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Ya.I.Perelman 



In 1913 in Russian bookshops appeared a book by the outstanding educational-
ist Yakov Isidorovich Perelman entitled Physics for Entertainment. It struck the 
fancy of the young who found in it the answers to many of the questions that in-
terested them. 

Physics for Entertainment not only had an interesting layout, it was also im-
mensely instructive. 
In the preface to the 11th Russian edition Perelman wrote: "The main objective 
of Physics for Entertainment is to arouse the activity of scientific imagination, 
to teach the reader to think in the spirit of the science of physics and to create in 
his mind a wide variety of associations of physical knowledge with the widely 
differing facts of life, with all that he normally comes in contact with." 

Physics for Entertainment was a best seller. 
Ya. I. Perelman was born in 1882 in the town of Byelostok (now in Poland). In 
1909 he obtained a diploma of forester from the St. Petersburg Forestry Insti-
tute. After the success of Physics for Entertainment Perelman set out to produce 
other books, in which he showed himself to be an imaginative popularizer of 
science. Especially popular were Arithmetic for Entertainment, Mechanics for 
Entertainment, Geometry for Entertainment, Astronomy for Entertainment, 
Lively Mathematics, Physics Everywhere, and Tricks and Amusements. Today 
these books are known to every educated person in the Soviet Union. 
He has also written several books on interplanetary travel {Interplanetary Jour-
neys, On a Rocket to Stars, World Expanses, etc.). 
The great scientist K. E. Tsiolkovsky thought highly of the talent and creative 
genius of Perelman. He wrote of him in the preface to Interplanetary Journeys: 
"The author has long been known by his popular, witty and quite scientific 
works on physics, astronomy and mathematics, which are moreover written in a 
marvelous language and are very readable." 
Perelman has also authored a number of textbooks and articles in Soviet popular 
science magazines. 
In addition to his educational, scientific and literary activities, he has also devot-
ed much time to editing. So he was the editor of the magazines Nature and Peo-
ple and In the Workshop of Nature. 
Perelman died on March 16, 1942, in Leningrad. 
Many generations of readers have enjoyed Perelman's fascinating books, and 
they will undoubtedly be of interest for generations to come. 
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By the Way 

Scissors and Paper 

Three pieces from one cutm Placing a strip on an edge• Charmed 
rings • Unexpected results of cutting • Paper chain • Thread yourself 
through a sheet of paper. 

Perhaps you think, as I once did, that there are some 
unnecessary things in this world. You're quite 
mistaken: there is no junk that might not be of help 
sometime for some purpose. What is useless for one 
purpose, comes in nandy for another, and what is 
useless for business might be suitable for leisure. 

In the corner of a room being repaired I once came 
across several used postcards and a heap of narrow 
paper strips that had been trimmed from wall paper. 
"Rubbish for the fire," I thought. But it turned out that 
even with this junk one can interestingly amuse oneself. 
My elder brother Alex showed me some things you 
could do with them. 

He started with the paper strips. Giving me a piece 
of strip about 30 centimetres long, he said: "Take 
a pair of scissors and cut the strip in three..." 

I was about to cut but Alex stopped me: "Wait a bit, 
I haven't finished yet. Cut it into three with one cut of 
the scissors." 

This was more difficult. I tried one way and then 
another, and then began to think my brother had posed 
a virtually impossible problem. Eventually it occurred 
to me that it was absolutely intractable. 

"You're pulling my leg," I said, "It's impossible." 
"Well, think again, maybe you'll work it out." 
"I have worked it out that the problem has no 

solution." 
"Too bad. Let me." 
Brother took the strip, folded it in two and cut it in 

the middle to produce three pieces. 
"You see?" 
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38-39 By the Way 
"Yes, but you've folded the strip." 
"Why didn't you?" 
"You didn't say I could." 
"But I didn't say you couldn't either. Simply agree 

that you didn't see the solution." 
"All right. Give me another problem. You won't 

catch me out again." 
"Here is another strip, put it on its edge." 
"So that it stands or falls?" I asked suspecting a trap. 
"Standing, of course. If it falls, it will mean that it 

was laid, not stood on edge." 
"So that it stands... on its edge," I muzed, and it 

suddenly occurred to me that I could bend the strip. 
I did so and put it on the table. 

"There, standing on its edge! You didn't say 
I couldn't bend it!" I said triumphantly. 

"Right." 
"More of your problems, please." 
"As you like. You see I've glued the ends of several 

strips and produced paper rings. Take a red-and-blue 
pencil and draw a blue line all along the outside of this 
ring and a red along the inside." 

"And then?" 
"That's all." 
A silly job, but somehow it didn't quite come off. 

When I had joined up the ends of the blue line and 
wanted to do the red, I found to my surprise I had 
absent-mindedly drawn the blue line on both sides of 
the ring. 

"Give me another," I was embarrassed, "I've 
accidentally spoiled the first one." 

But the second was a failure, too. I even didn't notice 
how I had drawn the both sides. 

"Some delusion! Again. Give me another." 
"You are welcome." 
Well, what do you think? Again, both sides appeared 

blue! There was no room for the red. 
I was upset. 
"Such a simple thing and you can't do it," smiled 

brother. "Just look." 
He took a paper ring and swiftly drew a red line all 

round the outside and a blue one on the inside. 
Having received a fresh ring, I started as carefully as 

possible to draw the line along one side, trying very 
hard not to go over to the other side somehow, and... 
joined up the line. Dear me! Both sides again. About to 
weep, I in bewilderment glanced at my brother, and 
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only then I guessed from his grin that something was 
wrong. 

"Well, you just.. . Is it a trick?" I asked. 
"The rings are magic." 
"What magic? Just rings. You've just fixed up 

something." 
"Try to make something else with these rings. For 

example, can you cut this ring to get two thinner 
ones?" 

"Nothing special." 
Having cut the ring, I was about to demonstrate two 

thin rings I had got when I noticed, much to my 
surprise, that I had in my hands only one long ring, not 
two smaller ones. 

"Okay, where are your two rings?" Alex asked 
mockingly. 

"Another ring, I'll try again." 
"Why? Just cut the one you've got." 
I did. This time I had two rings, no kidding. But 

when I wanted to separate them, it turned out that it 
was impossible to disentangle them for they were linked 
together. Brother was right, the ring was enchanted all 
right! 

"The trick is very simple," my brother explained, 
"You can make such unusual rings for yourself. The 
key thing is that before you glue the ends of the paper 
strip twist one of them like this (Figure 3)." 

"Is it all because of that?" 
"Yes! Sure, I used an ordinary ring... It'll be even 

more interesting, if the end is twisted twice, not just 
once." 

Before my very eyes Alex prepared a ring in this way 
and handed it to me. 

"Cutting along the middle," he said, "and see what 
happens." 

I did and got two rings but one now went through 
the other. So funny, it was impossible to take them 
apart. 

I prepared three more rings for myself and obtained 
three more pairs of inseparable rings. 

"What would you do," my brother asked again, "if 
you had to connect all four pairs of rings to form one 
long open-ended chain?" 

"Oh, this is simple: cut one ring in each pair, and 
glue them together again." 

Alex enquired, "So, you would cut three of the 
rings?" 

Figure 3 
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38-39 By the Way 
"Of course." 
"But what if you cut less than three?" 
"We have four pairs of rings, how can you possibly 

connect them by only breaking two rings? Impossible!" 

I was dead sure. 
In answer, my brother took the scissors, cut both 

rings in one pair and with them connected the 
remaining three pairs. Lo and behold! a chain of eight 
rings. Ridiculously simple! No trick in this and I could 
only be surprised why such a simple idea hadn't 
occurred to me. 

"Enough of these paper rings. You've got some old 
postcards over there, it seems. Let's have some fun with 
them, too. For instance, try and cut in a card the 
largest hole you can." 

I punched the card with my scissors and carefully 
cut a rectangular hole in it, leaving only a narrow edge. 

"This is a hole among holes! A larger one is 
impossible!" I contentedly showed the result of my job 
to Alex. 

Of course, he had another opinion. 
"The hole is too small. Just enough for a hand to go 

through." 
"You'd like it to be large enough for a head?" 

I retorted acidly. 
"The head and the body. So that you could thread 

all yourself through it. That would be some hole." 
"Ha-ha! Do you really want to get a hole larger than 

the paper itself?" 
"Exactly. Many times larger." 
"No trick will help you here. What is impossible is 

impossible..." 
"And what is possible is possible," said Alex and set 

out to cut. 
Confident that he was joking, nevertheless, I watched 

him curiously. He bent the card in two, then drew two 
lines with a pencil near the long edges of the bent 
postcard and made two incisions near the other two 
edges. 

Next he cut the bent edge from point A to point 
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Figure 5 

By the Way 

B and began to make a lot of cuts next to each other as 
shown in Figure 5. 

"Finished," proclaimed my brother. 
"Why? I see no hole!" 

"Take another look." 
And Alex expanded the paper. Just imagine: it 

developed into a long-long chain that he easily threw 
over my head. It fell to my feet, zigzagging about me. 

"How can you get through such a hole? What do 
you say to that?" 

"Big enough for two!" I said with admiration. 
At that Alex finished his tricks, promising to treat 

me next time to a whole heap of new ones, this time 
only with coins. 

Tricks with Coins 
A visible and invisible coin • A bottomless glass • Where has the coin 
goneArranging coins0 Which hand holds the two-pence piece?• 
Shi/ting coins • An Indian legend • Problem solutions. 

"Yesterday you promised to show me a trick with 
coins," I reminded my brother at breakfast. 

"Tricks? First thing in the morning? Hm, all right. 
Then empty the washing bowl." 

Alex put a silver coin on the bottom of the empty 
bowl. 

"Look into the bowl without moving from your place 
and without leaning over. See the coin?" 

"Yes." 
Alex pushed the bowl a bit farther away from me 

until I couldn't see the coin any more since it was 
shielded by the side of the bowl. 

"Sit still, don't move. I pour water into the bowl. 
What has happened to the coin?" 

"It's visible again, as if it's been lifted up together 
with the bottom. Why?" 

My brother sketched the bowl with the coin in it on 
a sheet of paper, and then everything became clear to 
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me. While the coin was at the bottom of the dry bowl, 
no ray of light could come from the coin because light 
travels in straight lines and the opaque sides of the 
bowl were just in the way. When the water was added, 
the situation changed since light rays coming from 
water into air get bent (physicists say "refracted") and 
now can slid over the bowl edge and come into my 
eyes. However, we are used to seeing things only at 
a place where straight rays come from and this is why 
I mentally placed the coin somewhat higher than where 
it really was, that is along a continuation of the 
refracted ray. So it seemed to me that the bottom had 
risen with the coin. 

"I advise you to remember this experiment," my 
brother added. "It will be useful when bathing. In 
a shallow place where you can see the bottom never 
forget that you see it higher than really is. And 
substantially so, for water appears to be shallower by 
about a quarter of its real depth. Where the actual 
depth is 1 metre, say, the apparent depth is only 75 
centimetres. Bathing children often get into a trouble 
for this reason: relying on the deceptive appearance, 
they usually underestimate depth." 

"I noticed that when you float slowly in a boat over 
a place where the bottom is visible, it appears that the 
greatest depth is just under the boat and it's much 
shallower everywhere else. But shift to another place 
and again everywhere is shallow and beneath the boat 
is deep. It seems as if the deepest place travels with the 
boat. Why?" 

"Now you can understand that easily. The point is 
that the rays coming straight up out of the water 
change direction least of all, thus the bottom there 
appears to be less elevated than the places which send 
oblique rays to our eyes. Naturally, the deepest place 
appears to us to lie just beneath the boat even if the 
bottom were perfectly flat. But now let's do quite 
another experiment." 

Alex filled a glass with water right up to the brim. 
"What do you think will happen if now I drop 

a two-pence piece into the glass?" 
"The water will overflow, of course." 
"Let's try." 
Carefully, without jerking, my brother lowered the 

coin into the brimful glass. Not a drop overflowed. 
"Now let's put in another coin," he said. 
I warned him, "Now it's sure to overflow." 

Figure 6 



38-39 
By the Way 

And I was mistaken: in the full glass there was room 
for the second coin, too. A third and a fourth coin 
followed each other into the glass. 

"What a bottomless glass!" I exclaimed. 
Alex silently and cooly kept on lowering one coin 

after another into the glass. A fifth, sixth, seventh time 
coins fell onto the b o t t o m - n o overflowing. I couldn't 
believe my eyes and was impatient to find out the 
explanation. 

But my brother took his time to explain, he was still 
carefully dropping coins and only stopped at the 15 th 
two-pence piece. 

"Well, that'll do," he said at last, "Take a look, the 
water has bulged up at the glass's edge." 

Indeed, the water had bulged above the edge by 
about the thickness of a match, sloping down at the 
edges as if it were in a transparent bag. 

Alex went on to say, "The answer lies in the bulging. 
This is where the water is that was expelled by the 
coins." 

"Fifteen coins have displaced so little water?" I was 
astounded. The stack of 15 two-pence pieces is rather 
high but here is only a thin layer, just thicker than 
a penny." 

"Take its area into consideration, not only the 
thickness. The layer may be not thicker than 
a two-pence piece, but how many times larger is it 
across?" 

I gave some thought to i t - t he glass was about four 
times wider than a two-pence. 

"Four times wider and the same thickness." I went 
on to conclude, "The layer is only four times larger 
than a two-pence. The glass could only receive four 
coins, but you've already put in 15 and plan, it seems, 
to add some more. Where's the room?" 

"Your calculation is wrong. If a ring is four times 
larger across than another, its surface area will be 16 
times larger, not four." 

"Well, I never!" 
"You should have known it. How many square 

centimetres are there in a square metre? One 
hundred?" 

"No, 100 times 100 which is 10,000." 
"You see. With rings the same rule holds: if a ring is 

two times wider than another, it has four times the 
surface area, three times wider-nine times the area, 
four times wider-16 times the area, and so on. So, the 
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volume of the buldge above the brim is 16 times larger 
than that of a two-pence piece. You see now where all 
the room is in the glass. It has even more room because 
the water can rise up about two two-pence pieces 
thickness." 

"Could you really put 20 coins into the glass?" 
"Even more, if only you dip them carefully, without 

shaking." 
"I wouldn't ever have believed that a brimful glass 

could have enough room for so many coins." 
I had to believe it though when I saw the heap of 

coins inside the glass with my own eyes. 
"Now, can you place 11 coins into 10 saucers so that 

there is only one coin in each saucer?" the brother 
asked. 

"Saucers with water?" 
"With or without water, as you please," he laughed, 

setting 10 saucers in a row. 
"Another physics experiment?" 
"No, psychological. On with the job." 
"Eleven coins in 10 saucers, and one in each... No, 

I can't," I gave up at once. 
"Go ahead, I'll help you. We'll place the first coin in 

the first saucer and the 11th as well, just for a time." 
I did as he said, waiting in bewilderment. What is 

going to follow? 
"Two coins? Well, the third coin goes into the 

second saucer. The fourth into the third saucer, the fifth 
into the fourth, and so forth." 

When I had placed the 10th coin into the ninth 
saucer I was surprised to see that the 10th saucer was 
vacant. 

Alex said, "Now that's where we'll place the 11th 
coin that we put tentatively into the first saucer." He 
took the extra coin from the first saucer and placed it 
into the 10th saucer. 

Now 11 coins were lying in 10 saucers, one in each... 
Fantastic! 

Brother swiftly collected the coins not caring to 
explain the trick to me. 

"Just think. That'll be both more interesting and 
more useful than getting ready-made solutions." 

And ignoring my pleads he gave me a fresh problem. 
"Here are six coins. Arrange them in three rows so 

that there are three coins in each." 
"That takes nine coins." 
"Everyone can do it with nine. No, do it just with 

six." 
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"Now again that's something impossible." 
"You're too quick to give up. Look, it's simple." 
"There are three rows here, with three coins in each," 

he explained. 
"But the rows criss-cross." 
"Perhaps, but did I say that they mustn't?" 
"If I'd known that this was allowed, I'd have guessed 

for myself." 
"Well, then, guess how to solve the problem in 

another way. But not now, sleep on it. Here are three 
more problems in the same vein. The first one: arrange 
nine coins in ten rows with three coins in each. The 
second: arrange ten coins in five rows with four coins 
in each. The third problem is as follows. I draw 
a square divided into 36 smaller squares. Now try to 
arrange 18 coins with one in each small square so that 
in each row and column there are three coins... Aha, 
I've just remembered one more trick with coins. Take 
into one hand a 5 pence, into the other a 10 pence, but 
don't tell me which coin is in which hand. I'll figure it 
out. Only do the following mental arithmetic: double 
what's in the right hand and treble what's in the left, 
and then add the results. Ready?" 

"Yes." 
"What's the final result, odd or even?" 
"Odd." 
"The 10 is in the right and the 5 in the left hand," 

Alex proclaimed at once and was right on target. 
We repeated it once more. The result was even and 

my brother said without mistake that the 10 was in my 
left hand. 

"About this problem also think at leisure," he said, 
"and finally, I'll show you a fascinating game with 
counters. I've just made some counters by cutting out 
differently sized disks from a sheet of cardboard. The 
biggest counter is 5 centimetres in diameter, the next 
biggest 4 centimetres, and so on down to the smallest 
which is 1 centimetre in diameter." 

Figure 8 
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He put three saucers side by side, and put a stack of 

counters onto the first saucer: so that the 5 counter 
went on the bottom on top of that was the 4 counter, 
and so on down to the 1 counter on top of the stack. 

"The whole stack of five counters is to be transferred 
onto the third saucer but you have to observe the 
following rules. Rule number 1: each time move 
1 counter only. Rule number 2: never put a larger 

C5D CcŜCcT) 
counter onto a smaller one. Rule number 3: counters 
may be placed temporarily onto the middle saucer but 
still observing the first two rules and the counters must 
end up on the third saucer in the initial order. The 
rules are simple as you can see. Now, go ahead." 

I started. First I placed the 1 counter onto the third 
saucer, the 2 counter onto the middle one... and 
stopped. Where should the 3 counter go? It was larger 
than both the 1 and 2 counters. 

"Well, then," my brother prompted, "Place the 
1 onto the middle saucer, then the third saucer will be 
vacant for the 3. 

I did so. Now a further predicament. Where was I to 
place the 4? Accidentally, I hit upon an idea: first 
1 transferred the 1 onto the first saucer, the 2 onto the 
third, and next put the 1 onto the third as well. Finally, 
after a long series of move I succeeded in transferring 
the 5 from the first saucer and ended up with the whole 
stack on the third saucer. 

"How many transfer did you make in all?" asked my 
brother okaying my job. 

"Didn't count." 
"Well let's count then. After all, it's interesting to find 

the least number of moves that could lead to the goal. 
If our stack included only two counters, not five, the 
2 and the 1, how many moves would be required?" 

"Three: the 1 onto the middle saucer, the 2 onto the 
third one and then the 1 onto the third." 

"Right. Add one more counter, the 3, and count how 
many moves you need to transfer the stack. We'll 
proceed as follows: first we transfer the two smaller 
coins onto the middle saucer one after the other. This 
takes, as we already know, three moves. We then 
transfer the 3 onto the vacant third saucer-one more 
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move. Next we transfer both counters from the middle 
saucer, too, onto the third one - th ree more moves. The 
total is 3 + 1 + 3 = 7." 

"For the four counters, let me count for myself. At 
first I transfer the three smaller counters onto the 
middle saucer-seven moves; then the 4 goes onto the 
third saucer -one move, and now the three smaller 
coins go onto the third saucer-seven more moves. 
Thus I get 7 + 1 + 7 = 15." 

"Splendid. And for the five counters?" 
"15 + 1 + 15 = 31." 
"Well, you got it right. But I'll show you a way to 

simplify the procedure. Note that the numbers 
involved-3, 7, 15, 31 -a l l represent the product of 
several twos minus one. Look!" And Alex wrote out 
the following table. 

3 = 2 x 2 - 1 
7 = 2 x 2 x 2 - 1 

15 = 2 x 2 x 2 x 2 - 1 
31 = 2 x 2 x 2 x 2 x 2 - 1 

"I see, the number of the counters to be transferred 
equals the number of twos in the product. Now, I could 
calculate the number of moves for any stack of 
counters. For instance, for seven counters: it's 
2 x 2 x 2 x 2 x 2 x 2 x 2 - 1 = 1 2 8 - 1 = 127. 

"You've thus mastered this ancient game. You need 
only know one practical rule which is if the stack 
contains an odd number of counters the first counter is 
transferred onto the third saucer, if its's even, it goes 
onto the middle saucer." 

"You say it's an ancient game, didn't you invent it 
yourself?" 

"No, I only applied it to counters. But the game as 
such has a very ancient origin and apparently came 
from India where there is a marvellous legend 
associated with it. It says that in the town of Benares is 
a sanctuary into which the Indian god Brahma, as he 
was creating the world, installed three diamond sticks 
and put on one of them 64 golden rings with the largest 
at the bottom and each of the rest being smaller than 
the one beneath it. The priests of the sanctuary were 
obliged ceaselessly to transfer these rings from one stick 
to another using the third as an auxiliary and observing 
the rules of our game that is to move one ring at a time 

42^3 
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and not to place it onto a smaller one. The legend has 
it that when all the 64 rings have been transferred the 
end of the world will come." 

"Oh, it means the world should've perished long 

"Perhaps, you think transferring 64 rings won't take 
much time?" 

"Of course. Allowing a second per move, you can 
make 3600 transferrings in an hour." 

"And about 100,000 in 24 hours. In 10 days, 
a million moves. A million would be enough, I think, to 
transfer even a thousand, not 64 rings." 

"You are mistaken. To handle the 64 rings would 
take as much as 500,000,000,000 years!" 

"But, why? After all, the number of moves is only 
equal to the product of 64 twos, which amounts to.. ." 

" 'Only' upwards of 18,000,000,000,000,000,000." 
"Wait a bit, I'll now multiply and check." 
"Splendid. While you do your multiplying, I'll have 

time to go to tend to my business," said brother and 

I first found the product of 16 twos, then multiplied 
the result by itself. A tedious job, but I was patient and 
worked it out to the end. I obtained the number 
18,446,744,073,709,551,616. 

Thus my elder brother was right... 
I mustered up courage and set about the problems he 

had set to me to solve on my own. They didn't turn out 
to be all that difficult, some were even rather easy. The 
business of 11 coins in 10 saucers appeared ridiculously 
simple: we put the first and eleventh coins into the first 
saucer, next we put the third coin into the second 
saucer, the fourth coin into the third saucer, and so 
forth. But what about the second coin? It was ignored 
and that was the trick. The idea behind guessing which 
hand had the 10 pence coin was also simple. Doubling 
5 gives an even number but trebling it gives an odd one 

ago!" 

Well. 

left. 

Figure 10 
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whereas multiplying 10 always gives an even number. 
Therefore, if the total was even, then the 5 had been 
doubled, i. e. it must have been in the right hand, and if 
the total was odd, it is clear that the 5 must have been 
trebled, i.e. been in the left hand. The solutions to the 
problems on the coin arrangements are clear from the 
accompanying drawings (Fig. 10). 

Finally, the problem with coins in the small squares 
works out as shown in Fig. 11. The 18 coins are 
arranged in the square with 36 small squares and giving 
three coins in each row. 

Wandering in a Maze 

Wandering in a maze • People and rats 0 Right- and left-hand rule • 
Mazes in ancient times • Tournefort in a cave • Solution of the maze 
problem. 

"What are you laughing at in your book? A funny 
story?" Alex asked me. 

"Yes, it's Three Men in a Boat by Jerome." 
"I remember it had me in stitches! Where are you?" 
"Where the crowd of people is wandering about in 

a garden maze, looking for a way out." 
"An interesting story. Read it again for me, please." 
So I read the story aloud from the very beginning: 
"Harris asked me if I'd ever been in the maze at 

Hampton Court. He said he went in once to show 

By the Way 

Figure 11 
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somebody else the way. He had studied it up in a map, 
and it was so simple that it seemed foolish-hardly 
worth the twopence charged for admission. Harris said 
he thought that map must have been got up as 
a practical joke because it wasn't a bit like the real 
thing, and only misleading. It was a country cousin that 
Harris took in. He said: 'We'll just go in here, so that 
you can say you've been, but it's very simple. It's 
absurd to call it a maze. You keep on taking the first 
turning to the right. We'll just walk round for ten 
minutes, and then go and get some lunch.' 

"They met some people soon after they had got 
inside, who said they had been there for three-quarters 
of an hour, and had had about enough of it. Harris 
told them they could follow him, if they liked; he was 
just going in, and then should turn round and come 
out again. They said it was very kind of him, and fell 
behind, and followed. 

"They picked up various other people who wanted to 
get it over, as they went along, until they had absorbed 
all the persons in the maze. People who had given up 
all hopes of ever getting either in or out, or of ever 
seeing their home and friends again, plucked up cour-
age, at the sight of Harris and his party, and joined the 
procession, blessing him. Harris said he should judge 
there must have been twenty people following him, in 
all; and one woman with a baby, who had been there 
all the morning, insisted on taking his arm, for fear of 
losing him. 

"Harris kept on turning to the right, but it seemed 
a long way, and his cousin said he supposed it was 
a very big maze. 

" 'Oh, one of the largest in Europe,' said Harris. 
"'Yes, it must be, replied the cousin, because we've 

walked a good two miles already.' 
"Harris began to think it rather strange himself, but 

he held on until, at last, they passed the half of a penny 
bun on the ground that Harris's cousin swore he had 
noticed there seven minutes ago. Harris said, 'Oh, 
impossible!' But the woman with the baby said, 'Not at 
all,' as she herself had taken it from the child, and 
thrown it down there, just before she met Harris. She 
also added that she wished she never had met Harris, 
and expressed an opinion that he was an impostor. 
That made Harris mad, and he produced his map, and 
explained his theory. 

" 'The map may be all right enough, said one of the 
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party, if you know whereabouts in it we are now.' 
"Harris didn't know, and suggested that the best 

thing to do would be to go back to the entrance, and 
begin again. For the beginning again part of it there 
was not much enthusiasm; but with regard to the 
advisability of going back to the entrance there was 
complete unanimity, and so they turned, and trailed 
after Harris again, in the opposite direction. About ten 
minutes more passed, and then they found themselves 
in the centre. 

"Harris thought at first of pretending that that was 
what he had been aiming at; but the crowd looked 
dangerous, and he decided to treat it as an accident. 

"Anyhow, they has got something to start from then. 
They did know where they were, and the map was once 
more consulted, and the thing seemed simpler than 
ever, and off- they started for the third time. 

"And three minutes later they were back in the centre 
again. 

"After that they simply couldn't get anywhere else. 
Whatever way they turned brought them back to the 
middle. It became so regular at length, that some of the 
people stopped there, and waited for the others to take 
a walk round, and come back to them. Harris drew out 
his map again, after a while, but the sight of it only 
infuriated the mob, and they told him to go and curl 
his hair with it. Harris said that he couldn't help feeling 
that, to a certain extent, he had become unpopular. 

"They all got crazy at last, and sang out for the 
keeper, and the man came and climbed up the ladder 
outside, and shouted out directions to them. But all 
their heads were by this time, in such a confused whirl 
that they were incapable of grasping anything, and so 
the man told them to stop where they were, and he 
would come to them. They huddled together, and 
waited; and he climbed down, and came in. 

"He was a young keeper, as luck would have it, and 
new to the business; and when he got in, he couldn't 
get to them, and then he got lost. They caught sight of 
him, every now and then, rushing about the other side 
of the hedge, and he would see them, and rush to get to 
them, and they would wait there for about five minutes, 
and then he would reappear again in exactly the same 
spot, and ask them where they had been. 

"They had to wait until one of the old keepers came 
back from his dinner before they got out." 

"They were a bit dense," I said, "To have a plan and 
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not to find the way out." 
"Do you think you'd find at once?" 
"With a plan? Certainly!" 
"Just wait. It seems to me I've got the plan of that 

maze," Alex said and began to delve in his bookcase. 
"Does this maze really exist?" 
"Hampton Court? Of course, it's near London. Been 

in existence for two centuries... Found at last. Just as 

I said Plan of the Maze at Hampton Court. It seems 
rather small, this maze, only 1,000 square metres." 

My brother opened the book at a page showing 
a small plan. 

"Imagine you're here in the central area of the maze 
and want to get out, which way would you go to get to 
the exit? Sharpen a match and use it to show the way." 

I pointed the match at the centre of the maze and 
bravely drew it along the winding paths of the maze, 
but the whole affair appeared to be more involved than 
I had expected. Having wandered a little round about 
the plan I came... back to the central area, just as 
Jerome's characters had, the ones I'd just made fun of! 

"You see, the plan is no use. But rats solve the task 
without any plan." 

"Rats? What rats?" 
"The ones described in this book. Do you think this 

is a treatise on garden design? No, this book is about 
the mental abilities of animals. To test the intelligence 
of animals, scientists make a small plaster model of 
a maze and put the animals to be tested into it. The 
book says that rats can find their way about a plaster 
maze of Hampton Court in only half an hour and that 
is faster than the people in Jerome's book." 

Figure K 
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"Judging from the plan, the maze doesn't seem to be 
very difficult. You would never think that it's so 
treacherous..." 

"There's a simple rule. If you know it, you can safely 
enter any maze without any fear of getting lost." 

"Which rule?" 
"You should follow the paths touching its wall with 

your right hand, or left for that mat ter - i t makes no 
difference. But with one hand, all the time." 

"Just this?" 
"Yes. Now try and use the rule in reality, mentally 

wandering about the plan." 
I ran my match along the paths, being guided by the 

rule. Truly, I soon came from the entrance to the centre 
and back again, to the exit. 

"A beautiful rule." 
"Not really," Alex objected, "The rule is good so long 

as you simply don't want to be lost in a maze, but it's 
no good if you want to walk along all of its paths 
without exception." 

"But I've just been in all the alleys on the plan. 
I didn't miss one." 

"You are mistaken. Had you marked with a dash line 
the way you went, you'd have found that one alley 
wasn't covered." 

"Which one?" 

"I've marked it with a star on this plan (Fig. 13). 
You haven't been down this alley. In other mazes the 
rule would guide you past large sections of it so that 
even though you'd find your way out safely, you 
wouldn't see much of it." 

"Are there many different kinds of maze?" 
"A lot. Nowadays they are only in garden and parks 

and you wander around in the open air between high 
green walls of hedge, but in ancient times they used to 
put mazes inside large houses or dungeons. That was 

4 — 9 7 J 
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done with the cruel aim of dooming the unhappy 
people thrown into them to wander hopelessly about 
the intricate tangle of corridors, passages and halls, 
eventually leading them to starve to death. One such, 
for instance, was the proverbial maze on the island of 
Crete and the legend has it that an ancient king called 
Minos had it built. Its paths were so tangled that its 
own creator, a man called Daedalus, allegedly couldn't 
find his way out of it," brother continued, "The aim of 
other ancient mazes was to guard the tombs of kings, 
to protect them from robbers. A tomb was located at 
the centre of a maze so that if a greedy seeker after 
buried treasure even succeeded in reaching it, he 
wouldn't be able to find his way o u t - t h e grave of the 
king would become his grave, too." 

"Why didn't they use the rule for walking round 
mazes you've just told me about?" 

"For one thing, apparently, in ancient times nobody 
knew about the rule. For another, I've already told you 
that it doesn't always let you visit every part of the 
maze. A maze can be contrived in such a way that the 
user of the rule will miss the place where the treasure is 
kept." 

"But is it possible to make a maze from which there 
is no escaping? Of course, someone who enters it using 
your rule will get out eventually, but suppose a man is 
put inside and left there to wander?" 

"The ancients thought that when the paths of a maze 
are sufficiently tangled, it would be absolutely 
impossible to get out of it. This isn't true because it can 
be proved mathematically that inescapable mazes 
cannot be built. Not only that but every maze has an 
escape and it is possible to visit every corner without 
missing one and still escape to safety. You only need to 
follow a strict system and take certain precautions. Two 
centuries ago the French botanist Tournefort dared to 
visit a cave in Crete which was said to be an inescapable 
maze because of its innumerable paths. There are 
several such caves in Crete and it may be possible that 
they gave rise to the ancient legend about the maze of 
King Minos. What did the French botanist do in order 
not to be lost? This is what his fellow-countryman, the 
mathematician Lucas, said about it." 

My brother took down from the bookcase an old 
book entitled Mathematical Amusements and read aloud 
the following passage (I copied it later): 

"Having wandered for a time with our companions 
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about a network of underground corridors, we came to 
a long wide gallery that led us into a spacious hall deep 
in the maze. We had counted 1460 steps in half an hour 
along this gallery, deviating neither right nor left... On 
either side there were so many corridors that one 
would be bound to get lost there unless some necessary 
precautions were taken. But as we had a strong desire 
to be out of the maze, we saw to it to provide for our 
return. 

"First, we left one of our guides at the entrance to 
the cave, having instructed him to call for the people 
from a neighbouring village to rescue us should we not 
return by night fall. Second, each of us had a torch. 
Third, at every turn which, it seemed, might be difficult 
to find later we attached numbered papers to the wall. 
Finally, one of our guides put on the left side bunches 
of blackthorn he had prepared beforehand, and the 
other side of the path he sprinkled with chopped straw, 
which he carried in a bag." 

Alex finished reading and said, "All these laborious 
precautions might not seem all that necessary to you. 
In the times of Tournefort, however, there was no other 
way since the problem of mazes had not yet been 
solved. These days the rules for walking around mazes 
have been worked out that are less burdensome but no 
less reliable than his precautions." 

"Do you know these rules?" 
"They aren't complicated. A first rule is that when 

you walk into a maze, follow any path till you reach 
a dead end or a crossing. If it is a dead end, return and 
place two stones at the exit which will indicate that the 
corridor has been passed twice. At a crossing, go fur-
ther down any corridor but mark each time you go 
down it with a stone the way you have just passed and 
the way you are going to follow. A second rule states 
that having arrived along a fresh corridor at a crossing 
that has earlier been visited (as seen by the stones), go 
back at once and place two stones at the end of the 
corridor. Finally, a third rule requires that having come 
to a visited crossing along a corridor that has already 
been walked, mark the way with a second stone and go 
along one of new corridors. If there doesn't happen to 
be such a corridor, take one whose entrance has only 
one stone (that is a corridor that has only been passed 
once). Abiding by these rules you can pass twice, that is 
there and back, every corridor of the maze without 
missing any corner and return back to safety. Here I've 
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got several plans of mazes I've cut out at different times 
from illustrated magazines (Figs. 14, 15, and 16). If you 
wish, you can try and travel about them. I hope that 
now that you know so much you shouldn't be in any 
danger of getting lost in them. If you've enough 
patience, you could actually make a maze like, say, the 
Hampton Court one that Jerome mentioned - you 
could construct it with your friends out of snow in the 
yard." 
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More Skilled Than Columbus 

A schoolboy once wrote in a composition: "Christo-
pher Columbus was a great man because he discovered 
America and stood an egg upright." This young scholar 
had thought both deeds equally amazing. On the 
contrary, the American humorist Mark Twain saw 
nothing special about Columbus discovering America: 
"It would have been strange if he hadn't found it 
there." 

The other feat the great navigator had performed is 
not really all that marvellous. Do you know how 
Columbus stood an egg upright? He simply pressed it 
down onto a table crushing the bottom of the shell. He 
had, of course, changed the shape of the egg. But how 
can one possibly, stand an egg on end without changing 
its shape, the navigator didn't know. 

Meanwhile it is easier by far than discovering 
America or even one tiny island. I'll show you three 
methods: one for boiled eggs, one for raw eggs, and one 
for both. 

A boiled egg can be stood upright simply by spinning 
it with your fingers or between your palms like a top. 
The egg will remain upright as long as it spins. After 
two or three trials the experiment should come out 
well. 

This won't work if you try to stand a raw egg up-
right, you may have noticed that raw eggs spin poorly. 
This, by the way, is used to distinguish a hard-boiled 
egg from a raw one without breaking the shell. The 
liquid contents of a raw egg is not carried along by the 
spinning as fast as the shell and, therefore, sort of 
damps the speed down. We have to look for another 
way of standing eggs and one does exist. You have to 
shake an egg intensely several times. This breaks down 
the soft envelope containing the yolk with the result 
that the yolk spreads out inside the egg. If you then 
stand the egg on its blunt end and keep it this way for 
a while, then the yolk, which is heavier than the white, 
will pour down to the bottom of the egg and 
concentrate there. This will bring the centre of mass of 
the egg down making it more stable than before. 

Finally, there is a third way of putting an egg up-
right. If an egg is placed, say, on the top of a corked 
bottle and another cork with two forks stuck into it is 
placed on the top as shown in Fig. 17, the whole 

Figure 17 
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system (as a physicist would put it) is fairly stable and 
remains in equilibrium even if the bottle is slightly 
inclined. But why don't the egg and cork fall down? 
For the same reason that a pencil placed upright on 
a finger doesn't fall off when a bent penknife is stuck 
into it as shown. A scientist would explain: "The centre 
of mass of the system lies below the support." This 
means that the point at which the weight of the system 
is applied lies below the place at which it is supported. 

Centrifugal Force 
Open an umbrella, put its end on the floor, spin it and 
drop a ball into it. The ball could be a balled piece of 
paper or handkerchief, or any other light and 
unbreakable thing. Something will happen you 
probably wouldn't expect. The umbrella does not, as it 
were, desire to accept the present and the thing itself 
crawls up the edge and then flies off in a straight line. 

The force that threw the ball out in this experiment 
is generally called the "centrifugal force", although it 
would be more appropriate to dub it "inertia". 
Centrifugal force manifests itself when a body travels in 
a circle but this is nothing but an example of inertia 
which is the desire of a moving body to maintain its 
speed and direction. 

We come across centrifugal force more often than 
you might suspect. If you whirl a stone tied to a piece 
of string, you can feel the string become taut and seem 
to be about to break under the action of the centrifugal 
force. The ancient weapon for hurling stones, the sling, 
owes its existence to the force. Centrifugal force bursts 
a millstone, if it is spun too fast and is not sufficiently 
strong. If you are adroit enough, this force will help 
you to perform a trick with a glass from which the 
water doesn't escape, even though it is upside down. In 
order to do this you'll only have to swing the glass 
quickly above your head in a circle. Centrifugal force 
helps a circus bicyclist to do a "devil's loop". It is put 
to work. In the so-called centrifugal separators it 
churns cream; it extracts honey from honey-comb; it 
dries washing by extracting water in centrifugal driers, 
etc., etc. 

When a tram travels in a circular path, e.g. as it 
turns at a crossing, the passengers feel directly the 
centrifugal force that pushes them in the direction of 
the outer wall of the carriage. If the speed is sufficiently 

Figure 18 
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large, the carriage could be overturned by the force if 
the outer rail wasn't laid a bit higher than the inner 
one: which is why a tram is slightly inclined inwards 
when it turns. It sounds rather unusual but an inclined 
tram is more stable than an upright one! 

But this is quite the case, though. A small experiment 
will help explain this to you. Bend a cardboard sheet to 
form a wide funnel, or better still take a conical bowl if 
available. The conical shield (glass or metallic) of an 
electrical lamp would be suitable for our purposes. Roll 
a coin (small metal disk, or ring) around the edge of 
any of these objects. It will travel in a circle bending in 
noticeably on its way. As the coin slows down, it will 
travel in ever decreasing circles approaching the centre 
of the funnel. But by slightly shaking the funnel the 
coin can easily be make roll faster and then it will move 
away from the centre describing increasingly larger 
circles. If you overdo it a bit, the coin will roll out. 

For cycling races in a velodrome special circular 
tracks are made and you can see that these tracks, 
especially where they turn abruptly have a noticeable 
slope into the centre. A cyclist rides along them in an 
inclined position (like the coin in the funnel) and not 
only does he not turn over but he acquires special 
stability. Circus cyclists used to amaze the public by 
racing along a steep deck. Now you can understand 
that there is nothing special about it. On the contrary, 
it would be a hard job for a cyclist to travel along 
a horizontal track. For the same reason a rider and his 
horse lean inwards on a sharp turn. 

Let's pass on from small to large-scale phenomena. 
The Earth, on which we live, rotates and so centrifugal 
force should manifest itself. But where and how? By 
making all the things on its surface lighter. The closer 
something is to the Equator, the larger the circle in 
which it moves and hence it rotates faster, thereby 
losing more of its weight. If a 1-kg mass were to be 
brought from one of the poles to the Equator and 
reweighed using a spring balance, the loss in weight 
would amount to 5 grammes. That, of course, is not 
very much of a difference, but the heavier a thing, the 
larger the difference. A locomotive that has come from 
Stockholm to Rome loses 60 kg, the weight of an adult. 
A battle ship of 20,000-tonne displacement that has 
come from the White Sea to the Black Sea will have 
lost as much as 80 tonnes, the weight of a locomotive! 

Why does it happen? Because as the globe rotates, it 
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tries to throw everything off its surface just like the 
umbrella in our earlier experiment. It would succeed 
were it not for the terrestrial attraction that pulls 
everything back to the Earth's surface. We call this 
attraction "gravity". The rotation cannot throw things 
off the Earth's surface, but it can make them lighter. 

The faster the rotation, the more noticeable the 
reduction in weight. Scientists have calculated that if 
the Earth rotated 17 times faster, things at the Equator 
would lose their weight completely to become 
weightless. And if it rotated yet quicker, making, say, 
one turn every hour, then the weight lessness would 
extend to the lands and seas farther away from the 
Equator. 

Just imagine things losing their weight. It would 
mean there would be nothing you could not lift, you 
would be able to lift locomotives, boulders, cannons 
and warships as easily as you could a feather. And 
should you drop t h e m - n o danger, they could hurt 
nobody since they wouldn't fall down at all, but would 
float about in mid-air just where you'd let go of them. 
If, sitting in the cabin of an airship, you wanted to 
throw something overboard, it wouldn't drop, but 
would stay in the air. What a wonder world it would 
be. So you could jump as high as you've never 
dreamed, higher than sky-scrapers or the mountains. 
But remember, it would be easy to jump up but diffi-
cult to return back to ground. Weightless, you'd never 
come back on your own. 

There would also be other inconveniences in such 
a world. You've probably realized yourself that 
everything, whatever its size, would, if not fixed, rise up 
due to the slightest motion of air and float about. 
People, animals, cars, carts, ships-everything would 
move about in the air disorderly, breaking, maiming 
and destroying. 

That is what would occur if the Earth rotated sig-
nificantly faster. 

Ten Tops 

The accompanying figures show 10 types of tops. These 
will enable you to do a number of exciting and 
instructive experiments. You don't need any special 
skill to construct them so you can make them yourself 
without any help or expense. 

This is how the tops are made: 
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1. If a button with five holes comes your way, like 
the one shown in the figure, then you can easily make 
it into a top. Push a match with a sharpened end 
through the central hole, which is the only one needed, 
wedge it in and then... the top is ready. It will rotate 
on both the blunt and pointed end, you only need to 
spin it as usual by twisting the axle between your 
fingers and dropping the top swiftly on its blunt end. It 
will spin rocking eccentrically. 

2. You could do without a button, a cork is nearly 
always at hand. Cut a disk out of it, pierce the disk 
with a match, and you have top No. 2 (Fig. 22). 

3. Figure 23 depicts a rather unusual t o p - a walnut 
that spins on the pointed end. To turn a suitable nut 
into a top just drive a match into the other end, the 
match being used for spinning the top. 

4. A better idea is to use a flat wide plug (or the 
plastic cover of a small can). Heat an iron wire or 
knitting-needle and burn through the plug along the 
axis to form a channel for the match. A top like this 
will spin long and steadily. 

5. Figure 24 shows another top: a flat round box 
pierced by a sharpened match. For the box to fit tightly 
without sliding along the match, seal the hole with wax. 

6. A fancy top you see in Figure 25. Globular 
buttons with an eye are tied to the edge of a cardboard 
disk with pieces of string. As the top rotates the 
buttons are thrown off radially, stretching the strings 
out taut and graphically demonstrating the action of 
our old friend, the centrifugal force. 

7. The same principle is demonstrated in another 
way by the top in Figure 26. Some pins are driven into 
the cork ring of the top with coloured beads threaded 
onto them so that beads can slide along the pin. As the 
top spins the beads are pushed away to the pin heads. 
If the spinning top is illuminated, the pins merge into 
a solid silvery belt with a coloured fringe of the merged 
beads. In order to enjoy the illusion spin the top on 
a smooth plate. 

8. A coloured top (Fig. 27). It is fairly laborious to 
make but the top will reward your efforts by 
demonstrating an astounding behaviour. Cut a piece of 
cardboard into a disk, make a hole at the centre to 
receive a pointed match. Clamp the match on either 
side of the disk with two cork disks. Now divide the 
cardboard disk into equal sectors by straight radial 
lines in the same way a round cake is shared out. 
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Colour the sectors alternately in yellow and blue. What 
will you see as the top rotates? The disk will appear 
neither blue nor yellow, but green. The blue and yellow 
colours merge in your eye to give a new colour, green. 

You can continue your experiments on colour 
blending. Prepare a disk with sectors alternately 
coloured in blue and orange. Now, when the disk is 
spun it will be white, not yellow (actually it will be light 
grey, the lighter the purer the paints). In physics two 
colours that, when blended, give white are called 
"complementary". Consequently, our top has shown 
that blue and orange are complementary. 

If you have a good set of paints you can try an 
experiment that was first done 200 years ago by the 
great English scientist Isaac Newton. Paint the sectors 
of a disk with the seven colours of the rainbow which 
are: violet, indigo, blue, green, yellow, orange, and red. 
When all the seven colours are rotated together they 
will produce a greyish-white. The experiment will help 
you to understand that the sunlight is composed of 
many colours. 

These experiments can be modified as follows: as the 
top spins throw a paper ring onto it and the disk will 
change its colour at once (Fig. 28). 

9. The writing top (Fig. 29). Make the top as just 
described, the only difference being that its axle will 
now be a soft pencil, not match. Make the top spin on 
a cardboard sheet placed somewhat at an angle. The 
top will, as it spins, descend gradually down the 
inclined cardboard sheet, with the pencil drawing 
flourishes. These are easy to count and, since each one 
corresponds to,one turn of the top, by watching the top 
with a clock in hand* you can readily determine the 
number of revolutions the top makes each second. 
Clearly, this would be impossible in any other way. 

A further form of the writing top is depicted in 
Fig. 30. Find a small lead disk and drill a hole at the 
centre (lead is soft and drilling it is easy), and a hole on 
either side of it. 

Through the centre hole a sharpened stick is passed, 
and through one of the side holes a piece of fishing-line 

* By the way, seconds can also be reckoned without a clock just 
by counting. To do so, you should at first drill yourself a bit to 
pronounce "one", "two", "three", etc., so that each number takes 
exactly one second to pronounce. Don' t think that it's difficult, the 
practice shouldn't take more than 10 minutes. 
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(or bristle) is threaded so that it protrudes a bit lower 
than the end of the top axle. The fishing-line is fixed in 
with a piece of match. The third hole is left as it is, its 
only purpose is to balance the disk since otherwise the 
top won't spin smoothly. 

Our writing top is ready, but to experiment with it 
we need a sooty plate. Hold a plate over a smoky flame 
until it is covered with a uniform layer of dense soot. 
Then send the top spinning over the sooty surface. It 
will slide over the surface and the end of the fishing-line 
will draw, white on black, an intricate and rather 
attractive ornament. 

10. Our crowning effort is the last rig, the merry-go-
round top. However, it is much easier to make that it 
might seem. The disk and stick here are just as in the 

V 
earlier coloured top. Into the disk, pins with small flags 
are stuck symmetrically about the axis, and tiny paper 
riders are glued in-between the pins. Thus, you have 
a toy merry-go-round to amuze your younger brothers 
and sisters. 

Impact 

When two boats, trams or croquet balls collide (an 
incident or move in a game) a physicist would call such 
an event just "impact". The impact lasts a split second, 
but if the objects involved are elastic, which is normally 
the case, then a lot happens in this instant. In each 
elastic impact physicists distinguish three phases. In the 
first phase both colliding objects compress each other 
at the place of contact. Then comes the second phase 
when the mutual compression reaches a maximum, the 
internal counteraction begins in response to the 
compression and prevents the bodies from compressing 
further, so balancing the thrusting force. In the third 
phase the counteraction, seeking to restore the body's 
shape deformed during the first phase, pushes the 
objects apart in opposite directions. The receding 
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object, as it were, receives its impact back. In fact, when 
we observe, say, one croquet ball striking another, 
stationary, ball of the same mass, then the recoil makes 
the oncoming ball stop and the other ball roll forward 
with the velocity of the first. 

It is very interesting to observe a ball striking 
a number of other balls arranged in a file touching each 
other. The impact received by the first ball is, as it 
were, transferred through the file, but all the balls 
remain at rest and only the outermost one jumps away 
as it has no adjacent ball to impart the impact to and 
receive it back. 

This experiment can be carried out with croquet 
balls, but it is also a success with draughts or coins. 
Arrange the draughts in a straight line, it can be a very 
long one, but the essential condition is that they touch 
one another. Holding the first draught with a finger 
strike it on its edge with a wooden ruler, as shown. 
You will see the last draught jump away, with the rest 
of the draughts remaining in their places. 

An Egg in a Glass 

Circus conjurers sometimes surprise the public by 
jerking the cloth from a laid table so that everything-
plates, glasses, and bottles - remain safely in place. 
This is no wonder or deceit, it is simply a matter of 
dexterity acquired by prolonged practice. 

Such a sleight-of-hand is too difficult for you to 
attain but on a smaller scale a similar trick is no 
problem. Place a glass half-filled with water on a table 
and cover it with a postcard (or half of it). Further, 
borrow a man's wide ring and a hard-boiled egg. Put 
the ring on the top of the card, and stand the egg on 
the ring. It possible to jerk the card away so that the 
egg doesn't roll down onto the table? 

At first sight, it may seem as difficult as jerking the 
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table-cloth from under the table things. But a good 
snap with a finger on the edge of the card should do 
the trick. The card flies away and the egg... plunges 
with the ring safely into the water. The water cushions 
the blow and the shell remains intact. 

With some experience, you could try the trick with 
a raw egg. 

This small wonder is explained by the fact that 
during the fleeting moment of the impact the egg 
doesn't receive any observable speed but the postcard 
that was struck has time to slip out. Having lost its 
support, the egg drops into the glass. 

If the experiment is not at first a success, first 
practice an easier experiment in the same vein. Place 
half a postcard on the palm of your hand and a heavy 
coin on top of it. Now snap the card from under the 
coin. The card will fly away but the coin will stay. 

Unusual Breakage 

Conjurers sometimes perform an elegant trick that 
seems amazing and unusual, though it can be easily 
explained. A longish stick is suspended on two paper 
rings. One of the rings is suspended from a razor blade, 
the other, from a clay pipe. The conjurer takes another 
stick and strikes the first one with all his strength. 
What happens? The suspended stick breaks but the 
paper rings and the pipe remain absolutely intact! 

The trick can be accounted for in much the same 
way as the previous one. The impact was so fast that it 
allowed no time for the suspended stick's ends and the 
paper rings to move. Only the part of the stick that is 
directly subjected to the impact moves with the result 
that the stick breaks. The secret is thus that the impact 
was very fast and sharp. A slow, sluggish impact will 
not break the stick but will break the rings instead. 

The most adroit conjurers even contrive to break 
a stick supported by the edges of two thin glasses 
leaving the glasses intact. 

I do not tell you this, of course, to encourage you to 
do such tricks. You'll have to content yourself with 
a more modest form of them. Put two pencils on the 
edge of a low table or bench so that part of them 
overhang and place a thin, long stick on the over-
hanging ends. A strong, sharp stroke with the edge of 
a ruler at the middle of the stick would break it in two, 
but the pencils would remain in their places. 
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Now it should be clear to you why it is difficult to 
crack a nut by the strong pressure of a palm, but the 
stroke of a fist does the job easily. When you hit it, the 
impact has no time to propagate along the flesh of your 
fist so that your soft muscles do not yield under the 
upthrust of the nut and act as a solid. 

For the same reason a bullet makes a small round 
hole in the window-pane, but a small stone traveling at 
a far slower speed breaks the pane. A slower push 
makes the window frame turn on its hinges, something 
neither the bullet nor the stone can make it do. 

Finally, one more example of the phenomenon is 
being able to cut a stem of grass by a stroke of a cane. 
By slowly moving the cane you can't cut a stem, you 
only bend it. By striking it with all your strength you 
will cut it, if, of course, the stem is not too thick. Here, 
as in our earlier cases, the cane moves too fast for the 
impact to be transferred to the whole of the stem. It 
will only concentrate in a small section that will bear 
all the consequences. 

Just Like a Submarine 

A fresh egg will sink in water, a fact known to every 
experienced housewife. If she wants to find out whether 
an egg is fresh, she tests it in exactly this way. If an egg 
sinks, it is fresh; and if it floats, it is not suitable for 
eating. A physicist infers from this observation that 
a fresh egg is heavier than the same volume of fresh 
water. I say "fresh water" because impure (e.g. salt) 
water weighs more. 

It is possible to prepare such a strong solution of salt 
that an egg will be lighter than the amount of brine 
displaced by it. Then, following the principle of floating 
discovered in olden days by Archimedes, even the 
freshest of eggs will float in the solution. 
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Use your knowledge in the following instructive 
experiment. Try to make an egg neither sink nor float, 
but hang in the bulk of a liquid. A physicist would say 
that the egg is "suspended". You'll need a water 
solution of salt that is so strong that an egg submerged 
in it displaces exactly its own weight in the brine. The 
brine is prepared by the trial-and-error method: by 
pouring in some water if the egg surfaces and adding 
some stronger brine if it sinks. If you've got patience, 
you'll eventually end up with a brine in which the 
submerged egg neither surfaces nor sinks, but is at rest 
within the liquid. 

This state is characteristic of a submarine. It can stay 
under water without touching the ground only when it 
weighs exactly as much as the water it displaces. For 
this weight to be reached, submarines let water from 
the outside into a special container; when the 
submarine surfaces the water is pushed out. 

A dirigible-not an aeroplane but just a dirigi-
ble - floats in the air for the very same reason: just like 
the egg in the brine it diplaces precisely as many tonnes 
of air as it weighs. 

Floating Needle 

Is it possible to make a needle float on the surface of 
water like a straw? It would seem impossible: a solid 
piece of steel, although it's small, would be bound to 
sink. 

Many people think this way and if you are among 
the many, the following experiment will make you 
change your mind. 

Get a conventional (but not too thick) sewing needle, 
smear it slightly with oil or fat and place it carefully on 
the surface of the water in a bowl, pail, or glass. To 
your surprise, the needle will not go down, but will stay 
on the surface. 

Why doesn't it sink, however? After all, steel is 
heavier than water? Certainly, it is seven to eight times 
as heavy as water, if it were under the water it wouldn't 
be able to surface like a match. But our needle doesn't 
submerge. To find a clue, look closely at the surface of 
the water near the floating needle. You'll see that near 
the needle the surface forms sort of a valley at the 
bottom of which lies our needle. 

The surface curvature is caused by the oil-smeared 
needle being not wetted by the water. You may have 
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Figure 37 

noticed that when your hands are oily, water doesn't 
wet the skin. The feathers of water birds are always 
covered with oil exuded by a gland, which is why water 
doesn't wet feathers ("like water off a duck's back"). 
And again this is the reason why without soap, which 
dissolves the oil film and removes it from the skin, you 
cannot wash your oily hands even by hot water. The 
needle with oil on it is not wetted by water either and 
lies at the bottom of a concavity supported by the 
water "film" created by surface tension. The film seeks 
to straighten and so pushes the needle out of the water, 
preventing it from sinking. 

As our hands are always somewhat oily, if you 
handle a needle it will be covered by a thin layer of oil. 
Therefore, it is possible to make the needle float 
without specially covering it with oil-you'll only have 
to place it extremely carefully on some water. This can 
be made as follows: place the needle on a piece of 
tissue-paper, then gradually, by bending down the edges 
of the paper with another needle, submerge the paper. 
The paper will descend to the bottom and the needle 
will stay on the surface. 

Now if you came across a pondskater scuttling about 
the water surface, you won't be puzzled by it. You'll 
guess that the insect's legs are covered with oil and are 
not wetted by the water and that surface tension 
supports the insect on the surface. 

Figure 38 

Diving bell 

This simple experiment will require a basin, but a deep, 
wide can would be more convenient. Besides, we'll need 
a tall glass (or a big goblet). This'll be our diving bell, 
and the basin with water will be our "sea" or "lake". 

There is hardly a simpler experiment. You just hold 
the glass upside down, push it down to the bottom of 
the basin holding it in your hand (for the water not to 
push it out). As you do so you'll see that the water 
doesn't find its way into the glass- the air doesn't let it 
in. To make the performance more dramatic, put 
something easily soaked, e.g. a lump of sugar, under 
your "bell". For this purpose, place a cork disk with 
a lump of sugar on it on the water and cover it by the 
glass. Now push the glass into the water. The sugar will 
appear to be below the water surface, but will remain 
dry, as the water doesn't get under the glass. 

You can perform the experiment with a glass funnel, 
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if you push it into the water, its wider end down and its 
narrow end covered tightly with a finger. The water 
again doesn't get inside the funnel, but once you 
remove your finger from the hole, thereby letting the 
air out of the funnel, the water will promptly rise into 
the funnel to reach the level of the surrounding water. 

You see that air is not "nothing", as some think, it 
occupies space and doesn't let in other things if it has 
nowhere to go. 

Besides, these experiments should graphically 
illustrate the way in which people can stay and work 
under water in a diving bell or inside wide tubes that 
are known as "caissons". Water won't get into the bell, 
or caisson, for the same reason as it can't get into the 
glass in our experiment. 

Why Doesn't It Pour Out? 
The following experiment is one of the easiest to carry 
out, it was one of the first experiments I performed 
when I was a boy. Fill a glass with water, cover it with 
a postcard or a sheet of paper and, holding the card 
slightly with your fingers, turn the glass upside down. 
You can now take away your hand, the card won't 
drop and the water won't pour out if only the card is 
strictly horizontal. 

You can safely carry the glass about in this position, 
perhaps even more comfortably than usually since as 
the water won't spill over. As the occasion serves, you 
can astound your friends (if asked to bring some water 
to drink) by bringing water in a glass upside down. 

What then keeps the card from falling, i.e. what 
overcomes the weight of the water column? The 
pressure of air! It exerts a force on the outside of the 
card that can be calculated to be much greater than the 
weight of the water, i.e. 200 grammes. 

The person who showed me the trick for the first 
time also drew my attention to the fact that the water 
must fill the glass completely for the trick to be 
a success. If it only occupies a part of the glass, the rest 
of the glass being filled by air, the trial may fail because 
the air inside the glass would press on the card 
balancing off the pressure of the outside air with the 
result that it might fall down. 

When I was told this, I set out at once to try it with 
a glass that wasn't fully filled in order to see for myself 
of the card would drop. Just imagine my astonishment 
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when I saw that in that case too, it didn't fall! Having 
repeated the experiment several times, I made sure that 
the card held in place as securely as with the full glass. 

This has taught me a good lesson about how the 
facts of nature should be perceived. The highest 
authority in natural science must be experiment. Every 
theory, however plausible it might seem, must be tested 
by experiment. "Test and retest" was the motto of the 
early naturalists (Florentine academicians) in the 17th 
century, it is still true for 20th century physicists. And 
should a test of a theory indicate that experiment 
doesn't bear it out, one should dig for the clues to the 
failure of the theory. 

In our case we can easily find a weak point in the 
reasoning that once had seemed convincing. If we 
carefully turn back a corner of the card covering the 
overturned, partially filled glass, we'll see an air bubble 
come up through the water. What is it indicative of? 
Obviously the air in the glass was slightly rarefied, 
otherwise the outside air wouldn't rush into the space 
above the water. This explains the trick: although some 
air remained in the glass, it was slightly rarefied, and 
hence exerted less pressure. Clearly, when we turn the 
glass over, the water, as it goes down, forces some of 
the air out of the glass. The remaining air, which now 
fills up the same space, becomes rarefied and its 
pressure becomes weaker. 

You see that even simplest physical experiments, 
when treated attentively, can suggest fundamental ideas. 
These are those small things that teach us great ideas. 

Dry Out of Water 

You'll now see that the air surrounding us on all sides 
exerts a significant pressure on all the things exposed to 
it. The experiment I'm going to describe will show you 
more vividly the existence of what physicists call 
"atmospheric pressure". 

Place a coin (or metal button) on a flat plate and 
pour some water over it. The coin will be under water. 
It's impossible, you are sure to think, to get it out from 
under the water with your bare hands without getting 
your fingers wet or removing the water from the plate. 
You're mistaken, it is possible. 

Proceed as follows. Set fire to piece of paper inside 
a glass and when the air has heated, upend the glass 
and put it on the plate near the coin. Now watch, you 
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won't have to wait long. Of course, the paper under the 
glass will burn out soon and the air inside the glass will 
begin to cool down. As it does so, the water will, as it 
were, be sucked in by the glass and before long it will 
be all there, exposing the plate's bottom. 

Wait a minute for the coin to dry and take it without 
wetting your fingers. 

The reason behind these phenomena is not difficult 
to understand. On heating, the air in the glass 
expanded, just as all bodies would do, and the extra 
amount of air came out of the glass. But when the 
remaining air began to cool down, its amount was no 
longer enough to exert its previous pressure, i.e. to 
balance out the external pressure of the atmosphere. 
Therefore, each square centimetre of the water under 
the glass was now subject to less pressure than the 
water in the exposed part of the plate and so no 
wonder it was forced under the glass by the extra 
pressure. In consequence, the water was not really 
"sucked in" by the glass, as it might seem, but pushed 
under the glass from the outside. 

Now that you know the explanation of the 
phenomenon in question, you will also understand that 
it is by no means necessary to use in the experiment 
a burning piece of paper or cotton wool soaked in 
alcohol (as is sometimes advised), or any flame in 
general. It suffices to rinse the glass with boiling water 
and the experiment will be as much of a success. The 
key thing here is to heat the air in the glass, no matter 
how that is done. 

The experiment can be performed simply in the 
following form. When you have finished your tea, pour 
a little tea into your saucer, turn your glass upside 
down while it is still hot, and stand it in the saucer and 
tea. In a minute or so the tea from the saucer will have 
gathered under the glass. 

Parachute 

Make a circle about a metre across out of a sheet of 
tissue-paper and then cut a circle a few centimetres 
wide in the middle. Tie strings to the edges of the large 
circle, passing them through small holes; tie the ends of 
the strings, which should be equally long, to a light 
weight. This completes the manufacture of a parachute, 
a scaled-down model of the huge umbrella that saves 
lives of airmen who, for some reason or other, are 
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compelled to escape from their aircraft. 
To test your miniature parachute in action drop it 

from a window in a high building, the weight down. 
The weight will pull on the strings, the paper circle will 
blossom out, and the parachute will fly down smoothly 
and land softly. This will occur in windless weather but 
on a windy day your parachute will be carried away 
however weak the wind and it will descend to the 
ground somewhere far from the starting point. 

The larger the "umbrella" of the parachute, the 
heavier the weight the parachute will carry (the weight 
is necessary for the parachute not to be overturned), the 
slower it will descend without a wind and the farther it 
will travel with a wind. 

But why should the parachute keep up in the air so 
long? Surely, you've guessed that the air stops the 
parachute from falling at once. If it were not for the 
paper sheet, the weight would hit the ground quickly. 
The paper sheet increases the surface of the falling 
object, yet adding almost nothing to its total weight. 
The larger the surface of an object, the more drag there 
is on it. 

If you've got it right, you'll understand why particles 
of dust are carried about by the air. It is widely 
believed that dust floats in air because it is lighter. 
Nonsense! 

What are particles of dust? Tiny pieces of stone, clay, 
metal, wood, coal, etc., etc. But all of these materials 
are hundreds and thousands of times heavier than air; 
stone, is 1,500 times heavier; iron, 6,000 times; wood, 
300 times, and so on. 

A speck of solid or liquid should infailingly fall down 
through the air, it "sinks" in it. It does fall, only falling 
it behaves like a parachute does. The point is that for 
small specks the surface-to-weight ratio is larger than 
for large bodies. Stated another way, the particles' 
surfaces are relatively large for their weight. If you were 
to compare a round piece of lead shot with a round 
bullet that is 1,000 times as heavy as the shot, the shot's 
surface is only 100 times smaller than the bullet's. This 
implies that the shot's surface per unit weight is 10 
times larger than the bullet's. Imagine that the shot 
shrinks until it becomes one million times lighter than 
the bullet, that is, turns into a speck of lead. Its 
"specific" surface would be 10,000 times larger than the 
bullet's. Accordingly, the air would hinder its motion 
10,000 times more strongly than it does the bullet's. 

Figure 41 
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That's why it would hover in the air hardly falling and 
being carried by the slightest wind away and even 
upwards. 

A Snake and a Butterfly 

Cut a circle about the size of a glass hole from 
a postcard or a sheet of strong paper. Cut a spiral in it 
in the form of a coiled-up snake, as shown in Fig. 42. 
Make a small recess in the tail to receive a knitting-pin 
fixed upright. The coils of the snake will hang down 
forming sort of a spiral stairs. 

Now that the snake is ready, we can set out to 
experiment with it. Place it near a hot kitchen stove: 
the snake will spin and the faster, the hotter the stove. 
Near any hot object (a lamp or tea kettle, etc.) the 
snake will rotate while the object remains hot. So, the 
snake will spin very fast if suspended above a kerosene 
lamp from a piece of string. 

What makes the snake rotate? The same thing that 
makes the arms of a windmill ro t a t e - the flow of air. 
Near every heated object, there is an air flow moving 
upwards. This flow occurs because air, just like any 
other material, expands on heating and becomes 
thinner, i. e. lighter. The surrounding air, which is 
colder and thus denser and heavier, displaces the hotter 
air, making it rise, and occupies its place. But the fresh 
portion of air heats at once and, just like the first one is 
ousted by a yet fresher amount of colder air. In this 
way, each heated object gives rise to an ascending flow 
of air around it, which is maintained all the time the 
object is warmer than the surrounding air. In other 
words, a barely noticeable warm wind blows upwards 
from every heated object. It strikes the coils of our 
paper snake making it rotate, jyst as wind makes the 
arms of a windmill rotate. 

Instead of a shake you can use a piece of paper in 
another shape, for example a butterfly. Cut it out of 
tissue-paper, bind in the middle and suspend from 
a piece of a very thin string or hair. Hang the butterfly 
above a lamp and it will rotate like a live one. Also, the 
butterfly will cast its shadow on the ceiling and the 
shadow will repeat the motions of the rotating paper 
butterfly magnified up. It'll seem to an uninitiated 
person that a large black butterfly has flown into the 
room and is hectically hovers under the ceiling. 

You can also make as follows: strick a needle into 
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a cork and place the paper butterfly on the needle's tip 
at the point of equilibrium which can be found by trial 
and error. The butterfly will rotate quickly if placed 
above a warm thing, in fact putting your palm under it 
will be enough for the butterfly to rotate. 

We come across the expansion of air as it heats and 
ascending warm currents everywhere. 

It is well known that the air in a heated room is the 
warmest near the ceiling and the coldest near the floor. 
That's way it seems sometimes that there is a draught 
near our feet when the room hasn't properly heated up. 
If you leave the door from a warm room to a colder 
one ajar, cold air will flow into the warm one along the 
floor and warm air will flow out along the ceiling. The 
flame of candle placed near the door will indicate the 
direction of these flows. If you want to keep the 
warmth in a heated room you should see to it that no 
cold air comes in from under the door. You need only 
to cover the gap by a rug or just a newspaper. Then the 
warm air won't be ousted from below by the colder one 
and won't leave the room through holes higher up in 
the room. 

And what is the draught in a furnace or a chimney 
stack but an ascending flow of warm air? 

We could also discuss the warm and cold flows in 
the atmosphere, trade winds, monsoons, breezes and 
the like but it would lead us too far astray. 

Ice in a Bottle 

Is it easy to get a bottle full of ice during the winter? It 
would seem that nothing could be easier when it is 
frosty outdoors. Just put a bottle of water outside the 
window and let the frost do the job. The frost will cool 
the water and you will have a bottleful of ice. 

But if you actually try to do the experiment, you'll 
see that it is not that easy. You will obtain ice but the 
bottle will be destroyed in the process, it'll burst under 
the pressure of the freezing water. This occurs because 
water, on freezing, expands markedly, by about a tenth 
of its volume. The expansion is so powerful that it 
bursts both a corked bottle and the bottleneck of an 
open bottle, the water frozen in the neck becomes, as it 
were, an ice cork. 

The expansion of freezing water can even break 
metal walls if they are not too thick. So, water can 
break the 5-cm walls of a steel bomb. No wonder that 
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water pipes burst so often in winter. 
The expansion of water on freezing also accounts for 

the fact that ice floats on water and doesn't sink. If 
water contracted on cooling, just like all other liquids 
do, then ice wouldn't float on the water's surface but 
would go down to the bottom. And those of us in 
northern countries wouldn't enjoy skating and 
travelling on the ice of our rivers and lakes. 

To Cut Ice and... Leave It One Piece 

You may have heard that pieces of ice "freeze up" 
under pressure. This doesn't mean that pieces of ice 
freeze up more strongly when exposed to pressure. On 
the contrary, under strong pressure ice melts, but once 
the cold water produced in the process is free of the 
pressure, it refreezes (as its temperature is below 0°C). 
When we compress pieces of ice, the following occurs. 
The ends of the parts that contact each other and are 
subject to high pressure melt, yielding water at 
a temperature below zero. This water fills in tiny 
interstices between the parts that are sticking out and 
when it is not subjected to the high pressure any more 
it freezes at once, thus soldering the pieces of ice into 
a solid block. 

You can test this by an elegant experiment. Get 
a beam of ice, and support its ends by the edges of two 
stools, chairs or the like. Make a loop of a thin steel 
wire 80 centimetres long and put it round the beam, the 
wire should be 0.5 millimetre or a little less thick. 
Finally, suspend something heavy (about 10 
kilogrammes) from the ends of the wire. Under the 
pressure of the heavy object the wire will bite into the 
ice and cut slowly through the whole of the beam but... 
the beam will still remain one piece. You may safely 
take it in your hands as it will be intact as if it had not 
been cut! 

After you've learned about the freezing up of ice, 
you'll see why it works. Under the thrust of the wire 
the ice melted but the water flowed over the wire and 
free of the pressure refroze at once. In plain English, 
while the wire cut the lower layers, the upper layers 
were freezing again. 

Ice is the only material in nature with which you can 
do this experiment. It's for this reason that we can 
skate and toboggan over ice. When a skater presses all 
his weight on his skates, the ice melts under the 

70-71 

Figure 45 



74-75 For Young Physicists 

pressure (if the frost is not too severe) and the skate 
slides along where it again melts some ice and the 
process occurs continuously. Wherever the skate goes 
a thin layer of ice turns into water that when free of the 
pressure refreezes. Therefore, although the temperature 
might be below freezing point, the ice is always 
"lubricated" with water under skates. That's why it's so 
slippery. 

Sound Transmission 

You may have observed from a distance a man using 
an axe or a carpenter driving in nails. You may then 
have noticed an unusual thing, you do not hear the 
stroke when the axe touches the tree or when the 
hammer hits a nail, but you hear it later when the axe 
(or hammer) is ready for the next stroke. 

Next time you happen to observe something similar, 
move a little forward or backward. After trying several 
times you'll find a place where the sound of a stroke 
comes just at the moment of a visible stroke. Then 
return to where you started and you'll again notice the 
lack of coincidence between the sound and the visible 
stroke. 

Now it should be easy for you to guess the reason 
behind this enigmatic phenomenon. Sound takes some 
time to cover the distance from the place where it 
originated to your ear; on the other hand, light does it 
nearly instantaneously. And it may happen that while 
the sound is travelling through the air to your ear, the 
axe (or hammer) will have been raised for a new stroke. 
Then your eyes will see what your ears hear and it'll 
seem to you that the sound comes when the tool is up 
and not when the tool is down. But if you move in 
either direction just a distance, covered by the sound 
during a swing of the axe, then by the time the sound 
reaches your ear the axe will strike again. Now, of 
course, you'll see and hear a stroke simultaneously, 
only it'll be different strokes since you'll hear an earlier 
stroke, perhaps the last but one or even earlier. 

What is the distance covered by sound in one 
second? It has been measured exactly, but approxi-
mately it is about 1/3 of a kilometre. So sound covers 
one kilometre in 3 seconds, and if the wood-cutter 
swings his axe twice a second, you'll have to be 160 
metres away for the sound to coincide with the axe as 
he raises it. But light travels each second in air almost 
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a million times as far as sound. So you can understand 
that for any distances on earth we can safely take the 
speed of light to be infinite. 

Sound is transmitted not only through the air but 
also through other gases, liquids and solids. So in 
water, sound travels four times faster than in air, and 
under water sound can be heard distinctly. People 
working in underwater caissons can hear sounds from 
the shore perfectly and anglers will tell you how fish 
scatter at the slightest suspicious noise from the shore. 

Elastic solids are better still as sound transmitters, 
e. g. cast iron, wood, and bone. Put your ear to the end 
face of a long wood beam or a block and ask 
somebody to tap it slightly at the other end. You'll hear 
the dull sound of the stroke transmitted through the 
entire length of the beam. If it's rather quiet and 
spurious noises don't interfere, you can even hear 
a clock ticking at the opposite end of your beam. 
Sound is transmitted equally well along iron rails or 
beams, cast iron tubes, and even soil. If you put your 
ear to the ground you can hear the clatter of horses' 
hoofs long before the sound comes through the air and 
in this way you can hear thunder that is so far away 
that no sound comes to you by air at all. 

Only elastic solids transmit sound so well, soft tissues 
and loose, inelastic materials are very poor sound 
transmitters since these "absorb" it. That's why they 
hang thick curtains near doors if they don't want any 
sound to reach an adjacent room. Carpets, soft furni-
ture and clothes have the same effect on sound. 

A Bell 
Among the materials distinguished for their perfect 
sound transmission I've mentioned bones. Do you want 
to make sure that the bones of your skull have this 
property? Hold the ring of a pocket watch with your 
teeth and close your ears with your hands. You'll still 
quite distinctly "hear" the measured strokes of the 
balance, and they'll be louder than the ticking perceived 
through the ear. This sound comes to your ears 
through the bones of your skull. 

A further fascinating experiment testifying to the 
good transmission of sound through your skull. Tie 
a soup spoon in the middle of a piece of string so that 
the string has two loose ends. Press these ends with 
your fingers to your closed ears and, leaning forward 
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for the spoon to swing freely, make it strike something 
solid. You'll hear a low-pitched drone as if a bell is 
ringing near your ears. 

The experiment comes out better if you use 
something heavier instead of the spoon. 

A Frightening Shadow 

One evening my brother Alex asked, "Want to see 
something unusual? Come into this room." 

The room was dark. Alex took a candle and we 
walked in. I led the way and so was the first to enter 
the room. But suddenly I was stunned: an incongruous 
monster eyed me from the wall. Flat as a shadow, it 
stared at me. 

To tell the truth, I got a little frightened. I might 
have taken to my heels had it not been for my brother's 
laughter behind me. 

I turned round and saw the reason. There was 

a mirror on the wall covered with a sheet of paper that 
had eyes, a nose, and a mouth cut in it. Alex had so 
directed the candle's light that these parts of the mirror 
reflected directly onto my shadow. 

Thus, I was scared by my own shadow. 
But later, when I attempted to play this joke on my 

friends, it turned out that arranging the mirror properly 
is not that easy. It took a lot of practice to master the 
art. Light rays are reflected in a mirror according to the 
following rule: the angle at which light rays strike the 
mirror equals the angle at which they are reflected. 
After I'd learned the rule it was no problem to work 
out where to locate the candle with respect to the 
mirror for the light spots to be cast at the required 
place on the shadow. 

Figure 47 
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To Measure Light Brightness 

At twice the distance, clearly, a candle illuminates much 
weaker. But how many times weaker? Two? No, if you 
place two candles at double the distance, you won't 
obtain the previous illumination. In order to obtain the 
earlier illumination at double the distance you'd have 
to put two times two, i.e. four candles, not two. At 
triple the distance you'd need three times three, i.e. 
nine candles, not three, and so forth. It follows that at 
twice the distance illumination is four times weaker; at 
three times the distance, nine times weaker; at four 
times the distance, 16 times; and at five times the 
distance, 5 x 5 or 25 times weaker, and so on. This is 
the law of weakening illumination with distance. Note 
in passing that this is also the law of sound attenuation 
with distance. For example, sound attenuates on six 
times the original distance by 36 times, not by 6 times*. 

Knowing this law we can make use of it to compare 
the brightness of two lamps, or any two light sources in 
general. For instance, you wish to compare the 
brightness of your lamp with that of a conventional 
candle, in other words, you want to find out how many 
candles you need to replace the lamp to obtain the 
same illumination. 

For this purpose place the lamp and a burning 
candle at one end of a table and at the other you stand 
a sheet of white cardboard clamped between books as 

* This explains why a whisper from your neighbour drowns the 
loud voice of an actor on the stage in a theatre. If the actor is only 
10 times farther away from you than your neighbour, then the 
actor's voice is attenuated 100 times more than what you'd hear if 
the same sound came to you from the lips of your neighbour. It's 
not surprising then that for you the actor's voice is weaker than the 
whisper. For exactly the same reason it's important for students to 
keep quiet when the teacher speaks. The teacher's words reaching 
students (especially those far away) are so attenuated that even a soft 
whisper from a neighbour will muffle them completely. 

Figure 48 
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shown. Just in front of the sheet fix up a stick, e.g. 
a pencil, also upright. It will cast two shadows onto the 
cardboard, one from the lamp and the other from the 
candle. The density of the two shadows is, generally 
speaking, different because both are lit, one by the 
bright lamp, the other by the dimmer candle. By 
bringing the candle nearer you can achieve a situation 
in which both shadows will have the same "blackness". 
This will mean that the illumination due to the lamp 
just equals that due to the candle. But the lamp is far-
ther away from the cardboard than the candle. 
Measuring how many times farther away will tell you 
how many times the lamp is brighter than the candle. 
If, say, the lamp is three times farther away from the 
cardboard than the candle, then its brightness is 3 x 3, 
i.e. nine times the brightness of the candle. Remember 
the law? 

Another way of comparing the luminous intensity of 
two sources relies on the use of an oil spot on a sheet 
of paper. The spot will seem light if illuminated from 
behind, and dark if lit from the front. So the sources to 
be compared can be placed at such distances that the 
spot will seem equally illuminated on either side. Then 
it only remains to measure the respective distances and 
repeat the previous process. And in order that both 
sides of the spot might be compared it is a good idea to 
place the paper near a mirror, you should know how. 

Upside Down 

If your home has a room facing south, you could easily 
make it into a physical device that has an old Latin 
name camera obscura. You'll have to close the window 
with a shield, made of a plywood or cardboard glued 
with dark paper with a small hole made in it. On a fine 
sunny day close the doors and windows to darken the 
room and place a large sheet of paper or a sheet 
opposite the hole. This will be your "screen". You'll 
immediately see on it a reduced image of what can be 
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76-77 For Young Physicists 

seen from the room through the hole. Houses, trees, 
animals, and people, everything will appear on the 
screen in its natural colours, but... upside down. 

What does this experiment prove? That light 
propagates in straight lines. The rays from the upper 
and lower parts of an object cross in the hole and 
travel on so that now the top rays appear below and 
the bottom rays above. If the rays were not straight but 
curved or broken, you'd have got something different. 

Significantly, the shape of the hole has no effect 
whatsoever on the image. You might drill a round hole, 
or make a square, triangular, hexagonal, or other 
ho le - the image on the screen would be the same. Did 
you happen to observe oval light circles under a dense 
tree? These are nothing but images of the Sun painted 
by the rays that pass through various gaps between the 
leaves. The images are roundish because the sun is 
round, and elongated because the rays are obliquely 
incident on the ground. Put a sheet of paper at right 
angles to the solar rays and you'll obtain round spots 
on it. During solar eclipses when the dark sphere of the 
moon blots out the sun leaving only a bright crescent, 
the small spots under trees turn into small crescents as 
well. 

The old photographer's camera, too, is nothing but 
a camera obscura, the only difference being that at the 
hole an objective lens is fitted for the image to be 
brighter and clearer. The back wall is a frosted glass on 
which the image is produced, upside down of course. 
The photographer can only view it if he covers himself 
and the camera by a dark cloth to keep out any 
spurious light. 

You can make a simple model of this sort of camera. 
Find a closed elongated box and drill a hole through 
one wall. Remove the wall opposite the hole and 
stretch over the gap an oiled piece of paper instead-a 
substitute for the frosted glass. Bring the box into our 
dark room and place it so that its hole is just opposite 
the hole in the darkened window. On the back side 
you'll see a distinct image of the outside, again upside 
down of course. 

Your camera is convenient in that you no longer 
need a dark room and you can bring it out into the 
open and put it where it suits you. You'll only need to 
cover your head and the camera with a dark cloth for 
the spurious light not to interfere. 
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Overturned Pin 

We have just discussed the camera obscura and a way 
of manufacturing it but we omitted one interesting 
thing: every human being always has a pair of small 
cameras like that about him or her. These are our eyes. 
Just fancy, your eye is just like the box that you were 
shown how to make above. What we call the pupil of 
the eye is not a black circle on the eye but a hole 
leading into the inside of your organ of sight. The hole 
is covered with a transparent envelope on the outside 
and with a jelly-like and transparent substance 
underneath. Next to the pupil behind it is the 
crystalline lens having the form of a convexo-convex 
glass, and the inner cavity of the eye between the 
crystalline lens and the back wall, on which the image 
is produced, is filled with a transparent substance. 
A cross section through the eye is given in Fig. 50. 
Despite all these distinctions the eye is still a camera 
obscura, only an improved one, as the eye produces 
high-quality, distinct images. The images at the back of 
the eye are minute. So, an 8-m high lamp-post seen 20 
metres away from the eye is only a tiny line, about 
5 millimetres long, at the back of the eye. 

But the most interesting thing here is that although 
all the images are upside down, we perceive them as 
they are. This turning over is due to long habit. We are 
used to seeing with our eyes so that each visual image 
obtained is converted into its natural position. 

That this is really true, you could test by an 
experiment. We'll attempt to contrive it so that we get 
at the back of the eye not an inverted, but direct image 
of an object. What will we see then? Since we are used 
to inverting every visual image, we'll invert this one as 
well. Accordingly, we'll in this case too see an inverted 
image, not a direct one. In actual fact that is exactly 
what happens and the following experiment will 
demonstrate it in a fairly graphic manner. 

Make a pinhole in a postcard and hold it against 
a window or a lamp about 10 centimetres away from 
your right eye. Hold the pin between you and the 
postcard so that its head is opposite the hole. With this 
arrangement you'll see the pin as if it were behind the 
hole, and what is of the more importance here, upside 
down. This unusual situation is presented in Fig. 51. 
Move the pin to the right and your eyes will tell you 
it's moved to the left. 

Figure 50 

Figure 51 
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The explanation is that the pin at the back of your 
eye is here depicted not upside down but directly. The 
hole in the card plays the role of a light source 
producing the shadow of the pin. The shadow falls on 
the pupil and its image is not inverted as it's too close 
to the pupil. On the back wall of the eye a light spot is 
produced- the image of the hole in the card. On it the 
dark silhouette of the pin is seen which is its shadow, 
the right way up. But it seems to us that through the 
hole in the card we see the pin behind the card (as only 
the part of the pin that gets in the hole is seen) and 
inverted at that because our eyes are in the habit of 
turning images upside down. 

Igniting with Ice 

When a boy, I liked watching my brother lighting 
a cigarette with a magnifying glass. He would put the 
glass in the sunlight and train the spot of light on the 
cigarette end. After a while it would begin to give off 
a bluish smoke and smolder. 

One winter day Alex said, "You know, it's possible to 
light a cigarette with ice, too." 

"With ice?" 
"Ice doesn't ignite it, of course, the sun does. Ice only 

collects solar rays, just like this glass." 
"So you want to make a magnifying glass out of 

ice?" 
"I can't make glass of ice, nobody can, but we could 

make a burning lens from ice." 
"What's a lens?" 
"We'll shape a piece of ice like this glass and it will 

be a lens: round and convex which means thick in the 
middle and thin at the edges." 

"And will it ignite things?" 
"Yes." 
"But it's cold!" 
"What of it? Let's try." 
To begin with, my brother told me to fetch 

a washing basin. When I did he rejected it: "Nothing 
doing. You see, the bottom is flat. We need a curved 
bottom." 

When I brought a suitable basin, Alex poured some 
clean water into it and put it outside, the temperature 
outdoors being below freezing point. 

"Let it freeze down to the bottom. We'll then have an 
ice lens with one side flat and the other convex." 
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Figure 53 

"So big?" 
"The bigger, the better, it'll catch more sunlight." 
First thing in the morning I ran to inspect our basin. 

The water had frozen right through to the bottom. 
"What a good lens we'll have," Alex said tapping the 

ice with finger. "Let's take it out of the basin." 
This turned out to be no problem. Alex put the icy 

basin into another one containing hot water and the ice 
at the walls melted quickly. We got the ice basin out 
into the yard and placed the lens on a board. 

"Good weather, ins't it!" Alex screwed up his eyes in 
the sunlight, "Ideal for igniting. Just hold the cigarette." 

I did so and my brother, taking hold of the lens with 
both hands turned it towards the sun but so that he 
wasn't in the way of the rays himself. He took aim 
painstakingly but eventually succeeded in training the 
lightspot directly on the end of the cigarette. When the 
spot rested on my hand, I felt it was hot and already 
I had no doubt that the ice would light the cigarette. 

Indeed, when the spot got onto the end of the 
cigarette and had stayed there for about a minute, the 
tobacco smoldered and discharged some bluish smoke. 

My brother took a puff at the cigarette, "Here you 
are, we've lit it with ice. In this way you could make 
a fire without matches even at the pole, if only you had 
firewood." 

Magnetic Needle 

You can already make a needle float on the surface of 
water. Here you'll have to use your skill in a new and 
more impressive experiment. Find a magnet, if only 
a small horse-shoe one. If you bring it near the saucer 
with a needle floating in it, the needle will obediently 
approach the appropriate edge of the saucer. The effect 
will be more noticeable, if before placing the needle on 
the water you pass the magnet several times along it 
(but only use one end of the magnet in one direction 
only). This turns the needle itself into a magnet, there-
fore it'll even approach a nonmagnetized iron object. 

You can make many curious observations with the 
magnetic needle. Leave it alone without attracting it by 
a piece of iron or the magnet and it'll orient itself in the 
water in one direction, namely north-south, just like the 
needle of a compass. Turn the saucer and the needle 
will still point to the north with one end and to the 
south with the other. Bring one end (pole) of the 
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magnet to an end of the needle and you'll find that it 
won't be attracted to the magnet at that end. It may 
turn away from the magnet in order that the opposite 
end might approach. This is a case of an interaction 
between two magnets. The law of this interaction states 
that unlike ends (the north pole of one magnet and the 
south pole of another) are attracted and like ones (both 
north or south) are repelled. 

Having investigated the behaviour of the magnetized 
needle, make a toy paper boat and hide your needle in 
its folds. You might astonish your uninitiated friends by 
controlling the motion of the boat without so much as 
touching it: it would obey every motion of your hand. 
Of course, you would be holding the magnet so that 
the spectators wouldn't suspect it. 

Magnetic Theatre 

Or rather circus, as starring in it are rope dancers cut 
out of paper (of course). 

First of all, you have to make the circus building out 
of cardboard. At the bottom of it you'll stretch a wire 
and fix above the stage a horse-shoe magnet, as shown. 

Now to the artists. They are cut out of paper, their 
stance being chosen to suit the purpose. The only 
condition is that their height be equal to the length of 
a needle glued on from behind along the length of the 

figure. You could use two or three drops of sealing-wax 
for the glue. 

If a figure like this is installed onto the "rope", it not 
only won't fall, but will stay upright pulled by the 
magnet. By slightly jerking the wire you'll animate your 
rope dancers. They'll swing and jump all the while 
keeping their balance. 

6 — 9 7 5 
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Electrified Comb 

Even if you're ignorant of electricity and not even 
acquainted with its ABC, you can still do a number of 
electrical experiments that would be fascinating and 
will, in any case, be useful when you meet this amazing 
force of nature in future. 

The best place for these electrical experiments is 
a warm room in a frosty winter. These experiments are 
especially successful in dry air, and in winter warm air 
is far drier than air at the same temperature during 
summer. 

Now, to our experiments. You may have passed 
a conventional comb over dry (completely dry) hair. If 
you did so in a warm room in full silence, you may 
have heard some slight crackling on the comb. Your 
comb had been electrified by friction with the hair. 

The comb can also be electrified by material other 
than hair. If you rub it against a dry woollen fabric (a 
piece of flannel, say) it also acquires electrical 
properties and to quite a larger degree. These 
properties manifest themselves in a wide variety of 
ways, notably by attracting light objects. Bring 
a rubbed comb close to some pieces of paper, chaff, 
a ball of elder core, etc. and these small things will all 
stick to the comb. Make tiny ships of light paper and 
launch them on water. You'll be able to control the 
movements of your paper fleet using an electrified 
comb like a magic wand. You could stage the 
experiment in a more impressive way. Place an egg in 
a dry egg-support and balance a rather long ruler on it. 
As the electrified comb approaches one of its ends the 
ruler will turn fairly quickly. You can make it follow 
the comb obediently moving it in any direction and 
making it rotate. 

An Obedient Egg 

Electrical behaviour is inherent not only in the comb 
but in other things as well. A rod of sealing-wax rubbed 
against a piece of flannel or the sleeve of your coat, if 
it's woollen, behaves in the same way. A glass rod or 
tube, too, is electrified if rubbed by silk. But the 
experiment with silk is only a success in exceedingly 
dry air and only then if both the silk and the glass are 
well dried by heating. 

Here is a further funny experiment on electrical 
attraction. Empty a chicken egg through a small hole, 

Figure 56 
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Figure 57 

Figure 58 

which is best done by blowing the contents out through 
another hole at the opposite end. You've thus obtained 
an empty shell (the holes are sealed with wax). Put it 
on a smooth table, board or large plate and, using the 
electrified rod, make the empty egg roll obediently after 
it. An outsider, not aware that the egg is empty, would 

O 
be bewildered by experiment (invented by the English 
scientist Faraday). A paper ring or a light ball, too, 
follow an electrified rod. 

Interaction 

Mechanics teaches that one-sided attraction, or any 
one-sided action, in general, doesn't exist. Any action is, 
in fact, an interaction. In consequence, if the electrified 
rod attracts various things, then it itself is attracted to 
them. To bear this out you have only to make the 
comb, or rod, easily movable, e.g. by suspending it 
from a loop made of a piece of thread (the thread 
should preferably be a silk one). 

Then, you will quickly find that any electrified thing-
your hand, say-attracts the comb making it turn, and 
so forth. 

To repeat, this is a general law of nature. It shows up 
always and everywhere-any action is an interaction of 
two bodies affecting each other in opposite directions. 
Nature doesn't know of an action that is one-sided and 
doesn't involve the interaction of another body. 

Electrical Repulsion 

Let's return to the experiment with the suspended 
electrified comb. We've seen that it is attracted by any 
electrified body. It would be of interest to test the way 
in which another, also electrified, thing affects it. An 
experiment will convince you that two electrified bodies 
can interact in different ways. If you bring an electrified 
glass rod to the electrified comb, the two things will 
attract each other. But if you bring an electrified 
sealing-wax rod or another comb to the comb, the 
interaction will be repulsive. 

The physical law describing this fact of nature states: 
unlike charges attract, like charges repel. Like charges 

6* 
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will be those on plastics and sealing-wax (the so-called 
amber or negative, charge) and unlike charges are those 
on amber and glass which is positive. The ancient 
names "amber" and "glass" charges have now gone out 
to use, being completely replaced by the names 
"negative" and "positive" charges. 

The repulsion of like-charged things lies at the basis 
of a simple device to detect electricity-the so-called 
electroscope. The word "scope" comes from Greek and 
means to "indicate", it enters words like "telescope", 
"microscope", and so forth. 

You can make this simple device on your own. 
Through the middle of a cardboard circle or a cork 
that fits the neck of a jar or bottle, a rod is passed, part 
of it protruding from the top. To the end of the rod 
two strips of foil or tissue-paper are attached using 
wax. Next the neck is plugged with the cork or 
cardboard circle, sealing the edges with sealing wax. 
The electroscope is ready to use. If now you bring an 
electrified thing to the protruding end of the rod, the 
two strips will become electrified, too. They charge 
up simultaneously and, therefore, separate due to 
electrostatic repulsion. The separation of the strips is 
the indication that the thing that touched the 
electroscope rod is electrified. 

If you are no good at handiwork, you could make 
a simpler version of the device. It won't be as 
convenient and sensitive, but will still work. Suspend 
two elder-core balls on a stick from pieces of string so 
that they hang in contact with each other. That's all. 
On touching a ball with a thing being tested you'll 
notice that the other ball deflects if the thing is charged. 

Finally, in the accompanying figure you can see yet 
another form of a primitive electroscope. A foil strip, 
folded in two, is suspended from a pin stuck into 
a cork. Touching the pin with an electrified thing 
makes the strips separate. 

One Characteristic of Electricity 

With the help of an easily manufactured makeshift 
device you can observe the interesting and very 
important feature of electricity - to accumulate on the 
surface of an object only, and on protruding parts at 
that. 

Cement a match vertically to a match box using 
a sealing-wax drop, then make another such support. 

Figure 59 

Figure 60 
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Now cut out a paper strip about a match-length wide 
and three match-lengths long. Turn the ends of the 
paper strip into a tube so that you could fix it to the 
supports. Glue three or four narrow ribbons of thin 
paper-tissue to the either side of the strip (Fig. 61) and 
fix the assembly on the matches. 

Our device is ready for experiments. Touch the 
straight strip with an electrified sealing-wax rod and the 
paper and all the ribbons on it will charge up 
simultaneously. This can be judged by the ribbons 
sticking out on either side. Now arrange the supports 
so that the strip curves into an arc, and charge it up. 
The strips will now stick out on the convex side only, 
those on the concave one will dangle as before. What 
does this indicate? That the electric charge has only 
accumulated on the convex side. If you make the strip 
into an S-shape, you'll see that the electric charge is 
only present on the convex parts of the paper. 

84-85 

Figure 61 



A Sheet of Newspaper 

What is to "Look with Your Mind"? • Heavy Newspaper 

"Agreed. This evening we are performing electrical 
experiments," my brother proclaimed tapping the tiles 
of the warm stove. 

I was delighted, "Experiments? New experiments! 
When? Right now? I'd like to now!" 

"Patience, my friend. The experiments will be this 
evening. Now I must be off." 

"To get the machine?" 
"What machine?" 
"Electric. We'll need a machine for our experiments." 
"The machine that we'll need is already available, it's 

in my bag... And don't you dare delve in there while 
I'm away," Alex had read my thoughts. He went on to 
say, putting his coat on, "You'll find nothing, and will 
only make a mess." 

"But the machine is there?" 
"There, don't worry." 
My brother went out, carelessly leaving the bag with 

the machine in on a small table in the hall. 
If iron could feel, it would feel near a magnet exactly 

what I was feeling left alone with my brother's bag. The 
bag was pulling me, attracting all my feelings and 
thoughts. It was absolutely impossible to think about 
something different or divert my eyes from the bag -

It's so strange that an electric machine can go inside 
a bag. I did not imagine it to be that flat. The bag 
wasn't locked and I carefully peaped inside... Something 
wrapped in newspaper. A small box? No, books. 
Books? Only books, nothing more in the bag? I should 
have understood at once Alex was joking: how can you 
possibly hide an electric machine in a bag! 

Alex came back with empty hands and guessed at 
once the reason for my sorrowful looks. 

"We seem to have visited the bag don't we?" he said. 
"Where is the machine?" I answered with a question. 
"In the bag, didn't you see?" 
"There are only books in there." 
"And the machine! You didn't look very far. What 

did you look with?" 
"With what? Why, with my eyes?" 
"That's just it, with your eyes. You didn't use your 

brains. It's not enough just to look, you have to 
understand what you see. That is called looking with 
your mind." 
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Figure 62 

A Sheet of Newspaper 

"How do you look with your mind?" 
"Do you want me to show to you the difference 

between looking with your eyes and looking with the 
whole of your head?" 

My brother produced a pencil and drew a figure 
(Fig. 62) on a sheet of paper. 

"The double lines here are railways, the single 
ones - highways. Take a look and say which of the 
railways is longer, the one from 7 to 2 or from 1 to 3?" 

"From 1 to 3, of course." 
"You see it with your eyes. But now look at the 

figure with the whole of your head." 
"But how? I can't." 
"Like this. Imagine that a straight line is drawn from 

J at a right angle to the lower highway 2-5," my 
brother drew a dash line in his drawing. "How will my 
line separate the highways? Into what parts?" 

"In two." 
"Exactly. This implies that all the points of this dash 

line are equidistant from 2 and 3. What will you say 
now about point 1 ? Is it closer to 2 or J ?" 

"Now I see that it's the same distance from 2 and 3. 
But earlier it seemed that the right-hand railway was 
longer than the left." 

"Earlier you only looked with your eyes, but now 
you're using your head. See the difference?" 

"I see. But where's the machine?" 
"What machine? Oh, yes, the electric machine. In the 

bag. It's still there. You didn't notice because you didn't 
look with your mind." 

My brother took a bundle of books out of the bag, 
carefully unwrapped it from a large newspaper sheet 
and gave it to me. 

"Here's our electric machine." 
I looked at the newspaper in bewilderment. 
"Do you think it's only paper and nothing more?" 

My brother went on to say, "According to your eyes, 
yes. But someone who can use his brains will perceive 
a physical device in this paper." 

"Physical device? To make experiments?" 
"Yes. Hold the newspaper in your hands. It's light, 

isn't it? And, of course, you'll think that you can 
always lift it even with a single finger. But now you'll 
see that this very newspaper can at times be very heavy. 
Give me that ruler." 

"It's got serrated and isn't good for anything." 
"All the better, it doesn't matter if it gets broken." 
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Alex put the ruler on a table so that a part of it 
overhung the edge. 

"Touch the protruding end. It's easy to press it down, 
isn't it? Well, try to press it down after I've covered the 
other end with the newspaper." 

He spread the newspaper on the table over the ruler, 
carefully smoothing tne folds. 

"Now take a stick and strike the protruding part of 
the ruler very hard. Strike with all you strength!" 

I swung the stick back, and said, "I'll strike it so 
hard that the ruler will break through the paper and hit 
the ceiling!" 

"Go ahead, don't spare your strength." 
The result was astonishing: there was a crack, the 

ruler broke, but the newspaper remained on the table, 
still covering the other piece of the ruler. 

Alex asked archly, "The newspaper appears to be 
heavier than you've been thinking?" 

Bewildered, I shifted the eyes from the fragment of 
the ruler to the newspaper. 

"Is it an experiment? Electric?" 
"It's an experiment but not electric one. The electric 

ones will follow. I just wanted to show you that 
a newspaper can actually be a device to do physical 
experiments with." 

"But why didn't it let the ruler go? Look, I can easily 
lift it from the table." 

That is the kernel of the experiment. Air presses 
down on the ruler with a powerful force: a good solid 
kilogramme on each centimetre of the newspaper. 
When you strike the protruding end of the ruler, its 
other end pushes up against the newspaper from below, 
and so the newspaper should rise. If it's done slowly 
some air gets under the rising paper and compensates 
for the pressure from above. But your stroke was so 
fast that air had no time to get under the paper. Thus 
the edges of the paper were still sticking to the table 
when its middle was already being forced upwards. 
Therefore, you had to lift not only the paper but also 
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the paper with the air pressing down on it. In a nut-
shell, you had to lift with the ruler as many 
kilogrammes as there were square centimetres in the 
newspaper. If it were an area of only 16 square 
centimetres (a square with a side of 4 centimetres), then 
the air pressure would be 16 kilogrammes. But the area 
you lifted was notably larger, and accordingly, you had 
to lift a substantial weight, perhaps something near 50 
kilogrammes. The ruler couldn't bare this load and 
broke. Now do you believe that a newspaper can be 
used for physical experiments? After dark, we'll make 
the experiments." 

Sparks from Fingers• Obedient Sticks 
Electricity in Mountains 

My brother took a clothes-brush in one hand and held 
the newspaper against the warm stove with the other. 
He then began to rub the newspaper with the brush 
like a decorator smoothing wall-paper on the wall for 
the paper stick perfectly. 

"Look!" Alex said and took both hands away 
from the paper. 

I had expected that the paper would slide down onto 
the floor. This, however, didn't happen: strange as it 
was, the paper stuck to the smooth tiles as if glued. 

I asked, "How does it keep on? It's not smeared with 
glue." 

"The paper is held by electricity. It's now electrified 
and attracted to the stove." 

"Why didn't you tell me that the newspaper in the 
bag was electrified?" 

"It wasn't. I did it right now, before your eyes, by 
rubbing it with the brush. The friction electrified it." 

"So, it's a real electric experiment?" 
"Yes, but we're just beginning... Turn off the lights 

please." 
In the dark the black figure of my brother and the 

greyish spot of the stove looked blurred. 
"Now watch my hand." 
I guessed, rather than saw what he did. He took the 

paper down from the stove and, holding it with one 
hand, moved his spread fingers of the other hand to it. 

And t h e n - I could hardly believe my eyes-sparks 
flew out from his fingers, bluish-white sparks! 

"The sparks were electricity. Want to try for your-
self?" 
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I promptly hid my hands behind the back. Not for 
the world! 

My brother again applied the paper to the stove, 
brushed it and again produced an avalanche of long 
sparks from his fingers. I managed to notice that he 
didn't touch the newspaper at all, but held his fingers 
about 10 centimetres away from it. 

"Don't be scared, just try, it doesn't hurt. Give me 
your hand," he took hold of my hand and led me to 
the stove. "Spread your fingers!.. Well! Does it hurt?" 

In a twinkling of an eye a bundle of bluish sparks 
shot out from my fingers. In their light I saw that my 
brother had only partially detached the newspaper from 
the stove, the lower part being still "glued". Simultane-
ously with the sparks I felt a slight prick but the pain 
was trifling. Indeed, nothing to be scared of. 

"Again!" I asked. 
Alex applied the newspaper to the stove and began 

to rub, this time only with his palms. 
"What are you doing? Have you forgotten the 

brush?" 
"It's all the same. Now, are you ready?" 
"Nothing doing! You've rubbed it with bare hands 

without using the brush." 
"It's possible without the brush too if only your 

hands are dry. You just have to rub." 
And it was true, this time also sparks rained from my 

fingers. 
After I had the sparks to my heart's content my 

brother proclaimed: "That'll do. Now I am going to 
show you a flow of electricity, just like the one 
Columbus and Magellan saw at the tops of the masts 
of their ships... Pass me the scissors." 

In the dark Alex brought the points of the spread 
scissors near to the newspaper, which was half-
separated from the stove. I expected to see sparks but 
saw something new, the points of the scissors were 
crowned by glowing bundles of short bluish and 
reddish threads although the scissors were still far away 
from the paper. This was accompanied by faint 
prolonged hissing. 

"Sailors often see the same sort of fire brushes, only 
far larger ones, at the mastheads and yardarms. They 
called them St. Elm's fires." 

"Where do they come from?" 
"You mean who holds an electrified newspaper above 

the masts? True, there's no newspaper there, but a low 
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electrified cloud. It's a substitute for the newspaper. 
You shouldn't think, however, that this sort of electric 
glow on pointed structures only occurs at sea, it's also 
observed on land, especially in the mountains. So, 
Julius Caesar wrote that on a night in a cloudy weather 
the spear heads of his legionnaires glowed this way. 
Sailors and soldiers are not afraid of these electric 
l ights -on the contrary they view them as a good omen. 
Of course, without any reasonable grounds. In the 
mountains electric glows even occur on people at times, 
on their hair, caps, e a r s - t h a t is, on all the protruding 
parts. In the process, they often hear a buzz, like the 
one produced by our scissors." 

"Does this fire burn strongly?" 
"Not at all. After all, this isn't a fire, but a glow, just 

a cold glow. So cold and harmless that it cannot even 
ignite a match. Look: instead of the scissors I use 
a match. And you see: the head is surrounded by the 
electric glow, but it doesn't go off." 

"But I think it is burning because flames are coming 
out straight from the head." 

"Turn on the light and inspect the match." 
I made sure that the match not only hadn't charred 

but it hadn't even blacken. It was thus indeed sur-
rounded by a cold light, and not fire. 

"Leave the light on. We'll carry out the next 
experiment in the light." 

Alex shifted a chair to the middle of the room and 
put a stick across its back. 

After several tries he managed to balance the stick at 
one point. 

"I didn't know that a stick could be supported in this 
way," I said, "it's so long." 

"It works for exactly that reason. A short one 
wouldn't. A pencil, for example." 

I agreed, "A pencil, no means." 
"Now, to business. Can you make the stick turn 

towards you without touching it?" 
I thought about it. 
"If we loop a rope onto its end..." I began. 
"No ropes, it must touch nothing. Can you?" 
"Aha, insight!" 
I put my face close to the stick and began sucking air 

into my mouth to attract the stick to me. It didn't stir, 
however. 

"Any progress?" 
"None. It's impossible!" 
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"Impossible? Let's see." 
He took the newspaper, down from the stove, where 

that had been sticking to the tiles, and began slowly to 
move it sidewards towards the stick. At about half 
a metre away the stick "felt" the attraction of the 
electrified newspaper and obediently turned in its 
direction. By moving the newspaper Alex made the 
stick follow it rotating at the back of the chair, first in 
one direction, then in the other. 

"The electrified newspaper, you see, attracts the stick 
so strongly that it follows and will follow the paper 
until all the electricity has flowed from the newspaper 
into the air." 

"It's a pity that these experiments cannot be 
performed in the s u m m e r - t h e stove will be cold." 

"The stove is only necessary to dry up the paper 
since these experiments are only a success with an 
absolutely dry newspaper. You may have noticed that 
newspapers absorb moisture from the air and therefore 
are always somewhat damp, that's why it has to be 
dried. You shouldn't think, however, that in summer 
our experiments are impossible. They can be done but 
not so well as in winter when the air in a heated-up 
room drier than in summer - that's the reason. Dryness 
is crucial for these experiments. In summer, 
a newspaper can be dried with a kitchen stove when it's 
not too hot for the paper not to ignite on it. After the 
paper has been dried adequately, it's brought onto 
a dry table and rubbed hard with a brush. The paper 
electrifies, but not as with a tile stove... Well, let's call it 
a day. Tomorrow we'll do some new experiments." 

"Also electric?" 
"Yes, and with the same electric machine, our 

newspaper. Meanwhile I'll give you an interesting 
account of Elm's fires by the famous French naturalist 
Saussure. In 1867 he with several companions climbed 
the Sarley Mountain, which is more than 3 kilometres 
high. And here's what they experienced there. 

Alex took down the book The Atmosphere by 
Flammarion from the bookcase, thumbed through it 
and gave me the following passage to read: 

"The climbers leaned their alpenstocks against a cliff 
and were preparing for their dinner when Saussure felt 
a pain in his shoulders and back as if a needle were 
being driven slowly into his body. Thinking some pins 
had got into my canvas cape,' recounted Saussure, 'I 
threw it off but there was no relief, on the contrary, the 

Figure 67 



86-87 A Sheet of Newspaper 

pain became more accute and embraced the whole of 
my back from shoulder to shoulder. It was as if a wasp 
was walking all over my skin stinging it everywhere. 
I hastily threw off another coat but I could find 
nothing that could hurt so badly. The pain continued 
and came to feel like a burn. It seemed to me that my 
woollen sweater had caught fire and I was about to 
undress when my attention was attracted by a noise, 
a sort of hum. It came from the alpenstocks we had 
leaned against the cliff and resembled the rumbling of 
heated water about to boil. The noise continued for five 
minutes or so. 

'I then understood that the painful sensation was 
caused by an electrical flux released by the mountain. 
In the broad daylight I didn't see any glow on the 
alpenstocks. They produced the same sharp noise 
whether they were held vertically with the tip pointed 
up and down, or horizontally. No sound came from the 
soil. 

'In several minutes I felt that the hair on my head 
and beard were rising as if a dry razor was being 
passed over a stiff beard. My young companion cried 
out that the hair of his moustache was rising and the 
tops of his ears were giving off strong currents. Having 
raised my hands, I felt currents emanating from my 
fingers. In short, electricity was being liberated from 
sticks, clothing, ears, hair, in fact everything that was 
protruding. 

'We left the summit hastily and descended about 
a hundred metres. As we were climbing down, our 
alpenstocks were producing ever lower noise and 
finally, the sound became so soft that we could only 
hear it by bringing them close to our ears.'" 

In the same book I read about other cases of Elm's 
fires. 

"The liberation of electricity by protruding rocks is 
often observed when the sky is covered by low clouds 
gliding just over summits. 

"On June 10, 1863, Watson and several tourists 
climbed up the Jungfrau pass in Switzerland. It was 
a fine morning but the travellers got into a strong hail 
storm in the pass. A terrible clap of thunder came and 
soon Watson heard a hissing sound coming from his 
stick that resembled the sound of a kettle about to boil. 
The people stopped and found that their sticks and 
axes produced the same sound, and didn't stop making 
the sound even when stuck with one end into the 
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ground. One of the guides took his hat off and cried 
that his head was burning. His hair stood on end as if 
electrified and everybody had tickling feelings on the 
face and other parts of the body. Watson's hair 
straightened out completely. The stirring of fingers in 
the air produced electric hiss from their tips." 

Dance of Paper Buffoons • Snakes • 
Hair on End 

Alex kept his word. Next day after dark he resumed the 
experiments. First of all he "glued" the newspaper to 
the stove. Then he asked me to get him paper denser 
than newspaper, writing paper for example, out of 
which he cut out some funny figures, small dolls in 
various stances. 

"These paper buffoons will now dance. Fetch me 
a few pins." 

Soon each buffoon's foot was pinned up. 
"This is for the buffoons not to be scattered and blown 

away by the newspaper," Alex proclaimed arranging the 
figures on a tray, "The performance starts!" 

He "unglued" the newspaper from the stove and, 
holding it horizontally with both hands, brought it 
down to the tray with the figures. 

Alex commanded, "Stand up!" 
And just imagine: the figures obeyed. They stood up 

and stayed that way until he removed the newspaper 
when they lay down again. But he didn't allow them to 
rest long: by alternately moving the newspaper to and 
from them he made the buffoons stand up and lie down 
again. 

"If I hadn't burdened them with pins, they would 
have jumped up and stuck to the newspaper." My 
brother took the pins out of some of the figures, "You 
see, they've stuck to the newspaper and won't separate 
from it. This is electric attraction. And now we'll 
experiment with electric repulsion, too. Where are the 
scissors?" 

I passed them to him and, having "glued" the 
newspaper to the stove, Alex began to cut a long, thin 
strip from its lower edge almost up to the upper one. 
Similarly, he made a second, third and other strip. 
When he got to about the sixth strip, he cut all the way 
to the edge. He had thus produced a sort of paper 
beard that didn't slide down from the stove, as I had 
expected, but stayed put. Holding the upper part with 
one hand, Alex brushed along the strips several times 
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and then took the "beard" down from the stove holding 
it at the top. 

Instead of freely dangling the strips spread out into 
a bell shape noticeably repelling one another. 

My brother explained, "They repel one another 
because they are charged up identically. However they 
are attracted to the things that are not charged. Poke 
your hand into the bell from below and the strips will 
be attracted to it." 

I sat down and put my hand into the space between 
the strips. That is, I wanted to poke my hand there but 
couldn't because the paper strips wound themselves 
round my hand like snakes. 

"Aren't you frightened by these snakes?" asked Alex. 
"No, they are only paper." 
"But I'm scared. Look, how scared." 
Alex raised the newspaper above his head and I saw 

his long hair literally stand on end. 
"Is it another experiment?" 
"The same experiment we've just done, only another 

form of it. The newspaper electrified my hair and it is 
now attracted to the newspaper while each piece of hair 
repels the others like the strips of our paper beard. 
Look in the mirror and I'll show you your own hair 
standing on end in the same fashion," 

"Does it hurt?" 
"Not a bit." 
Really, I felt not the slightest pain, not so much as 

tickling, although the mirror clearly showed to me that 
my hair under the newspaper stood on end. 

In addition, we repeated yesterday's experiments and 
then my brother discontinued the "session", as he called 
it, promising to do some new experiments tomorrow. 
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Miniature Lightning 0 Experiment with a Water Stream • 
Herculean Breath 

On the next night my brother Alex made some unu-
sual preparations. 

He took three glasses, warmed them at the stove, 
put them on the table and covered with a tray that he 
had also preheated. 

"What is it going to be?" I inquired. "Shouldn't the 
glasses be placed on the tray and not vice versa?" 

"Just wait, take your time. It's going to be an 
experiment with miniature lightning." 

Alex used the "electric machine" aga in - tha t is, he 
simply rubbed the newspaper on the stove. He then 
folded the newspaper in two and resumed the rubbing. 
Next he "unglued" it from the stove tiles and swiftly 
put on the tray. 

"Feel the tray... Is it cold?" 
Suspecting nothing, I light-heartedly stretched out 

my hand... and promptly jerked it back: something had 
cracked and pricked my finger painfully. 

Alex laughed, "How did you like it? You were struck 
by a lightning. Heard the crack? That was miniature 
thunder." 

"I felt a strong prick, but I didn't see any lightning." 
"You will when we repeat it in the dark." 
"But I won't touch that tray any more," I proclaimed 

decisively. 
"That's not necessary, we can produce sparks, say, 

with a key or a tea-spoon. You'll feel nothing, but the 
sparks will be as long as they were earlier. The first 
sparks I'll extract myself while your eyes adapt to the 
dark." 

He turned off the light. 
"Silence now. Keep your eyes open!" a voice said in 

the dark. 
Crack! and a bright bluish-white spark about 20 

centimetres long darted between the edge of the tray 
and the key. 

"See the lightning? Hear the thunder?" 
"But they were at the same time. A real thunder 

always comes after you see the lightning." 
"True. We always hear thunder later. Still, they occur 

simultaneously, rather like the crack and spark in our 
experiment." 

"Why then is the thunder later?" 
"You see, lightning is light, and it travels so fast as to 
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cover terrestrial distances in almost no time. Thunder is 
an explosion, i. e. sound, but sound travels in air not so 
fast and markedly lags behind the light, thus coming to 
us later. That's why we see a lightning flash before we 
hear the accompanying thunder." 

Alex passed me the key, removed the newspaper 
a n d - m y eyes had now adapted - suggested extract 
a "lightning" from the tray. 

"Without the newspaper, will there be any spark?" 
"Just try." 
I had hardly put the key near the tray edge when 

I saw a spark, long and bright. 
My brother again put the newspaper on the tray and 

again I extracted a spark, though it was weaker this 
time. He did so dozens of times (without rubbing the 
newspaper again on the stove), and each time I made 
a spark, which was getting ever weaker. 

"The sparks would continue for a longer time if 
I held the newspaper silk strings or ribbons rather than 
with my bare hands. When you study physics you'll 
understand what occurred. Meanwhile it only remains 
for you to look with your eyes not head. Now one 
more experiment, with a water stream. We'll make it in 
the kitchen at the water tap. Let the newspaper stay on 
the stove." 

We make a thin stream of water from the tap so that 
it hits the basin bottom loudly. 

"Now, without touching the stream, I'll make it fall 
somewhere else. Which way do you want it to be 
deflected, left, right, or forward?" 

I replied at random, "To the left." 
"All right. Don't touch the tap while I fetch the 

newspaper." 
Alex was back with the newspaper, trying to hold it 

with his arms outstretched so as not to lose too much 
electricity. He brought the newspaper close to the 
stream from the left and I clearly saw it bend to the 
left. Having transferred the newspaper on the other 
side, he made the stream deflect to the right. Finally, he 
drew it forward so much that the water poured over 
the basin edge. 

"You see how strongly the attractive force of 
electricity manifests itself. By the way, this experiment 
can also be easily performed without a stove or oven. 
If, instead of the charged newspaper you take 
a conventional plastic comb like this one," my brother 
produced a comb and passed it through his thick hair. 
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"I have charged it up this way." 
"But your hair is not electrical." 
"No, it's just like yours or anybody else's. But if you 

rub plastic on your hair, it gets charged in the same 
way the newspaper does by the brush. Look." 

When the comb was brought to the water stream, it 
made it deflect noticeably. 

"The comb is unsuitable for other our experiments 
since it accumulates too little electricity. It gets far less 
than the 'electric machine' that can be made from 
a simple newspaper. I'd like to make one more 
experiment with the newspaper, the last one. This time 
it's not an electric experiment, but again one with air 
pressure, rather like the experiment with the ruler." 

We returned to the sitting room and Alex began to 
cut and glue a long bag out of a newspaper. 

"While it dries, get several books, large and heavy." 
On the bookshelf I found three massive volumes of 

some medical atlas and placed them on the table. 
My brother asked, "Can you inflate this bag with 

your mouth?" 
"Of course." 
"A simple business, isn't it? But what if I put 

a couple of these volumes on the bag?" 
"Oh, then the bag won't inflate no matter how hard 

you try." 
Alex silently put the bag at the edge of the table, 

covered it with one of the volumes and stood another 
one upright on it. 

"Just watch. I'll inflate the bag." 
"Perhaps you want to blow those books away?" 

I asked laughing. 
"Exactly." 
Alex started to blow into the bag. Just imagine: as 

the bag swelled the lower book sloped up and 
overturned the top one. But the two books weighed 
about five kilograms! 

Without allowing me to recover from my surprise, 
Alex prepared to repeat the trick. This time he loaded 
the bag with all three tomes. He b l ew-a Herculian 
breath!-and the three tomes overturned. 

The amazing thing is that this experiment had 
nothing miraculous in it. When I dared to repeat it for 
myself, I managed to overturn the books as easily as 
Alex did. You need to have neither an elephant's lungs 
nor the muscles of an athlet-everything comes about 
on its own accord, nearly without effort. 
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My brother later explained the reason to me. When 
we inflated the paper bag, we forced some air into it 
that is more compressed than the air around us, 
otherwise the bag wouldn't expand. The air outside 
presses down with about 1,000 grammes on each square 
centimetre. If you express the area under the books in 
square centimetres, you can readily work out that even 
if the excess pressure in the bag is only a tenth of that 
outside of it, i.e. a hundred grammes per square 
centimetre, then the total force from the air pressure 
inside the part of the bag under the books may be as 
high as 10 kilogrammes. Clearly this force is sufficient 
to overturn the books. 

Thus ended our physics tests with the newspaper. 



Seventy-Five More Questions 
and Experiments on Physics 

How to Weigh Accurately with 
An Inaccurate Balance 

Which is the more important possession, a precise pair 
of weighing scales or a precise set of weights? Many 
people believe that the scales are more important, but 
in fac t - the weights, since it's impossible to weigh 
anything accurately with inaccurate weights. If the set 
of weights is true, then you can still weigh quite 
accurately with inaccurate scales. 

For example, suppose you have beam scales with 
pans. Place a weight that is heavier than your object on 
one pan. Then on the other pan put as many weights as 
will be required to make the beam balance. Next put 
your object onto the pan with the weights and, of 
course, this pan will sink. In order to balance the beam 
again you will need to remove some of the weights and 
the weights removed will show the correct weight of 
your object. It should be clear why. your object now 
pulls down its pan with the same force with which the 
weights you took off did before. Hence your object and 
the total of the weights you took off weigh the same. 

This excellent way of weighing accurately using 
inaccurate scales was discovered by the great Russian 
chemist Dmitri Mendeleyev. 

On the Platform of a Weighing Machine 

A man stands on the platform of a weighing machine 
and suddenly he squats down. Which way will the 
platform move, up or down? 

The platform will move upwards. Why? Because as 
he is squatting the muscles pulling the man's body 
down also pull the legs up, thus reducing the force with 
which the body presses on the platform with the result 
that it goes up. 

Weight on Pulley 

Suppose a man is able to lift a mass of 100 
kilogrammes from the floor. Wanting to lift more he 
passed a rope tied tc the load through a pulley fixed in 
the ceiling (Fig. 76). What load will he be able to lift 
using this rig? 

Such a pulley could help him lift no more than what 
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he could do with his own hands, perhaps even less. If 
he pulled the rope passed through a fixed pulley, he 
could not lift a mass exceeding his own. If his mass is 
less than 100 kilogrammes, he would be unable to 
handle a 100-kilogramme load with the pulley. 

Two Harrows 

People often confuse weight and pressure. However, 
they are by no means the same. An object may have 
a marked weight but still exert a negligible pressure on 
its support. By contrast something else may have 
a small weight but exert a large pressure on its support. 

The following example will clarify the difference 
between weight and pressure and at the same time give 
you an idea of how to work out the pressure a body 
exerts on its support. 

Let two harrows of the same type work in field, one 
with 20 teeth, the other with 60, the first one weighing 
60 kilogrammes, the second 120 kilogrammes. 

Which one penetrates more deeply into the soil? 
It's easy to figure out that the greater the force acting 

on a harrow's teeth, the deeper they penetrate the soil. 
With the first harrow the total load of 60 kilogrammes 
is evenly distributed among the 20 teeth, hence 
3 kilogrammes per tooth. With the second harrow, 
120/60, i.e. 2 kilogrammes per tooth. Consequently, 
though in general the second harrow is heavier, its 
teeth penetrate less deeply than the first harrow's. The 
pressure per tooth with the first harrow is larger than 
with the second. 

Pickled Cabbage 
Consider another simple calculation of the pressure. 

Two barrels of pickled cabbage are each covered 
with a wooden disk held down by stones. One disk is 
24 centimetres across and the stones on it weigh 10 
kilogrammes while the other is 32 centimetres across 
and its stones weigh 16 kilogrammes. 

In which is the pressure larger? 
Clearly, the pressure will be higher in the barrel 

where the load per square centimetre is larger. In the 
first case the 10 kilogrammes are distributed over an 
area * of 3.14 x 12 x 12 = 452 square centimetres. 

* The area of a circle is about 3.14 times the circle's radius (half 
the diameter) times the circle's radius. 
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Hence the pressure is 10,000/452, i.e. about 22 grammes 
per square centimetre. In the second barrel the pressure 
will be 16, 000/804, i.e. less than 20 grammes per square 
centimetre. The pickled cabbage is thus more 
compressed in the first barrel. 

Awl and Chisel 

Why does an awl penetrates deeper than a chisel does if 
both are acted upon by an equal force? 

The point is that when thrusting the awl all the force 
is concentrated at an extremely small area at its point. 
With the chisel the force is distributed over a much 
larger surface. For instance, let the awl's surface area at 
the point be 1 square millimetre and the chisel's be 
1 square centimetre. If the force on each tool is one 
kilogramme, then the material under the chisel blade is 
subjected to a pressure of 1 kilogramme per square 
centimetre, and under the awl 1/0.01 = 100 or 100 
kilogrammes per square centimetre (since 1 square 
millimetre = 0.01 square centimetre). The pressure of 
the awl is one hundred times larger than of the chisel. 
Now it is clear why the awl penetrates deeper than the 
chisel. 

You'll now understand that when you are pressing 
with your finger on a needle when you are sewing you 
produce a very great pressure, not smaller than the 
steam pressure in a boiler. This is also the principle 
behind the cutting action of the razor. The slight force 
of hand creates a pressure of hundreds of kilogrammes 
per square centimetre on the thin edge of the razor that 
can cut through hair. 

Horse and Tractor 
A heavy crawler tractor is well supported by loose 
ground into which the legs of horses and people are 
mired. This is inconceivable to many people since the 
tractor is far heavier than the horse and very much 
heavier than man. Why then do the horse's legs are 
mired in loose ground, and the tractor doesn't? 

To grasp this, you'll have to remember once again 
the difference between weight and pressure. 

An object does not penetrate deeper because it is 
heavier but because it exerts a higher pressure (or force 
per square centimetre) on its support. The enormous 
weight of a crawler tractor is distributed over the larger 
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surface area of its tracks. Therefore, each square 
centimetre of the tractor's support carries a load as low 
as several grammes. On the other hand, the horse's 
weight is distributed over the small area under its 
hooves, thus giving more than 1,000 grammes per 
square centimetre or ten times more than the tractor. 
No wonder then that a horse's feet sink more deeply 
into mud than does a heavy crawler tractor. Some of 
you may have seen that to ride over marshes and bogs 
horses are shod with wide "shoes", which increase the 
supporting area of horses' hooves with the result that 
they are mired much less. 

Crawling Over Ice 

If ice on a river or lake is insecure, experienced people 
crawl rather, than walk over it. Why? 

When a man lies down, his weight, of course, doesn't 
change, but the supporting area increases, each square 
centimetre of it thus carries less load. In other words, 
the man's pressure on his support is reduced. 

It's now clear why it's safer to move over thin ice by 
crawling - this decreases the pressure on the ice. Some 
people also use a wide board and lie on it as they move 
about thin ice. 

What load can ice support without breaking? The 
answer is dependent on the thickness of the ice. Ice 
4 cm thick can support a walking man. 

It is of interest to know the thickness of ice required 
for a skating rink on a river or lake. For this purpose 
10-12 centimetres would be sufficient. 

Figure 77 

Where Will the String Break? 

You'll need an arrangement shown in Fig. 77. Put 
a stick on top of the open doors, tie a string to the 
stick and tie a heavy book in the middle. If now you 
pull a ruler tied to the bottom of the string, where will 
the string break: above or below the book? 

The string can break both above and below, 
according as you pull. It's up to you, you can break it 
either way. If you pull carefully, the upper part of the 
string will break, but if you jerk it, the lower part 
breaks. 

Why does this happen? Careful pulling breaks the 
upper part of the string because the string is being 
pulled down both by the force of your hand and by the 
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weight of the book, whilst the lower part of the string is 
only acted upon by the force of your hand. Whereas 
during the short instant of the jerk the book doesn't 
acquire very much motion and therefore the upper part 
of the string doesn't stretch. The entire force is thus 
"consumed" by the lower part, which breaks even if it's 
thicker than the upper part. 

Torn Strip 

A strip of paper that is about 30 cm long and one 
centimetre wide can be material for a funny trick. 
Partly cut or tear the strip in two places (Fig. 78) and 
ask your friend what will happen to it if it's pulled by 
the ends in the opposite directions. 

He will answer that it'll break in the places where it's 
been torn. 

"Into how many parts?" you ask then. 
Generally the answer is: "Into three parts, of course." 

If you receive this answer, ask your friend to test his 
hunch by an experiment. 

Much to his surprise he will see that he was 
mistaken, for the strip will only separate into two parts. 

You can repeat the experiment many times taking 
strips of various length and making little tears of 
various depth and you'll never get more than two 
pieces. The strip breaks where it's weaker which goes to 
prove the proverb: "The chain is only as strong as its 
weakest link". The reason is that of the two tears or 
cuts, however hard you strive to make them identical, 
one is bound to be deeper than the other. Even if it's 
imperceptible to your eyes, one will still be deeper. The 
weakest place of the strip will be first to begin to break. 
And once begun the breaking would continue to the 
end because the strip would become ever weaker at this 
place. 

You might perhaps be very pleased to know that in 
making this trifling experiment you've visited a serious 
branch of science of importance for engineering that is 
called "strength of materials". 

A Strong Match Box 

What will happen to an empty match box if you strike 
it with all your might? 

I'm sure that nine out of ten readers will say that the 
box won't survive such handling. The tenth - the person 

Figure 78 
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who has actually performed the experiment or heard 
about it from somebody-will maintain that the box 
will survive. 

The experiment should be staged as follows. Put the 
parts of an empty box one on top of the other, as 
shown in Fig. 79. Strike this assembly sharply with 
your fist. What will occur will surprise you: both parts 
will fly apart but, having collected them, you'll find that 
each one is intact. The box behaves like a spring and 
this saves it because it bends but doesn't break. 

Bringing Something Closer by Blowing 

Place an empty match on a table and ask somebody to 
move it away by blowing. Clearly this is no problem. 
Then ask him or her to do the opposite, i.e. make the 
box approach without leaning forward to blow the box 
from behind. 

There'll hardly be many who'll twig. Some will try to 
move the box nearer by sucking in air, but that won't 
work of course. The answer, however, is very simple. 

What is it? 
Ask somebody to put the hand vertically behind the 

box. Begin to blow and the air that reflects from the 
hand will strike the box and shift it towards you 

The experiment is, so to speak, "failsafe". You'll only 
have to make sure it's on a sufficiently smooth table 
(even unpolished) which is not of course covered with 
a table-cloth. 

Grandfather's Clock 

Suppose a grandfather's clock that uses weights to wind 
it up is fast or slow. What should be done with the 
pendulum to correct it? 

The shorter a pendulum the quicker it swings. You 

(Fig. 80). 
Figure 80 

Figure 79 
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can easily prove this by an experiment with a weight 
suspended from a piece of rope. This suggests the 
solution of our problem: when the clock is slow you 
shorten the pendulum a little by lifting a ring on the 
pendulum rod, so making the pendulum swing faster; 
and when the clock is fast you lengthen the pendulum. 

How Will Rod Settle Down? 

Two balls of equal mass are fixed to the ends of a rod 
(Fig. 81). Right in the middle of the rod a hole is 
drilled through which a spoke is passed. If the rod is 
spun about the spoke, it'll rotate several times and 
settle down. 

Could you predict in what position the rod will come 
to rest? 

Those who think that the rod will invariably 
settle down in a horizontal position are mistaken. 
It can remain balanced in any position (see 
Fig. 81)-horizontal, vertical, or at an angle-since it's 
supported at the centre of mass. Any body supported 
or suspended at the centre of mass be in equilibrium at 
any position. Therefore, it's impossible to predict the 
final position of the rod. 

Jumping in Railway Carriage 

Imagine you are travelling in a train at a speed of 36 
kilometres an hour and you jump up. Supposing that 
you manage to spend a whole second in the air (a 
brave assumption because you'll need to jump up more 
than a metre), where will you land, at the same place 
from where you started or somewhere else? If 
somewhere else, where then-closer to the beginning or 
end of the train? 

You'll land at the same place. You shouldn't think 
that while you've been in the air the floor (together 
with the carriage) has shifted forward. To be sure, the 
carriage was tearing along but you also were travelling 
in the same direction and at the same speed carried by 
inertia. All the time you were directly above the place 
from which you jumped up. 

Aboard a Ship 

Two people are playing ball on the deck of a steaming 
vessel (Fig. 82). One stands nearer the aft and the other 

Figure 81 
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Figure 82 

nearer the bows. Which one can throw the ball easier 
to his partner? 

If the ship is travelling with a steady speed and in 
a straight line neither has any advantage, just as if they 
were on a stationary ship. You should not suppose that 
the man standing nearer the bows recedes from the ball 
after it's been thrown or that the other man moves to 
meet it. By inertia the ball has the ship's speed which is 
equally possessed by both partners and the ball. There-
fore, the motion of the ship (uniform and rectilinear) 
gives neither player an advantage. 

A balloon is being carried away due north. In which 
direction will flags on its car fly? 

The balloon carried by an air flow is at rest with 
respect to the surrounding air, therefore the flags won't 
be blown by the wind, but will dangle limply like they 
do in still weather. 

On a Balloon 

A balloon floats motionlessly in the air. A man gets out 
of the car and begins to climb up the cable. Which way 
will the balloon move in the process, upwards or 
downwards? 

The balloon will shift downwards, since the man 
pushes the cable (and the balloon) in the opposite di-
rection as he is climbing. The situation is similar to what 
happens if someone walks forward over the bottom 
of a small rowing boat: the boat shifts backwards. 

Walking and Running 

What is the difference between running and walking? 
Before answering remember that running can be 

Flags 
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slower than walking and that you can even run on the 
spot. 

The difference between running and walking is not 
the speed. When we walk our body is in contact with 
the ground all the time at some point in our feet. When 
we run, on the other hand, there are moments when the 
body is completely separated from the ground and does 
not touch it at any point. 

A Self-Balancing Stick 

Put a smooth stick on the index fingers of both of your 
hands, as shown in Fig. 83. Now move your fingers 
together to meet each other half-way. Strangely, in the 
final position the stick doesn't fall off but keeps its 
balance. Make the experiment several times varying the 
initial position of your fingers, the result will invariably 
be the same: the stick will be balanced each time. 
Replace the stick by a ruler, a billiards cue, or a broom, 
and you'll notice the same behaviour. 

What is the secret? 
The following is clear: if the stick is balanced on 

your fingers brought together, this suggests that your 
fingers have closed up under the centre of mass (a body 
is in equilibrium if the centre of mass is over an area 
confined by the support's boundaries). 

When your fingers are spread apart, the larger load is 
on the finger that is closer to the stick's centre of mass. 
Friction increases as the load grows and the finger 
closer to the centre of mass is subject to larger friction 
than the other one. Therefore, the finger that is closer 
to the centre of mass doesn't slide under the stick and 
at all times the only finger that moves is the one farther 
away from this point. Once the moving finger is closer 
to the centre of mass than the other, the fingers change 
their roles, the change taking place several times until 
the fingers come together. Since only one finger is 
moving at each instant of time, namely the one that is 

Figure 83 
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farther away from the centre of mass, it's only natural 
that eventually both fingers end up under the centre of 
mass of the stick. 

Before we leave this experiment, we'll repeat it with 
a broom (the top of Fig. 84) and ask ourselves what 
would happen if we cut the broom at where it's 
supported by the fingers and place the parts on 
different pans, which pan would sink? 

— 

It would seem that if both parts of the broom 
balance each other on your fingers these should also do 
so on the pans of the scales. Actually, the part with the 
brush will outweigh. The clue is not difficult to find, if 
we take into account that when the broom was 
balanced on your fingers the gravity forces of both 
parts were applied to unequal arms of the lever. On the 
pans of the scales, by contrast, the same forces are 
applied to the ends of an equal-arm lever. 

Rowing in the River 

A rowing boat and wooden chip alongside it are 
floating in a river. What is it easier for the rower: to 
get ahead of the chip by 10 metres or to lag behind it 
by 10 metres? 

Even those practising water sports often give the 
wrong answer. It's more difficult, they argue, to row 
upstream than downstream, accordingly, to pass the 
chip is easier than to lag behind it. 

No doubt, to reach a point rowing upstream is more 
difficult than rowing downstream. But if the point you 
are going to reach is floating alongside, just like our 
chip, the situation is quite different. 

One should take into account that the boat carried 
by the current is at rest with respect to the water. The 
situation is the same as what it would be on the still 
water of a lake. 

Thus, in both cases the rower needs exactly the same 
effort whether he wishes to pass or lag behind the boat. 
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Circles on Water 

A stone thrown into still water produces concentric 
waves. 

What form will the waves have if the stone is thrown 
into the flowing water of a river? 

If you fail, from the very beginning, to follow the 
right track, you'll be easily lost in the argument and 
come to the conclusion that in the flowing water the 
waves should assume the form of an ellipse or an 
oblong somewhat wider in the upstream direction. But 
if we attentively observe the waves produced by a stone 
thrown into the river, we'll find no deviation from the 
circular shape, however fast the stream is. 

There is nothing extraordinary in that. Simple 
reasoning will lead to the conclusion that the waves 
should be circular both in still and in flowing water. 
Let's treat the motion of particles of the waves as 
a combination of two movements: radial (from the 
centre of oscillations) and translational (downstream). 
A body participating in several motions eventually 
comes to the same point it would come to, if it 
performed all the component motions in succession. 

We'll therefore assume that the stone is thrown into 
still water. In that case, the waves will clearly be 
circular. 

Now suppose that the water is moving-no matter 
with what velocity, uniformly or n o t - t h e motion has 
only to be translational. What will happen to the 
circular waves? They'll undergo a translation without 
any distortion, i.e. will remain circular. 

Deflection of Candle Flame 

If you carry a candle about a room you will have 
noticed that initially the flame deflects backwards. 
Which way will it deflect if the candle is carried about 
in a closed casing? Which way will the flame in the 
casing deflect if it's uniformly rotated, horizontally in 
an outstretched hand? 

If you think that in the casing there'll be no 
deflection, you are mistaken. Experiment with 
a burning match and you'll see that if it's protected by 
the hand as it's moved, the flame will deflect, but 
forwards-quite unexpectedly!-not backwards. This is 
because the flame is thinner than the surrounding air. 
A force imparts to a body with a small mass a larger 
velocity than to a body with a larger mass. Therefore, 
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the flame moving faster than the air in the casing 
deflects forwards. 

The same reason (the smaller density of the flame 
than that of the surrounding air) also accounts for the 
unexpected behaviour of the flame when we move the 
casing in a circle, the flame deflects inwards, not 
outwards as might be expected. This would be clear if 
we remember how mercury and water are arranged in 
a ball rotated in a centrifuge. The mercury tries to be 
farther away from the rotation axis than the water. The 
latter, as it were, floats up in the mercury, if we 
consider the "bottom" to be the direction away from 
the rotational axis (i.e. the one in which bodies are 
displaced by the centrifugal effect). In our circular 
rotation, the lighter-than-air flame "floats up" within 
the casing, i.e. in the direction to the rotation axis. 

A Sagging Rope 

With what force must one pull at a rope for the latter 
not to sag? 

However taut the rope is, it is bound to sag. Gravity 
that causes the sagging acts normally, whereas the 
stretching force on the rope has no vertical component. 
Two such forces can never balance each other out, i.e. 
their resultant force cannot be zero. And this resultant 
force is responsible for the sagging. 

No force, however strong, can stretch a rope strictly 
horizontally (except when the rope is upright). The 
sagging is unavoidable, you can reduce it to a desired 
degree but cannot make it zero. Consequently, any 
nonvertically stretched rope or driving belt will sag. 

For the same reason it is impossible, by the way, to 
stretch a hammock so that its ropes are horizontal. The 
taut net of a bed sags under the weight of a man. And 
the hammock, whose ropes are not so taut, turns into 
a dangling bag when a man lies on it. 

How to Drop a Bottle? 

In which direction with respect to a moving railway 
carriage should you throw a bottle so that the danger 
that it gets broken when hitting the ground is the least? 

As it is safer to jump forwards from a moving 
carriage, it would appear that the bottle would not hit 
the ground so strongly if you throw it forwards. This is 
not so: objects should be thrown backwards. In that 
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case the velocity imparted to the bottle by throwing it 
will be subtracted from the one due to inertia with the 
result that the bottle will strike the ground with 
a smaller velocity. Throwing the bottle forwards will 
cause the reverse, the velocities would add up and the 
collision would be stronger. 

That it is safer for a man to jump forward is 
accounted for by quite a different reason: he is hurt less 
by jumping this way. 

Cork 
A piece of cork has got into a bottle with water. The 
cork is small enough to pass freely through the neck, 
but try as you can, shaking or upending the bottle, the 
outpouring water will not for some reason bring the 
cork out. It's only when the bottle is completely empty 
that the cork leaves the bottle with the last bit of the 
water. Why? 

The water doesn't bring the cork out for the simple 
reason that cork is lighter than water and therefore is 
always on its surface. The cork can only come to the 
opening when almost all of the water has come out. 
That's why it is the last to leave the bottle. 

Floods 
During a spring flood the surface of a river becomes 
convex - higher in the middle than near the banks. If 
loose logs float along such a swollen river, they will 
slide down to the banks leaving the mainstream free 
(the top of Fig. 85). In midsummer, when the water is 
low, the river surface becomes concave - lower in the 
middle than near the banks. In this case logs will accu-
mulate in the middle (the bottom of Fig. 85). 

What's the reason? 
This is explained by the fact that in the middle water 

flows quicker than near the banks because the friction 

Figure 85 
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of the water along the bank slows the current down. 
During a flood, water comes from the upper reaches 
faster along the middle than near the banks because the 
current's speed is faster in the middle. Understandably, 
if more water comes to the middle, then the river 
should swell here. The situation changes in midsummer 
when water subsides. Now, owing to the swifter current 
the water run-off in the middle is higher than near the 
banks with the result that the river becomes concave. 

Liquids... Press Upwards! 

That liquids exert a pressure downwards, on the 
bottom of a vessel, and sidewards, on its walls, is 
known even to those who have never studied physics. 
But many people don't suspect that liquids press 
upwards as well. A glass tube will help you to make 
sure such a pressure does exist. Cut out a disk of 
a strong cardboard, its size being sufficient to cover the 
hole of the tube. Put it over the hole and dip both into 
some water. For the disk not to drop off when you are 
dipping it, it can be held by a piece of string passed 
through its centre or pressed on with a finger. When 
the tube has sunk to a certain depth, you will notice 
that the disk holds securely on its own without being 
pressed on with the finger or held with the string, being 
supported by the water that presses it up. 

You can even measure the amount of this upward 
pressure. Carefully pour some water into the tube. 
Once the water level approaches the level outside the 
tube, the disk will fall off. The water pressure on the 
disk from below is thus balanced out by the pressure of 
the water column within the tube, its height being equal 
to the depth of the disk in the water. This is a law 
about the pressure of liquids on a submerged body. By 
the way, this also causes the weight "loss" in liquids 
and was formulated as the famous Archimedes 
principle. 

Figure 86 
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If you have several glass tubes of various shapes but 
with the same opening (e.g. as shown in Fig. 86) you 
can also test another law relating to liquids, namely the 
pressure of a liquid on the bottom of a vessel is only 
dependent on the bottom area and the level and is 
independent of the vessel shape. An experiment with 
the various glass tubes is described below. Dip them 
into the water to the same depth (for which purpose 
you'll have to glue paper strips onto them at the same 
height) and you'll notice that the disk will always fall 
off at the same level of the water within the tube (Fig. 
86). In consequence, the pressure due to water columns 
of various shapes is the same if only their base areas 
and heights are the same. Notice that it's the height, not 
the length, that matters because a long inclined column 
exerts exactly the same pressure on the bottom as 
a short upright column of the same height (the base 
areas being equal). 

Which is Heavier? 
On one pan of scales is placed a pail that is filled to the 
brim with water. On the other pan, exactly the same 
sized pail is placed, also brimful, but with a piece of 
wood floating in it (Fig. 87). Which pail will be 
heavier? 

I asked various people this question and got 
conflicting answers. Some answered that the pail with 
the wood would be heavier because "the pail has the 
water and the wood." Others held that, on the contrary, 
the first pail would be heavier "since water is heavier 
than wood." 

Both views are a mistake for both pails have the 
same weight. True, there is less water in the second pail 
than in the first because the floating piece of wood 
displaces some water. The immersed part of every 
floating body displaces exactly the same weight of water 
as the whole of the body weighs. That's why the scales 
will be in equilibrium. 

Another problem. Suppose I place on the scales 

Figure 87 
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Figure 88 

a glass of water and put a weight near it. When the 
system is balanced by the weights on the other pan, 
I drop a weight into the glass. What will happen with 
the balance? 

According to the Archimedes principle the weight in 
the water becomes lighter than before. It might be 
expected that the pan with the glass would rise but in 
actual fact the scales will remain in equilibrium. 
Explain. 

The weight in the glass has displaced some water, 
which has risen above the initial level, with the result 
that the pressure on the bottom of the vessel has 
increased so that the bottom is acted upon by an added 
force equal to the weight lost by the weight. 

Water on a Screen 

It turns out that water can be carried on a screen in 
real life and not only in fairy tales. A knowledge of 
physics will help to make this proverbially impossible 
thing possible. You'll need a wire screen about 15 
centimetres across with a mesh size of about 
1 millimetre. Immerse the network into melted wax and 
when it is taken out of the wax the wire will be covered 
with a thin layer of wax hardly noticeable for the naked 
eye. 

The screen will still remain a screen - a pin will freely 
pass through its mesh-bu t now you will be able 
literally to carry water on it. The screen will hold 
a fairly high level of water without any seepage through 
the mesh. You need only to pour the water carefully 
and see to it that the screen is not jerked. 

Why then doesn't the water seep? Because it doesn't 
wet wax and thus forms thin films between the meshes 
and it is the films' downward convexity that holds the 
water (Fig. 88). 

Such a waxed screen may be placed on water and it 
will remain on the surface. It is thus possible not only 
to carry water on a screen but to float on it too. 

This paradoxical experiment accounts for a number 
of the everyday phenomena we take for granted 
because we get used to them so. Tarring barrels and 
boats, painting with oil paints and, in general, coating 
things we want to render water-tight with oily 
materials, and the rubberizing of fabrics, these are all 
nothing but the making of "screens" like the one just 
described. The idea behind each phenomenon is the 
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same. Only in the case of the screen it appears in 
a somewhat unusual disguise. 

Soap Bubbles 

Can you make soap bubbles? This is not as simple as it 
might seem. I also once thought that it didn't take 
much dexterity until I found out practically that 
blowing large and beautiful bubbles is an art that 
requires much exercise. 

But is it worthwhile to occupy yourself with such 
a trifling business as blowing soap bubbles? Used as 
a figure of speech the notion of soap bubbles is not 
complimentary. But the physicist has another view of 
them. The great English scientist Lord Kelvin wrote, 
"Blow a soap bubble and observe it, it may take 
a lifetime to investigate it, incessantly deriving lessons 
of physics from it." 

Indeed, the fabulous play of colours on the surface of 
thin soap films enables physicists to measure the 
wavelengths of light, and the study of the tension in 
these frail films gives an insight into the laws governing 
the interaction between particles, those cohesion forces 
without which there would be nothing in the world but 
fine dust. 

The several experiments that follow do not pursue 
such serious objectives, they are just amusements that 
will only acquaint you with the art of blowing soap 
bubbles. In his book Soap Bubbles the English physicist 
Charles Boys gave a detailed account of a number of 
experiments involving them. Those interested are 
referred to this fascinating book, but we'll only describe 
the simplest of the experiments here. 

These can be performed using a solution of 
a conventional soap*, but for best results olive- or 
almond-oil soaps are recommended. A piece of soap is 
carefully dissolved in pure cold water until a fairly 
thick solution is obtained. Rain or thaw water is the 
best but if it's unavailable cooled boiled water will do. 
For bubbles to have a long life it is recommended to 
add one third of the volume of glycerin. Using a spoon, 
remove foam and bubbles from the surface and insert 
into it a long clay tube whose end on the outside and 
inside has already been smeared with soap. Good 
results are also achieved with straws about 10 

* Toilet soaps are unsuitable. 
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centimetres long that are split across the end. 
The bubbles are blown thus: dip the tube into the 

solution holding it upright so that a liquid film be 
formed at the end and carefully blow into it. Since the 
bubble is filled with warm air from your lungs, which is 
lighter than the surrounding air in the room, the 
bubble just blown will rise into the air. 

If from the very beginning you can produce a bubble 
10 centimetres in diameter, the solution is good, 
otherwise some more soap will have to be added to the 
liquid until bubbles of the above-mentioned size are 
obtained. But this test is not sufficient. When a bubble 
is produced, dip a finger into the soap solution and try 
to punch the bubble. If it doesn't burst you may 
proceed to the experiments, but if the bubble doesn't 
survive the test, add some more soap. 

Experiments should be carried out carefully, slowly, 
and quietly. If possible, the illumination should be 
bright, otherwise the bubbles will not show their 
iridescent play. 

The following are a number of entertaining 
experiments with soap bubbles. 

A Bubble Around a Flower. Pour some soap solution 
onto a plate or a tray so that the bottom is covered 
with a layer 2-3 mm thick. Place a flower or small vase 
in the middle and cover it with a glass funnel. Then, 
slowly lifting the funnel, blow into the narrow tube to 
form a soap bubble. Once the bubble has reached 
a largish size, tip the funnel over as shown in Fig. 89, 
and liberate the bubble from under it. The flower will 
then be under a transparent hemispherical hood of 
soap film which will show all the colours of the 
rainbow. 

Instead of a flower you can take a small statue and 
crown its head with a soap bubble. First you need to 
drop some solution onto the head of the statue and 
then, after blowing the large bubble, pierce it and blow 
a smaller one inside it. 

Bubbles Inside One Another. Blow a large bubble 
using the funnel, then immerse a straw into the soap 
solution so that only the end you will put into your 
mouth is dry and poke it carefully through the wall of 
the first bubble to the centre. By carefully drawing the 
straw back, a second bubble can be blown inside the 
first one, then a third, fourth, and so on. 

A Cylinder of Soap Film (Fig. 90) can be blown 
between two wire rings. In order to do this lower 

Figure 89 
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a conventional ball-shaped bubble onto the bottom 
ring. Then put a wetted second ring over the top of the 
bubble and by raising it the bubble will extend until it 
becomes cylindrical. Curiously enough, if you raise the 
upper ring higher than the length of the ring's circum-
ference, the cylinder will become narrower at one end 
and wider at the other, and then it will disintegrate into 
two bubbles. 

The film of a soap bubble is always in tension and 
exerts a pressure on the air inside it. By directing the 
funnel at the flame of a candle you can make sure that 
the force of the thin film is not all that negligible since 
the flame will be deflected quite a bit (Fig. 90). 

It is interesting just to observe a bubble when it is 
taken from a warm room into a cold one. It will shrink 
appreciably, and conversely it will expand when 
brought from the cold room into the warm one. 
Clearly, the reason is that the air in the bubble expands 
and contracts. If, for example, the volume of a bubble 
at — 15 °C is 1,000 cubic centimetres and the bubble is 
brought into a room at +15°C, its volume will 
increase by about 1,000x 30 x 1/273 or about 110 
cubic centimetres. 

Furthermore, it should be noted that the common 
idea that soap bubbles are short-lived is wrong since 
with adequate handling a soap bubble can survive for 
weeks. The English physicist Dewar (famous for his 
works on air liquefaction) kept soap bubbles in special 
bottles that were protected from dust, drying and jerks. 
Under these conditions he managed to keep some 
bubbles for a month or so. An American, Lawrence, 
succeeded in keeping soap bubbles in a glass cup for 
years. 

An Improved Funnel 

Those who have poured water through a funnel into 
a bottle know that it is necessary to raise the funnel 
from time to time, otherwise the liquid will not pour 
out of it. It's the air inside the bottle that, when 
compressed by the incoming liquid and unable to 
escape, stops more liquid from coming in from the 
funnel. Understandably, by raising the funnel we let the 
compressed air out, thus again enabling some more 
liquid to go in. 

It would perhaps be quite practical to design a funnel 
so that it has longitudinal crests on its outer surface 

Figure 90 
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Figure 91 

that would keep the funnel from sticking to the 
bottleneck. But I haven't ever seen such a funnel in 
everyday life, only in laboratories they use a filter 
designed after this fashion. 

How Much Does Water Weigh in 
a Glass Held Upside-Down? 

You'd say, "Nothing, of course. Water won't stay in the 
glass." 

I'd ask, "And if it does stay, what then?" 
Actually, it is possible to keep water in a glass held 

upside-down so that it doesn't pour out. The method is 
shown in Fig. 91. An upturned goblet tied at the 
bottom on one side of a balance is filled with water so 
that it doesn't pour out because the goblet's edges are 
immersed in water. On the other side of the balance tie 
an empty goblet, exactly the same sort. 

Which side will go down? 
That to which the upturned goblet with water is tied. 

This goblet is exposed to atmospheric pressure from 
above, and from be low- to the atmospheric pressure 
minus the weight of the water contained in the goblet. 
For the system to be in balance you'd have to fill the 
other goblet with water. Accordingly, the water in the 
upturned glass weighs in these circumstances as much 
as it would in a normally held glass. 

How Much Does the Air in 
a Room Weigh? 

Can you say, however inaccurately, how much the air 
in a small room weighs? Several grammes or several 
kilogrammes? Would you be able to lift such a load 
with a finger or would it be difficult to hold it on your 
back. 

Perhaps these days there is no one who believes air is 
weightless as was widely held in ancient times. But even 
today many wouldn't estimate its weight. 

Remember that a litre jar of the warm summer air 
near the ground (not in the mountains) weighs 1.2 
grammes. A cubic metre holds 1,000 litres and therefore 
weighs 1,000 times as much, i.e. 1.2 kilogrammes. 

Now we can easily work out the weight of the air in 
a room. To do so, we'll only need to know how many 
cubic metres there are in it. If, say, the area of the room 
is 15 square metres, the height is 3 metres, then it 
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contains 15 x 3 = 45 cubic metres. The air thus weighs 
45 kilogrammes plus 1/5 of 45, i.e. 9 kilogrammes, 
which makes 54 kilogrammes in all. You could not 
move this load with a finger or carry it about on your 
back with ease. 

An Unruly Cork 

This experiment will vividly demonstrate that 
compressed air has a force and an appreciable one at 
that. 

For the experiment we'll only need a common bottle 
and a cork that's somewhat smaller than the 
bottleneck. 

Hold the bottle horizontally, insert the cork into the 
neck and ask somebody to blow the cork inside the 
bottle. 

No problem, it would seem. But try it, blow hard at 
the cork, you'll be amazed at the result. The cork won't 
be driven inside the bottle but.. . will fly into your face! 

The harder you blow the faster it'll shoot out. 
If you want the cork to slide inside you'll have to do 

quite the opposi te-not to blow at the cork but to suck 
the air from the hole. 

These strange phenomena can be explained as 
follows. When you blow into the bottleneck you drive 
some air through the gap betwen the cork and the wall 
of the neck. This increases the pressure inside the bottle 
and throws the cork out. If then you suck the air out, 
the air inside the bottle becomes thinner and the cork 
is pushed inside by the pressure of the air outside. The 
trick works out well only when the neck is absolutely 
dry as a wet cork sticks. 

The Fate of a Balloon 

Balloons sometimes go astray. But where? How high 
can they fly? 

A balloon that escapes is carried always not to the 
boundaries of the atmosphere, but only to its "ceiling", 
i.e. to a height where the air is thin and the weight of 
the balloon equals that of the air displaced by it. But it 
does not always reach its ceiling. Since it swells (due to 
the reduction in the external pressure) it may burst 
before it reaches the ceiling. 
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How to Blow Out a Candle? 

It's child's play, you might think, to blow out a candle. 
But occasionally an attempt is a failure. Try and blow 
a candle out through a funnel and you'll see that this 
requires especial dexterity. 

Place the funnel against the flame of a candle and 
blow at it through the thin end. The flame won't so 
much as stir, although the stream of air from the funnel 
would seem to be striking the flame directly. 

Perhaps you now think the funnel is too far away 
from the flame, and so you bring it nearer and again 
begin to blow hard. You might be shocked by the 
result: the flame deflects not away from you but 
towards you, against the stream of the air coming from 
the funnel. 

What is to be done then to kill the candle flame? It 
is necessary to locate the funnel so that the flame is not 
on the axis of the funnel but in the line of its cone part. 
Now by blowing into the funnel you'll easily extinguish 
the candle. 

This is explained by the fact that the air stream 
leaving the narrow part of the funnel does not 
propagate along its axis but spreads along the walls of 
the cone, thus forming a sort of an air vortex. But the 
air along the funnel axis is rarefied with the result that 
a return air flow sets in near it. It is now clear why 
a flame located on the axis of the funnel leans towards 
the funnel, and when the flame is on the periphery of 
the cone, it bends the other way and goes out. 

Tyre 

A car wheel with a tyre is rolling to the right, its rim 
rotating clockwise. The question is: in what direction 
does the air inside the tyre move-against the direction 
of rotation or in the same direction? 

The air moves away from the place of compression in 
both directions - forwards and backwards. 

Why Are There Gaps Between the Rails? 

Railway builders always leave gaps between the butts of 
adjacent rails on purpose. Without the gaps the railway 
would soon fall into disrepair. The reason is that all 
things expand on heating. A steel rail, too, elongates in 
summer, heated by the sun. If no space were allowed 
for the rails to expand, these would push against 
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adjacent rails with an enormous force and bend 
sideways wrenching out the spikes and destroying the 
track. 

The gaps are designed with due account of winter 
temperatures. In winter the rails shrink from cold, 
thereby additionally increasing the gaps. Therefore, they 
are calculated very carefully considering the local 
climate. 

An example of the use of the property of a body to 
shrink on cooling is the old procedure of shoeing cart 
wheels. A heated iron shoe is slided onto the rim of 
a cart wheel. When the shoe is allowed to cool down, it 
shrinks and squeezes tightly onto the rim. 

A Glass and Tumbler 

You may have noticed that tumblers for cold drinks are 
often made with a thick bottom. The reason is obvious: 
such a tumbler is more stable. Why then don't we use 
tumblers for hot drinks? After all it would be better for 
glasses to be more stable in that case too. 

Thick-bottomed tumblers are not used for hot drinks 
because the walls of such tumblers would be heated by 
the hot liquid and expand more than the thick bottom. 
The thinner the glassware and the less difference there 
is between the thickness of the wall and the bottom, the 
more uniform will be the heating and the less the risk 
of cracking. 

The Hole in the Cap of a Tea-Kettle 

The cap of a metallic tea-kettle has a hole. What for? 
To let some vapour out, otherwise it will pop the cap 
off. But the cap expands on heating in all directions. 
What happens to the hole in the process? Does it 
become narrower or wider? 

It becomes wider. In general the volume of holes and 
cavities becomes larger on heating in exactly the same 
way as an equal piece of surrounding material does. 
For that reason, by the way, the capacity of vessels 
increases on heating, not decreases as is widely 
believed. 

Smoke 

Why does smoke go up in still weather? 
The smoke from a chimney ascends because it's 
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carried by hot air that expands on heating, thus 
becoming lighter than the air around the chimney. 
When the air supporting the smoke particles cools 
down, the smoke descends and spreads out over the 
ground. 

Incombustible Paper 
We can perform an experiment in which a paper strip 
doesn't burn in the flame of a candle. 

Wind a narrow paper strip tightly around an iron 
rod. If now you introduce the rod with the wound strip 
into the flame of a candle, the paper won't catch fire. 
The fire will lick the paper, the latter will char but not 
burn down until the rod becomes hot. 

Why? Because iron, just like any metal, is a good 
heat conductor; it leads away the heat obtained by the 
paper from the flames. Replace the metal rod by 
a wooden stick and the paper will burn because wood 
is a poor heat conductor. With a copper rod the 
experiment is even more successful. 

Instead of the paper strip you could also use a piece 
of string wound tightly around a key. 

How to Seal Window Frames for Winter 

An adequately sealed window frame keeps out cold. 
But to seal it properly you should get it right why the 
frame "heats" a room. 

Many believe that a second frame is used in winter 
because two windows are better than one. That is not 
so. It's not the second window that matters here but 
the air confined between the windows. 

Air is a very poor heat conductor. Therefore, some 
air adequately confined for it not to carry any heat 
away prevents the room from cooling. 

But for best results the air must be sealed tightly 
inside. Some people wrongly think that when a frame is 
sealed for the winter the upper gap in the external 
frame should be left unsealed. Should you do so the air 
within the cavity would be displaced by outside cold 
air, thus chilling the room. On the contrary, both 
frames should be treated painstakingly and not even 
the tiniest chink should be left. 

Alternatively, you can with good results glue frames 
over with strips of strong paper. Well sealed or glued 
windows cut down your heating expenses. 
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Draught from a Closed Window 

It might seem unusual that in a cold weather there is 
often a draught from a window that is tightly closed, 
carefully sealed and does not have the smallest hole. 
There is nothing surprising about that. 

The air inside a room is almost never at rest. There 
are invisible flows caused by the heating and cooling of 
the air. Heating makes air thinner, and hence lighter. 
Conversely, cooling makes it denser and heavier. The 
light, heated air over a lamp or stove is displaced by 
cold air up to the ceiling because the heavy air that has 
cooled near the windows or cold walls, flows down to 
the floor. 

These currents in a room are readily discovered using 
a balloon with a small weight attached to it for it not 
to strike the ceiling and float freely in the air. Let the 
balloon go near a warm stove and it'll travel about the 
room pulled around by the invisible air currents: from 
the stove to the window under the ceiling, then down 
to the floor and back to the stove for a new cycle. 

That's why in winter we feel a draught from 
a window, especially at the bottom, even though the 
frame is securely sealed and keeps the outside air out. 

How to Chill with Ice 

If you want to chill a bottle of drink, where should you 
place it, on or under the ice? 

Many put a bottle on the ice without a moment's 
hesitation, just like they put a tea kettle on a fire. 
That's not the way to do it. Heating should be done 
from below, but chilling, on the contrary, is better from 
the top. 

Explain why. You know that colder substances are 
denser than warm ones. Thus a chilled beverage is 
denser than a warm one. When you place the ice over 
the top of the bottle, the upper portions of the drink 
(adjacent to the ice) sink on cooling being replaced by 
another amount of the liquid that in turn cools down 
and descends as well. In a short while all the drink in 
the bottle will have been in contact with the ice and 
chilled. But if the bottle is placed over the ice, the 
lowest portion cools first, its density increases and it 
stays at the bottom making no room for the rest of the 
liquid that is warmer. No mixing occurs here and the 
chilling is extremely poor. 
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It pays to chill everything from the top and not just 
drinks-meat , vegetables and fish should be placed 
under ice as well. They are chilled not so much by the 
ice itself as by the surrounding air because the cold air 
comes down. If you need to cool a room with ice don't 
place it on the floor but put it up high on a shelf or 
suspend from the ceiling. 

The Colour of Water Vapour 

Have you ever seen water vapour? Could you say what 
colour it is? 

Strictly speaking, water vapour is absolutely 
transparent and colourless. It is invisible, just like air. 
The white fog that is popularly known as "vapour" is 
really a multitude of water droplets, it is a suspension 
of fine water particles, not vapour. 

Why Does a Boiler "Sing"? 

A boiler or a kettle produces a singing sound when the 
water is about to boil. The water adjacent to the heater 
vaporizes to form small bubbles. Being much lighter 
these are expelled upwards by the surrounding water 
and as they go up the bubbles pass through water that 
has a temperature of less than 100 °C. The vapour in 
the bubbles cools, contracts and the bubbles collapse 
under pressure. Thus, just before boiling sets in, more 
and more bubbles go up but fail to reach the surface 
collapsing on the way to produce a cracking sound. It 
is these numerous cracking that produce the sound we 
hear at the outset of boiling. 

When the water eventually heats to boiling 
temperature, the bubbles cease to collapse on their way 
up and the "singing" discontinues. However, once the 
water starts to cool down, again the earlier conditions 
occur and the "singing" resumes. 

A Miraculous Top 

Cut a small square out of thin tissue-paper. Fold it 
diagonally twice and smooth it out again. You'll thus 
know where the centre of mass of the square is. Now 
place the paper on the point of an upright needle so 
that the latter supports it at the middle. 

The paper will balance since it's supported at the 
centre of mass. A slightest flow of air will make it 
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in the coat and allow the other to stand in the room 
uncovered. When the ice in the uncovered bottle has 
melted, unfold the fur coat and you'll see that the ice is 
nearly intact. In consequence, the fur coat not only 
didn't heat the ice, but, as it were, cooled it, thus 
hampering 4he melting!... 

What objections could be raised here? How could 
you refute the arguments? 

There is no objecting or refuting. In fact, fur coats 
don't heat things up if by "heat up" we mean to impart 
heat. A lamp heats, a stove heats, a human body heats, 
too, because all of these bodies are sources of heat. But 
a fur coat is not. It generates no heat, but only stops the 
heat of our body from going astray. That's why 
a warm-blooded animal whose body itself is a source of 
heat will be warmer with a fur coat than without it. But 
the thermometer generates no heat of its own and its 
temperature won't change in the coat. The ice in the 
coat retains its low temperature longer because the fur 
c o a t - a fairly poor heat conductor-hinders the passage 
of heat from the outside. 

Snow "heats" the earth in the same way a fur coat 
does. A loose powder substance, snow is a poor heat 
conductor and helps to keep cold out. Not infrequently 
a thermometer in snow-covered soil indicates it is as 
much as ten degrees hotter than is exposed soil. 
Farmers are well aware of this heating effect of a snow 
cover. 

Thus, the answer to the question of whether a fur 
coat heats or not is that it only helps us to heat 
ourselves. Or rather we heat the fur coat, not vice 
versa. 

How to Air Rooms in Winter 

The best way to air a room is to open a window when 
a fire is burning. Fresh, cold outside air will then force 
out the warm, lighter air from the room into the 
fire-place and out through the chimney into the 
atmosphere. 

However, do not think that the same thing will occur 
when the window is closed, for the outside air will leak 
into the room through gaps in the window, walls, etc. 
True, some of it will really get into the room but not 
enough to sustain the fire. Therefore, apart from the 
outside air some air must come from other rooms 
where it might be neither pure nor fresh. 



Seventy-Five More Questions 
and Experiments on Physics 

The two accompanying figures demonstrate the 
difference between the two cases. The arrows indicate 
the flow of air. 

Where to Arrange a Ventilation Pane 

Where? At the top or bottom of a window? In some 
homes ventilation panes are at the bottom. Admittedly, 
these are convenient to open and close, but they are 
inefficient. Let's consider the physics of the air exchange 
through the ventilation pane. Outside air is colder than 
that inside and displaces the latter. However, it 
occupies the part of the room below the ventilation 
pane. The air above the pane doesn't contribute to the 
exchange, i.e. is not ventilated. 

Paper Saucepan 

Look at Fig. 96. An egg is being boiled in a paper 
vessel! 

You'd say, "Oh, but the paper'll now catch fire and 
the water will pour out!" 

Try the experiment on your own. Make the 
"saucepan" from parchment paper and attach it to 
a wire holder. The paper won't be destroyed by the fire. 
The reason is that water in an open vessel can only be 
heated to boiling temperature, i.e. 100°C. Therefore, 
the water, which has a large thermal capacity, absorbs 
excess heat from the paper and so does not allow it to 
heat up more above 100° to a point when it might 
ignite. (Perhaps it would be more convenient to make 
use of a small paper box as shown in the figure.) So the 
paper does not catch fire although flames touch it. 

A similar kind, but disastrous, "experiment" is at 
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times performed by absent-minded people who put an 
empty kettle onto a fire with the pitiful result that the 
latter gets unsoldered. The reason is clear now: solder 
is relatively low-melting and it is only its close contact 
with water that saves it from its temperature. rising 
dangerously. This applies to all sorts of soldered things. 

Further, you could melt a piece of lead in a small 
box made of a playing card. You'll only need to expose 
to flames the place that is in direct contact with the 
lead. Being a good heat conductor, the metal will 
quickly take away heat from the paper. The 
temperature of the paper will thus be maintained at 
about 335 °C (melting point for lead), which is 
insufficient to ignite the paper. 

What is the Lamp Glass for? 

Few people know what a long history the lamp glass 
went through before it appeared in its present-day 
form. For millennia people had used flames for lighting 
without resorting to the services of glass. It took the 
genius of Leonardo da Vinci (1452-1519) to introduce 
this important improvement of the lamp. But Leonardo 
used a metal tube, rather than a glass one, to surround 
the flame. Three more centuries passed before the metal 
tube was replaced by the transparent cylinder. You see 
thus that the lamp glass is an invention developed by 
scores of generations. 

What's its purpose? 
Not all of you will come up with the right answer to 

this natural question. 
To protect the flames from wind is only a secondary 

role of the glass. Its main effect is to increase the 
brightness of the flames, to boost the combustion 
process. The role of the glass here is like that of 
a chimney or stack; it intensifies the inflow of air to the 
flames, i.e. improves the "draught". 

Let's take a closer look at this. The column of air 
inside the glass is heated by the flames much faster 
than the air surrounding the lamp. After it has heated 
and thereby become lighter, the air is displaced 
upwards by the heavier cold air arriving from below 
through holes in the burner. This results in a steady 
flow of air upwards, a flow that continually takes the 
combustion products out and brings fresh air in. The 
higher the glass, the more difference there is between 
the heated and unheated air columns and the more 
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intensive is the inflow of fresh air, and hence the burn-
ing. The situation is like that in industrial chimney 
stacks which is why they are made so high. 

Interestingly, even Leonardo had understood these 
phenomena. In his manuscripts he says, "Where fire 
appears, an air flow forms around it, the flow supports 
and intensifies it." 

Why Doesn't a Flame Go Out by Itself? 

A closer examination of the process of combustion 
inevitably leads to the above question. After all, the 
combustion products are carbon dioxide and water 
vapour, noncombustible substances incapable of 
supporting the process. Accordingly, once started 
a flame must be surrounded by noncombustibles that 
hinder the inflow of air. Combustion cannot occur 
without air and the flame would be bound to die out. 

Why then this is not the case? Why does the process 
of combustion carry on as long as there is a supply of 
combustibles? For the only reason that gases expand 
on heating and become lighter. It's owing to this that 
heated combustion products don't stay where they've 
been formed, i.e. in the immediate neighbourhood of 
the flames, but are at once forced upwards by fresh air. 
If the principle of Archimedes didn't apply to gases (or 
there were no gravity), any flame would go out after 
a while on its own. 

You can easily verify that combustion products kill 
a flame. At times you make use of this unawares to 
extinguish the fire in a lamp. How do you blow out 
a kerosene lamp? Blow into it from above, i.e. do not 
let the combustion products out. The flames go out 
deprived of the supply of fresh air. 

Why Does Water Kill Fire? 

A seemingly simple question... that is not always 
correctly answered. 

Let's briefly explain the phenomenon. 
First, on touching a hot body water turns into 

vapour, so taking heat away from the burning body. To 
convert boiling water into vapour takes more than five 
times as much heat as is required to heat the same 
amount of cold water to 100 °C. 

Second, the resulting vapour occupies hundreds of 
times more space than the source water. The vapour 
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envelopes the body, cutting off the air that is 
indispensable for its burning. 

To improve the fire-extinguishing power of water 
they sometimes add ... gunpowder to it. Strange as it 
might seem, the measure is quite reasonable because 
the powder burns down quickly evolving a great 
amount of noncombustible gases that cover the burning 
material to hinder combustion. 

Heating with Ice and Boiling Water 

Is it possible to use a piece of ice to heat another? Or, 
to cool? 

Is it possible to heat one quantity of boiling water 
with another? 

If some ice at a low temperature, — 20 °C say, is 
brought into contact with a piece of ice at a higher 
temperature, — 5 °C say, then the first piece of ice will 
heat up (become less cold), and the second will cool 
down. Therefore, it is quite possible to cool or heat ice 
with ice. 

But one body of boiling water cannot heat another 
body of boiling water (at the same pressure), for at 
a given pressure boiling water is always at the same 
temperature. 

Can You Bring Some Water 
to the Boil Using Other Boiling Water? 

Pour some water into a small bottle (jar or phial) and 
place it in a saucepan with pure water so that it doesn't 
touch the bottom. Of course, you'll have to suspend the 
bottle from a piece of wire. Put the saucepan on a fire. 
When the water in the saucepan boils, it would seem 
that the water in the bottle should also boil shortly. 
Only you will never see this, however long you wait. 
The water in the bottle will get hot, very hot, but boil 
will it not. The boiling water appears to be too cool to 
bring another body of water to the boil. 

Quite an unexpected result, it seems, but let's analyse 
it more closely. To bring water to the boil it is not 
sufficient only to heat it to 100°C-i t also needs 
a substantial supply of so-called latent heat. Pure water 
boils at 100 °C, and under standard conditions its 
temperature never exceeds this, however long you heat 
it. In our case the source of heat used to heat the water 
in the bottle has a temperature of 100 °C. It, too, is 
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Accordingly, material absorbing the fat should be 
placed at the side opposite to the iron. 

How Far Can You See From High Places? 

From a flat place we only see the group up to a certain 
boundary. This boundary of view is called the "horizon 
line". Trees, houses and other high structures lying 
beyond the horizon line are seen not in full, because 
their lower parts are blotted by the convexity of the 
earth. Even plains or the sea, although apparently flat, 
are in fact convex, for they are parts of the curved 
surface of the globe. 

How far then does an average-sized man see over 
a plain? 

He can only see up to 5 kilometres. To see beyond 
that he'll have to climb up higher. A man on horseback 
on a plainland would see up to 6 kilometres and 
a sailor on a mast 20 metres high would see the sea 
around him up to 16 kilometres away. From the top of 
a lighthouse towering above water at 60 metres the sea 
is seen for nearly 30 kilometres. 

But, of course, the widest panoramas open up before 
airmen. From an altitude of 1 kilometre they can see 
almost for 120 kilometres in all directions, if not 
hindered by clouds or fog. At twice the height an 
airman will see for 160 kilometres using a perfect 
optical device. Further, from 10 kilometres one can see 
within 380 kilometres, and astronauts orbiting the 
Earth see the whole of one side of the globe. 

Where Does a Chirring Grass Hopper Sit? 
Sit somebody in the middle of a room, with his eyes 
blindfolded, and ask him to sit still and not turn his 
head. Take then two coins and tap one on the other at 
various places in the room but at about the same 
distance from your friend's ears. Ask your friend to 
guess the place whence the sound comes. It will be diffi-
cult to do and your friend will point in some other 
direction. 

If you step aside, the errors won't be as bad because 
now the sound in the nearest ear of your friend will be 
heard somewhat louder, so enabling him to determine 
the location of the source. 

The experiment makes it clear why it's impossible to 
spot a grass hopper chirring in the grass. The sharp 
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sound is heard two paces away from you. You look 
there and see nothing, but now the sound is distinctly 
heard from the left. You turn your head in that 
direction, but no sooner have you done that than the 
sound already comes from some other direction. The 
speed of the grass hopper stuns you and the quicker 
you turn to the direction of the singing insect the 
quicker the invisible musician hops about. But in 
reality the insect is sitting placidly in place and his 
"hops" are just an illusion. Your problem is that when 
you turn your head you put it exactly so that the grass 
hopper becomes equally separated from both of your 
ears. This condition (as you should know it from the 
experiment just described) is conducive to an error. If 
the chirring comes from ahead of you, you place it, 
erroneously, in the opposite direction. 

In consequence, if you want to determine where 
a sound comes from, you should not turn your head 
towards the sound, but conversely, turn it away. Which 
is exactly what we do when we, as it were, "prick up 
our ears". 

Echo 

When a sound we have produced is reflected from 
a wall or another obstacle and returns to our ears, we 
hear an echo. It is only heard distinctly if the time-lag 
between the sound generation and its return is not too 
short. Otherwise the reflected sound would melt with 
the initial one and amplify it, the sound will then 
reverberate, e.g. in large empty halls. 

Imagine that you are standing in an open place and 
there is a house in front of you 33 metres away. Clap 
your hands. The sound will travel through the 33 
metres, reflect from the walls and come back. How long 
will that take? Since the sound covered 33 metres there 
and the same distance back, it'll return in 66/330 or 1/5 
of a second. Our sharp sound was so short that it 
terminated in less than 1/5 second, i.e. before the echo 
arrived. The two sounds didn't merge and were heard 
separately. A monosyllabic word ("yes", "no", etc.) is 
pronounced in about 1/5 second and we can hear such 
words echoed at a distance of only 33 metres from an 
obstacle. But for bisyllabic words the echo merges with 
the initial sound intensifying it but rendering it obscure, 
we don't hear it separately. 

At what distance must the obstacle be then so that 
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To See Through a Palm 

Fold a sheet of paper into a tube, bring it up to your 
left eye with your left hand and look through it at some 
distant object. Now bring your right palm near to your 
right eye so that it nearly touches the tube. Both hands 
should be about 15-20 centimetres away from the eyes. 
You'll then make sure that your right eye sees perfectly 
through your palm as if there were a round hole in it. 
Why? 

The reason of this unexpected phenomenon was as 
follows. Your left eye prepared to view a distant object 
through the tube and the crystalline lens adapted 
accordingly. The eyes function in such a way that they 
always adapt in sympathy. 

In the experiment described the right eye, too, 
adapted to distant- sight with the result that the near 
palm appeared blurred to it. In short, the left eye 
clearly sees the distant object, the right one, sees the 
palm unclearly. The net result is that it seems to you 
that the distant object is seen through the shielding 
palm. 

Through Binoculars 

At a seaside you are watching a boat approaching the 
shore through a pair of binoculars that magnifies three 
times. How many times will the speed be increased with 
which the boat is approaching the shore? 

Assume that the boat is sighted 600 metres away and 
is approaching the observer with a speed of 5 metres 
per second. Through binoculars with triple mag-
nification the boat at 600 metres appears to be at 200 
metres. A minute later it will be 5 x 60 = 300 metres 
closer and will then be 300 metres away from the 
observer. In the binoculars its apparent size would 
indicate it were 100 metres away. Consequently, an 
observer looking through the binoculars would think 
the boat has travelled 200 — 100 = 100 metres, whereas 
in actual fact it has actually covered 300 metres. It 
follows that the speed at which the boat approaches 
when observed through the binoculars has decreased 
not increased by three times. 

The reader can arrive at the same result by another 
argument, i.e. by taking the initial distance, speed and 
period. 

The speed with which the boat approaches has thus 
reduced by as many times as the binocular magnifies. 
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From the Front or the Back? 

There are many things in each household that are used 
inefficiently. I've already mentioned that some people 
cannot use ice properly to chill drinks-they place them 
on the ice instead of under it. It appears that some 
people cannot use a conventional mirror either. Quite 
frequently, if they want to see themselves better in the 
mirror they turn the light on behind themselves in order 
to "illuminate the reflection", instead of illuminating 
themselves from the front. 

Drawing Before the Mirror 

That a mirror reflection is not identical with the 
original may be demonstrated by the following 
experiment. 

Stand or hang an upright mirror in front of you on 
the table, place a sheet of paper on it and try to draw 
something, for example, a rectangle with diagonals. But 
in doing so don't look directly at your hand, but follow 
the movements of its reflection in the mirror. 

You'll find that this seemingly simple problem is 
almost intractable. Over the years our visual 
perceptions and motions have been correlated but the 
mirror violates this and represents our motions to our 
eyes in an inverted form. Long-term habits rebel 
against each our motion: you want to draw a line to 
the right, say, but the hand draws to the left, and so on. 

Stranger things will occur if instead of a simple figure 
you attempt to draw more intricate designs or write 
something whilst looking in the mirror. The result will 
be a funny confusion. 

The impressions left on carbon paper are inverted 
'ettering, too. Just try to read the text on it. Quite 
a challenge! But bring it to a mirror and the text will 
appear in its habitual form. The mirror gives the 
reflection of what is itself an inverted image of normal 
writing. 

Black Velvet and White Snow 

Which is the lighter - black velvet on a sunny day or 
pure snow on a moonlit night? 

Nothing, it seems, surpasses black velvet in blackness 
or white snow in whiteness. These age-old metaphors of 
white and black appear, however, quite different when 
viewed by a physical instrument-a photometer. It then 
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turns out that the blackest velvet in sunlight is lighter 
than the purest snow in moonlight. 

This is because a black surface, however dark it 
might be, doesn't completely absorb all the visible 
incident light. Even soot and platinum black-the 
blackest substances known-scatter about 1-2 per cent 
of the incident light. We take 1 per cent for argument's 
sake and suppose that snow scatters 100 per cent of the 
incident light (which is undoubtedly an 
overstatement)*. It is known that the illumination 
provided by the sun is 400,000 times that of the moon. 
Therefore, the 1 per cent of sunlight scattered by the 
black velvet is thousands of times more intense than 
the 100 per cent of moonlight scattered by snow. In 
other words, sunlit black velvet is many times lighter 
than moonlit snow. 

To be sure, this is true not only of snow but also of 
the best white pigments (the whitest of them 
all - lithopone - scatters 91 per cent of light). Since no 
surface, unless it's hot, can beam out more light than 
strikes it, and the sun sends out 400,000 times as much 
light as the moon, it's impossible to have a white 
pigment that would in moonlight be lighter than the 
blackest pigment on a sunny day. 

Why is Snow White? 

Why, indeed? It consists of transparent ice crystals. 
For exactly the same reason that ground glass and 

all ground transparent substances in general are white. 
Grind some ice up in a mortar or chip it with a knife 
and you'll get white powder. The colour is due to the 
fact that light, when penetrating into tiny pieces of 
transparent ice, doesn't pass through them but reflects 
inside them at the boundaries between the ice and the 
air (total internal reflection). But a randomly scattering 
surface is perceived by the eye as white. 

Thus, snow is white because it consists of tiny 
particles. If the gaps between the snow flakes are filled 
with water, the snow becomes transparent. Such an 
experiment is easy. Put some snow into a jar and pour 
some water into it, and before your very eyes the snow 
will become colourless, transparent. 

* Fresh snow only scatters about 80 per cent of light. 
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The Shine on a Blackened Shoe 

Why does a blackened shoe shine? 
Neither the sticky black shoe polish, nor the brush 

seem to have anything to impart the gloss to shoes. 
Therefore, it's a mystery for many. 

We'll first clear up the difference between the glossy 
polished surface and the dull one. It's widely believed 
that the polished surface is smooth and the dull one is 
irregular. This is not so: both are irregular. There are 
no absolutely smooth surfaces. Examined uncier the 
microscope polished surfaces would be like razor blades 
and for a man reduced 10,000,000 times the surface of 
a smoothly polished blade would appear to be a hilly 
terrain. There are irregularities, depressions and 
scratches on any surface, both dull and polished. What 
matters is the size of these irregularities. If they are 
smaller than the wavelength of the incident light, then 
the rays are reflected correctly, i.e. at the angle of 
incidence. Such a surface gives mirror reflections, it 
shines and we call it polished. If, on the other hand, the 
irregularities are larger than the wavelength of the 
incident light, the surface scatters the ray randomly and 
does not follow the reflection law. Such scattered light 
gives no mirror reflections and highlights, and the 
surface is called dull. 

This suggests, by the way, that a surface may be 
polished for some rays and dull for others. For visible 
light with a mean wavelength of about half 
a micrometre (0.0005 mm) a surface with irregularities 
of about that size will be polished; for infrared light, 
which has longer wavelength it's polished, too. But 
for ultraviolet light, which has shorter wavelength, it's 
dull. 

But back to the pedestrian subject of our problem. 
Why do polished shoes shine, after all? The 
unblackened surface of leather has a highly irregular 
microstructure with "peaks" larger than the mean 
wavelength of visible light, it's dull. By blackening it we 
smooth out the surface and lay the hairs that stick out 
down. Brushing removes any excess polish at 
projections and fills the troughs, reducing the 
irregularities down to a size at which the peaks become 
smaller than the wavelengths of visible rays and the 
surface turns into a glossy one. 
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Through Stained Glass 

What colour are red or blue flowers viewed through 
green glass? 

Green glass will only transmit green light and catch 
all the rest. Red flowers send out mostly red light. If we 
look through green glass at a red flower we'll receive 
no light from its petals as the only rays it emits are 
retained by the glass. The red flower will therefore 
appear to be black through such glass. 

Now you should easily see that the blue flower 
viewed through green glass will be black as well. 

Professor M. Yu. Piotrovsky, a physicist, artist and 
acute observer of nature, made a number of interesting 
observations in his book Physics on Summer Outings. 

"Observing flowerbeds through a red glass we see 
that purely red flowers, say, geranium, appear to us as 
bright as purely white one; green foliage appears as 
absolutely black with a metallic lustre; blue flowers 
(aconite, etc.) are so black as to be next to impossible 
to make them out against the black background of the 
leaves and yellow, pink, and lilac flowers appear more 
or less dull. 

"Through a green glass we see the unusually bright 
green of the foliage and white flowers come out still 
more distinctly against it; somewhat more pale are 
yellow and blue ones; red flowers are jet black; lilac 
and light-pink colours appear as dull and grey so that, 
for example, the light-pink petals of a wild rose are 
darker than its richly coloured leaves. 

"Finally a blue glass will again make red flowers look 
black, white flowers will look bright, yellow-absolutely 
black, and blue and dark-blue-almost as bright as the 
white ones. 

"It's easily seen from this that red flowers really do 
emit much more red light than any other colour, yellow 
flowers emit about an equal amount of red and green, 
but very little blue, whilst pink and purple flowers emit 
a lot of red and blue, but very little green light." 

A Red Signal 
On the railways the stop signal is a red colour. Why? 

Red light has the longest wavelength in the visible 
spectrum and is thus less scattered by any particles 
suspended in the air than are other colours. Therefore, 
red light penetrates farther. It is of paramount 
importance to obtain the greatest visibility possible for 
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a transport signal since to be able to stop his train the 
engine-driver should begin breaking long before 
reaching an obstacle. 

The greater transparency of the atmosphere to longer 
waves, by the way, explains why astronomers use 
infrared filters to photograph planets (especially Mars). 
Fine details blurred in a conventional picture come out 
distinctly on a photograph taken through a glass that 
only transmits infrared light. In the case of Mars it's 
possible to photograph the surface of the planet, while 
a conventional picture only shows its atmospheric 
envelope. 

A further reason for selecting the red light for the 
stop signal is that our eyes are more sensitive to this 
colour than to blue or green. 
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Tricks of Vision 

The optical, or visual, illusions to which this section is 
devoted are not accidental companions of our 
vision-they occur in definite circumstances, are 
governed by physical laws and affect any normal 
human eye. That human beings are subject to visual 
illusions and can be mistaken as to the source of their 
visual perceptions, should by no means be considered 
an undesirable disadvantage or an unqualified flaw in 
our constitution, whose removal would benefit us in 
many respects. The artist would rebel against such an 
"infallible" vision. For him our ability, under certain 
conditions, to see what really is not is a blessing 
enriching enormously the potentialities of the fine arts. 
The 18th century mathematician Euler wrote: "Artists 
are especially skilled at using this common illusory 
experience. The whole of the art of painting is based on 
this. If we were used to judge about things as these are 
in reality then this art would be impossible, it would be 
as if we were all blind. In vain the artist would exhaust 
his skill in colour blending, for we would merely say: 
there is a red spot on this board, here a blue one, here 
a black and there, several whitish lines. Everything is in 
the same plane and there is no difference in distance. It 
would thus be impossible to represent anything. No 
matter what were painted in the picture, it could seem 
to be like writing on a paper, and perhaps we would, in 
addition, try to make out the signification of all the 
coloured spots. For all the perfection, weren't we to be 
pitied greatly, being devoid of the pleasure we derive 
every day from such pleasant and useful arts!" 

Since the subject is of such lively interest for the 
artist, physicist, physiologist, physician, psychologist, 
philosopher, and for any inquisitive mind, many books 
and articles have been published in this country and 
elsewhere. * 

We'll here consider several types of tricks played by 
our unaided eye, i.e. without any appliances such as 
stereoscopes, punched cards, and so on. 

As to the causes of one or another visual illusion, 
only a relatively small number have well established, 

* See, e.g. The Nature of Experience (1959) by R. Brain; Optical 
Illusions (1964) by S. Tolansky; The Neurophysiological Aspects of 
Hallucinations and Illusory Experience (1960) by W. Grey. 

142-143 



Optical Illusions 

unquestionable explanations. These include those due 
to the structure of our eyes, irradiation, Mariotte's 
illusion (blind spot), astigmatism illusions, and so forth. 

As an instructive example we'll consider the optical 
illusion of Fig. 141: white circles arranged in a certain 
way on a black background are perceived as 
hexahedrons. It seems to be well established that this 
kind of illusion is totally caused by so-called 
irradiation, i.e. the apparent expansion of light areas 
(which can be given a simple, clear physical 
explanation). "White circles expand due to irradiation 
and reduce the black gaps between them", Professor 
Paul Bert writes in his Lectures on Zoology. He goes on 
to say that, "as each circle is surrounded by six other, it 
pushes adjacent ones on expanding and appears to be 
confined by a hexagon". 

Suffice it to glance at the neighbouring figure 
(Fig. 141) where the same effect is observed for black 
circles against a white background for this explanation 
to be rejected: here irradiation only could reduce the 
size of black spots but could not change them into 
hexagons. For the two cases to be covered by the same 
principle the following interpretation might be suggest-
ed. When viewing from a certain distance, the angle of 
vision of the gaps between the circles becomes smaller 
than a limit, so enabling their forms to be distinguish-
ed. Each of the six neighbouring gaps then appears to 
be a straight line of a uniform thickness and the circles 
are thus bounded by hexagons. This interpretation also 
covers the paradoxical fact that at some distances white 
circles continue to appear to be round, whereas the 
black fringes around them have already assumed 
hexagonal forms. It's only at larger distances that the 
hexagonal configuration is transferred from the fringe 
to the white spots. However, this explanation, too, is 
only a plausible assumption and, perhaps, there are 
several other possible explanations. It is necessary to 
prove that the possible cause is here the actual one. 

Most of attempts to explain individual illusions 
(except for the few mentioned above) are as unreliable 
and uncertain. Some tricks of vision still await their 
explanation. By contrast, others have too many 
explanations each of which would perhaps be sufficient 
in itself were there not so many additional ones that 
make it less convincing. Remember the famous illusion 
discussed since the time of Ptolemy-that of the 
increasing of the size of celestial bodies near horizon. 



144-145 Optical Illusions 

No less than six possible theories, it seems, have been 
suggested, each of which has the only drawback that 
there are five more equally adequate explanations... 
Obviously, the entire domain of visual illusions is still 
in the pre-scientific stage of treatment and in need of 
establishing the basic methodology of its investigation. 

For want of any solid foundation in the form of 
relevant theories I have confined our discussion to the 
demonstration of unquestionable facts providing no 
explanations of what caused them and seeking only to 
present all the major types of visual illusion. * Only 
those involving portraits are explained at the end of the 
section since these are quite clear and incontestable... 
I also wanted to do away with some of superstitious 
notions that developed around this unique optical 
illusion. 

The series of illustrations opens with samples of 
illusions caused by clearly anatomical and physiological 
peculiarities of the eye. These are illusions due to the 
blind spot, irradiation, astigmatism, the retention of 
light impressions, and retina fatigue (see Figs. 100-107). 
In the blind spot experiment some of your field of 
vision may disappear in another way as well as 
Mariotte did for the first time in the 18th century. The 
effect perhaps is even more striking. So Mariotte writes: 
"Against a dark background approximately at the level 
of my eyes I attached a small circle of white paper and 
at the same time asked someone to hold another circle 
beside the first one about 2 feet to its right but 
somewhat lower so that the image would strike the 
optica] nerve of my right eye when I closed my left one. 
I stood next to the first circle and stepped back grad-
ually without taking my right eye off it. When I was 
about 9 feet away, the second circle, which was about 
4 inches across, completely disappeared from my field of 
vision. 

"I couldn't ascribe it to its lateral position, as I could 
discern other things further to the side than it. I'd have 
thought it removed had I not been able to find it again 
with the slightest movement of my eye...". 

These "physiological" tricks of vision are followed by 
a much larger class of illusions that are due to psycholo-
gical reasons, which have not yet been sufficiently 

* The selection of illusions here is the result of many years of 
collecting. I've excluded, however, all those published illusions that 
have effect not on anybody's eye or are not perceptible enough. 
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clarified. It may perhaps be established that illusions of 
this kind are only the consequence of some 
preconceived erroneous judgement that is involuntary 
and subconscious in nature. The source of the 
misperception here is the mind, not the sensor. Kant 
aptly remarked, "Our senses deceive us not because 
they do not judge correctly, but because they do not 
judge at all". 

Irradiation. When viewed from a distance the figures 
below-the circle and square-seem to be larger than 
those above, although they are equal in size. The larger 
the distance the more pronounced is the illusion. The 
phenomenon is called irradiation (see below). 

Irradiation. When viewed from a distance the figure 
with the black cross seems, owing to irradiation, to be 
distorted as shown in the accompanying figure on the 
right. 

Irradiation is due to the fact that each light point of 
an object produces on the retina of an eye not a point 
but a small circle because of so-called spherical 
aberration. Therefore a light surface on the retina is 
fringed by a light band that increases the place occupied 
by the surface. On the other hand, black surfaces 
produce reduced images because of the light band. 

The Mariotte Experiment. Close the right eye and look 
with the left one at the upper cross from a distance of 
20-25 centimetres. You'll notice that the middle, large 
white circle disappears completely, although the two 
smaller circles on either side are seen distinctly. If, with 
the same arrangement, you look at the lower cross, the 
circle only disappears in part. 

The phenomenon is caused by the fact that with this 
arrangement of the eye with respect to the figure the 
image of the circle falls on the so-called blind spot - t h e 
place insensitive to photic stimulation where the optic 
nerve is connected. 

Figure 100 

Figure 101 

Figure 102 
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Figure 104 

The Blind Spot. This experiment is a modification of 
the previous one. If you look at the cross at the right of 
the figure with your left eye at a certain distance you 
won't see the black circle at all, although the two cir-
cumferences will be seen. 

Astigmatism. Look at the lettering with one eye. Do all 
of the letters appear equally black? Normally one of 
the letters appears blacker than the rest of them. You 
need only to turn the page by 45° or 90° and some 
other letter will seem to be blacker. 

The phenomenon is explained by so-called 
astigmatism, i.e. different curvatures of the retina in 
different directions (vertical, horizontal, etc.). It's only 
rarely that an eye is free of this imperfection. 

146-147 
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Figure 105 
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Figure 106 

Figure 107 

Figure 109 

Astigmatism. Figure 105 furnishes another way (cf. the 
previous illusion) of identifying astigmatism in an eye. 
If you bring the figure to the eye under examination 
(the other one being closed) you'll notice at a certain, 
rather close, distance that two opposite sectors will 
seem blacker than the other two, which will appear 
grey. 

When viewing this figure, move it to the right and 
left and it'll seem to you that the eyes in the figure 
swing horizontally. 

The illusion is accounted for by the eye's property to 
retain visual perceptions for a short time after the 
stimulus has disappeared (cinema is based on this). 

Having concentrated on the white square at the top 
you'll notice about half a minute later that the lower 
white line will have disappeared (owing to retina 
fatigue). 

The Miiller-Lyer Illusion. The segment be seems to be 
longer than ab, although they are in fact equal. 

Figure 108 

•< > < 
Another form of the previous illusion is Fig. 109 and 

here segment A seems to be shorter than B. 
The deck of the right ship seems to be shorter than 

that of the left, actually both are the same length. 

Figure 110 
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Figure i l l 

Figure 112 

Figure 113 

Figure 114 

The distance AB seems to be much smaller than BC, 
which is equal to it. 

^ > < 
The distance AB seems to be larger than CD, which 

is equal to it. 

c > — o 

• e e -
The lower oblong seems to be larger than the 

internal one, although these are equal (the influence of 
the arrangement). 

The equal distances AB, CD and EF seem to be un-
equal (the influence of the arrangement). 

The rectangle crossed longitudinally seems to be 
longer and narrower than the equal rectangle crossed 
transversely (Fig. 115). 
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Figure 1 15 

Figure 116 

Figure 117 

Figures A and B are equal squares, although the first 
seems, to be higher and narrower than the second. 

The height of this figure seems to be larger than its 
width, although both are equal. 

The height of the top hat seems to be longer than its 
width, although these are equal. 

The distances AB and AC are equal, although the 
first seems to be longer. 

Figure 119 

The distances BA and BC are equal, although the 
first seems to be longer. 

Figure 120 

Figure 118 
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Figure 121 

The upright plank seems to be longer than those 
below, in fact these are all equal. 

The distance MN seems to be smaller than the 
distance AB, which is really equal to it. 

Figure 122 

The right circle in this figure seems to be smaller 
than the equal-sized circle on the left. 

The distance AB seems to be smaller than the equal 
distance CD. This illusion becomes more pronounced 
with distance (Fig. 124). 

The empty gap between the lower circle and each of 
the upper ones seems to be larger than the distance 
between the outer edges of the upper circles. In actual 
fact they are equal (Fig. 125). 

Figure 124 Figure 125 

c 

Figure 123 

The "Smoking Pipe" Illusion. The dashes on the right 
in this figure seem to be shorter than those on the left. 

Figure 126 
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The "Print Type" Illusion. The upper and lower parts 
of each of these characters seem to be equal to each 
other. But turn the page over and you'll immediately 
see that the upper parts are smaller. 

Figure 127 

X38S 
The heights of the triangles are divided in two, but it 

seems that the part near the vertex is shorter. 

The Poggendorf Illusion. The oblique straight line 
intersecting the black and white strips seems to be 
broken from a distance. 

Figure 129 

If we continue both arches on the right, they will 
meet the ends of those on the left, although it seems 
that they should pass lower. 

Figure 128 

Figure I 31 

Figure 130 

Point c lying on the continuation of line ab, seems to 
lie below it. 



Optical Illusions 

Both figures are identical, although the upper one 
seems to be the shorter and wider. 

The middle parts of those lines do not seem to be 
parallel, although they are so. 

Figure 133 

The Zollner Illusion. The long oblique lines of this 
figure are parallel, although these seem to be diverging. 

Figure 134 

The Hering Illusion. The two double parallel lines are 
parallel, although they seem to be arches with the 
crown facing each other (Fig. 135). 

The illusion disappears if (1) you hold the figure level 
to your eyes and view it so that you are glancing along 
the lines, or (2) you point the end of a pencil at some 
point and concentrate at this point. 

152-153 
Figure 132 
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The lower arch seems to be more convex and shorter 
than the upper one. The arches are similar, though. 

Figure 136 

The sides of the triangle seem to be concave, in 
reality they are straight. 

The letters are upright type. 

Figure 138 

The curves in Fig. 139 seem to be a spiral, although 
they are circles, which is readily found by following 
anyone of them with a pencil. 

Figure 137 

Figure 135 
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Figure 140 

Figure 139 
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The curves in Fig. 140 seem to be oval, but 
they are circular, which can be tested with a pair of 
compasses. 

At a certain distance the circles in these figures 
(both white and black) seem to be hexagons. 

Autotype Illusion. Consider the pattern from a distance, 
and you will perceive an eye and part of the nose of 
a female face. The figure is a part of an autotype 
(conventional illustration in a book) multiplied tenfold. 

The upper silhouette seems to be longer than the 
lower one, although they are both the same size. 

Will the circle on the right of the figure get between 
lines AB and CDl It seems at first sight that it will. But 
really the circle is wider than the separation between 
the lines. 

Figure 141 

Figure 142 
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Figure 143 

Figure 144 

Distance AB seems to be wider than distance AC. 
which is equal to the former. 

Figure 145 

Holding Fig. 146 at eye level so that you glance 
along it, you'll see the picture given on the right. 

Close one eye and place the other approximately at 
the point where the continuations of these lines 
intersect. You'll see a row of pins as if stuck into the 

B 

0 

A 
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Figure 147 Figure 148 

If you view this figure for a long time, it'll seem to 
you that the two cubes at the top and at the bottom 
stand out alternately. Also, you can intentionally, by 
exerting your imagination, call forth one or the other 
image. 

The Schroder Stairs. This figure might be perceived in 
three ways: (1) as stairs, (2) as a step-wise niche, or (3) 
as a pleated paper strip stretched out. The perceptions 
may interchange intentionally or unintentionally. 

The figure may represent, as you like it, either 
a block with a recess (the back side of the recess is the 
plane AB), or a part of an empty box with a block 

Figure 149 

Figure 146 

paper. Shift the figure slightly sidewards and the pins 
will swing. 



Optica! Illusions 

touching the walls from the inside, the box being open 
at the bottom. 

The intersections of the white lines in this figure seem 
to have yellowish square spots that appear and 
disappear, as if flashing. In actuality, the lines are 
absolutely white throughout, which can be seen if you 
cover adjacent rows of black squares with paper. The 
effect is because of the contrast. 

Figure 151 

A modification of the illusion of Fig. 151, in which 
white spots appear at the intersections. 

Figure 152 

Look at this figure from a distance. Its four strips 
each seem to be a concave stripe that is lighter at the 
edge and adjacent to a neighbouring, darker strip. But 
by masking neighbouring strips to exclude the influence 

158-159 
Figure 150 
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of contrast you can see that each strip is uniformly 
darkened. 

Look attentively for a minute at some point on this 
"negative" portrait of Newton without moving your 
eyes, then quickly shift your glance to a piece of white 
paper, greyish wall or ceiling. For a moment you'll see 
the same portrait, but the black spots will become 
white, and vice versa. 

Figure 154 

The Silvanus Thompson Illusion. If you rotate this 
figure (by turning the book) all the rings and the white 
toothed wheel will seem to be rotating, each about its 
own centre, in the same direction and with the same 
speed. 

Figure 153 
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On the left you see a convex cross, on the r ight -a 
concave one. But turn the book upside down and the 
figures will change their places. Actually the figures are 
identical, only they're shown at different angles. 

Look at the photograph in Fig. 157 with one eye 
14-16 centimetres away from the centre of the picture. 
With this arrangement your eye will see the picture 
from the same point the objective of the camera "saw" 

160-161 

Figure 155 

Figure 156 
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Figure 157 
the scene. It's this that accounts for the liveliness of the 
impression. The landscape acquires depth, the water 
glimmer. 

The eyes and the finger seem to point directly at you 
and follow you when you shift to the right or left. 

It has long been known that some portraits have the 
fascinating feature that they sort of follow the onlooker 
with their eyes and even turn their faces in his or her 
direction, wherever he or she shifts. This feature scares 
nervous people and is regarded by many as something 
supernatural. It has given rise to a number of 
superstitions and fantastic stories (e.g. The Portrait by 
Gogol). However, the explanation of this interesting 
illusion is very simple. 

Above all, the illusion is peculiar not only to 
portraits, but to other pictures, too. A gun drawn or 
photographed so that it is directed at the onlooker* 
turns its muzzle in his direction when he moves to the 
right or left of the picture. Also, there is no evading 
a cart riding directly at the onlooker. 

All of these phenomena have one common and 

* Such a photograph is obtained if, in photographing, the muzzle 
of the gun is directed at the objective. In exactly the same way if the 
person being photographed looks into the objective, then his eyes in 
the picture will be directed at the onlooker, at whatever angle he 
views the picture. 

Figure 158 
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exceptionally simple cause. If we view the picture we 
imagine the things shown in it, and it seems to us that 
the thing has changed its position. 

The same applies to the portraits. When we observe 
a real face from the side, we see another part of it. We 
can only see the same part as before if the person turns 
his face to us, but in a portrait we always see the same 
view. When a portrait is perfectly executed the effect is 
striking. 

Clearly, there is nothing surprising in this property of 
portraits. Conversely, it would be more unusual if, as 
we shift sidewards, we would see the side of the face. 
But, this, in essence, is what is expected by those who 
regard the apparent turn of the face in a portrait as 
something supernatural! 



Brain-Twisting Arrangements 
and Permutations 

In Six Rows 

You may have heard the funny story that nine horses 
have been put into 10 boxes, one in each. The problem 
that is now posed is formally similar to this famous 
joke, but it has a real solution *. You must arrange 24 
people in six rows with five in each. 

In Nine Squares 

This is a trick question-half a problem, half a trick. 
Using matches make a square with nine small square 

cells and place a coin in each so that each row and 
column contain 6 kopecks (Fig. 159). 

The figure shows the arrangement of the coins. Place 
a match on one coin. 

Now ask your friends to change the arrangement 
without moving the coin with the match so that the 
rows and columns each still contain 6 kopecks. 

They'll say it's impossible. However, a small trick will 
help you to perform this "impossible" task. Which one? 

Coin Exchange 

Make a large drawing of the arrangement in Fig. 160 
and denote each of the small squares by a letter in the 
top left corner as shown. Put 1 kopeck, 2 kopeck, and 
3 kopeck coins into the three squares of the upper row. 
Now put 10 kopeck, 15 kopeck, and 20 kopeck coins 
into the three squares of the lower row. The rest of the 
squares are empty. 

By shifting the coins on vacant squares you make the 
coins exchange their places so that the 1 kopeck changes 
with the 10 kopecks, the 2 kopecks changes with 
the 15 kopecks, and the 3 kopecks with the 20 kopecks. 
You may occupy any vacant place of the figure but you 
are not permitted to place two coins into one square. 
Also, it isn't allowed to skip an occupied square or go 
beyond the figure. 

The problem is solved by a long series of moves. 
Which moves? 

* In what follows the answers to problems are given at the end 
of each section. 

Figure 159 

Figure 160 
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0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Nine Zeros 
Nine zeros are arranged as shown below: 
0 0 0 
0 0 0 
0 0 0 

You must cross all the zeros with four lines only. 
To simplify the solution I will add that the nine zeros 

are to be crossed without the pencil leaving the paper. 

Thirty Six Zeros 

You see that 36 zeros are arranged in the cells of this 
network. 

You must cross out 12 zeros so that each row and 
column retain an equal number of uncrossed zeros. 

Which zeros are to be crossed? 

Two Draughtsmen 

Put two different draughtsmen on a draughts board. 
How many different arrangements are possible? 

Flies on a Curtain 

Nine flies are sitting on a chequered window curtain. 
They happened to have arranged themselves so that no 
two flies are in the same row, column, or diagonal 
(Fig. 161). 

Figure 161 
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and Permutations 

After a while three flies shifted into neighbouring, 
unoccupied cells and the other six stayed in the same 
place. Curiously enough, the nine flies still continued to 
be arranged so that not a single pair appeared in the 
same direct or oblique line. 

Which three flies shifted and which cells did they 
choose? 

Eight Letters 

The eight letters arranged in the cells of the square 
shown in Fig. 162 are to be arranged in alphabetical 
order by shifting them into a vacant cell, as in the two 
previous problems. This is not difficult if the number of 
moves is not limited, but you are required to achieve 
the result using a minimum number of moves. You 
must find out for yourself what the minimum number 
is. 

Squirrels and Rabbits 

Figure 163 shows eight numbered stumps. On stumps 
1 and 3 sit two rabbits, and on stumps 6 and 8, two 
squirrels. But both the squirrels and the rabbits are not 
happy with their seats and want to exchange them, the 
squirrels want to take the places of the rabbits, and the 
rabbits the places of the squirrels. They can only make 
it by leaping from a stump to the other along the lines 
indicated in the figure. 

Figure 163 

Figure 162 
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How could they make it? 
Observe the following rules: 
(1) each animal may make several leaps at once; 
(2) two animals may not seat on the same stump, 

therefore they must only leap on a vacant stump. 
Further, you should take into account that the 

animals want to reach their goal using the least 
possible number of leaps, although it's impossible to 
make less than 16 leaps. 

Figure 164 

Cottage Problem 

The accompanying figure shows the plan of a small 
cottage whose poky rooms house the following furni-
ture: a desk, a piano, a bed, a sideboard, and 
a bookcase. Only room 2 is free of furniture. 

The tenant wanted to change around the piano and 
the bookcase. This appeared to be a difficult problem 
because the rooms are so small that no two of the 
above pieces could be in the same room. The free room 
2 was of help. By shifting the things from one room to 
another the desired arrangement was eventually achiev-
ed. 

What is the least number of changes required to 
achieve the goal? 

Three Paths 

Three brothers - Peter, Paul, and Jacob-got three 
vegetable gardens located near their houses, as shown 
in the figure. You can see that the gardens are not very 
conveniently arranged but the brothers failed to agree 
about exchanging them. 

The shortest paths leading to the gardens crossed 
and the brothers began to quarrel. Wishing to avoid 
future conflict the brothers decided to find 
nonintersecting paths to their respective gardens. After 
a lot of searching they succeeded in finding such paths 
and now they come to their gardens without meeting 
each other. 

Could you indicate these paths? 
One requirement is that no path should go round 

Peter's house. 



Brain-Twisting Arrangements 
and Permutations 

Pranks of Guards 

The following is an ancient problem having many 
modifications. We'll discuss one of them. 

Figure 165 

Figure 166 

Jacob's garden Peter's garden Paul s garden 
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The commander's tent is guarded by sentries housed 
in eight other tents (Fig. 166). Initially in each of the 
tents there were three sentries. Later the sentries were 
allowed to visit each other and their chief didn't punish 
them when, having come to a tent, he found more than 
three soldiers in it and less than three in the others. He 
only checked the total number of soldiers in each row 
of tents, thus if the total number of soldiers in the three 
tents of each row was nine, the chief thought that all of 
the guards were present. 

Having noticed this the soldiers found a way to 
outwit their chief. One night four guards left and this 
passed unnoticed. On the next night six left and got 
away with that. On later night the guards began to 
invite guests: at one time four, at another eight, and at 
yet another, a full dozen guests. And all of these pranks 
passed unnoticed as the chief always found nine 
soldiers in the three tents of each row. 

How did they manage to do so? 

Ten Castles 

In olden days a prince desired to have 10 castles built. 
They should be connected by walls arranged on five 
straight lines with four castles on each. The architect 
submitted the plan given in Fig. 167. 

But the prince wasn't satisfied with the plan because 
the arrangement made all the castles vulnerable to 
outside attack, but he wished there to be at least one or 

Figure 167 
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two castles protected within the walls. The architect 
objected that it was impossible to satisfy the condition 
whilst the 10 castles had to be arranged four in each of 
the five walls. But the prince insisted. 

After a lot of head-scratching the architect in the 
long run came up with an answer. 

Maybe you'll be happy enough, too, to arrange the 
10 castles and the frve interconnecting walls so as to 
meet the above conditions? 

An Orchard 

There were 49 trees in an orchard, arranged as shown 
in Fig. 168. The gardener decided that the orchard was 
too crowded, so he wanted to clear the garden of excess 
trees to make flowerbeds. He called in a workman and 
ordered: "Leave only five rows of trees, with four trees 
in each row. Cut down the rest and take them home for 
firewood as your payment for the work". 

When the tree felling had finished the gardener came 

Figure ! 68 
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Figure 169 

Brain-Twisting Arrangements 
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to see the result. Much to his dismay he found the 
orchard almost devastated: instead of the 20 trees the 
workman had left only 10 and cut 39. 

"Why have you cut so many ? You were told to leave 
20 trees!" the gardener was enraged. 

"No. You only told me to leave five rows with four 
trees in each. I did so. Just look." 

The gardener was amazed to find that the 10 
remaining trees formed five rows with four trees in 
each. His order had been fulfilled literally, and still... 
39 trees had been cut down instead of 29. 

How had the workman managed it? 

The White Mouse 

All of the 13 mice in the figure are doomed to be eaten 
by the cat. But the cat wants to consume them in 
a certain order. The cat eats one mouse and then 
counts around the circle in the direction in which the 
mice are looking. When it gets to 13 it eats the mouse 
and starts counting again, missing out the eaten mice. 
Which mouse must it start from for the white mouse 

to be eaten last? 



Answers 

In Six Rows 

The requirement of the problem is easily met if the people are arranged in the form of 
a hexagon as shown in the figure. 

Figure 170 

In Nine Squares 

You don't touch the forbidden coin but shift the whole of the lower row upwards 
(Fig. 171). The arrangement has changed but the requirement of the problem is satis-
fied: the coin with the match hasn't been shifted. 

Figure 171 

Coin Exchange 
The following is the series of moves required (the number is the coin, the letter is the 
cell to which the coin is shifted): 

2 - e 15—i 2 - d 1 0 - a 
15—b 3 - g 1 - h 3 - e 
10-d 2 0 - c 1 0 - e 1 5 - b 
2 - h 1 - e 2 - j 2 - d 

2 0 - e 3 - a 15 - i 3 - j 
10 - j 1 5 - b 3 - g 2 - i 

It's impossible to solve the problem in less than 24 moves. 
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0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Two Draughtsmen 

One draughtsman may be placed at any of the 64 squares of the board, i.e. in 64 
ways, then the second one can occupy any of the 63 remaining squares. Hence for 
each of the 64 positions of the first draughtsman you can find 63 positions for the 
second one. Consequently, the total number of the various permutations of the two 
draughtsmen is: 

64 x 63 = 4,032. 

Flies on a Curtain 
The arrows in Fig. 173 indicate which flies must be shifted and in which direction. 

Figure 172 

Nine Zeros 

The problem is solved as shown in Fig. 172. 

Thirty Six Zeros 

As it's required to cross out 12 of the 36 zeros, we'll have 36—12, i.e. 24 zeros with 
four zeros in each row. 

The remaining zeros will be arranged as follows: 
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Figure 173 
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Eight Letters 

The least number of moves is 23. These are as follows: 

A B F E C A B F E C A B D H G A B D H G D E F 

Squirrels and Rabbits 

Shown below is the shortest way of the rearrangement The first number in each pair 
indicates from which stump an animal should leap and the second number the 
destination stump (for example, 1-5 means that a squirrel has leapt from the first 
stump to the fifth). The total number of leaps required is 16, namely: 

1-5; 3-7; 7-1; 5-6; 3-7; 6-2; 8-4; 7-1; 
8-4; 4-3; 6-2; 2-8; 1-5; 5-6; 2-8; 4-3. 

Cottage Problem 
The exchange can be achieved in no less than 17 moves. The pieces of furniture are 
moved in the following sequence: 

1. Piano 7. Piano 13. Bed 
2. Bookcase 8. Sideboard 14. Sideboard 
3. Sideboard 9. Bookcase 15. Table 
4. Piano 10. Table 16. Bookcase 
5. Table 11. Sideboard 17. Piano 
6. Bed 12. Piano 

Three Paths 

The three nonintersecting paths are shown in Fig. 174. 



174-175 Answers 

Peter's house 

Jacob's garden Peter's garden Paul's garden 

Pranks of Guards 

The problem is easily solved by the following reasoning. For four guards to be able to 
be absent unnoticed by the chief it's necessary that in rows / and III (Fig. 175«) there 
are nine soldiers in each. As the total number is 24 — 4 = 20, then in row II there will 

Figure 175 IV V VI 
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d e f 

be 20 - 18 = 2, i.e. one soldier in the left tent of this row and one in the right. In the 
same way we find that there must be one soldier in the upper tent of row V and one 
in the lower. It is now clear that the corner tents must house four guards. Accordingly, 
the required arrangement for four soldiers to be absent is as shown in Fig. 175b. 

A similar argument yields the desired arrangement for six soldiers to be absent 
(Fig. 175c). 

For four guests the arrangement is shown in Fig. 175d; 
For eight guests in Fig. 175e; 
And finally, Fig. 175/ shows the arrangement for 12 guests. 
It is easy to see that under these conditions no more than six soldiers can be absent 

with impunity and no more than 12 guests can visit the guards. 

Ten Castles 

Figure 176 (on the left) shows the arrangement with two castles protected from the 
external attack. You see that the 10 castles are disposed as required in the problem: 

Figure 174 
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Figure 176 

four on each of the five lines. On the right of Fig. 176, four more solutions to the 
problem are given. 

An Orchard 

The uncut trees were disposed as given in Fig. 177. These form five straight rows with 
four trees in each. 

Figure ill 
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The White Mouse 

The cat should first eat the mouse at which it is looking, i. e. the sixth one from the 
white. Try it by beginning with this mouse and cross out every 13th mouse. You'll see 
that the white mouse will be the last to be crossed out. 

Answers 



Skilful Cutting and Connecting 

With Three Straight Lines 

Cut Fig. 178 into seven sections with three straight 
lines so that there is one animal in each section. 

Into Four Parts 

This ground area (Fig. 179) consists of five equal 
squares. Draw the area on a sheet of paper. Can you 
cut it into four identical areas, not five? 

To Make a Circle 

A joiner was given two pieces of rare wood with holes 
in them (as shown) and was asked to make them into 
a perfectly circular solid board for a table so that no 
scraps of the expensive wood would be left over. All the 
wood must be used. 

The joiner was a master craftsman but the order was 
not easy. He scratched his head for a long time, tried 
one way and then another, and eventually hit upon an 
idea as to how to execute his order. 

Perhaps you'll twig it, too? Cut out two paper 
figures, exactly like the ones in Fig. 180 (only larger) 
and use them to arrive at the solution. 

A Clock Dial 

The clock dial in Fig. 181 must be cut into six parts of 
any shape so that the sum of numbers in each section 

Figure 178 

Figure 179 

Figure 180 

7 
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would be the same. 
The aim of the problem is not so much to test your 

resourcefulness but the quickness of your thought. 

Crescent 

The crescent (Fig. 182) must be divided into six parts 
by only two straight lines. 

To Divide a Comma 
In the accompanying figure you will see a wide comma. 
It's constructed very simply: a semicircle is drawn on 
the straight line AB around point C, then two 
semicircles are drawn around the middles of the 
segments AC and CB, one on the right, the other on 
the left. 

You must cut the figure into two identical parts by 
a single curved line. 

The figure is also interesting in that two such figures 
make up a circle. How? 

To Develop a Cube 

If you cut a cardboard cube along edges so that it 
could be unfolded and placed with all six squares on 
a table, you'll get a figure like one of those shown in 
Fig. 184. 

Figure 184 

It's curious, but how many different figures can be 
obtained in this way? In other words, in how many 
ways can a cube be developed? 

I warn the impatient reader that there are no less 
than 10 different ways. 

To Make Up a Square 

Can you make up a square from five pieces of paper 
like the ones shown in Fig. 185a? 

If you've already found the solution, try and make up 

Figure 182 

178-179 
Figure 181 

Figure 183 
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a square from five identical triangles like the ones you 
have just used (the base is twice as long as the height). 
You may cut one of the triangles into two parts but the 
other four must be used as they are (Fig. 185b). 

Figure 185 
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Into Four Parts 

The dash lines show the way in which the ground must be divided (Fig. 187). 

Figure 187 

To Make a Circle 

The joiner has cut each of the boards into four parts as shown on the left of Fig. 188. 
From the four smaller parts he makes up a smaller inner circle to which he glues the 
other four parts. He thus got an excellent board for a round table. 

Figure 188 

Figure 186 

180-181 
With Three Straight Lines 

The problem is solved as follows: 



Answers 

A Clock Dial 
As the sum of all the numbers on the face of the dial is 78, the sum of each of the six 
sections mast be 78-f-6 = 13. This facilitates finding the solution that is shown in 
Fig. 189. 

Figure 189 J ^ T j Z ^ K . 

Crescent 
The answer is shown in the accompanying figure. The resultant six parts are 
numbered. 

Figure 190 

To Divide a Comma 

The solution is seen in the accompanying drawing. Both parts of the comma are 
equal, as they are made up of equal parts. The figure shows how the circle is made of 
two commas, one white and one black. 

To Develop a Cube 
All the 10 possible solutions are shown in Fig. 192. The first and fifth figures can be 
turned upside down and this will add two more involutes, increasing the total to 12. 

Figure 191 
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Figure 192 

Answers 

To Make Up a Square 

The solution of the first problem is shown in Fig. 193a. The case of triangles is given 
in Fig. 193b. One triangle is first cut up as shown. 

Figure 193 
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A Pond 

There is a square pond (Fig. 194) with four old oaks 
growing at its corners. It is required to expand the 

pond so that its surface area be doubled, the square 
shape being retained and the old oaks not destroyed or 
swamped. 

A Parquet Maker 

When cutting wooden squares a parquet maker tested 
them thus: he compared the lengths of sides and if all 
four sides were equal he considered the square to be 
cut correctly. 

Is this test reliable? 

Another Parquet Maker 

Another parquet maker checked his work otherwise: he 
measured diagonals not the sides. If both diagonals 
were equal, he considered the square to be true. 

Are you of the same opinion? 

Yet Another Parquet Maker 

Yet another worker checked his squares by seeing if all 
the four sections into which the diagonals divide each 
other (Fig. 195) are equal to each other. In his opinion 
it proved that the rectangle cut was square. 

What do you make of that? 

Figure 194 

Figure 195 
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A Seamstress 

A seamstress wants to cut out a piece of linen in the 
form of a square. Having cut several pieces she checks 
her work by bending each piece along its diagonal to 
see if the edges coincide. If they do, she thinks, each 
piece is perfectly square. 

Is she right? 

Another Seamstress 

Another seamstress wasn't satisfied with the check her 
companion used. She bent her piece first along one 
diagonal and then after smoothing the linen she bent it 
along the other. It was only if the edges of the piece 
coincided in both cases that she thought the square was 
correct. 

What would you say about this test? 

A Joiner's Problem 
A young joiner has the five-sided board shown in 
Fig. 196. You see that it seems to be composed of 
a square glued to a triangle that is four times smaller 
than the square. The joiner is asked to make the board 
into a square, taking nothing away from the board and 
adding nothing to it. This, of course, involves cutting it 
into sections. Our young joiner is just going to do so, 
but he wants to cut the board along no more than two 
straight lines. 

Is it possible, using two lines, to cut the figure into 
parts from which the joiner could make a square? And 
if the answer is "yes" how does he go about it? 

184-185 

Figure 196 
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A Pond 

It is possible to double the surface area of the pond with the square shape retained 
and the oaks intact. The accompanying figure shows how this can be done. You can 

easily see that the new area is twice the earlier, just draw in the diagonals of the 
earlier pond and count the resultant triangles. 

n 

A Parquet Maker 

The test is not sufficient. Some quadrilaterals that are by no means squares will pass. 
Figure 198 gives examples of quadrilaterals whose sides are equal but whose angles 
are not right (rhombs). 

Figure 198 

Another Parquet Maker 

This test is as unreliable as the first one. To be sure, a square's diagonals are equal 
but not every quadrilateral with equal diagonals is a square. It is clearly seen from the 
examples in Fig. 199. 

The parquet makers should apply both tests to each quadrilateral produced. One 
could then be sure that the work has been done correctly. Any rhomb with equal 
diagonals is bound to be a square. 

Figure 197 

Figure 199 
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Yet Another Parquet Maker 

The test might only show that the quadrilateral in question has right angles, i. e. that 
it is a rectangle. But it fails to verify that all its sides are equal, as is seen in Fig. 200. 

Figure 200 

A Seamstress 

The test is far from adequate. Figure 201 presents several quadrilaterals whose edges 
coincide when bent along the diagonals, yet they are not squares. You see how far 

Figure 201 

a quadrilateral may differ from a square and still satisfy this test. 
The test only shows that the figure is symmetrical, no more. 

Another Seamstress 

This test is no better than the previous one. You could cut any number of 
quadrilaterals out of paper that would pass this test, although they are by no means 
squares. The examples in Fig. 202 all have equal sides (these are rhombs) but the 

Figure 202 

angles are not right-hence these are not squares. 
In order to make really sure that the pieces cut out are squares, the seamstress 

should additionally check if the diagonals (or angles) were equal. 

A Joiner's Problem 

One line should go from the vertex c to the middle of side de, the other, from the last 
point to vertex a. A square can be made up from the three pieces 1, 2, and 3 as shown 
in Figure 203. c 

Figure 203 

Answers 



Problems on Manual Work 

Navvies 

Five navvies excavate a 5-metre ditch in 5 hours. How 
many navvies are required to dig 100 metres of ditch in 
100 hours? 

Lumberjacks 

A lumberjack cuts a 5-metre log into 1-metre lengths. If 
each cut takes 1.5 minutes, how long will it take to cut 
the log? 

Joiner and Carpenters 

A team of six carpenters and a joiner did a job. Each 
carpenter earned 20 roubles, but the joiner got 
3 roubles more than the average earnings of all the 
seven team members. 

How much did the joiner earn? 

Five Pieces of Chain 

A blacksmith was given five pieces of chain with three 
links in each (Fig. 204) and asked to connect them. 

The blacksmith opened and reclosed four links. 
But is it not possible to do the same job with fewer 

links tampered with? 

How Many Vehicles? 
A shop repaired 40 vehicles (cars and motocycles) in 
a month. The total number of wheels on the vehicles 
was 100. 

How many cars and motocycles were repaired? 

Potato Peeling 
Two people peeled 400 potatoes. One completed three 
pieces a minute, the other two. The second worked 25 
minutes longer than the first. 

How long did each work? 

Two Workers 

Two workers can perform a job in seven days provided 
the second starts two days later than the first. If the job 

Figure 204 
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were done by each of them separately, then the first 
would take four days more than the second. 

How many days would each of them take to perform 
the job individually? 

The problem permits of a purely arithmetic solution 
without any need to manipulate fractions. 

Typing a Report 

Two typists type a report. The more experienced one 
could finish the work in 2 hours, the other in 3 hours. 

How long will it take them to do the job if they 
divide it so as to spend the least time possible? 

Problems of this kind are normally solved according 
to the procedure of the famous problem on reservoirs. 
Thus in our problem they would find the share of the 
work done by each typist, add up the fractions and 
divide unity by the resultant sum. 

Could you think of some other procedure? 

Weighing Flour 

A salesman has to weigh five bags of flour. His problem 
was that the shop had a balance but some weights were 
missing so that it was impossible to weigh from 50 to 
100 kilogrammes. But the bags weighed 50-60 
kilogrammes each. 

The man began to weigh the bags in pairs. Of the 
five bags it is possible to make 10 different pairs, so he 
had to make 10 weighings. He produced the series of 
numbers given below in the ascending order: 
110 kg, 112 kg, 113 kg, 114 kg, 115 kg, 
116 kg, 117 kg, 118 kg, 120 kg, 121kg. 

How much did each bag weigh? 



Answers 

vJ' Navvies 

It's easy to swallow the bait and think that if five navvies dug 5 metres of the ditch in 
5 hours, then it would take 100 people to dig 100 metres in 100 hours. But that 
argument is absolutely wrong, since the same five navvies would be required, no more. 

In fact, five navvies dig 5 metres in 5 hours, so they can do 1 metre in 1 hour, and 
in 100 hours-100 metres. 

Lumberjacks 

The common answer would be 1.5 x 5, i.e. 7.5 minutes. That is because many people 
often forget that the last cut will give two 1-metre lengths. Thus, it's only necessary to 
cut the log four times, not five, and this will take 1.5 x 4 = 6 minutes. 

Joiner and Carpenters 

We can easily find the average earnings of a member of the team by dividing the extra 
3 roubles between the six carpenters. Accordingly, we should add 50 koppecks * to the 
20 roubles earned by each carpenter to arrive at the average earnings of each of the 
seven workers. 

We'll thus obtain that the joiner earned 20 roubles 50 kopecks plus 3 roubles, i.e. 
23 roubles 50 kopecks. 

Five Pieces of Chain 
It's only necessary to open the three links of one of the pieces and to use the links 
obtained to connect the other four pieces. 

How Many Vehicles? 
If all the 40 vehicles were motocycles, the total number of wheels would be 80, i. e. by 
20 less than in reality. Replacing a single motocycle by a car increases the total 
number of wheels by two and the difference decreases by two. Clearly, 10 such 
replacements are required for the difference to be reduced to zero. So, there were 10 
cars and 30 motocycles. 

In fact: 10x 4 + 30x 2 = 100. 

Potato Peeling 
During the 25 extra minutes the second peeler put out 2 x 25 = 50 pieces. We subtract 
50 from 400 to find that if the two had worked an equal time they would have yielded 
350 potatoes. As their production per minute was 2 + 3 = 5 pieces, then by dividing 
350 by 5 we find that each would have worked for 70 minutes. 

* 1 rouble = 100 kopecks. 
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This is the actual duration of work of the first peeler, the second one worked for 

70 + 25 = 95 minutes. 
In fact: 3 x 70 + 2 x 95 = 400. 

Two Workers 

If each worker performs half the job individually, the first would need two days more 
than the second (because the difference in duration for the whole job is four days). As 
in our case the difference is just two days when the two work together, it is then 
obvious that during the seven-day period the first worker performs half the job, 
whereas the second does his half in five days. Thus, the first worker would be able to 
do the whole job himself in 14 days and the second in 10 days. 

Typing a Report 

A nonstereotyped approach is as follows. First, we'll ask the question: if the typists are 
to finish the work simultaneously, how should they divide it? (Clearly, it's only under 
this condition, i. e. without any time wasted, that the work will be done in the shortest 
time possible). As the more experienced typist types 1.5 times faster it's obvious that 
her share should be 1.5 times larger than that of the other if both are to stop 
simultaneously. It follows that the first typist should take over three fifths of the 
report, and accordingly the second two fifths. 

As a matter of fact the problem is nearly solved. It only remains to find the time 
taken by the first typist to do her share of the job. We know she can do the whole job 
in 2 hours, hence the three fifths of the job will be carried out in 2 x 3/5 = 11/5 hours. 
During exactly this time the second typist will finish her share of the job. 

Thus, the shortest time required for both typists to type the report is 1 hour and 12 
minutes. 

Weighing Flour 

To begin with, the salesman summed up the 10 numbers. The resultant sum (1,156 
kilogrammes) is nothing but the fourfold weight of the bags: the weight of each bag 
enters the sum four times. If we divide ,by four, we'll find that the total weight of the 
five bags is 289 kilogrammes. 

We'll now for convenience assign numbers to the bags in ascending order of their 
weights. The lightest bag will be No. 1, the second No. 2, etc., and the heaviest, 
No. 5. It will be seen that in the series of quantities: 110 kg, 112 kg, 113 kg, 114 kg, 
115 kg, 116 kg, 117 kg, 118 kg, 120 kg, and 121 kg, the first quantity is the sum of the 
weights of the two lightest bags, No. 1 and No. 2; the second quantity, of No. 1 and 
No. 3. The last quantity (121) is the sum of the two heaviest bags, No. 4 and No. 5, 
and the penultimate, of No. 3 and No. 5. Thus: 

No. 1 and No. 2 give 110 kg 
No. 1 and No. 3 » 112 kg 
No. 3 and No. 5 » 120 kg 
No. 4 and No. 5 » 121 kg 



We can thus easily find the sum of the weights of No. 1, No. 2, No. 4, and No. 5: 
110 kg + 121 kg = 231 kg. Subtracting this number from the total weight of the bags 
(289 kg) gives the weight of No. 3, namely-58 kg. 

Further, from the sum of No. 1 and No. 3, i.e. from 112 kg, we subtract the 
now-known weight of No. 3 to arrive at the weight of No. 1: 112 — 58 = 54 kg. 

In exactly the same way we find the weight of No. 2 by subtracting 54 kg from 
110 kg, i.e. from the sum of No. 1 and No. 2. The weight of No. 2 will thus be 110 — 
- 54 = 56 kg. 

Now from 120 kg (No. 3 + No. 5) we subtract the weight of No. 3 (58 kg) to get 
the weight of No. 5: 120 - 58 = 62 kg. 

It remains to determine the weight of No. 4, knowing the sum of No. 4 and No. 5 
(121 kg). Subtracting 62 from 121 gives that No. 4 weighs 59 kg. 

The weights of the bags are thus 
54 kg, 56 kg, 58 kg, 59 kg, 62 kg. 
We have solved the problem without any resort to equations. 

Answers 
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and Prices 

How Much are the Lemons? 

Three dozen lemons cost as many roubles as one can 
have lemons for 16 roubles. 

How much does a dozen lemons cost? 

Raincoat, Hat and Overshoes 

A raincoat, hat and overshoes are bought for 140 
roubles. The raincoat costs 90 roubles more than the 
hat, and the hat and the raincoat together cost 120 
roubles more than the overshoes. 

How much does each thing cost separately? 
Use mental arithmetic only, no equations. 

Purchases 

When I went out shopping I had in my purse 15 
roubles in 1 rouble pieces and 20 kopeck coins. When 
back home I had as many 1 rouble pieces as there had 
been 20 kopeck coins initially, and as many 20 kopeck 
coins as I had had 1 rouble pieces initially, my purse 
only containing a third of the initial sum 

How much had I spent? 

Buying Fruit 

One hundred pieces of various fruit can be bought for 
five roubles. The prices are: water-melons, 50 kopecks 
a piece; apples, 10 kopecks a piece; and plums, 10 
kopecks a ten. 

How many fruit of each kind are bought? 

Prices Up and Down 
The price of a product first went up 10%, and then 
down 10%. 

When was the price lower, initially or finally? 

Six barrels of beer were shipped to a shop. The 
numbers in Fig. 205 show the numbers of litres in each 
barrel. Two customers bought five of the six barrels, 

Barrels 
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one bought two and the other bought three. Given that 
the second bought twice as much beer as the first, 
which barrel wasn't sold? 

Selling Eggs 
At first sight, this ancient problem might seem incon-
gruous as it involves selling half an egg. Nevertheless, it's 
quite solvable. 

A peasant woman came to a market to sell some 
eggs. A first buyer took half her eggs plus 1/2 of an egg. 
A second buyer bought half the remaining eggs plus 
another 1/2 of an egg. A third only bought one egg, 
which was the last. 

How many eggs were there initially? 

Benediktov's Problem 

Many experts in Russian literature don't suspect that 
the poet V. G. Benediktov (1807-1873) was also the 
author of the first collection of mathematical 
brain-twisters in the language. The collection wasn't 
printed and remained in a manuscript form to be found 
only in 1924. I had the opportunity to get acquainted 
with the manuscript and even established, based on one 
of the problems, the year it was compiled, namely 1869 
(the manuscript wasn't dated). The problem given 
below has been treated by the poet and named "An 
Ingeneous Solution of a Difficult Problem". 

"An egg seller sent her three daughters to the market 
with ninety eggs. She gave ten to the eldest and 

Figure 205 
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cleverest daughter, thirty to the second, and fifty to the 
third, saying: 

'You should agree beforehand on the price at which 
you'll sell the eggs and stick to it. All of you should 
adhere to this price but I hope that the eldest daughter 
who is so bright will nevertheless be able to get as 
much for her ten eggs as the second daughter will 
receive for her thirty and she will teach the second 
sister how to get as much for her thirty as the youngest 
sister will get for her fifty eggs. Let the takings and 
prices be the same for the three of you. Furthermore, 
I'd like you to sell the eggs so that on average you will 
receive no less than 10 kopecks for ten, and no less 
than 90 kopecks for the ninety!'" 

Here I interrupt Benediktov's story so that the 
readers could figure it out for themselves how the girls 
went about their business. 



Answers 

1Q ^ How Much are the Lemons? 

We know that the 36 lemons cost as many roubles as they sell lemons for 16 roubles. 
But 36 lemons cost 

36 x (price of one lemon). 

For 16 roubles one can have 
16/(price of one lemon). 

Hence, 
36 x (price of one lemon) = 16/(price of one lemon). 

After some algebra we have 
(price of one lemon) x (price of one lemon) = 16/36. 

Clearly, one lemon costs 4/6 = 2/3 rouble and a dozen lemons cost 2/3 x 12 = 8 
roubles. 

Raincoat, Hat and Overshoes 

If instead of the raincoat, hat, and overshoes only two pairs of overshoes were bought, 
the price would be not 140 roubles, but 120 roubles less. Thus, the two pairs of 
overshoes cost 140— 120 = 20 roubles, hence one pair cost 10 roubles. 

Now we find that the raincoat and the hat together cost 140 — 10 = 130 roubles, the 
raincoat costing 90 roubles more than the hat. We argue as earlier: instead of the 
raincoat and hat we could buy two hats, and we would pay not 130 roubles but 90 
roubles less, i. e. 130 — 90 = 40 roubles. Hence one hat costs 20 roubles. 

Thus, the prices of the things were as follows: the overshoes-10 roubles, the h a t - 2 0 
roubles, and the raincoat-110 roubles. 

Purchases 

Denote the initial number of 1 rouble pieces by x, and the number of 20 kopeck coins 
by y. Then when I went out shopping I had in my purse 

(lOOx + 20y) kopecks. 

Back from my shopping expedition I had 
(lOOy + 20x) kopecks. 

As stated, the latter sum is three times smaller than the former, hence 
3 (100y + 20x) = lOOx 4- 20y. 

Rearranging the expression gives 
x = ly. 

If y = 1, then x = 7. Under this assumption I initially had 7 roubles 20 kopecks 
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which is at variance with the statement of the problem ("about 15 roubles"). 
Let's try y = 2, this gives x = 14. The initial sum is thus 14 roubles 40 kopecks 

which checks well with the problem statement. 
The assumption of y = 3 leads to an overestimation: 21 roubles 60 kopecks. 
In consequence, the only fitting answer is 14 roubles 40 kopecks. When I returned 

back from my shopping excursion I only had two 1 rouble pieces and fourteen 20 
kopeck coin, i. e. 200 + 280 = 480 kopecks, which actually amounts to a third of the 
initial sum (1,440/3 = 480). 

As I spent 1,440 — 480 = 960 kopecks, my purchases had cost 9 roubles 60 kopecks. 

Buying Fruit 

Despite the seeming uncertainty the problem has the only solution: 
Number Cost 

Water melons 1 50 kopecks 
Apples 39 3 roubles 90 kopecks 
Plums 60 60 kopecks 

Total 100 5 roubles 00 kopecks 

Prices Up and Down 

It would be erroneous to consider that the two prices are equal. It's easily shown that 
this is not the case. After the price went up the article cost 110%, or 1.1 of the initial 
price. But after the price went down it amounted to 

1.1 x 0.9 = 0.99, 

i.e. 99% of the initial price. Consequently, the final price was 1% lower than the initial 
one. 

Barrels 

The first customer bought the 15 litre and 18 litre barrels and the second -the 16 litre, 
19 litre and 31 litre barrels. Really, 

15 + 18 = 33 
16+ 19 + 31 = 66, 

i. e. the second customer bought twice as much beer as the first one. The 20 litre barrel 
remained unsold. 

This is the only possible solution as no other combination gives the relationship 
required. 

Selling Eggs 
The problem is worked out backwards from the end. After the second buyer bought 
half the remaining eggs plus 1/2 of an egg, there was only one egg that remained with 
the peasant woman. Accordingly, 1 1/2 eggs was half of what remained after the first 
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sale and so the full number is three eggs. We add 1/2 of an egg to obtain half of what 
the woman had initially. Thus, the woman had brought seven eggs for sale. 

Let's check: 
7/2 = 3 1/2; 3 1/2 + 1/2 = 4; 7 - 4 = 3 
3/2 = 1 1/2; 1 1/2 + 1/2 = 2; 3 - 2 = 1, 

which complies with the conditions of the problem. 

Benediktov's Problem 

We continue the interrupted story: 
"The problem was a very difficult one. The sisters put their heads together on their 

way to the market, the two younger sisters seeking advice of the eldest. The latter gave 
some thought to the matter and said: 

'Sisters, we'll sell the eggs not by the ten, as is the custom here, but by the seven. 
And we'll set a price for the seven we'll stick to as Mother said. Not a kopeck down 
from the set price! The first seven goes for three kopecks, agreed? 

'Dirt-cheap', the second sister said. 
'But', the eldest sister continued, 'we'll raise the price for those eggs that'll remain 

after we have sold the full sevens. I've checked beforehand that there'll be no other egg 
sellers in the market. No one to beat down the price. But when there is demand and 
the supply is dwindling the price rises. So we'll make up for our loss with the 
remaining eggs'. 

'And what will we charge for the remaining eggs?5 the youngest sister asked. 
'Nine kopecks for each egg. Cash down! Those who need eggs badly will pay'. 
'Rather dear,' the second sister noted again. 
'What of i t ? the eldest said, 'the first eggs will have been sold cheaply by the seven. 

One will compensate for the other!' 
"Understandably, the first to go were the fifty eggs of the youngest sister. She 

received 21 kopecks for 7 sevens and one egg remained in her basket. The second one 
sold 4 sevens for 12 kopecks and two eggs remained in her basket. The eldest sister 
sold a seven for 3 kopecks and three eggs remained in her basket. 

"The last six eggs were sold for nine kopecks each. So the eldest got 27 kopecks for 
her three eggs which brought her takings to 30 kopecks. The second sister got 18 
kopecks for her last pair of eggs which when added to the 12 kopecks received earlier 
for her 4 sevens, gave her 30 kopecks as well. The youngest sister got 9 kopecks for 
her single egg and when she added the money to the 21 kopecks for her 7 sevens her 
total was 30 kopecks, too. 

"Thus, the money they got for ten appeared to be equal to the money they got for 
fifty." 



Weight and Weighing 

One Million Times the Same Product 

A product weighs 89.4 grammes. Figure out how many 
tonnes a million of them weigh. 

Honey and Kerosene 

A jar of honey weighs 500 grammes. The same jar filled 
with kerosene weighs 350 grammes. Honey is twice as 
heavy as kerosene. 

What is the weight of the empty jar? 

A Log 

A round log weighs 30 kilogrammes. 
How much would it weigh if it were twice as thick, 

but twice as short? 

Under Water 

Consider a balance on the one pan of which there is 
a boulder that weighs exactly 2 kilogrammes and on 
the other, an iron weight of 2 kilogrammes. I carefully 
immerse the balance in water. 

Will the pans be in equilibrium? 

A Decimal Balance 

A decimal balance weighs 100 kilogrammes of iron 
nails that are balanced by iron weights. 

When submerged, will the balance be in equilibrium? 

A Piece of Soap 

Onto one pan of a balance a piece of soap was put, 
onto the other 3/4 of a same sized piece plus 3/4 
kilogramme. The balance is in equilibrium. 

What is the weight of a whole piece? 
Try and solve the problem mentally, without a pencil 

and paper. 

Cats and Kittens 

The accompanying figure shows that the four cats and 
three kittens together weigh 15 kilogrammes and that 
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Figure 207 

three cats and four kittens weigh 13 kilogrammes. All 
the cats have the same weight, so do the kittens. 

How much does one cat weigh? And a kitten? 
This problem, too, should be solved mentally. 

Shell and Beads 

Figure 208 shows that three children's blocks and one 
shell are balanced by 12 beads and further that one 
shell is balanced by one block and eight beads. 

How many beads should be placed on the vacant 
pan for the shell on the other pan to be balanced? 

Fruit 

A further problem of the same kind. It is seen in Fig. 
209 that three apples and one pear weigh as much as 
10 peaches, but six peaches and one apple weigh as 
much as one pear. 

How many peaches are required to balance one 
pear? 

How Many Glasses? 

You see in Fig. 210 that a bottle and a glass are 
balanced by a jug, the bottle is balanced by a glass and 
a saucer, and two jugs are balanced by three saucers. 

How many glasses should be placed on the vacant 
pan for the bottle to be balanced? 

With a Weight and a Hammer 

It's required to weigh out 2 kilogrammes of sugar into 
200-gramme packets. There is, however, only one 

Figure 208 

Figure 209 



Weight and Weighing 

500-gramme weight and hammer that weighs 900 
grammes. 

How should one go about it using the weight and the 
hammer? 

Archimedes's Problem 

The most ancient of brain-twisters pertaining to 
weighing is undoubtedly the one the tyrant of Syracuse 
Hieron gave to the famous mathematician Archimedes. 

The legend has it that Hieron entrusted a craftsman 
to manufacture a crown for a statue and ordered to 
give him the required amount of gold and silver. When 
it was ready, the crown weighed as much as the initial 
amounts of gold and silver had originally weighed 
together, but the craftsman was alleged to have stolen 
some of the gold having replaced it by silver. 

Hieron called in Archimedes and asked him to 
determine how much gold and silver respectively the. 
crown contained. 

Archimedes solved the problem proceeding from the 
fact that in water pure gold loses one twentieth of its 
weight, and silver one tenth. 

If you want to try your hand at the problem suppose 
that the craftsman was given 8 kilogrammes of gold 
and 2 kilogrammes of silver and when Archimedes 
weighed the crown under water the result was 9 1/4 
kilogrammes, not 10 kilogrammes. Given that the 
crown was made of solid metal, without any voids, how 
much gold had the craftsman stolen? 

200-201 
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One Million Times the Same Product 

The mental arithmetic here is as follows. We must multiply 89.4 grammes by one 
million, i.e. by one thousand thousands. 

We can do the multiplication in two steps: 89.4 x 1,000 = 89.4 kilogrammes because 
the kilogramme is 1,000 times larger than the gramme. Then, 89.4 kilogrammes x 
x 1,000 = 89.4 tonnes, because the tonne is 1,000 times larger than the kilogramme. 

The weight we seek is thus 89.4 tonnes. 

Honey and Kerosene 
Since honey is twice as heavy as kerosene, the difference in weight (500 — 350= 150 
grammes) is the weight of the kerosene in the volume of the jar (the jar of honey 
weighs as much as a jar containing a double aijiount of kerosene). Hence we 
determine the weight of the jar: 3 5 0 - 150 = 200 grammes. Really: 500 - 200 = 300 
grammes, i.e. the honey is two times heavier than the same amount of kerosene. 

A Log 

A common answer is that a log, whose thickness has increased twice, and length 
decreased twice, should be the same weight. This is not so, however. Doubling the 
diameter increases the volume of a round log fourfold, but halving its length halves its 
volume. The net result is that the final log is twice as heavy as the initial one, i. e. it 
weighs 60 kilogrammes. 

Under Water 

Each immersed body becomes lighter by the weight of the water displaced by it. This 
law, discovered by Archimedes, will help us to answer the problem. 

The 2-kg boulder has a larger volume than the 2-kg iron weight because the 
material of the boulder (granite) is lighter than iron. Accordingly, the boulder will 
displace a larger volume of water than the weight and, according to Archimedes's 
principle, loses more than the weight. The weight will thus outweigh the boulder 
under water. 

Decimal Balance 

When immersed in water, an iron object loses one eighth of its weight.* Thus both the 
nails and the weights will when immersed have only 7/8 of their former weight. Since 
the weights were 10 times lighter than the nails before immersion and they continue to 
be 10 times lighter after immersion, the equilibrium will not be disturbed. 

* The figure wasn't given in the statement of the problem as the 
exact share of the weight lost is immaterial here. 
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A Piece of Soap 

Three quarters of a piece of soap plus 3/4 kilogrammes weigh as much as the whole 
piece. But a whole piece is 3/4 plus 1/4, hence 1/4 of a piece weighs 3/4 kilogrammes 
and the whole piece weighs four times as much as 3/4 kilogrammes, i.e. 
3 kilogrammes. 

Cats and Kittens 

A comparison of both weighings shows that replacing a cat by a kitten reduces the 
weight by 2 kilogrammes. It follows that a cat is 2 kilogrammes heavier than a kitten. 
With this in mind we in the first weighing replace all the four cats by kittens to obtain 
4 + 3 = 7 kittens that will together weigh not 15 kilogrammes but 2 x 4 = 8 
kilogrammes less. Consequently, the seven kittens weigh 15 — 8 = 7 kilogrammes. 
Hence a kitten weighs 1 kilogramme, and a cat weighs 1 + 2 = 3 kilogrammes. 

Shell and Beads 
Compare the first and second weighings. You'll see that in the first weighing the shell 
can be replaced by one cube and eight beads. We'll then have four cubes and eight 
beads on the left pan balanced by 12 beads. If we now remove eight beads from each 
pan, we won't upset the balance. There'll four cubes now remain on the left pan, and 
four beads on the right. One cube thus weighs the same as one bead. 

We can now work out the weight of the shell: replacing (second weighing) the cube 
on the right pan by a bead gives that the weight of the shell is equal to that of nine 
beads. 

The result can be checked easily. 
In the first weighing, replace the cubes and shell on the left pan by an appropriate 

number of beads. You'll thus obtain 3 + 9 = 12, as required. 

Fruit 

In the first weighing we replace one pear by six peaches and an apple. We may do so 
because the pear weighs as much as the six peaches and apple. We then obtain four 
apples and six peaches on the left pan and 10 peaches on the right. Removing the six 
peaches from each pan gives that the four apples weigh as much as four peaches. 
Accordingly one peach weighs the same as one apple. 

Now it's easy to figure out that a pear weighs the same as seven peaches. 

How Many Glasses? 

The problem has several different solutions. The following is just one of them. 
In the third weighing we replace each jug by a bottle and a glass (we know from the 

first weighing that the balance should remain in equilibrium). We thus find that two 
bottles and two glasses are balanced by three saucers. It thus appears that four glasses 
and two saucers are balanced by three saucers. 

Removing two saucers from each pan shows that four glasses are balanced by one 
saucer. 

Hence one bottle is balanced (compare with the second weighing) by five glasses. 
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*** With a Weight and a Hammer 
The procedure to be followed is like this. First put the hammer on one pan and the 
weight on the other. Then add just enough sugar for the pans to be in equilibrium. It's 
clear that the sugar weighs 900 — 500 = 400 grammes. The operation is performed 
three more times. The remaining sugar weighs 2,000 — (4 x 400) = 400 grammes. 

It is only remains now to halve each of the five 400-gramme packets obtained. It's 
a straightforward exercise: the contents of a 400-gramme packet are divided between 
two packets put on different pans until the balance balances. 

Archimedes's Problem 

If the crown ordered had been made purely of gold, it would have weighed 
10 kilogrammes in air losing when immersed 1/20 part of its weight, i.e. 1/2 
kilogramme. But we know that in fact the crown lost in water 1 0 - 9 1/4 = 3/4 
kilogramme, not 1/2 kilogramme. This was because it contained silver-a metal that in 
water loses 1/10 part of its weight, not 1/20 part. The crown thus contained an amount 
of silver sufficient for it to lose in water 3/4 kilogramme, rather than 1/2 kilogramme, 
i. e. 1 /4 kilogramme more. Suppose in the purely golden crown one kilogramme of gold 
were replaced by silver, the crown would when immersed lose another 1/10-1/20 = 1/20 
kilogramme. Consequently, in order to decrease the crown's weight by 1/4 kilogramme 
it was necessary to replace with silver as many kilogrammes of gold as there were 
1/20ths in 1/4: 1/4-4-1/20 = 5. So, the crown contained 5 kilogrammes of silver and 
5 kilogrammes of gold instead of the 2 kilogrammes of silver and the 8 kilogrammes 
of gold the craftsman was given. Thus, 3 kilogrammes of gold had been stolen and 
replaced by silver. 



Problems on Clocks and Watches 

Three Clocks 

In my home there are three clocks. On the 1st of 
January they all showed true time. But only the first 
clock kept perfect time, the second was a minute slow 
a day, and the third was gaining a minute a day. 
Should the clocks continue like this, how long would it 
take for them all to show true time again? 

Two Clocks 

Yesterday I checked my wall clock and alarm clock 
and set them correctly. The wall clock is 2 minutes 
slow an hour, the alarm clock gains 1 minute an hour. 

Today both clocks stopped simultaneously since they 
had run down. The wall clock shows 7 o'clock and the 
alarm clock 8 o'clock. 

At what time yesterday did I set the clocks? 

What Time Is It? 

"Where are you hurrying to?" 
"To catch the 6 o'clock train. How long have I got 

left?" 
"50 minutes ago there were four times more minutes 

after three." 
What does this strange answer mean? What time was 

it? 

When Do the Hands Meet? 

At 12 o'clock one hand is above the other But you 
may have noticed that it is not the only moment when 
the hands meet: they do so several times a day. 

Can you say when all those moments are? 

When are the Hands 
Pointing in Opposite Directions? 
By contrast, at 6 o'clock both hands point in opposite 
directions. But is it only at 6 o'clock that this is the 
case or there are some other such moments during the 
next 12 hours? 
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Figure 212 

Figure 213 



Problems on Clocks and Watches 

On Either Side of Six O'Clock 

I glanced at a clock and noticed that both hands were 
equally separated from 6. What time was it? 

The Minute Hand Ahead of the Hour Hand 

When is the minute hand as far ahead of the hour hand 
as the hour hand in turn is ahead of the figure 12 on 
the face? And maybe there are several such moments 
during the day or none at all? 

Vice Versa 

If you observe a clock attentively, you may have 
noticed the reverse arrangement of the hands as 
compared with that just described: viz. the hour hand 
is as far ahead of the minute one as the minute hand is 
ahead of the figure 12. 

When does this happen? 

Three and Seven 

A clock strikes three. And while it does so 3 seconds 
elapse. How long does it take the clock to strike seven? 

I warn you, just in case, that this isn't a joke, i. e. it's 
not a trick question. 

Ticking 

Lastly, make a small experiment. Put your watch on 
a table, move a few steps aside and listen to the ticking. 
If it's sufficiently quiet in the room, you'll hear that 
your watch sounds, as it were, in intervals: ticks for 
a while, then is silent several seconds, and then starts 
ticking again, and so on. 

Explain! 

Figure 214 
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Three Clocks 

720 days. During this time the second clock will lose 720 minutes, i.e. exactly 12 
hours, and the third clock will have gained exactly the same time. Then all the three 
clocks will show as they did on the 1st of January, i.e. true time. 

The alarm clock is gaining 3 minutes an hour compared with the wall clock. Thus it 
gains an hour, i.e. 60 minutes, every 20 hours. But during these 20 hours the alarm 
clock gains 20 minutes compared with true time. This implies that both clocks were 
set correctly 19 hours 20 minutes before, i.e. at 11.40. 

Between 3 and 6 o'clock there are 180 minutes. The number of minutes to go to 
6 o'clock is easily found by dividing 180 — 50 = 130 minutes into two parts, one of 
which being four times larger than the other. Hence, we'll have to find 1/5 part of 130. 
It was thus 26 minutes to 6 o'clock. 

In fact, 50 minutes before it was 26 + 50 = 76 minutes to go to 6 o'clock. 
Accordingly, 180 — 76 = 104 minutes had passed since 3 o'clock, which is four times 
longer than the time to go to 6 o'clock. 

We start our observation at 12 o'clock, when both hands meet. Since the hour hand 
moves 12 times slower than the minute one (it takes 12 hours to make a complete 
circle, and the minute one 1 hour), the hands cannot, of course, meet during the next 
hour. But after the hour has passed and the hour hand come to the 1 o'clock mark 
(having completed 1/12th of the full circle), the minute hand has made a complete turn 
and is again at 12, i.e. 1/12 part of the circle behind the hour hand. The condition of 
the race is now different since the hour hand moves slower than the minute one, but is 
ahead of the minute hand which has to overtake it. If the race lasted an hour, the 
minute hand would have gone round a complete circle, and the hour hand 1/12 part 
of the circle, i.e. the minute hand would have travelled 11/12 part of the circle more. 
But to overtake the hour hand, the minute hand must only cover 1/12 of the circle 
which is the distance separating them. This requires a period of time that is the same 
fraction of an hour as 1 /12th is a fraction of 11/12 i.e. one eleventh. Thus, the hands 
will meet in 1/11 hour, i.e. in 60/11 = 5 5/11 minutes. 

The hands will thus meet 5 5/11 minutes after the first hour has elapsed, i.e. at 
5 5/11 minutes past one. 

What about the next meeting? 
You should be able to see that it'll occur 1 hour 5 5/11 minutes later, i.e. at 10 

10/11 minutes past 2 o'clock. The next meeting occurs another 1 hour 5 5/11 minutes 
later, i.e. at 16 4/11 minutes past 3 o'clock, and so forth. You may have already 
guessed that, all in all, there'll be 11 such meetings. The 11th comes 1 1/11 x 11 = 12 

Two Clocks 

What Time Is It? 

When Do the Hands Meet? 
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hours after the first one, i.e. at 12 o'clock. In other words, it coincides with the first 
meeting, with future meetings occurring at the previous times. 

Let's list the times of all the meetings: 
1st -5 5/11 minutes past 1 o'clock 
2nd-10 10/11 minutes past 2 o'clock 
3 r d l 6 4/11 minutes past 3 o'clock 
4th-21 9/11 minutes past 4 o'clock 
5th-27 3/11 minutes past 5 o'clock 
6th—32 8/11 minutes past 6 o'clock 
7th 38 2/11 minutes past 7 o'clock 
8th—43 7/11 minutes past 8 o'clock 
9th^49 1/11 minutes past 9 o'clock 

10th-54 6/11 minutes past 10 o'clock 
11th- 12 o'clock 

When Are the Hands Pointing in Opposite Directions? 

The approach here is very much like that in the previous problem. We'll again begin 
at 12 o'clock when both hands meet. We want to find the time required for the minute 
hand to get ahead of the hour hand by exactly half a circle, it is then that the hands 
are pointing in opposite directions. We already know (see the previous problem) that 
during an hour the minute hand gets ahead of the hour hand by 11/12 part of the 
circle. For it to get ahead by only 1/2 a circle takes less than an hour by so rtiany 
times as 1/2 is less than 11/12, i.e. 6/11 part of an hour. Accordingly, after 12 o'clock 
the first time the hands point in opposite directions is in 6/11 hours, or 32 8/11 
minutes. Look at a watch at this time and you'll see that the hands are really pointing 
in opposite directions. 

Is this the only moment when we have such an arrangement? Of course, not. The 
hands are so arranged 32 8/11 minutes after each meeting. We already know that 
during a 12 hour's time there are 11 such meetings. Hence the hands point opposite 
ways 11 times every 12 hours. These moments are easily found: 
12 o'clock + 32 8/11 minutes = 32 8/11 minutes past 12 o'clock 

1 o'clock 5 5/11 minutes + 32 8/11 minutes = 38 2/11 minutes past 1 o'clock 
2 o'clock 10 10/11 minutes + 32 8/11 minutes = 43 7/11 minutes past 2 o'clock 
3 o'clock 16 4/11 minutes + 32 8/11 minutes = 49 1/11 minutes past 3 o'clock, and so 

on. 
I leave it for you to find the remaining moments. 

On Either Side of Six 0'Clock 
The problem is solved like the previous one. Imagine that both hands are at 12 and 
that the hour hand has shifted by a certain part of a circle to be denoted by x. 
Meanwhile the minute hand has turned by 12x. If the time that has passed is less than 
one hour, then to meet the conditions of our problem the minute hand must travel 
a full circle less the angle covered by the hour hand since 12. In other words, 

1 - 12x = x. 

Hence 1 = 13x and x = 1/13 part of a circle. The hour hand covers this fraction of 
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a circle in 12/13 part of an hour, i.e. when it is (12/13) x 60 minutes or 55 5/13 
minutes past 12 o'clock. During the same period of time, the minute hand covers 12 
times more, i.e. 12/13 part of a circle. You see that both hands are equally separated 
from 12, and hence equally separated from 6, too. 

We've found one location of the hands, namely one that comes about in the first 
hour. During the second hour this occurs once more and you can find it arguing along 
the same lines as before, from the relation 

1 — (12x — 1) = x or 2 — 12x - x. 

Hence 2 = 13x and x = 2/13 of a circle. So the hands will be in the right position at 
(1 11/13) x 60 minutes or at 50 10/13 minutes past 1 o'clock. 

The hands will meet our requirement next time when the hour hand has shifted 3/13 
of a circle away from 12, i.e. at 2 10/13 o'clock, and so on. AH told, there are 11 such 
positions, the hands changing sides after 6 o'clock. 

The Minute Hand Ahead of the Hour Hand 

If we start looking at a clock at 12 o'clock exactly, then during the first hour we won't 
see the position desired. Why? Because the hour hand covers 1/12 part of what the 
minute hand does, and hence lags behind the minute hand far more than is required 
for the arrangement we seek. Whichever the angle through which the minute hand 
turns about 12, the hour hand will only be at 1/12 part of that angle, not a half as is 
desired. But suppose an hour has elapsed and the minute hand is at 12 and the hour 
hand at 1, i. e. 1/12 part of a complete turn ahead of the minute hand. Let's see if such 
an arrangement of the hands may come about during the second hour. Suppose that 
the moment has come when the hour hand has turned by a fraction of a circle that 
we'll denote by x. Meanwhile the minute hand has covered 12 times more, i.e. 12x. If 
now we subtract from this a complete turn, the difference 12x — 1 must be twice as 
large as x, i. e. 2x. Thus 12x - 1 = 2x, whence it follows that a complete turn equals 
lOx (because 12x — lOx = 2x). But if lOx equals a complete turn, then lx = 1/10 part 
of a turn. We've thus arrived at the solution: the hour hand must have moved by 1/10 
part of a turn past 12 o'clock. This takes 12/10 hours or 1 hour 12 minutes. The 
minute hand will then be two times farther away from 12, i.e. at 1/5 of a turn away, 
which corresponds to 60/5 = 12 minutes, as required. 

We've found one solution to the problem. But there are other ones and during 
a period of 12 hours the hands come to be arranged in the right way several times. 
We'll try to find the other solutions. 

To find the next time we'd have to wait till 2 o'clock and now the minute hand is at 
12 and the hour hand at 2. Reasoning along the same lines as before we arrive at 

12x — 2 = 2x, 

whence two complete turns are equal to lOx, and hence x = 1/5 part of a complete 
turn. This corresponds to the moment 12/5 = 2 hours 24 minutes. 

I leave it to you to work out further moments. You'll find that the hands arrange 
themselves in the right way at the following 10 instants in time: 

1.12 7.12 
2.24 8.24 

14 - <>75 
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4.48 10.48 
6.00 12.00 

The answers "6.00" and "12.00" might appear wrong, but only at first sight. In fact, 
at 6 o'clock the hour hand is at 6 and the minute one, at 12, i. e. exactly twice as far. 
At 12 o'clock the hour hand is separated from 12 by "zero" and the minute one, if you 
wish, by "double zero" (because double zero is just zero). So, this case, too, meets the 
restrictions of our problem. 

Vice Versa 

After the treatment we have just given, this problem is an easy exercise. Using the 
same arguments as above we can determine that for the first time the required 
arrangement will occur at the time given by 

12x — 1 = x/2. 

Therefore 1 = 11 1/2 x, or x = 2/23 of a turn, i.e. (2/23) x 12 hours or 1 1/23 hours 
after 12 o'clock. Hence at 2 14/23 minutes past 1 o'clock the hands will be arranged 
correctly. The minute hand will then be midway between 12 o'clock mark and 1 1/23 
hours mark, i.e. at 12/23 hours mark, which is exactly 1/23 part of a turn (the hour 
hand will be at 2/23 part of a turn). 

The hands will be arranged in the required manner for the second time at a time 
which can be found from the relation 

12x — 2 = x/2. 

It follows that 2 = 11 1/2 x and x = 4/23, the time we seek is 5 5/23 minutes past 
2 o'clock. 

The third moment is 7 19/23 minutes past 3 o'clock, and so forth. 

Three and Seven 

The commonest answer is "7 seconds". But, as we'll now see, that is wrong. 
When the clock strikes three we have two gaps: (1) between the first and second 

strokes, (2) between the second and third strokes. 
Each gap thus lasts 1 1 / 2 seconds. 
But when the clock strikes seven, there are six such gaps, which gives 9 seconds. 

Ticking 

The enigmatic interruptions in the ticking are only due to fatigue in your ears. From 
time to time your perception of sound becomes blunted for a second or two so that in 
these intervals you won't hear the ticking. This aural fatigue passes off after a short 
while and previous ability to perceive the sound returns with the result that you again 
hear the ticking. Then another fatigue period comes on, and so forth. 



Problems on Transport 

A Plane's Flight 

An aircraft covers the distance from town A to town 
B in 1 hour 20 minutes. However, it takes it 80 minutes 
to get back. 

How could you explain it? 

Two Locomotives 

You may have seen a train driven by two locomotives, 
one at the front and the other at the back. But have 
you ever given any thought as to what happens to the 
couplings between the carriages and to their buffers? 
The front locomotive only pulls the carriages when the 
coupling is taut, in which case the buffers do not press 
against each other and so the rear locomotive cannot 
be pushing. On the other hand, when the rear 
locomotive pushes the train, the buffers press hard 
against each other, which makes the coupling become 
slack, thus rendering the front locomotive useless. 

It turns out that the locomotives cannot be moving 
the train at the same time since only one of them is 
working at a time. 

Why then do they employ two locomotives? 

The Speed of a Train 

You are travelling in a train and want to find its speed, 
could you work it out from the clatter of the wheels? 

Two Trains 

Two trains once left their respective stations for the 
other's station simultaneously. The first arrived at its 
destination an hour after the two trains had met each 
other. The second reached its destination 2 hours 15 
minutes after the same event. 

How many times faster was the first train? 
The problem can be done using mental arithmetic. 

How Does a Train Start From Rest? 

You may have noticed that before making a train move 
forward the engine-driver sometimes makes it push 
back. Explain why. 
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Problems on Transport 

A Race 

Two sailing boats are competing against each other. 
They must sail 24 kilometres there and back in the 
shortest time possible. The first boat covered the whole 
route with a uniform speed of 20 kilometres an hour 
whilst the second boat sailed the outward leg at 16 
kilometres an hour and sailed back at 24 kilometres an 
hour. 

The first boat won, though it would seem that the 
second one should have gained during the return trip 
exactly what it lost out during the first section of the 
route. It should thus have come in at the same time as 
the first boat. 

Why did it lag behind? 

Steaming Up and Down the River 

A steamer makes 20 kilometres an hour downstream 
and 15 kilometres an hour upstream. A trip between 
two towns takes it 5 hours less than the return trip. 

What is the distance between the towns? 
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A Plane's Flight 

Answers 

There is actually nothing to explain here, the aircraft takes the same time to travel 
in both directions. 

The problem has a catch for the inattentive reader who might think that 1 hour 
20 minutes and 80 minutes are different times. Strange as it might seem, many people 
swallow this bait, and people used to adding up are more likely to make it than those 
who aren't The explanation lies in the habit of dealing with metric system of measures 
and money. We are apt to treat "1 hour 20 minutes" and "80 minutes" just like "1 
pound 20 pence" and "80 pence", say, or "1 dollar 20 cents" and "80 cents". So it's 
really a psychological problem. 

The way it works out is as follows. The front locomotive does not take care of the 
whole of the train, but only part of it, about half the carriages. The rest of them are 
pushed by the rear locomotive. The couplings between the first group of carriages are 
taut whilst they are slack between the rear ones which are being pushed buffer to 

You must have noticed that when travelling in a train you feel regular jerks all the 
time which the springs, however good, cannot suppress. These jerks come from the 
wheels being slightly jarred at rail junctions (Fig. 215) and are transferred throughout 
the carriage. 

This nuisance, which is also bad both for the carriages and the tracks, lends itself 
for measuring the speed of the train. You only need to count the number of jerks you 
feel in one minute to find how many rails you've passed. Now you only have to 
multiply this number by the length of a rail to arrive at the distance covered by the 
train during that minute. 

The regulation length of a rail is about 15 metres*. So, multiply the number of 
jerks a minute by 15 and then by 60, divide the result by 1,000 and you'll obtain the 

Two Locomotives 

buffer. 

The Speed of a Train 

Figure 215 

* You may work out the length of a rail by pacing it out, seven 
paces amounting to about 5 metres. 
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number of kilometres covered by the train per hour. So, 

(number of jerks) x 15 x 60 
Hooo = kilometres per hour. 

Two Trains 

The faster train arrives at the meeting point having covered a distance that is larger 
than the distance covered by the slower train by as many times as the speed of the 
faster train is higher than that of the slower train. After the meeting each train has to 
pass the distance that had been covered by the other one. In other words, the faster 
train covered a distance after the meeting that was as many times shorter than the 
distance covered by the slower train as its speed was higher. If we denote the ratio of 
the two speeds by x, then the faster train took x2 times less time than the other to 
cover the distance from the meeting point to the respective station. Hence x2 = 2 1/4 
and x = 1 1/2, i.e. the first train is 1.5 faster than the second train. 

When a train arrives at a station and comes to rest, the couplings between the 
carriages are taut. If the locomotive is to begin to pull the train like this, it would 
have to start the whole of the train from rest at once, which might be too difficult 
a task for it. On the other hand, if the locomotive first pushes the train backwards the 
couplings are no longer taut and the train is started from rest carriage by carriage in 
succession and that is much easier. 

In other words, the engine-driver does what a coachman does sometimes when 
the coach is heavily loaded, i.e. he starts the coach and only then jumps on it, 
otherwise the horse would have to push more load from rest. 

The second boat lagged behind because it travelled at 24 kilometres an hour for 
a shorter time than it travelled at 16 kilometres an hour. In fact, it travelled at 
24 km/h for 24/24 hours, i.e. 1 hour, and at 16 km/h for 24/16 hours, i.e. 1 1/2 hours. 
Therefore, it lost more time on the journey "there" than gained on the way "back". 

Travelling downstream the steamer covers 1 kilometre in 3 minutes whilst travelling 
upstream it covers 1 kilometre in 4 minutes. In the first case, the steamer gains 
1 minute every kilometre, and as the total gain is 5 hours, or 300 minutes, the distance 
between the towns is 300 kilometres. 

How Does a Train Start From Rest? 

A Race 

Steaming Up and Down the River 

Really, 
300 300 ^ _ 

2 0 - 1 5 = 5 . 



Surprising Calculations 

A Glass of Peas 

Of course, you've seen peas many times and held 
a glass in your hand, so that you must know the sizes 
of these things. Imagine a glass filled to the brim with 
dry peas. Thread all the peas on a piece of string like 
beads. 

If the string is stretched, how long would it be 
approximately? 

Water and Wine 

One bottle contains a litre of wine, another a litre of 
water. A spoonful of wine is transferred from the first 
bottle into the second, and then a spoonful of the 
mixture thus obtained is transferred from the second 
bottle into the first one. 

What do we now have, more water in the first 
bottle or more wine in the second? 

A Die 

Figure 216 shows a die, i.e. a cube with from 1 to 
6 points on its six faces. 

Peter bets that if the cube is thrown four times in 
succession, then it is bound to show 1 at least once. 

But Vladimir argues that the 1 will either not appear 
at all with the four throws or it will show more than 
once. 

Who stands the better chance of winning? 

The Yale Lock 
The Yale lock was invented by an American, Linus 
Yale, Jr., in 1865, and has come to be almost 
universally used ever since. Despite its long history, 
some people question the possibility of having a large 
number of versions of the lock. But we need only to 
look at the construction of the lock to see that it 
provides for an almost unlimited number of variations. 

Figure 217 depicts the front view of the Yale lock. 
You see a small circle around the key hole which is the 
end face of the cylinder passing through the depth of 
the lock. The lock opens when the cylmder turns, but 
this is the crunch. The cylinder is secured by five short 
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steel pins (Fig. 217, right). Each pin actually consists of 
two pins, and the cylinder can only be turned when the 
double pins are so arranged that the cut lie at the 
boundary of the cylinder. 

The pins are arranged this way using a key with 
serrated edge. You just insert the key into the keyhole 
and the pins are lifted to the height required for the 
lock to open. 

You can easily see now that the number of the 
various combinations of heights in the lock can be 
exceedingly large. It depends on the number of ways in 
which each pin may be severed. 

Suppose that each pin may be divided into two parts 
in 10 ways only. Try and work out the number of 
combinations possible for the Yale lock. 

How Many Portraits? 

Draw a portrait on a sheet of cardboard and cut it into 
several-say nine-stripes. Next draw other stripes 
showing various parts of the face so that any two 
neighbouring stripes belonging to different portraits 
might be fitted into another portrait without 
interrupting the lines. If you prepare, say, four stripes * 
for each part of the face, you'll have 36 stripes all in all. 

* These could be conveniently glued onto four faces of a square 
block. 

Figure 217 

Figure 218 
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You'll now be able to make up a variety of faces by 
taking nine stripes each time. 

Shops once used to sell ready-made sets of these 
stripes (or blocks) to make up portraits (Fig. 218). It 
was claimed that of 36 stripes one could produce 
a thousand various faces. 

Is it so? 

Abacus 

Perhaps you can use the abacus and can set, say, 25 
pounds, on it. But the problem becomes more difficult 
if you must shift not seven beads, as usual, but 25 
beads. Just try. 

To be sure, nobody is going to do so in practice, but 
the problem is not intractable and the answer is rather 
curious. 

Leaves of a Tree 
If we were to take all the leaves from an old tree, say 
a lime-tree, and place them side by side without any 
breaks, how long approximately would the line be? 
Would it be possible, for example, to encircle a large 
house with it? 

A Million Steps 

You must know what a million is and can estimate the 
length of your step, so that you should easily be able to 
say how far would a million steps take you? More than 
10 kilometres away? Or less? 

Cubic Metre 
A teacher asked his class if they were to put all the 
millimetre cubes contained in cubic metre, on top of 
each other, how high would the column be? 

"It'd be higher than the Eiffel Tower (300 metres)!" 
one student exclaimed. 

"Even higher than Mont Blanc (5 kilometres)!" 
another answered. Which was closer to the truth? 

Whose Count Was Higher? 

Two people kept count of the passers-by on 
a pavement over a period of an hour. One of them 
stood near the gate of a house whilst the other strolled 
to and fro along the pavement. 

Whose count was higher? 
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w A Glass of Peas 

Any guess here will lead you to an error. A calculation, however crude, is in order. 
A dry pea is about 1/2 centimetre across. A centimetre cube contains no less than 

2 x 2 x 2 = 8 peas (if tightly packed, even more). In a glass of capacity 250 cubic 
centimetres there are no less than 8 x 250 = 2,000 peas. When strung these would give 
a line 1/2 x 2,000= 1,000 centimetres long, i.e. 10 metres. 

Water and Wine 

In solving the problem we mustn't overlook the fact that the final volume of liquid in 
the bottles was equal to the initial one, 1 litre. We then argue as follows. Let, after 
both transferrals, the second bottle contain n cubic centimetres of wine, and hence 
(1,000 - n) cubic centimetres of water. Where have the missing n cubic centimetres of 
water gone? Clearly, these are to be found in the first bottle. Accordingly, the wine in 
the end contains as much water as there is wine in the water. 

A Die 

The number of all the possible events after four throws of the die is 6 x 6 x 6 x 6 = 
= 1,296. Suppose that the die has already been thrown once and a 1 appeared. Then 

for the three remaining throws the number of all the possible events, favourable for 
Peter, i.e. the occurrence of any face save for the 1, will be 5 x 5 x 5 = 125. In exactly 
the same way, 125 outcomes favourable for Peter are possible if the 1 appears only in 
the second, only in the third or only in the fourth throw. So, there are 125 + 25 + 
+ 125 + 125 = 500 various possibilities for the 1 to appear once, and only once, in the 
four throws. As to the unfavourable outcomes, there are 1,296 — 500 = 796 since all 
the remaining events are unfavourable. 

Thus, we see that Vladimir stands better chance to win than Peter: 797 against 500. 

The Yale Lock 
It's easily seen that the number of different locks possible is 10 x 10 x 10 x 10 x 10 = 
= 100,000. Each of these locks can only be opened by their own key. It is very 

comforting for the owner of the lock that there are 100,000 versions of the lock and 
key as the lock picker has only one chance in 100,000 to hit upon the right key. 

Our calculation is very rough since it assumes that each pin can only be divided in 
10 different ways. Clearly it could actually be done in a larger number of ways, thus 
notably increasing the number of different locks possible. This shows the advantage of 
the Yale lock. 

How Many Portraits? 

Far more than a thousand. To show this is true make each of the nine sections of 
a portrait with one of the Roman numerals I, II, III, IV, V, VI, VII, VIII and IX. For 
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each section there are four stripes, so we'll mark these by 1, 2, 3 and 4. 

Take stripe 1.1. It may go to II. 1, II.2, II.3, or II.4, i.e. we may have four 
combinations. But since section I may be represented by four stripes (1.1, 1.2, 1.3, or 
1.4) each of which may be connected to II in four ways, then the two upper sections 
I and II may be joined in 4 x 4 = 16 various ways. 

To each of these 16 arrangements we may attach section III in four ways (III.l, 
III.2, III.3, or III.4). Consequently, the first three sections may be combined in 16 x 
x 4 = 64 various ways. 

Reasoning along the same lines, we find that I, II, III, and IV may be arranged in 
64 x 4 = 256 various ways: I, II, III, IV, and V, in 1,024 ways: I, II, III, IV, V, and VI, 
in 4,096 ways, and so forth. Lastly, all the nine sections may be fitted together in 4 x 
x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 = 262,144 ways. Not one thousand but more than 

a quarter of a million different portraits! 
The problem is a very instructive one and it goes to explain why it's only 

exceptionally rarely that we may come across two similar faces. We've just seen that if 
the human face were characterized by as few as nine features with only four versions 
possible, then it would be more than 260,000 various faces in existence. In actuality, 
there are more than nine features and they may vary in more than four ways. In fact, 
if there were 20 features varying in 10 ways each, we would have 1020, or 
100,000,000,000,000,000,000, ways. 

Incidentally, this is many times greater than the world's population. 

Fiaure 219 

Actually, this gives 20 pounds + 4 pounds + 90 pence + 10 pence = 25 pounds. 
The number of beads is 2 + 4 + 9 + 10 = 25. 

Leaves of a Tree 

A small town, let alone a house, could be encircled with the leaves from a tree if we 
arranged them in a line because the line would be about 12 kilometres long! Really, 
the foilage of mature tree includes no less than 200-300 thousand leaves. If for 
definiteness we stick to 250 thousand and take a leaf to be 5 centimetres wide, we'll 
have a line 1,250,000 centimetres long, which is 12,500 metres, or 12.5 kilometres. 

Abacus 

You can set 25 pounds using 25 beads in the following way: 



Answers 

A Million Paces 
A million paces is much more than 10 or even 100 kilometres. If an average pace is 
about 3/4 metre long, then 1,000,000 paces = 750 kilometres. Since the distance from 
Moscow to Leningrad is about 640 kilometres, then a million paces would take farther 
than Leningrad. 

A Cubic Metre 

Both answers are far from the true figure because the column would be 100 times 
higher than the highest mountain on Earth. Indeed, in a cubic metre there are 1,000 x 
x 1,000 x 1,000 = 1 milliard cubic millimetres. If you put one on top of another they 

would form a column 1,000,000,000 millimetres high or 1,000,000 metres, or 1,000 
kilometres. 

Whose Count Was Higher? 
The counts were equal. 

9 
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Instructor and Student 

The story related below is said to have occurred in 
Ancient Greece. The teacher and thinker Protagoras 
(485-410 B.C.) undertook to teach a young man the art 
of being a barrister. The two sides made a deal that the 
student pay the fee just after he had made some 
achievement, i. e. after he had won his first trial. 

The student passed the course and Protagoras was 
waiting for his reward, but the student wouldn't appear 
in a court of justice. What was to be done? To get his 
fee the teacher sued his student. He argued thus: if he 
won the case, the money would be recovered by the 
court, whereas if he lost the case, and hence his student 
won it, the money would again be paid according to 
their deal. 

The student, however, regarded Protagoras's case as 
absolutely hopeless (he seems to have learned 
something from his teacher) and reasoned as follows: if 
the judge decided against him, he wouldn't pay 
according to the terms of the deal since he would have 
lost his first case, whereas if the judge decided in his 
favour, again he wouldn't have to pay since that would 
be the decision of the court. 

The judge was embarrased but after a great deal of 
thought he hit upon an idea and passed a decision that, 
without violating the terms of the deal, gave the teacher 
an opportunity to recover his fee. 

What was the decision? 

The Legacy 

Here is another ancient problem that was a favourite 
with lawyers in Ancient Rome. 

A widow has to share a legacy of 3,500 sestertii with 
her child who was about to be born. According to 
Roman law, if the child were a boy, his mother got 
a half of the son's share but if it were a girl, the mother 
got double the share of the daughter. But it so 
happened that twins were born, a boy an a girl. 

How was the legacy to be shared so that the law was 
completely satisfied? 

Pouring 

Consider of jug containing 4 litres of milk. The milk 
must be divided equally between two friends, but the 
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only containers available are two empty jugs, one of 
which holds 2 1/2 litres and the other holds 1 1/2 litres. 

How can the milk be divided using the three jugs? 
Of course, it'll be necessary to pour the milk from 

one jug into another. But how? 

Two Candles 

The electricity failed in my flat because the fuse had 
blown. I lighted two candles that had been specially 
prepared on my desk, and worked on in their light 
until the failure was set right. 

The next day they wanted to know how long the 
electricity was off. I had not noticed the time when the 
electricity failed and was restored, and I didn't know 
the initial length of the candles. I only knew that the 
candles were the same length but different thicknesses, 
and that the thicker one took 5 hours to burn down 
completely whilst the thinner one took 4 hours. Both 
were new before I had lighted them up. But I didn't 
find the ends of the candles: somebody had thrown 
them away. I was told that the stubs were so small that 
it wouldn't have paid to keep them. 

"But couldn't you remember their lengths?" I asked. 
"They weren't the same. One was four times longer 

than the other". 
All my attempts to squeeze out something more 

failed. I had to be content with the above information 
and try to work out how long the candles had been 
burning. 

How would you handle the problem? 

Three Soldiers 
Three soldiers were having a problem, too. They had to 
cross a river without a bridge. Two boys with a boat 
agreed to help the soldiers but the boat was so small it 
could only support one soldier and even then a soldier 
and a boy couldn't be in the boat for fear of sinking it. 
None of the soldiers could swim. 

It would seem that under these conditions only one 
soldier could cross the river. However, all three soldiers 
were soon on the other bank and returned the boat to 
the boys. 

How did they do it? 



222-223 Predicaments 

A Herd of Cows 

Here is one of the versions of a curious ancient 
problem. 

A father distributed his herd amongst his sons. To 
his eldest he gave one cow plus 1/7 of the remaining 
cows; to his second eldest, two cows plus 1/7 of the 
remaining cows; to the third eldest, three cows plus 1/7 
of the remaining cows; to the fourth eldest, four cows 
and 1/7 of the remaining cows, and so forth. The herd 
was distributed among his sons without remainder. 

How many sons and how many cows were there? 

Square Metre 

When a boy was told for the first time that a square 
metre contains a million square millimetres, he 
wouldn't believe it. 

"Why so many?" he was surprised. "Here I've got 
a sheet of graph paper that is exactly one metre long 
and one metre wide. And are there million millimetre 
squares here? I don't believe it!" 

"Count them then," somebody advised. 
The boy decided to do so and count all the squares. 

He got up early in the morning and set about counting 
them neatly marking each square he had counted with 
a point. 

Each mark took him a second so the going was rather 
fast. He worked like blazes, still do you think he 
managed to make sure that a square metre has 
a million square millimetres on the same day? 

A Hundred Nuts 

A hundred nuts are to be divided between 25 people so 
that nobody gets an even number of nuts. 

Could you do it? 

Dividing Money 

Two people were making porridge on a camp-fire. One 
contributed 200 grammes of cereals, the other 300 
grammes. When the porridge was ready, they were 
joined by a passer-by who partook of their meal and 
paid them 50 pence. 

How should they divide the money? 
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Sharing Apples 

Nine apples must be shared out amongst 12 children so 
that no apple is divided into more than four parts. On 
the face of it the problem is insolvable, but those who 
knows about fractions can solve it easily. 

Once you have solved that one it should be easy to 
handle another problem in the same vein: to divide 
seven apples among 12 boys so that none of the apples 
is divided into more than four parts. 

A Further Apple Problem 

Five friends came to see Peter. Peter's father wanted to 
treat all six boys to apples but there were only five 
apples. What was to be done? Everyone had to have 
his fair share. The apples, of course, had to be cut but 
not into small pieces since Peter's father wouldn't cut 
them into more than three. So, the problem was to 
divide the five apples equally among the six boys so 
that none of the apples was cut into more than three 
pieces. How was Peter's father to get out of his 
predicament? 

One Boat for Three 

Three sports enthusiasts possess one boat. They keep it 
on a chain with three locks so that each of them could 
use it but a stranger couldn't. Each of them has his 
own key but he can still unlock the boat without 
waiting for his friends and their keys. 

How did they arrange it? 

Waiting for a Tram 

Three brothers came to a tram stop. There was no tram 
in sight and the eldest brother suggested they wait. 

"Why wait?" the second brother asked, "we'd better 
go on. When the tram catches up with us, we can jump 
onto it, but by then we'd have got part of the way 
home and thus we'll get there sooner." 

"If we decide to go," the youngest brother objected, 
"then we'd better go backwards not forwards: since 
then we'll meet an oncoming tram sooner and so get 
home sooner." 

Since the brothers couldn't persuade each other, each 
went his own way. The eldest stayed to wait, the second 
went on, and the youngest walked back down the 
route. Which of the three got home sooner? Who was 
the most reasonable? 
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Instructor and Student 

The decision was to decide against Protagoras but give him the right to bring the case 
before the court a second time. After the student had won his first trial, the second 
one should undoubtedly be decided in favour of the instructor. 

The Legacy 

The widow gets 1,000 sestertii, the son 2,000 sestertii, and the daughter 500 sestertii. 
This fulfils Roman law since the widow gets a half of the son's share and double the 
daughter's. 

Pouring 

Seven pourings will be required as is shown in the table: 

Pouring 41 11/21 21/21 

1 11/2 — 2 1/2 
2 11/2 1 1/2 1 
3 3 — 1 
4 3 1 — 
5 1/2 1 2 1/2 
6 1/2 1 1/2 2 
7 2 — 2 

Two Candles 

We'll construct a simple equation. We'll denote the time (in hours) that the candles 
burned by x. Each hour 1/5 part of the original length of the thick candle and 1/4 part 
of the original length of the thin candle burns away. Accordingly, the thick candle's 
stub will be 1 - x/5 of its original length and the thin candle's stub 1 - x/4 of the 
original length. We know that the candles were originally equally long and that the 
four times the length of the thick stub, i.e. 4(1 - x/5), was equal to the length of the 
thin stub (1 - x/4). Thus, 

Solving the equation gives that x = 3 3/4 hours, i. e. the candles had burned for 
3 hours 45 minutes. 

Three Soldiers 

The following six crossings were made: 
1st crossing. Both boys go to the opposite bank and one of them brings the boat back 
to the soldiers (the other stays on the opposite bank). 
1 5 - - 9 7 5 
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2nd crossing. The boy that brought the boat back stays on the bank with the soldiers 
and a soldier crosses the river in the boat. The boat returns with the other boy. 
3d crossing. Both boys cross the river and one of them returns with the boat. 
4th crossing. The second soldier crosses and the boat returns with the boy. 
5th crossing. Like the third one. 
6th crossing. The third soldier crosses and the boat returns with the boy. The boys 
continue on their journey and the three soldiers are on the opposite bank. 

A Herd of Cows 

Arithmetically (i.e. without resorting to equations), the problem should be approached 
from the end. 

The youngest son got as many cows as there were sons for he could not get an 
additional 1/7 of the remaining herd as there were no cows left. 

Further, the next son got one cow less than there were sons, plus 1/7 of the 
remaining cows. Accordingly, the share of the youngest son amounts to 6/7 of the 
share of the remainder. 

It thus follows that the number of cows the youngest son got must be divisible by 
six. 

Let's assume that the youngest son received six cows and see if this assumption is 
good. It follows from the assumption that there were six sons. The fifth son got five 
cows plus 1/7 of seven, i.e. six cows all in all. Thus, the two youngest sons got 6 + 
+ 6 = 1 2 cows, which accounts for 6/7 part of the herd left after the fourth son has 

received his share. The total residue was 12^-6/7 = 14 cows, hence the fourth son got 
4 + 14/7 = 6 cows. 

We'll now work out the residue after the third son got his share: 6 + 6 + 6 = 18 
cows is 6/7 part of the residue. Therefore, the total residue was 18—:—6/7 = 21 cows. 
The third son got 3 + 21/7 = 6 cows. 

In exactly the same way we'll find that the second and first sons also got six cows 
each. 

Our assumption that there were six sons and 36 cows appears to be plausible. 
But are there other solutions? Assume that there were 12 sons, not six. It turns out 

that this assumption is unsuitable. The number 18 won't do either. Other multiples of 
six would be unreasonable since there couldn't be 24 or more sons. 

Square Metre 

No, the boy would not be able to verify the fact in one day. Even if he counted for 24 
hours without interruption, he would have counted only 86,400 squares since there are 
only 86,400 seconds in 24 hours. To count to one million he would have to work for 
almost 12 days without stopping, and for a month if he worked 8 hours a day. 

A Hundred Nuts 

Many people would immediately set about tiying a variety of combinations, but their 
efforts would all be to no avail. If you give some thought to the problem, you'll 
understand the futility of all their efforts since the problem is insolvable. 
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If you could break 100 into 25 odd summands, you would have been able to make 

an odd number of odd numbers add up to 100 which is an even number, and that is 
clearly impossible. 

In fact, we would have to obtain 12 pairs of odd numbers and one more odd 
number. Each pair of odd numbers yields an even number, so 12 pairs of even 
numbers must add up to an even number. If then we add an odd number to the total, 
we'll end up with an odd result. Thus 100 can never be composed of such summands. 

Dividing Money 

Most people answer that the one who contributed the 200 grammes should get 20 
pence and the other 30 pence. This division is not fair. 

We'll argue as follows: 50 pence was paid for one portion of food. 
Since there were three eaters, the cost of the porridge (500 grammes) should be 

1 pound 50 pence. The person who contributed the 200 grammes gave 60 pence worth 
of food in terms of money (since a hundred grammes costs 150 :- 5 = 30 pence). 
However, he also consumed 50 pence worth of porridge, hence he must get back 60 — 
— 50 = 10 pence. 

The contributor of the 300 grammes (i.e. 90 pence in terms of money) must get 
90 - 50 = 40 pence. 

Thus, out of the 50 pence one person should have 10 pence and the other person 40 
pence. 

Sharing Apples 

It's possible to share nine apples equally between 12 children without cutting any 
apple into more than four parts. 

Six apples should be divided in two each to yield 12 halves. The remaining three 
apples should each be divided into four equal parts to yield 12 quarters. Now each 
child receives a half and a quarter. So each will get 3/4 of an apple as required, 
because 9-4-12 = 3/4. 

Reasoning along the same lines- it's possible to divide seven apples among 12 
children so that each child gets an equal share and no apple needs to be cut into more 
than four parts. In this case each child should get 7/12 of an apple, but notice that 
7/12 = 3/12 + 4/12 = 1 /4+ 1/3. 

Therefore three apples are divided into four parts and the four remaining apples 
into three parts each. We thus obtain 12 quarters and 12 thirds. 

In consequence, each child can be given a quarter and a third, or 7/12. 

A Further Apple Problem 

The apples were divided thus: three apples were each cut in half to yield six halves 
that were distributed among the children and the remaining two apples were each cut 
into three to obtain six thirds that were also given to the children. 

Consequently, each boy got a half and a third of an apple, i. e. all the boys got their 
equal share, and none of the apples was cut into more than three equal parts. 
15' 

Answers 
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One Boat for Three 

The locks should be connected as shown in Fig. 220. You can see quite easily that 
each of the boat's owners can open the chain of the three locks using his key. 

The youngest brother, who went backwards, saw an oncoming tram and jumped into 
it. When the tram came to the stop where the eldest brother was waiting, he got in 
too. A short while later the tram caught up the third brother who was walking 
homewards and collected him. All the three brothers found themselves in the same 
tram and, of course, arrived home at the same time. 

The most reasonable brother was the eldest one since he waited quietly at the stop. 

Figure 220 

Waiting for a Tram 



Problems from Gulliver's Travels 

Beyond doubt the most fascinating pages in Gulliver's 
Travels are those describing his unusual adventures in 
the country of tiny Lilliputians and in the country of 
giant Brobdingnagians. In Lilliput the dimensions-
height, width, thickness-of people, animals, plants and 
other things were 1/12 of those here. By contrast, in 
Brobdingnag they were 12 times larger. We can easily 
understand why the author of the Travels choose the 
number 12, if we remember that in the British system of 
units there are 12 inches in a foot. A 12-fold increase or 
decrease doesn't seem to be very much of a change but 
the nature and way of life in this fantastic countries was 
strikingly different from those we are used to. Every 
now and then the differences are so amazing that can 
serve as a material for interesting problems. 

Animals of Lilliput 
Gulliver relates: "Fifteen hundred of the Emperor's 
largest horses... were employed to draw me towards 
the metropolis." 

Doesn't it seem to you that 1,500 horses are a bit too 
many taking into account the relative dimensions of 
Gulliver and Lilliputian horses? 

Also, Gulliver tells us a no less amazing thing about 
the cows, bulls, and sheep, for when he left he just "put 
them into his pocket". 

Is it all possible? 

Hard Bed 
Lilliputians made the following bed for their giant 
guest: "Six hundred beds of the common measure were 
brought in carriages, and worked u p in my house; 
a hundred and fifty of their beds sewn together made 
up the breadth and length, and these were four double, 
which however kept me but very indifferently from the 
hardness of the floor, that was of smooth stone". 

Why was Gulliver so incomfortable on the bed? 
And is this computation correct? 

Gulliver's Boat 

Gulliver left Lilliput in a boat washed up on the shore 
by chance. The boat seemed monstrous to the 
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Lilliputians, it surpassed by far the largest ships of their 
fleet. 

Could you work out the displacement* of the boat 
in Lilliputian tonnes if its weight-carrying capacity was 
300 kilogrammes? 

Hogsheads and Buckets of Lilliputians 

Gulliver is drinking: 
"I made another sign that I wanted drink . They slung 
up with great dexterity one of their largest hogsheads; 
then rolled it towards my hand, and beat out the top; 
I drank it off at a draught, which I might well do, for it 
hardly held half a pint... They brought me a second 
hogshead, which I drank in the same manner, and 
made signs for more, but they had none to give to me". 

Elsewhere in the book Gulliver describes the 
Lilliputian buckets as being no larger than a thimble. 

Why should such tiny hogsheads and buckets exist in 
a country where everything is only 1/12th normal size? 

Food Allowance and Dinner 

Lilliputians set the following daily allowance of food 
for Gulliver: 
".. . the said Man Mountain shall have a daily 
allowance of meat and drink, sufficient for the support 
of 1,728 of our subjects." 

Elsewhere Gulliver relates: 
"I had three hundred cooks to dress my victuals, in 
little convenient huts built about my house, where they 
and their families lived, and prepared me two dishes 
apiece. I took up twenty waiters in my hand, and 
placed them on the table; a hundred more attended 
below on the ground, some with dishes of meat, and 
some with barrels of wine and other liquors slung on 
their shoulders; all which the waiters above drew up as 
I wanted, in a very ingenious manner, by certain cords, 
as we draw the bucket up a well in Europe". 

How did they come to fix on that number? And 
what is the use of all that army of servants to feed just 
one man? After all, he's only a dozen times taller than 
a Lilliputian. Are the allowance and appetites 
compatible with the relative sizes of Gulliver and the 
Lilliputians ? 

* The displacement of a ship is the largest load (including the 
weight of the ship itself) that the ship can support. 

Figure 222 

Figure 221 
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Three Hundred Tailors 
"Three hundred tailors were employed... to make me 
clothes." 

Was this army of tailors really necessary to have 
clothes made for a man who is only a dozen times 
larger than a Lilliputian? 

Gigantic Apples and Nuts 

In the part "A Voyage to Brobdingnag" devoted to 
Gulliver's stay in the country of giants we read about 
some of the hero's trouble-filled adventures. So once he 
was in the gardens of the court under some apple-trees 
and the Queen dwarf "when I was walking under one 
of them, shook it directly over my head, by which 
a dozen apples, each of them near as large as a Bristol 
barrel, came tumbling about my ears; one of them hit 
me on the back as I chanced to stoop, and knocked me 
down flat on my face." 

On another occasion "an unlucky schoolboy aimed 
a hazelnut directly at my head, which very narrowly 
missed me; otherwise, it came with so much violence, 
that it would have infallibly knocked out my brains; for 
it was almost as large as a small pumpkin". 

What do you think was the weight of the apples and 
nuts in Brobdingnag? 

A Ring of the Giants 

The collection of rarities brought by Gulliver from 
Brobdingnag includes "a gold ring which one day she 
(the Queen) made me a present of in a most obliging 
manner, taking it from her little finger, and throwing it 
over my head like a collar." 

Is it possible that a ring from a little finger would fit 
on Gulliver like a collar and how much, approximately, 
would the ring weigh? 

Books of the Giants 

About books of Brobdingnagians Gulliver tells us the 
following: "I had liberty to borrow what books 
I pleased. The Queen's joiner had contrived... a kind of 
wooden machine five and twenty foot high, formed like 
a standing ladder; the steps were each fifty foot long. It 
was indeed a movable pair of stairs, the lowest end 
placed at ten foot distance from the wall of the 
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chamber. The book I had a mind to read was put up 
leaning against the wall. I first mounted to the upper 
step of the ladder, and turning my face towards the 
book, began at the top of the page, and so walking to 
the right and left about eight or ten paces according to 
the length of the lines, till I had gotten a little below 
the level of my eye; and then descending gradually till 
I came to the bottom; after which I mounted again, 
and began the other page on the same manner, and so 
turned over the leaf, which I could easily do with both 
my hands, for it was as thick and stiff as a pasteboard, 
and in the largest folios not above eighteen or twenty 
foot long." 

Does this make sense? 

Collars for the Giants 

Finally, consider a problem of this kind that is not 
directly taken from Gulliver's Travels. 

You may know that the size of a collar is nothing 
but the number of centimetres of its length. If your 
neck is 38 centimetres round, your collar size is 38. On 
average an adult's neck is 40 centimetres round. 

If Gulliver wished to order some collars in London 
for a Brobdingnagian, what number would he require? 
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Answers 

It's calculated in the answer to "Food Allowance and Dinner" that Gulliver's volume 
was 1,728 times larger than that of a Lilliputian. Crearly, he was that many times 
heavier. For Lilliputians it was as difficult to transport his body as it would have been 
to transport 1,728 grown-up Lilliputians. That is why the cart with Gulliver had to be 
pulled by so many Lilliputian horses. 

Animals in Lilliput were also 1,728 times smaller in volume, and hence as much 
ighter than ours. 

Our cow is about 1.5 metres high and weighs 400 kilogrammes. A cow in Lilliput 
would be 12 centimetres high and weigh 400/1,728 kilogrammes, i.e. less than 1/4 
kilogrammes. A toy cow like this really could be carried about in a pocket. 

Gulliver gives a true account of relative sizes: 
"The tallest horses and oxen are between four and five inches in height, the sheep 

an inch and a half, more or less; their geese about the bigness of a sparrow, and so 
the several gradations downwards, till you come to the smallest, which to my sight 
were almost invisible... I have been much pleased with observing a cook pulling 
a lark, which was not so large as a common fly; and a young girl threading an 
invisible needle with invisible silk." 

The calculation is quite correct. If a Lilliputian bed is 12 times shorter, and of course 
12 times narrower than a conventional bed, then its surface "area would be 12 x 12 
times smaller than the surface of our bed. Accordingly, for his bed Gulliver required 
144 (i.e. to make a round number, about 150) Lilliputian beds. The bed would 
however have been exceedingly th in -12 times thinner than ours. Thus even four 
layers of such beds would not have been soft enough for Gulliver since the resultant 
mattress was three times thinner than ours. 

Figure 224 

Hard Bed 



Gulliver's Boat 

We know from the question that the boat could carry 300 kilogrammes, i.e. its 
displacement was about 1/3 tonne. A tonne is the weight of 1 cubic metre of water, 
hence the boat displaced 1/3 of our cubic metre. But all the linear dimensions in 
Lilliput are 1/12 of ours, and volumes are 1/1,728 of ours. So 1/3 of our cubic metre 
contains about 575 Lilliputian cubic metres and thus Gulliver's boat had 
a displacement of 575 tonnes or thereabout since we arbitrarily took the figure 300 
kilogrammes. 

Today we have ships with displacements of tens of thousands of tonnes ploughing 
the seas, so a ship with a 575-tonne displacement should not be a wonder. We should 
remember though that at the time of writing (early in the 18th century) 500-600-tonne 
ships were still rare. 

Hogsheads and Buckets of Lilliputians 

Lilliputian vessels were 12 times smaller than ours in every dimensions-height, width, 
and length-and 1,728 times smaller in volume. If we assume that our bucket contains 
about 60 glasses, we can work out that a Lilliputian bucket contains only 60/1,728, i.e. 
about 1/30 of a glass. This is just larger than a tea-spoonful but not really much larger 
than the volume of a large thimble. 

If the capacity of a Lilliputian bucket is thus a tea-spoonful, the capacity of 
a 10-bucket hogshead would not be much larger than half a glass. No wonder 
Gulliver couldn't quench his thirst with two such hogsheads. 

Food Allowance and Dinner 

The computation is perfectly correct. We shouldn't forget that Lilliputians were an 
exact, though smaller, replica of conventional people with normally proportioned 
members. Consequently, they were not only 12 times shorter, but also 12 times 
narrower and 12 times thinner than Gulliver, and their volume was 1/1,728 of that of 
Gulliver. And to support the life of such a body requires respectively more food. 
That's why Lilliputians calculated that Gulliver needed an allowance sufficient to 
support 1,728 Lilliputians. 

We now see the purpose of so many cooks. To make 1,728 dinners requires no less 
than 300 cooks taking that one Lilliputian cook can make half a dozen Lilliputian 
dinners. An accordingly larger number of people is required to haul the load up to 
Gulliver's table, which can be estimated to be the height of a three-storey building in 
Lilliput. 

Three Hundred Tailors 

The surface of Gulliver's body was 1 2 x 1 2 , i.e. 144 times larger than that of 
a Lilliputian. This is clearer if we imagine that each square inch of the surface of 
a Lilliputian's body corresponds to a square foot on the surface of Gulliver's body. 
We know, however, that there are 144 square inches in a square foot. Thus Gulliver's 
suit would take 144 times more fabric than that of a Lilliputian, and hence more 
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working time. If, say, one tailor can make one suit in two days, then to make 144 suits 
in a day (or one of Gulliver's suits) may require 300 tailors. 

An apple that weighs about 100 grammes here should correspond to an apple in 
Brobdingnag that is as many times heavier as it is bigger in volume, i.e. 1,728 times 
heavier than here. Thus Brobdingnagian apples are about 173 kilogrammes. If such an 
apple falls from a tree and hits a man on the back, he would only just survive the 
blow. Gulliver thus got off lightly. 

A Brobdingnagian nut must have weighed 3-4 kilogrammes, if we take that our nut 
weighs about 2 grammes. Such a gigantic nut might be about a dozen centimetres 
across. A 3-kilogramme, hard object thrown with the speed of the nut clearly could 
smash the skull of a normal-size man. Elsewhere in the book Gulliver recalls: "There 
suddenly fell such a violent shower of hail, that I was immediately by the force of it 
struck to the ground: and when I was down, the hailstones gave me such cruel bangs 
all over the body, as if I had been pelted with tennis balls." Quite plausible, because 
each piece of hail in this country of giants must weigh no less than a kilogramme. 

A normal little finger is about 11/2 centimetres across. Multiplying this by 12 gives 18 
centimetres and a ring of such a diameter has a circumference of 56 centimetres, i. e. 

Gigantic Apples and Nuts 

Figure 225 

A Ring of the Giants 

Figure 226 



it's sufficiently large for a normal head to go through it. 
As to the weight of such a ring, if a normal ring weighs 5 grammes its counterpart 

in Brobdingnag must have weighed 8 1/2 kilogrammes! 

Books of the Giants 

If we start from the size of books current in our times (about 25 centimetres long and 
12 centimetres wide), then Gulliver's account might appear to be a slight exaggeration. 

You could handle a book 3 metres high and 1 1/2 metres wide without a ladder and 
without having to move to the left or right by 8—10 steps. In the days of Swift, early in 
the 18th century, the conventional format of books (tomes) was far larger than now. 
20 x 30 cm formats were not uncommon, which when multiplied by 12 gives 360 x 
x 240 centimetres. It is impossible to read a 4-metre book without a ladder. But 

a real tome of the time might be as large as a newspaper. 
However, the modest tome we mentioned would in the country of giants weigh 

1,728 times more than here, i.e. about 3 tonnes. Assuming that it has 500 sheets, each 
of its sheets would weigh about 6 kilogrammes, perhaps a bit too much for fingers. 

Collars for the Giants 

The neck of a giant will be 12 times larger than that of a normal man. And if 
a normal man needs a collar of size 40, the giant would need a 40 x 12 = 480 size 
collar. 

* * * 

We thus see that all the whimsical things in Swift seem to have been carefully 
calculated. Responding to certain critisisms of his poem Eugine Onegin Alexander 
Pushkin once noted that in his book "time is calculated with a calendar". In exactly 
the same way Swift could say that all his objects had conscientiously been computed 
using the laws of geometry. 

Figure 227 
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Reward 
According to legend, the following happened in ancient 
Rome. 

I. General Terentius had returned to Rome with booty 
after a victorious campaign. Back in the capital he was 
received by the Emperor. 

The reception was very warm and the Emperor 
thanked him cordially for his services to the Empire 
promising to confer on him a high office in the Senate. 

But Terentius didn't want this. He said: 
"I have won many victories to exalt your grandeur, 

Sire, and to cover your name with glory. I have been 
unafraid of death and if I had many lives, I'd sacrifice 
all of them to you. But I'm tired of fighting, my youth 
had passed and my blood flows slower in my veins. The 
time has come for me to retire to my father's home and 
revel in the joys of domestic life." 

"What would you like to receive from me, 
Terentius?" the Emperor asked. 

"Hear me out with indulgence, Sire! In all these long 
years of battle, imbruing my sword with blood, I have 
had no time to take care of my well-being. I'm poor, 
Sire..." 

"Proceed, brave Terentius." 
The encouraged general went on to say: "If it is your 

desire to reward your humble servant, then may your 
generosity help me live out the remainder of my days in 
peace and comfort at home. I do not seek honour or 
high office as I would like to retire from power and 
public life to live peacefully. Sire, please award me with 
money to provide for the rest of my life." 

The Emperor -so the legend goes-wasn't distingui-
shed for his lavishness. He liked to save money for him-
self but was miserly with it to others. The general's 
request plunged him in a deep reverie. 

He asked, "What sum, Terentius, would you consider 
sufficient?" 

"A million denarii, Sire." 
The Emperor grew pensive again. The general waited, 

his head down. 
Finally, the Emperor spoke: 
"Valiant Terentius, you are a great warrior and your 

prodigies of valour have earned you a lavish reward! 
I will give you wealth. Tomorrow at noon you will hear 
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my decision." 
Terentius bowed and walked out. 

II. On next day at the hour appointed the general 
came to the Emperor's palace. 

"Greetings, brave Terentius!" the Emperor said. 
Terentius bowed his head humbly. 
"Sire, I came to hear your decision. You kindly 

promised to reward me." 
The Emperor answered: "It's not my intention that 

such a noble warrior like you should have some 
miserable reward for his heroic deeds. Listen to me. 
There are in my treasury 5 million copper brasses*. 
You shall go to the treasury and take one coin, then 
you shall return here and place it at my feet. On the 
following day you shall again go to the treasury, take 
a coin worth 2 brasses and place it here near the first 
one. On the third day you are to bring a coin worth 
4 brasses and on the fourth day bring a coin worth 
8 brasses, on the fifth, 16, etc., double the value of the 
previous coin. I will order appropriate coins be 
produced for you an<} while you have the strength, you 
will take them from my treasury. Nobody may help 
you, you must rely on your own power only. You will 
stop when you notice that cannot move a coin any 
more and then our deal will come to an end. All the 
coins that you will have managed to bring here will 
belong to you and you shall keep them as your 
reward." 

Terentius listened eagerly to the Emperor's words. 
He visualized the multitude of coins, each one more 
than another, that he would bring out of the treasury. 

"I'm happy with your favour," he beamed. "Really 
generous is your reward!" 

III. Terentius started his daily visits to the treasury. It 
was located close to the Emperor's hall so the first trips 
with the coins cost Terentius very little effort. 

On the first day he only brought 1 brass. This was 
a small coin 21 millimetres across and weighing 
5 grammes. 

His trips upto the sixth day were also very easy and 
he brought the coins double, fourfold, sixteen-fold, and 
thirty-two-fold the weight of the first. 

* A brass is a fifth of a denarius. 

Figure 228 
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The seventh coin weighed 320 grammes and was 
8 1/2 centimetres across.* 

On the eighth day Terentius had to carry out a coin 
that was worth 128 units. It weighed 640 grammes and 
was about 10 1/2 centimetres wide. 

On the ninth day he carried into the Emperor's hall 
a coin corresponding to 256 unit coins. It was 13 
centimetres wide and weighed more than 1 1/4 
kilogrammes. 

On the twelfth day the coin was almost 27 
centimetres across and 10 1/4 kilogrammes in weight. 

The Emperor who up until that day was very kind to 
the general now couldn't conceal his triumph. He saw 
that after 12 days only slightly more than 2,000 brass 
units had been brought. 

Further, on the thirteenth day the brave Terentius 
brought out a coin that was worth 4,096 units. It was 
34 centimetres wide and weighed 20 1/2 kilogrammes. 

On the fourteenth day Terentius had a heavy coin 
that was 42 centimetres across and weighed 41 
kilogrammes. 

"Are you tired, my brave Terentius?" the Emperor 
could hardly help smiling. 

"No, Sire," the general responded grimly wiping his 
brow. 

The fifteenth day came. This time Terentius's burden 
was really heavy. He trudged slowly to the Emperor 
carrying a huge coin corresponding to 16,384 unit 
coins. It was 53 centimetres wide and weighed 80 
kilogrammes, the weight of a tall warrior. 

On the sixteenth day the general staggered with the 
burden on his back. It was a coin equal to 32,768 units, 
its diameter being 67 centimetres and weighing 164 
kilogrammes. 

The general was exhausted and gasping. The 
Emperor smiled... 

When Terentius came to the Emperor the next day, 
there was a roar of laughter. He could no longer carry 
his coin in his hands and rolled it in front of him. The 
coin was 84 centimetres and 328 kilogrammes, and 
corresponded to 65,536 unit coins. 

The eighteenth day was the last day of Terentius's 
enrichment, for his visits to the treasury and trips to 

* If a coin's volume is 64 times that of a normal one, then it is 
only four times wider and thicker, because 4 x 4 x 4 = 64. We 
should have this in mind when working out the sizes of further 
coins. 
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the Emperor's hall ended on that day. This time he had 
to fetch a coin worth 131,072 unit coins. It was more 
than a metre across and weighed 655 kilogrammes. 
Using his spear as a lever Terentius rolled it into the 
hall with a huge effort. The mammoth coin fell 
thundering at the Emperor's feet. 

Terentius was completely worn out. 
"Can't do any more... Enough for me," he wispered. 
The Emperor could hardly conceal his pleasure at 

the total triumph of his ruse. He ordered the treasurer 
to compute the total of all the brasses brought into the 
hall by Terentius. 

The treasurer reckoned quickly and said: "Sire, 
thanks to your generosity the victorious warrior 
Terentius has got a reward of 262,143 brasses." 

So the close-fisted Emperor gave the general about 
1/20 part of the million of denarii Terentius had 
requested. 

* * * 

Let's check the treasurer's calculation and the weight 
of the coins. Terentius brought out: 

Day Coin Weight 
in brasses in grammes 

1 1 5 
2 2 10 
3 4 20 
4 8 40 
5 16 80 
6 32 160 
7 64 320 
8 128 640 
9 256 1,280 

10 512 2,560 
11 1,024 5,120 
12 2,048 10,240 
13 4,096 20,480 
14 8,192 40,960 
15 16,384 81,920 
16 32,768 163,840 
17 65,536 327,680 
18 131,072 655,360 

The totals for these columns can be calculated easily 
using the proper rule*, thus the second column totals 

* Each number in this column equals the sum of the previous 
ones plus one. Therefore, when it's necessary to sum up all the 
numbers in the column, e. g. from 1 to 32,768, we need only find the 
next number and subtract one, i.e. 32,768 x 2 - 1. The result is 
65,535. 
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262,143. Terentius requested a million of denarii, i. e. 
5 million brasses. Accordingly, he got 

5,000,000 262,143 = 19 times 
less than he requested. 

Legend about Chess-Board 

I. Chess is one of the world's most ancient games. It 
has been in existence for centuries so it is no wonder 
that it has given rise to many legends whose truth-
fulness cannot be checked because of the remotedness 
of the events. One of these legends I want to relate. 
You do not need to be able to play chess to understand 
it, it is sufficient for you to know that it involves 
a board divided into 64 cells (black and white 
alternately). 

The play of chess was invented in India. When the 
Indian king Sheram got to know about it he was 
amazed at its ingeniousness and the infinite variety of 
positions it afforded. Having learned that the play was 
invented by one of his subjects, the king summoned 
him in order to reward him personally for such 
a stroke of brilliant insight. 

The inventor, named Seta, came before the 
sovereign's throne. He was a simply dressed scribe who 
earned his living giving lessons to pupils. 

Figure 229 1 
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"I want to reward you properly, Seta, for the beaut-
iful play you invented," the king said. 

The sage bowed. 
"I'm rich enough to fulfil any of your desires," the 

king went on to say. "Name a reward that would 
satisfy you and you'll get it". 

There was a silence. 
"Don't be shy! What's your desire? I'll spare nothing 

to meet your wish!" 
"Great is your kindness, oh sovereign. Give me some 

time to sleep on it. Tomorrow, upon consideration, I'll 
name you my wish." 

When the next day Seta came to the throne he 
amazed the king by the unprecedented modesty of his 
desire. 

Seta said: "Sovereign, order that one grain of wheat 
be given to me for the first cell of the chess-board." 

"A simple wheat grain?" the king was shocked. 
"Yes, sovereign. For the second cell let there be two 

grains, for the third four, for the fourth eight, for the 
fifth 16, for the sixth 32..." 

"Enough!" the king was exasperated. "You'll get your 
grains for all the 64 cells of the board according to 
your wish: for each twice as much as for the previous 
one. But let me tell you that your wish is unworthy of 
my generosity. By asking for such a miserable reward 
you show disrespect for my favour. Truly, as a teacher 
you might give a better example of gratitude for the 
kindness of your king. Go away! My servants will 
bring you the bag of wheat." 

Seta smiled, left the hall and began to wait at the 
palace gates. 

II. At dinner the king remembered about the inventor 
of chess and asked if the foolish Seta has collected his 
miserable reward. 

The answer was: "Sovereign, your order is being 
fulfilled. The court mathematicians are computing the 
number of grains required." 

The king f rowned-he wasn't used to having his 
orders fulfilled so slowly. 

At night, before going to bed the king Sheram again 
inquired how long before had Seta left the palace with 
his bag of wheat. 

"Sovereign, your mathematicians are working hard 
and hope to finish their calculations before dawn." 

"Why so long?" the king was furious. "Tomorrow, 
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before I wake up everything, down to the last grain, 
must be given to Seta. I never give my order twice!" 

First thing in the morning the king was told that the 
chief mathematician humbly asked to make an 
important report. 

The king ordered him in. 
Sheram said: "Before you bring out your business I'd 

like to know if Seta has at last received the miserable 
reward that he asked for." 

The old man responded: "It's exactly because of this 
that I dared to bother you at such an early hour. We've 
painstakingly worked out the number of grains that 
Seta wants to have. The number is so enormous..." 

"No matter how enormous it is", the king interrupted 
him arrogantly, "my granaries won't be depleted! The 
reward is promised and must be given out..." 

"It's beyond your power, oh sovereign, to fulfil his 
wish. There is not sufficient grain in all your barns to 
give Seta what he wants. And there is not enough in all 
the barns throughout the kingdom. You would not find 
that many grains in the entire space of the earth. And if 
you wish to give out the promised reward by all means, 
then order all the kingdoms on earth to be turned into 
arable fields, order all the seas and oceans dried up, 
and order the ice and snowy wastes that cover the far 
northern lands melted. Should all the land be sown 
with wheat and should the entire yield of these fields be 
given to Seta, then he'd receive his reward." 

The king attended to the words of the elder with 
amazement. 

"What is this prodigious number?" 
"18,446,744,073,709,551,615, oh sovereign!" 

III. Such was the legend. There is now no way of 
knowing if it's true, but that the reward is expressed by 
this number you could verify by some patient 
calculations. Starting with unity you'll have to add up 
number 1,2,4,8, etc. The result of the 63th doubling will 
be what the inventor should receive for the 64th cell of 
the board. 

If you use the rule explained at the end of the 
previous problem, you can easily obtain the number of 
grains to be received by the inventor (we double the 
last number and subtract one). Hence the calculation 
comes down to multiplying together 64 twos: 
2 x 2 x 2 x 2 x 2 , etc.,-64 times. 

16 
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To facilitate computation divide the 64 multipliers 
into six groups with 10 twos in each and one last group 
with four twos. It's easy to see that the product of 10 
twos is 1,024, and of four twos, 16. The desired result is 
thus 1,024 x 1,024 x 1,024 x 1,024 x 1,024 x 1,024 x 16. 

Multiplying 1,024 x 1,024 gives 1,048,576. 
It now remains to find 1,048,576 x 1,048,576 x 

x 1,048,576 x 16, subtract one from the result to arrive 
at the sought-for number of grains: 
18,446,744,073,709,551,615. 

If you want to imagine the enormousness of this 
numerical giant just estimate the size of a barn that 
would be required to house this amount of grain. It's 
known that a cubic metre of wheat contains about 
15,000,000 grains. Consequently, the reward of the 
inventor of chess would occupy about 
12,000,000,000,000 cubic metres, or 12,000 cubic 
kilometres. If the barn were 4 metres high and 10 
metres wide its length would be 300,000,000 kilometres, 
twice the distance to the Sun! 

The Indian king could never grant such a reward. 
Had he been good at maths, he could have freed him-
self of the debt. He should have suggested to Seta to 
count off the grains he wanted himself. 

In fact, if Seta kept on counting day in day out he 
would have counted only 86,400 grains in the first 24 
hours. A million would have required no less than 10 
days of continual reckoning and thus to process 1 cubic 
metre of wheat would have required about half a year. 
In a ten year's time he would have handled about 20 
cubic metres. You see that even if Seta had devoted 
a lifetime to his counting, he would still have only 
obtained a miserable fraction of the reward he desired. 

Prolific Multiplication 

A ripe poppy head is full of tiny seeds, each of which 
can give rise to a new plant. How many poppy plants 
shall we have, if all the seeds germinate? To begin with 
we should know how many seeds there are in a head. 
A boring business, but if you summon up all your 
patience you'll find that one head contains about 3,000 
seeds. 

What follows from this? If there is enough space 
around our poppy plant with adequate soil, each seed 
will produce a shoot with the result that the following 
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summer 3,000 poppies will grow. A whole poppy field 
from just one head. 

Let's see what will happen next. Each of the 3,000 
plants will produce no less than one head (more often 
several heads), with 3,000 seeds each. Having 
germinated, the seeds of each head will give 3,000 new 
plants, and hence during the following year we are 
going to have 
3,000 x 3,000 = 9,000,000 plants. 

Calculation gives that in the third year the offspring 
of our initial head will already reach 
9,000,000 x 3,000 = 27,000,000,000. 

In the fourth year there will be 
27,000,000,000 x 3,000 = 81,000,000,000,000 offspring. 

In the fifth year our poppies will engulf the earth, 
because they'll reach the number 
81,000,000,000,000 x 3,000 = 243,000,000,000,000,000. 

But the surface area of all the land, i.e. all the 
continents and islands of the earth, amount to 
135,000,000 square kilometres, or 135,000,000,000,000 
square met res -about 2,000 times less than the number 
of the poppy plants grown. 

You see thus that if all the poppy-seeds from one 
head germinated, the offspring of one plant could 
engulf the earth in five years so that there were about 
2,000 plants of each square metre of land. Such 
a numerical giant lives in a tiny poppy seed! 

A similar calculation made for a plant other than the 
poppy, one which yields less seeds, would lead to the 
same result with the only distinction that its offspring 
would cover the lands of the earth in a longer period 
than five years. Take a dandelion, say, which gives 
about 100 seeds annually. Should all of them germinate, 
we would have: 

Year Number of plants 
1 1 
2 100 
3 10,000 
4 1,000,000 
5 100,000,000 
6 10,000,000,000 
7 1,000,000,000,000 
8 100,000,000,000,000 
9 10,000,000,000,000,000 
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This is 70 times more than the square metres of land 
available on the globe. 

In consequence, the whole Earth would be covered 
by dandelions in the ninth year with about 70 plants on 
each square metre. 

Why then don't we observe in reality these 
tremendous multiplications? Because the overwhelming 
majority of seeds die without producing any new 
plants, they either fail to hit a suitable patch of soil and 
don't germinate at all, or having begun to germinate 
are suppressed by other plants, or are eaten by animals. 
If there were no massive destruction of seeds and 
shoots, any plant would engulf our planet in a short 
period. 

This is true not only of plants but of animals, too. If 
it were not for death, the offspring of just one couple of 
any animal would sooner or later populate all the land 
available. Swarms of locust covering huge stretches of 
land may give some idea of what might happen on 
earth if death didn't hinder the multiplication of living 
things. In two decades or so the continents would be 
covered with impenetrable forests and steppes inhabited 
by incountable animals struggling for their place under 
the sun. The oceans would be filled to the brim with 
fish so that any shipping would be impossible. And the 
air would not be transparent because of the mists of 
birds and insects... 

Before we leave the subject, we'll consider several 
real-life examples of uncannily prolific animals placed 
in favourable conditions. 

At one time America was free of sparrows. The bird 
that is so common in Europe was deliberately brought 
to the United States to have it exterminate the 
destructive insects. The sparrow is known to eat in 
quantity voracious caterpillars and other garden and 
forest pests. The sparrows liked their new environment, 
since there were no birds of prey eating them, and so 
they began to multiply rapidly. The number of insects 
began to drop markedly and before long the sparrows, 
for want of animal food, switched to vegetable food and 
went about destroying crops*. The Americans were 
even forced to initiate a sparrow control effort which 
appeared to be so expensive that a law was passed 
forbidding the import to America of any animals. 

* In the Hawaii they even completely superseded small endemic 
birds. 
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A further example. There were no rabbits in Australia 
when the continent was colonized by the Europeans. 
The rabbits were brought to Australia in the late 18th 
century and as there were no carnivores that might be 
their enemies they began to multiply at a terrifically 
fast rate. Hordes of rabbits soon inundated Australia 
inflicting enormous damage to agriculture. They 
became a plague of the country and their eradication 
required great expense and effort. Later the same 
situation with rabbits occurred in California. 

A third instructive story comes from Jamaica. The 
island was suffering from an abundance of poisonous 
snakes. To get rid of them it was decided to introduce 
the secretary-bird, an inveterate killer of poisonous 
snakes. The number of snakes soon dropped all right, 
but instead the island got to be infested with the rats 
that earlier were controlled by the snakes. The rats 
wrought dreadful havoc amongst the sugar cane fields 
and posed an urgent problem. It's known that an 
enemy of the rats in the Indian mongoose, and so it was 
decided to bring four pairs of these animals to the 
island and allow them multiply freely. The mongooses 
adapted perfectly to their new land and in a short 
period of time inhabited the island. In less than 
a decade they had almost wiped out the rats. But alas, 
having destroyed the rats, the mongooses began to 
consume whatever came their way and turned into 
omnivores. They started killing puppies, goat-kids, 
piglets, poultry. And when they had multiplied still fur-
ther they set about devastating orchards, fields and 
plantations. So the inhabitants of the island were 
compelled to start combating their previous allies, but 
with limited success. 

Free Dinner 
Ten young people decided to celebrate leaving school 
by a dinner at a restaurant. When all had gathered they 
started arguing as to how they were to sit at the table. 
Some suggested that they sit in alphabetic order, others, 
by age, yet others, by their academic record, or even by 
their height. 

The argument dragged on, but nobody sat down at 
the table. 

It was the waiter who made it up between them. He 
said: 

"My young friends, you'd better stop arguing, sit at 
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the table arbitrarily and listen to me." 
The ten set anyhow and the waiter continued: 
"Let somebody record the order in which you are 

sitting now. Tomorrow come here again to dine and sit 
in another order. The day after tomorrow you sit in 
a new order, and so on, until you have tried out all the 
arrangements possible. When you come to sit in exactly 
the same order as you are sitting now, then upon my 
word, I'll start to treat you to the finest dinners without 
charge." 

The party liked the suggestion. It was decided to 
come every night and try all the ways of sitting at the 
table in order to enjoy the free dinner as soon as 
possible. 

They didn't live to see it, however. And not because 
the waiter didn't keep his word, but because the 
number of arrangements was too great. Specifically, it is 
3,628,800. You can see this number of days equals to 
almost 10,000 years! 

It might seem unlikely to you that as few as 10 
people might be arranged in such an enormous number 
of various ways but we can check it. 

To begin with, we must learn how to find the 
number of permutations possible. To make our life 
easier we'll begin with a small number of objects, say 
three. Let's label them A, B, and C. 

We would like to know in how many ways it's 
possible to permute them. We argue as follows: if for 
the moment we put B aside, the two remaining objects 
may be arranged in two ways. We will now attach B to 
each of the two pairs. We may place it in each of three 
ways: 

(1) B behind the pair; 
(2) B in front of the pair; 
(3) B between the members of the pair. 
Clearly, there are no other positions for B besides 

these three. But as we have two pairs, AB and BA, then 
there are 2 x 3 = 6 ways of arranging the objects. 

Further, we'll repeat the argument for four objects. 
Let there be four objects A, B, C, and D. We'll again 
put aside one object and make all the possible 
permutations with the remaining three. We know 
already that there are six of these. In how many ways 
may we attach D to each of the six arrangements of 
three? Obviously, we may place it as follows; 

(1) D behind the triple; 
(2) D in front of the triple; 
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(3) D between the first and second objects; 
(4) D between the second and third objects. 
We thus get 6 x 4 = 24 permutations, and since 6 = 

= 2 x 3 , and 2 = 1 x 2 , then the number of 
permutations may be represented as the product 1 x 
x 2 x 3 x 4 = 24. 

Reasoning along the same lines we'll find that for five 
objects, too, the number of permutations is 1 x 2 x 3 x 
x 4 x 5 = 120. 

For six objects: 1 x 2 x 3 x 4 x 5 x 6 = 720, and so 
on. 

Return now to the case of the 10 diners. The number 
of permutations possible here is obtainable if we take 
the trouble of multiplying together I x 2 x 3 x 4 x 5 x 
x 6 x 7 x 8 x 9 x l 0 . Tnis will in fact give the 

above-mentioned 3,628,800. 
The calculation would be more complex if among the 

10 diners there were five girls who wanted to alternate 
with the boys. Although the number of the possible 
permutations is far less in this case, it's somewhat more 
difficult to work it out. 

Let one boy seat at the table somewhere. The 
remaining four may only be seated in alternate chairs 
(leaving the vacant places for the girls) in 1 x 2 x 3 x 
x 4 = 24 various ways. Since the total number of 
chairs is 10, the first boy may be seated in 10 ways, 
hence the number of all possible arrangements for the 
boys is 10 x 24 = 240. 

What is the number of ways in which the five girls 
may occupy the vacant chairs between the boys? 
Clearly, 1 x 2 x 3 x 4 x 5 = 120. Combining each of the 
240 positions for the boys with each of the 120 
positions of the girls we obtain the number of all the 
possible arrangements: 240 x 120 = 28,800. 

The above number is smaller by far than the 
previous one though it would require almost 79 years 
to work through them all. Should the young guests of 
the restaurant live to be 100, they could get the free 
dinner, if not from the waiter himself, then from his 
successor. 
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Out of Seven Digits 

Write the seven digits from 1 to 7 one after the other: 
1 2 3 4 5 6 7. 

It's easy to connect them by the plus and minus signs 
to obtain 40, e.g. 
12 + 34 - 5 + 6 - 7 = 40. 
Try and find another combination of these digits that 

would yield 55. 

Nine Digits 

Now write out the nine digits: 1 2 3 4 5 6 7 8 9. 
You can as above arrive at 100 by inserting a plus or 

minus six times and get 100 thus: 
12 + 3 - 4 + 5 + 67 + 8 + 9 = 100. 

If you want to use only four plus or minus signs, you 
proceed thus: 
123 + 4 - 5 + 6 7 - 8 9 = 100. 

Now try and obtain 100 using only three plus or 
minus signs. It's much more difficult but possible. 

With Ten Digits 

Obtain 100 using all ten digits. 
In how many ways can you do it? There are no less 

than four different ways. 

Unity 

Obtain unity using all ten digits. 

With Five Twos 
We only have five twos and all the basic mathematical 
operation signs at our disposal. Use them to obtain the 
following numbers: 15, 11, 12, 321. 

Once More with Five Twos 
Is it possible to obtain 28 using five twos? 
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With Four Twos 

The problem is more involved. Use four twos to arrive 
at 111. Is that possible? 

With Five Threes 

To be sure, with the help of five threes and the 
mathematical operation signs we can represent 100 as 
follows: 

33 x 3 + y = 100. 

But can you write 10 with five threes? 

The Number 37 

Repeat the above problem to obtain 37. 

In Four Ways 
Represent 100 in four various ways with five identical 
digits. 

With Four Threes 

The number 12 can be very easily expressed with four 
threes: 
12 = 3 + 3 + 3 + 3. 

It's more of a problem to obtain 15 and 18 using 
four threes: 
15 = ( 3 + 3) + ( 3 x 3); 
18 = (3 x 3 )+ (3 x 3). 

And if you were required to arrive at 5 in the same 
way, you might be not very quick to twig that 5 = 

Now think of the ways to get the numbers 1, 2, 3, 4, 
6, 7, 8, 9, 10. 

With Four Fours 
If you have done the previous problem and want some 
more in the same vein, try to arrive at all the numbers 



256-253 Tricks with Numbers 

from 1 to 10 with fours. This is no more difficult than 
getting the same numbers with the threes. 

With Four Fives 

Obtain 16 using four fives. 

With Five Nines 

Can you provide at least two ways of getting 10 with 
the help of five nines? 

Twenty-Four 

It's very easy to obtain 24 with three eights: 8 + 8 + 8. 
Could you do this using other sets of three identical 
digits? The problem has several solutions. 

Thirty 

The number 30 can easily be expressed with three fives: 
5 x 5 + 5. It's more difficult to do this with other sets of 
identical digits. Try it, you'll may be able to find several 
solutions. 

One Thousand 

Could you obtain 1,000 with the aid of eight identical 
digits? 

Get Twenty 

The following are three numbers written one below the 
other: 
111 
111 
999 

Try and cross out six digits so that the sum of the 
remaining numbers be 20. 

Cross out Nine Digits 

The following columns of five figures each contain 15 
odd digits: 
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1 1 1 
3 3 3 
5 5 5 
111 
9 9 9 

The problem is to cross out nine digits so that the 
numbers thus obtained add up to 1,111. 

In a Mirror 

The number corresponding to a year of the last century 
is increased 41/2 times if viewed in a mirror. Which 
year is it? 

Which Year? 

In this century, is there a year such that the number 
expressing it doesn't change if viewed "upside down"? 

Which Numbers? 

Which two integers, if multiplied together, give 7? 
Don't forget that both numbers should be integers, 
therefore answers like 3 1 / 2 x 2 or 2 1 / 3 x 3 won't do. 

Add and Multiply 

Which two integers, if added up, give more than if 
multiplied together? 

The Same 

Which two integers, if multiplied together, give the 
same as if added up? 

Even Prime Numbers 

You must know that prime numbers are those that are 
divisible without remainder by themselves only or by 
unity. Other numbers are called composite. 

What do you think: are all the even numbers 
composite? Are there any even prime numbers? 

Three Numbers 

Which three integers, if multiplied together, give the 
same as if added up? 
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Addition and Multiplication 

You've undoubtedly noticed the curious feature of the 
equalities: 
2 + 2 = 4, 
2 x 2 = 4. 

This is the only case where the sum and product of 
two integers (equal to each other at that) are equal. 

You maybe are unaware that there are dissimilar 
numbers showing the same property. Think of examples 
of such numbers. So that you don't believe that the 
search would be in vain I assure you that there are 
many such number pairs, though none of them are 
integers. 

Multiplication and Division 

Which two integers yield the same result whether the 
larger of them is divided by the other or they are 
multiplied together? 

The Two-Digit Number 

There is a two-digit number such that if it is divided by 
the sum of its digits the answer is also the sum of the 
digits. Find the number. 

Ten Times More 

The numbers 12 and 60 have a fascinating property: if 
we multiply them together, we get exactly 10 times 
more than if we add them up: 
12 x 60 = 720, 12 + 60 = 72. 

Try and find another pair like this. Maybe you can find 
several pairs with the same property. 

Two Digits 

What is the smallest positive integer that you could 
write with two digits? 

The Largest Number 

What is the largest number that you can write with 
four ones? 
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Unusual Fractions 
Consider the fraction 6729/13,458. All the digits (save 
for 0) are used in it once. As is easily seen, the fraction 
is 1/2. 

Use the nine digits to obtain the following fractions: 
1 1 1 1 J_ J_ J_ 
7' J' J' J' 7' 8~' 9 ' 

What Was the Multiplier? 
A schoolboy carried out a multiplication, then rubbed 
most of his figures from the blackboard so that only 
the first line of the figures and two digits in the last line 
survived. As to the other figures, only the following 
traces remained: 

235 
x 

# * 

* * * * 

+ 
* * * # 

**56* 

Could you restore the multiplier? 

Missing Figures 
In this multiplication case more than half the figures 
are replaced by asterisks: 

*1* x 
3*2 

•3* 

3*2* 
+ 

*2*5 

1*8*30 

Can you restore the missing figures? 

What Numbers? 
A further problem of the same sort: 
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**5 
x 

j** 

2**5 
+ 

13*0 *** 

4*77* 

Strange Multiplication Cases 

Consider the following case of the multiplication of two 
numbers: 
48 x 159 = 7,632. 

It's remarkable in that each of the nine digits is 
involved once here. Can you think of any other 
examples? If so, how many of them are there? 

Mysterious Division 

What is given below is nothing but an example of 
a long-division sum where all the digits are replaced by 
points: 

. . 7 . 

Not one digit in either the dividend or the divisor is 
known. It's only known that the last but one digit in the 
quotient is 7. Determine the result of the division. 

The problem has only one answer. 
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Another Division Problem 

Restore the missing figures in the division below: 
1** 

325) *2*5* *** 

*0** * g * * 

Figure 230 

Figure 231 

Figure 232 

*5* 

Division by 11 

Write out a nine-digit number containing no repeated 
digits (all the digits are different), that divides by 11 
without remainder. 

What is the largest such number? 
What is the smallest such number? 

Triangle of Figures 

Within the circles of the triangle of Fig. 230 arrange all 
the nine digits so that the sum of the digits on each 
side be 20. 

Another Triangle 

Repeat the previous problem so that each side adds up 
to 17. 

Eight-Pointed Star 

Into the circles of the figure of Fig. 231 insert one of 
the numbers from 1 to 16 so that the sum of the 
numbers on the side of each square be 34 and the sum 
of the numbers at the corners of each square be 34, too. 

Magic Star 

The six-pointed star shown in Fig. 232 is "magic" 
because all the six lines of numbers have the same sum: 
4 + 6 + 7 + 9 = 26, 
4 + 8 + 12 + 2 = 26, 
9 + 5 + 10 + 2 = 26, 

11+ 6 + 8 + 1 = 26, 
11+ 7 + 5 + 3 = 26, 
1 + 1 2 + 1 0 + 3 = 26. 
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However the numbers at the points of the star add 
up to another number: 
4 + 1 1 + 9 + 3 + 2 + 1 = 30. 

Couldn't you improve the star so that the numbers at 
the points also gave the same sum (26)? 

Wheel of Figures 
The digits from 1 to 9 should be so arranged in the 
circles of the wheel of Fig. 233 that one digit is at the 
centre and the others elsewhere about the wheel so that 
the three figures in each line add up to 15. 

Trident 

It's required to arrange the numbers from 1 to 13 in the 
cells of the trident shown in Fig. 234 so that the sums 
of the figures in each of the three columns (I, II, and 
III) and in the line (IV) are the same. 

Figure 233 

Figure 234 
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There are three solutions: 

Out of Seven Digits 

123 + 4 - 5 - 6 7 = 55; 
1 - 2 - 3 - 4 + 56 + 7 = 55; 
12 - 3 + 45 - 6 + 7 = 55. 

Nine Digits 

123 - 45 - 67 + 89 = 100. 

This is the only solution. It's impossible to arrive at the same result by using the plus 
and minus signs less than three times. 

With Ten Digits 

The following are the four solutions: 

70 + 2 4 ^ - + 5 \ =100; 
18 6 

27 3 
80 — + 1 9 - = 100; 

54 6 

84 + 9 ^ - + 3 ^ - = 100; 
j bU 

1 38 
50 — + 49 — = 100. 

2 76 

U nity 

Represent unity as the sum of two fractions: 

148 3 5 ^ _ 1 

Those knowing more advanced mathematics may also give other answers: 
123,456,789°; 234,5679 " 8 ~ \ etc., 

since any number to the zeroth power is unity. 
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With Five Twos 

Write 15 as: 

And 11 as: 

(2 + 2)2 — y = 15; - ^ - + 2 x 2 = 15; 

(2 x 2)2 — y = 15; ~ + 

2(2 + 2 ) _ | = 1 5 . - ^ - + 2 + 2 = 15. 

22 
— + 2 - 2 = 1 1 . 

Now the number 12,321. At first sight, it would seem impossible to write this five-digit 
number with five similar figures. The problem is manageable, however. Here is the 
solution: 

222 Y = i l l 2 = i n x 111 = 12,321. 

Once More with Five Twos 

22 + 2 + 2 + 2 = 28. 

With Four Twos 

222 
^==- = 111. 

With Five Threes 
The solution is: 

33 3 
^ - 4 = 1 0 . 

3 3 

It's worth mentioning that the problem would have had exactly the same solution 
if we had had to express 10 with five ones, five fours, five sevens, five nines, or, in 
general, with any five identical digits. In fact: 

11 1 22 2 44 4 99 9 =r — — PtC 
1 1 2 2 4 4 9 9 ' ' 
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Also, there are other solutions to the problem: 

3 x 3 x 3 + 3 
3 ; 

33 3 _ 
— + — = 10. 

3 3 

The Number 37 

There are two solutions: 

33 + 3 + y = 37; 

3 3 3 =37 . 
3 x 3 

In Four Ways 

We can use ones, threes and (most conveniently) fives: 
111 - 11 = 100; 

33 x 3 + y = 100; 

5 x 5 x 5 - 5 x 5 = 100; 

(5 + 5 + 5 + 5) x 5 = 100. 

With Four Threes 

33 
1 (there are also other ways); 

„ 3 3 
2=y+y; 

3 = 3 + 3 + 3 

4 = 

3 

3 x 3 + 3 

6 = (3 + 3)x j . 

Answers 



44 4 + 4 4 x 4 
1 = 4 4 ' ° r 4 ^ 4 ' ° r 4 7 4 

4 4 4 x 4 
2 = 4 + 4 ' ° r 4 T 4 ; 

4 + 4 + 4 4 x 4 - 4 
3 = : , or - ; 

etc.; 

4 = 4 + 4 x ( 4 - 4 ) ; 

_ 4 x 4 + 4 
5 ~ • 

* 4 + 4 , 6 = —-— + 4; 

4 44 
7 = 4 + 4 — —, or - - 4 ; 

8 = 4 + 4 + 4 - 4 , or 4 x 4 - 4 - 4 ; 

4 
9 = 4 + 4 + 

4 ' 

10 = 
4 4 - 4 

There is only one way: 

With Four Fives 

55 
— + 5 = 16. 

With Five Nines 

The two ways are as follows: 
99 

We've given the solutions through six only. Work out the remaining ones for 
yourselves. The above solutions, too, may be represented with other combinations of 
threes. 

X n.swers 

With Four Fours 
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99 9 
9 9 1 0 ' 

Those knowing more mathematics may add several other solutions, e.g. 
9 

9 + | - V = 10, or 9 + 999~9 = 10. 

Twenty-Four 

The two solutions are: 

22 + 2 = 24; 33 - 3 = 24. 

Thirty 
The three solutions are 

6 x 6 - 6 = 30; 33 + 3 = 30; 33 - 3 = 30. 

One Thousand 

888 + 88 + 8 + 8 + 8 = 1,000. 

Get Twenty 

The crossed out digits are replaced by zeros: 
011 
000 
009 

because 11 + 9 = 20. 

Cross Out Nine Digits 

The problem permits of several solutions. We furnish four: 
100 111 011 101 
000 030 330 303 
005 000 000 000 
007 070 770 707 
999 900 000 000 

1111 1111 1111 1111 
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u In a Mirror 

The only figures that are not inverted in a mirror are 1, 0, and 8. Accordingly, the 
year we seek can only contain these figures. Besides, we know that the year is in the 
19th century, hence the first two figures are 18. 

It's easily seen now that the year is 1818 because in a mirror we obtain 8181, which 
is 41/2 times more than 1818. In fact, 

1818 x 41/2 = 8181. 

The problem has no other solutions. 

Which Year? 

In the 20th century there is only one such year, viz. 1961. 

Which Numbers? 
The answer is simple: 1 and 7. There are no other numbers. 

Add and Multiply 

There are many such numbers, e.g. 
3 x 1 = 3 ; 3 + 1 = 4 ; 

or 
1 0 x 1 = 10; 1 0 + 1 = 11. 

In general, any pair of integers of which one is unity will work. 
This is because adding one increases a number and multiplying by one does not 

change it. 

The Same 

The numbers are 2 and 2. There are no other integers. 

Even Prime Numbers 

There is one even prime number-2. It only divides by itself and 1. 

Three Numbers 

Multiplying 1, 2, and 3 gives the same as adding them up: 
1 + 2 + 3 = 6, 1 x 2 x 3 = 6. 
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Addition and Multiplication 

There are a lot of such pairs. Examples are: 
3 + 1 1 / 2 = 4 1/2, 3 x 1 1/2 = 4 1/2, 
5 + 1 1 / 4 = 6 1/4, 5 X 1 1/4 = 6 1/4, 
9 + 1 1/8 = 10 1/8, 9 X 1 1/8 = 10 1/8, 

11 + 1.1 = 12.1, 11 X 1.1 = 12.1 
21 + 1 1/20 = 22 1/20, 21 X 1 1/20 = 22 1/20, 

101 + 1.01 = 102.01, 101 X 1.01 = 102.01, etc. 

Multiplication and Division 

There are many correct number pairs. For example, 

2 4 - 1 = 2 , 2 x 1 = 2 , 

7-^ 1 = 7, 7 x 1 = 7, 

43 1 = 43, 43 x 1 = 43. 

The Two-Digit Number 

The number we seek should clearly be a square. As among the two-digit numbers 
there are only six squares, then by trial-and-error method we readily find the unique 
solution, namely 81: 

Ten Times More 

The following are the four other pairs of such numbers: 11 and 110; 14 and 35; 15 
and 30; 20 and 20. 
In fact, 

11x110=1,210; 11 + 110 = 121; 

14 x 35 = 490; 1 4 + 35 = 49; 

15 x 30 = 450; 15 + 30 = 45; 

20 x 20 = 400 ; 2 0 + 20 = 40. 

The problem has no other solutions. Searching for the solutions by trial and error is 
tiresome and a knowledge of the ABC of algebra would make the process easier and 
enable us not only to find all the solutions, but also to make sure that the problem 
doesn't have more than five solutions. 

8 T T = 8 + 1-

Answers 
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is f- Two Digits 

Many may believe that the number is 10. No, it's 1, expressed as follows: 

1 2 3 4 9 
7 ' 7 ' 7 ' T ' e t c " u p t o 7 " 

Those who know some more mathematics may add to these answers a number of 
others: 

1°, 2°, 3°, 4°, etc., up to 9°, 

because any number to the zeroth power is unity*. 

The Largest Number 

The commonest answer is 1,111. But the number is far from being the largest, l l 1 1 is 
much more, 250,000,000 times more. 

Unusual Fractions 
There are several solutions. One of them is 

1 5,823 1 3,942 
3 17,469 4 15,768 

1 2,697 1 2,943 
5 13,485 6 17,658 ' 

1 2,394 1 3,187 1 6,381 
7 16,758 8 25,496 ' 9 57,429 ' 

There are many versions, especially the ones for 1/8 of which there are more than 40. 

What Was the Multiplier? 

We argue as follows. The figure 6 is the result of the addition of two figures, one of 
which may be either 0 or 5. But, if the lower one is 0, then the upper is 6. But, may 
the upper figure be 6? Testing shows that whatever the second figure of the multiplier, 
6 cannot be in the last but one place of the first partial product. Accordingly, the 
lower figure of the last but one column must be 5 and above it 1. 

* But the solutions — or 0° would be wrong because they are 

meaningless. 
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We can now easily restore some of the missing figures: 

235 
x 

* * 

+ 

**56* 

The last figure in the multiplier must be more than 4, otherwise the first partial 
product will not consist of four figures. It cannot be 5 as we won't then get 1 in the 
last but one place. Let's try 6 and this works out all right. We have: 

235 
x 

*6 

1 410 
+ 

***5 

**560 

Reasoning further along the same lines we find that the multiplier is 96. 

Missing Figures 

The missing figures are restored one after another if we use the following argument. 
For convenience we assign numbers to the lines 

* i * I 
x 3*2 II 

*3* III 
3*2* IV 

+ *2*5 V 
1*8*30 VI 

It's easily seen that the last asterisk in line III is 0, which follows from the fact that 
0 is at the end of line VI. 

Now we determine the value of the last asterisk in line I. This figure must give 
a number ending in zero when multiplied by 2, and a number ending in 5 (line V) 
when multiplied by 3. There is only one such figure-5. 

We can now guess the meaning of the asterisk in line II. It's 8 because only when 
multiplied by 8 the number 15 gives a result ending in 20 (IV). 

Eventually, the meaning of the first asterisk in line I becomes clear: it is 4, because 
only 4, when multiplied by 8, gives a result beginning with 3 (line IV). 

The remaining figures now present no problem. Suffice it to multiply together the 

Answers 
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numbers of the first two lines that have now been completely determined. 
We'll end up with the multiplication: 

415 
x 382 

830 
3320 

1245 
158530 

What Numbers? 

Arguing as above we uncover the meaning of the asterisks in this case, too. We get 

x 3 2 5 

147 

2275 
+ 1300 

325 

47775 
Strange Multiplication Cases 

The patient reader can find the following nine cases where the multiplication 
calculations meet the question's demands. They are: 

12 x 483 = 5,796, 
42 x 138 = 5,796, 
18 x 297 = 5,346, 
27 x 198 = 5,346, 
39 x 186 = 7,254, 

48 x 159 = 7,632, 
28 x 157 = 4,396, 
4 x 1738 = 6,952, 
4 x 1963 = 7,852. 

Mysterious Division 

For convenience, we'll number the lines in the arrangement thus: 
7 . 

I 
II 
III 
IV 
V 
VI 
VII 

) 
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Looking at line II we conclude that the second figure of the quotient is 0 as it was 
necessary to borrow two figures from the dividend. Denote the divisor by x. Lines IV 
and V indicate that Ix (the product of the last but one digit in the quotient and the 
divisor), when it was subtracted from a number not larger than 999, gave a difference 
not less than 100. Clearly, Ix cannot exceed 999 — 100, i. e. 899, hence x is not larger 
than 128. Further, we see that the number in line III is more than 900, otherwise, it 
wouldn't give a two-digit difference when subtracted from a four-digit number. Thus 
the third digit of the quotient should be 900 —128, i.e. more than 7.03. Accordingly, it 
is either 8 or 9. The numbers in I and VII are four digits long hence the third digit in 
the quotient is 8 and the extreme left and right digits are 9. 

This actually completes the problem as the desired result (the quotient) has now 
been found. It is 90,879. 

It's not necessary to go on with the argument to find the dividend and divisor, as 
we wanted the quotient only. The problem doesn't require us to decipher the whole of 
the arrangement. Besides, there are 11 pairs of numbers that satisfy the given 
arrangement of points and give 7 in the fourth place of the quotient, viz. 

10,360,206 
10,451,085 
10,541,964 
10,632,843 
10,723,722-
10,814,601 
10,905,480 
10,996,359 
11,087,238 
11,178,117 
11,268,996 

114"̂  
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 

= 90,879. 

The answer is: 

Another Division Problem 

162 

325) 52650 

325 

2015 

1950 

650 

650 
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1S Division by 11 

To solve the problem requires the knowledge of the criterion of divisibility by 11. 
A number is divisible by 11 if the difference between the sum of the even digits and 
the sum of the odd digits either is divisible by 11 or is zero. 

By way of example, test the number 23,658,904. 
The sum of the digits in the even places is 

3 + 5 + 9 + 4 = 21 

and the sum of the digits in the odd places is 
2 + 6 + 8 + 0 = 16. 

Their difference (we subtract from the largest) is 
21 - 16 = 5. 

The difference (5) doesn't divide by 11 nor is it zero, hence the number under 
consideration doesn't divide by 11. 

Take another number-7,344,535: 
3 + 4 + 3 = 10; 

7 + 4 + 5 + 5 = 21; 
21 - 1 0 = 11. 

As 11 divides by 11, the number in question is a multiple of 11. 
Now we can easily work out the order in which we should write the nine digits so 

as to arrive at a number that is a multiple of 11 and meets the conditions of the 
problem. 

Yet another example is 352,049,786. Let's test it: 
3 + 2 + 4 + 7 + 6 = 22; 

5 + 0 + 9 + 8 = 22. 
The difference is 22 — 22 = 0, hence the number divides by 11. 
Of these numbers the largest is 987,652,413, and the smallest is 102,347,586. 

Triangle of Figures 
The solution is shown in Fig. 235. The figures in the middle of each line can be 
interchanged to obtain further solutions. 

Figure 2 3 5 
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Another Triangle 

Again, the solution is given in Fig. 236. Also, the figures in the middle of each line can 
be interchanged to obtain further solutions. 

Figure 236 

Eight-Point-Star 
The solution is in Fig. 237. 

Figure 237 

Magic Star 

To make our life easier we'll start off with the following considerations. 
The numbers at the points must add up to 26, but the sum of all the numbers in the 

star is 78. Accordingly, the numbers on the internal hexagon is 78 - 26 = 52. 
Now let's look at one of the large triangles. On each side we have 26, and for all the 

three we get 26 x 3 = 78, with each number at the vertex entering twice. But as the 
sum of the three internal pairs (i.e. of the internal hexagon) is known to be 52, then 
the double sum of the numbers at the vertices of each triangle is 78 — 52 = 26, the 
single sum is thus 13. 

Figure 238 
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The field of search has now been narrowed markedly. We know, for instance, that 
neither 12 nor 11 can be at the star points (why?). Hence the tests might be begun 
with 10. In that case we immediately determine the two numbers that must occupy the 
remaining vertices of the triangle: 1 and 2. 

Moving on after this manner we eventually arrive at the desired arrangement. It's 
shown in Fig. 238. 

The following is the desired arrangement (Fig. 240). The sum of the numbers in each 
of the four lines is 25. 

Wheel of Figures 
The solution is given in Fig. 239. 

Figure 239 

Trident 

Figure 240 

7 
9 



Merry Arithmetic 

Simple Multiplication 

If you don't remember the multiplication table properly 
and have difficulty in multiplying by 9, then your own 
fingers might be of help. 

Place both hands on a table, your 10 fingers will be 
your computer. 

Suppose you want to multiply 4 by 9. 
Your fourth finger gives the answer : on the left of it 

there are three fingers, on the right, six. So you read: 
36, hence 4 x 9 = 36. 

Further examples: how much is 7 x 9 ? 
Your seventh finger has six fingers on its left and 

three on its right. The answer: 63. 
What is 9 x 9? On the left of the ninth finger there 

are eight fingers, on the right, one. The answer is 81. 
This living computer will remind you, for example, 

that 6 x 9 is 54, not 56. 

Cats and Mats 

Once some cats 
found some mats. 
But if each mat 
had but one cat 
there's be a cat 
without a mat. 
Should each mat 
now have two cats 
there'd be a mat 
without a cat. 
How many cats 
and how many mats? 

Sisters and Brothers 

I have an equal number of sisters and brothers. But my 
sister has two times more brothers than sisters. How 
many are we? 

How Many Children? 

I have six sons. Each son has a sister. How many 
children have I? 

Figure 241 

272-273 
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vP 
Breakfast 

Two fathers and two sons breakfasted on three eggs, 
each having a whole egg. How do you account for it? 

Three Quarters of a Man 
A team leader was asked how many people there were 
in his team. He answered in a rather involved way: 
"Not many: three quarters of us plus three quarters of 
a man, that's all." 

Could you compute the number of people in his 
team? 

How Old Are They? 

"Gran'pa, please tell me how old your son is?" 
"His is as many weeks old as my grandson is days old." 
"And your grandson, how old is he?" 
"His age is as many months old, as I am years old." 
"How old are you, then?" 
"Together the three of us are 100 years old. Now guess 
how old each of us is." 

Figure 242 Who is Older? 

In two years my boy will be twice as old as he was two 
years ago. And my girl in three years will be three 
times as old as she was three years ago. 

Who is older, my boy or my girl? 

The Age of the Son 

Now my son is a third my age. But five years ago he 
was a quarter my age. 

How old is he? 

His Age 

A witty person was asked about his age. The answer 
was: "If you take thrice my age in three years and 
subtract thrice my age three years back, then you'll 
have my age precisely." 

How old is he now? 

Three Daughters and Two Sons 

An uncle visited his two nieces and three nephews. 
The first to greet him were little Johnny and his 
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sister Anne. The little chap proudly declared that he 
was twice as old as his sister. Then Nadine ran out to 
meet the uncle and her father said that both girls to-
gether were twice as old as the boy. 

When Alexis came from school the father reckoned 
that both boys together are twice as old as both girls. 

The latest to come was Libby, she saw the guest and 
exclaimed happily: "Uncle, you just arrived on my 
birthday. Today I'm 21." 

"And you know what?" the father added, "It just 
occurred to me that my three daughters together are 
two times older than my sons." 

How old was each son and daughter? 

Two Trade Unionists 

I remember hearing a conversation between two trade 
unionists: 

"So you've been a trade union member twice as long 
as me?" 

"Yes, exactly twice." 
"But last we met you said that you'd been a member 

three times longer." 
"Two years back? Then that was so, but now I've 

only been twice as long as you." 
How many years has each of them been a trade 

union member? 

How Many Games 

Three persons were playing draughts. They had played 
three games. How many games had each of them 
played? 

Snail 

A snail was climbing up a 15-m tree. Each day it 
climbed 5 metres, but each night as it slept it slid back 
down 4 metres. 

How many days did it take the snail to reach the 
summit? 

To the Town 

A farmer was travelling to a town. The first half of the 
route he went by train, 15 times faster than if he had 
gone by foot. However, the second half of the route he 

Figure 243 
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rode on an oxcart, at half the speed of a walker. 
How much time did he save as compared with 

walking all the way to the town? 

To the Village 

From a town to a village the road first goes uphill for 
8 kilometres, then 24 kilometres downhill. John went 
there on a bicycle and the non-stop journey there took 
him 2 hours 50 minutes. He also bicycled back, again 
non-stop, and spent 4 hours 30 minutes. 

How fast could John ride uphill and how fast 
downhill? 

Two Schoolboys 

A schoolboy said to his mate, "Give me an apple, and 
r i l have twice as many as you." 

"That would be unfair," replied the mate, "You give 
me one then we'll even." 

How many apples had each initially? 

Binding 

Here is an insidious problem. A bound book costs 
2 roubles 50 kopecks. The book is 2 roubles more 
expensive than the binding. 

How much does the binding cost? 

The Cost of Buckle 

A belt with a buckle costs 68 kopecks. The belt costs 60 
kopecks more than the buckle. 

How much does the buckle cost? 

Figure 244 



Casks of Honey 

In store there were seven casks brim full of honey, 
seven half-full ones, and seven empty casks, all 
belonging to three firms that wanted to divide both the 
honey and casks into equal shares. 

How can they divide without transferring the honey 
from one cask into another? 

If you think that various ways of doing so are 
available, indicate all those which occur to you. 

Postage Stamps 

A man bought a 5 roubles worth of postage stamps of 
three kinds: 50-kopeck stamps, 10-kopeck stamps and 
1-kopeck stamps-100 pieces, all told. 

How many stamps of each kind did he buy? 

How Many Coins? 

A customer got his change of 4 roubles 65 kopecks, all 
in 10 and 1-kopeck coins-in all, 42 coins. 

How many coins of each worth was he given? 
How many solutions has the problem? 

Socks and Gloves 

One box contains 10 pairs of brown and 10 pairs of 
black socks, another contains 10 pairs of brown and 10 
pairs of black gloves. 

How many single socks and gloves is it sufficient to 
take from each box to have any one pair of socks and 
gloves? 
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'9, 
Figure 246 

Book Worm 

There are insects that feed on books eating their way 
through leaves and thus ruining the bulk of the book. 
One such book worm has eaten through from the first 
page of the first volume to the last page of the second 
volume on a bookshelf, as shown in the accompanying 
figure. 

There are 800 pages in each volume so, how many 
pages has the worm ruined? 

The problem is not difficult but it has a catch. 

Spiders and Beetles 

A boy collects spiders and beetles in a box and he now 
has 8 insects in all. There are 54 legs in the box in 
total. 

How many spiders and how many beetles are there? 

Figure 247 

Seven Friends 

A man has seven friends. The first visits him every 
night, the second every other night, the third every 
third night, the fourth every fourth night, etc., through 
to the seventh friend who comes every seventh night. 

Is it often the case that all the seven friends get to-
gether there on the same night? 

The Same Problem Continued 

On those nights when the seven friends get together the 
host treats them to some wine, and all touch glasses in 
pairs. 

How many times do the glasses ring as they touch 
one another? 
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Cats and Mats 

This problem is solved in this way. Ask the question: How many more cats would be 
needed to occupy all the places on the mats the second time than to get the situation 
we had the first time? We can easily figure that out: in the first case one cat was left 
without a place, whilst in the second case all the cats were seated and there were even 
places for two more. Hence for all the mats to have been occupied in the second case 
there should have been 1 + 2, i. e. three, more cats than there were in the first case. 
But then each mat would have one more cat. Clearly there were three mats all in all. 
Now we seat one cat on each mat and add one more to obtain the number of cats, 
four. 

Thus, the answer is four cats and three mats. 

Sisters and Brothers 

Seven: four brothers and three sisters. Each brother has three brothers and three 
sisters; each sister has four brothers and two sisters. 

How Many Children? 

Seven: six sons and one daughter. (The common answer is twelve, but each son would 
then have six sisters, not one.) 

Breakfast 

The situation is very simple. Seating at the table were three, not four people: a grand-
father, his son, and his grandson, l l ie grandfather and his son are fathers, and the son 
and grandson are sons. 

Three Quarters of a Man 

Note that the three-quarters-of-a-man is the last quarter of the team. So the whole of 
the team is four times the three quarters of a man, i. e. three. In consequence, the team 
consisted of three men. 

How Old Are They? 

We know thus that the son is 7 times, and the grandfather 12 times, older than the 
grandson. If the grandson were one year old, the son would be seven, and the grandfa-
ther 12. Adding the three together gives 20, which is exactly a fifth of the real figure. It 
follows that in actuality the grandson is five, the son 35, and the grandfather 60. 

Check: 5 + 35 + 60 = 100. 
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Who is Older? 

Neither is: they are twins and each of them at the time is six. 
The calculation is simple: two years hence the boy will be four years older than he 

was two years ago, and twice as old as he was then. Hence he was four years old two 
years ago. Accordingly, now he is 4 + 2 = 6 years old. 

The girl's age is the same. 

The Age of the Son 
If now a son is one third the age of his father, then the father is older in years by 
twice the son's age. Five years ago the father was, of course, also twice his son's 
present age older than his son was then. On the other hand, since at that time the 
father was four times older than the son, he was older by the triple then age of the 
son. Consequently, the double present age of the son equals the triple then age of the 
son. Thus, the son is now 11/2 times older than he was five years ago. It follows that 
five years is a half of the son's previous age, and hence five years ago the son was 10, 
and now he is 15 years old. 

Thus, the son is now 15 years and the father 45. Checking this, five years ago the 
father was 40 and the son was 10, i.e. a quarter the father's present age. 

His Age 

Arithmetically the problem has a rather involved solution, but the situation simplifies 
considerably if we draw on the services of algebra and set up an equation. We'll 
denote the number of years we're after by x. The wit's age in three years will then be 
x + 3, and three years ago, x — 3. We'll thus have 

3 (x + 3) - 3 (x - 3) = x 

The equation gives x = 18. So the witty person's age is at present 18 years. 
Let's check. In three years time he'll be 21 and three years ago he was 15. The 

difference is 
3 x 21 - 3 x 15 = 63 - 4 5 = 18, 

which equals the present age of the man. 

Three Daughters and Two Sons 
We know that Johnny is twice as old as Anne, and Nadine and Anne together are 
twice as old as Johnny. Accordingly, the sum of the ages of Nadine and Anne is four 
times more than Anne's age. It follows directly that Nadine is three times as old as 
Anne. 

We also know that the ages of Alexis and Johnny combined are twice the combined 
age of Nadine and Anne. But Johnny's age is double Anne's age, and the ages of 
Nadine and Anne put together give the fourfold age of Anne. Accordingly, Alexis's age 
plus the double age of Anne are equal to the eightfold age of Anne. Thus, Alexis is six 
times older than Anne. 
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Lastly, as stated, the ages of Libby, Nadine, and Anne combined equal the sum of 

the ages of Johnny and Alexis. 
For convenience, we'll compile the table: 

Libby 21 years 
Nadine three times older than Anne 
Johnny two times older than Anne 
Alexis six times older than Anne 

We can now say that 21 years plus the trebled Anne's age plus an Anne's age are 
equal to the fourfold Anne's age plus the twelvefold Anne's age. 

Or, 21 years plus the fourfold age of Anne are equal to the sixteen-fold age of Anne. 
In consequence, 21 years are equal to the twelve-fold age of Anne and Anne is thus 

21/12 = 1 3/4 years. 
•We can now easily determine that Johnny is 3 1/2, Nadine 5 1/4, and Alexis 10 1/2. 

Two Trade Unionists 
One has been with the trade union for eight years, the other for four years. Two years 
ago the first one had been with the trade union six years, the second two years, i.e. 
three times as long. The problem is readily solvable using an equation. 

How Many Games? 

The commonest answer is that each played once, ignoring the fact that three (and any 
odd number in general) players cannot each play only once for who then did the third 
player play? It takes two partners to have a game. If we denote the players by A, B, 
and C, the three games will be 

A with B 
A with C 
B with C 

We see that each played twice, not once: 
A with B and C 
B with A and C 
C with A and B 

So the answer is: each of the three played twice, although three games had been 
played in all. 

Snail 
In 11 days. During the first 10 days the snail had crawled up 10 metres, 1 metre a day. 
The next one day it climbed the remaining 5 metres, i. e. it reached the summit. (The 
common answer is 15 days.) 

To the Town 

The farmer lost time, he did not save it. The second half of the route took as much 
time as he would have spent travelling to the town on foot. He thus could not save 

Answers 
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time, he was bound to lose time. 
His loss amounted to 1/15 of the time required to cover half a route on foot. 

To the Village 

The solution of the problem follows from the following calculation: 
24 kilometres uphill and 8 kilometres downhill took 4 hours 30 minutes; 
8 kilometres uphill and 24 kilometres downhill took 2 hours 50 minutes. 
If we multiply out the second line by three, we obtain: 24 kilometres uphill and 72 

kilometres downhill takes 8 hours 30 minutes. 
A bit of algebra gives that the bicyclist covers 64 kilometres downhill in 4 hours. 

Hence, downhill he travelled at 64/4 = 16 kilometres an hour. 
We'll find in much the same way that he travelled uphill at 6 kilometres an hour. 

Testing the answer is an easy exercise. 

Two Schoolboys 

Transferring an apple balances out the number of apples, thus suggesting that one had 
two apples more than the other. If we subtract one apple from the smaller number 
and add it to the larger number, then the difference will increase by two and become 
four. We know that then the larger number will be equal to double the smaller one. 
Accordingly, the smaller number is 4 and the larger 8. 

Before the transfer one schoolboy had 8 — 1 = 7 apples, and the other 4 + 1 = 5 
apples. 

Let's check whether or not the numbers become equal if we subtract an apple from 
the larger and add it to the smaller: 

7 - 1 = 6 ; 5 + 1 = 6. 

Thus, one schoolboy has 7 apples and the other 5 apples. 

Binding 

The off-the-cuff answer is usually: the binding costs 50 kopecks. But then the book 
would cost 2 roubles, i.e. it would be only 1 rouble 50 kopecks more expensive than 
the binding. 

The true answer is: the binding costs 25 kopecks, the book 2 roubles 25 kopecks 
with the result that the book costs 2 roubles more than the binding. 

The Cost of Buckle 

Perhaps you've decided that the buckle costs 8 kopecks. If so, you're mistaken, as the 
belt would then cost only 52 kopecks more than the buckle, not 60 kopecks more. 

The correct answer is the buckle costs 4 kopecks, then the belt costs 68 — 4 = 64 
kopecks, i.e. 60 kopecks more than buckle. 

Casks of Honey 

The problem becomes a fairly easy exercise if we note that in the 21 casks bought 
there were 7 + 3 1/2 = 10 1/2 caskfuls of honey. Each firm must then get 31 /2 caskfuls 
of honey and seven casks. 
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We could divide them in the following two ways: 
First way 

Second way 

f 3 full 
i 1 1st firm s 1 half-full f Tota l : 3 1/2 caskfuls of honey 

13 empty 

( 2 full 
2nd firmS 3 half-full 

12 empty 

f 2 full 
3rd firm < 3 half-full 

I 2 empty 

3 full 

Total : 3 1/2 caskfuls of honey 

Total : 3 1/2 caskfuls of honey 

1st firm 1 half-full J> Tota l : 3 1/2 caskfuls of honey 
.3 empty 

[3 full 
2nd firm ^ 1 half-full Total : 3 1/2 caskfuls of honey 

3 empty 

( 1 full 
3rd firmi 5 half-full }• Total : 3 1/2 caskfuls of honey 

11 empty 

Postage Stamps 

There is only one answer: the customer bought 
1 x 50-kopeck stamp 

39 x 10-kopeck stamps 
60 x 1-kopeck stamps 

Really, there were 1 + 39 + 60 = 100 pieces all in all, and the total cost was 50 + 
+ 390 + 60 = 500 kopecks. 

How Many Coins 

The problem has four solutions: 

I II III IV 

Roubles 1 2 3 4 
10-kopeck pieces 36 25 14 3 
1-kopeck pieces 5 15 25 35 

Total 42 42 42 42 

Socks and Gloves 
Three socks will be enough, as two of them are bound to be of the same colour. But 
with the gloves the situation is not that simple. These differ from one another not only 
in their colour, but also in that half of them are right-handed and half left-handed. 



Here 21 gloves will be sufficient. With a smaller number it might appear that all of 
them would be right-handed, or left-handed for that matter (10 pairs of brown left and 
10 pairs of black left). 

Book Worm 

The common answer is that the worm went through 800 + 800 pages plus two covers. 
But this is not so. Stand two books side by side as shown in Fig. 246, and see how 
many pages there are between the first page of the first book and the last page of the 
second book. You'll discover that there is nothing but two covers between them. 

Thus the book worm had only destroyed the two covers without touching their 
leaves. 

Spiders and Beetles 

To tackle the problem we should first of all remember from your nature lessons how 
many legs beetles have and how many spiders have. In fact, the numbers are six and 
eight, respectively. With this in view we suppose that the box only contains beetles, 
either all told. Their legs would then add up to 6 x 8 = 48, six fewer than given in the 
problem. Let's now try and replace one beetle with one spider. This will increase the 
number of legs by two because the spider has two more legs. 

Clearly three such replacements will bring the total number of legs in the box up to 
the desired 54. But in that case there will only be five beetles, the rest being spiders. 

The box thus contained five beetles and three spiders. 
Let's check: five beetles give 30 legs, the three spiders 24, the total being 30 + 24 = 

= 54, as required. 
The problem can also be solved in another way. We may start off assuming that the 

box only contains spiders, eight of them. The number of legs will then be 8 x 8 = 64, 
10 legs more than what was stated. Replacing one spider with one beetle reduces the 
number of legs by two. We'll have to make five such substitutions in order that to 
arrive at 54. Put another way, we'll retain only three spiders, with the rest being 
replaced by beetles. 

Seven Friends 

You should easily twig that the seven can only come together in a number of days 
that divides by 2, 3, 4, 5, 6, and 7. The smallest such number is 420. 

Consequently, the friends will only get together once every 420 days. 

The Same Problem Continued 

All of those present (the host and his seven friends) touch their glasses with those of 
the remaining seven. The number of combinations 2 at a time totals 8 x 7 = 56. But 
this counts each pair twice (e.g. the third guest with the fifth and the fifth with the 
third are considered as different pairs). Hence the glasses ring 56/2 = 28 times. 

Answers 
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Can You Count? 

The question might seem to be even insulting for 
a person more than three years old. Who can't? To 
utter the words "one", "two", "three" etc., in succession 
doesn't take much genius. And still I'm sure that you're 
not always equal to this seemingly simple task. 
Everything depends on what is to be counted. It's no 
problem to count, say, the nails in a box. But suppose 
the box contains screws as well as nails. It's required to 
find out how many of each there are. How could you 
go about it? Would you separate the heap into nails 
and screws and then count them? 

This sort of a problem comes up for a housewife 
when she has to count the washing for laundry. She 
first sorts the washing out: shirts go to one heap, 
towels to another, etc. And it's only after she had done 
this tedious job that she begins to count the items in 
each heap. 

That's what is called not knowing how to count! 
This way of handling dissimilar objects is utterly 
inconvenient, labour consuming and occasionally even 
completely impossible. It's all well and good if you 
have to count nails or washing: they are fairly easily 
sorted out into separate heaps. But try to place yourself 
into a forester's shoes who wants to count all the pines, 
spruces, birches and aspens in the same hectare. He 
cannot sort out all the trees according to their species. 
Well, should you first count all the pines, then all the 
spruses, then all the birches and then all the aspens? 
Would you go all round the whole area four times? 

Couldn't the job be done in a simpler way, perhaps 
by a single tour of the area? Yes, there is such a way 
and it has been used since time immemorial by 
foresters. Til illustrate its principle essence referring to 
our nails and screws. 

To count the nails and screw at one go, without 
sorting them out, get a pencil and a sheet of paper 
marked out as shown below: 

Nai ls Screws 

284-285 



Count 

Now begin counting. Take out of the box whatever 
comes first. If it's a nail you make a dash in "Nails", if 
it's a screw, mark a dash in "Screws". Take out 
a second piece and repeat the procedure, then a third, 
a fourth, etc., until the box is finished. In the end, in the 
"Nails" column you'll have as many dashes as there are 
nails in the box, and in the "Screws" column as many 
dashes as there are screws. It only remains to count up 
the dashes. 

We could simplify the counting procedure. To do so 
we should not just dispose our dashes one under 
another, but group them as shown in Fig. 248 with five 
dashes in each group. 

It's convenient to arrange these squares into pairs, 
i.e. after the first 10 dashes begin a new row, then the 
third, and so on. The arrangement will be 
approximately as shown in Fig. 249. 

It's easy to count the dashes thus arranged: you see 
at once that here we have three complete tens, one five 
plus three dashes, i. e. 30 + 5 + 3 = 38. 

Other figures are also possible. So they often use 
figures in which each complete square means 10 

When counting trees of different species in a forest 
area you should proceed in much the same way, only 
now you'll have four columns or lines, not two, lines 
being more convenient here. So you should begin with 
a sheet like this: 

(Fig. 250). 

Figure 248 

Figure 249 

Figure 250 
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Figure 251 

You'll end up with about what is shown in Fig. 251. 
It's a straightforward exercise here to work out the 

totals: 

Pines 53 Birches 46 
Spruces 79 Aspens 37 

Pfnes 

Spruces 

Birches 

Aspens 

Count 

Pines 

Spruces 

Birches 

Aspens 
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The same procedure is used by a medical worker 
who counts under the microscope red and white blood 
corpuscles in a blood specimen. 

Should you need to count the plants of various 
species in a meadow you'll now know how to handle 
the job and do it in the shortest time possible. First 
write down the names of the plants found and allot 
a line to each, leaving several lines for other plants you 
may come across. Start off, for example, with an 
arrangement like the one in Fig. 251, and proceed as if 
it were the forest survey. 

Why Count Trees in a Forest? 

Why is it actually necessary to count the trees in 
a forest? Some town dwellers even think that it's 
impossible. In the novel Anna Karenina by 
L.N. Tolstoy an agriculture expert, Levin, asked his 
naive relative who wanted to sell his forest: 

"Have you counted the trees?" 
"How can one count trees?" he answers in 

bewilderment. "Count sands or rays from distant 
planets perhaps some lofty mind could..." 

"Oh yes? But the lofty mind of Ryabinin (a 
merchant - the author) can. And no peasant will buy, 
without counting." 

The trees in a forest are counted to assess the volume 
of the wood in it. They count not all the trees in 
a forest, but only those in a definite area, say a quarter 
or half a hectare that is so chosen that the density, 
composition, thickness and height of its trees were 
representative of those in the entire forest. Selecting 
a representative sample area requires, of course, a good 
eye. The survey involves determining not only the 
number of trees of each species, but also the number of 
trunks of each gauge (say, 30 cm, 35 cm, etc.). The 
report will therefore include more than four entries as 
it's in our simplified example. Now you can imagine 
how many times it would be necessary to go all round 
the area if the trees were counted in some other way. 

You can see thus that counting is only a simple and 
easy business when handling similar objects. When 
handling dissimilar things the just described procedures 
are needed. 
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(Simple tricks of mental arithmetic) 

The following is a collection of simple and easily 
grasped tricks to speed up your mental arithmetic. If 
you want to master them you should realize that to be 
used fully they need to be approached conscientiously, 
not mechanically. But it pays to master them as they'll 
enable you to do calculations in your head without 
error, as with written calculations. 

Multiplication by Simple Number 

1. When multiplying by a simple number (for example, 
27 x 8) don't begin by multiplying the ones, as you 
would do in a written operation. First, multiply the 
tens of the multiplicand (20 x 8 = 160), then the ones 
( 7 x 8 = 56) and add up the results (160 + 56 = 216). 

Further examples: 
34 x 7 = 30 x 7 + 4 x 7 = 210 + 28 = 238, 
47 x 6 = 4 0 x 6 + 7 x 6 = 240 + 42 = 282. 

2. It would also pay to remember the multiplication 
table up to 19 x 9 : 

2 3 4 5 6 7 8 9 
11 22 33 44 55 66 77 88 99 
12 24 36 48 60 72 84 96 108 
13 26 39 52 65 78 91 104 117 
14 28 42 56 70 84 98 112 126 
15 30 45 60 75 90 105 120 135 
16 32 48 64 80 96 112 128 144 
17 34 51 68 85 102 119 136 153 
18 36 54 72 90 108 126 144 162 
19 38 57 76 95 114 133 152 171 

Knowing the table you could multiply say 147 x 8 in 
your head as follows: 
147 x 8 = 140 x 8 + 7 x 8 = 1120 + 56 = 1176. 

3. If one of the numbers to be multiplied together is 
representable in the form of two factors, it may be 
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convenient to multiply in succession by three factors. 
For example: 
225 x 6 = 225 x 2 x 3 = 450 x 3 = 1350. 

Multiplication by Two-Digit Number 

4. This kind of multiplication can be made simpler by 
reducing it to the conventional multiplication by 
a simple number. 

When the multiplicand is simple, it and the multiplier 
are interchanged and then the procedure of item 1 can 
be followed. For example: 
6 x 28 = 28 x 6 = 120 + 48 = 168. 

5. When both multipliers are two-digit, one of them is 
mentally broken down into tens and ones. For 
example: 
29 x 12 = 29 x 10 + 29 x 2 = 290 + 58 = 348, 
41 x 16 = 41 x 10 + 41 x 6 = 410 + 246 = 656, 
(or 41 x 16 = 16 x 41 = 16 x 40 + 16 = 640 + 16 = 656). 
It's more convenient to break the multiplier down into 
tens and ones and so get smaller figures. 
6. If the multiplicand or multiplier are more readily 
representable in the head in the form of two simple 
factors (e. g. 14 = 2 x 7), then this trick is used to reduce 
one of the initial factors while increasing the other 
accordingly (cf. item 3). For example: 
45 x 14 = 90 x 7 = 630. 

Multiplication and Division by 4 and 8 

7. To multiply in your head a number by 4, you double 
the number twice. For example, 
112 x 4 = 224 x 2 = 448, 
335 x 4 = 670 x 2 = 1,340. 

8. When multiplying by 8, the number is doubled three 
times. For example, 
217 x 8 = 434 x 4 = 868 x 2 = 1,736. 

Another way of multiplying mentally by 8 is to 
multiply the multiplicand by ten and subtract double 
the multiplicand (that is, multiply by 10 — 2 in the long 
run): 
217 x 8 = 2 ,170-434 = 1,736. 
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Or more convenient still: 
217 x 8 = 200 x 8 + 17 x 8 = 1,600 + 136 = 1,736. 

9. For a number to be mentally divided by 4, the 
number is halved twice. For example, 
76-1-4 = 38-1-2 = 19, 
236-1-4 = 118-1-2 = 59. 

10. To divide mentally by 8, the number is halved three 
times. For example, 
464 + 8 = 232-1-4 = 116+2 = 58, 
516+8 = 258+4 = 129+2 = 64 1/2. 

Multiplication by 5 and 25 

11. Multiplying by 5 is actually multiplying by 10/2. 
Thus a zero is ascribed to the number and the result is 
divided by two. For example, 
74 x 5 = 740+2 = 370. 
243 x 5 = 2,430+2 = 1,215. 

If our number is even, it's more convenient to halve 
it first and then add the zero. For example, 

74 x 5 = x 10 = 370. 
2 

12. In the case of 25, a number is multiplied by 100/4, 
i.e. if the number is divisible by 4, it is divided by 
4 first and two zeros are then ascribed to the result. 
For example, 

72 
72 x 25 = — x 100 = 1,800. 

4 

But if the division yields a remainder, then if it's 1 we 
add 25 to the quotient, if 2 we add 50, and if 3 we add 
75. This follows from the fact that 100+4 = 25, 
200+4 = 50, and 300+4 = 75. 

Multiplication by 11/2, 11/4, 2 1/2, 3/4 

13. When multiplying by 1 1/2, add to the multiplicand 
its half. For example, 
34 x 1 1/2 = 3 4 + 17 = 51. 
23 x 1 1/2 = 23 + 11 1/2 = 34 1/2 (or 34.5). 
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14. When multiplying by 1 1/4, add to the multiplicand 
its quarter. For example, 
48 x 1 1/4 = 48 + 12 = 60. 
58 x 1 1/4 = 58 + 14 1/2 = 72 1/2 (or 72.5). 

15. To multiply by 2 1/2, add to the doubled number 
its half. For example, 
18 x 2 1/2 = 36 + 9 = 45. 
39 x 2 1/2 = 78 + 19 1/2 = 97 1/2 (or 97.5). 

Another technique consists in multiplying by 5 and 
dividing by two: 
18 x 2 1/2 = 9 0 ^ 2 = 45. 

16. To multiply by 3/4 (that is, to find 3/4 of 
a number), the number is multiplied by 11/2 and 
divided by two. For example, 

30+ 15 
30 x 3/4 = = 22 1/2 (or 22.5). 

Another form of the technique consists in subtracting 
from the multiplicand its quarter or adding to a half of 
the multiplicand a half of the half of the multiplicand. 

Multiplication by 15, 125, 75 

17. Multiplication by 15 is replaced by multiplying by 
10 and then by 11/2 (because 10 x 1 1/2) = 15). For 
example, 
18 x 15 = 18 x 1 1/2 x 10 = 270. 
45 x 15 = 450 + 225 = 675. 

18. Multiplication by 125 is replaced by multiplying by 
100 and by 1 1/4 (because 100 x 1 1/4 = 125). For 
example, 
26 x 125 = 26 x 100 x 1 1/4 = 2,600 + 650 = 3,250. 

4 700 
47 x 125 = 47 x 100 x 1 1/4 = 470 + — = 4700 + 

4 
+ 1,175 = 5,875. 

19. Multiplication by 75 is replaced by multiplying by 
100 and by 3/4 (because 100 x 3/4 = 75). For example, 

1800 -I- 900 
18 x 75 = 18 x 100 x 3/4 = 1800 x 3/4 = J = 

= 1,350. 
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Note: Some of the above examples can be conveniently 
handled using the technique of item 6: 

18 x 15 = 90 x 3 = 270. 
26 x 125 = 130 x 25 = 3,250. 

Multiplication by 9 and 11 

20. When multiplying by 9, add a zero to the number 
and subtract the multiplicand from the result. For 
example, 
62 x 9 = 620 - 62 = 600 - 42 = 558. 
73 x 9 = 730 - 73 = 700 - 43 = 657. 

21. When multiplying by 11, add a zero to the number 
and add the multiplicand to the result. For example, 

87 x 11 =870 + 87 = 957. 

Division by 5, 1 1/2, 15 
22. To divide by 5 double the number and move the 
decimal point one place to the left. For example, 

6 8 + 5 = ^ - = 13.6. 
10 
474 

237+5 = — = 47.4. 

23. Dividing by 11/2 consists in doubling the number 
and dividing the result by 3. For example, 
36 + 1 1/2 = 7 2 + 3 = 24. 
53 + 1 1/2 = 106+3 = 35 1/3. 

24. Dividing by 15 consists in doubling the number 
and dividing the result by 30. For example, 
240+15 = 480+30 = 4 8 + 3 = 16. 
462+15 = 924+30 = 30 24/30 = 30 4/5 = 30.8. 
(or 924+30 = 308-^10 = 30.8). 

Squaring 

25. To square a number ending in 5 (e.g. 85) the 
number of tens (8) is multiplied by itself plus one (8 x 
x 9 = 72) and on the right of the result 25 is ascribed 

(in our example this yields 7,225). Some more examples: 
252; 2 x 3 = 6; 625. 
452; 4 x 5 = 20; 2,025. 
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1452; 14 X 15 = 210; 21,025. 
The procedure follows from the formula: 

(lOx + 5)2 = lOOx2 + lOOx + 25 = lOOx (x 4- 1) + 25. 

26. This technique can also be applied to decimal 
fractions ending in 5: 
8.52 = 72.25; 14.52 = 210.25; 0.352 = 0.1225, etc. 

27. As 0.5 = 1/2 and 0.25 = 1/4, the procedure of item 
25 can also be used to square numbers ending in the 
fraction 1/2: 
(8 1/2)2 = 72 1/4. 
(14 1/2)2 = 210 1/4, etc. 

28. Mental squaring can often be simplified using the 
formula 
(a ± b)2 = a2 + b2 ± lab. 

For example, 
412 = 402 + 1 + 2 x 40 = 1,601 + 80 = 1,681. 
692 = 702 + 1 - 2 x 70 = 4,901 - 140 = 4,761. 
362 = (35 + l)2 = 1,225 + 1 + 2 x 35 = 1,296. 

The procedure is also convenient for numbers ending 
in 1, 4, 6, and 9. 

Calculations by Formula (a + b) (a — b) = a2 — b2 

29. Let's multiply 52 x 48. We mentally represent the 
multipliers as (50 + 2) (50 — 2) and use the formula: 
(50 + 2) (50 - 2) = 502 - 22 = 2,496. 

This technique can be used whenever one multiplier 
can be conveniently represented as a sum of two 
numbers and the other as a difference of the same 
numbers, e.g. 
69 x 71 = (70 - 1) (70 + 1) = 4,899. 
33 x 27 = (30 + 3) (30 — 3) = 891. 
53 x 57 = (55 - 2) (55 + 2) = 3,021. 
84 x 86 = (85 - 1) (85 + 1) = 7,224. 

30. The procedure may conveniently be used for 
calculations of the following type: 
I 1/2 x 6 1/2 = (7 + 1/2) (7 - 1/2) = 48 3/4. 
II 3/4 x 12 1/4 = (12 - 1/4) (12 + 1/4) = 143 15/16. 
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It Pays to Remember: 
37 x 3 = 111 

With this in mind we can easily carry out the 
multiplication of 37 by 6, 9, 12, etc. 
37 x 6 = 37 x 3 x 2 = 222. 
37 x 9 = 37 x 3 x 3 = 333. 
37 x 12 = 37 x 3 x 4 = 444. 
37 x 15 = 37 x 3 x 5 = 555, etc. 

7 x 11 x 13 = 1,001 

With this in mind we can easily carry out the 
multiplications of the following type: 
77 x 13 = 1,001. 
77 x 26 = 2,002. 
77 x 39 = 3,003, etc. 
91 x 11 = 1,001. 
91 x 22 = 2,002. 
91 x 33 = 3,003, etc. 
143 x 7 = 1,001. 
143 x 14 = 2,002. 
143 x 21 = 3,003, etc. 

We have only discussed the simplest and most 
convenient techniques of mental arithmetic. An 
inquiring mind can, through practice, work out further 
procedures to simplify calculations. 
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The Smallest Magic Square 

Since time immemorial people have amused themselves 
by constructing magic squares. The problem consists in 
arranging successive numbers (beginning with 1) over 
the cells of a divided square so that the numbers in all 
the lines, columns and diagonals add up to the same 
number. 

The smallest magic square has nine cells. It can easily 
be shown by trials that a four-cell magic square is 
impossible. The following is an example of a 9-cell 
magic square: 

4 3 8 

9 5 1 

2 7 6 

In this square we might add up either 4 + 3 + 8, or 2 + 
-I- 7 + 6, or 3 -(- 5 -I- 7, or 4 + 5 + 6, or any other line of 

three numbers, the result is always 15. The result could 
be envisaged beforehand, without constructing the 
square as such: the three lines of the square should 
contain all the nine numbers and they add up to 
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45. 

On the other hand, this sum must clearly be equal to 
thrice the sum of a single line. Hence for each line 
45-^3 = 15. 

Using the same argument we can determine in 
advance the sum of the numbers in a line or column of 
any magic square consisting of an arbitrary number of 
cells. We only have to divide the sum of all its numbers 
by the number of its lines. 

Turns and Reflections 

Haying constructed one magic square we can readily 
derive its modifications, i.e. a series of new magic 
squares. If, for instance, we have the square given in 
Fig. 253, then by mentally turning it by 90° we'll 
obtain another magic square (Fig. 254): 

Figure 252 

22 
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Figure 253 Figure 254 

296-297 

Figure 255 

Figure 256 (1-3) 

Figure 256 (4-8) 

Further tu rns -by 180° and 270°-will give two more 
modifications of the initial square. 

Each of the new magic squares can in turn be 
modified by reflecting it in a mirror. Figure 255 depicts 
the initial square with one of its mirror reflections. 

All the turns and reflections possible with the 9-cell 
square yield the following versions (Fig. 256): 

This is the complete collection of magic squares that 
could be compiled of the first nine figures. 

Bachefs Method 

Here's an ancient method of constructing odd magic 
squares, i. e. squares with any odd number of cells: 3 x 
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x 3, 5 x 5, 7 x 7, etc. The method was suggested in the 
17th century by the French mathematician Claude-
Gaspar Bachet (1581-1638). The method being suitable 
for the 9-cell square, it'll be convenient to begin 
discussing the method with this, the simplest case. 

So, having drawn a square divided into nine cells 
we'll write the numbers from 1 to 9 in succession 
arranging them in the oblique lines as shown in 
Fig. 257. 

2 6 
5 

4 8 

: 7 ; . i 
We transfer the numbers that appear to lie beyond 

the confines of the square into the square so that they 
join the lines at the opposite sides of the square. We 
thus obtain: 

9 5 1 
4 3 8 

Let's apply Bachet's technique to a 5 x 5 square. 
We'll begin with the arrangement: 

i—i 
: 5 ! 

r—+-
i 4 • ! 10 i 

2 
r — ( . . . . 
! 1 i f—• 

6 

3 9 15 
8 14 

7 13 19 
12 18 

11 17 23 

20 | 
—t—i 

! 25 | 
1 ' 

24 ' 

i 16 ' 
' U - -

I 21 
L 

i 22 

It only remains now to bring the numbers outside 
the confines of the square into it. To do so, we'll need 
to bring the three-number arrangements from beyond 

Figure 257 

Figure 258 

Figure 259 
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3 16 9 22 15 
20 8 21 14 2 
7 25 13 1 19 

24 12 5 18 6 
11 4 17 10 23 

30 39 48 1 10 19 28 
38 47 7 9 18 27 29 
46 6 8 17 26 35 37 
5 14 16 25 34 36 45 

13 15 24 33 42 44 4 
21 23 32 41 43 3 12 
22 31 40 49 2 11 20 

32 41 43 3 12 21 23 
40 49 2 11 20 22 31 
48 1 10 19 28 30 39 
7 9 18 27 29 38 47 
8 17 26 35 37 46 6 
16 25 34 36 45 5 14 
24 33 42 44 4 13 15 

the square ("terraces") to the opposite sides of the 
square. This will give a 25-cell magic square (Fig. 260). 

The idea behind this simple technique is fairly 
complicated, though the reader can check it practically. 

Now that we have this magic square with 25 cells we 
can obtain its modifications by using turns and mirror 
reflections. 

The Indian Method 

The Bachet (or "terrace") method is not the only 
approach to constructing squares with an odd number 
of cells. Worth mentioning among other techniques is 
a relatively easy procedure that is thought to have been 
devised in India about two thousand years ago. It can 
be briefly couched in six rules. Read them carefully and 
then see them applied to a magic square with 49 cells 
(Fig. 261). 

1. In the middle of the upper line we write 1, and at 
the bottom in the next column on the right we write 2. 

2. We write the next numbers successively along the 
diagonal upwards and to the right. 

3. Having reached the right edge of the square we go 
over to the extreme left cell in the next line up. 

4. Having reached the upper edge of the square we 
go over to the lowest cell of the next column to the 
right. 

Note: Having reached the upper right corner cell we 
go over to the leftmost lower corner cell. 

5. Having reached an occupied cell we skip over it. 
6. If the last occupied cell belongs to the lowermost 

line, we proceed from the uppermost cell in the column. 
Observing these rules we can quickly construct magic 

squares with any odd number of cells. 
If the number of cells in the square doesnt divide into 

3 we may begin the square following a rule other than 
1. 

We may start from any cell along the diagonal line 
passing between the middle cell of the leftmost column 
and the middle cell of the uppermost line. All the other 
numbers are placed according to rules 2-5. 

It is possible therefore to construct several squares by 
this method. By way of example, we provide the 
following 49-cell magic square (Fig. 262). 

Exercise. Use the Indian method to construct several 
magic squares with 25 and 49 cells. Obtain other 
squares by turns and mirror reflections. 
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<•» Squares with an Even Number of Cells 
Figure 263 

These magic squares can't be constructed using any 
common or convenient rule. There is one relatively 
simple procedure for even squares, the number of 
whose cells is divisible by 16. This means that one side 
of these squares has a number of cells that is a multiple 
of 4, i.e. it consists of 4, 8, or 12, etc., cells. 

We'll now agree as to what we'll call "opposite" cells. 
As an example, Fig. 263 presents two pairs of opposite 
cells: one marked by crosses, the other by circles. 

We see that if a cell lies in the second line from the 
top and fourth from the left, then the respective 

Figure 264 opposite cell will lie in the penultimate line and fourth 
from the right. (The reader is recommended to practise 
finding some other "opposite" cells.) Note that the 
opposites of cells in a diagonal also lie on the same 
diagonal. 

We'll explain the procedure referring to 8 x 8 square. 
To begin with, we'll place all the numbers from 1 to 64 
in the cells in succession (Fig. 264). 

All the diagonal lines in the resultant square have the 
same sum -260, just what we want for a 8 x 8 magic 
square (Check!). But the lines and columns of the 
square give different sums. So, the upper line adds up 
to 36, i.e. 224 less than required, and the last line adds 
up to 484, i.e. 224 more than required. Noting that 
each number in the last line is 56 more than the 
number in the same column but in the first line and 
that 224 = 4 x 56, we come to the conclusion that the 
sums of these two lines can be equalized if we replace 
a half of the numbers in the first line by the 
corresponding number in the last line. For instance, the 
numbers 1, 2, 3, and 4 are replaced by 57, 58, 59, and 
60, respectively. 

What has been said about the first and eighth lines is 
also true of the second and seventh, the third and sixth, 
and in general for any pair of lines equidistant from 
their respective extremum lines (i. e. first and last). After 
the numbers in all the lines have been interchanged 
we'll obtain a square in which lines have equal sums. 

It is, however, necessary that the columns, too, give 
the same sum. With the initial arrangement we could 
have achieved this by the same kind of exchange that 
we used with the lines. But after rearranging the lines, 
the situation has become more complex. To identify the 
numbers to be exchanged we make use of the following 

X 

0 

0 

X 

1 2 3 4 5 6 7 8 
9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 
25 26 27 28 29 30 31 32 
33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 
49 50 51 52 53 54 55 56 
57 58 59 60 61 62 63 64 
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Figure 265 

1 X 2 3 4 X 5 x 6 7 8 X 
9 X 10x 11 12 13 14 15 X 16X 

17 18* 19 x 20 21 22 x 23 x 24 

25 26 2 7 * 28 X 29X 30 x 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 
57 58 59 60 61 62 63 64 

Figure 266 

64 2 3 61 60 6 7 57 
56 55 11 12 13 14 50 49 
17 47 46 20 21 43 42 24 
25 26 38 37 36 35 31 32 
33 34 30 29 28 27 39 40 
41 23 22 44 45 19 18 48 
16 15 51 52 53 54 10 9 
8 58 59 5 4 62 63 1 

technique, which could have been applied from the very 
beginning. Then, instead of a double rearrangement (of 
the lines and columns) we exchange "opposite" 
numbers. But this rule is not sufficient in itself, 
however, since we've found that only a half of the 
numbers need to be exchanged, the remaining numbers 
staying in their previous places. Which of the opposite 
pairs then are to be exchanged? 

The following four rules are an answer to this 
question: 

1. We divide the magic square into four squares as 
shown in Fig. 265. 

2. In the upper left corner we mark with crosses 
a half of all the cells so that each column and line has 
exactly one half of its cells marked. This can be done in 
a variety of ways, an example is shown in the above 
figure. 

3. In the right upper square we mark with crosses 
the cells that are symmetrical about those marked in the 
upper left corner. 

4. We now only have to replace the numbers in the 
cells marked by those in the opposite cells. 

As a result of the permutation we will have obtained 
a 64-cell magic square presented in Fig. 266. 

We could, however, use many other ways of marking 
the cells in the left upper square so that rule 2 would 
be fulfilled, for example, as shown in Fig. 267. 

Figure 267 

The reader will undoubtedly find many other ways of 
arranging the crosses in the cells of the upper left 
square. 

Using then rules 3 and 4 we can readily derive other 
magic squares with 64 cells. 
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Arguing along these lines we can construct magic 
squares consisting of 12 x 12, 16 x 16, etc., cells. 

The reader can do this on his own. 

Whence the Name? 

The first recorded evidence of the magic square comes 
from an ancient oriental book referring to 4,000-5,000 
B. C. Indians in ancient times had a better 
understanding of magic squares, from where the 
passion for magic squares was taken over by ancient 
Arabs, who would assign mysterious qualities to these 
combinations of numbers. 

In medieval Western Europe magic squares were the 
stock-in-trade of representatives of pseudosciences, such 
as alchemistry and astrology. It is from the medieval 
superstitious perceptions that these squares have 
derived their unusual name-"magic". Astrologists and 
alchemists believed that a magic square drawn on 
a piece of wood was able to deliver a man from 
misfortune. 

* * * 

The construction of magic squares is not just 
a pastime. Many famous mathematicians have been 
interested in their theory and it has been applied in 
some of the important problems of mathematics. So, 
there is a way of solving sets of equations in many 
unknowns that uses results from the theory of magic 
squares. 
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23 

Figure 268 

Arithmetic Games and Tricks 

Dominoes 

A Chain of 28 Bones. Why is it possible to have 
a continuous chain of 28 bones (a domino piece is also 
sometimes called a bone) constructed without breaking 
the rules of the game? 

Beginning and End of the Chain. The 28-bone chain 
ends in 5 points. How many points are there at the 
other end? 

Trick with Dominoes. Your friend takes one of the 
dominoes and tells you to build a continuous chain out 
of the remaining 27 bones. He insists that it's always 
possible whichever bone he takes. He leaves you on 
your own and goes to another room. 

You begin working and see that your friend is right: 
the 27 bones produced a chain. What is more 
surprising is that your friend, although remaining in the 
other room, calls out the number of points at each end 
of the chain. 

How does he know? Why is he confident that any 27 
bones can produce a continuous chain? 

Frame. Figure 268 shows a square frame made from 
dominoes whilst observing the rules. The sides of the 
frame may be equal in length but not in the total 
number of points: the upper and left sides contain 44 
points each and the other two sides contain 59 and 32. 



Figure 269 

Figure 270 

Figure 271 
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Can you produce a square frame such that each side 
contains the same sum total of points-44? 

Seven Squares. We can select four bones so that these 
will form a square with the same sum of points on each 
side. An example is given in Fig. 269 in which the 
points on each side add up to 11. 

Using a complete set of dominoes, can you build 
seven such squares? They do not have to have the same 
common sum of points of their sides. 

Domino Magic Squares. Figure 270 shows a square of 
18 dominoes that is remarkable in that the sum of the 
points on any of its lines (be it longitudinal, transverse 
or diagonal) is the same, namely 13. 

You are asked to construct several such 18-bone 
magic squares, but now with another line sum. For an 
18-bone square 13 is the smallest sum whilst 23 is the 
largest. 

Domino Progression. In Fig. 271 you see six bones 
arranged according to the rules of the game but note 
that the number of points on each (both halves) 
increases by one. Beginning with 4, the series consists of 
the following numbers of points 4, 5, 6, 7, 8, and 9. 

A series of numbers increasing (or decreasing) by the 
same amount each time is called an "arithmetic 
progression". In our case each number is one more 
than the previous one, but the difference may be 
arbitrary. 

Try to construct some other 6-bone progressions. 

The Fifteen Puzzle* 
The well-known tray with 15 numbered square counters 
has a curious history few people even suspect of. We'll 
recall it in the words of W. Arens, a German 
mathematician and investigator: 

"About half a century ago, in the late 1870s, the 
Fifteen Puzzle bobbed up in the United States; it 
spread quickly and owing to the uncountable number 
of devoted players it had conquered, it became 
a plague. 

"The same was observed on this side of the Ocean, in 
* Other names are the Boss Puzzle, Jeu de Taquin, and 

Diablotin. 
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Europe. Here you could even see the passengers in 
horse trams with the game in their hands. In offices and 
shops bosses were horrified by their employees being 
completely absorbed by the game and they were forced 
to ban the game during office and class hours. Owners 
of entertainment establishments were quick to latch 
onto the rage and organized large contests. The game 
had even made its way into solemn halls of the German 
Reichstag. 'I can still visualize quite clearly the grey-
haired people in the Reichstag intent on a square small 
box in their hands,' recalls the geographer and 
mathematician Sigmund Giinter who was a deputy 
during the puzzle epidemic. 

"In Paris the puzzle flourished in the open air, in the 
boulevards, and proliferated speedily from the capital 
all over the provinces. A French author of the day 
wrote, 'There was hardly one country cottage where 
this spider hand't made its nest lying in wait for 
a victim to flounder in its web.' 

"In 1880 the puzzle fever seems to have reached its 
climax. But soon the tyrant was overthrown and 
defeated by the weapon of mathematics. The 
mathematical theory of the puzzle showed that of the 
many problems that might be offered only a half were 
solvable, the other half were impossible, however 
ingenious the technique applied to solve them. 

"It thus became clear why some problems wouldn't 
yield under any conditions and why the organizers of 
the contests had dared offer such enormous rewards for 
solving the problems. The inventor of the puzzle took 
the cake in this respect suggesting to the editor of 
a New York newspaper that he publish an unsolvable 
problem in the Sunday edition with a reward of 1,000 
dollars for its solution. The editor was a little reluctant 
so the inventor expressed his willingness to pay his own 
money. The inventor was Sam Loyd. He came to be 
widely known as an author of amusing problems and 
a multitude of puzzles. Curiously enough, he failed to 
patent his Fifteen Puzzle in the USA. According to the 
regulations, he had to submit a "working model" so 
that a prototype batch could be manufactured from it. 
He posed the problem to a Patent Office official, but 
when the latter enquired if it were solvable, the answer 
was 'No, it is mathematically impossible'. The official 
therefore reasoned: 'In which case there can't be 
a working model and without a working model there 
can be no patent.' Loyd was satisfied with the decision. 
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He would perhaps have been more insistent had he 
foreseen the unprecedented success of his invention*." 

We'll continue the story of the puzzle using the 
inventor's own words: 

Figure 272 

The normal 
arrangement of 
counters (I) 

"The old dwellers of the realm of aptitude will 
remember how in the early 1870s I made the whole 
world rack its brains over a tray of movable counters, 
that came to be known as the Fifteen Puzzle. The 
fifteen counters were arranged in order in the tray with 
only 14 and 15 counters inverted as shown in the 
accompanying illustration (Fig. 273). The puzzle was to 
get the counters into the normal arrangement by 
individually sliding them so that the 14 and 15 were 
permutated. 

"The 1000-dollar reward offered for the first correct 
solution remained unretrieved although everybody was 
busy on it. Funny stories were told of shop-keepers 
who forget for this reason to open their shops, of 
respectful officials who stood throughout the night 
under a street lamp seeking a way to solve it. Nobody 
wanted to give up as everyone was confident of 
imminent success. It was said that navigators allowed 
their ships to run aground, engine drivers took their 
trains past stations, and farmers neglected their 
ploughs." 

* * * 

We'll now introduce the reader to the beginnings of 
the game. In its complete form it's very complicated 
and closely related to one of the branches of higher 
algebra (the theory of determinants). We'll just confine 
our discussion to some of the elements as presented by 
W. Arens. 

The task of the game is normally as follows: using 
successive movements made possible by the presence of 
the blank space the arbitrarily arranged squares should 
be brought to the normal arrangement, i. e. the counters 
are in numerical order with the 1 in the upper left 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 

* The episode was used by Mark Twain in his novel The 
American Claimant. 

Figure 273 

The unsolvable 
case (II) 



t 

306-307 

2 0 « 

Arithmetic Games and Tricks 

corner, followed by the 2 on the right, then the 3 and 
the 4 in the upper right corner; in the next row there 
should be from left to right the 5, 6, 7, 8, etc., with the 
blank space ending up back in the lower right corner. 
The normal arrangement is given in Fig. 272. 

Now think of an arrangement with the 15 counters 
scattered arbitrarily. A number of movements can 
always bring the 1 to the place occupied by it in the 
figure. In exactly the same way we can, without touch-
ing counter 1 move counter 2 to the adjacent place on 
the right. Next, without touching either the 1 or 2, we 
can move the 3 and 4 to their normal places. If these 
occasionally are not in the two last columns, we can 
bring them there and through a number of movements 
achieve the arrangement sought. Now the upper line is 
in the normal order and we'll leave it as it is in later 
manipulations. In the same way we'll also bring the 
second line into the normal order. We'll easily find that 
it's always possible. Further, within the space of the 
two last lines we'll need to arrange counters 9 and 13, 
which is always possible, too. It now only remains to 
arrange a small patch of six spaces, of which one is free 
and the other five are occupied by the 10, 11, 12, 14, 
and 15, arbitrarily arranged. Within this patch we can 
always bring the 10, 11, and 12 into the normal 
arrangement. This done, the 14 and 15 will be arranged 
in the last line either in the normal or inverted order 
(Fig. 273). This procedure, which the reader can easily 
test in practice, will always yield the following result. 

Any initial arrangement can be brought into either 
the Fig. 272 (/) form or the Fig. 273 (II) form: 

If an arrangement, we'll denote it by S, can be 
brought to /, then the opposite is clearly possible, i. e. 
I can be brought to S. After all, the movements are all 
reversible. If, for instance we can push the 12 in 
arrangement into the blank space, then we can always 
restore the previous arrangement by the reverse move. 

We thus have two series of arrangements such that 
the arrangements in one series can be brought to 
normal arrangement /, and those in the other series can 
be brought to arrangement II. Conversely, from the 
normal arrangement we can obtain any arrangement in 
the first series, and from II any arrangement in the 
second series. Lastly, any two arrangements in the same 
series are transferable one to the other. 

Could we go further and combine the two 
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arrangements? We could rigorously prove (we are not 
going to here) that these arrangements cannot be 
interchanged, however many moves are used. Therefore, 
the formidable variety of arrangements break down 
into two separate series: (1) those that can be brought 
into the normal arrangement, and (2) those that can't 
and it was for these arrangements that the enormous 
rewards were promised. 

How are we to know whether or not a given 
arrangement belongs to the first series? An example 
will clarify this. 

Let's consider the arrangement shown in Fig. 274. 
The first line is in perfect order, as is the second save 
for the last counter (9). Counter 9 comes before 8. This 
sort of violation of the order is called inversion. 
Concerning counter 9 we'll say that here we have one 
inversion. Further examination reveals that the 14 
precedes three counters (12, 13, and 11), thus giving 
three inversions (14 before 12, 14 before 13, and 14 
before 11). This amounts to 1 + 3 = 4 inversions. Fur-
ther, the 12 precedes the 11 and the 13 precedes the 11. 
This adds two more inversions bringing the total to six. 
This procedure is used to determine the total number 
of inversions for any arrangement with the blank space 
in the lower right corner. If, as in the case in hand, the 
total number of inversions is even, then the 
arrangement can be brought to the normal one; in 
other words, it's solvable. If the number of inversions is 
odd, the arrangement belongs to the second series, i. e. it 
is an insolvable arrangement. 

Thanks to the new light shed on the puzzle by 
mathematics the earlier morbid passion that was shown 
for the game is now unthinkable. Mathematics has 
produced an exhaustive explanation of the game, one 
that leaves no loophole. The outcome of the game is 
dependent not on chance nor on aptitude, as in other 
games, but on purely mathematical factors that 
predetermine it unconditionally. 

We'll now consider some of the solvable problems 
with the game that were produced by the resourceful 
Loyd. 

Problem I. Starting off the arrangement in Fig. 273 
bring the counters into the numerical order with the 
blank space in the upper left corner (Fig. 275). 

Problem II. Starting off with the arrangement in 

Figure 21A 

Figure 275 

23 
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8 10 14 12 

13 11 15 

1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 
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Fig. 273 turn the tray 90° to the right and obtain the 
arrangement of Fig. 276. 

Problem III. By moving the counters according to the 
rules turn the tray into a magic square, i. e. arrange the 
counters so that the sum of the numbers in all 
directions is 30. 

The "11" Game 
This is a game for two. Eleven matches (or other 
objects) are placed on a table. One player takes one, 
two or three matches, just as he likes. Then the other 
also takes one, two or three matches. Now again the 
first, and so on. It's forbidden to take more than three 
matches at a time. He who takes the last match loses. 

How must you play so that you can always win? 

The "15" Game 
This game is not to be confused with the Fifteen 
Puzzle. It's more like the well-known "noughts and 
crosses" game. It's played by two people taking turns. 
Each player writes a number from 1 to 9 in one of the 
cells of the network shown below. 

Each player selects his cell so that his opponent 
couldn't complete a row of three figures (the row may 
be transverse or diagonal) that add up to 15. 

The player completing such a row or filling in the 
last cell of the network is the winner. 

Is there any way of winning the game with certainty? 

The "32" Game 

First 32 matches are arranged on a table. Two people 
play alternately. The beginner draws one, two, three, or 
four matches, and then the other player also takes as 
many matches as he chooses, but again not more than 
four. And so on. The player taking the last match wins. 

The game, you see, is very simple but it is curious in 
that the beginner can always win if he plays correctly. 

Could you indicate the "right" way to win? 

308-309 

Figure 276 
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The Reverse of the Last Game 

The previous game can be modified so that the player 
taking the last match loses, not wins. 

How must you play then to win with certainty? 

The "27" Game 

The game is similar to the previous ones. It's also 
played by two people and also requires that the players 
alternately take no more than four matches. But the 
object of the game is different: the winner is the one 
who ends up with an even number of matches. 

The beginner here is at advantage, too. He can so 
calculate his draws that he always will win. 

What is the secret of his fail-safe strategy? 

The Reverse of the Last Game 

The object of the "27" game can be reversed so that the 
winner is the one ending up with an odd number of 
matches. 

In this case, what is the fail-safe procedure? 

Arithmetic TYavel 

Several people may take part in this game. You'll need: 
(1) a board (of cardboard), 
(2) a die (of wood), 
(3) several counters (as many as there are players). 

Figure 277 
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The board is a cardboard square, preferably a large 
one, divided into 10 x 10 cells that are numbered from 
1 to 100 as shown in Fig. 277. 

The die, about 1 cm on side, is made of wood. The 
faces are sandpapered and numbered from 1 to 6 (or 
marked with points as dominoes). 

The counters may be various coloured disks, squares, 
etc. 

Taking turns, the players throw the die. If the die 
shows, say, 6, the player moves his counter 6 squares 
forward, his next throw takes his counter forward by as 
many cells as there are points on the die. When the 
player's counter comes to a cell where an arrow begins, 
the counter must follow the arrow to its end either 
forwards, or backwards. 

The player whose counter first reaches 100 is the 
winner. 

Think of a Number 

Think of a number, follow the procedure given below, 
and Fll guess the result of your calculations. 

Should the result differ, check through your 
calculations since you will have been in error, not I. 

No. 1 
The number must be less 
than 10 though not zero 
Multiply it by 3; 
Add 2; 
Multiply by 3; 
Add the number thought 
of; 
Cross out the first digit; 
Add 2; 
Divide by 4; 

Add 14; 
Subtract 8; 
Cross out the first digit; 
Divide by 3; 
Add 10. 

The result is 12 

No. 2 
The number must be less 
than 10 though not zero 
Multiply it by 5; 
Multiply by 2; 

Add 19. 
The result is 21 

No. 3 
The number must be less 
than 10 though not zero 
Add 29 to it; 
Discard the last digit; 
Multiply by 10; 
Add 4; 
Multiply by 3; 
Subtract 2. 

The result is 100 
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No. 4 
The number must be less than 
10 though not zero 
Multiply it by 5; 
Multiply by 2; 
Subtract the number thought of; 
Add up the digits; 
Add 2; 
Square it; 
Subtract 10; 
Divide by 3. 

The result is 37 

No. 5 
The number must be less than 
10 though not zero 
Multiply it by 25; 
Add 3; 
Multiply by 4; 
Cross out the first digit; 
Square it; 
Add up the digits; 
Add 7. 

The result is 16 

No. 6 
The number must have two digits 
Add 7; 
Subtract it from 110; 
Add 15; 
Add the number thought of; 
Divide by 2; 
Subtract 9; 
Multiply by 3. 

The result is 150 

Subtract it from 130; 
Add 5; 
Add the number thought of; 
Subtract 120; 
Multiply by 7; 
Subtract 1; 
Divide by 2; 
Add 30. 

The result is 40 

No. 8 
Any number (besides zero) 
Multiply it by 2; 
Add 1; 
Multiply by 5; 
Discard all the digits but the last; 
Multiply it by itself; 
Add up the digits. 

The result is 7 

No. 9 
The number must be less than 100 
Add to it 20; 
Subtract from 170; 
Subtract 6; 
Add the number thought of; 
Add up the digits; 
Multiply it by itself; 
Subtract 1; 
Divide by 2; 
Add 8. 

The result is 48 

No. 7 
The number must be less than 100 
Add 12 to it; 

No. 10 
The number must be three digits long 
Write the same number on its right; 
Divide by 7; 
Divide by the number thought of; 
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Divide by 11; 
Multiply it by 2; 
Add up the digits. 

Multiply by 2; 
Multiply by 2; 
Add the number thought of; 
Add the number thought of; 
Add 8; 
Discard all the digits but the last; 
Subtract 3; 
Add 7. 

The result is 8 

No. 11 
The number must be less than 10 
Multiply it by 2; The result is 12 

Guessing a Three-Digit Number 

Think of a three-digit number. Leave aside the last two 
digits and double the first one. Add 5 to the result, then 
multiply by 5, add the second digit and multiply by 10. 
Add the third digit to the new result and tell me what 
you've arrived at. Fll immediately guess the number 
you've thought of. 

Let's take an example. Say your number is 387. 
It goes through the following sequence of operations. 
You double the first digit: 3 x 2 = 6; 
Add 5: 6 + 5 = 11; 
Multiply by 5: 11 x 5 = 55; 
Add the second digit: 55 + 8 = 63; 
Multiply by 10; 63 x 10 = 630; 
Add the third digit: 630 + 7 = 637. 
So you tell me the final result (637) and I tell you the 

initial number. Explain how. 

Another Number Trick 

Think of a number; 
Add 1; 
Multiply by 3; 
Add 1 again; 
Add the number thought of; 
Tell me the result. 
When you tell me the result I subtract 4 from it, 

divide the difference by 4 and obtain the number you 
thought of. 

For instance, suppose you thought of 12. 
Add 1, we get 13. 
Multiplied by 3, we get 39. 
Added 1, we get 40. 
Added the number thought of: 4 0 + 12 = 52. 
When you tell me the number, 52, I subtract 4 from 
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it, and divide the difference, 48, by 4. I thus get 12, the 
number you thought of. 

How does the procedure work? 

Guessing the Crossed-Out Digit 

Ask your friend to think a multidigit number and then 
ask him to do the following: 

Write the number down; 
Transpose its digits in an arbitrary order; 
Subtract the smaller number from the larger; 
Cross out one of the digits (but not a zero); 
Name the remaining digits in any order; 
You will theti tell your friend the crossed-out digit. 

Example. Your friend thought of 3857. 
He performed the following: 
3857, 
8735, 
8735 - 3857 = 4878. 

Your friend crosses out the 7 and tells you the 
remaining digits in the following order, say: 
8, 4, 8. 

From these digits you can determine the crossed digit. 
How can this be done? 

Guessing the Day and Month of Birth 

Get your friend to write down the day and month of 
his (or her) birth and to carry out the following 
operation: 

Double the day; 
Multiply by 10; 
Add 73; 
Multiply by 5; 
Add the serial number of the month of birth. 
When he (or she) tells you the final result of his (or 

her) calculations, you can tell him (or her) the day and 
month of his (or her) birth. 
Example. Suppose your friend was born on the 17 of 
August, i.e. on the 17th of the 8th month. He does the 
following: 

17 x 2 = 34; 
34 x 10 = 340; 
340+73 = 413; 
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413 x 5 = 2065; 
2065 + 8 = 2073. 

Your friend tells you the number 2073 and you tell 
him his birthday. 

How can you do this? 

Guessing Someone's Age 

You can guess the age of a friend if you ask him (or 
her) to do the following: 

Write down side by side any two digits that differ 
in more than 1; 
Write any digit between them; 
Reverse the order of the three-digit number 
obtained; 
Subtract the smaller number from the larger; 
Reverse the digits of the difference; 
Add the result to the difference; 
Finally add his age to the sum. 
Your friend tells you the final result of the 
operations 
and then you can tell him his age. 

Example. Your friend is 23. He performs the following: 
25; 

275; 
572; 

5 7 2 - 2 7 5 = 297; 
297 + 7 9 2 = 1089; 

1089 + 23 = 1112. 
The number 1112 is the final result and from it you 

determine the age. How? 

How Many Sisters? How Many Brothers? 

You can guess how many brothers and sisters your 
friend has, if you ask him to do the following: 

Add 3 to the number of brothers; 
Multiply by 5; 
Add 20; 
Multiply by 2; 
Add the number of sisters; 
Add 5. 
The friend tells you the final result of his 

computations and you can tell him how many brothers 
and sisters he has. 

314-315 
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Example. Your friend has four brothers and seven 
sisters. He thus does the following: 

4 + 3 = 7; 
7 x 5 = 35; 

35 + 20 = 55; 
5 5 x 2 = 110; 

110 + 7 = 117; 
117 + 5 = 122. 

The friend tells you the number 122 and you can tell 
him how many brothers and sisters he has. 

How can you do this? 

Trick with a Telephone Directory 

Here is another impressive trick. Get your friend to 
write down any number with three different digits. 
Suppose he writes 648. Ask him to reverse the digits in 
the number he has chosen and subtract the smaller one 
from the larger*. He will thus write: 

846 
~ 648 

198 
Ask to rearrange the digit of the difference in the 
reverse order and add both numbers up. Your friend 
will write: 

198 
891 

1089 

These calculations should be done in secret so your 
friend thinks that the final result must be unknown to 
you. 

Now give your friend a telephone directory and ask 
him to open it on the page whose number is equal to 
the first three digits of the final result. He does so and 
waits for further instructions. You then ask him to 
count the telephone subscribers (down from the top or 
up from the bottom) until he gets to the one given by 

* If the difference is a two-digit number (99), it is written with 
a zero in front (099). 
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the last digit of the number (1089). He thus finds the 
ninth subscriber and you tell him the name of the man 
and his telephone number. 

This naturally amazes your friend: he selected 
a number at random and you can tell him the 
subscriber's name and number. 

What is the trickery here? 

Guessing Domino Points 
The trick is arithmetic, based on calculation. 

Let your friend put a domino piece into his pocket. 
You promise to guess the number of points if he makes 
some simple calculations. Let his bone be the 6-3. Ask 
him to double one of the numbers (e.g. 6) 
6 x 2 = 12, 

and add 7 
12 + 7 = 19. 

Ask him to multiply the result by 5 
19 x 5 = 95 

and to add the other number of points of the domino 
piece (i.e. 3) 
95 + 3 = 98. 

He tells you the final result and you in your head 
subtract 35 to find the points on the piece: 98 — 35 = 
= 63, i. e. the piece was the 6-3. 

Why is it so and why one must always subtract 35? 

Formidable Memory 
Conjurers sometimes amaze the public by their striking 
memory: they memorize long series of words, numbers, 
etc. Each of you can also surprise friends with such 
a trick. 

On 50 small paper cards write the numbers and 
letters shown below: a long number and in the left 
corner a letter or a combination of a letter and a figure. 
Distribute these cards among your friends and claim 
that you remember exactly which number is on which 
card. They need only tell you the number of the card 
and you'll immediately tell them the number written on 
it. You are told, say, "E4" and you can say at once 
"10,128,224". 
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A 
24,020 

B 
36,030 

C 
48,040 

D 
510,050 

E 
612,060 

A1 
34,212 

B1 
46,223 

CI 
58,234 

D1 
610,245 

El 
712,256 

A2 
44,404 

B2 
56,416 

C2 
68,428 

D2 
7,104,310 

E2 
3,124,412 

A3 
54,616 

B3 
66,609 

C3 
786,112 

D3 
8,106,215 

E3 
9,126,318 

A4 
64,828 

B4 
768,112 

C4 
888,016 

D4 
9,108,120 

E4 
10,128,224 

A5 
750,310 

B5 
870,215 

C5 
990,120 

D5 
10,110,025 

E5 
11,130,130 

A6 
852,412 

B6 
972,318 

C6 
1,092,224 

D6 
11,112,130 

E6 
12,132,036 

A7 
954,514 

B7 
1,074,421 

C7 
1,194,328 

D7 
12,114,235 

E7 
13,134,142 

A8 
1,056,616 

B8 
1,176,524 

C8 
1,296,432 

D8 
13,116,340 

E8 
14,136,248 

A9 
1,158,718 

B9 
1,278,627 

C9 
1,398,536 

D9 
14,118,445 

E9 
15,138,354 

The numbers being very long and 50 in all, your 
power will shock all those present. But... you didn't 
think you had to learn the 50 long numbers by heart. 
Everything is much simpler. 

What is the trickery here? 

Another Memory Thriller 

Having written a long series of figures (20 or more), 
you proclaim that you can without mistake repeat the 
whole series, figure by figure. And really, you put up 
a brilliant performance, despite the fact that the 
sequence of figures shows no pattern. 

How can you do it? 

Mysterious Cubes 
Make several cubes of paper (e.g. four) and write 
figures on their faces arranging them as shown in 
Fig. 278. With these cubes you can show an interesting 
arithmetic trick. 



Ask your friends to put the cubes in your absence 
one on top of another in any arrangement to form 
a column. On entering the room you need only cast 
a glance at the column and immediately determine the 
sum of the figures on the closed faces of the four cubes. 
For example, in the case shown in Fig. 278 you would 
call out the sum 23. You can easily see that it is so. 

Trick with Cards 

Make seven cards as shown in Fig. 279. Write the 
numbers on them and cut them exactly as shown. One 
of the cards is left blank, but is cut. 

Now give the six cards with the numbers to your 
friend and ask him to remember one of the numbers 
written on the cards, and then give you back only those 
cards on which there is this number. 

Having received the cards, stack them neatly, put the 
clean card on the top, and add up in your head those 
figures that are seen through the cuts. The result will be 
the number sought. 

You will hardly crack this nut. The trick is based on 
a special selection of numbers in the cards. The idea 
behind it is rather complicated and I am not going to 
dwell on it here. 

How to Find the Sum of Unwritten Numbers 

You undertake to guess the sum of three numbers of 
which only one is written. The trick is performed as 
follows. Ask your friend to write down any multidigit 
number- the first summand. 

Suppose he writes 84,706. Then you leave enough 
room for the second and third summands and write 

318-319 
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1st summand 84,706 
2nd summand 
3rd summand 

Sum total 184,705 

Then your friend writes the second summand (it must 
have the same number of digits as the first), and you 
write the third summand yourself: 

1st summand 84,706 
2nd summand 30,485 
3rd summand 69,514 

Sum total 184,705 

down in advance the sum total of the three numbers: 

Figure 279 
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You can see that the sum was predicted accurately. 
Explain. 

To Foresee a Sum 

In earlier times number superstitions were no less 
widespread than other superstitions. What the result of 
such number fads might be is shown by the example of 
Ilya Teglev, the hero of the story "Rat!...tat!...tat!" by 
Ivan Turgenev. A chance coincidence of numbers led 
him to imagine he was an unrecognized Napoleon. 
After he had committed suicide a sheet of paper was 
found in his pocket with the following calculations: 
Napoleon was born on 
August 15, 1769 

1769 
15 
8 (August is the 8th month) 

Total 1792 

Ilya Teglev was born on 
January 7, 1811 

1811 
1 (January is 

month) 
the 1st 

Total 1819 

Total 19 (!) 

Napoleon died on 
May 5, 1825 

1825 
5 

5 (May is the 5th month) 

Total 1835 

1 
8 
3 
5 

Total 19 (!) 

Ilya Teglev died on 
July 21, 1834 

1834 
21 

7 (July is the 7th month) 

Total 1862 

1 
8 
6 
2 

Total 17 (!) Total 17(!) 

Such number fortune-telling was widespread at the 
beginning of World War I, when it was hoped the 
outcome could be foreseen using the method. In 1916 
Swiss newspapers initiated their readers into the 
"mysteries" by the following revelation about the fate of 
Emperors of Germany and Austro-Hungary: 
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Wilhelm II Franz-Joseph 

Year of birth 1859 
Year of accession 1888 

1830 
1848 

86 
68 

Age 
Years reigned 

57 
28 

Total 3832 3832 

The sums, you see, are equal, each representing the 
double of 1916, whence it was concluded that the year 
would be fatal for both emperors. 

But here we have not just a chance coincidence, but 
human stupidity. Blinded by superstition, the prophets 
didn't twig that if you so much as slightly changed the 
lines in the calculations, their mysterious character 
would go up in smoke. 

Arrange the lines as follows: 
Year of birth 
Age 
Year of accession 
Years reigned 
Now what year would you obtain if you add a man's 

age to the year of his birth? Of course, the year when 
you make your calculation. The same year will result if 
to the year of an emperor's accession you add the years 
he has reigned. We can easily see now why the adding 
up of the four numbers yielded the same result for both 
emperors, double 1916. What else could they arrive at? 

You can use this idea for a funny trick. Ask a friend 
who doesn't know the trick to write the following four 
numbers on a sheet of paper and add them up: 

Year of birth 
Year of ehtering school (factory, etc.) 
Age 
Years he's been studying (working, etc.) 
Although you may not know any of the four 

numbers it's a simple matter for you to guess their 
sum: you only have to double the current year. 

Repeating the trick may well expose the secret. To 
muddle up the situation, introduce several additional 
numbers you know between the ones you don't. If you 
play your cards right, each time the result will be 
different and the secret will thus be more difficult to 
perceive. 
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Answers 

Dominoes 

A Chain of 28 Bones. To simplify the task we'll set aside all the seven doubles: 0-0, 
1-1, 2-2, 3-3, 4-4, 5-5, 6-6. The remaining 21 bones have each of the point numbers 
repeated six times. For example, the 4-point pattern (on one end) is on the following 
six pieces : 

4-0, 4-1, 4-2, 4-3, 4-5, 4-6. 

So each number, as we see, occurs an even number of times. Clearly, the pieces of 
such a set can be matched to the ends of other pieces until all the set is exhausted. 
This done, when the 21 bones are arranged in a continuous line, we insert the 
doublets between the butts of 0-0, 1-1, etc. Thus, all the 28 dominoes appear to be 
arranged in a line, the rules of the game observed. 
Beginning and End of the Chain. We can without difficulty show that the chain of 28 
bones must end in the number with which it began. In fact, if this were not the case, 
the numbers of points at the ends of the chain would appear an odd number of times 
(inside the chain the numbers must occur in pairs). We know, however, that in 
a complete set of bones each number occurs eight, i.e. even number of, times. 
Consequently, our assumption of unequal point-patterns at the ends of the chain isn't 
valid. (An argument like this in mathematics is termed "proof by contradiction".) 

By the way, the property we have just proven suggests the following curious 
consequence: a 28-bone chain can always be joined at the ends to yield a ring. 
Accordingly, a complete set of dominoes can be arranged not only in a chain with free 
ends, but also in a closed ring, all the rules being observed. 

The reader might ask how many ways can such a chain or ring be achieved? 
Without launching into the tiresome details of the computation, we will here only say 
that this number is enormous- 7,959,229,931,520. It represents the product of the 
following seven factors: 2 1 3 x 38 x 5 x 7 x 4,231. 
Trick with Dominoes. The answer follows from what has just been said. We know 
that 28 dominoes always make a closed ring, hence if we remove a bone from this 
ring, then: 

(1) the remaining 27 dominoes will make a continuous chain with open ends; 
(2) the end numbers in this chain will be those that are on the bone removed. 
Having hidden a bone, we can always predict the point-patterns at the ends of the 

chain made up of the remaining bones. 
Frame. The points on the sides of the square sought will add up to 44 x 4 = 176, i.e. 
8 more than the total in the complete set (168). This, of course, occurs because the 
points at the corners of the square are included twice. This yields the sum of points at 
the square vertices, i.e. 8. This makes the search for the desired arrangement 
somewhat easier, but only slightly. The solution is shown in Fig. 280. 
Seven Squares. We'll give two of the many solutions possible. In the first one (at the 
top of Fig. 281) we have: 

1 square with sum 3, 2 squares with sum 9, 
1 square with sum 6, 1 square with sum 10, 
1 square with sum 8, 1 square with sum 16. 

21« 
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Figure 281 

Answers 

In the second solution (at the bottom of Fig. 281): 
2 squares with sum 4, 2 squares with sum 10, 
1 square with sum 8, 2 squares with sum 12. 

Domino Magic Squares. Figure 282 shows an example of the magic square with 18 
points in a line. 

Figure 282 
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Domino Progression. By way of example, we'll consider two progressions with 
differences equal to 2: 

(a) 0-0; 0-2; 2-2: 2-4\ 4-6. 
(b)O--l; 1-2; 2-3; 3-4; 4-5; 5-6. 

All told, there are 23 progressions for 6 bones. The initial bones are as follows: 
(a) For unit-difference progressions: 

0-0, 1-1, 2-1, 2-2, 3-2, 
0-1, 2-0, 3-0, 3-1, 2-4, 
1-0, 0-3, 0-4, 1-4, 3-5, 
0-2, 1-2, 1-3, 2-3, 3-4. 

(b) For progressions with differences of 2: 
0-0, 0-2, 0-1. 

The Fifteen Puzzle 

Problem I. The arrangement can be arrived at in the following 44 moves: 

14, 11, 12, 8, 7, 6, 10, 12, 8, 7, 
4, 3, 6, 4, 7, 14, 11, 15, 13, 9, 

12, 8, 4, 10, 8, 4, 14, 11, 15, 13, 
9, 12, 4, 8, 5, 4, 8, 9, 13, 14, 

10, 6, 2, 1. 

Problem II. The aim is achieved by 39 moves: 
14, 15, 10, 6, 7, 11, 15, 10, 13, 9, 
5, 1, 2, 3, 4, 8, 12, 15, 10, 13, 
9, 5, 1, 2, 3, 4, 8, 12, 15, 14, 

13, 9, 5, 1, 2, 3, 4, 8, 12. 

Problem III. The moves are as follows: 
12, 8, 4, 3, 2, 6, 10, 9, 13, 15, 
14, 12, 8, 4, 7, 10, 9, 14, 12, 8, 
4, 7, 10, 9, 6, 2, 3, 10, 9, 6, 
5, 1, 2, 3, 6, 5, 3, 2, 1, 13, 

14, 3, 2, 1, 13, 14, 3, 12, 15, 3. 

The "11" Game 

If you start, you have to take two matches leaving nine. No matter how many your 
partner takes next, you then have to leave only five matches on the table. You should 
easily see that you can always do this. And no matter how many of these five your 
partner takes, you can leave one match and win. 

If your partner begins, then the outcome of the game depends on whether or not 
your partner knows the secret of the fail-safe play. 
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The "15" Game 

If you want to win for sure, begin with 5. But in which cell? Let's consider the three 
possibilities one by one. 

1. The 5 is written in the middle cell. Which ever cell your opponent chooses, you 
can write in the vacant cell in the same row 15-5-x (where x is your opponent's 
number). The number 15-5-x, i.e. 10-x, is clearly less than 9. 

1 0 - x 

2. The 5 is written in a corner cell. Your partner will take either x or y. If he writes 
x, you will have to fill in cell y; if he writes y, you respond with x. Either way you win 
using the above rule 

5 

x 
y 

3. The 5 is in the middle of the right column. Your partner may occupy one of the 
cells: x, y, z, or t. 

X z 

5 
y t 

Your answer to x is t; to y, z; to z, y; to t, x. In all the cases you win. 

The "32" Game 

It's fairly easy to find the way to win in this game, if you take the trouble to play it 
backwards from the end. You'll figure out that if your last-but-one draw leaves five 
matches on the table, then your win is a sure thing since your partner may not take 
more than four matches, hence you can take after him all the remaining matches. But 
can you contrive so that you could make your the last but one move leave five 
matches on the table? You'll have, by your previous draw, to leave exactly 10 
matches, then, whatever his choice, he can't leave you less than six, so that you will 
always be able to leave to him five. Further, how can you contrive so that your 
partner will have to draw from 10? To achieve this your previous draw must leave 15 
matches on the table. 

In this way, by subtracting five each time you'll find that earlier you would have to 
leave 20 matches on the table and before that 25 matches, and so at the beginning, 30 
matches, i.e. you must begin by drawing 2 matches. 

Thus, for the game to be a success begin by drawing 2 matches, then after your 
partner has taken some matches, take as many as are required to leave 25, next go 
leave 20, then 10, and finally five. The last match will be yours without fail. 
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The Reverse of the Last Game 

Your last-but-one draw must now leave six matches on the table. Then any draw your 
partner may make will leave from two to five matches, i.e. your last draw can leave 
the last match to him in any event. Thus, your last-but-two draw must leave 11 
matches on the table, and on your earlier draw you should leave 16, 21, 26, and 31 
matches, respectively. 

You thus begin by taking 1 match and your later draws leave 26, 21, 16, 11, and 
6 matches. This will unfailingly leave the last match to your partner. 

The "27" Game 

The way to win here is somewhat more difficult than in the previous game. 
You must start off with the following two considerations: 
1. If before the final draw you have an odd number of matches, you must leave five 

matches to your partner and your win is a cinch. In fact, the next draw of your 
partner will leave you with four, three, two or one matches. If four are left take three 
and win, if three take them and win, if two take one and win, and if one take it and 
win. 

2. If before the final draw you have an even number of matches, you must leave six 
or seven matches to your partner. In fact, the game will proceed as follows. If your 
partner's next draw leaves six matches to you, you must take one and, now with an 
odd number of matches, you can safely leave five matches to your partner in which 
case he loses all right (see above). If he leaves five matches, not six, you must take four 
of them and win; if four take them all and win; if three take two and win; and finally, 
if he leaves two you also win. He cannot leave less than two. 

Now you should be able to find the sure way to win without difficulty. If you have 
an odd number of matches, you must leave on the table a number of matches that is 
a multiple of 6 minus one, i.e. 5, 11, 17, or 23. If you have an even number of 
matches, you must leave a multiple of 6 or the multiple plus one, i.e. 6 or 7, 12 or 13, 
18 or 19, 24 or 25. Zero is considered an even number, therefore in the beginning you 
must take two or three, and then follow the previous procedure. 

If you abide by this rule you will win always. Only you must see to it that your 
partner doesn't take the initiative. 

The Reverse of the Last Game 

If you have an even number of matches, you must leave to your partner a multiple of 
6 minus one; if you have an odd number, you leave a multiple of 6 or the multiple 
plus one. This ensures for your win. At the beginning you have zero matches (i. e. an 
even number), therefore your first draw must be to take four matches and leave 23 to 
your partner. 

Think of a Number 

No. 1. If the number thought of is a, then the operations are as follows 
(3a + 2) x 3 + a = 10a + 6. 

Answers 
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The result is a two-digit number, the first digit being the number you first thought 
of, the second being 6. 

Crossing out the first digit eliminates the number first thought of. 
The rest is self-explanatory. 

Nos. 2, 3, 5 and 8 are modifications of what has just been described. 
Nos. 4, 6, 7 and 9 use another way of eliminating the number thought of. In No. 9, for 
instance, the operations are as follows 

170 - (a + 20) - 6 + a = 144. 

The rest is self-explanatory. 
No. 10 requires a special procedure. To write a three-digit number on the right of 
itself is equivalent to multiplying it by 1,001 (e.g. 356 x 1,001 = 356,356). But 1,001 = 
= 7 x 11 x 13. Therefore, if you think of a three-digit number a, then the operations 

are 
a x 1,001 

= 13. 
7 x a x 11 

The rest is clear. 

You thus see that in each of the above cases the guessing is based on eliminating 
the number thought of. Now try and devise some new examples of your own. 

Guessing a Three-Digit Number 

The first digit was first multiplied by 2, then by 5 and by 10, i.e. by 2 x 5 x 10 = 100. 
The second digit was multiplied by 10. The third one is added as it is. Besides, we add 
5 x 5 x 10, i. e. 250, to the result. 

Thus, if we subtract 250 from the result, we'll have the first digit multiplied by 100 
plus the second digit multiplied by 10 plus the third digit. In short, we'll end up with 
the number thought of. 

We thus conclude that to guess the number thought of we must subtract 250 from 
the result of our calculations. 

Another Number Trick 

A close examination of the procedure shows that the result must be the four times the 
number thought of plus 4. If we thus subtract 4 and divide the rest by 4, we'll arrive at 
the number we seek. 

Guessing the Crossed-Out Digit 

Those who know the criterion for divisibility by 9 will know that dividing the sum of 
the digits of any number by 9 gives the same remainder as the number itself. Any two 
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numbers composed of the same digits must therefore give equal remainders when 
divided by 9. So if we subtract one of the numbers from the other, the difference will 
be exactly divisible by 9 as the subtraction will cancel out the remainders. 

This thus suggests that the digits of the difference your friend obtained add up to 
a number divisible by 9. Since the digits 8, 4, 8 that were told to you add up to 20 and 
you can infer that the nearest number divisible by 9 is 27 you can find the digit 
needed to get 27, and hence the digit crossed-out, which is 7. 

Guessing the Day and Month of Birth 

To work out the date sought we must subtract 365 from the final result. The last two 
digits of the difference will then be the number of the month, and the preceding digits 
the number of the day. In our example 

2073 - 365 = 1708. 

From 1708 we determine the date: 17.08. Why? Let K be the number of the day, and N the number of the month. We obtain 
(2K x 10 + 73) x 5 + N = 100K + N + 365. 

Clearly, subtracting 365 gives a number with K hundreds and N ones. 

Guessing Someone's Age 

If you go through the procedure several times, you should notice that at all times you 
add the age to the same number, namely 1,089. Therefore, if you subtract 1,089 from 
the result, you'll obtain the age sought. 

Demonstrating the trick several times you might change the procedure so as not to 
expose the secret. For example, by requesting 1,089 be divided by 9 and then add the 
age to the result. 

How Many Sisters? How Many Brothers? 

Subtract 75 from the final result. In our example 
122 - 75 = 47. 

The first digit of the result gives the number of brothers, the second the number of 
sisters. In fact, if the number of brothers is a, and the number of sisters is b, then 

[(a + 3) x (5 x 20)] x 2 + b + 5 = 10a + b + 75 

and we arrive at a two-digit number ab. 
The trick can only be a success if the number of sisters is not larger than nine. 

Answers 
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Trick with a Telephone Directory 

The point is that you know the final result beforehand. Whatever the three-digit 
number, the outcome is always the same-1,089. You can easily test this. Thus before-
hand you remember the name and number of the subscriber in the ninth line (from 
the top or bottom) on page 108. 

Guessing Domino Points 

Let's trace through the operations to which we subject the first number. We first 
multiplied it by 2 and then by 5, i.e. by 10. In addition, we added 7 x 5 = 35. 

Consequently, if we subtract 35 from the result, we'll obtain as many tens as there 
are points at one end of the domino. Adding the points at the other end gives the 
second digit of the result. 

It's now clear why the figures of the result give the numbers of points at once. 

Formidable Memory 

The alpha-numerical code of a card indicates the number written on it. 
Above all, you must remember that A stands for 20, B for 30, C for 40, D for 50, 

E for 60. Therefore the code means some number. For example Al-21, C3-43, and 
E5-65. 

From this number you arrive at the long number written on the card following 
a definite rule. Let's discuss it referring to an example. 

Suppose you are told the code E4, i.e. 64. You handle this number as follows: 
First, add up its digits: 

6 + 4 = 1 0 . 

Second, double it: 
64 x 2 = 128. 

Third, subtract the larger digit from the smaller one: 
6 - 4 = 2 . 

Finally, multiply both digits together: 
6 x 4 = 24. 

Write all the results you obtain in a line 
10,128,224, 

to obtain the number written on the card. 
The operations performed could be represented symbolically as 

+ , 2, - , x , 

i.e. adding, doubling, subtracting, multiplying. 
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Some more examples: 
Code D3: D3 = 53 Code B8: B8 = 38, 

5 + 3 = 8, 3 + 8 = 11, 
53 x 2 = 106, 38 x 2 = 76, 
5 - 3 = 2, 8 - 3 = 5, 
5 x 3 = 15. 8 x 3 = 24. 
8,106,215 1,176,524. 

In order not to strain your memory you can name the numbers as you work them 
out or else write them slowly on a blackboard. 

The pattern is rather difficult to discover, therefore the trick generally amazes 
people. 

Another Memory Thriller 

The answer is ridiculously simple: write down the telephone numbers of your 
acquaintances 

Mysterious Cubes 

The answer lies in the arrangement of the numbers on the faces of each cube: the sum 
of the numbers on the opposite faces of a cube is seven in all cases (check in Fig. 278). 
Therefore, the numbers on the top and bottom faces of all the four cubes stacked in 
a column add up to 7 x 4 = 28. If you subtract the number on the top face of the 
upper cube from 28, you'll always get the sum of the numbers on all the seven closed 
faces of the column. 

How to Find the Sum of Unwritten Numbers 

If you add 99,999, i.e. 100,000-1, to a five-digit number, then another digit, 
1 appears on the left of the number, and the last digit is reduced by 1. The trick is 
based on this. So if you mentally add 99,999 to the first number 

84,706 
+ 

99,999 

you can immediately write the future sum of all three numbers, i.e. 184,705. Now you 
have only to ensure that the second and third numbers on their own add up to 99,999. 
This is achieved by subtracting mentally each digit of the second number from nine 
when writing the third number. In our example the second number is 30,485, so you 
write 69,514. Since 

30,485 
+ 

69,514 

99,999 
then the result you've written beforehand will work out without fail. 



With a Stroke of the Pen 

(Drawing figures with one continuous line) 
The Konigsberg Bridge Problem 

The great mathematician Euler was once interested in 
a curious problem that he described thus: 

"There is an island called Kneiphof in Konigsberg*. 
The river flowing around it is split into two branches 
which are spanned by seven bridges (Fig. 283). 

"Is it possible to visit all of these bridges, crossing 
each once only? 

"Some people believe that it is possible. Others think 
this is impossible." 

What do you make of it? 

What is Topology? 

Euler devoted to the Konigsberg bridge problem 
a whole mathematical investigation that in 1736 he 
presented to the St. Petersburg Academy of Sciences. 
The work was begun with the following words defining 
the branch of mathematics to which similar questions 
might be referred: 

* Now Kaliningrad in the USSR. 

Figure 2 8 3 
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"Besides the aspect of geometry that treats of the 
quantities and measuring techniques, an aspect that has 
been developed since ancient times, Leibnitz was the 
first to mention another aspect that he called the 
'geometry of position'. This branch of geometry is only 
interested in the arrangement of the parts of a figure, 
ignoring their sizes*. 

"Recently, I heard of a problem referring to the 
geometry of position, and so I have decided to present 
here by way of example the method I have found of 
solving the problem." 

Euler was referring to the Konigsberg bridge 
problem. We're not now going to discuss the reasoning 
of this eminent mathematician but will only confine 
ourselves to some brief remarks that support his final 
derivation. His conclusion was that it was impossible to 
meet the condition of the problem. 

Examination 

For simplicity we'll replace the river's branches by the 
scheme in Fig. 284. The size of the island and the 
lengths of the bridges are of no consequence and now 
we know this is the characteristic feature of all the 
topological problems. 

Therefore, the localities A, B, C, and D in Fig. 283 
can be replaced by points marked by the same letters 
where the paths meet. Now the problem is seen to 
reduce to tracing the figure in Fig. 284 with one 
continuous path so that no line is drawn twice. 

Let's show that it's impossible to do so. We must 
arrive at each of the node points (A, B, C, and D) by 
one of the paths and then leave by another path. The 
only exception are the initial and final points: since you 
don't corne from anywhere to start and you don't go 
anywhere when you leave. Thus, for our figure to be 
"unicursal" every point, save for two, must meet either 
two, or four (in general any even number) of paths. At 
each of the points A, B, C, and D in the figure odd 
numbers of paths meet. It's thus impossible to trace the 
figure with one continuous path and so it is not 
possible to cross all the Konigsberg bridges as required. 

* Nowadays this branch of higher geometry is generally termed 
"topology" and it has developed into an extensive field of 
mathematics. The problems in this section of the book belong to 
only a small part of the branch of topology. 

Figure 284 
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Seven Problems 

Try and draw each of the following seven figures with 
one continuous path. 

A Bit of Theory 

Attempts to trace figures 1-6 in Fig. 285 yield different 
results. Some of the figures can be drawn regardless of 
where the path begins. Others can only be drawn if the 

path starts from definite points. Yet others cannot be 
drawn at all by one continuous path. What is the 
reason for this difference? Are there any signs that 
would enable us to predict whether or not a figure is 
unicursal, and if so what must the starting point be? 

The theory provides comprehensive answers to these 
questions, and some elements of the theory will be 
presented below. 

We will now refer to those points at which an even 
number of lines meet as "even" points and to those at 
which an odd number of lines meet as "odd" points. 

It can be shown (we'll omit the proof) that any figure 
only has either zero, or two, or four (in general an even 
number) odd points in it. 

If there are no odd points in the figure, it can always 
be drawn with a single stroke of the pen, wherever you 
start from. Examples are figures 1 and 5 in Fig. 285. 

If there are two odd points in the figure, then it can 
also be drawn in this way, you must only begin from 
one of the odd points (either one). You will find that 

Figure 285 
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you'll always finish your drawing at the other odd 
point. Examples are figures 2, 3, and 6. In 6, for 
example, you must begin either from point A or from 

If a figure has more than two odd points, it's 
noncursal. Examples are figures 4 and 7, which both 
contain four odd points. 

Now you know enough to identify which figures are 
unicursal and the points from which you could start 
your drawing. Professor W. Arens suggests you should 
be guided by another rule, namely "All the lines that 
have already been drawn in a given figure should be 
regarded as absent and when selecting the next line see 
to it that the figure remains complete (doesn't disin-
tegrate) if the line you've chosen is removed from it." 

Suppose, for instance, that in figure 5 we've followed 
the path ABCD. If now we draw in line DA, we'll have 
to deal with two figures, ACF and BDE, and they are 
not connected (figure 5 falls apart). Thus, having 
completed figure AFC we won't be able to go over to 
BDE since there'll be no undrawn lines connecting 
them. Therefore, having covered ABCD, you mustn't go 
along DA but should first trace the path DEED and 
then follow the remaining line, DA, over to AFC. 

Seven More Problems 

Trace figures 8-14 with a continuous line (Fig. 286). 

B. 

Figure 286 
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The Leningrad Bridges 

The puzzle is to take a walk around the region of 
Leningrad shown in the figure and come back at the 
starting point whilst crossing each bridge just once. 
Unlike the Konigsberg bridge problem, the task is 
feasible and the reader should now be sufficiently 
armed with knowledge to handle the problem on his 
own. 

Figure 287 
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Figure 288 

The figures below give the solutions of respective problems in this section. 

24 

Figure 289 



Geometric Recreations 

How Many Faces? 

How many faces has a hexahedral pencil? 
On the face of it the question is naive, or. . . intricate. 

Think hard before you look the answer up. 

What Is Shown Here? 

Take a look at Fig. 290. The unusual aspects make 
these objects view outlandish and recognition difficult. 

..-- - - m i - - - m — ' — --II " I 

However, try and guess what the figure shows. These 
are all well-known household things. 

Glasses and Knives 

Three glasses are so arranged on the table that their 
mutual separations are larger than the length of a knife 

Figure 290 

Figure 291 
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(Fig. 291). Nevertheless, you are asked to contrive 
bridges of these knives such that they connect all three 
glasses. It goes without saying that dislodging the 
glasses is forbidden, as is the use of anything besides 
the three glasses and three knives. 

How Is It Achieved? 

You see here (Fig. 292) a wooden cube made up of two 
pieces of wood. The upper half has tongues that fit in 
the grooves of the lower half. But pay attention to their 
shape and arrangement and explain how the joiner 
contrived to connect both parts, each being made of 
a solid block of wood. 

One Plug for Three Holes 

Figure 293 depicts six rows of holes, with three holes in 
each. Using any suitable material, make one plug for 
the three holes of each row. 

The first row is as easy as pie: clearly the answer is 
the block shown in the figure. 

As to the other rows the situation is a bit more 
difficult. However, anyone good at engineering drawing 
will make a short work of the task. Essentially, the task 
comes down to manufacturing a component from its 
three views. 

Figure 293 

Figure 292 

338-339 



•iVSt, 

Figure 295 

Figure 296 
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Further "Plug" Puzzles 

The accompanying figures show three more boards. 
Again, find a plug to close the three holes in each 
board. 

Two Cups 

One cup is twice higher than the other, but the other is 
1 1/2 times wider (Fig. 297). Which holds more? 

Figure 297 

How Many Glasses? 

Figure 298 depicts three shelves cn which vessels cf 
three capacities are arranged so that the total capacity 
cf the vessels on each shelf is the same. The smallest 
vessel here is a glass. Find the capacity cf the ether two 
kinds cf vessel. 

Figure 298 

Figure 294 



Geometric Recreations 

Two Saucepans 
Consider two similar saucepans. Their walls are equally 
thick but one is eight times more capacious than the 
other. 

How many times heavier is it? 

Four Cubes 

Four solid cubes of the same material have different 
heights: 6 cm, 8 cm, 10 cm, and 12 cm (Fig. 299). 
Arrange them on the pans cf a balance for it to be in 
equilibrium. 

Half-Full 

An open barrel contains some water, seemingly half its 
capacity. But you want to know it for certain and you 
don't have a stick or any other measuring device to 
measure the contents of the barrel. 

Find a way out. 

Which Is Heavier? 

There are two identical cubic boxes (Fig. 300): the one 
on the left contains a large steel ball with a diameter 

equal to the box's height, and the one on the right is 
filled with small steel balls arranged as shown. 

Which box is heavier? 

Tripod 

It's believed that a tripod never rocks, even if its legs 
have different lengths. 

Is that so? 

How Many Rectangles? 
How many rectangles can you identify in this figure 
(Fig. 301)? Not squares but rectangles, cf any size. 

Figure 300 

Figure 301 
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Figure 302 

Figure 303 

Chessboard 

How many differently arranged squares could you 
identify on the chessboard? 

A Brick 

A brick weighs 4 kilogrammes. 
What is the weight of a toy brick of the same 

material with all its dimensions four times smaller? 

A Giant and a Dwarf 

Consider a 2-metre giant and a 1-metre dwarf. How 
many times heavier is the giant? 

Along the Equator 

If you could walk all the way along the equator, the 
top of your head would have travelled a longer way 
than each point on your feet. 

What would this difference be? 

Through a Magnifying Glass 

An angle of 1 1/2° is viewed through a 4 x power 
magnifying glass (Fig. 302). 

What will its apparent magnitude be? 

Similar Figures 

This problem is for those who know about the concept 
of geometric similarity. Referring to Fig. 303, answer 

the following questions: 
1. Are the internal and external triangles similar 

(Fig. 303a)? 
2. In the frame of the picture (Fig. 3036), are the 

internal and external rectangles similar? 

a b 
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The Height of a Tower 

Suppose there is a tourist attraction in your town, 
a tower whose height you don't know, however. But 
you have got a photograph of the tower on a picture 
postcard. 

How could this picture help you to determine the 
height? 

Figure 304 

JtO 

Figure 305 

A Strip 

A bit of mental arithmetic: if a square metre is divided 
into 1-mm squares, and all of them are arranged side 
by side on a straight line, how long will be the strip 
obtained? 

A Column 

Now imagine a column produced by stacking all the 
1-mm cubes contained in 1 cubic metre. How high 
would this column be? 

Sugar 

Which is heavier: a glassful-of granulated sugar or 
pressed sugar? 

The Path of a Fly 

Consider a cylindrical glass jar 20 centimetres high and 
10 centimetres in diameter. On the inner wall, 
3 centimetres from the top, there is a drop of honey, 
and on the outer wall, the diametrically opposite, there 
is a fly (Fig. 304). 

Trace the shortest path for the fly to get to the 
honey. 

Don't hope that the fly could find the shortest way 
on its own, thereby simplifying the problem. This 
would require a knowledge of gebmetry on its part, 
that would be "superflyish". 

The Path of a Beatle 

At the roadside lies a granite block 30 centimetres long, 
20 centimetres high and 20 centimetres thick (Fig. 305). 
A beatle is sitting at point A and wants to find the 
shortest way to B. 

Trace the path and find out how long it is. 
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A Bumble-Bee's Travels 

A bumble-bee sets out on a long journey. From its nest 
it flies due south, crosses a river and after an hour's 
travel alights on a hill covered with clover. Fluttering 
from a flower to flower it spends half-hour here. 

Now it goes to the orchard where the bumble-bee 
yesterday saw gooseberry-bushes in blossom. The 
orchard lies due west of the hill and it makes 
a "bumble-bee" line there, where it arrives 3/4 of an 
hour later. The bushes being in full blossom, the insect 
takes 1 1/2 hours to visit all of them. 

At last, the bumble-bee starts on its return journey 
and takes the shortest route possible. 

How long has the bumble-bee been away from its 
nest? 

The Foundation of Carthage 

According to a tradition concerning the foundation of 
Carthage the Tyrian princess Dido, who lost her 
husband at the hands of her brother, fled to the north 
coast of Africa with many of the inhabitants of Tyre. 
She bought from the Numidian king as much land "as 
an oxen hide occupies". Having concluded the bargain 
Dido had the hide cut into thin belts and thanks to this 
trick she got a site big enough for a fortress to be 
erected. So the citadel of Carthage was built, and later 
developed into a city. 

How calculate the area that, according to the legend, 
the fortress could occupy, given that the oxen hide had 
a surface area of 4 square metres and the belts into 
which Dido had it cut were 1 millimetre wide. 
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CJ) How Many Faces? 

The problem reveals an incorrect usage of words. A hexagonal pencil doesn't have six 
faces, as may well be believed. If it isn't sharpened, it has eight faces, all in all: six 
lateral faces and two small "end" faces. If it really had six faces, it would have quite 
another shape, namely a block with a rectangular cross section. 

The habit of only counting side faces in prisms, and ignoring the end faces is 
widespread. Many people say: trihedral prisms, tetrahedral prisms, etc., whereas these 
prisms should be referred to as triangular prisms, quadrangular prisms, etc., according 
to their cross section. What is more, a trihedral prism (i. e. having three faces) cannot 
exist. 

The pencil mentioned in the problem should be referred to as "hexagonal", not 
"hexahedral". 

What Is Shown Here? 

The objects are a razor, a pair of scissors, a fork, a pocket watch, and a spoon. When 
we look at some object we, generally speaking, see it projected onto a plane normal to 
the line of sight. Here you were not shown the views that you see habitually and this 
is enough to render an object almost unrecognizable. 

Glasses and Knives 

This is quite possible to achieve by arranging the knives as shown in Fig. 306. 
Figure 306 

The way out is very simple, as can be seen from Fig. 307. 
2 3 - 975 

Figure 307 

How Is It Achieved? 
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25 3 One Plug for Three Holes 

The suitable plugs are shown in Fig. 308. 

Figure 308 

Further "Plug" Puzzles 

In this case, the plugs are more complicated (Figs. 309, 310, 311). 

Figure 309 Figure 310 

Figure 311 
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Two Cups 

The cup that is 1 1/2 times wider would (with the same height) have (1 1/2)2, i.e. 2 1/4 
times more volume. Since it is only half the height of the other cup, in the final 
analysis it still holds more than the taller cup. 

How Many Glasses? 

A comparison of the first and third shelves shows that they differ only in that the 
third shelf contains one more middle-sized vessel whilst the three small vessels are 
missing. The total capacity of the vessels on each shelf being the same, it's obvious 
that the capacity of one middle-sized vessel equals that of the three small ones. The 
middle-sized vessel thus equals three glasses. It only remains now to determine the 
capacity of a large vessel. By replacing all the middle-sized vessels on the first shelf by 
the appropriate number of glasses we get one large vessel and 12 glasses on the top 
shelf. 

Comparison with the second half yields that one large vessel holds 6 glasses. 

Two Saucepans 

The two saucepans are geometrically similar. Given that the larger saucepan holds 
8 times more, all of its dimensions are twice larger: it's twice higher and wider. Its 
surface area must then be 2 x 2 times larger, because the surfaces of similar bodies 
relate to each other as the squares of their linear dimensions. The thickness of walls 
being the same, the weight of a saucepan depends on its surface area. The answer is 
therefore that the larger pan is four times heavier. 

Four Cubes 

We must place the three smaller cubes on one pan, and the largest one on the other. 
It's easily verified that the balance will be in equilibrium. Let's show that the total 
volume of the three smaller cubes equals that of the largest one. This follows from the 
relationship 

63 + 83 + 103 = 123, 

i. e. 
216 + 512+ 1,000= 1,728. 

Half-Full 

The simplest way is to tilt the barrel so that the water reaches the edge (Fig. 312). If 
some of the bottom shows above the surface, however little, the barrel is less than 
half-full. If, on the contrary, the bottom is well below the surface of the water, the 
barrel is more than half-full. Finally, if the upper edge of the bottom is exactly on the 
water level, the barrel is exactly half-full. 
2 3 * 
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Which Is Heavier? 

Let's imagine the right cube as consisting of small cubes, each containing a ball. It's 
easily seen that the large ball occupies the same proportion of the large cube's volume 
as each small ball occupies of the smaller cube's volume. We can readily work out the 
number of these small balls and cubes: 6 x 6 x 6 = 216. The total volume of the 216 
balls accounts for the same share of the 216 cubes as the big ball relative to the big 
cube. It follows that both boxes contain the same amount of metal, and hence their 
weight is the same. 

Tripod 

A tripod can always touch the floor with each of its three legs, because through any 
three points in space one can draw a plane, and only one at that. This explains why 
a tripod doesn't rock. This problem, you see, is purely geometrical and not physical. 

That is why tripods are so convenient as supports for field instruments and cameras. 
A fourth leg wouldn't make the support any more stable. 

How Many Rectangles? 

225. 

Chessboard 

The chessboard contains more than 64 squares. Apart from the small black and white 
squares there are the larger squares consisting of 4, 9, 16, 25, 36, 49, and 64 unit 
squares. These must be taken into account as well. 

Figure 312 

Answers 
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Unit Squares 

i 
4 
9 

16 
25 
36 
49 
64 

Number on 
Chessboard 

64 
49 
36 
25 
16 
9 
4 
1 

Total 204 

Thus, the chessboard contains 204 differently arranged squares of different sizes. 

A Brick 

If you thought the toy brick weighs 1 kilogramme, i.e. only a quarter lighter, you 
would be wrong. It's not only a quarter the length, but also a quarter the width and 
a quarter the height of a standard brick, therefore its volume and weight is 4 x 4 x 
x 4 = 64 times less. 

Consequently, the correct answer is: the toy brick weighs 4,000 — 64 = 62.5 
grammes. 

A Giant and a Dwarf 

Now you are well equipped to solve this problem correctly. Since human bodies are 
approximately similar, the giant would be eight times heavier, not twice as heavy. 

The tallest giant ever recorded was a man from Alsace in Germany. He was 275 
centimetres high, a metre higher than an average man. The smallest dwarf was under 
40 centimetres, i.e. he was seven times smaller than the Alsatian giant. Therefore, if 
the giant were to stand on one pan of a balance, 7 x 7 x 7 = 343 or a whole crowd of 
dwarfs would have to stand on the other to balance. 

Along the Equator 

We take the man to be 175 centimetres high and denote the Earth's radius by R. We 
thus have 

2 x 3.14 x (R + 175) - 2 x 3.14 xR = 2x 3.14 x 175 = 
= 1,100 cm, 

i.e. about 11 metres. Interestingly enough, the result is independent of the globe's 
radius. 

Through a Magnifying Glass 

If you believe that the magnifying glass will make the angle look as if it were 1 1/2° x 
x 4 = 6°, you put your foot in it. Viewing through a magnifying glass doesn't make 
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the angle any larger. True, the arc subtending the angle increases, but the radius of the 
arc increases as much, with the result that the central angle remains the same (Fig. 
313). 

Figure 313 

Figure 314 

The Height of a Tower 

To work out the height of the tower we should at first measure as accurately as 
possible the height of the tower and the length of its base in the picture. Suppose the 
height in the picture is 95 centimetres and the base is 19 centimetres. Now measure 
the base of the real tower, which is, say, 14 metres. 

Then you argue as follows. The picture and the real tower are similar, the height-
to-base ratio in reality and in the picture are the same. The first ratio is 95:19 = 5, 
then you conclude that the height of the real tower is five times larger than its base: 
14 x 5 = 70 metres, i.e. the tower is 70 metres high. It's worth noting that the method 

Similar Figures 

Not infrequently, both questions are answered in the affirmative. In actual fact, only 
the triangles are similar. For triangles to be similar it's sufficient for the angles to be 
equal and since the sides of the inner triangle are parallel to those of the external one, 
the angles are equal. With other polygons it's not sufficient only to have equal angles 
(or parallel sides which is mathematically the same). It is also necessary that their sides 
be proportional. For the internal and external rectangles of the frame this is only the 
case for squares (more generally, for rhombs). In any other cases, however, the sides of 
the external rectangle are not proportional to the sides of the internal rectangle, and 
hence the figures are not similar. This stands out especially for rectangular frames with 

wide planks as shown in Fig. 314. In the left frame the ratio of the external sides is 
2:1, and of the inner sides 4 :1 . In the right frame the ratio of the external sides is 
4 :3 , and of the internal sides 2 :1 . 
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only works with pictures that don't distort proportions which is often the case with 
inexperienced cameramen. 

A Strip 

There are 1,000,000 square millimetres in 1 metre. Each thousand 1-mm squares 
arrange along a line span 1 metre, and a thousand thousand 1-mm squares give 1,000 
metres, i.e. 1 kilometre. Thus the strip will be 1 kilometre long. 

A Column 

The answer is striking: the column will be... 1,000 kilometres high. 
Let's test it mentally. There are 1000 x 1000 x 1000 cubic millimetres in 1 cubic 

metre. Each thousand 1-mm cubes stacked one upon another gives a 1-metre column. 
Multiplied by 1,000 this gives 1,000 metres = 1 kilometre. Multiplying by the last 
1,000, we obtain 1,000 kilometres. 

Sugar 

Use your imagination. Suppose for simplicity that the lumps of pressed sugar are 100 
times larger across than the particles of granulated sugar. Now imagine that all the 
granules in the granulated sugar were enlarged 100 times together with the glass 
containing them. The capacity of the glass would be increased 100 x 100 x 100, i.e. 
one million times, as would the weight of the sugar. Let's take a normal glassful of 
this enlarged granulated sugar, i.e. one millionth part of the contents of the giant 
glass. Ciearly, it will weigh as much as a normal glassful of conventional granulated 
sugar. But then, what is the enlarged granulated sugar? It's nothing but pressed sugar. 
Accordingly, a glassful of pressed sugar has the same weight as that of granulated 
sugar. 

If we had made the magnification 60-fold instead of 100-fold or any other mag-
nification, the situation wouldn't have changed in the least. The key thing here is that 
the pieces of pressed sugar are regarded here as being geometrically similar to the 
particles of granulated sugar and are at that arranged in a similar manner. The 
assumption is not strict, but it's fairly close to reality if the lumps are irregular. 

The Path of a Fly 

Let's make the sides of the cylinder jar into a flat surface. We'll obtain a rectangle 
(Fig. 315a) 20 centimetres high with the base equal to the circumference of the jar, i.e. 
10 x 3 1/7 = 311/2 centimetres (approximately). On this rectangle we now can mark 
the positions of the fly (A) and honey drop (B). 

Now to find the point at which the fly must cross the edge we'll proceed as follows. 
We'll draw a line from B (Fig. 3156) at a right angle to the upper side of the rectangle 
and continue it an equal distance beyond the edge. We obtain point C which we 
connect with a line to A. Point D will be where the fly must cross the edge to the 
other side, the path ADB being the shortest. 

350-351 
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Having found the shortest way on the rectangle, we'll again make it into a cylinder 
and find out how our fly must walk to get to the honey drop in the shortest time 
possible (Fig. 3156). 

The Path of a Beatle 

We'll mentally turn the upper face of the stone so that it lies in the same plane as the 
front face (Fig. 316). The shortest route then is the line connecting A and B. What is 

Figure 316 

SO 
30 

its length? We have the right triangle ABC, where AC = 40 cm, CB = 30 cm. 
According to the Pythagorean theorem, AB must be 50 cm, because 302 + 402 = 502. 
So the shortest path AB = 50 cm. 

A Bumble-Bee's Travels 

The problem would be a "piece of cake", if we knew the time taken by the bumble-bee 
to cover the distance from the orchard to its nest. Geometry will help us work this 
out. 

Let's draw the path of the insect. We know that it flew at first "due south" for 60 
minutes. Then it flew for 45 minutes "due west", i. e. at right angles to the first leg, and 
finally it flew back to its nest by the shortest path possible, i.e. along a straight line. 
We thus obtain the right triangle ABC with two known legs, AB and BC, the hypote-
nuse AC remaining to be determined. 

Figure 315 
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Geometry teaches that if one leg of a right-angled triangle is three units long, the 
other leg four units long, then the hypotenuse is exactly five units long. 

For example, if legs are 3 metres and 4 metres, then the hypotenuse is 5 metres; if 
9 and 12 kilometres, then the hypotenuse is 15 kilometres, and so forth. In our case 
one leg is 3 x 15 minutes of flight long and the other 4 x 15 minutes long, hence the 
hypotenuse AC = 5 x 15 minutes of flight long. We have thus found that the 
bumble-bee took 75 minutes, i.e. 11/4 hour, to cover the distance from the orchard to 
its nest. 

Now it's child's play to figure out how long our bumble-bee had been away from its 
nest: 

Flights: 1 + 3 / 4 + 1 1 / 4 = 3 hours. 
Stops: 1/2 + 1 1 / 2 = 2 hours. 
Total: 3 + 2 = 5 hours. 

The Foundation of Carthage 

Since the surface area of the hide was 4 square metres, or 4 million square millimetres, 
and the belt thickness was 1 millimetre, the total length of the belt (clearly, Dido had 
it cut in a spiral) was 4 million millimetres, or 4,000 metres, i.e. 4 kilometres long. 
A belt this long can encircle a square area of 1 square kilometre, or a round area of 
1.3 square kilometres. 

Nest 

BOmin 

Or char c 45 min 
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Without a Tape-Measure 

Measuring by Paces* 

Since a tape-measure is not always at hand, it pays to 
be able to do without one where approximate estimates 
are sufficient. 

Longish distances, for instance during hikes, can be 
conveniently measured by paces. But this does of 
course require that we know how long our paces are 
and could count them. Admittedly, paces are not 
always the same: we can walk with short steps or long 
steps, when we need to. But still when we walk at 
a measured pace our steps are about similar, and if we 
know their average length, we can without much error 
measure distances in paces. 

To find the average length of your pace you should 
measure the total length of many paces and find the 
length of one. Here, of course, we cannot do without 
a tape-measure. 

Lay out the tape on a smooth piece of ground and 
measure a 20-metre stretch. Draw in the line and 
remove the tape. Now walk along the line in your 
normal way and count the number of paces you have. 
It's possible that the stretch of ground you measured 
does not contain an integer number of paces. Then, if 
the remainder is shorter than a step, it can be simply 
discarded; if it's longer than a step, the remainder is 
taken to be a whole step. Dividing the total length of 
20 metres by the number of paces gives the average 
length of one pace. This number should be remembered 
so that, if necessary, it might be used for measuring. 

In order not to lose count of paces you can, 
especially over long distance, use the following trick. 
Count up to 10 and then tick off a finger of your left 
hand. After the five fingers of the left hand have been 
ticked off, i.e. 50 paces covered, start ticking off the 
fingers on the right hand. We can in this way count up 
to 250, and then start from the very beginning 
remembering how many times have we ticked off all the 
fingers of the right hand. For example, if having 
covered a certain distance you've ticked off all the 
fingers of the right hand twice and you end up with 
three fingers more ticked off on the right hand, and 

* We will call two steps 1 pace. 
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four on the left, you've made 
2 x 250 + 3 x 50 + 4 x 10 = 690 paces. 

You should also add the paces you made after the 
last finger of your left hand has been ticked off. 

By the way, there is an old rule which says that the 
length of an average step of an adult equals the 
distance from floor to his eyes. 

Another old practical rule refers to walking speed: 
a man covers as many kilometres in half an hour as he 
makes paces in 3 seconds. We can easily show that the 
rule is only true for one rather large length of pace. Let 
the .pace length be x metres, and the number of paces 
made in 3 seconds be n. Then in 3 seconds the walker 
goes nx metres, and in half an hour (1,800 seconds) he 
travels 600 nx metres, or 0.6 nx kilometres. For this 
distance to be equal to the number of paces made in 
3 seconds the following equality should hold 
0.6 nx = n, or 0.6 nx = 1. 

Hence x = 1.66 metres. 
If the first old rule relating pace length to man's 

height, then the second rule is only valid for people of 
average height, about 175 centimetres. 

Living Scales 

To measure objects appropriately without a tampe-
measure, you can proceed as follows. Measure by 

Figure 318 
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21 a stick or a rope the length from the end of your 
outstretched arm to your opposite shoulder 
(Fig. 318)-in adult it's about a metre. Another way of 
getting an approximate metre is to mark off six times 
the distance from your thumb to forefinger, separated 
as widely as possible (Fig. 319a). 

The latter piece of advice introduces us to the art of 
measuring "with bare hands". Initially, you should only 
measure parts of your hand and remember the results. 

Which parts then should be measured? Above all, its 
width, as shown in Fig. 319b. In adults it's about 10 
centimetres, but it varies from person to person and 

Figure 319 

you should know its exact value. Then it pays to know 
the span between the ends of your middle and index 
fingers separated as wide as possible (Fig. 319c). It is 
also advisable to know the length of your index finger 
from the base of your thumb, as shown in Fig. 319d 
and, finally, the width of your outspread palm from 
thumb to little finger, as shown in Fig. 319e. 

This "live scale" will enable you to estimate the 
dimensions of small objects. 

Measuring with Coins 

It pays to know the size of your national coins, because 
they might be of help in measuring objects. By way of 
example, the Soviet coins have convenient dimensions: 
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Figure 320 

1 kopeck piece is exactly 11/2 centimetres across, 
5 kopeck piece is 21/2 centimetres across, and so on. 
Remember the diameters of your coins! 



Simple Tricks and Diversions 

Guessing Domino Points 

The trick is based on a dodge that can't be guessed. 
You could surprise your friends by saying that you'll 

guess the drawn domino's points from an adjoining 
room. For better effect suggest they blindfold you. 
Really, one of your friends draws the piece and asks 
you to guess its points and you, from the adjacent 
room, give them the right numbers straight away and 
without so much as a glance at it or your friends. 

What is the idea behind the trick? 

Disappearing Line 

Copy out the figure in Fig. 321 very accurately. Cut the 
ring out, apply it to the ring in the figure and turn it 
counterclockwise so that the severed part of each line 
registers with the remains of a neighbouring one. You'll 
witness something enigmatic: instead of the 13 lines 
that were there before the figure will only show 12. One 
line will have disappeared. Where to? 

The reverse operation brings the line back. Where 
from? 

A Mysterious Knot 

We'll now turn to trick with things. 
Here is a curious trick that could surprise your 

friends. 
Take a piece of string about 30 centimetres long 

(Fig. 322) and make a loose knot on it as shown on the 

left of the accompanying figure. Add a second loop (see 
the knot in the middle). You're sure to expect that 
tightening the string now will give you a good double 
knot. But to be on the safe side we'll make the knot 

Figure 321 

Figure 322 

27 
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smarter by threading one of the loose ends through 
both loops as shown on the right. 

All the preparations over, we can proceed to the 
main part of the trick. Take hold of one end of the 
string and offer the other to your friend. Pull! You'll 
discover something neither you nor your friend 
expected: instead of an involved knot you'll have 
a smooth piece of string! The knot will have gone. 

The trick is a success if only you make the third loop 
exactly as shown. So examine the knots in the figure 
carefully. 

Escaping 

Bind your friends (A and B) as shown in Fig. 323. 
Is it possible to set the friends free without cutting 

the strings? 

A Pair of Boots 

Take a sheet of strong paper and cut out a frame, 
a pair of boots and an oval ring as shown in Fig. 324. 
The hole in the oval ring is the size of the width of the 

Figure 323 

B 

Figure 324 
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frame, but narrower than the legs of the boots. There-
fore, if you are asked to hang the boots on the frame as 
shown in the figure, you'll obviously think that it's 
impossible. 

But it is possible. How? 

Corks on a Ring 

There is a ring of strong paper, on which two corks 
hang suspended from a short piece of string with a wire 
ring slung on the string as shown in Fig. 325. 

Remove the corks from the paper ring. 

Two Buttons 
Figure 326 shows a sheet of paper with two long cuts 
and one small oval hole that is a bit smaller than the 
separation between the long cuts. Thread a piece of 
string through the hole and the cuts and tie a button to 
each end of the string so that the buttons won't pass 
through the hole. 

"Magic Purse" 

Cut two rectangles out of a sheet of cardboard, the 
rectangles being the size of a notebook, say 
7 centimetres long and 5 centimetres wide. Get three 
pieces of ribbon (paper strips will do as well), two of 
them being a centimetre longer than the rectangles' 
width, and the third a centimetre longer than twice the 
width of the rectangles. Glue the ribbons to the 
rectangles as shown in Fig. 327. In so doing, bend the 
ends of the shorter ribbons under the right rectangle 
and glue them to it, and glue the other ends to the 
back side of the left rectangle. Glue the end of the 
longer ribbon to the outside of the right rectangle, 
thread the ribbon under it, then round the outside of 
the left rectangle and glue its end under this rectangle. 

You now have your "magic" purse. Using it, you can 
show your friends a fascinating trick that can be 
dubbed "live paper" or something like that. Take 
a piece of paper signed by your friend so that you 
could not replace it. Stick the paper under the two 
ribbons. Now close the purse, reopen it. Presto! The 
paper itself emerged from under both papers but (what 

Figure 325 

Figure 326 

Figure 327 
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is beyond belief!) it got under the centre ribbon on the 
opposite side of the purse. 

Explain. 

Guessing Matches 

In my childhood I was much amazed by a trick shown 
to me by my elder brother. Going about my business in 
my room once I heard in the adjacent room some 
laughter that wetted my curiosity. I peered in and saw 
my brother and his student friend laughing. 

"Come in, boy! We'll show you an interesting trick." 
That was exactly what I wanted. My brother was 

a great wag. 
"Look here," said Alex arranging matches on a table 

in a random manner, "I put ten matches down at 
random. Now Til go into the kitchen and you think of 
a match here. When you're ready, call me. I'll just take 
a look at the matches and tell you which one it was." 

"And he'll say that it's not the right one," the guest 
interrupted, "No, some control is needed here, we can't 
do without it!" 

"Okay, we'll do it this way: when he's thought of 
a match he'll show it to you. You'll be a witness." 

"That's different. Let's start." 
My brother left. I made sure that he was gone and 

couldn't peer into the keyhole. Then I thought of 
a match, showed it to the student without touching and 
called out: "Ready!" 

I didn't believe that Alex would guess the match 
since I hadn't so much as touched it and all the 
matches remained in their places. How could he 
possibly guess? 

But he did! He just came up to the table and without 
a moment's hesitation pointed to the match. I even 
tried hard not to look at it in order not to betray 
myself. My brother even didn't glance at me and still 
guessed... Well I never! 

"Want another go?" 
"Of course!" 
We did it again and he guessed it again! A dozen 

times we did the trick and each time my brother 
indicated the match I had thought of without mistake. 
I was on the verge of bursting into tears as I was dying 
to know the secret. Finally, my tormentors took pity on 
me and revealed the trick. 

What was it? 
24 975 
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Eleven Matches on One 

Arrange a dozen matches as shown in Fig. 328 and try 
and raise them all by lifting the sticking out end of the 

lower match. If you are adroit enough, the trick will 
work, if not, practice a bit. 

Is It Easy? 

What do you make of what is shown in Fig. 329: is it 
easy to lift a match with two other matches? 

It seems easy as pie, doesn't it? But try to do it 
yourself and you'll find that it requires patience and 
practice, the slightest jolt will turn the match over. 

On a Narrow Path 

Draw a narrow path of 15 squares on a sheet of paper 

For the game you'll need a die and two counters or 
draughts (two coins or buttons will also do). 

The rules of the game are simple. Each of the two 
partners places his counter at the either end of the 
path. Then they take turns to throw the die (the one 
with the largest number of points begins). Each partner 
shifts his counter forward by so many squares as there 
are points shown by the die, but he is not entitled to 

(Fig. 330). 

Figure 328 

Figure 329 
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skip the square occupied by his opponent's counter. If 
the die shows more points than there are free squares 
left, he must retreat by the excess number of squares. 

The counters thus alternatively appear in the middle 
of the path or at its extremes. The game ends when one 
of the partners is forced to leave the path. The winner 
is the one who stays. 

Star-Like Patterns 

Some people maybe don't know that just with a pair of 
scissors, without any drawing instruments it's possible 
to manufacture an infinite variety of beautiful paper 
patterns. 

Take a sheet of white paper and fold it several times 
as shown in Fig. 331, A, B, C, D, and E. Having 

Figure 331 

reached the stage E, cut the folded paper along some 
ornate lines, e. g. like those shown in the figure. 

Now unfold and smooth out the paper to obtain 
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a beautiful design that will look yet better when glued 
on some dark paper (Fig 332). 

Five-Pointed Star 

Can you cut out a paper five-pointed star? It is not 
simple and takes some practice, otherwise your star will 
have unequal points. There are two methods of cutting 
good regular stars. 

In the first method, a circle is drawn on a sheet of 
paper using a pair of compasses or just a saucer. The 
circle is cut out and folded in two, the semicircle 
obtained is then folded four times as shown in 
Fig. 333/4. 

This is the most difficult part of the problem as it 
requires a good eye, because the semicircle must be 
folded so as to give five similar segments. 

Once the circle has been folded correctly, it is 
trimmed at the thick end along one of the dash lines in 
Fig. 333B. When you unfold the paper, you get 
a regular five-pointed star with either shallow or deep 
notches (Fig. 333, C and D) depending on how you 
trimmed the semicircle. 

The second method is perhaps simpler as we start 
with a square, not a circle. To begin with, a square 
sheet of paper (Fig. 334/1) is folded in two. Then three 
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more folds are made as shown in Fig. 334, B, C, and D. 
The dot-and-dash line in Fig. 334D indicates the trim 
line. The resultant star is depicted in Fig. 334£. 

Figure 334 
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What's Written Here? 

Something is written in the circle (Fig. 335). Looking at 
it in the conventional way, you will, of course, perceive 

nothing sensible. However, if you view the circle in the 
proper way, you'll be able to read the words. Which 
words ? 

Its Simple. Or Is It? 

Look carefully at the design in Fig. 336 and try to 
remember it so that you could reproduce it from 
memory. Have you remembered it?... Then begin 
drawing. At first, mark out the four end points of the 

two lines. The first curve will probably come out 
adequately. Okay! Now draw the second curve. But the 
line is stubbornly unsuccess. This seemingly easy job 
does not now appear to be so easy. 

On Which Foot 

Look at Fig. 337 and say which leg the footballer is 
standing on, the right or left. 

He seems to be standing on his right leg, but you can 
say that he is standing on his left leg with the same 

Figure 335 

Figure 336 
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measure of certainty. No matter how long you view the 
drawing you'll never answer the question. The artist has 
done his job so skillfully that it's impossible to establish 
which leg is doing the kick and which is supporting the 
man. 

Perhaps you are asking, "But which is which, really?" 
I don't know. The artist doesn't know, either. It will 
remain an unsolvable mystery for ever. 

How Many Fish? 

You see a strange drawing here (Fig. 338). It might 
seem that the angler has caught nothing so far. But 

look very attentively at the figure: three big fish are 
already here. Where are they? 
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Where Is the Tamer? 

Where is the tamer of this tiger (Fig. 339)? 
His portrait does appear in this figure. Find it. 

Sunset 

Look at the picture (Fig. 340)-a sunset-and say if it is 
correct. 

The picture contains one incongruity that you should 
find. 

Figure 339 

Figure 340 
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Moonset 

Figure 341 represents a tropical moonset. Is the picture 
correct? 

Perhaps you can see something incongruous about it. 

Figure 341 
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 6 Guessing Domino Points 

Here you use a secret language known only to you and one of your friends with 
whom you've preliminarily worked it out. You've agreed, say, that the following words 
have the meaning: 

"I", and "my" - 1 
"you", and "your" -2 
"he", and "h is" -3 
"we", and "ou r " -4 
"they", and " their"-5 
"it", and " i t s"-6 

These conventions may be illustrated by some examples. Let the piece in question 
be 4-6. In that case, your companion calls out: 

"We've thought of a piece, guess it." 
In the secret language this will be: "we"-4, " i t"-6 , hence 4-6. 
If the piece is 1-5, then your companion utters: 
"I think this time they are difficult to guess." 
Those uninitiated will never guess that these words contain the secret message: 

' T - l , "they"-5. 
A further example: 4-2. What "message" should your companion send? Something 

like this: 
"Now we've thought of such a piece that you'll never guess." 
But how about the blanks? It might be denoted by some other word, say, friend. If 

the domino is 0-4, your fellow-conspirator calls out: 
"Guess, friend, what we've thought now." 

Disappearing Line 

The jist of the trick is better illustrated in a simplified form. Figure 342 shows a piece 
of cardboard with 13 lines. The sheet is cut along the diagonal. If you shift one part 
relative to the other as shown in the figure, then instead of 13 lines you'll get only 12, 

Figure 3 4 2 

one will have disappeared. In this case we can easily see where it has gone since each 
of the 12 new lines has got somewhat longer than before, namely a 1/12th longer. 
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Clearly, when shifted one of the lines has been divided into 12 parts each of which 
went to lengthen the other lines. Reverse shifting brings the vanished line back into 
being by shortening the other lines. 

The lines in Fig. 321 are arranged in a circle and possess the same property: 
shifting the circle through an appropriate angle kills one of the lines (it is "smeared" 
over the other 12). 

Yes, it is. 
String A is taken at point C and threaded through loop B in the direction indicated 

by the arrow. When a sufficient length of the string has already been tucked in, hand 
B is put into the loop formed and, when string A is pulled, the friends separate. 

The accompanying figure explains the answer. The frame is folded and the ring is put 
on the folded ends. Then the unfolded figure of "double boots" is threaded in-between 
the folded ends, refolded and pushed to the bend in the frame. Finally, the ring is 
slided onto the end. It now only remains to unfold the frame. 

Escaping 

Figure 343 

B 

A Pair of Boots 

Figure 344 
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Now that you know how to solve the previous problem, this one will be smooth 
sailing. 

Figure 345 

Fold the paper ring as shown, remove the wire ring by sliding it away to the free 
end, and remove the corks. 

Two Buttons 

The accompanying figure shows the solution. Fold the paper so that the upper and 

lower ends of the narrow strip between the cuts will coincide. Then thread the strip 
through the oval hole and remove the buttons through the loop. 

"Magic Purse" 

The point is that you open the purse from the opposite side. 

Guessing Matches 

I was simply made a fool of. The student who pretended to control the guessing was 
my brother's conspirator and gave signals to him. 

But how? That was the trick of it. It turned out that the matches were arranged not 
at random: the brother had so arranged them (Fig. 347) that the pattern would 
resemble the outlines of a human face. So the upper match marked the hair, the next 
below, the forehead, further down were the eyes, nose, mouth, chin, neck, and on 
either side the ears. When Alex walked into the room, he first of all cast a glance at 

Figure 346 
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Figure 347 

the "controller" who touched an appropriate feature of his face with his hand, thus 
indicating which match had been thought of. 

What's Written Here? 

Bring the ring up to your eyes as shown in Fig. 348. You'll clearly read the words 
MIR PUBLISHERS, then turn the circle and you'll now see the word PERELMAN. 

Figure 348 

The letters are extremely elongated and narrow, therefore it's impossible to make 
them out in the conventional way. In the suggested method the letters become much 
shorter, their width being the same. This imparts a normal aspect to tht letters, thus 
simplifying reading them. 

How Many Fish? 

Fll help you discern the catch. One fish is one the angler's back, head down. Another 
is between the float and the end of the fishing rod. The third is under his feet. 

Where Is the Tamer? 

The tiger's eye doubles as the tamer's eye, the tamer is looking in the opposite 
direction. 

Sunset 

The incongruity is that the convex part of the crescent faces in the opposite direction 
from the sun, not towards it. The moon is illuminated by the sun, hence it by no 
means can be facing the sun with it dark side... 

The French astronomer Flammarion wrote: "Most of painters are ignorant of this, 
because a year never passes without a large number of inverted crescents appearing at 
the Paris Salon". 
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Strange as it may seem, the crescent in Fig. 341 is depicted correctly. It's a tropical 
landscape where the position of the crescent differs from that in the higher latitudes, 
where the hump of the new moon faces to the right and that of the old moon faces to 
the left. But in tropical lands the crescent hangs horizontally in the sky. 

This is explained as follows. In the higher latitudes the sun and moon (indeed all 
the luminaries in general) execute their diurnal motion in inclined circles. Therefore 
during the evening the sun casts slanting rays at the moon, illuminating it from the 
right or left, so that the crescent faces to the right or left. But on the equator the 
celestial bodies move in normal trajectories with the result that the sun illuminating 
the moon sets below the horizon directly beneath the moon and not to the left or 
right of it. The moon is thus illuminated from below and that is why the crescent has 
the form of a gondola, as shown in the figure. 



The End 



Y
a.I.Perelm
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