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PREFACE 

Hydrostatically Loaded Structures introduces the reader to the structural 
mechanics, analysis, and design of submersibles intended for exploration of 
the ocean and lake depths. Such trips could well be for location of mineral 
resources, inspection of submerged portions of off-shore towers for oil drill- 
ing platforms, inspection of ocean bottom pipelines, carrying tourists on un- 
derwater adventures, carrying commercial cargo, and other uses yet to be 
found. 

Design of the hydrostatically loaded vehicles involved presents many 
problems not encountered in design of land-based systems. Not only are lo- 
calized normal pressures very large, but most of the structural systems are 
extremely sensitive to initial geometric imperfections. Relative small de- 
partures from the nominal geometry become very important. For example, 
small departures from true circularity of a cylindrical or spherical pressure 
hull greatly diminishes its capability to descend to great depths. Residual 
stresses often decrease the load carrying capability of the system. Confirma- 
tion of any mathematical analysis of structural behavior must be obtained by 
comprehensive experimental programs. 

The author's interest in structural behavior of submersible systems ex- 
tends over a number of decades. The present book is the outgrowth of a 
graduate level course that he has given a number of times over the years. To 
effectively utilize this book, the reader must necessarily have taken a first 
course in Strength of Materials, and preferably, a second course in that area, 
or, alternately, a course in Theory of Elasticity. Each chapter ends with nu- 
merous references, together with a bibliography listing (and often briefly 
summarizing) other publications. These two listings are of equal importance 
but space does not permit incorporating all items in the bibliography into the 
detailed text. Nor does space permit discussions of shell dynamics, an obvi- 
ously important topic. 

Much of the book was written while the author was a visiting professor at 
the Technical University of Darmstadt, Germany. Thanks must go to the Al- 
exander von Humboldt Foundation of Bonn for making that stay possible, 
and to the faculty in Darmstadt for its hospitality. 

The author is particularly indebted to Mrs. Pamela Stephan for careful 
preparation of the computer-generated figures, text formatting, and layout. 
Thanks also go to Mrs. Kl'istina Schmid for much of the typing of the text. 
Lastly, the author is deeply indebted to his wife, Verna B. Nash, for her pa- 
tience and encouragement during the preparation of the manuscript. 

William A. Nash 
Amherst, Massachusetts 

April 1995 

ix 



This Page Intentionally Left Blank



CHAPTER 1 

A BRIEF HISTORY OF SUBMERSIBLES 

Records from antiquity indicate that Alexander the Great developed a ru- 
dimentary type of submersible consisting of a wood case having transparent 
windows with the system being treated with resin and wax to keep water 
out. Several versions of this undocumented claim are to be found in ancient 
records. Much later Leonardo da Vinci (1452-1519) claimed to have de- 
veloped a submersible but never gave any of the details usually associated 
with his other inventions [ 1.1 ], [ 1.2]. 

The next development is due to Cornelius Drebble of England who dem- 
onstrated for King James a twelve-man enclosed boat operating under the 
Thames River. The boat had a wooden top and the men operated oars from 
inside the vessel. The next documented development is due to David Bush- 
nell which involved an egg-shaped wooden vessel having a propeller turned 
by hand cranks within the submerged system. It was demonstrated in Maine 
in about 1790. In 1765 Robert Fulton, of Lancaster, Pennsylvania, de- 
veloped for the French government the Nautilus, a twelve-man submersible 
powered by hand cranks. He demonstrated its capabilities in Brest, France, 
in 1802 but was unable to generate any funding for future developments 
[1.3]. 

Man's quest to achieve mobility beneath the surface of the sea for both 
scientific as well as military purposes has led to design and construction of a 
number of systems capable of going to ever-increasing depths. During the 
past three decades a host of undersea systems has been developed for deep 
ocean exploration, e.g., petroleum, minerals, food sources, etc. Here we will 
document many of these submersible systems. Most are self-propelled but a 
few of unusual interest but lacking propulsion will also be mentioned. En- 
gineering plans are currently being drawn up by several major nations to uti- 
lize newly-designed submersibles as material carders (mainly petroleum) 
under the polar ice-cap. The former Soviet Union is also planning to convert 
surplus military submarines for such utilization [ 1.4]. 

Most existing deep submergence systems have pressure hulls of de- 
ceptively simple configuration, e.g., a ring-stiffened cylindrical shell, stiff- 
ened as well as unstiffened spherical shells, stiffened conical shells, and un- 
stiffened as well as ring-stiffened prolate spheroids. Significant structural 
additions to these primary load-carrying members are to be found in trans- 
verse bulkheads which not only provide additional strength but serve to 
compartment the vehicle in the event of flooding; reinforcing rings around 
entry hatches and other penetrations of the pressure hull; and reinforcing 
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rings in the junction between, say, a cylindrical hull and its conical and/or 
spherical end closures. Pressure hull configurations are usually selected to 
meet requirements pertinent to structural efficiency, suitability of internal 
space to carry payloads, and for hydrodynamic efficiency. 

In general these pressure hull configurations are characterized by much 
smaller radius/thickness ratios than are associated with aerospace applica- 
tions. In deep submergence systems this ratio is usually less than 50, where- 
as for flight vehicles ratios of 200 to 500 are common. Even though the hy- 
drospace systems are thus relatively thicker, they are, fortunately, still 
sufficiently thin that structural analyses based upon the assumption of "thin 
shell" theory are usually valid. Even so, development of rational strength 
criteria whose predictions agree with existing experimental evidence has oc- 
cupied the attention of many research engineers and involved extensive la- 
boratory and even prototype testing. Since the analyst must always make as- 
sumptions and idealizations concerning any proposed configuration, it is not 
to be expected that simple results will be found that will precisely predict 
structural behavior of the pressure hull. Instead, one must often be content 
with reasonable upper and lower bounds on load-carrying capacity of the 
system. Although the introduction of assumptions and idealizations is of 
course necessary in any other facet of structural analysis and design, e.g., 
airborne vehicles, high-rise buildings, bridges, ground vehicles, etc., there 
are at least two significant features of pressure hull design that greatly affect 
load-carrying capabilities that are essentially absent or negligible in other 
structural considerations. These are: (a) the presence of initial geometrical 
imperfections in the form of deviations from, say, a perfect cylindrical shape 
of a pressure hull, and (b) the presence of significant magnitude initial 
stresses due to formation of flat plating into some single or double curved 
configuration for the pressure hull. Item (a) is of importance because the 
pressure hull is subjected to external pressure which induces a compressive 
loading into the shell structure. The compressive forces essentially tend to 
exaggerate the initial geometric imperfections thereby giving rise to local- 
ized bending effects which are deleterious to structural integrity. Item (b) is 
significant since the initial stresses must be added to stresses arising from 
pressure loading and this combined effect may precipitate premature yield- 
ing of the pressure hull. These two features, so difficult to account for prior 
to construction, serve to differentiate the structural mechanics of deep sub- 
mersible systems from structural problems associated with other areas of en- 
gineering. 
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Representative Deep Submersibles Developed Since 1951 

KUROSHIO. Built in Japan in 1951 by the Nippon K. K. (Japan Steel 
and Tube Corporation) for tethered explorations up to 656 feet (200 m) 
mostly related to the fishing industry [ 1.5]. 

SEVERYANKA. Built in the Soviet Union, about 1958. Characteristics 
unknown. Known uses limited to assist the Soviet fishing fleet. 

TRIESTE II. Built by U.S. Navy in 1959 in conjunction with A. Picard. 
Dove to 36,000 feet (10,973 m) in the Mariana Trench in 1960 with a crew 
of three. For general oceanographic research, has mechanical arms. Con- 
nected by cable to surface ship. No mode of propulsion [1.6]. 

MORAY. Built by U.S. Naval Ordnance Test Center, China Lake, Cal- 
ifornia, in 1960. Carries two individuals and is'suitable for oceanic acoustic 
research. No viewports. Can dive to 6000 feet (1830 m) [ 1.7]. 

Figure 1.1, DENISE (DIVING SAUCER) (Photo �9 The Cousteau Society, a 
membership supported, non-profit environmental organization.) 
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DENISE. The original name of a submersible designed under the direc- 
tion of J.Y. Cousteau in 1956. Although christened DENISE, that name is 
rarely used. Captain Cousteau coined the term SOUCOUPE PLON- 
GEANTE (DIVING SAUCER) and that name has persisted. The true name 
is SOUCOUPE PLONGEANTE 350, referring to the maximum depth of 
350 meters. The pressure hull consisted of two steel semi-ellipsoidal shells, 
each 0.75 inches (19.05 mm) thick, welded together. Several small jets 
squirt sea water propelling and guiding the vehicle. Peak submerged speed 
is 1.5 knots (1.73 miles per hour). Built in France in conjunction with West- 
inghouse Electric Corp., see [ 1.8], [ 1.9], to carry two individuals for general 
oceanographic research. See Figure 1.1. 

ALVIN. Built by Litton Systems, Inc. in 1964 for Office of Naval Re- 
search, in conjunction with Woods Hole Oceanographic Institute. HY-100 
steel pressure hull with depth capability of 6000 feet (1,829 m). Space for 
two crew members. Modified in 1973 with a titanium pressure hull having 
depth capability of 11,500 feet (3505 m) [1.6], [1.10]. 

ALUMINAUT. Constructed by Reynolds Metals, International, in 1964, 
all aluminum pressure hull. Dives to 15,000 feet (4570 m) with up to six 
crew including observers. Used for general oceanographic research [1.6], 
[1.12]. 

DEEPSTAR 4000. Built in 1965 by Westinghouse Electric Corp. Can 
dive to 4000 feet (1220 m) with three individuals on board. Has manipulator 
arm and is suitable for general oceanic research [ 1.6]. 

DEEP SUBMERGENCE RESCUE VEHICLE. Built in 1965 by Lock- 
heed Missiles and Space Co. Can dive to 3500 feet (1067 m) employing a 
crew of three plus up to 24 individuals rescued from another submersible in 
distress. Can be flown to site of disabled vehicle [ 1.10], [ 1.11]. 

STAR HI. Built by Electric Boat Co. in 1967. Can dive to 2000 feet (610 
m) with a crew of two. Suitable for general oceanographic research. Has ma- 
nipulator arms. [ 1.12]. 

DEEP DIVER. Built in 1967 by Ocean Systems of Union Carbide; de- 
sign by Edwin Link and John Perry. Capable of diving to 1250 feet (381 m) 
carrying a total of four crew including observers. Has been used for observa- 
tions during laying of underseas pipelines [ 1.7]. 
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DEEP QUEST. Built in 1967 by Lockheed Missiles and Space Co. Can 
dive to 8000 feet (2438 m) with four on board. Designed for deep ocean ex- 
ploration, including mineral surveys. Has manipulator arms. Was first ve- 
hicle to use a multisphere hull [1.7]. 

BENTHOS. Developed in 1967 at Pennsylvania State University and 
fabricated at the Coming Glass Works. The material is high-strength Pyro- 
ceram and the configuration consisted of a ring-stiffened cylindrical closed 
at the forward end by a hemisphere and at the after end by a truncated con- 
ical shell. Operating depth was 20,000 feet (6100 m) but cyclic resistance of 
joints was unsatisfactory after only five cycles of hydrostatic loading [ 1.13]. 

DEEP OCEAN WORK BOAT. Built in 1967 by AC Electronics Divi- 
sion of General Motors. Can dive to 6500 feet (1981 m) with two in- 
dividuals on board. Has manipulator arm, 360 ~ viewing ports, and is suitable 
for general oceanic research [ 1.12]. 

SHINKAI. Built in Japan in 1968 for operating depths of 1969 feet (600 
m). Constructed at Kobe Shipyard by Kawasaki Heavy Industries for re- 
search associated with fisheries and geological surveys [ 1.5]. 

JOHNSON SEA LINK. Built in 1969 by the Link Division of the Singer 
Company, in conjunction with Alcoa. The vehicle consists of an aluminum 
cylindrical shell closed at its after end by an aluminum hemisphere and at its 
forward end by a transparent acrylic plastic hemisphere in which the pilot 
sits and has 180 ~ visibility. Can dive to 400 feet (122 m) for shallow water 
explorations [ 1.12]. 

STAR II. Built by Electric Boat Co. in conjunction with University of 
Pennsylvania in 1969. Carries a crew of two, can descend to 1200 feet (366 
m) for general oceanographic research [ 1.7]. 

KUMUKAHI. First transparent-hulled submersible. Built in 1969 by the 
Oceanic Institute, Hawaii for explorations at 450 feet (137 m). Two care- 
fully constructed hemispheres of acrylic plastic were fabricated and joined 
to form the pressure hull [1.14]. 

BEN FRANKLIN. (PX-15). Built under supervision of Grumman Air- 
craft in Monthey, Switzerland in conjunction with Jacques Piccard and the 
U.S. Navy in 1969. Dives to 2000 feet (610 m) with six crew plus observers. 
Used for general oceanographic research, particularly ocean currents and 



A Brief History of Submersibles 

marine life investigations. See Figure 1.2, 1.3 [1.15]. 

Figure 1.2, BEN FRANKLIN [From The Grumann Corp., Bethpage, NY] 

Flat 

Ring Stiffeners 

Hemisphere 

Viewing Ports 

Hatch 

) 
r162 

Figure 1.3, BEN FRANKLIN [From The Grumann Corp., Bethpage, NY] 
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Figure 1.4, BEAVER IV [From The North American Rockwell Corp. 
Courtesy of Cambridge Scientific Abstracts, Bethesda, Md.] 

BEAVER IV. Built for North American Rockwell Corp. in 1969. Dives 
to 2000 feet (610 m) with up to three crew including observers. Used for 
viewing undersea oil drilling observations. [ 1.6], [1.7]. Figure 1.4. 

PISCES II. Built in 1969 by the International Hydrodynamic Co. of Can- 
ada. Designed for salvage operations at depths to 3600 feet (1097 m) with 
several viewing ports and a versatile manipulator. A later version was in- 
tended for depths up to 6500 feet (1981 m) [1.6]. 

SOUCOUPE PLONGEANTES 350. See DENISE, page 4. 

SHIMANSKIY. Built in the Soviet Union, about 1970. Characteristics 
unknown. 

NEMO MOD 2000. Spherical pressure hull of transparent acrylic, 1975. 
Inside diameter is 58 inches (1.47 m) with aluminum hatches. Considered 
acceptable for manned explorations at depths of 3000 feet (915 m). Rated at 
life of 1000 dives [1.16]. 
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PC3B. Built in 1977 by Perry Oceanographics, Inc. in Riviera Beach, 
Florida. Has a depth rating of 984 feet (300 m) and length of 22 feet (6.70 
m) for carrying four individuals. Intended for maintenance of undersea oil 
drilling systems and pipeline inspections [ 1.17]. 

SHINKAI 2000. Spherical pressure hull of inside diameter 86.6 inches 
(2.2 m) of ultra-high strength steel, capable of carrying three individuals to a 
maximum operating depth of 6560 feet (2000 m). Launched in 1981 [ 1.18]. 

ATLANTIS IV. Built by Atlantic Aquatics Development Corp., British 
Columbia, Canada, in 1984. Carries 48 sightseeing passengers at a depth of 
150 feet (45.7 m) in the Cayman Islands [ 1.19]. 

SEA SHUTTLE SAGA-N. Built in 1985 by International Submarine 
Engineering, Port Moody, British Columbia, Canada. It is a 125 foot (38.1 
m) long vessel, having nuclear power with depth capability of 11,000 feet 
(3353 m), and carries 13 individuals [1.20]. 

DEEP ROVER I. Built in 1985 at Deep Ocean Engineering Co., Oak- 
land, California. One-person vehicle for depths as great as 3300 feet (1006 
m). Has manipulator arms. 

JASON JR. Robot (unmanned) explorer tethered to ALVIN, built in 
1985 and used in 1986 to video the remains of the TITANIC, sunk in 12,500 
feet (3810 m) of water in 1912. Remotely controlled [1.21]. 

K-BOATS. Designed and built by George Kittredge, Warren, Maine, 
1989. One-person submersible for depths as great as 350 feet (107 m). For 
sightseeing, has transparent portholes [ 1.22]. 

GEMINI. Built in 1989 by Hyco Technologies, Vancouver, B.C., Can- 
ada. Can dive to 2580 feet (786 m). Employed in Grand Cayman region for 
passenger under-sea sightseeing. Eight person vehicle composed of three 
acrylic spheres surrounded by a stainless steel/fiberglass cylindrical frame- 
work [ 1.19]. 

DOLPHIN 3K. Japanese built in 1991 for undersea research to depths of 
9840 feet (3000 m). Has sampling as well as video capabilities [ 1.23]. 

DEEP FLIGHT. Built in 1991 by Deep Ocean Engineering Co., San 
Leandro, California. Designed for operation at 4000 feet (1219 m) and has a 
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Figure 1.5, SHINKAI [From Mitshbishi Heavy Industries, Tokyo, Japan] 

transparent hemispherical forward end closure on the cylindrical shell which 
is fiberglass reinforced epoxy. Peak speed is 15 knots [ 1.24]. 

SHINKAI 6500. Built by Mitsubishi Heavy Industries in 1989, Kobe 
Shipyard, Japan. Pressure hull is a 6.56 foot (2 m) inside diameter sphere of 
titanium alloy with three observation ports. Acoustic navigation system and 
facilities to detect and image obstacles and targets. Operated by three-person 
crew, has descended to 21,300 feet (6527 m) [ 1.25], [ 1.26]. Figure 1.5 

MIR. Built in Finland by Rauma Oceanics in 1992 for the former Soviet 
Union. Designed for ocean exploration up to 19,680 feet (6000 m) with me- 
taUic cylindrical pressure hull capped at one end by a hemisphere of trans- 
parent acrylic [ 1.27]. 

NAUTILE. Built in 1992 for the French Oceanographic Institute IF- 
REMER, can explore ocean floor at depths as great as 19,680 feet (6000 m). 
It carries a crew of three in a 5.90 foot diameter (1.8 m) titanium sphere hav- 
ing several viewports. It also has a manipulative arm for collecting rock 
samples [1.28]. 
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Figure 1.6, MAURIUS [From Office of Naval Research, London, UK] 

ROVER. A remote-operated vehicle developed at the University of Mich- 
igan by Professor Guy A. Meadows and launched in 1992. Designed specif- 
ically for underwater exploration in the Laurentian Great Lakes with depth 
capability of 1475 feet (450 m) with low-light color video imaging capability, 
horizontal as well as vertical thrusters, speeds up to 0.86 miles per hour when 
submerged and 3.45 miles per hour on the surface, and articulated arm abil- 
ity. 

MARIUS. A European Union (EU) vehicle capable of seabed inspections 
and environmental surveys in coastal waters up to 1970 feet (600 m) deep. 
Battery powered and scheduled to be operational by late 1994. A subsequent 
version, composed of filamentary composite materials, will be suitable for 
19,680 feet (6000 m) dives) [1.29]. Figure 1.6. 
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CHAPTER 2 

GENERAL THEORY OF SHELLS 

Any singly or doubly curved body one of whose dimensions, the thick- 
ness, is small compared to the other lateral dimensions of the body, is 
termed a shell The curved surface midway between the bounding faces and 
therefore at the midpoint of the thickness at every point is termed the middle 
surface of the shell. In the limiting case of a flat (plane) middle surface the 
body is called a plate. 

Figure 2.1 illustrates a portion of the middle surface of a doubly curved 
shell. At an arbitrary point of this element a normal n is drawn to the middle 
surface. Evidently an infinite number of planes may be passed through the 
normal and each of these planes intersects the middle surface in some plane 
curve, such as C for the plane P. Curves such as C, all formed by inter- 
sections of planes through ~ and the middle surface are termed normal sec- 
tions. Each curve will have some curvature associated with it and in general 
this curvature will be different for each of the planes passing through the 
normal ft. We state, without proof, that there are two curves associated with 
the perpendicular planes P and P1 for which curvatures are maximum and 
minimum at the point of intersection of h-and the middle surface. The direc- 
tions associated with these maximum and minimum curvatures are termed 
principal directions for any specified point on the middle surface, and the 
curvatures corresponding to these directions are called principal curvatures. 
Since it is presumably possible to find the principal directions at every point 
of the middle surface of an arbitrary shell, it is possible to draw curves 
which connect every point coinciding with these directions. These curves 
are termed lines of curvature. Thus, at every point along lines of curvature 
the middle surface curvatures are always maximum and minimum of all pos- 
sible curvatures at that point. There are always two lines of curvature 
through every point on the middle surface of a shell and it is convenient to 
employ the lines of curvature of the undeformed middle surface as co- 
ordinate curves of the middle surface. In this way positions of points such 
as A on the middle surface may be described as indicated by the coordinates 
x I and Yl in Figure 2.2, where x and y are lines of curvature. It will usually 
be convenient to refer various measures of strain and deformation of the 
middle surface to the same lines of curvature. 

For most simple geometries, such as cylindrical, spherical, or conical 
shells the principal directions are immediately evident. Having selected x 
and y axes as coinciding with lines of curvature of the middle surface it is 
necessary to specify the location of an arbitrary point in the shell and this is 

15 
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accomplished by introducing a z-axis coinciding with the normal ff and hav- 
ing its positive direction directed toward the center of curvature of the shell. 
(We omit consideration of those unusual surfaces for which the centers of 
curvature corresponding to the principal directions lie on opposite sides of 
the shell middle surface, such as a hyperbolic paraboloid.) 
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Strain-Displacement Relations 
Let us denote the x, y, and z components of displacement of a point on 

the shell middle surface by u, v, and w respectively, as the shell deforms un- 
der the action of applied loads. Further, let us denote middle surface normal 
strains in the x and y directions (remembering that these are lines of cur- 
vature) by e x and e.y respectively and the middle surface shear strain by Yxy- 
The determination may proceed in three phases. 

(a) First, we consider the projection of an infinitesimal middle surface 
element ABCD of dimensions dx and dy prior to any deformation of the shell 
on a plane which is tangent to the middle surface at some comer of the ele- 
ment, such as A, as shown in Figure 2.3. 

,~ dx ~. ~.. 
u + - ~  

U 

t a -x  . . . . . . . . . .  ~-~ dx'- 

dx ~ "- " " B  "7 

v+ av dy I , ~ 

jy u +-~ 

Figure 2.3 

As may be seen from Figure 2.3, the point A displaces (during middle 
surface deformation) an amount u in the x direction, and v in the y direction 
to the position A'. Point B displaces to B' but instead of the displacement 
components in the x and y directions being u and v respectively they are u + 
(~u/dx) dx and v + (~v/gx) dx respectively, i.e. the increments of dis- 
placement (~u~x) dx and (~v/gx) dx must be considered since, in general, 
the displacement at B is different than that at A even though the points A and 
B are only a distance dx apart. These displacement increments are small, but 
not negligible. Similarly point C displaces to C' and D to D'  as indicated in 
Figure 2.3. 

The originally rectangular element ABCD has changed in both size and 
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shape during the deformation process. The side AB, originally of length dx 
after deformation is represented by A'B' whose length is 

A' B' = dx + -~x dX + 

1 

= dx 1+ t cgx J t cgx ) -~x 

Expanding the right side of this expression, and retaining only the first 
few terms, the final length is: 

[( ul ] A' B' - dx 1+ -~x + -2 k, Ox ) +7 "~x 

The normal strain e x' in the x-direction (due to u and v displacements 
only) is by definition" 

x 

A ' B ' - A B  

AB 

[ 1( /2 ] 
l+-b-~x+~t, Ox) +-~ ~ - 

dx 

dx 

Ox +2tTx) +2 Txx (2.1) 

An analogous consideration of A'D' leads to the normal strain ey in the y- 
direction" 

~ 1 ( ~ )  2 l ( O u )  2 

~ :-~+~ ' +~t-~) (2.2) 

As an approximation (which greatly simplifies future mathematical con- 
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siderations) let us henceforth neglect the square of the derivatives of dis- 
placements u and v occurring in (2.1) and (2.2) to obtain: 

' Ou (2.3) eX = Ox 

, 0v 
e y -  oay (2.4) 

The middle surface shear strain (due to u and v displacements only) 
denoted by Yxy is by definition the change of the original fight angle ex- 
isting at point A between AB and AD. As may be seen from Figure 2.3, this 
is given by 

F 

~xy ~r -t- ~t 2 

- v  u +  dy - u  
= + 0y 

dy 

0v 0u 

(2.5) 

where, as an approximation, the projections of A'B' and A 7)' on the x and y 
axes respectively have been replaced by the original lengths dx and dy. This 
is permissible because of the small magnitudes of the angles ?'1 and Y2- 

It is to be observed that the expressions (2.3), (2.4) and (2.5) have been 
derived through a consideration of only the u and v components of dis- 
placement of a point on the shell middle surface, i.e. only displacements in 
the middle surface have been considered. 

(b) Next, it is necessary to consider the influence on normal and shear 
strains of the component of displacement of a point on the middle surface in 
the direction normal to that surface, i.e. one must examine the effect of the 
z-component of displacement which is denoted by w. This may be ac- 
complished by re-examining the element ABCD of Figure 2.3 taking into ac- 
count the displacement w of point A to A" as shown in Figure.2.4. In gener- 
al the z-components of displacement of points B and D to the positions B" 
and D" will be slightly different than w, and, as indicated in Figure 2.4 are 
given by w + (bw/flx) dx and w + (3w/fly) dy respectively. 
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Because of deformations characterized by w, the side AB originally of 
length dx becomes, after deformation, 

A"B"- (dx)2+ ~x (dx) ~ 

[ (ewl~l~ -dx l+kax) j 

[ 1( )2 ] 
- dx 1+-~ "-~- x +... 

The additional terms of the binomial expansion (indicated by dots) will 
henceforth be dropped. The normal strain e"x in the x direction (due to w 
displacements only) is: 
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e' x = 
A" B '~- AB 

AB 

21 

/2] - 

dx 

dx 
(2.6) 

1 

~(Tx) 2 
An analogous consideration of A"D" leads us to the normal strain e"y in 

the y-direction: 

E y - - ~  (2.7) 

The middle surface shear strain (due to w displacements only) is denoted 
by ~' "xy and is by definition the change of the original right angle DAB of 
Figure 2.4. To determine ?' "xy it is only necessary to consider the applica- 
tion of the law of cosines to triangle A"B"D": 

( ") D " B  ''2 - D " A  ''2 + A " B  ''-----'2 - 2 D " A " A " B " c o s  9 0 ~  xy (2.8) 

Substituting into (2.8) the various geometric relationships evident from 
Figure 2.4 we obtain: 

D" B ''2 - (dx) ~ + ( + ) 2  _0w 2 

(2.9) 

I )2] -2 (+)~ + + I~~ + T;x ~ cos(9oo-r'~) 
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Since the angle ~"xy is very small compared to a fight angle, we 
approximately: 

I II I II cos 9 0 -  7' xy = 7' xy 

have, 

If this relation is substituted in (2.9) and all terms involving squares of 
derivatives of displacements are dropped, we obtain: 

Ow Ow (2.10) 
 'xy Ox Oy 

(c) Finally, it is necessary to consider the effects of change of curvature 
on the desired strain-displacement relations. Let us examine the element AB 
of length dx shown in Figure 2.3. It may reasonably be assumed that the ra- 
dius of curvature of AB is constant everywhere along the length dx and is 
given by Px as indicated in Figure 2.5. Also, dx subtends a central angle dO 
as shown there. In that figure the original position of AB prior to deforma- 
tion is indicated by the solid line and after deformation it has displaced to 
the position A"'B"', i.e. toward the center of curvature by an amount w, as 

dx 

\\kk I III 
\\ dO I / 

Figure 2.5 

indicated by the dotted line. (Since the z-axis has already been specified as 
being directed toward the center of curvature, the displacement w is positive 
in that same direction.) Let us denote the principal curvature corresponding 
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to AB by kx, which is related to the corresponding radius of curvature Px by 
the relation Px = l~x.  After deformation the radius of curvature is (Px - w) 
and the curvature is the reciprocal of that quantity. This change of cur- 
vature produces a normal strain e"'x given by" 

E l l  I 

x 
(Px - w)dO - pxdO 

pxdO 
(2.11) 

W 

Px 
. . . .  w k  x 

Similarly, in the y-direction, the change of curvature produces a normal 
strain e"'y given by" 

W 
e"' . . . . .  wky (2.12) Y Px 

The changes of curvature do not influence the shear strain. 
Now, it will be assumed that the deformations of the shell middle sur- 

face are sufficiently small that it is permissible to add the corresponding nor- 
mal and shear strain components computed separately in (a), (b) and (c). 
This yields the desired middle surface strain-displacement relations: 

1( wl2 
ex = Ox + 2  ~ - wkx (2.13) 

Ey = - ~  +'~ - w k y  (2.14) 

0% 0u 0w 0w 
Yxy - tgx + - ~ + ~ x " / ~  (2.15) 

An extremely useful result is obtained by differentiating (2.13) twice 
with respect to y, (2.14) twice with respect to x, and (2.15) once with respect 
to x then once with respect to y and subtracting this last result from the sum 
of the first two to obtain 
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t92ex t92ey t92?'xy _ 

c92 w)2 ~92w ~92w o~2w o~2w 
tgxoay - tgx""T"- ~y'-"T - kx ~y""~ - Icy tgx2 

(2.16) 

Equation (2.16) is called the equation of compatibility (written in terms 
of strains) and clearly indicates that the strains ex~ ey and Yxy are not in- 
dependent. 

Equilibrium Relations 
Let us consider the equilibrium of an element of a general, doubly 

curved shell. It is convenient to retain the element used in Figure 2.3 with 
dimensions dx and dy in the x and y-directions respectively. Such an ele- 
ment is considered to be removed from a shell structure and the action of the 
remainder of the shell structure on the element dx, dy is represented by vari- 
ous forces and moments. It will be convenient to treat these in two distinct 
groupings and with that objective we first examine the normal and shear 
forces acting in the shell middle surface. These forces are constant through 
the shell thickness and are most conveniently represented in terms of the 
normal stresses cr x and cry and the shear stress Zxy. The resultant forces for 
a shell of thickness h are represented in Figure 2.6. As may be seen from 
that figure, the normal force on the face AB is cryhdx and the force on AD is 
crxhdy. Analogous to the situation concerning displacements (mentioned 
with regard to Figure 2.3) the forces on faces BC and CD will be somewhat 
different even though these faces are only distant dx and dy from AD and 

A xxyhdx . . ' ' "  Oyhdx 

axhdy "C-x~Y~'~~~--------~'-~~.5 -- ! 

D x 

(r, xy +~-~x dx) hdy ~x / ~ ~ ' r ' x Y + ~ - - ~ x d X ) h d y  '"x~-~x--~ 

~Oy (ay + ~ dy) hdx 

Figure 2.6 
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AB respectively. Just as in the case of the displacements, the normal stresses 
on CD and BC will be 

Cry + Or dy and ax + c) x dx respectively. 

Similar remarks hold for sheafing stresses Zxy. It is to be emphasized that 
equilibrium equations for the element must be written for the forces in vari- 
ous directions, but that it is convenient to represent these forces as the prod- 
uct of stress and area as indicated in Figure 2.6. 

The first equilibrium equation may be obtained by summing forces act- 
ing on the element ABCD in the x-direction. Since the element is extremely 
small, all angles of inclination are likewise very small, and we obtain: 

~ + Ox dx hdy-r Vxy +Oy dy hdx-hdx-0 

which becomes 

Oax OVxy 
4- ....... - - 0  Ox Oy (2.17) 

Similarly, we obtain the second equilibrium equation pertaining to forc- 
es in the y-direction in the form: 

0% 0% =o 
cgy Dx (2.18) 

In Figure 2.7, bending moments per unit length of shell middle surface 
are designated by Mx and My, the twisting moment per unit length by Mxy 
and transverse shear forces, per unit length by Qx and Qy as illustrated. The 
vector representations of moments are particularly convenient for develop- 
ment of moment equilibrium equations. For example, from Figure 2.7 mo- 
ment equilibrium about the y-axis leads to the equation 

-MxdY + ( Mx + c)Mxax dx)dy-Mxydx+ ( Mxy + OMxyDy dy)dx 

OQx dx)dydx - qdxdy(--~) -( Qx+ Ox 
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If terms involving products of three differentials are dropped in compari- 
son to those involving only two differentials, this becomes 

cgMx ~ cgMxy Qx - O (2.19) 
ax 

Similarly, moment equilibrium about the x-axis yields: 

3My ~ 3Mxy 
Oy cgx Qy - 0  (2.20) 

Prior to writing the next equilibrium equation involving forces in the z- 
direction, it is necessary to ascertain the angles of inclination of the various 
normal and shear forces shown in Figure 2.6. To find these angles, let us 
first examine the trace of the element ABCD on a plane parallel to the x-z 
plane and located a distance dy/2 from A, as designated by EF in Figure 2.8. 
Prior to undergoing any displacement EF would have the appearance in- 
dicated in Figure 2.8 where it is convenient to regard the left end at E as hor- 
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izontal, and the fight end at F as having an angle of inclination with the hor- 
izontal given by dO, where 

dO = dx = kxdx (2.21) 
Px 

Due to w displacements in the z-direction the element EF also undergoes 
further changes of slope. As indicated in Figure 2.9 the change of slope at 
the left end is (0w/oax) but at the fight end there is a somewhat different val- 
ue given by 

or: 

+ dx 

OW O2W (2.22) 
- - - +  dx 
Ox Ox e 

Evidently from (2.21) and (2.22) the net change of slope between the 
ends of the element EF is 

t~ 2 W ) d ~ 
kx + Ox2 (2.23) 
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For the comparable element GH in the y-direction, the net change of 
slope is 

/,y+ (2.24) 

The second term in (2.22) is a measure of the change of slope (due to w- 
displacement) with respect to change of the x-coordinate. There is a com- 
parable change of this same slope with respect to change of the y-coordinate. 
This may be illustrated by referring to the shear force ~rxyhdx acting on face 
AB of the element in Figure 2.6. If we take the slope of this force vector to 
be 0w/oax (which neglects certain higher order corrections introduced in 
(2.23) then it is reasonable to expect the slope of the shear force (lrxy + 
(O~xy/gy)hdx on CD to be given by [Ow/oax + c9/o3y (Ow/oax)dy] or (0w/oax) + 
(~W/Oaxoay) fly. Thus, the change of slope with respect to the y-coordinate is 
given by 02w/oaxOy per unit length in the y-direction. Analogously, if the 
slope of the shear force acting on face AD of the element in Figure 2.6 is 0W/ 

~~2 ' then the change of this slope with respect to the x-coordinate is given by 
w/oaxoay per unit length in the x-direction. 

A simple geometric interpretation may be attached to the second de- 
rivative occurring in (2.23). In the elementary theory of bending of beams 
the same term 02w/Ox 2 arose and there may be shown to be an approxima- 

v X 

- ~ E  

ax 
O2w dx 
ax2 

Figure 2.9 
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tion to the curvature of the beam at any point along the length of the beam. 
Here, in the case of a shell, there is an initial curvature in the x-direction, so 
the second derivative must be regarded as change of curvature per unit 
length in that direction. Likewise, oa2w/Oy 2 in (2.24) may be regarded as 
change of curvature per unit length in the y-direction. It will be seen shortly 
that each of these second derivatives i92w/oax 2 and i92w/Oy 2 are related to 
bending of the shell. The mixed second derivative 02w/oaxOy is not related to 
bending of the shell but rather to so-called twist, i.e. the twist Z is defined by 
the relation 

t92w 
Z = -OxOy (2.25) 

Knowledge of the above geometric relations now makes it possible to 
write the equation of equilibrium of forces in the z-direction. The middle 
surface normal and shear forces shown in Figure 2.6, and the transverse 
shears and normal loading shown in Figure 2.7 may be projected on the z- 
axis using appropriate components as given by the angles of Figure 2.9 and 
the relations (2.23), (2.24) and (2.25) to obtain: 

(  2W)] Ow OaX dx hdy + kx + dx -crxhdy *-~x + trx + Ox OX 2 

+  2W)] ~2 dr 

-'t'xyhdX~x + "t'xy + o3y dy hd.r + ( o~2W 

- r ~ + % + ax d~ hdy + 
 2W)] 
~ ~  ,Ix 

+ OOx) x 
(Q~+ 0 

+qdxdy + 0 (2.26) 
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In (2.26) the cosines of the angles of inclination of the transverse shears 
Qx and Qy have been replaced by unity since these are small angles. Sim- 
plifying (2.26) and dropping terms (a) containing products of three or more 
differentials in comparison to those containing products of two differentials, 
and (b) involving products of derivatives, we obtain the desired equilibrium 
equation: 

tgQxtgx + Oy + t~xh kx + t~X2 + tryh ky + OY 2 

t~2W 
+2 "Cxyh cgxoay +q - 0  

(2.27) 

As mentioned previously the stresses trx, try, and lrxy are constant 
through the shell thickness h and give rise to the forces depicted in Figure 
2.6, termed membrane effects. The membrane effects evidently correspond 
to extension or compression together with sheafing of the shell middle sur- 
face as well as all surfaces in the shell parallel to the middle surface. Super- 
posed upon these membrane effects the shell is, in general, subject to bend- 
ing and twisting effects. These are illustrated in Figure 2.7 where Mx and 
My represent bending moments per unit length of the shell middle surface 
and Mxy represents twisting moment per unit length of the shell middle sur- 
face. In simplest terms, shell behavior (due to membrane and bending ef- 
fects) may be likened to behavior of the beam-column, i.e. an initially 
straight bar subject to lateral as well as axial loading. Just as in the case of 
the beam it is customary in simplified shell analysis to assume that the stress 
in the direction normal to the shell middle surface is everywhere zero. To 
obtain relations between shell bending moments and lateral displacements it 
is first necessary to examine the behavior of the side AB of the element of 
Figure 2.4 and 2.5, but with a consideration of the shell thickness h. This 
side, prior to any deformation, is shown in Figure 2.10, where, as in Figure 
2.5 the radius of curvature of the middle surface is Px. Just as in the case of 
simple beam analysis we will assume the straight lines normal to the shell 
middle surface prior to deformation remain straight and normal to the de- 
formed middle surface. 

For simplicity, let us assume that no deformations occur at the left end A 
but that due to applied loads end B has distorted to the position B' shown in 
Figure 2.11. It is to be observed that the deformation from B to B' cor- 
responds to a positive value of w, which is the z-component of displacement. 
The original configuration of the side AB is indicated by solid lines in Figure 
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2.11 and the deformed position by dotted lines. The fight end of the side is 
denoted by a-a in the undeformed state, and by a'-a' in the deformed con- 
figuration. Accompanying the deformed state is shown an auxiliary dotted 
line a"-a" which is parallel to a-a. If the left end b-b of the side AB were not 
rigidly clamped, the normal to the middle surface would rotate through an 
angle 0w/0x during deformation, and the right end a-a would rotate through 
a somewhat different angle 0w/cgx + O/0x (0w/0x) dx, indicating a relative an- 
gle of rotation of c?2w/oax 2 dx in the length dx. However, since b-b is pre- 
sumed to be rigidly secured then the absolute angle of rotation of a-a is also 
given by - 02w/oax 2 dx as indicated by the angle between a-a and a ' a ' i n  Fig- 
ure 2.11. Let us next consider a fiber oriented parallel to the shell middle 
surface as indicated by c-c which is located a distance z from the shell mid- 
dle surface. During deformation, this fiber extends an amount [-z (oa2w/Ox 2) 
dx] and since its original length prior to deformation was dx the normal 
strain corresponding to this shortening is 

r 
ex B = - z  c)z2 (2.28) 

where the subscript b has been attached to denote bending action. An anal- 
ogous consideration of the side AD of Figure 2.4 leads to a corresponding 
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normal strain eyb in the y-direction given by 

t~2W 
ey B = - z  tgx2 (2.29) 

Accompanying these normal strains of fibers a distance z from the mid- 
dle surface there is also a shear strain denoted by 7B. This may be calculat- 
ed by consideration of Figure 2.12 which again shows the side AB of the ele- 
ment. Now, however, it is necessary to take into consideration the fact that 
during deformation b-b and a-a also rotate about the x-axis (i.e. rotate in 
planes parallel to the y-z plane) whereas previously rotations of these ends in 

r X 

A dr 
a BP 

~)2w 
i)x 2 

dr 

~)2w 
dr z bx2 

Figure 2.11 

the x-z plane were considered. In general, end b-b, if not rigidly clamped, 
would rotate through an angle o~W/o3y during deformation, and the fight end 
a-a would rotate through a somewhat differentangle ~W/o3y -tg/oax (t~/o3y) dx, 
indicating a relative angle of rotation o f -  i92w/cgxigy dr in the length dx. 
(Observe that for the deformation of a-a to a"'-a"' there is a decrease of ~W/ 
o3y.) However, since b-b is presumed to be rigidly fixed then the absolute 
angle of rotation of a-a is also given by -oa2w/tgxtgy dr as indicated by the an- 
gle between a-a and a"'a" '  in Figure 2.12. The fiber c-c located a distance z 
from the shell middle surface now displaces laterally an amount-z oa2w/3xtgy 
dx as indicated in Figure 2.12 thus giving rise to an angle of distortion 
(shear) indicated by 7B1 in Figure 2.12. 
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Previously rotations of these ends in the x-z plane were considered. In gen- 
eral, end b-b, if not rigidly clamped, would rotate through an angle 0w/0y 
during deformation, and the right end a-a would rotate through a somewhat 
different angle 0w/0y -0/o~ (0w/0y) dx, indicating a relative angle of rotation 
of-  oa2w/oaxOy dx in the length dx. (Observe that for the deformation of a-a 
to a"'-a"' there is a decrease of tgw/0y.) However, since b-b is presumed to 
be rigidly fixed then the absolute angle of rotation of a-a is also given by - 
oa2w/oaxOy dx as indicated by the angle between a-a and a"'-a"' in Figure 
2.12. The fiber c-c located a distance z from the shell middle surface now 
displaces laterally an amount-z oa2z/OxOy dx as indicated in Figure 2.12 thus 
giving rise to an angle of distortion (shear) indicated by 1,131 in Figure 2.12. 
An analogous consideration of the side AD leads to the angle of distortion 
indicated by X/72- The shear strain ?'B is by definition the deviation from the 
original fight angle and is thus 

r B -  
t92w 

= XB 2 - -2z  OxOy 
(2.30) 

The bending and twisting moments shown in Figure 2.7 are resultants of 
bending and shear stresses (crxB, cryB and ~'xyB respectively) indicated in 
Figure 2.13. These bending and sheafing stresses on fibers a distance z from 
the shell middle surface correspond to the normal and shear strains given by 



34 General Theory of Shells 

/ [  ~ < .  
/ 

J 
f 

J 
J 

f 
J 

ffyB 

J 
f 

J 
f 

J 
f 

f I 

Z 

~ "CxY B ~  ~ /~rvR 

/ 

ff xB 

B 
""x 

X 

Figure 2.13 

(2.28), (2.29) and (2.30). From Figure 2.13, just as in simple beam theory, 
but remembering that M x and My represent bending moments per unit length 
of the shell middle surface, we have" 

fh/2 CrxBZ(1)dz Mx - j h/2 (2.31) 

[h/2 tryBZ(1)d z (2.32) 
My = J_h/2 

The twisting moment per unit length of the middle surface is 

fh/2 
Mxy - J_h/2 ~xyBZ(1)dz (2.33) 

It had already been mentioned that it is customary to assume that there is 
no stress acting normal to the shell middle surface. Consequently, the re- 
lations between normal strains exB and ey B of fibers a distance z from the 
middle surface and the normal stresses (which we will denote by trxB and 
Cry B) acting on these same fibers are given by the two-dimensional form of 
Hooke's law" 
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1 
(2.34) 

1 
(2.35) 

where E is Young's modulus and ~t denotes Poisson's ratio. These relations 
are readily solved for the normal stresses to yield: 

E, 
GxB -- I _  ].12 (ExB + ~IEyB) (2.36) 

E 
2 (CyB + ~lExB ) (2.37) aYB=I_] ,  t 

The shear strain ?'B given by (2.30) of an element a distance z from the 
shell middle surface is related to the shear stress VxyB shown in Figure 2.13 
by the relation G = "CxyB/'YB where G is the shear modulus. Since for iso- 
tropic materials we have 

E 
G = 2(1 + ~) (2.38) 

then the shear stress acting in a surface a distance z from the middle surface 
is related to the shear strain by 

E 
Vxyn = 2(1 + 11) re (2.39) 

The relations (2.28), (2.29)and (2.30) may now be introduced into 
(2.36), (2.37), (2.39) to yield: 

_ Ez (02w 
O'xB - ( l _ ].12 ) Ox 2 

 2w) 
+]'/ 0~2 (2.40) 
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Ez ( 02w  2w) 
+]lax 2 (2.41) 

Ez 02w 
"rxYB = (1 +/~------~" 0x-"'~ (2.42) 

The stresses given by (2.40), (2.41), and (2.42) may now be substituted 
into (2.31), (2.32), and (2.33). In this operation it is to be observed that the 
various derivatives of w are independent of the thickness coordinate z, hence 
the derivatives may be brought outside the integrals to yield the moment- 
change of curvature relationships: 

Mx = - D (  t~2w t92W ) 
~X 2 + ].1 t~ 2 (2.43) 

t~2W ) 
My--- ~2+].10x 2 

(2.44) 

o~2W 
Mxy - - D(1 - 11) c)xo~y 

(2.45) 

where, for brevity, the symbol D has been introduced to represent the quan- 
tity: 

Eh 3 
D= 

12(1-112) (2.46) 

D is termed the flexural rigidity of the shell and is analogous to E1 of simple 
beam theory where here, for the shell, I corresponds to a section of the shell 
of unit length along the middle surface, the shell thickness being given by h. 
Because of the biaxial field action of the shell the Poisson's ratio is present 
in (2.46) whereas it is absent in beam theory. Such a section in the direction 
of the y-axis is shown in Figure 2.14 
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together with the normal stresses and their resultant, i.e. the bending mo- 
ment M x. Just as in simple beam analysis, the bending stresses on this side 
are given by 

MxZ trxB=----- 
I 

But, for the section of unit length 

l = ! - ( 1 ) h  3 
12 

hence the bending stresses are given by 

12Mxz 
CrxB = h 3 " 

(2.47) 

The bending action is thus analogous to that of a beam, with the bending 
stresses being zero at the shell middle surface and increasing to a maximum 
at the outer faces. For purposes of stress determination it is not necessary to 
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consider the increments to M x and My that are indicated in Figure 2.7. Con- 
sideration of a section in the direction of the x-axis yields a like expression: 

B - ' ~  
12Myz 

h 3 (2.48) 

The stresses era; Cry, and Vxy appearing in Figure 2.6, the membrane 
stresses, are constant through the shell thickness h. For clarity, the subscript 
M will henceforth be attached to these stresses. As was mentioned pre- 
viously the membrane and bending effects must be superposed to obtain the 
true description of shell action under load with the result that the actual (to- 
tal stresses denoted by 7) are given by: 

GxT -- GxM + 
12Mxz 

h 3 (2.49) 

% r  - CryM + 
12Myz 

h 3 (2.50) 

The transverse shear forces Qx and Qy shown in Figure 2.7 are actually 
resultants (per unit length of shell middle surface) of shear stresses distrib- 
uted over the shell thickness and oriented normal to the shell middle surface. 
Such stresses are indicated in Figure 2.15 for a section in the direction of the 
y-axis. Evidently: 

fh/2 
Qx - d_h/2 Txz dz (2.51) 

Likewise, for a section in the direction of the x-axis: 

_ fh/2 Zyzd z 
Qy .l_h/2 (2.52) 

Expressions for Qx and Qy are readily determined by substituting (2.43), 
(2.44) and (2.45) in (2.19) and (2.20): __D(O3w 03w ) 

Qx - ~ Ox3 + OxOy"""~ 
(2.53) 



General Theory of Shells 

D( O3w 03w ) 
Q y = -  tgx2----~+ Oy3 
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The relations (2.53) and (2.54) may now be introduced into the equi- 
librium equation (2.27) to yield" 

( 4w  4w) ( 2w) 
D O~X4 "~ 2 g~x2t~y----------- ~ -t" ~y4 = CrxMh kx + o~x 2 

+ CryMh (ky + 
~2W ) t~2W 
O~ 2 + 2 ~ xy M h cgx cg y +q 

(2.55) 

It is customary, for brevity, to introduce the operator V 4 defined by the re- 
lation: 

V4( ) = ~  ~4() ~4() 
a4( ) + 2 ~ +  0y----- 7- 
tgX 4 tgx20y 2 (2.56) 

At this point, it is desirable to modify the equation of compatibility 
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(2.16) by replacing strains by stresses through introduction of relations anal- 
ogous to (2.34), (2.35) and (2.39) but written for membrane, rather than 
bending, effects, viz: 

1 
(2.57) 

1 (2.58) 

2(1+~) (2.59) 
rxyM = E %M 

With these substitutions, (2.16) becomes" 

t~ 2 GxM q~xyM t~2 GyM t~ 2 GxM ~xyM GyM 
OY 2 - 2 ~ + ~ - ~ ,  Oy 2 +2  + ~  OxOy Ox 2 OxOy .Ox 2 

= axay - ax - - - v "  ay ~ -kx  Or---r-k, ax ~ ] 
(2.60) 

It is extremely convenient to introduce a so-called stress function O(x,y) 
which is related to the membrane stresses by the following equations that es- 
sentially define O: 

t~2~) t~2~) 
O'xM = oay2 " GYM -- ~X2 " ~xyM -- 

t~2~) 
(2.61) 

It is evident that these definitions of ~ imply automatic satisfaction of the 
equilibrium equations (2.17) and (2.18). Thus, if we henceforth work with 
the function ~ it will not be necessary to give further consideration to saris- 
faction of (2.17) and (2.18). 

Introduction of the stress function into the equation of equilibrium (2.55) 
and the equation of compatibility (2.60) yields the desired forms of the gov- 
erning equations, viz: 
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D V4 w = t92W �9 t92r t92W �9 t92~ - 2  t92w t92(~ 
-g Ox 2 ay2+ay 2 Ox 2 Oxay'Ox----  

t920 020 q 
+ k x - ~  + k Y Ox 2 + -h (2.62) 

1 (02w32 t92w t92w t92r 
v = Oxay 5-2 " ay 2 -kx 

~2 W 
-ky c9x2 (2.63) 

Equations (2.62) and (2.63) are the equations of equilibrium and compat- 
ibility, respectively, of a doubly curved shell subject to normal loading. The 
equations contain the two unknowns w and ~, are coupled and are nonlinear. 

For dynamic situations, if one considers only inertial effects in the z- 
direction (neglecting inertia forces tangential to the shell middle surface) 
then the normal load q may be replaced by the inertia force and the above 
equations then become equations of motion. This approach neglects wave 
propagation effects in the system. 

Also Equations (2.62) and (2.63) may be employed to treat behavior of 
shells having initial (no-load) geometric imperfections in the z-direction. 
This is accomplished by regarding w as the normal displacement from the 
unloaded shell having some known (or assumed) imperfection Wo(X,y) at 
every point in the shell middle surface. 

Internal Strain Energy 
When a thin shell deforms under the action of applied loads, the vari- 

ous applied forces perform work which is stored in the shell as internal 
strain energy. It is convenient to determine the strain energy corresponding 
to membrane effects and that corresponding to bending effects separately 
then add these to determine the total internal strain energy. Since energy is 
a scalar quantity this addition is possible. 

Let us first examine the energy due to membrane effects. If a simple bar 
is subject to axial tension with a stress cr x and a corresponding axial strain of 
e x, then the work done on a unit volume of the bar is the product of the mean 
value of force per unit area, i.e. cr~t2, times the displacement in the direction 
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of the force, or e x. The work is thus U = cr x ex/2 and this work is stored as 
internal strain energy. For an element of a thin shell, such as in Figure 2.6, 
the stress field is biaxial and for this case the membrane strain energy per 
unit volume due to stresses trxM and O'y M and corresponding normal strains 
exM and ey M is 

1 1 
dU'M - axMexM + ayMeyM 

Analogously, the shear stress ~'xyM and corresponding shear strain ~'xyM give 
rise to work of magnitude dU"M = 1/2 "~xyM ~xyM which is also stored as in- 
ternal strain energy. Thus, the membrane strain energy of the entire shell is 
given by 

h 
UM -- -~~[GxMExM + GyMEy M + qdxyM~xyM]d.xdy (2.64) 

where the limits of integration are set so as to cover the entire shell. 
A somewhat more convenient form is obtained by introducing the strains 

from (2.57) and (2.58) into (2.64) to obtain: 

GyM 2 -- 2].1GxM Gy M + 2(1 + II ) VxyM e ~lxdy (2.65) 

An alternative form that will frequently be attractive is obtained from (2.65) 
by introducing the stress function ~x,y)  as defined in (2.61): 

{( L ( 
h a20 a20 .[a20 a20 a20 

U M = --~ ~ Ox 2 + ~ 2 - 2(1 + It) c9x2 + oay 2 - cgxoay (2.66) 

To determine the strain energy due to bending effects, let us first con- 
sider a unit volume of material subject to the stresses CrxB, Cry B, and ~'xyB 
shown in Figure 2.13. For the stress CrxB for example, the work done by it 
during bending is given by the product of its mean value (as it gradually in- 
creases from zero) i.e. (0 + CrxB)/2, and the displacement in the direction of 
CrxB which is of course the normal strain exB, since a unit volume is under 
consideration. The work is thus 1/2 CrxB exB and this is stored in the shell as 
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internal strain energy. Since the stress field is biaxial the bending strain en- 
ergy per unit volume due to the stresses CrxB and r B is 

1 1 
dU'B - "~ ~xB ExB + -~ ~yBEyB 

The shear stress Z'xy B and corresponding shear strain ~'xyB give rise to work 
of magnitude dU"B = 1/2 Zxy B ~'xyB which is also stored as internal strain 
energy of bending. Thus, the bending energy of the entire shell is given by 

U~= f~f[O'xBexB + CryBexB + ZxyBYxyB]dxdydz (2.67) 

where the limits of integration are adjusted so as to cover the entire volume 
of the shell. The normal and shear strains due to bending as given by (2.34), 
(2.35), and (2.39) may now be introduced into (2.67) to give the bending en- 
ergy entirely in terms of stresses, viz: 

+ CryBexB + ZxyBYxyB]dxdydz (2.68) 

The stresses in (2.68) may now be expressed in terms of displacements by 
the introduction of (2.40), (2.41), and (2.42 in (2.68). The expression inside 
the integral is then in terms of various derivatives of w together with powers 
of z and this is immediately integrable through the shell thickness between 
the limits -h/2 and h/2 to obtain the bending energy: 

= O t( t~2w + t~2wl2tT~y 2 - 2(1 -- l~l)I ~ + t~2w t7~2 - (t~2w]21tdxdy 
vB 5-II OxOy (2.69) 

Buckling of Thin Elastic Shells 
It is desirable for the sake of simplicity to consider a column, plate, or a 

shell as a system with one degree of freedom and plot the relationships be- 
tween load and some parameter f representing deflection. The deflections 
are taken to be small compared to characteristic lengths of the structure, but 
may be equal to the shell thickness or column section depth. The plots for 
the column and plate are indicated in Fig. 2.16, where OA pertains to initial 
equilibrium states, considered to be bending-free whereas AD and A C refer 
to the bent, moment-carrying equilibrium configurations. For the column P, 
(f) has the form of a horizontal line CD which corresponds to neutral equi- 
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librium. For the plate we obtain a curve of postcritical stable states sym- 
metric with respect to the ordinate axis, so that as in the case of an initially 
straight column, both plus and minus values of "f" are equally likely. 

The most significant aspect of the behavior of compressed shells of 
length/radius ratios usually found in engineering practice is that they tend to 
fail at loads considerably below the values predicted by linearized theory. 
This is usually attributed to the influence of sensitivity of the shell to even 
very small initial geometric imperfections from perfect shape, e.g. cy- 
lindrical, spherical, etc. Experimental evidence, as well as utilization of 
nonlinear geometric analysis, indicates that compressed shells usually ex- 
hibit the type of load-deflection behavior shown in Fig. 2.17. There, the 
case of a geometrically perfect shell is indicated by the upper curve and that 
of a shell with initial imperfections by the lower dotted curve. In each case 
it is clear that equilibrium is possible in a slightly deformed configuration at 
loads considerably below the critical load found from linear thory and in- 
dicated by Pcr. In reality, the initially imperfect shell never attains the crit- 
ical load Pcr given by linear theory for a perfect shell. The point cor- 
responding to Pcr is termed the bifurcation point (A). 

Computerized Analysis of Shells 
Once the physical aspects of shell analysis are well understood and con- 

firmed by experiments, it is logical to carry out specific invesgitations by 
modem computer technology. This is a lengthy and detailed topic and space 
does not permit its exposition here. Indeed, it is not necessary since two re- 
cent and still timely books, one by D. Bushnell [2.5] and the other by P. 
Gould [2.6] offer concise developments of this topic together with many 
pertinent references. The reader is urged to consult these treatments for ex- 
positions of the computerized approach. 
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CHAPTER 3 

STRUCTURAL BEHAVIOR OF CYLINDRICAL SHELLS 

Cylindrical shells subject to hydrostatic loading occur as structural com- 
ponents of moving undersea vehicles as well as chambers fixed to the floor 
of the sea. The pressure hull of most submersibles consists of a cylindrical 
shell, capped at the ends by a spherical, torispherical, or ellipsoidal shell. 
To furnish necessary strength and rigidity at great depths the pressure hull is 
almost always reinforced by circular tings which may be interior or exterior 
to the cylindrical portion. In the present discussion it is assumed that the 
submersible is at a sufficiently great depth that the hydrostatic pressure is, as 
an approximation, taken to be constant over the entire exterior cylindrical 
surface. 

Stress Analysis of Cylindrical Shells 
In the early part of our discussion we will assume that the cylindrical 

shell is free of initial (no-load) geometric imperfections and free of initial 
stresses due to all aspects of fabrication, including welding effects. Ne- 
glecting localized effects due to the closures at each end the external hydro- 
static loading produces membrane stresses in both the longitudinal as well as 
circumferential directions given by elementary analysis of strength of ma- 
terials. However, the presence of the circular reinforcing rings, usually 
welded to the cylindrical pressure hull greatly changes the structural be- 
havior of the system. These rings are often structural I-sections, WF sec- 
tions, or sometimes T-sections. 

Let us consider a perfectly circular cylindrical shell reinforced by a num- 
ber of equally spaced identical reinforcing tings. One bay between adjacent 
rings is shown in Figure 3.1 where the distance between centers of adjacent 
rings is denoted by Lf and the unsupported length of the shell between ad- 
jacent tings is represented by L. This is a repeating section, i.e. there are 
many more bays to the left and right of the one shown. It will be convenient 
to introduce the (x,y,z) coordinate system with its origin midway between 
adjacent rings and with the x-direction in the direction of a shell generator, y 
running circumferentially, and z directed positive inward. The shell thick- 
ness is designated by h. 

The equation governing the axisymmetric structural behavior of that por- 
tion of the shell between adjacent rings may be obtained from the general 
equation (2.62). For axisymmetric deformation, all partial derivatives of w 
with respect to the circumferential coordinate y vanish in (2.62) and it is 
then possible to employ ordinary derivatives. Further, if R denotes the mean 
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Figure 3.1 

radius of the cylindrical shell, then ky = 1 ~ ,  and k x = 0. Also, the mean ax- 
ial stress is that found by elementary analysis, namely 

pR c~ 2 c~ 
trXM = - 2h = 0y - ~  (3.1) 

where the negative sign has been introduced because tensile membrane 
stresses were assumed to be positive in Figure 2.6 and here the hydrostatic 
pressure obviously sets up compressive axial stresses. Thus (2.62) becomes 

D d4w _ d2w 1 p 
- - 4  - " - 2  �9 r X M  + - -  �9 r + "- 

h d.x dx R h 
(3.2) 

where D is defined in Equation (2.46). It is not permissible to take the value 
of the circumferential stress tyy M from elementary analysis which indicates a 
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value of-qR~ since that expression is obtained by assuming that the radial 
displacement w is constant along the shell length which is not the case here 
because of the influence of the reinforcing tings. Instead, it is necessary to 
employ (2.58) which may be written in the form 

cYyM - EE yM + ll tYXM (3.3) 

But from (2.12) for axisymmetric deformation gyM = -w/R hence (3.2) 
may be expressed as" 

Ddx4 '+  2 dx 2 ---R +It pR 

or :  

D 
d4w pR d2w Eh ( ~ )  
dx 4 + dx 2 + w -  1-  2 ~ P (3.4) 

Equation (2.4) describes axisymmetric elastic deformations of a per- 
fectly circular cylindrical shell of finite length subject to external hydrostatic 
pressure p. The equation has also been derived by ad hoc analyses of a cy- 
lindrical shell in References [3.1] and [3.2]. It is of considerable interest to 
observe that for some years a much-used theory due to K. von Sanden and 
K. Gunther [3.3] and modified by F. Viterbo [3.4] neglected the term pR~ 
d2w/dx 2 in (3.4). This term essentially represents a beam-column effect. 

The general solution of Equation (3.4) may be written as the sum of so- 
lutions of the corresponding homogeneous equation together with a par- 
ticular solution of (3.4). Realizing that the tangent to the deflected shell 
shown in Figure 3.1 must be horizontal at x = 0 because of symmetry of def- 
ormation between adjacent rings, this leads to the solution 

w = Bcosh ~1 x + Fcosh ~3 x + 1 - 
Eh 

(3.5) 

where B and F are constants of integration to be determined from boundary 
conditions. Also, ~1 and ~3 are characteristic roots of the auxiliary equa- 
tions corresponding to (3.4). Physically, these boundary coniditions are (a) 
zero change of slope of the shell adjacent to each end ring of the section 
shown in Figure 3.1, and (b) compatibility of shell and ring radial dis- 
placements at juncture of shell plating and ring. The axisymmetric radial 
displacement of the ring may be found from elementary strength of mated- 
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als, realizing that the radial load acting per unit circumferential length of the 
ring consists of the hydrostatic pressure on the horizontal flange of width 
"b" of the ring plus transverse (radially directed) shear exerted on the ring 
by the adjacent material of the shell. 

Imposition of these boundary conditions leads to lengthy and complicat- 
ed representations of the constants of integration B and F in Equation (3.5). 
For analytical representations of these, the reader is referred to [3.5]. 

With constants B and F in Equation (3.5) determined for a specific ge- 
ometry, it is then possible to determine numerical values of significant 
stresses in the bay shown in Figure 3.1. In [3.5] it is demonstrated that the 
significant normal stresses in any bay are: in the circumferential direction at 
the outer fibers of the shell midway between adjacent rings (x = 0), and in 
the longitudinal direction at the shell inside fibers adjacent to the rings (x = 
/ ~ ) .  These are, of course, the sum of bending and membrane effects. 

Which of the two streses is greater depends upon shell and ring geom- 
etry, but in many cases of practical interest the longitudinal stress is more 
important than the circumferential one. For materials usually found in sub- 
mersibles, the von Mises-Hencky criterion for yield in biaxial loading is 
most suitable for determination of load carrying capability once the sig- 
nificant stresses are found at the two above-mentioned points. 

Fortunately, it is not necessary for the designer to employ Equation (3.5) 
and its attendant complicated relations for B and F. In 1959, M. Krenzke 
and R.D. Short [3.6] presented a graphical approach based upon [3.5] and 
leading to stresses that do not deviate from those found from a tedious, pre- 
cise solution, by more than 0.2 percent. In [3.6] the authors introduce the 
various auxiliary parameters: 

O~ m ai 
hLf (3.6) 

m 

b 

LI 
(3.7) 

(3.8) 

0 _ . .  

L4~3( 1 -/12) (3.9) 

4Rh 
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where Af  denotes the area of the ring stiffener, assumed to be concentrated at 
the middle surface of the shell, and the remaining symbols are defined in 
Figure 3.1, with b being effective width of the ring stiffener in contact with 
the shell. Reference [3.6] continues to define four more dimensionless pa- 
rameters F 1, F 2, F 3, and F 4 in terms of circular and hyperbolic functions of 
0. Then, it was possible to present four plots of the F i each involving a fam- 
ily of curves for a range of values of 0. A typical plot appears as in Figure 
3.2, indicating only one of the family of curves for a range of gamma from 
zero to unity. With geometric and materials characteristics of a ring- 
stiffened cylindrical shell one can enter the plots for F i and set up simple lin- 
ear combinations of the F i to determine numerical values of significant lon- 
gitudinal and circumferential stresses for a specified hydrostatic pressure. 
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Figure 3.2 

Buckling of Smooth (Unreinforced) Cylindrical Shells 
Experimental investigations of the buckling characteristics of un- 

reinforced cylindrical shells subject to external hydrostatic pressure began as 
early as 1858 at which time W. Fairbairn [3.7] presented an empirical re- 
lation for the buckling load of relatively long shells that were not reinforced 
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by any rings. An analytical solution of buckling of a long, non-reinforced 
cylindrical shell was presented by G.H. Bryan in 1888 [3.8]. Additional ex- 
periments were carded out by A.P. Carman in 1905 [3.9] which indicated 
that there exists a minimum length for any cylindrical shell beyond which 
the buckling pressure is essentially constant and for lengths less than this 
minimum "critical length" the buckling pressure increases. In 1913 R.V. 
Southwell [3.10] published the first of a series of three papers on the elastic 
buckling of a geometrically perfect cylindrical shell. This first work es- 
sentially rederived Bryan's result [3.8] but in a different manner. For the 
first time Southwell introduced the concept of reinforcing rings and dis- 
cussed, qualitatively, their influence on buckling. In [3.10] an expression 
was obtained for the minimum length of shell for which the effect of the 
rings may be neglected. This is Carman's "critical length." Southwelrs work 
also presented, for the first time, an analytical treatment of the problem of 
the number of waves that would form around the circumference upon buck- 
ling under the influence of external hydrostatic pressure. A second work by 
Southwell [3.11] offered an explanation of the discrepancies between pre- 
dictions of the theories of Bryan [3.8] and Southwell [3.10] and the experi- 
mental results of Carman [3.9] as being caused by a reduced value of elastic 
limit of the shell material brought about by annealing. To substantiate this 
hypothesis, Southwell presented his own test results involving buckling of 
annealed as well as unannealed drawn steel tubes which indicated that the 
unannealed specimens withstood greater hydrostatic pressures. A third con- 
tribution by Southwell [3.12] suggested a safety factor to be applied to the 
predictions of Bryan's expression [3.8] as well as presenting a criteria for 
most advantageous use of reinforcing rings. 

The first analysis of buckling of a thin elastic cylindrical shell with spe- 
cific consideration of boundary conditions at the shell ends was presented in 
1914 by R. von Mises [3.13]. This treatment was limited to consideration of 
radial pressure acting on the exterior of the shell, which was presumed to be 
of finite length. In 1929 von Mises [3.14] extended his original treatment to 
account for combined axial and radial loading, thus leading to a proper rep- 
resentation of hydrostatic pressure. His work was based upon the three lin- 
earized partial differential equations representing elastic shell action in 
terms of the three orthogonal displacements at any point in the shell [3.1]. 
These equations were treated using assumed displacements in the axial as 
well as circumferential directions in the form of products of harmonic func- 
tions in each direction. For example, in the circumferential direction von 
Mises took the radial buckling displacement to be 

m ~ x  
w =CsinnOsin (3.10) 

L 
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where C is an amplitude constant, 0 represents the circumferential co- 
ordinate, x the longitudinal coordinate, L the shell length, and n and m are 
integers denoting the number of full waves around the circumference and 
the number of half waves in the longitudinal direction, respectively. Com- 
parable expressions were adopted for the axial displacement u and tangential 
displacement v. Amplitude coefficients A and B, respectively, were em- 
ployed. After substituting the displacements comparable to (3.10) into the 
differential equations of equilibrium the determinant of the coefficients A, B 
and C must vanish. Expanding the determinant, and dropping various small 
terms, the von Mises buckling pressure is obtained in the form: 

1 

p - _ ~  n 2 + 2 \  L J  

+ n 2 + 

1 
(3.11) 

Examination of (3.11) indicates that the buckling pressure p depends 
upon n, the number of waves around the circumference. This means that for 
a given geometry of shell and for a given material, calculations must be 
made for different integral values of n in order to find that value of n which 
minimizes the pressure. This pressure is the desired buckling pressure. A 
very convenient chart based upon solutions of (3.11) has been offered by 
D.F. Widenburg and C. Trilling [3.15] wherein the chart is entered from 
known geometry of the shell and the number n is immediately found. With 
n known, the buckling pressure is immediately found from (3.11). 

Another approach to this minimization is to do it analytically and thus 
find an expression for p which is independent of n. This was done in [3.15] 
with the result that a very convenient expression is obtained: 

2 .42E 

(1_//2)3 ~ 2RL - O ' 4 - ~ 2 ~ ) ~  (3.12, 

Usually buckling pressures determined by use of (3.12) differ by no 
more than about 3.5 percent from those found from (3.11). It is to be ob- 
served that neither of these expressions takes specific account of the elastic 
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characteristics of the reinforcing tings. However (3.11) and (3.12) indicate 
buckling pressures considerably in excess of most experiments conducted on 
shells made of rolled sheet material with a longitudinal seam. 

The analyses of von Mises [3.13] and [3.14] were for cylindrical shells 
having simply supported ends and no reinforcing tings. In 1954 W.A. Nash 
[3.16] extended these results to the same configuration having clamped 
ends. It was found that this change in boundary conditions led to elastic 
buckling loads as much as forty percent greater than for simply supported 
ends, the exact change depending upon shell geometry. In 1955, that same 
author [3.17] examined the elastic buckling of a hydrostatically loaded shell 
having nearly simply supported ends with no reinforcing tings. The analysis 
was based upon a slightly simplified version of the finite deformation equa- 
tions (2.62) and (2.63), frequently termed the Donnell equations. These 
were developed earlier by L.H. Donnell [3.18] and [3.19]. It was necessary 
to introduce into the analysis [3.17] an "unevenness" factor describing the 
initial no-load deviations of the cylindrical shell from perfect circularity. 
Although there were no experimentally determined values of its factor, a 
range of values extending from half the shell thickness to the entire shell 
thickness was investigated and it was concluded that radial imperfections 
slightly less than the shell thickness could account for the deviation of load 
carrying capacity from that of an initially perfect cylindrical shell. In 1956, 
L.H. Donnell (3.20) presented a somewhat different approach to the same 
problem, based upon finite displacements and consideration of initial geo- 
metric imperfections. His treatment was cast in terms of volume inside the 
closed cylindrical shell and pressure-volume change relationships were ob- 
tained for a wider range of unevenness factors characteristic of realistic cy- 
lindrical shells. It was found that failure loads initiated by yielding agree 
well with test results. Another investigation along these lines was carded 
out by G.D. Galletly and R. Bart [3.21] at the David Taylor Model Basin in 
Washington, D.C. in 1957. They employed the shell equations of classical 
small deformation shell theory which they modified for clamped end shells, 
and also another slightly different version due to S. Bodner and W. Berks 
[3.22] for simply supported ends. Experimental tests were carried out on 
nine steel cylinders and it was found that if determination of initial (no-load) 
out-of-roundness is carried out in accordance with a method proposed by M. 
Holt [3.23] agreement between experimental and analytical results is quite 
good. 

Buckling of Ring-Reinforced Cylindrical Shells - Axisymmetric 
There are several modes in which a ring-reinforced cyclindrical shell 

subject to hydrostatic loading may fail. These modes are: 
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Figure 3.3 

a) Inelastic axisymmetric shell instability between adjacent rings, i.e. 
axisymmetric collapse between adjacent rings. It is a combination of yield- 
ing and axisymmetric buckling. Experiments have indicated that this mode 
is characterized by an accordion-type pleat which may extend partially, or 
completely, around the circumference of some bay between adjacent rings. 
It may also occur in more than one bay of the ring-reinforced cylindrical 
shell. Figure 3.3 represents this mode of failure. 

Note that the pleat is represented by a V-shaped ring extending fully or 
partially around the shell circumference. 

b) Asymmetric collapse of the shell between adjacent rings, often termed 
lobar buckling, see Figure 3.4. This is, strictly, inelastic asymmetric shell 
instability between adjacent rings. The indentations, (lobes), seldom extend 
around the entire 360 ~ circumference of the shell. This corresponds to 
asymmetric shell instability between adjacent rings. 

For a particular ring-shell geometry, failure in mode (a) or (b) will pre- 
vail depending on shell thickness/radius ratio, ring spacing/shell radius ratio, 
the ratio of ring cross-sectional area to shell cross-sectional area, and stress- 
strain relations of the materials involved. Initial (no-load) geometric im- 
perfections of the shell may also be of importance. A typical asymmetric 
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Figure 3.4 

collapse between adjacent rings is shown in Figure 3.4. 
With regard to formation of mode (a) i.e., inelastic axisymmetric col- 

lapse between adjacent rings, resulting in the accordion-type wrinkle ex- 
tending more or less completely around the shell circumference, it is nec- 
essary to consider the circumferential as well as longitudinal normal stresses 
corresponding to the deflected configuration (3.5). These are offered in co- 
plete detail in [3.5]. Failure under the biaxial state of stress existing every- 
where in the cylindrical shell indicates that one must employ the Huber-von 
Mises-Hencky criteria to determine the collapse pressure. In [3.5] the au- 
thors considered the point on the shell outer surface midway between ad- 
jacent rings and determined longitudinal as well as circumferential streses. 
These were then introduced into the Huber-von Mises-Hencky equation for 
a biaxial stress field to lead to a collapse pressure of 

r / n 
p= 

{ A -  B}~Z 

where 

A 3 a21 (1 2 / j i 0 " 9 1  2]( 0"91)1(3"13) =--+4 F22+F2F4 - ) 1-/ /2  +F42(1-/ /+/ /  /~'1'-12 2 

I o91] B--~a  F 2-/~F 4 1-~t 2 

where Cry denotes yield strength of the material. 
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Alternately, if we assume that the yield zone extends completely through 
the shell thickness at this point midway between rings, one obtains a col- 
lapse pressure of 

p 
tryh / R 

[ 3 +  a2F2 _3aF2] ~/2 
(3.14) 

where, for a tentative design, the F i may be found from the plots in [3.6]. 
An alternate approach to determination of the pressure causing plastic 

action through the shell thickness at a critical point was offered by M. Lu- 
richick [3.24] in 1959. This theory is equivalent to treating the shell as a 
three-hinge mechanism and leads to predictions of collapse pressure which 
agree well with experimental data for certain ranges of geometry. 

A comprehensive treatment of the elastic phase of buckling into the ac- 
cordion-like wrinkle, mode (a), was offered by J.G. Pulos, and V.L. Salerno 
[3.5]. This considered biaxial effects in the shell and rings of finite rigidity. 
Various dimensionless parameters were introduced and plotted for practical 
geometric values of interest in submersibles. In this manner it became pos- 
sible to readily determine the pressure required to develop extremely large 
radial displacements. This determined the hydrostatic loading required to 
cause elastic buckling. 

Mode (b), i.e. buckling into a number of lobes extending from one ring 
to an adjacent ring and usually only over a portion of the circumference of 
the cylindrical shell was considered by T.E. Reynolds [3.25] in 1962. He 
developed a rigorous solution in which the influence of the elastic rings on 
both prebuckling as well as buckling deformations was included. Bending, 
torsional, and axial deformation energies were considered. Strain energy in 
the deformed shell was determined through use of quadratic terms in the 
strain-displacement relations and then the strain energy of the shell for- 
mulated with displacement terms through third order retained. Shell, and 
consequenOy ring, buckling displacements were represented by several 
terms of a Fourier series in each of the three orthogonal directions at any 
point in the shell. This permitted consideration of various degrees of sup- 
port offered to the shell by the rings and ranging from simple support to 
complete fixity. 

This formulation led to very lengthy and involved expressions for en- 
ergy in the shell and rings together with work done by the external pressure 
forces. Complete details of these energies are to be found in [3.25]. Ap- 
plication of the Rayleigh-Ritz technique led to an equation that is transcen- 
dental in the pressure. The author suggested a semi-graphical approach for 



62 Structural Behavior of Cylindrical Shells 

extraction of the lowest value of pressure that caused buckling. 
Further, Reynolds [3.25] discussed experimental results obtained at the 

David Taylor Model Basin. Tests of ring-stiffened cylindrical shells fab- 
ricated from flat steel plate by welding and in the absence of stress relieving, 
resulted in collapse pressure well below the predictions of linearized small 
deformation shell theory. It was hypothesized that these discrepancies were 
due to weakening effects of no-load deviations from perfect circularity to- 
gether with residual stresses due to welding as well as to rolling of the flat 
sheet into a cylindrical form. To investigate these hypotheses several addi- 
tional ring-stiffened cylindrical shells of identical geometry and material 
properties were machined (with integral rings) from a stress-relieved thick 
cylindrical shell. Both of these test specimens collapsed at hydrostatic pres- 
sures approximately forty percent greater than for the case of the models 
with welded tings plus a welded longitudinal seam in the absence of stress- 
relieving. Thus, the weakening effects of initial imperfections together with 
residual stresses were demonstrated, at least for the parameters concerned. 
These test specimens had been heavily instrumented with electric strain gag- 
es to be certain that no yielding took place prior to buckling. Typical lobar 
patterns developed as indicated in Figure 3.4, but the lobes did not extend 
completely around the shell circumference. Normal strains varied ap- 
proximately with pressure up to loading close to the collapse load. Strain 
gage data indicated that the material behavior was elastic so that the collapse 
pressure was not seriously affected by inelastic action. 

(c) General instability of shell and rings. If the tings are relatively 
"light" or "weak" in comparison to the shell, i. e., if the tings lack sufficient 
cross-sectional area and/or inertia it is possible that each ring will "follow" 
the deforming shell during collapse. This is termed general instability of the 
shell and rings. It usually initiates elastically but the final configuration is in 
the plastic range of action of the material. General instability usually occurs 
in that portion of the cylindrical shell lying between two essentially rigid 
bulkheads (a circular plate or very heavy ring) that offer near-fixity to the 
shell. Such collapse is shown in Figure 3.5 and usually consists of a cosine- 
like curve describing the buckled shell along a generator between end bulk- 
heads, upon which is superposed additional localized radial deformations in 
each bay between tings. 

The first analysis of such collapse was offered by T. Tokugawa [3.26] in 
1929. This was based upon the method of "split rigidities," i. e., the critical 
pressure is represented as the sum of the pressure required to buckle the cy- 
lindrical shell plus that needed to buckle the tings. Interaction between shell 
and tings is not specifically considered. In 1954 A.R. Bryant [3.27] at the 
Naval Construction Research Establishment in Dunfermline, Scotland, ob- 
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Figure 3.5 

tained nearly the same result, but by a much different approach. These stud- 
ies led to a buckling pressure given by 

Eh 
P---i- (n2-1+ &2) +(n 2 -1) (3.15) 

where A = pR/L b, and, as shown in Figure 3.5, L b represents shell length 
(along a generator) between edges of flanges of adjacent rings, Lf denotes 
the distance (along a generator) between centers of adjacent tings, I e is the 
moment of inertia of the combined section of one ring plus an "effective" 
length of the adjacent shell, and n is the number of full waves circum- 
ferentially. The first term of (3.15) corresponds to the shell and the second 
to the ring in the spirit of the "split rigidity" approach. One must determine 
the minimum buckling pressure by evaluating (3.15) for various values of n 
and selecting that n leading to minimum pressure. 

In 1951, V.L. Salerno and B. Levine [3.28] presented a rigorous elastic 
analyis of collapse in the general instability mode. This was based upon the 
principle of minimization of the potential energy, which accounted for bend- 
ing and membrane energies in the shell and tings, and energy of the external 
loading. The same energy approach was utilized by S. Kendrick [3.29] in 
1953, but with significantly different expressions which described the col- 
lapsed system. A comparable approach was offered by W.A. Nash [3.30] in 
1954. It employed different expressions for the buckled configuration than 
[3.28] or [3.29], and in addition, considered torsional elastic energy in the 
rings. Also, in 1954, E. Wenk, Jr., R.C. Slankard, and W.A. Nash [3.31] 
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presented results of an extensive experimental program on hydrostatic buck- 
ling of ring-stiffened cylindrical shells. The photographs [3.31] furnish a 
clear impression of the general instability mode of collapse. 

Because of the complexity of applying the results of [3.30] to a proposed 
design, T.E. Reynolds [3.32] in 1957 developed a graphical approach. The 
significant parameters of the problem were grouped in terms of dimensiona- 
less variables and it was possible to enter the several charts offered to de- 
termine the buckling load for the geometry under consideration. Confidence 
was gained in this technique by test results due to T.E. Reynolds and W.F. 
Blumenberg in 1959 [3.33]. Alternately, one may employ the results of a 
1956 study by G.D. Galletly and T.E. Reynolds [3.34], which extended the 
approach developed by R.V. Southwell for determination of buckling load 
of a column based upon test data on imperfect (non-straight) columns. 

The completely analytical approaches described in the past sections have 
led to a comprehensive understanding of the physical aspects of the general 
instability problem for the ring-stiffened cylindrical shell. Clearly applica- 
tion to specific geometries is extremely tedious. A significant step forward 
in design was offered by D. Bushnell [3.35] in 1976 with development of 
the BOSOR 5 computer code. This code calculates elastic instability pres- 
sures of axisymmetric shells with generalized shape of generator to permit 
initial imperfections. The code permits consideration of various combina- 
tions of cylinders, cones, and cone ends in the cylindrical region. Any ar- 
rangement of ring stiffeners may be treated. In 1983 S. Kendrick [3.36] 
published a comparison of BOSOR 5 predictions with results obtained from 
use of the British Standard Rules for Pressure Vessels (BS 5500) code of 
1977. The BOSOR 5 yielded many eigenvalues for each integral number of 
circumferential waves formed during general instability. For geometries oc- 
curring in submersibles, the minimum of the BOSOR 5 pressures agreed 
well with the values predicted by the BS 5500 code. For certain ring-shell 
geometries BOSOR 5 may yield several closely spaced eigenvalues and 
great care must be taken in interpretation of computer results. In general, 
use of this computer code requires considerable skill as well as the presence 
of a large main-frame computer system. The BOSOR 5 system also permits 
determination of the hydrostatic pressure required to produce ring tripping 
[3.37]. This term denotes a type of instability in which the line of connec- 
tion of the ring stiffener to the shell remains very nearly circular but the 
stiffener displaces sideways into a wavy deformation mode. T-type stiff- 
eners as well as bar type (i.e., hollow circular plates) acting as rings are sub- 
ject to this type of failure. A detailed investigation of this type of collapse 
was offered by M. Esslinger and H.P. Weiss [3.38] in 1988, on the basis of a 
computer code developed by the authors at Braunschweig, Germany. 
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A new approach to hydrostatic buckling of stiffened cylindrical shells 
has been offered by H.S. Shen, P. Zhou, and T.Y. Chen [3.39] at the Shang- 
hai Jiao Tong University. This analysis employs a boundary layer theory 
which includes edge fixity conditions in the post-buckling shell analysis. A 
singular perturbation analysis leads to the buckling load as well as post- 
buckling equilibrium paths. These analytical results were in modest agree- 
ment with limited available experimental evidence on ring-stiffened cyl- 
inders available to the author. 

A novel pressure hull design has been considered by C.T.F. Ross and A. 
Palmer [3.40] at Portsmouth University, England. They presented finite ele- 
ment as well as experimental data for pressure hulls having cross-sections 
such as indicated in Figure 3.6a and 3.6b. It was found that such a system is 
structurally more efficient than the traditional ring-stiffened cylinder from 
considerations of general instability. These geometries are termed "swedge- 
stiffened" and further work on their desirability is now in progress. Lon- 
gitudinal profiles corresponding to trapezoidal, triangular, and sinusoidal 
shapes are under investigation. 

Figure 3.6 

Another reliability-based approach to design criteria of hydrostatically 
loaded cylindrical shells has recently been offered by A.C. Morandi, P.K. 
Das, and D. Faulkner [3.41] at the University of Glasgow. The authors con- 
sidered four methods for evaluation of failure probability" three of these 
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were based upon various statistical analyses of data and the fourth consisted 
of Monte Carlo simulation. In all cases the general purpose finite element 
program ABAQUS was employed to represent structural behavior in the lin- 
ear range of action of the material. This approach could also be used to 
evaluate safety of in-service submersibles. 

Because of the relatively large data bank pertinent to behavior of geo- 
metrically imperfect axially compressed cylindrical shells it has been pos- 
sible to determine a reliability function leading to a "knock-down" factor 
commonly employed by designers of thin-walled systems. This work has 
been pioneered by J. Arbocz [3.42] and I. Elishakoff. Unfortunately data 
pertinent to structural behavior of hydrostatically loaded imperfect cy- 
lindrical shells is not as plentiful, and what does exist has not always been 
obtained using like geometries and boundary conditions. 
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comparable studies on two welded models. 



CHAPTER 4 

STRUCTURAL BEHAVIOR OF CONICAL SHELLS 

Stress Analysis of Conical Shells 

Conical shells (usually truncated) occur frequently as components of 
deep submersibles. Often they are joined (with a common geometric axis of 
symmetry) to either cylindrical or spherical shells, as shown in Figure 4.1. 

Figure 4.1 

Linear as well as nonlinear behavior of hydrostatically loaded conical 
shells follows the formulation given in Equations (2.62) and (2.63). In the 
case of the conical shell (complete or truncated) the coordinate system usu- 
ally employed is shown in Figure 4.2, where x is measured from the apex (or 
fictitious apex in the case of the truncated cone) in the direction of a shell 
generator, ~ is the circumferential coordinate, and z is the radial coordinate 
directed toward the axis of symmetry of the shell and perpendicular to a 
generator. The corresponding components of displacement we will term u, 
v, and w respectively. The hydrostatic pressure is p. Thus, x, ~, and z cor- 
respond to x, y, and z in Equations (2.13), (2.14) and (2.15). 

P 

X 

Figure 4.2 

79 



80 Structural Behavior o f  Conical Shells 

The axisymmetric membrane stresses in a hydrostatically loaded conical 
shell are indicated in Figure 4.3. For the nomenclature introduced above, 

Figure 4.3 

and since this stress situation is statically determinate, it is possible to show 
that membrane stresses are [4.1], [4.2]: 

trx _ px  tan a (4.1) 
2h 

px  tan ot (4.2) tY~0= h 

Crxo =0  (4.3) 

In 1956 N. J. Hoff [4.3] presented an independent derivation of equa- 
tions for static behavior of conical shells in the spirit of the Donnell ap- 
proximation mentioned for cylindrical shells in Chapter 3. For general 
asymmetric deformations the strain-displacement relations were found to be 

ex = Ou/oax = U, x (4.4) 

er = (1/x sin or) [(dv/d~p) + u sin tz- w cos a)] (4.5) 

7'= (tgvl3x)-(1/x) sin ot [(v sin a-(du/dq~) (4.6) 

for small half cone angles a, less than approximately 30 ~ Hoff formulated 
the strain energy of bending and twisting, the membrane energy, the po- 
tential of the hydrostatic pressure, then applied variational techniques to ob- 
tain the equations of equilibrium in the axial and circumferential directions: 
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[El(1 - v2)1 [U,x x sin a + p (v tp- w cos a)l,x 
+ [E/2(1 + v)l [Vx + (u,~o/x sin a)l,o + (X~) x sin a = 0 (4.7) 

[E/(1- v2)] [PU,x + (1/x sin a) (Vtp- w cos ot)],O 
+ [E~(1 + v)l [v x x sin ot + u,~,x + (O/h) x sin a = 0 (4.8) 

where X, �9 and p denotes surface loads per unit area acting in the axial, cir- 
circumferential, and radial directions respectively as shown in Figure 4.2 
and p is Poisson's ratio. We let 

H I ( z )  - x sin a[x sin ot [x sin a(x sin tx Zx),x],x},x 
+ 2x sin a (x sin a z,q~q~),x + z, qjq~q~q~ (4.9) 

and 

H2(x) - x sin a (x sin a (x sin a Z,xx),xx + Z~xxq~q~ + x sin a [z, ~# 'x  sin ot],z z 
+ Z,~q~r 2 sin '~ Or-2(l-v) z, tpCx 2 (4.10) 

and utilize these in (4.7) and (4.8) we obtain the third (and last) equation de- 
scribing equilibrium in the radial direction: 

HI[H2(w)I + (Eh/D) (COS2tX) x sin a{x sin a[x sin a(x sin aW,x),x],x},x 

+ (cos a/D)~/x sin a{x sin ct]x sin {a(x 2 sin 2 a X) 

-x sin a(x 2 sin 2 ct X tp~,x 

+ (2 + t.t)x sin a[x sin ct(x 2 sin 2 a ~ ~),x],x + x2 sin2 a ~,, t/~q~ 

-(I/D)Hl(PX 2 sin 2 a) - 0 (4.11) 

Note that (4.11) contains only the radial displacement w so that this 
equation must be solved first. Then, this result is introduced into (4.7) and 
(4.8) to determine the displacements u and v. These equations describe the 
asymmetric displacements of the conical shell. They are, in point of fact, 
the generalization of the Donnell equations mentioned in Chapter 3 for a cy- 
lindrical shell, and indeed reduce to those relations for a half-cone angle ct = 
0, i.e. a cylindrical shell. Solution of these equations has proved difficult 
[4.4]. In 1957 P. Seide [4.5] modified the Hoff relations by retaining certain 
terms omitted by Hoff but even so the resulting equations are extremely dif- 
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Figure 4.4 

ficult to solve even for a simple loading, such as hydrostatic pressure. 
Hydrostatically loaded conical shells are often reinforced by circum- 

ferential rings as indicated in Figure 4.4. Let us consider the case of a trun- 
cated conical shell with a single axisymmetric ring of radius a and supported 
at the fight end to create equilibrium with the horizontal component of the 
hydrostatic loading that is axisymmetric around the system, as shown in Fig- 
ure 4.5. In 1957 O. L. Bowie [4.6] offered an approximate analysis of the 
influence of the ring using the shell equations due to E. Reissner [4.7] which 
account for bending stiffness of the shell. In the Reissner relations the dis- 

U 
/ 

- , ' - - S  r 

Figure 4.5 Figure 4.6 

placement components constitute an orthogonal triad oriented horizontally, 
vertically, and tangentially as shown in Figure 4.6 instead of along the gen- 
erator, radially, and tangentially as in the Hoff relations (4.7), (4.8), (4.9). 
Bowie considered axisymmetric deformations of the truncated shell with a 
single ring subject to external pressure p, having shell thickness h, Poisson's 
ratio/1, Young's modulus E, ring cross-sectional area A, and half-cone angle 

He then enforced compatibility of radial deformations where the ring is 
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joined to the conical shell but considered the dimension of the ring in the di- 
rection of a generator of the cone to be very small compared to the length of 
a generator of the cone. If one designates by Fr the normal force per unit of 
circumferential length acting between shell and ring, compatibility of def- 
ormations leads to 

f g 1 t 41 + p12 (1)11/2 Fr + - - - -  - p  

2hE s ~/1 + pl 2 AEr Esh 
(4.12) 

where E s and E r denote moduli of the shell and ring respectively, and Pl = 
COS ~). 

Further, Bowie found that for the case of a truncated conical shell of 
thickness h reinforced by multiple, evenly spaced tings a distance d apart 
(measured along a shell generator) interaction effects between adjacent tings 
is less than approximately five per cent provided 

d _> 2 where ~ - and p is Poisson' s ratio (4.13) 
x/cos Ot a] a h 

for the cone if there is only one adjoining ring, and 

d >  
ga /cosa  (4.14) 

if the ring has adjoining neighbors on both sides. 

Bowie's analysis also indicates that the bending moment in the conical 
shell adjacent to the ring is given by 

Fr a/C~ a (4.15) 
M~= 4Z 

the hoop stress in the shell adjacent to the ring is 

N~ --- +_1 / 2 F r sin ot - - ~ -  
pa 

2 cos ot 
(4.16) 
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and the radial displacement under the ring is 

2a2sp(secct) f ( l+4v)tan2 o 64a~ 4 (sec a ) ~  + p tana -a~4 ( secc t )~  (4.17) 

where a is the radius of the cone (measured perpendicular to the axis of 
symmetry) at a point a distance s of the reinforcing ring from the small end 
of the cone, measured along a generator. 

In (4.11) the dimension of the reinforcing ring in the direction of a 
generator of the conical shell was assumed to be very small compared to the 
length of a generator of the cone. Often it is necessary to determine the 
structural influence of a relative large cross-section elastic ring used as a re- 
inforcement on a closed end conical shell. In such a case it is necessary to 
first determine expresssions for the influence on the conical shell of ax- 
isymmetrically distributed transverse sheafing forces H as well as bending 
moments M acting at the open end of a hydrostatically loaded conical shell 
as shown in Figure 4.7. In 1953 E. Wenk and C.E. Taylor [4.8] investigated 
axisymmetric behavior of such a constant thickness conical shell, which is 
governed by a fourth order differential equation, and found solutions in 
terms of Bessel functions which may be grouped in a convenient manner 
leading to the so-called tabulated Schleicher functions. With the notation of 
Figure 4.7 the displacement w perpendicular to a generator of the cone was 
shown to be: 

W ~ 

where 

x ,sin2o (2 -a[2-x 71 {lxoH cos a + p + ~~o~, MI cos 
D~, 3 770 2 ~0 2 

+ ~/2 ~ & M  sin( ~ 0 - ~  ) 2  ~ 3 (4.18) } + px 2 tan2 o~ 
4hE 

= h 2 tan 2 a 

-2z4  

(4.19) 

(4.20) 

e~/,~ (4.21) 
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and x 0 for a truncated cone is measured from the fictitious vertex along a 
generator as in Figure 4.7. 

From shell theory, the bending moments and in-plane normal forces as 
well as the transverse sheafing force at any point x in the shell are found 
from 

M x = D Wxx (4.22) 

MO - D v Wxx (4.23) 

px 
= tan a (4.24) N x D (tan a )  Wxx x 2 

N o = D (tan a )  x Wxxxx - p x  tan c~ (4.25) 

Qx = D Wxx x (4.26) 

For example, the meridional (longitudinal) bending moment (per unit of 
circumferential length at a station a distance x from the apex due to axi- 
symmetric loads H, M, and p was found to be 
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- r /{[2~/~x0 H cos a + ~/2x~ p sin2a - 

-~f~,a, (2 4-,~ 
~0 )M]  

sin(~O - ~  .~- ) -2~ /x0  A M c o s (  ~ 0 - ~  
(4.27) 

The other bending moment, as well as the in-plane and transverse sheafing 
forces are given in detail in [4.8]. The outer fiber stresses in the conical 
shell are then found as the sum of bending and normal stressess in the form 
(for outer fiber stresses along a generator): 

_ 6Mx cr x _ Qx tan ct px tan a + - - - -  
h 2h - h 2 

(4.28) 

A similar expression exists for outer fiber circumferential stresses. 
Thus, for given values of H, M, and pressure p, stresses may be readily de- 
termined at any point in the conical shell. 

Often the conical shell is securely attached (perhaps welded) to some ad- 
jacent, coaxial, shell such as a cylinder or a sphere, see Figure 4.1, or pos- 
sibly to a heavy reinforcing ring. Compatibility of displacements and rota- 
tions must be enforced at this juncture and H and M represent discontinuity 
shears and moments at the circumferential joint. The normal displacements 
and rotations at the open end of the conical shell are functions of H, M, p, 
and geometric and materials parameters of the conical shell. In [4.8] these 
influence coefficients for displacement and rotation of the end of a generator 
were shown to be 

00 = aM + bH + cp 
(4.29) 

w-- 0 - dM + g H + f p 
(4.30) 

where 
a - -  

M - E h S c o s a  (4.31) 

b _ O ~ _ U 2  R 
M E h 2 (4.32) 
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g m 

(4.33) 

(4.34) 

E h cos ct (4.35) 

~ -~U[R 3 
/4 (4.36) 

/// 

Analogous expressions for cylindrical as well as spherical shells are to 
be found in [2.5]. Thus, problems of joining of coaxial conical, cylindrical, 
and spherical shells subject to hydrostatic loading may be readily treated to 
ascertain the effects of the joint. 

For example, the effect of a heavy, elastic ring at the junction between a 
conical and a cylindrical shell, has been examined by the use of the above 
influence functions by R.V. Raeta and J.G. Pulos [4.9]. The discontinuity 
shears and moments (uniformly distributed around the circumference of the 
system) appear as in Figure 4.8. 
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Figure 4.8 

The conical shell involved in this example was assumed to be truncated 
and closed at the end remote from the cylindrical shell by a spherical dome. 
The length of the truncated conical shell was taken to be of the order of 
magnitude of the larger radius of the cone, so that it became necessary to 
generalize equation (4.18) to account for the interaction of displacements 
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and rotations due to both ends of the conical frustum being loaded si- 
multaneously. Since the transverse shears and moments act on the ends of 
the ring shown in Figure 4.8 it is necessary to consider rotation of the ring 
cross-section as shown by dotted lines in Figure 4.8. This angle of rotation 
is uniform around the ring circumference and may be found from ele- 
mentary ring theory. 

In [4.10] Wenk and Taylor offered a numerical solution of a system con- 
sisting of a 27 inch diameter (68.6 cm) cylindrical shell joined coaxially to a 
16 inch (40.6 cm) cylindrical shell by a conical shell with a heavy re- 
inforcing ring at each end of the cone. Numerical tabulations of functions 
pertinent to the edge coefficients were offered. 

Buckling of Conical Shells 

Hydrostatically loaded complete as well as truncated conical shells 
may buckle elastically, plastically, or into the elasto-plastic range of action. 
The initial buckling configuration appears as in Figure 4.9 for a truncated 
conical shell. The buckled shape of a truncated conical shell consists of a 
number n of dents (lobes) of depth measured normal to the undeformed shell 
surface) at least several times the shell thickness. The lobes extend from 
one end of the truncated cone to the other and are rather regularly spaced 
around the circumference of the shell as in Figure 4.9. Because of initial ge- 
ometric imperfections in the shell prior to loading, thickness variations oc- 
curing during production of the sheet metal from which the cone is fabricat- 
ed, and possible small amplitude vibrations occuring during testing, the 
entire circumference may not be filled with lobes, as shown by the dot-dash 
line in Figure 4.10. 

Perhaps the earliest analytical investigation of elastic buckling of hydro- 
statically loaded truncated as well as complete conical shells (with an apex) 
is due to A. Pfltieger [4.11] in 1937 of Hannover, Germany. This study in- 
volves application of simplified differential equations (lacking many terms 
presented by N.J. Hoff [4.3]) to each of these shells for the case where the 
shell thickness was taken to increase linearly from the apex for the complete 
shell or linearly from the fictitious vertex in the case of a truncated conical 
shell. The boundary conditions for either shell corresponded approximately 
to simple support, but not all displacement relations were satisfied at either 
boundary for the truncated cone. When applied to constant thickness con- 
ical shells, Pfltieger's solution leads to very conservative results even if a 
mean shell thickness is considered in his solution. 



Structural Behavior of Conical Shells 89 

Figure 4.9 [From Prof. J. Singer, The Technion, Haifa, Israel] 
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Figure 4.10 

Several investigators have attempted to relate buckling of conical shells 
to buckling of "an equivalent cylindrical shell." The first of these is T. Tok- 
ugawa [4.12] who, in 1940, rather arbitrarily suggested that the equivalent 
cylindrical shell is one whose radius is equal to the radius of curvature of the 
cone at a point on a generator of the conical surface located at a distance of 
0.6 times the length of a generator of a closed conical shell (having an 
apex). This leads to a hydrostatic buckling pressure p given by 

s tan tX/p) 2"5 
(4.37) 
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where r has the significance shown in Figure 4.2, c~ is the half-apex angle, h 
the constant shell thickness, and E is the elastic modulus of the cone. In 
1947 F.I.N. Niordson [4.13] developed a Ritz-type energy approach ap- 
plicable to truncated conical shells and introduced an assumed deflection 
shape during buckling. This led to a hydrostatic buckling load" 

2.51 tan a/p/2"5(h'~~, ) _P= 
E 

(4.38) 

This relation leads to higher values of buckling load than does Tok- 
ugawa's which, in turn, gives higher values than Pfltieger's relation. How- 
ever, the Niordson approach is only applicable to truncated conical shells, 
and not to complete ones. In 1953 P.P. Bijlaard and R. Wong [4.14] em- 
ployed the equivalent cylindrical shell concept where the cylinder is of 
thickness equal to that of the cone, whose radius is equal to the largest ra- 
dius of curvature of the cone, see Figure 4.2, and whose length is equal to 
approximately 0.8 the length of a generator of the truncated conical shell. In 
all of these "equivalent cylindrical shell" investigations the authors referred 
to the buckling pressure of the cylinder as that given by the simple, linear- 
ized shell theory approach employed by R. von Mises (see Chapter 3). 

In 1955 W.D. Jordan [4.15] investigated the buckling of complete con- 
ical shells experimentally as well as analytically and compared test results 
with the theoretical predictions of Pfltieger, Tokugawa, Niordson, and Bij- 
laard and Wong. Tests were conducted on 24S-T3 and 61S-T6 aluminum 
alloy models having a total cone angle of 20 ~ 30 ~ 40 ~ and 50 ~ with wall 
thicknesses ranging from 0.040 inches (1.02 mm) to 0.080 inches (2.04 
mm). The greatest diameter of any of these shells was 12 inches (30.48 cm). 
The test cone was situated inside a very rigid cylinder and hydrostatic pres- 
sure applied by oil surrounding the test specimen. A hand pump permitted 
gradual increments of pressure within the oil. Test data appears in Figure 
4.13. Jordan concluded by indicating that the Bijlaard relation indicated a 
realistic design pressure for elastic buckling. However, it is to be noted that 
the boundary conditions employed during Jordan's tests were not in good 
agreement with those assumed by B ijlaard in his analysis. 

Another series of tests on complete conical shells was carried out by F.J. 
Schroeder, E.T. Kirstere and R.A. Hirsch [4.16] in 1958. The models were 
fabricated from brass sheet 0.010 inches thick (0.254 mm) and had a sol- 
dered seam along a generator. The test technique was nearly the same as 
that employed by Jordan. The authors found that the experimentally de- 
termined buckling pressures, shown in Figure 4.13, were in rather close 
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agreement with the predictions of the von Mises approach for a cylindrical 
shell having an "equivalent radius" equal to half the radius of the base of the 
complete cone. Again, the boundary conditions used during testing did not 
agree with those of the von Mises theory. 

In 1954 at the Kazan Aviation Institute, Kh.M. Mushtari and A.V. Sa- 
chenkov [4.17] used conical shell equations identical to those proposed by 
Seide [4.5] but assumed slightly different conditions of end support together 
with the Galerkin approach to solve the governing equations to obtain a 
complex expression for the hydrostatic pressure to cause elastic buckling. 
In that same year P.P. Radkowski [4.18], [4.19] approached the same prob- 
lem from an energy standpoint, formulated the total potential energy, then 
applied the Rayleigh-Ritz technique to obtain equilibrium relations between 
hydrostatic and bucking deflections. This was the same buckled configura- 
tion employed earlier by Niordson [4.13]. The results are invalid for a com- 
plete (non-truncated) cone. 

In 1957 C.E. Taylor [4.20] presented a rigorous application of the 
Trefftz' theory of elastic stability to the case of hydrostatically loaded con- 
ical shells. An energy approach was followed and an approximate solution 
for the buckling pressure of a complete conical shell was obtained using the 
Rayleigh-Ritz method. It was found that additional quadratic terms in the 
energy expression do not significantly affect the value of the buckling pres- 
sure. However, Taylor found that these terms in the more accurate strain en- 
ergy expression are required if large deflection theory is applied to de- 
termine buckling of complete or truncated conical shells. 

In 1960 P. Seide [4.21] specialized the general equations (2.62) and 
(2.63) to the case of a conical shell and then determined the bending and ex- 
tensional energy of the shell from relations (2.66) and (2.69). Thus, the en- 
ergy was expressed in terms of the three orthogonal displacement com- 
ponents u, v, and w together with the stress function ~ of the shell middle 
surface forces. The compatibility relation (2.63) was solved exactly in terms 
of parameters corresponding to the assumed deflection function, and from 
that information middle surface forces, moments, as well as displacements u 
and v could be found in series form. This led to a system of homogenous 
linear equations for the coefficients of the series representing u and v dis- 
placements and the stability criterion was obtained by setting the de- 
terminant of the coefficients of these equations equal to zero. Seide em- 
ployed a coordinate transformation due to Mushtari and Sachenkov [4.17], 
namely 

eZl _ x (4.39) 
Xl 
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where x I and x 2 are distances from the vertex to the small and large ends, re- 
spectively, as shown in Figure 4.11 to put the compatibility equation in the 
form of an equation with constant, rather than variable coefficients to obtain 
a simple representation of the stress function of the middle surface forces. 
Constants of integration were determined from the four boundary conditions 
associated with the ends of the truncated conical shell. Seide pointed out 
that if all boundary conditions on the conical shell are satisfied by the as- 
sumed deflection function for w that the method is identical with that em- 
ployed in [4.17] where the Galerkin method is used to satisfy the equation of 
equilibrium in the direction normal to the conical surface. 
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Figure 4.11 

For the case of a hydrostatically loaded conical shell Seide [4.21] used the 
membrane stresses prior to buckling in the form from Equations [4.1] and 
[4.2] and further assumed that the truncated conical shell is closed by end 
plates rigid in their own planes, but free to distort out of their planes and 
which offer no restraint against rotation at the ends of the conical frustum. 
Employment of the principle of minimum potential energy and dropping of 
minor terms led Seide to the hydrostatic buckling pressure" 
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(4.40) 

for a truncated cone where R 1 nd R 2 are defined in Figure 4.11. Seide then 
employed  the concept  that the hydrostatic buckling pressure of a conical 
frustum is given approximately by an equation similar to that for an "equiv- 
alent" cylindrical shell having a length equal to the slant length of the cone 
(L/cos a) together with a radius equal to the average radius of curvature of 
the cone, i.e. 

[R( )] cos ' 1 + - - -  tan a a 2 R  1 
(4.41) 

but with the wave number  n replaced by (n/cos a).  The hydrostatic buckling 
pressure Pe of this equivalent  cylinder was  obtained by the Batdorf  approach 
[3.19]. Thus,  one can form the pressure ratio piPe for a wide variety of con- 
ical frustra with semi-vertex angles ranging from 0 ~ to 60 ~ length/radius ra- 
tios ranging from 0.5 to 10.0, and R1/h ratios ranging from 250 to 2000. 

The function f, based upon this wide range of geometric  parameters,  is 
shown in Figure 4.12 as determined by Seide. 
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Computation in [4.18] apply only to the range 

0 < ( 1 -  RI ) < 0"9719 R2 

and Equation (4.40) is valid only if n > 2. If the cone is relatively thick- 
walled it will buckle into an oval shape and (4.40) is invalid. The taper ratio 
for a cylindrical shell is, of course, zero. 

For the case of a complete conical shell the taper ratio is unity and Equa- 
tion (4.40) becomes 

p= L175 

9(1_112)3/4 Esin 

R 2  ' 5//2 

c o s ~  
h 

O~ 

(4.42) 

It is of interest to compare the buckling pressure obtained by Seide with 
those given by the theories of Niordson [4.13], Bijlaard [4.14], as well as 
Mushtari and Sachenkov [4.17]. This is presented in Figure 4.13 wherein it 
it evident that the Niordson solution is a lower bound to the small deflection 
buckling pressure of a conical shell. Although Niordson employed the Ray- 
leigh-Ritz approach (which should have led to higher values of buckling 
load) he did introduce modifications to the stability criteria which shifted the 
usually high values found through use of Rayleigh-Ritz. The very high val- 
ues indicated in Figure 4.13 when the Mushtari-Sachenkov approach [4.17] 
is employed indicate that the one-term approximation for the buckled con- 
figuration is inadequate for nearly complete conical shells. 

Existing experimental data due to Jordan [4.15], as well as F.J. Schroed- 
er, Kirstere, and Hirsch [4.16] and others [4.23] through [4.27] for hydro- 
statically loaded conical shells are shown in Figure 4.13. There is sig- 
nificant scatter in existing experimental data, more than is usually associated 
with hydrostatically loaded cylindrical shells. This may possibly be due to 
initial imperfections being more important for conical shells than for hydro- 
statically loaded cylindrical shells. Also, the data of Figure 4.13 represent 
somewhat different boundary conditions for the tests reported. 

Another nonlinear analysis of the elastic buckling of truncated conical 
shells was offered by Hoff and Singer [4.28] in 1960. The linearized terms 
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in the strain-displacement relations were those derived by Hoff [4.3] and 
these terms were supplemented by nonlinear terms due to H. Langhaar 
[4.29]. Energy considerations were developed (see Chapter 2) and the vari- 
ations in strain energy caused by displacements u, v, and w as well as in the 
potential of the hydrostatic surface load and the edge forces and moments 
led to a set of three coupled nonlinear equilibrium equations. Boundary 
conditions were also obtained through this variational approach and they 
corresponded (approximately) to simple support end conditions. The u, v, 
and w displacements during buckling were represented by series of the form 

N 
w - I m Z CN xssin n (p (4.43) 

n=l 

and similarly for u and v 

N (4.44) 
u - Im E S N x S c o s  s 

n=l 

N 
v = I m E CNxSs in n (p (4.45) 

rt=l 

where C n and w are real (n being the nmber of circumferential waves of the 
buckled configuration) and s is a complex number defined by 

s = 7'+ in fl (4.46) 

where f l -  ~/lnx2 (see Figure 4.2) and 7(1-v/2). This leads to a typical term 
of a series representing radial displacement in the form 

w n - Cnx~" sin [nil In x l  sin n ~0 (4.47) 

The hydrostatic buckling load was determined through satisfaction of the 
equilibrium equation in the radial direction, leading to an equation involving 
the physical and geometric parameters of the shell together with the number 
of waves n into which it buckles in the circumferential direction. The equa- 
tion was solved by the Galerkin method using the assumed buckled con- 
figuration in the radial direction. The buckling pressure p appears in a linear 
manner in the equations and was determined through enforcing the condi- 
tion of vanishing of the infinite determinant whose elements are multipliers 
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Figure 4.13 Legend 

Weingarten, Morgan, and Seide [4.22] Material Cone Angle 

A 0 ~ 

O 10 ~ 

Mylar Vl 20 ~ 
0 30 ~ 

45 ~ 

~7 60 ~ 

A 0 ~ 

O 30 ~ 
Steel y 60 o 

~' 75 ~ 

Tokugawa [4.23] Brass CI 

Magula [4.27] Steel -I- 

Westmoreland [4.24] Aluminum 

Jordan [4.15] Aluminum • 

Homewood [4.26] Aluminum | 

Schroeder, et al [4.16] Brass UJ 

Bowie, et al [4.25] Lucite N! 

of the coefficients of radial displacement during buckling. The hydrostatic 
buckling pressure for each of a variety of cone geometries was determined 
using first a one-term expression for radial displacement then a two-term ex- 
pansion. Results are presented in terms of the dimensionless parameters 

Z -  (4 i  ~/.t 2 /s in  a)(a//h)[(x e - 1) 2/Xe] (4.47) 

Cp = [12(1-112)/zce](Pcr/E)(a/h) 3 (x 2 -1)exe sin o~ (4.48) 

for a wide range of geometries in Figure 4.14 together with comparable re- 
suits due to Mushtari and Sachenkov, Niordson, B ijlaard, and Pfliieger. Lat- 
er J. Singer [4.30] solved the same problem but for the case of a truncated 
conical shell having clamped ends. It was found that buckling loads for the 
clamped end case ranged from 30 to 48 per cent greater than for identical 
geometry shells having simply supported ends. 

In 1962 J. Singer and A. Eckstein [4.31] carried out a series of tests to 
determine hydrostatic buckling pressures of truncated conical shells. The 
program involved testing of 71 aluminum alloy type 5052 shells having a 
butt weld along a generator. Argon arc welding was employed for the thick 
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er shells and oxyacetylene for the thinner ones. Extreme care was taken dur- 
ing welding to reduce waviness, but some slight distortion always remained 
near the weld. Adhesive bonding was also employed in an effort to de- 
termine deleterious effects of the butt weld. Even in these bonded speci- 
mens there was some waviness near the joint which the authors believed 
more than cancelled the strengthening of the joint. Initial out-of-roundness 
measurments were made at a number of stations along the length of each 
specimen and the models embraced a radial out-of-roundness to shell thick- 
ness ratio ranging from 0.30 to 2.5. 

Test results obtained in [4.30] are plotted in Figure 4.14 where Z and Cp 
were defined previously. Cones having half-apex angles of 10 ~ 20 ~ and 
30 ~ were tested to hydrostatic buckling. In general the hydrostatic pressure 
at the onset of elastic buckling was reasonably well predicted by the theories 
of both J. Singer [4.32] and P. Seide [4.21]. At least for larger values of Z 
the expression due to NiGrdson [4.13] furnished a good lower bound to the 
experimentally determined pressures. An averaging straight line on this log- 
log plot leads to the empirical design formula 
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p 1 L 

(4.50) 

or Cp = 0. 83Z ~ 

and a counterpart expression for plastic collapse of the truncated cone led to 
a plastic buckling coefficient given by 

where P a v  -" 

- 0.090 ~0.42 

(., + R2) cos ct and Z = 2 

2 

(4.51) 

The effect of initial out-of-roundness was found to be an important factor in 
the pre-buckling behavior of the shells but not in the determination of the 
elastic or plastic buckling strength. 

A.S. Vol'mir, of the Moscow Aviation Institute, in 1963 [2.2] offered a 
finite difference solution to the nonlinear equations governing finite def- 
ormations of thin, elastic shells for the case of a hydrostatically loaded con- 
ical frustum. For the truncated cone having its small diameter clamped and 
the large diameter simply supported, the Vol'mir hydrostatic buckling pres- 
sure is 

clE P 
(1-  v 2 (4.52) 

where x 1 and x 2, and a are defined in Figure 4.11 and C 1 is taken from Fig- 
ure 4.15. Vol'mir indicated that predictions of Equation (4.52) were within 
five per cent of experimentally determined buckling pressures due to I.I. 
Trapezin [4.34] at the same institute. 

In 1967 J. Singer and D. Bendavid [4.32] carried out hydrostatic buck- 
ling tests on a series of thirteen electroformed truncated conical shells. In 
this technique for thin shell fabrication a rigid conical mandrel is located in 
a plating tank with its small end down and its longitudinal axis in a vertical 
position. It is slowly rotated about this axis at an angular velocity of 1/8 
revolution per minute. The mandrel serves as the cathode and a slab of 
nickel as the anode. The entire system is immersed in the plating fluid, but 
to achieve uniform thickness of the shell specimen built up in this manner 
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not only is the mandrel rotated but in addition portions of the mandrel near 
the small end were "shaded" to control thickness buildup and thus achieve a 
shell thickness essentially uniform from one end of the mandrel to the other. 
After a sufficient length of time has elapsed the mandrel and the film of 
nickel deposited on it is removed, and the small end of the shell placed on a 
circular clamping band, so as to obtain essentially a clamped end condition. 
It was found to be possible to produce an electrodeposited conical shell hav- 
ing less than three per cent thickness variation in the circumferential direc- 
tion. The minimum thickness that could be plated was about 0.0028 inches 
(0.071 mm), the thickness being controlled merely by adjusting the plating 
time. The mandrel was aluminum, since the nickel plated shell does not ad- 
here strongly to it. Out-of-roundess measurements were made at a number 
of stations along the geometric axis of the shell. External pressure was ap- 
plied by creating a vacuum within the closed-end conical shell and an in- 
clined water monometer employed to monitor the pressure inside the shell. 
Ten models having a taper ratio of 0.75 were constructed and three more 
with a ratio of 0.669. Mean thicknesses ranged from 0.00294 inches (0.061 
mm) to 0.00512 inches (0.130 mm). Because of the very small initial geo- 
metric imperfections present in the shells, lobes appeared completely around 
the circumference simultaneously in all models. Thus, the onset of buckling 
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and complete buckling occurred simultaneously. In all cases buckling pres- 
sures were slightly greater than predicted by linearized shell theory. Re- 
peated release and reapplication of pressure led to experimental buckling 
loads about ten per cent below the initial value. 

SUMMARY 

To summarize, the scatter of available experimental data, shown in Fig- 
ure 4.13, makes adoption of any single theory for static design purposes dif- 
ficult. Also, it is to be remembered that data shown in Figure 4.13 cor- 
respond to various degrees of clamping at both ends of the conical frustum. 
In most tests the ends approximated clamped support conditions, but seldom 
precisely satisfied any ordinary boundary conditions. From that same Fig- 
ure one may conclude that Niordson's approach leads to an acceptable mean 
fit to experimental data, albeit for a variety of not too clearly specified boun- 
dary conditions. This pertains to both conical as well as cylindrical shells of 
a variety of materials for a wide range of taper ratios. Seide [4.21] has rec- 
ommended that, from Figure 4.13, Pe be determined from the approximation 
to the earlier work of S. Batdorf [3.19] namely, 

Pe  ~ 
0.92E 

(pALiv)(PhV) 5/2 (4.53) 

and that the design buckling load be 

p - 0.8 p (4.54) 

since most of the experimental values indicated in Figure 4.13 fall within 80 
per cent of the line P/Pe - 1. Also, the results of Hoff and Singer [4.28] can 
be employed to give a realistic value of conical shell hydrostatic buckling 
load. These results may readily be computer implemented so that par- 
ametric studies of effects of variation of cone parameters can be carried out. 
Reference [4.28] presents such results for a 10 ~ truncated conical shell. 

Dynamically Loaded Conical Shells 

Design of submersibles in which the pressure hull consists of conical 
shell segments must occasionally involve dynamic considerations. These 
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may arise from water waves moving below the free surface of the sea, colli- 
sions with submerged systems, etc. 

In 1967, at Kazan University, V.V. Kostylev [4.35] investigated the elas- 
tic stability of complete conical shells as well as truncated conical shells 
subject to dynamically applied hydrostatic pressure. The governing equa- 
tions employed were obtained from Equations [2.62] and [2.63] specialized 
to fight circular cones. Kostylev used intuition to discard certain first order 
derivatives of radial displacements and obtained only what he considered 
significant terms in these two equations. The resulting simplification led to 
equations that could be solved by simple harmonic series expansions of both 
the radial displacement as well as the stress function of middle surface forc- 
es. These simplified equations were solved in closed form for hydrostatic 
loadings of (a) pressure increasingly linearly with time, (b) a suddenly ap- 
plied pressure of constant intensity over the entire exterior surface of the 
cone, and (c) a harmonically pulsating hydrostatic loading. For these cases 
cone response as a function of time was determined. 

A related investigation of cone dynamics but with consideration of the 
initial geometric imperfections of the shell was offered by M.S. Shumik 
[4.35] in 1967. The criteria adopted for loss of stability due to dynamically 
applied hydrostatic pressure was that a deflection (at any point) equal in 
magnitude to the shell thickness constituted buckling. The intensity of hy- 
drostatic pressure was assumed to increase as time raised to some power 
specified by the physical parameters of the experiment. Energy considera- 
tions led to dimensionless times to buckling as a function of geometry and 
loading of the conical shell. In 1973 J. Tani [4.37] at the Institue of High 
Speed Mechanics in Sendai, Japan examined the dynamics of a truncated 
conical shell loaded by constant hydrostatic pressure superposed on which 
was a pulsating component, i. e." 

p(t) - Po + Pt cos 03 t (4.55) 

The nonlinear motion equations were solved, approximately, in series 
form to obtain dynamic radial response as a function of Po, Pt, n and time. 
Stability of motion in terms of these parameters was determined using the 
criteria due to C.S. Hsu. 
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CHAPTER 5 

STRUCTURAL BEHAVIOR OF SPHERICAL SHELLS 

Spherical shells subject to external hydrostatic pressure have been em- 
ployed as structural components of undersea systems, flight vehicles, vacu- 
um chambers, chambers fixed to the floor of the ocean, and many other ap- 
plications. For example, complete transparent spherical shells have been 
employed to house undersea transducers as well as video systems and have 
been proposed for carriers of humans to significant depths. Incomplete 
spherical shells have found application as end caps of cylinder-cone-sphere 
systems as shown in Figure 4.1. Some of these applications have involved 
transparent partial spheres. 

Stress Analysis of Spherical Shells 
A complete spherical shell subject to extemal hydrostatic pressure, as- 

sumed to be free of initial (no-load) geometrical imperfections and free of 
initial stresses, develops a membrane state of stress given by the well-known 
expression c r -  pR/2h where cr denotes a membrane stress constant through 
the shell thickness, p denotes external hydrostatic loading, R the radius to 
the shell middle surface, and h represents the uniform shell thickness. Be- 
cause of the point-wise symmetry of loading as well as geometry, this stress 
exists in all directions at any point in the shell in a plane tangent to the shell 
middle surface at that point. This simple expression assumes only membrane 
action in the shell with no bending effects anywhere. Elementary theory 
[5.1] indicates that the radius of the spherical shell decreases an amount 

AR _ 2pR~ ( 1 -t.1) 
2Eh 

due to pressure. Here, p represents Poisson's ratio and E is Young's mod- 
ulus of the material. 

Stress Analysis of Compound Shells 
A system consisting of a cylindrical shell closed at one or both ends by 

hemispherical shells is referred to as a compound shell. Elementary theory 
[5.1] indicates that the decrease of radius of the cylindrical shell, except 
close to the end caps, is 

pR2(1 I.t 
Eh - 7  ) 
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Figure 5.1. Solid lines indicate unloaded configuration of shells, dotted lines 
deformed configuration due to hydrostatic pressure p. 

due to hydrostatic loading p. The corresponding elementary theory of a 
spherical shell indicates a change of radius of AR due to hydrostatic pressure 
p as shown in Figure 5.1. From this figure it is evident that the radial dis- 
placement of the cylindrical shell would be greater than that of the hemi- 
spherical shell by a factor of 0.5 pR2/Eh. If the cylindrical shell is capped at 
one or both ends by a hemispherical shell, but temporarily for the sake of 
analysis taken to be cut transversely at the juncture, the original configura- 
tions occupied by the shells would appear as shown by solid lines in Figure 
5.1 and the deformed positions due to pressure would appear as shown by 
the dotted lines. Thus, the radial displacement of the cylinder would be 
greater than that of the sphere by 0.5 pR2/Eh for Poisson's ratio of 0.3. 

In the presence of such a radial gap, the membrane action alone in each 
of the two component shells is incapable of accounting for the known struc- 
tural behavior when the shells are joined mechanically into a closed system 
at the vertical cutting plane. The only way the radial gap can be closed is by 

Figure 5.2. Solid lines indicate unloaded configuration of shells, dotted lines 
deformed configuration due to hydrostatic pressure p. 
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realizing mat axisymmetric radial sheafing forces V and bending moments 
M (per unit length of shell middle surface) act at the juncture as shown in 
Figure 5.2. The magnitudes of these axisymmetric interactions must be de- 
termined so as to enforce continuity of (a) radial displacement, and (b) con- 
tinuity of slope of a generator of the cylindrical shell where it is joined to a 
meridian of the spherical shell. 

In short, the sheafing forces and bending moments acting at this juncture 
give rise to bending effects near the juncture and proper design of the hemi- 
sphere as well as the cylinder requires that localized bending plus membrane 
stresses near the juncture do not exceed the yield point of the material. 
Stresses arising from V o and M o are termed discontinuity stresses. 

The elastic behavior of the relatively long cylindrical shell shown in Fig- 
ure 5.2 to loadings V o and M o acting at the left end of the cylindrical shell 
has been discussed in Chapter 3. There it was found that the lateral de- 
flection, slope, bending moment, and transverse shear resultant all decay in 
the form of a negative exponential function with increasing distance (meas- 
ured along a generator of the cylinder) from the points of application of V o 

and M o. Numerical examples of this have been presented by W. Flugge 
[5.2], J. R. Vinson [5.3], and H. Kraus [5.4]. 

It is next necessary to determine structural behavior of the elastic hemi- 
spherical shell (shown in Figure 5.2) to V o and M which are of course equal 
but oppositely directed to those shown there acting on the cylindrical shell. 
This problem has been examined in detail by H. Kraus [5.4], P. Seide [5.5], 
W. Flugge [5.2], S. Timoshenko and S. Woinowsky-Krieger [5.6], and P. 
Gould [5.7]. In Figure 5.3 the loading due to the edge shearing forces V o per 

Figure 5.3. Vectors indicate forces and moments per unit length of boundary 
of hemisphere (only one quarter of hemisphere is shown). 
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unit length of shell middle surface all lie in the x-y plane and are each di- 
rected radially inward toward the center of the hemisphere as shown in Fig- 
ure 5.2. The bending moments M o per unit length of shell middle surface 
have vector representations lying in the x-y plane and at each point of the 
shell boundary are directed tangentially to the circular boundary of the hem- 
isphere, again see Figure 5.3 quadrant. For simplicity only those vectors in 
the half of the shell toward the reader are shown. These are the assumed pos- 
itive directions of V o and M o. 

Chapter 2 presented equations of an elastic shell in terms of generalized 
coordinates. If one now specializes these to the case of a thin hemispherical 
shell loaded only by transverse sheafing forces in a diametral plane as 
shown in Figure 5.3, one is led to a single second-order linear differential 
equation with variable coefficients. Fortunately, this is the well-known hy- 
pergeometric equation that can be solved numerically in power series of 
rather slow convergence. Alternately, the solution can be obtained by the 
method of asymptotic integration. This is in certain senses equivalent to em- 
ployment of the Geckeler approximation discussed in detail by H. Kraus 
[5.4]. The approximation is valid for shell contours having smoothly varying 
geometry and leads to approximate expressions for displacements, forces, 
and moments at any point in the hemispherical shell defined by the co- 
latitude ~ shown in Figure 5.4. 

z 

! 

i 

Vo 

- - ~ y  

Figure 5.4. Looking toward negative end of x-axis of Figure 5.3 
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Let us examine forces and displacements in the y-z plane of the hemi- 
sphere shown in Figure 5.3. Looking toward the negative end of the x-axis 
these appear as shown in Figure 5.4. The middle surface displacement at an 
arbitrary point designated by the angle # (co-latitude) may be expressed ei- 
ther as the vector sum of normal and tangential displacement 8 n and ~ re- 
spectively, or by the displacement 8 R parallel to the y-axis. This latter quan- 
tity is better suited to our boundary conditions than the former. We are 
particularly interested in circumferential and meridional bending moments 
M 0 and M~ per unit length, and forces constant through the shell thickness in 
each of these directions denoted by N O and N~. For example, at the arbitrary 
location #, P. Gould [5.7] has derived the expression for meridional bending 
moment per unit length in the form 

R 
e -ka [(C 1 + C 2 ) cos  kot  - ( C  1 - C 2 ) sin kct] (5.1) M~ - 2k 

where R denotes shell radius, ~ denotes the angle (co-latitude) shown in 
Figure 5.4, and 

k4_3 (1 -~ t  2)R 2 ~2 

h 2 4 

Gould [5.7] also presents explicit expressions for M 0, N~, and N O as well as 
8 R. From such relations it then becomes possible to enforce boundary condi- 
tions at the juncture of the hemisphere and the cylindrical shell. At this stage 
it is probably most efficient to proceed on a numerical basis. Examples are 
to be found not only in P. L. Gould [5.7], but also W. Flugge [5.2], P. Seide 
[5.5], and H. Kraus [5.4]. 

Buckling of Spherical Shells 
Hydrostatically loaded complete spherical shells as well as partial spher- 

ical shells (caps or domes) may buckle elastically, plastically, or into the 
elasto-plastic range of action. The earliest published investigations of spher- 
ical shell buckling are due to R. Zoelly [5.8] in 1915, L. S. Leibenson [5.9] 
in 1917, and T. Schwerin [5.10] in 1922. These were all based upon the as- 
sumption of axisymmetric buckling in the elastic range. Several years later, 
A. van der Neut of Delft, The Netherlands, presented a theory based upon 
asymmetric buckling patterns [5.11]. The Zoelly as well as other approaches 
were based upon the small elastic deformation of the shell characterized by 
the linearized versions of the general shell equations (2.62) and (2.63). Solu- 
tions of these were obtained in terms of the tabulated Legendre functions 
leading to the hydrostatic buckling pressure 
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2Eh 2 
P -  R2 [3(1, _~2) (5.2) 

where E represents Young's modulus, h is the constant shell thickness, Ix is 
Poisson's ratio, and R is the sphere radius to its middle surface. All three au- 
thors agreed upon this result. This expression takes no account of initial 
(no-load) geometric imperfections from a perfect spherical form, nor are 
fabrication stresses considered. Since for many metals,/~ = 0.3, from (5.2) 
the buckling pressure becomes 

2 

p -  1.21E (5.3) 

I 

the corresponding membrane stress immediately prior to buckling is 

t r - 0 .  605E(h~ (5.4) 
kK} 

The buckled configuration corresponding to (5.2) consists of a relatively 
large number of equally spaced dimples (lobes) located over the entire sur- 
face of the closed spherical shell. However, experiments carded out by vari- 
ous investigators, e.g., R. L. Carlson, R. L. Sendenbeck, and N. J. Hoff 
[5.12] indicate that buckling initiates as a single dimple axisymmetric about 
a diameter of the sphere, whose size is dependent on shell geometry, and 
which subtends a relatively small solid angle as shown in Figure 5.5. 
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Figure 5.5. Cross-section of a buckled hydrostatically loaded sphere. 

With increasing external pressure, the depth of the dimple increases. In 
fact, the only way in which the investigators [5.12] were able to obtain uni- 
formly distributed dimples over the entire shell surface was to fabricate a 
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sphere by the electroforming technique described in [4.32]. A wax sphere 
(mandrel) was employed after being carefully machined to the desired di- 
ameter, then nickel plated in a hot bath to form a shell having thickness of 
approximately 0.0004 inches (0.010 mm). The wax mandrel contracted 
more upon cooling than did the nickel specimen. When this thin-walled 
nickel sphere was subject to external uniform pressure a large number of 
dimples formed, one after the other, each amplitude being limited by the gap 
existing between the internal surface of the nickel shell and the external sur- 
face of the wax form. With this restrained behavior almost the entire surface 
of the shell could be covered with dimples. However, these conditions do 
not represent realistic constraints on hydrostatically loaded submersibles. 
Thus (5.2) is of limited utility to designers of hydrostatically loaded spher- 
ical shells. 

Contemporary deep submersibles employ either partial or complete 
spherical shells subject to hydrostatic loading. The partial shells usually cap 
the ends of cylindrical pressure hulls and are occasionally transparent to per- 
mit the viewing of undersea systems. In fact, more effort has been devoted 
to the buckling analysis of these partial end caps than to investigation of 
complete, closed spherical shells. The end caps of common interest may 
have geometries ranging from hemispherical to shallow. A shallow spherical 
cap, as shown in Figure 5.6, is usually defined as one in which the central al- 
titude H is no more than approximately 1/8 the diameter 2a. 
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Figure 5.6. Geometry of hydrostatically loaded shallow spherical cap. 
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The mathematical analysis of such a shallow cap is simpler than for the 
case of a closed spherical shell, albeit still formidable. Fabrication of test 
specimens is also simpler for cap investigations than for full spherical shell 
studies. However, the boundary conditions existing around the circular base 
of the cap shown in 5.6 usually do not agree with those existing at the junc- 
tion between a single dimple and the remainder of the complete spherical 
shell. Hence it is difficult to extrapolate results of spherical cap buckling 
tests with experiments carried out on complete spherical shells. 

Perhaps the earliest experimental investigation of buckling of hemi- 
spherical shells is due to E. E. Sechler and W. Bollay at the California In- 
stitute of Technology in 1939, the brass models representing the Mt. Pal- 
omar Observatory Dome. Loading was accomplished by immersing the 
hemispheres in mercury. Their unpublished results indicated that buckling 
occurred at approximately 1/4 the pressure indicated by equations (5.2) and 
(5.3). Buckling occurred in the form of a single small dimple subtending a 
solid angle of about 16 ~ This dimple was directed toward the interior of the 
dome; according to the analysis corresponding to (5.2) and (5.3) buckling 
could be either or outward, and extending over the entire spherical surface, 
obviously at variance with experimental information. 

Simultaneously at CalTech in that same year, Th. von Karman and H. S. 
Tsien [5.13] developed a new and unique approach to shell buckling. This 
corresponded to nonlinear finite displacements from the prebuckled con- 
figuration. In [5.13] the authors considered a shallow spherical cap subject 
to hydrostatic loading as shown in Figure 5.6 and assumed a buckled con- 
figuration in agreement with the experiments mentioned above. Thus, all 
deformations due to buckling took place in this dimple, with the remainder 
of the sphere undergoing no bending as shown in Figure 5.7. It was also as- 
sumed that there was no bending moment acting at the juncture of the dim- 
ple and the remainder of the spherical shell. An energy approach was em- 
ployed, as outlined in Chapter 2, with bending and membrane energies 
calculated for the buckled configuration shown in Figure 5.7 and the po- 
tential energy corresponding to the work done by the external pressure de- 
termined on this same basis. At equilibrium, the total energy must be a mini- 
mum, so that they determined the equation of equilibrium by finding a 
relation between p and a which minimizes the total energy. A plausible 
buckled configuration suggested by the experiments together with use of the 
Rayleigh-Ritz approach led to a relation between hydrostatic pressure and 
central deflection of the form shown in Figure 5.7. Since fl is essentially a 
free parameter of the problem, this was determined by minimization tech- 
niques so as to render the buckling stress a minimum. This led to the mini- 
mum value of load which would maintain the deflected shape to be 
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o - ( 5 . 5 )  

in sharp contrast to (5.3) resulting from classical linear analysis. Equation 
(5.5) is in good agreement with the test results on a brass hemisphere due to 
Sechler and Bollay which led to 

p - 0 .  3 0 8 E ( h )  2 (5.6) 
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Figure 5.7. Buckled shallow spherical cap. 

Buckling of Shallow Spherical Shells 
The literature abounds with treatments of behavior of shallow spherical 

shells (caps) subject to hydrostatic loading. The problem is of interest be- 
cause it occurs in submersibles as well as flight structures, ground fluid 
pressure vessels, etc. 

One characteristic of this problem is that deformations even at very 
small amplitudes (less than the shell thickness) depart significantly from 
predictions of linear analysis. Also, there is a rapid decrease in the equi- 
librium pressure once a critical value has been reached. The equations gov- 
erning shallow spherical shell behavior are somewhat simpler than for the 
case of a complete, closed spherical shell and many investigators have ex- 
amined the shallow shell behavior with the hope that its solution might shed 
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light on the behavior of a complete spherical shell subject to hydrostatic 
pressure. 

In 1954 A. Kaplan and Y. C. Fung [5.15] investigated the behavior of a 
clamped edge shallow spherical shell subject to hydrostatic loading. They 
cast the governing equations (2.62) and (2.63) in the forms: 

[1  )] ..~.[dW 1 (.._~.) 2 ] d d (x2S r + + - 0 
dx - ~  -~ 2x 

(5.7) 

and 

xl d [ l d ~ axdW ) ] k 2 dW x--i?7 - - kA,2Sr 4 ~ S r - 6P (5.8) 
x dx 

where as shown in Figure 5.7, x = r/a is a dimensionless radial coordinate, 
W -  w/h is dimensionless vertical displacement, 

_ _ p (5.9) 

p being true hydrostatic pressure and P is dimensionless hydrostatic pres- 
sure, h represents shell thickness, N r is dimensionless radial membrane force 
(evaluated over the shell thickness), 

Sr "-(~'~lNr 
is dimensionless radial membrane force, 

k -[12(1 - 1/2)]1/2 (5.10) 

where la is Poisson's ratio, and 

ii ,l -- (0~)1/2  (5.11) 

If a << 1, then we have, approximately 

~2 _ ka 2 

Rh 
(5.12) 
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Here, Sr and W are the two independent parameters characterizing the prob- 
lem. 

For shallow shells having the semi-opening angle a (see Figure 5.7) 
small compared to unity, the geometric parameter ~2 is proportional to the 
depth/thickness (H/h) of the shell. This is not applicable for deeper shells, 
such as a hemisphere. The relations (5.7) and (5.8) do not distinguish be- 
tween vertical and radial displacements of points located on the shallow 
spherical dome. An alternate formulation employed for mathematical con- 
venience by some investigators is to consider as the two independent var- 
iables (a) the rotation in its plane of a meridian at any point and (b) a mid- 
dle-surface stress function. When ,~ = 0, Equations (5.7) and (5.8) reduce to 
the well-known von Karman equations governing large deformations of an 
initially flat plate [5.6]. 

Solution of (5.7) and (5.8) was carried out in [5.15] by a perturbation 
technique originally applied by W. Z. Chien [5.16] at Tsing Hua University 
in Beijing in 1947. This involved considering the central deflection of the 
spherical cap as a parameter W o and expanding all free variables in powers 
of W o. Thus: 

P -  ptWo + P2Wo 2 + P3Wo 3 +. . .  (5.13) 

W - w I ( X ) W  0 4- w 2 ( x ) W o  2 4- w 3 ( x ) W  3 4-... (5.14) 

SR = f l (x)Wo + f2 (x)Wo 2 + f3 (x)Wo 3 4-... (5.15) 

Substitution of these series in (5.7) and (5.8) and subsequent equating of 
equal powers of W o leads to a sequence of pairs of linear simultaneous equa- 
tions for fi and w i. Solution of these equations leads to expressions for 3~ in 
terms of Bessel functions of imaginary arguments. Imposition of boundary 
conditions at the clamped edge of the shallow spherical shell led to rel- 
atively simple expressions for Pi, wi, and ~ in (5.13), (5.14), and (5.15). 
This, finally, led to approximate relations between P and ~. 

Kaplan and Fung [5.15] also carried out tests on magnesium alloy (type 
QQ-M-44) shallow shells. These were fabricated by the spinning technique, 
i.e., hot flat sheets of this material were held against a rotating mandrel (con- 
sidered to be rigid) and the magnesium alloy plate slowly pressed against 
the rotating form until the two were in as complete contact as possible. 
Upon removal from the rotating system there was little spring-back of the 
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shaped magnesium and, further, a radial cut in the magnesium shell pro- 
duced only very small separation upon cooling. It was concluded that most 
of the residual stresses had been removed by this fabrication approach. Pres- 
sure tests were then conducted on these specimens. For relatively small val- 
ues of &, i.e., relatively shallow shells, oil pressure vs. central deflection (in 
dimensionless forms) for five models had the form shown in Figure 5.8. 
Even though more oil was added to the pumping chamber, the pressure de- 
creased as shown in that figure. Deeper shells were loaded by air pressure 
with an air accumulator in the line so that buckling occurred under very 
nearly constant pressure. This was in contrast to the oil loading, which came 
close to constant volume of the surrounding medium transmitting the pres- 
sure to the surface of the shell. If equation (5.4) is written in the general 
form 

o , , ( h )  , ,  16, 

the experimentally determined value of K as found by Kaplan and Fung 
[5.15] ranged from 0.2 to 0.4. In contrast the classical theory indicates K = 
0.605. The precise value depends strongly upon geometric deviations from 
perfectly spherical form, minor deviations from constant thickness, initial 
fabrication stresses, and method of edge clamping. Detailed test results are 
shown in Figures 5.8, 5.9, and 5.10. 
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Figure 5.10. Experimental values of K for shallow spherical shell under uni- 
form pressure.* 

* Figures  5.8, 5.9, and 5.10 are adapted from "Instabili ty of  Thin Elastic Shells," by Y. C. 
Fung and E. E. Sechler,  publ ished in Structural Mechanics--Proceedings of the First Sym- 
posium on Naval Structural Mechanics, Pergamon Press, 1960, pp. 115-158 [5.17]. 
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A. S. Vol'mir [2.2] adopted the goveming equations for a shallow spher- 
ical cap as employed by Th. von Karman and H. S. Tsien [5.13] as well as 
Tsien [5.14] but assumed a slightly different axisymmetric buckled con- 
figuration. Using the Bubnov-Galerkin technique for solution, this led to a 
coefficient K = 0.31 in equation (5.14). On the basis of a series of tests on 
spherical caps carded out by R. G. Surkin and S. G. Stepanov [5.18], 
Vol'mir suggested modifying this coefficient to 0.155. The test specimens 
were steel, brass, copper, and aluminum formed into a spherical cap geom- 
etry by a deep drawing process. 

Additional nonlinear considerations of buckling of hydrostatically load- 
ed shallow spherical shells necessitates a more precise understanding of the 
buckling phenomena. Figures 5.8 and 5.9 have the generic form shown in 
Figure 5.11 by the solid line OABC for load vs. some significant deflection 
parameter, say the radial deflection of the apex of the spherical cap. Such re- 
suits have been found by experiments as well as analytical and computerized 
finite deflection analyses. If no initial geometric imperfections are present, 
the load corresponding to point B represents the peak load-carrying capacity 
of the shell, and corresponds to axisymmetric deformations. However, at 
some lesser load, such as A, there exists a possibility of asymmetric def- 
ormation and A is termed the bifurcation point and AD corresponds to in- 
creased asymmetric deformations, usually with decreases in hydrostatic 
pressure. Obviously for any real structure, necessarily having some initial 
geometric imperfections there is no sharply defined bifurcation load. The be- 
havior of this real system is characterized by the dotted line in Figure 5.11. 
Failure is usually by "snap-through" as represented by point E at the load 
corresponding to the ordinate of E. The postbuckling behavior after passing 
point E will involve asymmetric buckling displacements. In summary, the 
bifurcation load is usually a good engineering approximation to the actual 
failure load and mode. 

A systematic series of tests of hydrostatically loaded shallow spherical 
caps was presented by K. Kltippel and O. Jungbluth [5.19] at the Technical 
University of Darmstadt in 1953. The specimens were manufactured by 
deep-drawing initially flat steel plates. One series of such spherical caps 
consisted of ten shells having a radius of curvature of 20.47 inches (52 cm). 
Another series of twenty shells had a radius of curvature 9.84 inches (25 
cm). A relatively rigid heavy steel cylindrical test fixture had a heavy clamp- 
ing ring to secure the circular edge of the shell and was capable of ex- 
hausting the air from inside the sphere and cylinder to create inward snap- 
through of the test piece. The shells had a base diameter of 15.75 inches (40 
cm) for all specimens. Also, all shells were annealed to stress-relieve them 
from the drawing effects. Although no specific values of residual stress were 
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Figure 5.11. General form of pressure - central deflection for a 
hydrostatically loaded shallow spherical shell. 

presented by the authors it was concluded that residual stresses were not 
heavily responsible for the irregular nature of stress distributions as mon- 
itored by electric strain gages. These authors also presented the first high 
speed photographs of their shallow spherical caps buckling as air was ex- 
hausted from the sphere. Pictures were taken at the rate of 1000 images per 
second and clearly show initiation of a lobe near the clamped edge and sub- 
sequent asymmetric growth of that lobe until the entire cap snapped through. 
In not a single case did the shell buckle axisymmetrically. 

Based upon these two series of test results, K16ppel and Jungbluth de- 
rived the following empirical expression for hydrostatic buckling pressure: 

I l~ ~ /hill h2] p -  1-0.175 202? 1-0.07 0. 3 E - ~  (5.17) 

where a and R are defined in Figure 5.7, h represents shell thickness, and p 
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the pressure to initiate formation of the first lobe. 
One of the earliest studies to ascertain the influence of initial imperfec- 

tions on buckling of a hydrostatically loaded clamped edge spherical cap is 
due to B. Budiansky [5.20] in 1960. He considered axisymmetric behavior 
of the cap to be governed by equations (5.7) and (5.8) modified to include 
consideration of initial geometric imperfections. The pair of equations was 
cast into integral equation form and solved by computer methods. It was 
found that the presence of such imperfections lowers the elastic axi- 
symmetric buckling load but not sufficiently to produce agreement with ex- 
isting experimental data. 

The work of W. T. Koiter [5.21-5.23] was the first to provide a rational 
explanation of the deviation of linearized shell buckling load predictions 
from experimental results on hydrostatically loaded spherical caps as well as 
complete spherical shells. The work was based upon detailed analysis of the 
effect of geometric imperfections present in the shell prior to application of 
external pressure. This theory indicates the degree of stability of equilibrium 
at the lowest bifurcation point on the load-deformation diagram (Figure 
5.11) as well as determining sensitivity of the maximum load-carrying ca- 
pacity of the shell to the initial imperfections. Koiter's general postbuckling 
analysis was presented in the form of an asymptotic expansion of the load in 
terms of buckled amplitude and led to an asymptotic estimate of the sensitiv- 
ity of the shell structure to initial imperfections. Both axisymmetric as well 
as asymmetric initial geometric imperfections were treated for the hydro- 
statically loaded spherical system. For this case, the postbuckling behavior 
is found to involve mode interaction. 

Asymmetric buckling of hydrostatically loaded shallow spherical caps 
was treated by N. C. Huang [5.24] who solved the governing nonlinear 
equations by finite differences. His results indicated that asymmetric buck- 
ling would not occur for values of the geometric parameter 2, (see equation 
5.11) less than approximately 5.5. Comparable results were obtained by R. 
R. Parmerter and Y. C. Fung [5.25] on the basis of a Galerkin-type solution 
of the governing nonlinear equations. The shape parameter employed was in 
agreement with existing experimental evidence. An entirely different ap- 
proach for establishing buckling pressures was given by J. Famili and R. R. 
Archer [5.26] in 1965. They carried out a computerized finite difference in- 
vestigation to determine vibration frequencies of asymmetric modes of the 
shallow spherical shell subject to known hydrostatic pressure. Then, the 
buckling pressure was taken to be that value at which the frequency be- 
comes zero. Variation of the assumed number of circumferential waves lead 
to the critical buckling mode and pressure. Their results indicate highly non- 
linear relations between frequency and pressure. 
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It is of interest to note that G. A. Thurston [5.27] in 1962 employed en- 
ergy methods to determine the hydrostatic buckling pressure of a shallow 
spherical cap. He took as the governing nonlinear equations those due to E. 
Reissner [5.28] and solved them on a computer with the finite difference 
technique. Load-deflection relations were in relatively good agreement with 
those obtained experimentally by Kaplan and Fung [5.15]. In 1966 Thurston 
and F. A. Penning [5.29] carded out tests on aluminum clamped spherical 
caps subject to hydrostatic loading; initial no-load geometric imperfections 
were measured on these test specimens. However, since the spherical caps 
had been formed by an explosive forming process there were probably some 
unknown magnitude initial stresses present, despite the fact that the caps had 
been heat-treated to at least partially decrease these stresses. 

t/) 

No-load Peak Deformation 

Figure 5.12. Variation of buckling pressure with maximum radial no-load 
deformation. Reproduced with permission of the David Taylor Model Ba- 
sin, Department of the Navy, Washington, D.C. 

Also, W. A. Nash and J. R. Modeer [5.30] utilized an approximate en- 
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ergy approach based upon neglect of the second invariant of the middle sur- 
face strains, originally applied to finite deflections of elastic plates by H. M. 
Berger. This technique was applied to the hydrostatically loaded spherical 
cap with clamped edge, and load-deformation relations in modest agree- 
ment with those of Kaplan and Fung [5.15] were found. The neglect of such 
terms uncouples the governing nonlinear, coupled equations (5.7) and (5.8). 
The theme of these last few publications is indicated in Figure 5.12 which 
shows (qualitatively) the variation of (dimensionless) buckling pressure with 
magnitude of initial, no-load peak geometric imperfection. 

During approximately the same period of time, H. J. Weinitschke [5.31- 
5.33] presented several analysis of buckling of hydrostatically loaded shal- 
low spherical caps. In 1959 he improved convergence characteristics of the 
power series employed by A. Kaplan and Y. C. Fung [5.15], equations (5.7) 
and (5.8) were solved by means of the method of analytical continuation 
employing expansions about the axis of symmetry of the shell and also its 
outer boundary. He also determined hydrostatic buckling loads for both sim- 
ply supported as well as freely supported edges. He found that for values of 

> 7 the circumferential stress near the edge of the shell was about twice 
the meridional stress, indicating that an asymmetric buckling mode was pos- 
sible. In particular he obtained buckling loads for asymmetric behavior of 
the hydrostatically loaded spherical cap in excellent agreement with those 
offered by N. C. Huang [5.24]. Instability (i.e., imperfection sensitivity) of 
these asymptotic modes was also found in a 1970 investigation of J. R. Fitch 
and B. Budiansky [5.34] on the basis of Koiter's nonlinear buckling theory. 
Also in 1970, S. C. Tillman [5.35] carried out a nonlinear postbuckling anal- 
ysis on the basis of the Galerkin approach using three symmetric modes in 
conjunction with two asymmetric modes, the configurations being based 
upon his experimental evidence. These results indicated that the n - 1 mode 
(n being the number of circumferential lobes) is more unstable than the n = 
2 mode. Virtually all experimental evidence indicates the final buckled con- 
figuration is always a single lobe near the edge, i.e., n - 1. 

In 1967, J. W. Hutchinson [5.36] examined the imperfection sensitivity 
of a hydrostatically loaded section of a spherical shell on the basis of the 
general theory of postbuckling behavior due to W. T. Koiter [5.21]. The ap- 
proach permitted consideration of axisymmetric and/or asymmetric post- 
buckling configurations. The predicted mode shapes were found to be in 
modest agreement with the results of tests conducted by R. L. Carlson, R. D. 
Sendelbeck, and N. J. Hoff [5.12]. Hutchinson's treatment led to large re- 
duction of buckling pressure from the classical value (5.3) for initial no- 
load deformations small in comparison with the shell thickness. 

In 1963 at the David Taylor Model Basin, Depal~ment of the Navy, M. 
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A. Krenzke and T. J. Kiernan [5.37, 5.38] presented a new approach to the 
problem of hydrostatic buckling of spherical caps. For the case of shallow, 
clamped edge spherical caps, seventeen models were machined from type 
7075-T6 thick aluminum stock into the configuration indicated in Figure 
5.13. Thus each shallow shell model was supported by the very heavy, near- 
ly rigid ring shown and shell and ring were machined as an integral unit. 

h 

Figure 5.13. Development of a shallow spherical cap from solid aluminum 
block [5.37]. Reproduced with permission of the David Taylor Model Ba- 
sin, Department of the Navy, Washington, D.C. 

The shell material had a nominal yield strength of 80,000 lb/in 2 (552 
MPa) with Young's modulus of 10.8 x 106 lb/in 2 (74.4 GPa). These speci- 
mens had wall thicknesses ranging from 0.0104 inches (0.264 mm) to 
0.0394 inches (1.00 mm) and inside radii of either 2.00 inches (50.8 mm) or 
3.00 inches (76.2 mm). Extremely careful machining led to measured vari- 
ation in local inside radius, usually less than 0.0001 inches (0.00254 mm) 
with measured variations of shell thickness less than one percent of the shell 
thickness. Thus, these machined specimens very closely satisfied the as- 
sumptions of theories existing at that date than any other series of experi- 
ments. 

Figure 5.14 illustrates these test results (in terms of dimensionless pa- 
rameters) together with other test data. Predictions of several types of an- 
alytical predictions are also indicated in that figure. The abscissa is a dimen- 
sionless geometric parameter 0 defined as 

1 

4Rh 

(5.18) 

where R is the middle surface radius of the shell, h is shell thickness, tx is 
Poisson's ratio and L c is the unsupported length of the spherical specimen. 

From Figure 5.14 one may draw the conclusion that collapse of a spher- 
ical cap or shell should be predicted (analytically) on the basis of local ge- 
ometry over some critical length rather than overall geometry as classical 
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Figure 5.14. Experimental Elastic Buckling Data for Spherical Shells with 
Clamped Edges. Data are as follows: A: Empirical curve for present tests, 
B" Present models machined by generating inside contour, C: Present mod- 
els and models recorded in Reference [5.38] machined by form cutting inside 
contour, and D: Previous experiments of Tsien, Kaplan, and Fung, von Klop- 
pel and Jungbluth, and Homewood, Brine, and Johnson. Reproduced with 
permission of the David Taylor Model Basin, Department of the Navy, Wash- 
ington, D.C. See Equation (5.20) for definition ofps. 

analyses have done. In [5.38] examinations of existing test data indicated 
that a value 0 of 2.2 corresponds to the critical length, then the relationship 
for L c becomes 

2.2(Rlha) 1/2 

(5.19) 

where h a is mean thickness over the critical length and R l is the local radius 
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to the midsurface of the shell over the critical arc length. 
rameters are shown in detail in Figure 5.15. 

Pertinent pa- 

L c  _ 2.2 -~ Ri"ha 
.~- 0.91 -~_ 

Figure 5.15. Geometric parameters of local geometry of an imperfect spher- 
ical shell. Reproduced with permission of the David Taylor Model Basin, 
Department of the Navy, Washington, D.C. 

The experimental data prior to that presented in [5.37] and [5.38] in- 
dicated significant scatter. However, the results from [5.37] and [5.38] fol- 
low a clear pattern. Because of the near-perfection of the machined test 
specimens, this demonstrates the detrimental effect on collapse strength of 
initial no-load geometric imperfections. These results also demonstrate that 
a short clamped segment can be weaker than a longer clamped segment. For 
short segments of spherical cap, less than about 0 = 5.5, the empirical (dot- 
ted) curve of Figure 5.14 through the test data from these machined shells 
has the same general shape as the curves from the theories for symmetric 
buckling [5.20], [5.27], [5.29] as well as asymmetric buckling [5.33]. As the 
shells become longer or deeper, the empirical curve no longer agrees well 
with the theoretical symmetric buckling curves but instead agrees with the 
asymmetric theory presented by N. C. Huang [5.24]. The empirical curve 
lies as much as twenty percent below the theoretical curves for values of 0 
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approximately 5.5. In 1983 S. Yamada, K. Uchiyama, and M. Yamada 
[5.39] reported test results on seventy-nine thermovacuum molded poly- 
vinylchloride shallow spherical shells. Prior to loading by hydrostatic pres- 
sure very careful measurements of geometric imperfections from perfect 
sphericity were taken by using a differential transformer. Test results in- 
dicated that the buckling of shallow spherical shells depends critically upon 
initial geometric imperfections. 

Buckling of Deep and/or Complete Spherical Shells 
The term "deep" usually refers to partial spherical shells in which the 

central altitude is greater than approximately 1/8 the base diameter. The 
1963 work of M. A. Krenzke and T. J. Kiernan [5.38] also included results 
of tests on eight 300 ~ spherical segments with clamped edges. Again, these 
were carefully machined from the same material as mentioned previously, 
i.e., 7075-T6 aluminum. The geometry was as indicated in Figure 5.16. 
Shell thicknesses of these eight specimens ranged from 0.0248 inches (0.630 
mm) to 0.160 inches (4.064 ram). Collapse occurred in the asymmetric 
mode, in two cases initiating at the juncture of the spherical shell with the 
heavy end ring (see Figure 5.13), and in the other six cases initiating in areas 
away from the end ring. 

For these eight models values of the parameter 0 ranged from 17.20 to 
42.73. On the basis of these test results the authors proposed the empirical 
relation for elastic as well as inelastic collapse pressure of a nearly-perfect 
deep spherical shell: 

/7o/2 P3=O.84a/EtE s h for/z =0.3 (5.20) 

where E s and E t denote secant and tangent moduli, respectively, as obtained 
from coupon compression test of the shell material, h denotes shell thick- 
ness, and R o is outer radius of the shell. This equation should only be ap- 
plied if the spherical shell has local variations of radius of less than 2.5 per- 
cent of the shell thickness. For greater variations, (5.20) overestimates the 
collapse strength. The pressure hull of the submersible "Shinkai 6500" 
mentioned in Chapter 1 was designed on the basis of Equation (5.20). 

Krentze and Kiernan [5.38] also reported test results on four models of 
7075-T6 aluminum representing, essentially, complete spherical shells. 
These were fabricated by having a 60 ~ circular opening to permit machining 
of the inside contour. Metal spherical segments of the same material and 
curvature were then inserted into this opening, but the area in the vicinity of 
these segments was machined ten percent thicker than the remainder of the 
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Figure 5.16. Reproduced with permission of the David Taylor Model Basin, 
Department of the Navy, Washington, D.C. 

sphere in an effort to discourage failure in the insert piece. Each of these test 
pieces ruptured during collapse under hydrostatic loading, with failure in- 
itiating in the main body of the sphere, not near the insert. The authors in- 
dicated that equation (5.20) again represents inelastic buckling of a complete 
machined sphere. 

Equation (5.20) is in a convenient form for analysis of an existing or 
proposed shell, but not well-suited for design which usually required thick- 
ness determination for a given radius, modulus, and pressure at specified 
depth of submergence. A tabular approach, well-suited to computer imple- 
mentation, has been developed by W. E. Heronemus [5.40] for iterative de- 
termination of shell thickness with all of the above parameters specified. 

Mention should also be made of earlier experiments on the buckling of 
complete spherical shells. In 1962, J. M. T. Thompson [5.41] at Cambridge 
University carded out a series of tests on hydrostatically loaded polyvinyl 
chloride shells of radius 2.1 inches (53.34 mm), and thickness 0.10 inches 
(2.54 mm). Load-deformation relations of the type shown by dotted lines in 
Figure 2.17 were found and snapping was traditional in nature. Stable post- 
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buckling states were characterized by a rotational symmetric dimple for the 
case of a nearly perfect test specimen. Later, Thompson [5.42] employed the 
approach of W. T. Koiter to study initial postbuckling behavior of the com- 
plete sphere. The work was restricted to axisymmetric deformation. Also, P. 
G. Hodge [5.43] obtained upper and lower bounds on the plastic collapse 
load of a geometrically perfect spherical segment. P. P. Bijlaard [5.44], G. 
Gerard [5.45], and M. E. Lunchick [5.46] considered inelastic buckling of 
complete spheres. These three investigations each applied a plasticity re- 
duction factor to the buckling pressure predicted by classical linear theory. 
The solutions are somewhat similar except for the use of different values of 
Poisson's theory in the plastic range. 

Axisymmetric buckling of a complete spherical shell having initial geo- 
metric imperfections was examined by T. Koga and N. J. Hoff [5.47] in 
1968. In this analysis, the shell is considered to consist of two regions (a) 
the shallow cap in which the initial imperfection exists, and (b) the re- 
mainder of the shell which merely contracts in radius. The rotation of the 
meridian of the cap was represented by a polynomial function and four 
boundary conditions were imposed at the juncture of the cap and the re- 
mainder of the spherical shell. The total potential energy was minimized fol- 
lowing the Rayleigh-Ritz method. Two types of initial imperfections were 
examined: one is an axisymmetric dimple, and the other is a spherical region 
whose radius of curvature is greater than that of the corresponding perfect 
spherical shell. The authors employed the equations developed by E, Re- 
issner [5.28] valid for axisymmetric deformations of shells of revolution un- 
dergoing arbitrarily large deformations but small strains. Numerical analysis 
indicated that for all values of imperfection amplitude the lowest value of 
buckling pressure is reached when 2, (Equation 5.11) is approximately 4. 
From this it follows that the hydrostatic buckling pressure of a nearly com- 
plete spherical shell is approximately one-third of the classical buckling 
pressure (5.3) when the imperfection amplitude is one-half the thickness of 
the shell. 

In 1973, N. C. Huang and G. Funk [5.48] investigated inelastic buckling 
of a deep spherical shell subject to hydrostatic loading. The finite deforma- 
tion shell equations due to J. L. Sanders, Jr. were employed and the possibil- 
ity of the shell thickness varying along a meridian was considered. The edge 
of the shell was elastically supported and the material followed the gener- 
alized Ramberg-Osgood stress-strain relations together with a power law of 
creep. Solution was accomplished through solving the finite difference equa- 
tions by a computerized iterative approach for (a) axisymmetric inelastic 
buckling and (b) asymmetric bifurcation. Later, R. Kao [5.49] examined 
elasto-plastic axisymmetric behavior of a shallow spherical cap subject to 
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hydrostatic loading. Consideration was given to initial imperfections, ma- 
terial nonlinearity, strain hardening on the basis of the Prager-Ziegler kin- 
ematic hardening theory, and the Bauschinger effect. Governing equations 
were solved on a computer by iteration and dimensionless load-deformation 
results presented for a variety of initial imperfections. 

Buckling of Stiffened and/or Orthotropic Spherical Shells 
Spherical shells subject to hydrostatic pressure are occasionally re- 

inforced by either (a) radial (meridional) fibs, and/or (b) circumferential 
ring-like fibs. Such stiffeners may be on either the concave or the convex 
side of the shell, and may be machined integral with the shell or perhaps 
joined by brazing, welding, or epoxy after the shell is constructed. 

The earliest systematic investigation of the influence of ribs on buckling 
strength of a spherical cap is due to K. Kl~ppel and O. Jungbluth [5.19] in 
1953. These authors employed the same type of spherical caps as they had 
for tests on unstiffcned shells, but welded radial ribs to some shells, and ra- 
dial together with ring-like ribs to most of the 73 models tested under hydro- 
static pressure. Most of the models snapped-through to the mirror-image of 
the unloaded configuration, sometimes causing the rib to separate from the 
shell. For the geometries employed, mcridional stiffeners offered greater re- 
sistance to snap-through than annular ribs. An approximate orthotropic anal- 
ysis was developed (assuming closely spaced fibs) and a generalization of 
equation (5.17) was offered to predict buckling pressure. A comparable 
analysis was offered by R. F. Crawford and D. B. Schwartz [5.50] in 1965. 
This study examined optimum design of the grid-stiffened spherical cap and 
concluded that efficient design of the ribs would lead to total weights of the 
stiffened shell ranging from thirty to forty percent of the monocoque domes 
they would replace. In 1973 A. I. Manevich and M. E. Kaganov [5.51] pub- 
lished a closely-related study but with inclusion of the effect of eccentricity 
from shell middle surface of the ribs. 

The 1963 work of M. A. Krenzke and T. J. Kieman [5.38] also involved 
tests of seventeen machined hemispherical shells. Of these, nine had only 
circumferential ribs, four had only meridional fibs, and four had both cir- 
cumferential as well as meridional stiffeners. All were machined from the 
same aluminum described earlier in this chapter. In general collapse was by 
general instability, but visual inspection of the interior of the models in- 
dicated that significant local deformation of the shell between ribs occurred 
during pressure application. In no case was the collapse pressure of the stiff- 
ened shell as great as would have been expected for a machined unstiffened 
shell of the same weight. A 1967 study by F. M. Schwartz [5.52] of a steel 
hemisphere having both radial as well as circumferential ribs indicated the 
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collapse pressure was approximately thirty percent greater than that pre- 
dicted for an unstress-relieved monocoque shell of equivalent weight with 
the same initial out-of-roundness. 

In 1983 M. Yamada [5.53] from Tohoku University in Japan presented a 
nonlinear analysis of buckling of a spherical shell stiffened by radial as well 
as circumferential ribs and loaded by hydrostatic pressure. Anisotropic shell 
theory was employed. Buckling between ribs as well as general instability 
collapse was examined. In that same year, K. Uchiyama and M. Yamada 
[5.54] published results of a series of tests on polyvinyl-chloride shallow 
spherical caps. There was reasonable agreement between test results and the 
theory [5.53]. 
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CHAPTER 6 

OTHER SHELL AND PLATE GEOMETRIES 

Spheroidal Shells 
Recent developments in the structure of submersibles have led to con- 

sideration of pressure hull geometries other than spherical. Let us examine 
the equation 

x 2 y2 z 2 
a2 + ~--2-+-~--~- 1 (6.1) 

where a, b, and c are positive real numbers. This is the equivalent of a sur- 
face called an ellipsoid, appearing as in Figure 6.1. If a > c this ellipsoid is 
the result of a revolution of an ellipse about its minor axis and is termed an 
oblate spheroid. If a < c the ellipsoid is the result of a revolution about its 
major axis and is termed a prolate spheroid. If a - c the ellipsoid of revolu- 
tion is a sphere [6.1]. The terms oblate ellipsoid and prolate ellipsoid are 
occasionally employed by some authors. 
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The prolate spheroid offers, in certain circumstances, some advantages 
over the sphere, in particular ease of arrangement of interior systems, im- 
proved hydrodynamic characteristics, and reduced susceptibility to initial 
geometric imperfections. The only buckling analysis based upon linear shell 
theory is due to Kh. M. Mushtari and K. V. Galimov [6.2] and indicates the 
buckling pressure 

p ~ 
2Eh 2 

(6.2) 

which for the special case of a spherical shell reduces to the result due to 
Zolley (Chapter 5, Equation (5.1). Unfortunately, as a ~  becomes very 
large, which corresponds to a very long cylindrical shell, the above relation 
indicates a zero pressure. There is, consequently, considerable doubt about 
the validity of Equation (6.2). The first nonlinear analysis of buckling of a 
prolate spheroidal shell is due to R. G. Surkin [6.3] but this too is not com- 
pletely satisfactory because he introduced only one free parameter for each 
of the displacements and took for the other parameters the values found 
from analysis of a perfectly spherical shell. 

The most rational analysis of instability of a prolate spheroidal shell was 
given by B. Hyman in 1964 and 1965 [6.4] and [6.5]. He employed the co- 
ordinate system for the shell shown in Figure 6.2 and considered the buck- 
ling mode to consist of a single isolated indentation whose boundary lies in 
a plane parallel to the x-z plane and lying perpendicular to the y-axis. Thus, 
the equation of the boundary of the lobe is given as the intersection of the 
surface defined by Equation (6.1) with the plane y = c and is shown by the 
curved line in Figure 6.2. 

By defining a new parameter ~ by the relations: 

1 

x = b(1- c2 /b2 )'~ cos (? 

1 

z = a(1- c2 /b2 )~ sin d? 

(6.3) 

any point in the middle surface of the shell may be located by assigning ap- 
propriate values to the parameter c and ~. 
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The differential geometry of the prolate spheroidal surface may be ex- 
pressed in terms of a, b, c, ct and fl shown in Figure 6.2 and from these re- 
lations the three orthogonal displacements components are formulated. 
Now, the total potential energy of the system subject to hydrostatic loading 
may be formulated in terms of three free parameters. The Rayleigh-Ritz 
procedure is then invoked to obtain three coupled nonlinear equations gov- 
erning the postbuckling of the prolate spheroidal shell. These equations are 
best suited to computer solution using an iterative procedure. Hyman pre- 
sented computer results for load-deformation relations for a prolate spher- 
oidal shell having a thickness/minimum principal axis length of 1/40 and 
loaded by hydrostatic pressure. Complete load-deformation relations were 
presented for several modes. Results were compared with those obtained by 
R. G. Surkin [6.3] but there was no way to identify the mode corresponding 
to the Surkin solutions. The effect of varying the eccentricity of the gener- 
ating ellipse on buckling pressure was presented graphically in [6.4]. 

Also in 1965 J. J. Healey [6.6] published results of hydrostatic tests on a 
series of 25 unstiffened, epoxy resin prolate spheroidal shells. These had 
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length-diameter ratios ranging from 1.25 to 4.00 and thickness-radius ratios 
from 0.02 to 0.10. Empirical elastic buckling equations were presented 
from these test data. The relatively small scatter of experimental results sup- 
ports the contention that prolate spheroidal shells are less sensitive to initial 
imperfections than spherical shells. Two ring-stiffened prolate spheroidal 
shells were loaded by hydrostatic pressure and a semi-empirical method de- 
veloped for prediction of the elastic buckling resistance of such shells. 
Also, the use of a plasticity reduction factor provides a method for estima- 
tion of inelastic buckling strength of the hydrostatically loaded spheroidal 
shell. 

A 1977 publication by A. Z. Bakirova [6.7] from Kazan State University 
was concerned with effect of no-load geometric deviations from a perfect 
prolate spheroidal shell configuration subject to hydrostatic loading. It was 
assumed that the final buckled shape was geometrically similar to the no- 
load configuration and nonlinear shell analysis was employed to determine 
load-deformation relations. It was demonstrated that the effect of the initial 
irregularities is more serious for spheroids having a geometry close to that 
of a perfect sphere. 

Toroidai Shells 
Toroidal shells may serve to store compressed gas within a submersible. 

The toroidal configuration can, in certain circumstances, offer an attractive 
utilization of space not found for more conventional shapes such as cy- 
lindrical or spherical. Toroidal shells may be of circular or non-circular 
cross-section, constant or variable wall thickness. 
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Figure 6.3 
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The membrane stress analysis of an internally pressurized toroidal shell 
is a problem from elementary strength of materials [5.1]. A convenient co- 
ordinate system wherein any point in the shell middle surface is described 
by the coordinate ~ together with the longitude 0 is shown in Figure 6.3. 
Elementary theory indicates the principal stresses in the middle plane of the 
shell wall to be 

pR(r o + b) 
cro= 27rroh (6.4) 

pR (6.5) 
or0 = 2h 

where h denotes constant wall thickness, p represents pressure and R is 
"tube radius." For the same shell subject to external hydrostatic pressure the 
algebraic signs of Equations (6.4) and (6.5) would be negative to indicate 
compressive stresses prior to buckling. The problem of stresses in a circular 
cross-section toroidal shell whose thickness varies linearly along a generator 
from A to B in Figure 6.3 has been considered by V. A. Sukharev [6.8] using 
asymptotic integration techniques as well as computerized numerical in- 
tegration. 

One of the earliest analytical investigations of the stability of hydro- 
statically loaded toroidal shells is due to O. Machnig [6.9] in 1956. He con- 
sidered both axially symmetric as well as asymmetric buckling modes 
through the use of power series expansions of the orthogonal displacement 
components. Buckling loads as well as modes were presented in dimen- 
sionless form. However, in recent years some questions have arisen con- 
cerning the validity of the power series expansion for small values of b/R 
(see Figure 6.3). In 1966, P. F. Jordan [6.10] published the results of 
asymptotic solution of the governing equations for axisymmetric buckling of 
the torus and obtained lower buckling loads than found in [6.9]. 

In 1965 L. H. Sobel [6.11] and later Sobel and W. Fltigge [6.12] special- 
ized the stability equations for shells of revolution to the case of the torus 
and solved these equations in terms of harmonic functions. A detailed nu- 
merical study was made of the number of terms in the series required to ob- 
tain a numerically acceptable value of the hydrostatic buckling load. For en- 
gineering purposes it was shown that rarely are more than 20 terms required 
in the harmonic expansions of the buckling displacement components. 
These authors also carried out experiments on toroidal shells pressed from 
type 17-7PH steel as well as type 6A1-4V titanium. Test buckling loads 
were approximately ten per cent above or below the analytically predicted 
values. The models had a b/R ratio of either 8.04 or 6.32 but the authors 
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pointed out that agreement of test with theory might not be so good for 
smaller values of b/R. 

In 1970, E. Fishlowitz [6.13] presented results of a series of hydrostatic 
tests on eight plastic toroidal shells of circular cross-section. The models 
were cast in aluminum molds in the shape of half of a full circular cross- 
section of a toms. The model material consisted of a mixture of two epoxies 
heated and poured into the warmed molds into which was forced a solid, 
machined, wood toroidal form to simulate the interior of the desired torus 
and placed to that the cured epoxy would fill the space between the alu- 
minum mold and the wood core. The wood form was then removed and the 
inside surface of the cured epoxy then machined to create a smooth interior 
surface to the the torus. Then, two such epoxy models were joined along a 
diametral plane by the same mixture of epoxies employed in casting the 
shell. Models were tested either by (a) submerging the toroidal shell in a 
pressure tank, or (b) removing some of the air in the model to create a dif- 
ferential pressure with the atmospheric pressure on the shell providing the 
loading. Shell thicknesses were monitored and electric resistance strain gag- 
es mounted to monitor strains during the loading procedure. 

Buckling pressures found experimentally were then compared with two 
analyses. The first is due to L. H. Sobel and W. Fltigge [6.12] and the sec- 
ond is due to D. Bushnell [6.14]. The latter was developed for any shell of 
revolution but here specialized to the case of a circular cross-section toroidal 
shell. It was found that the Bushnell analysis agreed rather well with test re- 
suits. The Sobel-Flugge theory agreed well with about half of the experi- 
mental results but over-estimated the buckling load for models having b/R 
ratios ranging from 2.3 to 3.6. In general, the Bushnell analysis is somewhat 
more conservative in its predictions. Lastly, test results showed that hydro- 
statically loaded toroidal shells are insensitive to imperfections. 

Another instance where toroidal shells may be found in submersibles is 
as a component of an end cap for a cylindrical shell containing compressed 
gas for various on-board uses. The diametral cross-section of the internally 
pressurized vessel is of the form shown in Figure 6.4, where the pressure 
vessel consists of a circular cylindrical shell, a relatively shallow spherical 
cap, with a portion of a toroidal shell serving as a transition element be- 
tween the sphere and the cylinder. The toroidal region is usually termed a 
knuckle, and the entire system is axisymmetric about the vertical axis of rev- 
olution, and subject to uniform internal gas pressure. 

In 1959 G.D. Galletly [6.15] was the first to point out that the dom- 
inating stress in the knuckle is a relatively large compressive hoop stress. 
Consequently, for relatively thin knuckles buckling of the knuckle is one 
possible mode of failure. The buckling is elastic if the material of the 



Other Shell and Plate Geometries 159 

Spherical Cap 

. ~ Torus 

Cylindrical 
Shell 

-~------ D 

Figure 6.4 

knuckle has a relatively high value of the ratio of yield stress to elastic mod- 
ulus. If the knuckle is sufficiently think, failure will usually be by plastic 
collapse. This was investigated by D.C. Drucker and R.T. Shield [6.16] on 
the basis of limit analysis. Tests carried out by J. Mescall [6.17] on inter- 
nally pressurized shells of the configuration shown in Figure 6.4 indicated 
that the elastic buckling failure occured with formation of a relatively large 
number of essentially equally spaced lobes (dents) along a meridian ex- 
tending over the entire toroidal region, i.e. from the juncture of the toroidal 
segment to the cylindrical shell, and also to its juncture with the shallow 
spherical cap. The models tested were polyvinyl chloride. 

In summary, this relatively common configuration of an internally pres- 
surized gas or liquid storage container may buckle elastically or into the 
elasto-plastic range of action. This unusual situation is in contrast to other 
geometries discussed in this book. Galletly [6.15] has given a warning to 
designers that this rather unusual (and startling) possibility must be re- 
membered. Further, he has found that it is necessary to utilize finite def- 
ormation shell theory for both stress analysis as well as buckling analyses in 
the elastic as well as elasto-plastic ranges in order to obtain satisfactory 
agreement between theory and experiment [6.19]. To achieve this he em- 
ployed the shell computer program BOSOR-5 due to D. Bushnell [2.5], 
[6.18] which permits finite deformations into the elasto-plastic range and 
takes account of isotropic strain-hardening. Either flow or deformation the- 
ory may be used in this program. His work indicated that buckling of inter- 
nally pressurized torispherical shells is relatively insensitive to small geo- 
metric imperfections of no-load geometry. The numerical investigations 
covered the dimensionless parameters Rs/D - 1, r/D - 0.06 to 0.20 and D/h 
= 750, 10~,  and 1250 where these parameters are defined in Figure 6.4. 
Curve fitting applied to these numerical results led to the relation 
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~ y p  28511 - 125Crypl(r/D) ~ 
= (D/t)  1"53 (R s/D) L1 (6.6) 

for 500<D/h<1500 where Cryp denotes yield point of the material and p rep- 
resents internal pressure that will cause buckling of the torisphere and 
knuckle. In 1981 Galletly [6.19] and in 1985 Galletly and J. Blachut [6.20] 
carried out further numerical studies to include D/h ratios as low as 250 and 
employed additional values of yield stress. These results led to the ap- 
proximate equation 

~ y p  120(r /D)~ 
1.18 (D /t)  T M  (R s/D) (6.7) 

for buckling pressure based upon deformation theory of plasticity. 

Circular Plates 
Circular plates, usually with a concentric circular hole, are often found 

in submersibles. They serve to strengthen a cylindrical pressure hull as well 
as offering a point of attachment for various optical or electronic or electric 
sub-systems carried inside the vehicle. 

The hydrostatic loading on the cylindrical hull is transmitted to the cir- 
cular plate (diaphragm) by means of (a) compressive radial forces acting at 
the outer boundary of the plate and directed toward the longitudinal axis of 
the cylinder, and (b) bending moments acting on the outer circular edge of 
the plate representing interaction between the flat plate and the cylindrical 
shell. 

The stress analysis based upon linearized small deformation theory of 
elasticity for a thin, hollow circular plate subject to radial compressive forc- 
es, as shown in Figure 6.5 is found in many sources treating elasticity and 
will not be repeated here. Buckling of the circular plate is a somewhat more 
difficult problem. The classical analysis based upon small lateral de- 
flections is to be found in [6.21]. In it, the governing equation has the form 

DV4w + pV2w = 0 (6.8) 

where w denoted lateral deflection, D is flexural rigidity, and p denotes radi- 
al pressure. Also V 4 represents the biharmonic operator and V 2 the La- 
placian in polar coordinates. In [6.21] Equation (6.8) is solved to find the 
critical load necessary to hold a clamped edge plate having no central hole 
in a deflected axisymmetric configuration to be 
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( Nr)cr = 14. 68D p~ (6.9) 

where N r is the radially-oriented edge load per unit length of plate circum- 
ference and R o represents the outer radius of the plate. Reference [6.21] 
also gives buckling loads for the circular plate having a concentric circular 
cutout of radius R i in terms of the ratio Ro/R i. 

Ro h 

Figure 6.5 

Large lateral deflections of buckled circular plates are governed by the 
polar coordinate form of (2.62) and (2.63). Axisymmetric buckling of the 
edge-compressed circular plate has been studied by G. A. Wempner and R. 
Schmidt [6.22] through a rapidly converging series solution of each of the 
two governing deformation parameters. The same problem was investigated 
by I. J. Weinberg [6.23] using the governing equations due to E. Reissner 
[6.24]. Buckling loads were determined for (a) clamped outer edge, and (b) 
simply supported outer edge conditions. 

Perhaps the most comprehensive information available to designers of 
in-plane loaded circular plates was offered by G. M. Hong, C. M. Wang, and 
T. J. Tan [6.25] in 1993. It pertains to a thick circular plate subject to radial 
loading around its outer boundary and allows for no-load initial imperfec- 
tions of the plate. Since the plate was taken to be thick shear effects were 
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included and shown to be as important as the initial deformations. The fi- 
nite deformation plate equations [2.62] and [2.63] were extended to include 
the shear deformations. An analytical solution for load-central deflection re- 
lations was obtained for the case of (a) clamped, and (b) simply supported 
boundaries under uniform radial in-plane loadings. 

Viewing Windows 
Many of the submersibles mentioned in Chapter 1 have viewports, usu- 

ally of contemporary acrylic. DENISE employed by J. Y. Cousteau in 1960 
had two two-inch (50.8 mm) diameter windows facing forward. The initial 
configuration of ALVIN with a steel pressure hull having a depth capability 
of 6000 feet (1,830 meters) had five plexiglas windows designed by J. W. 
Mavor, Jr.[6.26] based upon the work of August Piccard [6.27] related to 
TREISTE II. ALUMINAUT had four four-inch (101.6mm) windows facing 
forward. The DEEP OCEAN WORK BOAT had two windows, one facing 
forward, the other facing directly underneath the vehicle. All more recent 
submersibles had comparable viewing systems. In most cases the windows 
were clear acrylic (plexiglas or lucite) having a lower index of refraction 
and higher light transmission than optical quality glass. Further, at high 
pressure such as found at the floor of the sea, acrylic exhibits cold flow, thus 
distributing internal stresses. Also, acrylic becomes translucent prior to fail- 
ure, thus giving warning of impending disaster. Glass, when reaching crit- 
ical stress, behaves in a brittle manner prior to bursting. 

In the late 1960's, J. D. Stachiw [6.28], [6.29] and [6.30] carded out tests 
on determination of critical hydrostatic pressure on (a) flat acrylic windows, 
(b) conical acrylic windows, and (c) spherical windows each subject to 
short-term loading. For short-term the loading rate was taken to be 650 

i~ D o High pressure face 
under hydrostatic pressure 

~ Low pressure face 
under ambient 

Di atmospheric pressure 

Figure 6.6 
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pounds/in 2 (4.48 MPa) per minute from zero to the moment of failure of the 
window. For flat acrylic windows, specimens were machined to have the 
thickness/diameter ratio less than unity, and with unsupported openings in 
the flange of the test apparatus (Figure 6.6) of 1.5, 3.3, and 4 inches (38.1, 
83.8, and 101.6 mm). Peak pressure as great as 28,000 pounds/inch 2 (193 
MPa) were required to fracture the specimens. 

For conical windows, tests were carded out using a machined conical 
opening in a massive steel block for various cone angles as shown in Figure 
6.7. 

Window 

Steel 
block 

Window 
Mounting 

Figure 6.7 Reprinted from Reference [6.29] with permission of the 
American Society of Mechanical Engineers 

The investigation included 30, 60, 90, 120, and 150 ~ cone angles. An- 
other parameter employed was the ratio of window thickness to the minor 
diameter, D i, i.e., the diameter of the low pressure surface of the conical 
window. All window specimens had a one inch (25.4 mm) minor diameter. 
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Extra support was given the edges of the acrylic conical window so to pre- 
vent premature failure near the flat surfaces of the window. This support 
was introduced by the wall of the cylindrical cavity shown in Figure 6.7 so 
that when the window extrudes through the opening in the steel block the 
acrylic is restrained radially. Windows were sealed in the machined opening 
by means of silicone grease. Pressurization was at the rate of 659 pounds 
per square inch (4.54 MPa) per minute. Three types of window failure re- 
suited, depending upon window geometry. Extrusion of the model through 
the opening shown in Figure 6.7 occurred for windows having a 30 ~ cone 
angle, and to some extent in the 90 ~ windows. Combined cold flow-crater 
flexure failure occurred primarily in the 60 ~ windows and to some extent in 
the 90 ~ models. Fracture cones, analagous to a conch shell, developed on 
the low pressure faces, and a cold flow crater on the high pressure face. 
Combined shear cone-flexure occurred in most of the 120 ~ and 150 ~ conical 
windows. It was concluded that the cone angle is an important factor in re- 
sistance of such windows to short-term hydrostatic loading, an increase in 
the angle usually leading to an increase in the critical pressure of the win- 
dow. The 90 ~ cone angle was thought to lead to optimum resistance under 
short-term loading, while needing only a modest size mounting. 

Another investigation of acrylic, conical viewports was carried out by F. 
M. Schwartz [6.31] at the Naval Ship Research and Development Center, 
Washington, D. C. in 1968. Windows with inside diameter-to-thickness ra- 
tios of 1.0, 1.5, and 2.0 were tested under hydrostatic pressure with sig- 
nificant strains being monitored by electric resistance strain gages. The con- 
ical viewport was also studied by means of a finite element analysis for 
hydrostatic loading. Good agreement was found between measured strains 
and the finite element predictions. Cyclic loading was also investigated ex- 
perimentally, as well as dynamically applied hydrostatic loading. Loading 
rates varied over the range of 100 pounds/in 2 (0.690 MPa) to 15,000 
pounds/in 2 (103.4 MPa) per minute. For these acrylic specimens Young's 
modulus in compression was found to 4.6 x 105 pounds/in 2 (3171 MPa) in 
compression and slightly less than this value in tension. The modulus was 
temperature dependent, increasing as temperature decreased. Strength was 
found to be dependent upon loading rate. An ultimate compressive strength 
of approximately 14,300 pounds/in 2 (98.6 MPa) was measured at 74~ 
(23.3~ and a strength of 19,500 pounds/in 2 (134.4 MPa) existed at 36~ 
(2.2~ Tensile strengths ranged from 7200 to 4800 pounds/in 2 (49.6 to 
33.1 MPa). Creep was measured under uniaxial compression and was no- 
ticeable at relatively low stress levels. Normal strains increased ap- 
proximately 20 percent at a stress level of 6000 pounds/in 2 (41.4 MPa) over 
72 hours at 36~ (2.2~ Very rapid creep was observed at 15,000 pounds/ 
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in 2 (103.4 MPa) and creep became uncontrollable at 18,000 pounds/in 2 
(124.1 MPa). Results were presented in the form of a plot of submergence 
depth as a function of the dimensionless ratio of window inside diameter to 
thickness for (a) satisfactory cyclic performance, (b) initiation of permanent 
deformation at window center at 72 hours, and (c) short-term collapse while 
descending at a rate to 500 ft/minute (152.5 m/minute). 

J. D. Stachiw continued his earlier work at the Naval Civil Engineering 
Laboratory to include long-term hydrostatic pressure of 20,000 pounds/in 2 
(137.9 MPa) in 1970 acting on a conical acrylic window with cone angles 
varying from 30 ~ to 150 ~ [6.32]. This peak pressure was maintained for 
times up to 1 0 ~  hours duration He tested 1200 specimens having thickness 
to minor diameter ratios of 0.750 to 2.000. Tests indicated that only win- 
dows with thicknesses to minor diameter (t/D) greater than unity with cone 
angles to 60 ~ or more will not fail in less than 1000 hours of sustained hy- 
drostatic loading despite the fact that some cracking in the interior of the 
window will take place. For optically acceptable service of 1000 hours du- 
ration under 20,000 pounds/in 2 (137.9 MPa) the window must have t ~  
greater than two with a cone angle of at least 90 ~ 

For spherical windows, [6.33] model as well as full scale acrylic speci- 
mens in the form of spherical shell lenses with parallel convex and concave 
surfaces were subjected to hydrostatic loading on their convex surfaces at 
the rate of 650 pounds/in 2 (4.48 MPa) per minute while at the same time the 
concave surface was at atmospheric pressure. Thirty-six models were test- 
ed, as shown in Figure 6.8 with model window thicknesses ranging from 
0.250 to 1.200 inches (6.35 to 30.48 mm) and of the full scale windows 
from 0.564 to 4.000 inches (14.3 to 101.6mm), while the included spherical 
sector angle of the window varied from 30 ~ to 180 ~ in 30 ~ increments. The 
face of the window exposed to hydrostatic pressure had a diameter ranging 
from 6.200 to 35.868 inches (157.5 to 911.0 mm) while the face exposed to 
atmospheric pressure had diameters ranging from 1.423 to 5.500 inches 
(36.14 to 139.7 mm). Experimental results indicated that the critical pres- 
sure of the spherical acrylic windows was always greater than for the con- 
ical or flat disc acrylic window of the same thickness low pressure face di- 
ameter subjected to this short-term hydrostatic loading. The spherical 
windows also provided a larger field of view to the observer. 

At the Naval Undersea Research and Development Center, San Diego, 
California, J. D. Stachiw and colleagues [6.34] have examined the feasibility 
of utilizing complete spherical acrylic pressure hulls for undersea explora- 
tion. It was demonstrated experimentally that such acrylic pressure hulls are 
reliable if the viscoelastic temperature-dependent properties of the acrylic 
are taken into account during the design stage. Such pressure hulls with 
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Figure 6.8 Reprinted from Reference [6.30] with permission of the American 
Society of Mechanical Engineers 

panoramic visibility are highly desirable for many undersea activities. This 
study led to construction of the NEMO Model 2000 spherical pressure hull 
suitable for manned submersibles with 3000 foot (915 m) operational depth 
capability. The 66 inch (1.68 m) outside diameter acrylic spherical shell 
with aluminum hatches successfully withstood 24 hour external pressur- 
izations of as much as 1800 pounds/in 2 (12.4 MPa). Crackfree fatigue life 
of 1000 pressure cycles to 1500 pounds/in 2 (10.3 MPa) was determined ex- 
perimentally. In summary, the NEMO model 2000 spherical acrylic pres- 
sure hull was considered to be acceptable for 3000 feet (915 meter) opera- 
tional depth capability. 

It has become customary to rate such submersibles in terms of "ft.hr" 
where, as an example, if the system has been subjected to 1,000 cycles 
(dives) each to a 3000 foot depth, with each dive having a duty time of four 
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hours, then that is calculated as (1000 cycles) (3000 foot)(4 hours), amount- 
ing to 12 x 106 ft.hr. When the sum of feet.hours comes to 12 x 106, gas- 
kets, nozzles, etc., should be removed and the pressure hull subjected to a 
detailed visual examination. The NEMO Model 2000 tests indicated a cy- 
clic fatigue life of at least 12,000,000 ft.hr. 

In summary, adequate experimental data exist to permit rational design 
of acrylic windows suitable for almost any ocean depth under static as well 
as load-cycling conditions. 
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