. computer (for example a Cabri setting). In 
this report we expose a theoretical model we elaborated to investigate the transition 
to the formal side. The main sources for this model are the papers quoted above, 
which analyse the relationships between conjecturing and proving under the issue 
of continuity. In particular, we are indebted to Gallo, 1994, for the notion of as-
cending/descending control and to Mariotti et al., 1997, for that of dynamic explo-
ration, which supports the selection/specification of conjectures in the form of 
conditionals and rules the passage to proof construction, by implementing the logi-
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cal connections of sentences. We illustrate the model by means of a paradig-
matic example, which is exposed in Subsection “The Theoretical Model” and 
commented upon in Subsection “Some Partial Solution and Related Problems”. 

A Paradigmatic Example 

We expose the protocol of solution given by a teacher to the following problem: 
 
Problem. Given a quadrilateral ABCD and a point P0, construct the point P1, 
symmetric of P0 with respect to A, P2 symmetric of P1 with respect to B, P3 sym-
metric of P2 with respect to C, P4 symmetric of P3 with respect to D. Determine 
which conditions the quadrilateral ABCD must satisfy so that P0 and P4 coincide 
[see Figure 1]. 
 

A

D

B

C

P0

P1

P2

P3

P4

 

Figure 1. 

The subject solving the problem used pencil, paper and (sometimes) ruler; he was 
invited to use only elementary mathematics and to think aloud: an observer took 
notes of his comments (which are written in italics, while the observer’s comments 
are in square brackets). The solution process has been divided into 15 episodes, 
which lasted about six minutes in total; a minor episode (n.6) has been skipped, 
because it is a detour not relevant to our analysis; references are to figures at the 
end of the protocol. The comments on the protocol are given in the next Subsection  
(S=subject). 
 
1. [S draws very rapidly and sketchily, without using the ruler]. 
2. “I’ll check for a simpler case, with only three points” [S sketches a figure with 
triangles instead of quadrilaterals, i.e. D and P4 disappear] “I do not see anything”. 
3. “I consider a particular case, which is easier: the rectangle” 
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[S sketches Figure 2]. 
“Perhaps it closes in the rectangle’s case” [in the figure it is dubious if P0 and P4 
coincide (P0, P1, P2, P3, P4 close) or not, because the figure has been drawn by 
hand]. 
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P1

P2

P3

P4

 

Figure 2. 

4. “I can’t see that in this way. I redraw a very different case, always with rectan-
gle: P0 far away from A” [S draws Figure 3 without ruler but with more attention, 
with a smaller rectangle but with P0 far from A: P0 and P4 seem to coincide]. 
5. “I see the Varignon’s case in the opposite way” [Varignon’s theorem is a classic 
Cabri problem, well known to S; it says that, given a quadrilateral, if K, L, M, N in 
order are the middle points of its sides, then KLMN is a parallelogram; succes-
sively asked, S says that he meant that he saw the Varignon configuration, with K, 
L, M, N as the rectangle of Figure 2] . 
[S looks carefully at the figure] “However I realise it’s not so”. 
6. [In this short episode S tries to follow another idea, but he soon abandons it.] 
7. “Let me draw it better” [S draws with the ruler and with great care].  
“I see Varignon’s case applied to crossed quadrilaterals, ’cause I’ve drawn all seg-
ments completely” [S drew full segments between P0, P1, P2, P3, P4] . 
8. “Now I am going to use the analytic method. I imagine the problem has already 
been solved. In my mind I anticipate that it’s Varignon” [By analytic method S 
means the method of Analysis due to Pappus (see Panza, 1996); S redraws a figure 
like Figure 3, using the ruler; but now he first draws points P0, P1, P2, P3, then A, 
B, C, D as midpoints of the sides P0P1, P1P2, P2P3, P3P0; in all previous draw-
ings S drew A, B, C, D first and then P0, P1, P2, P3, P4]. 
9. “I see it’s a rectangle again” [In fact, in Figure 3, even if S started from ‘ge-
neric’ P0, P1, P2, P3, P4, the quadrilateral ABCD looks like a rectangle.] 
“I conjecture that if it is a rectangle it will close”. 
10. “I’ll prove it. I’m guided by Varignon’s proof. It results that AB // CD // P0P2 
and BC // AD // P1P3. Now I look at the figure again to prove it’s a rectangle.” 
[He looks at the figure … he draws AC, BD …]. 
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11. “… hem … I reconsider AB // P0P2 … and I observe that [the angle] ABC is 
equal to [the angle formed by the lines] P0P2, P1P3. I come to believe that in gen-
eral it isn’t a rectangle: I look for a counterexample. I start from P0, P1, P2, P3 
and draw ABCD carefully”.  
12. “It’s a parallelogram. The proof is done! I write it down”. 
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P4

 

Figure 3. 

13. “I know that given a quadrilateral ABCD (even crossed), the quadrilateral 
constructed on the midpoints is a parallelogram ’cause of Varignon. Now let us 
consider a parallelogram ABCD. If P0, P1, P2, P3, P4 are built as symmetric then 
the thesis is that the points P0 and P4 coincide. I go back to the figure to prove it” 
[S writes the key words of his theorem arranged as hypothesis and thesis on an-
other sheet of paper; then he comes back to the sheet with his drawing …]. 
14. “It’s a synthesis!” [… S takes a new sheet of paper and draws a figure that is 
deliberately ‘wrong’, by hand without a ruler]. 
“I consider P0, P1, P2, P3 with the resulting quadrilateral: I construct the first 
three midpoints which are A, B, C. [While speaking, he draws] Then I construct 
D’, midpoint of P0P3. ABCD’ is a parallelogram because of Varignon”. 
15. “ABCD is a parallelogram too, by hypothesis. If D ( D′ then CD ( CD′, but they 
are both parallel to AB. It’s absurd! Then ABCD and ABCD’ are congruent. 
Therefore P0 and P4 coincide”. 

The Theoretical Model 

It is now time to explain our model of transition from conjecturing to proving (see 
the protocol as a paradigmatic example).  
 As a first working hypothesis, which we shall modify during the exposition, we 
use that of Mariotti et al., 1997 (but the responsibility of the interpretation is only 
due to this chapter’s authors). High and middle level subjects, who explore geo-
metrical problems in different environments in order to conjecture and to prove 
theorems (within their own theoretic framework) show successively two main mo-
dalities of acting, namely: exploring/selecting a conjecture and concatenating sen-
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tences logically. In fact, any process of exploration–conjecturing-proving is fea-
tured by a complex switching from one modality to the other and back, which re-
quires a high flexibility in tuning to the right one. Our aim is to analyse carefully 
how the transition from one modality to the other does happen, using the protocol 
above: its dynamic has been divided into four main phases, each corresponding to a 
different modality or transition. At the end, the picture of the transition will appear 
and we shall rephrase the working hypothesis in a suitable way (Subsection “Some 
Partial Solution and Related Problems”). 
 
PHASE 1. Episodes 1–3 show a typical exploring modality, with the use of some 
heuristics to guess what happens working on a particular example (ep.3), hence 
selecting a conjecture. The conjecture in reality is a working hypothesis to be 
checked: its form is far from a conditional statement and to confirm it new explora-
tions are made by using a new heuristic principle (namely: choose very different 
data, to check the validity of the conjecture, ep.4). The phase culminates in ep.5: 
some of its general features are described in Mariotti et al., 1997, specifically the 
internalisation of the visual field (the subject ‘sees’), and the detachment from the 
exploration process (which is seen from the outside); the situation is described by 
the subject in a language which has a logic flavour (ep.5), but it is not phrased in a 
conditional form (if … then), nor it is crystallised in a logical form: in fact, the 
subject expresses his hypothesis (which is more stable and sure than that of ep.3) 
not yet as a deductive sentence, but as an abduction, namely a sort of reverse de-
duction, albeit very different from an induction (Peirce, 1960).1 In fact the subject 
sees (with his mind’s eyes, because of the internalisation of his visual field) 
what rule it is the case of, to use Peirce language. Namely, he selects the piece 
of his knowledge he believes to be right; the conditional form is virtually pre-
sent: its ingredients are all alive, but their relationships are still reversed, with re-
spect to the conditional form: the direction after which the subject sees the things 
explored in the previous episodes is still in the stream of the exploration: the con-
trol of the meaning is ascending (we use this term as in Saada-Robert, 1989 and 
Gallo, 1994). It is in the stream of the preceding exploration that the negative vali-
dation at the end of ep.5 happens. Ep.7 is still in the same stream of thought; now 
the heuristic is: draw better to see better; indeed it is the last drawing (Figure 3) 
which allows the second abduction (ep.7): it is interesting to observe that the hy-
pothesis changes (now the quadrilateral is crossing) but it is still in the reversed 
abductive form. 
 
PHASE 2. Ep.8 marks the switching from the abductive modality to the deductive 
one: the meta-comments in the protocol show this clearly; but this change is shown 
also by the way in which the figure is drawn: see the observer’s comments. Now 
the control is descending and we have an exploration of the situation, where things 
are looked at in the opposite way. Ep.9 shows this: exploration now produces as 
output the figure which in previous explorations was taken as input. The reversed 
way of looking at figures leads the subject to formulate the conjecture in the condi-
tional form. Now the modality is typically that of a logical concatenation. 
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PHASE 3. Now in the new modality suitable heuristics can be used, namely look 
for similar proofs (ep.10): this task seems straightforward for the subject and so 
does not generate any further exploration, at least as far as parallelism of sides is 
concerned. Some exploration (with descending control) starts at the end of ep.10, 
for proving that it is a rectangle, but it does not work, so a new exploration, after a 
new selection (concerning angles) starts with ep.11. Here the descending control is 
crucial: it allows the detached subject to interpret in the ‘right’ way what is happen-
ing: it is not an abduction (what rule it is—possibly—the case of) but a counterex-
ample (what rule it is not—surely—the case of); the switched modality has started a 
new exploration process, which culminates in the final conjecture of ep.12. 
 
PHASE 4. This is the real implementation of logical connections in a more 
global and articulated way than the local concatenation of statements, which fea-
tured the previous conjecturing phase. Here detachment means to be a true ra-
tional agent (Balacheff, 1982), who controls the products of the whole 
exploring and conjecturing process from a higher level, selects from this point of 
view those statements which are meaningful for the very process of proving 
and rules possible new explorations. In this last phase, conjectures are possibly 
reformulated in order to combine better logical concatenations (ep.13) and 
new explorations are made to test the latter: looking at what happens word by 
word, this exploration is not very far from those made under ascending control. It 
is the sense attached to them by the rational agent to change deeply the meaning of 
what happens. A typical example is ep.14, where a ‘wrong’ figure is drawn in or-
der to explore the situation, anticipating that it is an impossible case: during 
the episode a second figure is drawn, where the ‘logical impossibility’ has 
changed the relationships among the points: in fact the old point D has been substi-
tuted by a new point D′, which incorporates in a positive way the logical impossi-
bility. The control is typically descending and global; in fact a proof by 
contradiction is tackled: the sense of the logical relationships among the drawn 
objects produces a ‘new’ situation, which is explored. In ep.15, the ‘old’ and the 
‘new’ situations are put together by the rational agent, who can draw the conclu-
sion by contradiction. 

Some Partial Conclusions and Related Problems 

Our model is somehow different from the starting working hypothesis: in fact the 
exploration and selection modality is a constant in the whole conjecturing and 
proving processes; what changes is the different attitude of the subject towards 
her/his explorations and the consequent type of control with respect to what is hap-
pening in the given setting. It is the different control to change the relationships 
among the geometrical objects, both in the way they are ‘drawn’ and in the way 
they are ‘seen’. This seems essential for producing meaningful arguments and 
proofs. Also detachment changes with respect to control: there are two types of 
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detachment. The first one is very local and marks the switching from ascending to 
descending control through the production of conjectures formulated as conditional 
statements (that is local logical concatenations) because of some abduction, like in 
ep. 5 and 7. The second one is more global and we used the metaphor of the ra-
tional agent to describe it: in fact it is embedded in a fully descending control, pro-
duces new (local) explorations and possibly proofs (that is global logical 
combinations), like in ep. 10, 11, 12, 14. The transition from the ascending to the 
descending control is promoted by abduction, which puts on the table all the ingre-
dients of the conditional statements: it is the detachment of the subject to reverse 
the stream of thought from the abductive to the deductive (i.e. conditional) form, 
but this can happen because an abduction has been produced. The consequences of 
this transition are a deductive modality and the new relationships among the geo-
metrical objects of the figures, as pointed out above (ep.8). The inverse transition 
from descending to ascending control is more ‘natural’: in fact as soon as a new 
exploration starts again (ep.14), control may change and again become ascending, 
even if at a more local level (with the rational agent who still controls the global 
situation in a descending way). In short, the model points out an essential continu-
ity of thought which rules the successful transition from the conjecturing phase to 
the proving one, through exploration and suitable heuristics, ruled by the ascend-
ing/descending control stream. The most delicate cognitive point is the process of 
abduction, crucial for switching the modality of control; the most relevant didactic 
aspect is the change in the mutual relationships among geometrical objects, which 
are the essential product of such a switching. Many scholars, with a different lan-
guage, exploited carefully various aspects of the way in which the switching can be 
realised by pupils in the class. In other ongoing research we use our model to study 
how the Cabri environment can support pupils in getting the above switching and 
changing of the relationships among the geometric objects. 

DRAGGING IN CABRI AND MODALITIES OF TRANSITION  
FROM CONJECTURES TO PROOFS IN GEOMETRY 

The literature on computers as cognitive tools (Dörfler, 1993) which modify 
the learning of mathematics because of their specificity and ‘situativeness’ as 
learning environments (Hoyles & Noss, 1992) is especially rich for Cabri-géomètre 
(Laborde, 1993; Balacheff, 1993; Hölzl, 1995, 1996). In particular, several studies 
which analyse specific components of Cabri’s epistemological domain of validity 
(Balacheff & Sutherland, 1994) point out that for learning geometry in Cabri envi-
ronments the dialectic figures vs. concepts (Mariotti, 1995; Laborde, 1993) and 
perceptual activity vs. mathematical knowledge (Laborde & Strässer, 1990) is es-
sential. Typically, a geometrical problem cannot be solved only remaining at the 
perceptual level of figures on the screen, even if their graphical space is provided 
with movement as a further component (Laborde, 1993): a conceptual control is 
needed, and it requires some pieces of explicit knowledge. Dragging, which has a 
complex feedback with the visual perception and the movements of the mouse, is a 
crucial instrument of mediation between the two levels (Hölzl, 1995): its func-
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tion consists in validating procedures and constructions built up using the menu 
commands (Laborde & Strässer, 1990, p. 174; Mariotti et al., 1997). While drag-
ging, pupils who make constructions or explore geometric situations often switch 
back and forth from figures to concepts and an evolution of their attitudes from 
the empirical to the theoretical level can possibly be generated in the long run 
(Balacheff, 1988; Mariotti et al., 1997; Laborde, 1997). In this section we use our 
model (see previous Section) for describing the switching modalities in pupils who 
use Cabri2 to solve geometric problems and for contrasting them with the modali-
ties of pencil and paper environments. Such a description will isolate in a transpar-
ent way some components of Cabri’s epistemological domain of validity, which 
become important didactic variables for our project of teaching geometry at high-
school level with a multi-medial approach (pencil and paper, Cabri, geometrical 
machines, etc.).  

Explorations and Constructions in Cabri 

Before discussing some concrete examples, we sketch very briefly the main points 
of our model. We consider tasks of exploring open geometric problems (Arsac 
et al., 1988) in order to select/formulate conjectures and possibly to prove them. 
The model points out an essential continuity of thought, which features the suc-
cessful transition from the conjecturing phase to the proving one, through explora-
tion and suitable heuristics, ruled by what we call an ascending/descending control 
stream (see Saada-Robert, 1989 and Gallo, 1994). The process of switching from 
one control modality to the other is a delicate cognitive point, which also has a 
relevant didactic aspect: in fact it is deeply intermingled with the change in the 
mutual relationships after which the geometrical objects of the situation are seen. It 
is precisely in these two aspects that one can observe different dynamics between 
‘pencil and paper’ and ‘Cabri’ environments. In both, the transition is ruled by ab-
duction, which will be explained below; but while in the former the abductions are 
produced because of the ingenuity of the subjects, in Cabri the dragging process 
can mediate them: our model allows us to describe how Cabri can support pupils in 
getting the above transition.  
 We distinguish between ‘constructions’ and ‘open problems’ explorations’, 
which correspond to two different modalities of using Cabri. The former consists in 
drawing figures through the available commands of the menu, because of a con-
struction task, which is considered solved if the figure on the screen passes the 
dragging test: the Cabri figure will not be messed up by dragging it (this has been 
studied by Mariotti et al., 1997). For the latter, let us illustrate it with an example. 
Consider the following problem to be solved in Cabri: 

Let ABCD be a quadrangle. Consider the bisectors of its internal angles and 
their intersection points H, K, L, M of pairwise consecutive bisectors. Drag 
ABCD, considering all its different configurations: what happens to the quad-
rangle HKLM? What kind of figure does it become? [Figure 4]. 
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Figure 4. 

This is a typical example of the open problems we use in our experiment, which is 
being carried out in the second year of a ‘Liceo Scientifico’ (pupils aged 15), 
aimed at teaching geometry with a multi-medial approach (in this specific case, 
with Cabri). Our example will illustrate other modalities of dragging, namely: 
(i) wandering dragging, that is dragging (more or less) randomly to find some 
regularity or interesting configurations; (ii) lieu muet dragging, that means a certain 
locus C is built up empirically by dragging a (draggable) point P, in a way which 
preserves some regularity of certain figures. 
 We analyse the data collected from a class of 27 students, who have already 
learned some Euclidean geometry the year before; the exposed activity takes place 
in a two-hour lesson. One hour is devoted to the work with Cabri (two students for 
each computer): having created a paper and pencil drawing of the geometrical 
situation, the pupils go on working in Cabri and making conjectures. The second 
hour is devoted to a mathematical discussion about the groups’ discoveries: groups 
show their discoveries to the class, using a data-show, and the teacher orchestrates 
the discussion (according to the methodology illustrated in Bartolini Bussi, 1996) 
so that students can move towards more general statements. The analysis of the 
collected material shows three different ways of using Cabri in order to solve the 
problem, corresponding to the three dragging modalities mentioned above: lieu 
muet, dragging test, wandering dragging. A case in point of the first two is the 
protocol of Group A (high-level students): 

1. The pupils start to shape ABCD into standard figures, apparently following an 
implicit order: when ABCD is a parallelogram, HKLM is also a parallelogram; 
then they draw ABCD as a trapezium and then as a square. 
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2. As soon as they see that HKLM becomes a point when ABCD is a square, they 
consider it an interesting fact, therefore they drag ABCD (from a square) so that 
H, K, L, M keep on being coincident (lieu muet exploration).  

3. They realise that this kind of configuration can also be seen with quadrilaterals 
that apparently have not got anything special; so they look for some common 
properties to all those figures which make HKLM one point. Paying attention to 
the measures of the sides of the figure ABCD (which appear automatically next 
to the sides and change in real time, while dragging along the lieu muet), they 
see that the sum of two opposite sides equals the sum of the other two; they re-
member that this property characterises the quadrilaterals that can be circum-
scribed to a circle. 

4. Using the Cabri menu, they construct the perpendicular lines from the point of 
intersection of the angle bisectors to the sides of ABCD: they ‘see’ that this 
point has the same distance from each side of ABCD, then they draw the circle 
which has this length as radius: it is the circle inscribed in ABCD. They formu-
late the following ‘conjecture’: If the external quadrilateral can be circum-
scribed to a circle, then its internal angle bisectors will all meet in one point, so 
the distances from this point are equal and the sum of the opposite sides is equal 
too.  

5. They wonder whether this works even if they begin their construction with the 
circle: they construct a circle, a quadrilateral circumscribed to this circle, its an-
gle bisectors and they observe that all of them meet in the same point; after-
wards, they write down this ‘conjecture’: If the internal angle bisectors of a 
quadrilateral all meet in the same point then the quadrilateral can be circum-
scribed to a circle. 

Let us examine carefully ep. 2 and 3. First, pupils look for an object more generic 
than a square (which is thought as ‘trivial’ and ‘too easy a figure’), such that points 
H, K, L, M still coincide: they do that by lieu muet dragging. Then, their attitude 
changes: they look at the figure in Cabri without moving anything, try to discover 
some rule or invariant property under the lieu muet dragging, select ‘which rule it 
is the case of’ in their geometrical knowledge; this phase is marked by a continu-
ous switching from figures to theory and back. Some general features of this new 
attitude are typical and described also in Mariotti et al., 1997: specifically we see in 
these pupils the internalisation of the visual field (the subjects ‘see’), and the de-
tachment from the exploration process (which is seen from the outside). Moreover, 
it is typical that again the subjects express their hypothesis not yet as a deductive 
sentence, but as an abduction (Peirce, 1960). In fact the subjects ‘see’ what ‘rule’ 
this is the case of, to use Peirce language. Namely, their visual field has been inter-
nalised in order to find a property which can help them to classify the figures into 
something they know; they select the part of their geometrical knowledge they 
judge as the right one. The conditional form is virtually present: its ingredients are 
all alive, but their relationships are still reversed, with respect to the conditional 
form; the direction after which the subjects ‘see’ things is still in the stream of the 
exploration through dragging, the control of the meaning is ascending, namely they 
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are looking at what they have explored in the previous episodes in an abductive 
way. Control direction changes in ep.4: here students use the construction modality 
(and the consequent dragging test) to check the hypothesis of abduction and at the 
end they write down a sentence in which the way of looking at figures has been 
reversed. By lieu muet dragging, they have seen that when the intersection points 
are kept to coincide the quadrilateral is always circumscribed to a circle; now they 
formulate the ‘conjecture’ in a logical way, which reverses the stream of thought: 
‘if the quadrilateral is circumscribed then the intersection points coincide’. It is not 
a mistake! This episode marks the switching from the abductive to the deductive 
modality: now the control is descending and things are looked at in the opposite 
way. In ep.5 the descending control continues; exploration now produces as output 
the figure which in previous dragging was taken as input: the pupils now construct 
a figure with the underlined property in order to validate the conjecture itself and 
check whether the figure on the screen passes the dragging test. In this way they 
formulate a conjecture expressing a sufficient and necessary condition “if … and 
only if …” in a conditional form, even if they are not able to summarise it into one 
statement only. Hence, at the end of their resolution process they have all the ele-
ments they need to prove the statement. 
 We can find some interesting elements also in the discussion which immediately 
followed the activity in Cabri (St 8, 9=students of Group A): 

[…] St 9: “Well, we can find many other figures in which all the bisectors meet in 
the same point, in some quadrilaterals that apparently haven’t got anything spe-
cial. (1) [he moves the figure by lieu muet in order to have a generic quadrilateral 
in which H, K, L, M are coincident] But, if we draw a circle … no, first of all let us 
draw a perpendicular line through one of these points [H, K, L, M] to one of the 
sides of ABCD (2) [he draws the perpendicular from L to DC] and consider the 
intersection point … [he draws], we notice that this quadrilateral is circumscribed 
to a circle, then since it is a circle all the radii are equal and all the distances from 
the sides of ABCD are equal too …” 
St 8: “… all these centres are coincident …”  […] 
St 9: “If a quadrilateral can be circumscribed to a circle, all its angle bisectors 
meet in the same point.” 
St 8: “We proved the same thing but starting from a circle too (3); we drew the 
tangent lines and we came to the same conclusion.” […] 

These students recollect what they have just found out reversing the exploration 
process: the descending control is ruling their thinking in the discussion phase. It is 
important to underline which concerning Cabri elements are still present in their 
words, which now are spoken from a detached point of view (numbers refer to the 
sentences in the discussion): (1) The lieu muet dragging, which allows them to 
move from a square to a more generic object that keeps H, K, L, M coincident 
[they are probably moving along a diagonal of the square]. (2) The construction 
activity (perpendicular line), with the dragging test, which supports their reasoning 
towards proof. (3) The ‘only if’ form of their conjecture. Here we have a second 
form of detachment, fully embedded in the descending control stream, which we 
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call the rational agent (Balacheff, 1982): they control the products of the whole 
exploring and conjecturing process from a higher level, selecting from this point of 
view those statements which are meaningful for the very process of proving and 
rule possible new explorations. They are again reversing the way of looking at the 
relationships among the objects: however this is not an abduction, but a logical 
concatenation of the ‘only if’ part (see Mariotti et al., 1997 as regards the ‘only if’ 
reasoning). 
 We also found another modality of dragging (wandering dragging), which we 
will illustrate sketching Group B strategies. These students (of middle level) have a 
dynamic approach to the problem as well: they begin by dragging the vertices of 
ABCD at random and observing what happens to HKLM. As soon as they see 
something interesting about HKLM, such as a known or a ‘strange’ shape (for ex-
ample a crossing quadrilateral), they stop moving. Then they go on by (lieu muet) 
dragging ABCD so that HKLM keeps the same shape and they look at ABCD, 
trying to find out what kind of quadrilateral it is. We notice an evolution in their 
way of using the drag mode in Cabri: at first they seem to move the drawing just 
because Cabri allows them to do so, they haven’t got any plan in their mind and 
move points at random; then they change their behaviour and move points in such 
a way as to keep a certain property of the figure, e.g., along a fixed direction. They 
continue switching from the first mode to the second one, every time they find an 
‘interesting’ shape of HKLM. Hence the lieu muet dragging can be seen as a wan-
dering dragging which has found its path, as some possible regularity has been 
discovered, at least at a perceptual level: both the dragging modalities are in the 
same stream of thought, namely in the ascending control one; at the opposite side 
we find dragging test, which is typical of descending control (albeit it can be used 
at different levels of sophistication).  

Dragging by Lieu Muet as a Reorganiser 

The protocols above are very important, because they clearly show how the dialec-
tic between the different modalities of dragging can deeply change the relation-
ships among the geometrical objects of the situation; so through the analysis of the 
dragging modalities used by pupils we can observe how such a shift takes place. In 
particular we shall concentrate on lieu muet modalities. A lieu muet can act both as 
a logical reorganiser (Pea, 1987; Dörfler, 1993) and as a producer of new powerful 
heuristics (Hölzl, 1996). The former shows a new, intriguing way after which 
dragging can act as a mediator between figures and concepts (Hölzl, 1996), namely 
at a deeper and unexpected level of conceptual knowledge; the latter makes acces-
sible some aspects of such a reorganised knowledge at a perceptual level and in a 
strongly ‘situated’ way, so it seems to support a ‘situated abstraction’ in the 
sense of Hoyles & Noss, 1992 (compare Group A protocol with the example in 
Hölzl, 1996). 
 Let us sketch the kind of logical reorganisation that the lieu muet encompasses: 
it shows a new and wide component of Cabri’s epistemological domain of validity. 
The example of exploration showed in our protocols illustrates this in a paradig-
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matic way; a lot of explorations described in the literature seem to be coherent with 
our analysis: e.g. the cases discussed in Hölzl, 1996, where he observes a shifting 
of perspective in students ‘from the constructions of certain points to the interpreta-
tion of certain loci’ (p. 181).  
 The lieu muet ‘shows’ a new logical relationship between points and figures, 
which adds to the usual functional dependence of the kind variables–parameters, 
where some constructed objects depend in their construction on others which are 
considered as ‘given’. 
 The new relationship consists in the fact that: (i) a certain locus C is empirically 
built up (see Group A protocol, as well as example at p. 176 in Hölzl, 1996) thanks 
to a feedback given by the preservation of some ‘regularity’ in drawn figures and 
the movement of the mouse dragging a (draggable) point P in a suitable way 
(which means precisely that P describes C as a lieu muet); (ii) when the point P 
runs on C some corresponding figures F(P) satisfy some regularity, invariance or 
rule (in the example, for each P belonging to the empirical curve C, the bisectors of 
the corresponding quadrilateral Q(P) meet in the same point). To use a mathemati-
cal language, the (usually algebraic) variety C (usually of dimension 1, that is a 
curve) parameterises (all or some of) the figures of the situations in a way which is 
perspicuous for the problem to solve. This parameterisation of course is given only 
through dragging and not by equations: if made explicit they would express the 
relationships found empirically by dragging in the language of algebra; that is to 
say, dragging makes relationships of logical inclusion between algebraic varieties 
accessible to pupils at a perceptual level. The role of lieu muet in the dynamic of 
ascending/descending control supports and helps students to produce abductions 
and provokes the switching between ascending and descending control modalities. 
A lieu muet, as a perceptual counterpart of the above algebraic relationship, ex-
presses an abduction in a figural and perceptive way: C is indeed the ‘rule’ which 
the figures F(P) are the case of, given the functional dependence among the con-
structed objects. In fact, the successive dynamics of pupils’ actions have the same 
structure as those in pencil and paper environments: namely, first the pupils formu-
late a conjecture in a conditional way (which is a regularity produced by the lieu 
muet dragging), then they make explorations and constructions to validate the hy-
pothesis, as we have seen in the protocols above. The latter are ruled by a descend-
ing control; the function of dragging changes: it is now used as a test for validating 
the hypothesis. This dragging dialectic makes accessible a ‘jeu de cadre’, in the 
sense of R. Douady between Euclidean geometry and algebraic varieties. The for-
mer becomes explicit for pupils through constructions and dragging test ruled by 
descending control; the latter remains implicit, at the perceptual level of lieu muet 
dragging, but the dragging test makes accessible abductions (and possibly conjec-
tures and proofs), which concern more difficult problems than those that they can 
tackle in paper and pencil environments. 
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NOTES 
1 The example given by Peirce is illuminating (Peirce, 1960, p. 372). Consider a situation where we 

have a bag of beans and some beans on the floor. Consider the following sentences : A) These beans 
(on the floor) are white;  B) The beans of that bag are white; C) These beans (on the floor) are from 
that bag. A deduction is a concatenation of the form: B and C, hence A. An abduction is: A and B, 
hence C (Peirce called hypothesis the abduction). An induction would be: A and C, hence B. 

2 All our experiences refer to Cabri I, MS-DOS version. 
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FURTHER READING 

Handbook of Research on Psychology of Mathematics Education 
Past, Present and Future 
 
Angel Gutiérrez, Universidad de Valencia and  Paolo Boero, Università di 
Genova (eds.) 
 
This volume is a compilation of the research produced by the International Group 
for the Psychology of Mathematics Education (PME) since its creation, 30 years 
ago. It has been written to become an essential reference for Mathematics Educa-
tion research in the coming years. The chapters offer summaries and synthesis of 
the research produced by the PME Group, presented to let the readers grasp the 
evolution of paradigms, questions, methodologies and most relevant research re-
sults during the last 30 years. They also include extensive lists of references. Be-
yond this, the chapters raise the main current research questions and suggest 
directions for future research. The volume is the result of the effort of 30 authors 
and 26 reviewers. Most of them are recognized leading PME researchers with great 
expertise on the topic of their chapter. 
  This handbook shall be of interest to both experienced researchers and doctoral 
students needing detailed synthesis of the advances and future directions of re-
search in Mathematics Education, and also to mathematics teacher trainers who 
need to have a comprehensive reference as background for their courses on 
Mathematics Education. 
 

Paperback ISBN 90-77874-19-4                   
Hardback ISBN 90-77874-66-6 

  March  2006, 544 pp 
 
Mathematics Classrooms In Twelve Countries 
The Insider’s Perspective 
 
David Clarke, Univ. of Melbourne, Christine Keitel, Freie Univ. Berlin and Yoshinori 
Shimizu, Univ. of Tsubuka, Japan (eds.) 

 
This book reports the accounts of researchers investigating the eighth grade 
mathematics classrooms of teachers in Australia, China, the Czech Republic, Ger-
many, Israel, Japan, Korea, The Philippines, Singapore, South Africa, Sweden and 
the USA. This combination of countries gives good representation to different 
European and Asian educational traditions, affluent and less affluent school sys-
tems, and mono-cultural and multi-cultural societies. Researchers within each local 
group focused their analyses on those aspects of practice and meaning most closely 
aligned with the concerns of the local school system and the theoretical orientation 
of the researchers.  
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  The Learner’s Perspective Study is guided by a belief that we need to learn from 
each other. The resulting chapters offer deeply situated insights into the practices 
of mathematics classrooms in twelve countries: an insider’s perspective. 
  Paperback ISBN 90-77874-95-X                                                                            
  Hardback ISBN 90-77874-99-2  
  August 2006, 402 pp 
  SERIES: THE LEARNER’S PERSPECTIVE STUDY 1 
 
Making Connections 
Comparing Mathematics Classrooms Around The World 
 
David Clarke, Univ. of Melbourne, Jonas Emanuelsson, Gotenborgs Universitet, 
Eva Jablonka, Freie Universitat Berlin and Ida Ah Chee Mok, The University of Hong 
Kong (eds.) 
 
In this book, comparisons are made between the practices of classrooms in a vari-
ety of different school systems around the world. The abiding challenge for class-
room research is the realization of structure in diversity. The structure in this case 
takes the form of patterns of participation: regularities in the social practices of 
mathematics classrooms. The expansion of our field of view to include interna-
tional rather than just local classrooms increases the diversity and heightens the 
challenge of the search for structure, while increasing the significance of any struc-
tures, once found. In particular, this book reports on the use of ‘lesson events’ as an 
entry point for the analysis of lesson structure. 
 

Paperback ISBN 90-77874-79-8                                                                        
Hardback ISBN 90-77874-90-9  
September 2006, 280 pp 
SERIES: THE LEARNER’S PERSPECTIVE STUDY 2 

 
 
Ethnomathematics 
Link between Traditions and Modernity 
 
Ubiratan D'Ambrosio, Unicamp, São Paulo, Brazil 
    
In this book, Ubiratan D’Ambrosio presents his most recent thoughts on ethno-
mathematics – a sub-field of mathematics history and mathematics education for 
which he is widely recognized to be one of the founding fathers.  In a clear, concise 
format, he outlines the aim of the Program Ethnomathematics, which is to under-
stand mathematical knowing/doing throughout history, within the context of differ-
ent groups, communities, peoples and nations, focusing on the cycle of 
mathematical knowledge:  its generation, its intellectual and social organization, 
and its diffusion.  While not rejecting the importance of modern academic mathe-
matics, it is viewed as but one among many existing ethnomathematics.  Offering 
concrete examples and ideas for mathematics teachers and researchers, 
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D’Ambrosio makes an eloquent appeal for an entirely new approach to conceptual-
izing mathematics knowledge and education that embraces diversity and addresses 
the urgent need to provide youth with the necessary tools to become ethical, crea-
tive, critical individuals prepared to participate in the emerging planetary society. 
 
  Paperback ISBN:90-77874-76-3                                                                                         

Hardback ISBN:90-8790-008-2 
July  2006, 110 pp 

 
 
Travelling Through Education 
Uncertainty, Mathematics, Responsibility 
 
Ole Skovsmose, Department of Education and Learning, Aalborg University, 
Denmark 
 
This is a personal notebook from a conceptual travel. But, in a different sense, it 
also represents a report on travelling. The main part of the manuscript was written 
in Brazil, Denmark and England, whilst notes have also been inspired by visits to 
other countries. So, the book not only represents conceptual travel, it also reflects 
seasons of real travelling. In Part 1, the book comments on the critical position of 
mathematics education, and also indicates some concerns of critical mathematics 
education. Part 2 comments on mathematics in action, and considers the discussion 
of mathematics as an applied discipline in the contexts of technology, management, 
engineering, economics, etc. In Part 3, the book comments on mathematics and 
science in general. These comments are then generalised into a discussion of ‘rea-
son’ and of the ‘apparatus of reason’. Finally, Part 4 returns to the discussion of 
mathematics education, and comments on notions that could become ‘sensitive’ to 
the critical position of mathematics education.   Travelling with the author, the 
reader will become aware of connections between many of these different is-
sues. This very personal and warm academic book should inspire anyone active in 
the field of mathematics education or education in general.  
 

Paperback ISBN:90-77874-03-8                   
hardback ISBN:90-77874-67-4 
August  2005, 256 pp 

 
For more information on these titles and other publications go to 
WWW.SENSEPUBLISHERS.COM 




	Cover
	Series page
	Contents
	PREFACE
	The ongoing value of proof

	INTRODUCTION
	Theorems in school: An introduction

	PART I: THE HISTORICAL ANDEPISTEMOLOGICAL DIMENSION
	1. Origin of mathematical proof: History and epistemology
	2. The proof in the 20th century: From Hilbert to automatic theorem proving
	3. Students’ proof schemes revisited

	PART II: CURRICULAR CHOICES, HISTORICALTRADITIONS AND LEARNING OF PROOF: TWONATIONAL CASE STUDIES
	4. Curriculum change and geometrical reasoning
	5. The tradition and role of proof in mathematics education in Hungary

	PART III: ARGUMENTATION AND PROOF
	6. Cognitive functioning and the understanding of mathematical processes of proof
	7. Some remarks about argumentation and proof

	PART IV: DIDACTICAL ASPECTS
	8. Making possible the discussion of “impossible in mathematics”
	9. The development of proof making by students
	10. Approaching and developing the culture of geometry theoremsin school: A theoretical framework
	11. Construction problems in primary school: A case from the geometry of circle
	12. Approaching theorems in grade VIII: Some mental processes underlying producing and proving conjectures, and conditions suitable to enhance them
	13. From dynamic exploration to “theory” and “theorems” (from 6th to 8th grades)
	14. Geometrical proof: The mediation of a microworld
	15. The transition to formal proof in geometry

	Further Reading


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


