


MATH EMATI CAL 
MYSTERIES 

The Beaury and Magic 
of Numbers 



MATHEMATICAL 
MYSTERIES 

The Beaury and Magic 
of Numbers 

CALVIN C. CLAWSON 

Springer Science+Business Media, LLC 



Llbrary of Congress Catalogtng-In-Publlcatlon Data

the beauty and magie of numbers I Calvin
Clawson, Calvin C.

Mathematieal mysterles
C. Clawson .

p . cn ,
Ineludes bibliographieal referenees (p. ) and tncax .

1. Number theory .
OA241.C664 1996
512' .7--de20

1. Title.

96-31715
CIP

ISBN 978-0-306-45404-2 ISBN 978-1-4899-6080-1 (eBook)
DOI 10.1007/978-1-4899-6080-1

© 1996 Calvin C. Clawson
Originally published by Plenum US in 1996.

Softcover reprint of the hardcover Ist edition 1996

10987654321

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming,

recording, or otherwise, without written permission from the Publisher



To my best friend and wife, Susan 



ACKNOWLEDGMENTS 
Many have generously given of their time to make this book 
possible. Special thanks go to my workshop friends who patiently 
reviewed the manuscript and offered valuable suggestions: Marie 
Edwards, Bruce Taylor, Linda Shepherd, Phyllis Lambert, and 
Brian Herbert. A very special thanks goes to Martin Gardner for 
allowing me to snoop through his files on prime numbers. I also 
want to thank Larry Curnutt for inspiring the two chapters on 
Ramanujan and for reviewing the rough draft, providing many 
excellent recommendations. Thanks go to David Bennett for re
v;ewing the manuscript and identifying several difficulties. I can
not fail to mention my indebtedness to the mathematics and 
philosophy professors at the University of Utah, who were both 
kind and inspiring while leading me from the darkness into the 
light. 

Vll 



CONTENTS 

Introduction 1 

CHAPTER 1 Discovery of the Number Sequence 8 

CHAPTER 2 Numbers and the Occult 39 

CHAPTER 3 Sequences and Series 53 

CHAPTER 4 The Family of Numbers 77 

CHAPTERS Story for a Rich Man 95 

CHAPTER 6 Exotic Connections 116 

CHAPTER 7 Closing in on the Primes 145 

CHAPTER 8 Primes in Depth 164 

CHAPTER 9 Primes and Secret Codes 184 

ix 



x 

CHAPTER 10 The Remarkable Ramanujan 

CHAPTER 11 Ramanujan's Equations 

CHAPTER 12 Goldbach's Conjecture 

CHAPTER 13 Deepest Mysteries 

CHAPTER 14 Into the Stratosphere 

EndNotes 

Suggested Reading 

Index 

CONTENTS 

201 

216 

236 

258 

279 

297 

305 

309 



INTRODUCTION 

The mathematician lives long and lives young; the 

wings of the soul do not early drop off, nor do its 

pores become clogged with the earthly particles blown 

from the dusty highways of vulgar life. 

JAMES JOSEPH SYLVESTER 

0814-1897)1 

(')7"" vividly remember a class on numerical analysis taught by 
J Professor Chamberlain at the University of Utah during the 
1960s. He would become so enthralled with his lecture that, while 
hurriedly writing equations on the blackboard, he would fail to 
notice how closely he was stepping to the edge of the platform, 
raised six inches off the floor. My attention fluctuated between 
following his lecture and watching his feet move ever nearer to the 
platform's edge. Suddenly and without warning, he would step off 
the platform and fall in a great tumble to the floor. 

The entire class would burst out laughing. Chamberlain would 
give a great laugh as he picked himself off the floor and brushed 
the dust from his pants. Smiling, he would offer some delightful 
joke and then return to the blackboard and his equations. We were 
so awed by his complete involvement in the realms of numerical 
analysis that we, too, paid intense attention to his lectures trying to 
discover what he saw in the subject matter. By the end of the year, 
we had fallen a little more in love with numbers. 
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But why, we might ask, should we study mathematics at all? 
Most adults admit to an ignorance and d deeply rooted annoyance 
of mathematics. Why should we then torture ourselves by studying 
the subject when we are not required to do so? On the first day of 
class I ask my algebra students why anyone should pursue mathe
matics. They never fail to offer a list of valid reasons: mathematics 
is required to finish their schooling; it helps them i~ their personal 
finances; it will be required on the job; it helps them tutor their 
children; it promotes their understanding of science. All these are 
good reasons, each sufficient in itself. Yet each of these reasons 
misses the primary motivation to study mathematics. 

The single most compelling reason to explore the world of, 
mathematics is that it is beautiful, and pondering its intriguing 
ideas is great fun. I'm constantly perplexed by how many people 
do not believe this, yet over 50,000 professional mathematicians in 
America practice their trade with enthusiasm and fervor. Another 
five to ten million Americans study mathematics for the pure joy 
of it, without any anticipation of ulterior rewards. Can all these 
people be wrong? Certainly not! They have all learned a great 
secret: to study the deep truths of number relationships feeds the 
spirit as surely as any of the other higher human activities of art, 
music, or literature. 

Even though I state with conviction that mathematics is fun, 
those people suffering from math phobia or experiencing math 
revulsion will continue to shake their heads, failing to take that first 
step forward to look into the mathematical depths. When they open 
a book on mathematics and encounter all the strange symbols 
strewn across the pages, their stomachs tie into knots and their 
hearts begin racing. Mathematics is simply not for them. This 
too-common reaction is a conditioned response programmed into 
their psyche from childhood. 

Now, for a confession. Even though I've received a college 
degree in mathematics, and have published books on the subject, 
I, too, still occasionally suffer from math anxiety. At the local library 
or bookstore I might find a math book with an interesting title. 
Flipping through the pages, I'm struck with numerous bizarre 
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symbols which I've not seen before, and of which I have no under
standing. My stomach takes a hop, and my heart races. My discom
fort at that moment is the same as that of the math phobic. The 
difference is that I know the feeling of discomfort will pass, that it 
is only an automatic response of my body when my mind is faced 
with an unknown situation. I also know that if I choose to purchase 
the book and learn the definitions involved, I'll begin to harvest a 
great enjoyment from the material. Therefore, it is possible for all 
who suffer math phobia and math anxiety to reverse the situation 
and learn to enjoy mathematics. Enjoyment is the keystone for this 
volume. It is written to present to you, the reader, fundamental 
mathematical truths to dazzle and amaze you. 

The greatest discovery of all humankind may well have been 
the natural numbers. The natural or" counting" numbers have been 
with us since prehistoric times, assisting us in our struggle to 
emerge from the primitive lifestyle of the hunter-gatherer to be
come the modem human beings of the 21st century. For many past 
aeons, philosophers and mathematicians have studied the se
quence of natural numbers, uncovering startling and mystifying 
truths. Mathematics, itself, began with the natural numbers and the 
study of their relationships. The demand for solutions to new and 
sophisticated problems encountered in our march from simple 
farmers to merchants, priests, scientists, and finally modern indus
trialists, forced us to use the natural numbers to construct the great 
edifice of modem mathematics. 

Mathematicians, in their search for these solutions, progressed 
beyond the natural numbers, discovering fractions, irrational, tran
scendental, transfinite, and surreal numbers. However, the major
ity of professional mathematicians recognize that the most 
important problems in mathematics today still involve the natural 
number sequence. 

By studying the natural numbers in their wonderful ordered 
sequence, we discover a perplexing and utterly charming charac
teristic of mathematics-its interconnectedness. The reasons why 
seemingly unrelated mathematical truths are connected in simple 
and beautiful equations continue to stump mathematicians. The 
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natural number sequence also represents our first encounter with 
the idea of infinity, an idea that still puzzles and entertains us. 
Finally, the very notion of numbers forces us to deal with the 
question of what reality is. Do numbers exist without humans to 
think of them? If so, what exactly are these "ideas" and how is their 
existence different from the material world we see around us? 

Frequently, when studying mathematics, one slips into another 
world, a world of exquisite beauty and truth. This traveling to 
another plane of mental existence can be so addicting that the 
practitioner is lost, like Professor Chamberlain, to ordinary, daily 
stimulus. 

Because this book is about mathematics, you will find formulas 
and equations on some of the pages. A current trend is under way 
to write books about mathematics and science that do not contain 
any, or at least very few, equations. My own editor said that her 
publishing house would like a book without all those pages and 
pages of equations. In the foreword to Stephen Hawking's book, A 
Brief History of Time: A Reader's Companion, Professor Hawking 
ruminated about advice he has received regarding the writing of 
his popular book. 

Each equation, I was told, would halve the sales of the book. But 
that was okay. Equations are necessary if you are doing account
ancy, but they are the boring part of mathematics. Most of the 
interesting ideas can be conveyed by words or pictures. 2 

However, to ignore equations in our study of mathematics is 
wrong. Learning about mathematics without equations is like eat
ing chocolate candies without the delicious, gooey centers. They 
can temporarily satisfy, but we miss the yummy and mysterious 
candied sweets in the middle. To push this analogy even further, 
equations are much like chocolates. Equations are small and com
pact, while hiding delicious interiors of intriguing truths. A simple 
example will illustrate. 

For most of my adult life, if anyone had shown me the equation 
Xl + 1 = 0 and asked what I thought, I surely would have yawned 
and shaken my head in boredom. The equation appears to have no 
special features to draw our attention. Then I discovered the won-
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derful sweets hidden in the center of this chocolate. The equation 
has three solutions for X-values for X that make the lefthand side 
of the equation O. One obvious solution is when X is equal to-l. 
That is: (-W + 1 = -1 + 1 = O. However, two other solutions exist. 
These solutions are not examples of ordinary numbers (real num
bers) we find on a number line, but are examples of the strange 
complex numbers. The complex numbers occupy an entire plane 
rather than just a line. A popular method of solving such equations 
is called Newton's Method. If we use this method on ~ + 1 = 0 and 
graph the results, we discover a complicated, yet beautiful image 
that replicates itself under magnification. Hence, when we magnify 
the image it never resolves itself into simple lines and curves, but 
always remains complex. Such images are called fractal by mathe
maticians. Figure 1 is the fractal image associated with the equation 
X3 + 1 = O. Why this image is associated with this particular 
equation, nobody can say-it's a mystery. Now, when encountering 
this little equation, a shock runs up my spine, for I understand that 
hidden under its apparent simplicity and elegance is a deep and 
complex mystery which we have still to solve. Words alone cannot 
convey the essence of this equation or feed my hunger for its 
delectable center: I need the tasty little equation, itself. 

Therefore, we will look at interesting equations, even though 
we are forewarned that each may "halve the sales of the book." But 
eating too many chocolates too quickly can cause an upset stomach. 
So we'll be judicious, and pace our equations. In this way, each one 
we encounter will seem like a special treat. 

Before beginning our journey I must add one more note. Books, 
including books about mathematics, are changing in a fundamen
tal way: Many of the facts and opinions reported within books are 
now available to all those who own computers. Because we are in 
the very nucleus of this change, it is impossible to predict just what 
shape things will take in the future. This situation has occurred 
because of the Internet, the great sharing of ideas through the 
millions of connected computers around the world. For example, 
it is now possible to dial into the Internet and discuss any kind of 
mathematical question (or any other kind of question for that 
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FIGURE 1. Fractal image of X3 + 1 = O. Using Newton's Method to solve the 
equation X3 + 1 = 0, we discover that the initial values used to find the roots of the 
equation in the complex plane do not always lead to the closest root, but generate 
this fractal. 

matter) with professional and amateur mathematicians all over the 
world. 

Not long ago I needed information that I could not find at my 
local library or from my collection of math books. I left a request 
for the information on the Internet. Within hours I received my first 
reply. Over the next few days I received a half-dozen E-mail re
sponses, giving me many useful references on the subject. Re
sponses came from such diverse sources as a professional 
mathematician in England and a graduate student in California. 
One response even gave the name of a book which I already had in 
my own bookcase, but had failed to realize contained a good 
discussion of my problem. 
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The various computers connected through the Internet main
tain files of information. By using the Internet (called "surfing the 
net" by aficionados) it is possible to look into those files that are 
open to the public. Such public files can be repositories of intriguing 
bodies of knowledge. At one computer site is a file containing the 
biographies of 350 mathematicians.3 Another location contains a 
list of all the largest prime numbers.4 A third fileS contains the first 
1.25 million digits of 11:. 

Just a few years ago, it was almost impossible to find such 
current information, unless you were very familiar with the specific 
mathematical field involved. Today, through the Internet, this in
formation is freely available to the general public. Some of the 
references I cite come from the Internet, especially in areas where 
knowledge is changing so fast that it has not filtered into book form, 
or that books, as a medium of information transfer, are simply too 
slow to record. This great diversity and depth of knowledge can be 
at the fingertips of anyone with access to a computer and a modem. 
Today the amateur mathematician can communicate with the most 
brilliant professional, sharing both ideas and the pleasure of prob
ing the great mysteries of the cosmos. Just how the Internet will 
change our current methods of disseminating knowledge we can't 
say. 

Whatever does happen, we can be certain of one thing: It will 
be exciting. Just as the invention of movable type gave us printing 
and the democratic spread of knowledge in the 15th century, the 
computer and the Internet will greatly accelerate the pace of our 
knowledge sharing in the 21st century. How this will change the 
face of mathematics is anyone's guess. 



CHAPTER ONE 

DISCOVERY OF THE NUMBER 
SEQUENCE 

I had been to school most of the time, and could spell, 

and read, and write just a little, and could say the 

multiplication table up to six times seven is thirty

five, and I don't reckon I could ever get any further 

than that if I was to live forever. I don't take no stock 

in mathematics, anyway.-Huck Finn 

MARK TWAIN 

THE ADVENTURES OF HUCKLEBERRY FINN1 

WHAT IS COUNTING? 

r7T he natural number sequence is the list of counting num
L7 bers used in everyday life. They are such an important 

component of our general knowledge that they are one of the 
first things we teach our children. When our babies are two or 
three years old, we begin by holding their hands up and pointing 
to each successive finger as we say the appropriate word for that 
number of fingers. We are encouraged when our children say the 
correct number back to us: "one, two, three, four, ... " But is this 
counting? Not quite. 

We could actually teach our children another sequence of words 
which have no number meaning, such as the lyrics to a song. For 

8 
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example, we could teach them the sequence: up, up in the sky, 
where the little birds fly ... Saying these words, even in the correct 
order, is not counting, for counting is carried out with a specific 
purpose in mind, a final goal. A list of words such as sky and fly, as 
the words of a song, are also learned in a specific order, but do not 
represent counting. Order is certainly necessary to counting, but 
simply saying words in order leaves out something very important. 
To count implies we are after a special end result to our activity. To 
understand what that goal may be we must look at what numbers 
are used for. 

In general, numbers have three uses, and are given three names 
to reflect these uses. Cardinal numbers are used to find how many 
objects are in a collection. We call the objects "elements" and the 
collections "sets." This is the first and most important use of 
numbers. 

Ordinal numbers are used to find the proper order of elements 
in a set. If you graduated number three in your college class, then 
you were after two other students. The "three" does not tell how 
many students graduated, but only where you stood among those 
graduates. Therefore, the "three" is used as an ordinal number but 
not a cardinal number. Hence, ordinal numbers give us information 
about an element's position within a set, without identifying the 
cardinal number of the set. There are many uses of ordinal num
bers. For example, street addresses are ordinal numbers. An ad
dress of 1933 Spring Street does not tell us how many houses are 
on Spring Street or how many houses are in the city. But the number 
1933 does tell us that this house comes before 1947 Spring Street 
and after 1909 Spring Street. Some numbers may be used as both 
cardinal and ordinal numbers, e.g., counting on our fingers while 
speaking the counting words. In this case we not only determine 
the total number of fingers (cardinal number), but we also assign 
each number to a specific finger, and, hence, determine an ordering 
for the fingers. 

The last use of numbers is simply to give a unique name to an 
object. These are tag numbers. Phone numbers, airline flight num
bers, and bus numbers are tag numbers. Tag numbers give us no 
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information about the number of phone customers, airline flights, 
or bus routes, nor do they give us any information about the order 
of items in a set. We can't say flight 302 leaves before or after flight 
1601. As numbers, tag numbers are of the least interest because they 
are really used in the place of proper names. Therefore, we will be 
concentrating our investigation on cardinal numbers and ordinal 
numbers. 

The activity of counting involves a process called "mapping" 
by mathematicians. When mapping, we assign a separate object to 
each of the elements we are counting. In the common experience 
of using counting words, we assign to each item in the set being 
counted a specific counting word. The words must be used in the 
correct order, so that the word assigned to the last object becomes 
the cardinal number for the set. Hence, to count the fingers on my 
left hand I assign the following words to the fingers: one, two, three, 
four, and five. Five now is the cardinal number of the fingers of my 
left hand and tells me the manyness of that set. 

Even though we generally use numbers when counting, this is 
not necessary. Some primitive societies have been known to use a 
kind of stick counting, where physical objects are mapped to the 
set of objects being counted. In such counting the counter does not 
end with a convenient word for his number of objects, but rather 
with a collection of objects that represents the manyness of the set. 
For example, a Wedda man from the island of Sri Lanka may count 
a stack of coconuts by assigning one clam shell to each coconut. 
When he is finished, he can't say how many coconuts he has for he 
has no word in his language to designate this number, but he can 
point to the pile of shells and say, "that many." If someone were to 
steal a coconut, he could perform the mapping of shells to coconuts 
again, and discover he had one extra clam shell. Holding the shell 
with no coconut to map it to, he would realize at once that one 
coconut was gone. 

ORIGINS OF COUNTING 

When we count to find the number of elements in a set, we are 
using natural numbers as cardinal numbers. Therefore, the act of 
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counting includes the desire to know the manyness of a set of 
objects. It is this desire that distinguishes true counting from simply 
speaking names in a designated order, such as in a song or poem. 
The desire to keep track of the number of elements in a set may 
have been the first motivation for human beings to count. How old 
is counting, and do other species count? One may be tempted to 
say that counting can be no older than language, since we typically 
use number words to count, but we have already seen that a more 
primitive form of stick counting can occur without language. 

At the present time, no evidence exists that animals count. 
Elaborate experiments have been performed on birds and primates 
to test their counting talents.2 The best they can do is to distinguish 
between the quantity of small groups of objects. They cannot map 
objects onto sets of elements to determine the manyness of the sets. 
The story is still out for dolphins and whales, both of which have 
brains large enough to carry out the mapping operation. While the 
human brain is approximately three pounds (1500 cubic centime
ters in volume), a blue whale can have a brain as large as 15 pounds. 
We understand too little about such creatures to know if they can 
or do count. 

The exact origin of counting is lost in our prehistory. Yet, it must 
be very old. The oldest direct evidence is a baboon's thigh bone 
discovered in the Lebembo Mountains of Africa that has been 
marked with 29 notches. The bone is 35,000 years old. A wolf bone 
found in Czechoslovakia has 55 notches and is 30,000 years old. 
While these bones are the products of Homo sapiens sapiens, or 
modern humans, their creation occurred long before farming (8000 
B.C), pottery (6500 B.C), or wheeled vehicles (2700 B.C). Humans 
living between 35,000 and 30,000 years ago were hunter-gatherers, 
with a Stone Age technology. 

It's fun to speculate if counting could be even older than these 
33,OOO-35,OOO-year-old animal bones. The humanoids preceding 
Homo sapiens sapiens were the Neanderthals who lived in Europe 
and the Middle East from approximately 130,000 years ago to 
around 35,000 years ago. No direct evidence exists from their living 
sites that these individuals counted, yet their average brain size 
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was approximately the same as modem humans: 1500 cm3. They 
had the intelligence to use fire, make clothing and tools, create art, 
and bury their dead. It is not inconceivable that they also counted. 

An even earlier candidate for counting is the next ancestor we 
encounter, moving back into our origins. Homo erectus was a homi
noid living from approximately 1.5 million years ago to around 
300,000 years ago.3 Early Homo erectus had a brain approximately 
60 percent the size of our brains (900 cm3 compared to 1500 cm3), 

yet fully twice the size of a chimpanzee brain (450 cm3). Later Homo 
erectus brain reached a size of 1100 cm3 or almost 75 percent the size 
of our brain. Could the Homo erectus brain, midway between chimp 
and human, handle the counting operation? Certainly, the Homo 
erectus were clever. They mastered the use of fire, migrated out of 
Africa into Europe and Asia, made sophisticated stone tools, and 
constructed shelters. Such activities suggest the ability to conceive 
of a desired goal, and then carry out a set of specific activities to 
achieve that goal. This operation is precisely the kind of mental 
process needed for counting. We first form the desire to know the 
manyness of a collection of objects. Then, using either stick or 
language counting, we map objects or words against our collection. 
Therefore, the evidence surrounding Homo erectus suggests they 
may have had the mental capacity to count. But did they? Just 
having the ability to count does not guarantee that counting takes 
place. Several Stone Age tribes have been studied by anthropolo
gists where the individuals do not count beyond two or three, 
classifying all larger collections as simply "many." 

It is reasonable to assume that before counting began, there was 
a need for it. Hence, if Homo erectus counted, we can assume that 
counting increased their chances of survival in some manner. Just 
how could counting improve the survival of our ancient ancestors, 
be they Homo erectus or Homo sapiens? Certainly, within a coopera
tive hunting group, knowledge of how to divide the kill was 
important. If the game can be divided by some fair standard, the 
cooperation within the group is maintained. Hunting groups fre
quently traveled over long distances. If at least one of the group 
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could divide the future into distinct days and plan for provisions, 
then the'success of the hunt increased. 

We can imagine the same kinds of demands for the domestic 
chores. How many days before the food on hand spoils? What 
proportions of different foods should be used in meal preparation? 
For at least one individual within the hunter-gatherer group to 
know how to count must have improved the group's success. 

Without good physical evidence we cannot say the Homo erectus 
counted. Yet, we may get lucky at some future time when an 
anthropologist, struggling to uncover an ancient Homo erectus site 
in a desolate, wind-swept plain, stumbles across direct physical 
evidence of counting. This could be in the form of notched bones, 
collections of counting sticks or pebbles, or even notches on stone 
implements. One is tempted to go out into the backyard and toe 
over a few rocks to see what is underneath! 

TAKING THE NEXT STEP 

Regardless of what we credit to old Homo erectus, we can say 
with confidence that modem humans were counting by 35,000 
years ago. At one time anthropologists believed this period was the 
beginning of the Homo sapiens line, however new dating methods 
suggest that modem humans may have been around for 60,000 or 
even 90,000 years. If we were counting 35,000 years ago, we could 
have easily counted as long ago as 60,000 or 90,000 years ago. 

What was the next great step in the evolution of numbers and 
counting? Farming began 10,000 years ago in the Fertile Crescent 
of the Middle East-that area from Jericho, north to southern 
Turkey, and then south down the Tigris-Euphrates valley to south
ern Iraq. The first farmers cultivated barley from which they could 
make bread and beer: the two basic units of trade in early Western 
Asia. Farming allowed a denser population to survive in a fixed 
area than did the lifestyle of hunting-gathering. With this settled 
lifestyle, a denser population grew, causing villages and towns to 
spring up. 

Farming, and the associated towns and villages, presented new 
computing challenges for our early ancestors. Plots of land had to 
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be measured off; grain had to be measured and stored; and workers 
had to be divided into work groups and eventually paid in beer 
and bread. Simple counting no longer sufficed to carry out all these 
chores. The pressure to account for the wealth which was accumu
lating in the towns and in possession of the kings and princes 
required new directions in arithmetic. The first response to this 
pressure was the use of clay counting tokens (Figure 2). 

For many years archaeologists have been finding small clay 
objects of various shapes in the ancient sites of Western Asia. In the 
beginning, they supposed the tokens might be game pieces or 
fertility objects. But there were so many of them, and they were of 
such varied shapes. Could they all really be explained as toys or 
objects of worship? Finally, in the 1970s, Denise Schmandt-Besserat 
discovered their true use.4 They were counting tokens, used to 
account for the various commodities accumulated by the early 
farmers. These tokens could be used much like pebbles, shells, and 
sticks mentioned before as aids in nonverbal counting. Yet, these 
tokens, as the products of production, could be manufactured in 
different shapes-shapes which took on specific meaning, and the 
shapes and styles could be standardized. This facilitated the evo
lution of a standard numerical system. 

Sometime after the introduction of clay tokens, the early 
Sumerians, living in Southern Iraq, discovered that the tokens 
could be pressed into moist clay tablets before the tablets were 
baked. This provided the Sumerians with permanent records of 
objects counted. The next step was to draw the object being counted 
onto the clay along with the impressions of the tokens. Hence, five 
jars of oil could be recorded as five impressions from the "one" 
token, and a drawing of a jar of oil. This accounting system evolved 
into writing around 3100 B.C. in the major Sumerian cities of 
Southern Iraq. 

The evidence we have of numbers from prehistoric times is, so 
far, limited to evidence for whole numbers. However, the early 
farmers of the Fertile Crescent could not carry out all their comput
ing tasks if they had been limited to only positive integers. They 
needed fractions, and the numbering system of the early Sumerians 
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demonstrates that they possessed a good grasp of division and 
fractions. Later, both the Babylonians, who conquered the Sumeri
ans, and the Egyptians used fractions. The Babylonians used a 
numbering system based on both 10 and 60, and could easily record 
very large whole numbers and very small fractions. The Egyptian 
concept of fractions was somewhat more limiting since they only 
used unit fractions, i.e., fractions where the numerator was re
stricted to the number 1. Hence, all fractions had to be written as 
the sum offractions such as 1/2, 1/3, 1/4,etc. This was an awkward 
and tedious requirement. 

Soon after farming began in Western Asia, other civilizations 
began developing their own numbering systems and mathematics. 
Both China and Mesoamerica independently developed number
ing systems. The Maya of the Yucatan Peninsula developed such 
an accurate mathematics to accompany their astronomy that they 
could predict the orbit of Venus to within a few hours over a period 
of 500 years.s 

FORMALLY DEFINING NUMBERS 

We have talked about the natural number sequence, and we 
have identified it as a sequence that begins with the number 1 and 
then progresses through the natural numbers in the following 
manner: 1,2,3,4,5, .... This is the very sequence that we take great 
care to teach to our children, for it is the very basis of our arithmetic. 
We cannot show the last number in the sequence, because there 
exists no last number: the sequence" goes on forever." How do we 
know it really goes on "forever?" We can't see all the numbers 
written out, and how can anything exist that we cannot see? 

Numbers are, of course, ideas, and we don't see ideas; we think 
them. But this is no help, because, if there exists an infinity of 
numbers, we cannot think of them all. This is the very problem that 
perplexed the early Greeks, and continues to perplex people today. 
Many people simply cannot accept the notion of an infinity of 
anything. 

So far, I have offered no formally defined system for the natural 
numbers, but relied on our intuitive feeling for what they are and 
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how they progress. Now it is time to consider such a formal system, 
called an axiomatic system. One of the first to offer such a system 
for natural numbers was the Italian mathematician Giuseppe 
Peano (1858-1932). That it took mathematicians so long to formal
ize the concept of numbers is not because it is a difficult job, but 
because numbers are so ingrained within us that mathematicians 
didn't feel the need for such a system for many millennia. That is, 
the nature of the counting numbers was "obvious." 

An axiomatic system consists of a finite number of statements 
which when taken together, define the system. The statements 
contain words which are left undefined and simply accepted as 
primitive terms. Peano's axioms are simple, yet elegant. 

Axiom 1: 1 is a number. 

Axiom 2: The successor of any number is a number. 

Axiom 3: No two numbers have the same successor. 

Axiom 4: 1 is not the successor of any number. 

Axiom 5: If 1 has a certain property, and the successor of every 
number has the same property, then every number has that 
property.6 

What beautiful statements for our counting numbers. The axi
oms mention "numbers," "successor," and the number "1." These 
are our primitive terms, and we don't offer any formal definition 
of them. Yet, they are meant to have the normal meaning and refer 
to the natural number sequence. The first axiom simply states that 
1 is a number. The fourth axiom says that 1 is not the successor to 
any other number. This makes 1 the first number in our sequence, 
just as it should be. The second axiom says that the successor of any 
number is also a number. Hence, each succeeding term in the 
sequence is another number. This ensures that the sequence does 
not break down at some point and start producing things other 
than numbers, such as lines, or angles, or watermelons. Axiom 3 
guarantees that no two different numbers have the same successor. 
Why should this be important? Suppose we used the following 
sequence for our numbers: 1,2,3,4,2,5,6, 7, .... Notice that both 
the numbers 1 and 4 have the same successor number, Le., the 
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number 2. If we were to use such a number sequence for counting, 
then when we completed a count of a set with the number 2, we 
would not be sure of the actual number of objects (elements) in our 
set. That is, does the set we are counting contain two or five 
elements? Hence, we see that each and every number must be 
unique. Axiom 3 gives us that guarantee. 

The first four axioms specify those very properties of the count
ing sequence that we learn from childhood: 1 is the first number, 
each number has a successor which is also a number, and no 
number is the successor of two other numbers, i.e., the numbers are 
all unique. 

The fifth axiom requires a little more thought. These five axioms 
were intended to be the logical foundation for all of arithmetic. For 
the axioms to have such power, it was necessary for Peano to 
include this last axiom, known as the axiom of induction. This 
axiom allows us to prove things about all numbers, even though 
there are an infinite number of them. Let's say I can prove some
thing about the number 1. Suppose I can also prove the same thing 
about the number 2. Let's pretend I can continue and prove the 
property for the number 3. Is this property true for all numbers? I 
continue and prove it for 4, 5, and 6. But no matter how many times 
I extend my proof, I've still only proved the property for a finite 
number of numbers. Axiom 5 allows me to extend my proof to all 
numbers so long as I can prove that successors always have the 
property in question. Thinking about this axiom, we see that it 
agrees with common sense (which is, of course, no guarantee that 
it is correct). If we can prove something for 1 and for all successor 
numbers, we prove it for all numbers since all numbers are either 
successors, or the number 1. We will use this axiom in a proof when 
we consider some of the early Greek discoveries about numbers. 

Remarkably, these five axioms are sufficient to define all the 
operations of arithmetic, and to prove many of the wonderful 
theorems dealing with numbers. We define the number 2 as the 
successor of 1, and we show it symbolically as 2 = 1 + 1. Three is 
simply the successor of 2, or 3 = 2 + 1. The operation of addition 
can be defined in terms of successors, for each number's successor 
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is just that number with 1 added to it. For example, if we have 2 + 

3 we can define the result as a combination of successors. 

Step 1: write 3 as the successor of 2: 
Step 2: the second 2 is the successor of 1: 
Step 3: rearrange the Is: 
Step 4: write the successor of 2 as 3: 
Step 5: rearrange the Is again: 
Step 6: write the successor of 3 as 4: 
Step 7: write the successor of 4 as 5: 

2 + 3 = 2 + (2 + 1) 

2 + (1 + 1 + 1) 
(2 + 1) + (1 + 1) 

3 + (1 + 1) 
(3 + 1) + 1 
4+1 
5 

Admittedly, the process is slow and tiresome. Yet, from this 
basis, we move on to define subtraction as the inverse operation of 
addition, then multiplication as successive addition, and finally 
division as the inverse operation of multiplication. All the wonder
ful characteristics of arithmetic come tumbling out of Peano's five 
axioms. 

Even though the key terms within the axiomatic system are 
undefined, the axioms specify that they stand in a certain relation 
to each other. It is this wonderful relation that gives us the natural 
numbers. We no longer are required to laboriously add 1 to each 
number in the sequence to generate the next number, and therefore 
limit the numbers we can talk about to those we have actually 
defined and written down. The axioms specify the desired rela
tions, and all our infinity of natural numbers come popping into 
existence at once. Because of the way we learn numbers as little 
children-that is, always beginning with 1 and counting up to 10 
or more-we have the impression that the first numbers, those 
below 10, have some higher order of existence than the numbers 
which follow. The ancient Greeks recognized this intuitive feeling 
by stating that the decade, or 10, was a sacred number. One such 
Greek was Philolaus of Tarentum who said: 

One must study the activities and the essence of Number in 
accordance with the power existing in the Decad (Ten-ness); for it 
(the Decad) is great, complete, all-achieving, and the origin of 
divine and human life and its Leader; .. ? 
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Yet, there is no valid reason to hold that anyone number has 
more of a claim to existence than any other. To say that 3, 5, or 9 
have more existence than say, 17, 73, or even 3982, places an 
unnecessary condition on the notion of existence. In whatever way 
numbers do exist, they share in existence equally. This is not to say 
that all numbers share all the same qualities. Some numbers do, 
indeed, have unique and fascinating characteristics, and it is the 
discovery of these characteristics that makes the study of mathe
matics so intriguing. Our entire adventure into mathematics will 
be to uncover the characteristics of individual numbers and the 
relationships between collections of numbers. 

EARLY GREEK ACHIEVEMENTS 

While older, more established societies used numbers and 
mathematics before the Greeks, the Greeks get credit for much early 
work in mathematics because they took the time to record their 
discoveries. In all likelihood, some of these discoveries were made 
by earlier civilizations, but their mathematicians either failed to 
record them (possibly keeping their knowledge secret) or their 
writings have been lost to us. The Greeks, however, left a great and 
rich tradition of literature for us covering science, philosophy, 
drama, and mathematics. Within mathematics, they were able to 
formulate questions regarding numbers, some of which have not 
been answered to this day. 

The first human to be identified as having made a contribution 
to mathematics was Thales of Miletus (634-548 B.C.). Miletus was 
a Greek city located on the west coast of Asia Minor with trading 
connections to both the more ancient civilizations of Babylonia and 
Egypt. Thales established a school in Miletus where he taught 
mathematics and philosophy, and was considered by later Greeks 
to be the first of the seven wise men of Greece. While he is given 
credit for a number of specific discoveries in geometry, it was his 
use of the deductive method which was his greatest achievement. 
Beginning with known truths, he proceeded to deduce new truths. 
This method so impressed Thales' countrymen that they adopted 
deductive reasoning as the hallmark of Greek thinking. Hence, the 
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deductive method came to be the leading characteristic of mathe
matics. 

However, Thales is not the central character of our quest. The 
man who would come to outshine even Thales was Pythagoras 
from the Island of Samos (580-500 B.C.). Pythagoras (Figure 3) is 
reported to have attended Thales' school in Miletus and may have 
even received instruction from Thales himself. He, like Thales, is 
reported to have journeyed to both Egypt and Babylon in his early 
years to receive instruction from the priests of these much more 
ancient civilizations. In his later years Pythagoras, too, established 
a school which was located in Croton in Southern Italy. 

FIGURE 3. Pythagoras, ca. 580-500 B.c. 
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The ideas of Pythagoras went beyond those of Thales. Whereas 
Thales considered his objects of mathematics-numbers, lines, and 
angles-as objects of thought and not physical entities, Pythagoras 
extended the idea of number by claiming that not only were 
numbers objects of thought, they were also the building blocks of 
all reality. Where could he have gotten such an idea? One of his 
discoveries was the relationship between the length of a taut string 
and the sound the string produces when it is plucked. He noticed 
that if a string is shortened to 1/2 its original length, then the tone 
produced is one octave higher than the original tone. Hence, 
lengths of string that were in a ratio of 1:2 produced tones that were 
in harmony. It was this discovery of the musical intervals, including 
the octave with ratio 2:1, the fifth with ratio 3:2, and the fourth with 
ratio 4:3, that inspired the Pythagoreans to hold the number 10 as 
sacred, since the four numbers used in these ratios, Le., 1, 2, 3, and 
4, add up to 10.8 

This discovery greatly influenced Pythagoras. Evidently he 
didn't stop to consider the role that the strings, themselves, played 
in producing the sound, e.g., the vibration of taut strings and the 
design of our ears. He made the assumption that the harmonic 
tones were due only to the proper ratio of the strings' lengths. 
Hence, number ratio was what was really important. From this he 
concluded that all material objects in the universe owed their 
natures to the nature of number. Numbers, in fact, are the atoms of 
the universe, combining to form everything else. 

Evidently, then, these thinkers [Pythagoreansl also consider that 
number is the principle both as matter for things and as forming 
both their modifications and their permanent states ... 9 

This idea of number being the generator and prime cause of 
everything else became a hallmark of the Pythagorean order. Even 
though Pythagoras established a religious-philosophical order 
where discoveries were keep secret, after his death his disciples 
spread throughout the Greek world and, by establishing their own 
schools, insured the spread of his ideas. The father of idealism, 
Plato, was greatly influenced by the Pythagoreans of his day, and 
expanded on the Pythagorean belief that number was the ultimate 
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cause to conclude that a hierarchy of ideas, or Forms, were the cause 
of the universe. At the top of Plato's hierarchy was the form for 
"The One" or "The Good," which became Plato's prime generating 
agent of reality. 

The practice of keeping mathematical discoveries secret within 
a caste of loyal priests and scribes was not unique to the Pythagore
ans. In the ancient world, the ability to use mathematics to predict 
celestial events and the four seasons was a critical kind of informa
tion for any king or emperor. Farmers had to be informed by their 
king when to plant their crops. The flooding of rivers and eclipses 
of the sun and moon had to be predicted. Aking who failed to warn 
his subjects of oncoming floods or eclipses could quickly lose 
popular support. In 17th century B.C., Ahmes, an Egyptian scribe, 
wrote the Rhind Papyrus, one of the oldest documents on mathe
matics, and spoke of his writing as "knowledge of existing things 
all, mysteries ... secrets all."lo When knowledge meant power, it 
had to be jealously guarded. 

Even today some believe in the ancient Pythagorean notion that 
numbers control and influence all things. We see this in both 
numerology, the occult practice of decoding names and birthdays 
into numbers, and gematria, decoding religious scriptures into 
numbers. But just what were these discoveries of the Pythagoreans 
and the other ancient Greeks that led them to the belief in the power 
of numbers? Civilizations had been using basic arithmetic for 
centuries before the Greeks, for the Greek merchants possessed a 
good understanding of the operations of addition, subtraction, 
multiplication, and division. The ancient Greek thinkers actually 
considered the four operations of arithmetic (which they called 
logistic) to be inferior to their own study of number theory (which 
they called arithmetic). Number theory is the study of the charac
teristics of numbers rather than how to manipulate them in com
putations. Today, number theory has evolved into a deep and 
profound field within mathematics, and as such, is the primary 
focus of our investigation. 

The early discoveries of number theory appear to be quite 
simple, but this is deceptive, for we'll see that a number of simple 
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questions asked by the leading Greek mathematicians of yesteryear 
have still not been answered. 

EARLY DISCOVERIES 

The Greeks were interested in the counting numbers. They did 
not know of negative numbers and considered fractions to be only 
ratios between natural numbers rather than numbers in their own 
right. The oldest characteristic discovered about natural numbers 
is that they are either even or odd. An even number, of course, is 
any number that can be evenly divided by 2. An odd number is any 
number that cannot be so divided. Beginning with 1, every other 
number is an odd number. Beginning with 2, every other number 
is even. This distinction between even and odd plays a fundamen
tal role within mathematics. 

An early custom of the Greeks, called pebble notation, was to 
use sets of pebbles to represent numbers. Different numbers of 
pebbles could be arranged on the ground in different shapes. For 
example, the pebbles representing the numbers 3, 6, and 10 can be 
laid out in the form of triangles (Figure 4). Hence, these numbers 
became "triangular numbers." The Greeks also noted that if they 
calculated consecutive sums of the natural numbers as they appear 
in the number sequence, they always got triangular numbers. Thus, 
if we add 1 and 2 we get the triangular number 3. This process can 
be extended without end. 

1+2=3 

1+2+3=6 

1 + 2 + 3 + 4 = 10 

1 + 2 + 3 + 4 + 5 = 15 

• •• 
3 

• •• • •• 
6 

• • • • •• • ••• 
10 

FIGURE 4. Pebble arrangements for the triangular numbers 3, 6, and 10. 
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•• •• 
4 

••• ••• • •• 
9 

•••• • ••• •••• • ••• 
16 

FIGURE 5. Pebble arrangements for the square numbers 4, 9, and 16. 

2S 

This law of forming triangular numbers may go all the way back 
to Pythagoras himself. 11 

Are there other special kinds of numbers besides triangular? 
Yes! Some numbers in pebble notation can be laid out in the form 
of a square. In Figure 5 we have the pebble representations for 4, 9, 
and 16. Such numbers were designated as "square" numbers. The 
Greeks discovered that if they added consecutive odd numbers 
they always got square numbers. We can write such numbers in 
several convenient forms. 

1=1.1=12 

1 + 3 = 4 = 2·2 = 22 

1 + 3 + 5 = 9 = 3·3 = 32 

1 + 3 + 5 + 7 = 16 = 4·4 = 42 

When we see the pebble formation of square numbers we 
understand how the discoverer (possibly Pythagoras) realized this 
law. Figure 6 shows a sequence of square numbers beginning with 
1 and progressing to 36. Each higher square number is formed by 
adding an L-shaped set of pebbles to the previous number. Hence, 
4 is constructed by adding the L-shaped set of three pebbles to one 
pebble. The next square number, 9, is formed by adding the L
shaped set of five pebbles to the square number 4. To get each 
succeeding square number we just add an L-shaped set containing 
the next odd number of pebbles. This L-shape was called the 
gnomon by the Greeks, and originally referred to an instrument 
imported to Greece from Babylon and used for measuring time. To 
get the value of a square number, n2, we add all odd numbers up 



26 MATHEMATICAL MYSTERIES 

• • .~ • • • • • • 
• • • • • • 
• • • • • • 
• • • • • • 
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FIGURE 6. Building a square number from a smaller square number by adding an 
L-shaped (gnomon) set of pebbles. 

to 2n - 1. Hence, to calculate the square of 5 or 52 we add all odd 
numbers up to 2·5 - 1 or 9. Thus, we have: 52 = 1 + 3 + 5 + 7 + 9 = 
25. To form the next square number beyond 25 all we do is add 2n 

+ 1. To get 62 we add 2·5 + I, or 11, to 25 resulting in the new square 
number 36. 

Of course, by computing the first few sums of odd numbers and 
seeing that these sums are perfect squares, we do not prove that it 
is always the case. Could there be some large value of n such that 
when we add all the odd numbers together up to 2n - 1 we get a 
number that is not a perfect square? To prove this situation will 
never happen we can use Peano's fifth axiom. We have already 
demonstrated that the sum of odd numbers is a perfect square 
when n = 1. Now we will assume that it is also true for some n which 
we don't specify. We can do this because we know it's true for n = 
1. Hence, we say that for some n: 

1 + 3 + 5 + ... + (2n - 1) = n2 

On the left of this equation we have the sum of all odd numbers up 
to 2n -1 and on the right we have a perfect square, namely n2• Can 
we now show that this same characteristic holds for the successor 
of n, or n + I? To do this we will take the above equation, which we 
assume to be true, and add 2n + 1 to both sides. Adding the same 
value to both sides of an equation does not, of course, invalidate 
the equality. 
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1 + 3 + 5 + ... + (2n -1) + (2n + 1) = n2 + (2n + 1) 

On the left side of the equal sign we can rewrite 2n + 1 as [2(n+ 1) -

1] while on the right we can factor the terms into (n + 1)2. This yields: 

1 + 3 + 5 + ... + (2n - 1) + [2(n + 1) - 1] = (n + If 

What we have demonstrated here is that if the characteristic is true 
for n, then it is also true for n + 1. Hence, from Peano's axiom the 
characteristic must hold for all numbers n. Therefore, we've used 
the axiom of induction to prove that the sum of all odd numbers 
up to 2n -1 will always equal n2• 

This discovery about odd numbers and perfect squares must 
have astounded the Greeks, and suggested to them that numbers 
truly did contain some great magic, enabling them to generate 
triangular and square numbers without end. This ability of num
bers from the number sequence to "generate" other numbers of a 
certain kind could lead to the belief that numbers generate much 
more, an idea which fit nicely with the Pythagorean idea that 
numbers were the prime cause of the universe. As we proceed, we'll 
discover that the number sequence truly is a powerful tool for 
generating additional mathematical concepts. 

In mathematics it is always interesting to try to expand on an 
original idea. Using the odd numbers in the number sequence 
again, we can form the cube numbers. To get n3 we add successive 
sets of n odd numbers. 

13 = 1 

23 = 8 = 3 + 5 

33 = 27 = 7 + 9 + 11 

43 = 64 = 13 + 15 + 17 + 19 

53 = 125 = 21 + 23 + 25 + 27 + 29 

Notice that to get the cube of 1, we started with just the first odd 
number, and to get the cube of 2 we added the next two odd 
numbers. The cube of 3 is generated by adding the next three odd 
numbers, etc. 

The Greeks discovered even more kinds of numbers. Not all 
numbers can be put into the form of a triangle or a square. If we 
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••••• • •••• • •••• • •••• 
20 

FIGURE 7. Pebble arrangement for the oblong numbers 6, 12, and 20. 

add consecutive even numbers beginning with 2, we get numbers 
that can be formed into a rectangle where the length of the sides 
differ by one (Figure 7). Such numbers were called oblong. Notice 
that the number 6 can be put into the form of both a triangle and 
an oblong. Hence, some numbers possess numerous charac
teristics. The Pythagoreans also discovered that every oblong num
ber was the sum of two triangular numbers (Figure 8). 

We now arrive at a very special kind of number. While playing 
with their pebble notation the Greeks discovered that certain num
bers cannot be formed into a rectangle or a square. No matter how 
we try, there is always one pebble left over. They called these 
numbers linear, but we know them today as prime numbers. Notice 
that with all oblong and square numbers, the numbers can be 
factored into two smaller numbers. Hence, 12 becomes 3 times 4 or 
3 ·4. Whenever we factor a number into two smaller numbers we 
can build a rectangle with the smaller numbers representing the 
number of pebbles on each side. Therefore, 12 can be arranged as 
a rectangle with three pebbles on the vertical side and four on the 
horizontal side. We can think of this as 4 representing the number 
of pebble columns and 3 representing the number of pebble rows . 

. ~ . . ."". 
. ~ .. 
• • • • 
• • • • 

6 + 6 = 12 

FIGURE 8. Pebble arrangement demonstrating that each oblong number is the sum 
of two triangular numbers. 
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However, our linear or prime numbers cannot be arranged into 
rectangles, and they cannot be factored into smaller numbers. The 
definition of a prime number is stated in terms of those whole 
numbers which will evenly divide it. 

Prime number: A number, excluding 1, that can only be evenly 
divided by the number 1 and itself. 

Two is the first prime number. The number 1 technically satis
fies our definition, yet we exclude it for a reason which will soon 
be obvious. Two, the first prime number, is also the only even prime 
number, for any other even number can be evenly divided by 2. 
Hence,2 is a very special number. The next prime is 3, for no matter 
how we try we can't make a rectangle out of 3 (although 3 is a 
triangular number). Five is the next prime followed by 7, 11, 13, 17, 
and 19. 

All the natural numbers in our number sequence divide them
selves into prime numbers, and nonprime numbers, called com
posite numbers. Composite numbers, such as 10, 15, 18, and 45, can 
always be factored into the product of two smaller whole numbers. 
This division between prime and composite numbers turns out to 
be one of the cornerstones of mathematics, and is a characteristic 
which is used in mathematical proofs over and over. As we will see, 
some of our most profound questions in mathematics involve 
prime numbers. 

To understand the importance of the characteristic of being 
either prime or composite, we must look at how composite num
bers factor. If we factor a composite number into two smaller 
numbers, then we can ask whether these two numbers are, them
selves, prime or composite. For example, 6 factors into 2·3. Both 2 
and 3 are prime numbers. Eighteen factors into 2·9. Here, the 2 is 
prime but the 9 is not. In tum, 9 factors into 3·3, and 3 is a prime 
number. Hence, 18 factors into the following prime numbers: 18 = 
2·3·3. Beginning with any composite number, no matter how large, 
we can, because it is composite, factor it into two smaller numbers. 
We then ask whether each of the smaller factors are prime or 
composite. If either one is composite we factor it again, and then 
ask the question once more. Sooner or later, we'll factor the original 
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composite number into just prime numbers. Hence, every compos
ite number can be written as the product of prime numbers. Since 
prime numbers are numbers which are already prime, we can say 
that all whole numbers from the natural number sequence can be 
represented as prime numbers or the product of prime numbers. 

This, in itself, is interesting, yet it leads to an even more fasci
nating law. It turns out that when a composite number is factored 
into primes, those particular primes are unique to that number. For 
example, we can factor the number 30 into 2·3·5. No other set of 
prime numbers, when multiplied together, will yield 30. We can 
certainly rearrange the numbers such as 3·2·5 or 5·2·3, yet we must 
always use these three specific primes to get 30. This leads to one 
of the great building blocks of mathematics. 

Fundamental Theorem of Arithmetic: Every whole number greater 
than 1 can be expressed as a product of prime numbers in one 
and only one way. 

This is why we excluded the number 1 from being a prime. If 
we let 1 be a prime number then we do not have our unique 
factorization and Fundamental Theorem of Arithmetic. For exam
pIe, 6 could factor into both 2·3 and 1·2·3. Hence, the factorization 
of 6 would not be unique. This characteristic of unique factorization 
represented by the fundamental theorem is heavily used through
out mathematics. 

PERFECT AND FRIENDLY NUMBERS 

Now that we've introduced the notion of factoring, we can 
demonstrate additional discoveries of the Greeks. Every composite 
number can be evenly divided by each of its primes. It can also be 
evenly divided by any combination of its primes as long as we 
restrict ourselves to the number of primes found in the original 
factorization. For example, 12 factors into 2·2·3, where we have two 
2s and one 3. Twelve, therefore, is not only divisible by 2 and 3, but 
by 2·3 (6) and by 2·2 (4). Hence, the numbers evenly dividing 12 are 
1,2,3,4,6, and 12. Here we have included 1 as an even divisor of 
12 even though it is not a prime. 



DISCOVERY OF THE NUMBER SEQUENCE 31 

Realizing this, the Greeks asked: What kind of number do you 
get when you add the divisors of a composite number, excluding 
the number itself? For example, we discovered that 12 can be 
evenly divided by 1,2,3,4, and 6. We add these together to get 16. 
The number 16 is larger than 12, and therefore we call 12 abundant. 
It is abundant because its divisors add to more than the number 
itself. If we look at the divisors of 10 we get 1,2, and 5. These add 
to 8 which is less than 10. Because 8 is less than 10, we call 10 
deficient. Are there numbers that are neither abundant nor defi
cient, i.e., numbers whose divisors add to the number itself? Con
sider 6: Its divisors are I, 2, and 3, and these three numbers add to 
6. The Greeks called 6 a perfect number. We see that 6 is a very 
unique number because it is not only the first composite number 
which is not a square but is also the first perfect number. 

Are there more perfect numbers? The next is 28 which is the sum 
of 1 + 2 + 4 + 7 + 14. To find the next perfect number we must jump 
all the way up to 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248. For 
the next perfect number we must sift through all the numbers up 
to 8128. Euclid (Figure 9), living at the end of the third century B.C., 
was the first to mention these numbers, and Nicomachus of the first 
century A.D. knew of the first four: 6,28,496, and 8128. The next 
perfect numbers are: 33,550,336 and 8,589,869,056. By inspection 
we see that the perfect numbers are growing very large. In fact the 
ninth perfect number contains 37 digits. 

All the perfect numbers discovered to date are even. These 
follow a definite form, and to understand this form we introduce 
the notation of exponents. When we square a number A, we can 
write it asAA (A multiplied by itself). A second method of showing 
this product is to write A with a small 2 as a superscript: AA = N. 
We can now generalize this notation. If we multiply a number A by 
itself n times we represent it as A". This convenient notation makes 
it easy to write certain large numbers. 

All even perfect numbers have the form 2"-1(2" -I), when the 
number (2n - 1) is itself a prime number and n is also prime. Let's 
try this formula when n = 2: 
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FIGURE 9. Euclid (fl. 300 B.c.) 

Hence, because 22 - 1 was a prime number (3) and 2 is prime, 
the formula produced 6, our first perfect number. Let's now try 
n = 3: 

23- 1(23 -1) = 22(8 -1) = 4·7 = 28 

We get our second perfect number. Unfortunately, this formula 
does not work in those cases when n turns out not to be prime. This 
occurs when we try n = 4, a composite number. 
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But 120 is not perfect. This realization led the Greeks to ask: 
How many perfect numbers exist, and are any of them odd? No 
one knows. The problem is, we don't know if an infinite number 
of priffies of the fonn (2n - 1) exist where n is also prime. Such 
primes are called Mersenne primes after Marin Mersenne, a Min
imite friar (1588-1648). The largest known Mersenne prime is 2756839 

- 1 and was discovered in 1992 with the use of a Cray-2 computer.12 

This is a number fonned by multiplying 2 by itself 756,839 times 
and then subtracting 1. Using this largest known Mersenne number 
we can fonn the largest known perfect number: 2756838(2756839 - 1). 
This is, indeed, a very large number containing 455,663 digits if 
written out in nonnal fonn. That's enough digits to take up almost 
180 pages if written in a book this size. 

We don't know if an infinite number of Mersenne primes exist 
or whether an infinite number of perfect numbers exist. Nor do we 
know if any odd perfect numbers exist, although it has been 
verified by computers that none exist that are smaller than lQ3°O (i.e., 
1 followed by 300 zeros).13 Part of the Greek genius was their ability 
to pose such deep questions that after 2000 years we are still 
struggling for answers. 

Another property of numbers, probably discovered by 
Pythagoras, was friendliness. Two numbers are friendly to each 
other if the sum of their divisors equal each other. An example 
would be 284 and 220, for we have: 

284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 

and 

220 = 1 + 2 + 4 + 71 + 142 

With a handy calculator it is easy to verify that the numbers 
adding to 284 are, in fact, all the divisors of 220, while those adding 
to 220 are the divisors of 284. 

There are many more questions about whole numbers which 
were first suggested by the ancient Greeks, and some of these will 
be considered later. 
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BIG NUMBERS 

We have seen that the natural number sequence, as defined, has 
no largest number, but continues indefinitely to ever larger num
bers. This leads to speculation regarding the size of numbers. Most 
numbers we use in normal daily activity reach into the hundreds 
and even thousands. These are the numbers we use when paying 
bills, buying groceries, and balancing our checkbooks. Through 
newspapers and television we are exposed to even larger numbers. 
We hear that different government programs cost millions or even 
billions of dollars, and that our national debt is now over five 
trillion dollars. These are, indeed, large numbers, and compared to 
the hundreds or thousands we are used to dealing with, they are 
difficult to fully comprehend. A million is a thousand thousand or 
1,000,000. A billion is a thousand million, or 1,000,000,000. 

To get some perspective on these numbers it helps to relate them 
to something in the real world. If the average human heart beats 72 
times a minute, then it will beat 37,843,200 times in one year. Hence, 
we could count to a million by simply counting our pulse beats for 
about 91/2days. Possible, but certainly too boring to do. How long 
would it take to count to a billion? It would take 261/2 years! How 
many times will our hearts beat if our average age is 74 years? 
About 2,800,000,000 times. 

The numbers are getting so large now that it will be convenient 
to introduce a new notation, which is really an extension of our 
exponential notation. If 100 = 10·10 then 100 = 102• In like manner 
1000 = 103• Extending this idea we can write one million as 106 and 
one billion as 109• When we see 109 we realize that the number is a 
1 followed by nine zeros. If we want to represent the number of 
lifetime heartbeats or 2,800,000,000 we can rewrite it as 2.8 x 109• 

This product stands for the number 2.8 multiplied by a number 
formed from 1 followed by nine zeros. This method of representing 
numbers is known as scientific notation. 

We can also represent small numbers with this notation. The 
decimal 0.1 (which is the same as 1/10) can be written as 10-1, and 
in a similar manner we can write 0.01 (1/100) as 10-2• Hence, the 
number lO-n is a decimal with allocated n places to the right of the 
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decimal point. Therefore we can show very small numbers with a 
corresponding large n. 

On a practical scale we have almost reached the limit of num
bers used by the general population. Our national debt is approxi
mately 5.5 trillion (5.5 x 1012), where one trillion is one thousand billion. 
How long would it take to count up to our national debt if we counted 
at the rate of 72 per minute? Approximately 145,000 years. 

Larger numbers are primarily used by scientists. We have actu
ally given names to numbers beyond one trillion, but there is so 
little use for them that they are generally unfamiliar to most of US.14 

102 = 100 hundred 
103 = 1,000 thousand 
106 = 1,000,000 million 
109 = 1,000,000,000 billion 
1012 = 1,000,000,000,000 trillion 
1015 = quadrillion 
1018 = quintillion 
1021 = sextillion 
1024 = septillion 
1027 = octillion 
1030 = nonillion 
1033 decillion 
1036 undecillion 
1039 duo decillion 
1042 = tredecillion 
1045 = quattuordecillion 
1048 = quindecillion 
1051 = sexdecillion 
1054 septendecillion 
1057 octo decillion 
1060 = novemdecillion 
1063 = vigintillion 

Other than the observation that some of the names are amusing, 
their usefulness is questionable since we don't encounter numbers 
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over a trillion frequently enough to have need of a name for them. 
Scientists prefer to use the scientific notation and dispense with the 
use of proper names. Yet, people have gone on to name even larger 
numbers. For example, the number 10100 (a 1 followed by 100 zeros) 
has been named a googol. Written out it becomes: 

10,000,000,000,000,000,000,000,000,000,000,000 ,000 ,000 ,000, 
000,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000, 
000,000 ,000 ,000 

But the googol isn't the largest named number for we have 
lOgoogo1 which is called a googolplex. That's a 1 followed by a googol 
of zeros. If we assume a normal300-page book can contain approxi
mately 800,000 digits, a googolplex would fill 1.25 x 1094 volumes 
if written in normal form. 

Are the googol and googolplex larger numbers than we really 
need? In the physical world we can compare the very large to the 
very small to see how big of a number we can generate. The radius 
of a hydrogen atom is approximately 1.74 x 10-10 feet while the 
radius of the known universe is approximately 1026 feet. If we 
divide the radius of the universe by the radius of the hydrogen 
atom we discover the number of hydrogen atoms, laid out end to 
end, that would reach across the universe. The number is 5.75 x 
1035• This is not even close to a googol. Another large physical ratio 
is the weight of an electron at 2 x 10-30 pounds compared to the mass 
of the universe at 4 x 1052 pounds. Dividing the mass of the universe 
by the mass of the electron we get 2 x 1082 • Still not a googol. 

To demonstrate the largest numbers used today, we must leave 
the examples from the physical universe and consider numbers 
encountered in mathematics. For many years the largest number 
considered to be useful to mathematics was Skewes' number, a 
number which we will later see comes from a deep question 
concerning primes: 

Skewes' number == 1010 
1034 

Skewes' number is definitely larger than a googolplex. This is easy 
to see when we write both the googolplex and the Skewes' number 
in the same format: 
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102 
googolplex = 1010 

37 

However, we can do even better. A recent mathematics thesis 15 

on the number of kinks in the core of an embedded tower gives an 
estimate of: 

Now, that's a big number! 

HOW BIG CAN WE GO? 

We can, of course, continue to define even bigger numbers, since 
there is no end to the numbers available to us. The numbers we 
have been dealing with in scientific notation are specific numbers, 
yet they are all powers of ten. This makes them easy and compact 
to write. However, if we were to pick a number at random between 
the 10100 and 10101 we would, in all probability get a number whose 
digits varied randomly. Hence, to record such a number we must 
write down all 100 digits. When we progress to the random num
bers as large as the largest known prime, we encounter numbers 
which require hundreds of thousands of digits to write them out 
exactly. Such numbers would fill a normal book of 100 pages, and 
the task of recording and handling these numbers is daunting. If 
we were to consider a random number in the same range as Skewes' 
number, we would get a number which is physically too large to 
even attempt to write. If we record a number as large as Skewes' 
number in books, each book weighing two pounds, with only 4 x 
1052 pounds of mass in the universe, there just isn't enough material 
in the entire universe to do the job. We must also point out that only 
a finite (although very large) number of integers exist that are 
smaller than Skewes' number, while an infinite number exist that 
are larger. This means an infinite number of numbers exist which 
we cannot even write down. In fact, comparing the numbers we do 
deal with to all the infinity of numbers, the numbers we can handle 
are an infinitesimal fraction of all numbers (if, indeed, the term 
"infinitesimal fraction" has any meaning). 
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This leads to an interesting enigma. Suppose a way existed to 
randomly select a number from all the infinity of counting num
bers. How could we describe such a number? We can suppose the 
number is big. Let's pretend that to write it down on a piece of 
paper, the paper would fill the entire universe. Even though the 
number, by our standards, is large, compared to all the numbers 
that exist that are larger, it is still exceedingly small. In fact, it is so 
small that the chances of choosing such a small number are almost 
nonexistent. A randomly chosen number must be much larger. But 
how large? This is where we begin to get into trouble, for no matter 
what number we come up with as an example, we immediately see 
there exists only a finite number of numbers that are smaller, and 
an infinity of numbers that are bigger. Hence, the probability of ever 
randomly choosing such a small numbers is, for practical purposes, 
nonexistent. 

The problem may be in our notion of selecting just one number 
at random from an infinite set of numbers. The possibility exists 
that this cannot be done; that to choose a number by any means 
requires us to specify some information about that number. But 
let's put such reservations aside, and pretend we can make random 
selections. We still have the interesting question of whether we can 
make any statements about such an unbelievably large number. For 
example, we can say the probability of the number being an even 
number is about 50:50. We know this because every other number 
is even. What would the probability be of the number being a 
prime? Can we make any guess about how many factors it might 
have? Do other characteristics exist that might be useful to describe 
such a number? 

As it turns out, we can make meaningful statements about such 
numbers, and we will consider this question again as we progress 
on our fascinating trip along the number sequence. 



CHAPTER TWO 

NUMBERS AND THE OCCULT 

The Martians seem to have calculated their descent 

with amazing subtlety-their mathematical learning 

is evidently far in excess of ours. 

H. G. WELLS 

THE WAR OF THE WORLDS! 

POWER WITHIN NUMBERS 

/Oentral to the use of numbers within magic and occult practices 
U was the ancient belief that numbers, by themselves, had 

power to influence the corporeal world, a concept universally 
rejected by the modem scientific community. How did such a 
strange idea come about in the first place? If we take a moment to 
consider the conditions within the ancient world, we can come to 
appreciate how the motivation to believe in the power of numbers 
must have been very strong. 

In early times science was young, and most natural phenomena 
could only be explained as the action of the gods. As people began 
to farm, they realized that the seasons changed, and these changes 
were reflected in the different locations of star groups in the sky. As 
a result, they saw the connection between seasons, the production 
of their food <their very survival), and the stars-astronomy. Since 
the stars moved and the seasons changed, it was easy to believe the 
stars somehow caused the changes here on earth-astrology. In 
fact, any clever person who could record past seasons and star 

39 
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positions could then actually predict the coming seasons. There
fore, numbers, used to record the dates of past events, became the 
connection between earthly matters and the stars. This suggested 
to the ancients that a causal connection existed between numbers 
and worldly happenings. Those who could use numbers to calcu
late forthcoming events, such as the next planting season, flooding 
on the Nile, or eclipses of the sun, gathered great power to them
selves. They became the wizards, mathematicians, and astrono
mers in the courts of kings. If knowing numbers could give one 
such power, some connection must exist between numbers and 
individuals who wield this power-hence the logical idea that 
numbers influence us as individuals. Unfortunately, just finding a 
logical connection leading to a new idea does not automatically 
make that idea true. 

The Pythagoreans of the Greek world elevated the importance 
of numbers to new heights. Because of the supposed connection 
between such objects as stars, numbers, and their daily lives, the 
Pythagoreans evolved a metaphysics based on number which was 
also connected to other, nonnumerical attributes. Table 1 shows that 
the Pythagoreans separated attributes into two broad categories. In 
the beginning, they supposed, the principle of the unlimited mixed 
with the one and separated out numbers which then became the 
building blocks of the universe. Beginning with such a metaphys
ics, it was then possible to borrow individual attributes from either 

Table 1. Pythagorean Metaphysical 
Attributes 

Limit Unlimited 

odd even 
one plurality 
right left 
male female 

resting moving 
straight curved 

light darkness 
good bad 

square oblong 
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the limit or the unlimited and apply them to their personal lives. 
The Pythagoreans were probably not the first to practice this type 
of pseudoscience by association, nor were they the last. 

NUMBERS AND MAGIC 

While numbers have historically played a role in the general 
practice of magic, this role was somewhat limited. However, when 
we investigate the specific occult practices of numerology and 
gematria, we will see that numbers become the unifying theme. 

In the overall belief system of magicians, certain mystic powers 
were associated with individual numbers, usually those numbers 
between 1 and 10. When these numbers were used within specific 
magic rituals, the mystic power transferred from the numbers to 
the user or to the object of the ritual. For example, the number 7 was 
frequently associated with both good luck and spirituality. Many 
examples of the number 7 used in ritual can be found in the Old 
Testament of the Bible. For example, as part of God's instructions to 
Moses for priests making a blood offering we find: 

And the priest shall dip his finger in the blood, and sprinkle of 
the blood seven times before the Lord, before the veil of the 
sanctuary.2 

It is interesting to note that God took six days to create the 
world, and then rested on the seventh. When it was necessary for 
Joshua to take the walled city of Jericho, the Lord instructed him: 

And seven priests shall bear before the ark seven trumpets of 
rams' horns: and the seventh day ye shall compass the city seven 
times and the priests shall blow with the trump~ts.3 

Certainly, the number 7 must have held special power for the 
Hebrews, for the Lord did not say, /I A bunch of priests shall walk 
around the wall a whole bunch of times." The command was 
specific. Incorporating the number 7 at the appropriate place in a 
ritual was supposed to cause some of its power to be passed into 
the control of the practitioner. The most frequent method of incor
porating numbers into magic ritual was by repetition of various 
parts of the ritual. For example, the following is a spell taken from 
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a modem book on magic which is supposed to bring back a lover 
who has been unfaithful: 

Who turns from you shall yet be bound 
If signs of him may still be found 
Within your house-one hair or thread, 
Fragment of color, scent or word, 
Or any thing that bears his touch
This spell turns little into much: 
Seal the relic in a box 
With seven strings tied round for locks, 
Each one tight knotted seven times: 
Then set on it these seven signs: 
Hide it in darkness, out of sight, 
Until the next moon's seventh night, 
Then send it to the one you seek
He must return within a weee 

Other numbers frequently used in magic ritual included 3, 5, 
and 9. In a chant designed to attract money we find: 

When the grey owlet has three times hoo'd 
When the grinning cat has three times mewed, 
When the toad has croaked three times in the wood, 
At the red of the moon may this money be good. 5 

Another example of the use of number in magic comes from the 
talismanic magic found in Jewish Kabbalah teaching. Magic 
squares are squares which have been subdivided into smaller 
squares. Each subdivision contains a number. The numbers within 
the various subdivisions are arranged in such a manner that when 
the columns, rows, or diagonals are added, the sums are equal. In 
Figure 10 we see an example of a common three-by-three magic 
square with a total of nine subdivisions. Adding the three columns, 
the three rows, and the two diagonals confirms that the sum is 
always 15. 

Such squares also exist for larger subdivisions. Magic squares 
have been known from antiquity, the first reported from Chinese 
mathematics. One legend says that the first magic square appeared 
on the back of a tortoise which was discovered by the Chinese 
Emperor Yu (ca. 2200 B.C.).6 
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8 1 6 

3 5 7 

4 9 2 

FIGURE 10. A 3 x 3 magic square. All the rows and columns, as well as the two 
diagonals, add to the same number, 15. 

According to Kabbalah teachings, a specific magic square, 
called a kameas, was associated with each of the following planets: 
Saturn, Jupiter, Mars, Venus, and Mercury, in addition to both the 
sun and the moon. The size of these magic squares began with a 
three-by-three for Saturn and increased up to a nine-by-nine for the 
moon (Figure 11). The magic squares associated with the heavenly 
bodies were used to prepare talismans, supposedly transferring the 
power of the planets, through the numbers within the squares, to 
some other object or person. 

The ancient Hebrew language used letters of the alphabet to 
stand for both letters and numerals. Hence, any word could be 
directly translated into a set of numbers corresponding to the 
individual letters. To prepare a talisman for a specific person or 
thing, the magician first translated the object's Hebrew name into 
the corresponding numbers. Lines were then traced on the appro
priate kameas beginning with the first number in the set, and 
moving to each succeeding number. This figure was then tran
scribed inside a circle which had been drawn upon an object, 
possibly a metal disk or parchment. This disk or parchment became 
the magic talisman, having acquired power from the planet whose 
kameas was used. 

Just why certain planets possess power to influence human 
events, or why certain magic squares are associated with those 
heavenly bodies, or how the power of the heavenly bodies is passed 
to the numbers, and hence to the talisman, we are not informed. 
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4 9 2 

3 5 7 

8 1 6 

Saturn 

r--- I 
I 541 I 37 78 29 70 21 62 13 5 

6 I 38 79 30 71 22 63 14 46 

47 7 39 80 31 72 23 55 15 

16 48 8 40 81 32 64 24 56 

57 17 49 9 41 73 33 65 25 

26 58 18 50 1 42 74 34 66 

67 27 59 10 51 2 43 75 35 

36 68 19 60 11 52 3 44 76 

77 28 69 20 61 12 53 4 45 

The Moon 

FIGURE 11. The 3 x 3 magic square for Saturn and the 9 x 9 magic square for the 
Moon. 

NUMEROLOGY 

One ancient field of occult practice was numerology, the belief 
that numbers influence the lives of people. Those numbers associ
ated with an individual were "discovered" by considering the 
individual's name and date of birth. Numerology was closely 
related to gematria, the interpretation of scripture by studying the 
number equivalents to the Hebrew or Greek words of the scrip
tures. 

The roots of numerology go all the way back to the Pythagore
ans and their secret, religious society. We have already mentioned 



NUMBERS AND THE OCCULT 45 

that Pythagoras was profoundly influenced by the fact that certain 
number ratios of string lengths produced sounds that are in har
mony. From this he concluded that the harmonies were produced 
by the numbers themselves. However, the practitioners of numer
ology took this idea one step further with the belief that the use of 
appropriate numbers produces a kind of generalized harmony in 
nature. This harmony is not restricted to the harmony of tones and 
their effects upon our ears but extends to objects working or fitting 
together well. Hence, numbers can be used to achieve harmony in 
marriage, and in personal and business relations. 

A second idea central to numerology was the reincarnation of 
the spirit. Pythagoras also held to this idea, referring to it as the 
transmigration of the soul. Numerology, supposedly, helps us un
derstand what our individual spirits are meant to do or accomplish 
in this lifetime. The key to the relationship between an individual 
and numbers could be found by translating that person's name and 
birth date into numbers. These numbers, in tum, were supposed to 
identify specific characteristics about that individual. 

It can be amusing to translate one's name and birth date to see 
what numbers and characteristics come up. Four ways existed to 
translate a person's birth date and name into numbers. The first 
was the Birth Path (also called a variety of other names including 
Life Path, Life Cycle Number, Destiny Number). To compute the 
number for a birth path was simple: Add the number of the birth 
month (January = 1 through December = 12) to the day of the month 
and the year. My date of birth is March 28,1941. Hence, my birth 
path is 3 + 28 + 1 + 9 + 4 + 1 = 46. If the two digits are not the same 
(as in 33 or 44) then we add these two digits together: 4 + 6 = 10 = 
1. If the two digits are the same, we leave them, for these are special 
"Master Numbers" and should not be added. Notice that it doesn't 
matter if we add the various parts of the birth date numbers 
(month, day, or year numbers) as individual digits or as combined 
numbers, we always get the same result. Hence, we could form one 
long number of 3281941 and add these digits to get 28 = 10 = 1. 

Now, what does the birth path number tell me? This number 
supposedly represents my basic nature. A 1 indicates I'm an indi-
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vidualist, a pioneer, a loner. Considering who I am, I suppose these 
characteristics, in part, apply to me. Yet, when I consider a list of 
potential spiritual qualities (including companion, teammate, fa
cilitator, artist, sculptor, aesthetic, worker, steadfast, humanitarian, 
sage, and counselor) I feel a little cheated. Can't I also be a humani
tarian, a sage, an artist? And what about humility? Humorist? 
Outstanding duck hunter? 

Now that I have determined my basic nature (individualist), I 
can move on to the other three techniques to compute my supposed 
numerological lessons in life. I translate the letters in my name to 
numbers and then add these numbers in three different ways. 
Many systems existed in the ancient world for translating letters to 
numbers, however I will use one which has survived to the present: 
the Pythagorean system. 

a, j, 5 = 1 

h, t =2 

c, I, U = 3 

d,m=4 

e, n, W = 5 

f, 0, x = 6 

g, p, Y = 7 

h, q, Z = 8 

i, r = 9 

k= 11 

v=22 

After translating the letters of my name to numbers I can 
generate three different additional numbers by adding the num
bers associated with the vowels, the consonants, and the entire 
name. Each has a different interpretation. The vowel total gives a 
number associated with my motivating force. The consonant total 
is associated with dreams, aspirations, and how those close to me 
view me. The total name number is associated with my spiritual 
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mission. You may be wondering how my parents were clever 
enough to pick a name that describes my nature, mission, etc., at 
birth. As it turns out, I somehow influenced my parents while I was 
still in the womb to pick for me the name they gave me. 

Let's see what happens when I compute my three numbers from 
my name. You're invited to get a pencil and paper and compute 
your numbers, too. We all might as well see where we're headed in 
this life. 

Choose the version of your name as it appears on your birth 
certificate, excluding any Sr., Jr., etc., or titles. I was named after my 
father, and will, of course, not include my Jr. This means, of course, 
that my father and I share the same numbers, except for our birth 
paths. 

C a v i n 

1 9 

3 3 22 5 

C I are n c e 

155 

3 3 9 5 3 

Clawson 

1 6 
3 3 515 

The first line of numbers are my vowel numbers and total 28 or 
2 + 8 = 10 = 1. This is the same as my birth path. The consonants 
add to 73 = 7 + 3 = 10 = 1. What? It seems this is also a 1. Now my 
total name number is just 28 + 73 = 101 or 2. Hence, beginning as a 
loner and individualist, and motivated the same way, my mission 
in life (represented by 2) is to become a companion, teammate, 
committee person, facilitator. It could still happen! 

What did you discover about yourself when you computed 
your name and birth date numbers? Did you arrive at special 
characteristics that meant something to you? To accept numerology 
one must accept several complex truths on faith. 

1. We possess a soul or spirit. 
2. This spirit passes from our body upon its death to another 

body. 
3. Our spirits have surviving qualities, e.g., individualism, 

artistic talent, humanitarianism, etc. 



48 MATHEMATICAL MYSTERIES 

4. Our spiritual natures have been given or have assumed 
some purpose or mission for their existence. 

5. We influence our parents before birth to choose the correct 
names for us. 

6. Each letter in our names is associated in some mystical 
manner to a number. The three sums of these numbers are 
associated with our individual spiritual characteristics. 

7. By understanding our basic natures and our missions as 
revealed by numerology, we can bring our lives into har
mony. 

While a large number of people may be moved to accept any 
one of the above beliefs, far fewer will accept them all. However, 
there is still a small group of individuals who believe in numerol
ogy. But that is to be expected. There are still people who believe in 
astrology, and I understand there are flatlanders in England who 
still believe the earth is flat! 

GEMATRIA 

Gematria, or arithmology, is the belief that various writings, 
especially religious scriptures, contain secret messages that can be 
found by translating those writings into numbers. In some early 
languages, including Hebrew and Greek, the letters of the alphabet 
were also used as numerals. Therefore, the letters of words could 
also be read as numbers. In fact, entire phrases, sentences, and 
paragraphs can be translated into numbers. The earliest recorded 
use of gematria was by the Babylonian King Sargon II who, in the 
eighth century B.C., built the wall of Khorsabad exactly 16,283 
cubits long because that was the numerical value of his name.7 

Those who used gematria generally believed that God gave hu
mans the Hebrew and Greek languages with this double use, and 
then wrote the scriptures in such a way that the number values of 
words would have meaning in addition to the obvious meaning of 
the words. Hence, under this belief, God inserted secret meaning 
into the Bible which can only be discovered through gematria. 
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Table 2. Greek Numerals and Associated Alphabet 

Units Tens Hundreds Thousands 

l=A 10 = I 100 =p 1000=A 
2=B 20=K 2oo=L 2000 = B 
3=r 30=A 300=T 3000 = r 
4=~ 40=M 400=Y 4000 =~ 
5=E 50=N 500=4> 5000 =E 
6 =!T 60 =3 6oo=X 6000 =!T 

7=Z 70=0 700 = 'P 7000 = Z 
8=H 80=il 800=0 8oo0=H 
9=0 90 = cp 900=~ 9000 =0 

The connection between gematria and Pythagorean numerol
ogy is derived from the ancient Pythagorean doctrine that numbers 
act both as a blueprint for material existence and that they are the 
actual constitutes of matter. 

The Greek alphabet, with its associated number values, is pre
sented in Table 2. As an example of gematria, we can assign the 
number values to specific words in the Bible and then add the 
individual numbers in that word to yield one number for the entire 
word. For example, the Greek word Jesus is IH~OY~. Using Table 
2 we can substitute in the numerical values for the letters, getting 
10 + 8 + 200 + 70 + 400 + 200. Adding these numbers, we arrive at 
a total numerical value for the Greek name of Jesus of 888. This 
number, then, is supposed to be a number associated with the name 
of Jesus. Other phrases in the Bible which relate to Jesus can now 
be decoded and their numbers compared to 888. Such comparisons 
are supposed to reveal additional sacred messages from God as 
well as demonstrate the divinity of the Bible. Believers in gematria 
hold that God used the double meaning of Greek and Hebrew 
letters to tie the different concepts found within holy scriptures 
together. This numerical connection supposedly proves the 
authenticity of the scriptures as inspired by God. The scriptures, 
when considered in ordinary language, are subject to substantial 
differences in interpretation. When we then translate the language 
into just numbers, the possibility for deviation in interpreted mean-
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ing increases significantly. If God has hidden messages within the 
scriptures, God has done a superb job. 

An interesting deviation of gematria was a practice among the 
ancient Hebrews and during the Middle Ages called beasting. In 
Revelation 13:18 we find: 

Let him that hath understanding count the number of the beast: 
for it is the number of a man; and his number is Six hundred 
threescore and six.8 

From this, Biblical scholars took the number of the devil to be 
666. If it was possible to find a combination of letters in your 
enemy's name that added, through gematria, to be 666, then that 
enemy would be discredited. This beasting attack was made 
against a number of powerful individuals, including the Popes of 
Rome. 

THEY ARE STILL WITH US 

Even today we find small groups who are devoted practitioners 
of magic, numerology, astrology, and gematria. In the ancient 
world, such beliefs probably appeared to be attractive to many 
compared to other ancient myths. As a group, modem scientists 
and mathematicians have rejected these beliefs, objecting to the 
practitioners' use of the word "science" in describing their activity. 
A little thought demonstrates that such practices cannot claim to 
be sciences. All established sciences use a recognized procedure, 
called the scientific method, which any scientist can rattle off in his 
or her sleep. This procedure includes several key activities that are 
missing in the aforementioned belief system. 

Science begins with natural observations (phenomena) which 
are, when first observed, unexplainable. The scientist then pro
poses a hypothesis that might explain these observations. The 
hypothesis is then used to predict phenomena that should occur if 
the hypothesis is a correct explanation. Next, the scientist attempts 
to observe if the predicted observations actually occur (possibly 
with an experiment). If the observations do occur, then the predic
tions are confirmed. If this process is repeated frequently enough, 
the hypothesis becomes a scientific law. True science deals with 
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statements which can be proven or disproven and relies on the 
principle of independent verification. If I make a claim, it must be 
possible for another to objectively verify that claim. Ultimately, 
utilizing the laws of the science, we are able to make meaningful 
predictions about the future. 

While numerology and gematria may on occasion try to incor
porate some of these steps, others are missing. The hypothesis of 
numerology is that a person's name and birth date, through the use 
of numerological principles, will reveal that person's basic nature 
and mission in life. Let us, for the time being, ignore the mission 
part and concentrate on using numerology to predict an individ
ual's nature. Can we predict basic individual natures by nu
merologically interpreting that individual's birth data? Is there any 
statistical evidence that people born on the same day (resulting in 
the same birth path) share the same nature? No. The verification 
procedure so essential in science is missing in numerology. Instead, 
numerology relies on personal anecdotes for confirmation. I see 
that my birth path is a 1 representing a pioneer, an individualistic 
individual, and I'm complimented. Yes, that description applies to 
me (so I let myself believe), therefore numerology must be correct. 
In truth, the characteristics used by numerology are so general as 
to apply in some degree to most of us. Hence, the predictive power 
of numerology is almost nonexistent. If it had true predictive power 
in the scientific sense, we could compute a birth path and predict 
if that person was going to become a serial killer or a United States 
president. Now, that would be a science! 

Much the same can be said for gematria. While it may be 
interesting to study the relationships between the numbers associ
ated with words and the various ideas expressed within the Bible, 
gematria does not give us a strong tool for making meaningful 
predictions about the world we live in. 

While both numerology and gematria involve the manipulation 
of numbers, any supposed truths discovered by their practitioners 
have nothing to do with mathematics proper, but deal with the 
attributes of people (as in numerology) or God's relationship to the 
human race (as in gematria). It is true that numbers are involved 
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in both instances, yet numbers are only the vehicles leading toward 
conditional statements regarding the human condition. In other 
words, we do not study numerology or gematria to discover or 
identify a new insight about numbers, for numbers are not the 
concern of numerology, people are the object of interest. After more 
than 2000 years of work in the fields of numerology and gematria, 
their practitioners have not added one new mathematical theorem 
to our great body of mathematics. 

Remembering back to Pythagoras, we recall that he made the 
logical leap that it was the ratios of numbers that caused the 
harmony of the vibrating string. Occult practitioners went far 
beyond this belief and proposed that numbers held some mystical 
power which controlled individual humans. This idea is dis
counted by modem science. Yet, is Pythagoras' original idea such 
an absurd notion, given the modem twists of logic that has pro
duced non-Euclidean geometry, quantum mechanics, and black 
holes? If mathematical models imitate physical reality, is it too great 
a leap in faith to say that maybe physical reality is imitating 
mathematics? Ultimately, we are faced with the question of why
why does mathematics work in the material universe? Both numer
ology and gematria may be unproductive when viewed as sciences, 
but the basic impulse which attracts us to them is the same impulse 
that attracts us to science and applied mathematics. And the basic 
quandary is not resolved. Why does mathematics work so magnifi
cently as a model to explain our universe? Scientists use mathe
matical models of the physical world to make claims and 
predictions about the world. Why should this relationship between 
model and physical reality exist unless there is some underlying 
connection? If numbers are only objects of thought, then why are 
they so wonderfully useful in analyzing the material universe? 



CHAPTER THREE 

SEQUENCES AND SERIES 

No part of Mathematics suffers more from the 

triviality of its initial presentation to beginners than 

the great subject of series .... the general ideas are 

never disclosed and thus the examples, which exem

plify nothing, are reduced to silly trivialities. 

ALFRED NORTH WHITEHEAD! 

LIMITS-THE MATHEMATICAL HOLY GRAIL 

(7he natural numbers form a sequence, or set of numbers 
L7 which is ordered in a specific manner. We have already 

noted that the discovery (or invention) of our counting sequence 
was certainly one of the greatest of all humankind. And we can use 
this sequence as a basis for generating even more sophisticated 
mathematical concepts. From the notion of a sequence we can 
evolve the concept of limits, one of the most elegant and beautiful 
ideas in all of mathematics. 

Here, it is fun to take a short historical side trip dealing with 
series. The famous mathematician, Carl Friedrich Gauss (Figure 
12), was ten years old when he attended his first day of a particular 
mathematics class. The instructor, an odd curmudgeon, liked to 
give himself a rest from lecturing by giving his students a labored 
problem to occupy their time. As the students finished their work 
on their small slate boards, they would place the boards upon the 
instructor's table. When all the slate boards had been stacked on 

S3 
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FIGURE 12. Carl Friedrich Gauss, 1777-1855. 

top of each other, the instructor could see who had finished first 
and who was last. On this particular day he gave them the follow
ing problem: Add the first 100 natural numbers together. 

Gauss immediately wrote an answer upon his slate board and 
placed it upon the table. The instructor was incredulous that this 
new student could add 100 terms so quickly and he assumed that 
answer would be wrong. However, when all the other students had 
finally finished their work and placed their slates upon the table, 
the instructor turned Gauss' slate over and read the correct answer: 
5050. How had Gauss done it? 

Gauss noticed that the first term, 1, and the last term, 100, added 
together to be 101. Then he realized that the second term, 2, and the 
next-to-Iast term, 99, also added together to be 101. In fact, if he 
kept adding pairs of terms in this manner, he would get 50 pairs of 
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sums, each sum equal to 101. Fifty multiplied by 101 is 5050! We 
have no record of the words uttered by the shocked teacher when 
he realized that young Gauss was correct. 

Before proceeding we should make a distinction between se
quences and series. A number sequence is an ordered set or list of 
numbers. Frequently we show the members of a set inside brackets 
{ }. The set can contain a finite number of numbers, such as the 
sequence: {1, 4, 10, 20}. Or it can contain an infinite number of 
numbers, as in our natural number sequence: {1, 2, 3, 4, 5, ... }. When 
we are dealing with an infinite set we use three dots (called an 
ellipsis) after the last number on the right to show that the sequence 
continues without end. It is important that we specify that the 
numbers are in a specific order, for it is the very order of the 
numbers that defines the sequence and gives it meaningful charac
teristics. 

A number series, on the other hand, is the sum of a set of 
numbers. Hence, every number sequence has its associated num
ber series, i.e., the sum of all the numbers in the sequence. We use 
special symbols when adding the numbers of a number sequence 
into a number series. Sometimes we use a large 5, and if we know 
the number of terms in the sequence is n, we show the sum as 5n, 

meaning that we have added n items. Thus, the sum of the first five 
numbers in the natural number sequence would be: 

55 = 1 + 2 + 3 + 4 + 5 = 15 

On other occasions we use the Greek letter sigma or k. There
fore, we can show the above series in several different ways: 

55 = L i = 1 + 2 + 3 + 4 + 5 = 15 
i=l 

Below the sigma we have i = 1 which tells us the first term we are 
adding; and above the sigma we have a 5 which shows us the last 
or fifth term to be added. In other words, we are adding i when i is 
equal to the numbers 1 through 5. Another example of using the 
sigma notation is: 
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L i2 = 12 + 22 + 32 + 42 + 52 + 62 

,=1 

Here we show the sum of the first six natural numbers all squared. 
While this use of the sigma may at first seem awkward, it turns out 
to be a handy shorthand when we talk about more complex series. 

We can add together a finite number of terms in a series and the 
result will always be a finite sum or number. What happens if we 
try to add an infinite number of terms together? Does it even make 
sense to talk about adding an infinite number of numbers together? 
For a long time many mathematicians claimed that this notion was 
entirely ridiculous. 

One of the first to state his objections was the Greek philosopher, 
Zeno (489-? B.C.). Almost 2500 years ago Zeno was a member of 
the Greek Eleatic school, founded by Parmenides of Elea (ca. 475 
B.C.). Zeno argued against many of the ideas of the Pythagorean 
school. One of his arguments involved the absurdity of dividing 
space into an infinite number of segments and then adding these 
segments together again. In his argument about the moving arrow, 
he states that before an arrow can move from the archer to its target, 
it must first reach the halfway point between them. But, before 
reaching the halfway point, it must first arrive at the one quarter 
marker, and so on. This process of subdividing the space between 
archer and target can go on indefinitely, or, as some say, without 
end-infinitely many times. If space is infinitely divisible, then, for 
the arrow to move at all, it must move over an infinity of distances 
in a finite amount of time-an absurdity! 

Zeno's arguments notwithstanding, arrows do manage to reach 
their targets, and they do this even though the space they move 
through can, at least in our imaginations, be subdivided an infinite 
number of times. Thus the sum of all these infinite line segments 
add to a finite amount-that is, they add together to be the distance 
from archer to the target. Yet, the notion of adding an infinite 
number of numbers to get a finite sum continued to bother people 
from Zeno's time to the present century. 
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When we say we are adding together an infinity of numbers, 
we do not mean, of course, that we sit down with pencil and paper 
and physically create the symbols on paper, doing this for all the 
infinity of numbers. This process would certainly take an infinite 
amount of time. What we are really claiming is that numbers can 
be imagined as added together in our minds, and that this adding 
process does not actually take any time, i.e., it happens instantane
ously. Just as we do not bring to our imaginations every single one 
of the infinity of natural numbers when we think of the infinite set 
of all such numbers, we do not bring into our imaginations each 
and every number we are adding together when adding an infinite 
series. We have faith that they can somehow come together as a 
sum. 

However, the vagueness of talking about "somehow coming 
together as a sum" bothers mathematicians. They are worried, and 
justifiably so, that loose notions will trap them in contradictions 
later on. Therefore, they avoid talking about adding an infinite 
number of numbers together by defining what it means for a series 
to be unbounded. When a series (which is really just a sum of 
numbers) is unbounded, it means that its terms are infinite in 
number, and that for any number you can think of, no matter how 
big, we can add enough of the terms of the series together to exceed 
that number. 

This definition is, admittedly, somewhat cluttered. Let's clean 
things up with a nice example. We can show the series that contains 
all the natural numbers in the following way: 

s~ = ~> = 1 + 2 + 3 +4 + 5 + ... 
;=1 

We have used both the S symbol and the sigma symbol to 
represent our series. Notice that in the above equation we have 
replaced the n above the sigma with the symbol for infinity (00). 

This means we are going to begin our series with the first term 
equal to 1 and then add all the rest of the natural numbers-an 
infinity of numbers. 
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By claiming this series is unbounded, I say that no matter how 
big a number you pick, I can add together a finite number of terms 
from the series to get a sum bigger than your number. For example, 
you might give me the number 100. "Ah ha!" you exclaim. "Can 
you beat 100?'' If I add together the first 14 terms of the series I get 
105. 

"Okay," you say, "100 wasn't really a big number. Add enough 
terms to exceed one million!" 

Easy. I add together the first 1414 terms to get the number 
1,000,405. The point here is that it doesn't matter how big a number 
you pick, I can always beat it by just adding enough of the terms 
from the series. Using this definition of unbounded, I have avoided 
talking about an infinite number of additions. For every number 
you give me, I only have to add a finite number of terms to beat it. 
How did I know how many terms to add to exceed one million? 
Well, I cheated. I happen to know that if I add together the first n 

terms from the natural numbers I get the following number: 
n 

S = ~ . = n(n + 1) 
11 ~l 2 

i=1 

If I need a number, n, which will give me a sum exceeding 
1,000,000 then I have the following problem. 

n(n + 1) 
2 > 1,000,000 

By a little calculating, I find the desired n is 1414, the fewest 
consecutive numbers beginning with 1 that are greater than 
1,000,000. Hence, summing the first 1414 terms in the series gives 
1,000,405. 

Simply using the definition of unbounded to avoid talking 
about adding an infinite number of terms does not avoid the 
problem of infinity. The definition says that for any number you 
propose, I can find my n. That means that for every number, or for 
the infinity of all natural numbers that exist, I can find an n so that 
the sum of the first n terms exceeds them. Hence, the definition of 
unbounded still involves the idea of infinity. All we have avoided 
is talk of making infinite additions. 
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When we add together all the numbers in an infinite number 
sequence, we know that the results might tum out to be an un
bounded series. Is there such a thing as a bounded infinite series; 
that is, a series where we add the infinity of terms and get a finite 
number for a sum? 

GRAPHING SERIES 

Our basic number sequence is, of course, the natural number 
sequence {I, 2, 3, 4, ... } The associated series for this sequence 
would be 1 + 2 + 3 + 4 + ... , which we have already determined is 
unbounded. When a series is unbounded we say that it diverges or 
is a divergent series. On the other hand, should we find a series that 
is not unbounded-that has a finite sum-we will call it a converg
ing or convergent series. 

A simpler unbounded series than the number sequence is the 
series where each term is just a one, or 1 + 1 + 1 + 1 + .... We know 
that the sum of a finite number of terms (n) for this series is just n, 

itself, or: 

Therefore, we see that this series is also unbounded. In the above 
expression we have identified each term with a numbered sub
script. We can think of this series as the simplest series because it 
increases in such a regular fashion, and because each successive 
term is identical to the preceding one. In Figure 13 we have graphed 
both the natural number series and our simplest series as the 
number of terms, n, increases. We use a graph here because a graph 
can give us a kind of mathematical picture of what is happening to 
our series as we add more and more terms. 

We see at once from Figure 13 that the line representing the sum 
of the natural numbers is above the line for the simple series and 
will, in fact, stay about that line. This, in tum, tells us that the 
natural number series increases much faster than our simple series. 
The simple series has a very special characteristic. Those series that 
increase faster than this series have individual terms that succes-
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FIGURE 13. Growth of the natural number series and the simple series. 

sively increase in size compared to their predecessors. Those series 
that increase slower than the simple series have individual terms 
that decrease in size as the number of terms increases. Therefore, 
those series with graphs whose lines stay above the simple series 
graph will always diverge or be unbounded. To find a series that is 
bounded we are going to have to consider those series that have 
individual terms which decrease in size, with corresponding 
graphs that lie below the simple series graph in Figure 13. Can we 
find such a series? 

THE MAGNIFICENT HARMONIC SERIES 

Using the natural numbers we can construct a new series by 
using the reciprocal of each whole number. Doing so gives us the 
series 1/1 + 1/2 + 1/3 + 1/4 + ... or: 

S = L lin = III + 1/2 + 1/3 + ... 
n=l 
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This is called the harmonic series, a series that has been studied 
since ancient times. On the surface, it would appear that this series 
should converge because the terms keep getting smaller and 
smaller. For centuries, many mathematicians believed that the 
harmonic series did converge. However, Nicole Oresme (1323-
1382), the Bishop of Lisieux, France, proved that the harmonic 
series diverged and was therefore unbounded. He did this in a 
surprisingly simple way. Let's look at the harmonic series again. 

S~ = 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + ... 

We can group the terms into the following subsets: 

S~ = 1/1 + 1/2 + [1/3 + 1/4] + [1/5 + 1/6 + 1/7 + 1/8] + [1/9 + ... 

Now in each bracketed group we replace each fraction with the 
smallest fraction in that subset. This substitution yields a new 
series. However, if we can prove this new series diverges, then we 
will know the harmonic series must also diverge because the 
harmonic series is larger than this reconstructed one. 

Making the replacements we get: 

S~ = 1/1 + 1/2 + [1/4 + 1/4] 

+ [1/8 + 1/8 + 1/8 + 1/8] + [1/16 + ... 

Now we add the terms together found in each subset. 

S~ = 1/1 + 1/2 + [1/2] + [1/2] + ... 

Hence, every subset is equal to just 1/2. There are an infinite 
number of subsets (even though each subset has twice the members 
as the preceding one). Therefore, there are an infinite number of 
l/2s to be added, and the result will be infinite. Since this smaller 
series diverges, then the harmonic series, whose terms are indi
vidually either equal to or larger than the new terms, must diverge 
also. We can write this divergence as: 

Harmonic series S~ = 1/1 + 1/2 + 1/3 + 1/4 + ... = 00 

What is fascinating about the harmonic series is not just that it 
diverges, but that it does so very slowly. Let's consider the first 15 
terms of the harmonic series in decimal form as shown in Table 3. 
Notice that by the 15th term we are increasing the sum of the series 
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Table 3. Sums of the First 15 Terms for the Harmonic, Odd, and Prime 
Series 

1:1/n 1:1 /(2n - 1) 1:1/p 
Number of Terms Harmonic Series Odd Series Prime Series 

1.0000 1.0000 0.5000 

2 1.5000 1.3333 0.8333 

3 1.8333 1.5333 1.0333 

4 2.0833 1.6761 1.1761 

5 2.2833 1.7873 1.2670 

6 2.4499 1.8782 1.3440 

7 2.5928 1.9551 1.4028 

8 2.7178 2.0218 1.4554 

9 2.8289 2.0806 1.4989 

10 2.9289 2.1332 1.5334 

11 3.0198 2.1808 1.5656 

12 3.1032 2.2243 1.5927 

13 3.1801 2.2643 1.6171 

14 3.2515 2.3013 1.6403 

15 3.3182 2.3358 1.6616 

by only .0666666 ... or 1/15. The sum of these first 15 terms is only 
3.3182285. Therefore, we can see the series is increasing in size 
slowly, and that the rate of increase continues to slow as the terms 
increase in number. Yet, the sum of the series is unbounded, which 
means that for any number, say 10,000, we can find how many 
terms must be added to exceed 10,000. 

Using a computer to actually do the calculations, we discover 
it takes an astounding 12,367 terms to add up to just 10! Not 10,000, 
but 10. Hence, the harmonic series increases not just slowly, but 
incredibly slowly. In fact, to reach 15 we must add the first 1,673,849 
terms. With such a slow growth, how can we ever expect the 
harmonic series to reach 100 or 1000? Yet, remarkably, it does. Table 
4 lists the value of the harmonic series after summing various 
numbers of terms. 

A graph of how fast the harmonic series grows is shown in 
Figure 14. On the horizontal scale we have the number of terms we 
have added from 1 up to 1,000,000. On the vertical scale we see the 
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Table 4. Sums for the Harmonic, Odd, and Prime Series 

r1/n rI/(2n -1) r1/p 
Number of Terms Harmonic Series Odd Series Prime Series 

100 5.1873 3.2843 2.1063 

1000 7.4854 4.4356 2.4574 
10,000 9.7876 5.5869 2.7092 

100,000 12.0908 6.7385 2.9060 
1,000,000 14.3838 7.8718 3.0682 

corresponding sum of the harmonic series. Notice how flat the line 
is becoming as the number of terms increases. 

To reach 100 we must add approximately 1.5 x 1043 terms. That's 
15 followed by 42 zeros! To get to 1000 we must add together 
approximately 1.75 x 10434 terms. That's 175 followed by 432 zeros! 
We can define a relationship between ordinary numbers and the 
harmonic series (called a function by mathematicians). We let the 
symbol H(x) represent the number of terms in the harmonic series 
that must be added to reach x. Hence, H(10) = 12,367 since it takes 
12,367 terms to add to 10, and H(15) = 1,673,849. 

30 

25 

20 

15 

10~ 
5 

00 200000 400000 600000 800000 

FIGURE 14. The harmonic series for n = 1 to 1 million. 
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We are now in the position to define some really big numbers. 
Remember in Chapter 1 we defined certain large numbers, includ
ing the googol (10100) and googolplex (10googol). These numbers 
become mere pikers when we use them as the x in our harmonic 
function, for the numbers H(10100) and H(10googol) are astronomically 
larger than 10100 or lOgoogol. 

Since our harmonic series diverges, we still have not found an 
infinite series that is bounded. Is there another series that grows 
even slower than the harmonic series? If so, maybe this series will 
be bounded. Let's consider the reciprocals of only the odd numbers: 
1/ 1 + 1/3 + 1/5 + 1/7 + ... or: 

1 
I,--= 1/1 + 1/3+ 1/5+ 1/7 + ... 

2n -1 
n=1 

This series, which we will call the odd series, is just the harmonic 
series with the fractions that have even denominators removed. 
Surely, this series must be bounded for it will grow much slower 
than the harmonic series. Checking Tables 3 and 4, we see that it 
does increase much more slowly. The first ten terms add to only 
2.133256. At 1,000,000 terms, the odd series is only about half the 
size of the harmonic series, or 7.871825. But, alas, this series also 
diverges and is unbounded! 

We need a series that grows even slower than either our har
monic or odd series. We can create another series by forming a 
series of the reciprocals of successive prime numbers. The prime 
numbers, remember, are those numbers which can only be evenly 
divided by 1 and themselves. The first prime is 2, followed by 3, 5, 
7, and 11. To form the reciprocal prime series we simply take the 
reciprocal of each of these numbers or: 

1 
I, -=1/2+1/3+1/5+1/7+1/11+ ... 

P 
p=pnme 

The series continues on through the infinity of prime numbers. 
It will have smaller terms than the odd series because the primes 
thin out as we get to larger and larger numbers. Among the first 
1,000,000 numbers there are, of course, 500,000 odd numbers. How-
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FIGURE 15. The growth of the hannonic series, the odd series, and the prime series 
through the first million terms. 

ever, in the first 1,000,000 numbers there are only 78,499 primes. 
And they keep getting thinner as we go to numbers beyond 
1,000,000. The first 15 terms of the prime series (Table 3) add to 
1.6616458, which is considerably less than the 3.3182285 we got by 
adding the first 15 terms of the harmonic series. In fact, to add up 
to just 3 we must add over 300,000 terms! After adding together a 
million terms we still only get the sum of 3.068. In Figure 15 we 
have included the growth of the sum of the reciprocals of primes 
along with both the harmonic and odd series. Notice how slowly 
all three series are growing as the number of terms increases. 

With the reciprocals of prime numbers, have we finally found 
a series that is bounded? No! Amazingly, this series also increases 
without any end. For any number we choose, no matter how large, 
we can add enough terms together from the prime series to exceed 
that number. Just as we did with the harmonic series, we can use 
the prime series to define a new kind of large number. We designate 
a function as P(x) which stands for the number of terms needed 
from the prime series to exceed the number x. Hence, P(3.068) = 

1,000,000 which means that it takes a million terms to add to 3.068. 
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A magnificently large number is defined as P(googolplex) or: How 
many terms must be added together from the prime series to 
exceed a googolplex? 

THE GOLFER'S STORY 

Can we ever find a series that is bounded, or was Zeno correct 
when he said it is folly to believe an infinite number of numbers 
add to a finite amount? To solve our problem, let's consider the 
story of a golfer. The day is bright and sunny as we walk to the first 
tee. This first hole is a 400-yard par 4. In our minds we see our 
strategy: first a nice drive out 220 yards. Then a four iron shot to 
the green, followed by a one putt, and we score a birdie! 

We put the ball on the tee, position ourselves, and swing. Our 
shot is right down the middle of the fairway, but a little short, going 
only 200 yards. We still have 200 yards to the cup. That's okay, with 
a good wood shot we can make up the distance. We select our three 
wood, but again the shot is short, falling only 100 yards away, and 
still 100 yards short of the hole. A little knot grows in our stomach. 
"Okay," we mutter. "Maybe not a birdie, or even a par, but certainly 
a bogey!" With only 100 yards remaining to the flag, we select our 
pitching wedge. Yet, to our horror, this shot, too, is short, going high 
and falling 50 yards from the flag, and still yards from the edge of 
the green. 

Sweat breaks out on our foreheads. We've already used three 
shots. At least two or three more are going to be required to get 
down into the cup. What began as a birdie, now looks like a double 
bogey-disaster! With a sinking heart, we notice our golfing part
ners are patiently waiting for us on the green. Using our pitching 
wedge, we make a little chip-and-run shot at the flag. You can guess 
what happens. Short again! We're on the green now, but 25 yards 
from the hole. If we add how far we have moved the golf ball, we 
get the finite series: 200 yards + 100 yards + 50 yards + 25 yards = 

375 yards. With trembling hands, we putt, but it's short, for the ball 
covers only half the remaining distance to the hole. We putt again, 
and again we are short by half the distance. 
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This scenario is repeated, of course, every weekend all across 
America. However, with some fortitude, and without throwing 
their clubs into trees or ponds, most golfers manage to somehow 
sink the ball in a finite number of strokes. We will not allow this for 
our imaginary game. Each and every time we putt the ball, it rolls 
only halfway to the cup. 

Figure 16 shows the effect of the first few golf shots, and 
demonstrates that we will, very soon, get exceedingly close to the 
cup. In fact, after a surprisingly few more putts we will manage to 
get the ball closer to the edge of the cup than the diameter of a 
hydrogen atom (1.74 x 10-10 feet). Exactly how many shots to go 
from 400 yards to under the diameter of a hydrogen atom? Just 43 
will do. Yet, the process never stops because with each successive 
putt we cover only half the remaining distance. Is this series un
bounded? No, because it can never exceed the value of 400 yards, 
for we know the ball always stops some small distance short of the 
edge of the cup. Hence, the series is bounded by the number 400. By 
construction, we have finally found our infinite converging series. 

In fact, if we think of the distance from the tee to the cup as one 
fairway distance, then each shot is a fraction of one fairway dis
tance. Using this designation, we have the series: 5",= 1/2 fairway 
+ 1/4 fairway + 1/8 fairway + 1/16 fairway + ... We can show this 
process with the following infinite series: 

Tee Green 

FIGURE 16. Each golf shot travels one half the remaining distance to the pin. The 
ball will never reach the pin, but will get ever closer to it. 
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We can consider the number 1 and all numbers larger than 1 as 
upper bounds on this series. The smallest bound, or I, has a name: 
It's called a limit. Mathematicians have a special way of saying that 
1 is the limit of this series. They say that 1 is the limit to the series 
we are building because no matter how small a distance we con
sider, the golf ball can get closer than this distance to the cup, but 
at the same time can never reach the cup. Suppose we pick a 
distance of 1/l00,OOO,OOOth of a foot. That's only one 
1/100,OOO,OOOth of a foot-a pretty short distance. Now we can find 
the number of shots required to get closer to the cup than that 
distance. In fact, if we take 37 shots we would be only 
1/134,217,728th of a foot from the cup. We could, of course, pick 
an even shorter distance, but if we do, we can always putt enough 
times to get closer to the cup than that distance. Hence, one fairway 
is the limit to our game. 

Mathematicians like to talk this way because it avoids actually 
saying they are adding an infinity of numbers together. They avoid 
talking of infinity altogether and reserve their comments to some
thing like" given any number E there exists an n such that 1 - (2n -

1)/2n is smaller than E." Loosely translated, it says that given any 
small number (represented by the Greek letter E, or epsilon) we can 
find the number of putts (n) when the ball will be closer to the cup 
thanE. 

The idea of a limit is central to all higher mathematics known 
as analysis. Calculus is built on the idea of limits. Every student 
who takes a course in calculus begins by studying limits. The idea 
of a limit is a powerful notion in mathematics. However, even with 
the use of limits and the special language of mathematicians, we 
are still forced to consider infinite additions. Even though we have 
avoided using the term "infinite," we continue to wrap ourselves 
with the concept. For example, someone might object to our exam
ple of the ball getting ever closer to the cup, and to our claim that 
one fairway is the limit of his golf game. One may claim that after 
an extraordinary amount of time, the ball might finally equal one 
fairway and fall into the cup. 
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Our counterargument is that the fractions we form from the 
total amount of the distance covered after n shots will always have 
denominators larger than the numerators. Hence, the total distance 
traveled by the ball after any finite number of shots will always be 
less than one. 

"Okay," our antagonist responds. "How do you know that after 
enough days and weeks of putting, some point closer to the ball 
becomes the limit?" In other words, suppose there exists some 
infinitesimally small amount less than one fairway that is the real 
limit to all this putting? Our response is to ask precisely what that 
infinitesimal amount is, and once known, we can compute how 
many putts it takes for the ball to get beyond that point. The key 
here is that we can do this for any small amount chosen less than 
one complete fairway. Another way to say this is: For all numbers, 
no matter how small, we can putt the ball until it is closer to the 
cup than that amount. When we use the word "all" we reintroduce 
infinity-there is just no way to get around the notion. And yet, in 
a charming sense, it is this very use of infinity that makes the 
mathematics of series and sequences so much fun. As limited and 
finite beings, we humans can play with and discover the infinite. 
Would we want it any other way? 

We now have a better idea of what we mean when we say that 
an infinite series converges to a limit, and we can begin to investi
gate both converging and diverging sequences and series. We must 
make one distinction before continuing. We know some infinite 
series diverge, and we have finally found an infinite series that 
converges. Yet, there is another case. Some infinite series neither 
converge to a limit nor diverge. 

A series that does not diverge in the sense of being unbounded 
nor converge to a limit is called an indefinitely divergent or, for short, 
indefinite series.2 Such a series is: 

S~ = 1 - 1 + 1 - 1 + 1 - 1 + ... 

This is an especially interesting series because we can look at it in 
two different ways. First we group the terms in the following 
manner: 

s~ = (1 - 1) + (1 - 1) + (1 - 1) + ... 
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Now it is obvious that the sum within each pair of parentheses is 
just zero. Therefore we have the sum of an infinite number of zeros 
which is just zero. Hence: 

s~ = (1 -1) + (1 - 1) + ... = 0 + 0 + ... = 0 

Yet, we can also group the original series in the following way: 

S~ = 1 + (-1 + 1) + (-1 + 1) + ... 

Here again the terms within the parentheses become zero. 

S=1+0+0+ ... =1 

Therefore, the series is equal to 1. But we already showed that it 
was equal to zero! Which is it? You see why this kind of series is 
called indefinite. It's not really 1 or zero but oscillates back and 
forth between zero and 1. 

THE FARMER'S PROBLEM 

Since recorded history, beginning around 3100 B.c. in the cities 
of Sumer (present day Iraq), we find references to both sequences 
and series.3 However, we can make a strong indirect argument that 
both series and sequences were known even before the invention 
of writing. The natural number sequence is, of course, a fundamen
tal sequence that has been known to humankind for at least the last 
35,000 years as demonstrated by the baboon bone found in Africa 
and the wolf bone from Czechoslovakia. Number series must have 
been considered since the earliest farming days, around 10,000 B.C. 
in the Fertile Crescent. 

Pretend we are farmers living along the Tigris River in Sumer 
during the year 6001 B.c. One question that we frequently ask is 
"how much grain should we plant in the spring for an adequate 
supply of food for the next year, with enough grain left over to plant 
again for the following year?" Suppose that we know that our seeds 
will increase threefold because of our farming efforts. Hence, 1/3 
of a bushel planted in the spring will yield one whole bushel in the 
fall. We also know that we need one large bushel of grain to feed 
our family through the winter. All right, let's plant 1/3 bushel of 
grain. This yields a full bushel in the fall, and we can survive the 
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winter. The problem is: We don't have any grain to plant the 
following spring. So, we must plant a little more than 1/3 bushel. 
How much more? If we want 1/3 bushel of grain next spring for 
planting, we are going to have to plant 1/9 bushel this spring to 
generate that 1/3 (since 1/9 bushel will triple to 1/3). Therefore we 
must plant at least 1/3 + 1/9 of a bushel. So we do. We get 1+1/3 
bushel in the fall. We eat the bushel and have 1/3 to plant during 
the next spring. But wait! That 1/3 bushel planted next spring 
yields only one bushel the following fall. We won't have anything 
left over to plant the following spring. 

You can now see our conundrum. We must plant 1/3 bushel for 
the grain we will eat, plus 1/9 bushel for next spring's planting, 
and 1/27 bushel for the following spring, and 1/81 bushel for the 
spring after that, and so on. In fact, the correct solution to this 
problem is the infinite series: 

n~l 

We may question whether ancient farmers considered solving this 
infinite series, or even whether they formulated it as an infinite 
series. In all likelihood, they probably figured that it was best to 
plant 1/3 bushel to produce enough to eat, and then simply planted 
another fraction to handle all the rest. However, the farmer's 
problem is so common that it must have been worked on at various 
times by individual farmers, elders of farm villages, and even 
advisors to kings during the thousands of years before the inven
tion of writing. 

Surprisingly, an exact solution is available for the kind of infi
nite series represented by the farmer's problem. To compute this 
sum we begin with the same series, but only a finite number of 
terms. We notice that each term is just the preceding term multi
plied by 1/3. Therefore, we can rewrite our finite series in the 
following manner: 
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This equation can be rewritten in the following manner: 
n 

1 1 1 1 1 
Sn = L 3i = 31 + 32 + 33 + ... + 3n 

i=1 

A series where each succeeding term is the previous term multi
plied by a constant is called a geometric series or a geometric progres
sion. The constant term we are multiplying by is 1/3 and is called 
the common ratio. Hence, to get the next term in the series we only 
have to multiply the previous one by 1/3. We can rewrite the above 
series in the following way: 

Line 1 Sn = {1/3)1 + (1/3)2 + (1/3)3 + ... + (l/3)n 

Now, we simply multiply both the left and righthand sides of the 
above equation by the common ratio of 1/3 to get: 

(1/3)Sn = (1/3)(1/3)1 + (1/3)(1/3)2 + ... + (1/3)(1/3)n 

or multiplying the terms together on the right we get: 

Line 2 (1/3)Sn = (1/3)2 + (1/3)3 + (1/3)4 + ... + (1/3r1 

Next we subtract the equation on Line 2 from Line 1. Notice that 
all the in-between terms on the right cancel out to yield: 

Sn - (1/3)Sn = (1/3)1 - (1/3t+1 

We can factor Sn out of the left side. 

Sn{1-1/3) = (1/3)1 - {1/3r1 

Now we simply divide both sides by (1 -1/3): 

5 J~J-~r 
n 1 

1-3 
We next separate the numerators into two different fractions: 
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Notice that the first term on the right depends only on the ratio r, 
or 1/3, and the first term, again 1/3. The second term on the right 
is dependent on the number of terms we sum together. We can see 
at once that the numerator of this term, (1/3)"+1, will get smaller and 
smaller as n grows larger. Now suppose we let the series go to 
infinity. The number n will grow infinitely large causing the nu
merator to decrease to zero. Hence, when n goes to infinity, the sum 
becomes the first term on the right or: 

S~ = (1/3)/(1-1/3) = (1/3)/(2/3) = 3/6 or 1/2 

Therefore, the correct solution to the farmer's problem is to plant 
exactly 1/2 bushel of grain. 

We can restate the solution to the farmer's problem in general 
terms. Suppose we have the following geometrical progression: 

S~ = a + ar + ar2 + ar 3 + ar 4 + ... 

We apply the same method of solution and find the general 
solution to be: 

S~=a/(1-r) 

Now we don't care if we're talking about a ratio of 1/3, I/2,orIIlO. 
In each case we can find the exact solution. The only condition we 
must insist on is that r be less than 1. If r is 1 or greater, then the 
series will not converge but diverge. If the ratio is less than 1, the 
geometrical progression will always converge. 

The techniques we used were not beyond the talents of the early 
farming civilizations of the Fertile Crescent. However, we did 
employ the notion of an infinity of numbers, and we talked rather 
loosely of a number n growing to infinity. Such notions may well 
have been too advanced for our early farming ancestors. Yet, the 
farmer's problem is so universal, it would be incredulous to think 
that early farmers never considered the sums of finite series. Such 
series are more relevant to real-life situations than they seem on 
first consideration. 

ARITHMETIC AND GEOMETRIC SEQUENCES AND 
SERIES 

The farmer's problem illustrated one of two simple types of 
sequences and series: the arithmetic and geometric progressions. 
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The arithmetic progression is a series or sequence where each 
succeeding term is arrived at by adding a fixed amount to its 
predecessor. For example, natural numbers are an arithmetic pro
gression because each term is simply its predecessor plus 1. The 
amount we add to the predecessor each time is called the common 
difference, which we will designate as d. If we let a1 be the first term, 
then the nth term, an' is just: an = a1 + (n - l)d, where d is the differ
ence and n is the number of terms. 

Therefore, the tenth term in the sequence of natural numbers is 
simply: 

alO = 1 + 00 - 1).1 = 1 + 9 = 10 

But, we knew this already. Let's look at a more intriguing arithmetic 
sequence: 7, 11, 15, 19,23, .... In this sequence the first term is 7 
and the difference is 4. What would the 100th term be? We simply 
substitute the proper amounts into our equation and get 

alOO = 7 + (100 - 1).4 = 7 + 396 = 403 

Our 100th term is 403, and we learned this without having to add 
a hundred different numbers together. 

The other type of special sequence, the geometric sequence, is 
of interest because of the many places we encounter it. A modem 
use of it is in compounded interest or compounded economic 
growth. As mentioned earlier, in a geometric sequence we don't 
add the same term to each number, but we multiply each number 
by the same amount, the ratio. A simple geometric sequence is: I, 
2,4,8, 16,32,64, .... In this sequence we start with the number 1 
and then begin to double, or multiply by 2. Hence, our ratio is 2. 
This doubling sequence crops up in many places. The ancient 
Egyptians used a doubling procedure to carry out their multiplica
tion. For example, to multiply two numbers, say 11 x 13, they would 
generate the following list. 

Multiplying 11 x 13 
11 1 \ 
22 2 
44 
88 

4 
8 

\ 
\ 
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In the left column we begin with 11 and then simply double it three 
times. In the right column we have the multiplier beginning with 
1 next to 11. The Egyptian scribe would place a hash mark next to 
each number in the right column to indicate those numbers adding 
to 13. Hence we see a hash mark next to the numbers 1, 4, and 8 
since 13 = 1 + 4 + 8. He would then add the corresponding numbers 
in the left column together or 11 + 44 + 88 = 143, which is, in fact, 
equal to 11 x 13. This method was so simple and reliable for 
multiplication that it was used for centuries after the Egyptians and 
became known as the Russian Peasant Method of multiplication. 

Another example of the doubling sequence is in the design of 
modem computers. Computers are based on a binary system, and 
therefore the memory modules are multiples of 2. Hence a kilobyte 
of memory is not 1000 bytes, but is really 1024 bytes. This is because 
the sequence representing the powers of two is 2, 4, 8, 16,32,64, 
128,256, 512, 1024, etc. 

The formula for the nth term in a geometric sequence is: 

If we wish to learn the tenth term in the above doubling sequence 
we simply substitute 1 for a1, 2 for the ratio, and 10 for n. 

alO = 1 . 210-1 = 29 = 1024 

One kind of infinite sequence is of special interest: the sequence 
whose terms continue to diminish to ever smaller amounts in such 
a way that we can always move along the sequence to find a 
number as close to zero as desired. These sequences are called 
evanescent sequences. An example of a geometrical progression 
which is also evanescent is: 

1/2,1/4,1/8,1/16, ... 

No matter how small of a number you give, I can move along the 
above sequence until I find a smaller value. Does this mean that all 
evanescent sequences have converging series? Not necessarily. 

ANCIENT EVIDENCE 

Number sequences and their associated series may seem to be 
exotic mathematical inventions with little application to the real 
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world. Certainly in our daily lives we use the number sequence to 
count things, but we seldom use a series, and we certainly never 
use an infinite sequence or series. (Who has the time for all that 
adding?) Yet, if we take a careful look, we will see that sequences 
and series are very old, and are associated with fundamental 
human activities. 

The oldest existing writings on mathematics contain references 
to number series. On an ancient Babylonian clay tablet we find a 
list of the values associated with the fraction of the moon's disc that 
is illuminated over a complete lunar cycle. The first five days are 
recorded in a geometrical progression with the succeeding values 
given in an arithmetic progression.4 

The Rhind Papyrus mentioned in Chapter 1 was written around 
1650 B.C. and may have been copied from an earlier papyrus scroll 
dating around 1900 B.c. The Rhind Papyrus contains 84 problems. 
Problem 40 states that 100 loaves of bread are to be divided among 
five men in such a way that the men receiving the two smallest 
shares receive a total that is 1/7 of the shares of the other three men. 
From the way the problem is stated, it is evident that the shares 
should be in arithmetic progression. The question is to find the 
difference between the shares, i.e., the common difference between 
the terms of the progression. The solution to this problem is the 
arithmetic progression:5 

10/6 + 65/6 + 120/6 + 175/6 + 230/6 = 600/6 = 100 

Notice that the first two shares total 75/6 which is exactly one 
seventh of 525/6, the sum of the other three shares. The common 
difference between each term is 55/6 or 9 and 1/6 loaves of bread. 
This demonstrates that the ancient Egyptians knew of sequences 
and series. In fact, the way they used fractions would suggest the 
concept of a series to them since all Egyptian fractions, except 2/3, 
were unit fractions with a numerator equal to the number 1. Hence, 
fractions such as 11 /15 had to be written as the sum of unit 
fractions, e.g., 11/15 = 1/2 + 1/5 + 1/30. 



CHAPTER FOUR 

THE FAMILY OF NUMBERS 

So ifman's wit be wandering, let him study the 

mathematics; for in demonstrations, if his wit be 

called away never so little, he must begin again. 

FRANCIS BACON 

ONE POTATO, TWO POTATO 

CT n order to fully appreciate the full range of numbers we are 
J going to encounter in our odyssey, it is helpful to review the 
various kinds of numbers defined by mathematics. We begin, of 
course, with the natural numbers: 1,2,3,4, ... 

Most certainly, the natural numbers were the first numbers 
encountered by humans. However, as soon as farming began, new 
problems made demands the natural numbers could not fulfill. 
Hence, we discovered (invented?) the positive fractions: 1/2,3/2, 
1/1,17/91,3/1, ... Notice that we have defined both 1/1 and 3/1 
as fractions, when, in fact, they are the natural numbers 1 and 3. 
This is a nice convention which allows us to include all the natural 
numbers within the set of all fractions. In this way we can say that 
fractions include all numbers of the form n/m where both nand m 
are natural numbers. 

To illustrate our numbers we will relate them to the number line. 
When using a number line we assign numbers to specific points in 
relation to their size. This approach allows us to visualize impor-
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FIGURE 17. The number line showing the location of various whole numbers and 
fractions. 

tant features about numbers as we define them. Figure 17 shows a 
number line in which we have assigned I, 2, 3, 4, and 5 to specific 
points. For convenience, we space these points equal distances 
apart. We have also shown the points assigned to 1/2,4/13,3/2, 
and 20/7 as examples of positive fractions. 

It is interesting to note that two other kinds of numbers in 
common use, decimals and percentages, are really fractions. A 
percentage is the numerator of a fraction that has a denominator of 
100. For example 37% is really the fraction 37/100. A decimal is 
really the sum of a series of fractions. For example, the decimal 
31.47 is the sum of the following three fractions: 31.47 = 31/1 +4/10 
+ 7/100. 

Decimals come in three flavors: terminating decimals (e.g., 
3.5), nonterminating, periodic decimals (e.g., 0.13131313 ... ), 
and nonterminating, nonperiodic decimals (e.g., 5.973821. .. ). 
By non terminating, we mean that the digits to the right of the 
decimal in the decimal number continue on for an infinite number 
of places. By periodic we mean that a fixed number of digits repeat 
indefinitely, beginning somewhere to the right of the decimal point. 
If the decimal is both nonterminating and periodic, then the repeat
ing digits continue to repeat without end. A simple example is the 
fraction 1/3 which is equal to the decimal, 0.33333 .... 

Both terminating and nonterminating, periodic decimals can be 
rewritten as either a finite sum of fractions or a convergent infinite 
sum of fractions. (The third kind of decimal, the nonterminating, 
nonperiodic decimal, we will leave until later.) Since these two 
kinds of decimals can be represented by series of fractions, we have 
a nice correspondence between fractions and decimals involving 



THE FAMILY OF NUMBERS 79 

finite and infinite series. For example, consider again the fraction 
1/3. If we use long division to divide 3 into 1, we begin with a 
decimal of the form 0.3333 ... and the process of division never 
ends, because we repeatedly get a remainder in the division. This 
means that we have the following identity: 

3 3 3 3 3 1 L Ion = 101 + 102 + 103 + 104 + ... = "3 
n=1 

Here we have the kind of bounded infinite series we searched so 
long for, and it is equal to the fraction 1/3. In fact, we can expand 
this idea even further. Since every fraction has a corresponding 
decimal number, we can see that every fraction is equal to a 
corresponding bounded series. If the fraction is terminating, such 
as 1/5 = 0.2, then the corresponding series will be finite. If the 
decimal is a nonterminating, periodic decimal then the correspond
ing series will be bounded and infinite. Hence, every fraction is 
equal to a bounded, infinite, or finite series. 

I like to show my beginning algebra class a little trick with 
infinite repeating decimals. We can form the decimal 0.99999 ... 
where the ellipsis indicates the 9s go on forever. I then claim that 
this decimal is exactly equal to the number 1. I usually get a few 
students who scoff at my claim, so I show them a proof. First we 
multiply the decimal by 10 getting 9.99999 ... which is the original 
decimal with the decimal point shifted one place to the right. We 
subtract the original decimal from this new one: 

lOX =9.99999 .. . 

-X = -.99999 .. . 
9X = 9.00000 .. . 

Now we divide both sides by 9 to get X = 1. I did this proof in class 
one day only to have a young student become very upset and 
agitated. Her intuition told her that .99999 ... was some infinitesi
mal amount less than 1, and here I was doing some kind of 
witchcraft to contradict her belief. I made an effort to review the 
theory of decimals with the class to ease her discomfort. I'm not 
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sure I succeeded, for she left class shaking her head and muttering 
to herself. 

When we show a point on our number line, such as in Figure 
17, we show a small black round dot. A true point, however, has no 
length or height. But such a point cannot be seen. Therefore, the 
dots we show on paper are only meant to help us visualize approxi
mately where we intend our points to be. Since points have no 
length, they are really markers of position, not small line segments 
nor little round dots that have some magnitude. We must keep this 
in mind while developing our theory of numbers, and also remem
ber that points are not equal to numbers. We are only assigning 
numbers to points (positions on the line) in order to show their 
relative magnitude in relation to each other. 

Both the Babylonians and Egyptians understood how to com
pute with positive fractions, and seemed to treat them as real 
numbers along with the natural numbers. The Greeks, on the other 
hand, didn't consider fractions as real numbers. What we call 
fractions, they called ratios between natural numbers. 

The next additions we want to make to our number line, the 
negative numbers.and zero, evolved over many centuries. Nega
tive numbers may have been used first by the Chinese. By 300 B.C. 
they were using counting boards that employed counting rods to 
make calculations. Sometime after this, they began using red rods 
to signify positive numbers and black rods to signify negative 
numbers. It is believed that the black rods were used to show debt, 
a popular use for negative numbers today. 

One of the chief pressures exerted on any theory of numbers is 
for the numbers to satisfy various kinds of equations, equations 
being symbolic statements of mathematical operations. If we add 
any two natural numbers, we always get another natural number 
as an answer. This is convenient for it insures that the operation of 
addition will always produce another number, and not something 
strange and undefined. Hence we have: X = 5 + 4 as a symbolic 
representation for adding the natural numbers 5 and 4. The "solu
tion" of course is 9 (X = 9). If we multiply any two natural numbers, 
we always get the same kind of thing as a result-that is, we always 



THE FAMILY OF NUMBERS 81 

get another natural number. Hence we have: X = 4·5 and a solution 
which is X = 20. This ability to get from our arithmetic operation 
the same kind of thing we begin with is known in mathematics as 
closure. We say that the natural numbers are closed under both 
addition and multiplication. 

When we shift to division and subtraction, this closure breaks 
down. When we have an equation such as: X = 3 + 2 we do not get 
a natural number as a result, but a fraction, instead. By including 
the fractions within our collection of numbers, we assure ourselves 
of closure for the numbers under the operation of division, for if 
we divide any natural number by any other natural number, we 
get a fraction as an answer (we include the natural numbers as a 
special kind of fraction). 

When we consider subtraction, the closure of fractions breaks 
down. For example, X = 5 - 7 is an equation that does not yield a 
natural number nor a positive fraction for an answer. For most 
ancient peoples, such an equation would simply have no solution. 
What sense can be made of subtracting seven geese from five geese? 
What is minus 2 geese? Even though the Chinese were able to use 
negative rods with their counting boards to represent debt, they 
did not allow negative numbers to be solutions to equations. 

The first to allow for true negative numbers were probably the 
Hindu mathematicians of India. Brahmagupta (ca. 628) developed 
a sound theory to handle negative numbers, allowing them to be 
the solution to equations. Not only did Brahmagupta use negative 
numbers, but he also included another number which was not 
accepted in the West for many more centuries-zero. Now, with the 
addition of zero and the negative numbers to the collection of 
numbers, it was possible to add, subtract, multiply, and divide 
natural numbers and fractions, and always be assured of getting a 
number as an answer-with one exception-we cannot divide by 
zero. 

If we consider the collection of numbers that includes the 
natural numbers, negative whole numbers, and zero, then we have 
the integers which we can represent as { ... ,-3, -2, -1, 0, 1,2,3, ... }. 
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-4 -3 -2 -1 o 1 2 3 4 . . . . 
-5/2 -1/2 1/2 5/2 

FIGURE 18. The number line showing the location of various positive and negative 
numbers. 

Now we add all the fractions, both positive and negative, and 
together these numbers are called the rational numbers. 

One might think that we have all the numbers we will ever 
need. Shown in Figure 18 are examples of positive and negative 
whole numbers, positive and negative fractions, and zero. The set 
of rational numbers is closed under all four arithmetic operations 
except for division by zero. What more could we ever need? 

THOSE CURIOUS GREEKS 

Although the Greeks did not accept fractions, negative num
bers, or zero as numbers, their deductive mathematics allowed 
them to discover an entirely new kind of number. This discovery 
turned out to be more troublesome for their theories than benefi
cial. 

Influenced by the Pythagoreans, many Greeks believed that 
numbers were the atoms that constituted the material world. Ac
cording to the Pythagorean legend of creation, at the beginning of 
the universe there existed "The One," "The Limited," a monad 
without differentiation or extension. Surrounding this monad was 
the unlimited, which was the principle of extension (space). Some
how the unlimited separated the monad into individual atomic 
numbers. These numbers, in turn, organized themselves geometri
cally to form simple shapes, which in tum became the four ele
ments, earth, air, fire, and water. 

An il;nportant characteristic of this process was harmony, which 
was identified with the correct ratios between whole numbers. 
Hence, the geometric constructs must have dimensions that are in 
whole number ratios to each other. To show a simplified example, 
we can consider a right triangle whose sides are in the ratios of 3:4:5. 
The lengths of the sides of this triangle are 3 units, 4 units, and 5 
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FIGURE 19. A right triangle whose sides are in the proportions of 3, 4, and 5. 

units (Figure 19). Now let's look at a square with sides equal to one 
unit each (Figure 20). We can now ask: If the sides are of one unit, 
then what is the length of the diagonal? According to Pythagorean 
cosmology, it should be some whole number ratio, or in modem 
terms, a fraction of some kind. 

Some pesky Pythagorean simply could not let things alone. He 
went and proved that for a unit square the length of the diagonal 
could not be a fraction. The proof is beautiful and involves only 

FIGURE 20. The unit square and its diagonal of ..ff. 



84 MATHEMATICAL MYSTERIES 

elementary ideas. We use the Pythagorean theorem, a theorem that 
was credited to Pythagoras himself by many ancient historians, but 
a theorem we know was used by both the Egyptians and Babylo
nians. Whether these ancient peoples possessed a proof is not 
known. The Pythagorean theorem says that for a right triangle, the 
sum of the squares of the two legs equals the square of the hypote
nuse. Applying this theorem to Figure 20, we see that the hypote
nuse is the diagonal of the square while the two legs are the sides 
of the square. Using D to represent the length of the diagonal we 
get: D2 = 12 + 12 or D2 = 1 + 1 = 2. To find the value of D we must 

find the square root of both sides. Hence, we have D =...J2. There
fore, we must find a number which, when multiplied by itself, gives 
us the number 2, or ...J2 . ...J2 = 2. 

We will use a kind of proof known to the ancient Greeks as 
reductio ad absurdum. With this proof we assume the opposite of 

what we want to prove. Then we show that this assumption leads 
to a contradiction. If the opposite of what we wish to prove is false, 
then the statement we are trying to prove must be true. 

We begin by supposing the opposite of what we want to prove 
in this case: that ...J2 is represented by some ratio of whole numbers, 
which we designate as p / q. If we can find a fraction p / q = ...J2, then 
we know the length of the diagonal is equal to this fraction. We will 
assume that p and q have no common factors (for if they did, we 
would simply cancel them out and get a new p and q that satisfy 
our needs.) If p and q have no common factor, then they both cannot 
be even numbers, for if they were both even, then they would both 
contain a 2 as a factor. 

Step 1: (our assumption) p / q = ...J2 
Step 2: (we square both sides) p2/q2 = 2 
Step 3: (we multiply each side by q2) p2 = 2q2 

Since f is equal to 2 x q2, then f must be an even number. 
This takes a moment of reflection, so stop and think about 
it. If a number is equal to 2 times another number, then the 
original number must be an even number. 
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Step 4: p2 is even 
If p2 is even, then p must be even. Again, this takes a moment 
of reflection. If we take an odd number and square it, do we 
ever get an even number? No. Therefore, since p2 is even, 
then p is also even. 

Step 5: p is even 
Step 6: q is odd (if P is even then q must be odd) 

If p is even then q must be odd, because we agreed at the 
beginning that p and q had no common factors. 

Step 7: let p = 2r (since p is even) 
Step 8: (2r)2 = 2q2 or 4,z = 2q2 

Here we have simply substituted the 2r for p in Step 3. 
Step 9: 2,z = q2 (dividing both sides by 2) 

This equation says that q2 is an even number because it is 
equal to 2 times another number. 

Step 10: q2 is even 
Step 11: q is even 

This is the contradiction we are after, for we have shown that q must 
be both even and odd. Therefore, when we assume that some 
fraction exists that is equal to ..f2 we get a contradiction. This tells 
us that no fraction exists equal in length to ..f2. The Greeks called 
..f2 an incommensurable length because it could not be represented 
as the ratio of whole numbers. 

This discovery was such a scandal to the Pythagoreans that all 
were sworn to secrecy. Someone, possibly Hippasus of Metapon
tum, revealed the secret to outsiders. One legend says that Hippasus 
was drowned for his treason to the Pythagorean Order.2 In any case, 
the Greeks had stumbled onto an entirely new kind of number. 
Because their theory of numbers did not allow them to consider 
anything as a number except natural numbers and their ratios, the 
incommensurable length of the diagonal had to be separated from 
arithmetic. Because of this discovery, the Greek mathematicians 
divided mathematics into the disciplines of geometry, which was 
the study of lines and points, and arithmetic-the study of num
bers. All of Euclid's theorems were defined in terms of geometric 
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FIGURE 21. The number line showing the positions of the radical numbers, 
..fi, -..J3,..J5, and -..g-. 

objects, and not numbers. The division between arithmetic and 
geometry lasted for 2000 years until Rene Descartes pulled the 
two disciplines together again with his analytic geometry. 

What shall we call our new kind of number represented by -v2? 
Are there other examples? As it turns out, and was proven by the 
Greeks, any square root of a whole number that is not a perfect 
square is one of these incommensurable numbers. Therefore, 
--13, ...[5, ..J6, ..ff, and -vB are all incommensurable numbers. The only 
kinds of numbers we leave out are ...f4 = 2, -{9 = 3, and any other 
number which is a perfect square. This means there are an infinite 
number of these new numbers. We will call such numbers radical 
numbers. On the number line in Figure 21 we have added several 
of these new numbers to show their approximate location. 

If we now consider all the numbers we have discovered, includ
ing the rational numbers and our radical numbers, our new and 
bigger set of numbers is called the algebraic numbers. The reason 
they are called algebraic leads to an interesting insight. Consider 
the equation: AX + B = 0 where X is our unknown number, and 
both A and B are known, integer numbers (we exclude the possi
bility that A = 0). We can solve for X in terms of A and B to get: 
X = -B / A. The value for X will always tum out to be a fraction, zero, 
or integer. Therefore, we can say that the solution for X will always 
be a rational number. This kind of equation, A· X + B = 0, is called a 
linear equation because the X is not raised to a power greater than 
1. Therefore, we can say that all linear equations have solutions that 
are rational numbers. 

Now let's consider a more complex equation of the form: 
A X2 - B = O. Solving for X we get: 
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X= ~ 
Here we see that the solution is in the form of a radical. Now, if A 
and B are both positive numbers, the value of the fraction under 
the radical sign will be positive. (We do not want to consider at this 
point what happens when the value under the radical is negative.) 
If both A and B are perfect squares or their division leads to a perfect 
square, then we will get a rational number for a solution. However, 
for all those cases where A and B are not perfect squares, the 
solution will be one of our new numbers, a radical number. From 
all this we can say that if there are solutions of the equation 
A·X2 - B = 0, then these solutions will be algebraic numbers, i.e., 
the solutions will be either integers, fractions, or radicals. 

We can generalize this idea in the following manner. Equations 
that consist of terms involving an unknown, such as x, raised to 
positive whole numbers (exponent) and multiplied by constants 
are called polynomial equations. Such equations are classified by 
the largest exponent found on the unknowns. The general form of 
the first degree polynomial is simply Ax + B = O. The general form 
for the second through fourth degree polynomials are as follows: 

Second degree 
Third degree 
Fourth degree 

Ar+B·x+ C=O 
A'r+B'r+Cx+ D=O 
A·x4 + B·:i3 + Cr + D·x + E = 0 

We usually write polynomials in standard form which means 
we begin on the left with the term containing the largest exponent 
of x and proceed in descending order. Using this technique we can 
write the general form for a polynomial of the nth degree as: 

where the different as are all integers, and n is always a positive 
integer. For thousands of years mathematicians have been inter
ested in the solutions to polynomials, that is, the values of x that 
make the equation true. We now know that solutions to this kind 
of polynomial equation (if they exist for our number line) will 



88 MATHEMATICAL MYSTERIES 

always be algebraic numbers. This is a powerful piece of mathe
matics. It tells us that any equation in the above form, if it has 
solutions on our number line, will have solutions that are algebraic 
numbers. It would appear that expanding our collection of num
bers to include the radicals has allowed us to account for the 
solution of many more equations. 

Remember when we said that three kinds of decimals existed? 
We explained that terminating and nonterminating, periodic deci
mals were equal to fractions, but we ignored what nonterminating, 
nonperiodic fractions were. Now we have found examples of such 
decimals. The radicals are infinite, nonperiodic decimals. There
fore, we now know that numbers such as ..J2 and ..J3 have infinite 
decimal expressions that never become periodic. 

Have we accounted for all the points on the number line by 
adding all the radical numbers to our rational numbers, yielding 
the algebraic numbers? If you were an ant, an ant so thin you had 
no width, could you walk along the number line and not fall 
through? Is every single point accounted for-is every point as
signed some algebraic number? 

OF COURSE, THEN THERE WAS 1t 

We know that 1t is the ratio of the diameter of a circle to its 
circumference. It has the approximate value of 3.14159265 .... What 
kind of number is 1t? Is it a fraction? No. Early civilizations used 
fractions to approximate 1t. For example, one Egyptian estimate 
was (I6/9f, which yields a value of 3.16049 ... ,a value only 6/10 
of 1 % in error.3 One estimate by the Chinese mathematician Tsu 
Ch'ung-chih (430-501) was 355/113, which is even better, accurate 
to seven decimal places.4 However, no fraction exactly equals 1t. 
Therefore, it must be some other kind of number. Is it algebraic
some kind of radical? If 1t is algebraic, then it will be the solution 
to some polynomial that has integer coefficients. 

If 1t is not algebraic, then it must be some other kind of number, 
a number that transcends the algebraic numbers. It would be a 
transcendental number. Do such transcendental numbers even 
exist? This question was not answered until the middle of the 19th 
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century. In 1844 Joseph Liouville (1809-1882) proved that transcen
dental numbers existed by actually constructing examples. He 
used an infinite series to do this. 

In order to understand how he wrote his transcendental num
bers, we must examine a special kind of mathematical notation 
called a factorial. The sign for a factorial is !. When we write N! we 
mean all the natural numbers up to and including N all multiplied 
together. Therefore, I! = 1; 2! = 1·2 = 2; 3! = 1·2·3 = 6. You can see at 
once that factorials increase very quickly in size, since 10! = 
1·2·3·4·5·6·7·8·9·10 = 3,628,800. Using factorial notation we can now 
show an example of one of Liouville's transcendental numbers. 

If we write the first few digits out in decimal form we get: 

~ 

1 L Ion! = 0.110001000000000000000001000 ... 
n=1 

The decimal expansion of this number contains zeros everywhere 
except those locations n! (n factorial) from the right of the decimal 
point, where n are consecutive numbers beginning with 1. Hence, 
we have a 1 at positions I! = 1, 2! = 2, 3! = 6, 4! = 24, etc. The next 
digit 1 will appear at 5! = 120 or 120 places right of the decimal. Any 
number of the form 

where A is a constant is a Liouville number. 
Liouville proved that such numbers cannot be the solutions of 

polynomial equations with integer coefficients, and hence were not 
algebraic. This means they are not any kind of number we have 
studied so far. 

Even though Liouville proved that transcendental numbers 
exist, it was still 38 years later, in 1882, that eL.F. Lindemann 
(1852-1939) proved that 1t was not the solution to any polynomial 
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equation and therefore was a transcendental number. Now we can 
appreciate how unique 1t really is. It is not a whole number, fraction, 
or even an algebraic number, but one of a class of strange new 
numbers that have only been known for the last 150 years. What 
kind of decimal representations do we have for transcendental 
numbers? These numbers, like radicals, have infinite, nonterminat
ing decimals. Therefore, we know that the decimal expansion of 1t 

will never reveal an infinitely repeating pattern. 
The last question we want to consider regarding these new 

numbers is: How many are there? If there are just a few, like 1t and 
the Liouville numbers, maybe we can sweep them under the carpet 
and not worry about them. 

JUST HOW MANY ARE MANY? 

We have already seen one great mathematical breakthrough in 
the last century with the discovery of transcendental numbers. We 
now pause to consider another wondrous discovery by the brilliant 
mathematician Georg Cantor (1845-1918). We know, of course, that 
an infinite number of natural numbers exist. For most of recorded 
history, humans have assumed that an infinite collection of things 
was just infinite-it went on forever and was impossible to count. 
That was it-infinite was just that-infinite. Georg Cantor proved 
that there are actually different sizes to infinity. This idea was so 
bizarre to many mathematicians that Cantor was attacked for his 
ideas during much of his career. 

One use of numbers is to tell us how many objects are in a 
collection. From our previous discussion we recall that mathema
ticians refer to a collection of numbers as a set, and the individual 
numbers are elements in the set. Finite sets contain just a finite 
number of elements. We call the number of elements within a set 
the set's cardinal number. While it is obvious that all finite sets have 
a corresponding cardinal number, what about infinite sets? 

What Cantor proved was that infinite sets do have correspond
ing infinite cardinal numbers. The set consisting of all natural 
numbers represents the smallest size of infinity, i.e., the cardinal 
number for the natural numbers is the smallest, infinite cardinal 
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number. When we deal with finite numbers, certain laws seem to 
work, and we tend to take these laws for granted. For example, if 
we add a positive number B to the positive number A, we get a 
different number that is larger than both. Hence, A + B = C, and 
C > A and C > B. We do not have to be told that if 2 + 7 = 9, that 9 
is larger than both 2 and 7. When we move on to infinite collections, 
this rule breaks down. For example, let lot be the cardinal number 
of an infinite set.s What is lot + 1? The result of this addition is not 
a new, larger infinite set, but just the set lot, again. Hence, lot + 1 = 

lot. In fact, let A be any finite number and we have lot + A = lot. This 
seems to contradict our intuition, but that is because we are dealing 
with infinite, and not finite sets. We can go even further. In the 
mathematics of infinite sets we have: lot + lot = 2 lot = lot. Hence, by 
doubling the number of elements in lot we still get lot back-that is, 
we get a new set that has the same cardinal number, lot. 

The strangeness of infinite sets was recognized long before 
Cantor when the famous scientist and mathematician, Galileo 
Galilei (1564-1642) made the strange assertion that there appeared 
to be the same number of positive square integers as there are 
positive integers. He did this by pointing out that we can map the 
positive integers onto the positive square integers in the following 
way: 

1 
t .. 
1 

2 

! 
4 

3 .. .. 
9 

4 5 

16 25 

6 7 8 91011 

! ! 
36 49 64 81 100 121 

When we have completed this mapping for all the numbers (in 
our imagination, of course) then we see that for every number there 
is a corresponding square, and for every square there is a corre
sponding number. 

What this means is that there exists many infinite sets that are 
the same size as the set of natural numbers, while at the same time 
they are a subset of the natural numbers. In fact, the natural 
numbers can be a subset of another infinite set, which is also the 
same size (has the same cardinal number) as the natural number 
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set. In a situation that seems so muddled, Cantor brought clarity. 
He defined the smallest infinite set as having the cardinal number 
~o (called aleph-null) and called the set a countable set. All infinite 
sets that are countable can be put into a one-to-one correspondence 
with the natural numbers, and their size is ~o. Are all infinite sets 
the size of ~o? 

The natural numbers are, of course, a countable set. What about 
all integers, including the negative numbers and zero? This infinite 
set is also countable. What about all the fractions? Certainly, it is 
intuitively obvious that if we look at the collection of all fractions 
we must have a larger set than ~ o. This looks obvious because there 
are an infinite number of fractions between every two whole num
bers. 

The genius of Cantor was that he proved the set of all fractions 
is a countable set, thus, the cardinal number for the rational num
bers is just ~ o. Now, what about if we add the radicals and consider 
the set of all algebraic numbers? Certainly we must have a larger 
infinity here! Not so, proved Cantor. All algebraic numbers can be 
put into a one-to-one mapping with the natural numbers. Hence, 
the cardinal number for all algebraic numbers is just ~ o. 

We come now to our final question. What about the transcen
dental numbers? We have only learned of two such numbers, the 
example of a Liouville number, and 1t. Could we possibly expect 
that the transcendental numbers form a larger infinity than all the 
algebraic numbers? Again Cantor showed his genius. He proved 
that the transcendental numbers formed a larger infinite set, des
ignated as C (for continuum). It is impossible to make a one-to-one 
mapping of the transcendental numbers with the natural numbers. 
Why? There are just too many of them. These transcendental num
bers, numbers so strange and exotic that they were only discovered 
150 years ago, and so rare in common usage that the only familiar 
one is 1t, actually represent the great bulk of all numbers on the 
number line. If we consider the algebraic numbers, we can devise 
a scheme to make an infinitely long list of these numbers, and the 
list will include every one. However, because there are so many 
more transcendental numbers we could never make a list of them 
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all, even if we allowed the list to be infinitely long. If we imagine 
the number line with only the algebraic numbers in place, and the 
transcendental numbers left out, then such a line would have more 
holes than number points. 

Once before we considered dumping all the natural numbers 
into a great barrel and randomly drawing one out, asking what 
kind of number we might get. We can repeat the exercise with the 
numbers on our number line. Suppose we could randomly select a 
point on the number line and then look at its associated number. 
What kind of number would it be? We can answer this question. It 
would be a transcendental number! The vast infinity of transcen
dental numbers is so much greater than the infinity of algebraic 
numbers that the odds, for all practical purposes, are zero that we 
would randomly pick an algebraic number. 

SO MANY NUMBERS! 

We have covered the territory we wanted. We took the number 
line and found all the numbers that fill this line up. 

Natural numbers 
Zero 

1,2,3,4, ... 
o 

Negative whole numbers -1, -2, -3, ... 
All of the above = Integers 

Fractions 1/2,3/7, -2/9, 23/6, ... 
All of the above = Rational numbers 

Radicals ..J2, .g, ..ff4, ... 
All of the above = Algebraic numbers 

Transcendental numbers 1t, ~1/10n! 

All of the above = Real numbers 

Therefore, all of the numbers on the number line are designated 
as the real numbers, or sometimes just the reals. We also know that 
the real numbers form a set that is infinitely larger than the alge-
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braic numbers. Algebraic numbers are represented by the cardinal 
number ~o and the transcendental numbers by the cardinal num
ber C. Do cardinal numbers exist that are larger than aleph-null and 
C? Of course, but that is another story. 



CHAPTER FIVE 

STORY FOR A RICH MAN 

The sciences, even the best-mathematics and 

astronomy-are like sportsmen, who seize whatever 

prey offers, even without being able to 

make any use of it. 

RALPH W ALOO EMERSON 

REPRESENTATIVE MAN! 

EULER'S WONDERFUL SUM 

d / )e have looked at several series that keep growing without 
Yf/ any bound. We have also looked at geometrical series, with 

ratios less than 1, that converge to a value of a!/(l- r) where a! is 
the first term. What other series exist that converge to an interesting 
value? If we take a moment, we should see that the discovery of an 
infinite number of numbers summing to one value must be ranked 
as one of the most outstanding achievements of humankind. The 
whole idea flies in the face of intuition. How can we take an infinite 
number of numbers, add them up, yet end up with a finite sum? 

Nicole Oresme (l323?-1382), the mathematician who first 
proved that the harmonic series diverged, also proved that the 
following series converged to 2.2 

n=! 

95 
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He also proved the following series converged to 4/3. 

So far, we have only studied series that converge to rational limits, 
that is, limits that are whole numbers or fractions. However, one of 
the most remarkable discoveries in mathematics involves a fre
quently studied series: the sum of the reciprocals of square num
bers or: 

"=1 

Many believed 1: l/n2 converged since we can compare its terms 
with the previous series, 1:n/2" = 2, and see that the first terms of 
the former series (excluding the first term) are smaller than the 
terms of the latter series. Hence, if 1: n /2" converged to 2, then 
1: l/n2 might converge to something less than 2. However, once we 
get beyond the tenth terms of the two series, those of the series 
1: l/n2 become larger. Jacob Bernoulli (1654-1705) of the famous 
Bernoulli family proved that 1: l/n2 did converge to a finite value, 
but to what value he couldn't say. Leonhard Euler found the 
answer. 

Leonhard Euler (1707-1783) was one of the greatest and most 
productive mathematicians who ever lived. Since we will run into 
him on numerous occasions, it is worth the effort to become ac
quainted with this remarkable man. Euler (Figure 22) attended the 
University of Basel, receiving his bachelor's degree at 15 and his 
master's degree at 16. At 18 he published his first mathematical 
paper, and only seven years later, at 25, published a two-volume 
text on mechanics. Tragically, he lost the sight of his right eye just 
three years later. Near the age of 60, he became completely blind. 
Yet, while blind he published over 400 mathematical papers, most 
of which he dictated to a servant untrained in mathematics. He was 
a dedicated husband to his wife and a loving father to his 13 
children. Euler was probably the most prolific mathematician to 
ever live, publishing enough math to fill 90 volumes. 
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FIGURE 22. Leonhard Euler, 1707-1783. 

Euler was fascinated by infinite series and continued the work 
in this field begun by men such as Isaac Newton, Gottfried Leibniz, 
and the Bemoullis. In 1736 he discovered the limit to the infinite 
series, Ll/n2• He did it by doing some rather ingenious mathemat
ics using trigonometric functions that proved the series summed 
to exactly n2/6. How can this be? How can the sum of an infinite 
series be connected to the ratio of the circumference of a circle to its 
diameter? This demonstrates one of the most startling charac-
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teristics of mathematics-the interconnectedness of, seemingly, 
unrelated ideas. Once we become immersed in the study of mathe
matics, we suddenly stumble onto many of these strange and 
wondrous connections. 

Euler went on to show the convergence of the following two 
series, both of which have limits involving 1t. 

00 1 1 1 1 1 'Jil 
L (2n - 1)2 = J2 + 32 + 52 + 72 + ... = 8 
"=1 

The occurrence of 1t in the above series is not a fluke. For reasons 
not always apparent, 1t shows up in many places that seem to be 
entirely unrelated to the ratio of a circle's circumference to its 
diameter. This is not a cosmological problem concerning the uni
verse we live in, but rather a logical problem. The appearance of 1t 

in seemingly unrelated places is a puzzlement of the rational world, 
i.e., the world of ideas, and not the world of atoms and galaxies. 
All of the objects of mathematics are objects of thought, and hence 
objects of the rational world. Yet, the rational world seems to 
contain objects whose relationship to each other must be discov
ered. As soon as I learn the definition of 1t as being the ratio of the 
circumference of a circle to its diameter, I do not have the knowl
edge of the occurrence of this ratio throughout the rational uni
verse. Why is this? Is not all thought a creation of human mental 
activity? If I can define 1t, why can't I see at once its many relation
ships to other mathematical objects? 

But 1t is not unique. Other mathematical objects exist that are 
related in mysterious ways to infinite series and to 1t. It is as if there 
existed some great landscape of meta-mathematics, and we are 
only seeing the peaks of mathematical mountains above valley fog. 
That we see 1t on numerous peaks is strange and wonderful to us. 
Yet, if the dense fog of our ignorance would only dissipate, we 
could then see the entire landscape of interconnected rational 
truths, and our understanding would enter a new dimension. Is 
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this concealing fog related to the limitations of our human minds? 
Does this fog drift away for some alien species living at the center 
of our galaxy whose IQ is measured in the tens of thousands? (I 

can't stand this-I must know more. Onward!) 
We have studied several sequences of numbers that grow with

out bound. The sequence of prime numbers (2,3,5,7, 11, ... ) is 
infinite, and therefore, never ends. Yet, the primes thin out as the 
numbers increase in size. Of the first 100 numbers, 25 (25%) are 
prime. Of the first 1000 numbers, only 163 are prime (16.3%). The 
first numbers are rich in primes and, as the natural numbers get 
larger, fewer primes are found. Do the primes continue to thin out 
as the natural numbers get larger? Yes. 

We have also talked of the harmonic series that grows ever so 
slowly, yet also increases without bound. We have looked at both 
the series represented by reciprocals of the odd numbers and the 
reciprocals of the prime numbers, both series increasing beyond 
any limit. We can now ask: How fast are these sequences and series 
increasing, how dense are the primes as the natural numbers 
increase, and how do we describe how fast the harmonic series 
grows? To understand how such mathematical creatures behave, 
we must relate the story of The Rich Man. 

LONG AGO, IN A VILLAGE FAR AWAY 

When we studied one particular type of geometric series, we 
discovered that infinite series are related to an ancient problem 
common to all farmers, i.e., how much should a farmer plant to 
insure enough to eat and still have enough left over to plant the 
following spring? We now encounter a problem that may be just as 
old. Before farming, humans were hunter-gatherers, generally no
mads living off the wild animals they hunted and the wild plants 
they foraged. Could such people accumulate wealth? That is, be
fore domesticated animals and farmland, could the hunter-gather
ers acquire enough material possessions to be considered wealthy 
in their neighbor's eyes? Possibly. But certainly by the time our 
ancestors began to farm, some of them soon acquired an abundance 
of possessions, and hence became wealthy. 
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Farming made the acquisition of meaningful wealth possible. 
A single individual or family could accumulate large land hold
ings, great stores of crops, and many farm animals. Once such 
wealth is acquired, it is only natural for those possessing it to ask: 
How can I make this wealth make me more wealth? Hence, the idea 
of lending property and charging something for its use was born. 
Suddenly we have interest to be made from wealth. 

Therefore, a very early mathematical problem for rich farmers 
or merchants would be: How do I compute interest? Simple interest 
is a percent of the principal loaned. We can show this as: Interest = 

Principal (the original loan) multiplied by the rate of interest, or 
1= p.R. Simple interest may have sufficed for millennia, yet at some 
time a clever person must have stumbled onto the idea of com
pounded interest-charging not only for the original loan, but also 
charging for some of the interest owed. Now, how are we to 
compute compounded interest? Surprisingly, the equation for com
pounded interest isn't all that difficult. We have the interest rate, R, 
the original loan, P, and now the number of times we are going to 
compound the interest, n. The formula is A = P(l + Rjnt, where A 
is the final total owed to us, including both the original loan and 
the interest. 

Let's see how this formula works. If we are a rich farmer living 
in the Fertile Crescent around the year 6001 B.c. we may want to 
lend a poor farmer a bushel of grain which he will use for seed to 
grow a crop. We, of course, expect our original bushel back next 
fall, plus our interest. Pretend that we are charging 100% interest 
for the use of our grain for that one year. (Remember this is 6001 
B.C. and we're just making up the rules for lending money. Who 
knows if 100% was a high interest rate for grain back then?) In terms 
of simple interest we would earn: I = (1 bushel)(100%) = (1 
bushel)(1.00) = 1 bushel of grain. Hence, the farmer to whom we 
lend the bushel of grain owes us two bushels at the end of the year: 
one to repay the bushel he borrowed, and one bushel in interest. 
We, of course, are very pleased. Notice that in our formula, we 
replaced the 100% with its decimal equivalent or 1.00. This is 
standard procedure. 
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But after lending out the bushel of grain for a number of years 
and only receiving two bushels, we decide that it would be nice to 
make more money on our wealth. Isn't this always the case? Once 
we have people who manage through hard work and cleverness to 
grow wealthy, some of those same people become greedy. We will 
assume for this example that we are such greedy people. We could, 
of course, simply increase the interest rate. But suppose the king of 
the land had issued a decree that 100% was the maximum interest 
to be charged on a loan. How are we to get around this limit? To 
avoid exceeding the king's limit, we decide to lend the grain for six 
months at 50%. Then we will lend the same bushel plus any interest 
earned for an additional six months. Hence, we have stayed within 
our 100% per year limit, but when we apply the formula we 
discover we've made just a smidgin more. 

A = P(l + R/n)" is our formula. Now substitute in our values 
(A = I, R = 1.00, n = 2): 

A = (1 bushel)(1 + 1.00/2)2 = 1(1 + .5)2 = (1.5)2 = 2.25 

Hey, this is great! Instead of getting just two bushels back, we 
received the two bushels plus an additional quarter of a bushel. 
This compound interest is swell. 

But, greed being what it is, we are soon bored with our two and 
a quarter bushels at the end of the year. We want MORE! What if 
we increased the number of periods that we compounded? Will 
that increase our effective interest even more? Let's try it. We decide 
to compound every three months or four times a year (R = .25 and 
n = 4). The poor farmer who borrows the grain every year knows 
something isn't right, but we assure him we are staying within the 
king's edict of no more than 100% interest on loans. 

Now our formula becomes: A = (1 bushel)(1 + 1.00/4)4. What 
will this produce? 

A = 1 (1 + .25)4 = (1.25)4 = 2.44 bushels 

Now we're getting back almost a half bushel of grain more than the 
simple interest formula. We're definitely on to something. We 
increase the compounding periods again to every month, or 12 
times per year. 
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A = (1 bushel)(1 + 1.00/12)12 = (1.08333 ... )12 = 2.61 bushels 

You can see where this is leading. As we become greedier and 
greedier, we keep increasing the number of compounding periods. 
Can we increase the number of periods so that the total loan to be 
paid back continues to increase to any amount we may desire? In 
other words, is there no limit to the grain we can earn off one bushel 
by just increasing the compounding periods while the basic interest 
rate stays at 100%? Let's go for broke and compound the interest 
DAILY! That's 365 compounding periods. 

A = (1)(1 + 1.00/365)365 = 2.715 bushels 

Not too much of an increase over our 2.61 bushels, but an increase, 
nevertheless. 

We can compound every hour for a year or 8760 compounding 
periods. However, this increase in compounding periods yields 
only 2.718 bushels of grain. Our scheme seems to be breaking 
down. Maybe there exists some limit to how much one bushel will 
yield no matter how many compounding periods we break the year 
into. This would mean that the expression (1 + lin)" has an upper 
bound or limit as n grows larger and larger. 

In fact, such a limit exists and is called simply e. Symbolically 
we show this limit as: 

lim (1 + 1.J" = e 
n~oo n 

The use of e for this limit was introduced by Euler in the 18th 
century, and has become one of the most important numbers in 
mathematics along with 1t. Our e, like 1t, is a transcendental 
number. Hence, the decimal expansion of e yields an infinite, 
nonrepeating decimal. Therefore, we can't specify its value ex
actly with either a fraction or finite decimal. Its approximate 
value is 2.718281828459045 .... To remember so many digits of 
e is remarkably simple. Watch what happens when I break the digits 
into groups: e = 2.71828 1828459045 .... After the 2.7 we have the 
1828 repeated twice, then 45, followed by twice 45 (90) and then 45 
again. We can remember 1828 as the year Joseph Henry discovered 
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electric induction. Now we never need to dash about, frantically 
trying to look up the value of e ever again. 

What does all this talk of e being a limit imply for our little 
scheme to get rich from lending out one bushel of grain? It means 
that no matter how often we increase the number of compounding 
periods, we will never get back as much as, or more than 
2.718281828459045 ... bushels. In other words, if we were to com
pound infinitely often, or continuausly, our result would be exactlye. 

The applications for using the number e are nearly countless 
throughout mathematics. For example, we can consider interest 
problems when the interest rate is any amount and not just 100% 
because the limit of the expression (1 + r In)n where r is the interest 
rate is just £! or e raised to the r power. In fact, the expression we 
use to define e, (1 + lint, describes many other kinds of changes 
besides the accumulation of interest. Populations of animals and 
humans seem to grow in the same manner as interest grows, and 
such growth patterns are called exponential growth. The reverse 
process is called exponential decay. For example, dead bodies lose 
heat exponentially, and therefore e can be used in an appropriate 
equation to determine how long individuals have been dead. 

If we were to compute (1 + Iln)n for each successive natural 
number n beginning with 1, we would generate a sequence of 
numbers whose limit was, of course, e. But we can also define e in 
terms of an infinite series in the following way: 

1 1 1 1 
e=l+-+-+--+--+ ... 

1 1·2 1·2·3 1·2·3-4 

Each successive denominator is just the previous denominator 
multiplied by the next number in the natural number sequence. 
We know such a product as a factorial written as n! Hence, our 
infinite series for e becomes: 

This series converges quickly; adding just the first seven terms 
gives us e accurate to the thousandths place. A closely related series 
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can also be used to calculate a limit on a compound interest 
problem, such as our rich farmer experienced. Suppose the interest 
rate on a loan was 22%. What would the limit on this loan be if the 
number of compounding periods kept increasing in number? We 
know that the problem reduces to the limit on the expression: 

(1 + .22In)" = e·22 

But how do we compute e·22? For that we have the nice series: 

x x x2rx4 

e = 1 + 1! + 2! + 3! + 4! + ... 

Substituting in the appropriate values for x we get: 

.22 _ 1 .22 (.22)2 (.22)3 (.22)4 
e - + 1 + 2 + 6 + 24 + ... 

After adding only four terms we get 1.246 ... an answer accurate to 
the thousandths. 

Once Euler found the connection between infinite series, 1t, and 
e, there was no stopping him, and he found numerous other iden
tities. One such discovery is the following identity which many 
mathematicians consider to be the most elegant mathematical ex
pression ever discovered: 

This expression needs a little explanation for the uninitiated. We 
now know what e is, for it is just the limit to the sequence generated 
by (1 + lin)", and we know what 1t is, for it is the ratio of the circle's 
circumference to its diameter. But what in the world is ...J-1? From 
our elementary algebra, we remember that any number, either 
positive or negative, when multiplied by itself gives a positive 
result. Now we are asked for a number, which when multiplied by 
itself, gives us a negative 1. Impossible! In fact, there is no number 
in the set of real numbers that satisfies this need. To find such a 
number as...J-1 we must go to another, expanded group of numbers 
called complex numbers. We will take a closer look at the complex 
numbers later. For now, we are satisfied that such a number as 
...J-1 exists. 
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Now the simple expression discovered by Euler, e1Cr-f + 1 = 0, 
can be considered in the following light: It contains all the most 
important elements to be found in the foundations of mathematics. 
It contains the number 1, the beginning of our natural number 
sequence. It contains the operation of addition, which can be used 
to define all the other natural numbers and the other three mathe
matical operations. It contains zero, a concept that required millen
nia to evolve for the human race. It also contains both e and 1t, the 
two most important transcendental constants we know. It contains 
the unit number for defining the complex numbers, ..J=f. And last, 
but certainly not least, the equation, since it contains e, relates the 
infinite sequence, or: 

lim (1 +1.)" 
n---"7<:>O n 

to the other fundamental mathematical ideas. What an astounding 
number of mathematical concepts to be rolled up into just one 
expression! 

What we must not overlook is the wonderful connection be
tween 1t and e. We were amazed when we discovered that 1t was 
associated with infinite series, now it turns out that 1t is also 
associated in some mysterious way with our limit e. But we have 
only scratched the surface, for the number of beautiful connections 
between various mathematical entities will continue to reveal 
themselves as we continue our odyssey. 

Another beautiful expression involving a limit that connects not 
only 1t and e, but also radicals and factorials is: 

1. e"n! .~ 
Im--='IL1t 
"~~ nn.1i/ 

LOGARITHM: A DANCE FOR LUMBERJACKS? 

We did not embark on this strange odyssey only to define e and 
show that it is connected to 1t. What we really want to do is 
demonstrate that e is connected in a deep and fundamental way to 
the very heart of all mathematics. Using e we will define the tools 
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needed to understand many of the series and sequences we are 
encountering. 

In the first year of algebra, students are exposed to the theory 
of logarithms, which, in most cases, sends their hearts into a great 
flutter, for anything with such a long and strange name must be 
very hard. In fact, logarithms are quite simple. They are exponents. 
"Now," you say, "what the heck are exponents?" 

Exponents are the small numbers we write as superscripts to 
other numbers. They simply tell us how many times the original 
number is to be multiplied by itself. Hence, we have AA = Nand 
AAA = A3. Thus, an exponent represents repeated multiplication 
of a number called a base. In our last example, A is the base, 3 is the 
exponent, while the whole thing, A3, is called the power. Now 
watch what happens when we multiply two bases together that are 
equal. 

A 2-A3 = (AA).(AAA) = AS = A 2+3 

Here we see that to multiply the two powers of A together on the 
left, all we really had to do was add their two exponents. This turns 
a multiplication problem into an addition problem. Because it is 
frequently much harder to multiply two numbers than to add 
them, we can use this characteristic of exponents to solve some 
rather sticky computational problems. Another nice characteristic 
of exponents is the following. 

(Nl = (AAl = (AA)·(AA)·(AA) = A 6 = N3 

Here we see that to raise a number A that is already squared to 
another power, we just multiply the powers. In the above example 
we multiplied the 2 and 3 together. This will also tum out to be a 
nice characteristic of exponents and lead to simplification with the 
use of logarithms. 

During the Renaissance, the European nations invested a great 
deal of energy and wealth into exploring the rest of the world, and, 
in so doing, established new trade routes. This required their sailors 
to make long and dangerous voyages in small, wooden ships. It 
was of paramount importance for the ship's navigator to know 
where they were on the open oceans. If the ship became lost, it could 
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mean disaster. In order to find the ship's position, the navigator had 
to have a very accurate clock. Knowing the date and exact time, he 
could check the positions of the stars and compute the ship's 
latitude and longitude. However, to get from the observation of the 
stars to knowing where they were, the navigator was required to 
make ponderous, and very accurate, calculations. A slight error in 
calculations could cause him to misjudge their true position by 
hundreds of miles. 

Now we have seen that we can use exponents to change a 
multiplication problem, which can be tedious and difficult, into a 
simpler addition problem. Our hero of the moment is John Napier, 
who realized this great need to simplify calculations. He worked 
for 20 years to invent a system called logarithms, which is based on 
this idea of exponents.3 

John Napier was born in 1550 in Scotland, and later became 
Baron of Murchiston. Although he was not a professional mathe
matician, he had a strong interest in simplifying calculations. His 
first paper on this subject, Mirifici logarithmorum canon is descriptio 
(" A Description of the Marvelous Rule of Logarithms") was pub
lished in 1614; his second, Mirifici logarithmorum canonis constructio, 
appeared in 1619, two years after his death. Napier's work was 
quickly refined by others and adopted as a method to simplify 
difficult calculations in the sciences, trade, and exploration. 

Just what is this "marvelous rule of logarithms" of Napier's? 
We have already seen that when multiplying two powers with the 
same base, we can simply add the two exponents. Hence, for 
10000·1000 = 104.103 = 104+3 = 107. If we consider the exponents of 
the two lOs, we see that 4 + 3 = 7. When we write a logarithm, which 
is just an exponent, we must designate the base and the number we 
get when using the exponent with that base. We do this in the 
following manner: 

10gb x = Y is equivalent to bY = x 

Hence, the logarithm is really just an exponent that we have desig
nated as y. The base is b, and when we use the exponent y with b 
we get the value x. Now consider our original example. We have 
10000 = 104 or logJO 10000 = 4. The second statement is read as "the 
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log to the base ten of ten thousand is four." This means that to get 
10,000 we must raise 10 to the fourth power. We can define expo
nents to be any real number, and are not restricted to using only 
integers. Therefore, having an exponent that is a decimal or fraction 
is no problem. Logarithms really show their power when the 
problems are a little more sophisticated and a lot more difficult. 

Now it would be senseless to calculate various equivalent 
exponents for all the infinity of bases, so it has become convenient 
to use just two numbers as bases: 10 and e. Yes, that's right, we're 
back to e again. It is such an important constant that we use it as 
one of our two logarithmic bases. When we use logarithms with 
base 10 we write them as simply log A without the base indicated 
in a subscript. These are called common logarithms. When we use e 
as a base we write the logarithm as In x instead of loge x and 
understand the base is e. Using base e gives us natural logarithms. 

To give an example of using logarithms to solve difficult prob
lems we can return to one of our original problems: computing 
interest on loans. Suppose it is July 3, 1776, and a group of men 
are trying to write some political document in Philadelphia. Be
cause of all the noise outside, they can't hear themselves think. 
They ask your ancestor, since he owns a stable nearby, to spread a 
little straw about the road. Your ancestor complies, and in gratitude 
they give him a promissory note for $1.00 to earn interest of 12% 
per year, compounded yearly. You have just found your ancestor's 
note and decide to redeem it. What is it worth in 1996 after 220 
years? 

The formula is relatively easy. A = P(l + l)1 where A is the am
ortized amount (the total we owe at the end of the loan), P is the 
principal, I is the interest rate and t is the number of years. This 
yields 

A = P(l + 1)1 = $1· (1 + .12?20 = (1.12)220 

Now all we have to figure out is some way to multiply 1.12 by itself 
a total of 220 times. We could sit down with pencil and paper and 
begin to multiply, but with so many calculations we're bound to 
make a mistake, to say nothing of being reluctant to start the 
lengthy, tedious process. Here is where we can save considerable 
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labor by employing logarithms. What we will do is use the loga
rithm of (1.12)220, simplify that logarithm, and then change the 
logarithm back into a normal number, which will be our answer. In 
using logarithms, we rely on tables that have already been com
puted by others, the earliest of such tables having been constructed 
by Napier himself. Therefore, to find the logarithm of a number we 
look that number up in a logarithm table. Today, with modem hand 
calculators, we don't have to drag around some large tome of 
tables, but can get the required logarithm directly from the calcu
lator. 

Step 1: the original problem 
Step 2: change to a logarithm 
Step 3: reduce the exponent 
Step 4: look up logarithm 
Step 5: multiply 
Step 6: change back to normal number 

(1.12)220 
log (1.12)220 
220 . log 1.12 
220 . (0.049218) 
10.827964 
10 10.827964 

We change this last expression into a product, 10.827964 x 1010. The 
first number in the product we look up in our logarithm tables (or 
get out of our hand calculators). 

A = 6.729224035 X 1010 = $67,292,240,350 

Hence, the government of the United States owes you sixty-seven 
billion, two hundred and ninety-two million, two hundred and 
forty thousand, three hundred and fifty dollars for that one dollar 
of hay purchased in 1776. No wonder our national debt keeps 
increasing. 

What was a most tedious problem to begin with became a rather 
easy problem using logarithms. That is why logarithmic tables 
were so eagerly adopted for solving navigation problems and for 
doing calculations in astronomy, both areas where great accuracy 
was desired. 

WHAT DO LOGARITHMS LOOK LIKE? 

We can compare powers, Le., bases with exponents, with the 
exponents, themselves. For example, we can compare the sequence 
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n 
FIGURE 23. The growth of n2 compared to n. 

12,22,32,42, ••• with the sequence 1, 2, 3, 4, ... , which are simply 
the numbers in the first sequence unsquared. An easy way to make 
this comparison is to plot the values of the first sequence on the 
vertical axis and the second sequence on the horizontal axis. Doing 
this, we get the graph in Figure 23. Notice that our graph increases 
at an ever steeper angle. From this we realize that the sequence 12, 

22,32,42, ••• is increasing much faster than 1, 2, 3, 4, .... The graph 
shows us this fact all at once, allowing our minds to grasp it 
instantly. Using graphs becomes a convenient way to understand 
how fast sequences and series are increasing. 

We now consider the graphs for both y = eX and y = In x 

(= loge x). In Figure 24 we have plotted both with the y values on 
the vertical scale and the x values on the horizontal scale. We have 
also drawn in the dotted diagonal line y = x. Notice that eX and 
In x are mirror images of each other around that line. The function 
eX grows very rapidly and is characteristic of exponential growth. 
On the other hand, In x grows slowly and is characteristic of 
logarithmic growth. Therefore, exponential growth is rapid, while 
logarithmic growth is slow. 
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X 

FIGURE 24. The growth of i' and In x. 

Now let's graph log x, and In x together on the same graph to 
see how they compare. Remember that log x has a base of 10 while 
the base of In x is e. We have plotted the value of both log x and In 
x on the vertical axis and x on the horizonal axis to get the graph in 
Figure 25. We must remember that both log x and In x are exponents, 
i.e., log x is the exponent of 10 which yields x, or 1010g x ::: x. This 
means that as x grows, log x (as an exponent) grows ever slower. 
This is exactly what happens in Figure 25. In other words, when x 
is 1, we have a vertical value corresponding to zero because 10° ::: 
1. When x is 10, then the vertical value will be 1 since 101 ::: 10. 
Checking the graph on Figure 25, we do see that the line for log x is 
o when x is 1 and is 1 when x is 10. 

When x is less than 1, the corresponding values of log x and In 
x are negative. The graph for In x increases faster than log x because 
the base of e is smaller than the base of 10. Hence, when x::: 10 then 
In x = 2.302585 because e2.302585 = 10. 

Looking at the graphs in Figures 24 and 25 we should be 
reminded of something we talked about earlier. When we graphed 
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FIGURE 25. The growth of log x and In x. 

the increasing values of the harmonic series, we also came up with 
a graph which increased slowly as we added more and more terms. 
Figure 26 shows the growth of both the harmonic series, L 1 In, and 
the natural logarithmic function, In x. Notice that the two graphs 
seem to be increasing at the same general rate and a constant 
difference. Can we use the logarithmic function to track the growth 
of the harmonic series? Yes, we can. 

Here, again, we have stumbled onto a wonderful connection 
within mathematics. We started with the harmonic series which 
grows without limit, but ever so slowly. Now, beginning with e, the 
limit to our interest compounding problem, we have discovered that 
e (in the form of its logarithm) is connected to the harmonic series. In 
fact we have the following beautiful limit for L lin and In n. 

lim ji ~ -In n) == 0.5772157 ... 
n-+~ . 1 J 

J= 

Within the parentheses is the difference between the harmonic 
series and the natural logarithm of n. What this limit says is that as 
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FIGURE 26. The growth of the harmonic series and In x. 

we take more and more terms to add in the harmonic series, the 
difference between the harmonic series and the natural logarithm 
of n approaches a constant. This constant is designated by the Greek 
letter gamma (y). The limit y is known as the Euler-Mascheroni 
constant and has a value of approximately 0.5772157 ... , however, at 
this time no one knows if y is rational, algebraic, or transcendental. 

We now have a method to calculate roughly how large the 
harmonic series grows for any number of terms. We can use the 
following relationship: 

n 
1 L -:- '" In (n) + 0.5772157 

j=l J 

where L l/j is the harmonic series after adding n terms. Suppose 
we want the approximate value of L1/j after adding a million 
terms? This becomes: 

1 L -:- '" In (1,000,000) + 0.5772157 
J 
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L ~ "" 13.8155105 + 0.5772157 = 14.3927262 
J 

Suppose we added the first billion terms of the harmonic series, 
what would we get? 

1 L --;- "" in (1,000,000,000) + 0.5772157 or 
J 

L ~ "" 20.7232658 + 0.5772157 = 21.3004815 
J 

After adding a billion terms the sum is still less than 22. Can anyone 
fail to comprehend how very slowly the harmonic series is diverg
ing? Previously, we defined the function H(x) as the number of 
terms we must add in the harmonic series to reach a value of x. We 
then went on to ponder the size of H(googol) and H(googolplex) 
where googol = 10100 and googolplex = lOgoogol. We are now in a 
position to estimate the size of H(x) for these two values. Using our 
limit equation we know that: 

1 L --;- = googol = 10100 :::: in n + 0.5772157 
J 

All we have to do is solve for n, or: 

In n = 10100 - 0.5772157 

The large value of n needed for the natural logarithm of n to reach 
10100 is so great that we can effectively ignore the Euler-Mascheroni 
constant. This gives us In n :::: 10100• What is n? By the definition of 
logarithms, the above expression is equivalent to: 

100 
n =e10 

For the googolplex we have In n = lOgoogol or: 

10100 
n =e10 

Even though the number of terms, n, needed to reach a googol and 
a googolplex are large, what is evident is the fact that we can add 
enough terms to reach these numbers. This illustrates that the 
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harmonic series really does diverge and can, with enough terms, 
sum to any number we desire. 

We have covered much in this chapter. The main point we want 
to take away with us is the fundamental nature of e, and the natural 
logarithm function based on e. The growth of eX and in x help 
describe how other mathematical functions behave. In fact, we will 
come to see that the natural logarithm reaches even more deeply 
into the workings of mathematics, illustrating even more basic 
ideas than the harmonic series. 



CHAPTER SIX 

EXOTIC CONNECTIONS 

Natural philosophy, mathematics and astronomy, 

carry the mind from the country to the creation, and 

give it a fitness suited to the extent. 

THOMAS PAINE 

ADDRESS TO THE PEOPLE OF ENGLAND! 

THE GOLDEN MEAN 

fJf iscovery of the incommensurability of the diagonal of the 
'.::!!/ square sent a shock wave through Greek mathematics, and 

discredited Pythagorean metaphysics. However, the next logical 
extension of the same idea gave the Greeks a treasured geometrical 
concept, and a beautiful number to be handed down through the 
ages for our enjoyment today. To find this number, we only have to 
ask: what happens if, instead of a square, we consider a rectangle 
with sides equal to 1 and 2? Once the Greeks had considered the 
square with sides equal to one, it is only natural they would have 
extended this idea to look at the 1><2 rectangle. 

In Figure 27 we have such a rectangle, and we have drawn in 
the rectangle'S diagonal. Notice that the diagonal cuts the rectangle 
into two right triangles. Knowing that the sides of the triangles are 
1 and 2, we can use the Pythagorean theorem to compute the length 
of the diagonal. 

(diagona1)2 = 12 + 22 = 1 + 4 = 5 

116 
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2 

FIGURE 27. Construction of a Golden Rectangle. Begin with a rectangle with sides 
in the proportion of 1:2, then draw the diagonal whose length is...g. 

Now we take the square root of each side and get: diagonal = ...g. 
But the Greeks didn't stop here. Using one of the triangles, they 
disconnected one comer, straightened out the side equal to I, and 
then rotated the side equal to 2 to form two sides of a new rectangle 
(Figure 28). The resulting rectangle has a number of interesting 
features, and, for the ancient Greeks, represented a geometrical 
shape that was very pleasing to the eye. The proportion or ratio 
between the two sides of this rectangle is designated by the Greek 
letter phi (<1». Thus we have: 

...g +1 
<I> = -2 - "" 1.6180339 ... 

Since the equation for <I> contains a radical, the resulting number is 
algebraic, but not rational, i.e., it is not equal to the ratio of two 
whole numbers. Therefore, its decimal expansion, like 1t and e, is 
an infinite, nonrepeating decimal. 

The Greeks referred to this ratio by the rather long phrase "the 
division of a segment in mean and extreme ratio," or sometimes 
simply called it "the section. ,,2 If we divide a line segment accord
ing to this ratio, we get a rather startling result. The top of Figure 
29 shows a line segment AB. We divide this segment according to 
the ratio <I> and mark this division with C. If we take the longer 
segment, AC, and divide it by the shorter segment, CB, then we get 
<1>, or AC/CB = <1>. Now pretend there is a hinge located at point C 
and rotate the line segment CB around so that it folds back onto 
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FIGURE 28. Construction of a Golden Rectangle. Disconnect the triangle at the 
small-angled comer and swing the sides around to form the new rectangle, whose 
sides are now in the proportion of (..J5 + 1) to 2. 

segment AC as in the middle line of Figure 29. Now the new point 
B' divides the segment AC into two smaller segments. What is the 
new ratio of B'CIAB'? You guessed it-it's just $ again. 

We can try this folding a second time. On the bottom line of 
Figure 29 we have folded the line segment, AB', so that new point 
A' now divides B'C. The ratio B'A'IA'C becomes $ again. And this 
folding can continue indefinitely. Each time we use the smaller 
segment to subdivide the larger segment, we get a new subdivision 
in the same magical ratio of $. 
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FIGURE 29. Folding the Golden Mean on a line segment. Each swing creates a new 
line segment whose parts are still in the ratio of 41. 

The Greek "section," or ratio of <1>, found its way into both 
Greek architecture and Renaissance art. For example, the ratio of 
the length to the height of the face of the famous Parthenon in 
Athens, built in the fifth century B.C., is almost exactly <1>. The fact 
that a rectangle whose sides are in the ratio of <I> (which we call a 
Golden Rectangle) is pleasing to the human eye has been well 
known for centuries. Ouring the 19th century a number of psy
chologists, beginning with Adolf Zeising, tested human tastes as 
they related to the shape of rectangles. Universally they found 
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that we prefer the shape of rectangles close to, or equal to the 
Golden Rectangle.3 

Evidence exists that the ratio may have been known to the 
ancient Egyptians, for the Rhind Papyrus (ca. 1650 B.c.) refers to a 
"sacred ratio," and the ratio of the altitude of a face of the Great 
Pyramid at Gizeh to half the length of the base is almost exactly 
1.618.4 

Through the ages other names have been attached to this won
derful ratio including Golden Ratio, Golden Mean, and Divine 
Proportion. We shall call it the Golden Mean. 

Now for an intriguing attribute for a rectangle based on the 
Golden Mean. Look at the rectangle in Figure 30, which has sides 
equal to 2 and (--15 + 1). We have subdivided this rectangle into a 
square with each side having a length of 2, and a smaller rectangle. 
The smaller rectangle now has the same ratio to its sides as the 
larger rectangle, and is, therefore, a smaller Golden Rectangle. Just 
as we did with the line segment, we can continue this process 
indefinitely. We subdivide the smaller rectangle into a square, and 
another, even smaller Golden Rectangle. The process never ends 
and generates for us an infinite set of ever smaller Golden Rectan
gles. What is the ratio of the area of one of the Golden Rectangles 
to the area of the next smaller Golden Rectangle? It is just cp2. 

The Greeks were certainly aware of many of the attributes of cpo 
The Pythagoreans used a pentagram as one of their holy symbols, 

FIGURE 30. By subtracting out the area of a square from a Golden Rectangle, we 
form a new, smaller, Golden Rectangle. 
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A 

FIGURE 31. The pentagram, used as a symbol by the Pythagoreans, contains many 
Golden Means.1jl = AB/BC = CH/BC = IC/HI = 2DE/EF = EG/2DE = "fEr / E<I>. 

and the pentagram is occasionally used today in the practice of 
witchcraft and occult ritual. Figure 31 shows a pentagram with 
different magnitudes identified. The relationships between these 
magnitudes is most often the Golden Mean. 

AB CH IC 2DE EG ~ 
<1> = BC = BC = HI = EF = 2DE = fIT 

With all these interconnections resulting in a value of <1>, is it any 
wonder the Pythagoreans believed the pentagram was sacred? 

Another startling feature of the Golden Mean is that we produce 
its square by simply adding the number 1. Hence we have: 

If we move all terms to the left of the equal sign we get the quadratic 
equation <1>2 - <1> - 1 = O. When we solve this equation for <1> using the 
quadratic formula we get: 

<1> = (1 + ..g)/2 and <1> = 0- ..g)/2 
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Therefore, not only does the Golden Mean satisfy the relation <1>2 :::: 
<1> + 1, a second value that produces its own square by adding 1 is 
the number (1 - -VS)/2 which is approximately equal to minus 
0.6180339 ••.. This second value, (1- -VS)/2, is designated as <1>' and 
is the negative inverse of <1>. This means that it satisfies the following 
equation: 

<1>.<1>':::: -1 

In addition we have the following nice relationship between <1> and 
<1>': 

<1> + <1>':::: 1 

We can generalize the relationship <1>2:::: <1> + 1 by multiplying both 
sides by q, to get: 

<1>3:::: <1>2 + q, 

Therefore, to get the cube of the Golden Mean all we have to do is 
add the square of its value to itself. In fact, we have tile rather 
astounding relationship: 

q,n = <1>n-l + q,n-2 

Hence, to compute any power of the Golden Mean we simply add 
the two immediate lower powers. From this we can generate an 
entirely new sequence of numbers based on the powers of the 
Golden Mean, where each term is computed by adding the two 
previous terms. We begin with the numbers 1 and <1>. 

Golden Mean sequence:::: {I, q" q,2, q,3, q,4, ... } 

Other than the first term, 1, all the succeeding terms are alge
braic numbers but not rational numbers. We can actually rewrite 
this sequence in terms of just q,. We do this by noting: 

<1>2:::: <» + 1 

q,3 :::: <1>2 + <1> :::: (<1> + 1) + <1> = 2<1> + 1 

q,4 = q,3 + q,2 = (2q, + 1) + (q, + 1) = 3q, + 2 

q,5 = <1>4 + <»3 = (3<» + 2) + (2q, + 1) = 5<1> + 3 

Hence, we can write the sequence as just: 
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{I, <1>, <1>+ 1,2<1>+ I, 3<1>+2, 5<1>+3, 8<1>+5, ... } 

We have only scratched the surface of all the different and 
surprising places where the ratio <I> turns up. However, it is time to 
move on. 

LEONARDO OF PISA 

Ancient Greek mathematics began with the first wise man of 
Greece, Thales of Miletus (ca. 634-548 B.c.), who established the 
first Greek school of higher learning on the Mediterranean shores 
of what is now western Turkey. This may have occurred around 580 
S.c. when he was in his 40s. Thus began a long tradition of Greek 
schools where rich Greek merchants and political leaders sent 
their children to receive the best education available in the 
ancient world. In 387 S.c. Plato established his famous Academy 
at Athens. 

After more than a thousand years of Greek achievement and 
excellence in science, learning, and mathematics, Justinian I, em
peror of the Eastern Roman Empire, in 529 A.D. ordered that all 
pagan philosophical schools be closed. Hence, the famous Acad
emy in Athens was shut down and its property confiscated, ending 
the great tradition founded 1100 years earlier by Thales. This 
ushered in the history of medieval Europe, a period lasting ap
proximately 900 years and characterized by a distinct lack of mean
ingful advancement in mathematics. The work and responsibility 
of preserving the great achievements of the Greeks and making 
further contributions to the sciences and mathematics was carried 
out by the Arabs, who welcomed scholars of all nationalities into 
their society. Not until the 16th century do we see a general revival 
of mathematics in Europe. In 1494, Lucas Pacioli, a Tuscan monk, 
wrote Summa de Arithmetica, a compilation of the mathematical 
knowledge of his day. This ushered in the 16th century and such 
outstanding mathematicians as Tartaglia, Copernicus, Stifel, Car
dan, Recorde, Galileo, and Stevin. 

One shining exception during this barren period from 529 until 
1500 was the merchant/ mathematician Leonardo of Pisa (ca. 1170-
1240) who was also known by the name of Fibonacci. Since the 
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the time of the Romans, Europe had used the Roman numerals 
and awkward unit fractions for computation. Since Roman nu
merals do not lend themselves to fast and easy computation, the 
actual calculations were carried out on counting boards or aba
cuses, the results then recorded on parchment. While Europeans 
stumbled around in the dark, the Arabs absorbed into their 
mathematics the fine Hindu numerals, including zero, which 
made computation much easier. 

Fibonacci's father was a Pisan merchant who was also a cus
toms officer for the North African city of Bugia. Pisa, Venice, and 
Genoa were the great commercial centers for the Mediterranean 
during the 12th and 13th centuries, and their merchants enjoyed 
the freedom to trade throughout the Byzantine Empire. Leonardo 
took advantage of this freedom and visited many of the area's 
centers of learning, including Egypt, Greece, Sicily, and Syria. 
From these visits he learned both the mathematics of the scholars 
and the calculating schemes in popular, commercial use. In 1202 
he published the first of his four mathematics books, Liber abaci, 
which used the Hindu-Arabic numbering system, introducing 
the Indian numbers 1 through 9 and zero to a European audience. 
The Muslim influence is clearly demonstrated in his books. The 
Arabs wrote from right to left. Fibonacci wrote his Indian numerals 
in descending order, and his mixed fractions with the fraction 
coming first, i.e., in the form of ~4 instead of the modem custom 
of 4~. 

Although Fibonacci had the foresight to introduce into 
Europe the superior Hindu-Arabic numerals and do original 
work in mathematics, his overall impact was less than desired. 
Europe was slow to adopt the new numerals, and his skill in 
mathematics was lost to his contemporaries. It would take almost 
three hundred more years before the Europeans would reach the 
level of mathematical sophistication necessary to fully appreci
ate his work. In fact, from 529 when the Academy was closed 
until 1500 we encounter no significant European mathematician 
except Fibonacci, though numerous Eastern and Asian mathe-
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maticians were practicing, including Brahmagupta from India, 
Omar Khayyam from Persia, and Tsu Ch'ung-chi from China. 

At first glance, Europe's hesitancy in accepting Hindu-Arabic 
numbers appears strange. Yet, there were forces resisting any 
change. In the traditional system, calculations were made by the 
mathematician or accountant on an abacus. When the result was 
known, it could be written on the parchment contract or receipt in 
Roman numerals. However, when the contract or receipt was re
viewed at a later time, only the results of the calculations were 
preserved, while the method was lost. Since the Hindu-Arabic 
numerals lent themselves to direct calculation, these calculations 
could be written upon the parchment to become part of the 
contract or receipt. This allowed for later checking of calcula
tions to look for mistakes or fraud. Hence, a natural inducement 
existed to adopt the new numerals. However, the inclusion of 
calculations on documents significantly increased the amount of 
parchment consumed, and parchment was expensive. The intro
duction of cheap paper finally made it possible to record calcu
lations at little additional expense. Not surprisingly, paper was 
introduced several centuries earlier in the Muslim world than in 
Western Europe. 

However, it is not Fibonacci's use of the Hindu-Arabic numer
als, nor his general skill as a mathematician that we want to 
consider here. Rather, we are more interested in a problem he 
proposed, and the resulting solution. Within the Liber abaci we find 
the following: 

How many pairs of rabbits will be produced in a year, beginning 
with a single pair, if in every month each pair bears a new pair 
which becomes productive from the second month on?5 

In Figure 32 we have sketched the reproduction of rabbits 
beginning with our first pair and proceeding through seven gen
erations. We begin with an immature pair and assume that no 
rabbits die. Each row is one generation, while each column is the 
life history of a single pair. After a pair is born, it takes another 
generation for them to mature, after which they produce a new 
pair each succeeding generation. On the far right of Figure 32 we 
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FIGURE 32. The growth of Fibonacci's rabbits. Each new pair must mature for one 
month before reproducing, after which it will produce one pair each month. 

have the number of pairs of rabbits for each generation. What we 
see at once is that the number of pairs at each generation is the sum 
of the pairs for the two previous generations. This is always the 
case, no matter how many generations we wish to extend the chart. 

The sequence of numbers we generate in this fashion is: 

1, 1,2,3,5,8, 13,21,34,55,89,144,233, ... 

This is called the Fibonacci sequence, and has generated so much 
interest in the years since Fibonacci first suggested it that a Fibon
acci Society was founded in 1962, and a journal, The Fibonacci 
Quarterly,6 first appeared in 1963, dedicated to unraveling its se
crets-and its secrets are many. 

Not only does this sequence of numbers have many fascinating 
mathematical properties, but it seems to be a blueprint used 
frequently by nature in the growth and generation of living 
organisms. Some of its mathematical characteristics are quite 
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subtle. For example, any two consecutive Fibonacci numbers will 
be prime to each other. In other words, no two consecutive Fibon
acci numbers will share the same factor. In addition, we know that 
every prime number will evenly divide an infinite number of 
Fibonacci numbers. Hence, every prime is contained as a factor in 
the sequence. 

It is customary to designate Fibonacci numbers as Fn where n 

represents the nth term. Hence: F1 = 1, F2 = 1, F3 = 2, F4 = 3, Fs = 5, 
and F6 = 8. The sum of the first n Fibonacci numbers can be 
calculated easily: 

n 

L Fi = F1 + F2 + F3 + ... Fn = Fn+2-1 

i=1 

To see the beauty of this astounding relationship we look at an 
example. The Fibonacci number 3 is the fourth term. If we want the 
sum of all terms through the fourth term, we simply look at the 
sixth term, the number 8, and subtract 1. Hence, the sum through 
the first four terms is 7. When we look at any term in the 
sequence and wish to know the sum of all Fibonacci numbers up 
to and including that term, we just jump two terms ahead and 
subtract 1. 

This next relationship is no less amazing: 

n 

L F2i = F2 + F4 + F6 ... F 2n = F 2n+1 - 1 
i=1 

To add the first n even terms, we just start at term F2n and then jump 
ahead to the next term and subtract 1. Therefore, if we want the 
sum of the first five even terms, we look at term 10 (= 55), jump 
ahead one term to term 11 (= 89) and subtract 1, yielding 88. 
Therefore, the sum of the first five even terms is 88. 

For the odd terms we have an even simpler expression: 

n 

L F2n- 1 = F1 + F3 + Fs + ... F 2n- 1 = F 2n 

i=1 
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Thus, when we wish to find the sum of the first n odd terms, we 
go to term 2n, and that is the answer. There is even a simple 
relationship for the sum of the consecutive Fibonacci numbers 
all squared. 

n 

L n = n + n + F~ + ... F~ = Fn Fn+1 
i=1 

From this, we realize that the Fibonacci sequence is truly a 
lovely and special sequence. Nature must recognize this fact, for 
she has incorporated the Fibonacci sequence into the natural world. 
The sequence is found in everything from the growth of honey bee 
populations to snail shells, and the arrangement of leaves on 
plants? Yet, we can go even further. We began this chapter with a 
discussion of cp, the Golden Mean. Now, why would we then switch 
to a completely unrelated topic of Fibonacci numbers? Can you see 
what is coming? The Golden Mean and the Fibonacci sequence are 
connected in a direct and fundamental way. Let's take consecutive 
Fibonacci numbers and form their ratios by dividing each one by 
the previous one. 

F2/F1 = 1/1 = 1 
F3/F2 =2/1 = 2 
F4/F3 = 3/2 = 1/5 
Fs/F4 = 5/3 = 1.6666 ... 
F6/FS = 8/5 = 1.6 
F7/F6 = 13/8 = 1.625 
F8/F7 = 21/13 = 1.61538 

Can you see where the ratios on the right are going? As we use 
higher and higher consecutive Fibonacci numbers we get closer to 
the Golden Mean of approximately 1.61803 .... In fact, the limit of 
the terms in the right column is exactly the Golden Mean. 

1. Fn Im-=cp n __ Fn-1 



EXOTIC CONNECTIONS 129 

Looking at the above relationship makes the hair stand up on the 
back of my neck. How can this relationship be? We start with the 
special ratio, cj>, discovered by the Greeks, and then discover that it 
is magically related to the Fibonacci sequence. Here, again, we have 
stumbled onto that very feature of mathematics that makes it so 
charming and alluring to those willing to make a minimal effort to 
understand its great secrets. 

Remember that we showed how cj> was one of the solutions to 
the quadratic equation, )(2 - X - 1 = 0, and that the other solution 
was cj>', the negative inverse of cj>. We can now use cj> and cj>' to 
compute the nth term of the Fibonacci sequence with the beautiful 
equation: 

_ (cj»" - (<1>')" _ (<1»" - «1>')" 
F"- cj>_cj>' - ..g 

The above equation allows us to compute F" directly without 
calculating all the terms less than F". For example, let's compute 

F20• 

F = (1.618034)20 ~-0.618034)20 = 6765 
" 5 

A practical limit is imposed on the use of this equation to generate 
the Fibonacci terms since FII grows quickly in size as n increases. 
F200 is the number: 

280571172992510140037611932413038677189525 

and F2000 is a number 418 digits long! 

THE LUCAS SEQUENCES 
The Fibonacci sequence happens to be just one of a whole class 

of sequences with interesting characteristics, called Lucas se
quences. These sequences are named after Edouard Lucas (1842-
1891) who studied them extensively. To understand the Lucas 
sequences we return to the quadratic equation whose solution 
gives us not only the Golden Mean, cj>, but the convergence of the 
limit of Fn+tlF" as n grows to infinity. This quadratic equation is 
simply )(2 - X - 1 = O. This is a specific case of a more general 
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equation: X2 - PX + Q = 0, where P and Q are integers not equal to 
zero. Different pairs of integers, P and Q, will define different 
quadratic equations, giving us an infinite set of solutions. Let a and 
~ be the two solutions associated with the integers P and Q. We then 
define the two Lucas sequences U and V in the following way: 

a"- p" 
U,,(P, Q) = --A VII(P, Q) = a" + W 

a-p 

If we let P = 1 and Q = -1 then a = (1 + €) /2 and ~ = (1 - €) /2 
which, when substituted into the above equation on the left, yields 
the Fibonacci sequence. If we use (1 + €) /2 and (1 - €) /2 in the 
equation on the right we get the following sequence: 

2, 1, 3, 4, 7, 11, 18,29,47, 76, ... 

Sometimes this sequence is called the Lucas sequence, and the 
terms are designated as Lv L2, L3, • ••• A casual inspection shows 
that, it, too, has the property that each term is the sum of the two 
previous terms or L" = L,,-l + L,,_2. If we form the fractions in the 
above Lucas sequence of L"+l/L,, what will they converge to if the 
Fibonacci terms converge to <1>? You guessed it-the Lucas ratios 
also converge to <1>. 

It can get even weirder! Take any two positive integers and form 
the sequence made from adding the two previous terms. This 
sequence will also have ratios converging to <1>. What an astounding 
number the Golden Mean turns out to be! 

PASCAL'S TRIANGLE 

As we have indicated, new ideas in mathematics often arise 
because someone is trying to solve a particular problem. One such 
problem is the multiplication of a binomial by itself. Suppose we 
begin with the simple expression, x + 1, where x is some unknown 
number. Our particular problem requires us to square the expres
sion x + 1 which is the same as expanding (x + W. We do this by 
setting the problem up in the following manner. 

(x + l).(x + 1) = ? 
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Our procedure is to multiply every term in the first set of parenthe
ses by every term in the second set of parentheses and then collect 
like terms. Doing this we get: 

(x+ l)·(x + 1) = x 2 +x+ X + 12= x2 + 2x+ 1 

What we want to note here is that the values of the coefficients for 
the squared terms, i.e., the x2 and 12, are 1 while the coefficient for 
the x term is 2. 

This wasn't really that difficult. But suppose we wanted to take 
the same expression and cube it. What would we get? 

(x + 1)3 = (x + 1)·(x + l)·(x + 1) = x 3 + 3x2 + 3x + 1 

Here the coefficients for the first and last terms are 1 and the 
coefficients for the two middle terms are both 3. This expansion is 
harder to do, but not that difficult. Of course, you know we are 
going to ask: what if we raise (x + 1) to the fourth power? 

(x + 1)4 = X4 + 4x 3 + 6x 2 + 4x + 1 

We could continue indefinitely expanding to the next higher power, 
yet things will get very messy, for the number of terms keeps 
increasing, and soon we are buried in xs and coefficients. What we 
need is to recognize some pattern to the coefficients so that we can 
easily carry out the expansion of x + 1 to any power. This proves 
useful because certain problems are equivalent to completing such 
an expansion. At this point we are actually going to go backward 
and ask what are the coefficients for (x + 1) when the exponents are 
zero and 1 or: (x + 1)0 = 1, and (x + 1)1 = X + 1. Now we have the 
coefficients for all expansions from zero to four. We can write just 
the coefficients for the terms in the following manner. 

(x + 1)° = 1 

(x+W= 1 1 

(x + 1)2 = 1 2 1 

(x+W= 1 3 3 1 

(x + 1)4 = 1 4 6 4 1 
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Do you see any pattern here? Notice that if we take any two 
adjacent coefficients, their sum is the coefficient between them and 
one row below. 

1 

1 + 1 
~ II' 

1 2 1 

1 + 3 + 3 1 

1 4 6 4 1 

Therefore, to get the 2 in the third row we add the two Is above in 
the second row. To get the two 3s in fourth row, we add the 1 and 
2 above. This pattern continues indefinitely. Armed with this 
knowledge we can easily write out the expansion of (x + 1)5. The 
first and last coefficients are always going to be just one. To find 
those in between, we simply add the two coefficients in the row 
above. Hence, the expansion of the fifth power of (x+ 1) becomes: 
(x + 1)5 = 1 5 10 10 5 1. If we enter the appropriate powers for 
x we get: 

(x + 1)5 = ~ + 5x4 + 10.x3 + 10x2 + 5x + 1 

Of course, if we wanted the expansion using the sixth power we 
could just write it down by looking at the coefficients for the fifth 
power. While teaching beginning algebra, I can't restrain myself 
from having a little fun with the students. I begin expanding the 
binomial (x + I), pretending I'm actually figuring out the coeffi
cients in my head. By the time I get to the expansion for the sixth 
or seventh powers, those students who haven't fallen asleep gen
erally sit up straight in their chairs and shake their heads in won
derment that I can carry out such calculations. Then I begin feeling 
guilty and confess the secret code that unscrambles everything. I 
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can't do this trick in more advanced classes, because the students 
recognize this triangle at once, and are on to my shenanigans. 

The above triangle of coefficients is quite old, and appears to 
have been discovered independently by both the Persians and the 
Chinese. The oldest Chinese reference is in the work of Chia Hsien 
(ca. 1050) which is no longer in existence.s Chia Hsien was using 
the triangle to extract square and cube roots of numbers. The 
Persian mathematician Omar Khayyam (1048?-11313?), the author 
of the Rubaiyat, probably knew of the triangle since he claimed to 
have a method for extracting third, fourth, and fifth roots which 
strongly suggests he was using the triangle. However, the triangle 
is now known as Pascal's Triangle, named after the French mathe
matician Blaise Pascal (1623-1662) who made great use of it. 

But why are we interested in Pascal's Triangle when we just 
finished talking about Fibonacci numbers? Could there be a con
nection between the two? Look at Figure 33. Here is Pascal's 
Triangle with slanted lines that collect the coefficients into sums 
that are the Fibonacci numbers. Again we see the magnificent 
connectedness within mathematics. 

We cannot leave Pascal's Triangle without mentioning a connec
tion with prime numbers. Look again at Figure 33. If we go to the 
third row, we see that the middle term is divisible by 2. In the fourth 

1 =;, 
1 =)/) 

2~=Y:C5 
3 = y» 1 

5 = 1 4 6 4 

8 5 10 10 5 

13 = 1 6 15 20 15 6 

FIGURE 33. The diagonals on Pascal's Triangle a~d to Fibonacci numbers. 
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row, the two middle terms are divisible by 3, but in the fifth row, 
one of the middle terms, the 6, is not divisible by 4. Is this a pattern? 
Of course it is. In fact we can state: if n is a prime number, then all 
the middle terms (all terms except the two end terms) of the nth + 1 
row are divisible by n. On the other hand, if n is a composite 
number, then some terms in the nth + 1 row will not be divisible by 
n. Another mysterious connection. 

CONTINUING FRACTIONS 

The Golden Mean and the Fibonacci sequence are fine and 
good, but we cannot dawdle, we must go on. Now we look at a 
special way to write fractions that mathematicians use to represent 
irrational numbers and is also useful in the solution of a special 
class of polynomials called Diophantine equations, named after the 
Greek mathematician Diophantus of Alexandria (fl. 250-275). If we 
begin with the fraction 7/5 we can rewrite this fraction as 1 + 2/5. 
What we have done is to rewrite the original fraction as a whole 
number plus another fraction, whose numerator and denominator 
are single digits. Suppose we begin with the number 13/11? Can 
we write this as a whole number plus a fraction with a numerator 
and denominator each less than 10? Let's try. 

13 2 1 1 
-=1+-=1+-=1+--
11 11 .!! 5+1. 

2 2 

The above complex fraction is called a continued fraction, because 
we continue to make fractions in the denominator until we have 
written our original number in a form that contains only single 
digits after the first whole number. When we generate a continued 
fraction where all the numerators are equal to 1, then we have a 
simple continued fraction. The continued fraction for 13/11 above is 
such a fraction. Since all numerators are 1, we can write the contin
ued fraction for 13/11 as a sequence of whole numbers, beginning 
with the 1: 
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13 1 
- = 1 + --= [1· 5 2] 11 l' , 

5+-
2 

On the right we have [1; 5, 2] which completely specifies how to 
write the fraction. We separate the first 1 from the rest of the 
sequence with a semicolon to indicate that it is a whole number 
while the others represent numbers within denominators of frac
tions. 

Every fraction is equal to a finite simple continued fraction. 
However, the larger fractions can have continued fractions that are 
very long and complex. For a more extensive example, let's con
sider the fraction 237/139. What will its continued fraction look 
like? 

237 1 
139 = 1 + -----1---= [1; 1,2,2,1,1,3,2] 

1+-------
1 

2+ 1 
2+ 1 

1+ 1 
1+--1 

3+"2 

We can expand the idea of continued fractions by considering 
infinite continued fractions. These are continued fractions that 
never end, but continue indefinitely. What kind of number would 
an infinite continued fraction be? Would it be a number at all? We 
can actually build the beginning of an infinite continued fraction 
from a known number. Let's begin with the number..J2. We can 
write..J2 = 1 + (..J2 - 1). You can see at once that the right hand side 
of the equation reduces to equal the left side. Now we are going to 
transform the right side again. We do this by noting the following: 

..J2 (..J2 - 1)·(..J2 + 1) 
( 2 - 1) = (..J2 + 1) 

We now multiply the terms together in the numerator and collect 
like terms to get: 
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-J2 _ 1 = (-J2 -l)-(-J2 + 1) = 1 
(-J2 + 1) (-J2 + 1) 

Therefore we can transform (-J2 -1) into 1 divided by (-J2 + 1). 
Now we return to our original problem where we had: 

-J2 = 1 + (-J2 - 1) 

We can now substitute into the right side in the following way: 

-J2=1+(-J2-1)=1+ -J21 
( 2 + 1) 

We now rewrite the denominator on the right to get: 

1 
-J2 = 1 + (-J2 - 1) = 1 + (-J2 + 1) 1+ 1 

2 + (-J2 -1) 

We again have the term (-J2 - 1) in the denominator of the far right 
term, so we can change it into 1 divided by (-J2 + 1) and begin the 
process all over again. This will produce the amazingly simple 
continued fraction: 

-J2= 1 + ________ 1 ______ __ 
1 

2+---------------
1 

2 + ------------
1 

2+ 1 
2+ 1 

2+---1-
2+-

The process never ends, so we end up with a simple infinite 
continued fraction that is equal to -J2. With our bracket notation we 
can write this as -J2 = [1; 2, 2, 2, 2, ... ]. A customary method to show 
that a digit (or digits) is repeated indefinitely, as in the case of 2 
above, is to place a dot over the repeating digit(s). This gives us the 
very succinct and beautiful notation of -J2 = [1;2]. 

And now for the good news! The square root of two is not the 
only radical with a simple, repeating, infinite continued fraction. 
Radicals that are square roots are called quadratic surds. One use 
of the word surd is 1/ devoid of meaning, senseless. 119 Since irrational 
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numbers cannot be represented by a fraction, they were originally 
considered irrational-not rational or meaningful. Hence, the use 
of surd to describe them. All simple, repeating, infinite continued 
fractions are quadratic surds. Therefore, whenever we encounter 
such a continued fraction, we know that it is equal to some expres
sion containing a quadratic surd. Let's look at some additional 
examples that are elegant in their simplicity. 

{3 = [1; 1, 2, 1,2, 1, 2, ... J = [1; i, 2J 

{S =[2; 4, 4, 4, 4, ... J = [2; -4 J 

f7 = [2; 1, 1, 1,4, 1, 1, 1,4, ... J = [2; iii -4 J 

We have discussed how to use continued fractions to represent 
both fractions (rational numbers) and irrational numbers that are 
quadratic surds. What about all the other irrational numbers in
cluding the strange transcendental numbers? Can they be repre
sented by continued fractions? Yes. Every irrational number, 
including transcendental numbers, can be represented uniquely by 
an infinite continued fraction. However, those irrational numbers 
which are not quadratic surds require a simple, infinite continued 
fraction which is not periodic, that is, does not repeat itself continu
ously in a simple pattern. 

This is much like the situation we experienced with decimals. 
Remember that infinite repeating decimals, like 0.3333 ... , were 
rational numbers (fractions) while nonrepeating, infinite decimals 
were algebraic numbers, like --/2, or transcendental numbers, like 7t 

and e. Now we have a repeating, infinite continued fraction for 
certain irrational numbers, quadratic surds like --/2 and {S, but all 
the rest have nonperiodic, infinite continued fractions. 

Even though transcendental numbers do not have simple, pe
riodic, infinite continued fractions, their continued fractions fre
quently do display a pattern. For example consider the continued 
fraction for the transcendental number e. 

e = [2; 1, 2, 1, 1,4, 1, 1, 6, 1, 1, 8, ... J 
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In the form of a simple continued fraction, 1t has a very random 
looking expression. However, if we allow for a continued fraction 
that is not simple, i.e., one that does not have all ones in the 
numerators, then we come up with the beautiful expression: 

We can find the limit to a periodic continued fraction as long as 
that limit is not zero. The procedure is remarkably easy and once 
you learn it, you can amaze your friends. Suppose we have the 
continued fraction: 

L = 4 + ___ 5-5--
4+-----

5 
4+ 5 

4+--
4+ ... 

The first thing we want to do is to divide both sides into 1. Now 
you see why the limit, L, to the continued fraction cannot be zero 
or we would be dividing by zero! 

1 1 
I= 5 

4+ 5 
4+ 5 

4+--
4+ ... 

Now we multiply each side by 5: 

5 5 
-L 

4+ 5 
4+ 5 

4+--
4+ ... 

5 
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The next step is to add 4 to each side: 

1 5 
- + 4 = 4 + --~-5---
5 4+-----

5 
4+ 5 

4+--
4+ ... 

139 

Notice that the right side of the above equation is exactly the same 
as the right side of the equation we began with. This means we can 
replace the right side of the equation with L, or: 

5 
-+4=L 
L 

After multiplying both sides by L and collecting terms we get the 
following quadratic equation: L 2 - 4L - 5 = O. Solving for L we find 
that L = 2 ± 3. Now it makes no sense for L = -I, so the answer is L 
= 5. Therefore our continued fraction of fours and fives is equal to 
5. This process can be repeated to determine the value of any 
repeating continued fraction, as long as the limit is not equal to 
zero. 

Of course, we have left the best for last. Once again I remind 
you that we began this chapter talking about cp or the Golden Mean. 
And that is just where we are going to end it. Since the Golden Mean 
involves a quadratic surd, it must have an infinite continued frac
tion that is periodic. What could it be? To generate the continued 
fraction for the Golden Mean all we have to do is remember the 
relationship cp2 = cp + 1. Now we simply divide both sides by cp to 
get cp = 1 + l/cp. But we can take the entire expression on the right 
and substitute it into the expression of cp in the denominator. This 
yields: 

We can continue to make this substitution indefinitely. Hence, we 
get: 
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1 
Golden Mean = cp = 1 + 1 

1+ 1 
1 + 1 

1+--1-
1+-

That's right! The Golden Mean has the simplest continued fraction 
of all which can be expressed as simply cp = [1; i]. 

Finally, we can appreciate how very special the Golden Mean, 
cp, really is-not only is it a wondrous ratio on its own, but it is also 
the limit of ratios of successive Fibonacci numbers and the simplest 
infinite periodic continued fraction. We can write all this symboli
cally with one more breathtaking equation . 

...g + 1 . Fn 1 
cp=--=hm-=1+-------,.--

2 n-->- Fn_1 1 1 
+ 1 

1+--1-
1+-

ARE RADICALS REALLY IRRATIONAL? 

We have had so much fun with the continued fractions, we 
might as well look at the continued radical. Continued radicals 
have radicals nested inside other radicals in the following manner: 

Notice that we have ended the above formula with the ellipsis, or 
three dots, to indicate that the process continues forever. Here we 
go with that strange idea of infinity again! Of course, we will 
temporarily avoid speaking of infinity by simply asking: Does the 
above continued form converge to any meaningful value? The 
simplest case is when the various a, h, c, d, etc., are all equal to the 
same number, n. Then the formula becomes: 
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Does the above formula ever converge? We solve this problem by 
assuming the formula converges to L. 

L = -Vn + -Vn +...In + ...In + ... 

Next we add n to both sides. 

L+n=n+ -Vn+-Vn+...Jn+...Jn+ ... 

Now we make a simple but astounding observation. If we take the 
square root of both sides of the above equation, we get: 

...JL+n =-Vn+-Vn+...Jn+...Jn+ ... =L 

By taking the square root of both sides, the middle of the above 
expression is just the continued radical we began with, and we said 
it was equal to the limit L. This means that L is equal to the square 
root of itself plus n, or 

L=...JL+n 

This is beautiful, for we can now square both sides to get: 

U=L+n 

Solving for n we finally have: n = L 2 - L. Hence, if we want a 
continued radical whose limit is L we just plug L into the above 
equation, solve for n and we know our continued radical. For 
example, suppose we want the continued radical equal to 2. We just 
plug 2 into the equation: 

n=22-2=4-2=2 

Hence, n should be 2 or: 

2=-V2+-V2+...J2+~ 
If we want a continued radical for the number 7 we just plug 7 into 
the equation: n = 72 - 7 = 49 - 7 = 42. This yields: 

7 = -V42 + -V42 + ...J42 + ...J42 + ... 

To confirm that this continued radical is actually converging to 7 
we compute the first four partial radicals. 
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ill = 6.48074 

-V42 + ill = 6.96281 

--.)42 + -V42 +ill = 6.99734 

...J42 + --.)42 + -V42 + ill = 6.99981 

Of course, we don't have to limit ourselves to continued radicals 
where all the a, h, c, etc., terms under the radical are the same. When 
we allow the a, h, and c terms to take on interesting patterns many 
new and exciting questions and problems spring forth. If we let the 
terms under the radicals be an increasing sequence, will the contin
ued radical ever converge? 

...Jl + --.)2+-V3+~ =? 

How about an alternating sequence? 

...Jl+--.)2+-Vl+~ =? 

The possibilities of finding interesting continued radicals are only 
limited by our imaginations, and we will consider more of them 
when we look at the work of the Indian mathematician, S. Ramanu
jan. 

We have saved the best continued radical for last. If you have a 
seatbelt on your seat, now is the time to snap it on tightly, for what 
you are about to learn has caused many to fall onto the floor in 
shocked amazement. Since we have a simple relationship, n = e
L, that tells us what n to use in the continued radical to achieve a 
specific limit, L, there is nothing stopping us from asking what 
should n be if we want our limit to be the Golden Mean or cp. Thus 
we get: 

n=cp2_<I> 

Remembering our earlier work with cp we know that <1>2 = <I> + 1, 
hence we can substitute the righthand expression in for cp2 to get: 

n = (cp + 1) - cp = cp - cp + 1 = 1 

Therefore, the correct n that gives us a limit of cp is just 1. 



EXOTIC CONNECTIONS 143 

This looks suspiciously like the infinite continued fraction we 
obtained for '1>. 

'I>=~l+...Jl+-Vl+--/l+ ... =1+-__ 1_1--
1 + 1 

1 + 1 
1+--

1+ ... 

Again we are struck by the role played by the Golden Mean. 
It is not only the simplest continued fraction, but also the sim
plest continued radical, both containing nothing but ones. It is 
hard to deny that something magical surrounds the Golden 
Mean. As wonderful as the above relationship is between the 
continued fraction and continued radical for '1>, we still have one 
more result to tickle your mathematical funny bone. Let's see 
what happens when we find the appropriate n for the limit of 1. 
That is: 

n = 12 -1 = 0 

This says that zero is the correct n for a continued radical equal to 
lor: 

1 = ~o+ ...Jo +-Vo +--/0 + ... 

But, you object, the square root of zero is just zero. How can we get 
1 from taking all those square roots of nothing? Your objection is 
well grounded, for we can construct the following infinite se
quence: 

...fO, ",,0 +...fO, ...JO +-VO +...fO, ~O + ...JO + -VO +...fO , ... 

In this sequence, each finite nested radical can be evaluated as equal 
to zero. Therefore, the infinite sequence of such zeros has a limit 
that is zero. This would seem to demonstrate that our finite nested 
radical of zeros is equal to zero and not 1. 

It is the power of mathematics to show us truths that our 
intuitive minds are slow to grasp. This is just a case. Again 
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consider the general equation we used to determine what n to use 
in an infinite radical to get a specific Lor, n = L 2 - L. If we solve this 
equation for L in terms of n we get: 

L = 1 ± --.J4n+T 
2 

Notice that the above equation yields two answers. If we let n be 
zero then we get both L = (1 + ...ff)/2 = 1 and L = (1 - ...ff)/2 = O. 
Hence, the algebraic solution tells us there are two different limits 
to the infinite nested radical containing only zeros. What's going 
on here? The answer is, it depends on how you construct your 
radical. If you use an infinite sequence of (finite) nested zeros, you 
get zero. If, however, you begin with an n in an infinite radical that 
is something larger than zero, and allow it to decrease to zero, you 
get the infinite nested radical that has 1 as its limit. We can show 
this as: 

lim-Vn+-Vn+~n+..Jn+ ... =1 
n~O 

While it is true that the square root of zero is zero, it is also true that 
we can build infinite continued fractions of zeros equal to 1 or zero. 

Your may now unsnap your seat belt. 



CHAPTER SEVEN 

CLOSING IN ON THE PRIMES 

You know of course that a mathematical line, a line of 
thickness nil, has no real existence. They taught you 

that? Neither has a mathematical plane. These things 

are mere abstractions.-The Time Traveller 

H.G. WELLS 

THE TIME MACHlNE l 

To fully comprehend the natural number sequence, we must look 
once again at prime numbers. We have already mentioned that the 
Greeks knew the distinction between prime and composite num
bers, and even proved useful theorems concerning them. All natu
ral numbers (excluding 1) can be categorized as either prime 
numbers (primes) or composite numbers (composites). Why are we 
interested in prime and composite numbers? Because every com
posite number "decomposes" into a unique set of prime numbers 
multiplied together. As mentioned earlier, this is the Fundamental 
Theorem of Arithmetic: Every natural number greater than 1 can be 
expressed as a product of prime numbers in one and only one way. 

This is an important theorem for it guarantees that if a number 
factors into a set of primes, these primes uniquely describe that 
number. Hence, 2·3 represents only 6. We might write it as 2·3 or 
3·2 for the order is unimportant. Therefore, every natural number 
can be described by its unique set of primes. The unique set of 
primes that a number factors into are called that number's prime 

145 
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factors. Numbers that factor into only one prime (themselves) are, 
of course, prime numbers. The Fundamental Theorem of Arithme
tic is one of the pillars of mathematics, and is used in numerous 
proofs of other mathematical theorems. Without this theorem, the 
very laws of algebra would crumble. 

THE FIRST PRIMES 

Let's start by looking at the first natural numbers and ask the 
simple question: Are they prime or composite? We do not consider 
1 a prime number even though it technically satisfies the definition 
of a prime, i.e., being evenly divisible only by 1 and itself. If we 
were to let 1 be a prime, then the Fundamental Theorem of Arith
metic would break down because there would be different ways to 
factor the same number. For example we could factor the number 
12 as: 

12=2·2·3 

12 = 1·2·2·3 

12 = 1-1·2·2·3 

We can see what a can of worms is opened by letting 1 be a 
prime. Such a move allows every number to be factored in an 
infinite number of ways. Therefore, we place 1 in a special category 
all by itself. We will simply designate it as unity. 

Figure 34 shows the first 100 numbers with the primes circled. 
We notice some things about primes at once. Of all the primes, only 
the first prime, 2, is even. All others are odd. We realize that all 
primes other than 2 must be odd, for if another even prime existed, 
it would be evenly divisible by 2, and hence, not prime. Of the 15 
numbers between 2 and 16, six are primes and nine are composites. 
Notice that the first numbers are rich in primes and, as the natural 
numbers get larger, fewer primes are found. This leads to several 
interesting questions. Do the prime numbers continue to thin out 
as the natural numbers get bigger? How many prime numbers are 
there? Do the prime numbers finally disappear entirely? An infinite 
number of natural numbers exist, for we can, theoretically, count 
on forever. Do an infinite number of primes exist or only some finite 
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00 4 (1) 6 0 8 9 10 

® 12 ® 14 15 16 ® 18 ® 20 

21 22 @ 24 25 26 27 28 @ 30 

® 32 33 34 35 36 ® 38 39 40 

® 42 @ 44 45 46 @ 48 49 50 

51 52 @) 54 55 56 57 58 @) 60 , 

® 62 63 64 65 66 ® 68 69 70 

® 72 ® 74 75 76 77 78 ® 80 

81 82 @ 84 85 86 87 88 @ 90 

91 92 93 94 95 96 ® 98 99 100 

FIGURE 34. The first 100 natural numbers with the prime numbers circled. 

number? How are the prime numbers distributed throughout the 
natural numbers? Is there a predictable pattern to them? Can we 
formulate a rule or an equation so that we can always calculate 
exactly what the nth prime is for any number n? 

We can tell whether small numbers are prime or composite 
simply by inspection. But what about larger numbers? Is the num
ber 8831 a prime or composite number? (It's prime.) What about 
the number 7,317,943,311? (It's composite.) What we need is a 
useful procedure to tell whether a number is prime or not. If 
composite, what are its prime factors? This last question is of 
special importance to modem code users. 

EUCLID'S PROOF 

The answer to the question about the number of primes has 
been known since ancient times and represents one of the shining 
gems of Greek mathematics. The great mathematician Euclid 
proved over 2000 years ago that infinitely many primes exist. His 
proof was simple and elegant. He began by assuming that only a 
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finite number of primes exist, and then showed that this assump
tion leads to a contradiction. If only a finite number of primes exist, 
then one of them must be a largest prime. We will call it P. He then 
constructed another number in the following way. He multiplied 
all the prime numbers from 2 up to and including P together and 
then added the number 1. Euclid's number is: 

2·3·5·7 .... p + 1 

What kind of number is Euclid's number? If P is assumed to be 
the biggest prime, then Euclid's number must be composite since 
it is clearly larger than P. If his number is composite then it will be 
evenly divisible by at least one of the existing primes. Yet, every 
prime from 2 through P leaves a remainder of 1 when divided into 
Euclid's number. Therefore, if it really is composite, then some 
prime larger than P must divide it. Yet, this contradicts the assump
tion that P is the largest prime. Since the assumption that there 
exists a largest prime is false, there must be infinitely many primes. 

We can also answer the question about primes thinning out. Yes, 
we do find fewer and fewer primes as we go higher into the natural 
numbers. Of the first 100 numbers, 25 are prime. This is 25 percent. 
Yet, in the 100-number gap between the numbers 50,000 and 50,100 
there are only ten primes for a prime rate of 10 percent. The 
percentage of primes does not diminish to some fixed number 
larger than zero, but continues to decrease and, on average, ap
proaches zero. In mathematical jargon, zero is the limit of this 
percentage as we proceed up through larger and larger natural 
numbers. Table 5 shows the percentage of primes for various 
ranges of natural numbers. 

As we proceed higher into the natural numbers and the primes 
thin out, the strings of consecutive composite numbers between 
primes grow ever longer. The smallest gap between primes, of 
course, is between the primes 2 and 3. These primes differ by only 
one and have no composite between them. This is the only place in 
the natural numbers where this happens. Between all other con
secutive primes there exists a minimum difference of two (such as 
5 and 7, and 11 and 13) with at least one composite between the two 
primes. The difference between consecutive primes (excepting the 
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Table 5. Percent of Numbers That Are Primes 

One Prime 
Range (up to) Percent Primes Out Of Comments 

103 16.80 6 Thousand 
106 7.85 13 Million 
109 5.08 20 Billion 
1012 3.76 27 Trillion 
10100 0.436 229 Factorization Programs 
10155 0.281 356 Public-Key Code Numbers 
101,000 0.0434% 2,300 
10227,832 0.00019% 525,000 Largest Prime Number 
101.000,000 0.0000434% 2,300,000 

primes 2 and 3) is always even, which means the number of 
composite numbers in the gap between consecutive primes will 
always be odd. 

Between 1 and 100 the largest gap is between the primes 89 and 
97 and consists of seven composite numbers. For the numbers less 
than 1000 the largest gap is between 887 and 907 with 19 composite 
numbers. 

How big do these gaps between primes grow? We can, in fact, 
find a gap between consecutive prime numbers as large as we want. 
Given any number, N, we can construct a sequence of consecutive 
composite numbers, at least N numbers long. The procedure is 
remarkably simple. Let's begin by looking at the following two 
equations: 

1·2·3 + 2 = 8 

and 

1·2·3 + 3 = 9 

The left sides of the above expressions can be factored into the 
following forms: 

2(1·3 + 1) = 8 

and 

3(1·2 + 1) = 9 
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Since the left side of each of the above equations is the product 
of two numbers, the resulting number is composite. Hence, both 8 
and 9 are composite because they can be represented as the product 
of two natural numbers (excluding 1). We found a sequence of two 
consecutive composite numbers with our two special number 
forms, 1·2·3 + 2 and 1·2·3 + 3. Notice that the 2 and the 3 that we are 
adding both occur as factors in the product 1·2·3. Since 1·2·3 can be 
written as 3! (using factorial notation) we can rewrite the two 
consecutive composite numbers as 3! + 2 and 3! + 3. 

If we want a sequence of three consecutive composite numbers 
we use the three forms 4! + 2, 4! + 3, and 4! + 4. This yields the 
following: 

4! + 2 = 1·2·3·4 + 2 = 24 + 2 = 26 

4! + 3 = 1·2·3·4 + 3 = 24 + 3 = 27 

4! + 4 = 1·2·3·4 + 4 = 24 + 4 = 28 

The three numbers generated (26,27, and 28) are all consecutive 
composite numbers. Yet, they are not the first three consecutive 
composite numbers 8, 9, and 10. This procedure will always give 
us a sequence of the desired length, but it doesn't produce the 
smallest such sequence. 

If we want to generate a sequence of composites that is N 
numbers long then we simply write the following forms: 

(N+1)! + 2 

(N+1)! + 3 

(N+1)! + 4 

(N+l)! + (N+1) 

The resulting numbers will be N consecutive composites. Unfortu
nately, this procedure is not very efficient. If we want a long 
sequence, the resulting numbers in the sequence will be very large. 
For example, to generate a sequence of ten consecutive composites 
requires computing 11! which is equal to 39,916,800. By inspection 
we found a larger sequence of 19 composites between 887 and 907. 



CLOSING IN ON THE PRIMES 151 

If we want to find a sequence of consecutive composite numbers a 
million numbers long, we can do it. The numbers of the resulting 
sequence may be extremely large, but that does not detract from 
the fact that such sequences exist. With such large gaps between 
prime numbers, we realize at once how sparse prime numbers 
become when we get into very large natural numbers. 

What is the largest gap between primes that has been located 
through inspection (rather than using the above procedure)? A 
gap of 803 composite numbers exists between the primes 
90,874,329,411,493 and 90,874,329,412,297 which was found in 1989 
by J. Young and A. PotIer? 

TESTING NUMBERS FOR PRIMENESS 
What about testing a number to see if it is prime? A theorem 

exists for testing numbers for primeness, discovered by Edward 
Waring but named for his friend, John Wilson. Edward Waring 
(1734-1798) was a mathematics professor at Cambridge, England, 
and wrote a famous text, Meditations Algebraicae, which contained 
much material on primes including the theorem he named after 
John Wilson. Wilson (1741-1793) was also trained as a mathemati
cian at Cambridge but left math for a career in law. He subsequently 
became a judge and was knighted. 

Wilson's Theorem: P is a prime number if, and only if, 
(P -1)! + 1 is divisible by P. 

Here, again, we encounter the factorial symbol in an equation 
regarding primes. We know that (P - 1)! results from multiplying 
all the numbers from 1 through P - 1 together. Wilson's Theorem 
states that if we want to test whether a number P is prime, all we 
have to do is multiply all the numbers less than P together, add 1, 
and then try to divide by P. Let's test it with the prime 5. First we 
multiply all the numbers less than 5 together: 1·2·3·4 = 24. Now we 
just add 1: 24 + 1 = 25. Will 5 divide 25? Yes, therefore 5 must be 
prime. 

Of course we knew all along that 5 was prime. While Wilson's 
Theorem will test any number for primeness, there is a serious 
drawback. We generally want to test very large numbers for prime-
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ness. The difficulty of multiplying all the numbers that are less than 
a very large number to conduct the test makes the theorem imprac
tical. Theoretically, it's a fine theorem, but for us it's of no real use. 
Therefore, a meaningful question in the study of prime numbers 
becomes: Are there other procedures that we can use to test a 
number for primeness which are quicker than Wilson's Theorem? 
Fortunately, the answer is yes. 

Can we tell if a number is composite just by looking at it? In 
many cases we recognize a composite by simply looking at its far 
right digit. Two is the only even prime number. Hence, if a number 
ends on the right with a 0, 2,4,6, or 8 we know it is composite since 
all such numbers are even. Therefore we can immediately eliminate 
1/2 of all natural numbers from consideration as primes. Yet, we 
can do even better than this. All numbers that end with a 5 are 
divisible by 5. Therefore, once we get beyond the first primes of 2, 
3, and 5, we can say that only numbers ending in 1, 3, 7, and 9 may 
be prime numbers. This reduces to 40% the numbers we must test 
for primeness. 

One way to test if a number, N, is prime is to try and divide N 
by all those numbers (excluding 1) less than N. If one of them evenly 
divides N, then N must be composite. Suppose we wish to know if 
the number 839 is a prime? Using this method we try to divide 839 
by all the numbers from 2 up to and including 838. If none of them 
divide evenly, then 839 must be prime. This procedure involves 837 
attempted divisions. Therefore, testing a number N for primeness 
with this method commits us to as many as N - 2 operations. Of 
course, if N turns out to be composite, then at some point one of 
our divisions will come out even and we can stop. This proced\lre 
is certainly easier than the one required by Wilson's Theorem, yet 
it is still too long. To test whether 1,000,003 is prime requires a 
million and one attempted divisions because it is, in fact, a prime 
number. Can we make improvements on this method? 

We have a very nice theorem which is going to cut our work 
considerably. It's known as the Sieve of Eratosthenes. Eratosthenes 
(276-195 B.C.) was a Greek astronomer, geographer, and mathema
tician. Like Euclid, he studied at Athens and then became head of 
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the Alexandrian Library in the Egyptian city of Alexandria. In 
addition to his Sieve Theorem, which has been used for centuries 
in testing for primeness, he is best remembered for his remarkable 
measure of the Earth's circumference, coming very close to the 
correct figure. 

Sieve of Eratosthenes: If N is a composite number then at least 
one of the prime factors of N is less than or equal to the square 
root of N. 

This theorem says that for every composite number, at least one 
of the prime factors must be equal to, or smaller than, its square 
root. It is easy to see why this theorem is true. If a number, N, is 
composed of only two primes, then the largest those two primes 
could be is when they are the same size and N is a perfect square. 
Hence, 9 factors into 3·3. Here, the two primes that make up 9 are 
the same size and both are equal to the square root of 9. If the two 
primes making up N are different in size, then the smaller has to be 
less than the square root of N, while the other is larger. When we 
go to numbers with three factors we get an even stronger statement. 
If we have a number with exactly three prime factors, then the 
largest these primes can be is the cube root of N when N is a perfect 
cube. The number 27 has three factors, 3·3·3. Each is exactly equal 
to the cube root of 27. Any number with three factors that is not a 
perfect cube, must have one factor less than the cube root of N. 

This yields a much stronger theorem: If N has n prime factors, 
then at least one prime factor must be less than or equal to the nth 
root of N. The only problem in using this stronger theorem is that 
when we have a big number and don't know if it is prime or not, 
then we don't know how many factors it has. Hence, we assume it 
could have just two factors and use the Sieve of Eratosthenes. 

To find a prime factor of a composite, N, just test all the numbers 
from 2 up to the square root of N, a substantial decrease in the 
number of divisions necessary to test for primeness. Consider the 
number 101: Is it prime? If it is not prime then one of its prime 
factors must be smaller than or equal to the square root of 101. What 
are these possible numbers? The numbers less than or equal to 
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"101 are 2, 3, 4, 5, 6, 7, 8, 9, and 10. Hence, we only have to test nine 
numbers to see if they divide into 101. 

We can do even better. The Sieve of Eratosthenes says that the 
factor less than the square root of N is a prime factor (number). 
Those prime numbers less than or equal to "101 are 2, 3, 5, and 7. 
We need only try dividing 101 by these four primes to see if it is 
prime. Carrying out the division we find none of the four primes 
(2, 3, 5, 7) divide 101 evenly and therefore 101 is, indeed, a prime. 

To sum up our testing procedures: We only need test numbers 
ending in 1,3,7, and 9 for primeness. We only have to divide such 
numbers by those primes less than or equal to the square root of 
the number being tested. In addition to the above tests, there are a 
few additional procedures which are of marginal value. For exam
ple, if the sum of the digits of a number is divisible by 3 then the 
original number is divisible by 3. Consider the number 104,001. We 
can see at once that the digits in this number add to 6 and 6 is 
divisible by 3. Hence, 104,001 must be divisible by 3. (It is since 
104,001 = 3·34,667.) This test is of limited value because we can 
divide a number by 3 almost as fast as we can add its digits. We 
have a more complex test for divisibility by 11, which is to alter
nately add and subtract the digits of a number, moving from left to 
right. If the result is zero or is divisible by 11, the original number 
is divisible by 11. We'll try it with 16,401. First we add 1 (the first 
digit on the left) and subtract 6. This yields a -5. Then we add 4 to 
get -1. We subtract 0 and add 1 to get the final result of zero. 
Therefore, the original number (16,401) is divisible by 11 and 16,401 
= 11·1491. All this information shortens our testing considerably, 
yet with large numbers we are still in a pickle, for the time necessary 
to do the testing can be beyond even the capabilities of modem 
computers. 

HOW MANY PRIMES? 

We are now ready to consider the density of primes within the 
natural numbers. That is, as the natural numbers grow ever larger, 
how fast does the number of primes grow? Our main focus will be 
to arrive at some understanding of how the primes thin out as the 
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FIGURE 35. The growth of the ratio, n /1t(n), between the natural number sequence, 
n, and the prime counting function, 1t(n). 

natural numbers get larger. We used graphs earlier to show the 
growth of mathematical functions, and we can do the same here. 
In Figure 35 we show the natural numbers on the horizontal scale, 
and the ratio of the natural numbers to the number of primes on 
the vertical scale. Notice how the graph in Figure 35 bends toward 
the right. Does this remind us of anything? Of course! When we 
graphed the harmonic series, we saw the same kind of growth. To 
measure that growth we discovered we could use the natural 
logarithmic function. Can we do so here? Will this show another 
remarkable connection within mathematics, i.e., the growth of 
prime numbers and the wonderful number e? 

To understand the density of primes, we must define a new 
symbol that stands for the number of primes less than some num
ber, n. Mathematicians have given this number the name 1t(n), or 
the Prime Counting Function. Do not confuse our Prime Counting 
Function, 1t(n), with the ratio of the circumference of a circle with 
its diameter which is designated as simply 1t. They are two dis
tinctly different animals, even though they both use the Greek letter 
pi. 



156 MATHEMATICAL MYSTERIES 

Prime Counting Function: 1t(n), is the number of primes less than 
or equal to n. 

Now for the bad news! No straightforward formula exists that 
will compute 1t(n) exactly. This has great significance for our under
standing of the natural numbers. It means that the specific locations 
of the primes embedded within the natural numbers is so random 
that we cannot predict precisely where they will be. As counting 
animals, we are not used to this vagueness. We know, for example, 
that beginning with 2 every other number will always be even. We 
also know, based on our number system, that beginning with 5, 
every fifth number will be divisible by 5. With great regularity we 
can predict where digits will fall within numbers because our 
number system is periodic. Yet, when we try to get a feeling for 
where the primes are, their strange unpredictability defeats us. Yet, 
primes are so terribly important because they are the building 
blocks of all natural numbers. 

We have to settle for formulas that give us only approximations 
for 1t(n). One such formula that approximates 1t(n) for very large 
numbers is a cornerstone to modem number theory and is known 
as the Prime Number Theorem. 

Prime Number Theorem: The number of primes less than n is 
approximately n divided by the logarithm of n. 

We can state this in a more symbolic manner with: 

1t(n) "" n/ln(n) 

In the above equation In of course stands for the natural logarithm 
with base e and not the common logarithm of base 10. The two 
horizontal wiggly lines stand for" approximately" and are distinct 
from the more common symbol, the equal sign (=). 

For example, if we wish to know the approximate number of prime 
numbers less than 1,000,000 we compute (l,OOO,OOO)/ln(l,OOO,OOO) 

which is 72,382. There are exactly 78,498 such primes, so we can see 
that 72,382 is only a rough approximation, in error 7.8%. However, 
as we consider larger numbers our function n/ln(n) gives us even 
better approximations. In the Prime Number Theorem we have a 
powerful function that approximates the growth of prime numbers 



CLOSING IN ON THE PRIMES 157 

while at the same time connecting this growth to the natural 
logarithms. In tum, the natural logarithms are based on the number 
e, itself the limitto the function (1 + 1/ n)n, and this function is linked 
to the growth of the harmonic series. We must begin to wonder: Is 
there some magical connection between everything mathematical? 

Carl Gauss conjectured the Prime Number Theorem in 1792 
when he was only 15 years old. How did he do it? He counted 
primes and calculated n(n) for consecutive blocks of 1000 numbers 
and noticed how n(n) was diminishing. He was unable to prove the 
theorem, which was not accomplished until 1896 when two mathe
maticians, Jacques Hadamard and C. J. de la Vallee-Poussin, inde
pendently proved it. 

How well does n/ln(n) approximate n(n)? Table 6 shows both 
n(n) and n/ln(n) for increasing values of n plus the difference and 
the percent error between 1t(n) and n/ln(n). From this table we see 
that the absolute difference between n(n) and n/ln(n) grows in size 
as n increases while the percent error decreases. Unfortunately, the 
percent error decreases slowly, so that even at moderately large n 
the error for n/ln(n) is still substantial. 

Table 6. Comparison of 7t(n) and n/ln(n) 

Percent 
n x(n) n/log(n) Difference Error 

102 25 21 4 16.00 
l(f 168 144 24 14.29 
104 1,229 1,085 144 11.72 
105 9,593 8,685 908 9.47 
106 78,499 72,382 6,117 7.79 
107 664,579 620,420 44,159 6.64 
108 5,761,455 5,428,680 332,775 5.78 
109 50,847,534 48,254,945 2,592,589 5.10 
1010 455,052,512 434,294,493 20,758,019 4.56 
1011 4,118,054,813 3,948,131,889 169,922,924 4.13 
1012 37,607,912,018 36,191,208,672 1,416,703,346 3.77 
1013 346,065,536,839 334,072,662,679 11,992,874,160 3.47 
1014 3,204,941,750,802 3,102,103,502,550 102,838,248,252 3.21 
1015 29,844,570,422,669 28,952,965,081,228 891,605,341,441 2.99 
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Fortunately, another more accurate formula exists, called the 
Logarithmic Integral of n, designated as lien). It was also discovered 
by Carl Gauss, and has the following rather daunting formula: 

n 

I · f du l(n)= --
2 In(u) 

The above formula is called a definite integral from calculus and 
involves mathematics beyond our consideration here. Don't worry 
about it, however. There is a convenient way to approximate the 
value of lien) without resorting to calculus with the following series: 

li(n)"" n (~+_1_! _+~+ ... + (k-1)!) 
lin n (In n)2 (In n)3 (In n)k 

In the above formula, k is the number of terms we add together in 
the series to approximate lien). This formula is quite accurate when 
nand k are fairly large. While it is somewhat messy, it is easily 
programmed for a computer. In Table 7, lien) has been approxi
mated using the above formula taken to 12 terms (k = 12), and 

Table 7. Comparison of 7t(n) and lien) 

Percent 
n 1t(n) U(n) Difference Error 

102 25 111 86 344% 
103 168 187 19 11.309520 
104 1,229 1,249 20 1.627339 
105 9,593 9,630 37 0.385698 
106 78,499 78,626 127 0.161785 
107 664,579 664,915 336 0.050558 
108 5,761,455 5,762,203 748 0.012982 
109 50,847,534 50,849,225 1,691 0.003325 
1010 455,052,512 455,055,600 3,088 0.000678 
1011 4,118,054,813 4,118,066,574 11,761 0.000285 
1012 37,607,912,018 37,607,953,542 41,524 0.000110 
1013 346,065,536,839 346,065,632,227 95,388 0.000027 
1014 3,204,941,750,802 3,204,942,067,508 316,706 0.000010 
1015 29,844,570,422,669 29,844,571,135,055 712,386 0.000002 
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FIGURE 36. The percent error between lien) and 1t(n); and between n/ln(n) and 
n(n), as n increases. The horizontal scale is in powers of ten and ranges from 101 to 
1017. 

illustrates how much better li(n) is at approximating n(n) than 
n/ln(n). 

Notice in Table 7 that for small values of n, e.g., 100 and 1000, 
the error in li(n) is large, but that the percent error diminishes to 
almost nothing as n increases in size. By the time we get to 
1,000,000, the error in li(n) is less that 2/10 of 1 %. Even though the 
absolute difference between n(n) and li(n) continues to increase, the 
percent error becomes negligible. Figure 36 demonstrates how 
n/ln(n) and li(n) approximate n(n) as n increases. 

Using both n/ln(n) and li(n) to give us estimates of n(n) we can 
try to get a feel for how the primes decrease as the natural numbers 
increase. Table 5 shows the actual or estimated n(n) for blocks of 
numbers beginning at 1000 and increasing to 10 raised to the 
millionth power, or the number you get when you write a 1 
followed by one million zeros. At the range of 1000 approximately 
16% of the numbers are primes. This is roughly one out of six 
numbers. We have included comments to help us get a feel for just 
how large the various ranges are. 

Up to 1000 is the range in which normal individuals carry on 
their mathematics, e.g., balancing checkbooks, doing taxes, and 
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estimating mileage. At the next range of one million we find 
governments computing taxes and buying bombers. Here, only 
7.2% of the numbers are prime. The next range is at one billion. 
Normal people don't use numbers this large, but our government 
needs such numbers to compute the national budget. 

The next range is at one million million or one trillion. Here we 
end everyday number usage since the only reference is the national 
debt. One trillion is a one followed by 12 zeros or 1012• As a 
comparison, astronomers estimate that there are 1011 stars in the 
Milky Way Galaxy and in excess of 1018 stars in the visible universe. 

The next range, one followed by 100 zeros, is the size of numbers 
that mathematicians can factor into primes with any degree of 
certainty. This ability has only been achieved in the last few years. 
At this range only 1/2 of one percent of the numbers are prime or 
about 1 in 233. For a physical reference, we have the much smaller 
number, 1080, which is the estimated number of protons in the 
universe. 

The next range is 10155. This is the size of numbers used in 
modem public-key codes, codes used to transmit information in a 
scrambled format to prevent eavesdropping. At this range, only 
one number in 357 is prime. 

Now we are going to get very big. The next range is at 101000. 
Here we have no useful references. The percentage of primes has 
dropped to 4/100 of one percent or approximately one out of 2300 
numbers. The next range is a one followed by 227,832 zeros. This 
is the approximate size of the largest prime number known. As you 
can see the percent of primes at this range is a mere 19/100,000 of 
one percent or one prime out of every 525,000 numbers. The last 
range given is a one followed by a million zeros. What could 
possibly be this large? We have no reference. Here the number of 
primes is down to one in 2,300,000. 

SPECIAL FEATURES OF PRIMES 

We know there is no workable formula for computing the nth 
prime. But if we know the value of a prime, then can we calculate 
the very next prime? In other words, if P" is the nth prime, then 
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approximately where is Pn+1? If we know what Pn is, can we say 
anything about the next prime, P n+l? In 1845 Joseph Bertrand con
jectured that if n ~ 2 then at least one prime exists between nand 
2n. This is called Bertrand's observation, and was proved in 1850 
by Pafnuti Tchebycheff. Therefore, if Pn is a prime then there must 
be another prime less than 2P no From this we know that the next 
prime, Pn+1, must be less than 2Pn or: 

For example, if n = 4 then there will be a prime between 4 and 
8. There is: 7. Now, if we know the value of a particular prime, we 
can at least always find a range where we can expect to find the 
next prime, even if that range may tum out to be rather large. To 
appreciate how large the range is, we only have to consider a prime 
such as 1,000,003. Bertrand's observation says that the next prime 
must be less than 2,000,006. This is not much help. 

Joseph L. F. Bertrand (1822-1900) was a French mathematician 
who contributed to both number theory and the theory of prob
ability in his book, Calcul des probabiliMs. Pafnuti Lvovich Tcheby
cheff (1821-1894) was a Russian who taught at the University of St. 
Petersburg. He was a rival of Lobachevsky, one of the cofounders 
of non-Euclidean geometry. While unaware of Carl Gauss' work, 
Tchebycheff helped prove the Prime Number Theorem. 

We have two more relationships for Pn and its successors. If n ~ 

2 then P n + P n+l > P n+2. This simply says that if you add a prime and 
its successor, you get a number greater than the next prime. For 
example, 5 + 7 = 12 which is greater than the next prime, 11. Finally, 
we have: P m·Pn > P m+n or the product of two primes, Pm and P n, is 
greater than the m+n prime. Thus, 7 is the fourth prime and 11 is 
the fifth prime. The above relationship says that 7·11 or 77 is greater 
than the (4+5)th or ninth prime. The ninth prime is 23 which is less 
than 77. 

Now let's consider estimating the size of Pno From the Prime 
Number Theorem it can be shown: 

Pn '" n·ln(n) + n[ln(ln(n» - 1] 
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Again we use the approximation sign (==) rather than the equal 
sign (=) to show that the above relationship only gives an estimate. 
The above equation3 may look a mess but it is easy to compute since 
we really only have to compute In (n) and In (In (n». Knowing 
In (n) we find the natural log of that number to get In (In (n». Let's 
say that n = 100 and we want to compute the approximate size of 
the 100th prime: In(100) = 4.605. This is substituted into In(ln(100» 
or In(4.605) = 1.527. We can easily substitute these two values into 
the above equation. 

Pn == (100)(4.605) + (100)[1.527 - 1] 

Simplifying, we get Pn == 513. The 100th prime is exactly 541, so 
the approximation was off by 28 or a little over 5%. Table 8 gives 
examples of the above equation for different values of n and the 
associated errors. 

From Table 8 it is easy to see that the percent error decreases, on 
average, as n increases. By the time we get to the 5000th prime the 
error is well below 1%. Even if we can't find the exact value for P n 

we can compute the size of P n to a high degree of accuracy as long 
as n is relatively large. This can give us a close fix on the size of very 
large primes. For example, using the equation, we estimate the size 
of the one billionth prime to be 22,754,521,608 or just under 23 
billion. 

Considering our review of prime numbers, we realize at once 
that, while much is known about primes, much is still very hidden. 

Table 8. Estimated PI! and Actual P n 

n Estimate of P n Actual Pn Difference Percent Error 

500 3,521 3,571 50 1.40 

1,000 7,840 7,919 79 1.00 

1,500 12,454 12,553 99 .79 

2,000 17,258 17,389 131 .75 

2,500 22,203 22,307 104 .47 

3,000 27,260 27,449 189 .69 

3,500 32,409 32,609 200 .61 

4,000 37,638 37,813 175 .46 

4,500 42,937 43,051 114 .26 

5,000 48,296 48,611 315 .65 
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In many cases this situation forces us to use equations involving 
only approximations. Knowing that prime numbers are the build
ing blocks to the natural number sequence, and that the natural 
number sequence, in turn, forms the cornerstone to the great edifice 
of mathematics, we can appreciate why much work is continuing 
on unravelling the secrets behind these fascinating mathematical 
creatures. 



CHAPTER EIGHT 

PRIMES IN DEPTH 

And thus many are ignorant of mathematical truths, 

not out of any impeifection of their faculties, or un

certainty in the things themselves, but for want of ap

plication in acquiring, examining, and by due ways 

comparing those ideas. 

JOHN LOCKE 

AN ESSAY CONCERNING HUMAN UNDERSTANDING1 

A FISHING WE WILL GO 

P xactly why millions of Americans go fishing each weekend 
o during the summer is a mystery. Certainly, for the great 
majority, the cost of catching the few fish hooked far exceeds the 
value of the meat. In fact, when fishing some lakes and streams, we 
are required to throw back our catch, appreciating no gain to our 
palates or wallets. Why then do we do it? It's the fun of outsmarting 
the fish and either catching lots of fish, or catching the "big one" 
that got away last time. Once we get "hooked" on fishing, it's 
amazing to what extremes we'll go to find that special pond or lake 
loaded with native trout. 

Searching for prime numbers is much like fishing. Mathemati
cians are not sure exactly why they do it, but they know it's great 
fun. Like the fisherman, we can go out looking for a whole bucket 
full of little, interesting primes, or we can go after that really big 

164 
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one. In fact, searching for primes is not the only compulsive behav
ior of which mathematicians are guilty. They are also known to 
become addicted to computing ever more digits in the decimal 
expansion of such numbers as 7t and e. 

Prime numbers seem so easy to comprehend. Certainly, simple 
formulas must exist to help us compute them. Unfortunately, this 
is not the case. If we had perfect prime number formulas, one of 
them would enable us to easily compute the nth prime for any 
number n. Hence, we could just plug in 100 to get the 100th prime 
(which happens to be 541) and if we plugged in 1000 we would get 
the 1000th prime (7919). 

While we do have a formula for calculating the nth prime, it's 
a very impractical formula to use. The mathematics needed to 
understand this formula is somewhat beyond this book. However, 
it is presented for those who are either disbelievers or possess a 
greater understanding of math. Before we can present the nth prime 
formula, we must investigate the special function, F( j).2 

[ (j -1)' + 1] F(j) = COS27t j. 

To understand this interesting function, it is necessary to know the 
special convention regarding its surrounding brackets. If a number 
is surrounded by square brackets, [ ], then we will consider only 
the integral part of the number and disregard any fractional part. 
For example, [3.5] = 3 because we are going to ignore everything 
right of the decimal point. Thus, [1.999] = 1 and [0.638] = O. Now 
for F( j). The amazing characteristic of the function F( J) is that it 
takes on the value of 1 when j is a prime, but has the value of 0 
when j is a composite number. For example, we can test it using the 
prime 3 and the composite 4: 

[ 2' + 1] F(3) = COS27t_·_3- = [cos2x] = [(-1) (-1)] = 1 

2 

[ 3! + 1] [ 77t] [(..f2)] F( 4) = cos2x -4- = COS24 = 2" = [0.5] = 0 



166 MATHEMATICAL MYSTERIES 

This is truly an amazing function. How does it know when it's 
dealing with a prime or a composite? Notice what comes after the 
1t in F( j), it's j -1 factorial plus 1 divided by j. Remember Wilson's 
Theorem? We gave it as an example of an impractical way to test 
for primes, for the theorem says that (j -1)! + 1 is divisible evenly 
by j only when j is a prime. That's how F( j) knows when it's got a 
prime. When j divides (j - I)! + 1 evenly, then the number, k, is a 
whole number. But whenever this occurs, then cos2 k1t has the value 
of 1. Every time j is not a prime, then dividing it into (j - 1)! + 1 
leaves a fractional part. This causes the function C052 to have a value 
between 0 and 1. The brackets get rid of the fractional part and 
we're left with zero. What a wonderful use of Wilson's Theorem, 
and what a wonderful function in F( j) to be able to spot a prime. 
In fact, we can now use F(n) as a way to compute 1t(n), our prime 
counting function. Since F(n) is 1 when n is prime and zero when 
n is composite, we can add up all the F( j) from 1 to n as a count of 
the primes up to n. This yields one too many because 1 is not a 
prime, but F(1) = 1. Hence, we have: 

/f 

1t(n) = L F(j) - 1 
j=1 

Having defined F( j) we are ready for the nth prime formula: 

2/f [[ n ]~l PI1=l+ L -m--

m=1 ~ F(j) 

As you can appreciate, this formula is rather intimidating. Why 
isn't it useful? We have to have too much information to plug into 
it to get our answer. For example, to compute just the third prime 
(5) we must add eight different terms since m = 1 through 2n = 23 = 
8. For each of these eight terms, we must take sums of F( j). This 
step involves computing the factorial (j -1)! which can easily grow 
into a large number. If we are after the 100th prime, then (100 -I)! 
is a whopping: 
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933,262,154,439,441,526,816 

992,388,562,667,004,907,159,682,643,816,214,685,929,638,952 

175,999,932,299,156,089,414,639,761,565,182,862,536,979,208 

272,237,582,511,852,109,168,640,000,000,000,000,000,000,00° 
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With factorials growing so large, how would we ever manage to 
use the above equation to compute the millionth or billionth prime? 

We can also give a formula to compute the next prime P n+l when 
we know the prime P n' again based on the F( J) function. In the 
following formula we will let Pn = P. 

p 

Pn+1 = 1 + P + F( P + 1) + F( P + 1)F( p + 2) + ... + II F(p + j) 
j=1 

Again, the above formula requires too much information to be 
useful. Ideally, we would like a simple formula or equation to give 
us the nth prime. There is no such formula. It would also be nice to 
have a simple formula to yield the next prime. Again, no such 
formula exists. We must be willing to accept something less. 

FORMULAS THAT PRODUCE PRIMES 
Many formulas do exist that produce nothing but prime num

bers. These formulas do not produce each successive prime nor do 
they predict the next prime in sequence. But each time they are 
used, a prime pops out. However, as with the formulas in the 
previous section, they are only curiosities and of no real help in 
computing prime numbers. Our first example is actually rather 
simple. Again, we use the square brackets to mean we are only 
considering the whole number part of the number inside. 

t(n) = [(1.3064)3n
] 

In this equation,t(n) is the prime we get when we substitute the 
integer n into the right side of the equation. After substituting in n 
we compute the resulting number and then consider only the 
whole number part. For example, let n = 1. This gives us: 

t(1) = [(1.3064)3'] = [(1.3064)3] = [2.2296] = 2 



168 MATHEMATICAL MYSTERIES 

Hence, the first number we get from this is 2 which is, indeed, 
a prime. Now let's substitute 2 for n. 

f(2) = [(1.3064)3'] = [(1.3064)9] = [11.0837] = 11 

Again we get a prime, the number 11. Next we let n = 3. 

f(3) = [(1.3064l] = [(1.3064)27] = [1361.5332] = 1361 

The number 1361 is also prime. However, at this point we can 
see what is happening. As n increases, the values of f(n) increase 
even faster. f(4) is very large, a number with ten digits. f(5) is a 
number with 29 digits. Hence, this formula increases in value so 
fast that it is of little use in generating a meaningful list of prime 
numbers. 

Another formula that produces only primes is: 
1.92878 

.2 

g(n) = [22 

where the number of exponents to the first 2 is equal to n. This 
formula is a little more difficult to use. If we let n = 1 then: 

g(l) = [21.92878] = [3.8073] = 3 

Three is a prime number. Notice that when n ::: 1 we have only 
one exponent over the 2. If n ::: 2 then: 

g(2) = [22"""'] = [23.8073] = [13.99976] = 13 

Here again, we get a prime number. Now let n = 3: 
1.92878 

g(3) = [222 ] = [213.99975] = [16381.151] = 16,381 

Again, we get a prime number. Yet we are beginning to generate 
primes so large they are hard to handle. g(4) is a prime with 4932 
digits. As can be seen, continuing with this formula would get us 
into numbers which are just too difficult to calculate. When using 
these two formulas, remember that the two constants used here, 
1.3064 and 1.92878, are only approximations, since the exact values 
for these constants have not been precisely computed.3 

We have seen formulas which always give us prime numbers, 
but they are of little use since they quickly explode into numbers 
too large to handle. Hence, they are of limited value. 
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Before we consider other formulas that produce primes, it is 
useful to introduce a helpful concept. All numbers can be factored 
into their prime numbers, of course. If two numbers, when fac
tored, have no prime numbers in common then we say that they 
are prime to each other or that they are relatively prime. While 10 
factors into 2·5, 21 factors into 3·7. Even though 10 and 21 are not 
prime numbers, they are prime to each other because they do not 
have a prime number in common. Consider the numbers 10 and 15 
which factor into 2·5 and 3·5. They share the prime number 5 and, 
therefore, are not prime to each other. 

Another way to say the same thing is to speak of the greatest 
common divisor (GCD) between numbers. The greatest common 
divisor of two numbers is just the product of all the prime numbers 
they share. Hence, the GCD of 10 and 15 is 5. No other number 
larger than 5 evenly divides both 10 and 15. If two numbers have 
no primes in common, then their GCD is 1. 

Definition: Two numbers are prime to each other (share no 
primes) when their GCD is l. 

Now we will consider a set of equations that do not always 
produce primes, but they still produce a high percentage of primes. 
We will consider first, second, and third degree polynomials which, 
remembering our high school algebra, are equations with the fol
lowing forms: 

First degree polynomial f(x)=AX+B 

Second degree polynomial f(x) = AX2 + BX + C 

Third degree polynomial f(x) = AX 3 + B ~ + CX + D 

In the above equations, f(x) is the number (hopefully a prime) 
we are calculating. The A, B, C, and D are coefficients, which are 
whole numbers, while X takes on the value of successive whole 
numbers. We may be tempted to ask: Does there exist some poly
nomial that generates only prime numbers when substituting inte
gers in for X? No. Unfortunately, every polynomial with integer 
coefficients will have infinitely many values of X which produce 
composite numbers. Therefore, we can never hope to find a regular 
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polynomial of any degree which will produce 100% primes. We 
have to settle for something substantially less. 

We begin with the first degree polynomials which have the form 
AX + B. The number produced from the polynomial AX + B can 
only be prime when A and B are prime to each other, in other words, 
when they are relatively prime. If A and B are not prime to each 
other, then AX + B will be a composite number. If A and B are prime 
to each other then the resulting number might be prime. This is 
restated in a well-known theorem named after Peter Gustav Lejeune 
Dirichlet (1805-1859), who was a student of Carl Gauss. 

Dirichlet's Theorem: If A and B are prime to each other, then AX 
+ B is a prime for infinitely many values of X. 

Dirichlet's fame, in part, comes from the fact that he helped 
make the work of the great mathematician, Carl Gauss, available 
to others. His 1837 proof of this theorem using higher mathematics 
of analysis demonstrated the remarkable fact that the mathematical 
fields of analysis and number theory are intimately connected. 

Dirichlet's Theorem also gives us the following result: Since 1 
is prime to every other number, then there must be an infinite 
number of primes of the form An + 1 where A is any natural 
number. 

We know from Dirichlet's theorem that if A and B are relatively 
prime (share no primes) then there exist an infinite number of 
primes of the form AX + B. Yet, this is not enough. What we want 
are specific polynomials which will produce a high number of 
primes. 

If we now let A = 2 and B = 1 we get the polynomial2X + 1. This 
polynomial will generate the odd numbers or 1, 3, 5, 7, ... (assum
ing we begin with X = 0). Hence, all but one prime (the number 2) 
will be in this sequence. How good is 2X + 1 at generating primes? 
For the first 1000 terms in the sequence, we get 302 primes for 
30.2%. As we continue substituting greater values into 2X + I, the 
percentage of primes we generate decreases because the overall 
density of primes decreases. 

Another first degree polynomial producing a reasonable num
ber of primes is 6X + 5. Notice that 6 and 5 are relatively prime. This 
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polynomial produces 39.6 percent primes for the first 1000 values 
of X. Another first degree polynomial producing numerous primes 
is 30X - 13 which yields 41.1 percent primes for the first 1000 values 
of X. This is about as good as first degree polynomials get. 

For improved prime generators we must look at the second 
degree polynomials having the form AX2 + B X + C. One productive 
polynomial was discovered by Euler in 1772: f(x) = XZ + X + 41. 
Here, the three coefficients (A, B, and C) are 1, 1, and 41 respectively. 
Let's see what happens when we let x = O:f(O) = 02 + 0 + 41 = 41. 
Very good, we got the prime number 41. Let's try x = 1. 

f(1) = 12 + 1 + 41 = 43 

Nice! We got another prime. With excitement surging through our 
veins we look at Table 9 which shows f(x) for x = 0 through 39. All 
40 values of f(x) are prime! Euler must have felt a great shock of 
excitement when he computed these first 40 solutions. But, things 
begin to fall apart as we continue computingf(x), for the very next 
substitution with x = 40 gives us the composite number 1681 which 
is equal to 41·41. Therefore, our polynomial does not generate all 
primes, yet it does produce many primes. 

Even though Euler's polynomial has begun to fail, it still pro
duces primes at a high rate. For values of x from 40 through 79, the 
polynomial produces 33 primes and only seven composite num
bers. In the next 40 numbers (from 80 to 119) it generates 11 

Table 9. First 40 Solutions for X2 + X + 41, All of Which Are Prime 

X t(X) X t(X) X t(X) X t(X) 

0 41 10 151 20 461 30 971 
1 43 11 173 21 503 31 1033 
2 47 12 197 22 547 32 1097 
3 53 13 223 23 593 33 1163 
4 61 14 251 24 641 34 1231 
5 71 15 281 25 691 35 1301 
6 83 16 313 26 743 36 1373 
7 97 17 347 27 797 37 1447 
8 113 18 383 28 853 38 1523 
9 131 19 421 29 911 39 1601 
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composites, and from 120 to 159 we find 13 composites. If we test 
Euler's polynomial through the first 1000 values of x we find that 
it produces primes 58.1 % of the time. This is a reasonable improve
ment over the 41.1 % primes we could get from the best first degree 
polynomial. 

As E. Karst proved in 1973, the second degree polynomial 
producing the greatest number of primes for the first 1000 values 
of X is 2X2 - 199, producing 598 primes.4 When we use a first degree 
polynomial to generate numbers by substituting successive values 
for X we get an arithmetic progression. An arithmetic progression, 
remember, is a sequence of terms where the difference between 
each term and its successor is a fixed or constant amount. What 
kind of number sequences do second degree polynomials produce? 
If we look at the successive values in Table 9 we find the first five 
differences to be: 2,4,6,8, and 10. The difference between these five 
numbers is two. Hence, the second differences are constant. With 
the first degree polynomials, the first differences were constant and 
with the second degree polynomials the second differences are 
constant. This can be generalized to higher degree polynomials. If 
we have an nth degree polynomial, then the nth differences be
tween terms will be constant. 

What about third degree polynomials, which have the form 
AX 3 + BX 2 + ex + D? Unfortunately, little is known about the 
prime generating characteristics of polynomials of degree 3 and 
higher. By experimentation it is easy to find third degree polyno
mials which produce greater numbers of primes than a random 
search, yet none has so far produced more than Karst's or Euler's 
second degree polynomials for the first 1000 values of X. One 
interesting third degree polynomial is X3 + ~ - 349. This polyno
mial produces 411 primes for the first 1000 values of X, which is 
exactly what we got with the first degree polynomial 30X - 13. 

Table 10 shows the various polynomials we have considered 
along with the number of primes each generates for X = 1 to 1000, 
and the range of values for the polynomials for these 1000 values. 
Also shown is the percent of numbers which are prime numbers 
within that range. 



PRIMES IN DEPTH 173 

Table 10. Comparison of Prime Generating Polynomials 

Number of Primes Range of Percent Primes in 
Polynomial for X = 1 to 1000 Polynomial Values Range 

2X+ 1 302 3 to 2,001 15.1 
6X+5 396 11 to 6,005 13.0 

30X -13 411 17 to 29,987 10.8 
X2+X+41 581 41 to 1 Million 7.85 
2X2 -199 598 -197 to 2 Million 7.45 

X3 +X2-349 411 -347 to 1 Billion 5.08 

Why would we want polynomials that find concentrations of 
primes? Certainly, we already know the primes from 1 to a million 
or a billion. Yet, an intriguing question is whether equations exist 
of any type that are good at finding primes in great numbers at very 
high ranges of the natural numbers. Later we willieam the utility 
of huge primes, 75 or 100 digits long, in secret coding systems. A 
potential use of prime generating equations is to produce sets of 
large numbers that contain high percentages of primes. This could 
reduce the search time for individual primes. 

REALLY BIG PRIMES 

It would seem that we humans just can't help ourselves: we are 
compelled to collect things. Collectable things might include the 
rarest major league baseball card, or the oldest beer can, or maybe 
just the record for the most goldfish swallowed. Mathematicians, 
it would seem, are not immune to this odd behavior. When it comes 
to prime numbers, they are constantly looking for the largest 
known prime. Of course, they are well aware that the primes are 
infinite, and therefore no largest one exists. But they can't help 
looking for one larger than the largest currently known. In fact, 
looking for larger primes is a good way to test new computers. The 
kinds of programs used to search for large primes are the very 
programs useful in testing new circuitry, for they require that the 
new computers complete huge numbers of sophisticated calcula
tions in a short time. Several record-busting primes have been 
discovered using these programs. 
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Before his death in April of 1991, Samuel D. Yates of Delray 
Beach, Florida, served as a modem day Father Mersenne by collect
ing all known prime numbers with more than 1000 digits. He 
named such primes Titanic primes. 5 Many of these large primes have 
strange characteristics. For example, the 230th largest prime, with 
a total of 6400 digits, is composed of all9s except one 8. That's 6399 
9s and one 8! The 321st prime, with 5114 digits, is composed of only 
Is and Os. The 41st prime (11,311 digits) is a palindrome, reading 
the same forward or backward. The 297th prime (5323 digits) has 
a single 4 followed by 5322 nines. 

Certainly one of the strangest primes is the 713th largest prime 
or (101951).(101975 + 1991991991991991991991991) + 1. This oddnum
ber, with 3927 digits, was discovered by Harvey Dubner in what 
year? You guessed it-1991! 

These large primes attracted enough attention that Chris K. 
Caldwell at the University of Tennessee maintains a list of Samuel 
Yates' Titanic primes on the World Wide Web on the Internet. This 
file has grown to over 9000 primes, with a new category for primes 
over 5000 digits called Gigantic primes. 

The second to the largest prime, discovered in 1992 by David 
Slowinski and Paul Gage, is 2756839 -1. With 227,832 digits it looked 
at the time to be an enduring contender for the crown. It was 
discovered after David Slowinski of Cray Research Inc. of Chip
pewa Falls, Wisconsin, developed a computer program specially 
designed to search for a special kind of prime called a Mersenne 
prime. Scientists at AEA Technology Harwell Laboratory in Har
well, England, decided to use Slowinski's program to test a new 
Cray computer. Slowinski provided the Harwell team with 100 
large numbers he thought might be Mersenne primes. After only 
19 hours of computation, the computer kicked out the second 
largest prime ever discovered. Here is one good example of a prime 
being discovered while testing a new computer. 

But the above prime is only the second largest. We are now 
ready for what you have been holding your breath for-the biggest 
prime known (a big drum roll, please). This is it-Number One, the 
record prime until someone discovers a bigger one. 



PRIMES IN DEPTH 175 

The Gargantuan Biggest Prime = 2859433 - 1 

This prime has a total of 258,716 digits, and was also discovered 
by the team of Slowinski and Gage in 1994. To fully appreciate just 
how big these last two primes are, we can compare them to the third 
largest prime which is 391581.2216193 - 1. This number, discovered 
in 1989 by a team of prime hunters, has only 65,087 digits. That's 
only approximately one fourth the number of digits of our two 
heavyweights. 

You might be asking by now: What's the big deal? Why would 
we want to find big primes anyway? We have already mentioned 
the testing of computers, but the real reason goes far beyond this 
practical application. First, the ability to find and verify such large 
primes is a yardstick on our ability to develop both hardware and 
computational routines. The attempt to find even larger primes 
may uncover new and productive number crunching techniques. 
However, even this is not the primary reason. For this we must 
simply point to the indomitable nature of men and women to excel 
in their pursuit of excellence. If there is a higher mountain to climb, 
we must climb it. If there is a larger prime to find, by gum, we're 
going to find it! By the time you read this sentence, the record for 
the largest prime will, in all likelihood, have already been broken, 
for not only are individual mathematicians calculating away for the 
record, but whole teams of mathematicians with sophisticated 
computer programs are in the competition. 

SPECIAL KINDS OF PRIMES 

Now it's time to look at some special kinds of prime numbers. 
Of course, the most unique prime number has already been dis
cussed: It's the number 2, the only even prime. Oddness and 
evenness is understood by all of us at an early age, and divides all 
numbers into two groups. All even numbers with the exception of 
2 are composite numbers. Therefore, to study prime numbers is to 
study odd numbers and some of our special primes are, indeed, 
very odd. 

Twin primes are pairs of primes of the form P and P + 2. All twin 
primes differ by only two numbers. Many examples of twin primes 
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Table 11. Number and Percent of Twin Primes 

Number of Twin Percent Twin 
n Number of Primes Primes Primes 

103 168 35 20.83 
104 1,229 205 16.68 
105 9,592 1,224 12.76 
106 78,498 8,169 10.41 
107 664,579 58,980 8.87 
108 5,761,455 440,312 7.65 
109 50,847,534 3,424,506 6.73 
1010 455,052,512 27,412,679 6.02 
1011 4,118,054,813 224,376,048 5.45 

exist in the smaller numbers: 3 and 5,5 and 7, 11 and 13. An example 
of a substantially larger pair is 55,049 and 55,051. Is there an infinite 
number of twin primes? No one knows! However, as the natural 
numbers get larger, the percent of primes which are twin primes 
decreases. Look at Table 11. While approximately 20% of the 
smaller primes are also a member of twin primes, this percentage 
decreases among the larger primes. It is not presently known 
whether twin primes thin out until they disappear entirely. The 
largest known twin primes are 697053813.216352 + 1 and 
697053813.216352 -1, which are numbers with 4932 digits each, found 
by Indlekofer and ]a'rai in 1994. 

Remember when we formed the infinite series of all the recip
rocals of prime numbers? That series, we know, is unbounded. But 
what about the series formed from the reciprocals of all twin 
primes? Certainly, the twin prime series is less dense than the series 
using all the primes, since the fraction of primes that are twins 
diminishes quickly once we get into larger and larger numbers. In 
fact, we really don't know if such a series would even be infinite, 
since we don't know if there exist infinitely many twins. 

Even though mathematicians don't know whether this series 
has an infinite number of terms, they do know that it converges. In 
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1919 V. Brun proved it converged, and then went on to prove that 
for any large number N, somewhere in the number sequence exists 
a succession of N primes that are not twins. This is similar to the 
idea that for any number, N, we can find a succession of N compos
ite numbers. The value that the reciprocal twin sum converges to 
is called Brun's Constant and has been calculated to approximately 
1.90216. We don't really know what kind of number this is: Is it 
rational? Algebraic? Transcendental? Knowing that the series of 
reciprocal twin primes converges while the reciprocal of all primes 
diverges tells us that twin primes are relatively scarce compared to 
all primes even if they tum out to be infinite in number. 

MERSENNE AND FERMAT PRIMES 

Father Marin Mersenne (1588-1648) was a French Minimite 
friar who was also an amateur mathematician. He acted as a kind 
of post office for other mathematicians of his day including Pierre 
de Fermat. Besides his involvement in mathematics, he showed the 
relationship between the period of vibration of a violin string and 
its density, tension, and length. He is known to have defended both 
Rene Descartes and Galileo Galilei against theological criticism. 

Mersenne numbers have the form Mp = 2P - 1 where p is a prime 
number. Hence, the following numbers are Mersenne numbers: 22 
- 1 = 3, 23 - 1 = 7, and 25 - 1 = 31. Notice that these three numbers, 
3, 7, and 31, are primes. Not all Mersenne numbers are primes. 
Mersenne M11 is composite for 211 -1 = 2047 = 23·89. In fact, to date 
there are only 32 known Mersenne primes. How many Mersenne 
numbers are prime and how many are composite? No one knows. 
There may be an infinite number of both kinds. 

Historically, Mersenne primes have been important, often hold
ing the record as the largest primes known. Currently the largest 
and third largest primes are Mersenne numbers. The fourth largest 
prime is the Mersenne prime 2216,091 - 1, which has 65,050 digits and 
was discovered in 1985 by David Slowinski. The exponents of 2 
which might yield a Mersenne prime have been searched from 
216,091 to 355,031 and again from 430,000 to 524,287 without 
revealing any new Mersenne primes. A select group of computer 
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FIGURE 37. Pierre de Fermat, 1601-1665. 

scientists, calling themselves the "Gang of Eight," continues the 
quest! 

Pierre de Fermat (1601-1665) was possibly the world's greatest 
amateur mathematician and responsible for founding modem 
number theory (Figure 37). Fermat conjectured that numbers of the 
form 

are always prime. Such numbers are now called Fermat numbers. 
We now know that Fermat's conjecture is false. Some Fermat 
numbers are prime and some are not. Following is a list of the first 
seven Fermat numbers: 
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Fo = 3 
F1 =5 
F2 = 17 
F3 = 257 
F4 = 65,537 
F5 = 641 x 6,700,417 
F6 = 274,177 x 67,280,421,310,721 

prime 
prime 
prime 
prime 
prime 
composite 
composite 

179 

As you can see, the Fermat numbers grow in size very quickly. 
The Fermat numbers F7, Fs, F9, and F11 have all been factored and 
are composite. The largest known Fermat prime is F4• Pierre de 
Fermat didn't have a table of primes large enough to see that F5 was 
composite. A century later Leonhard Euler discovered the factors 
to F5 and demonstrated that it was composite. The largest known 
Fermat number is F23471 which has 107000 digits. 

Are there an infinite number of Fermat primes? Composites? 
As with the Mersenne numbers, no one knows. 

GOOFY PRIMES 

A primorial number has the following form: p# + 1 where p# is 
the product of all the primes less than or equal to p. Hence, 3# + 1 
= 2·3 + 1 = 7. Therefore, the primorial number 3# + 1 is a primorial 
prime. Not all primorials are primes since 13# + 1 = 2·3·7·11·13 + 1 
= 30,031 = 59·509. The largest known primorial prime is 24029# + 1 
which has 10,387 digits, and was discovered by Chris Caldwell in 
1993. 

A repunit is a number with all the digits equal to 1. Hence, 1, 11, 
111, and 1111 are all repunits. We generally identify repunits as Rn 
where n gives the number of Is. The only known prime repunits 
are R2, R19, R23, R317, and RI0316• If Rn is a prime then n must also 
be a prime. But, just because n is prime does not guarantee that the 
resulting Rn is prime. Are there infinitely many prime repunits? No 
one knows. 

Some primes, called palindromes, read the same from the left 
or the right. Hence, 11 and 10,301 are both palindromes. The largest 
known palindrome, with 11,311 digits, is: 
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1011,310 + 4,661,664 X 105652 + 1 

Discovered in 1991 by Harvey Dubner, it is the 41st largest prime. 
Some Fibonacci numbers are primes. The largest known to date 

is FN(2971) (that is, the 2971st term of the sequence), discovered by 
Hugh C. Williams? Are there infinitely many Fibonacci primes? No 
one knows. 

Another strange prime is the Sophie Germain prime. Mademoi
selle Sophie Germain (1776-1831) was a Frenchwoman who con
tributed to the theory of acoustics, the mathematical theory of 
elasticity, and higher arithmetic. Afraid that the great mathemati
cian Carl Gauss would be prejudiced against a woman mathema
tician, she corresponded with him under the name of Mr. Leblanc. 
Yet, when her real identity became known, Gauss encouraged and 
delighted in their extended correspondence. Unfortunately, they 
never met in person, and she died before receiving an honorary 
doctor's degree, recommended by Gauss, from the University of 
Gottingen. 

A prime number p is a Sophie Germain prime if you can double 
it, add 1 and get another prime, i.e., if p is prime and 2p + 1 is also 
prime. The smallest Sophie Germain prime is 2 because 2·2 + 1 = 5 
which is prime. The next is 3 since 2·3 + 1 = 7. The largest known 
Sophie Germain prime is: 9402702309.103000 + 1 (hence, twice this 
number plus 1 is also a prime) which has 3010 digits and was 
discovered by Harvey Dubner in 1993. It is unknown whether there 
are an infinite number of Sophie Germain primes. 

A rather obscure kind of prime is the Wilson prime. The prime 
p is a Wilson prime when (p -1)! + 1 is evenly divisible by p2. 

The smallest Wilson prime is 5 for (5 -1)! = 2·3·4 = 24. If we add 
1 to 24 we get 25 which is divisible by 52. There are only three known 
Wilson primes: 5, 13, and 563. No one knows if there exists an 
infinite number. 

As the cliche goes, we have only scratched the surface when it 
comes to strange primes. Mathematicians, in their attempt to know 
and understand prime numbers, have defined many more interest
ing types. For example, there are not only Fermat primes, but 
generalized Fermat primes. There are tetradic, pandigit, and 
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prime-factorial plus one primes. And there are Cullen, multifacto
rial, beastly palindrome, and antipalindrome primes. Add to these 
the strobogrammatic, subscript, internal repdigit, and elliptic 
primes. In fact, a whole new branch of mathematics seems to be 
evolving that deals specifically with the attributes of the various 
kinds of prime numbers. Yet understanding primes is only part of 
our quest to fully understand the number sequence and all of its 
delightful peculiarities. 

LINE THEM UP IN ROWS AND COLUMNS 

We can do some fun things with numbers if we arrange them 
in rows and columns. Doing so, we find that some kinds of num-
bers fall into certain columns. This happens with prime numbers. 
Look at Table 12. Here we have arranged the numbers in six 

Table 12. A Six-Column Array of Numbers 
(primes are marked) 

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

2 3 4 S 6 
7 8 9 10 11 12 

13 14 15 16 17 18 
19 20 21 22 23 24 
25 26 27 28 29 30 
31 32 33 34 35 36 
37 38 39 40 41 42 
43 44 45 46 47 48 
49 50 51 52 S3 54 
55 56 57 58 S9 60 
61 62 63 64 65 66 
67 68 69 70 71 72 
73 74 75 76 77 78 
79 80 81 82 83 84 
85 86 87 88 89 90 
91 92 93 94 95 96 
97 98 99 100 101 102 

103 104 105 106 107 108 
109 110 111 112 113 114 
115 116 117 118 119 120 
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columns beginning with the number 1 in the first row, first column. 
We have also highlighted those numbers that are primes. Notice 
that in Table 12, all the primes, except for 2 and 3, are either in 
column 1 or 5. What's going on? It turns out that all the infinity of 
prime numbers, except 2 and 3, fall either in the first or fifth column. 
In other words, after the first row, no primes exist in the other four 
columns. We can express this algebraically by saying that all primes 
larger than 3 have the form 6n + 1 or 6n + 5, where n is some integer. 
Unfortunately, there are also many composite numbers with this form. 

When mathematicians talk about numbers being in various 
rows and columns of a number array, they use a special language. 
If two numbers, A and B, share the same column when all the 
natural numbers are placed in an array with m columns, then they 
say that "A is congruent to B modulo m." This is written symboli
cally as: A == B mod m (but it really means A and B are in the same 
column.) Carl Gauss developed this way of relating numbers. For 
example, we can look again at Table 12 and see that 34 and 16 are 
in the fourth column. Therefore, we can write 34 == 16 mod 6, and 
we say that 34 is congruent to 16 modulo 6. Notice that if we divide 
both 34 and 16 by 6 we get the same remainder, or 4. This is always 
the case, i.e., when A is congruent to B mod m, then we get the same 
remainder when we divide both A and B by m. 

The congruence relationships between numbers has grown into 
an entire branch of mathematics known as congruence theory. 
Congruence theory can be very helpful in solving certain problems 
involving large numbers. This is because some solutions depend 
more on which column a number falls into, rather than its absolute 
magnitude. We will see an example of how congruence arithmetic 
is used to solve a problem when we investigate numbers used in 
secret codes. 

Thinking of numbers in columns and using the congruence 
notation can be of great help with certain problems, and can help 
us in understanding prime numbers. For example, we can now say 
that all primes larger than 3 are either congruent 1 mod 6 or 
congruent 5 mod 6; that is, will either leave a remainder of 1 or 5 
when divided by 6. 
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We should look at Table 12 one more time for there are still 
secrets lurking within. Remember when we talked of two numbers 
being relatively prime to each other? A and B are relatively prime 
when they have no common factors. Now, notice that both 1 and 5 
are relatively prime to 6 while the other column numbers are not: 
2,3, and 4 are not prime to 6, but share at least one factor. This also 
can be generalized into a rule. For any array with m columns, the 
primes beyond the first row will only occur in those numbered 
columns that are prime relative to m. For example, in an array of 
seven columns we can say that primes will occur in the first six 
columns since the numbers I, 2, 3, 4, 5, and 6 are all prime relative 
to seven. However, in an S-column array, the primes beyond the 
first row will only occur in columns I, 3, 5, and 7 since these 
numbers are all relatively prime to S. 

We now have a nice relationship between the location of prime 
numbers in arrays, and those numbers which are prime to nand 
less than n. Such numbers, in fact, identify the columns where 
primes occur. We actually have a name for a function that counts 
the number of numbers less then n and prime to n.1t is called Euler's 
q,-function and is designated as q,(n). (This use of q, should not be 
confused with the q, used to designate the Golden Mean. The two 
are entirely different.) We have already seen that q,(6) = 2 since two 
numbers less than 6 are prime to 6 (1 and 5), and q,(7) = 6 (1,2,3,4, 
5,6) while q,(S) = 4 (1,3, 5, 7). In order to use q,(n) in general formulas 
where the index may be I, we define q,(1) = 1. 

We have seen how various formulas can be used to find the 
number of primes less than a certain number, and we have studied 
other formulas that generate sequences of prime numbers. How
ever, we are left with a sense of dissatisfaction with such formulas 
because they are really curiosities, and not useful in computations. 
This leads to the natural conclusion that we still have much more 
work to do in solving the riddles surrounding prime numbers. The 
search for large primes and special kinds of primes reinforces our 
desire to gain a better grasp of how primes are distributed in the 
natural number sequence. 



CHAPTER NINE 

PRIMES AND SECRET CODES 

... but as the roads between Media and Persia were 

guarded, he had to contrive a means of sending word 

secretly, which he did in the following way. He took a 

hare and cutting open its belly without hurting the 

fur, he slipped in a letter containing what he wanted 

to say, and then carefully sewing up the paunch, he 

gave the hare to one of his most faithful slaves, dis

guising him as a hunter with nets, and sent him off 

to Persia . .. 1 

HERODOTUS (440 B.C.) 

A BRIEF HISTORY OF SECRET CODES 

~umankind's desire to conceal sensitive messages is only 
.7l/ surpassed by its ingenuity in devising the means to do so. 
Properly speaking, the secret to be sent is called a message (also 
called the plaintext). The sender alters this message by enciphering 
it or creating a ciphertext which cannot be read by any unauthorized 
person (an intruder or spy) who may intercept it. This cipher is 
transmitted to the receiver who deciphers the ciphertext, changing 
it back into the original message. This whole science is called 
cryptography. An unauthorized person who wishes to understand 

184 
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the message must break the cipher. Breaking ciphers is the science 
of cryptanalysis. 

The importance of maintaining state secrets through cryptog
raphy cannot be overstated. In past wars, great battles have been 
decided because an enemy was or was not able to "crack" a secret 
code. The ability of American cryptanalysts to break the Japanese 
naval code JN25 during World War II was pivotal to the American 
victory over the superior Japanese fleet at the battle of Midway. 
Governments have spent huge amounts to break other countries' 
codes to steal their secrets. The National Security Agency (NSA) of 
the United States owns rooms full of modem computers used to 
study secret codes. Yet, because the ultimate goal of cryptography 
is to keep secrets, there is not a great body of literature on crypto
graphic techniques. A modem twist to the spy game is industrial 
espionage, where one international company tries to steal trade 
secrets from it competitors. 

As early as 450 B.C. the Spartans of Greece used a cipher for 
sending messages. A belt, called a scytale, was wrapped around a 
wooden cylinder. The message was then written on the belt. Un
wound and worn by the courier, the belt was just a jumble of marks, 
but when rewound on a similar cylinder by the receiver the belt 
revealed the desired message. Julius Caesar supposedly used letter 
substitution for his secret writing. Yet, little mention of codes or 
ciphers can be found for a thousand years after Greece's late 
classical period of 100 A.D. During the 13th century, Roger Bacon 
described several coding systems and completed a book written in 
cipher which has never been broken. The first modem work on 
cryptography was written by a German abbot, Johannes 
Trithemius, in 1510. 

The ability of radios to quickly transmit orders to soldiers in the 
field or diplomatic instructions to embassies generated a great need 
for 20th century governments to develop good ciphers. This re
sulted in a technological explosion of means for sending messages 
as well as breaking them. 

Two kinds of classical ciphers exist: transposition and substitu
tion. In the transposition cipher, the letters comprising the message 
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are scrambled according to a specific procedure. The receiver then 
unscrambles the letters by reversing the procedure. One such trans
position cipher is the route cipher where the sender makes a rectan
gle out of the letters of the message. He then chooses a route 
through the rectangle which scrambles the letters. The receiver can 
reconstruct the proper rectangle since he or she knows the route. 

One of the most common transposition cipher techniques used 
during World War II was a ciphering machine which had 26 disks, 
each rotating independently of the others around a common axis. 
On the surface of each disk was a complete, but scrambled, alpha
bet. The disks were rotated until part of the message could be read 
across the disks. The cipher for that part of the message was then 
read across the disks at a different location. The German version of 
this machine was called the Enigma, one of which was obtained by 
the British. The Enigma, in conjunction with cryptanalysis tech
niques, allowed the British to decipher many German messages, 
which significantly altered World War II's outcome. 

With the substitution cipher, letters or groups of letters of the 
message are replaced with other letters or symbols. However, a 
simple substitution cipher is relatively easy to break by an intruder. 
Every language has certain characteristics which, when under
stood by the intruder, makes it possible to guess at specific letters 
in the cipher. For example, the letter E is the most common letter in 
English, French, Spanish, and German. Knowing this, the intruder 
substitutes E into the most frequent letter or symbol of the cipher. 
Next he or she tries other letters. If the enciphered message is 
sufficiently long, this type of analysis will frequently break the 
code. 

Many 20th century ciphers have been based on a two-step cipher. 
In this technique, the message is altered by both a transposition and 
a substitution method. First, the message is changed by substitut
ing a two-digit number for each letter. This allows for sending the 
message in digital code over various kinds of telecommunications 
lines including telephone, radio, and microwave transmitters. Af
ter the letters are changed into numbers, the numbers are scram
bled. 
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The most secure cipher ever devised is the two-step cipher 
known as the one-time sheet or one-time tape. This system uses a book 
consisting of pages filled with random digits. No two pages repeat 
the same sequence of numbers. The sender first substitutes two
digit numbers for each letter in the message. Then a sequence of 
random numbers is taken from one page (sheet) of the book and 
subtracted from the message digits. This produces a random se
quence of numbers, and an intruder cannot use any common 
technique to break the code. Once used, a sheet is tom out of the 
book and discarded to insure that particular sequence of numbers 
will never be used again on a message. The cipher's receiver uses 
the same page in his or her book to add back the random digits and 
regenerate the original message. 

Since there are no repeating patterns in a one-time sheet cipher, 
an intruder must either steal a copy of the random number book, 
or steal a copy of the message before enciphering or after decipher
ing. A tough job. The real drawback with this cipher system is that 
the sender must constantly produce random number books and get 
them securely delivered to the receivers. For high volume commu
nications, this becomes a daunting problem. 

One current popular cipher is the Data Encryption Standard 
(DES) which is used to encipher computer messages.2 The cipher 
began as the Lucifer cipher developed by IBM but was released by 
the computer giant in the mid-seventies to become the standard for 
banks and government agencies, who needed to keep their trans
actions confidential. In 1977 the U.S. government adopted DES as 
an official standard for data encryption. The cipher uses a key of 56 
binary bits. Since there are 72 quadrillion ways to assign 56 bits, 
individual keys are relatively safe from code breakers. For example, 
a home computer would require tens of thousands of years to test 
all possible combinations in just one 56-bit key. 

THE PUBLIC-KEY CODE 

All of the classical cipher systems, including the DES system, 
suffer from two serious defects. First, the receivers must posssess 
a secret key for deciphering received messages. How do you de-
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liver these keys to dozens or hundreds of potential users without 
sending out couriers to hand deliver them? Another problem in
volves message signatures. As receivers, how do we know a mes
sage is authentic since, with modem telecommunications, we don't 
actually "see" a physical signature. When we download data or 
programs into our computers, how do we know it has not been 
tampered with and is virus-free? Having a signature is also impor
tant when messages contain legal records or financial transactions. 

A new kind of code, called a public-key code, solves both these 
problems. A receiver makes public an enciphering key for all to see. 
Using this key, anyone can be a sender, enciphering a message and 
sending the ciphertext to the receiver. The receiver has a secret 
deciphering key which he or she uses to decipher the ciphertext and 
produce the message. "How can this be?" you say. "If I can encode 
a message, then I can just reverse the procedure and decode the 
message." But this is not true with a public-key code. With it, I can 
encipher a message if I have the enciphering key but can't decipher 
it without the deciphering key. The enciphering key works in only 
one direction: to encipher messages. Since the enciphering key is 
openly published, there is no need for the receiver to send couriers 
with secret keys to each potential sender. It is also impossible for 
senders to accidently or deliberately reveal any deciphering key to 
would-be intruders. 

The mechanism for achieving the encoding and decoding de
pends on a very large composite number that factors into only two 
large prime numbers. The sender uses the composite number to 
encode the message. The receiver uses the two prime number 
factors to decode it. The process's security depends on the sender's 
inability (or the public's) to factor the composite number. 

Through an ingenious device, the sender can also "sign" the 
message in such a way that uniquely identifies it. Thus, the public
key code solves the second problem of signatures. Both the sender 
and receiver have their own public and secret keys. If the sender 
wishes to attach his signature to a message, he simply encodes his 
name with his secret key. The receiver can then apply the sender's 
public key to read the sender's name. The message must have corne 
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from the sender, since only the sender possesses his secret key 
which will encipher his name so that his public key will decipher 
it. 

Solving these two problems makes the public-key cipher per
fect for commercial uses. In this modem day of computers and high 
speed communications, businesses need to transmit large volumes 
of secret, secure data to subsidiaries, suppliers, head offices, and 
customers. Using the public-key cipher requires only that the re
ceiver make public his or her enciphering key. This cipher system 
is new, yet it is currently being adopted as the standard cipher 
system of the future. In 1976 Whitfield Diffie and Martin Hellman 
outlined the mathematics for a public-key system.3 Based on their 
ideas, a commercial encryption system was invented by Ronald 
Rivest, Adi Shamir, and Leonard Adleman in 1977.4 In 1982 the 
inventors founded RSA Data Security, Inc. of Redwood City, Cali
fornia, to market the system. 

HOW IS IT DONE? 

The public-key cipher system is based on the mathematics of 
prime numbers, and how numbers distribute themselves in rectan
gular arrays. The system uses both transposition and substitution. 
First each alphabetic letter from the original message is assigned to 
a two-digit number-this is substitution. Next, mathematics is 
used to scramble the two-digit numbers. This is transposition. To 
understand how the numbers are scrambled look at Table 13 which 

Table 13. Five-Column Array 

Column 1 Column 2 Column 3 Column 4 Column 5 

'2' 3 '4' 5 
6 7 '8' 9 10 

11 12 13 14 15 
'16' 17 18 19 20 
21 22 23 24 25 
26 27 28 29 30 
31 '32' 33 34 35 
36 37 38 39 40 
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is just a five-column array of numbers. In it we have placed aster
isks next to each power of the number 2. These include the numbers 
2, 4, 8, 16, and 32. Notice that while 2 is in column 2, 4 moves to 
column 4. Eight is in column 3, 16 is in column 1, and finally 32 is 
back in column 2 again. This movement of powers of numbers to 
different columns repeats itself. In our example, 2 raised to the 5th 
power (25 = 32) ended back in the same column as the original 
number 2. Without completing the table we can predict that the 
next power of 2, that is 64, will be in column 4, while the following 
power, 128 will be in column 3. Notice that 64 divided by 5 leaves 
a remainder of 4 (column 4) and 128 divided by 5 leaves a remain
der of 3 (column 3). Remember that identifying the columns that 
numbers fall into in an array is called congruent mathematics or 
the study of congruences. When A and B share the same column in 
an m arra}j we show this symbolically as A == B mod m, where mod 
stands for modulo. Another way of thinking of the relationship 
between A and B is that they both leave the same remainder when 
divided by m. 

Now let's demonstrate how the characteristic of powers repeat
ing in columns can be used to scramble and unscramble numbers 
in a cipher. First we write the numbers into a five-column array 
such as Table 13. Next we assign the alphabetic letters to various 
columns. Suppose that we assign the letter A to column 2 and the 
letter B to column 3. To encipher our A (which is now the two-digit 
number 02) we could choose to raise 02 to its third power or 23• This 
gives us the number 8 which falls in column 3. Because 23 or 8 is in 
column 3 we change the 02 (representing A) into an 03 (representing 
B). Hence, 02 is enciphered to be a 03 and A becomes a B.1f someone 
tried to read the message (and knew how we assigned numbers to 
letters) they would see the 03 and think it was a B. 

How does the receiver of this ciphered 03 get it back to a 02 and 
its corresponding A? The receiver has the secret deciphering key 
which is to multiply the 03 by the proper power of 2 which in this 
case is 22 or 4. Why would he or she do this? Look again at Table 
13. When we raised 2 to the third power we got 8. If we multiply 8 
by 4 we get 32 which is back in column 2. Because of the laws of 
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congruences, we can also multiply 3 by 4 to get 12 which is also 
back in column 2. In fact, any number in column 3 multiplied by 4 
gets us back to our original column, 2. Therefore, using the deci
phering key of 4 the receiver multiplies 03 to get 12. Twelve is back 
in column 2, so the proper letter to decipher is A. To recap: The 
sender raises 02 to its third power giving us 8, which is in column 
03 (= B). To decipher the 03 (B) back to 02 (A) the receiver multiplies 
the 03 by 4 to get 12, which is in column 2 (= A). 

In order to encipher a number, the sender must know two 
things: the correct power to raise the original number, and how big 
an array is being used so that he or she can reduce this number to 
an appropriate number in the first row. The receiver must also 
know the secret number with which to multiply the cipher and 
return it to the correct column. Of course, this example is exceed
ingly simplified. When we construct our actual cipher we must 
make sure that giving the enciphering key to the public (the poten
tial senders) does not accidentally give away the secret deciphering 
key. 

To make the whole procedure work we must be able to find the 
correct power to use when raising a number from the first row of 
an array so that the resulting number will return to that correct 
column. For that we introduce an elegant theorem by Euler which 
deals with powers of numbers and arrays. 

Euler's Theorem: If nand m are relatively prime, then when we 
raise n to the q,(m) power, the resulting number will be in column 
#1 of an m-array. [If (n,m) = 1 then ncp(m) == 1 (mod m).J 

For convenience, we state the theorem in everyday English. The 
notation following in brackets shows how the theorem might look 
in an elementary number theory book. In this theorem, q,(m) is 
Euler's function, which is the number of numbers less than m and 
prime to m. Hence, q,(m) counts the number of numbers less than 
m that share no primes with m. Euler's Theorem places the original 
number, n, back into column 1 by raising it to the appropriate 
power. But for our secret code we want the number n to return to 
its original column and not column 1. To achieve this, we are going 
to alter Euler's theorem to use in our public-key cipher. By applying 
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the laws of congruences we can multiply both sides of the congru
ence equation in the theorem by n and change the Euler theorem 
to the following: 

Theorem: If n and m are relatively prime, and k is any integer, 
then when we raise n to the k·q,(m)+ 1 power, the resulting number 
will be in column n of an m-array. [If GCD(n,m) = 1 then 
n~(m)+1 == n (mod m).] 

This theorem says that if we take any integer k, multiply by q,(m), 
and add 1 we get the desired power of n to get back to column n. 
This gives us the ability to predict just when the power of a number 
n will retum it to the column that n started in. 

Let's take another example. This time we will start with a 
six-column array of numbers. We'll let n be in the fifth column since 
6 and 5 are relatively prime. Now q,(6) = 2 (there are only two 
numbers less than 6 which are relatively prime to 6, namely 1 and 
5). So if we take 5 to the 2k + 1 power we should get another number 
in the fifth column. Let's see what happens when k = 1. Substituting, 
we get k·q,(m) + 1 = 1·2 + 1 = 3. Five to the third power is 125. One 
hundred twenty-five divided by 6 leaves a remainder of 5, and we 
get a number in the fifth column. It worked. Let's try k = 2. This 
gives us k·q,(m) + 1 = 2·2 + 1 = 5. Five raised to the fifth power is 
3125. Dividing by 6 again, we get a remainder of 5. Hence, 3125 is 
also in the fifth column. Therefore, whenever we raise 5 to the 2k + 
1 power, we get a number which is back in column 5. 

AN EXAMPLE 

We will now review a complete example of how the system 
works. Let's begin with a 55-column array. The number 55 factors 
into 5·11. We can compute q,(55) according to the following simple 
rule: if n = P'q, where P and q are two primes, then 
q,(n) = (p -l)·(q - 1). Therefore, 

q,(55) = (5 - 1)(11 - 1) = 4·10 = 40 

Now we know that any column number prime to 55 which is 
raised to the 40k + 1 power will give a number back in that same 
column. We will let k = 4 so that kq,(55) + 1 = 4·40 + 1 = 161. Now, 
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all the numbers in the first row of a 55-column array which are 
relatively prime to 55 when raised to the 161th power will result in 
a number in the original column. 

The number 161 factors into 7 x 23. One of these two numbers 
will be our public enciphering key and the second will be our secret 
deciphering key. Let 7 be the public key and designate it as E. The 
deciphering key will be 23 and designated as D. Hence: 
ED = k·q,(m) + 1 or 7·23 = 4·40 + 1 = 161. 

We are going to select four columns in our 55-column array 
which are all prime to 55. Let's choose columns 2, 3, 4, and 6. We 
will assign the following letters to these numbers: H = 02, E = 03, L 
= 04, and P = 06. We want our message sender to encipher the 
message HELP in such a way that we, and only we, can decipher 
it. The sender knows we are using a 55-column array and that the 
public-key code is 7. He assigns H = 2, E = 3, L = 4, and P = 6. Next 
he must raise each number (2, 3, 4, and 6) to the seventh power and 
then find out which columns in our array the resulting numbers 
fall into. The sender sets up the following congruences: 

H = 2; enciphered H == 27 (mod 55) 
E = 3; enciphered E == 37 (mod 55) 
L = 4; enciphered L == 47 (mod 55) 
P = 6; enciphered P == 67 (mod 55) 

Now how does he solve for the above congruences to find the 
corresponding columns? It's easy. Two raised to the seventh power 
is 128. Divide 128 by 55 and we get a remainder of 18. Hence, 2 
enciphered becomes 18. In a similar manner we solve for 3, 4, and 
6 to get 42,49, and 41. Our original message has now been enci
phered to be the four numbers: 18,42,49, and 41. 

When we receive these four numbers we solve the following 
congruences to get the plaintext message out: 

First letter 
Second letter 
Third letter 
Fourth letter 

== 1823 == 2 (mod 55) 
== 4223 == 3 (mod 55) 
== 4923 == 4 (mod 55) 
== 4123 == 6 (mod 55) 
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Hence, by raising each of our enciphered numbers to the 23rd 
power and then finding the column each resulting number falls 
into, we get our original numbers back. We now look up how we 
assigned numbers to letters and discover the message reads 
"HELP." 

After looking at these congruences, you may wonder how in 
the world we solve such a monster congruence containing 49 raised 
to the 23rd power. Using the laws of congruences it is relatively 
easy. We solve it by breaking it into a number of easier problems. 
To do this we use the laws of exponents which state: Abc = (Ab), and 
Ab+, = AbA'. Now we can write X == 4923 as 

X == «(492?)2)2·(492)2·492-49 (mod 55) 

To solve this monster we begin with the inside 492 on the left 
and find the appropriate column by dividing by 55 and getting the 
remainder. Forty-nine squared is 2401. Dividing by 55 we get a 
remainder of 36. Hence, we substitute 36 for 492 and have: 

X == (((36)2ff(492)2. 492. 49 (mod 55) 

Now we do the same with 36. Squaring and dividing by 55 gives 
a remainder of 31 and we have: 

Continuing in the same fashion we get: 

X == (26f(492)2. 492. 49 (mod 55) 

X== 16.(492)2.492.49 (mod 55) 

X== 16.(36)2.492.49 (mod 55) 

X == 16.31.492.49 (mod 55) 

X == 16·31·36·49 (mod 55) 

Now we can simply multiply the four numbers together and 
divide by 55 to get: X == 4 (mod 55) which is exactly the column 
number we wanted. 

The above example was, of course, oversimplified. If you gave 
me the public key E = 7 and told me the array had 55 columns, I 
could quickly factor 55 to 5·11 and then compute <1>(55). This would 
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give me the basic equation: 7.0 = 40k + 1. Experimenting with 
different values for k I would soon discover which one would yield 
a D to decipher the message. How does one keep others from 
guessing the secret key D in the system? Simple. You pick an array 
size m that is very large and factors into only two large primes. The 
public knows m but not the two primes m factors into. Without 
knowing the two prime factors of m, no one can compute <j)(m) since 
the formula for <!>(m) depends on knowing the prime factors of m. 

How large should m be so it cannot be successfully factored? 
The developers of the public-key code use two large prime num
bers which when multiplied together yield a ISS-digit array size.5 

In order for someone to break this cipher and discover the decoding 
key, D, they would have to factor a ISS-digit number to find the 
two primes. Once they knew the primes they could compute cj>(m) 

and use this to solve for D. 
How hard is it to factor a ISS-digit number? The first factoriza

tion of a 100-digit number using a general purpose method was 
accomplished in October of 1988 by Arjen Lenstra and Mark 
Manasse.6 The number was: 

(11 104 + 1)/(118 + 1) = 

86759222313428390812218077095850708048977 x 

1084881048536374706129613998429729484098346115257905772116753 

Initially, you might be tempted to think that a ISS-digit number 
is only 55% larger than a 100-digit number. Be careful-a 101-digit 
number is ten times larger than a 100-digit number (just as 1000 is 
ten times larger than 100). A ISS-digit number is 1055 larger than a 
100-digit number. 

It has been estimated by Carl Pomerance, an expert in number 
factorization, that at 1988 prices it would cost $10 million to factor 
a 144-digit number and $100 billion to factor a 200-digit number.7 

This hardly lends itself to easy assault by spies! We can make the 
cipher even harder to break. This is done by applying the cipher 
not to two-digit numbers representing single letters, but to groups 
of two-digit numbers. This ensures that an intruder cannot use 
recognition techniques from a language's common characteristics 
to break the code. 
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CURRENT APPLICATIONS 

We have reviewed the entire process for public-key codes and 
can recognize the importance of prime numbers in these ciphers. 
We must use an array number, m, which factors into only two large 
primes to insure that <!>(m) is hard to find. If m factors into any little 
primes, then it will be easy to factor completely. We must also 
recognize the importance of modem techniques for factoring large 
numbers. If factoring techniques become too successful, then larger 
array sizes must be used for public-key ciphers. 

Companies and governments worldwide are now adopting the 
public-key cipher system. RSA Data Security, Inc. has grown to be 
the leading cryptographic marketing company in the nation. Al
most every major hardware and software firm has obtained a 
license from RSA Data Security to develop products using the RSA 
encryption system. In addition to the many computer companies, 
RSA systems are used by the Federal Government and is bundled 
as part of Microsoft's new Windows 9S operating system.8 One of 
RSA's products, MailSafe, provides secure communications for 
such organizations as Boeing, NATO, and Citibank.9 European 
banks are adopting public-key systems. In the modem computer 
world where hackers steal data and plant viruses, the public-key 
cipher is proving to be a successful defense. 

The RSA system is actually a combination of the DES cipher and 
their own public-key cipher. DES is used on the bulk of the message 
because it is faster than RSA, while the RSA system provides for 
public access to encrypting and signature verification. First, a DES 
key is randomly generated to mathematically scramble the digits 
of the message. The receiver has already selected two large primes 
which have been multiplied to yield a 1SS-digit number. This 1SS
digit number is expressed as a S12-bit binary number which is just 
the size computers like. The 1SS-digit number has yielded both the 
receiver's private key and the sender's public key. The sender also 
has a private key and public key determined by a different 1SS-digit 
number. 

The sender creates a signature by using his own private key to 
encipher his name (and/or other identifying information). The 
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SENDER RECEIVER 

FIGURE 38. Diagram of the public-key encryption system. 

sender uses the receiver's public key to encipher the DES key which 
will unscramble the message. The sender then transmits the DES 
enciphered message, his enciphered "signature," and the enci
phered DES key (Figure 38). 

When the receiver gets the message, he first deciphers the DES 
key by using his own private key. This tells him how to decipher 
the message, which he does. To ensure that the message really came 
from the sender, the receiver uses the sender's public key to deci
pher his signature. Only the sender could have used his own 
private key to encipher his signature, hence the message must be 
authentic. 

This all sounds complicated, but remember that computers do 
all the hard work. The entire process takes place in seconds or 
fractions of a second. 

How do the RSA people know that the ISS-digit numbers can't 
be factored and the enciphering system broken? Since 1990 RSA has 
been running a number factoring challenge. In this manner they 
hope to keep abreast of the latest factoring technology so they can 
assure their customers that the ISS numbers are large enough to 
remain unfactored, or they can design systems based on larger 
numbers. The contest offers cash prizes for factoring any of 41 
numbers, each comprising two large primes, ranging from a rela
tively smalll00-digit number up to a whopping SOO-digit number. 
These numbers are designated as RSA-I00, RSA-SOO, etc. A second 
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list of easier numbers, called partition numbers, is also provided 
by RSA Data Security as a challenge for factoring. Anyone succeed
ing in factoring either an RSA number or a partition number can 
send their results to RSA Data Security. Their results will be verified 
and points awarded. Each second quarter of the year cash prizes 
are paid based on the points accumulated by various factoring 
teams or individuals. All the information regarding the factoring 
challenge sponsored by RSA Data Security can be found on the 
Internet's World Wide Web at http://www.rsa.com. 

How successful have various factoring teams been in factoring 
the RSA challenge numbers? To answer this we must go back a 
number of years before the current challenge began. In 1977 the 
founders of RSA gave their first challenge to the mathematical 
community by providing RSA-129, a number with 129 digits. They 
claimed that to break such a large number and find its primes 
would take the fastest computers of 1977 running for millions of 
times the age of the universe. Some claim! This was all reported by 
Martin Gardner in his "Mathematical Games" column in Scientific 
American. However, in 1994, Derek Atkins and Arjen Lenstra led a 
factoring team that claimed the prize of $100, and not even a single 
age of the universe had passed.10 

What had changed since 1977 when the challenge was first 
made? Two things: first, computers got faster, much faster. Second, 
new factoring algorithms were developed. Even so, the effort to 
crack RSA-129 took many months and the efforts of six hundred 
programmers and mathematicians. By checking the honor roll for 
factoring numbers maintained by RSA Data Security as part of their 
challenge, we see that RSA-100 was broken in 1991 by Arjen Lenstra 
and Mark Manasse for a $1000 cash prize offered by RSA Data 
Security. Then in 1993 RSA-110 was factored, yielding a prize of 
$5898. Of course, the time and cost of such efforts far exceed the 
cash prize offered. 

To date only three RSAnumbers have been factored, the original 
RSA-129, RSA-100, and RSA-llO, out of the 42 RSAnumbers. Each 
year the prize pot grows for the remaining numbers with the 
current kitty at $16,673. The partition numbers are much easier to 
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factor, and as of June 1995, over 1200 had been cracked, with cash 
prizes exceeding $22,000. By the time you read this, many other 
numbers may have been factored. Therefore, assuming you wish 
to "turn your hand" at factoring a large number I give you RSA-500, 
the largest RSA number in the challenge: 

1897194133748626656330534743317202527237183591953428303184 
5811230624504588707687605943212347625766427494554764419515 
4275867432056593172546699466049824197301601038125215285400 
6880315164016116239631283706297932659394050810775816944786 
04172141102464103804027870110980866421480002556045468762513 
7745393418221549482127733567173515347265632844800113494092 
6442438440198910908603252678814785060113207728717281994244 
5113232019492229554237898606631074891074722425617396803191 

69243814676235712934292299974411361 

This 500-digit number should keep you busy for a few nights. ll 

SINK THE CLIPPER! 

With the phenomenal growth in use of public-key encryption 
methods, such as the RSA system, we might be led to believe that 
public-key codes will soon become the national, or even world 
standard. However, the U.S. Government has been fighting to 
avoid such a situation. The National Security Agency of the U.S. 
Government is responsible for breaking the codes of foreign gov
ernments-they are our secret spy agency. But the NSA knows that 
it cannot break the public-key codes. Hence, other governments 
and criminals could adopt public-key codes with the assurance that 
our government cannot eavesdrop. No wonder the NSA is upset 
about the RSA success story. 

The government has not been idle, and is now working on a 
competing system to public-key encryption. In 1987, Congress 
authorized the National Institute of Standards and Technology 
(NIST) to develop an acceptable encryption system that would 
satisfy the needs of user privacy, yet allow law enforcement agen
cies and the NSA to decipher transmitted messages. This effort 
became the Capstone project. Under Capstone, a computer chip, 
called a Clipper chip, would be manufactured and installed in 
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computers that interface with the U.S. Government. The Clipper 
chip would encode and decode messages for users. However, if the 
government demonstrated a need for breaking a data transmission 
they could acquire the secret user keys from two escrow (holding) 
agencies that would each possess a different part of the key. Hence, 
the government could, under special conditions, decipher any 
messages from Capstone. 

Objections to the Capstone system are twofold.12 Critics claim 
that the very idea of our government eavesdropping on computer 
communications is contrary to our hallowed ideas of personal 
freedom. They also say that too many features of the Capstone 
system are secret, and therefore, the system is untested, and may 
not provide a truly secure encryption service. 

How these issues will be resolved is difficult to say. Certainly, 
RSA Data Security, Inc. has an overriding interest in seeing the 
public-key system adopted and not the Capstone system. They 
have, in fact, launched a public relations campaign to "Sink the 
Clipper!" How any individual feels about the outcome of this 
struggle depends on how much weight is given to our govern
ment's need to monitor foreign governments and criminal ele
ments, as opposed to our rights of privacy. 



CHAPTER TEN 

THE REMARKABLE RAMANUJAN 

The millions are awake enough for physical labor; but 

only one in a million is awake enough for effective 

intellectual exertion, only one in a hundred millions 

to a poetic or divine life. To be awake is to be alive. 

HENRY DAVID THOREAU 

Peter Ratener, mathematics professor at Bellevue Community Col
lege in Washington State, once told me that while interviewing 
prospective candidates for staff positions within the department, 
he liked to ask them to name their favorite 20th century mathema
tician. In most cases, he was disappointed to report, the candidates 
simply stared at him, unable to think of a single modem mathema
tician. If we take a moment to consider this reaction, we will see 
just how astounding it is. How many graduates with a master's 
degree in American Literature would not be able to name a single 
20th century author? How many psychology graduates would be 
unable to mention Freud or Jung? Yet, incredible as it is, mathemat
ics graduates from American universities are nearly blind to the 
identities of modem mathematicians. This situation has come 
about because we have successfully stripped all cultural identifiers 
from our mathematical knowledge. 

The mathematicians we may occasionally hear of are generally 
from the remote past: Pythagoras, Euclid, and Archimedes. Even 
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the more recent ones worked hundreds of years ago: Newton, 
Galileo, and Descartes. No one alive today ever knew these men, 
and when we describe them as brilliant, creative, and genius, we 
have no real sense that we know them. In fact, many of these 
famous personalities are known not as mathematicians, but for 
other works: Newton for discovering gravity, Galileo for using the 
telescope, and Descartes for his philosophy. We are about to change 
all this, for we are going to introduce two great 20th century 
mathematicians: Srinivasa Ramanujan and Godfrey Harold Hardy. 
One was certainly a genius, and the other a brilliant mathematical 
talent. Through them we can get a vicarious sense of greatness in 
a time not too distant from today. 

OF HUMBLE BIRTH 

Srinivasa Ramanujan Iyengar (Figure 39) was born on Thurs
day, December 22, 1887, on Teppukulam Street in the city of Erode, 
Southern India.2 While his family was of the Brahmin caste, they 
were poor; his father worked as an accountant for a cloth merchant. 
His first name, Srinivasa, was that of his father, while his last name, 
Iyengar, was his caste name. Therefore, the name he went by was 
simply Ramanujan or sometimes S. Ramanujan. He was the first 
child born to his mother, Komalatammal. She would become a 
doting and protective mother to her eldest son. 

A short, pudgy boy who was slow to learn to speak, Ramanujan 
early showed a strong inclination toward mathematics. In elemen
tary school he won numerous awards for his calculating skills. 
Upon graduation in 1904, he won a scholarship to college. 

The India of 1904 was an unlikely place to nurture unusual 
mathematical talents. The British had ruled India for almost 200 
years, and the educational system they fostered was meant to train 
loyal civil servants who would, in tum, help manage a large, 
populous, and technologically backward country. The system was 
not designed to identify creative and imaginative leaders. 

Sometime between the 15th and 12th centuries B.c., Aryans 
invaded India from the north and established a caste system. Since 
then, the privileged Brahmin caste produced the majority of India's 
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FIGURE 39. Srinivasa Ramanujan Iyengar, 1887-1920. 

priests, scholars, and gurus. Yet, Ramanujan's membership in In
dia's highest caste did not guarantee that he would find success. 
His family was not rich and had to struggle to send him to Govern
ment College in Kumbakonam, even with the scholarship. There
fore, in August 1905 when he failed his examinations and lost the 
scholarship, his chance for success looked dim. He failed through 
neglect of his studies-except mathematics. In fact, he seemed to 
spend all his time scribbling strange symbols on his slate board, 
using his elbow as an eraser, or writing in his personal notebooks
notebooks crammed with more mathematical symbols. Yet, his 
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mother indulged him, and in 1906 bundled him off to Pachaiyappa 
College in Madras, the third largest city in India. 

Evidently, Ramanujan hadn't learned from his first experience. 
In 1907 he failed his examinations again. Almost 20, he had flunked 
out of two colleges, had no job or degree, and no good prospects 
for making something of himself. For the next few years he did little 
but hang around and live within the private world of his note
books. Was he destined to simply fade into obscurity along with 
millions of other bright young men who seem to lose their way 
while growing into manhood? His mother wasn't about to let that 
happen. She decided it was time he married. As was the custom in 
India, Komalatammal arranged for her son's marriage. The bride 
was Srimathi Janaki, a ten-year-old girl of the same caste in a 
neighboring town. On July 14, 1909, Ramanujan and Janaki took 
their vows, even though she would not actually live with Ramanu
jan and his family for several more years.3 However, things did not 
suddenly tum around for the young man. For the next three years 
he held no serious job, spending most of his time on his mathemat
ics while friends and associates indulged him by providing a small 
stipend to live on. During this period Ramanujan showed his 
notebooks to any interested party in the hopes of drawing some 
attention to his work. The problem with this approach was that no 
one in Southern India at this time was sufficiently trained to 
appreciate Ramanujan's talents and, at the same time, promote his 
future. 

However, he did succeed in publishing his first mathematics 
paper in the Journal of the Indian Mathematical Society in 1911. In his 
article he proposed two problems and solicited their solutions. One 
of these problems involved an infinite radical, something we are 
familiar with. The problem was to find the value of: 

This is a simple problem to understand, but somewhat difficult to 
solve. What is remarkable is that Ramanujan, without benefit of a 
formal higher education in mathematics, understood the problem 
and, in fact, knew the answer. Could the Journal's mathematician 
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readers solve the puzzle? Evidently not, for six months and three 
more issues passed without any of its readers offering a solution. 
Finally, Ramanujan gave the answer himself-it was simply 3. But 
the amazing thing is not just that Ramanujan knew both the prob
lem and the answer, but how he knew of them, for on page 105 of 
his first notebook was a general solution to this kind of problem.4 

x + n + a = ~ax +(n +af +x...Ja(x + n) + (n +a)2 + (x + n)~ 

The problem he posed in the Journal was a special case of this 
equation (when we let x = 2, n = I, and a = 0). What other marvelous 
wonders were hidden in those notebooks? 

Suddenly, things began to happen. In 1912 Ramanujan secured 
a job as a clerk in the accounts section of the Madras Port Trust 
which paid 30 rupees a month (£20 per year). The Chairman of the 
Port Trust was an English engineer, Sir Francis Spring, and the 
Trust's manager was an Indian mathematician, SN. Aiyar. Both 
men encouraged Ramanujan to contact English mathematicians in 
the hope that they would assist him in getting his work published.5 

During the year he wrote letters to two well-known English 
mathematicians, Henry F. Baker and E.W. Hobson, both fellows of 
the Royal Society. With his letters, Ramanujan included samples of 
his work from his notebooks, asking for their assistance. Both 
mathematicians turned him down. 

Then in 1913 he wrote a ten-page letter to the famous mathema
tician, G. H. Hardy (Figure 40), an author of three books and over 
100 articles, a Fellow at Trinity College, Cambridge, and also a 
Fellow of the English Royal Society. This seed found fertile ground. 

Hardy, upon first reading Ramanujan's letter, wondered if 
maybe this wasn't some sort of joke instigated by his playful 
comrades at Trinity. An uneducated Indian boy doing advanced 
mathematics! He was amazed and intrigued by the theorems that 
Ramanujan had included in the letter. While Hardy was a world
class mathematician, there was one other at Cambridge who would 
also be qualified to understand the formulas in the letter-his 
friend and collaborator, John Littlewood (1885-1977), one of the 
world's great number theorists (Figure 41). 
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FIGURE 40. Godfrey Harold Hardy, 1877-1947. 

That evening Hardy took Ramanujan's letter to the chess room 
above the commons room at Trinity College. He and Littlewood 
pored over the theorems for 2 1/2 hours, and when they finished 
they could reach only one conclusion. This Ramanujan, whoever 
he was, was a first-class, world mathematician. Somehow they 
would have to get Ramanujan to Cambridge. One of Hardy's 
associates, Eric Neville, was on his way to India to deliver a series 
of lectures at the University of Madras. Hardy instructed Neville 
to find Ramanujan and convince him to come to England. 
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FIGURE 41. John Littlewood, 1885-1977. 

Neville did as Hardy asked, but a problem developed. The 
Brahmin caste believes travel to a foreign country is an unclean act 
and forbids it. Ramanujan would be shunned by friends and family 
if he traveled abroad. Yet, the English mathematicians wanted 
Ramanujan at Cambridge so they could collaborate with him in 
person; the mails would be too slow, awkward, and impersonal. 
The solution came from Ramanujan, himself. He was a devotedly 
religious young man, adhering strictly to his Hindu beliefs. Fortu
nately, he had a vision from his personal Hindu god, the Goddess 
Namakkal, giving him permission to go. Once this barrier was 
surmounted, Neville and Hardy scrambled to secure the funds 
needed to provide Ramanujan an income and pay his passage. 
Finally, on April 14, 1914, when he was 26, Ramanujan reached 
London. He was now in a strange land, without wife, family, or 
friends. Yet, he had come to work with some of the world's best 
mathematicians-his life would never be the same. 
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A STRANGE JUXTAPOSITION 

For the next five years, Ramanujan was associated with Hardy 
of Trinity College at Cambridge University. Their collaboration 
represents the efforts of two great talents, and two personal back
grounds that could not have been more different. Hardy, while not 
of the aristocratic class in England, came from middle-class parents 
who were both educators. Not from royalty, yet educated in one of 
England's finest schools, he always showed a somewhat proletar
ian resistance to aristocratic backgrounds. He was an outspoken 
atheist and a pacifist. He belonged to a famous "secret" society at 
Trinity College known as the Apostles (established in 1820), which 
was chock full of famous English thinkers, including Bertrand 
Russell, James Clerk Maxwell, Alfred Tennyson, and Alfred North 
Whitehead. Numerous members were known to be homosexual at 
a time when "coming out of the closet" was not fashionable or 
advised. Whether Hardy, himself, was a homosexual is not known, 
but he had no meaningful relationships with women during his life 
except with his mother and sister, Gertrude. 

Ramanujan was at the other extreme. He had not received a 
strong education growing up in South India. Indeed, he had never 
even received a two-year associate's degree from college. Unlike 
Hardy, he was a deeply religious man, holding finnly to his Hindu 
beliefs. All the time he was in England he remained a vegetarian, 
even though his favorite foods generally were not available, espe
cially during the war years. He was married, but not a father. These 
two men, Hardy of England, and Ramanujan of India, had little in 
common-except mathematics. Because of this, they were collabo
rators more than friends. Hardy confessed in later years that he 
knew few details of Ramanujan's personal life. While the two men 
worked together, they did not socialize or become "buddies." 
However, there can be no doubt that they respected and cared for 
each other. 

Sometime during the war years, Ramanujan contracted a mys
terious illness, and was sent to several sanatoriums. At times he 
would improve, but then lapse back into poor health. Because of 
the war, it was unsafe to return by ship to India. Finally, in 1918 
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World War I came to an end. In poor health and homesick, Ramanu
jan left England and arrived in India in March 1919. Despite being 
back in the care of his mother and his wife, his illness could not be 
rolled back, and he worsened. During this time he continued to 
work on his beloved mathematics. On April 26, 1920, Ramanujan 
died at the age of 32 while his wife, Janaki, attended to him. Some 
have guessed that the illness was tuberculosis, but this has never 
been established.6 . 

Hardy, upon hearing the news, realized that the one person who 
would prove to exert the profoundest influence on his life had 
passed away. Hardy continued with his mathematics for another 
27 years. He died in 1947 at the age of 70. 

THE RAMANUJAN LEGACY 

Just what did Ramanujan leave? While he completed significant 
work in number theory with Hardy while in England, becoming 
both a Trinity Fellow and a Fellow of the Royal Society, it is his 
personal notebooks that are especially intriguing. It has been esti
mated that they contain between three and four thousand theo
rems, as much as two-thirds being new to mathematics, the balance 
representing independent rediscoveries of other mathematicians' 
work.7 Much of Ramanujan's study was in number theory, the very 
material we have been covering ourselves. Ramanujan was no 
stickler for formal mathematical proofs. Once he had discovered a 
relationship and satisfied himself it was true, he went on with the 
next problem. Hardy, on the other hand, stood squarely in the camp 
that insisted on rigorous demonstrations. Only with such proofs 
could we know the truths of mathematics were certain and could 
then be used in future proofs. The two talents complemented each 
other perfectly. Ramanujan, an undisputed genius, could somehow 
take that deep look into the inner heart of mathematics and pull 
out a beautiful equation. Hardy possessed the strength of heart and 
mind to insist on proving the equations so they became part of 
humankind's vast storehouse of knowledge. 

When we comprehend some of Ramanujan's equations, we 
realize that he was a true artist, expressing deep and beautiful 
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mathematical truth in familiar symbols. To appreciate his artistry, 
all we have to do is look at a few of the equations he included in 
his letter to Hardy. Some of the following equations contain con
cepts that are beyond the scope of our work, yet in them we see a 
wonderful balance and symmetry.8 

1 -5 - + 9 - - 13 -- + ... =-[IJ3 [1'3J3 [1'3.5J3 2 
2 2·4 2·4·6 n 

Here we have a beautiful infinite series summing to 2 divided by 
n. We can't escape delighting in its elegant form, with the coeffi
cients, 1,5,9, and 13 all differing by 4, and their signs alternating. 
Within the parentheses we find numerators as products of succes
sive odd numbers and the denominators as products of successive 
even numbers. 

The next equation involves both an integral from calculus and 
an infinite continued fraction. 

• 2 f e-x'dx= ~nl/2 _ _____ e-a_1 ___ _ 

o 2a + -------
2 a+------

3 
2a+----

4 
a+---

2a + ... 

Even though we cannot fully appreciate this equation without 
calculus, we are still moved by its intricate pattern. An additional 
bonus is that it relates Euler's e to n. 

This next Ramanujan equation contains a hidden surprise. See 
if you can identify it. 

-1-+_I_e =2~- +/(5 +2 'l €2+ 1] e1' 
e n 

1+--
1 + ... 

Can you see what's hidden in the right side of the equation? It's 
(-15 + 1) /2-the Golden Mean! We also find it under the square root 
on the right since: 
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5+~=4+~+1=2+~+1 
222 

211 

Therefore, if we substitute <1> for (~ + 1)/2 we get the following 
simplified equation: 

___ 1-=-_=<-"2+<1> -<1». e~lt 
e-2lt 

1 + .-4lt e 
1+--

1 + ... 

Now we have an expression including not only an infinite continu
ing fraction, e, and 1t, but the Golden Mean, too! How did Ramanu
jan come up with this? Did he know the definition of the Golden 
Mean, and if so, why didn't he use a single symbol for (~ + 1)/2? 
How did he discover this relationship with so little formal school
ing? Something magical must have been going on inside his head 
for him to have made such intuitive leaps. Ramanujan, himself, 
credited his discoveries to his family deity, the Hindu goddess 
Namakkal. Is it any wonder that Hardy was astounded when he 
read Ramanujan's letter containing these beautiful equations? 

Ramanujan's ability to peer deeply into the inner chambers of 
mathematics was probably not unique, for we have stories of other 
great mathematicians who seem to have had similar talent. Among 
them we would probably want to include Archimedes, Newton, 
Euler, and Gauss. In all likelihood, Pythagoras and Euclid were also 
of this bent. And while there are many truly brilliant mathemati
cians, there are relatively few with this gift of the golden eye to see 
into the recesses to which the rest of us are blind. It is sad that 
Ramanujan died so young, for he probably had much more to give 
to humanity. And his example should serve as a warning to us. It 
is not guaranteed that a great mind will automatically find the 
nurturing support required for success. If Ramanujan had not been 
a Brahmin, or his mother had not been as patient, or if Hardy had 
ignored his letter, then Ramanujan might have slipped into obscu
rity, and his wonderful notebooks and equations would have been 
lost forever. How many geniuses have never been given the chance 
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to share their gifts? Surely they are too few that humankind can 
afford to lose any. 

THE HARDY LEGACY 

We cannot leave Ramanujan's story without remarking on the 
impact of Hardy's work. Hardy was a world-class mathematician, 
a captivating lecturer, and a fascinating personality. Several of his 
books have become classics, and I have two of them on my own 
shelves.9 He and his friend, John Littlewood, established the field 
of analytical number theory. Yet, it is not his published work that 
makes us focus on him here. What we are concerned with is 
Hardy'S attitude toward mathematics, one which he helped popu
larize among other mathematicians. 

Hardly a professional mathematician alive today has not read 
Hardy'S A Mathematician's Apology, a short essay outlining Hardy'S 
aesthetic ideas regarding mathematics. His attitude can be 
summed up simply: pure mathematics is good and beautiful; 
applied mathematics is somehow ugly or debased. Pure mathemat
ics is, of course, mathematics studied for its own sake, without any 
concern for whether it solves any problems in the physical uni
verse. In the Apology, Hardy says: 

I will say only that if a chess problem is, in the crude sense, 
'useless,' then that is equally true of most of the best mathematics; 
that very little of mathematics is useful practically, and that that 
little is comparatively dull.lO 

Possibly Hardy's disdain for applied mathematics can, in part, 
be traced to his pacifism. In a letter written just after World War I 
we find: 

I must leave it to the engineers and the chemists to expound, with 
justly prophetic fervor, the benefits conferred on civilization by 
gas-engines, oil, and explosives. If I could attain every scientific 
ambition of my life, the frontiers of the Empire would not be 
advanced ... 11 

If applying mathematics could result in the construction of 
modem weapons, weapons which result in so much death and 
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destruction, then certainly this was cause to reject such mathemat
ics. Again in the Apology he says, 

I have never done anything 'useful.' No discovery of mine has 
made, or is likely to make, directly or indirectly; for good or ill, 
the least difference to the amenity of the world.12 

Hardy believed that beauty was the dominant characteristic of 
a mathematical theorem, and that mathematical beauty was de
pendent upon the theorem's seriousness. This seriousness was 
measured by how much the ideas within the theorem were con
nected to other mathematical ideas. 

The mathematician's patterns, like the painter's or the poet's, 
must be beautiful. ... Beauty is the first test: there is no permanent 
place in the world for ugly mathematics .... The best mathematics 
is serious as well as beautiful. ... The 'seriousness' of a mathe
matical theorem lies, not in its practical consequences, which are 
usually negligible, but in the significance of the mathematical 
ideas which it connects.13 

In summary, Hardy believed a mathematical idea is good be
cause it is beautiful, beautiful because it is serious, and serious 
because it is connected to many other mathematical ideas. As 
stated, Hardy's claim that beauty is central to the enjoyment of 
mathematics is fervently believed by the majority of all who are 
enthralled by mathematics. In this he seems to have captured the 
essence of our love for this subject matter. Jerry King, in The Art of 
Mathematics, points out, "Mathematicians know beauty when they 
see it for that is what motivates them to do mathematics in the first 
place."14 

However, Hardy went beyond the claim that mathematics is 
beautiful to also insist that applications of mathematical ideas to 
the physical world demean those ideas, and that the beauty of a 
mathematical idea is not connected to its usefulness-its usefulness 
detracts from its beauty. 

Hardy's idea that pure (good) mathematics should be devoid 
of meaningful applications has been adopted by many mathema
ticians at our universities. Unfortunately, this idea has caused some 
mathematicians to become elitists, casting disdain on all other 
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branches of knowledge. This, in tum, has tended to alienate mathe
maticians from the rest of the academic community. Most elemen
tary and secondary teachers we send out of our universities are not 
professional mathematicians, and they feel this alienation between 
themselves and what they see as snobbish old men barricaded in 
the ivory towers of academia. These same teachers, who feel alien
ated from higher mathematics, are asked by us to teach our children 
the foundations of mathematics. Do you imagine they embrace the 
task with enthusiasm? 

Hardy's legacy, that applied mathematics is somehow spoiled, 
has caused much harm to the general study of mathematics, in 
addition to creating an artificial separation between pure and 
applied mathematicians. The notion that finding an application for 
a mathematical idea somehow demeans that idea is silly, as a little 
thought will demonstrate. This idea of Hardy's is, in fact, new to 
this century, for the great preponderance of past mathematicians 
contributed to both pure and applied fields. Those three names 
most often mentioned as the greatest mathematicians to have ever 
lived are Archimedes, Newton, and Gauss, each of whom chose to 
explore and contribute heavily to numerous fields in addition to 
pure mathematics. Archimedes (287-212 B.C.) helped defend the 
ancient city of Syracuse against the Roman army during the Second 
Punic War. He designed and supervised the construction of great 
war machines to repel the attackers. Newton 0642-1727) not only 
coinvented calculus, but discovered the law of gravitation. For 
almost his entire career, Gauss 0777-1855) was director of the 
astronomical observatory at G6ttingen, making significant contri
butions in the fields of astronomy and physics. 

The truth behind beauty is difficult to track down, but we do 
understand one characteristic of beauty as illustrated by the old 
cliche, "Beauty is in the eye of the beholder." To be an engineer, and 
build a marvelous machine, and to see the beauty of its operation 
is as valid an experience of beauty as a mathematician's absorption 
in a wondrous theorem. One is not "more" beautiful than the other. 
To see a space shuttle standing on the launch pad, the vented gases 
escaping, and witness the thunderous blast-off as it climbs heaven-
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ward on a pillar of flame-this is beauty. Yet it is a prime example 
of applied mathematics. 

It is past time that elitist ideas of mathematics be set aside for 
an open-minded approach. For most of this century the general 
population has viewed mathematics as some strange game of 
symbols played by boring old men in dusty rooms, hidden away 
on our university campuses. The truth about mathematics is far 
different. The work of pure mathematicians is constantly being 
used by others-astronomers, computer scientists, engineers-to 
forge ahead with exciting breakthroughs and innovations that are 
changing and improving the world we live in. 

The approaching century suggests a new beginning, and we can 
use this as an excuse to revitalize the general perception of mathe
matics. We must find teachers who truly love mathematics to teach 
our young. This places personal responsibility on each person who 
is enthralled by mathematics to contribute to improving primary 
and secondary mathematics education. We can have a general 
population that likes and respects mathematics, both in its elegant 
beauty and its usefulness. 



CHAPTER ELEVEN 

RAMANUJAN'S EQUATIONS 

But he who has been earnest in the love of knowledge 

and of true wisdom, and has exercised his intellect 

more than any other part of him, must have thoughts 

immortal and divine, if he attain truth, and in so far 

as human nature is capable of sharing in immortality, 

he must altogether be immortal; ... 

PLATO 

LEARNING TO LOVE EQUATIONS 

We are now going to look at more of Ramanujan's equations. I 
know that for some of you, the prospect of facing additional 
equations causes your heart to palpitate, and your palms to sweat. 
"Why," you say, "does he have to use more of those dam equations? 
Why can't he just say it in ordinary words?" 

We recognize that a broad segment of the population does not 
like equations. Yet, to fully understand what mathematicians do 
and why they do it, we must come to terms with equations; in fact, 
we must come to like, nay, love equations. All true mathematicians 
love equations, for they are to the mathematician what a master
piece is to the art connoisseur. Mathematics is about relationships, 
and equations are the symbolic language of relationships. While it 
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is true we could say the same thing in plain English, the result in 
most cases would be an entire paragraph whose meaning was 
difficult to decipher. In fact, using ordinary language is how mathe
matical relationships were expressed before the development of 
symbolic mathematics. A quick look at one of Euclid's propositions 
from 300 B.c. illustrates the point. 

If a first magnitude be the same multiple of a second that a third 
is of a fourth, and a fifth also be the same multiple of the second 
that a sixth is of the fourth, the sum of the first and fifth will also 
be the same multiple of the second that the sum of the third and 
sixth is of the fourth? 

To be fair to Euclid, we must point out that most of his defini
tions and propositions are easier to understand than the one 
quoted, and that symbolic notation was not available to him. 
However, what we are dramatizing here is that mathematics had 
to abandon ordinary language and develop a symbolic language 
in order to clearly state complex ideas. Therefore, we should not 
look at mathematical symbolism as the enemy to be avoided, but 
as a great tool which we can use to express deep and beautiful ideas. 

Now that I have you convinced that mathematical symbols and 
their associated equations are absolutely necessary, how does that 
fact help you to appreciate them? We can approach equations much 
as a lover of fine art studies a great painting. Once we understand 
what distinguishes a masterpiece from ordinary artistic flotsam, we 
quickly recognize its beauty. To do this with equations we must 
recognize several characteristics of equations, and how these char
acteristics impact the equation'S aesthetic appeal. 

The first job is to quickly scan the equation to determine if it 
contains any symbols with which we are unfamiliar. If so, we must 
check some reference or textbook to learn their meaning. Authors 
of higher mathematics texts frequently place sections in the begin
nings of their books listing those symbolic conventions the author 
is using. Once we are satisfied that we understand the basic mean
ing of each symbol, we are ready to take the next step. 

Now we wish to "step back" from the equation and ask in 
general terms, what is being equated on each side of the equal sign. 
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This will help us to reach the first level of understanding of the 
equation's meaning-that is, the deep truth which the relationship 
is stating. For example, a simple identity could be the equation: 1 
+ 1 = 2. On the left of the equal sign we have two terms and on the 
right, one term, all of which are integers. While the equation is true 
(by definition), it is not terribly interesting because we are too 
familiar with the idea expressed. 

What about Euler's beautiful equation: 

eng + 1 = 0 

Here again we have only two terms on the left, and one on the right. 
However, these individual terms are what make the equation so 
beautiful. The equation relates the constants e and 1t, the square root 
of -1, the number 1, and the number O. Hence, it is the identity and 
interconnectedness of terms found in the equation that gives the 
equation its richness. Therefore, we must be on the lookout for 
interesting terms present in our equations, and how the equation 
relates these terms. 

Next, a beautiful equation is frequently aesthetically pleasing 
to the eye by its form and symmetry. As an example, the sum of the 
reciprocals of all natural numbers squared equals 1t2 / 6, an identity 
discovered by Euler. 

In this relationship we immediately notice several things. On the 
left is an infinite series of terms (expressed two ways). On the right 
is a constant involving 1t. The fact that an infinite sum of terms even 
has a finite limit is interesting, let alone the fact that the limit 
involves 1t. We have actually expressed the infinite series in two 
ways. On the far left is a compressed form, and in the middle is an 
expanded form. While most books on higher mathematics favor 
the compressed form, such a form frequently hides the series' 
beautiful symmetry. Therefore, it will be our custom to generally 
give both the compressed form and the expanded form of infinite 
series, continued fractions, and continued radicals. 
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Looking at the expanded form of the above infinite series, we 
recognize at once the marvelous symmetry within, a kind of sym
bolic harmony. Every numerator is a 1, every exponent in the 
denominators is a 2. Each n in the denominator increases by exactly 
1 from its predecessor. The harmony in this infinite series can 
almost be tasted, as a delectable morsel of Swiss chocolate. 

RAMANUJAN'S ARTISTRY 

We are now ready to enjoy more of Ramanujan's work. I have 
selected only those equations involving mathematical concepts 
that we have already covered. Many lovely relationships will not 
be reviewed, including those involving integrals (calculus), the 
gamma function, Bernoulli numbers, and Euler numbers. While 
Ramanujan was not trained in the mathematics of complex num
bers (complex analysis), many of his theorems have been proven 
true for not only real numbers but also for complex numbers. We 
will ignore complex numbers in our review. 

Ramanujan was an expert on infinite series, continued fractions, 
and other exotic mathematical creatures. Frequently he would 
show the general form of a relation, which he called an entry, 
followed by several corollaries, or specific examples of the general 
equation. Most of our examples are drawn from the corollaries. In 
those cases where we give the general form, we will also provide 
several examples. Our first equation involves an infinite series 
which adds to zero.3 

Checking for any terms we might be unfamiliar with, we see the 
factorial sign (!) in the denominators of our fractions. Remember 
that n! stands for all the integers from 1 through n multiplied 
together. Hence, 5! is simply 1·2·3·4·5 = 120. By definition, O! = 1. 
Therefore, the first term of the expanded infinite series (13 + 12)/0! 
is equal to (1 + 1) / 1 or simply 2. Take a moment to savor the pattern 
found in the expanded infinite series. The terms in the numerators 
are the successive odd integers. The exponents are always 3 and 2. 
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The denominators are the factorials of successive integers begin
ning with zero. Just looking at the expanded form we know at once 
whatthe nextterm is going to be: (73 + 72) /3! and the term after that 
will have nines in the numerator and 4! in the denominator. Notice 
also that the terms in the series are alternately added and sub
tracted. We get this from the term (-W found in the compressed 
form, which does nothing but alternate the signs of successive 
terms. If we take the trouble to actually calculate the terms in the 
expanded form of the infinite series, we see an interesting phenom
ena. The first three terms are +2, -36, and +75. It would appear the 
successive terms are growing large, but with the very next term we 
see them begin to diminish, e.g., -65.33, +33.75, -12.1, etc. If we add 
consecutive terms together, we notice that the partial sums to the 
infinite series get closer to zero, or: 

2 

2-36 

2 -36 + 75 

2 - 36 + 75 - 65.33 

2 - 36 + 75 - 65.33 + 33.75 

2 - 36 + 75 - 65.33 + 33.75-12.1 

2 - 36 + 75 - 65.33 + 33.75 - 12.1 + 3.29 

2 - 36 + 75 - 65.33 + 33.75-12.1 + 3.29 - 0.71 

= 2.00 

= -34.00 

= 41.00 

= -24.33 

= 9.42 

= -2.68 

= 0.61 

= -0.10 

Of course, the sum of the infinity of terms of the series will be equal 
to exactly zero. 

Our next equation involves both an infinite series and 1t. 

1 1 1 1 1 2 

I. 12(k + 1)3 = 13.23 + 23.33 + 33.43 + 43.53 + ... = 10-1t 
k=1 

Here, again, we find the beautiful symmetry that is characteristic 
of Ramanujan's work: All ones in the numerators, while the de
nominators are products of the cubes of successive integers. This 
infinite series sums to exactly 10 - 1t2 or approximately 0.130395. 
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Next we have a series whose sum is the natural logarithm of 2. 
Remember that natural logarithms are simply the exponents on the 
constant e. The natural logarithm of 2 is that power we must raise 
e to in order for it to equal 2: eln 2 = 2. While In 2 is a transcendental 
number, and cannot be written exactly in decimal form, it is equal 
to approximately 0.693147. 

~ 

1 111 1 1 1 
2" + L (2k)3 _ 2k = 2" + 23 - 2 + 43 - 4 + 63 _ 6 + 83 _ 8 + ... = In 2 

"'=1 

Once again we find the pattern which allows us to immediately 
construct the next term in the expanded version or 1/(103 -10). 

The next equation also involves a natural logarithm, but multi
plies the infinite series by the constant 2. 

[ 1 1 1 1 ] = 1 + 2 33 _ 3 + 63 _ 6 + 93 _ 9 + 123 _ 12 + . .. = In 3 

Another way of thinking of the above equation is to realize that if 
we computed the left side of the equation and used that as the 
exponent on the constant e the result would be equal to 3. 

This next equation relates both a logarithm and 1t to an infinite 
series. 

Notice as we calculate the values of successive terms in the infinite 
series, the numerators grow small while the denominators grow 
large. This causes the series to converge rather quickly to the limit 
on the right. 

Our next example includes not only 1t and a natural logarithm, 
but an additional surprise. See if you can find it. 
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2 

_ __1_ (2!)2 _ (3!)2 (4!)2 = 1f _ . (..f5 + IJ 
- 1 2!.32 + 4!.52 6!.72 + 8!.92 +. . . 6 31n 2 

Do you recognize the tenn on the right? It is our Golden Mean or 
(..f5 + 1)/2. Hence, we have an infinite series related to 1t, a natural 
logarithm, and the Golden Mean! As with all the other equations, 
we have the nice Ramanujan symmetry. 

Now we have an infinite series involving one unknown vari
able, x. This is a general fonn of an equation into which we can 
substitute specific values for x and get a new fonnula. The only 
restriction on x is that it must be greater than 1/2. 

1- x-I + (x-l)(x-2) _ (x-1)(x-2)(x-3) + ... =_x_ 
x+1 (x+l)(x+2) (x+l)(x+2)(x+3) 2x-1 

We see at once what the next tenn is going to be: It will include (x 

- 4) in the numerator and (x + 4) in the denominator. If we substitute 
a value for x that is a positive integer, one of the numerators in one 
of the tenns will become zero, causing all the numerators (and 
therefore tenns) that follow to be zero, leaving us with a finite 
series. For example, if we let x = 2 we get: 

1 _ 2 - 1 + (2 - 1)(2 - 2) _ (2 - 1)(2 - 2)(2 - 3) + ... = _2_ 
2 + 1 (2 + 1)(2 + 2) (2 + 1)(2 + 2)(2 + 3) 4 - 1 

Simplifyingwehave: 

1 0 0 2 
1 - 3" + 12 - 60 + ... = 3" 

To make an interesting substitution we must choose an x that is 
not a positive integer. Suppose we let x equal 2.5. Then the above 
equation becomes: 

1 _ 2.5 -1 + (2.5 - 1)(2.5 - 2) _ (2.5 - 1)(2.5 - 2)(2.5 - 3) + ... 
2.5 + 1 (2.5 + 1)(2.5 + 2) (2.5 + 1)(2.5 + 2)(2.5 + 3) 

2.5 =---
2(2.5) -1 
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Combining terms and simplifying we get the infinite series: 

1 - 0.4286 + 0.0476 + 0.0043 + 0.0010 + ... = 0.625 
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We could, of course, make any number of substitutions for x as long 
as they were all greater than 1/2. In each case we would get an 
infinite series summing to a constant. This demonstrates the power 
of a general equation to generate an infinite number of specific 
identities. 

Our next example equates two infinite series, both involving 
the unknown x. Hence, this equation can also be used to generate 
additional equations. First we show it with both infinite series in 
compressed form, and then with each infinite series expanded. 

On the left of this equation, each term we are adding is the sum of 
a finite number of fractions multiplied by xl' /k!; there are an infinite 
number of such terms to add. When we expand both sides we get: 

3r llr 25x4 x [ xl r x4 ] 
x + 4 + 36 + 288 + ... = e x - 4' + 18 - 96 + ... 

We see less symmetry within the expanded form of this equation, 
yet it is a marvel for no other reason than Ramanujan has equated 
two infinite series plus the constant e. 

Now we pass on to an infinite series related to both a natural 
logarithm, but also to the Euler-Mascheroni constant which we 
introduced earlier. This constant, designated as y (Greek small 
gamma), is approximately equal to 0.5772157 .... Remember that 
y was first discovered by Euler and relates the harmonic series 
(1: l/n) to the natural logarithms, or: 

Y=lim(i ~-lnnl 
n .... - j=1 J 

Since both the harmonic series and natural logarithms are so im
portant to mathematics, this constant which relates them is also 
important. Ramanujan's equation involving yis not an equality, but 
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shows that an infinite series approximates the value of a logarithm 
plus the Euler-Mascheroni constant. In general, we prefer relation
ships in mathematics that are equalities, i.e., where the left and right 
side of the equation are exactly equal to each other. However, 
sometimes this is not possible, and we must be satisfied with an 
approximation. Such approximation relationships are useful when 
the approximation is close. 

- (_I)k-Ixk x2 x3 X4 

L k!k x -"'4 + 18 - 96 + ... "" In x + y 
,\=1 

Again we notice the symmetry of alternating signs to individual 
terms and progressive powers of x. 

FRACTIONS AND RADICALS 

We now shift gears and look at another area where Ramanujan 
excelled: infinite fractions. Our first example equates a simple 
infinite fraction to a constant. 

4 3 
3- 4 

1+ 5 
2+ 6 

3+--
4+ ... 

The symmetry in the above continued fraction is so elegant that the 
progressive terms are easily determined. The numerators, begin
ning with 3, increase through the number sequence, while the 
denominators, beginning with I, do the same. Another example of 
such a continued fraction is: 

5 4 
- ------:---

3 6 
1+ 8 

3+ 10 
5+--

7+ ... 

Here, the numerators are the even numbers beginning with 4 while 
the denominators are the odd numbers, beginning with 1. 

In our next continued fraction we find the constant e. 
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1 
e-1 

1 -------
2 

1 + 3 
2+ 4 

3+--
4+, .. 

225 

This is an especially elegant continued fraction. The value of both 
sides of the equal sign is approximately 0.5819. Next we progress 
to an infinite continued fraction involving both the constant e and 
the unknown, x. 

eX -1 x 
eX + 1 = xl 

2 + --~xl-=---
6+ 2 

10+ x 
14+ ... 

This equation has exquisite symmetry with the numerators all xl, 
except the first, and all the denominators differing by 4. However, 
what is nice about the equation is that it is one of the general 
equations we can use to derive additional equations by substituting 
in for x. We could, of course, substitute 1 or 2, but the results would 
not be any more spectacular than the original. However, if we 
substitute 1t in for x we get the beautiful equation: 

e"-l 1t 
------~---

e" + 1 n2 2+------
1t2 

6+-----
10+ n2 

14+ ... 

Our next example is also a general form involving the un
known, n, which can assume the value of any positive integer. 

1 
n =--------------

2 
1- n +------=--3----

2 - n +---------
n 

3-n+ ... --....:..:....--
0+ n+1 

1 n+2 +--
2+ ... 
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This is a strange continued fraction, indeed. The first ellipsis that 
occurs after the 3 - n term means that we continue to subtract n 
from larger and larger integers until the sum is zero. From then on, 
we simply use the positive integer sequence. In other words, if we 
let n be some positive integer, then in the nth denominator in the 
continued fraction we will have n - n = 0, which is how we get the 
zero in the above equation. We might object that it is not possible 
to have a denominator that is zero, but remember that we are 
adding something to this zero, so that the denominator has a value 
other than zero. For example, let's substitute 3 in for n. 

1 
3=-------

2 -2+----3--

-1 + 4 
0+--

1 + ... 

Next we have an equation involving the unknown x where x 
can be any number except a negative integer. 

x+1 1=----------
x+2 x + ----------

x+3 
x + 1 + ------

x+4 
x+2+---

x+3+ ... 

From this equation we can generate any number of additional 
infinite continued fractions all equal to 1. 

Our next infinite continued fraction is related to an infinite 
series. 

~ (_l)k+l 1 

2 . L x + 2k _ 1 = -~-=--=--_~-_1-::-2~:~~~ 
k=1 X + - 22 

X + ---3-:-2-

x + ----;:,.--
42 

x+-
x+ ... 

When we expand the infinite series we get the beautifully symmet
ric equation: 
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1 
12 

22 
x+ 

32 
x+ 42 

x+--
x+ ... 

We can substitute any number for x as long as it is greater than zero. 
Even substituting a simple 1 for x yields the following pleasant 
identity. 

2(~ -~ + i -~ + ... )= -1-+--_1_1---

4 
1 + 9 

1 + 16 
1+--

1 + ... 

This next equation contains not only an infinite series and a 
continuing fraction, but both the constants 1t and e. 

1+-+-+--+--: - ·e2 _--------
X x 2 x 3 X4 ~! 1 
3 3·5 3·5·7 3·5·7·9 2x 1 x+------

2 
1 + ----=-3--

x+ 4 
1+-

x+ ... 

Symmetry can be seen everywhere in this equation. We have the 
numerators of the infinite series as progressive powers of x, while 
the denominators are products of successive odd numbers. In the 
continuing fraction the numerators are successive integers after the 
initial two Is. The denominators alternate between x and 1. 

We're going to change forms again and look at continuing 
radicals. One of Ramanujan's general forms for continuing radicals 
was the complex looking: 

x - al = "x2 + al(al - 2a2J - 2a1-Yx2 + a2(a2 - 2a3) - 2a2-../x2 + ... 



228 MATHEMATICAL MYSTERIES 

The pattern within the radicals is a little hard to catch. Notice that 
each radical contains three terms, one involving x and two involv
ing an a with a subscript. The first term is always :x2, the second 
term is at(at - 2a2) except the subscripts increase by one for each 
new radical. The third term is 2at and the subscript increases by 
one for each new radical. What is truly unusual about this continu
ing radical is that the identity is true for all x and for all sets of at, 
a2, a3, etc. By making specific substitutions for x and the as we can 
get some beautiful continued radicals. For example, we'll let x = 1 
and at = 1/2, a2 = 1/4, a3 = 1/8, etc. Making the substitutions and 
solving for the continued radical we get: 

We can generate another equation by substituting x = 3, at = -1, a2 

= 1, a3 = -1, a4 = 1, etc. This yields: 

When making substitutions for x and at, a2, etc., we must make sure 
that x is larger than at or the resulting continued radical will involve 
complex numbers. 

Remember that we mentioned Ramanujan's equation appear
ing in the Journal of the Indian Mathematical Society? 

3= ~1 +2~1 +3...Jl +4.../1 + ... 

This equation was generated from the following general form 
which Ramanujan had discovered. 

x+ n +a= ~ax+ (n +a)2+ x...Ja(x+ n) + (n +a)2 + (x+ n)C 

The pattern within this equation is also somewhat difficult to see. 
We have three basic terms under each radical. The first term has the 
following progression: ax, a(x + n), a(x + 2n), a(x + 3n), a(x + 4n), 
etc. The second term, (n + a)2, does not change while the third term 
progresses as: x, x + n, x + 2n, x + 3n, etc. For example, we can let x 
= 1, n = 2, and a = 3. This yields: 
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6 = -V28 + ...)34 + 3...J40 + S..J46 + ... 

We might wonder if any substitution of numbers into an infinite 
continued radical will result in a finite number or limit, or will some 
substitutions give us an expression that is unbounded? In other 
words, will infinite continued radicals always converge to a limit? 
It was discovered by T. Vijayaraghavan that the infinite radical, 

-Va1+ ...)a2 + ...Ja3 + ..Ja4 + ... 

where an ~ 0, will converge to a limit if and only if the limit of 
(In an)/2n exists. Hence, if (In an)/2n does exist for a specific se
quence, when the sequence is substituted into an infinite radical, it 
will also have a limit or specific value. 

We are not always restricted to square roots as radicals. For 
example, we have the following two cube root radicals. 

1 = ~3+ 3...)_6 + 3...J-6 + 3..J-6 + ... 

While we cannot have a real negative number as a square root 
(unless we are willing to deal with complex numbers), we can have 
negative cube roots. This is easily seen when we consider the cube 
root of -8 which is -2, or (-2)(-2)(-2) = -8. 

The last three examples of Ramanujan's equations we will 
consider are very special, for they deal with prime numbers. We 
now know that such equations are difficult to find and, once found, 
frequently reveal deep secrets of the number sequence. For our next 
equation we will need to define a new symbol. When we wish to 
add a sequence of terms together we use a large Greek sigma (1:). 

When we want to show a sequence of terms all multiplied together 
we use a large Greek pi (n). Hence to multiply all the positive 
integers together from 1 to n as one product, we could show it as: 

n 

n k= 1·2·3· ... ·n 
k=1 
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This looks just like the factorial of n, but we can actually display 
much more complex functions using this notation because we can 
replace k with a more complex expression. This is just what we have 
in the next Ramanujan equation. 

~[~)=~ 
p p2_1 2 

In this equation p stands for the sequence of all prime numbers. 
Hence, an expanded version of this equation would be: 

[22+1).[32+1).[52+1) =(~)(10)(26) =~ 22 -1 32 -1 52 -1 ... 3 8 24' .. 2 
A second equation dealing with the sequence of prime numbers is: 

This remarkable equation relates the prime number sequence on 
the left to 1t on the right. How can prime numbers be related to the 
ratio of a circle's circumference to its diameter? This is yet another 
wonderful example of the interrelatedness of mathematics. 

In our final example, we have another approximation rather 
than an equality. If we let Pk be the kth prime, then as x approaches 
zero, we have: 

In this example, the sequence of prime numbers is related to not 
only the constant e but also to in x. For Ramanujan to have discov
ered such beautiful relationships between e, logarithms, and 
primes shows the great depth of his genius. 

PARTITIONS 

During his stay at Cambridge Ramanujan contributed to a field 
of number theory called partitions. What begins as a simple ques
tion quickly turns into a most difficult problem. A partition of a 
number is just an expression of the number as a sum of numbers 
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less than or equal to the given number. For example, 4 = 1 + 1 + 1 
+ I, and 4 = 3 + 1 are two different parts of 4 while 5 = 3 + 2 and 5 
= 1 + 2 + 2 are two different parts of 5. The basic question is: How 
many partitions of a given number are there? Let's consider all the 
ways of combining natural numbers to get 4. 

4=1+1+1+1 

4=2+1+1 

4=3+1 

4=2+2 

4=4 

Hence, we see that if we don't consider the order of the terms, then 
we can write 4 as sums of numbers that are equal to or smaller than 
4 in five different ways and that is all. There are five parts of 4, and 
5 is called the partition number of 4. Generally we designate the 
partition number as pen), or p(4) = 5. You might hope that some easy 
formula will compute the partition numbers for the positive inte
gers. However, this is not the case. The partition numbers increase 
quickly as n grows larger and larger. For example, we have listed 
the partition numbers, pen), for the first 50 integers in Table 14. By 
the time we get to 100, p(100) = 190,569,292. The obvious question 
is: For any n, can we quickly compute pen)? 

Euler was the first to make any progress on this problem.4 He 
proposed finding a function, f(x), that generated an infinite series 
consisting of successive powers of x. The coefficients of the different 
powers of x would be our pen). On first encounter, generating 
functions are a bit confusing. Just think of a generating function as 
a kind of mathematical engine that keeps spitting out successively 
greater powers of x. The coefficients connected to the various 
powers of x are the numbers we are interested in. We can represent 
this idea symbolically as: 

f(x) = 1 + L p(n)x" = 1 + p(l)xt + p(2)x 2 + p(3)x 3 + ... 

However, Euler was not able to find the proper function f(x) that 
would generate the series desired. Hence, the problem lay dormant 
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Table 14. Partition Numbers for 1 through 50 

Number Partition Number Number Partition Number 

1 26 2,436 

2 2 27 3,010 

3 3 28 3,718 

4 5 29 4,565 

5 7 30 5,604 

6 11 31 6,842 

7 15 32 8,349 

8 22 33 10,143 

9 30 34 12,310 

10 42 35 14,883 

11 56 36 17,977 

12 77 37 21,637 

13 101 38 26,015 

14 135 39 31,185 
15 176 40 37,338 

16 231 41 44,583 
17 297 42 53,174 

18 385 43 63,261 

19 490 44 75,175 

20 627 45 89,134 

21 792 46 105,558 

22 1,002 47 124,754 

23 1,255 48 147,273 

24 1,575 49 173,525 

25 1,958 50 204,226 

until Hardy and Ramanujan began work on it. Ramanujan, while 
still in India, had derived a generating function which came close 
to giving good approximations to the pen) coefficients in the series. 
Using this function as a starting place, Hardy and Ramanujan went 
to work to improve the accuracy of the approximations. 

They began this work in 1916, before the development of mod
em computers, or even hand calculators. Therefore, to test the 
accuracy of their improved generating functions, Hardy and 
Ramanujan had to know the actual values for lots of p(n)s and these 
had to be calculated-a rather daunting task at that time. To help 
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in this effort, Hardy recruited the mathematician Percy MacMahon, 
a 61-year-old former Royal artilleryman, who was professor at 
Woolwich College. MacMahon was known for his ability to com
plete difficult calculations. Would he, Hardy asked, just compute 
p(n) for the first 200 integers? MacMahon did and found that p(200) 
= 3,972,999,029,388 which is just under four trillion, almost our 
national debt! 

If MacMahon wrote down all the different ways of writing 
integers to equal 200, he would end up with the gigantic number 
above. If he were to add together all these almost four trillion ways 
at one second for each addition, it would take him 125,982 years 
just to do that! Obviously, MacMahon needed some help to com
pute these first 200 p(n)s. Lucky for him, there is a regression 
formula for computing p(n). If you have already computed all the 
partition numbers up to p(n -1), then it is relatively easy to get 
p(n). The regression formula is:5 

p(n) = p(n -1) + p(n - 2) - p(n - 5) 

- p(n - 7) + p(n - 12) + p(n - 15) - ... 

This series is extended as long as the numbers within the parenthe
ses are positive or zero. We define p(O) = 1. For example, suppose 
we had already computed p(n) for 1 through 15, and now wanted 
p(16). Using the above formula we get: 

p(16) = p(15) + p(14) - p(1l) - p(9) + p(4) + p(1) 

or 

p(16) = 176 + 135 - 56 - 30 + 5 + 1 = 231 

We don't have to include any more terms because the next term in 
the expansion of the formula would result in a negative number 
within the parentheses. The formula is a little tricky to decipher. 
Notice that the terms can be grouped in pairs, each pair having the 
same sign; the first pair is added, the next pair subtracted, and so on. 

p(n) = p(n - 1) + p(n - 2) 

- p(n - 5) - p(n - 7) 

+ p(n -12) + p(n - 15) ... 
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The differences within each pair increase by one for each successive 
pair; hence, the first pair differ by 1 (1 and 2), the second pair by 2 
(5 and 7), the third pair by 3 (12 and 15), etc. The differences between 
the second element of a preceding pair, and the first element of a 
succeeding pair increase by 2 between each pair, starting with the 
first difference of 3. For example, the different between p(n - 2) and 
pen - 5) is 3, while the difference between pen - 7) and pen - 12) is 
5. Hence, the differences between pairs are 3, 5,7,9,11, etc. 

While this formula works fine for computing the first 200 values 
of pen), it suffers from several serious drawbacks. First, since it 
depends on all previous p( j) where j < n, if we make a mistake at 
n = 12, then every pen) we compute after 12 will also be in error. 
Therefore, it is important we make no mistakes to carry forward, 
making all the rest of the answers invalid. Second, if we want to 
compute large partition values, the formula is difficult to use. For 
example, using it to compute p(1000) is a daunting task. It would 
be preferable to have a generating function such as Euler suggested 
that would directly estimate p(1000) without computing the 999 
p(n)s that come before p(1000). 

This is what Hardy and Ramanujan were after. Finally in De
cember 1916 Ramanujan was able to improve their function to get 
very accurate estimates for pen). Their approximating formula6 is a 
series whose first term is: 

1[~ 
e 3 

pen) ""~+ ... 
4n\l3 

Using just this first term we can get fair approximations of pen) 
because succeeding terms are relatively small and get progres
sively smaller. For example, using just the first term we get p(200) 
'" 4.1 x 1012, an error from the true value of p(200) of approximately 
3.3%. Including additional terms in Hardy and Ramanujan's ap
proximation formula produces results accurate to within one inte
ger of the true value of pen). 

Ramanujan was not satisfied with just getting an extremely 
accurate estimate of pen), but went on to discover some congruence 
relationships between nand p(n)-relationships which had never 
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been suspected before. What he discovered was that if we take any 
n which has a remainder of 4 when divided by 5 (or n == 4 mod 5), 
then pen) is evenly divisible by 5, or pen) == 0 mod 5. This whole thing 
can be written as p(5n + 4) = 0 mod 5 for all integers, n, which are 
equal to zero or greater. He also discovered relationships for 7 and 
11: 

p(7n + 5) == 0 mod 7 and p(11n + 6) == 0 mod 11 

One may wonder what in the world any of this parti tions stuff 
could have to dowithreal-worldproblems. Hardywouldprobably 
tum over in his grave if he knew that today the theory of partitions 
is used in solving practical problems in such diverse fields as 
communication lines and plastics. Physicists are using partition 
theory to solve problems from statistical mechanics to string the
ory-a theory concerning the unification of matter and energy in 
the universe? 



CHAPTER TWElVE 

GOLDBACH'S CONJECTURE 

The principal difficulty in the mathematics is the 

length of inferences and compass of thought requisite 

to the forming of any conclusion. 

DAVID HUME (1711-1776) 

AN ENQUIRY CONCERNING HUMAN UNDERSTANDING1 

ADDING IT ALL UP 

J ometimes the most innocent question inspires the greatest 
effort in mathematics. Christian Goldbach (1690-1764) asked 

just such a question in 1742. Goldbach was a German mathemati
cian who became professor of mathematics in 1725 in St. Peters
burg, Russia. Three years later he traveled to Moscow to tutor Tsar 
Peter II. Goldbach traveled about Europe during his career and met 
a number of talented mathematicians, among them Leonhard 
Euler. Along with Goldbach, Euler became a member of the Russian 
Academy of Sciences. Both men had a love for infinite series and 
prime numbers. In a letter to Euler on June 7, 1742, Goldbach 
speculated that every even number is the sum of two primes, and 
every odd number larger than 2 is the sum of three primes.2 

At that time it was not clear whether 1 should be considered a 
prime, and in his letter, Goldbach was assuming it was. Since we 
now exclude 1 as a prime, the modem statements of Goldbach's 
Conjectures are: Every even number 4 and greater can be expressed 
as the sum of two primes, and every odd number 7 and greater can 

236 
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be expressed as the sum of three primes. The first part of this claim 
is called the Binary Goldbach Conjecture, and the second part is the 
Ternary Goldbach Conjecture. 

After all these years, the Binary Goldbach Conjecture is still not 
proven, even though virtually all mathematicians believe it is true, 
and countless hours have been spent on its solution. For such a 
simple question, Goldbach certainly stumped thousands of mathe
maticians for 250 years! 

Goldbach's Ternary Conjecture has been proven-almost! In 
1923 G. H. Hardy and John Littlewood proved that there exists a 
number, n (which they didn't know), such that every odd number 
larger then n can be written as the sum of three prime numbers. 
However, to prove this they had to assume as true a general form 
of the Riemann hypothesis, another famous conjecture that has not 
been proven true to this day. All that Hardy and Littlewood proved 
was that if the Riemann hypothesis is true, then beyond some 
number n all odd numbers were the sum of three primes. This 
meant that if the Riemann hypothesis could be proven, then the 
Ternary Conjecture could only fail to be true for a finite number of 
odd numbers, e.g., some set of odd numbers less than n. 

This wasn't really very close, yet Hardy and Littlewood were 
on the right track. And they did make progress after 180 years of 
no progress at all. In fact, it was Hardy and Littlewood who defined 
an entirely new approach to studying problems involving sums of 
numbers, known as additive number theory. Then in 1937, I.M. 
Vinogradov proved the same thing as Hardy and Littlewood, 
except he didn't have to assume the Riemann hypothesis was true. 
Hence, we now know that there exists some number such that all 
odd numbers that are larger can be written as the sum of three 
primes. This reduces the problem to finding this number n, and 
then testing all odd primes up to n to verify that they, too, can be 
written as the sum of three primes. (Hopefully, n is not too big!) 
This will settle once and for all that the Ternary Conjecture is true. 
But there is still that little way to go before we can claim total 
victory. After all, we may test all odd numbers up to n, only to 
discover one or more cannot be written as the sum of three primes. 
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How big is n? One of the first estimates of its size was approxi
mately:3 

To say the least, this is a rather large number, approximately ten 
followed by 6,846,000 zeros. To test all odd numbers up to this limit 
would take more time and computer power than we have. Recent 
work has improved the estimate of n. In 1989 J.R. Chen and T. Wang 
computed n to be approximately:4 

ell.S03 "" 1043.000 

This new value for n is much smaller than the previous one, and 
suggests that some day soon we will be able to test all odd numbers 
up to this limit to see if they can be written as the sum of three 
primes. 

GOLDBACH'S BINARY CONJECTURE 
The whole idea seems so simple: Can every even number, 4 or 

greater, be written as the sum of two primes? Let's look at the first 
even numbers: 

4=2+2 
6=3+3 
8=3+5 

10 = 3 + 7 and 5 + 5 
12=5 +7 
14 = 3 + 11 and 7 + 7 
16 = 3 + 13 and 5 + 11 
18 = 5 + 13 and 7 + 11 
20=3+ 17 and 7 + 13 

It would appear on the surface that Goldbach's Conjecture is 
true, and that as even numbers get larger, the number of ways of 
writing an even number as two primes increases. In fact, the very 
next number, 22, can be written as the sum of two primes in three 
different ways: 3 + 19,5 + 17, and 11 + 11. The numbers 4, 6, 8, and 
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12 are the only numbers known that can be written as the sum of 
two primes in only one way. 

The various attacks on this problem have been interesting. 
Suppose that the number of even integers less than n that cannot 
be written as the sum of two primes is f(n). Of course we would 
like to prove that F(n) = 0 for all n; that is, there are no even integers 
that cannot be so written. In the late 1930s, T. Estermann, J.G. van 
der Corput, and Chudakov proved that the ratio of F(n)/n ap
proaches zero as n goes to infinity. This is far from proving that 
F(n) is zero for all n, but it did demonstrate that if there did exist 
even numbers that failed the Binary Conjecture, their number was 
small compared to n. Mathematicians would say that the density 
of F(n) is very low. An example will illustrate the idea of density. 
Suppose we consider the density of all even numbers among the 
integers. Up to and including the number 2n we know there are n 
even numbers. Hence, the ratio of even numbers to all numbers up 
to 2n is just n/2n = 1/2 or 50% Hence, no matter how big a number 
we choose, we know the density of even numbers will always be 
50%. 

Another way to attack the Binary Conjecture is to start by 
proving all even numbers can be written as the sum of two num
bers, these two numbers being composed of no more than nand m 
primes. Hence, for any even number N, we have: 

N = p.Ph·Pc· ... 'Pn + PA,PB,PC ' .• ·Pm 

For example, let N = 56 and n = 3 while m = 2. We can write 56 as 
the sum of the product of three primes (n) plus the product of two 
primes (m) or: 

56 = 2·3·5 + 2·13 = 30 + 26 

Now, what we would like to prove is that for all even N, nand m 

can both be 1; that is, that both numbers we add contain only one 
prime. When we reach this point, the two terms combining to make 
the sum will each be a single prime and the conjecture will be 
proven. In 1919 V. Brun proved that every sufficiently large even 
number could be written as the sum of two products, each product 
consisting of no more than nine primes. We show this as 
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Here the subscripts show the maximum number of primes 
contained in the number P. No advance was made for a number of 
years. Then, in 1950 the team consisting of Rademacher, Estermann, 
Ricci, Buchstab, and Selberb proved that all sufficiently large even 
primes could be written as 

N=P2 +P3 

Getting closer! Finally, in 1966 J.R. Chens proved that every suffi
ciently large even number could be written as 

N=PI +P2 

Really close! This says that every sufficiently large even number 
can be written as the sum of a prime and a near prime, i.e., a number 
composed of only two primes. Now all we have to do is reduce the 
equation from N = PI + P2 to N = PI + PI' then find out how large 
"sufficiently large" is, and finally test all even numbers up to that 
number. 

Of course, there have been attempts to test even numbers to find 
one that cannot be written as the sum of two primes. This would 
disprove the Binary Conjecture. By 1993 the even numbers up to 4 
X lOll or 400,000,000,000 had been tested with no such counterex
ample being found.6 

GOLDBACH'S COMET 

There is yet another way to look at Goldbach's Binary Conjec
ture thanks to the work of Henry Fliegel, Aerospace Corporation, 
and Douglas Robertson, National Geodesic Survey? Fliegel and 
Robertson have expanded the idea behind the Goldbach Conjec
ture in an intriguing way. Let n be an integer, and let C(n) be the 
number of ways n can be written as the sum of two primes. Hence, 
we have C(4) = 1 because 4 can be written as the sum of two primes 
in only one way: 2 + 2. On the other hand, C(34) = 4 because 34 can 
be written as: 3 + 31, 5 + 29, 11 + 23, and 17 + 17. The numbers, 
C(n), are called Goldbach numbers. Now we can investigate how 
Goldbach numbers change as n increases through the integers. Of 
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Table 15. Goldbach Numbers for Even Numbers, 2 through 200 

n C(n) n C(n) n C(n) n C(n) n C(n) 

2 0 42 4 82 5 122 4 162 10 
4 1 44 3 84 8 124 5 164 5 
6 1 46 4 86 5 126 10 166 6 
8 1 48 5 88 4 128 3 168 13 
10 2 50 4 90 9 130 7 170 9 
12 1 52 3 92 4 132 9 172 6 
14 2 54 5 94 5 134 6 174 II 
16 2 56 3 96 7 136 5 176 7 
18 2 58 4 98 3 138 8 178 7 
20 2 60 6 100 6 140 7 180 14 
22 3 62 3 102 8 142 8 182 6 
24 3 64 5 104 5 144 II 184 8 
26 3 66 6 106 6 146 6 186 13 
28 2 68 2 108 8 148 5 188 5 
30 3 70 5 llO 6 150 12 190 8 
32 2 72 6 112 7 152 4 192 11 
34 4 74 5 114 10 154 8 194 7 
36 4 76 5 116 6 156 II 196 9 
38 2 78 7 ll8 6 158 5 198 13 
40 3 80 4 120 12 160 8 200 8 

course, if we ever find an n such that C(n) = 0, then we will have 
disproved the Binary Conjecture. Table 15 lists the Goldbach num
bers for the first 200 even integers. By examination of Table 15 we 
realize that Goldbach numbers are increasing with increasing n, yet 
within any short interval they seem to jump around in an appar
ently random manner. 

Fliegel and Robertson computed C(n) for hundreds of thou
sands of numbers and then plotted their values. The results con
tained a completely unexpected surprise. Figure 42 is the plot of 
5000 Goldbach numbers through 10,000. The horizontal scale is the 
integer n, and the vertical scale represents the values of C(n). Notice 
that the values of the Goldbach numbers do not spread out evenly 
over their range, but tend to cluster into definite bands. Certainly, 
something strange is going on here. Because of the overall shape of 
this graph, Fliegel and Robertson named it a Goldbach Comet. 
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FIGURE 42. Goldbach's Comet. C(n) is the number of ways of representing n, an 
even number, as the sum of two prime numbers. As n increases, C(n) breaks into 
bands. 

In addition to the bands, there are several remarkable features 
of the Goldbach Comet. The lowest set of points, that is, the smallest 
Goldbach numbers, form almost a sharp edge along the lower part 
of the comet. This suggests that not only is the Binary Conjecture 
true for all even numbers, but there is a lower bound for Goldbach 
numbers that steadily increases as n increases. Checking specific 
values for Goldbach numbers reinforces this idea. Only four num
bers are known to have a C(n) value of 1: 4,6, 8, and 12. No number 
larger than 632 is known to have a Goldbach number smaller than 
10, and no number larger than 1448 is known to have a Goldbach 
number smaller than 20. This is evidence for the truth of the 
conjecture. Had we seen a smattering of values from one up in all 
sections of the graph, we might not be so confident. On the other 
hand, we do see a smattering of large values at the top of the graph, 
which suggests that there may be no limit to the number of ways 
large enough numbers can be expressed as the sums of primes. 

While this graphical evidence is suggestive, it does not prove 
the conjecture. But what causes the bands? These bands appear at 
heights whose ratios are simple fractions from the height of the 
lowest band. By using the theory of congruences, Fliegel and 
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Table 16. Six-Column Array of Numbers 

Column 1 Column 2 Column 3 Column 4 ColumnS Column 6 

1 2 3 4 5 6 
7 8 9 10 11 12 

13 14 15 16 17 18 
19 20 21 22 23 24 
25 26 27 28 29 30 
31 32 33 34 35 36 
37 38 39 40 41 42 
43 44 45 46 47 48 
49 50 51 52 53 54 
55 56 57 58 59 60 
61 62 63 64 65 66 
67 68 69 70 71 72 
73 74 75 76 77 78 
79 80 81 82 83 84 

85 86 87 88 89 90 
91 92 93 94 95 96 
97 98 99 100 101 102 

103 104 105 106 107 108 
109 110 III 112 113 114 
115 116 117 118 119 120 

Robertson were able to solve the mystery. Remember that congru
ence theory is simply a way to describe what happens when we 
write numbers in fixed columns. For example, Table 16 shows a 
six-column array of integers from 1 to 120. Notice that if we divided 
any number in column 5 by the number 6 (the array size), we get a 
remainder of 5. On the other hand, if we divide a number from 
column 1 by 6 we get a remainder of 1. Hence, the column number 
tells us the remainder we get by dividing a number by the size of 
the array. The only exception, of course, is column 6 where we get 
a remainder of zero if we divide by 6. 

We symbolically show a congruence relationship in the follow
ing manner: 25 mod 6 = 1, where the three bars is a congruence sign, 
and we read the relationship as "25 is congruent to 1 modulo 6." 
This means two things. First, the number 25 is in the first (number 
1) column, and that if we divide 25 by 6 the remainder is 1. We have 
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already pointed out that interesting things happen to numbers 
when they are arranged in arrays. For example, in our six-column 
array, all prime numbers fall into columns 1 and 5, and no others. 

How can we use congruences to understand the bands in Gold
bach's Comet? A law of congruences states the following: 

if A = B + C then A mod m = B mod m + C mod m 

A little thought will illustrate that this is so, for A mod m is the 
remainder we get when we divide A by m. Now let's say that A is 
43 and m is 5. This means that 43 mod 5 = 3, because the remainder 
of dividing 43 by 5 is 3. Now we will write 43 as the sum of two 
numbers: 43 = 31 + 12. If we divide both 31 and 12 by 5, the sum of 
those remainders must equal 3, or 31 mod 5 = 1, 12 mod 5 = 2, and 1 
+2=3. 

A Goldbach number, C(n), represents the number of ways we 
can write an even number as the sum of two primes. If N = Pa + Pb, 

then N mod m = Pa mod m + Pb mod m. This says that if we divide N 
by m to get a remainder, then this remainder will equal the sum of 
the remainders we get when we divide the two primes by the same 
m. Now let's see what happens when we compute the Goldbach 
numbers for the even numbers found in Table 16. These Goldbach 
numbers are found in Table 17, where the entries represent the 
number of ways the even numbers from Table 16 can be written as 
the sum of two primes. (Notice we have entered a zero for the 
number 2 since it cannot be written as the sum of two primes.) We 
only show the Goldbach numbers for columns 2, 4, and 6 in Table 
17 because we are only calculating the Goldbach numbers for the 
even numbers from Table 16. A simple inspection of Table 17 shows 
that the Goldbach numbers in column 6 are generally larger than 
those in columns 2 and 4. We can confirm this by adding the three 
columns. 

The sum of the Goldbach numbers from column 2 is 65, the sum 
from column 4 is 82, and the sum from column 6 is 115. Why this 
difference, and is it just an accident-a random occurrence? Table 
17 suggests that numbers in column 6 of Table 16 can be written as 
the sum of two primes in more ways, on average, than the numbers 
from the other two columns. Remember that each number in the 
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Table 17. Goldbach Numbers in Six-Column Array 

Column 1 Column 2 Column 3 Column 4 ColumnS Column 6 

0 1 1 
1 2 1 
2 2 2 
2 3 3 
3 2 3 
2 4 4 
2 3 4 
3 4 5 
4 3 5 
3 4 6 
3 5 6 
2 5 6 
5 5 7 
4 5 8 
5 4 9 
4 5 7 
3 6 8 
5 6 8 
6 7 10 
6 6 12 

Column Sums 65 82 115 

even columns of Table 16 must be written as the sum of two primes, 
and all primes must come from columns 1 and 5 of Table 16, for 
these are the only two columns containing primes. Every number 
in column 2 has a remainder of 2 when divided by 6, or 
N2 mod6 = 2, Therefore, if we write the number from column 2, 
Table 16, as the sum of two primes we have: N2 = Pa + Pb' We now 
ask where the two primes Pa and Pb can come from. If we divide 
Pa and Pb by 6, the sum of the remainders must equal 2 since 
N2 mod6 = 2. The only column we can get these two primes from is 
column number 1. We can verify this by checking Table 16. If each 
prime is from column 1 then the two remainders after dividing by 
6 will be 1, and therefore, the sum of the remainders will be 2. On 
the other hand, if we get one prime from column 1 and one prime 
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from column 5, then the sum of the remainders will be 1 + 5 = 6 (or 
0), not 2. If we get both from column 5, the sum of the remainders 
will be 10 which is equivalent to column 4 (after dividing by 6). 
Hence, the primes can't both come from column 5. The only possi
bility is that both primes come from column 1 so that the sum of 
their remainders is equal to 2. Hence, in choosing two primes to 
add together to yield a number in column 2, we can use only those 
primes from column 1. 

Now let's consider those numbers in column 6. For every 
numberin column 6,N6 mod6 = O,orthe remainder when dividing 
by 6 is always zero. Which of the two columns, 1 and 5, can 
contribute primes to add to N6? In fact, a prime from column 1 will 
give us a remainder of 1 and a prime from column 5 will give us a 
remainder of 5. The sum of these two remainders is 6, which is 
equivalent to zero, modulo 6. Hence, in adding primes to sum to 
N6, we can try one prime from column 1 and one from column 5. 
Therefore, there are more possible combinations that might add to 
N6 when we try combinations of primes from both columns rather 
than being restricted to just one column. This is why the number 
of ways of writing N6 as the sum of two primes in column 6 is 
greater than those numbers from column 2. 

A concrete example helps. The number 36 is in column 6 ofTable 
16. There are four ways primes can be added together to get 36, 
namely: 5 + 31, 7 + 29, 13 + 23, and 17 + 19. Notice in each case, one 
prime comes from column 1 and the other from column 5. Now the 
number 38 can be written as the sum of two primes in just two 
ways: 7 + 31 and 19 + 19. In each case both primes had to come from 
column 1. 

The same analysis applies to column 4. When adding primes to 
equal numbers in column 4, their remainders must add to 4. This 
only happens when both primes come from column 5, and never 
when one or both primes come from column 1. For example, 5 and 
17 are both in column 5. They add to 22, an even number in column 
4. On the other hand, if we add 5 to any prime in column 1 we get 
a resulting number in column 6, and never in column 4. Therefore, 
column 4 numbers are restricted just like those in column 2. Only 



GOlDBACH'S CONIECTURE 247 

numbers from column 6 use primes from both columns 1 and 5. If 
we were to create tables of larger numbers similar to Table 17, we 
would see that this impact on the Goldbach numbers continues 
with larger numbers. The sum of the three columns; 2, 4, and 6, for 
the next 20 rows of Goldbach numbers (from 122 to 240) are: 
column 2 = 127, column 4 = 146, and column 6 = 248. Therefore, 
column 6 continues to lead in the number of ways to add two 
primes to yield an even number. 

From all the above we can now understand why the bands 
appear in Goldbach's Comet. The even numbers falling into certain 
columns in arrays can be written as sums of primes, using more of 
the primes than numbers from other columns. Such numbers will 
have larger Goldbach numbers and appear clustered together in a 
band in the comet. As a general rule we can say the largest Gold
bach numbers will come from those numbers with the greatest 
number of different factors, while the smallest Goldbach numbers 
come from numbers which contain a 2 and one other large prime 
factor. From Table 15 we see the largest Goldbach number listed is 
27 which comes from 390 = 2,3·5·13. A larger number with a 
significantly smaller Goldbach number is 398 = 2·199 whose Gold
bach number is only 7. 
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FIGURE 43. Goldbach's Comet for select even numbers. The lower band is pro
duced by even numbers composed of the prime 2 plus one additional large prime. 
The upper band is produced by even numbers that include 2, 3, and 5 among their 
prime factors. 
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Figure 43 shows a Goldbach Comet for specific kinds of num
bers. The lower band is produced by numbers composed of the 
prime 2 plus one additional large prime. On the other hand, the 
upper band is produced by numbers containing the factors 2, 3, and 
5. Notice that the two bands are completely separated. 

ROUND NUMBERS 

Since we have introduced the notion that some numbers are 
composed of numerous small primes, it is a good time to define 
round numbers. Round numbers are just those numbers that, when 
factored, contain a large number of primes, which may be different 
primes or one or more primes repeated. For example, 210 = 2·3·5·7 
is considered a round number. But also considered round is 128 = 
2·2·2·2·2·2·2 = 27. Mathematicians have two ways for measuring the 
roundness of numbers. If we factor a number into its primes we can 
show it as: 

Each P is a different prime, and the exponents al, a2' a3' ... , am show 
how many times each different prime occurs in the number. Hence, 
500 = 2·2·5·5·5 or 22.53• One way to measure roundness is just to 
count the number of different primes and ignore how many times 
each is used. The number of different primes occurring in a number 
is oo(n). Hence, 00(500) = 2 since there are two different primes in 
the number 500. A second way to measure roundness is to account 
for the number of times each prime appears by simply adding the 
exponents. The total number of primes occurring in a number is 
Q(n). This means that Q(SOO) = 5, since a total of five primes are 
contained in 500, that is the prime 2 occurs twice and 5 occurs three 
times. Notice that to compute the 5 we simply added the exponents 
together for the primes of 2 and 5. 

Now that we have these two measures of roundness in numbers, 
we might ask how fast they grow in size as integers get larger and 
larger. If <O(n) is large compared to oo(n - 2), oo(n - 1), oo(n + 1), 
oo(n + 2), or in general, if it is large compared to its neighboring 
values of oo(n), then we say that n is round. Otherwise it is not. 
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Likewise, if Q(n) is large compared to its neighboring values, then 
n is considered round. The surprising result from studying how 
numbers factor is that round numbers are very rare.s The numbers 
we frequently encounter are often round. One thousand is round 
because 1000 = 23.53• One million is also round since 1,000,000 = 
26.56• The frequency of round numbers we encounter in normal 
daily living would suggest they are quite numerous. But the oppo
site is the case. We can understand this by investigating how both 
Q(n) and oo(n) increase as n increases. 

If we compute oo(n) and Q(n) for various n, we see that their 
values tend to jump around in a haphazard manner, not unlike 
Goldbach numbers, Table 18 lists the first 100 values for both 
measures of roundness. Mathematicians have identified a function 
that is an approximate measure of oo(n) and Q(n). While their values 
do jump around, there is a value we can compute that is almost 
always close to the individual values of oo(n) and Q(n). This impre
ciseness is a strange way to hear mathematicians talk, for mathe
matics is generally considered to be the most precise activity 
carried out by humans. Yet, many mathematical phenomena be
have in such an erratic manner that we must measure them through 
less than precise means. One way to do this is to talk of the normal 
order of functions. Normal order is defined as a measure that is 
approximate to the functions in almost all values. Hence, the 
measure is close except for a very few exceptions. 

With this rather vague definition of normal order we present a 
wonderful theorem which measures the growth of both oo(n) and 
Q(n). 

Theorem: The normal order of oo(n) and il(n) is In (In n) 

The definition of In (In n) is simply to take the natural logarithm 
of n, and then take the natural logarithm of the answer. From this 
theorem we can deduce that most values of oo(n) and n(n) are 
approximately In (In n). For example, if n = 1,000,000 then oo(n) and 
n(n) are both close to In (In 1000000) = 2.63, What this says is that 
the majority of numbers close to one million have between two and 
three factors! If we just take a moment to think about it, this is 
incredible. For example, n(1,OOO,OOO) = 12, which says one million 
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has a total of 12 factors, and is very round. But, on average, the 
numbers in that range have many fewer factors. 

Table 19 lists the values of ro(n), O(n), and the factors of the 20 
numbers between 999,991 and 1,000,010. At the bottom of the table 
we show the average values for both ro(n) and Q(n). While a few 
numbers have a high degree of roundness, including 1,000,000, 
most are close to our estimated value of In (in 1,000,000) = 2.62. As 
numbers increase beyond one million, the value of In (in n) be
comes an even better measure of roundness. In Table 20 we show 
the same values for the 20 numbers between 999,999,991 and 

Table 18. First 100 Values of wen) and Q(n) 

n m (n) n(n) n m(n) n(n) n m(n) n(n) n m(n) n(n) 

1 1 26 2 2 51 2 2 76 2 3 
2 1 27 1 3 52 2 3 77 2 2 
3 1 1 28 2 3 53 1 1 78 3 3 
4 2 29 1 1 54 2 4 79 1 
5 1 1 30 3 3 55 2 2 80 2 5 
6 2 2 31 1 56 2 4 81 1 4 
7 32 1 5 57 2 2 82 2 2 
8 3 33 2 2 58 2 2 83 1 1 
9 1 2 34 2 2 59 1 1 84 3 4 

10 2 2 35 2 2 60 3 4 85 2 2 
11 1 36 2 4 61 1 1 86 2 2 
12 2 3 37 1 1 62 2 2 87 2 2 
13 1 38 2 2 63 2 3 88 2 4 
14 2 2 39 2 2 64 1 6 89 1 1 
15 2 2 40 2 4 65 2 2 90 3 4 
16 4 41 1 66 3 3 91 2 2 
17 1 1 42 3 3 67 1 1 92 2 3 
18 2 3 43 68 2 3 93 2 2 
19 1 1 44 2 3 69 2 2 94 2 2 
20 2 3 45 2 3 70 3 3 95 2 2 
21 2 2 46 2 2 71 1 1 96 2 6 
22 2 2 47 1 1 72 2 5 97 1 1 
23 48 2 5 73 1 1 98 2 3 
24 2 4 49 1 2 74 2 2 99 2 3 
25 1 2 50 2 3 75 2 3 100 2 4 
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Table 19. Values of CJJ(n) and !len) 
for n between 999,991 and 1,000,010 

n wen) n(n) 

999,991 3 3 
999,992 3 6 
999,993 2 2 
999,994 3 3 
999,995 2 2 
999,996 4 5 
999,997 2 2 
999,998 3 4 
999,999 5 7 

1,000,000 2 12 
1,000,001 2 2 
1,000,002 3 3 
1,000,003 1 1 
1,000,004 3 5 
1,000,005 4 4 
1,000,006 3 3 
1,000,007 2 2 
1,000,008 5 8 
1,000,009 2 2 
1,000,010 4 4 

Average 2.9 4.0 

1,000,000,010. Reviewing the factors listed demonstrates that most 
numbers have few factors. 

Remembering our graph of the growth of In n, and how slow 
that growth was in comparison to n, we can appreciate that 
In (In n) grows excruciatingly slower than n. If we consider the 
numbers in the range of 1080, which is the approximate number of 
protons in the universe, we can determine that most such numbers 
have around five factors since In (In 1080) = 5.22. Modem public-key 
encryption methods use key numbers that are approximately 155 
digits long or numbers in the range of 10155• Computing normal 
roundness for such large numbers we find In (In 10155) = 5.88. This 
means that most such numbers contain approximately six factors. 
Of course, the fact that most large numbers contain few factors 
makes factoring such numbers even more difficult. 
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Table 20. Values of co(n) and !len) 
for n between 999,999,991 and 

1,000,000,010 

n ro(n) {len) 

999,999,991 2 2 
999,999,992 3 5 
999,999,993 3 3 

999,999,994 3 3 
999,999,995 4 4 

999,999,996 3 4 
999,999,997 3 3 
999,999,998 3 3 

999,999,999 3 6 
1,000,000,000 2 18 

1,000,000,001 5 5 
1,000,000,002 5 5 
1,000,000,003 3 3 
1,000,000,004 3 5 

1.000,000,005 3 3 

1,000,000,006 2 2 

1,000,000,007 

1,000,000,008 5 9 

1,000,000,009 1 1 

1,000,000,010 4 4 

WARING'S PROBLEM 

We have already mentioned several problems in additive num
ber theory including the partition problem and Goldbach's Conjec
tures. Another famous such problem is due to Waring. Edward 
Waring 0734-1793) was an English mathematician who was edu
cated at Cambridge, the same university where Hardy, Littlewood, 
and Ramanujan worked. The school gave a very difficult test, called 
the Tripos, to its mathematics students generally during the stu
dent's third year. Individual students were known by how well 
they performed on the exam. The highest scorer for any year was 
called senior wrangler, with the second highest scorer being second 
wrangler, then third wrangler, and so on. To achieve senior wran
gler was like winning a gold medal at the mathematical olympics 
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for any English mathematics student, and Waring was senior wran
gler when he graduated. (As a side note, we might mention that 
G.H. Hardy, who took the Tripos his second year, was fourth 
wrangler, while his friend Littlewood was senior wrangler.9 The 
Tripos is no longer given.) 

Waring's work contained many important results, several of 
which were published in his book, Meditationes algebraicae, which 
came out in 1770. We have already mentioned Wilson's Theorem 
regarding prime numbers, named for Wilson by Waring. The first 
written record of Goldbach's Conjectures is found in Waring's 
Meditationes algebraicae. Waring may also have been the first to use 
the important ratio test to test for the convergence of infinite series, 
although it is now called Cauchy's test, after Augustin-Louis 
Cauchy (1789-1857). Unfortunately, the Meditationes was not 
widely read, and Waring did not receive the credit during his life 
that he should have. 

In his book, Waring conjectured about integers being written as 
the sum of other integers raised to various powers. For example, 
we can write 13 = 9 + 4 = 32 + 22. From this we see that 13 can be 
written as the sum of two squares. Can every number be written as 
the sum of two squares? No. For example, 12 cannot be written so. 
When we try, we get the following combinations: 

12 = 12 + 11, 12 = 22 + 8, and 12 = 32 + 3 

The next square, 42, is larger than 12. Hence, these three combina
tions use one square, but the second number is not a natural square. 

Now comes the interesting question. What is the least number 
of squares needed to represent every positive integer? We know 
from our example with 12 that it cannot be two squares. Will three 
squares suffice? No. In fact, in 1770 Joseph-Louis Lagrange proved 
that every positive integer can be written as the sum of no more 
than four squares. We can write 12 as the sum of three squares: 12 
= 22 + 22 + 22, and any number, no matter how large, can be written 
using at most four squares. 

Waring went beyond squares and conjectured that every posi
tive integer can be written as the sum of no more than nine cubes, 
and no more than 19 fourth powers. Now we come to the general 
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question lying at the heart of the Waring problem. Let's define 
g(k) as the smallest number of kth powers needed to represent all 
positive integers. Hence, we know g(2) = 4, because 4 is the smallest 
number of squares needed to represent every positive integer. 
Waring guessed that g(3) = 9, or that it would take nine cubes (or 
fewer) to represent every integer. It is logical to assume that some 
very large numbers require a full nine cubes, but this is not the case. 
Consider the number 23. We cannot use 33 (27) in the sum for 23 
because it is too large. Therefore, 23 must be shown as the sum of 
ones and twos squared. Hence, the smallest representation of 23 as 
the sum of cubes is: 

23 = 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + }3 

The only other number known to require nine cubes is 239: 

n9=~+~+~+~+~+~+~+~+V 

If we try to write every integer as the sum of eight cubes, we will 
fail for only 23 and 239. Waring also guessed thatg(4) = 19. 

Now we can state Waring's problem. Given the power k, what 
is the least number of kth powers needed to represent every posi
tive integer? Or, for any k, what is g(k)? This is a very hard problem, 
and has not, in its most general form, been solved. It really contains 
two problems: (1) Does g(k) exist for every k; and (2), if so, what is 
it? As a general rule we can say that k + 1 S; g(k). Therefore, if we try 
to represent all numbers as the sum of k numbers to the kth power, 
we will fail. Yet, this is only a lower bound, and does not tell us 
what g(k) should be for any particular k. 

Although substantial work has been carried out on Waring's 
problem, only specific cases have been solved.10 For k = 2 through 
10 we have: 

g(2) = 4 
g(3) = 9 
g(4) = 19 

g(5) = 37 
g(6) = 73 

Conjectured by Fermat, proved by Lagrange, 1770 
Conjectured by Waring, proved by Wieferich, 1912 
Conjectured by Waring, proved by the team of 
Balasubramanian, Dress, Deshouillers, 1986 
Proved by Chen, 1964 
Proved by Pillai, 1940 
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143 :=;g(7):=; 3806 
279 :=;g(8):=; 36,119 
548 :=;g(9):=;? 
1079 :=; g(10) :=; ? 
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From this list, we see that only the specific cases for n = 2, 3,4, 
5, and 6 are solved. We have a little information for 7 through 10. 
But what about a general formula? If we put the known g(n) in a 
sequence (4,9,19,37,73, ... ) we need some technique to easily get 
the next number. 

Another part of the Waring problem is to ask: What is the 
smallest number of powers of k for which there will be only a finite 
number of failures? For example, we know it takes four squares to 
represent all integers. But if we try to use only three squares? Will 
the number of integers that fail be only finite? In other words, is 
there some large number n such that all larger numbers can be 
represented by only three squares? The answer is no. If we try to 
use only three squares to write numbers, there will be an infinite 
number of exceptions. 

For another example we can look at cubes. We know that to 
represent all positive integers requires nine cubes. However, only 
two relatively small numbers need a full nine cubes. We now know 
that all larger numbers require only eight or fewer cubes. Hence, 
we know that it will require fewer than nine cubes to represent all 
positive integers beyond 239. Can we say the same for seven cubes? 
Does some integer exist such that seven cubes is enough to repre
sent all larger numbers? Yes. Can we say the same about six? Now 
we run into problems. 

We will let G(k) be the smallest number of kth powers for which 
there are only a finite number of exceptions. Hence, if we try to 
represent numbers with fewer kth powers than G(k), there will be 
an infinite number of failures. We know that G(2) = 4, just as g(2) = 
4. While g(3) = 9, what is G(3)? We can only say that 4 :=; G(3) :=; 7, or 
that G(3) is some number between 4 and 7. 

This second Waring problem seems to be the more difficult. Yet, 
it is of just as much interest to mathematicians as g(k), because small 
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numbers seem to have their own peculiarities which the large 
numbers do not share. This means some theorems only fail for 
small numbers and no others. For example, the proposition that all 
primes are odd numbers only fails for the number 2. Therefore, 
G(k) (only finite failures) is just as important as g(k} (no failures). 

In general we can say that k + 1 ~ G(k) ~ g(k}. For specific G(k} 
where k = 2 through 10 we know the following: 

G(2) = 4 
4 ~G(3} ~ 7 
G(4} = 16 
6 ~ G(5} ~ 21 
9 ~ G(6} ~ 31 
8 ~G(7} ~45 
32~ G(8} ~62 
13 ~ G(9} ~82 

12 ~ GOO} ~ 102 

We know G(k) exactly only for k = 2 and 4. For other values we 
only know a range. Because of the difficulty of Waring's problem, 
it may be some time before we have a general solution that allows 
us to compute g(k) and G(k) directly from k. Yet, we do have some 
information regarding a general solution. 

In 1909 the brilliant German mathematician David Hilbert 
(1862-1943) proved that for any k,g(k} existed, and was finite. If 
g(k} exists, then we know that G(k} exists, for the worst case will be 
when G(k} = g(k). There have also been efforts to find some upper 
bounds on g(k} and G(k}, depending on k. In 1954 G.J. Rieger 
showed that g(k) ~ 232(k+l)! and in 1984 R. Balasubramanian and c.J. 
Mozzochi showed that: 

G(k} < -21n(3k) -In(6k) _ 4 

- In(k~ 1) 
The above equations produce rather larger upper bounds for g(k} 
and G(k}. For example, if k = 3 then we get the upper bounds of g(3} 
~ 2758 (a rather larger number) and G(3} ~ 14, a much more reason-
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able bound than for g(k), but considerably larger than the bound of 
7 we currently have. 

And now, one last wrinkle to additive problems. Anew problem 
is possible if we combine the Waring problem with the Goldbach 
Conjecture. Consider writing numbers as sums of kth powers, but 
only when the numbers used in the sums are primes. When k = 1 
we get the Goldbach Conjecture. That is, is every sufficiently large 
number represented by the sum of two or three primes raised to 
the first power? In 1938 Vinogradov showed that for every k, there 
was an integer, V(k), so that every sufficiently large number was 
the sum of V(k) primes all raised to the kth power. As an example, 
we have 40 = 52 + 32 + 22, where k = 2, and each number that is raised 
to the kth power is a prime. It is obvious that all numbers can't be 
written this way. However, Vinogradov proved that if we let n be 
large enough, then every number bigger than n can be written as 
the sum of squares of primes. The problem is to find the V(2) or 
how many squares we need. This is called the Waring-Goldbach 
Problem. 

In this chapter we have concentrated on additive problems 
including Goldbach's Conjecture and Waring's problem. The origi
nal questions posed are very simple and would suggest quick 
answers, but the answers are difficult and slow in coming. Why is 
that? Why can't we just look at the questions being asked and 
determine which will be hard to answer and which will be easy? 
When studying the natural number sequence we are constantly 
confronted by this dilemma. The question of whether an infinity of 
primes exist was easily answered by Euclid over 2000 years ago, 
and the average school-age child can be taught the proof in a few 
minutes. Yet, Goldbach's simple question is still unanswered, even 
after the giants of mathematics have tried their hand at it. This 
teaches us that deep questions need not come from complex or 
convoluted problems. They can come from innocent questions 
asked by the average man or woman (or child) on the street. This 
characteristic of mathematics adds to its charm while suggesting a 
broader question: How do we recognize the deep and hard ques
tions from the easy? Maybe the answer to this is very deep. 



CHAPTER THIRTEEN 

DEEPEST MYSTERIES 

If I were to awaken after having slept for a thousand 

years, my first question would be: Has the Riemann 

hypothesis been proven?l 

DAVID HILBERT (1862-1943) 

d / )e have left the best for last. We say it is best for several 
-YY reasons. First, the mysteries we are about to plumb regard

ing the natural number sequence are the deepest and most magical. 
Second, understanding them involves the greatest problem in all 
of mathematics. We are going to study the Riemann hypothesis, a 
hypothesis that everyone assumes to be true, but nobody can 
prove. The mathematician quoted above, David Hilbert, was one 
of the greatest mathematicians to bridge the 19th and 20th centu
ries. At a 1900 Paris conference he proposed 23 mathematical 
problems that should occupy the attention of mathematicians dur
ing the 20th century. About half have now been solved. One of the 
23 still unsolved is the Riemann hypothesis. 

One reason the Riemann hypothesis is not better known is 
that it's basic formulation is more complex and requires consid
erably more knowledge of number theory. However, with the 
previous pages of this volume, we have prepared ourselves for 
Riemann. Before we sit down to the main course though, we will 
whet our appetites with some tantalizing mathematical hors 
d'oeuvres. 

258 
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COMPLEX NUMBERS 
Up to this point we have restricted our attention to the numbers 

that make up the real number line: integers, fractions, algebraic 
numbers, and transcendental numbers. Another kind of number 
was only mentioned. Remember when we looked at Euler's won
derful formula, erN-! + 1 = o? We encountered the strange symbol, 
--1=:[, and pointed out that there is no real number that, when 
multiplied by itself, gives us a value of -1. To understand the need 
for such numbers, consider the simple equation )(l + 1 = O. The 
square of any real number is always positive, and adding 1 to a 
positive number will never give us a zero. Hence, we must look 
elsewhere for our solution. 

To find solutions to such equations we define the complex num
berfield. Simply take two straight lines and set them at right angles 
to each other, as in Figure 44. These two lines are called the axes: 
the horizontal (or real) axis and the vertical (or imaginary) axis. The 
point where they intersect is called the origin, which we designate 
as the complex number (0,0). On a number line, every point is 

· · · ..... ". 

(-1.5,-2) 
/ 

number 
line --

.......... . /(2,3) 

/ 
number 
line 

FIGURE 44. The complex number plane showing the complex numbers (2,3) and 
(-1.5,-2). Such numbers can also be written in the form 2 + 3i and -1.5 - 2i. 
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associated with a real number. However, in the two-dimensional 
plane in Figure 44 every point of the entire plane is associated with 
a complex number. We identify each point on the plane (complex 
number) by using two unique real numbers. In Figure 44 we have 
identified the two complex numbers (2,3) and (-1.5,-2). The first 
real number in a complex number pair represents the complex 
number's distance from the vertical line, and is called the real part. 
The second number of the pair is the distance from the horizontal 
line; it is called the imaginary part. Usually, instead of writing 
complex numbers as (a,b), we write them as a + bi, where the i stands 
for the imaginary unit, "-f. Writing complex numbers in this form 
allows us to manipulate them in computations. 

We can now see that the real numbers are just a subset of the 
complex numbers, for when the imaginary part of a complex 
number is equal to zero, then the corresponding point is located on 
the horizonalline of Figure 44. Why do we need these strange new 
numbers? Much of modem mathematics is based on complex 
numbers, and they are used extensively in the sciences. And now 
we are ready to use them in understanding the Riemann hypothesis. 

CHASING AFTER n(n) 

The great body of mathematics is constructed upon the concept 
of the natural number sequence. The foundation of the natural 
number sequence is the set of all prime numbers, for prime num
bers multiply together to form every natural number. In other 
words, if we had only the prime numbers we could generate every 
other natural number simply by multiplying the various primes 
together. Thus, by understanding the distribution of prime num
bers, we gain control of the number sequence itself. This is why the 
study of prime numbers is so important to the foundation of 
mathematics. 

The first question regarding primes (How many are there?) was 
answered by Euclid of ancient Greece. The next question (How are 
they distributed?) has been perplexing mathematicians to this very 
day. We cannot determine the distribution of primes on the small 
scale because they occur in such a random fashion. For example, 
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we can't easily identify the next prime occurring after a certain 
number n (there's no formula or algorithm). We also find it very 
difficult to determine if many large numbers are prime or compos
ite. However, we can see some regularity in the overall flow of the 
primes. One basic question is: Given any number n, how many 
primes exist that are less than n? As we've pointed out, this number 
is defined as 1t(n), called the prime counting function. To compute 
1t(n) exactly we must laboriously count all the primes from 2 
through n, a horrendous project when n is large. The largest com
puted value of 1t(n) is for n = 1017 or 1t(1017) = 2,625,557,157,654,233, 
calculated by M. Oeleglise in 1992.2 What we really need is a 
formula for computing 1t(n) exactly. But the best that is possible is 
a formula that approximates 1t(n), and thus captures the essence of 
prime distribution. It is this long, hard road to unraveling 1t(n) that 
eventually leads to the Riemann hypothesis. 

One of the first to seriously attack the problem of understanding 
1t(n) was the French mathematician, Adrien-Marie Legendre (1752-
1833), who gave an estimate to 1t(n) in 1798: 

1t(n) := n/(In n -1.08366) 

where In n is the natural logarithm of n. While this formula isn't 
too bad, it breaks down for large n. However, the formula is 
remarkable because it establishes a link between prime numbers 
and the natural logarithms of numbers, which in tum is defined in 
terms of the constant e, the limit to continuously compounded 
interest. 

Next, in 1792, Carl Gauss, at the age of 15, noticed that the 
primes increased as a function of n/(ln n), which is close to Legen
dre's claim. However, it was Gauss' formula that proved the better 
of the two and has become known as the Prime Number Theorem. 

What Gauss suspected, but could not prove, was that as n grows 
larger and larger, n/(ln n) becomes an ever better estimate of 1t(n). 

Another way of expressing this idea symbolically is: 

lim 1t(n) =....!!.... 
n ..... M In n 
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As n gets larger and larger, n/(ln n) gets closer to the true value of 
1t(n). 

As previously stated, Gauss also proposed another formula 
called the logarithmic integral of n, Ii (n), which is based on integral 
calculus. Gauss reasoned that if n/(In n) is an approximation of the 
number of primes less than n, then l/(ln n) is an approximation of 
the probability that n is a prime. The sum of all such probabilities 
from 2 through n becomes another estimate of the number of 
primes less than n. This can be approximated with his integral, 
Ii (n). After a sufficiently large n,li (n) always gives a better estimate 
to 1t(n) than n/(ln n), yet both are based on the same logarithmic 
relationship. 

The proof that n/(ln n) and Ii (n) give closer and closer approxi
mations to 1t(n) had to wait until 1896 when two mathematicians, 
the Frenchman Jacques Hadamard and the Belgian c.J. de la Vallee
Poussin, independently proved the theorem.3 How did Hadamard 
and Vallee-Poussin prove the Prime Number Theorem? They used 
a function called the Riemann zeta function. We're getting closer! 

ZETA 

In 1737 Euler made one of the most remarkable discoveries in 
mathematics when he noticed the following wonderful identity: 

1 1 Lns = II -1 
n=! p=primes 1 - ---; 

p 

In order to fully appreciate this relationship we show both sides in 
the expanded form. 

;s + ~s + ~s + ~s + ... = ( ~ 1 ]( ~ 1 ] ( ~ 1 ] ... 
1 2s 1 3s 1 5s 

On the left we have the infinite series running through all the 
positive integers, while on the right, the product runs through all 
primes, p. For Euler, the s on both sides was a variable that could 
take the value of any real number. 
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Euler's identity expresses a fundamental relationship between 
the sequence of natural numbers and the primes. What is remark
able is not only that Euler discovered this relationship, but that he 
and future mathematicians recognized just how important it was 
in cementing the link between whole numbers and primes. That 
Euler's identity is true is not obvious even to most mathematicians, 
so it is worth the effort to satisfy ourselves that it is correct. 

First we consider the following identity: 

(~l = 1 + -\ + 12s + ~s + ~, + ... 
1-- P P P P 

p' 

This identity can be verified by using long division on the left side 
of the equation to arrive at the form on the right side. Using the 
above identity, we replace each of the terms on the right side of 
Euler's identity with the corresponding infinite series: 

~ ~, = (1 + ~ + 2~ + 2~s + ... J (1 + ;, + 3~' + 3~s + ... J ... 

Now, if we multiply every one of the infinite series (that means 
multiplying every term in each set of parentheses with every term 
in every other set of parentheses) a miraculous thing happens: We 
get every possible combination of prime numbers in the denomi
nators, but each combination occurs only once. This means that 
when multiplied out, the right side becomes identical to the left 
side. Hence, we have lin' where n runs through all whole num
bers. 

This wonderful series, Din', which is equal to the product of 
the terms involving the primes, is called the zeta function and is 
designated as ~(s), or: 

The zeta function has been studied in great detail as mathemati
cians attempt to unravel the secret connections between the natural 
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FIGURE 45. The value of the zeta function, ~(s), for s > 1. 

number sequence and the primes. For some values of s, ~(s) di
verges and for others it converges. For s = 1, the zeta function is just 
the harmonic series, and we know that the harmonic series di
verges. If we let s be any number larger than 1 (s > 1) then the zeta 
function converges to a limit. Figure 45 is a graph of the zeta 
function where s > 1. Notice that as s increases, the value of ~(s) 
decreases since the denominators of the fractions we are adding 
together in the infinite series are growing larger. 

RIEMANN 

Georg Friedrich Bernhard Riemann (Figure 46) was born Sep
tember 17, 1826 in the little village of Breselenz, near Hanover, 
Germany. His father was a Lutheran pastor who had fought in the 
Napoleonic Wars, before settling in Breselenz with his wife, Char
lotte. She died while their six children were still young, and the 
father was left to raise them on his meager income.4 

Georg, their second child, was frail and shy. Yet, his father was 
determined his son should follow him in the ministry. When Georg 
was ten he began his instruction in arithmetic and geometry from 
Schulz, a local teacher. At 14, he went to live with his grandmother 
in Hanover, and entered the local gymnasium. In 1842, two years 
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FIGURE 46. Georg Friedrich Riemann, 1826-1866. 

after his arrival, Georg's grandmother died. Georg then entered the 
Luneberg Gymnasium where he stayed until 1846. At 19, he entered 
the University of Gottingen, majoring in philology and theology. 
By this time he was aware that his personality and disposition 
(especially his fear of public speaking) were not suited for preach
ing, although he was, and would remain, a devout Christian. His 
real talent was in mathematics. Receiving permission from his 
father, Georg formally changed his course of study, and in his 
second year moved to the University of Berlin. In 1949 he returned 
to G6ttingen where he became a student of Carl Gauss, among 
others, and finished his doctorate. By 1854 he was a lecturer at 
G6ttingen, and three years later became a professor of mathematics 
there. Not only did Riemann study mathematics, he also devoted 
much of his time to the physical sciences, especially physics. 
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Riemann was a brilliant mathematician. Carl Gauss, his teacher, 
was certainly the greatest mathematician of the 19th century, and 
maybe of all time. Yet, Riemann's talent has been favorably com
pared to his teacher's. 5 Riemann is best known for his contributions 
in geometry where he was one of the cofounders of non-Euclidean 
geometry. He modernized geometry by demonstrating that space 
could be characterized, not as a cauldron of lines and points, but as 
sets of n-tuples of numbers combined according to different sets of 
rules. The metric of space is defined by a formula for computing 
the distance between two points (n-tuples), and the rules for com
puting this distance could be changed within certain bounds to 
yield different metric spaces. 

Riemann's contribution to number theory was an eight-page 
memoir entitled, "On the Number of Prime Numbers Under a 
Given Magnitude," which was printed in the November 1858 
notice of the Berlin Academy. In this memoir Riemann showed how 
to extend the zeta function, ~(s), to cover not only real numbers, but 
complex numbers as well. He did this by extending the function to 
all complex numbers, s = a + bi, including values less than 1. To do 
this, he used analytical continuation, a technique from classical 
complex analysis. This new extended zeta function became Rie
mann's zeta function. For values of a> 1 and b = 0, the Riemann 
zeta function was the same as Euler's zeta function. At values a::; 
1, ~(s) becomes more sophisticated. The mathematics of Riemann's 
extended function go beyond what we have covered. What is 
important to realize is that Riemann was able to extend Euler's zeta 
function to complex numbers, and in so doing, he evolved a much 
more powerful mathematical machine for analyzing the distribu
tion of prime numbers. 

Riemann, along with Euler, Legendre, Gauss, and others, won
dered whether n/(ln n) was always an accurate function to estimate 
1t(n), the prime counting function, and if so, how closely did 
n/(ln n) approach 1t(n) for large n? Now Riemann had a new 
approximation for 1t(n), namely li(n). How much better was li(n) 

for approximating 1t(n) than the older function n/(ln n)? However, 
Riemann did not stop here. He constructed a new function that was 
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Table 21. Percent Error between 1t(n) and the 'Three Functions: 
n/ln(n), li(n), and R(n) 

n n/ln(n) lien) R(n) 

108 5.78 1.31 x 10""' 1.68 X 10-5 

109 5.10 3.35 x 10-5 1.55 X 10-6 
1010 4.56 6.82 x 10-6 4.02 X 10-6 
1011 4.13 2.81 x 10-6 5.63 X 10-7 

1012 3.77 1.02 x 10-6 3.92 x 10-8 
1013 3.47 3.15 x 10-7 1.67 X 10-8 
1014 3.21 9.83 x 10-8 5.99 X 10-9 

1015 2.99 3.52 x 10-8 2.45 X 10-9 

1016 2.79 1.15 x 10-8 1.17 X 10-9 
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an improvement over Ii (n), now called the Riemann function and 
designated as R(n). How much better is R(n) than Ii (n) in estimating 
the number of primes less than n? Table 21 lists the percent error 
between 1t(n) and the three functions used to estimate 
1t(n): n/ln(n), lien), and R(n). From Table 21 we see that R(n) is a 
substantial improvement over the other two functions. 

Then Riemann went one step further. He gave a formula for the 
exact difference between 1t(n) and his new function R(n). This is 
expressed by: 

1t(n) = R(n) - L R(nP) 

p 

To make any sense of this equation, we must come to understand 
what p (Greek rho) stands for when used in the equation. To do this, 
we must return to Riemann's zeta function. 

The Riemann zeta function, ~(s), has two kinds of zeros, that is, 
values of 5 (which can be complex numbers of the form 5 = a + bi) 

for which the zeta function has a' value of zero. For example, a 
specific complex number is 0.5 + 14.135i. In this complex number, 
the real part is 0.5 and the imaginary part is 14.135. If we replace 5 

in the Riemann zeta function with this complex number, then the 
value of the zeta function becomes zero. Hence, 0.5 + 14.135i is 
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called a zero of the zeta function, and ~(0.5 + 14.13Si) = O. Now the 
question becomes: Where on the complex plane are all the zeros of 
Riemann's zeta function, or for what complex numbers does the 
zeta function become zero? 

It turns out that the zeta function is zero for all numbers, even 
negative real numbers, i.e., ~(-2) = 0, ~(-4) = 0, ~(-6) = O. Yet, such 
zeros are of little interest to us, and are therefore called trivial zeros 
by mathematicians. A second set of zeros for ~(s) are located in an area 
of the complex plane called the critical strip. The critical strip is that 
vertical strip between zero and 1 on the horizontal axis (see Figure 47). 

The line that halves the critical strip consists of all those complex 
numbers whose real part is equal to 1/2, or all s such that s = 1/2 
+ bi, where b can take any real number value. Riemann conjectured 
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FIGURE 47. The complex number plane showing the critical strip and the location 
of various nontrivial zeros of the zeta function. 
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that all the zeros of the zeta function, except those that were trivial, 
would lie on this line in the middle of the critical strip. These zeros 
are called the nontrivial zeros of zeta. This is the Riemann hypothe
sis: All non-trivial zeros of the Riemann zeta function fall on the line s = 
1/2 + bi, which is called the critical line. If even one zero of ~(s) is 
within the critical strip, but off that line, then the Riemann hypothe
sis is false. No one has proved this hypothesis yet, and no one has 
found a single exception. 

Now that we have defined the nontrivial zeros of the zeta 
function, we return to Riemann's exact expression for 1t(n): 

1t(n) = R(n) - L R(nP) 

P 

What in the world are the rhos (p) in the above equation? They are 
the nontrivial zeros in the critical strip! Therefore, Riemann's exact 
expression for 1t(n) is his Riemann function corrected by subtract
ing the sum of all the values of the Riemann function evaluated at 
n raised to the power of the zeta's nontrivial zeros! Hence, all non
trivial zeros of the zeta function define the exact correction needed 
on R(n). This shows the deep connection between the prime count
ing function 1t(n), Riemann's function, R(n), and the zeros of the 
zeta function. 

Knowing that the zeros in the critical strip define the correction 
between 1t(n) and R(n) does not help to know how many such zeros 
there are, or where they are. G.H. Hardy loved the zeta function, 
and proved in 1914 that the zeta function has an infinity of zeros 
on the critical line within the critical strip. Yet, this is still short of 
proving the Riemann hypothesis, because there could still be zeros 
within the critical strip that are off the critical line. 

If the Riemann hypothesis is true, and all the nontrivial zeros 
are on the critical line, then the values of p that correct Riemann's 
function all have the real number part equal to 1/2. This implies 
that the correction to R(n) is much more orderly than if values of p 
are off that line. 

Mathematicians have computed nontrivial zeros in an attempt 
to find one that is off the critical line. To date, none have been found: 
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All known zeros of ~(s) do fall on the critical line. The first 20 
nontrivial zeros for ~(s) are listed in Table 22. Remember that each 
one has a real part equal to 1/2, which means all 20 fall on the 
critical line, just as the Riemann hypothesis predicts. The values 
listed in Table 22 are the b values of s = 1/2 + bi. 

If the zeros are all on the critical line, then the error in using 
R(n) to estimate 1t(n) for large values of n is much smaller than if 
zeros exist off the critical line. That all zeros are on the critical line 
implies that the prime numbers are more orderly than we can prove 
today. In other words, if the Riemann hypothesis is false, then the 
position of the primes within the natural number sequence is more 
random than we suspect. In fact, we can make a stronger statement: 
The location of the zeros of the zeta function within the critical strip 
is equivalent to the problem of the location of prime numbers 
within the number sequence. If we can somehow prove the Rie
mann hypothesis, then it is possible to deduce much more precise 
theorems about the distribution of prime numbers. The proof of the 
Riemann hypothesis would have a far reaching impact on mathe
matics since many other theorems could be deduced if it were true. 

All in all, Riemann made six conjectures regarding his extended 
zeta function in 1859, and five of the six proved to be true. It is only 
the sixth, the Riemann hypothesis, that has evaded all attempts at 

Table 22. First 20 Nontrivial Zeros of the 
Zeta Function 

n bi n bi 

1 14.135 11 52.970 

2 21.022 12 56.446 

3 25.011 13 59.347 
4 30.425 14 60.833 

5 32.935 15 65.113 

6 37.586 16 67.080 
7 40.919 17 69.546 

8 43.327 18 72.067 
9 48.005 19 75.705 

10 49.774 20 77.145 
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a proof. After his eight-page memoir, Riemann did not return to a 
serious study of his function. As an adult his health was not good, 
and he suffered a nervous breakdown in 1851. At 36, he married 
Elise Koch, but one month later fell sick with pleurisy. From that 
time on he suffered from tuberculosis, tragically dying from it on 
July 20, 1866 when he was 39. 

Riemann's life has a sad similarity to our good friend, Ramanu
jan, who also grew up in poverty and died at the young age of 32. 
How much more could Riemann have contributed had he not 
contracted an illness that today could have been controlled for 
years? Riemann's total contributions in mathematics would add up 
to just a single volume, but that volume of number theory, geome
try, and mathematical physics was all pure genius. His impact on 
mathematics is almost incalculable. 

SKEWES' NUMBER 

When we talked about large numbers, we mentioned Skewes' 
number which is defined as: 

We also learned that the prime counting function n(n) is connected 
to the zeta function. As it turns out, Skewes' number and the prime 
counting function are also intimately connected. 

Gauss constructed the logarithmic integral function, li(n), to get 
a better estimate for n(n): 

n 

n(n) =: Ii (n) = f -II dx 
nx 

2 

Whenever we compute Ii (n) for relatively small ns and compare it 
to n(n), we discover that the estimate Ii (n) is actually bigger than 
n(n).1f we let D(n) be the difference between the two, then we have: 
D(n) = li (n) - n(n), and D(n) appears to always be positive and 
increasing. Hence, li(n) tells us there are more primes less than n 

than there really are. In fact, when we compute larger and larger 
lien) and compare these values to the correct n(n), the absolute 
differences get larger but the percent differences get closer to zero. 



272 MATHEMATICAL MYSTERIES 

In other words, D(n) appears to keep growing as n increases, but the 
percent error, D(n)/1t(n), goes to zero. While lien) becomes a better 
estimate of 1t(n) as n gets big, it looks like the difference between 
li (n) and 1t(n) just keeps increasing, and would tend to infinity as n 

goes to infinity. 
While everyone was assuming that D(n) was always positive 

and growing, John Littlewood proved in 1914 that D(n) not only 
decreases for sufficiently large n, but also becomes negative. Hence, 
at some very large number n, 1t(n) would be bigger than Ii (n). In 
fact, he proved something much stronger: D(n) changes signs 
between positive and negative an infinite number of times. 

Now everyone wanted to know for what n did D(n) become 
negative. Was it a somewhat big number or a really big number? S. 
Skewes, one of Littlewood's students, decided to tackle the prob
lem. In his first assault on it in 1933, he had to assume that the 
unproven Riemann hypothesis was true. If so, then D(n) would 
become negative before n grew to: 

Now we know where Skewes' number comes from, i.e., it's a value 
of n beyond which D(n) has become negative.6 

However, the problem with Skewes' number was that it de
pended on the Riemann hypothesis being true, and the number, 
itself, was too large to test, i.e., it was impossible to compute 1t(n) 

for that size of number. Skewes went back to work. In 1937 he was 
able to come up with a new Skewes' number that did not depend 
upon the Riemann hypothesis being true. The new number was 
even bigger than the original one: 

ee 67 1010" 

Skewes' number (1937) = ~ "" 1010 

In fact, this new Skewes' number is gigantic compared to the old 
one. Computing 1t(n) and comparing it to Ii (n) for this number was 
simply ridiculous. Nothing much changed for a number of years, 
even though a number of mathematicians worked on the problem. 
Finally, in 1955 Skewes came up with another, much improved, 
estimate: 
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e/·7 101000 

Skewes' number (1955) = e "" 1010 

This is much better than the 1937 number but still much bigger than 
the original Skewes' number that assumed the Riemann hypothe
sis? 

Skewes' had done his part, and now others pitched in. In 1966, 
R.S. Lehman got Skewes' number down to 1.65 x 101165• Then, in 
1986, H.J.J. te Riele8 managed to prove that Skewes' number was 
no bigger than 6.69 x 1037°. Finally, we were getting into the range 
of numbers we might someday attack through direct computation. 
However, we still don't know the exact value of n at which 1t(n) is 
bigger than li(n). 

A CLOSE CALL 

For a while it looked as if mathematicians were going to prove 
the Riemann hypothesis by proving a different conjecture, the 
Mertens' conjecture, and showing that it implied the Riemann 
hypothesis. To fully understand the conjecture we must first define 
a strange and wonderful function called the Mobius function, 
~(n), named after August Ferdinand Mobius (1790-1868), the same 
mathematician who brought us the famous Mobius strip. August 
was also a student of Gauss (considered by Gauss to be his most 
talented student), who became a professor of astronomy and the 
director of the observatory at Leipzig in 1821.9 

The fundamental theorem of arithmetic tells us that every posi
tive integer factors into a unique set of prime numbers. We can 
show this symbolically as: 

n = p~ . p~ . p~ . ... 
where n is a positive integer and the various P1 are primes. The 
exponents (a, b, c, ... ) show how many times each prime occurs. In 
1832 Mobius defined the Mobius function in the following manner: 

~(n) = 0 if any prime in the factorization of n has an exponent 
of 2 or more, 
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~(n) = 1 if the number of different primes in the factorization 
of n is even, 

~(n) = -1 if the number of different primes in the factorization 
of n is odd 

Hence, the Mobius function has a value of 1 or -1 only if no prime 
is repeated. For example, ~(4) = 0 since 4 = 22. However, ~(6) = 1 
because 6 = 2·3 (two primes), while ~(30) = -1 because 30 = 2·3·5 
(three primes). For consistency, 11(1) is defined as 1. Table 23 shows 
the Mobius value for the first 40 values of n. On the surface, it would 
seem that the Mobius function is a curiosity, and unrelated to 
anything deep in our study of primes. However, this is not the case. 
For example, it is known that the Mobius function is intimately 
related to the reciprocal of the zeta function and the product of 
primes by the following wonderful formula: 

'" ~(n) __ 1 - IT (1 _-.lJ 
:: nS - ~(S) -p=primes pS 

where s is a complex number with real part greater then 1, and the 
product on the right is over all primes. To fully appreciate the above 
relation, we should see both the right and left side in expanded 
form. In this example we will let s = 1. 

Table 23. First 20 Values for the Mobius and Mertens Functions 

Mobius Mertens Mobius Mertens 
n )len) M(n) n )len) M(n) 

1 1 11 -1 -2 
2 -1 0 12 0 -2 
3 -1 -1 13 -1 -3 
4 0 -1 14 1 -2 
5 -1 -2 15 1 -1 
6 -1 16 0 -1 
7 -1 -2 17 -1 -2 
8 0 -2 18 0 -2 
9 0 -2 19 -1 -3 

10 1 -1 20 0 -3 
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11(1) 11(2) 11(3) 11(4) 11(5) 1·2·4·6·10· ... --+--+--+--+--+ ... = 
1 2 3 4 5 2·3-5-7·11- ... 

Now we evaluate each Il(n) and simplify. 

1 1 1 1 1 1 1 1·2·4·6·10· ... 
---+---+---+-+ ... = 
1 2 3 5 6 7 10 2·3-5-7·11 .... 

The zeta function is unbounded when s = I, hence we can conclude 
that the reciprocal of the zeta function is zero when s = 1. Therefore, 
when s = I, both sides of the above equation are equal to zero. 

If we add up all the values of Il(n) for 1 through n, then we get 
the Mertens function or: 

M(n) = IIl(j) 
jS n 

Therefore, if 11(1) = I, 11(2) = -I, and 11(3) = -1 then: 

M(1) = 11(1) = 1 

M(2) = 11(1) + 11(2) = 1 + (-1) = 0 

M(3) = 11(1) + 11(2) + 11(3) = 1 + (-1) + (-1) =-1 

Table 23 also gives the value of M(n) for n equal to 1 to 40. Notice 
that when n is greater than I, M(n) is not positive. One interesting 
question is whether M(n) ever becomes positive again. 

The values of Il(n) are quite random and therefore difficult to 
predict. What about the value of M(n)? In 1897, Franz Mertens 
calculated a table of values10 for both Il(n) and M(n) that was 50 
pages long and included values for n up to 10,000. Studying the 
values of M(n) compared to n, he conjectured that the absolute 
value of M(n) (that is ignoring the negative sign in front) was 
always less than the square root of n. This became Mertens' conjec
ture: I M(n) I < -vn for all values of n. Just looking at Table 23 seems 
to support the conjecture, for by the time M(n) reaches -2, n is 5, 
and by the time M(n) is -3, n is 13. 

In fact, once n is greater than 200, it appears that a much stronger 
conjecture is Rossible. In 1897, R.D. von Sterneck conjectured 
that I M(n) I < 2-vn, because he had computed M(n) for n running 
up to five million, and found his conjecture still true. However, in 
1960 w.B. Jurkat proved von Sterneck's conjecture false by proving 
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a number existed that violated the conjecture. Soon after, H. Co
henll showed that 7,725,038,629 was the smallest integer for which 
M(n) >~...Jn. 

Why all this fuss about Mertens' conjecture? It turns out that if 
Mertens' conjecture is true, then the Riemann hypothesis is also 
true. We use a finite sum of the Mobius function to define the 
Mertens function, M(n). We use an infinite sum involving the 
Mobius function to define Riemann's function, R(n) or: 

m=! 

This equation reveals that the Mobius function, !len), is used in 
conjunction with lien) to define Riemann's function, making the 
connection between Mertens' conjecture and the Riemann hy
pothesis. Therefore, anyone proving Mertens' conjecture would 
add a colorful feather to his or her bonnet, proving both conjectures 
at once. In 1979 H. Cohen and F. Dress computed the values of 
M(n) for n up to 7.8 billion and still found that Mertens' conjecture 
held.!2 Finally, in 1984 Andrew Odlyzko and Herman te Riele 
proved Mertens' conjecture false. They did it by computing the 
location of the first 2000 nontrivial zeros of the zeta function on the 
critical line to an accuracy of 100 decimal places. They estimated 
the first number, n, that fails Mertens' conjecture is greater than 1030, 

a very large number.!3 
Disproving Mertens' conjecture does not disprove the Riemann 

hypothesis because the two are not equivalent. The Riemann hy
pothesis could still be true, even while Mertens' conjecture is false. 
What this exercise illustrates is that a conjecture which appears to 
be true for all values calculated to date cannot be assumed to be 
true on that basis alone. We still don't know the number for which 
Mertens' conjecture first fails, we simply know that the number is 
out there somewhere. 

HOW CLOSE? 

How close have we come to proving the Riemann hypothesis? 
G.H. Hardy loved the hypothesis.!4 Certainly he realized its impor-



DEEPEST MYSTERIES 277 

tance to mathematics and recognized its intrinsic beauty, but he 
may have also enjoyed it because the conjecture appears to have no 
applications, for useful applications diminished mathematics in his 
eyes. He would have been dismayed to learn that the Riemann 
hypothesis has been applied to the science of pyrometry-the 
study of the internal temperature of furnaces. 

Computing the location of individual zeros of ~(5) on the critical 
line is no easy task, for the extended Riemann zeta function is quite 
involved. J.P. Gram, in 1903, computed the location of the first 15 
zeros and found they were all on the critical line. In 1918, R. 
Backlund increased this to the first 200 zeros-all still on the critical 
line. Riemann's hypothesis was holding up. As the years pro
gressed, the location of more and more nontrivial zeros were 
computed, and all lay on the critical line within the critical strip. Of 
course, we know that the hypothesis can never be proven with this 
method, however, it can be disproved if only one nontrivial zero is 
found to be off the line. With modem computers, the calculation of 
the location of the zeros took a giant leap. By 1983 J. van de Lune 
and Herman te Riele had found the first 300,000,001 zeros-all still 
satisfying Riemann's hypothesis. In 1985, they consumed over 1000 
hours on a supercomputer to extended this to 1.5 billion zeros, 
finding no zero off the line.15 

Is the Riemann hypothesis true or not? We still don't know. By 
finding segments of the critical strip that are zero-free (excepting 
the critical line), we can improve the error estimate between n(n) 

and R(n). Under the assumption that the Riemann hypothesis is 
true, the error decreases to zero much faster, which in tum implies 
that the primes distribute themselves within the natural number 
sequence in a much more orderly manner than is presently appar
ent. Now you know the deepest problem of mathematics. Perhaps 
to prove or disprove the Riemann hypothesis we will have to wait 
for another Ramanujan or Hardy, or even Riemann, to come along. 
However, another possibility exists: What if we can't prove or 
disprove the Riemann hypothesis? Are there statements within 
mathematics that we can never prove to be true or false? We just 
assume that if we can pose a question, then some day we will be 
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able to answer it. Yet, as the forthcoming material will demonstrate, 
this is not always the case. 

Of course, if tomorrow a bright young graduate student did 
prove the Riemann hypothesis, then its proof would inevitably 
open up new and deeper questions. This is the way of mathematics. 



CHAPTER FOURTEEN 

INTO THE STRATOSPHERE 

I doubt not but it will be easily granted, that the 

knowledge we have of mathematical truths is not 

only certain, but real knowledge; and not the bare 

empty vision of vain, insignificant chimeras of the 

brain . .. 1 

JOHN LOCKE (1632-1704) 

AN ESSAY CONCERNING HUMAN UNDERSTANDING 

PROVE IT, I DARE YA! 

d / )e have discussed many ideas in mathematics, and particu
j/f/ larly ideas that have not yet been rigorously proven by 

mathematicians. For example, we don't know if an infinity of twin 
primes exist, if either the Goldbach Conjecture or Riemann hy
pothesis is true. Many of us believe that given enough time and 
work, all these questions can be answered. Yet, is that the case? 
Given a statement in mathematics, can we say it is always possible 
to either prove or disprove it? 

A mere 65 years ago, mathematicians believed that any conjec
ture or question in mathematics could, eventually, be answered 
true or false. Then, in 1930 a lecture given by a young mathemati
cian was so revolutionary that it shook the very foundation of 
mathematics until the cornerstones cracked. But first some back
ground. 

279 
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One of the great gifts of ancient Greek mathematics was Euclid's 
axiomatic geometry. With a small set of intuitively true axioms, 
Euclid deduced a complete system of geometry. Could all of mathe
matics follow this example? As we've shown, during the 19th 
century Peano produced a foundational system for arithmetic with 
his five axioms. By the end of the century mathematicians were 
greatly excited by the prospect that a logical system would soon be 
found from which all of mathematics could be deduced from some 
finite set of axioms using the finite rules of pure logic. If mathema
ticians could show that such a set of axioms was both consistent 
and complete, then mathematics would, for all practical purposes, 
be conquered. 

Consistency means that it is impossible to deduce a contradic
tion from the axioms. If we use a set of axioms that produces a 
contradiction, then we can prove that all statements in the system 
are true! This won't do because when there is no falsehood and 
every statement is true, the whole system becomes useless. If we 
can deduce every possible statement, then what distinguishes truth 
from falsehood? Therefore, any set of axioms must be consistent to 
be the foundation stone for mathematics. 

The next requirement for any potential set of axioms is com
pleteness. To be complete, a system of axioms must be able to 
generate a proof for all true statements and disprove all falsehoods 
which can be formulated under the logical rules adopted. If we 
have statements that cannot be determined to be either true or false, 
then our system is incomplete. 

The desire to create such a complete, consistent system of 
mathematics was kindled during the rise of three related philoso
phies of mathematics. At the tum of the century the University of 
Vienna hosted a group of prestigious thinkers from various fields, 
known as the Vienna Circle, whose members developed a philo
sophical doctrine known as Logical Positivism. Part of this philoso
phy was the desire to unify all of science (especially mathematics) 
under the language of symbolic logic. We see examples of the 
Logical Positivist's goal alive today in the attempt by physicists to 
find one unifying theory for energy and matter. Among logicians 
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and mathematicians, the desire to place all of mathematics under 
logic was known as Logicism, and advocated by such giants as 
Bertrand Russell and Ludwig Wittgenstein. Closely allied to this 
philosophy is formalism, the belief that mathematics is really a 
meaningless human game of manipulating symbols with the use 
of arbitrary but well-defined rules. The aim of the game is to be 
consistent.2 Formalism's most famous advocate was David Hilbert 
(1862-1943), who, you will remember, listed 23 mathematical prob
lems for the 20th century. His second problem was to prove the 
consistency of arithmetic. If this could be achieved, then we could 
always be assured that it would be impossible to produce a contra
diction from the system. 

Bertrand Russell and Alfred North Whitehead made the most 
successful effort at Formalism, attempting to prove the consistency 
of arithmetic using Peano's axioms. They almost succeeded. They 
were successful in eliminating vagueness from the rules of logic, 
reducing them to a small set of Transformation Rules that allows one 
to move securely from a set of premises (axioms and theorems) to 
deduce new theorems. In their effort they produced a monumental 
three volume book, Principia Mathematica, 1910-1913. 

We can show a system is consistent when the objects within that 
system are finite in number. However, arithmetic contains an infi
nite number of numbers, and when we try to clearly describe that 
system, concealed contradictions, or antinomies, pop out. Bertrand 
Russell discovered such a contradiction in set theory, the founda
tion to mathematics. We can illustrate Russell's contradiction with 
the following Barber Paradox. 

Suppose there is a town with only one barber. This barber 
shaves all the men and only the men who do not shave themselves. 
Now, who shaves the barber? If he does not shave himself, then he 
falls into the group of men he is supposed to shave. If he does shave 
himself, then he shouldn't shave himself-a paradox. Because of 
the discovery of antinomies within the logical foundation of mathe
matics, many feared that such contradictions might infect other 
branches of mathematics. Hence, Russell and others went to work 
to build a kind of axiomatic theory that would avoid the problem. 
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Not much happened for the next decade or so as mathemati
cians and logicians tried to dance around the antinomies while still 
holding firm to the belief that the proof of both consistency and 
completeness were on the horizon. Suddenly enters Godel. 

ENTERS GOOEL 

Kurt Codel was unquestionably the greatest logician of the cen
tury. He may also have been one of our greatest philosophers.3 

RUDY RUCKER 

[Codel's Proof] is generally regarded as the most brilliant, most 
difficult, and most stunning sequence of reasoning in modem 
logic.4 

JAMES R. NEWMAN 

This proof, by the Austrian Kurt Codel in 1931, is one of the most 
remarkable and devastating discoveries in the whole of mathe
matics.5 

J.M. DuBBEY 

Kurt Godel was born on April 28, 1906 in Brunn, Czechoslova
kia, which was then part of the Austria-Hungary Empire. His 
family was German, and his father was a manager for one of the 
city's textile mills.6 At 6, Godel contracted rheumatic fever, which 
gave him an obsessive fear about his health in later life. In 1923 he 
entered the University of Vienna where he came into contact with 
the ideas of Logical Positivism and Logicism as advanced by the 
Vienna Circle. In 1930 he earned his doctorate in mathematics. 

On September 7, 1930, Kurt Godel, then only 24, presented a 22-
minute talk at a conference at Konigsberg, Russia, entitled "On 
Formally Undecidable Propositions of Principia Mathematica and 
Related Systems.,,7 At the time no one seemed to take much notice 
of the young mathematician's talk, except the American mathema
tician John von Neumann, cofounder of game theory and the father 
of the modem computer (he devised computer programs that 
could alter themselves while running on a computer). After the 
conference, von Neumann approached Godel and asked for more 
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details on his logical argument. In 1931, Godel's work was publish
ed, and suddenly, the cat was out of the bag. What in the world had 
Godel proven?8 

THE PROOF 

Be warned this next section may require some quiet, reflec
tive thought, for Godel's proof is not easy. The original paper 
contained 46 preliminary definitions and several lemmas before 
the final work could be approached.9 Yet, we do not shirk from 
our quest. 

Russell and Whitehead had used formal logic as a foundation 
for set theory, which in tum was the formal basis for arithmetic. 
The two questions which had not yet been answered were: first, are 
the axioms consistent, and second, were the axioms complete? The 
young Czech from Vienna proved a limited case of inconsistency. 
He proved that if formal set theory is complete, then it is ro-incon
sistent. In 1936, J. Barkley Rosser expanded Godel's proof to give 
us the following general theorem. 

Cadel-Rosser Theorem: If formal set theory is consistent then 
theorems exist that can be neither proved nor disproved. 

Certainly, thought most mathematicians, what Godel has 
proven is that theorems exist which cannot now be proven, but, 
given enough time and effort, they will fall to our assault. But, no, 
this was not what Godel had done. What he had actually demon
strated was that it was logically impossible to ever prove the theorems 
in question within formal set theory. That is, they were theoretically 
unprovable if we limit ourselves to the axioms of set theory. 

If set theory is not consistent, then it is worthless as a basis to 
anything, for one can prove everything and anything using an 
inconsistent system-inconsistent systems cannot distinguish be
tween truth and falsehood. On the other hand, if set theory was 
consistent, then true statements existed within set theory which, 
according to Godel, could never, ever be proven to be true. That is, 
if set theory is consistent, then it cannot be complete. 
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How had he done it? G6del's proof is an intricate dance of logic 
that actually constructs a theorem that is true, but not provable 
within the system. The system representing the theoretical basis for 
arithmetic can be divided into several parts. First there are the laws 
of logic, which Whitehead and Russell had helped to formalize. 
Next there are the axioms of the system used to deduce all the 
theorems that specify the arithmetic laws regarding numbers. 
These axioms and theorems are written in a very specific and 
limited symbolism to avoid ambiguity. Remember when we looked 
at Peano's axioms, the second axiom read: Every number has a 
successor which is also a number. We can represent this axiom in 
symbolic form as: (3x)(x = sy). In this symbolic statement, the back
ward capital e stands for "there exists," and the small s stands for 
"the successor of," while the other two letters, x and y, are individ
ual variables. Hence, we interpret the symbolism as "There exists 
an x (a number) such that x is the successor of y, where y is any 
number." Therefore, given any number, y, we are guaranteed a 
successor of y, which is just what we need when we talk about the 
natural numbers. If someone gives us a natural number, no matter 
how large, we always know that there exists another number that 
is one unit larger (the successor). 

The symbolic statement [e.g., (3x)(x = sy)] is called the "system 
calculus" while the English interpretation of the symbolic state
ment is called the meta-mathematical statement. The meta-mathe
matical statement gives meaning or content to the symbolic 
statement. When we perform mathematics by using the system 
calculus, we manipulate the symbolic statements by means of the 
logical rules or Transformation Rules. What G6del did was to 
construct a symbolic statement whose meta-mathematical state
ment was true. At the same time, the very construction of the 
symbolic statement guaranteed that it could never be proven 
within the system. 

When we prove a statement in symbolic logic, we list the axioms 
and those theorems that have already been proven from the axioms 
that we need to deduce the conclusion. The axioms and theorems 
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are called premises. Hence, we have a list of premises followed by 
the conclusion or: 

Premise 1 
Premise 2 
Premise 3 

Premise n 
Conclusion 

All the n premises logically lead to the conclusion, and in fact, the 
conclusion is implied by the premises. 

In order to construct his true, nondeducible statement, Godel 
devised a method to assign a unique number to every symbol 
within the system, and a unique number to every statement and 
every set of statements that represented a deduction of a theorem. 
These numbers are now referred to as Godel numbers. To accom
plish this he used a scheme similar to the following: 

Logical Symbol Codel Number Meaning 

1 negation or "not" 

v 2 II or" 

:::J 3 "if ... then" 

:3 4 "there exists" 

= 5 "equals" 

0 6 zero 

s 7 immediate successor 

8 left parenthesis 

9 right parenthesis 

10 comma 

In addition to the above, the system uses numerical variables (x, y, 
z) which can take the values of specific numbers, sentential vari
ables (p, q, r) which stand for other symbolic statements, and 
predicate variables (P, Q, R) which stand for predicates, all of which 
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are given unique values of numbers greater than 10. Each numeri
cal variable is assigned the value of a prime greater than 10, each 
sentential variable is assigned the square of a prime greater then 
10, while each predicate variable is given the cube of a prime 
greater than 10. Under this system we might assign x the value of 
11, p the value of 112, and P the value of 113. 

Now we're ready to assign the Godel numbers to the statement 
(3x)(x = sy). Reading left to right, the Godel numbers for the ten 
symbols in this statement are: 8,4, 13,9,8, 13,5, 7,16, and 9. In order 
to create a unique integer that is associated with only our statement, 
and none other, we take the first ten successive prime numbers and 
raise each to the corresponding Godel number, and then multiply 
the whole mess together. Hence, we get: 

Godel number for (3x)(x = sy) = 2834513~11813131751972316299 
Now, admittedly, this is one gigantic number. However, it is 
uniquely mapped onto our symbolic statement. If someone gave 
us this number all multiplied out, we could factor it into its unique 
primes, order the primes from smallest to largest, and get the above 
number. We could then easily assign the appropriate symbols and 
retrieve our axiom about numbers. Therefore, Godel's procedure 
uniquely assigns an integer to each logical statement within the 
system. 

We should realize that every integer is not a Godel number; the 
Godel numbers represent only a subset of the integers. For exam
ple, the number 2400 factors into 25.31.52 which has the correspond
ing symbolism of = v -, which in tum can be read as "equals not 
or." But neither the symbolic statement of = v -, nor the meta
mathematical interpretation of "equals not or" have any meaning 
because they are not well-formed according to the Transformation 
Rules. Another example is the number 70 which factors into 
21.51.71• This number does not contain the prime 3, so the number 
corresponding to the second symbol of a potential symbolic state
ment is missing. Hence, 70 cannot be a Godel number. Only those 
numbers that factor into consecutive primes, beginning with 2, 
raised to a power, resulting in well-formed statements have Godel 
numbers. 



INTO THE STRATOSPHERE 287 

The next step is to list the statements that are premises leading 
to a specific conclusion. This premises-conclusion list of statements 
is a logical argument. Each of the premises and the conclusion have 
a unique Godel number and, in the same fashion, we construct a 
new Godel number which corresponds to the entire argument. 
Suppose we have an argument of the form: premise 1, premise 2, 
and conclusion. Let the Godel numbers for these three statements 
be I, K, and M. Now we select the first three prime numbers (2,3, 
and 5) and form the following number: 

Godel number for argument = 2'3K5M 

In addition we can also compute the Godel number for just the two 
premises by themselves if we want, which would be: 

Godel number for premises, P G = 2'3K 

Using this procedure, every true statement and argument 
within the logical system gets its unique integer. Yet, each symbolic 
statement also has its corresponding meta-mathematical state
ment. This means that our meta-mathematical statements about the 
system can be mapped into the system, itself. We now have three 
related parts to our system: symbolic statements, corresponding 
meta-mathematical statements, and corresponding Godel num
bers. 

When we assign our Godel numbers, we discover something 
quite wonderful: There is a definite arithmetic relation between the 
Godel numbers for the premises, P G, and the Godel number for the 
conclusion, M. For example, 5 > 2 is a true arithmetic relation 
between 5 and 2. In a similar fashion there exists a true arithmetic 
relation between the Godel numbers of the premises and conclu
sion of every valid argument. These relationships are rather com
plex, and part of Godel's genius is that he could deal with them. 
While we are not going to compute all the Godel numbers in his 
proof and detail their relationships, we can offer an example. One 
of the logical axioms used is (p v p) :) p. This simply says that if 
either the statement p or p is true, then p is true. When we compute 
Godel's number for this statement we get: 

Godel number (p v p):) P = 28.311'.52.711'.119.133.1711' 



288 MATHEMATICAL MYSTERIES 

Now, this statement, (p v p) ::::> p, can be viewed as an argument 
where (p v p) is the premise and p is the conclusion. If we compute 
the Godel number for just (p v p) we get: 

28.311'.52.711'.119 

which evenly divides the larger Godel number represented by the 
entire statement, and hence is a factor of the entire statement. For 
a number to be a factor of a larger number is an arithmetic property. 
This demonstrates that Godel's procedure for assigning Godel 
numbers to logical deductions within the system translates to 
corresponding arithmetic relations between the Godel numbers. In 
fact, if the symbolic statement is true (deducible from within the 
system) then the corresponding arithmetic relationship between 
the Godel numbers representing the symbolic statement and its 
premises will also be true. 

We are now ready for the next step. The Godel numbers are not 
only an arithmetic reflection of the symbolic statements, but they 
can also be a reflection for the meta-mathematical statements cor
responding to the symbolic statements. We can designate the arith
metic relation between Godel numbers representing a set of 
premises and a conclusion as Dem(x,y), where x is the Godel 
number for the premises and y is the Godel number for the conclu
sion. Keep in mind that Dem(x,y) is not a symbolic statement, but 
is an arithmetic relationship (which is quite complex) existing 
between the Godel number for all the premises, x, and the Godel 
number for the conclusion, y. We can also form the denial of 
Dem(x,y) which is shown as -Dem(x,y) which means that there is 
no arithmetic relationship between x and y where x represents the 
premises and y represents the conclusion of an argument. However, 
if there is no arithmetic relationship between the Godel numbers 
of the premises and conclusion, this is equivalent to saying that 
there exists no set of premises within the system that have y as a 
conclusion. This takes a little thought to get clear. Every valid 
argument has a set of premises and a resulting conclusion. The 
corresponding Godel numbers for the premises and conclusion, x 
and y, have a true arithmetic relationship. If no such arithmetic 
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relationship exists between x and y, then the corresponding prem
ises do not lead to the conclusion. 

We have one more definition to make before we can show the 
final step. If we have a symbolic statement which contains a nu
merical variable, we can substitute some specific number for the 
variable. For example, the Peano axiom (3x)(x = sy) says that there 
exists some x that is the successor for y. We may substitute the 
specific number 5 for y. When we make this substitution we get 
(3x)(x = s5), which says that there exists a successor to the number 
5. We know this is true, because the successor is, in fact, 6. When
ever we make such a substitution we generate a new Godel number 
because the Godel number for (3x)(x = s5) is different than the 
Godel number for (3x)(x = sy). We did not assign a Godel number 
to 5. However, we can determine one by remembering that all 
whole numbers can be defined as successors to other numbers. 
Hence, we have 1 is sO, 2 is s1, 3 is s2, and so forth, where s stands 
for "successor of." Once we do this, every whole number is repre
sented by a series of s's followed by O. For example, a Godel number 
for 5 can be defined by sssssO, since we already have the Godel 
numbers for s and o. 

When we generate a new Godel number by making a substitu
tion for one of the numerical variables, we show this number as 
sub(x, y, z) where x is the Godel number of the original statement, 
y is the term we're substituting for, and z is what we are substitut
ing. Hence, in our previous example we have sub«3x)(x = sy), y, 5). 

We could have used 13 for y since 13 is the Godel number for y. We 
interpret this particular sub statement as the Godel number that 
results when we substitute the number 5 for the y into the statement 
(3x)(x = sy). Let's take this idea of substitution one step further. Say 
the Godel number for (3x)(x = sy) happens to be m. Now we can 
make our substitution using m or sub(m,y,m). This says, find the 
new Godel number when we substitute m for y in the statement 
that has Godel number m. You see, m uniquely identifies the 
statement (3x)(x = sy), and we are going to substitute m back into 
the very statement that m identifies and we are substituting m for 
the variable y. We then compute the new Godel number for the 
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statement resulting from the substitution. However, we're not 
going to actually compute this number, but only show it as the 
number sub(m,y,m). We have introduced so many new terms and 
ideas your head is probably swimming. Remember that we now 
have four different entities in our game: 

1) Symbolic statements 
2) Meta-mathematical statements 
3) Godel numbers 
4) Arithmetic relations between Godel numbers 

We can now form Godel's true but unprovable statement. We 
begin by first stating the following rather complex statement: 

(x) - Dem(x, sub(y,13,y» 

This remarkable statement says the following: for every set of 
premises, represented by (x), there does not exist a true arithmetic 
relationship between x and the number sub(y,13,y), demonstrating 
that sub(y,13,y) is the conclusion of x. This is the same as saying 
that the conclusion, sub(y,13,y), cannot be deduced in the system, 
because no set of premises will lead to it as a conclusion. Hence, 
there is no proof of sub(y, 13,y) within the system. Now, does y exist, 
and is it true? If we can show that there is a y which is true and 
cannot be deduced from any set of premises, we will have shown 
that our system is incomplete, i.e., there exists a true statement 
which cannot ever be given a proof. 

What is y? Now we see Godel's true genius. Let n be the Godel 
number for the above statement, (x) - Dem(x, sub(y,13,y». Now we 
form Godel's brilliant conclusion (a little drum roll please). 

(x) - Dem(x, sub(n,13,n» 

We will call this the G statement. Now we should take some time 
just to feast our eyes on the marvelous construction. What is the 
Godel number of the G statement? It is simply sub(n,13,n). Hence, 
the statement says that the formula, (x) - Dem(x, sub(n,13,n», is 
not demonstrable within the system; it asserts it own undemon
strability. To see this we must remember just what number 
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sub(n,13,n) is: it is the Godel number for the above statement. 
Hence, G is not the conclusion to any set of premises. But is G true? 
We can prove it is true through the logic of meta-mathematics. 
Suppose G is false. If G is false, then there exists a set of premises 
within the system (that have a Godel number of x) with G as its 
conclusion (since the Godel number of Gis sub(n,13,n». But that 
means that G is true! Therefore, if we assume G is false, then we 
must conclude that it is true-a contradiction. If a system can prove 
a contradiction, then it is an inconsistent system. Therefore, if our 
system is consistent, we cannot conclude that both G is true and 
false. Hence, if our system is consistent, then G cannot be false. 
Since G cannot be false, it must be true. But, if it is true, then it says 
that it cannot be deduced within the system. What brilliance! 

WHAT DOES IT ALL MEAN? 

Godel proved that formal arithmetic was incomplete if it was 
consistent. There will always be unprovable statements which can 
be generated that are beyond formal proof. Have we encountered 
some already? Is the Riemann hypothesis unprovable? What about 
the Goldbach Conjecture? 

With his proof, Godel showed that Hilbert's program for for
malizing all of mathematics was impossible. This did not go well 
with Hilbert. Some say he blew his top when he heard of Godel's 
proof.1O Even in his later years, Hilbert refused to believe what 
Godel had accomplished, holding on to the hope that the consis
tency and completeness of set theory and arithmetic could be 
demonstrated. ll Despite Hilbert's reluctance to abandon the For
malist program, Godel's proof is now accepted by the vast majority 
of mathematicians. 

In 1933 Godel dropped a second bomb on theoretical mathe
matics. He proved that no procedure existed for establishing the 
consistency of any axiomatic system large enough to generate 
arithmetic. Therefore, not only was Russell's system, based on the 
Peano axioms and the Transformation Rules, beyond a proof of 
consistency, but any axiomatic system that was sophisticated 
enough to handle arithmetic could not be proved consistent. The 
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two great flowers of formal mathematics had now wilted beyond 
hope. There would be no consistency nor completeness for mathe
matics, if we insisted on using finite logic as defined by the Formal
ists' program for mathematical proof. 

In 1938, Godelleft when Europe was about to be tom apart by 
war, and permanently joined the Institute for Advanced Study at 
Princeton. This institute had been established around Albert Ein
stein a few years before with financial help from the department
store baron, Louis BambergerY Godel was a private, shy man, but 
became close friends with Einstein. During the 1940s he published 
his one book, The Consistency of the Continuum Hypothesis, which 
attempted to settle another of Hilbert's 23 questions. 

As the years progressed, Godel seemed to become more of a 
recluse, and numerous stories surfaced regarding his strangeness. 
For example, he is reported to have gladly accepted invitations to 
meet with others, but generally failed to make the appointment. 
When asked why he did this, his response was characteristically 
logical: He claimed that it was the only way that guaranteed he 
would not have to meet with the other individuals. 

Godel's United States citizenship required two sponsors. Albert 
Einstein and Oskar Morgenstern (the cofounder of game theory) 
stepped forward. However, at the citizenship interview, Godel, in 
the presence of the government interviewer and his two illustrious 
sponsors, launched into an agitated lecture on how he had discov
ered a logical flaw in the United States Constitution, which might 
allow the United States to be taken over by a dictator. Finally, his 
two friends were able to calm him down, and his citizenship was 
granted. 

Such idiosyncrasies may sound lovable, yet there is a touch of 
sadness about his last years. He gradually became obsessed with 
fears regarding his own health, and may have actually starved 
himself to death fearing someone was trying to poison him.13 In his 
later years, because of his fame, many mathematicians wrote to 
him, and even though he generally drafted precise responses, they 
were seldom actually mailed. After his death, his private papers 
demonstrated a great store of work on the philosophy of mathe-
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matics, as well as general philosophical issues, all written in a 
strange Germanic shorthand. He was not only a great thinker about 
logic and formal mathematics, he had a powerful mind that could 
shine its light on most subjects.14 

SO PHILOSOPHICAL 

Because of the popularity of Logical Positivism in philosophy 
and Formalism within mathematics at the tum of the century, the 
prevailing view was that the objects of mathematics, including 
numbers, were objects whose entire existence were determined by 
individual human minds. They only existed in human thought, 
and would entirely cease to exist should all minds disappear. The 
objects of mathematics were like conventions of a made-up game, 
depending entirely upon individual thinking minds. Yet, there was 
an older philosophical idea regarding mathematics alive at that 
time which can be traced back to Plato and Pythagoras: idealism, 
or Platonism, which maintains that mathematical objects existed 
before humans, are not dependent on humans, and will exist long 
after we are gone. A Platonist contemporary of Godel was G.H. 
Hardy. 

Deciding between mathematical Platonism and Formalism is 
difficult. Godel, however, stood firmly in the camp of Platonism, 
so much so that modem mathematical Platonism only began to 
gather a significant number of disciples after Godel's influence in 
the 1930s. Along with Einstein, he was somewhat of a mystic, 
believing that we somehow perceive mathematical objects with our 
reason, just as our senses allow us to perceive sensory phenomena. 
Godel used to say that he practiced "objective" mathematics, to 
emphasize that he perceived or discovered mathematical relations, 
rather than inventing them. IS While many modem mathematicians 
talk as if they are Formalists, declaring that mathematics is only in 
human minds, they, in fact, act more like Platonists, frequently 
surprised by their mathematical" discoveries." A current Platonist 
is Roger Penrose, who asks us to consider the beautiful fractal 
images discovered buried within certain mathematical (and physi-
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cal) processes. 16 Could such images really be nothing but constructs 
of the inventive mind? 

We can now recognize a unifying idea in both Russell's paradox, 
as illustrated by the barber paradox, and G6del's proof of the 
incompleteness of mathematics. Both contain statements that refer 
to themselves. In the barber paradox, the paradox is generated 
when the barber must consider cutting his own hair. G6del's proof 
is built on the notion that a symbolic statement can talk about itself. 
Douglas Hofstadter, a mathematician, philosopher, psychologist, 
and all-around interesting person, has extensively studied self 
reference.17 Some of the examples he has created or collected from 
others are quite amusing, while others suggest a strange deepness 
within self reference. The first recorded self reference comes to us 
from ancient Greece. Epimenides (fl. sixth and fifth centuries B.C.) 
is reported to have said, "The Cretans are always liars, evil beasts, 
lazy stomachs."ls However, Epimenides, himself, was Cretan, and 
therefore his statement about Cretans always being liars must also 
apply to him. This amusing paradox has changed through the ages 
to become: "This sentence is false." If it is false, then it must be true, 
and if true, then it is false. 

A small sampling of Hofstadter's collection illustrates how 
intriguing self reference is. 

This sentence no verb. 

Well, how about that-this sentence is about me! 

I am the thought you are now thinking. 

The reader of this sentence exists only while reading me. 

When you are not looking at it, this sentence is in Spanish.19 

However, such sentences are not for play only, for they can 
demonstrate that self reference can suggest profound ideas. We 
have already seen this in both the Russell paradox and G6del's 
proof. One last self reference will do, again from the fine Hofstadter 
collection: "What would this sentence be like if 1t were 3?,,20 Indeed, 
we might wonder if this sentence has any meaning at all, yet we all 
read and understand its meaning. Can such a question be asked in 
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all seriousness? Why would we suspect that if 1t were 3, instead of 
the strange transcendental numbflr that it is, that anything else in 
the world would be different? If we assume that a difference in the 
value of 1t makes a difference in reality, then are we not succumbing 
to the Platonist platform? 

WHERE DO WE STAND? 

Surprisingly, a proof of the consistency of arithmetic has been 
achieved. In 1936 Gerhard Gentzen proved the consistency using 
logical rules which included propositions involving infinite prem
ises.21 This goes considerably beyond the original idea that the 
Transformation Rules could be finite, and opens up questions of 
whether these expanded rules of logic are, themselves, consistent. 

Godel's work has shown that the arithmetic invented (discov
ered?) by the human species is far too complex and powerful to be 
tamed by a finite set of axioms and logical rules. Yet, this is not the 
only potential limitation to our understanding of mathematics. We 
now know that there exist true propositions which we can never 
formally prove. What about propositions whose proofs require 
arguments beyond our capabilities? What about propositions 
whose proofs require millions of pages? Or a million, million 
pages? Are there proofs that are possible, but beyond us? Perhaps. 
But remember that the poor chimp cannot understand even a single 
mathematical proof, while we teach proofs to our children. Maybe 
the human species will evolve into another, higher species, and 
they will grasp the answer to all these questions as simply as we 
add 1 and 1 to get 2. It makes one wonder. 

THE LAST STRAW 

This has been such a serious chapter. We must remember that 
our quest of mathematics is one of joy and fun. In harmony with 
this philosophy we offer once again the sage words of Thomas 
Paine. 

The mere man of pleasure is miserable in old age, and the mere 
drudge in business is but little better, whereas, natural philoso
phy, mathematical and mechanical science, are a continual source 
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of tranquil pleasure, and in spite of the gloomy dogmas of priests 
and of superstition, the study of these things is the true theology; 
it teaches man to know and to admire the Creator, for the princi
ples of science are in the creation, and are unchangeable and of 
divine origin.22 

Let's end with a riddle. Below is a simple number sequence. 
Think about it, ponder on it, and devour it. When you have discov
ered the key, tum to the last page and confirm your answer to the 
wonderful Conway sequence (invented by the English mathema
tician, John Horton Conway, of Cambridge University). 

1 
11 
21 

1211 
111221 

? 
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