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FOREWORD

Ground penetrating (or probing) radar (GPR) is a vital technique on which the day-to-day
safety of literally millions of people depend. The technology allows a very wide range of
verifications, the most common being the safe and accurate location of the position of
buried pipes and utilities, investigating the reinforcement and condition of roads, bridges,
and airport runways, and identifying the structural integrity of buildings. Other important
applications include locating buried potential hazards such as mine shafts and voids,
investigating environmental and geological conditions (both of natural and man-made
origin), studying glaciology, locating, identifying, and investigating archaeological sites,
and uncovering forensic evidence including buried human remains and weapons.

Although the technology is widely used, it is a highly specialized area that requires a
good understanding of the underlying science if it is to be applied successfully. In addi-
tion to the technical journals that regularly carry scientific papers on both the theory and
application of GPR, there are two major biennial international conferences, namely the
International GPR Conference and, in the intervening years, the International Workshop
on Advanced GPR. In terms of books, the fundamental cornerstone of GPR in all its
applications has long been David J. Daniels’ Ground Penetrating Radar. However,
one book, regardless of how well it is researched and written and how comprehensively
it addresses its subject matter, cannot cover all aspects of the science to the equal satis-
faction of all users. This current volume is not intended for the general reader or for any-
one for whom this is a completely new subject. Rather it is aimed primarily at doctoral
and post-doctoral students who wish to develop their understanding of the technology
and, in particular, how the results may be developed and interpreted.

Dr. Persico has been a practitioner and researcher in GPR for many years, primarily
interested in the resolution of inverse problems, with particular application to archaeo-
logical investigations and the conservation of cultural heritage. From his background in
Physics and Mathematics and the expertise he has built up, he applies processing and
interpretative techniques to GPR data collected with the primary aim of conserving, pre-
serving, and rehabilitating buildings of historical importance and also archaeological
remains. In 2010 he chaired the 13th International GPR Conference, held in Lecce, Italy.
He is also an active member of the European GPR Association within which he has
worked to build a virtual library, accessible to the membership through the Association
website (www.eurogpr.org). His considerable expertise makes him an ideal candidate to
share his knowledge and understanding of GPR interpretative techniques with other
researchers and users.

xiii



This book consists of 15 chapters and 7 appendices, the aim being to introduce the
reader to the complexities of using and interpreting GPR data step by step. An important
feature of this book is the inclusion of questions at the end of almost all of the chapters,
allowing the reader to assess his or her progress in understanding the subject. The
answers to questions are in Appendix G.

Beginning with a general definition and description of GPR technology, this book
goes on to consider an important basic characteristic of GPR operation, namely the inter-
dependence of the nature of the survey medium with the transmission of the electromag-
netic pulses through that medium. Chapter 3 considers the time and frequency aspects of
GPR transmission and their implications. The following two chapters concentrate on the
mathematical aspects of GPR transmission including Maxwell’s equations, the effects of
incident fields, and the relevant scattering equations considered in two dimensions for
dielectric and magnetic materials (Chapters 4 and 5).

Continuing into methods of making the interpretation of GPR data more accessible,
the next section describes a number of mathematically based constructs that can be used
for this purpose. Chapter 6 introduces the reader to the nature of inverse scattering pro-
blems and the associated mathematical uncertainties to be addressed in resolution. In
Chapter 7, data processing steps typically associated with improving raw GPR data
are described in detail and their effects are illustrated.

The Born approximation has become a standard algorithm to apply to GPR data and
has also formed the basis of much of Dr. Persico’s own research work. The Born approx-
imation and its application to magnetic targets and also to weak and strong signal reflec-
tors is described in full in Chapter 8. Leading on from this, the theoretical basis and
application of diffraction tomography is the next topic, including: the consideration of
horizontal and vertical resolution of targets; related sampling issues in space, frequency,
and time; and the radiation characteristics of radar antennas (Chapter 9). Chapter 10 deals
with two-dimensional migration algorithms in the frequency domain and the time
domain.

Chapter 11, contributed by Drs. Lo Monte and Solimene together with Dr. Persico,
extends data treatment into the development of three-dimensional scattering equations
based on Maxwell’s equations and includes particular consideration of Green’s function
applied to three-dimensional space. This is followed by extending the analysis of diffrac-
tion tomography into three dimensions with careful consideration of the sampling para-
meters required for the application of the technique in order to reconstruct the target(s)
reliably from the GPR data (Chapter 12). This is important because improving target res-
olution from appropriate survey parameters is of primary importance in all GPR
applications.

Building on the previous chapters, Chapter 13 considers the corresponding deriva-
tion of three-dimensional migration algorithms, first in the frequency domain and sub-
sequently in the time domain before comparing two-dimensional and three-
dimensional migration formulas in the time domain by means of a worked and illustrated
example.

Chapter 14 considers the alternative technique of singular value decomposition. The
same careful mathematical logic is used to derive the singular value decomposition
before considering its application to GPR data.

xiv FOREWORD



Finally, Chapter 15 provides a variety of worked examples and exercises to illustrate
some of the concepts covered in the preceding chapters. This begins with an examination
of measuring propagation velocities followed by two sets of exercises dealing with target
resolution, namely the interrelation of spatial sampling and horizontal resolution and the
effects of frequency sampling on vertical resolution. Both of these latter two concepts are
integral to understanding the capability of any GPR. The next set of exercises is con-
cerned with trialing the number and categories of unknowns treated in the equations
in order to optimize the quality of the GPR data without undue processing simply for
the sake of it. This is followed by exercises examining frequency and spatial content
of the data and consideration of the effects of measurement from above the soil–air inter-
face (instead of directly coupled). Extending the area of investigation provides the basis
for the next set of exercises, an important consideration given that this varies extensively
from one survey to another. This is followed by exercises using background removal, the
single most extensively applied processing technique for all GPR surveys since, by def-
inition, it is the anomalous material that forms the targets. The added complication of
complementary data sets in different orientations is then considered, based on a real
archaeological example and including contributions from Drs. Ciminale, Leucci, and
Matera. Lastly, the results of further 2D and 3D inversion techniques are compared (with
the collaboration of Dr. Catapano).

Detailed mathematical workings in support of the content of the chapters are pro-
vided in full in the appendices.

This is not a volume for a beginner, but it is a careful and comprehensive enumer-
ation and explanation of the mathematical concepts inherent to GPR. It should provide a
useful platform for those who wish to delve deeper into the subsurface of the technology
and equip themselves with the mathematical tools for handling their own data sets.

ERICA CARRICK UTSI

November 2013
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1

INTRODUCTION TO GPR
PROSPECTING

1.1 WHAT IS A GPR?

Ground-penetrating radar (GPR), also known as surface-penetrating radar (SPR)
(Daniels, 2004), is literally meant as a radar to look underground. Actually, it is used
to look into both soils and walls and, recently, even beyond walls.1

In principle, the GPR can be viewed as composed by a central unit, a transmitting
antenna, a receiving antenna, and a computer. The central unit generates an electromag-
netic pulse or, more generally, an electromagnetic signal that is radiated into the soil
by the transmitting antenna. The signal is radiated in all directions, but most energy
is radiated within a conic volume under the antenna, as shown in Figure 1.1. When
the electromagnetic waves meet any buried discontinuity (a buried object but also the
interface between two geological layers, a cavity, a zone with different humidity,
etc.), they are scattered in all directions according to some pattern depending on the
buried scenario. Consequently, they are partially reflected also toward the receiving

1Actually the instruments that perform the so-called “through wall imaging” are not customarily considered
GPR systems. However, we can say that conceptually they are at least a hybrid between a radar and a GPR.

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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antenna, again according to Figure 1.1. More precisely, Figure 1.1 is intended to be the
central cut of a three-dimensional scenario.

Usually, both the transmitting and the receiving antennas are incorporated into a
rigid structure2 and move together. The gathered signal is customarily represented in real
time on the screen of the computer3 and is stored in the hard disk of the computer. It is
implicit that the equipment of a GPR also includes suitable cables to connect the central
unit, the antennas, and the computer, along with a device to provide energy in the field.
The energy is usually supplied by rechargeable batteries in the form of a zero-frequency
electrical voltage. The central unit transforms this energy into a signal in the microwave
frequency range. Modern systems are often also equipped with a GPS, in order to
geo-reference the probed areas.

In Figure 1.2, a photograph of a GPR is shown, and the main components are put
into evidence. The trolley is facultative, but extremely useful for prospecting on the soil.
Usually, the antennas are also equipped with an odometer that allows us to measure the
covered distance.

Tx Antenna Rx Antenna

Air

Soil

–1

–0.5

0.5

1.5

2.5

–2.5 –2 –1.5 –1 –0.5 0
x [m]

z 
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0.5 1 1.5

Target

2 2.5
3

1

2

0

Figure 1.1. The working principle of a GPR.

2 The couple of antennas is often enclosed in a unique box, and the whole box is improperly called the “GPR
antenna.”
3 In the past, other recording systems were exploited as described in Daniels (2004) and in Jol (2009), because
the GPR was invented much earlier than the laptop.
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The odometer is an important detail, because it allows us to compensate for the nat-
ural nonuniformity of the velocity of the human operator while driving the GPR: that is, it
allows us to achieve a uniform sampling of the GPR signal along the observation line.

However, in some cases it is impossible to make use of the odometer—for example,
because the prospecting is on a sandy area that hinders the rotation of the wheel. In these
cases, periodical markers have to be recorded along the observation line, which is
partitioned into segments of known length. The velocity of the instrument (and thus also
the sampling) is considered constant within each segment but not along the entire
observation line.

The working principle of a GPR is the same as that of a conventional radar.
However, there are meaningful differences between the two instruments, in terms of
technologies, exigencies, applications, and frequency bands (Daniels, 2004; Levanon,
1988). In particular, unlike the conventional radar, usually a GPR has to identify static
targets, and in most cases the interpretation of the data is not requested in real time. On the
other hand, in GPR prospecting the electromagnetic waves do not propagate in air but
instead propagate in more complicated host media, customarily lossy and inhomogene-
ous, possibly dispersive, and in some cases anisotropic and/or magnetic (Daniels, 2004;
Jol, 2009; Conyers, 2004). Last but not least, in GPR prospecting the characteristics of
the host medium are usually not known a priori and have to be estimated from the data, as
described in more depth in the next chapter.

Laptop

Central unit

Batteries

Antennas

Figure 1.2. Photograph of a GPR (a Ris Hi Mode system) equipped with a double antenna at

200 and 600MHz antenna.
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1.2 GPR SYSTEMS AND GPR SIGNALS

There are essentially two kinds ofGPR systems: the pulsed one and the stepped-frequency
one. A pulsed GPR system radiates and receives the echoes to electromagnetic pulses.
On the other hand, a stepped-frequency GPR decomposes the electromagnetic pulse into
its spectral components and radiates them sequentially. Consequently, it radiates and
receives trains of sinusoidal signals. The soil and the buried targets usually have a linear
behavior with respect to the radiated GPR signal, in the sense that the signal scattered by
the buried targets is a linear quantity (more details will be given in Chapter 6) with respect
to the incident signal. Moreover, the soil can usually be considered a time-invariant
medium within the time needed for the GPR measurement campaign. This makes the
pulsed and the stepped-frequency GPRs theoretically equivalent. In practical terms,
however, stepped-frequency systems are generally claimed more performing (Noon,
1996), even if the pulsed systems are quite more common and their technology has been
assessed for a longer time. So, the debate about what kind of system is really the best one
(or at least the most convenient one in dependence of the application) is still open. In this
text we will not enter such a debate, which is mainly based on technological aspects, but
will deal with both some analytical and practical aspects of the GPR prospecting in
relationship with both systems. In particular, whatever the system, the GPR signal can
be regarded as a function of the spatial point and of the time or the frequency indifferently,
because of course we can Fourier transform pulsed GPR data in frequency domain
and we can back-Fourier transform stepped-frequency GPR data in time domain.

Following a widely accepted terminology (Daniels, 2004), the GPR data relative
to a single spatial point will be labeled as an A-scan or just a GPR trace, and the com-
prehensive set of GPR traces relative to an entire scanned line will be labeled as a
B-scan. A B-scan corresponds to a matrix of numbers: N time (or frequency) samples
times M spatial positions—that is, M traces each of which discretized into N samples.
This is equivalent to assuming that the GPR “stops” in each A-scan position, gathers
the data in that position, and goes on to the next position. Actually, in most cases the
data are gathered in continuous mode—that is, the GPR gathers the data while
moving—but the model “stop-gather-and-go-on” is in most cases acceptable because
of the huge difference between the velocity of propagation of the electromagnetic
signal and the velocity of the human operator, even if the time required to store an
A-scan is actually quite longer than its formal time bottom scale. This happens
because of several reasons such as sequential sampling (for pulsed systems), integra-
tion time of the harmonics (for stepped frequency systems), and stacking (for both).
Here, we will not focus on these aspects, which are mainly technological and already
explained elsewhere (Noon, 1996; Daniels, 2004; Jol, 2009). Let us just restrict
ourselves to say that a nonexcessive (the quantification is case-dependent) and
constant velocity during the data acquisition is always a good rule of thumb. The
comprehensive set of GPR data relative to a series of parallel B-scans is usually
labeled as a C-scan. In general, what is immediately visualized in the field is a B-scan
in some color or gray tone scale. These data, usually called raw data, can allow us to
identify targets of interest, but in general the image and its interpretation can improve
meaningfully after a suitable processing.
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1.3 GPR APPLICATION FIELDS

A meaningful overview about the GPR applications is beyond the purposes of this
book and is not its goal. Notwithstanding, for sake of self-consistency, a brief outlook
is provided.

Within the field of the archaeology (Conyers, 2004), GPR can allow us to identify
the areas with alleged interesting buried remains, which in turn allows us to avoid
an exhaustive and expensive (sometimes too expensive) excavation. Another issue of
interest is the field of the preventive archaeology—that is, the preventive prospecting
of areas where something is going to be built (a road, a building, an underground station,
etc.). This mitigates the risk of destroying archaeological sites and also mitigates the
economic risk that the works will be stopped by some Cultural Heritage Institution.

Monitoring of monuments as historical buildings, statues (Sambuelli et al., 2011),
ancient fountains, historical bridges (Solla et al., 2011), and so on, is another subject
of interest. In particular, GPR monitoring (possibly integrated with other geophysical
investigations) can give information about the state of preservation of the monuments
and can provide useful information in order to address a restoration project properly.
In some cases, information of historical interest can also be achieved—for example,
about the presence of walled rooms, crypts, hypogeum rooms, tombs, hidden frescoes,
and so on (Pieraccini et al., 2006; Grasso et al., 2011).

GPR prospecting is also exploited in civil engineering (Grandjean et al., 2000;
Utsi and Utsi, 2004). In particular, it can be used to identify structural damages and
to investigate about hidden structures like sewers or water and gas pipes, whose presence
is in many cases not precisely documented.

Demining is another important application. In particular, modern mines are custom-
arily built with plastic materials with only little or even no metallic parts. Therefore, they
are often hardly visible or completely invisible to a metal detector. Moreover, a metal
detector is not able to provide all the details possibly available from a GPR system,
namely the position (in particular the depth), the size, and (among certain limits) the
shape of the buried target. Demining has been dealt with for years within the GPR
community (Groenenboom and Yarovoy, 2002), and it has also been successfully
performed many times (Sato and Takahashi, 2009).

GPR prospecting is also exploited for asphalt monitoring.4 In particular, it is possible
to identify subsidences or damaging before they become worse or even dangerous for
drivers and pedestrians. These problems are even more pressing in areas where the roads
frost in the winter and thaw in the spring (Hugenschmidt et al., 1998; Villain et al. 2010).

In several application fields, it can be particularly useful to make use of advanced
GPR systems equipped with a large array of antennas (Sala and Linford, 2010; Böniger
and Tronicke, 2010). These systems can gather simultaneously several (up to 14 and
more) measurement lines with a unique going through. On the other hand, these systems
need a quite flat scenario to provide good performances, because the arrays are rigid and
possibly quite large (up to 2 m and larger).

4 In this case, the antennas are usually mounted on a car.
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GPR prospecting is also applied with regard to mines and pits. In particular, it can
help to identify shallow veins of the mineral of interest (Ralston and Hainsworth, 2000;
Francke, 2010) and can even help with regard to some safety issues. In fact, fractures,
water infiltrations, or just obsolescence can badly affect the stability of the structure,
in mines as well as in tunnels (Grodner, 2001; Cardarelli et al., 2003). In some cases,
even explosive gases trapped in natural cruets can be met while digging, especially in
coal mines (Cook, 1975).

Another application of interest is GPR prospecting on the ice (Arcone et al., 2005).
In particular, polar ice contains information about the geological history of our planet and
can also provide information about the occurring climatic and environmental changes.
GPR prospecting can be successfully performed on both fresh and salty ice.

GPR prospecting on fresh water is a field of interest too—for example, for sedimen-
tology applications in relationship with the bottom of lakes, ponds, or rivers5 (Smith and
Jol, 1997). Liquid seawater, instead, is customarily too lossy to allow a reliable GPR
prospecting.

Industrial agriculture is another applicative field where it is of interest to devise an
intelligent exploitation and distribution of the water (Friedman, 2005). In this framework,
GPR can be a useful tool for the evaluation of the electromagnetic characteristic of the
shallower layers of the soil, and in particular its dielectric permittivity. Some semiempi-
rical relationships (Topp et al., 1980) can in some cases allow us to estimate the water
content from the dielectric permittivity.

Let us also mention the subject of the GPR investigation onMars,6 where unmanned
vehicles are gathering data, mainly looking for water and, consequently, the possible
(current or past) presence of life (Picardi et al., 2005).

Finally, let us also prompt (a) forensic applications, where, for example, buried
corpses or hidden weapons are looked for (Hammon et al., 2000), and (b) borehole
prospecting (Ebihara et al., 2000), where antennas are lowered in one (reflection mode)
or two (transmission mode) carrot-holes.

1.4 MEASUREMENT CONFIGURATIONS, BANDS,
AND POLARIZATIONS

GPR data are mostly taken in reflection mode and, if possible, the antennas are preferably
in contact with or at very short distance from the structure to be probed. However, in
some cases the data are necessarily moved in a contactless configuration—as, for exam-
ple, in demining (Sato and Takahashi, 2009) and asphalt monitoring (Hugenschmidt
et al., 1998) or also for the monitoring of works of art that cannot be touched
(Pieraccini et al., 2006).

In most cases, the antennas are rigidly placed in a unique box and move together, but
in some cases the two antennas can be moved separately from each other. This is a

5 In this case, the antennas are usually mounted on a boat.
6 In the past also GPR data from the Moon have been analyzed.
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valuable resource, especially in order to measure the electromagnetic characteristics of
the soil by gathering common midpoint (CMP), wide angle reflection and refraction
(WARR), or trans-illumination data (Davis and Annan, 1989; Daniels, 2004; Conyers,
2004; Jol, 2009). Actually, sometimes the WARR configuration (also called multistatic
multiview) is exploited not only to measure the characteristics of the soil but also to
improve the image of the buried scenario. However, this is unpractical on a large scale,
and the improvement achievable on the image is usually quite marginal, because the
information achievable from the spatial diversity is not independent from that achievable
from the frequency diversity (Persico et al., 2005; Persico, 2006).

Customarily, the electromagnetic characteristics of the soil and/or of the buried tar-
gets also depend on the frequency. This is expressed by saying that the soil (more in gen-
eral the propagation medium) and/or the targets are dispersive. Several dispersion laws
are known (Lambot et al., 2004), but it might be not easy to establish in the field what is
the most suitable dispersion law for the application at hand. Therefore, as a matter of fact,
in most cases the dispersion is not accounted for in the data processing. More precisely,
we can say that the dispersion phenomenon is more often considered if the purpose is to
characterize the propagation medium in itself, and more rarely if the purpose is to focus
the targets embedded in it.

In general, the needed band of frequencies depends on the particular application.
Customarily, as is well known, lower frequencies penetrate the opaque structures better
than higher frequencies but provide a worse image of the targets. This drives us to use low
frequencies (below 200MHz) if the required investigation depth overcomes 5–7 m or
more (e.g., in some geological applications), radio frequencies (200–700MHz) for appli-
cations where the depth to reach is of the order of 3 m (e.g., in most archaeological pro-
specting), higher radio frequencies (700–3000MHz) for applications where the
maximum required depth of investigation is of the order of 1 m (e.g., detections of frac-
tures or asphalt monitoring), and sometime even higher microwave frequencies if the
maximum investigated depth can be limited to the order of 50 cm (e.g., demining or
determination of the water content in the shallower layers of the soil). This classification
is sketchy: It just indicates an average distribution, and many exceptions might be found.
In particular, it refers to GPR application in “temperate” soils: The ice constitutes an
exception and can allow a much deeper penetration of the GPR signal. In general, the
maximum penetration depth depends on the current case history and can be estimated
in the field, on the basis of the data.

Several kinds of antennas are exploited in GPR prospecting. For the low-frequency
cases, below 200MHz, the antennas are customarily unshielded loaded dipoles, often
quite long (depending on the central frequency, they can be up to 3 m long and even
longer). The fact that the antennas are unshielded makes them gather reflections from
targets in air too, and it makes the results more vulnerable to the electromagnetic inter-
ferences from external sources. On the other hand, a shield would make them quite
weighty. Instead, beyond 200MHz the GPR antennas are customarily shielded. In the
range 200–1000MHz, the most widely exploited antennas are probably the bow ties
(Lestari et al., 2004), that are linearly polarized and customarily are fed with a coaxial
cable. Sometimes a circular polarization can help for the discrimination of some targets.
In these cases, large band spiral antennas (Daniels, 2004) can be used, even if their use is
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more rare. At higher frequencies, Vivaldi antennas and horns (Gentili and Spagnolini,
2000; Pieraccini et al., 2006) can be exploited too. They are linearly polarized and
can be fed by a waveguide, which makes them more robust and suitable for high-
frequency applications (Stutzman and Thiele, 1998). In some cases, the GPR system
is equipped with an array rather than just a pair of antennas (Sala and Linford, 2010;
Böniger and Tronicke, 2010). In these cases the single elements of the arrays are usually
dipole-like antennas.

1.5 GPR DATA PROCESSING

The processing of GPR data is a large topic, and in particular the current application can
require or at least can make more suitable some strategy with respect to some other. In
particular, two fundamental categories of processing can be distinguished, namely
deconvolution-based (Jol, 2009) processing and SAR effect-based processing. In decon-
volution-based algorithms (also called 1D), one essentially processes the single GPR
traces trying to retrieve the shape of the radiated pulse—that is, trying to equalize the
distortion that the radiated pulse suffers because of the propagation in a dispersive inho-
mogeneousmedium and because of the scattering from the target. This kind of processing
is important especially in cases when the targets looked for have a foreseeable “signa-
ture” and tend to distort the impinging pulse in a known way. Examples of deconvolu-
tion-based processing in relationship with demining problems are probably the most
common ones: In particular, usually the main trouble in this case is not to identify the
mine (even if the difference between the dielectric characteristics of a plastic mine
and those of the surrounding soil might be low), but rather to reduce the false alarm
probability—this is, the probability to confuse the mine with any other target character-
ized by the same order of size and average depth (Timofei and Sato, 2004). In such a
situation, a deconvolution can help in discriminating the nature of the reflecting target.
The second category, which here will be labeled as SAR effect-based [the acronym
stands for synthetic aperture radar, (Daniels, 2004)], is concerned with a processing that
regards all of the traces within a B-scan or a C-scan and is aimed to focus within a vertical
plane (2D models) or in a buried volume (3D models) the targets embedded in the host
medium at hand. Within these SAR processing, it is then possible to distinguish a pleth-
ora of models and related algorithm, based on different kinds of approximation of the
scattered field. In particular, there are linear algorithms based on the Born approximation
(Chew, 1995), on the Rytov approximation (Devaney, 1981), on the extended Born
approximation (Torres-Verdin and Habashy, 2001), on the Kirchhoff approximation
(Liseno et al., 2004), and so on. Moreover, there are nonlinear approximations as the sec-
ond-order Born approximation (Leone et al., 2003) or iterative algorithms that update up
to convergence (according with some Cauchy-like criterion) the result of a single-step
processing. Customarily, in these cases the single-step processing is linear
(Moghaddam and Chew, 1992), but the comprehensive algorithm is nonlinear. There
are also fully nonlinear approaches, based (for example) on the statistical minimization
of some cost functional (Caorsi et al., 1991). Finally, let us list also the linear sampling
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method (Colton et al., 2003), a fast nonlinear inversion algorithm based on single-
frequency multiview data that has been becoming popular in recent years.

Actually, most of these 2D and 3D models have been developed in a context wider
than that of GPR data processing, which is the literature on microwave inverse scattering.
Notwithstanding, they can be applied (in several cases they have been already applied) to
the reconstruction of targets embedded in the soil or in masonry, which we can classify as
a GPR application. Their utility and the trade-offs between them are related to the many
possible specific applications.

In this text, we will focus only on GPR data processing based on the Born approx-
imation. In particular, the core of the processing dealt with here will be the migration
(Stolt, 1978; Schneider, 1978; Yilmaz, 1987) and the linear Born model-based inver-
sion (Colton and Kress, 1992) algorithms, both of which considered either in a 2D or in
a 3D framework. Let us also specify that, commonly, the 3D processing is meant as the
suitable joining of several 2D results achieved from several B-scans. This is useful and
practical, especially (but not only) in order to image horizontal buried layers where
the plan of built structures can be identified (Conyers, 2004). However, rigorously
this is not a 3D processing method. We will label it a pseudo-3D approach, in order
to distinguish this method from a real 3D approach, that will be dealt within
Chapters 11–13. A 3D approach is theoretically more refined than a pseudo-3D one,
but it is also more difficult and computationally more demanding.

Let us outline, however, that, even if only these linear data processing will be dealt
with, the complete scattering equations are derived, so that the intrinsic nonlinear nature
of the scattering phenomenon is shown.

Several reasons underlie the choice to limit our discussion to linear Born model-
based processing. First, an adequate discussion of all the listed techniques would require
a book quite long (at least four times the size of the current book). Second, in the common
GPR praxis the most exploited focusing algorithm is undoubtedly the migration,
also because there are several commercial codes able to implement it. Third, we have
preferred to give space to some extra topics that are not inverse scattering issues but,
in the real world, are inseparable aspects of GPR data processing, namely the indirect
measure of the characteristics of the embedding medium (that in general are not known
a priori), the extraction of the scattered field data from the total field data, and some
aspects specifically related to the gathering of the data either with a pulsed- or a
stepped-frequency GPR system.

Let us outline that the GPR processing is not constituted by a mere focusing. For
example, data filtering and gain variable versus the depth are often very important pas-
sages. It is also worth outlining that some practice in the field is unavoidably essential
(better if the starting phase is performed with the assistance of a more skilled user): there
is no book that can replace it.

Themain aim of this text is to focus on some of the theoretical aspects that seem to the
author particularly important for an “aware”execution of a GPR measurement campaign,
followed by a proper processing and, when possible, a reasonable interpretation.
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2

CHARACTERIZATION OF THE
HOST MEDIUM

2.1 THE CHARACTERISTICS OF THE HOST MEDIUM

For a correct interpretation of the GPR signal, it is important to have some estimation of
the electromagnetic characteristics of the background medium. A complete characteriza-
tion theoretically means a measure of the dielectric permittivity and of the magnetic
permeability, both meant as complex quantities to account for losses (in particular, in
this way the dielectric permittivity can account for the electric conductivity too) and
variables versus the frequency. These quantities are also functions of the buried point
because in general the medium at hand is not homogeneous; and possibly they are tensor
quantities instead of scalar ones, because the medium might be anisotropic (Slob et al.,
2010). A complete characterization of the soil, therefore, is not an easy task. Fortunately,
however, a complete characterization is usually not needed, and in many cases an average
value of the propagation velocity of the electromagnetic waves in the soil is sufficient in
order to focus and interpret satisfyingly the buried targets.

In general, the propagation medium is lossy too. However, in many cases it is a
low-lossy medium; that is, the real part of the wavenumber is much larger (one order
of magnitude) than the imaginary part. In these conditions, we can neglect the influence
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of the losses on the propagation velocity and the dispersion that they arise (Daniels, 2004;
Jol, 2009). This means that we can assume that (a) the GPR waves propagate at a velocity
that can be evaluated neglecting the losses and (b) they don’t get deformed while
propagating, even if they attenuate exponentially versus the distance.

Most propagationmedia encountered in practical cases do not showmagnetic proper-
ties. However, some exception can occur—for examples, in the case of a strongly polluted
soil (Nabighian, 1987), in the case of someMartian soil (Stillman andOlhoeft, 2004), or in
presence of some particular mineral, containing iron (Nabighian, 1987; Jol, 2009).

Under the hypothesis of a homogeneous, isotropic, nonmagnetic and low-loss
medium, the propagation velocity of the electromagnetic waves, c, is related to the
relative dielectric permittivity of the medium, εs (real), by means of the relationship
c = c0=

ffiffiffiffiffiffi
εsr

p
(Stutzman and Thiele, 1998), where c0 is the propagation velocity of the

electromagnetic waves in free space, about equal to 3 × 108 m/s. εsr is the relative permit-
tivity of the soil, whereas the complex (absolute) dielectric permittivity of the soil is given
by εeq = ε0εsr − jεsim− j σ=ωð Þ, where ε0 is the dielectric permittivity of the free space,
equal to 8.854 × 10−12 Farad/m, εsim is the imaginary part of the dielectric permittivity
(which accounts for dielectric losses), σ is the electric conductivity of the background
medium (which accounts for conduction losses), and ω is the circular frequency.
Actually, it is not easy to distinguish the nature of the losses experimentally, and so
the two terms that compose the imaginary part of the dielectric permittivity can be also
expressed by either an equivalent conductivity or an equivalent imaginary permittivity.

For many materials, expected values of the relative dielectric permittivity are
presented in tabular form (Daniels, 2004; Jol, 2009; Conyers, 2004). However, it is
customarily better to measure the propagation velocity of the waves in the background
medium at hand from the data, because the current values of the soil characteristics depend
on several environmental parameters, which usually are not known a priori (such as the
water content, the compactness of the soil, the presence ofmineral salts, and possibly even
the temperature). Notwithstanding, some awareness of the average values found in tables
can be useful in order to check the likelihood of the values retrieved in the field.

There are also tables regarding the exponential attenuation rate of the signal in
several media (which is essentially related to the equivalent conductivity), but usually
the range of possible values is much larger than that achievable for the relative
permittivity.

2.2 THE MEASURE OF THE PROPAGATION
VELOCITY IN A MASONRY

The electromagnetic characteristics of the propagation medium depends on its chemical
composition, its water content, its porosity, its mineralogy, and possibly its temperature.
These dependences are in general a complicated matter, as described (for example) in
Daniels (2004); and Jol (2009). Consequently, in most cases one does not have at one’s
disposal all the instruments and competencies to retrieve the electromagnetic character-
istics of the soil starting from a microscopic approach. Therefore, we will focus the atten-
tion on the subject of themeasure of these characteristics fromGPR (or atmost TDR) data.
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In order to measure the propagation velocity of the electromagnetic waves in the
background medium, the first possibility is to make use of a cooperative target—that
is, a known object placed on purpose.

This is easily performed in the case of amasonry or a pillar, or even a column.1 In par-
ticular, in these cases a metallic sheet or a metallic bar2 can be placed and removed at the
opposite site of the structure, gathering aGPR scan for each of the two cases, as depicted in
Figure 2.1.The averagepropagation velocity can bemeasured from the simple relationship

c=
2d
t

ð2:1Þ

where t is the return time of the echo corresponding to the opposite side of the structure
and d is the depth of the reflector (i.e., the thickness of the structure). The factor 2 is
due to the round-trip of the signal from the antenna to the reflector and vice versa. The time
t is identified by comparing the twoGPR traces gathered with andwithout themetal target
behind the structure. Let us outline that, inmany cases, the second interface of themasonry
is visible as a flat anomaly from the GPR data, even without any metallic marker.

At any rate, the marker can be helpful because the GPR image might show several
flat anomalies, possibly due to internal layers within the wall, ringing of the antennas
(Conyers, 2004), multiple reflections (Daniels, 2004), or possibly some large obstacle
beyond the probed masonry.

In such a case, the cooperative target allows us to identify which one among the
visible layers is specifically due to the opposite side of the wall. In many cases, the
thickness d can be measured directly with a tape or (more rarely) from a reliable scaled
map of the building. The measure of the propagation velocity from the return time and the
thickness of the structure can be also applied to pillars and columns (Masini et al., 2010).

However, there are cases where the direct measure of the thickness of the masonry is
not immediate, because (for example) the masonry is long or it ends in contact with
another orthogonal wall, or possibly its thickness is not uniform so that the two air–
masonry interfaces are not parallel to each other (this can happen, especially in ancient
buildings). In these cases, it might be more reliable to work out the propagation velocity
of the signal in the masonry from the behavior of the gathered GPR signal, with the
marker placed behind the wall. This can be done in the same way as described in the
following section with regard to the case of a homogeneous soil.

There are also cases where the masonry is quite thick and/or lossy, so that that the
signal from the far interface is hardly (or not at all) perceivable. A marker might be useful
even in some of these cases. In particular, without the check of a marker we might
misinterpret some interface internal to the masonry as being the opposite interface. In
other cases, the metallic marker might make stronger the reflection from the far interface

1A masonry, if homogeneous, can be modeled as a homogeneous half-space for intra-wall imaging purposes.
This is not mathematically rigorous but works for any layered medium if the targets of interest are embedded in
the first (shallower) layer.
2 The metallic sheet provides a stronger returned signal with respect to the bar, but a bar allows a slightly more
refined analysis of the returned signal, as will be shown later.
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so that it becomes more clearly perceivable as a result. In this last case, a metallic sheet is
likely to work better than just a rod.

2.3 THE MEASURE OF THE PROPAGATION VELOCITY
IN A HOMOGENEOUS SOIL

2.3.1 Interfacial Data in Common Offset Mode with
a Null Offset: The Case of a Point-like Target

The measure of the propagation velocity of the electromagnetic waves in a homogeneous
soil might be done, in principle, with a buried marker, similarly to what is described for
the case of a wall. However, the excavation needed to put a metallic marker at a known

Figure 2.1. Upper panel: A metallic road is placed horizontally on the other side of the

prospected wall. Lower panel: The metallic road is removed. The antennas have been moved

in both cases downward along a vertical line.
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depth would modify the compactness of the soil in that zone, and this would modify the
electromagnetic characteristics of the soil in that point (Conyers, 2004; Soldovieri
et al., 2009).

For the same reason, also laboratory analyses (Afsar et al., 1986) of soil or rocks
samples require a particular attention: The samples should reach the laboratory with
the same compactness and water content they had in the field; otherwise the result of
the measure is not reliable. Sometimes a ground truthing (i.e., a limited set of localized
excavations on some specific targets identified from the data) can be used to calibrate the
propagation velocity (Conyers, 2004). These are useful when possible, but in some cases
might be time-consuming, unauthorized, or not well-advised. So, in many cases the
propagation velocity has to be estimated noninvasively from the same GPR data. The
most common methods to do this is based on the diffraction curves, more commonly
called diffraction hyperbolas.

To expose the method of the diffraction curves, let us start considering a point-like
target—that is, a buried object small with respect to the minimum involved wavelength in
the soil. In particular, let us refer to the scheme in Figure 2.2.

The transmitting antenna illuminates the target not only when it passes exactly
over it, but also from a certain distance before it and up to a certain distance beyond
it. So, the receiving antenna gathers an echo from the target not only when it crosses over
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Figure 2.2. Measure of the permittivity of the soil from a diffraction hyperbola from a
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it, but usually within a segment centered on the target. The length of this segment
depends on directivity of the antennas, the characteristics of the soil, and the depth of
the target.

If the antennas are moved at the air–soil interface, and the offset between them is
neglected, then the distance from the position of the source-observation point (x,0)

and the buried target in the position (x0,z0) is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z20

q
. This quantity

corresponds to the apparent depth at the abscissa x, which in terms of propagation veloc-
ity is given by z xð Þ = ct=2, where t = t(x) the return time of the echo recorded at the
position x. In the point x = x0, the apparent depth of the target reaches its minimum value
z = z0 = ct0=2, where t0 is the minimum recorded return time. Putting together these
equalities, we have

ct

2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + ct0

2

� �2r
, t =

2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + ct0

2

� �2r
) t2

t20
−

x−x0ð Þ2
0:25c2t20

= 1 ð2:2Þ

Relationship (2.2) is the equation of a hyperbola (but of course only one of the two
branches is considered) with the vertex at the target position (x0,t0).

Equation (2.2) is parametric with respect to the propagation velocity c, and so c can
be estimated from Eq. (2.2). In principle, this might be done even just from two points,
but of course a more extended fitting provides a more reliable result. There are commer-
cial codes that allow us to do this fitting in an immediate graphical way [e.g., the
GPRslices (Goodman and Piro, 2013) and the Reflexw (Sandmeier, 2003)] by depicting
the model diffraction hyperbola at variance of a trial c on the data.

As is well known, by replacing 1 with 0 in the second term of Eq. (2.2) we achieve
the equation of the asymptotes of the hyperbola, that is,

t = ±
2
c
x−x0ð Þ ð2:3Þ

Equation (2.3) shows that the asymptotes do not depend on the time depth of the target,
and the two lines cross each other at the point (x0,0)—that is, over the point target and at
the air–soil interface. Theoretically, the propagation velocity might be estimated just
from the slant of the asymptotes, that is, ± 2=c. This evaluation, however, is rarely
possible, because the visible portion of the hyperbola is usually too short to allow a
reliable identification of the asymptotes. However, the tangent line to the “tail” of the
hyperbola—that is, the tangent to the hyperbola in a point far from the vertex—can also
provide an estimation of the propagation velocity. In fact, from Eq. (2.2), the slant of the
tangent to the diffraction hyperbola is given by

dt

dx
=
2
c

x−x0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + ct0

2

� �2
r ð2:4Þ
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The limit value of the expression (2.4) for jxj >> jx0j is ± 2=c, where sign depends on
whether we consider positive or negative abscissas. Of course, this means that the tangent
to the diffraction hyperbola becomes progressively more parallel to the asymptote.
Equation (2.4) also allows us to quantify the closeness between the slants of these
two lines. In particular, if x−x0j j ≥ 3 ct0=2ð Þ, it is easy to recognize that to confound
the tangent with the asymptote allows an evaluation of the propagation velocity with
an error of about 5.5%.

The shape of the diffraction hyperbola depends also on the time depth of the target.
In particular, for very shallow point targets (t0! 0), the diffraction hyperbola tends to
coincide with its asymptotes. This is the reason why shallow and small targets appear
as little roofs in the raw GPR.

In some cases, it can be of interest to visualize the diffraction hyperbola in
the (x,z) plane rather than in the (x,t) plane. This is trivial after evaluating the
propagation velocity. In this case, the diffraction hyperbola becomes equilateral; that
is, the asymptotes are orthogonal to each other. In fact, Eq. (2.2) in the plane (x,z)
is just rewritten as

z =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z20

q
) z2

z20
−

x−x0ð Þ2
z20

= 1 ð2:5Þ

and consequently the equation of the asymptotes is

z = ± x−x0ð Þ ð2:6Þ

whose slants with respect to the x-axis are 45 and −45 degrees, respectively. This means
that the actual propagation velocity can be also viewed as that value that makes equilat-
eral the diffraction hyperbola in the plane (x,z).

Let us note that because the real scenario is three-dimensional and the position of the
buried target is not known a priori, the observation line may not pass exactly over the
point-like object. In this case, the minimal distance z0 between the target and the antennas
is no longer equal to the depth of the target, and the scenario in Figure 2.2 should be tilted
around the measurement line. However, the evaluation of the permittivity is not affected
by this possibility, being essentially based on the distance–time correspondence and on
Pythagoras’ theorem.

In the performed evaluation, some approximations and/or assumptions are implicit.
A first approximation is the use of an essentially optical model of the propagation.
Actually, the propagation of the waves is not described just by means of rays: The physics
of the phenomenon is more complicated and, as will be shown, can be fully described
only by making use of Maxwell’s equations.

The hypothesis that the target is point-like can be a strong assumption. Practically,
the non-null size of the target tends to make larger the diffraction curve, thereby resulting
in an underestimation of the propagation velocity. Consequently, in a real scenario,
one should heuristically choose the narrower and “cleaner” hyperbolas among those
visible at any given time depth: They are those most likely to be ascribable to electrically
small targets.
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2.3.2 Interfacial Data in Common Offset Mode with a
Null Offset: The Case of a Circular Target

Circular targets of any size also provide a hyperbolic signature in the data (Li et al., 2012).
In fact, with reference to Figure 2.3, let us consider a buried circular target with center
C and radius R. In Figure 2.3, A is the source-observation point and E is the interfacial
point at minimum distance from the target.

Thus, with reference to Figure 2.3 and making use of the same symbols
exploited in the case of a point-like target (plus the radius R of the buried circular
target), we have

AE2 +EC2 =AC2) AE2 + ED +DCð Þ2
� �

= AB+BCð Þ2

) x−x0ð Þ2 + ct0
2

+R

� �2
=

ct

2
+R

� �2

)
t +

2R
c

� �2

t0 +
2R
c

� �
2 −

x−x0ð Þ2
ct0
2

+R

� �
2 = 1 ð2:7Þ

Equation (2.7) describes the diffraction curve relative to a circular target. One can
immediately recognize that this diffraction curve is still a hyperbola and reduces to

A E Air

Soil

D
B

C

Figure 2.3. Measure of the permittivity of the soil from a diffraction hyperbola from a circular

target.
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the hyperbola of Eq. (2.2) for R! 0. The vertex of the hyperbola is in the point (x0,t0),
and the minimum time depth t0 refers to the top of the target.

Replacing 1 with 0 in the last form of Eq. (2.7), we work out the equation of the
asymptotes, which in this case is

t = −
2R
c

±
2
c
x−x0ð Þ ð2:8Þ

Equation (2.8) shows that the slant of the asymptotes of the hyperbola remains
unchanged with respect to the case of point targets [see Eq. (2.3)], but they are rigidly
translated so that they cross each other “in air” at the negative time t = −2R=c. This
proves that it is not possible to find two different couples (R1,c1) and (R2,c2) that lead
to the same diffraction hyperbola. In fact, in this case the slant of the asymptotes should
be the same, so that necessarily c1 = c2, and then the intercept point between the
asymptotes should be the same too, which leads to R1 = R2. Consequently, the problem
of retrieving of the couple (R,c) from the data by means of a least square matching has a
unique solution. Notwithstanding, usually the portion of visible hyperbola is not so long
and noise-free to allow a clear identification of the asymptotes and thus, depending on the
particular situation, the retrieving of both parameters (R,c) can be more or less difficult. In
some cases (e.g., in the cases of buried pipes) the radius of the pipe can be known a priori,
and it is possible to perform an immediate graphical matching between model and data
that allows us to look for the propagation velocity c accounting for the correct value of
the radius. This matching can be performed by means of commercial codes—as, for
example, the Reflexw.

From Eq. (2.8), we can also appreciate that, if the circular target is not small but its
real size is not accounted for, we overestimate the propagation velocity. In fact, for a
given time depth t0, for increasing values of the radius, the diffraction hyperbola keeps
the same vertex but its asymptotes translate vertically toward the air half-space. There-
fore, it becomes larger near the vertex. In the limit for R!∞ the cross point between the
asymptotes, equal to −2R=c, tends to −∞ and so the hyperbola degenerates into a flat
interface.

2.3.3 Interfacial Data in Common Offset Mode with
a Non-null Offset: The Case of a Point-like Target

In the presented evaluations we have considered data gathered at the air–soil interface
and have neglected the offset between the antennas.3 If one or both these hypotheses
are removed, then the signature of the target is no longer a hyperbola. This is the reason
why we prefer the more general term “diffraction curve” instead of the more specific one
“diffraction hyperbola.” In particular, in this section we consider again a point-like
target but remove the hypothesis of null offset between the antennas, considering an

3Actually, an authentic monostatic (i.e., zero offset) measure occurs only when the same antenna is switched
alternatively from transmitting to receiving mode. This solution is possible but rarely employed.
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offset Δ 6¼ 0 between the transmitting and the receiving antennas. With reference to
Figures 2.4 and 2.5, it can be recognized that Eq. (2.2) evolves into

ct =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0−

Δ
2

� �
2

+
ct0Δ
2

� �2
−

Δ
2

� �
2

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0 +

Δ
2

� �
2

+
ct0Δ
2

� �2
−

Δ
2

� �
2

s
ð2:9Þ

where x is the midpoint between the transmitting antenna and the receiving antenna, so
that the abscissa of the transmitting antenna (source point) is x−Δ=2 and that of the
receiving antenna (observation point) is x+Δ=2). It is not important which one between
the two antennas comes geometrically first, because the offset can be considered either
positive or negative. Moreover, x0 is the abscissa of the target and t0Δ is the return time
recorded when x = x0—that is, when the source point is equal to x = x0−Δ=2 and the
observation point is equal to x= x0 +Δ=2.

With reference to Figure 2.5, we see that, when t = t0Δ, the source point, the
observation point, and the target compose an isosceles triangle, whose height is the depth
of the target. This height, in terms of propagation time, is given by
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Figure 2.4. The diffraction curve with a non-null offset between the antennas. The curve is

meant under time depth conversion with z= ct=2. The units are arbitrary.
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z0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct0Δ
2

� �2
−

Δ
2

� �
2

s
ð2:10Þ

Equation (2.10) makes it clear that Eq. (2.9) is just the sum of two distances, each of
which is evaluated by means of Pythagoras’ theorem.

By studying the function t(x) provided by Eq. (2.9), t0Δ is recognized to be minimum
recorded time along the scan, so that it is provided by the data.

Squaring Eq. (2.9) twice, after some algebra we work out the following polynomial
equation for the diffraction curve:

c4t4−4c2t2 x−x0ð Þ2 + c2t20Δ
4

� �
+Δ2 x−x0ð Þ2 = 0 ð2:11Þ

As can be seen, Eq. (2.11) is not a hyperbola but a fourth-degree curve. It reduces to
the hyperbola of Eq. (2.2) if and only if the offset between the antennas is equal to zero.
Note that the diffraction curve (2.11) admits the same two asymptotes of the diffraction
hyperbola corresponding to a null offset between the antennas. In fact, considering high
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values of x (either positive and negative) and consequently of t [see Eq. (2.9)], we have
that in Eq. (2.11) we can neglect the constant term c2t20Δ=4, so that Eq. (2.11) reduces to

c4t4−4c2t2 x−x0ð Þ2 +Δ2 x−x0ð Þ2 = c4t4− x−x0ð Þ2 4c2t2−Δ2
� �

= 0 ð2:12Þ

However, in Eq. (2.12) we can neglect the constant term Δ2, so that it still reduces to

c4t4−4c2t2 x−x0ð Þ2 = 0) c2t2−4 x−x0ð Þ2 = 0 ð2:13Þ

which is equivalent to Eq. (2.3). This means that if the portion of the diffraction curve
visible from the data is large enough, the slant of the asymptotes (and thus also the slant of
the tangent to the diffraction curve far from the vertex) allows us to identify the
propagation velocity independently of the value of the offset.

In order to provide a picture of the real “weight” of the offset, in Figure 2.6 three
diffraction curves are shown, corresponding to three offsets respectively equal to 0 cm
(blue line), 10 cm (red line), and 50 cm (black line).

The target is at depth 12.5 cm in the upper panel and at depth 75 cm in the lower
panel. In these examples, the propagation velocity of the electromagnetic waves is
108 m/s. In the end, the effect of the offset is not dramatic in most cases. In particular,
from the upper image of Figure 2.6, we can appreciate that even in a case when the offset
is of the same order of the depth of the target, the two curves with null and non-null offset
are quite similar. The physical reason of this similarity can be explained on the basis of
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Figure 2.4. In fact, let us consider first the optical path with null offset, where the source
and observation point collapse in the middle point of the segment between them. In this
case, the optical path is the sum of a forward and a back half-path equal to each other.
Instead, when considering a non-null offset, we have that the two half-paths are different
from each other. However, if the forward half–path gets longer with respect to the case of
null offset, then the back half-path becomes shorter and vice versa, and this partially
counteracts (except just over the target) the variation of the comprehensive round-trip
time of the signal.

2.3.4 Noninterfacial Data in Common Offset Mode with
a Null Offset: The Case of a Point-like Target

Let us now consider the case with data gathered at fixed height h > 0 instead of at the
air–soil interface. We restore for simplicity the hypothesis of null offset between the
antennas. The target is point-like.

In this case, the path of the signal from the source–receiver point to the buried target
and vice versa is not a linear segment but a bent line, as shown in Figure 2.7, because
of the refraction of the wave at the air–soil interface. In particular, with reference to
Figure 2.7, we have that the return time is given by

t =
2
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x1ð Þ2 + h2

q
+
2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−x0ð Þ2 + ct01

2

� �2r
ð2:14Þ

where x is the abscissa of the source–receiver point, x1 is the abscissa of the point at the
air–soil interface where the optical path gets bent, x0 is the abscissa of the target, c0 and c
are respectively the propagation velocity in free space and in the soil, and t01 is the
minimum round-trip time from the air–soil interface to the target. This is a share of
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Figure 2.7. The bent optical path between the source–observation point and the buried target

and vice versa (arbitrary length units).

22 CHARACTERIZATION OF THE HOST MEDIUM



the minimum recorded return time (from the source to the target and vice versa) corre-
sponding to the path in the soil. In particular, the minimum recorded round-trip time is
equal to

tmin =
2
c0
h+ t01 ) t01 = tmin−

2
c0
h ð2:15Þ

In particular, t01 is also experimentally distinguishable from tmin because the air–soil
interface is usually very visible in raw contactless data.

In order to express the diffraction curve, we have to establish the value of x1
versus x. This can be retrieved from the well-known Snell’s law for the refraction
(Franceschetti, 1997). In particular (see Figure 2.7), we have

sin θ1ð Þ = c0
c
sin θ2ð Þ, x−x1j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x−x1ð Þ2 + h2
q =

c0
c

x1−x0j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−x0ð Þ2 + ct01

2

� �2r ð2:16Þ

with the physical constraint that x1 belongs to the interval [x,xo] if x ≤ x0 and to the interval
[x0,x] if x ≥ x0. A mathematical discussion of Eq. (2.16) might be done: in particular,
considering the square of both members and multiplying both sides times the product
of the denominators, after some algebra Eq. (2.16) becomes

x41−2x
3
1 x + x0ð Þ + x21 x2 + x20 + 4xx0 +

c4t201
4

−c20h
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2x0

c2−c20

0
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1
CCA+ x2x20 +

c4t201
4

x2−c20h
2x20

c2−c20
= 0 ð2:17Þ

which is a fourth-degree equation in x1 and is even resoluble in a closed form.4 However,
to deal with Eq. (2.17) analytically is not comfortable (Persico et al., 2013a), and in this
text we will consider only a numerical solution of Eq. (2.16). Note that the monotonies of
the involved functions allow us to easily infer that the solution of Eq. (2.16), under the
said physical constraint, is unique. Therefore, Eq. (2.16) defines in a nonambiguous way
a function x1(x,c). Thus, the formal expression of the diffraction curve in the case at hand
is given by

t =
2
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x1 x,cð Þð Þ2 + h2

q
+
2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 x,cð Þ−x0ð Þ2 + ct01

2

� �2r
ð2:18Þ

4 The solution of third- and fourth-degree equations was published for the first time in the treatise Ars Magna,
written by Gerolamo Cardano in the year 1545.
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Note that in the limit when the target is very deep—that is, for t01! +∞, since |x1 − x0| is
a limited quantity (in particular, it is minorated by |x − x0|) from Eq. (2.16)—we have that
necessarily x1! x. Substituting into Eq. (2.18), we obtain

t! 2
c0
h+

2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + ct01

2

� �2
r

ð2:19Þ

which means that the limit path of the received GPR signal is composed by a vertical
path in air from the source–receiver point to the interface followed the same path that
the signal would show if the measurements were interfacial. Thus, this limit path is a
hyperbola. On the other hand, in the limit for very shallow targets (i.e., for t01! 0),
we have from Eq. (2.16)

x−x1j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−x0ð Þ2 + ct01

2

� �2r
! x−x1j j x1−x0j j = c0

c
x1−x0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x1ð Þ2 + h2

q
ð2:20Þ

Therefore, x1 should either tend to x0 or solve asymptotically the equation

x−x1j j= c0
c
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� �2
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However, since necessarily we have c < c0, the only physical solution is that x1! x0.
Substituting into Eq. (2.18), we obtain

t! 2
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + h2

q
ð2:22Þ

Moreover, from Eq. (2.15) we have that h! c0tmin=2, which substituted into Eq. (2.22)
provides

t! =
2
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + c0tmin

2

� �2r
ð2:23Þ

which is the diffraction hyperbola of a target “embedded in air,” because the propagation
of the signal actually occurs in air. Thus, in this opposite limit case the diffraction curve is
again a hyperbola. However, in the intermediate cases between the two extremes, the
diffraction curve is not a hyperbola in general. Incidentally, Eq. (2.23) also means that
a very shallow target does not provide any information about the propagation velocity
of the waves in the soil, because the propagation occurs entirely in air. In general,
the measure of the propagation velocity from noninterfacial data is more critical than
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the measure from interfacial data: some more details on this aspect are provided in
Persico et al. (2013b).

2.3.5 Interfacial Data in Common Midpoint (CMP) Mode

Let us now describe the measure of the propagation velocity of the electromagnetic
waves from commonmidpoint (CMP) data (Daniels, 2004; Conyers, 2004), also reported
as common depth point (CDP) data.

Let us assume that a buried point-like target has been identified at the abscissa x0.
In CMP mode, one records the return times achieved by placing the transmitting and the
receiving antennas at the two positions x and 2x0 − x symmetrical with respect to the
target. According to Figure 2.8, the length of the comprehensive path from the trans-
mitting antenna to the target and then from the target to the observation point is given by

ct = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + ct0

2

� �2r
) t2

t20
−

x−x0ð Þ2
0:25c2t20

= 1 ð2:24Þ

As can be seen, Eq. (2.24) is the same as Eq. (2.2). This is because (see Figures 2.2 and
2.8) the length of the path traveled by the signal is the same in the two cases even if, of
course, only one-half of the diffraction curve is retrieved in CMP mode.
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Figure 2.8. Scheme for common midpoint measurements.
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Actually, in the case of CMP measurements, one doesn’t need to assume that the
target is point-like. In particular, a plane buried interface parallel to the air–soil interface
provides similar results, as well as any roundish surface if its top is not tilted with respect
to the air–soil interface. This is based on Snell’s law on the reflected waves
(Franceschetti, 1997), which assures (as is well known) the equality of the incident
and reflected angles. Due to the unknown shape and size of the buried targets, this states
the theoretical better performances of the CMP measure of the propagation velocity with
respect to the common offset one.

Actually, CMP data can provide information about the electromagnetic characteris-
tics of a stratified medium with horizontal layers even without any localized reflector
[but in this case some care has to be taken with regard to possible waveguide effects
(Yilmaz, 1987)].

Another possible advantage is that the increased distance between the antennas
prevents the risk of saturation of the receiver. Theoretically, this allows us to increase
the radiated power and can make visible a larger portion of the diffraction hyperbola,
even if the radiated power has to respect some legal (further than technical) limits
(Chignell, 2004).

Actually, in CMP mode we don’t even need to identify a suitable buried target.
In fact, the direct coupling signal between the antennas is somehow equivalent to a target
at the air–soil interface put in the midpoint between source and receiver (see Figure 2.9).
In particular, with reference to Figure 2.9, in CMP the receiving antenna gathers both a
direct signal traveling in air and a direct signal traveling in the shallowest part of the soil.
The signal traveling in air propagates at about the velocity of propagation of the waves in
free space c0.

Signal scattered
by a buried
target in the
midpoint Direct surface

signal through
the soil

Direct surface
signal through

the air

TX

Midpoint

RX

*

Figure 2.9. Geometric scheme for the received CMP signal. Beyond the signal scattered

from the target (if any) buried under the midpoint, there is the direct signal between the

antennas, propagating partly in air and partly in the shallowest part of the soil.
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So, if the receiving antenna is at the generic (positive) abscissa x, the radiated pulse pro-
pagating in air is received at the time instant

t =
2
c0

x−x0ð Þ ð2:25Þ

Instead, the pulse propagating in the soil at shallow depth propagates at the propagation
velocity c of the waves in the soil and therefore is received at the time instant

t =
2
c
x−x0ð Þ ð2:26Þ

Equations (2.25)–(2.26) show that the same interface generates two diffraction curves
t = t(x), which are two straight lines with slants 2=c0 and 2=c, respectively. Since
c < c0 the line relative to the propagation in the soil is the most tilted one. In particular,
since both the distance between the antennas and the pulse arrival time are known, it is
possible and well-advised to check whether the upper line is really relative to the
propagation in air. Incidentally, the straight line relative to the propagation just below
the surface corresponds to the degenerated diffraction hyperbola of a point-like target
placed at the air–soil interface.

However, it is well-advised to make use not only of the surface reflections but also,
if possible, of the reflection from some suitable buried target. In fact, the shallower layers
of the soil might show a propagation velocity different from the average propagation
velocity in the first 1–3 m, which in most cases is the depth range of interest. Moreover,
the roughness of the soil might affect the superficial apparent propagation velocity.

An obvious drawback of CMP mode with respect to the common offset one is the
fact that CMP requires two antennas that can be moved independently from each other.
Moreover, the CMP procedure is intrinsically discrete in the sense that, customarily, the
antennas are not moved in a continuous mode (keeping the two velocities equal and also
keeping the directions constant can be a critical issue), which makes the measurement
quite slower than that usually achievable in common offset mode.

In Section 15.1, the reader will find some exercises on the retrieving of the
propagation velocity in the medium embedding the targets from the data.

2.4 LOSSY, MAGNETIC, AND DISPERSIVE MEDIA

Up to now we have devoted attention to the measure of the propagation velocity of the
waves in the soil, which is in most cases the parameter of utmost interest. Let now devote
some attention to other electromagnetic characteristics of the background medium.

With regard to the amount of the losses, in general they are more difficult to be
measured with respect to the propagation velocity. Actually, since the attenuation
due to the losses is exponential versus the length of propagation path, one can think
of measuring it directly from the GPR data. However, in general we don’t know the
radar cross section (Levanon, 1988) of the buried targets and therefore in general we
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are not able to distinguish, from the mere amplitude of a received signal, the share of the
transmitted energy that has been attenuated by the electromagnetic losses of the soil and
the share that has been scattered by the target away from the receiving antenna. Thus, the
simple comparison between the amplitude of the transmitted pulse and that of the
received onemight not be sufficient to establish the amount of the losses, and incidentally
the amplitude of the transmitted pulse might be unknown too. This makes the measure of
the losses from usual GPR data in common offset a hard task.

CMP data can offer some more possibilities, because we can create in a controlled
way different propagation paths where the signal is reflected by the same target and so we
can make a comparison between the amplitude of two or more different received pulses
(Leucci, 2008). The radar cross section (even if unknown in general) is assumed to be
the same for different position of the antennas. This is reasonable, even if not rigorous,
especially if the reflector is a flat interface. Some care has to be taken with regard to the
range of distances considered between the two antennas: If this range is electrically large,
the amplitude of the received pulse is influenced also by the radiation pattern of the
antennas, which should be therefore taken into account.

In the case of a homogeneous masonry, we can perform two measurements: the first
one in transmission mode with the two antennas equal to each other on the opposite faces
of the wall, and the second one in reflection mode with a metallic sheet put on one side of
the masonry and the GPR antennas on the other side. Actually, in this case, it would be
more correct to exploit the same antenna to transmit the pulse and to receive the echo.
Then, we can compare the amplitude of a signal propagated in transmission mode with
the amplitude of the same signal propagated in reflection mode along a path twice as
long. No effect due to the antenna pattern is expected in this case, because both
propagation paths develop in the broadside direction.

An alternative possibility is based on the use of a time domain reflectometry (TDR)
probe (O’Connor and Dowding, 1999; Cataldo et al., 2011), briefly described in the
following.

The TDR technique is in most cases a method in time domain. However, since now
we are dealing with the measurement of losses in the soil, it is convenient for our pur-
poses to propose an analysis of the TDR signal in frequency domain.

With reference to Figure 2.10, a TDR equipment is substantially a transmission
line-based structure. Therefore, the basic theory is easily understood on the basis of
the theory of the transmission lines (Franceschetti, 1997), which is (necessarily) taken
for granted here.

With reference to Figure 2.10, suppose that an incident wave at fixed frequency
propagates from the left-hand side along line 1. Line 1 is considered infinitely long in
this scheme, which practically means that it is matched to the generator. Incidentally, this
also means that the intrinsic impedance Zc of line 1 is a given (non modifiable) parameter.
After line 1, there is a piece of a different line, labeled 2, that has a fixed length L and is
knocked in the soil. This second line is open at the end, which is schematized by means of
a lumped load Zload with infinite impedance (this amounts to neglect the energy radiated
in the soil by the TDR probe). The intrinsic impedance of line 2 depends also on the soil
where it is knocked in. In particular, if we label Zl0 the intrinsic impedance of line 2 in free
space, then the intrinsic impedance of the same transmission line embedded in the soil
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is given by Zl = ςZl0, where ς is the relative (dimensionless) impedance of the soil,
given by

ς =
ffiffiffiffiffiffi
μsr
εsr

r
ð2:27Þ

By means of the TDR probe, one can gather the reflection coefficient versus the
frequency at the air–soil interface. To relate this quantity to the characteristics of the soil,
we can first make use of the classical formula for the impedance transportation along the
line (Franceschetti, 1997). Thus, the impedance seen at that air–soil interface, looking
toward the soil, is given by

Z = Zl
Zload + jZltg ksLð Þ
Zl + jZloadtg ksLð Þ ð2:28Þ

where ks is the wavenumber of the propagation medium that embeds line 2. The
wavenumber is linked to the properties of the medium by means of the relationships

ks =
2πf

ffiffiffiffiffiffiffiffiffiffiffi
εsrμsr

p
c0

ð2:29Þ

where f is the frequency and c0 is, as usual, the propagation velocity of the electro-
magnetic waves in free space. In Eq. (2.29), εsr and μsr are meant as complex quantities,
to account for losses.

At this point, the reflection coefficient at the air–soil interface, looking underground,
is given by (Franceschetti, 1997)

Γ =
Z−Zc
Z + Zc

ð2:30Þ

where Z is given by Eq. (2.28).

Air

Zc

1 2

L

Zload = inf.

Soil

Zl0

Figure 2.10. Circuital scheme for a TDR probe.
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After substituting Eq. (2.28) in Eq. (2.30) and after some algebraic manipulations,
the following alternative expression for the reflection coefficient at the air–soil interface
is achieved:

Γ=
Γ12 +Γload exp − j2ksLð Þ
1 +Γ12Γload exp − j2ksLð Þ ð2:31Þ

where Γload is the reflection coefficient at the load and Γ12 is given by

Γ12 =
Zl−Zc
Zl +Zc

=
ςZl0−Zc
ςZl0 + Zc

ð2:32Þ

Γ12 represents the reflection coefficient between lines 1 and line 2—that is, the reflection
coefficient that we would record at the air–soil interface if line 2 were infinite. As said,
the load is an open circuit, and therefore we have

Γload = 1 ð2:33Þ

Substituting Eqs. (2.29), (2.32), and (2.33) in Eq. (2.31), eventually we retrieve the
expression of the TDR datum versus the characteristics of the probed soil at fixed
frequency, which is

Γ=

ffiffiffiffiffiffi
μsr
εsr

r
Zl0−Zc

� �
ffiffiffiffiffiffi
μsr
εsr

r
Zl0 + Zc

� � +
ffiffiffiffiffiffi
μsr
εsr

r
Zl0 + Zc

� �

+
ffiffiffiffiffiffi
μsr
εsr

r
Zl0−Zc

� � exp − j
4πf
c0

ffiffiffiffiffiffiffiffiffiffiffi
εsrμsr

p
L

� �

exp − j
4πf
c0

ffiffiffiffiffiffiffiffiffiffiffi
εsrμsr

p
L

� � ð2:34Þ

Equation (2.34) can provide more information than that retrievable from the diffraction
curves provided by GPR data.

In particular, all the presented diffraction curves, either in common offset or in CMP
mode, are based on the propagation velocity of the waves. The propagation velocity, in
low lossy soils (Jol, 2009), is related to the real part of the product μsrεsr, and conse-
quently the diffraction curves do not allow us to identify a contribution of the imaginary
parts of the dielectric permittivity and/or of the magnetic permeability to the signal, and
of course they do not allow us to distinguish the contribution of the dielectric permittivity
from that of the magnetic permeability to the propagation velocity.

In Eq. (2.34), instead, the datum depends on both the impedance and the propagation
velocity along the transmission line, which means that we have a decoupled dependence
on the possibly complex dielectric permittivity andmagnetic permeability. Consequently,
a TDR probe can help in measuring both the dielectric permittivity and the magnetic
permeability. In particular, for a magnetic nondispersive soil, the measure can be
performed by matching Eq. (2.34) at several frequencies with the experimentally
retrieved reflection coefficients.
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If we can neglect the magnetic properties, Eq. (2.34) provides instead a relationship
where the unknown is the complex equivalent dielectric permittivity, from which both
the real dielectric permittivity and the equivalent conductivity can be retrieved
(Daniels, 2004; Jol, 2009). Often, in these case, one matches a known dispersion law
to the data at more frequencies, looking for some specific parameters involved in the
predetermined dispersion law, such as the relaxation time (Cataldo et al., 2011).

In any lossy case, some attention has to be devoted to the determination of the square
roots to be retained, and this depends on the convention adopted for expressing the waves
propagating in the positive version of the chosen abscissas. In particular, in this
section we have implicitly adopted the convention exp( j2πft) to express temporal
dependence. Consequently, since the signal has to attenuate far from the sources, we have
that the imaginary part of ks is nonpositive and the real part of the intrinsic impedance
of the line is nonnegative.

In the more general case of a soil dispersive (with a meaningful but unknown
dispersion law) and magnetic, even a TDR probe is theoretically insufficient, because
Eq. (2.34) provides, at each frequency, one complex datum and two complex unknowns.
In this “extreme” case, two or more TDR probes of different length and/or intrinsic
free-space impedance can provide, in principle, the needed diversities in order to provide
at least as many equations as unknowns or more equations than unknowns (but the
reliability of the achievable results is another issue).

QUESTIONS

1. Can the electromagnetic characteristics of the soil be completely retrieved from
GPR data?

2. Do conductivity losses influence the propagation velocity of the waves in the soil?

3. Can we retrieve the propagation velocity of the waves in the soil from two points of a
diffraction curve from interfacial data?

4. Why can the evaluation of the propagation velocity in the soil from CMP data be
superior to that achieved from common offset data?

5. In what aspect can the measure of the characteristics of the soil by means of a TDR
probe be superior to that achieved from GPR data?

6. In what aspect can the measure of the characteristics of the soil by means of GPR data
be superior to that achieved from a TDR probe?
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3

GPR DATA SAMPLING:
FREQUENCY AND TIME STEPS

3.1 STEPPED FREQUENCY GPR SYSTEMS: THE PROBLEM
OF THE ALIASING AND THE FREQUENCY STEP

The working principle of a GPR system described in the previous chapter essentially
refers to the “pulsed” GPR. Alternatively, it is possible to transmit a train of harmonic
signals instead of a pulse. This procedure essentially involves transmitting the harmonic
components of the pulse sequentially rather than at the same time. The systems that do
that are, as well known, the stepped frequency GPRs (Robinson et al., 1974; Iizuka et al.,
1984; Stickley et al., 1999; Alberti et al., 2002). The theoretical advantages of a stepped
frequency system with respect to a pulsed one are essentially based on the possibility to
have a trade-off between the duration of the harmonic signals (the so-called integration
time) and the noise on the data. This allows us to improve the signal-to-noise ratio
without being compelled to radiate a stronger signal (which might saturate the receiver).
Of course, this is impossible for a pulsed system. Essentially, the “trick” of a stepped
frequency GPR is that one can transmit more energy rather than more power. For a deeper
discussion of these aspects, the interested reader is referred to Noon (1996). Furthermore,
in Persico and Prisco (2008) and Persico et al. (2011), it is possible to find some recent

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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studies about further possibilities related to the flexibility of a stepped frequency system,
and in particular to the possibility to reconfigure the system versus the frequency.

Here, with regard to data processing aspects, it is of interest to deal with the effects of
the frequency sampling, in order to provide the calculation of the needed frequency step.

To introduce this subject, let us consider the Fourier transform, or spectrum, of a
finite energy real signal g(t), given by

ĝ fð Þ=
ð+∞
−∞

g tð Þexp − j2πftð Þ dt ð3:1Þ

where g(t) a real function and ĝ fð Þ is a Hermitian function, that is, it has the property that
ĝ − fð Þ= ĝ∗ fð Þ, where the asterisk stands for the conjugate value. Equation (3.1) is
inverted as

g tð Þ =
ð+∞
−∞

ĝ fð Þexp j2πftð Þ df ð3:2Þ

Due to the Hermitianity of ĝ fð Þ, Eq. (3.2) can be also written as

g tð Þ= 2Re
ð+∞
0

ĝ fð Þexp j2πftð Þ df
8<
:

9=
; ð3:3Þ

where Re indicates the real part of the quantity within accolades. Equation (3.3) expresses
the signal as a sum of elementary harmonic functions.

At this point, let us suppose to have at our disposal a sampled version of the spectrum
of the signal ĝ fð Þ—that is, a sequence of samples ĝ fnð Þ spaced from each other by a fixed
frequency step Δf—and let us try to calculate the signal in time domain from these
samples.

In a first moment, let us suppose that we have at our disposal an odd number of
samples 2 N + 1, starting from the initial frequency f0. Thus, the considered frequency
band ranges from f0 up to f0 + 2NΔ, and the extension of this band is B = 2NΔf.
The central frequency is given by fc = f0 +NΔf. The nth frequency sample is equal to
fn = f0 + (n − 1)Δf, with n ranging from 1 to 2N + 1, which is the same as fn = fc + nΔfwith
n ranging from −N to N.

From the discretization of Eq. (3.3), we have that the corresponding signal in time
domain (customarily labeled as the synthetic time) is given by1

1 It is well known that the Fourier direct and inverse transforms can be performed bymeans of fast numerical FFT
and IFFT algorithms. However, for simplicity of exposition, we follow the method of a formal discretization of
the Fourier integral.
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g tð Þ≈2Re
X2N + 1

n= 1

ĝ fnð Þexp j2πfntð ÞΔf
( )

= 2ΔfRe
XN
n= −N

ĝn exp j2π fc + nΔf½ �tð Þ
( )

= 2ΔfRe exp j2πfctð Þ
XN
n= −N

ĝn exp j2πnΔftð Þ
( )

ð3:4Þ

where ĝn = ĝ fn+N + 1ð Þ. Let us now write

g1 tð Þ=
XN
n= −N

ĝn exp j2πnΔftð Þ= g1r tð Þ + jg1i tð Þ ð3:5Þ

where g1 is a complex quantity, and thus in Eq. (3.5) the real and imaginary parts
have been put into evidence. At this point, we can express our signal in synthetic time
as follows:

g tð Þ≈2Δf cos 2πfctð Þg1r tð Þ−2Δf sin 2πfctð Þg1i tð Þ ð3:6Þ

Let us now put

g1r tð Þ= ρ tð Þcos θ tð Þð Þ,
g1i tð Þ= ρ tð Þsin θ tð Þð Þ

(
ð3:7Þ

After some straightforward calculations, we obtain

g tð Þ≈2Δf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21r tð Þ+ g21i tð Þ

q
cos 2πfct + tg−1

g1i tð Þ
g1r tð Þ

� �� �
ð3:8Þ

Let us now consider the behavior of g(t) at the time t + 1=Δf . Furthermore, let us
preliminarily note that the function g1(t) is periodical with period 1=Δf , as can be easily
checked directly from Eq. (3.5). Consequently, we have

g t +
1
Δf

� �
= 2Δf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21r tð Þ + g21i tð Þ

q
cos 2πfct + tg−1 g1i tð Þ

g1r tð Þ
� �

+Δϕ
� �

ð3:9Þ

where

Δϕ= 2π
fc
Δf

ð3:10Þ

Equations (3.9) and (3.10) showthatwhen transforming in timedomaina stepped frequency
signal, ideally “conceived” as the spectrum of a synthetic pulsed signal, we don’t obtain a
single pulse but rather a train of pulses spaced 1=Δf from each other. It is sometimes
loosely said that the signal in time domain is a periodic train of pulses. Actually, from
Eqs. (3.9)–(3.10), we see that actually the pulses of the train don’t have the same shape,
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unless the central frequency fc is an integer multiple of the frequency step Δf. At any rate,
the physically relevant phenomenon is the repetition of the pulses, called as well-known
aliasing. Due to the aliasing, the maximum synthetic time at which we can retrieve the
signal reliably is 1=Δf , and consequently the maximum reliably investigable depth
[the so-called nonambiguous depth (Noon, 1996)] is given by the maximum depth from
which we can receive a signal within the time interval 1=Δf starting from the beginning
of the radiation of the synthetic time pulse. Beyond this time interval, the radar answer
in synthetic time is ambiguous because any received echo might be due both to a
deeper target that reflects a previously transmitted pulse or a shallower target that reflects
a subsequently transmitted pulse. The nonambiguous depth D is therefore given by

D=
c

2Δf
ð3:11Þ

The factor 2 is due to the round-trip of the GPR signal (the offset between the antennas
has been neglected). Actually, one establishes a priori the depth up to which he/she thinks
there are perceivable targets. So, Eq. (3.11) provides the needed frequency step (i.e., the
maximum allowed value of the frequency step) that allows us to reach nonambiguously
the chosen maximum depth. This frequency step is achieved simply inverting Eq. (3.11):

Δf =
c

2D
ð3:12Þ

If the propagation medium is lossless or low lossy and does not show magnetic proper-
ties, Eq. (3.12) can still be rewritten as

Δf =
c0

2
ffiffiffiffiffiffi
εsr

p
D

ð3:13Þ

where c0 is the propagation velocity of the electromagnetic waves in free space and εsr is
the relative dielectric permittivity of the host medium.

It might be thought that the maximum reachable depth can be chosen arbitrarily
within the maximum depth “visible” by the system [which depends on the noise level
and on the dynamic of the system (Noon, 1996)], and then the frequency step given
by Eqs. (3.12) or (3.13) guarantees a nonambiguous result, but there is a subtlety to
be considered:

In particular, for a given chosen maximum depth D, the frequency step given in
Eqs. (3.12) or (3.13) guarantees that any object enclosed within the depth range up to
D will not provide spurious replicas of its real echo within the probed depth. However,
any actual target deeper thanD is a potential source of aliasing, because its echo is in any
case replicated with time periodicity 1=Δf . The only way to mitigate this phenomenon is
to choose D large enough so that the signal scattered by a target deeper than D reaches
the surface very attenuated and is not perceived by the receiving antenna. This means to
guarantee that the entire duration in the time domain of the perceivable signal is
accounted for. In particular, it is an error to choose D on the mere basis of the expected
depth range of the targets of interest; insteads, the choice should be based on the expected
perceivable maximum depth.
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Up to now, we have considered an odd number of frequency samples. Let us
now consider the case with an even number of frequency samples 2N. This time, the
considered frequency band ranges from some f0 up to f0 + (2N − 1)Δf and the extension
of this band is B = (2N − 1)Δf. The central frequency is fc = f0 +NΔf −Δf =2.
Consequently, Eq. (3.4) can be rewritten as

g tð Þ≈2Re
X2N
n = 1

ĝ fnð Þexp j2πfntð ÞΔf
( )

= 2ΔfRe
XN

n= −N + 1

ĝn exp j2π fc + n−
1
2

0
@

1
AΔf

2
4

3
5t

0
@

1
A

8<
:

9=
;

= 2ΔfRe exp j2πfctð Þ
XN

n = −N + 1

ĝn exp j2π n−
1
2

0
@

1
AΔft

0
@

1
A

8<
:

9=
;

ð3:14Þ

where ĝn = ĝ fn+Nð Þ. Let us now write

g1 tð Þ =
XN

n= −N + 1

ĝn exp j2π n−
1
2

� �
Δft

� �
= g1r tð Þ + jg1i tð Þ ð3:15Þ

At this point, the calculations steps are the same as those exposed in the case of an
odd number of samples. Actually, this time the period of g1(t) is not 1=Δf but 2=Δf .
However, it is easily recognized from Eq. (3.15) that g1 t + k=Δfð Þ= −1ð Þkg1 tð Þ, and thus
expression (3.9) keeps unchanged with respect with the previous case. This shows that
the considerations exposed or for an odd number of frequency samples hold also for an
even number of frequency samples.

3.2 SHAPE AND THICKNESS OF THE GPR PULSES

The previous section suggests to insert a brief description of what kind of shape and
above all what order of thickness the GPR pulses are expected to show. From
Eq. (3.8), we see that the received pulse can be formally described as a sinusoidal
quantity with amplitude and phase changing versus the time. In the case of GPR pulses,
the central frequency fc and the band are roughly of the same order (Jol, 2009). Starting
from this basic consideration, let us provide an example considering a case where the

frequency band of the pulse is found in the interval
1
2
fc,

3
2
fc

� �
; in this way, fc represents

both the central frequency and the extension of the band. In a first moment, let us suppose
to deal with a pulsed GPR. The shape of the pulse depends of course on the function ĝ fð Þ.
Let us investigate the case where ĝ fð Þ is a constant function. This constant is generally
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complex, and thus we will indicate it as ĝ fð Þ=K exp jθð Þ. Therefore, the pulse in the time
domain is given by

g tð Þ = 2KRe exp jθð Þ
ð1:5fc

0:5fc

exp j2πftð Þdf

8><
>:

9>=
>;= 2Kfcsinc πfctð Þcos 2πfct + θð Þ ð3:16Þ

where the sinc function is defined as sinc xð Þ= sin xð Þ=x.
In Figure 3.1 the graphs of the pulses relative to four different values of θ are

provided. The graphs are expressed versus the dimensionless variable tfc: As can be seen,
the duration in this normalized time is about unitary; that is, the actual duration of the
pulse is inversely proportional to its central frequency (and thus to its band). Moreover,
the pulses have an oscillatory time behavior, due to the fact that their spectrum does not
extend up to the zero frequency and thus their average value is substantially equal to zero.
This is experimentally well known too.
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Figure 3.1. Graphs of expression (3.16), normalized to 2Kfc and represented versus the

dimensionless variable tfc. Panel a: θ = 0. Panel b: θ = π=4. Panel c: θ = π=2. Panel d: θ =3π=4.
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Let us now discuss the case of a stepped frequency system. In this case, we are
interested in achieving the shape of the synthetic pulse starting from a sampled version
of its spectrum. We will limit ourselves to the case of an odd number of samples
for sake of brevity, but the case with an even number of samples is analogous. Thus,
we particularize Eq. (3.4) to the case ĝn =K exp jθð Þ. The lower and upper frequencies of
the band are equal to fc−NΔf =

1
2

� �
fc and fc +NΔf =

3
2

� �
fc, which is to say

that Δf = fc=2N.
After this premix, the synthetic pulse in time domain is given by

g tð Þ≈2ΔfKRe exp j2πfct + jθð Þ
XN
n= −N

exp j2πnΔftð Þ
( )

ð3:17Þ

and we have

XN
n= −N

exp j2πnΔftð Þ= exp − j2πNΔftð Þ
X2N
n= 0

exp j2πnΔftð Þ

= exp − j2πNΔftð Þ1− exp j 2N + 1ð Þ2πΔftð Þ
1− exp j2πΔftð Þ

=
exp − j2πNΔftð Þexp j 2N + 1ð ÞπΔftð Þ

exp jπΔftð Þ

×
exp − j 2N + 1ð ÞπΔftð Þ− exp j 2N + 1ð ÞπΔftð Þ

exp − jπΔftð Þ− exp jπΔftð Þ

=
sin 2N + 1ð ÞπΔftð Þ

sin πΔftð Þ ð3:18Þ

Equation (3.18) shows that the result of the summation is a real function given by
the ratio of two sines. This ratio is known as the sine of Dirichlet (Collin, 1985).
The sine of the Dirichlet in Eq. (3.18) is a periodic function with period 1=Δf and with
main lobes large 2= 2N + 1ð ÞΔf = 4N= 2N + 1ð Þfc. Substituting Eq. (3.18) in Eq. (3.17),
we obtain

g tð Þ≈2KΔf
sin

2N + 1
2N

πfct

� �

sin
πfct

2N

� � cos 2πfct + θð Þ

= 2Kfc

sin
2N + 1
2N

πfct

� �

2N sin
πfct

2N

� � cos 2πfct + θð Þ ð3:19Þ
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A graph of this function is provided in Figure 3.2, for several values of N, fc, and θ.
The result can be compared with the result in the “continuous case” only within the
nonambiguous interval
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Figure 3.2. Graphs of the synthetic pulses of Eq. (3.19), normalized to 2Kfc, represented

versus the synthetic time in seconds. Panel a: fc =500 MHz, N =13, θ = π=4. Panel b:

fc =250 MHz, N =13, θ = π=4 (the replicas are 200% farther and the pulses are 200%

larger with respect to panel a). Panel c: fc =500 MHz, N =7, θ = π=4 (the replicas are

closer with respect to panel a, because of the larger frequency step). Panel d:

fc =500 MHz, N =13, θ = −π=4 (the pulses have equal thickness but different shape with

respect to panel a, because of the different constant phase term).
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Even within the nonambiguous time interval, the two functions (3.16) and
(3.19) are not equal to each other.2 However, in the limit for high values of N
(i.e., for Δf! 0) the expression (3.19) tends uniformly3 to the expression (3.16) within
the nonambiguous interval, which in turn enlarges progressively toward the entire
real axis.

In fact, if t < <N=fc and N > > 1, we can approximate

sin
πfct

2N

� �
≈
πfct

2N
;
2N + 1
2N

≈1 ð3:20Þ
which, when substituted in Eq. (3.19), provides Eq. (3.16).

Of course, the first approximation in Eq. (3.20) is not licit any longer when t
becomes comparable withN=fc, but in this case both expressions (3.16) and (3.19) vanish
and so the convergence of (3.19) to (3.16) is guaranteed all over the nonambiguous
interval.

The nonambiguous interval, in turn, enlarges progressively versus N. Thus, in the
end there is a punctual convergence4 of the expression (3.19) to the expression (3.16)
for any time instant.

3.3 STEPPED FREQUENCY GPR SYSTEMS: THE PROBLEM
OF THE DEMODULATION AND THE FREQUENCY STEP

The digression on shape and thickness of the pulses facilitates the introduction of
the problem of the Hermitian images, which arises from the possibility of an imprecise
demodulation of the received signal. This is a technical problem regarding the hardware
of a stepped frequency system. However, it can influence the choice of a suitable
frequency step, and therefore it is relevant to our discussion.

That said let us consider a case when the harmonic component of the synthetic
pulse of Eq. (3.17) are sequentially transmitted. Thus, the transmitted signal is a train
of harmonics, whose time behavior (apart the temporal truncation) is given by

stx tð Þ =K cos 2πfN + n+ 1t + θð Þ =K cos 2π fc + nΔfð Þt + θð Þ, n = −N,…,N ð3:21Þ

Let us now consider a target that produces an echo after a time �t (smaller than the
nonambiguous time interval 1=Δf ). Let us neglect the variation versus the frequency
of the reflection behavior of this target. Thus, the received signal is a train of harmonic

2Actually, due to thehypothesisof a rigorously limitedband, the theoretical support of the signal in timedomain is
infinite, and this makes it impossible to retrieve perfectly the function from its spectral samples in frequency
domain.
3Whichmeans that the maximummodulus of the difference between the two expressions vanishes for a largeN.
4 However, neither uniform convergence nor a convergence in the least square sense.
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functions equally attenuated and shifted in time, with respect to the transmitted
harmonics. The harmonics sequentially received are given by

srx tð Þ =K1 cos 2πfN + n+ 1 t−�tð Þ+ θ1ð Þ=K1 cos 2π fc + nΔfð Þ t−�tð Þ+ θ1ð Þ, n = −N,…,N

ð3:22Þ

where K1 is the level of the received harmonic (smaller than the level K of the transmitted
one) and a generic θ1 6¼ θ accounts for a possible difference of phase between the incident
and the reflected harmonics.

In order to work out the received synthetic pulse, we have to extract the amplitude
and the phase of each received harmonic function.

This is accomplished by means of a demodulation. Here, for simplicity we will refer
to a homodyne demodulation scheme even if an heterodyne scheme, making use of an
intermediate frequency, is more common [the interested reader is referred to Noon (1996)
for deeper technological details].

The block diagram of a homodyne system is provided in Figure 3.3. With reference
to Figure 3.3, the received harmonic is multiplied times the carrier (i.e., a reference signal
at the same frequency of the transmitted harmonic function) on one branch andmultiplied
times the carrier delayed by π=2 on the other branch of the flux diagram. Consequently, at
point A the signal will be equal to

spn tð Þ = 2K1 cos 2πfN + n + 1 t−�tð Þ + θ1ð Þcos 2πfN + n+ 1tð Þ
=K1 cos 2π 2fn +N + 1ð Þt−2πfn +N + 1�t + θ1½ � +K1 cos 2πfn +N + 1�t−θ1½ �

ð3:23Þ

where the subscript p stands for “in phase” and the subscript n refers to the current nth
harmonic. Thus, the signal is the sum of a constant quantity plus a signal oscillating at
frequency 2fn +N + 1. The filter in cascade erases the oscillating term, and at point B the
signal is equal to

pn =K1 cos 2πfn+N + 1�t−θ1ð Þ ð3:24Þ

A B

C

π/2

2 cos(2πfN+n+1t)

K1 cos(2πfN+n+1(t – t)+θ1)

D

Figure 3.3. Homodyne demodulation scheme.
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Similarly, at point C the signal is given by

sqn tð Þ = −2K1 cos 2πfN + n+ 1 t−�tð Þ+ θ1ð Þsin 2πfN + n+ 1tð Þ
= −K1 sin 2π 2fn +N + 1ð Þt−2πfn +N + 1�t + θ1½ �−K1 sin 2πfn +N + 1�t−θ1½ �

ð3:25Þ

where the subscript q stands for “in quadrature.” Again, the filter in cascade erases the
oscillating term, and at point D the signal is equal to

qn = −K1 sin 2πfn+N + 1�t−θ1ð Þ ð3:26Þ

After storing the components in phase and in quadrature for all the received harmonics,
the synthetic received signal is constructed making use of the complex quantities

pn + jqn =K1 cos 2πfn+N + 1�t−θ1ð Þ− jK1 sin 2πfn+N + 1�t−θ1ð Þ
=K1 exp − j 2πfn+N + 1�t−θ1ð Þð Þ=K1 exp − j 2π fc + nΔfð Þ�t−θ1ð Þð Þ, n = −N,…,N

ð3:27Þ

The quantities (3.27) constitute the values of ĝn to be substituted in Eq. (3.4). This sub-
stitution provides in fact

grec tð Þ = 2ΔfRe exp j2πfctð Þ
XN
n = −N

ĝn exp j2πnΔftð Þ
( )

= 2Δf K1Re exp j2πfc t−�tð Þ + θ1ð Þ
XN
n = −N

exp j2πnΔ t−�tð Þð Þ
( )

= 2Δf K1 cos 2πfc t−�tð Þ + θ1ð Þ sin 2N + 1ð ÞπΔf t−�tð Þð Þ
sin πΔf t−�tð Þð Þ

ð3:28Þ

where the subscript rec stands for received. Now, the transmitted equivalent train of
pulses is given by Eq. (3.17). Therefore, accounting also for Eq. (3.18), the transmitted
synthetic train of pulses is expressed as

gtr tð Þ= 2ΔfK cos 2πfct + θð Þ sin 2N + 1ð ÞπΔftð Þ
sin πΔftð Þ ð3:29Þ

where the subscript tr stands for transmitted. Apart from an unimportant phase difference
between θ and θ1 (which means that in general the received pulses don’t have the same
shape as the transmitted ones), and apart from the obvious attenuation, the comparison
between Eq. (3.28) and Eq. (3.29) shows that, within the nonambiguous interval, the
GPR receives a synthetic pulse about as large as the transmitted one and centered at
the time �t, as expected in a nondispersive medium.
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At this point, let us introduce a demodulation error as shown in Figure 3.4.
In particular, Figure 3.4 schematizes the fact that, for some technological imprecision,
in general the phase shift between the two carriers sent to the p and q channels might
be not exactly equal to π=2, and also some difference in the two amplitudes can occur.
These phenomena are accounted for by means of an extra phase shifting and an
“undesired” amplifier-attenuator on the q channel. Both the spurious phase factor α
and the spurious amplitude factor ε are dimensionless quantities. Their modulus is in
general much smaller than 1, and both can be either positive or negative.

In the same way exposed before, it can be worked out that in this case we have at
point B

pn =K1 cos 2πfn+N + 1�t−θ1ð Þ ð3:30Þ

whereas at point D we have

qn = −K1 1 + εð Þsin 2πfn+N + 1�t−θ1 + αð Þ

= −K1 1 + εð Þ sin 2πfn +N + 1�t−θ1ð Þcos αð Þ+ cos 2πfn +N + 1�t−θ1ð Þsin αð Þ½ � ð3:31Þ

At this point, we can substitute in Eq. (3.31) the first-order approximations

sin αð Þ≈α and cos αð Þ≈1 ð3:32Þ

thereby obtaining

qn≈ −K1 sin 2πfn+N + 1�t−θ1ð Þ−αK1 cos 2πfn+N + 1�t−θ1ð Þ−εK1 sin 2πfn+N + 1�t−θ1ð Þ
ð3:33Þ

where we have also neglected the higher-order term proportional to the product αε.

A B

C

π/2+α

2 cos(2πfN+n+1t)

D
1+ε

K1 cos(2πfN+n+1(t – t)+θ1)

Figure 3.4. Homodyne demodulation scheme with a small phase and amplitude error.
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Consequently, the complex quantities retrieved from the demodulation become

ĝn = pn + jqn≈ −K1 cos 2πfn+N + 1�t−θ1ð Þ− jK1 sin 2πfn +N + 1�t−θ1ð Þ
− jαK1 cos 2πfn+N + 1�t−θ1ð Þ− jεK1 sin 2πfn+N + 1�t−θ1ð Þ

=K1 exp − j 2πfn +N + 1�t−θ1ð Þð Þ− jαK1

2
exp j 2πfn+N + 1�t−θ1ð Þð Þ

−
jαK1

2
exp − j 2πfn +N + 1�t−θ1ð Þð Þ− εK1

2
exp j 2πfn+N + 1�t−θ1ð Þð Þ

+
εK1

2
exp − j 2πfn +N + 1�t−θ1ð Þð Þ

=K1 1−
jα

2
+
ε

2

� �
exp − j 2πfn +N + 1�t−θ1ð Þð Þ−K1

jα

2
+
ε

2

� �
exp j 2πfn+N + 1�t−θ1ð Þð Þ

=K1 1−
jα

2
+
ε

2

� �
exp − j 2π fc + nΔfð Þ�t−θ1ð Þð Þ

−K1
jα

2
+
ε

2

� �
exp j 2π fc + nΔfð Þ�t−θ1ð Þð Þ ð3:34Þ

Substituting Eq. (3.34) into Eq. (3.4), we have

grec tð Þ

≈ 2Δf K1Re exp j 2πfc t−�tð Þ+ θ1ð Þð Þ 1−
jα

2
+
ε

2

� � XN
n= −N

exp j2πnΔf t−�tð Þð Þ
( )

−2Δf K1Re exp j 2πfc t +�tð Þ−θ1ð Þð Þ jα

2
+
ε

2

� � XN
n = −N

exp j2πnΔf t +�tð Þð Þ
( )

= 2Δf K1 1 +
ε

2

� �
cos 2πfc t−�tð Þ+ θ1½ �+ α

2
sin 2πfc t−�tð Þ + θ1½ �

8<
:

9=
; sin 2N + 1ð ÞπΔf t−�tð Þð Þ

sin πΔf t−�tð Þð Þ

−2Δf K1
ε

2
cos 2πfc t +�tð Þ−θ1½ � + α

2
sin 2πfc t +�tð Þ−θ1½ �

8<
:

9=
; sin 2N + 1ð ÞπΔf t +�tð Þð Þ

sin πΔf t +�tð Þð Þ

= 2Δf K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

ε

2

� �2

+
α2

4

s
cos 2πfc t−�tð Þ+ θ1− tg−1 α

2 + ε

� �
sin 2N + 1ð ÞπΔf t−�tð Þð Þ

sin πΔf t−�tð Þð Þ

−2Δf K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2

4
+
α2

4

s
cos 2πfc t +�tð Þ−θ1− tg−1α

ε

� �
sin 2N + 1ð ÞπΔf t +�tð Þð Þ

sin πΔf t +�tð Þð Þ ð3:35Þ
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Equation (3.35) shows that the demodulation error essentially provides two Dirichlet
sines, that is, two trains of pulses.

Apart from some unimportant amplitude and phase change in the carrier, the first
train of pulses is the same achieved without any demodulation error; and, in particular,
within the nonambiguous time interval I = 0, 1=Δf½ �, it provides the due echo at t =�t.
Instead, the second term provides a train of pulses shifted in the opposite verse. Con-
sequently, within the nonambiguous interval, it provides a spurious echo at the time
instant t = 1=Δf −�t. This echo provides a false target called Hermitian image (Noon,
1996). The amplitude of the Hermitian image depends on the amounts of the amplitude
and phase errors of the demodulation system.

Neglecting the effect of the relative shifts between the two carriers and the relative
Dirichlet sines (that incidentally depend also on �t, i.e., depend on the position of the
target), the average ratio between the level of the “true” pulse and that of its Hermitian
image is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

ε

2

� �2
+
α2

4

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε

4

2
+
α2

4

r ≈
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 + α2
p ð3:36Þ

The inverse of Eq. (3.36) provides the average weight of the Hermitian image of a target
with respect to the authentic image of the same target. Whether the Hermitian image is
tolerable or not depends on the application and on the dynamic range of the system.
In particular, if the Hermitian image is below the minimum signal perceivable by the
system it does not cause any problem.

In the case where we need to avoid the possibility of any Hermitian image, instead,
we have to halve the frequency step at a parity of nonambiguous depth. In this way, all the
Hermitian images relative to the investigated depth range will occur beyond it.

Consequently, in order to account for demodulation errors, Eq. (3.12) evolves into

Δf =
c

4D
ð3:37Þ

Under the further hypothesis that the propagation medium does not show magnetic
properties, Eq. (3.37) can be still rewritten as

Δf =
c0

4
ffiffiffiffiffiffi
εsr

p
D

ð3:38Þ

3.4 ALIASING AND TIME STEP FOR PULSED GPR SYSTEMS

The aliasing is a problem to be accounted also for pulsed GPR systems. In particular, in
this case the received signal is sampled in time domain; thus, because the direct and the
inverse Fourier integrals are formally similar, we will have replicas of the spectrum of the
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signal in the frequency domain. The replicas in frequency domains occurs with frequency
step 1=Δt and therefore we have to guarantee that

Δt =
1
B
≈
1
fc

ð3:39Þ

where B is the total band of the signal, roughly equal to its central frequency fc.
5 This time

step is called the Nyquist rate, as is well known.
Actually, both the needed frequency step for a stepped frequency system and the

time step for a pulsed system are driven by the Nyquist rate, of course with respect to
the duration in time domain in the first case and to the band (i.e., the duration in frequency
domain) in the second case. An important difference consists in the fact that the band of
the antennas is in general apriori known (actually, the behavior of the antennas depends
on the background scenario, but the band variation versus the background are in general
quite marginal), whereas the maximum depth really reached by the signal is much more
case-dependent. This makes the aliasing more difficult to be controlled apriori for a
stepped frequency GPR system. On the other hand, the effects of the aliasing for a
stepped frequency system are more easily recognizable from the achieved data because,
after transformation in time domain and processing, aliased data would provide duplica-
tions of the actual targets along the depth and at a fixed distance from the real objects.

Usually, in pulsed systems we have the possibility to set the time bottom scale and
the number of time samples, which implicitly defines the time step. Generally, several
hundred time samples can be chosen without any computational problems, and this
prevents us from aliasing in most situation if one chooses a reasonable time bottom scale
with respect to the expected penetration of the signal. Thus, for pulsed systems, the traces
are likely to be oversampled (an exercise that shows this is proposed in question 2).
However, even if the case is rare from a practical point of view, it is well advised to have
some awareness about the problem of the aliasing for a pulsed GPR system.

In stepped frequency systems, usually one can set directly the frequency step, and
customarily the maximum option is of the order of 5MHz (in most cases the available
choices are very few, two, or even only one). In this way, the nonambiguous depth is kept
very deep (depending on the soil at hand, it often goes beyond 10 m), and the targets
deeper than this range should provide echoes too weak to be perceived.

Thus, in both cases, the parameter setting options are usually conceived to provide
some oversampling with respect to the Nyquist rate. This is also useful in order to amor-
tize possible uncertainties that we can have about the band of the antennas, the depth of
the targets of interest, the characteristics of the soil, and so on.

However, it is also useful for practitioners to be aware of the fact that it is useless to
exaggerate the oversampling, maybe thinking that more data provide an indefinitely
better resolution. Actually, any band-limited function can be perfectly reconstructed from
its samples in the time domain, and dually any time-limited function can be perfectly

5 It is often reported thatΔt = 1=2B, but the question is conventional depending on what we mean by B. Here we
mean the range of positive frequencies of a modulated signal, which, after demodulation, extends from −B=2
to B=2.
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reconstructed by its samples in the frequency domain if the samples are gathered
at the Nyquist rate (Higgins, 1996). Therefore, it is substantially useless (further
than time-consuming and computationally burdening) to oversample the GPR traces
with a time (or a frequency) step an order of magnitude smaller than that prescribed
by the Nyquist rate.

QUESTIONS

1. Let us suppose we have to perform a measurement campaign where the targets of
interest are embedded in the first 50 cm. Let us also suppose that the soil is dry
and sandy, with no magnetic properties and with relative permittivity equal to 4.
Finally, let us suppose we have a stepped-frequency system. Is a frequency step of
75MHz presumably adequate?

2. Suppose we handle the same scenario of question 1 and also suppose we have at our
disposal a pulsed GPR system, equipped with antennas at 2 GHz. Which is the
required time step? How many time samples are needed?

3. What is the effect of the aliasing for a stepped-frequency GPR system?

4. What is the effect of the aliasing for a pulsed GPR system?

5. Given a stepped-frequency GPR system, can we mitigate the effects of an under-
sampling in the frequency domain by means of a truncation of the data in the time
domain?

6. Given a pulsed GPR system, can we mitigate the effects of an undersampling in the
time domain by means of a truncation of the data in the frequency domain?
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4
THE 2D SCATTERING

EQUATIONS FOR DIELECTRIC
TARGETS

4.1 PRELIMINARY REMARKS

The behavior of the electromagnetic signal radiated by a GPR and scattered by buried
targets is governed by Maxwell’s equations. So, in order to provide a hopefully deep
enough and self-consistent discussion of GPR data processing, we start here from the
beginning and derive the whole formulation up to the migration and the linear inversion;
this necessarily implies some nontrivial mathematics. In this chapter we introduce the
subject within a two-dimensional framework, as often done in the literature (Colton
and Kress, 1992; Chew, 1995; Pastorino, 2010). Therefore, with reference to Figure 4.1,
we will suppose the reference scenario, the buried targets, and the sources invariant along
the y-axis, which outgoes from the sheet. The problem of retrieving the shape, the posi-
tion, and the electromagnetic nature of the buried targets (or more in general of the buried
scenario) is mathematically expressed as the problem of reconstructing the absolute
(possibly complex) dielectric permittivity ε(x,z) and the absolute (possibly complex)
magnetic permeability μ(x,z), both varying with the buried point. In particular, it is
comfortable to recast the problem in terms of the dielectric and magnetic contrasts as
follows:

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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χe x,z; fð Þ= ε x,zð Þ−εs
εs

ð4:1Þ

χm x,z; fð Þ= μ x,zð Þ−μs
μs

ð4:2Þ

where εs is the absolute dielectric permittivity of the soil (in particular εs = εsrε0, where
ε0 = 8.85 × 10− 12 Farad/m is the absolute permittivity of the free space), and μs is the
absolute magnetic permeability of the soil (in particular μs = μ0μsr, where μ0 = 1.26 ×
10− 6 Henry/m is the absolute permeability of the free space). The contrasts are func-
tions of the frequency, because of the dispersion. In many cases the dependence of the
contrasts on the frequency is just neglected, also because it is not easy to have at one’s
disposal a reliable dispersion law for the case history at hand. So, we also will not con-
sider this dependence.

At this point, with reference to the scenario depicted in Figure 4.1, let us consider
Maxwell’s equations in the frequency domain.

In particular, following the most common convention adopted within the electro-
magnetic literature, differently from Chapter 2, this time we will make use of the circular
frequency ω = 2πf instead of the angular frequency f. Consequently, the Fourier
transform is now meant as

f̂ ωð Þ=
ð+∞
−∞

f tð Þexp − jωtð Þ dt ð4:3Þ
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Figure 4.1. Geometry of the problem, invariant along the y-axis that comes out from the sheet.

The axes are in meters.
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and the inverse Fourier transform is given by

f tð Þ = 1
2π

ð+∞
−∞

f̂ ωð Þexp jωtð Þ dω ð4:4Þ

Let us consider a spatially isotropic time-invariant medium, possibly dispersive, given by
two homogeneous half-spaces separated from a plane interface. The upper half-space
(z < 0) is built up of free space. The Maxwell’s equations, in their differential form in
frequency domain, are given by

r× E
!
= − jωμH

!
− J

!
m,

ð4:5Þ
r × H

!
= jωεE

!
+ J

!
,

r�εE! = ρ,

r�μH! = ρm

where E
!
, H

!
, J

!
, and J

!
m are the electric field, the magnetic field, the electric

impressed density of current, and the magnetic impressed density of current. Beyond
the impressed currents, there are induced electric currents too, which are proportional
to the electric field by means of the conductivity, and so they have been implicitly
considered within the term jωεE

!
, because ε is the complex equivalent dielectric

permittivity. The quantities ρ and ρm are the density of electric and magnetic charges,
respectively.

Actually, magnetic currents and magnetic charges do not exist in nature, but some
sources can be conveniently described by means of equivalent magnetic current and
charges (Franceschetti, 1997). In the following we also will make use of this possibility,
and so we consider already from now the most complete form of the Maxwell’s
equations. The charge densities ρ and ρm are scalar quantities and are linked to the
homologous current densities by means of the continuity equations

r�J + jωρ= 0, ð4:6Þ

r�Jm + jωρm = 0 ð4:7Þ

The continuity equations descend from the Maxwell’s equations. In fact, in order to
achieve them, it is sufficient to consider the divergence of the first two Maxwell’s
equations together with the vector identity r �r × v = 0 8v. Physically, the continuity
equations mean that the charges are neither created nor destroyed. So, if in a given
volume the charges augment (or decrease), it means that the difference entered from
outside (exited from inside). All the considered quantities are, in general, functions of
the spatial point and of the frequency.
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4.2 DERIVATION OF THE SCATTERING EQUATIONS WITHOUT
CONSIDERING THE EFFECT OF THE ANTENNAS

Let us now consider as source a filamentary current, directed along the y-axis and
concentrated at the point (x0,z0) in air. Moreover, let us consider the case when no
magnetic anomaly is present (χm = 0) but dielectric anomalies can be looked for (χe 6¼ 0).
The source is given by

J
!
= I0δ x−x0ð Þδ z−z0ð Þiy ð4:8Þ

where I0 is the level of the current. In this case, the symmetries of the system allow us to
state a priori that the electric field has the form

E
!
=E x,zð Þiy ð4:9Þ

Consequently, the magnetic field, from the first Maxwell’s equation, can be
expressed as

H
!
=Hx x,zð Þix +Hz x,zð Þiz ð4:10Þ

The permittivity is equal to ε0 in air and is a generic function of the point ε(x,z) in the soil,
whereas the magnetic permeability is a piecewise constant function given by

μb =
μ0, z< 0,
μs, z > 0

�
ð4:11Þ

In this case, the quantity ε x,zð ÞE! x,zð Þ is immediately recognized to be solenoidal—that
is, with a null divergence. Thus, the Maxwell equations can be rewritten as

r× E
!
= − jωμb H

!
,

r × H
!
= jωεE

!
+ I0δ x−x0ð Þδ z−z0ð Þiy,

r� εE! = 0,

r� μbH
!
= 0

ð4:12Þ

At this point, let us write

ε x,zð Þ= εb +Δε x,zð Þ ð4:13Þ

where εb is the background permittivity, given by the piecewise constant function
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εb =
ε0, z< 0,
εs, z> 0

�
ð4:14Þ

Clearly, the quantity Δε(x,z) is the contribution to the permittivity function given by the
buried objects; that is, it somehow represents the targets.

At this point, let us write

E
!
=E

!
inc +E

!
s =Einc x,zð Þiy +Es x,zð Þiy, ð4:15Þ

H
!
=H

!
inc +H

!
s =Hincx x,zð Þix +Hincz x,zð Þiz +Hsx x,zð Þix +Hsz x,zð Þiz ð4:16Þ

that is, let us decompose the field as the sum of two contributions: the incident field plus
the scattered field. The incident field ðE!inc,H

!
incÞ, or unperturbed field, is defined as the

field that we would have in absence of buried targets—that is, the field that we would
have in correspondence of Δε(x,z) = 0. Consequently, the scattered field, or anomalous
field ðE!s,H

!
sÞ, is the contribution due to the buried targets. With these substitutions, the

Maxwell’s equations (4.12) can be rewritten as

r ×E
!
inc +r ×E

!
s = − jωμbH

!
inc− jωμbH

!
s,

r ×H
!
inc +r×H

!
s = jωεbE

!
inc + jωεbE

!
s + jωΔεE

!
+ Ioδ x−xoð Þδ z−zoð Þiy,

r�εbE
!
inc +r�εbE

!
s +r�ΔεE! = 0,

r�μbH
!
inc +r�μbH

!
s = 0

ð4:17Þ

Now, each piece of the third equation in Eqs. (4.17) is a null quantity, given
the direction of the electrical field and its functional dependence [see Eqs. (4.9)–
(4.13)]. From Eqs. (4.17), we can extract the Maxwell’s equations for the incident field,
which are

r ×E
!
inc = − jωμbH

!
inc,

r×H
!
inc = jωεbE

!
inc + Ioδ x−xoð Þδ z−zoð Þiy,

r�εbE
!
inc = 0,

r�μbH
!
inc = 0

ð4:18Þ

Consequently, the scattered field satisfies the following equations:
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r×E
!
s = − jωμbH

!
s,

r ×H
!
s = + jωεbE

!
s + jωΔεE

!
,

r�εbE
!
s = 0,

r�μbH
!
s = 0

ð4:19Þ

In Eqs. (4.19) the quantityr�ΔεE! has not been considered because, as already said, it is a
null function.

At this point, we can recognize that the scattered field is “really” an electromagnetic
field, because it is a solution of the Maxwell’s equations, relative to the equivalent source

J
!
eq = jωΔεE

! ð4:20Þ

By means of Eqs. (4.19)–(4.20), the buried targets become equivalent to buried sources
instead of discontinuities of the medium. So, formally, the scattered field is generated by
the equivalent buried sources (also called secondary sources) and not directly by the
actual (also called primary) sources. The secondary sources radiate in a homogeneous
half-space. Of course, the secondary sources depend, in turn, on the primary ones.

The fact that the secondary sources are solenoidal makes it possible to have a non-
null density of current without any accumulation of electrical charges anywhere. Phys-
ically, this is possible because of the infinite length of the filamentary current, which
makes it an infinite tank for the charges.

Let us now deal with Maxwell’s equations relative to the scattered field. To do this,
let us use the sampling property of Dirac’s function and let us express the secondary
sources as follows:

J
!
eq x,zð Þ=

ð ð
D

J
!
eq x0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0 ð4:21Þ

Equation (4.21) expresses the distributed source as an integral sum of concentrated
sources. Due to the linearity of Maxwell’s equations and also due to the homogeneous
radiation conditions that we will impose, we can calculate the field relative to the elemen-
tary source J

!
eq x0,z0ð Þδ x−x0ð Þδ z−z0ð Þdx0dz0 and then integrate all over the investigation

domain. So, let us rewrite Maxwell’s equations for the scattered field, this time relative
to the elementary source J

!
eq x0,z0ð Þδ x−x0ð Þδ z−z0ð Þdx0dz0:

r × dE
!
s = − jωμb dH

!
s,

r × dH
!
s = + jωεb dE

!
s + Jeq x0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0iy,

r�εb dE
!
s = 0,

r�μb dH
!
s = 0

ð4:22Þ

In Eqs. (4.22), the obvious substitution J
!
eq x0,z0ð Þ = Jeq x0,z0ð Þiy has been done.
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Since both the upper (z < 0) and lower (z > 0) half-spaces are homogeneous, we can
look for twosolutions in the twohalf spaces separately and thenmatch themat the interface.
So, considering the curl of the first equation and substituting it in the second one, we have

r×r × dE
!
s = − jωμbr × dH

!
s = − jωμb jωεb dE

!
s + Jeq x0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0iy

� �
= k2b dE

!
s − jωμbJeq x0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0iy ð4:23Þ

Let us now use the definition of Laplacian vector: r2 v! =r r� v!� �
−r×r × v!. Applied

in Eq. (4.23), this becomes

r r�dE!s
� �

−r2 dE
!
s = k

2
b dE

!
s − jωμbJeq x0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0iy ð4:24Þ

However, r r�dE!s

� �
= 0, because of the third of the Maxwell equations (4.22) (the

permittivity εb is constant in both the upper and lower half-spaces). Consequently,
Eq. (4.24) can be rewritten as

r2 dE
!
s + k

2
b dE

!
s = jωμsJeq x0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0iy ð4:25Þ

In Eq. (4.25), the background magnetic permeability has been substituted by the absolute
magnetic permeability of the soil, because the secondary sources are null in air.
Equation (4.25) is a Helmholtz vector equation. This equation can be projected along
the Cartesian axes to produce, in general, three scalar Helmholtz equations. In our case,
the electric field has only one component, so we just have a scalar Helmholtz equation
along the y-axis. The component of the Laplacian vector operator along the Cartesian axes
are just the scalar Laplacians (defined as the divergence of the gradient r2Φ =r �rΦ)
of the homologous components. Thus, in a Cartesian system, the scalar Laplacian is given
by the sum of the second-order nonmixed partial derivatives of the function. Therefore,
considering the only y-directed component of the electric scattered field, we have

∂2 dEs

∂x2
+
∂2 dEs

∂z2
+ k2b dEs = jωμsJeq x0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0 ð4:26Þ

At this point, we consider the Fourier transform of Eq. (4.26) with respect the x variable,
for which we will follow the convention

f̂ u,zð Þ=
ð+∞
−∞

f x,zð Þexp − juxð Þdx ð4:27Þ

and consequently the inverse Fourier transform will be given by

f x,zð Þ = 1
2π

ð+∞
−∞

f̂ u,zð Þexp juxð Þ du ð4:28Þ
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Let us also remember the formula of the Fourier transform of the first deriva-
tive f 0 x,zð Þ= ∂f =∂x:

f̂ 0 u,zð Þ =
ð+∞
−∞

∂f

∂x
x,zð Þexp − juxð Þ dx = f x,zð Þexp − juxð Þ½ �x= +∞

x= −∞

−

ð+∞
−∞

f x,zð Þ − juð Þexp − juxð Þdx = ju

ð+∞
−∞

f x,zð Þexp − juxð Þ dx= juf̂ u,zð Þ

ð4:29Þ

where the quantity in square brackets vanishes at infinity because f is a square integrable
function. As is customary, we will denote the Fourier transform of the usual operators
translated into the (u,z) plane with the same name they had in the (x,z) plane: For example,
the gradient of a function f̂ u,zð Þ will be expressed as rf̂ = juf̂ ix + ∂f̂ =∂z

� �
iz and, coher-

ently, all the other common differential operators. Actually, this is a loose, even common,
language, because (for example) the gradient in the plane (u,z) would be rigorously equal
torf̂ = ∂f̂ =∂u

� �
iu + ∂f̂ =∂z

� �
iz. Due to the implicit different semantic of the operators, in

general we don’t have, in the (u,z) domain, the validity of all the results relative to
Maxwell’s equations in the (x,z) domain. Notwithstanding, the continuity of tangent
component of both the electric and magnetic fields at the air–soil interface holds both
in the (x,z) and in the (u,z) domain, because of the continuity of the Fourier operator.

At this point, considering the Fourier transform of Eq. (4.26) with respect to x,
we have

∂2dÊs

∂z2
+ k2z dÊs = jωμbJeq x0,z0ð Þexp − jux0ð Þδ z−z0ð Þ dx0dz0 ð4:30Þ

with

k2z = k
2
b −u

2 =
k2z0 = k

2
0 −u

2, z < 0,

kzs
2 = k2s −u

2, 0 < z

(
ð4:31Þ

Let us now consider, in the plane (u,z), the three regions z < 0, 0 < z < z0, and z0 < z, that is,
the air half-space, the interval between the air–soil interface and the secondary elemen-
tary source, and all the depth range below, respectively.

In each of these areas we don’t have sources and the propagation medium is
homogeneous. So, we can look for a solution of the homogeneous equation

∂2dÊs

∂z2
+ k2z dÊs = 0 ð4:32Þ

Equation (4.32) is a harmonic equation, whose solution is well known. Therefore,
accounting also for the radiation condition to infinity, we can write a formal solution
of Eq. (4.32) as follows:
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d̂Es =

dAexp jkz0zð Þ, z< 0,

dBexp jkzszð Þ + dC exp − jkzszð Þ, 0 < z< z0,

dDexp − jkzszð Þ, z0 < z

8>><
>>: ð4:33Þ

where kz0 ,zs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20,s−u

2
q

, and the square root is meant as the determination with nonpo-
sitive imaginary part, so that the solution will not diverge at infinity. As already said, in
Eqs. (4.33) the radiation condition have been accounted for too, because we have a priori
excluded contributions that propagate from the infinite toward the source. At this point,
we have to determine the four (differential) constants dA, dB, dC, and dD. In order to do
that, we need to impose four independent conditions on them. This is possible, remem-
bering that the tangential components of the fields at the air–soil interface have to be
continuous. Moreover, Eq. (4.30) has to be satisfied also at z = z0, and this is possible
only imposing an impulsive behavior to the second derivative of the field in that point.
Consequently, the electric field has to be continuous at z = z0, whereas its first derivative
has to show a discontinuity of the first kind, whose value [integrating Eq. (4.30) between
z = z0− and z = z0+] is just jωμbJeq (x0,z0)exp(−jux0) dx0dz0. All this reasoning leads to four
mathematical conditions as follows:

1. Continuity of the tangential electric field at the air–soil interface: The electric
field is directed along the y-axis, and so it is entirely tangential to the interface.
Therefore, this condition means dÊsjz= 0− = dÊsjz= 0+ , which from Eqs. (4.33)
immediately provides dA = dB + dC.

2. Continuity of the tangential component of the magnetic field at the interface: To
quantify this condition, we have to express the tangent magnetic field versus the
electric one. This can be done from the first of Eqs. (4.22) in the transformed
domain. So, we have

d
^
H
!
s =

j

ωμb
r × d

^
E
!
s =

j

ωμb

ix iy iz

ju 0
∂

∂z

0 dÊs 0

��������

��������
=

j

ωμb
−
∂dÊs

∂z
ix + ju dÊsiz

	 

:

Consequently, the second condition is

1
μ0

∂dÊs

∂z

�����
z= 0−

=
1
μs

∂dÊs

∂z

�����
z = 0+

which, when expressed in terms of the Eqs. (4.33), becomes

kz0 dA

μ0
=
kzs
μs

dB−
kzs
μs

dC:
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3. Continuity of the electric field about the source point: This condition means
dÊsjz= z0 − = dÊsjz = z0 + , which, when substituted in Eqs. (4.33), provides dB exp
(jkzsz0) + dC exp(−jkzsz0) = dD exp(−jkzsz0).

4. Integrability of Eq. (4.30) about the singular point: This means

∂dÊs

∂z

���
z0 +

−
∂dÊs

∂z

���
z0 −

= jωμsJeq x0,z0ð Þexp − jux0ð Þ dx0dz0

In terms of Eqs. (4.33), this is rewritten as follows:

−kzsdDexp − jkzsz
0ð Þ− kzsdBexp jkzsz

0ð Þ−kzsdC exp − jkzsz
0ð Þð Þ=ωμsJeq x0,z0ð Þexp − jux0ð Þ dx0dz0

Thus, in the end we work out the following algebraic system:

dA = dB+ dC,

μskz0
μ0kzs

dA= dB−dC,

dD−dBexp j2kzsz
0ð Þ−dC = 0,

dD + dBexp j2kzsz
0ð Þ−dC =

−ωμs
kzs

exp jkzsz
0ð Þexp − jux0ð ÞJeq x0,z0ð Þ dx0dz0

ð4:34Þ

Let us now solve the system. From the difference between the fourth and the third equa-
tion, we have immediately

dB =
−ωμs
2kzs

exp − jkzsz
0ð Þexp − jux0ð ÞJeq x0,z0ð Þ dx0dz0 ð4:35Þ

From the sum of the first two equations we obtain

dA =
2dB

1 +
μskz0
μ0kzs

=
2dBμ0kzs

μ0kzs + μskz0

=
2μ0kzs

μ0kzs + μskz0

−1ð Þωμs
2kzs

exp − jkzsz
0ð Þexp − jux0ð ÞJeq x0,z0ð Þ dx0dz0

=
−ωμ0μs

μ0kzs + μskz0
exp − jkzsz

0ð Þexp − jux0ð ÞJeq x0,z0ð Þ dx0dz0 ð4:36Þ

Then, from the first equation we get
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dC = dA−dB=
2dBμ0kzs

μ0kzs + μskz0
−dB

=
μ0kzs−μskz0
μ0kzs + μskz0

dB =
−ωμs
2kzs

μ0kzs−μskz0
μ0kzs + μskz0

exp − jkzsz
0ð Þexp − jux0ð ÞJeq x0,z0ð Þ dx0dz0

ð4:37Þ

Finally, from the third equation we obtain

dD = dBexp j2kzsz
0ð Þ+ dC

=
−ωμs
2kzs

μ0kzs−μskz0
μ0kzs + μskz0

0
@

1
Aexp − jkzsz

0ð Þ + exp jkzsz
0ð Þ

2
4

3
5exp − jux0ð ÞJeq x0,z0ð Þ dx0dz0

ð4:38Þ

Substituting these values in Eqs. (4.33), we have

dÊs =

−ωμ0μs
μ0kzs + μskz0

exp − jkzsz
0ð Þexp jkz0zð Þexp − jux0ð ÞJeq x0,z0ð Þ dx0dz0, z< 0,

−ωμs
2kzs

exp − jux0ð Þ exp − jkzs z
0−zð Þð Þ + μ0kzs−μskz0

μ0kzs + μskz0
exp − jkzs z0 + zð Þð Þ

2
4

3
5

× Jeq x0,z0ð Þ dx0dz0, 0 < z< z0,

−ωμs
2kzs

exp − jux0ð Þ exp − jkzs z−z
0ð Þð Þ + μ0kzs−μskz0

μ0kzs + μskz0

0
@

1
Aexp − jkzs z

0 + zð Þð Þ
2
4

3
5

× Jeq x0,z0ð Þdx0dz0, z0 < z

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð4:39Þ

The second and the third expressions can be joined by considering the absolute value of
z − z0, thereby providing the more compact formula

dÊs u,z;ωð Þ=

−ωμ0μs
μ0kzs + μskz0

exp − jkzsz
0ð Þexp jkz0zð Þexp − jux0ð ÞJeq x0,z0ð Þdx0dz0, z< 0,

−ωμs
2kzs

exp − jux0ð Þ exp − jkzs z−z
0j jð Þ + μ0kzs−μskz0

μ0kzs + μskz0
exp − jkzs z0 + zð Þð Þ

2
4

3
5

× Jeq x0,z0ð Þ dx0dz0, 0 < z

8>>>>>>>>><
>>>>>>>>>:

ð4:40Þ
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At this point we can calculate the element of scattered field in the spatial domain (x,z) by
back transforming Eq. (4.40). Thus we obtain

dEs x,z;ωð Þ =

−ωμ0μs
2π

Jeq x0,z0ð Þ dx0dz0
ð+∞
−∞

exp − jkzsz0ð Þexp jkz0zð Þexp − ju x0−xð Þð Þ
μ0kzs + μskz0

du,

z < 0,

−ωμs
4π

Jeq x0,z0ð Þ dx0dz0
ð+∞
−∞

exp − ju x0−xð Þð Þ
kzs

× exp − jkzs z−z0j jð Þ + μ0kzs−μskz0
μ0kzs + μskz0

exp − jkzs z
0 + zð Þð Þ

2
4

3
5du, 0 < z

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð4:41Þ
The overall scattered field is the integral over the investigation domain of the quantity in
Eq. (4.41), with the substitution of the value of the equivalent current density, as given in
Eq. (4.20). Thus we have:

Es x,z;ωð Þ =

− jω2μ0μs
2π

ð ð
D

Δε x0,z0ð ÞE x0,z0ð Þ dx0dz0
ð+∞
−∞

exp − jkzsz0ð Þexp jkz0zð Þexp − ju x0−xð Þð Þ
μ0kzs + μskz0

du,

z< 0,

− jω2μs
4π

ð ð
D

Δε x0,z0ð ÞE x0,z0ð Þ dx0dz0
ð+∞
−∞

exp − ju x0−xð Þð Þ
kzs

× exp − jkzs z−z0j jð Þ + μ0kzs−μskz0
μ0kzs + μskz0

exp − jkzs z
0 + zð Þð Þ

2
4

3
5du, 0 < z

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð4:42Þ
At this point, by making use of the dielectric contrast as defined in Eq. (4.1), Eqs. (4.42)
can be still rewritten as

Es x,z;ωð Þ =

− jk2s μ0
2π

ð ð
D

χe x0,z0ð ÞE x0,z0ð Þ dx0dz0
ð+∞
−∞

exp − jkzs uð Þz0ð Þexp jkz0 uð Þzð Þexp − ju x0−xð Þð Þ
μ0kzs uð Þ + μskz0 uð Þ du,

z < 0

− jk2s
4π

ð ð
D

χe x0,z0ð ÞE x0,z0ð Þ dx0dz0
ð+∞
−∞

exp − ju x0−xð Þð Þ
kzs uð Þ

× exp − jkzs uð Þ z−z0j jð Þ+ μ0kzs uð Þ−μskz0 uð Þ
μ0kzs uð Þ + μskz0 uð Þ exp − jkzs uð Þ z0 + zð Þð Þ

2
4

3
5du, 0 < z

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð4:43Þ
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Adding the incident field to both sides of the second of equations (4.43), eventually we
retrieve the scattering equations, in the case of only dielectric anomalies (χm = 0):

E x,xs,z,zsð Þ=Einc x,xs,z,zsð Þ+ k2s
ð ð
D

χe x0,z0ð ÞE x0,xs,z0,zsð ÞGi x,x
0,z,z0ð Þ dx0dz0,

x,zð Þ 2D, xs,zsð Þ 2Σ

ð4:44Þ

Es x0,xs,z0,zsð Þ = k2s
ð ð
D

χe x0,z0ð ÞE x0,xs,z0,zsð ÞGe x0,x0,z0,z0ð Þ dx0dz0,

xs,zsð Þ, x0,z0ð Þ 2Σ
ð4:45Þ

where (x,z)2D is the generic point within the investigation domain, (xs,zs) 2 Σ is the
source point within the observation domain, and (x0,z0) 2 Σ is the observation point
within the observation domain. Gi and Ge are the dielectric internal and external Green’s
functions, respectively. Their value, based on Eq. (4.43), is given by

Gi x,x0,z,z0ð Þ = − j

4π

ð+∞
−∞

exp − ju x0−xð Þð Þ
kzs

exp − jkzs z−z
0j jð Þ

"

+
μ0kzs−μskz0
μ0kzs + μskz0

exp − jkzs z
0 + zð Þð Þ

3
5du, x,zð Þ, x0,z0ð Þ 2D ð4:46Þ

Ge x0,x0,z0,z0ð Þ= − jμ0
2π

ð+∞
−∞

exp − jkzsz0ð Þexp jkz0zð Þexp − ju x0−xoð Þð Þ
μ0kzs + μskz0

du,

x0,z0ð Þ 2Σ, x0,z0ð Þ 2D

ð4:47Þ

The proposed procedure expresses the field in terms of Sommerfeld’s integrals
(Sommerfeld, 1912) and corresponds to the usual procedure to retrieve the classical scat-
tering equations, with the addition that possible magnetic properties of the soil (usually
neglected) have also been accounted for. So, for a correct comparison, these results cor-
respond to those already published [e.g., in Lesselier and Duchene (1996); Chew (1995)]
only under the further hypothesis that μs = μ0.

The exposed calculations have also shown that Green’s functions are proportional to
the electric field generated by a spatially impulsive source buried in a homogeneous soil.
More specifically, the internal Green’s function is proportional to the field in the soil, and
the external Green’s function is proportional to the field in air. This makes the Green’s
functions square integrable functions, because they are essentially electromagnetic fields
generated by finite energy sources.
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4.3 CALCULATION OF THE INCIDENT FIELD RADIATED BY
A FILAMENTARY CURRENT

In order to calculate the incident field, we have to consider an impulsive source in air
instead of an impulsive source in the soil, but the procedure is fully analogous to that
just followed, except for the final integration on the investigation domain, which this time
is not needed because the source is actually concentrated. The explicit calculation steps
are left as an exercise, and the final result is

Einc x,z;ωð Þ=

−ωIoμ0
4π

ð+∞
−∞

exp − jv xs−xð Þð Þ
kz0 vð Þ

× exp − jkz0 vð Þ z−zsj jð Þ + μskz0 vð Þ−μ0kzs vð Þ
μ0kzs vð Þ + μskz0 vð Þ exp − jkzs vð Þ z+ zsð Þð Þ

2
4

3
5dv,

0 < z,

−ωI0μ0μs
2π

ð+∞
−∞

exp − jkzs vð Þzð Þexp jkz0 vð Þzsð Þexp − jv xs−xð Þð Þ
μ0kzs vð Þ + μskz0 vð Þ dv, z < 0

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð4:48Þ

4.4 THE PLANE WAVE SPECTRUM OF AN ELECTROMAGNETIC
SOURCE IN A HOMOGENEOUS SPACE

It is possible, even under a 2D model, to enhance the scattering equation by inserting
in them the characteristic of a source more similar to the actual one with respect to
the filamentary current adopted in the previous sections. In order to do this, however,
we preliminarily need to introduce the concepts of plane wave spectrum.

This is a well-known topic in electromagnetism (Collin, 1985; Franceschetti, 1997).
Notwithstanding, a resume is useful both for self-consistency purposes and (above all) in
order to have the possibility to outline some subtleties specifically relevant to GPR
prospecting.

With regard to the plane wave spectrum, let us initially deal with the most general
three-dimensional case, and let us consider a source at height h above the soil and at
the coordinatives xs = 0, ys = 0. In a reference system with the z-axis directed downward
(as that of Figure 4.1) this means that the source is at a negative height zs = − h. Let us first
consider a homogeneous (possibly lossy) medium instead of a half-space. The propa-
gation medium is also assumed to be isotropic and time-invariant. Thus, we have that,
for any z > − h, the field is the solution of the homogeneous Maxwell’s equations.
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r× E
!
= − jωμH

!
,

r × H
!
= jωεE

!
,

r�εE! = 0,

r�μH! = 0

ð4:49Þ

Following calculation steps very similar to those presented in Section 4.2, it is straight-
forward to retrieve from Eq. (4.49) a vector Helmholtz equation of the kind

r2 E
!
+ k2 E

!
= 0

! ð4:50Þ

where k is the wavenumber of the medium. In scalar terms, Eq. (4.50) is expressed as

∂2Ei

∂x2
+
∂2Ei

∂y2
+
∂2Ei

∂z2
+ k2Ei = 0 ð4:51Þ

where the subscript i indicates any among the three x- y- or z-directed components. At this
point, we consider the two-dimensional Fourier transform with respect to the x and y
variables, for which we will follow the convention:

^̂f u,v,zð Þ =
ð+∞
−∞

ð+∞
−∞

f x,y,zð Þexp − juxð Þexp − jvyð Þ dxdy ð4:52Þ

Consequently, the inverse Fourier transform is given by

f x,y,zð Þ = 1
4π2

ð+∞
−∞

ð+∞
−∞

^̂f u,v,zð Þexp juxð Þexp jvxð Þ dudv ð4:53Þ

The Fourier transform of the partial derivative of the function follows the homologous
rule of Eq. (4.29). Consequently, considering the two-dimensional Fourier transform of
Eq. (4.51), we obtain

−u2 ^̂Ei−v
2 ^̂Ei +

∂2d ^̂Ei

∂z2
+ k2 ^̂Ei = 0 ð4:54Þ

whose formal solution, accounting for the radiation condition at infinity (which prevents
the presence of waves propagating from the infinite toward the sources), can be
expressed as

^̂Ei u,v,zð Þ = ^̂Ai u,vð Þexp − jkz1 u,vð Þzð Þ ð4:55Þ
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or, in vector terms,

^̂
E
!
i u,v,zð Þ =

^̂
A
!

u,vð Þexp − jkz1 u,vð Þzð Þ ð4:56Þ
where

kz1 u,vð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−u2−v2

p
ð4:57Þ

In Eq. (4.56) the determination of the square root with nonpositive imaginary part has to
be retained, in order to have a solution where the field vanishes far from the sources
(in particular for z! +∞).1 We have labeled the quantity in Eq. (4.57) as kz1 in order
to distinguish it from the quantity kz previously defined [Eq. (4.31)] in the two-
dimensional half-space scalar case. At any rate, physically, both kz and kz1 represent
the z-component of the wavevector.

Equation (4.56) tells us that it is sufficient to know the field on any plane z = const >
− h in order to know it (theoretically) everywhere in the half-space z > − h. In particular,
let us suppose to know the field at the height z = z1 > − h. In this case we can calculate^̂
E
!

u,v,z1ð Þ as the two-dimensional Fourier transform of the field on the plane z = z1. Then,
according to Eq. (4.56), we have

^̂
E
!

u,v,z1ð Þ =
^̂
A
!

u,vð Þexp − jkz1 u,vð Þz1ð Þ)
^̂
A
!

u,vð Þ =
^̂
E
!

u,v,z1ð Þexp jkz1 u,vð Þz1ð Þ ð4:58Þ

Consequently, for any other z = z2 > − h, we have

^̂
E
!

u,v,z2ð Þ=
^̂
A
!

u,vð Þexp − jkz1 u,vð Þz2ð Þ=
^̂
E
!

u,v,z1ð Þexp − jkz1 u,vð Þ z2−z1ð Þð Þ ð4:59Þ

At this point, the field in the plane z = z2 is the inverse two-dimensional Fourier transform
of

^̂
E
!

u,v,z2ð Þ according to Eq. (4.53).
Thus, we can refer the plane wave spectrum to any fixed height. Here, we choose the

height of the source z = zs > − h,2 so we calculate the plane wave spectrum as

^̂
E
!

u,vð Þ =
^̂
E
!

u,v,zsð Þ=
ð+∞
−∞

ð+∞
−∞

E
!
x,y,zsð Þexp − j xu + yvð Þ½ � dxdy ð4:60Þ

The plane wave spectrum expresses the behavior of the sources, acquired either
experimentally or theoretically or numerically.

1 Let us remind that the solution looked for is valid only for z > − h.
2 In most texts, there is a default choice at z = 0 for the definition of the plane wave spectrum. This is the most
natural choice if the propagation medium is a homogeneous medium. However, we will have to pass to the case
of a medium composed by two homogeneous half-spaces.
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The field for any point with z > zs is given by

E
!

x,y,zð Þ = 1
4π2

ð+∞
−∞

ð+∞
−∞

^̂
E
!

u,vð Þexp j ux + vy−kz1 u,vð Þ z−zsð Þð Þ½ � dudv ð4:61Þ

Equation (4.61) has been worked out under the condition that xs = 0 and ys = 0. Due to the
homogeneity of the considered medium, a shift of the source amounts to the same shift
for the field. Thus, if we consider a source placed in a generic (reference) point (xs,ys), the
field assumes the more general expression:

E
!

x,y,zð Þ= 1
4π2

ð+∞
−∞

ð+∞
−∞

^̂
E
!

u,vð Þexp j u x−xsð Þ + v y−ysð Þ−kz1 u,vð Þ z−zsð Þð Þ½ � dudv z > zs

ð4:62Þ
The quantity integrated in Eq. (4.62) is a plane wave that propagates along the direction −
uix − viy + kz1(u,v)iz. So, Eq. (4.62) expresses the field as a sum of plane waves (for any
fixed frequency).3 Equivalently, the field can be also expressed as

E
!

x,y,zð Þ = 1
4π2

ð+∞
−∞

ð+∞
−∞

^̂
E
!

u,vð Þexp − j u x−xsð Þ + v y−ysð Þ + kz1 u,vð Þ z−zsð Þð Þ½ � dudv z> zs

ð4:63Þ

The reader can easily check that the integrals (4.62) and (4.63) provide the same
result, but in Eq. (4.63) the generic plane wave component propagates along the direction
uix + viy + kz1(u,v)iz. In the following, we will adopt the expression (4.63).

In the 2D case at hand, it is an easy exercise to check that Eq. (4.63) reduces to

E
!

x,zð Þ= 1
2π

ð+∞
−∞

^
E
!

uð Þexp − j u x−xsð Þ + kz uð Þ z−zsð Þð Þ½ � duz > zs ð4:64Þ

where kz uð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−u2

p
and

^
E
!

uð Þ= ^
E
!

u,zsð Þ =
ð+∞
−∞

E
!
x,zsð Þexp − juxð Þ dx ð4:65Þ

3 Let us outline that the reader can find different expressions of the plane wave spectrum, corresponding to
different conventional choices about the definition of the Fourier transform. In particular, Eq. (4.63) might be
equivalently expressed with the minus sign before the terms ux and vy in the exponential. Moreover, sometimes
the factor 1=4π2 is included by definition in the plane wave spectrum and thus does not appear explicitly outside
the integral.
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Moreover, in Eqs. (4.64) and (4.65) both the field and the plane wave spectrum have only
the y-component.4

Let us now consider a losslessmedium. In this case, if the couple (u,v) is internal to the
circle of equation C : u2 + v2 = k2, then kz1 is a real quantity [see Eq. (4.57)] and the plane
wave (i.e., a homogeneous plane wave) propagates along a direction with a real com-
ponent along the z-axis. Instead, if the couple (u,v) is external to the circleC, kz1 becomes
an imaginary quantity. In this case the plane wave propagates along a direction belonging
to the xy plane and vanishes exponentially along the z-axis. The circle C allows us to dis-
tinguish the so-called visible planewave spectrum from the invisible planewave spectrum.
Clearly, at some distance from the sources, only the visible plane wave spectrum gives a
meaningful contribution to the field. In the case of a low lossymedium (as inmany case the
soil is) we cannot distinguish rigorously a visible plane wave spectrum from an invisible
one. However, if we define a pseudo-visible plane wave spectrum on the basis of the real
part of the wavenumber kr = Real(k) (i.e., we consider the circle C : u2 + v2 = k2r ), we still
recognize that the attenuation along the z-axis increases meaningfully for couples (u,v)
outside the pseudo-visible circle. Thus, in any case we have that the field for high values
of z contains fewer plane waves than does the field for small values of z.

4.5 THE INSERTION OF THE SOURCE CHARACTERISTICS
IN THE SCATTERING EQUATIONS

Let us now come back to the 2D scalar case, but let us consider the case of two
homogeneous half-spaces (the upper one made up of free space), and let us start from
Eqs. (4.64)–(4.65) written in free space:

E
!

x,zð Þ= 1
2π

ð+∞
−∞

^
E
!

uð Þexp − j u x−xsð Þ + kz0 uð Þ z−zsð Þð Þ½ � du, ð4:66Þ

^
E
!

uð Þ= ^
E
!

u,zsð Þ =
ð+∞
−∞

E
!
x,zsð Þexp − juxð Þ dx ð4:67Þ

where kz0 uð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −u

2
p

is the imaginary part of the nonpositive square root.
Both the electric field and the plane wave spectrum have only one component,

y-directed—that is, coming out from the sheet according with the geometry of the prob-
lem represented in Figure 4.1.

When the incident field of Eq. (4.66) meets the interface between two homogeneous
half-spaces, the comprehensive field can be calculated reflecting and refracting the
generic plane wave composing the incident field and then calculating the integral sum
of the reflected and refracted waves. The superposition is licit because both the involved

4 The reason why we have considered the more general 3D case instead of directly the 2D case at hand will be
clear after reading Section 4.8.
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propagation media are linear with respect to the incident field and time invariant.
So we have:

dE
!
I x,zð Þ= dEI x,zð Þiy = 1

2π
^
E
!

uð Þexp j u x−xsð Þ−kz0 uð Þ z−zsð Þð Þ½ � du

=
1
2π

Ê uð Þexp j u x−xsð Þ−kz0 uð Þ z−zsð Þð Þ½ � duiy ð4:68Þ

This incident wave generates both a reflected and a refracted (or transmitted) wave at the
air–soil interface, at z = 0.

The reflected elementary wave will have the general form

dE
!
R x,zð Þ = dER x,zð Þiy = 1

2π
^
E
!
R u1ð Þexp j u1x + kz0 u1ð Þzð Þ½ � du1

=
1
2π

ÊR u1ð Þexp j u1x+ kz0 u1ð Þzð Þ½ � du1iy ð4:69Þ

whereas the elementary transmitted wave will have the general form

dE
!
T x,zð Þ= dET x,zð Þiy = 1

2π
^
E
!
T u2ð Þexp j u2x−kzs u2ð Þzð Þ½ � du2

=
1
2π

ÊT u2ð Þexp j u2x−kzs u2ð Þzð Þ½ � du2iy ð4:70Þ

where kzs is defined according to Eq. (4.31). Equations (4.69) and (4.70) also account for
the fact that Maxwell’s equations impose to any plane wave (in any homogeneous
isotropic propagation medium) the constraint u2 + k2z = k

2, that is, they impose that the
modulus of the wavevector is equal to the wavenumber of the local propagation medium.
Moreover, in the expression of the reflected wave, it has been shown that the wavevector
has to have its arrow directed in the air, which accounts for the plus sign before kz0(u1)z.

At this point, let us impose the continuity of the tangent components of both the
electric and the magnetic field at the air–soil interface, which, as already stated, is also
a consequence of Maxwell’s equations. With respect to the electric field, we have

1
2π

Ê uð Þexp j u x−xsð Þ−kz0 uð Þhð Þ½ � du+ 1
2π

ÊR u1ð Þexp ju1xð Þ du1
=

1
2π

ÊT u2ð Þexp ju2xð Þ du2 ð4:71Þ

Since the equality has to hold for any value of x, we have as a first result the equality
at u = u1 = u2; that is, the x component of the three wavenumbers is the same.
Consequently, Eqs. (4.69)–(4.70) evolve into
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dE
!
R x,zð Þ= dER x,zð Þiy = 1

2π
^
E
!
R uð Þexp j ux + kz0 uð Þzð Þ½ � du

=
1
2π

ÊR uð Þexp j ux + kz0 uð Þzð Þ½ � duiy ð4:72Þ

dE
!
T x,zð Þ = dET x,zð Þiy = 1

2π
^
E
!
T uð Þexp j ux−kzs uð Þzð Þ½ � du

=
1
2π

ÊT uð Þexp j ux−kzs uð Þzð Þ½ � duiy ð4:73Þ

Equations (4.71)–(4.73) express an equivalent formulation of the Snell’s law
(Franceschetti, 1997).

However, let us outline that, in the case at hand, part of the incident plane waves are
homogeneous andpart are inhomogeneous. Inotherwords, the spectral formulation allows
us to account for all the involved real and complex incidence, reflection and refraction
angles in a compact and smart way. Substituting Eqs. (4.72)–(4.73) into Eq. (4.71), the
condition of continuity of the tangent electric field at the interface becomes

Ê uð Þexp − jkz0 uð Þhð Þexp − juxsð Þ+ ÊR uð Þ = ÊT uð Þ ð4:74Þ

The magnetic field is expressed versus the electric one fromMaxwell’s, equations, in the
same formal way followed with regard to the scattered field in Section 4.2; thus we have

dH
!
I =

j

ωμ0
r× dE

!
I =

j

ωμ0

ix iy iz

ju 0
∂

∂z

0 dE
!
i 0

���������

���������
=

j

ωμ0
−
∂dEI

∂z
ix + judE

!
I iz

	 

ð4:75Þ

As a result, the tangent component of the incident magnetic field is given by

dHIx = −
j

ωμ0

∂dEI

∂z
ð4:76Þ

and analogously

dHRx = −
j

ωμ0

∂dER

∂z
, ð4:77Þ

dHTx = −
j

ωμs

∂dET

∂z
ð4:78Þ

Consequently, the continuity of the tangent component of the magnetic field at the
air–soil interface is expressed as
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1
μ0

∂dEI

∂z

�����
z= 0−

+
1
μ0

∂dER

∂z

�����
z= 0−

=
1
μs

∂dET

∂z

�����
z = 0+

ð4:79Þ

Substituting Eqs. (4.68), (4.72), and (4.73) into Eq. (4.79), we obtain

kz0 uð Þ
μ0

Ê uð Þexp − juxsð Þexp − jkz0 uð Þhð Þ− kz0 uð Þ
μ0

ÊR uð Þ= kzs uð Þ
μs

ÊT uð Þ ð4:80Þ

Equations (4.74) and (4.80) allow us to solve the reflected and the transmitted plane
wave spectra versus the incident one. Thus, we have

ÊR uð Þ = μskz0 uð Þ−μ0kzs uð Þ
μskz0 uð Þ+ μ0kzs uð Þ Ê uð Þexp − juxsð Þexp − jkz0 uð Þhð Þ, ð4:81Þ

ÊT uð Þ= 2μskz0 uð Þ
μskz0 uð Þ+ μ0kzs uð Þ Ê uð Þexp − juxsð Þexp − jkz0 uð Þhð Þ ð4:82Þ

Equations (4.81)–(4.82) make it clear that the quantity
μskz0 uð Þ−μ0kzs uð Þ
μskz0 uð Þ + μ0kzs uð Þ has the

physical meaning of an air–soil reflection coefficient, whereas the quantity
2μskz0 uð Þ

μskz0 uð Þ + μ0kzs uð Þ has the physical meaning of an air–soil transmission coefficient.

Therefore, the (unique) y-component of the field, which is the incident field for the
inverse scattering problem related to the reconstruction of buried targets, is given by

Einc x,zð Þ =

1
2π

ð+∞
−∞

Ê uð Þexp juxð Þexp − juxsð Þexp − jkz0 uð Þhð Þ

× exp − jkz0 uð Þzð Þ + μskz0 uð Þ−μ0kzs uð Þ
μskz0 uð Þ + μ0kzs uð Þ exp jkz0 uð Þzð Þ

2
4

3
5du, z< 0,

1
2π

ð+∞
−∞

Ê uð Þexp juxð Þexp − juxsð Þexp jkz0 uð Þzsð Þ

×
2μskz0 uð Þ

μskz0 uð Þ + μ0kzs uð Þ exp − jkz0 uð Þzð Þ du, z > 0

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð4:83Þ

Equation (4.83) provides the incident field everywhere in a medium composed of two
homogeneous half-spaces, with interface at z = 0. Equation (4.83) constitutes the gener-
alization of Eq. (4.48), where the incident field is calculated in the case that the source is a
filamentary current. In order to distinguish the characteristics of the source from those of
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the receiving antenna, from now on we will relabel Ê as ÊTx, where the suffix Tx stands
for transmitting antenna. Thus, Eq. (4.83) is rewritten as

Einc x,zð Þ=

1
2π

ð+∞
−∞

ÊTx uð Þexp juxð Þexp − juxsð Þexp − jkz0 uð Þhð Þ

× exp − jkz0 uð Þzð Þ+ μskz0 uð Þ−μ0kzs uð Þ
μskz0 uð Þ+ μ0kzs uð Þ exp jkz0 uð Þzð Þ

2
4

3
5du, z< 0,

1
2π

ð+∞
−∞

ÊTx uð Þexp juxð Þexp − juxsð Þexp jkz0 uð Þzsð Þ

×
2μskz0 uð Þ

μskz0 uð Þ+ μ0kzs uð Þ exp − jkz0 uð Þzð Þ du, z> 0

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð4:84Þ

To account for the characteristics of the source in the scattering equation just means to
insert the incident field given by Eq. (4.84) in them instead of the incident field related
to a filamentary current, given by Eq. (4.48). In particular, the plane wave spectrum of a
filamentary current I0 is given by (Clemmow, 1996; Harrington, 1961)

ÊTx vð Þ= −ωμ0I0
2

1
kz0 vð Þ ð4:85Þ

which, when substituted in Eq. (4.84), gives back Eq. (4.48).
Before closing this section, a further observation is proposed: Since the calculations

are based on Maxwell’s equations, the primary source of the field is some given current
density, and this is considered unchanged passing from the case of a homogeneous space
to the case of a half-space. Actually, the density current that generates the field is pro-
vided by the currents that arise on the exploited transmitting antenna. These currents in
general are not the same when the antenna radiates in free space and when it radiates near
the soil. So, if we somehow measure or simulate the plane wave spectrum of the trans-
mitting antenna in free space, and then wemake use of it in Eq. (4.84), then we are implic-
itly neglecting the different behavior of the antenna in free space and close to the soil.

4.6 THE FAR FIELD IN A HOMOGENEOUS LOSSLESS SPACE IN
TERMS OF PLANE WAVE SPECTRUM

Let us now devote attention to the insertion of the characteristics of the receiver into the
scattering equations. In order to do that, we need another digression starting from the 3D
plane wave spectrum of a transmitting antenna. So, let us consider the polar reference
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system of Figure 4.2, and let us express the involved vectors bymeans of their projections
along the Cartesian axes, in turn expressed in terms of polar coordinates. So we have

r
! = xix + yiy + ziz = r sin θð Þcos φð Þix + r sin φð Þsin φð Þiy + rcos θð Þiz, ð4:86Þ

r
!
s = xsix + ysiy + zsiz = rs sin θsð Þcos φsð Þix + rs sin θsð Þsin φsð Þiy + rs cos θsð Þiz, ð4:87Þ

k
!
u,vð Þ= uix + viy + kz1 u,vð Þiz =wcos φ1ð Þix +wsin φ1ð Þiy + kz1 wcos φ1ð Þ,wsin φ1ð Þð Þiz

= k wn cos φ1ð Þix +wn sin φ1ð Þiy + kz1n wnð Þiz
� � ð4:88Þ

where we have introduced the following normalized (with respect to the wavenumber)
quantities:

wn =
w

k
,

kz1n wnð Þ= kz1 wcos φ1ð Þ,wsin φ1ð Þð Þ
k

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−w2 cos2 φ1ð Þ−w2 sin2 φ1ð Þp

k

=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−w2

p

k
=

ffiffiffiffiffiffiffiffiffiffiffiffi
1−w2

n

q
ð4:89Þ

z = 0

z = zs

rs
→

r
→

θ
φ

k(u,v)

y

x

z

→

Figure 4.2. Polar and Cartesian reference systemat hand. The angular coordinates φ1, θs, and φs

are easily inferred.
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After doing that, expressing the integral of Eq. (4.63) in planar polar variables, we have

E
!
r,θ,φð Þ = k2

4π2

ð2π
0

dφ1

ð+∞
0

wndwn

^̂
E
!
kwn cos φ1ð Þ,kwn sin φ1ð Þð Þ

× exp − jkr wn cos φ1ð Þsin θð Þcos φð Þ+wn sin ϕ1ð Þsin θð Þsin φð Þ + kz1n wnð Þcos θð Þð Þ½ �

× exp jkrs wn cos φ1ð Þsin θsð Þcos φsð Þ +wn sin φ1ð Þsin θsð Þsin φsð Þ + kz1n wnð Þcos θsð Þð Þ½ �
ð4:90Þ

Since the expression is considered only for great values of the distance r, the integral
(4.90) can be calculated with the method of the stationary phase method. This method
is based on the fact that the exponential term related to the observation point constitutes
a strongly oscillating function versus the integration variables, unless the derivatives of
the argument of the exponential is equal to zero. Thus, the most important contributions
to the results are expected to be related to the neighbors of the roots of derivatives of that
argument, which are called “stationary points” (Felsen and Marcuvitz, 1994).

In order to provide the general stationary phase formula for integrals in two vari-
ables, let us consider two “slowly varying” functions f(x,y) and g(x,y), where g(x,y) is
a real function (instead, f(x,y) can be either a real or a complex function), and let us
consider a real parameter Ω! +∞. In this case, for any quadruple of real values X1,
X2 > X1, Y1, Y2 > Y1 we can approximate

ðX2

X1

dx

ðY2
Y1

f x,yð Þexp jΩg x,yð Þ½ � dy≈ 2πjf x0,y0ð Þexp jΩg x0,y0ð Þ½ �

Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2g

∂x2
x0,y0ð Þ∂

2g

∂y2
x0,y0ð Þ

s ð4:91Þ

where the point (x0,y0) is the (supposed unique) stationary point enclosed in the inte-
grated area.

Moreover, in Eq. (4.91), it is implicitly supposed that the stationary point is of the first
order; that is, the second-order derivatives do not vanish in it. If more than one first-order
stationary points are present, each of them provides an additive contribution of the kind of
Eq. (4.91) to the field. If higher-order stationary points are present (i.e., point where the
first-, the second- and possibly also higher-order derivatives vanish), they provide further
additive contributions, even if these will be not expressed by means of Eq. (4.91).

That said, let us label the phase terms at hand as follows:

ψ wn,φ1;θ,φð Þ =wn sin θð Þcos φð Þcos φ1ð Þ+wn sin θð Þsin φð Þsin φ1ð Þ + k1zn wnð Þcos θð Þ
ð4:92Þ

and similarly

ψ s w,φ1;θs,φsð Þ=wn sin θsð Þcos φsð Þcos φ1ð Þ +wn sin θsð Þsin φsð Þsin φ1ð Þ−k1zn wnð Þcos θsð Þ
ð4:93Þ
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Let us now calculate the first-order derivatives, in order to look for the stationary points:

∂ψ

∂φ1
= −wn sin θð Þcos φð Þsin φ1ð Þ +wn sin θð Þsin φð Þcos φ1ð Þ

=wn sin θð Þsin φ−φ1ð Þ,
∂ψ

∂wn
= sin θð Þcos φð Þcos φ1ð Þ+ sin θð Þsin φð Þsin φ1ð Þ− cos θð Þ wnffiffiffiffiffiffiffiffiffiffiffiffi

1−w2
n

p
= sin θð Þcos φ−φ1ð Þ− cos θð Þ wnffiffiffiffiffiffiffiffiffiffiffiffi

1−w2
n

p
ð4:94Þ

Looking for the roots of the gradient, the first of Eq. (4.94) admits two distinct solutions
(apart from the periodicity, which is not influent here). They are φ1 = φ and φ1 = φ + π.
However, due to the geometrical condition that the observation point is beyond the source
(which means that 0 ≤ θ ≤ π=2 (see Figure 4.2), so that both sin(θ) and cos(θ) are non-
negative quantities), and due to the already quoted radiation conditions, the reader
can test that the stationary point with φ1 = φ + π would lead to a wavevector with nega-
tive z-component, which corresponds to an unacceptable wave coming from the infinite
toward the sources. Thus, substituting φ1 = φ in the second of Eqs. (4.94), we determine
that there is a unique acceptable stationary point (wn,φ1) = (sin θ, φ). This means that
the main contribution is given by the plane wave that propagates in the same direction
of the observation point. Let us now calculate the second derivatives of the phase term ψ :

∂2ψ

∂φ2
1

= −wn sin θð Þcos φ−φ1ð Þ

∂2ψ

∂w2
n

= − cos θð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−w2

n

p
+

w2
nffiffiffiffiffiffiffiffiffiffiffiffi

1−w2
n

p
1−w2

n

= − cos θð Þ 1

1−w2
n

� �3=2
ð4:95Þ

which provides the following in the stationary point:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2ψ

∂w2
n

∂2ψ

∂φ2
1

�����
wn,φ1ð Þ= sin θð Þ,φð Þ

vuut = tg θð Þ ð4:96Þ

Thus, the stationary point is of the first order and we can apply (4.94) thereby obtaining
the following in far field:

E
!
r,θ,φð Þ≈ j

2π
kcos θð Þ

r

^̂
E
!

k sin θð Þcos φð Þ,k sin θð Þsin φð Þð Þexp − jkrð Þexp jkrs�irð Þ

=
jexp − jkrð Þexp j k

!�r!s
� �

λr
cos θð Þ

^̂
E
!

k sin θð Þcos φð Þ,k sin θð Þsin φð Þð Þ ð4:97Þ
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This equation shows that in far field the angular dependence becomes uncoupled with
respect to the radial dependence. In particular, the radial dependence of the far field is
independent from the specific source at hand. Let us stress that the hypothesis of the loss-
less medium was central in the application of the stationary phase. Actually, to speak
about far-field pattern in a lossy medium does not have a rigorous sense, even if it is
loosely done in some case. However, the plane wave spectrum expresses the character-
istic of the source even in a lossy medium.

4.7 THE EFFECTIVE LENGTH OF AN ELECTROMAGNETIC
SOURCE IN A HOMOGENEOUS SPACE

Let us now return to a three-dimensional geometry and to a homogeneous medium. The
effective length in transmission mode of an antenna is defined as a vector such as the far
field radiated by the antenna can be written, in polar coordinates (see Figure 4.2), as

E
!

r,θ,ϕð Þ≈ jkς

4π
IRh

!
T θ,ϕð Þe

− jkr

r
ð4:98Þ

where ς is the intrinsic impedance of the medium. In the case of free space, it is equal to

ς0 =
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
≈ 377 ohms. In the case of wire antennas fed at the gap, IR is the current

at the gap; otherwise it is, more in general, a reference current. In the case that IR is a
reference current, there is some degree of arbitrariness in its choice. However, this will
reflect in an inverse proportionality of the value of the effective length so that the elec-
tromagnetic field (which is the physical quantity) will not depend on this. The effective
length is a complex vector, independent on the distance between the source and the obser-
vation point in far field, and has the physical dimension of a length. Let us outline that
Eq. (4.98) is valid at a fixed frequency; that is, the effective length (as well as the plane
wave spectrum and the far-field pattern) is a function of the frequency too. By comparing
Eq. (4.98) with Eq. (4.97), we discover the relationship between the effective length and
the plane wave spectrum:

h
!
T θ,φð Þ=

2exp j k
!�r!s

� �
IRς

cos θð Þ
^̂
E
!

k sin θð Þcos φð Þ,k sin θð Þsin φð Þð Þ ð4:99Þ

In free space, Eq. (4.99) can be still rewritten as

h
!
T θ,ϕð Þ =

λ0 exp jk
!
0�r!s

� �
πIRς0

k0 cos θð Þ
^̂
E
!

k0 sin θð Þcos ϕð Þ,k0 sin θð Þsin ϕð Þð Þ ð4:100Þ

If we consider only homogeneous waves, then Eq. (4.99) is meant with θ varying in the
range 0,π=2ð Þ and φ varying in the range (0, 2π). If we also consider inhomogeneous
waves, attenuating along the z-axis, then complex angles should be accounted for; or,
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alternatively, Eq. (4.100) can be smartly expressed versus the planar component of the
wavevector as follows:

h
!
T u,vð Þ=

λ0 exp j k
!�r!s

� �
πIRς0

kz1 u,vð Þ
^̂
E
!

u,vð Þ=
λ0 exp j k

!�r!s
� �

πIRς0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −u

2−v2
q ^̂

E
!

u,vð Þ ð4:101Þ

Let us now consider the antenna in reception mode, on which impinges an incident plane
wave, which we will express versus its propagation direction as E

!
inc u,vð Þ, and let us label

as V0 the open-circuit voltage at the clamps5 of the gap. The effective length in reception
mode of the antenna is defined by means of the equality

V0 x,y,zð Þ= −h
!
R u,vð Þ�E!inc u,vð Þ= −h

!
R u,vð Þ�E!0 exp j ux + vy ± kz1 u,vð Þzð Þ½ � ð4:102Þ

The sign before the third term in the exponential depends on whether the plane wave at
hand propagates toward the positive or the negative z-axis. Let us outline that E

!
inc u,vð Þ is

not the electric field at the gap but instead the incident field—that is, the field that we
would have at that point in absence of the receiving antenna. The presence of the receiv-
ing antenna, of course, influences and modifies the field—in particular, reirradiating part
of the impinging energy. Now, if the incident field is not given by a single plane wave,
then it can be expressed as a superposition of plane waves. In this case, due to the linearity
of the problem at hand and due to the time-invariant behavior of the receiving antenna,
the open-circuit voltage will be expressed as the integral sum of the contribution of all the
plane waves composing the incident field, so that we have

V0 x,y,zð Þ= −
1
4π2

ð+∞
−∞

ð+∞
−∞

h
!
R u,vð Þ�

^̂
E
!

u,vð Þexp j ux + vy ± kz1 u,vð Þzð Þ½ � dudv ð4:103Þ

At this point, a well-known result in electromagnetism, which is a consequence of the
reciprocity theorem (Franceschetti, 1997), is that the effective length in reception mode
is the same as the effective length in transmission mode. Therefore, this quantity will now
be referred to as just the effective length of the antenna:

h
!
u,vð Þ= h!T u,vð Þ = h!R u,vð Þ ð4:104Þ

and so we can rewrite Eq. (4.103) as

V0 x,y,zð Þ = −
1
4π2

ð+∞
−∞

ð+∞
−∞

h
!
u,vð Þ�

^̂
E
!

u,vð Þexp j ux + vy± kz1 u,vð Þzð Þ½ � dudv ð4:105Þ

5 There are antennas where we cannot identify physical clamps, but even in this case it is possible to consider an
equivalent voltage at equivalent clamps (Stutzman and Thiele, 1998).

74 THE 2D SCATTERING EQUATIONS FOR DIELECTRIC TARGETS



4.8 THE INSERTION OF THE RECEIVER CHARACTERISTICS
IN THE SCATTERING EQUATIONS

We can now consider the problem of inserting the receiver characteristics into the scat-
tering operator. To consider the receiver means to consider as output the “scattered volt-
age” instead of the scattered field—that is, to consider the voltage at the gap (or at some
equivalent gap) of the receiving antenna, instead of the scattered field in the same point.
Unlike the case of the source characteristics, where the plane wave spectrum could be
easily restricted into a 2D framework, the insertion of the receiver characteristics makes
it theoretically hard to remain rigorously into a two-dimensional dealing. In particular, let
us note that the filamentary current is a physical abstraction and is a source without
clamps, either actual or equivalent. This does not prevent the fact that in many cases
a two-dimensional model of the incident and scattered field can be satisfying and con-
venient. In order to solve this theoretical “embarrassment,” we can suppose that a two-
dimensional source radiates the field and two-dimensional targets scatter it. However, we
will consider momentarily a “real” three-dimensional antenna as receiver. That said, let
us reconsider the first in Eqs. (4.41), reported here to simplify the reading:

dE
!
s x,y,zð Þ= iy −ωμ0μs2π

Jeq x0,z0ð Þ dx0dz0

×
ð+∞
−∞

exp − jkzsz0ð Þexp jkz0zð Þexp − ju x0−xð Þð Þ
μ0kzs + μskz0

du, z< 0

ð4:106Þ

With respect to Eq. (4.41), in Eq. (4.106) we have taken implicit the dependence on the
frequency and have instead explicitly shown the fact that the elementary contribution
to the field is directed along the y-axis. We have also introduced an artful formal depend-
ence along the y-axis, even if the function at hand is by definition constant along the y-axis.

Let us now consider the three-dimensional plane wave spectrum of this electrical
field with reference to the air-soil interface. Considering that

ð+∞
−∞

exp − jvyð Þ dy= 2πδ νð Þ ð4:107Þ

and considering that Eq. (4.106) has the structure of an inverse Fourier transform in the
variable x, the plane wave spectrum of Eq. (4.106) is given by

d
^̂
E
!
s u,vð Þ= − iy2πωμ0μsJeq x0,z0ð Þ dx0dz0 exp − jkzs uð Þz0ð Þexp − jux0ð Þ

μ0kzs uð Þ + μskz0 uð Þ δ vð Þ ð4:108Þ

Therefore, the contribution of the elementary buried source to the scattered voltage can
be expressed according to Eq. (4.105) as
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dV0 = −
ωμ0μsJeq x0,z0ð Þ dx0dz0

2π

ð+∞
−∞

ð+∞
−∞

hy u,vð Þ exp − jkzs uð Þz0ð Þexp jkz0 uð Þzð Þexp − ju x0−xð Þð Þ
μ0kzs uð Þ+ μskz0 uð Þ δ vð Þ dudv

= −
ωμ0μsJeq x0,z0ð Þ dx0dz0

2π

ð+∞
−∞

hy u,0ð Þ exp − jkzs uð Þz0ð Þexp jkz0 uð Þzð Þexp − jux0ð Þ
μ0kzs uð Þ + μskz0 uð Þ du ð4:109Þ

Accounting for Eq. (4.101) [wherein the source point is r!s = x0,z0ð Þ], Eq. (4.109) can be
expressed versus the plane wave spectrum of the receiving antenna as follows:

dV0 = −
ωμ0μsJeq x0,z0ð Þλ0 dx0dz0

2π2IRς0ð+∞
−∞

^̂Ey u,0ð Þkzo uð Þ exp − jkzs uð Þz0ð Þexp jkz0 uð Þzð Þexp − ju x0−xð Þð Þ
μ0kzs uð Þ + μskz0 uð Þ du ð4:110Þ

The comprehensive scattered voltage is determined by integrating on x0 and z0 after sub-
stituting the equivalent buried current density according to Eq. (4.20). So we have

V0 x,zð Þ= −
jω2μ0μsεsλ0
2π2IRς0

ð+∞
−∞

ð+∞
−∞

E x0,z0;xs,zsð Þχe x0,z0ð Þ

×
ð+∞
−∞

^̂Ey u,0ð Þkzo uð Þ exp − jkzs uð Þz0ð Þexp jkz0 uð Þzð Þexp − ju x0−xð Þð Þ
μ0kzs uð Þ + μskz0 uð Þ du

2
4

3
5dx0dz0
ð4:111Þ

In Eq. (4.111), E is the internal (i.e., underground) field due to a 2D primary source
placed in (xs,zs), and it is dealt with as a scalar because it is implied that it has the only
y-component. Instead, ^̂Ey is the y-component of the plane wave spectrum of the receiving
antenna in air, which in general has also the x- and the z-components. At this point, we
define the pseudo-2D plane wave spectrum of the receiver as

ÊRx uð Þ =
^̂Ey u,0ð Þ
m

ð4:112Þ

wherem is a constant dimensional quantity equal to 1 m. After doing this, Eq. (4.111) can
be rewritten as

V0 x,zð Þ= −
jmk2s μ0λ0
2π2IRς0

ð+∞
−∞

ð+∞
−∞

E x0,z0;xs,zsð Þχe x0,z0ð Þ

×
ð+∞
−∞

ÊRx uð Þkzo uð Þ exp − jkzs uð Þz0ð Þexp jkz0 uð Þzð Þexp − ju x0−xð Þð Þ
μ0kzs uð Þ+ μskz0 uð Þ du

2
4

3
5dx0dz0

ð4:113Þ
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Equation (4.113) can be expressed in the form

V0 x,zð Þ= k2s
ð+∞
−∞

ð+∞
−∞

Gev x0,z0;x,zð ÞE x0,z0;xs,zsð Þχe x0,z0ð Þ dx0dz0 ð4:114Þ

where, for comparison, we have

Gev x0,z0;x,zð Þ= −
jmμ0λ0
2π2IRς0

ð+∞
−∞

ÊRx uð Þkzo uð Þ

×
exp − jkzs uð Þz0ð Þexp jkz0 uð Þzð Þexp − ju x0−xð Þð Þ

μ0kzs uð Þ + μskz0 uð Þ du

ð4:115Þ

Equations (4.115) expresses the 2D external Green’s function accounting for the
characteristics of the receiving antenna.

Eventually, to insert the characteristics of the receiver into the scattering equation
means to substitute the expression (4.115) for the external Green’s function into the
scattering equation (4.45) instead of the expression (4.47). Note that the internal Green’s
function, instead, remains unchanged and is given by Eq. (4.46). In fact, the internal
Greens function represents the field underground resulting from a buried spatially
impulsive source and is therefore not influenced by the characteristics of the antennas.

QUESTIONS

1. Can we say that the scattering equations essentially are the mathematical relationships
between the buried targets and the electric field in the observation point?

2. Suppose that the shielding of the antennas is perfect, so that no energy is radiated in or
received from the upper half-space. Is this sufficient to assimilate the propagation
medium to a homogeneous medium instead of a medium composed by two adjacent
half-spaces?

3. In the expression of Green’s function and of the incident field [Eqs. (4.46–4.48)] the
magnetic permittivity of both the air and the soil appears explicitly, whereas the
dielectric permittivities of the air and of the soil appear only implicitly by means
of the wave-numbers. What is the reason for this dissymmetry? What should happen
in order to have a formulation where the quantities that appear explicitly are the
permittivities?

4. In order to achieve a filamentary current at microwave frequency, might we make use
of a long wire with lossy nonreflective terminations and then detach the wire in the
middle and apply there a microwave voltage?
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5. In order to implement a two-dimensional receiver, might we follow the same method
described in question 4?

6. Should we expect that the central cut of the field radiated by a three-dimensional
antenna is coincident with the 2D field radiated by a filamentary current displaced
along the same line of the 3D wire antenna?
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5
THE 2D SCATTERING

EQUATIONS FOR MAGNETIC
TARGETS

5.1 THE SCATTERING EQUATIONS WITH ONLY
MAGNETIC ANOMALIES

Let us now consider the case dual to that dealt with in the previous chapter, when
no dielectric anomaly is present ( χe = 0), but instead magnetic anomalies are looked
for ( χm 6¼ 0). Actually, this is an extremely rare case, but the relative calculations are
preliminary to considering the case with both dielectric and magnetic anomalies, which
is less “exceptional.” At the moment, we consider a filamentary electric current as
primary source and consider the scattered field as datum. So, let us start again from
Maxwell’s equations, repeated here for simplification.

r × E
!
= − jωμH

!
,

r × H
!
= jωεbE

!
+ I0δ x−x0ð Þδ z−z0ð Þiy,

r�εbE
!
= 0,

r�μH! = 0

ð5:1Þ

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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The magnetic permeability is schematized as the sum of the background permeability
plus some discrepancy, as follows:

μ x,zð Þ = μb +Δμ x,zð Þ ð5:2Þ

where the background magnetic permeability μb is the piecewise constant function
described by Eq. (4.11). Instead, the dielectric permittivity is equal to the background
permittivity εb, which is the piecewise constant function given in Eq. (4.14).

In the same way that we considered the case with only dielectric anomalies, we
can decompose the field into an incident field plus a scattered field, and then we can
extract Maxwell’s equations for the incident field [which are the same as for the previous
chapter and thus are given in Eqs. (4.18)] and those for the scattered field, which now
are given by

r×E
!
s = − jωμbH

!
s− jωΔμH

!
,

r×H
!
s = + jωεbE

!
s,

r�εbE
!
s = 0,

r�μbH
!
s = −r�ΔμH!

ð5:3Þ

Thus, the scattered field can be viewed as generated by magnetic secondary (equivalent)
sources, given by

J
!
meq = jωΔμH

! ð5:4Þ

The equivalent sources are not directed along the y-axis, but they have an x-directed
component and a z-directed component, as does the magnetic field [see Eq. (4.10)].
Consequently, the secondary sources are not solenoidal in general and, coherently,
the fourth equation in Eqs. (5.3) is not homogeneous but just states the continuity
equation (4.7) with respect to the secondary (magnetic) sources.

This is a crucial point that prevents us from performing the calculations in the same
way followed in Section 4.2 and makes them more complicated. Physically, the point is
that, in this case, the secondary source is an equivalent continuous array of magnetic
Hertzian dipoles instead of a filamentary electric current. The array is infinitely extended
along the y-axis but is directed in the transverse plane and is infinitesimally long in
this plane. This implies that the equivalent magnetic charges can move only along an
infinitesimal path, and consequently some accumulation of them occurs.

After this premix, Eqs. (5.3) can be solved by means of suitable potential functions.
In particular, we can start again from the consideration that the electric field is solenoidal.
This assures (Franceschetti, 1997) the existence of a potential vector (also called

Fitzgerald vector) F
!
such as

E
!
s =

1
εb
r× F

! ð5:5Þ

80 THE 2D SCATTERING EQUATIONS FOR MAGNETIC TARGETS



Substituting Eq. (5.5) in the second of Eqs. (5.3), we have

r ×H
!
s = + jωr × F

!,r× H
!
s− jωF

!� �
= 0 ð5:6Þ

This assures that the irrotational quantityH
!
s− jωF

!
is the gradient of some scalar potential

function Φ (Franceschetti, 1997). So we have

H
!
s = jωF

!
+rΦ ð5:7Þ

Equations (5.5) and (5.7) express the fields in terms of two potential functions, so that we
can think of recasting the problem in terms of these two potential functions, and then the
fields will be derived from them. However, it is to be emphasized that, while the fields
are physical quantities, which makes them univocally determined, the potential functions
are mathematical quantities not univocally determined. In particular, suppose that we

have found a couple of potential functions F
!
0,Φ0

� �
that solve the problem, and let us

consider any well-behaved scalar function ϕ. It is easy to recognize that the couple

F
!
0 +rϕ,Φ0− jωϕ

� �
gives rise to the same fields as F

!
0,Φ0

� �
, and so it is another

solution. In fact, we have

1
εb
r× F

!
0 +rϕ

� �
=
1
εb
r ×F

!
0 +

1
εb
r ×rϕ =

1
εb
r× F

!
,

jωF
!
0 + jωrϕ +rΦ0− jωrϕ = jωF

!
0 +rΦ0

ð5:8Þ

In the first Eq. (5.8), we have exploited the well-known vector identity r ×rf≡ 0.
At this point, let us substitute Eqs. (5.5) and (5.7) in the first equation of Eqs. (5.3).

r ×
1
εb
r×F

!
s = − jωμb jωF

!
+rΦ

� �
− J

!
meq ð5:9Þ

From Eq. (5.9), extracting the background permittivity (in both the homogeneous
half-spaces separately) from the curl symbol and considering again the Laplacian vector,
we have

r r�F!
� �

−r2 F
!
= k2bF

!
− jωεbμbrΦ−εbJ

!
meq

,r2 F
!
+ k2bF

!
=r r�F!+ jωεbμbΦ
� �

+ εbJ
!
meq

ð5:10Þ

At this point, we can decide to look for a couple F
!
,Φ

� �
such as we obtain the following

result:
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r�F!
� �

+ jωεbμbΦ= 0 ð5:11Þ

This possibility is related to the general nonuniqueness of the potentials. In particular,

suppose again to have found a solution F
!
0,Φ0

� �
. To find another solution that verifies

the condition (5.11) amounts to looking for a scalar function ϕ such as

r� F
!
0 +rϕ

� �
+ jωεbμb Φ0− jωϕð Þ = 0,r2ϕ + k2bϕ= −r�F!0− jωεbμbΦ0 ð5:12Þ

That is, the couple that verifies Eq. (5.12) can be found solving a scalar Helmholtz
equation in ϕ.

Condition (5.11) is known as the gauge of Lorentz (Franceschetti, 1997).
Having shown that it is licit, let us impose it on the solution, so that Eq. (5.10)
reduces to

r2 F
!
+ k2bF

!
= εbJ

!
meq ð5:13Þ

that is, eventually we have achieved again a vector Helmholtz equation, which allows
manipulations that are analogous to those in Section 4.2. However, the equation is not
in terms of the unknown “field” but in terms of the unknown potential vector. Moreover,
from Eq. (5.11) we have

Φ = −
r�F!
jωεbμb

ð5:14Þ

Substituting Eq. (5.14) into Eq. (5.7), we have

H
!
s = jωF

!
−
r r�F!
� �
jωεbμb

ð5:15Þ

Under the gauge of Lorentz, Eqs. (5.5) and (5.15) express the fields in terms of
the only the Fitzgerald vector, which makes it formally redundant to look also for the
scalar potential.

Now, from Eq. (5.5), we know a priori that the Fitzgerald vector has the
following form:

F
!

x,zð Þ =Fx x,zð Þix +Fz x,zð Þiz ð5:16Þ

Due to the linearity of the relationships between the fields and the Fitzgerald vector, we
can consider separately the two components of the Fitzgerald vector, as two separated
potentials. Each of the themwill be associated with an electromagnetic field, and the final
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solution will be given by the sum of these two electromagnetic fields. So, we will proceed
considering separately the two components.

5.2 THE CONTRIBUTION OF THE X-COMPONENT
OF THE FITZGERALD VECTOR

Let us now consider the only x-component of the potential vector:

F
!
1 x,zð Þ =Fx x,zð Þix ð5:17Þ

It can be seen as generated by the x-component of the magnetic density current. Thus the
equivalent magnetic density current to be considered is

J
!
meq1 = jωΔμ x,zð ÞHx x,zð Þix = Jmeqx x,zð Þix ð5:18Þ

This can be decomposed into the sum of concentrated sources as

J
!
meq1 = Jmeqx x,zð Þix = ix

ð ð
D

Jmeqx x0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0 ð5:19Þ

So, after Fourier transforming Eq. (5.13) along the x-axis and considering the
element of Fitzgerald vector generated by an element of magnetic current

dJ
!
meq1 = Jmeqx x0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0ix, we achieve the scalar equation

∂2dF̂x

∂z2
+ k2z dF̂x = εbJmeqx x0,z0ð Þexp − jux0ð Þδ z−z0ð Þ dx0dz0 ð5:20Þ

Since the secondary sources are buried, Eq. (5.20) can be still rewritten as

∂2dF̂x

∂z2
+ k2z dF̂x = εsJmeqx x0,z0ð Þexp − jux0ð Þδ z−z0ð Þ dx0dz0 ð5:21Þ

And so its formal solution, accounting also for the radiation condition at infinity, is

dF̂x =

dA1 exp jkz0zð Þ, z < 0,

dB1 exp jkzszð Þ+ dC1 exp − jkzszð Þ, 0 < z < z0,

dD1 exp − jkzszð Þ, z0 < z

8>><
>>: ð5:22Þ

At this point we have to express the same four conditions considered in Section 4.2 in
terms of the Fitzgerald vector.
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In particular, the first two conditions are given by the continuity of the tangential
component of both electric and magnetic field at the interface. So, in order to impose them,
we have to express the fields in terms of Eqs. (5.22) using Eqs. (5.5) and (5.15). In particular,
the electric field is equal to

d
^
E
!
s1 =

1
εb
r× dF

!
1 =

1
εb

ix iy iz

ju 0
∂

∂z

dF̂x 0 0

��������

��������
=
1
εb

∂dF̂x

∂z
iy =

1
ε0

∂dF̂x

∂z
iy, z < 0

1
εs

∂dF̂x

∂z
iy, z > 0

8>>>><
>>>>:

ð5:23Þ

So, the continuity of the tangential component of the electric field is expressed as

1
ε0

∂dF̂x

∂z

�����
z= 0−

=
1
εs

∂dF̂x

∂z

�����
z= 0+

, εskz0
ε0kzs

dA1 = dB1−dC1 ð5:24Þ

With regard to the condition about the scattered magnetic field, we have

r�d ^
F
!
1 = ju dF̂x, ð5:25Þ

r r�d ^F!1
� �

= jurdF̂x = ju judF̂xix +
∂dF̂x

∂z
iz

� �
ð5:26Þ

So, the tangential component of the element of the scattered magnetic field (i.e., its
x-component) is given by

dĤsx1 = jωdF̂x−

r r�d ^
F
!
1

� �
jωεbμb

�ix = jω dF̂x +
u2dF̂x

jωεbμb
=

u2−k2b
� �
jωεbμb

dF̂x = −
k2z

jωεbμb
dF̂x

ð5:27Þ

So, the continuity of the tangential scattered magnetic field translates into

k2z
ε0μ0

dF̂x

�����
z= 0−

=
k2z
εsμs

dF̂x

�����
z = 0+

, εsμsk
2
z0

ε0μ0k2zs
dA1 = dB1 + dC1 ð5:28Þ

The thirdcondition is thecontinuityof theFitzgeraldvector at thesourcepoint z = z0 (because
the Helmholtz equation (5.20) is expressed versus the Fitzgerald vector). So we have

dD1−dB1 exp j2kzsz
0ð Þ−dC1 = 0 ð5:29Þ

The fourth condition is given by the integration of Eq. (5.20) about the source point z = z0,
so we have
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dD1 + dB1 exp j2kzsz
0ð Þ−dC1 = −εs

exp jkzsz0ð Þexp − jux0ð Þ
jkzs

Jmeqx x0,z0ð Þ dx0dz0 ð5:30Þ

So, we retrieve the following algebraic system:

εskz0
ε0kzs

dA1 = dB1−dC ,

εsμsk
2
z0

ε0μ0k2zs
dA1 = dB1 + dC1,

dD1−dB1 exp j2kzsz
0ð Þ−dC1 = 0,

dD1 + dB1 exp j2kzsz
0ð Þ−dC1 = jεs

exp jkzsz0ð Þexp − jux0ð Þ
kzs

Jmeqx x0,z0ð Þdx0dz0

ð5:31Þ

The system is formally similar to the system (4.34). So, following the same calculation
steps, the final result is given by

dA1 =
jε0μ0kzs
kz0

exp − iux0ð Þexp − jkzsz0ð Þ
μ0kzs + μskz0

Jmeq x0,z0ð Þdx0dz0,

dB1 = jεs
exp − iux0ð Þexp − jkzsz0ð Þ

2kzs
Jmeq x0,z0ð Þdx0dz0,

dC1 = jεs
1

2kzs

μskz0−μ0kzs
μskz0 + μ0kzs

exp − iux0ð Þexp − jkzsz
0ð ÞJmeq x0,z0ð Þdx0dz0,

dD1 = jεs
exp − iux0ð Þ

2kzs
exp jkzsz

0ð Þ + μskz0−μ0kzs
μskz0 + μ0kzs

exp − jkzsz
0ð Þ

2
4

3
5Jmeq x0,z0ð Þdx0dz0

ð5:32Þ

Substituting into Eqs. (5.22), we have

dF̂x u,zð Þ=

−
jε0μ0kzs
kz0

exp − iux0ð Þexp − jkzsz0ð Þexp jkz0zð Þ
μ0kzs + μskz0

Jmeq x0,z0ð Þdx0dz0, z < 0

− jεs
exp − iux0ð Þ

2kzs
exp − jkzs z−z

0j jð Þ+ μskz0−μ0kzs
μskz0 + μ0kzs

exp − jkzs z+ z
0ð Þð Þ

2
4

3
5

× Jmeq x0,z0ð Þdx0dz0, z > 0

8>>>>>>>><
>>>>>>>>:

ð5:33Þ
Substituting Eq. (5.33) into Eq. (5.23), we achieve the elementary component of the
scattered electric field in the transformed domain:
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dÊs1 u,zð Þ=

−μ0kzs
exp − iux0ð Þexp − jkzsz0ð Þexp jkz0zð Þ

μ0kzs + μskz0
Jmeq x0,z0ð Þ dx0dz0ix, z < 0

exp − iux0ð Þ
2

Jmeq x0,z0ð Þ dx0dz0ix

× sgn z−z0ð Þexp − jkzs z−z0j jð Þ+ μskz0−μ0kzs
μskz0 + μ0kzs

exp − jkzs z + z
0ð Þð Þ

2
4

3
5, z > 0

8>>>>>>>>>><
>>>>>>>>>>:

ð5:34Þ

where sgn stands for the signum functions, equal to −1 if its argument is negative and
equal to +1 if its argument is positive. Note that the signum is the derivative of the
absolute value, which will be exploited in the following. After inverse Fourier trans-
formation and integration all over the investigation domain, eventually the contribution
to the scattered field is the following [directed along the y-axis accordingly to Eq. (5.23)]:

Es1 x,zð Þ

=

−
μ0
2π

ð ð
D

Jmeqx x0,z0ð Þ dx0dz0
ð+∞

−∞

kzs exp − iu x0−xð Þð Þexp − jkzsz0ð Þexp jkz0zð Þ
μ0kzs + μskz0

du, z < 0

1
4π

ð ð
D

Jmeqx x0,z0ð Þ dx0dz0
ð+∞

−∞

exp − iu x0−xð Þð Þ

× sgn z−z0ð Þexp − jkzs z−z
0j jð Þ+ μskz0−μ0kzs

μskz0 + μ0kzs
exp − jkzs z + z

0ð Þð Þ
2
4

3
5du, z > 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5:35Þ

Substituting the expression of the magnetic current according to Eq. (5.4), and account-
ing for the first Maxwell’s equation for the total field (5.1),1 we have

Jmeqx x0,z0ð Þ= jωΔμ x0,z0ð ÞHx x0,z0ð Þ = jωΔμ x0,z0ð Þ 1
− jωμ x0,z0ð Þr × E

!
x0,z0ð Þ�ix

= −
Δμ x0,z0ð Þ

μb +Δμ x0,z0ð Þ

ix iy iz
∂

∂x0
0

∂

∂z0

0 E 0

��������

��������
�ix = −

Δμ x0,z0ð Þ
μb

1 +
Δμ x0,z0ð Þ

μb

−
∂E

∂z0
ix

0
@

1
A�ix = χm

1 + χm

∂E

∂z0

ð5:36Þ

1 Let us remind that the considered magnetic current density is a secondary source; there is no primary magnetic
source.
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Substituting Eq. (5.36) into Eq. (5.35), we have

Es1 x,zð Þ

=

−
μ0
2π

ð ð
D

χm
1 + χm

∂E

∂z0
dx0dz0

ð+∞
−∞

kzs exp − iu x0−xð Þð Þexp − jkzsz0ð Þexp jkz0zð Þ
μ0kzs + μskz0

du, z < 0

1
4π

ð ð
D

χm
1 + χm

∂E

∂z0
dx0dz0

ð+∞
−∞

exp − iu x0−xð Þð Þ

× sgn z−z0ð Þexp − jkzs z−z0j jð Þ + μskz0−μ0kzs
μskz0 + μ0kzs

exp − jkzs z+ z
0ð Þð Þ

2
4

3
5du, z> 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5:37Þ

Equation (5.37) expresses the element of electric scattered field in terms of the internal
scattered field and in terms of magnetic contrast.

At this point, let us calculate the first partial derivative of the internal and
external electric Green’s functions, expressed by Eqs. (4.46) and (4.47), versus the
variable z0:

∂

∂z0
Gi x,x

0,z,z0ð Þ = ∂

∂z0
− j

4π

ð+ ∞

−∞

exp − ju x0−xð Þð Þ
kzs

8<
:

× exp − jkzs z−z
0j jð Þ+ μ0kzs−μskz0

μ0kzs + μskz0
exp − jkzs z

0 + zð Þð Þ
2
4

3
5du

9=
;

=
−1
4π

ð+ ∞

−∞

exp − ju x0−xð Þð Þ

× −1ð Þsgn z−z0ð Þexp − jkzs z−z
0j jð Þ + μ0kzs−μskz0

μ0kzs + μskz0
exp − jkzs z

0 + zð Þð Þ
2
4

3
5du

=
1
4π

ð+ ∞

−∞

exp − ju x0−xð Þð Þ

× sgn z−z0ð Þexp − jkzs z−z
0j jð Þ+ μskz0−μ0kzs

μ0kzs + μskz0
exp − jkzs z

0 + zð Þð Þ
2
4

3
5du,

8 x,zð Þ, x0,z0ð Þ 2D ð5:38Þ
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∂

∂z0
Ge x,x0,z,z0ð Þ

=
∂

∂z0
− jμ0
2π

ð+∞
−∞

exp − jkzsz0ð Þexp jkz0zð Þexp − ju x0−xð Þð Þ
μ0kzs + μskz0

du

8<
:

9=
;

=
−μ0
2π

ð+∞
−∞

kzs
exp − jkzsz0ð Þexp jkz0zð Þexp − ju x0−xð Þð Þ

μ0kzs + μskz0
du, x,zð Þ 2Ω, x0,z0ð Þ 2D

ð5:39Þ

Comparing Eqs. (5.38) and (5.39) with Eq. (5.37), we can express the contribution
Es1(x,z) as

Es1 x,zð Þ=

ð ð
D

χm
1 + χm

∂E

∂z0
∂Ge

∂z0
dx0dz0 = k2s

ð ð
D

χm
1 + χm

1
k2s

� �
∂E

∂z0
∂Ge

∂z0
dx0dz0, z < 0

ð ð
D

χm
1 + χm

∂E

∂z0
∂Gi

∂z0
dx0dz0 = k2s

ð ð
D

χm
1 + χm

1
k2s

� �
∂E

∂z0
∂Gi

∂z0
dx0dz0, z> 0

8>>>><
>>>>:

ð5:40Þ

5.3 THE CONTRIBUTION OF THE Z-COMPONENT
OF THE FITZGERALD VECTOR

Let us consider the second component of the Fitgerald vector. The calculations proceed
in the same way as before, so that we can reduce to a minimum the exposed passages.

This time, the potential vector is given by

F
!
2 x,zð Þ=Fz x,zð Þiz ð5:41Þ

The equivalent magnetic density of current is given by

J
!
meq2 = jωΔμ x,zð ÞHz x,zð Þiz = Jmeqz x,zð Þiz = iz

ð ð
D

Jmeqz x
0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0

ð5:42Þ

The element of magnetic density of current is given by

dJ
!
meq2 = Jmeqz x

0,z0ð Þδ x−x0ð Þδ z−z0ð Þ dx0dz0iz ð5:43Þ

The scalar Helmholtz equation in the element of potential vector in the transformed
domain (u,z) is given by
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∂2dF̂z

∂z2
+ k2z dF̂z = εsJmeqz x

0,z0ð Þexp − jux0ð Þδ z−z0ð Þdx0dz0 ð5:44Þ

whose formal solution is

dF̂z =

dA2 exp jkz0zð Þ, z< 0,

dB2 exp jkzszð Þ + dC2 exp − jkzszð Þ, 0 < z < z0,

dD2 exp − jkzszð Þ, z0 < z

8>><
>>: ð5:45Þ

The element of the electric field versus the element of the Fitzgerald vector is expressed
as follows:

d
^
E
!
s2 =

1
εb
r × d

^
F
!
2 =

1
εb

ix iy iz

ju 0
∂

∂z

0 0 dF̂z

��������

��������
= −

ju

εb
dF̂ziy =

−
ju

ε0
dF̂ziy, z< 0

−
ju

εs
dF̂ziy, z> 0

8>>><
>>>:

ð5:46Þ

The continuity of the unique (and tangent) component of the electric field at the interface
is expressed as follows:

1
ε0

dF̂z

�����
z = 0−

=
1
εs

dF̂z

�����
z = 0+

, εs
ε0

dA2 = dB2 + dC2 ð5:47Þ

With regard to the continuity of the tangential component of the scattered magnetic field,
we have

r�d ^
F
!
2 =

∂ dF̂z

∂z
ð5:48Þ

r r�d ^
F
!
2

� �
=r∂ dF̂z

∂z
= ju

∂ dF̂z

∂z
ix +

∂2dF̂z

∂z2
iz

 !
ð5:49Þ

dĤsx2 = −

r r�d ^
F
!
2

� �
jωεbμb

�ix = −
ju

jωεbμb

∂dF̂z

∂z
= −

u

ωεbμb

∂dF̂z

∂z
ð5:50Þ

Thus, the continuity of the tangential scattered magnetic field is expressed as

1
ε0μ0

∂dF̂z

∂z

�����
z = 0−

=
1

εsμs

∂dF̂z

∂z

�����
z = 0+

, εsμskz0
ε0μ0kzs

dA2 = dB2−dC2 ð5:51Þ

The continuity of the Fitzgerald vector at the source point z = z0 is expressed as
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dD2−dB2 exp j2kzsz
0ð Þ−dC2 = 0 ð5:52Þ

The integration of Eq. (5.44) about the source point z = z0 is expressed as

dD2 + dB2 exp j2kzsz
0ð Þ−dC2 = −εs

exp jkzsz0ð Þexp − jux0ð Þ
jkzs

Jmeqz x
0,z0ð Þdx0dz0 ð5:53Þ

Thus, we have the algebraic system:

εs
ε0

dA2 = dB2 + dC2,

εsμskz0
ε0μ0kzs

dA2 = dB2−dC2,

dD2−dB2 exp j2kzsz0ð Þ−dC2 = 0,

dD2 + dB2 exp j2kzsz0ð Þ−dC2 = jεs
exp jkzsz0ð Þexp − jux0ð Þ

kzs
Jmeqz x

0,z0ð Þ dx0dz0

ð5:54Þ

The solution of the system is

dA2 = jε0μ0
exp − iux0ð Þexp − jkzsz0ð Þ

μ0kzs + μskz0
Jmeqz x0,z0ð Þ dx0dz0,

dB2 = jεs
exp − iux0ð Þexp − jkzsz0ð Þ

2kzs
Jmeqz x

0,z0ð Þ dx0dz0,

dC2 = jεs
1

2kzs

μ0kzs−μskz0
μ0kzs + μskz0

exp − iux0ð Þexp − jkzsz
0ð ÞJmeqz x0,z0ð Þ dx0dz0,

dD2 = jεs
exp − iux0ð Þ

2kzs
exp jkzsz

0ð Þ + μ0kzs−μskz0
μskz0 + μ0kzs

exp − jkzsz
0ð Þ

2
4

3
5Jmeqz x0,z0ð Þ dx0dz0

ð5:55Þ

Substituting Eqs. (5.55) into Eqs. (5.45), we have

dF̂z u,zð Þ=

jε0μ0
exp − iux0ð Þexp − jkzsz0ð Þexp jkz0zð Þ

μ0kzs + μskz0
Jmeqz x0,z0ð Þ dx0dz0iz, z < 0

jεs
exp − iux0ð Þ

2kzs
exp − jkzs z−z

0j jð Þ + μ0kzs−μskz0
μskz0 + μ0kzs

exp − jkzs z+ z
0ð Þð Þ

2
4

3
5

× Jmeqz x0,z0ð Þ dx0dz0iz, z> 0

8>>>>>>>>><
>>>>>>>>>:

ð5:56Þ
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from which, substituting Eq. (5.56) into Eq. (5.46), we have

dÊs2 u,zð Þ=

uμ0
exp − jux0ð Þexp − jkzsz0ð Þexp jkz0zð Þ

μ0kzs + μskz0
Jmeqz x0,z0ð Þdx0dz0, z < 0,

uexp − iux0ð Þ
2kzs

exp − jkzs z−z
0j jð Þ+ μ0kzs−μskz0

μskz0 + μ0kzs
exp − jkzs z+ z

0ð Þð Þ
2
4

3
5

× Jmeqz x0,z0ð Þdx0dz0, z > 0

8>>>>>>>>>><
>>>>>>>>>>:

ð5:57Þ

After inverse Fourier transform and integration all over the investigation domain,
eventually the contribution to the scattered field can be expressed as

Es2 x,zð Þ=

=

jμ0
2π

ð ð
D

Jmeqz x
0,z0ð Þdx0dz0

ð+ ∞

−∞

− juexp − iu x0−xð Þð Þexp − jkzsz0ð Þexp jkz0zð Þ
μ0kzs + μskz0

du, z< 0,

j

4π

ð ð
D

Jmeqz x
0,z0ð Þdx0dz0

ð+ ∞

−∞

− ju

kzs
exp − iu x0−xð Þð Þ

× exp − jkzs z−z
0j jð Þ+ μskz0−μ0kzs

μskz0 + μ0kzs
exp − jkzs z + z

0ð Þð Þ
2
4

3
5du, z > 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð5:58Þ

Expressing the z-component of the equivalent magnetic current in terms of internal
electric field and magnetic contrast, we have

Jmeqz x0,z0ð Þ= jωΔμ x0,z0ð ÞHz x
0,z0ð Þ = jωΔμ x0,z0ð Þ 1

− jωμ x0,z0ð Þr × E
!
x0,z0ð Þ�iz

= −
Δμ x0,z0ð Þ

μb +Δμ x0,z0ð Þ

ix iy iz
∂

∂x0
0

∂

∂z0

0 E1 0

��������

��������
�iz = −

Δμ x0,z0ð Þ
μb

1 +
Δμ x0,z0ð Þ

μb

∂E

∂x0
iz�iz = −

χm
1 + χm

∂E

∂x0

ð5:59Þ

Substituting Eq. (5.59) into Eq. (5.58), we have
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Es2 x,zð Þ

=

−
jμ0
2π

ð ð
D

χm
1 + χm

∂E

∂x0
dx0dz0

ð+∞
−∞

− juexp − iu x0−xð Þð Þexp − jkzsz0ð Þexp jkz0zð Þ
μ0kzs + μskz0

du, z < 0,

−
j

4π

ð ð
D

χm
1 + χm

∂E

∂x0
dx0dz0

ð+∞
−∞

− ju

kzs
exp − iu x0−xð Þð Þ

× exp − jkzs z−z
0j jð Þ + μskz0−μ0kzs

μskz0 + μ0kzs
exp − jkzs z + z

0ð Þð Þ
2
4

3
5du, z > 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð5:60Þ

At this point, let us consider the derivatives of the internal and external Green’s functions,
as given by Eqs. (4.46) and (4.47), with respect to the variable x0:

∂

∂x0
Gi x,x

0,z,z0ð Þ = ∂

∂x0
− j

4π

ð+ ∞

−∞

exp − ju x0−xð Þð Þ
kzs

8<
:

× exp − jkzs z−z
0j jð Þ + μ0kzs−μskz0

μ0kzs + μskz0
exp − jkzs z

0 + zð Þð Þ
2
4

3
5du

)

=
− j

4π

ð+ ∞

−∞

− juexp − ju x0−xð Þð Þ
kzs

× exp − jkzs z−z
0j jð Þ + μ0kzs−μskz0

μ0kzs + μskz0
exp − jkzs z

0 + zð Þð Þ
2
4

3
5du, x,zð Þ, x0,z0ð Þ 2D

ð5:61Þ
∂

∂x0
Ge x,x0,z,z0ð Þ

=
∂

∂x0
− jμ0
2π

ð+∞
−∞

exp − jkzsz0ð Þexp jkz0zð Þexp − ju x0−xð Þð Þ
μ0kzs + μskz0

du

8<
:

9=
;

=
− jμ0
2π

ð+∞
−∞

− juexp − jkzsz0ð Þexp jkz0zð Þexp − ju x0−xð Þð Þ
μ0kzs + μskz0

du, x,zð Þ 2Ω, x0,z0ð Þ 2D

ð5:62Þ

Comparing Eq. (5.60) with Eqs. (5.61) and (5.62), the contribution to the electric
scattered field of the z-component of the Fitzgerald vector can be rewritten as
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Es2 x,zð Þ =

ð ð
D

χm
1 + χm

∂E

∂x0
∂Ge

∂x0
= k2s

ð ð
D

χm
1 + χm

1
k2s

� �
∂E

∂x0
∂Ge

∂x0
, z< 0,

ð ð
D

χm
1 + χm

∂E

∂x0
∂Gi

∂x0
= k2s

ð ð
D

χm
1 + χm

1
k2s

� �
∂E

∂x0
∂Gi

∂x0
, z > 0

8>>>>><
>>>>>:

ð5:63Þ

5.4 THE JOINED CONTRIBUTION OF BOTH THE X- AND
Z-COMPONENTS OF THE FITZGERALD VECTOR

As already stated, this case can be dealt with as the superposition of the cases considered
in Sections 5.2 and 5.3. Therefore, the comprehensive scattered field due to the buried
magnetic anomalies is given by

Es x,zð Þ=

k2s

ð ð
D

χm
1 + χm

1
k2s

� �
∂E

∂x0
∂Ge

∂x0
+
∂E

∂z0
∂Ge

∂z0

� �
dx0dz0, z < 0,

k2s

ð ð
D

χm
1 + χm

1
k2s

� �
∂E

∂x0
∂Gi

∂x0
+
∂E

∂z0
∂Gi

∂z0

� �
dx0dz0, z > 0

8>>>>><
>>>>>:

ð5:64Þ

which can be more compactly rewritten as

Es x,zð Þ=
k2s

ð ð
D

χm
1 + χm

1
k2s

� �
r0E�r0Ge dx

0dz0, z < 0,

k2s

ð ð
D

χm
1 + χm

1
k2s

� �
r0E�r0Gi dx

0dz0, z> 0

8>>>>><
>>>>>:

ð5:65Þ

where the gradient symbols have been primed to indicate that they are calculated with
respect to the variables of integration x0 and z0.

Since the internal field is given by the sum of the incident and scattered
internal fields, in the end the complete scattering equations for only magnetic targets
are given by

E x,zð Þ =Einc + k
2
s

ð ð
D

χm
1 + χm

1
k2s

� �
r0E�r0Gidx

0dz0, z> 0, ð5:66Þ

Es x,zð Þ = k2s
ð ð
D

χm
1 + χm

1
k2s

� �
r0E�r0Gedx

0dz0, z< 0 ð5:67Þ
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5.5 THE CASE WITH BOTH DIELECTRIC
AND MAGNETIC ANOMALIES

In this chapter we have shown that the product of the magnetic field underground times
the magnetic contrast of the buried target can be interpreted as an equivalent buried
magnetic density of current (apart from the factor jω) radiating into a homogeneous
half-space. Similarly, in Chapter 4 we showed that the product of the underground
electric field times the dielectric contrast can be can as an equivalent electric density
of current. As already stated, these two equivalent sources are usually labeled as
secondary sources, whereas the real source of the field (i.e., the GPR antennas) are
usually labeled as primary sources. Now, the scattered field (both underground and in
air) depends on the primary sources only through the secondary ones. This implies that
if we “forget” the presence of the primary sources for a while, the scattered field is only a
function of the secondary sources. Now, any electric field is a linear function of its
sources, and thus the comprehensive scattered field in the presence of both a magnetic
and a dielectric contrast is given by the sum of the scattered fields obtained by each of the
corresponding secondary sources, respectively. In formulas, this means in particular that
the internal (underground) scattered field, which is equal to the internal electric field
minus the internal incident field, is given by the sum of the contributions to it by the
electric secondary sources [contribution given by Eq. (4.44)] and the magnetic secondary
sources [contribution given by Eq. (5.66)]. The internal scattered field is therefore given
by Eq. (5.68).

Es x,zð Þ= k2s
ð ð
D

χeEGi +
1
k2s

χm
1 + χm

r0E�r0Gi

	 

dx0dz0, z > 0 ð5:68Þ

The total internal field is achieved by adding the internal incident field to the scattered
internal field, thereby obtaining

E x,zð Þ=Einc x,zð Þ+ k2s
ð ð
D

χeEGi +
1
k2s

χm
1 + χm

r0E�r0Gi

	 

dx0dz0, z> 0 ð5:69Þ

Equation (5.69) is the internal scattering equation in the case of both dielectric and
magnetic anomalies, or (which is the same) in the presence of targets with both dielectric
and magnetic properties different from those of the embedding soil. From Eq. (5.69), we
appreciate that, even if the Maxwell’s equations are linear with respect to the sources, the
relationships between the contrasts and the internal field is not linear, and in particular the
dielectric and magnetic contrasts interfere with each other, in the sense that the resulting
internal field is not given by the sum of the internal field that we would separately have if
only one kind of anomaly (dielectric or magnetic) were present.

Once the internal field is given (of course implicitly, because Eq. (5.69) is an
equation to be solved in order to retrieve the internal field versus the contrasts), the
external scattered field can be retrieved. In fact, because of the linearity of the scattered
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field with respect to the secondary sources, the external scattered field is provided by
the sum of the contributions of the electric secondary sources, given by Eq. (4.45), and
the contribution of the magnetic secondary sources, given by Eq. (5.67). The result is

Es x,zð Þ= k2s
ð ð
D

χeEGe +
1
k2s

χm
1 + χm

r0E�r0Ge

	 

dx0dz0, z< 0 ð5:70Þ

Equation (5.70) constitutes the external scattering equation in the general 2D case of both
dielectric and magnetic anomalies.

It is possible to include the characteristics of the antennas also in the case of magnetic
targets, and this is done in the same way as revealed in Chapter 4. In fact, the incident
field does not depend on the nature of buried anomalies, and the passage from the
scattered field to the scattered voltage also does not depend on what kind of anomaly
generated the gathered scattered field. Thus, in the more general case the expression
of the incident field is given by Eq. (4.84) instead of Eq. (4.48), and the expression of
the external Green’s function is given by Eq. (4.115) instead of Eq. (4.47), but
Eqs. (5.69) and (5.70) remain formally the same.

QUESTIONS

1. Is the electric field solenoidal in any physical case?

2. Is the magnetic field solenoidal in any physical case?

3. Does the magnetic permeability of the targets interact with the dielectric permittivity
for determining the incident field?

4. Does the magnetic permeability of the targets interact with the dielectric permittivity
for determining the scattered field?

5. Does the magnetic permeability of the targets interact with the dielectric permittivity
for determining the total field?

6. Is it theoretically possible to have a 2D geometry where the electric field is not parallel
to the axis of invariance?
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6

ILL-POSEDNESS AND
NONLINEARITY

6.1 ELECTROMAGNETIC INVERSE SCATTERING

Electromagnetic inverse scattering is the branch of the science that studies how to
reconstruct the electromagnetic characteristics of a given volume (e.g., its dielectric
permittivity and/or electrical conductivity and/or magnetic permeability) starting from
measurements of electric (and/or the magnetic) scattered field data, gathered outside
the probed volume and generated by known sources.

The reason why this problem is called “inverse” is historical, and it is due to the fact
that it reverses the point of view with respect to another problem conventionally labeled
as the “direct” or “forward” scattering problem. The direct (or forward) problem consists
in the calculation of the field scattered from a known dielectric permittivity (and/or
electrical conductivity and/or magnetic permeability) profile, under the radiation of
electromagnetic waves radiated by known sources.

The definitions of direct and inverse scattering problem, within the framework of the
GPR prospecting, are explained with the aid of Figure 4.1. In particular, with reference to
Figure 4.1, the direct scattering problem consists of the calculation of the scattered field if
we know the underground scenario, whereas the inverse scattering problem consists in
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the reconstruction of the underground scenario if we know the scattered field. In both the
direct and the inverse problem the characteristics of the antennas and of the soil are
assumed to be known.

Indeed, there are several inverse problems of interest, not only in electromagnetism
but also in acoustics, in heat conduction and so on, and customarily the inverse problems
present some additional difficulties with respect to the corresponding direct ones.
In particular, unlike the direct ones, the inverse problems are usually ill-posed (Colton
and Kress, 1992). Moreover, if the direct problem is nonlinear, also the corresponding
inverse problem is nonlinear. In particular, the electromagnetic inverse scattering
problem is both ill-posed and nonlinear.

6.2 ILL-POSEDNESS

Direct problems, and in particular the forward scattering problem, are customarily
well-posed. Mathematically, this means that one has the guarantee that the solution
exists, is unique, and has a continuous dependence on the data (Hadamard, 1923).
The solution’s continuous dependence on the data involves the fact that a small (meant
in a limit sense, i.e., infinitesimal) error on the data translates into a small error on the
retrieved solution. Regarding the issue of the GPR prospecting, this means (for example)
that a small error in the evaluation of the permittivity of the underground scenario will
produce a small error in the evaluation of the scattered field. This condition is necessary
(but not sufficient) in order to have a solution with a physical sense, because it is impos-
sible to have completely error-free data. A problem is said to be “ill-posed”when at least
one of the conditions for the well-posedness fails.

With regard to inverse problem of the GPR data processing, the most relevant issue
(and the only one that wewill focus on) is the solution’s noncontinuous dependence on the
data. This means that even a small error on the scattered field can reverse in a meaningful
error in the reconstruction of the dielectric (conductive or magnetic) characteristics of the
background scenario. Such being the case, one is tempted to say that an ill-posed problem
does not make any physical sense, because it is impossible to retrieve any physically
reliable solution. However, this difficulty is overcome by means of the regularization.
To regularize a problem substantially means to renounce to look for its ideal “perfect”
solution and to look instead for a suitable, not fully detailed but more robust, solution.

The regularization is not a specific protocol written once and for all. There
are endless possibilities and “degrees” of regularization, and one has to choose the
regularization for the case at hand as a compromise between the exigencies to achieve
a refined (not overregularized) and, at the same time, robust (not underregularized)
solution. This is a key point, on which we will come back again.

6.3 NONLINEARITY

Any mathematical relationship R between two quantities is said to be linear when,
for any two arguments x1 and x2 and for any two scalar quantities a and b, the
following property holds:
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R ax1 + bx2ð Þ= aR x1ð Þ+ bR x2ð Þ ð6:1Þ

Otherwise it is said to be nonlinear. The inversion of a nonlinear relationship is in general
more difficult than the inversion of a linear relationship, because of the possible presence
of false solutions or local minima (Persico et al., 2002).

In order to introduce the problem of the local minima, let us consider a generic
(nonlinear) equation:

F xð Þ= y ð6:2Þ

Suppose also that we know a priori that Eq. (6.2) has a unique ideal (i.e., for error-free
data) solution. Even under these hypotheses, in many problems of physical relevance
(including the inversion of GPR data) we are not able to find this solution in a closed
form, and we can’t even be sure to find an exact solution at all, because the actual data
are not error-free. So, customarily one looks for a numerical solution, that is, the value of
x that makes minimum the quantity |F(x) − y|2.

In order to provide a graphical example regarding local minima, let us consider a
case where

F xð Þ= 0:002x5 + 0:005x4−0:0585x3−0:08875x2 + 0:47725x + 0:25325
y= 0:05

ð6:3Þ

In this case, Eq. (6.2) reduces to

0:002x5 + 0:005x4−0:0585x3−0:08875x2 + 0:47725x+ 0:25325 = 0:05 ð6:4Þ

Equation (6.4) cannot be solved in a closed form.1Thus,we look for a least square solution,
given by the value of the variable x that provides the minimum value of the quantity

F xð Þ−0:05j j2 = 0:002x5 + 0:005x4−0:0585x3−0:08875x2 + 0:47725x + 0:20325
�� ��2

ð6:5Þ
In Figure 6.1 the graph of the cost function (6.5) is depicted. Being a function of a

single variable, the absolute minimum point is approximately but immediately identified
by eye; in the case at hand, it is about equal to −0.4. However, in the more general case of
a function of several (possibly thousands) variables it is not possible to identify the global
minimum among the local minima by eye.

Thus, in the more general case, one looks for the minimum by making use of the
gradient of the function2 in any point, and he/she “follows” the direction opposite to that
of the gradient3 up to finding a point where the gradient is equal to zero. In this way, at a

1 The Abel–Ruffini theorem states that it is impossible to solve by radicals algebraic equations of the fifth or
higher degree.
2 For a scalar function, the gradient reduces to the first derivative times the unitary vector directed along the
x-axis.
3More in general a direction depending on the gradient is followed (Press et al., 1987), but we will not include
these specific aspects.
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certain point one reaches a minimum of the function. If the starting point of the procedure
is in a suitable position (e.g., p0 in Figure 6.1), the procedure will produce the actual
(global) minimum; but if the starting point is not “suitable” (e.g., p1 or p2 in Figure 6.1),
the procedure will converge toward a local minimum, and this will be erroneously
interpreted as the solution of the problem. The suitability of the starting point is not
merely given by the distance between it and the global minimum; the question is whether
the starting point lies or not in the “valley” of the global minimum, which is virtually
never quantifiable a priori.

The problem of the local minima can be mitigated by repeating the minimization
procedure starting from several starting points, chosen and updated by means of
stochastic criteria (Pastorino, 2010). In this way, it becomes more probable (at the price
of an increased computational burden) that one of the achieved minima (of course the one
that provides the smaller value of the cost function) is really the global minimum.

Under either a deterministic or a statistical minimization procedure, a nonlinear
approach can be computationally burdening, and this hinders the application of
nonlinear approaches toward large-scale problems. In the framework of GPR data
processing, often the problem at hand is a large-scale one (with respect to the involved
wavelengths), and therefore approximated linear algorithms are exploited in most cases.
In particular, the commonmigration algorithms are based on a linear approximation of the
scattering equations, aswill be shown inChapter 10. Notwithstanding, it is important to be
aware of the intrinsic nonlinearity of the inverse scattering problem.

Let us explicitly note that the problem of the local minima is intrinsically related to
the nonlinearity, because linear problems do not suffer the presence of local minima. To
show this in a simple way, let us consider the linear function F(x) = ax, where a is some
constant. In this case, the cost function to be minimized is quadratic, and its graph is a
parabola with the concavity toward the positive side of the y-axis. Such a function does
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Figure 6.1. The graph of the cost function 6.5. Beyond the global minimum GM, there are two

local minima LM1 and LM2.
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not show any local minimum, and any starting point is suitable in order to look for its
minimum numerically.

Let us also note that not necessarily a nonlinear function produces a cost functional
showing local minima. An immediate counterexample is given by the case F(x) = ax + b,
where a and b are two constants, which is not a linear relationship. More in general, the
research of conditions for the disappearing of the local minima within a nonlinear
approach is itself an issue of scientific interest [see Persico et al. (2002) and references
therein] because this makes more reliable (possibly also faster) the result of a numerical
nonlinear inversion.

6.4 THE ILL-POSEDNESS OF THE INVERSE
SCATTERING PROBLEM

To show the ill-posedness of the electromagnetic inverse scattering problem at hand,
let us provide some preliminary observations:

1. At each position, the incident field is a finite energy (square integrable) function,
because the sources can radiate only a finite energy.

2. The internal field is a finite energy function too, because it is produced by the
interaction of the finite energy incident field with a passive medium.

3. The internal and external Green’s functions are finite energy functions too,
because (as has been shown in Chapter 4) they correspond to an equivalent field
generated by impulsive (with finite energy) buried sources.

Therefore, labeling as f any among the listed quantities, we have thatð+∞
−∞

ð+∞
+∞

f x0,z0ð Þj j2dx0dz0 is a finite quantity. Moreover, let us consider the following

specific class of dielectric contrasts:

�χe x0,z0ð Þ=
sin kxð Þsin kyð Þ x0j j< 1m, 0 < z0 < 1m

0 elsewhere

(
ð6:6Þ

where k is a spatial circular frequency. Let us now consider the limit value of the
scattering equations when the oscillations of the contrast become faster and faster.
To do this, let us first particularize the internal scattering Equation (4.44) to the case
at hand:

E x,xs,z,zsð Þ =Einc x,xs,z,zsð Þ + k2s
ð1
−1

ð1
0

Gi x,x
0,z,z0ð ÞE x0,xs,z0,zsð Þ�χe x0,z0ð Þ dx0dz0,

x,zð Þ 2D, xs,zsð Þ 2Σ ð6:7Þ
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We will now show that, when the oscillations of the contrast become faster and faster
(i.e., for k!∞), the integral term in Eq. (6.7) vanishes. To accomplish this task, let
us define a sequence of functions as follows (the functional dependence of the integrands
are left implicit):

E1 =Einc ,

E2 =Einc + k
2
s

ð1
−1

ð1
0

GiE1�χe dx
0dz0,

E3 =Einc + k
2
s

ð1
−1

ð1
0

GiE2�χe dx
0dz0,

…

En =Einc + k
2
s

ð1
−1

ð1
0

GiEn−1�χe dx
0dz0

ð6:8Þ

Clearly, if this sequence converges, its limit is the internal field. In this case, the limit
value of the sequence (6.8) can be also rewritten as the sum of the following series:

E =Einc + k
2
s

ð1
−1

ð1
0

GiEinc�χe dx
0dz0

+ k4s

ð1
−1

ð1
0

Gi�χe dx
0dz0

ð1
−1

ð1
0

GiEinc �χe dx
00dz00

+ k6s

ð1
−1

ð1
0

Gi�χe dx
0dz0

ð1
−1

ð1
0

Gi�χe dx
00dz00

ð1
−1

ð1
0

GiEinc�χe dx
000
dz

000
+

� � � + k2ns
ð1
−1

ð1
0

Gi�χe dx
0dz0

ð1
−1

ð1
0

Gi�χe dx
00dz00� � �

ð1
−1

ð1
0

GiEinc �χe dx
ndzn + � � � ð6:9Þ

For simplicity of notation, the functional dependence has been left implicit in Eq. (6.9).
In order to specify it, let us note that the observation point of the subsequent nested
integral becomes the integration variable of the previous integral. For example, the
second integral term is extendedly written as

k4s

ð1
−1

ð1
0

Gi x,z,x
0,z0ð Þ�χe x0,z0ð Þ dx0dz0

ð1
−1

ð1
0

Gi x
0,z0,x00,z00ð ÞEinc x00,z00ð Þ�χe x00,z00ð Þ dx00dz00 ð6:10Þ

and so on
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Equation (6.9) expresses the so-called Born series of the field (Born andWolf, 1999)
in the case at hand.

Let us now consider the first integral term k2s

ð1
−1

ð1
0

GiEinc�χe dx
0dz0. Its integrand is

composed of the contrast times a square integrable function independent from it.
Therefore, this integral vanishes for k!∞ (it’s the same principle underlying
the stationary phase method illustrated in Chapter 4). Consequently, for any small
positive and dimensionless ε we can find a value of k high enough to guarantee

that k2s

ð1
−1

ð1
0

GiEinc�χe dx
0dz0

������
������ < ε × 1

V

m
.

Let us now consider the integral term k4s

ð1
−1

ð1
0

Gi�χe dx
0dz0

ð1
−1

ð1
0

GiEinc�χe dx
00dz00. It’s

modulus is smaller than ε k2s

ð1
−1

ð1
0

Gi�χe dx
0dz0

������
������ × 1

V

m
, and we can find a value of k

that (further than the previous inequality) also guarantees the inequality

k2s

ð1
−1

ð1
0

Gi�χe dx
0dz0

������
������< ε. This guarantees that k4s

ð1
−1

ð1
0

Gi�χe dx
0dz0

ð1
−1

ð1
0

GiEinc�χe dx
00dz00

������
������

< ε2 × 1
V

m
. At this point, it is easily shown iteratively that the same k guarantees that

En−Eincj j< 1V
m
× ε + ε2 + ε3 + � � �+ εn� � ð6:11Þ

Passing to the limit value, we have

E∞ −Eincj j ≤ 1V
m
× ε + ε2 + ε3 + � � �� �

= 1
V

m
× ε

X+∞
n= 0

εn = 1
V

m
×

ε

1−ε
ð6:12Þ

where in Eq. (6.12) we have substituted the sum of the geometrical series of common
ratio ε. Given the arbitrary level of ε, Eq. (6.12) shows that, in the limit case at hand,
the Born series converges uniformly and the final result in the limit for k! +∞ is
E = Einc, which is to say that very fast oscillating and limited contrasts are transparent
to the radiation or, equivalently, the internal field cannot “follow” any contrast variation.
The reasoning could be repeated also with a contrast given by the sum of a “slow
varying” contrast and a fast oscillating contrast, and in the limit we would determine that
the internal field is influenced only by the “slowly varying” portion of the contrast
profile.
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Substituting E = Einc in the external scattering equation [see Eq. (4.45)], we have

Es≈k2s

ð1
−1

ð1
0

GeEinc�χe dx
0dz0 ð6:13Þ

At this point, since both the external Green’s function and the incident field
square integrable functions are independent from the contrast, we have that in the limit
for k!∞ the contrast �χe produces a null scattered field; that is, it represents an invisible
target. Now, any square integrable contrast target can be expanded, within the investiga-
tion domain D, along its Fourier series, and so any target can be generically seen as
composed by a slow varying part plus a fast varying part. We have shown that at a certain
point the fast oscillating part becomes more and more transparent, and in the considered
limit completely transparent, and consequently it becomes more and more difficult
(because of the uncertainties on the data) and eventually impossible to retrieve it. This
demonstrates that the inverse scattering problem at hand is ill-posed, and it also shows
that the ill-posedness involves the impossibility to retrieve all the details of the buried
scenario. For a wider and deeper dealing about the ill-posedness, the interested reader
is referred to Colton and Kress, (1992), Tikhonov and Arsenine (1977), and Kirsh
(1996). In particular, let us clearly say that the invisible targets are not necessarily only
those oscillating in a fast way, even if this is probably the aspect of main interest in the
framework of GPR prospecting.

6.5 THE NONLINEARITY OF THE INVERSE
SCATTERING PROBLEM

The nonlinearity of the problem can immediately be shown. In fact, the electric field
inside the investigation domain depends on the contrast, due to Eq. (4.44). Consequently,
if in Eq. (4.44) the contrast is multiplied times any constant, the scattered field will be not
just be multiplied for the same constant, because the internal field has changed too, and so
Eq. (6.1) does not hold.

Physically, the nonlinearity is due to the electromagnetic interferences among
the scattering objects embedded in the soil, which makes the internal field change in
accordance with them; we will explain this more completely in Chapter 8.

QUESTIONS

1. In this chapter the Born series has been introduced. Does a truncation of the series at
the second order necessarily provide a better approximation of the field with respect
to one at the first order? And if this happens, does the truncation at the third order
necessarily provide a still better approximation of the field?
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2. Is the scattered field due to two imposed density currents radiating at the same time
given by the sum of the scattered fields achieved under the radiation of any of the
sources independently from the other one?

3. Is the scattered field due to two antennas radiating at the same time given by the sum
of the scattered fields achieved under the radiation of any of the sources independently
from the other one?

4. Is the scattered field due to two targets illuminated at the same time given by the sum
of the scattered fields achieved from each of the two targets independently from the
other one?

5. Does the distance between two targets make weaker the nonlinear effects?

6. Do the losses in the soil make weaker the nonlinear effects?
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7
EXTRACTION OF THE

SCATTERED FIELD DATA
FROM THE GPR DATA

7.1 ZERO TIMING

Before extracting the scattered field data, we have to first discuss the problem of the zero
timing. In particular, the choice of the zero time is a problem arising from a physical
constraint, namely the fact that any GPR system has a finite band and, consequently,
it cannot radiate or receive “correctly” an impulse with an immediate rising up.
Moreover, there is necessarily some propagation of the signal inside the instrument
before the impulse is “launched” outside. So, there is a delay between the time instant
when the generator begins to produce the impulse and the time instant when the
propagation of the signal in the external environment begins.

This problem involves both real and synthetic pulses—this is, both impulsive and
stepped frequency systems. The practical consequence is that we have to choose, on
the basis of the received data, the moment when we assume that the signal was launched
outside from the GPR system, which is the also the reference origin of the time for each
trace (Yelf, 2004). This operation is called zero timing and necessarily involves some
degree of arbitrariness. The zero timing is important, because it influences the retrieving
of the time depth of the targets and formally also the evaluation of the propagation
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velocity of the waves. In particular, a different choice of the zero time corresponds to a
rigid shift of the diffraction curves along the t-axis, which amounts to an alteration of the
retrieved value of propagation velocity, as is easily understood from Chapter 2.

In turn, an incorrect evaluation of the electromagnetic characteristics of the soil
affects the retrieved depth of the targets as well as the result of any focusing algorithm,
because these characteristics enter as parameters in the scattering equations (see
Chapters 4 and 5). A common (and generally reasonable) choice is to fix the zero time
at the first maximum modulus of the received signal, so that we gate out all the energy
received before this instant. Actually, the value of this maximum changes from trace
to trace, even if the height of the antennas is kept constant along the B-scan, because
of clutter and noise. However, the relative discrepancies are usually minimal, and a
heuristic average value of the time of this maximum is sufficiently accurate in most
cases. Figure 7.1 shows the result of such a gating on simulated data.

7.2 MUTING OF INTERFACE CONTRIBUTIONS

After the preliminary zero timing, the datum observed in the observation point is the
voltage related to the total field in that point, which is roughly proportional to the total
field in that point.
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Figure 7.1. Example of zero timing on a GPR trace simulatedwith the code GPRmax. The upper

panel shows the trace as it comes out, and the lower panel shows the zero timed trace. The

bottom scale is 35 ns, but it reduces to 32.9 for the zero timed trace. The source is a Ricker

pulse with central frequency 500MHz. The source is in contact with a soil that shows a relative

permittivity εsr = 5 and an electric conductivity σ = 0.001 S/m and with no magnetic properties.
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Eventually, we can therefore write the datum in the time domain as

E x, tð Þ=Einc x, tð Þ +Es x, tð Þ ð7:1Þ

or equivalently we can write the datum in frequency domain as

E x,ωð Þ=Einc x,ωð Þ +Es x,ωð Þ ð7:2Þ

Equation (7.1) or (7.2) accounts for the fact that the height of the data is usually a fixed
parameter, not varied along the scan. The data in time and in frequency domain are linked
by Fourier direct or inverse transforms; but we have not made use of hat symbols, which
have been reserved for the Fourier transforms with respect to the spatial variables.

Now, the data that we want to process are the scattered field data, that is, the Es
quantities. In fact, as shown by means of the scattering equations, the contrasts
(i.e., the buried targets) are specifically related to the scattered field data and not to
the total field data. In Chapter 4 we have provided expressions for the incident field
both in the case of a filamentary current and in the case of a source characterized by
a given plane wave spectrum. So, one might think of subtracting the calculated
incident field data from the measured total field data. This operation is mathematically
correct, but is not robust against the uncertainties present with regard to both the proper-
ties of the soil and the characteristics of the transmitting antenna (Persico and Soldovieri,
2006). In order to show this, an exercise is now proposed, with data simulated with
GPRMAX2D. In particular, a 30 × 30 cm2 cavity is buried at the depth of 1 m in a lossless
nonmagnetic soil with relative permittivity εs = 5ε0. The source is a Ricker pulse with
central frequency 500MHz; it is moved along a path 2.5 m long, centered on the target,
at height 30 cm above the air–soil interface, with a spatial step of 5 cm. The offset
between the source and the observation point is equal to zero. Figure 7.2a shows the total
field result; as can be seen, the diffraction curve is almost invisible. In fact, as often
happens, the contribution of the incident field is quite stronger than that of the scattered
field and masks it. The result of the subtraction of the incident field from the total one
without any uncertainties on the data is shown in Figure 7.2b. To do this, the total and the
incident field have been calculated in two distinct simulations, the second of which
differs from the first one only for the absence of the buried target. This result shows
the diffraction curve in a clear fashion. However, the procedure has worked because
we have implicitly assumed that we have a perfect knowledge of the characteristics of
the soil, of the source, and of the receiver, so that we could model the incident field
perfectly. In real cases we don’t have a perfect knowledge of any among the involved
parameters, and so a reliable and precise calculation of the incident field is not a trivial
matter. In order to simulate the effect of the uncertainties, the incident field has been
calculated a second time for a soil with relative permittivity equal to 5.35 instead of 5.
Moreover, the amplitude of the Ricker source has been changed times a factor 1.05 and
the central frequency has been shifted at 502MHz. Then, we have subtracted this incident
field to the total field data of Figure 7.2a. In this way, we have simulated an uncertainty
about the permittivity, the intensity of the source, and the central frequency. The result is
shown in Figure 7.2c, and it clearly shows that the involved uncertainties meaningfully
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mask the buried targets. Let us also emphasize that the introduced errors are minimal with
respect to realistic situations: and, in particular, no clutter due to the surface roughness
has been synthesized, and there is no uncertainty about the kind of radiated pulse and
about the antenna pattern, which further enforces the statement.

In Figure 7.2d, instead, we have muted (i.e., we have put equal to zero) the received
signal up to the second horizontal band visible in Figure 7.2a. In fact, the first (shallower)
horizontal band is due to the direct coupling between the source and the receiver, whereas
the second (deeper) one is due to the reflection of the signal from the air–soil interface.
If the antennas are moved in common offset at the air–soil interface (in the presented
example they are instead at 30 cm from the air–soil interface), these two signals are
generally superposed and indistinguishable from each other.
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Figure 7.2. Panel a: Total field data. Panel b: Scattered field data worked out by the difference

between the total and the incident field data with no parametric uncertainty. Panel c: Scattered

field data worked out by the difference between the total and the incident field data with some

parametric uncertainty. Panel d: Scattered field data worked out by muting. In all the panels the

data have been previously zero-timed at the first maximum of the received total field data.
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In the absence of buried targets, the gathered datum would consist exclusively of
these horizontal bands, which is to say that the two horizontal belts are essentially the
incident field data. More in general, in the case of any layered medium (and in particular
in the case of a masonry) the incident field data amount to several quasi-horizontal bands,
caused either by horizontal physical interfaces or by obstacles that move synchronically
with the antennas (e.g., a trolley or a car or the same human operator). Finally, a further
possible cause of horizontal bands is some undesired reflection of the currents within the
arms of the antenna, which is known as ringing (Daniels, 2004).

Whatever the cause, these bands might be erased from the data by trivially muting
them. However, in this way, we pay the price to erase, partially or totally, also the signal
scattered by targets located within those belts. So, there is some trade-off between the
“pureness” of the scattered field worked out and the range of depths filtered out. The
optimal choice for the thickness of the erased time-belts is, in general, case-dependent
and, in particular, depends on the band of the antennas and on the depth range of the
targets of interest. In the end, the muting of the interfaces can be seen as an imperfect
filtering of the incident field. This muting damps down a little share of the scattered field
and preserves some “tail” of the incident field; this is a price to pay in order to have amore
robust procedure with respect to a formal subtraction of the incident field form the total
one. As said, in Figure 7.2d the result of the muting is shown. As can be seen, the results
of Figures 7.2d and 7.2b differ only by a weak residual horizontal band.1

Another theoretical possibility might be to gather a B-scan in an area where no
meaningful buried target is registered. In this way, we would have a measured version
of the incident field to be subtracted from the total field. However, also this procedure is
not robust against the uncertainties on the characteristics of the soil. In particular, it is
virtually impossible to have at one’s disposal (unless in a test site built up on purpose)
a B-scan where one gathers only the interfaces (and the same interfaces of a B-scan that
has to be processed) under the same characteristics of the soil, the same surface rough-
ness, and so on.

Indeed, in microwave imaging there are cases where the scattered field data can be
reliably achieved experimentally by subtraction of an incident field measured apart. This
happens, in particular, when the structure to be probed is a mobile opaque body. In fact, in
such a situation we can perform two measurements with the antennas in the same posi-
tion, one in the presence of the body and another one after removing it, which provides
experimentally and rigorously the incident field data (Otto and Chew, 1994). The “trick”
is that in such a case we are assuming that the air is the (homogeneous) background
medium, and so we don’t have any meaningful uncertainty about it (in GPR applications
it can be assimilated to the free space all the times). In the case of GPR prospecting,
instead, the background medium is commonly chosen as the air–soil couple of
half-spaces, and so we cannot remove the investigation domain in order to measure
the incident field. Going on in this theoretical speculation, at this point let us also say
that we might think of assimilating the underground zone to be investigated to a
“big box”containing the targets of interest and comprehensively embedded in air.

1 Actually, in Figure 7.2d, also two oblique “X”-shaped lines are visible, but this a mere numerical effect due
to the limitedness of the simulated domain.
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So, we might retrieve the incident field, measuring it in air—that is, making the antennas
radiate and receive in the same relative positions but without any obstacle. There is
nothing formally incorrect in assuming that the air (instead of the air–soil couple) is
the background medium also in the case of GPR data. However, under such a choice,
the quantity to be reconstructed would not be constituted by the buried targets, but rather
by the investigated “soil box” with inside the targets of interest. In other words, the soil
itself would compose the contrast (with respect to the air) to be reconstructed. It is intu-
itive (but in the next chapter this will be formalized more completely), that in this way the
quantity to be retrieved is somehow “farther” from the background medium with respect
to the quantity achieved under the choice of the air–soil couple as background medium.
This can cause problems in relationship with the intrinsic nonlinearity of the scattering
phenomenon, as will be shown in the next chapter. Therefore, the common praxis in GPR
data processing is to refer to a background medium composed by a couple of half-spaces.

That said, in order to give a rough quantification of the targets erased by the muting,
we have to quantify the thickness of the “horizontal bands” related to the incident field.
In general, they depend on the frequency band of the signal and on the propagation
velocity of the waves. In particular, physically, the thickness of the horizontal band is
essentially the “spatial duration” of the propagating pulses. Therefore, it is given by
the temporal duration of the pulse times the propagation velocity in the soil divided
by two (because of the round-trip). The temporal duration of the pulse is roughly given
by the inverse of its band or, still more roughly (see Chapter 3), by the inverse of its
central frequency. So, by restricting our attention to the case of a homogeneous soil,
all the targets shallower than

Dmin =
c

2B
ð7:3Þ

will be meaningfully erased, where B is the band of the antennas. It is often reported that
a large band is desirable in order to have a good resolution. From Eq. (7.3), we can
appreciate that a large band can also reduce the drawbacks related to the muting of
the interface.

7.3 THE DIFFERENTIAL CONFIGURATION

There are alternative possibilities to the muting of the horizontal bands, in order to extract
scattered field data from the total field data. One of them is to make use of a differential
configuration (Gurel and Oguz, 2003; Persico and Soldovieri, 2006). It consists in
assuming as datum the difference between the total field gathered at two different
positions with an opposite offset with respect to the source. In other words, if xs is the
position of the source and Δ is a fixed offset, then the datum is given by

ΔE =E xs +Δ, tð Þ−E xs−Δ, tð Þ ð7:4Þ

or, in the frequency domain
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ΔE =E xs +Δ,ωð Þ−E xs−Δ,ωð Þ ð7:5Þ

at variance of xs. The differential configuration can be also implemented dually with two
transmitting antennas and a receiving one in the middle point between them, with the
two transmitted signals equal in shape and amplitude but reversed in phase.

In a layered medium, and in particular in a homogeneous half-space, the incident
field is constant along xs, and so it is immediate to see that the difference between the
total field in the two symmetrical points reduces to the difference between the scattered
fields in those two points.2 In this way, we have erased the contribution of the incident
field without needing any muting. This has the advantage that we don’t erase the targets
embedded in the horizontal belts, and in particular we don’t erase the shallowest targets.

However, the achieved datum is not any longer the scattered field but the differential
scattered field in the observation point, given by

ΔE =Es xs +Δ, tð Þ−Es xs−Δ, tð Þ ð7:6Þ

or in the frequency domain

ΔE =Es xs +Δ,ωð Þ−Es xs−Δ,ωð Þ ð7:7Þ

This implies that the mathematical model to achieve the reconstruction should change
too. In other words, the scattering operator at hand changes and has different mathe-
matical properties. In Chapter 9, we will show that this somehow worsens the
ill-posedness of the inverse scattering problem.

7.4 THE BACKGROUND REMOVAL

Another possibility is that of applying a background removal (BKGR). The background
removal is a well-known procedure in geophysics (Daniels, 2004; Conyers, 2004; Jol,
2009). However, it is rarely thought that, in terms of physics-mathematics, it can be
viewed as a heuristic way to filter out the contribution of the incident field from the data
(Persico and Soldovieri, 2008; Persico and Soldovieri, 2010). The reasoning that shows
this is substantially the same shown with regard to the differential configuration. In fact,
let us consider a BKGRwithmoving average: It consists in taking as datum the difference
between the current trace and the average value of a set of traces symmetrically centered
around the current one. So, let us suppose that the averaging is performed on 2N + 1
traces, starting from the Nth traces before the current one and ending at the Nth traces
after the current one. Let us label as s the spatial step of the measurements. So, the datum
is given by

2 Indeed, the roughness of the interface does not make this statement rigorous, but the discrepancy is usually
marginal on the spatial scale of a reasonable offset (expected to be of the order of 10 cm)

111THE BACKGROUND REMOVAL



Eb x, tð Þ=E x, tð Þ− 1
2N + 1

XN
n= −N

E x−ns, tð Þ ð7:8Þ

In the time domain, or alternatively

Eb x,ωð Þ =E x,ωð Þ− 1
2N + 1

XN
n= −N

E x−ns,ωð Þ ð7:9Þ

in the frequency domain. The subscript b stands for background removal. Again,
considering the incident field invariant along the horizontal abscissa, the contribution
of the incident field to the average trace and to the current trace are the same and so
they erase each other, and the result is rewritten as

Eb x, tð Þ =Es x, tð Þ− 1
2N + 1

XN
n= −N

Es x−ns, tð Þ ð7:10Þ

In the time domain or

Eb x,ωð Þ =Es x,ωð Þ− 1
2N + 1

XN
n= −N

Es x−ns,ωð Þ ð7:11Þ

in the frequency domain. BKGR is automatically implementable by several commercial
software. Often, one can choose either the number of traces or the “horizontal extension”
to be averaged—that is, the distance between the first and the last averaged traces. The
two quantities are related to each other, because this distance is equal to 2Ns.

The definition of BKGR presents a problem with regard to both the initial trace and
to final trace. In fact, for example, when considering the first trace of the GPR scan, of
course we don’t have N traces before it, and when considering the last one we don’t have
N further traces beyond it. So, an artificial prolongation (implicit or explicit) of the B-scan
is needed both before its beginning and beyond its end.3 To this pros, several choices are
possible, and in general the best choice depends on the situation at hand.

One of the possible choices is to place M times the comprehensive average trace of
the whole B-scan before the B-scan andM times the same average trace after the B-scan,
where M is the total number of traces of the gathered B-scan. In this way, we create an
equivalent B-scan three times longer than the actual one. At this point, if one performs a
mobile averaging on 2M + 1 traces on the real B-scan, it can be checked that the result
is equal to the well-known background removal procedure performed on all the
traces—this is, a background removal where the datum is given by the current traces
minus the average of all the traces. This shows that the background removal on all

3Alternatively, one should avoid reconstructing the scenario under the first and last part of the gathered B-scan,
but this is never convenient.
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the traces is substantially a particular case of the BKGR with moving average, and so the
properties that we will investigate about the moving average background removal
procedure hold also in the case of BKGR on all the traces.

Similar to the differential configuration, BKGR can be implemented in either the
time domain or the frequency domain, and it is a way to filter out the incident field
without erasing the targets embedded in the horizontal bands related to the layers present
in the raw data. Moreover, again similar to the differential configuration, BKGR erases
the constant returns from any target that moves together with the antennas. Of course,
also this time the returned datum is not the scattered field in the observation point but
rather a function of the scattered field in the observation point, and this changes the
mathematical properties of the scattering operator, as will be shown in Chapter 9.
In particular, we will show that the properties of the scattering operator get somehow
worsened also in this case (again similarly to the differential configuration). In the
end, this means that the possibility to erase horizontal belts without erasing the targets
inside them has some price in terms of resolution capabilities of the scattering operator.

An important difference between the differential datum and the BKGR datum is that
the first one is conceived as associated to a specific hardware, whereas BKGR is a
procedure that can be applied on the usual common offset data. In particular, we can think
of applying the background removal only within certain time intervals (which is
impossible with a differential configuration), in order to erase the horizontal band while
“saving” the targets embedded in them and, at the same time, keeping to a heuristic
minimum the modifications of the scattering operator. An example of BKGR is shown
in Figure 7.3, where the diffraction hyperbola relative to a small reflector is shown. The
target is a square object that is built with a perfect electric conductor, sized 5 × 5 cm2 and
buried at the depth of 1 m. The medium is a homogeneous soil with relative permittivity
equal to 5 and electrical conductivity equal to 0.01 S/m. The data have been simulated
with the GPRMAX code. The observation line is 2.5 m long and is at a height of 1 cm.
The spatial step is 2.5 cm. The offset between source and observation point is zero. The
source is a Ricker pulse with central frequency 500MHz. In particular, in panel a, the
diffraction hyperbola achieved after muting of the first 5 ns is represented; in panel b,
the homologous quantity achieved from BKGR on all the traces is shown. In panel c
the homologous quantity achieved from BKGR with mobile averaging on 9 traces is
depicted; in panel d the homologous quantity achieved from BKGR performed on all
the traces but only on the first 5 ns is shown. Figure 7.3 shows that the background
removal can be done in several ways, each of which can have some pros and some cons.
In particular, the background removal on all the traces (panel 2) erases the spurious
interface generated by an abrupt muting but generates a spurious flat interface in
correspondence to the top of the diffraction hyperbola. This is because the high level
of the signal in the target point is able to change the level of the comprehensive average
trace at that time instant. This can also be viewed as an effect of the limitedness of the
observation line. In fact, if the BKGR is done on a longer and longer observation line, this
effect is expected to be progressively weaker. This effect is usually easily recognized,
because the lines generated by it are too straight to be ascribable to a real target.
Notwithstanding, this effect might mask some weak target at the same time depth of
the strong reflection. A BKGR with a moving average doesn’t show this drawback,
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because the limitedness of the averaging line confines to a local effect this possible
spreading. This is clear from panel c, where a moving BKGR on nine traces (correspond-
ing to an averaging length of 20 cm) is shown. However, from panel c, it is also evident
that the top of the diffraction hyperbola gets partially erased. This is becaues the top is the
most flat part of the curve, so that the averaged traces are quite similar to each other and
erase with the central one while performing the moving average BKGR. Finally, panel d
shows the diffraction hyperbola achieved by a BKGR performed only on the first 5 ns of
all the traces. In this case the result is very similar to that of panel a. However, unlike
the simple “muting,” if we had had a target in the first 5 ns, in the case of Figure 7.3d
the BKGR would not erase it. So, in the case at hand, the solution of panel d seems
to be a good compromise between the contrasting exigencies to minimize the distortion
of the data and to avoid the erasing of shallow targets.
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Figure 7.3. Panel a: The diffraction hyperbola achieved after muting of the first 5 ns. Panel b:

The same quantity achieved from BKGR on all the traces. Panel c: The same quantity achieved

from BKGR with mobile averaging on 9 traces. Panel d: The same quantity achieved from

BKGR performed on all the traces but only on the first 5 ns.
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QUESTIONS

1. Is it necessarily well-advised to process data gathered with a stepped-frequency GPR
system entirely in frequency domain?

2. Can the interface muting be performed in frequency domain?

3. Let us suppose that we have to perform a background removal on N traces, for any
fixed N. Is a positive effect expected if the spatial step is made progressively
narrower?

4. Let us suppose that we have to perform a background removal on N traces, for any
fixed N. Is a positive effect expected if the spatial step is made progressively larger?

5. Does the interface muting provide a rigorous calculation of the scattered field?

6. In the case of a homogeneous soil, do the background removal and/or the differential
configuration provide a quantity rigorously independent from the incident field?
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8

THE BORN APPROXIMATION

8.1 THE CLASSICAL BORN APPROXIMATION

In Chapter 6, we have introduced the Born series of the scattering operator, even
if in a specific case and not in its more general form. The basis for the construction of
this Born series was given in Eq. (6.8) with regard to the case of nonmagnetic anomalies.
The sequence provided in Eq. (6.8) can be written in a more general (i.e., for any
dielectric contrast) and complete form as follows:

E1 xs,x,zð Þ=Einc xs,x,zð Þ,

E2 xs,x,zð Þ=Einc xs,x,zð Þ+ k2s
ð ð
D

Gi x,z,x
0,z0ð ÞE1 xs,x

0,z0ð Þχe x0,z0ð Þ dx0dz0,

E3 xs,x,zð Þ=Einc xs,x,zð Þ+ k2s
ð ð
D

Gi x,z,x
0,z0ð ÞE2 xs,x

0,z0ð Þχe x0,z0ð Þ dx0dz0,

…

En xs,x,zð Þ=Einc xs,x,zð Þ + k2s
ð ð
D

Gi x,z,x
0,z0ð ÞEn−1 xs,x

0,z0ð Þχe x0,z0ð Þ dx0dz0, z > 0

ð8:1Þ
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where D is the investigation domain and xs is the source point. If the Born sequence (8.1)
converges, its limit point is the internal field by virtue of Eq. (4.44). Analogously to the
particular case examined in chapter 6, the Born sequence for the internal field, as any
sequence, can be put in the form of a series as follows:

E =Einc + k
2
s

ð ð
D

GiEincχe dx
0dz0

+ k4s

ð ð
D

GiEincχe dx
0dz0
ð ð
D

GiEincχe dx
00dz00

+ k6s

ð ð
D

GiEincχe dx
0dz0
ð ð
D

GiEincχe dx
00dz00

ð ð
D

GiEincχe dx
000
dz

000
+ � � �

� � �+ k2ns
ð ð
D

GiEincχe dx
0dz0
ð ð
D

GiEincχe dx
00dz00� � �

ð ð
D

GiEincχe dx
ndzn + � � �, z> 0

ð8:2Þ
Analogously toEq. (6.9), inEq. (8.2) all the functional dependences of the nested integrands
have been dropped out in order to not over-prolong the expression. Being bi-univocally
related to the Born sequence, the Born series for the internal field does not necessarily con-
verge. Incidentally, some conditions for the convergence1 have been studied (D’Urso et al.,
2007), but they are beyond the purposes of this text and will not be dealt with here.
Substituting the Born series for the internal field into the external scattering equation
[see Eq. (4.45)], we achieve the Born series for the scattered field, given by

Es = k2s

ð ð
D

χeEincGe dx0dz0 + k4s
ð ð
D

χeGe dx
0dz0
ð ð
D

GiEincχe dx
00dz00 +

+ k2n+ 2s

ð ð
D

χeGe dx
0dz0
ð ð
D

GiEincχe dx
00dz00� � �

ð ð
D

GiEincχe dx
n + 1dzn + 1 + � � �, z < 0

ð8:3Þ
Analogously to the Born series for the internal field, there is no general guarantee for
the convergence of the Born series for the scattered field. In any case, the first term of
this sequence provides the first-order Born Approximation (BA) for the scattered field,
which is commonly just reported as the BA (Chew, 1995; Born and Wolf, 1999).
Expanding the expression in order to make clear the functional dependences, under
the BA the external scattering equation becomes

Es xs,ωð Þ= k2s
ð ð
D

χe x0,z0ð ÞEinc x0,xs,z0;ωð ÞGe x0,x0 = xs +Δ,z0;ωð Þ dx0dz0, xs,xoð Þ 2Σ

ð8:4Þ

1 The convergence is meant in the least square sense.
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Equation (8.4) also accounts for a common offset configuration where the observation
point and the source point are separated by a fixed offset Δ and the height of the data
is a fixed parameter too. Under the BA, it is immediate that the scattering is approximated
as a linear phenomenon, which poses the basis for faster and easier processing algorithms
with respect to the actual nonlinear model, and of course a linear model is immune from
the problem of the local minima. Moreover, as will be shown, BA allows a noticeable
insight about the characteristics of the expected results, essentially based on the spatial
filtering properties of the linear scattering operator.

From a physical point of view, the BA amounts to neglect the mutual interactions
between any two different buried targets or (which is mathematically the same) between
any two different parts of the same target. The situation can be pictorially explained by
means of Figure 8.1.

In particular, let us regard A and B as two very small targets, so that we can assume
that each of them, in the absence of the other one, would provide a scattered field given
by Eq. (8.4), where the contrast is a function that describes each of the two targets in
turn. In fact, if the target is very small, the integral term in Eq. (4.44) can be regarded as
a negligible perturbation with respect to the incident field, because the contrast is a low
norm function. However, if the two targets are present at the same time (so that the
contrast is given by the sum of the contrasts relative to each of the two targets separately
considered), they interact with each other, and consequently the comprehensive
scattered field is not simply given by the sum of the scattered field that each of them
would produce in absence of the other. This interaction is the physical genesis of
the nonlinearity, because it makes the internal total field different from the internal
incident field.

Tx Rx
Air

Soil

A B

Figure 8.1. Schematic for the physical reason of the nonlinearity of the scattering. The black

arrows represent the direct contributions of the two small buried targets separately

considered. The red arrows represent the contribution of the mutual interaction between

A and B to the scattered field. For color detail, please see color plate section.
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8.2 THE BORN APPROXIMATION IN THE PRESENCE
OF MAGNETIC TARGETS

From the complete internal scattering equations (5.69), we retrieve immediately that the
BA in the more general case of both dielectric and magnetic targets requires a formally
more restrictive condition with respect to the classical BA for only dielectric targets.
In particular, with regard to the internal field, it is now required (Persico and Soldovieri,
2011) that we have

E x,zð Þ≈Einc x,zð Þ, x0,z0ð Þ 2D, ð8:5Þ
r0E x0,z0ð Þ≈rEinc x0,z0ð Þ, x0,z0ð Þ 2D ð8:6Þ

where the symbols are in agreement with those adopted in the scattering equations
provided in Chapters 4 and 5.2 Indeed, an intriguing theoretical question arises whether
Eq. (8.6) is a direct consequence of Eq. (8.5) or is a really further independent condition
[or whether (8.6) can be derived from (8.5) under some further wide hypotheses]. In
particular, if the incident field is regarded as just a function, it is well known that the
approximation (8.6) cannot be derived as a consequence of the approximation (8.5),
because two quantities might be very close to each other (e.g., in the least square sense)
and notwithstanding their derivatives might be very different from each other. However,
the incident field is not a generic function, because it is a solution of the Maxwell’s
equations, which represents a meaningful constraint. The question is open at the moment,
to the best of our knowledge, because we have not found any proof that condition (8.6)
can be derived directly from condition (8.5), nor have we found a proof of the opposite
statement. So, we adopt “conservatively” both conditions.

Substituting Eqs. (8.5) and (8.6) into the external scattering equation (5.68),
we achieve the equation of the scattered field under BA for dielectric and magnetic
targets:

Es xs;ωð Þ= k2s
ð ð
D

Ge xs +Δ,x0,z0;ωð ÞEinc xs,x
0,z0;ωð Þχe x0,z0ð Þ½

+
1
k2s
r0Ge xs +Δ,x0,z0;ωð Þr0Einc xs,x

0,z0;ωð Þχm1 x0,z0ð Þ� dx0dz0, xs,xo 2Σ

ð8:7Þ

where the height of the source and of the observation point have been supposed invariant

along the GPR scan and where the quantity
χm x0,z0ð Þ

1 + χm x0,z0ð Þ has been labeled as χm1(x0,z0).

2 Let us stress that the erasing of the incident field discussed in Chapter 7 was referred to the incident field in the
observation point (in air), whereas the incident field in Eqs. (8.1) and (8.2) is meant as the incident field in the
investigation domain (underground).
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Note that these two quantities have the same support3; that is, from a practical point of
view, they approximately “express” two anomalies with the same size, position, and
shape (but with different values). The scattering equation (8.7) is in frequency domain,
and in particular the contrasts might depend on the frequency too. However, this depend-
ence will be neglected.

That said, under the BA the scattering problem is in any case linear and so any
inversion algorithm based on the BA is not affected by local minima and is, in general,
computationally less demanding with respect to a nonlinear approach.

Of course, based on the reasoning presented in Chapter 6, the ill-posedness of the
problem remains.

As already said, physically the BA amounts to neglecting themutual electromagnetic
interactions among different buried targets and among the different parts of any buried
target. In the case of magnetic and dielectric targets, this also amounts to neglecting
the interaction between the magnetic contrasts and the dielectric contrasts, so that the
scattered field under the BA is the sum of the scattered fields generated by the only
dielectric part plus that generated by the only magnetic part of the buried targets.

8.3 WEAK AND NONWEAK SCATTERING OBJECTS

Theoretically, to neglect the mutual interactions between the buried targets is licit for
weak scattering targets—that is, buried objects that make negligible the integral term
on the right-hand side of Eq. (5.69). That term is the difference between the
internal actual field and the internal incident field; that is, it is by definition the internal
scattered field.

The definition of weak scattering target is often accepted as an object that that
modifies negligibly (conventionally ± π=8 at most) the phase of an electromagnetic wave
propagating through it (Slaney et al., 1984). However, this is a definition essentially
thought to be appropriate for free space cases. Actually, an inhomogeneous background
can influence the degree of nonlinearity of the problem (Persico and Soldovieri, 2004).
Therefore, here “weak scatterer” is defined as just an object for which the internal field,
and (in case of magnetic targets) its first-order spatial derivatives can be approximated
with those of the incident field. The “weakness,” in particular, is a feature not only related
to the maximum level of the contrast, but also to the electrical size of the buried target
(which implies a dependence on the frequency), its shape, and the nature of the of
background medium (homogeneous or layered, lossless or lossy).

It is important to emphasize that, independently from the validity of the BA in the
current situation (with GPR field data, customarily BA is not valid), an aspect worth
emphasizing is that the secondary sources that generate the scattered field under BA have
the same support of the actual secondary sources, and this support is just the extension of
the buried targets. In fact (see Chapter 4), the actual secondary source in case of dielectric

3 The support of a function is defined as the closure of the set of the points where a function assumes non-null
values.
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targets are given by jωεsχeE [see Eq. (4.20)], whereas the secondary source under the BA
are provided by jωχeεsEinc. Now, assuming that both the incident and the actual internal
fields are supported throughout the entire investigation domain, it is clear that either
under the exact model or under the BA the support of the secondary source is equal
to the support of the dielectric contrast, which is just the extension of the buried targets.
Therefore, it is licit to expect that in many cases the position, the size, and (under certain
limits) the shape of the buried targets can be satisfyingly retrieved under BA, even in
cases when the targets are not weak (Slaney et al. 1984; Idemen and Ackduman,
1990). This has also been widely shown experimentally (Meincke, 2001; Catapano
et al., 2006; Persico and Sala, 2011). Let us also state that “satisfyingly” is a voluntarily
generic term: It means that the achievable results are useful for some applications but
does not mean that the geometrical reconstruction is “perfect” or very good (e.g., in
the least square sense). In particular, the achievable reconstruction is affected by the
filtering properties of the linear scattering operator, examined in the next chapter. In
any case, in situations beyond the limits of the BA, we will not achieve a quantitative
reconstruction of the electromagnetic characteristics of the buried object. Analogous
statements can be straightforwardly worked out in the case of magnetic anomalies.

At this point, we can propose a brief flashback on the question of the background
medium, prompted in Chapter 7: Indeed, making a rough parallel between the Born series
for the scattered field and the Taylor series for an ordinary function, we recognize that the
background medium plays the role of the starting point of the series. The sense of the
incident field, as well as the sense of the contrast function, actually depends on the chosen
background medium. Consequently, to chose a background medium somehow “closer”
to the physical situation is helpful in order to mitigate the nonlinearity of the problem.
In particular, the common praxis for GPR data is to refer to a half-space geometry (or
even to a homogeneous medium with the electromagnetic characteristics of the soil)
because a “big box” model embedded in air would make quite more critical the intrinsic
nonlinearity of the problem.

QUESTIONS

1. Consider a given weak scattering target embedded in a homogeneous soil.
Let us embed this same target in a masonry composed of a material with the same
characteristics of the previous soil. Is the scattering target “weak” in the same
way? Namely, might the ratio between the norms of the internal incident field and
the internal total field meaningfully change? Provide a qualitative answer considering
the target under the radiation of the same sources placed in the same relative
positions with respect to it in the two cases.
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9

DIFFRACTION TOMOGRAPHY

9.1 INTRODUCTION TO DIFFRACTION TOMOGRAPHY

Diffraction Tomography is a topic that has been dealt with for a long time (Lesselier and
Duchene, 1996; Meincke, 2001; Tabbra et al., 1988; Witten et al., 1996; Cui and Chew,
2002). In general terms, a DT relationship is an algebraic relationship between the
spectrum of the data and the spectrum of the unknown function. There are several kinds
of DT relationships in relationship with the measurement configuration (Persico et al.,
2005; Persico, 2006), but here we will focus only on the common offset configuration.
In general, a DT relationship requires more approximations than does the linearization
provided by the BA, as will be shown in the following. In particular, two general
hypotheses assumed for any DT relationship in common offset configuration are
the following:

1. The soil or more in general the propagation medium is lossless.

2. The targets are not close to the sources in terms of wavelength.

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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9.2 DIFFRACTION TOMOGRAPHY FOR DIELECTRIC TARGETS

In order to introduce the first DT relationship of this chapter, let us specify some further
hypotheses, beyond BA and the assumptions 1 and 2 of the previous section. In partic-
ular, in this section we will assume the following:

1. There is no magnetic target

2. The observation line is at the air–soil interface.

3. The observation line is infinitely long.

4. The source is a filamentary electrical current.

5. The datum is constituted by the scattered field in the observation point.

In this case, the linear external scattering equation [see Eq. (8.4)] is particularized into

Es x;ωð Þ = k2s
ð ð
D

Ge x,x0,0,z0;ωð ÞEinc x +Δ,x0,0,z0;ωð Þχe x0,z0ð Þ dx0dz0, x2Σ ð9:1Þ

where Δ is the fixed offset between the source and the observation point. After
substituting the expressions of the external Green’s function given in Eq. (4.47) and
the expression of the incident field given in Eq. (4.48) in Eq. (9,1), we obtain

Es x;ωð Þ= jωI0μ20μsk
2
s

2π

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

exp − j kzs uð Þ + kzs vð Þð Þz0ð Þexp j u + vð Þxð Þ
μ0kzs uð Þ + μskz0 uð Þð Þ μ0kzs vð Þ+ μskz0 vð Þð Þ

× exp jvΔð Þexp − j u + vð Þx0ð Þχe x0,z0ð Þ dx0dz0dudv, x2Σ ð9:2Þ

In Eq. (9.2), the integral on the investigation domainD has been replaced with an integral
on the entire plane, because the dielectric contrast is a null function outside
the investigation domain. Let us now write p = u + v) u = p − v. The integrals can be
rearranged as (Persico et al., 2005)

Es x;ωð Þ= jωI0μ20μsk
2
s

2π

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

exp − j kzs p−vð Þ + kzs vð Þð Þz0ð Þexp jpxð Þ
μ0kzs p−vð Þ + μskz0 p−vð Þð Þ μ0kzs vð Þ + μskz0 vð Þð Þ

× exp jvΔð Þexp − jpx0ð Þχe x0,z0ð Þ dx0dz0dpdv, x2Σ ð9:3Þ

In the four nested integrals, we can recognize a Fourier transform of the contrast with
respect to x0 (the conjugate variable being p) and an inverse Fourier transform with

123DIFFRACTION TOMOGRAPHY FOR DIELECTRIC TARGETS



respect to the variable p (the conjugate variable being the observation point x). So, by
Fourier transforming the data, from Eq. (9.3) we obtain

Ês p;ωð Þ = jωI0μ20μsk2s
ð+∞
−∞

dz0χ̂e p,z0ð Þ×

×
ð+∞
−∞

exp − j kzs p−vð Þ+ kzs vð Þð Þz0ð Þexp jvΔð Þ
μ0kzs p−vð Þ+ μskz0 p−vð Þð Þ μ0kzs vð Þ + μskz0 vð Þð Þ dv, x2Σ ð9:4Þ

Now, the integral in dv can be solved under the stationary phase approximation,
because we have assumed high values of z0, that is, deep targets (see hypothesis
2 above). The rationale of the stationary phase method has already been introduced
in Chapter 4 and thus will be not repeated now. However, in that chapter the two-
dimensional stationary phase approximation was dealt with. Here, instead, we need
the one-dimensional stationary phase approximation, which is provided by (Felsen
and Marcuvitz, 1994)

ðX2

X1

f xð Þexp jΩg xð Þ½ � dx≈
ffiffiffiffiffi
2π

p
exp j

π

4

� �
f x0ð Þexp jΩg x0ð Þ½ �

ffiffiffiffi
Ω

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2g

dx2
x0ð Þ

r ð9:5Þ

where the symbols are homologous to those of Eq. (4.91). If the second derivative in
the denominator is negative, the determination of the square root to be retained isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2g

dx2
x0ð Þ

r
= − j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2g

dx2
x0ð Þ

����
����

s
. In the case at hand, the phase function to consider is

ψ vð Þ= −kzs p−vð Þ−kzs vð Þ= −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s − p−vð Þ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffi
k2s −v

2
q

ð9:6Þ

Thus

dψ

dv
= −

p−v

ksz p−vð Þ +
v

ksz vð Þ ð9:7Þ

d2ψ

dv2
=

−1

ksz p−vð Þð Þ2
p−vð Þ2

ksz p−vð Þ + ksz p−vð Þ
0
@

1
A+

1

ksz vð Þð Þ2
−v2

ksz vð Þ −ksz vð Þ
0
@

1
A

= −
k2s

ksz p−vð Þð Þ3 −
k2s

ksz vð Þð Þ3 ð9:8Þ

124 DIFFRACTION TOMOGRAPHY



It easy to check that there is a unique first-order (see Section 4.6) stationary point at
v = p=2, and in the stationary point we have

d2ψ

dv2

���
v= p=2

=
−2ks

ksz
p

2

� �� �3 )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ψ

dv2

���
v = p=2

s
= − j

ffiffiffiffiffiffiffi
2ks

p

ksz
p

2

� �� �3=2
ð9:9Þ

Substituting into Eq. (9.4), we obtain

Ês p;ωð Þ= −

ωI0μ20μsks exp jΔ
p

2

� �
exp j

π

4

� �

μ0kzs
p

2

� �
+ μskz0

p

2

� �� �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π kzs

p

2

� �� �
3

s

×
ð+∞
−∞

χ̂e p,z0ð Þffiffiffi
z0

p exp −2jkzs
p

2

� �
z0

� �
dz0 ð9:10Þ

The integral term in Eq. (9.10) is once again a Fourier transform, so that eventually we
obtain

Ês p;ωð Þ= f p;ωð Þ ^̂χe1 η p,ωð Þ,ς p,ωð Þð Þ ð9:11Þ

where

f p;ωð Þ= −
ωI0μ20μsks exp jΔ

p

2

� �
exp j

π

4

� �
μ0kzs

p

2

� �
+ μskz0

p

2

� �� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π kzs

p

2

� �� �3r
ð9:12Þ

χe1 x0,z0ð Þ = χe x0,z0ð Þffiffiffi
z0

p ð9:13Þ

η p,ωð Þ = p

ς p,ωð Þ= 2kzs p

2

� �
= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s −

p

2

� �2s
= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω

c

� �2
−

p

2

� �2s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−p2

r ð9:14Þ

The reader can check that hypotheses 1–5 listed at the beginning of this section and also
hypotheses 1 and 2 of the previous section have all been used in the performed calcula-
tions. In particular, the last Fourier relationship and the application of the stationary phase
method require the hypothesis of a lossless soil.
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Equation (9.11) also requires that kzs p=2ð Þ be a real quantity; otherwise the integral
in Eq. (9.10) is not a Fourier transform but instead a Laplace transform (and this involves
an exponential attenuation of the scattered waves). This restricts the admitted range of
variability of p to the so-called “visible” interval Iv = (−2ks, 2ks). Physically, this means
that the secondary sources, as any electromagnetic source, generate both a propagating
field (related to the visible interval) and a reactive field (related to the values of p beyond
the visible interval). The retrievable spectral set is provided by the image of Eq. (9.14) in
the plane (η,ς), on condition that the spectral weighting function given in Eq. (9.12) is a
relatively smooth function. In particular, the neighbors of the zeroes of the spectral
weight should be excluded from the retrievable spectral set, because in those points
the reconstruction of the spectrum of the contrast becomes unreliable. However, in order
to introduce progressively the difficulties, let us neglect the effect of the spectral weight
in a first moment.

In this case, the mapping equation (9.14) is easily seen to be the parametric equations
of a curve in the plane (η,ς). The corresponding Cartesian equation is easily retrieved as
follows:

ς = 2kzs
η

2

� �
= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s −

η

2

� �2r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2s −η

2
q

) ς2 + η2 = 4k2s ð9:15Þ

Equation (9.15) is the equation of a circumference centred in the origin and with ray 2ks.
Moreover, it is immediate to check that we have the following correspondences, accord-
ing to Eq. (9.14):

p = −2ks! η,ςð Þ= −2ks,0ð Þ,
p = 0! η,ςð Þ= 0,2ksð Þ,
p = 2ks! η,ςð Þ = 2ks,0ð Þ

ð9:16Þ

This means that, while p ranges from − 2ks to 2ks, the corresponding point in the plane
(η,ς) describes in the clockwise direction a half-circumference in the half-plane ς ≥ 0,
from the point (−2ks, 0) to the point (2ks, 0). Consequently, multifrequency data in a lim-
ited band ranging between some fmin and some fmax “cover” a half-annulus in the plane
(η,ς). In Figure 9.1, the theoretically retrievable multifrequency spectral set is quantita-
tively depicted in four cases.

Figure. 9.1 shows the fact that, even in the ideal case of a continuous amount of
data gathered on an infinitely long observation line, the amount of retrievable informa-
tion is limited and only a spatially filtered version of the object function is retrievable.
As said, the spectral weight can provide a restriction of the ideal maximum spectral
set of Figure 9.1 (and actually does). In order to get an insight on this effect, let us
examine the behavior of the modulus of the spectral weight. In particular, in Figure 9.2
it is shown the modulus of the weighting function, normalized to its maximum, in
four cases.
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As can be seen, the behavior of the function is case-dependent, but some
general features are easily identified. In particular, the function is even and vanishes
at p = ± 2ks, as immediately understood from its expression (9.12). This means that
the visible interval should not be considered equal to the entire interval (−2ks, 2ks),
but rather an interval of the kind Iv = (−2ks + ε, 2ks − ε), where ε is a positive quantity
frequency dependent and case dependent (in particular, noise-dependent). Moreover, as
it can be appreciated from Figure 9.3, the shape of the modulus of the spectral weight
normalised to its maximum value is somehow frequency invariant. Therefore, ε is
expected roughly proportional to the frequency and the shape of the really retrievable
spectral set is expected of the kind in Figure 9.4. Also note that the restriction is more
severe if the soil shows magnetic properties, because this makes concave the graph
(see Figure 9.2, and this feature has been confirmed by further not reported numerical
results).

Let us now consider the effect of the level of the spectral weight versus the
frequency. From Eq. (9.12), it is easy to work out that we have an increasing of the level
of the spectral weight versus the frequency, asymptotically proportional to f

ffiffiffi
f

p
for

any fixed p. In particular, in Figure 9.5, the same spectral weights of Figure 9.3 are
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Figure 9.1. The theoretical retrievable spectral set in relationshipwith an infinitely long B-scan.

Panel a: εs = 4ε0, μs = 4μ0, fmin = 200 MHz, fmax = 500 MHz. Panel b: εs = 7ε0, μs = μ0, fmin = 100 MHz,

fmax = 400 MHz. Panel c: εs = 5ε0, μs = 2μ0, fmin = 200MHz, fmax = 800MHz. Panel d: εs = 15ε0,

μs = 3μ0, fmin = 50 MHz, f = 350 MHz.
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shown. However, this time the four functions are normalized not with respect to their
own maxima, but rather with respect to the maximum value over all of them, which
is achieved at the maximum considered frequency.

Physically, the result shown in Figure 9.5 means that a filamentary current, with a
fixed (maximum or rms) value of the current flowing in it, radiates more power at higher
frequencies. This should be accounted when considering very large band data (e.g., one
decade or more) processed under a filamentary current model. In particular, in these cases
a model based on a filamentary current might penalize too much the lower frequencies
and should be somehow compensated.

In conclusion, the retrievable spectral set is a limited set, even in the ideal case of an
infinite observation line, and this is due to the ill-posedness of the problem.

Due to its analytic properties, the spectrum of a square integrable function can
be theoretically prolonged in a unique fashion all over the plane, starting from the
retrievable spectral set. However, the prolonging of the Fourier transform is in turn an
ill-posed problem. Indeed, the prolongation of the spectrum has been widely studied
in one-dimensional cases, where some results in closed form have been achieved too
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Figure 9.2. The normalized modulus of the spectral weighting function in four cases. Panel a:
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Figure 9.3. The normalized modulus of the spectral weighting function in four cases. Panel a:

f = 200MHz. Panel b: f = 400 MHz. Panel c: f = 600 MHz. Panel d: f = 800 MHz; in all the cases εs =

4ε0, μs = 4μ0, p ranges from − 2ks to 2ks and the modulus of the spectral weight is normalized to
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(Slepian and Pollack, 1961; Landau and Pollak, 1961; Landau and Pollak, 1962). Under
the highlight provided by these studies, we can even say that the prolongation of the
spectrum is the ill-posed problem “per antonomasia” and in general is not a suitable
strategy to enhance the DT relationships.

9.3 DIFFRACTION TOMOGRAPHY FOR DIELECTRIC TARGETS
SEEN UNDER A LIMITED VIEW ANGLE

Among the five hypotheses assumed in Section 9.2, there was the infinite length of the
observation line. This hypothesis allowed us to recast the problem as an algebraic
relationship between spectra. However, in any practical case the observation line is
limited. So, let us now consider a finite-length observation line, leaving unchanged
the other hypotheses assumed in Sections 9.1 and 9.2. The finite length of the observation
line corresponds to a limited-view angle range, smaller than −π=2, π=2ð Þ, which is the
range of view angles available with an infinite observation line, as illustrated in Figure 9.6
with regard to a single point-like target. In Figure 9.6, the angles are referred to the
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Figure 9.5. The normalized modulus of the spectral weighting function in four cases. Panel a:
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vertical line passing on the target and are counted clockwise. Therefore, they are negative
if the observation point is on the left-hand side with respect to the target and positive
when the observation point is on the right-hand side with respect to the target.

In order to calculate the DT relationship in the case at hand, let us re-start from
Eq. (9.1). However, in order to make it symmetrical, let us refer the scattered field
not to the observation point, but to the intermediate point between the observation point
x and source point x +Δ. This intermediate point is given by

xm = x+
Δ
2

ð9:17Þ

Thus the observation and the source points can be expressed versus it as

x= xm−
Δ
2

ð9:18Þ

xs = x +Δ= xm +
Δ
2

ð9:19Þ

Under this change of variable, after substituting the expressions of the external Green’s
function [Eq. (4.47)] and of the incident field [Eq. (4.48)] in Eq. (9.1), we obtain
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Es x;ωð Þ = jωI0μ20μsk
2
s

2π

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

exp − j kzs uð Þ+ kzs vð Þð Þz0ð Þexp j u + vð Þxmð Þ
μ0kzs uð Þ + μskz0 uð Þð Þ μ0kzs vð Þ+ μskz0 vð Þð Þ

× exp jv
Δ
2

� �
exp − ju

Δ
2

� �
exp − j u+ vð Þx0ð Þχe x0,z0ð Þ dx0dz0dudv, x2Σ

ð9:20Þ

The integrals can be reordered as

Es x;ωð Þ = jωI0μ20μsk
2
s

2π

ð+∞
−∞

ð+∞
−∞

χe x0,z0ð Þdx0dz0
ð+∞
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exp − ju
Δ
2

� �

×
exp − j kzs uð Þð Þz0ð Þexp juxmð Þexp − jux0ð Þ

μ0kzs uð Þ+ μskz0 uð Þð Þ du
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exp jv
Δ
2

� �

×
exp − jkzs vð Þz0ð Þexp jvxmð Þexp − jvx0ð Þ

μ0kzs vð Þ+ μskz0 vð Þð Þ dv, x2Σ ð9:21Þ

After some straightforward manipulations, Eq. (9.21) can be still rewritten as

Es x;ωð Þ = jωI0μ20μsk
2
s

2π
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ð+∞
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ð9:22Þ

Let us now write

r0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm−x0ð Þ2 + z02

q
,

cos θ0ð Þ= z0

r
,

sin θ0ð Þ= xm−x0

r

ð9:23Þ
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These positions express the vector of the relative position between the observation and
the integration point in polar coordinates. Under these positions, the integral (9.22) is
expressed as

Es x;ωð Þ = jωI0μ20μsk
2
s

2π

ð+∞
−∞

ð+∞
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χe x0,z0ð Þ dx0dz0

×
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cos u
Δ
2

� �
exp − j kzs uð Þð Þr0 cos θ0ð Þð Þexp − jur0 sin θ0ð Þð Þ
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0
@
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A22

4

+
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−∞

sin u
Δ
2

� �
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3
5, x2Σ

ð9:24Þ

where the dependence of r0 and θ0 from x0, z0, and xm is taken implicitly. Both the integrals
in parentheses can be solved, for high values of r0, making use of the stationary phase
approximation. There is a unique first-order stationary point at u = ks sin(θ0), and the
result is (Soldovieri et al., 2007)

Es x;ωð Þ = jωI0μ20μsk
2
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2π
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μ0ks cos θ0ð Þ + μs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
s sin

2 θ0ð Þp� �2
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dx0dz0, x2Σ

ð9:25Þ

In Eq. (9.25), we have applied the phase stationary method with respect to r0. Formally
there is a dependence on r0 also in the residual phase term. In particular, the phase term
was given by

g u,r0ð Þ = −kzs uð Þcos θ0ð Þ−usin θ0ð Þ ð9:26Þ
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This quantity formally depends also on r0 because r0 and θ0 are linked by Eqs. (9.23). We
find comfortable, for a reason that will be clear in the following, to solve this question by
generalizing the stationary phase formula (9.5) into

ðX2

X1

f xð Þexp jΩg x;Ωð Þ½ � dx≈
ffiffiffiffiffi
2π

p
exp j

π

4

� �
f x0ð Þexp jΩg x0;Ωð Þ½ �

ffiffiffiffi
Ω

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2g

∂x2
x0;Ωð Þ

r ð9:27Þ

which is not a correct operation in general. However, in the case at hand the application of
(9.27) is licit, because the phase term of Eq. (9.26) does not vanish when r0 increases,
which makes the rationale of the stationary phase method still valid, because it remains
true that the exponential term exp(jr0(−kzs(u) cos(θ0) − u sin(θ0))) in Eq. (9.24) is more and
more oscillating when r0 increases.

Equation (9.25) shows that, in the current observation point, the first contribution to
the scattered field is given by a plane wave coming from the target to the observation
point. The phase factor 2r0ks expresses the round-trip of the wave from the source to
the target and vice versa.1

At this point, let us consider (with regard to Figure 9.6) the case that the contrast is
provided by a point like target. So, let us focus the attention on the following case:

χe x0,z0ð Þ= χ0δ x0−x0ð Þδ z0−z0ð Þ ð9:28Þ

Where, implicitly, z0 is supposed electrically large. Substituting Eq. (9.28) in Eq. (9.25),
we achieve

Es x;ωð Þ= −ωI0μ
2
0μsk

3
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, x2Σ ð9:29Þ

where

r0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm−x0ð Þ2 + z20

q
,

cos θ0ð Þ= z0
r
,

sin θ0ð Þ = xm−x0
r

ð9:30Þ

Let us now consider the spectrum of the scattered field with respect to xm:

1 Actually, the physical optical path of the signal is from the source point to the target and from the target
back to the observation point, but for long distances (in particular distances much longer than the offset
between the antennas) it can be approximated by the round-trip from the source–receiver midpoint to the
target.
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Let us solve the integral (9.31) with the stationary phase method with respect to z0.
In doing this, we are again applying the generalized stationary formula (9.27). In parti-
cular, the phase term is now given by

g xm,z0ð Þ = −p tan θ0ð Þ+ 2ks
cos θ0ð Þ = p
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z0

+
2ks
z0
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whose first derivative with respect to the integration variable is
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so that there is a unique first-order stationary point given by
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Based on Eq. (9.34), in this stationary point xm0 we have

cos θm0ð Þ = z0
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=
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The second derivative of the phase term is given by
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Consequently, the final result is
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At this point, let us note that if we particularize the result of Eq. (9.11) to the point-like
target at hand, we obtain
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which is the same as Eq. (9.38) except for the factor exp jΔ p
2


 �
(because the Fourier

transform of the scattered field is computed with respect to the variable xm instead of
the observation point x).

However, the intermediate passages that have led us to Eq. (9.38) reveal a crucial
point, expressed by Eqs. (9.35). In fact, Eqs. (9.35) show a noticeable one-to-one corre-
spondence between the spectral variable and the spatial variable. In particular, the scat-
tered field in the point xm0 provides the main contribution to the spectrum of the scattered
field in the point p = 2ks sin(θm0). Therefore, we can say that any xm is the stationary point
with regard to the related spectral point p = 2ks sin(θm). Now, when xm ranges the real axis
from −∞ to +∞, p ranges the visible interval from −2ks to 2ks. However, if xm ranges
from a finite xmin to a finite xmax, then p ranges through a subset of the visible interval

from 2ks sin(θmin) to 2ks sin(θmax), where sin θminð Þ= xmin−x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmin−x0ð Þ2 + z20

q and sin θmaxð Þ =

xmax−x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmax−x0ð Þ2 + z20

q are the sines of the view angles at the extreme points of the observation

line, as illustrated in Figure 9.6.
This means that, for a single point-like target, the visible interval with a limited view

angle is restricted from Iv = (−2ks, 2ks) to Ivl = (2ks sin(θmin), 2ks sin(θmax)), where the
extra subscript l stands for “limited” observation line. So, the visible interval is in general
asymmetric and becomes theoretically symmetric if and only if the target point is cen-
tered with respect to observation line, in which case θmin = − θmax. The retrievable spec-
tral set in the case of an observation line with finite extension is the spectral set
corresponding to this reduced visible interval. In particular, the mapping between the
point (p,ω) and the point (η,ς) is still given by Eq. (9.14) and the spectral weight is still
given by Eq. (9.12), of course restricted to the available reduced visible interval.

In general, we don’t have a single point-like target to focus but rather an entire inves-
tigation domain to reconstruct. Therefore, the achieved result means that the quality of
the reconstruction is not constant throughout the investigation point within the investi-
gation domain. In fact, as can be seen from Figure 9.6, the minimum and maximum view
angles vary when ranging a point within the investigation domain. In particular, the
retrievable spectral set reduces for deeper targets and gets particularly asymmetric for
targets close to the lateral edges.2 In order to achieve a global-average characterization
of the retrievable spectral set, one possibility is to refer it to the deepest central point of
the investigation domain (Soldovieri et al., 2007). This is a worst-case evaluation with

2 This is actually related to the choice of an investigation domain of the same length and centered with respect to
the observation line, which is the most customary and reasonable choice, as will be shown.
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respect to the depth of the target, but does not consider the asymmetry of the spectral set
for lateral targets. With this conventional choice, we have sin(θmin) = − sin(θmax), and
therefore the visible interval becomes Ivl = (−2ks sin(θmax), 2ks sin(θmax)). Consequently,
if the observation line at the air–soil interface is extended from x = − a to x = a and if the
maximum investigated depth is zmax , then we have (see Figure 9.7)

sin θmaxð Þ = affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + z2max

p ð9:40Þ

At this point, we can represent the spectral sets relative to a limited observation line. Four
(multifrequency) cases are quantitatively depicted in Figure 9.8. The four corner points in
Figure 9.8 are P1 = (2ksmin sin(θmax), 2ksmin cos(θmax)), P2 = (−2ksmin sin(θmax), 2ksmin

cos(θmax)), P3 = (−2ksmax sin(θmax), 2ksmax cos(θmax)), and P4 = (2ksmax sin(θmax),
2ksmax cos(θmax)). The points P1 and P2 are connected by an arch of circumference
centered in the origin and with ray 2ksmin, where the ksmin is the minimum involved
wavenumber in the soil; the points P3 and P4 are connected by an arch of circumference
centered in the origin and with ray 2ksmax, where ksmax is the maximum involved
wavenumber in the soil. The points P1 and P4, as well as the points P2 and P3, are
connected by two straight line segments.

The global-average spectral set is useful for a global estimation of the resolution
capabilities of the linear scattering operator, but it cannot account for the variable
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Figure 9.7. Conventional choices for the evaluation of the global-average spectral set.
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quality of the focusing for different points within the investigation domain. In particular,
the reduction of maximum view angle versus the depth involves a loss of resolution
versus the depth (Deming and Devaney, 1996), as will be shown.

The spectral sets of Figure 9.8 express a fundamental characteristic of the reconstruc-
tion that we can achieve under a Born model, which is essentially expected low pass
filtered with regard to the horizontal frequencies and bandpass filtered with respect to
the vertical spatial frequencies. Practically, this means that the horizontal size of the tar-
gets is expected to be satisfyingly reconstructed unless the target is quite shorter than the
dominant wavelength (we will be more precise in Section 9.5). Instead, with respect to
the vertical direction, the reconstruction will essentially image the discontinuities along
the depth, associated with “high” vertical spatial frequencies (Higgins, 1996). In other
words, substantially we expect to retrieve (at most) the top and the bottom of the buried
targets. Actually, in some cases the bottom is not imaged, due to the losses and/or to the
strong reflection from the top. In some other cases, instead, when the target is vertically
small, the reconstructions of the top and the bottom can superpose to each other, resulting
in a unique “spot.” The vertical band-pass characteristics of the inverse scattering oper-
ator are the mathematical counterpart of the fact that the GPR signal is substantially com-
posed by radar echoes from the buried targets, basically generated by discontinuities
along the vertical direction.
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Figure 9.8. The global-average retrievable spectral set under a limited view angle. In all cases

a = 1 m and zmax = 1.5 m. Panel a: fmin = 200 MHz, fmax = 500 MHz, εrs = 9, μrs = 1. Panel b: fmin =

200 MHz, fmax = 500 MHz, εrs = 4, μrs = 1. Panel c: fmin = 300 MHz, fmax = 700 MHz, εrs = 4, μrs = 1.

Panel d: fmin = 300 MHz, fmax = 700 MHz, εrs = 4, μrs = 4.
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Another consequence of the “morphology” of the retrievable spectral set is that we
cannot expect to retrieve the buried targets quantitatively but we can only retrieve their
position, size, and (under some limits as said) shape. In particular, let us emphasize that
the spectral set does not include the Cartesian origin of the plane (η,ς). Since the value of
the spectrum of the contrast profile in the origin is equal the integral average value of the
function, it is quite hard, under BA, to retrieve the mean value of the contrast, even if
the target is a weak scattering object. In particular, the level of the reconstructed contrast
is customarily quite lower than the level of the actual contrast.

It is interesting to note that, formally, the “exploding” shape of the spectral set
indicates that the amount of information retrievable from higher frequencies is somehow
greater than that obtained from lower frequencies. In particular, after easy geometrical
calculations, the area of the spectral is equal to

As = 8θmaxΔksksm ð9:41Þ

where Δks is the difference ksmax − ksmin and ksm is the medium wavenumber
ksmax + ksmianð Þ=2. This means that, for example, the band 400–800MHz formally
provides more information than the band 50–450MHz, even if the extension of the
two bands is the same. The physical reason resides in the spatial diversity of the data,
as will be shown later on in this chapter. However, this should not make us think that
the lower frequencies are less important. In particular, as is well known, in order to
investigate deeper layers in the soil, due to the losses (not accounted for in the DT rela-
tionships but always present in the field), we need low frequencies, as already discussed
in Chapter 1. This warns about the fact that the optimality of the available (or needed)
amount of information should not be meant in a merely quantitative way, but above all in
a qualitatively way and in relationship with the specific case at hand.

9.4 THE EFFECTIVE MAXIMUM AND MINIMUM VIEW ANGLE

Up to now, we have implicitly assumed that the target is really “seen” from any
observation point ranging along the observation line. This is a simplifying hypothesis
adopted in order to introduce the calculations. However, in real cases, especially when
the data are gathered along a long B-scan (e.g., 50 m long or more, which usually means
hundreds or thousands central wavelengths in the soil), the GPR antennas will really
perceive any buried target only within a subset of the entire observation line. We can
account for this introducing the concept of the effective maximum (minimum) view
angle, defined as the maximum (minimum) angle at which the GPR receiving antenna
perceives some signal from the crossed buried target. The effective maximum (mini-
mum) view angle θemax (θemin) is, in general, narrower than the geometrical maximum
(minimum) view angle because of the geometrical spreading of the power, the losses, and
the directivity of the antennas. The effective maximum view angle is difficult to be pre-
dicted in a theoretical way, but in general it can be heuristically evaluated from the data.
For example, in Figure 9.9 a GPR scan is represented. The data have been gathered on the
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floor of a baroque building,3 and the visible anomalies are ascribable to superficial pipes
under the floor. In this example, for the evidenced anomaly, we have a≈ 1 m and the
return time t corresponding to the top (neglecting the offset between the antennas) is
about equal to 1 ns. From the shape of the diffraction curve, the propagation velocity
has been estimated about equal to c≈ 1.35 × 108 m/s, so that t≈1ns) z= ct=2
≈0:07m. So, for this anomaly, we can estimate, applying Eq. (9.40) (with zmax = z),
sin(θemax)≈ 0.998. Clearly, superficial targets are seen under a large angle, but this
changes for deeper targets. In particular, in Figure 9.10 a second example is proposed.

The data have been gathered in an archaeological site,4 and the insulated anomaly
is alleged to be ascribable to the basis of a column or to a piece of a column. Also in this
case, we have a≈ 1 m and the return time t corresponding to the top (neglecting the offset
between the antennas) is equal to ~18 ns. From the shape of the diffraction curve, the
propagation velocity has been estimated to be c≈ 0.85 × 108 m/s, so that
t≈18 ns) z= ct=2≈0:76m: So, for this anomaly, we can estimate, applying Eq. (9.40)
(with zmax = z), sin(θemax)≈ 0.8.

In general, the evaluation of the maximum (or equivalently the minimum) effective
view angle depends on the single target, and so it should be averaged among more targets
at the maximum depth of interest. The dealing of Section 9.3 should be referred in general
to the effective view angle. Notwithstanding, the quantitative evaluations of Figure 9.8
are meaningful, because in those cases a relatively short observation line was considered,

3 The ex church of Saint Sebastian, nowadays headquarter of the Foundation Palmieri in Lecce, Italy (http://
www.fondazionepalmieri.it/).
4 Hierapolis, a Roman and Byzantine town in Turkey.
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Figure 9.9. Evalutation of the maximum effective view angle from a superficial target.
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so that the geometrical maximum view angle was not larger than the effective maximum
view angle.

Let us also stress the fact that the introduction of the effective view angle shows that
the problem of the asymmetry of the spectral set is not so dramatic in real cases: Actually,
since the length of the B-scan usually is much longer than the central wavelength, in
many cases the peripheral targets represent only a little share of the targets overflown
by the GPR.

9.5 HORIZONTAL RESOLUTION

Let now calculate the available horizontal resolution. Actually, we cannot rigorously
speak of the horizontal resolution as something separated by the vertical one, because
the two quantities are correlated within the DT relationships. However, we are looking
for an order of size, and so we will find an approximate relationship where the horizontal
resolution is mainly related to the horizontal extent of the retrievable spectral set.

The evaluation of the horizontal resolution proposed here refers (as is customarily
done) to the capability to distinguish two “equally strong” scattering targets at the same
depth. Of course, if the energy scattered by the two targets is different, one of them might
mask the other one (Daniels, 2004).

That said, the horizontal resolution can be defined as the minimum distance at which
two electrically small scattering objects, of the same nature and buried at the same depth,
can be distinguished from each other. In order to evaluate this distance, we can proceed
approximating the spectral sets of Figure 9.8 with the best matching rectangle, as shown
in Figure 9.11.
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Figure 9.10. Evalutation of the maximum effective view angle from a target less superficial

with respect to that considered in Figure 9.9. The abscissas are in meters, and the times are in

nanoseconds.
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The shape of the best matching rectangle depends on the current case, but it is evident
from Figure 9.11 that a reasonable matching is achieved with the horizontal frequencies
ranging between − 2ksc sin(θemax) and 2ksc sin(θemax) (where ksc = ksmax + ksmin=2 is the
average wavenumber and θemax is the maximum effective view angle, assumed symmet-
rical) and with the vertical spatial frequencies ranging between 2ksmin and 2ksmax. Con-
sequently, the corner points of the rectangle in Figure 9.11 are P1 = (2ksc sin(θemax),
2ksmin), P2 = (−2ksc sin(θemax), 2ksmin), P3 = (−2ksc sin(θemax), 2ksmax), and P4 =
(2ksc sin(θemax), 2ksmax). In particular, the spectral set is approximately large 4ksc
sin(θe max) along the η-axis and 2(ksmax − ksmin) along the ζ-axis.

Now, let us consider a point-like target placed in the point (x0,z0), expressed by the
contrast function χe(x0,z0) = χ0δ(x0 − x0)δ(z0 − z0), so that its spatial spectrum is given by
^̂χe η,ςð Þ= χ0 exp − jηx0ð Þexp − jςz0ð Þ. Neglecting the spectral weight, the reconstruction of
such a target through DT is essentially the filtered version of the contrast achieved con-
sidering its spectrum only within the retrievable spectral set, in its turn approximated with
the dashed rectangle in Figure 9.11. In this way, we will achieve a result in closed form.
The reconstruction available for a point like target is also known as point spread function
(Moghaddam and Chew, 1992). In the case at hand, it is given by

χer x0,z0ð Þ = χ0
4π2

ð ð
R

exp j x0−x0ð Þηð Þexp j z0−z0ð Þςð Þ dηdς

=
2χ0
π2

ksc sin θemaxð Þ ksmax−ksminð Þexp j ksmax + ksminð Þ z0−z0ð Þð Þ

× sinc 2ksc sin θemaxð Þ x0−x0ð Þð Þsinc ksmax−ksminð Þ z0−z0ð Þð Þ

=
4χ0ksc sin θemaxð ÞBexp 2jksc z0−z0ð Þð Þ

πc

× sinc 2ksc sin θemaxð Þ x0−x0ð Þð Þsinc 2πB
c

z0−z0ð Þ
� �

ð9:42Þ
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Figure 9.11. The spectral set of Figure 9.8 panel a and the rectangle to which it is assimilated.
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where B is the frequency band and R indicates the rectangle in Figure 9.11. The size of
the main lobe of this sinc-like function along the horizontal direction is
π=kscsin θemaxð Þ= λsc=2sin θemaxð Þ. It is found reasonable that two targets will be reliably
distinguishable if their distance is equal to this value, which guarantees that the main
lobes of the two reconstructions do not overlap to each other. So we have

HR≈
λsc

2sin θemaxð Þ ð9:43Þ

In Figure 9.12, two equal sinc functions shifted of the main lobe with respect to each
other are represented; this makes clear the rationale of the choice of Eq. (9.43).

Equation (9.43) derives from several assumptions and approximations. So, it is no
surprise that different expressions of the horizontal resolution can be found in the
literature. In particular, the literature often reports the value λs=2 (or λs=

ffiffiffi
2

p
) where

λs is defined as the central wavelength. This evaluation, however, does not account
for the loss of resolution versus the depth. Jol (2009) reports the value HR =

ffiffiffiffiffiffiffiffiffiffiffiffi
dλs=2

p
,

where d the depth. This accounts for the loss of resolution versus the depth but
drives to an infinitesimal resolution for very shallow targets. Another reported value
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Figure 9.12. Panel a: The graph of two functions sinc(x − π) and sinc(x + π), for which the

distance between the maxima is equal to the extent of the main lobe. Panel b: The graph of

the sum sinc(x − π) + sinc(x + π). The axes are in arbitrary units.
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(Sheriff, 1980) isHR =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d + λs=4ð Þ2−d2

q
, which reduces to the previous estimation for d

> > λs and becomes HR≈λs=4 for shallow targets. Equation (9.43) accounts for the
loss of resolution versus the depth by means of sin(θemax). In particular, it accounts
for the fact that the available resolution depends on the size of the portion of the
observation line under which the buried target is “seen” by the GPR antennas. In fact
[see Eq. (9.40)], sin(θemax) accounts both for the depth of the target and the wideness
of the effective observation line. This means, for example, that if for some reason
(e.g., the presence of superficial obstacles) the buried targets can be crossed over
only along a short B-scan, then the horizontal resolution is expected to degrade. This
implicitly also means that the available resolution is to be evaluated after the processing.
Actually, the resolution is evaluated sometime on the basis of the raw data and sometimes
it is thought that it is a mere hardware attribute of the antennas. Actually, the focusing
capabilities of the processing [sometimes referred to as synthetic aperture radar SAR
effect (Daniels, 2004)] influence the achievable resolution meaningfully, even if their
effectiveness depends on the current case (in particular on the amount of losses).

Equation (9.43) can be also applied on low-loss soils, by means of a “perturbative”
approach (Franceschetti, 1997), where the wavelength is evaluated on the basis of the
real part of the wavenumber. However, for a more refined evaluation, it should be also
accounted the fact that, in most cases [even if some exceptions are reported (Daniels,
2004; Jol, 2009)] the losses attenuate the higher frequencies versus the depth more
strongly than the lower frequencies. Therefore, in Eq. (9.43), λsc should be meant as
the central received frequency from the range of depth of interest, which is in most
cases greater or equal to the central radiated wavelength. So, we can generalize
Eq. (9.43) by introducing an effective central received wavelength in the soil λsec
and writing

HR≈
λsec

2sin θemaxð Þ ð9:44Þ

Likewise θemax, also λsec is not easily predictable, but can be evaluated from the GPR
data by windowing suitably (i.e., without introducing strong discontinuities) the range
of depths of interest and considering the spectrum of the windowed data, as done
(for example) in Sala and Linford (2010).

So, in general the losses degrade the horizontal resolution, because they make λsec
increase and θemax decrease.

9.6 VERTICAL RESOLUTION

Likewise the horizontal resolution, also the vertical resolution can be approximately
estimated from the retrievable spectral set. The vertical resolution can be defined as
the maximum distance between two electrically small and vertically piled targets distin-
guishable from each other. This time, however, beyond the same assumptions assumed in
the previous section, we have to account for two further elements:
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1. The upper target can partially mask the lower one, even if the two targets are of
the same nature. So, two piled targets with the same electromagnetic character-
istics do not, in general, provide echoes of the same level. Therefore, we will
make the further assumption that the two targets are relatively weak targets,
so that the masking effect of the upper one on the lower one is negligible.

2. The phase term exp(j(ksmax + ksmin)(z0 − z0)) = exp(2jksc(z0 − z0)) in Eq. (9.42),
deriving from the fact that the spectral set is band-pass along the vertical spatial
frequency axis, can influence the reconstruction. In particular, in the case of two
small piled objects, the two relative phase terms can sum in a constructive or
destructive way, depending on the electrical distance between the source and
the targets at the central frequency.

That said, an order of magnitude for the vertical resolution can be formally calculated in
the same way followed for the horizontal resolution—that is, from the wideness of the
vertical main lobe of the point spread function. Consequently, based on Eq. (9.42), the
vertical resolution in lossless cases is given by

VR =
c

B
=

c

fmax− fminð Þ ð9:45Þ

As said, the band of a GPR antenna is often of the same order of the central frequency. So
a rougher evaluation can be derived from Eq. (9.45) as follows:

VR =
c

B
≈
c

fc
= λsc ð9:46Þ

It is sometime reported that the vertical resolution is equal to one half of the central wave-
length in the soil instead of just the wavelength in the soil. Of course, the two quantities
are of the same order, and so this difference is not a big trouble. At any rate, Eq. (9.46) is
coherent with the fact that, under the geometrical approximations performed on the
retrievable spectral set and under the hypothesis of large band (in particular with the max-
imum frequency much larger than the minimum one) the retrievable spectral set is essen-
tially twice larger along the direction of the horizontal spatial frequencies than it is along
the direction of the vertical spatial frequencies. This makes the theoretical horizontal res-
olution for shallow targets equal to one half of the corresponding vertical resolution.
In lossy cases, likewise in the case of the horizontal resolution, we can introduce the
effective band, the effective central frequency, and the effective central wavelength.
Thus, a rough extension of Eqs. (9.45) and (9.46) can be

VR =
c

Be
≈

c

fce
= λsce ð9:47Þ

As said, the higher frequencies attenuates more than the lower ones versus the depth, so
that the effective band is customarily narrower than the radiated band. This means that in
real cases some degradation of the vertical resolution versus the depth is expected, even if
in an ideal lossless soil the vertical resolution is constant versus the depth.
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9.7 SPATIAL STEP

DT also provides an approximated but powerful tool to calculate the spatial step needed
for taking GPR measurements correctly. In particular, based on the previous dealing, the
scattered field should be sampled in a way that allows the correct evaluation of its spec-
trum within the effective visible interval Iv = (2ks sin(θemin), 2ks sin(θemax)). Of course,
the effective visible interval is a function of the target position. So, in order to choose
the spatial step needed for the data in a “conservative” way, the best choice is to estimate
the visible interval in relationship to the shallowest part of the investigation domain,
because this will provide the narrowest step. Let us outline that this is the opposite cri-
terion with respect to that adopted for the evaluation of the resolution. At this point, we
should identify from the data a maximum view angle for the shallowest targets in the
investigation domain and, from this, the visible interval for the evaluation of the needed
spatial step. Actually, in most cases the investigation domain starts just from the air–soil
interface, and in this case the maximum (minimum) view angle is equal to
θemax ≈ π=2 θemin ≈ð −π=2Þ. The visible interval is large 4ks sin(θemax). Based on the
Nyquist criterion, the required spatial step ssf at a single frequency is therefore given by

ssf =
π

2ks sin θemaxð Þ =
π

2 2π=λsð Þsin θemaxð Þ =
λs

4sin θemaxð Þ ð9:48Þ

where λs is the wavelength in the soil. Of course, the GPR scans are multifrequency data,
and so the step (9.48) should be meant conservatively with respect to the minimum
involved wavelength. Thus, in the usual multifrequency case we have

s =
λsmin

4sin θemaxð Þ ð9:49Þ

If the investigation domain starts quite close to the air–soil interface, of course Eq. (9.49)
reduces to s = λsmin=4. Indeed, this is the most common case, so that the criterion
s = λsmin=4 (sometime relaxed to s = λsc=4, i.e. referred to the central wavelength instead
of the minimum one) is probably the most reported one (Daniels, 2004; Jol, 2009).
However, by virtue of the loss of resolution versus the depth, if the targets looked for
are deep enough, the spatial step can be theoretically reliably relaxed according to
Eq. (9.49). This can have a practical relevance in some special cases—for example, in
cases where the data have to be gathered in a discrete (noncontinuous) mode (Persico
et al., 2010).

Finally, it is also worth noting that, in some cases, the targets looked for might be
very large with respect to the wavelength—for example, in the case of the investigation of
geological stratifications. In these cases the horizontal spatial band of spectrum of the
contrast is possibly quite narrow, and useful results can be achieved even with a spatial
step larger than that given in Eq. (9.49).

Equation (9.49) involves some redundancy in the gathered data, because the step is
conservatively optimised with respect to the highest involved frequency. This
redundancy cannot be avoided, because it is unpractical to think of modifying the spatial
step versus the frequency (it is just impossible with a pulsed system and it would be
uselessly time-consuming with a stepped frequency system). However, if needed
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for computational reasons, some decimation of the data might be done before
processing them.

As a rule of thumb, it is not wrong to gather data with a spatial step narrower than
(9.49), due to the losses and to the parametric uncertainties about the characteristics of the
soil, and also in order to average some noise. However, it is pointless to gather data with a
spatial step one order of magnitude smaller than that of Eq. (9.49). In Section 15.2 the
reader will find some exercises on spatial step and horizontal resolution. Please note that
they are also based on the 2D migration exposed in Chapter 10 and on the SVD theory
exposed in Chapter 14.

9.8 FREQUENCY STEP

Let us now examine the problem of the needed frequency step. Let us specify that what
we are looking for is the needed frequency step in order to process correctly GPR data
in the frequency domain, which refers to data gathered in either the time domain or the
frequency domain. Instead, the result worked out in Chapter 3 was referred to the
frequency step needed in order to gather the data correctly with a stepped frequency
system. The two frequency steps can be different because, from the raw data, we might
see that the targets of interest are confined within a subset of the entire initially probed
depth range, so that we might be interested in focusing only the targets enclosed in a
specific depth range smaller than the entire “gathered” depth range.

That said, let us note that, within the DT relationship, a single frequency corresponds
to an arch of circle within the retrievable spectral set. The spectral set is therefore
somehow sampled by these arches of circle. This involves the fact that the vertical spatial
frequency sampling is not independent from the horizontal frequency sampling, due to
the nonlinear relationship (9.14). So, to simplify the problem, in a first moment we
will neglect the curvature of the arches of circle linked to each frequency, and we will
approximate them as horizontal segments. In this way, we can identify a linear
relationship between the vertical spatial frequency step and the frequency step. In par-
ticular, under this approximation, the vertical spatial frequency sampling step is related
to the (temporal) frequency step by the following proportionality relationship:

Δς= 2Δks = 2
2π
c
Δf =

4π
ffiffiffiffiffiffiffiffiffiffiffi
εsrμsr

p
c0

Δf ð9:50Þ

where c is the propagation velocity of the wave in the soil and c0 is the propagation
velocity of the waves in free space, εsr and μsr are the relative dielectric permittivity
and magnetic permeability of the soil. In order to establish whether the sampling of
the spatial frequencies is correct, we resort again to the Nyquist criterion. This time
the role of the “band”, is played by the vertical extent of the investigation domain,
because of the formal similarity between the direct and the inverse Fourier transforms.
So, if we label as b the vertical extent of this domain (see Figure 4.1), we have that the
Nyquist criterion requires
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Δς ≤
2π
b

ð9:51Þ

Substituting Eq. (9.51) into Eq. (9.50), we obtain the condition

Δς
2π

=
2
ffiffiffiffiffiffiffiffiffiffiffi
εsrμsr

p
c0

Δf ≤
1
b
)Δf ≤

c0
2b

ffiffiffiffiffiffiffiffiffiffiffi
εsrμsr

p ð9:52Þ

Equation (9.52) reduces to Eq. (3.12) if b =D; that is, if the processed depth range
coincides with the entire “gathered” depth. However, if we focus on only a subset of
the maximum investigated (nonambiguous) depth, then b <D and Eq. (9.52) is a condi-
tion relaxed with respect to Eq. (3.12), which can be computationally important. It is
important to emphasize, however, that in our model (see Figure 4.1) we suppose apriori
that the targets are present only within the investigation domain. In particular, we assume
that there is no target shallower than it and no target deeper than it. This assumption is
quite strong, and in many cases a simple glance to the raw data is sufficient to prove that it
is unacceptable. In these cases, in order to focus a precise range of depth, one should
preventively mute the signal in the time domain before and after the depth range of
interest. This operation is an anti-aliasing spatial prefiltering.

At this point, let us now consider the curvature of the spectral arches of circle
corresponding to each time frequency within the retrievable spectral set. In particular,
we can observe that the calculated vertical spatial frequency sampling is based on the
distance along the ς-axis of two spectral circles corresponding to two different frequen-
cies. This is to say that we have founded our calculations on Δς for η = 0. For any η 6¼ 0,
the vertical frequency sampling between two circles, from Eqs. (9.14), is given by

Δς ηð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ks +Δksð Þ2−η2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2s −η

2
q

ð9:53Þ

However, the minimum versus η of the function (9.53) is achieved for η = 0, and therefore
condition (9.52) is conservative. Similar to the spatial step, the frequency step is to be
meant as an order of magnitude. A good rule of thumb is to choose a frequency step
for data processing slightly but not much (namely one order of magnitude or more)
smaller than that given in Eq. (9.52), in order to mitigate some possible effect of the
losses, of the model approximations, and of the parametric uncertainties. In Section 15.3
the reader can find some exercises on frequency step and vertical resolution. Please note
that they are also based on the 2D migration exposed in Chapter 10 and on the SVD
theory exposed in Chapter 14.

9.9 TIME STEP

As said, GPR data can be processed either in the frequency domain or in the time
domain. So, for completeness, now we provide the time step needed in order to
process the data in the time domain. The reasoning is dual to the case of processing
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in frequency domain, and also in this case the time step needed for the processing is not
necessarily equal to that needed in order to gather data correctly by means of a pulsed
system [see Eq. 3.39)]. In particular, we might be interested in the result relative to a
subset of the entire band of the data, because (for example) we have recognized that there
are some strong interferences on some frequencies). In this case, after filtering the data
[thus restricting the spectrum to a band of interest (let us call it Bint) narrower than the
band B of the signal initially gathered] and applying the Nyquist criterion, we have that
the time step needed for a processing in the time domain is given by

Δt =
1
Bint

ð9:54Þ

It is obvious that condition (9.54) is relaxed with respect to condition (3.39). Actually, in
the GPR common praxis the time step is rarely a real problem, because the allowed num-
ber of time samples for a given time bottom scale is in general so high to guarantee the
absence of any meaningful aliasing without particular computational problems (see also
Section 3.4, question 2 in Chapter 3, and answer 2 in Appendix G, Section on Chapter 3).

9.10 THE EFFECT OF A NON-NULL HEIGHT
OF THE OBSERVATION LINE

Let us now consider the case of an observation line at height h 6¼ 0 with respect to the
soil.5 This removes hypothesis 2 in Section 9.2. We retain in a first moment hypotheses
1, 3, 4, and 5. In particular, we consider first the ideal case of an infinite observation line,
then we will pass to the case of a limited observation line. So, we can start from the
relationship

Es x;ωð Þ = k2s
ð ð
D

Ge x,x0,h,z0;ωð ÞEinc x +Δ,x0,h,z0;ωð Þχe x0,z0ð Þ dx0dz0, x2Σ ð9:55Þ

Substituting in Eq. (9.55) the expressions of the external Green’s function and of the
incident field given in Eqs. (4.47)–(4.48), we have

Es x;ωð Þ = jωI0μ20μsk
2
s

2π

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

exp − j kzs uð Þ + kzs vð Þð Þz0ð Þexp j u+ vð Þxð Þ
μ0kzs uð Þ + μskz0 uð Þð Þ μ0kzs vð Þ+ μskz0 vð Þð Þ

× exp jv;Δð Þexp − j u+ vð Þx0ð Þexp jh kz0 uð Þ+ kz0 vð Þð Þð Þχe x0,z0ð Þ dx0dz0dudv, x2Σ
ð9:56Þ

5 Let us remind ourselves that, by virtue of the Cartesian reference assumed (see Figure 4.1), h is to be taken as
negative.
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Equation (9.56) is the same as Eq. (9.2) but for the term exp(jh(kz0(u) + kz0(v))). This
term is identically unitary for h = 0 and is almost unitary when the height h of the anten-
nas is small in terms of the minimum involved wavelength in air. Now, we will instead
assume the opposite hypothesis—that is, that h is large with respect to the maximum
involved wavelength. In this case, putting p = u + v) u = p − v as previously done with
regard to Eq. (9.2), we can develop the calculations as follows (Persico, 2006):

Es x;ωð Þ = jωI0μ20μsk
2
s

2π

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

exp − j kzs p−vð Þ+ kzs vð Þð Þz0ð Þexp jpxð Þ
μ0kzs p−vð Þ + μskz0 p−vð Þð Þ μ0kzs vð Þ+ μskz0 vð Þð Þ

× exp jh kz0 p−vð Þ+ kz0 vð Þð Þð Þexp jvΔð Þexp − jpx0ð Þχe x0,z0ð Þ dx0dz0dpdv, x2Σ
ð9:57Þ

Rearranging the integrals in the same way followed for the calculation carried out in the
case h = 0, we obtain

Ês p;ωð Þ = jωI0μ20μsk
2
s

ð+∞
−∞

dz0χ̂e p,z0ð Þ

×
ð+∞
−∞

exp − j kzs p−vð Þ + kzs vð Þð Þz0ð Þexp jh kz0 p−vð Þ + kz0 vð Þð Þð Þexp jvΔð Þ
μ0kzs p−vð Þ + μskz0 p−vð Þð Þ μ0kzs vð Þ+ μskz0 vð Þð Þ dv, x2Σ

ð9:58Þ

Equation (9.58) is similar to Eq. (9.4), with the only difference constituted by the
presence of the term exp(jh(kz0(p − v) + kz0(v))). Now, in order to analyze the effect of
this term, we distinguish two cases: The first one is the case |h| < < z0, and the second
one is |h| > > z0.

Let us now focus on the case |h| < < z0. In this case the term exp(jh(kz0(p − v) + kz0(v)))
can be regarded as slowly varying with respect to the term exp(jz0(kz0(p − v) + kz0(v))). So,
we can apply the same stationary phase method applied in the case h = 0, and the result is

Ês p;ωð Þ = f p;ωð Þexp j2hkz0
p

2

� �� �
^̂χe1 η p,ωð Þ,ς p,ωð Þð Þ ð9:59Þ

where f(p;ω) is given in Eq. (9.12) and ^̂χe1 η p,ωð Þ,ς p,ωð Þð Þ is given in Eq. (9.13).
Thus, the achieved result is just a modification of the spectral weight times the factor
exp j2hkz0 p=2ð Þð Þ. Now, while p ranges in the interval Ivh = (−2k0, 2k0) (the suffix h refers
to the “non-null height”), the quantity exp j2hkz0ð p=2ð ÞÞ is just a phase term that
does not affect the modulus of the spectral weight. However, beyond this range, the
exponent has a negative real part that attenuates meaningfully the spectral weight.
An example is given in Figure 9.13. In particular, Figure 9.13 shows the comparison
between the normalized modulus of the spectral weight at the air–soil interface
[calculated according to Eq. (9.12)] and at a height equal to one-fifth of the minimum
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wavelength in air [calculated accordingly to Eq. (9.59)]. This shows that, even for a
relatively small electrical height of the observation line, the ideal visible interval reduces
rapidly from Iv = (−2ks, 2ks) up to Ivh = (−2k0, 2k0). We can give a physical interpretation
of this fact by reminding that the main contribution to the spectrum of the data at the
air–soil interface, for any value of pwithin the visible interval Iv, is given by a plane wave
coming from the direction 2ks sin(θ). However, as is well known, if this plane wave
impinges from the underground beyond the critic angle θc, the wave refracted in the
air attenuates exponentially versus the height. Due to Snell’s law, the critic angle is
the angle at which sin θcð Þ= 1= ffiffiffiffiffiffiffiffiffiffiffi

εsrμsr
p

(Franceschetti, 1997), where εsr and μsr are the
relative permittivity and the relative magnetic permeability of the soil. Consequently,
the visible interval for a high observation line might also be rewritten as Ivh = (−2ks
sin(θc), 2ks sin(θc)). This means that, physically, the effect of the height of the observa-
tion line is that of limiting the maximum and minimum view angle, even in the case of
an ideal infinite observation line. From Figure 9.13, we also appreciate the fact that the
maxima of the spectral weight for h = 0 are close to the extremes of Ivh. Actually, this is
related to the radiation pattern of a filamentary current on the soil, which tends (for high
relative permittivity of permeability of the soil) to show its maxima at the critic angles
(Engheta et al., 1982).

Consequently to the reduction of the visible interval, the retrievable spectral
set restricts too, as depicted in Figure 9.14. Let us now pass to the case where |h| > > z0
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Figure 9.13. Comparison between the spectral weight at the soil and at the wavelength in air.

In both panels, we have εsr = 4, μsr = 2, and f = 600 MHz. Panel a: h = 0. Panel b: h = 0.1 m. In the

example at hand 2ks = 71.13 m− 1 and 2ko = 25.15 m−1
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8 z0 2D. In this case, when applying the stationary phase method to the integral in dv, we
will regard exp( jh(kz0(p − v) + kz0(v))) as the oscillating term, whereas the term exp(−j
(kzs(p − v) + kzs(v))z0) is included among the “smooth” ones. Please note that this time
we can remove the hypothesis that the targets are necessarily deep in terms of wave-
length, because the oscillations of the terms exp(jh(kz0(p − v) + kz0(v))) are sufficient
to enable us to apply the stationary phase method. Incidentally, in the case of an elec-
trically large height of the data, the removing of the hypothesis of deep targets is also
physically reasonable, because in this case it is hard to think of detecting electrically
deep targets.

That said, under these new assumption, there is again a unique first-order stationary
point at v = p=2, and the result is

Ês p;ωð Þ = fh p;ωð Þ ^̂χe η pð Þ,ς pð Þð Þ ð9:60Þ
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Figure 9.14. Comparison between the spectral set at the soil (panel a) and for a high

observation line (panel b). εsr = 4, μsr = 2, fmin = 200 MHz, fmax = 600 MHz. In panel a, the view

angle has been made to range from θmin = −π=2+ π=20 to θmax = π=2−π=20, in order to provide

a pictorial effect of the vanishing of the spectral weight toward the extremes of the visible

interval (see Figure 9.4).
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where

fh p;ωð Þ =
jωI0μ20μsk

2
s exp jΔ

p

2

� �
exp j2hkz0

p

2

� �� �
exp j

π

4

� �
ko

ffiffiffi
h

p
μ0kzs

p

2

� �
+ μskz0

p

2

� �� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π kz0

p

2

� �� �3r
ð9:61Þ

where the subscript h stands for “high measurement line.” Let us explicitly note that in
(9.60) we have the spectrum of the contrast function, and not the spectrum of the contrast
normalized to the square root of the depth. This because the stationary phase is applied
with respect to the propagation in air, and so the variable factor 1=

ffiffiffi
z0

p
has been replaced

by the constant factor 1=
ffiffiffi
h

p
.

Apart from the formal differences between Eq. (9.11) and Eq. (9.60), the essential
physical difference is the again the presence of the factor exp j2hkz0 p=2ð Þð Þ in the spectral
weighting function. Thus, the same considerations just exposed can be repeated. An
example is given in Figure 9.15. In particular, Figure 9.15 shows the comparison between
the normalized modulus of the spectral weight at the air–soil interface [calculated
according to Eq. (9.12)] and at a height equal to the wavelength in air [calculated accord-
ingly to Eq. (9.61)].

The visible interval and the retrievable spectral set are restricted further on in the
case of a limited line, and these reductions can be described again resorting to the effec-
tive maximum and minimum view angle. However, the effective view angle should not
be based on the maximum abscissa at which we see the last “tail” of the diffraction curve.
In fact, due to Snell’s law, this leads to an apparent maximum view angle larger than the
effective one, which should be calculated at the air–soil interface. Basically, this is the
same physical phenomenon that makes a target embedded under a shallow layer of
water appear larger than it is to our eye. The phenomenon can be accounted for by means
of the quantities x1(xmax) and x1(xmin) related to xmax and xmin as described in Chapter 2
(see Section 2.3.4). In particular, the maximum effective view angle should be evalu-
ated as

sin θemaxð Þ= x1 xmaxð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 xmaxð Þ½ �2 + d2

q ð9:62Þ

where d is the depth of the target. A geometrical scheme is provided in Figure 9.16.
A similar formula holds for the minimum view angle too.

Of course, the case dealt with represents a limit situation, where the observation
line and the interface are far from each other with respect to the minimum involved
wavelength. In general, intermediate situations are possible, so that at the lower frequen-
cies some meaningful “tail” beyond Ivh are still present. In these cases, we have some
formal difficulty in describing an intermediate spectral set, because the hypotheses
exploited for retrieving the spectral sets do not hold any longer. At any rate, what is
physically important is “the trend,” which shows how the height of the observation line
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is paid with a loss of information extractable from the data (Persico, 2006). When pos-
sible, therefore, the best choice is to gather contact data. However, there are applications
where the data are necessarily contactless (e.g., asphalt monitoring or airborne GPR
surveys).

The horizontal and vertical resolutions, as well as the spatial step, are straightfor-
wardly derived from the shape of the spectral set. In particular, with regard to the
horizontal resolution, we have

HRh =
λsec

2sin θemaxð Þ ð9:63Þ

which is formally identical to Eq. (9.44) but substantially different because of the reduced
θemax. In particular, we have now the physical constraint θemax ≤ θc. The same holds for
the needed spatial step. Instead, the vertical resolution and the frequency step keep sub-
stantially unchanged with respect to the case with data at the air–soil interface, because
the view angle does not enter the calculations in this case. In Section 15.6 the reader will
find some exercises on the effects of the height of the observation line. Please note that
they are also based on the 2D migration exposed in Chapter 10 and on the SVD theory
exposed in Chapter 14.

1

0.8

0.6

0.4

0.2

0
–60 –40 –20 0 20 40 60

(a)

η m–1

1

0.8

0.6

0.4

0.2

0
–60 –40 –20 0 20 40 60

(b)

η m–1

Figure 9.15. Comparison between the spectral weight at the soil and at height equal to the

wavelength in air. In both panels, we have εsr = 4, μsr = 2, and f = 600 MHz. Panel a: h = 0.

Panel b: h = 0.5 m. In the example at hand 2ks = 71.13 m−1 and 2k0 = 25.15 m−1.
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9.11 THE EFFECT OF THE RADIATION CHARACTERISTICS
OF THE ANTENNAS

The effect of the radiation characteristics of the antennas can be accounted for by
considering the scattering equation with the incident field given by Eq. (4.84) and the
external Green’s function given by Eq. (4.115). We will consider first the case with
antennas at the air–soil interface, with an infinite observation line and with no magnetic
target. The passages are fully analogous to those exposed in Section 9.2. Thus, we won’t
repeat them and will provide directly the DT relationship, which in this case is given by

Ês p;ωð Þ = fa p;ωð Þ ^̂χe1 η pð Þ,ς pð Þð Þ ð9:64Þ
where χe1(x0,z0) is the contrast normalized to the square root of the depth as given in
Eq. (9.13), and the spectral weight (the suffix stands for “antennas”) is given by

fa p;ωð Þ=
− jmμ0μsλ0 exp jΔ

p

2

� �
exp j

π

4

� �
ÊTx

p

2

� �
ÊRx

p

2

� �
k2z0

p

2

� �
2π3IRς0 μ0kzs

p

2

� �
+ μskz0

p

2

� �� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π kzs

p

2

� �� �3r
ð9:65Þ
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Figure 9.16. Pictorial for the effective maximum view angle for a high observation line.

The depth of the target is exaggerated for representation exigencies. The units are arbitrary.
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With respect to the relationship (9.12), we can see that the retrievable spectral set is the
same in principle, because the arguments of the Fourier transforms are the same, and
also the set where the spectral variables range are the same. The difference is, one more
time, in the weighting spectral function, which depends among other things on the
radiation characteristics of the antennas. Now, for practical reasons, the GPR antennas
are never electrically large; and this, in general, makes their radiation pattern “smooth”
(Daniels, 2004). This also implicitly explains the fact that, in most cases, the GPR data
processing is done without having a precise quantification of the radiation characteris-
tics of the antennas. Let us also stress the fact that the measure of these characteristics is
not a trivial task, and in particular buried antennas would be required (Meincke
and Hansen, 2004). Finally, in principle the characteristics of the antennas are site-
dependent too.

It is worth outlining that, beyond the fact that a very directive GPR antenna pattern is
usually unrealistic, it is not desirable either. In fact, in this limit case, based on the dealing
shown in Sections 4.4–4.8, we have that the plane wave spectra of the antennas [and thus
the spectral weighting function (9.65)] becomes very peaked near the value p = 0. This
means that we have a restriction of the effective retrievable spectral set near the line p = 0.
The effect is therefore, again, a reduction of the value of the effective maximum view
angle; and the higher the directivity, the stronger the reduction. Physically, this means
that an extremely directive source eliminates the possibility to see the targets from a wide
view angle. In fact, in the limit for high directivity, the transmitting antenna emits
(and the receiving antenna receives) only TEM broadside plane waves. It is sometimes
erroneously thought that very directive antennas radiate just a “thin ray” in front of them.
However, the narrowness of the radiation pattern is in angular terms, and not in terms of
linear distance, and let us also remind ourselves that the directivity is in turn a limit
concept that is defined only in the far-field zone of the antenna, which in turn depends
on the size of the antenna too (Collin, 1985; Franceschetti, 1997).

It is clear that, in the limit case of only TEM broadside waves, it would be useless to
move the source, because the incident field would remain the same (Soldovieri et al.,
2005b). This limit case shows again that the quality of the image improves if the antennas
“see” the targets from several viewpoints. Of course, the data processing is a key point
with regard to this. In fact, in any fixed position, a couple of not-much-directive antennas
illuminate and gather the echoes coming from many directions, and these contributions
are superposed on each other. However, when the radiation and reception is performed in
several positions and at several frequencies for each position, a suitable data processing is
able to distinguish the origin of each contribution.

The passage to a finite observation line is analogous to those exposed with regard
to the case of a filamentary current, and so it will be not repeated. Because the antenna
pattern is expected (at least in air) to be quite roundish and not varying so much among
the practical antennas, the spatial and frequency steps, as well as the horizontal and
vertical resolutions, are expected to be of the same order as those provided in
Sections 9.5–9.8.

As a last observation, we can note that the spectral weight is composed of (a) a part
dependent on the current source and receiver (i.e., the product ÊTx p=2ð ÞÊRx p=2ð Þ) and (b)
a part independent of it, given by
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f1 p;ωð Þ=
− jmμ0μsλ0 exp jΔ

p

2

� �
exp j

π

4

� �
k2z0

p

2

� �
2π3IRς0 μ0kzs

p

2

� �
+ μskz0

p

2

� �� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π kzs

p

2

� �� �3r
ð9:66Þ

The modulus of f1(p;ω) is shown in Figure 9.17.
Figure 9.17 shows that, independently from the exploited antennas, the visible

interval vanishes at the extreme points ± 2ks. There are also two further roots in the points
± 2k0, corresponding to the critic angle, but these can be counteracted by singularities
of the plane wave spectrum of the source and receiver, as seen in Eq. (9.12).

9.12 DT RELATIONSHIP IN THE PRESENCE OF
MAGNETIC TARGETS

At this point, let us consider the possibility of magnetic targets. To deal with this
case, we come back to the case of a filamentary current as source and for the
scattered field as datum; moreover, we will consider the case of data gathered at
the air–soil interface and will limit our discussion to the ideal case of an infinite
observation line.

Thus, the starting equation is the complete linear scattering equation (8.7), with the
incident field given by Eq. (4.48) and the external electrical Green’s function given by
Eq. (4.47). The substitutions of these quantities, together with the calculation of the
gradients under the sign of integral, provide

Es x;ωð Þ= jωI0μ20μsk
2
s

2π

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

exp − j kzs uð Þ+ kzs vð Þð Þz0ð Þexp j u+ vð Þxð Þ
μ0kzs uð Þ+ μskz0 uð Þð Þ μ0kzs vð Þ+ μskz0 vð Þð Þ

× exp jvΔð Þexp − j u+ vð Þx0ð Þχe x0,z0ð Þ dx0dz0dudv

−
jωI0μ20μs

2π

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

exp − j kzs uð Þ + kzs vð Þð Þz0ð Þexp j u+ vð Þxð Þ
μ0kzs uð Þ + μskz0 uð Þð Þ μ0kzs vð Þ + μskz0 vð Þð Þ

× exp jvΔð Þexp − j u+ vð Þx0ð Þχm1 x0,z0ð Þ uv+ kzs uð Þkzs vð Þð Þ dx0dz0dudv, x2Σ
ð9:67Þ

with χm1 =
χm x0,z0ð Þ

1 + χm x0,z0ð Þ as in Section 8.2.
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From Eq. (9.67), we can develop calculations fully analogous to those shown before.
The details are left as an exercise. The final result is

Ês p;ωð Þ= f p;ωð Þ ^̂χe1 η pð Þ,ς pð Þð Þ− f p;ωð Þ ^̂χm11 η pð Þ,ς pð Þð Þ ð9:68Þ
where

χm1 x0,z0ð Þχm1 x0,z0ð Þffiffiffi
z0

p ð9:69Þ

and f(p;ω) is the electrical spectral weight as provided in Eq. (9.12).
Equation (9.68) states the theoretical impossibility, within the DT approximations, to

distinguish the dielectric or the magnetic nature of the buried targets. In fact, the retrieved
quantity is the difference of the spectra of the two object functions, electric and magnetic,
and “unfortunately” the spectra are calculated in the same points of the plane (η,ς)
and with the same spectral weights, so that there is no way to distinguish the two
contributions from each other unless some further off-line information is achievable.

9.13 DT RELATIONSHIP FOR A DIFFERENTIAL CONFIGURATION

Let us now deal with the DT relationship for differential configuration. The following
hypotheses are assumed: The source is a filamentary current, the observation line is at
the air–soil interface and is limited, andnomagnetic target is present.Thepresenceof small
losses is accounted for perturbatively. Let us remind that in the differential configuration
the datum is the difference of the scattered field values gathered in two points at a fixed
offset and symmetrical with respect to the source. Thus, the datum is given by

ΔE x,ωð Þ=Es x+Δ,ωð Þ−Es x−Δ,ωð Þ ð9:70Þ

where Δ is the offset between the central receiver and any of the two transmitters (see
Section 7.3). By Fourier transforming along the x-axis Eq. (9.70), we achieve, after
the same straigthforward passages (Persico and Soldovieri, 2006).

Ês p;ωð Þ= fd p;ωð Þ ^̂χe1 η pð Þ,ς pð Þð Þ ð9:71Þ
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Equations (9.71)–(9.72) are different from Eqs. (9.11)–(9.12) only for the spectral
weighting function; however, the difference is meaningful because the purely phase term
exp jΔp=2ð Þ has now been replaced by 2jsin Δp=2ð Þ = 2jsin Δη=2ð Þ, which involves an
amplitude weighting of the spatial frequencies within the spectral retrievable set. In par-
ticular, the retrievable spectral set is reduced, because this term erases the spatial frequen-
cies corresponding to the zeroes of this sine function, given by

η0 =
2nπ
Δ

ð9:73Þ

where n is any integer. In particular, this erases a vertical belt about the zero horizontal
frequency. The offset Δ affects the wideness of the belt to be erased. The erased spectral
belt is actually case-dependent (in particular, noise-dependent), because it is the belt
within which we “can’t trust” the diffraction tomography result. To provide a graphical
representation, let us now assume that the reconstruction is not reliable in the belt cor-
responding to the −20 dB level of the sine function with respect to the maximum, and let
us focus around η = 0. The wideness of the erased belt is provided by the equation

sin
ηΔ
2

� �����
����= 0:1) ηΔ

2
’ ± 0:1) η’ ±

0:2
Δ

ð9:74Þ

If the data are noisier, the erasing band enlarges; and if the data are cleaner, the belt
restricts; but it is, in any case, inversely proportional to the offset. The wideness EB
of the erased belt is given the distance between the two solutions of Eq. (9.74), and
so it is given by

EB =
0:4
Δ

ð9:75Þ

Physically, this means that, when the two source points are too close to each other,
the two subtracted values of the scattered field are substantially the same, because (what-
ever the buried targets) the field does not have “enough space” to vary meaningfully.
Therefore, for short offsets, the scattering operator under differential configuration will
some way tend to an identically null operator. Moreover, the fact that the zero horizontal
spatial frequency is erased modifies the properties of the inverse scattering operator,
making the retrievable reconstruction no longer horizontally low-pass and vertically
band-pass, but rather band-pass along both the horizontal and the vertical directions.
As a consequence, we will tend to reconstruct essentially the edges of the target, both
along the abscissa and along the depth. This is physically easily explained. In fact, let
us think of a long horizontal target; in this case, apart from a brief path over the left-
and right-hand edges, when the system of antennas flies over this target, the scenario
becomes symmetrical (see Figure 9.18), and therefore the gathered signal is null over
most of the crossed target. In the end, this is a drawback coherent with the main purpose
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of the differential configuration—that is, to erase the contribution of the air–soil interface
and of any further quasi-horizontal layers. In particular, these interfaces can be assimi-
lated to long quasi-horizontal targets, and we can expect that, if they are filtered out by the
differential configuration, then also long horizontal target will be filtered out.

The choice of the offset Δ is therefore crucial, because it influences the class of the
retrievable or at least detectable targets. In particular, this choice should be done, as far as
possible, also related to the size of the targets looked for. In particular, a rough quantification
of the class of targets specifically erased by the differential configuration can be identified
by considering the Fourier transform of a centered rectangular homogeneous target large L.
The vertical size and the depth of the center are at a first approximation unessential, but let us
label them as vs and zc. The spectrum of such a dielectric contrast6 is given by

^̂χe = χoLhexp − jςzcð Þsinc ςvs

2

� �
sinc

ηL

2

� �
ð9:76Þ

The main lobe of the sinc function along the horizontal frequencies is large 2π=L; and so,
if we desire a “good” reconstruction of a target large L, we should make this main lobe at
least larger than the erased belt EB. This means that, due to Eq. (9.75), we should have
at least

0:4
Δ

≤
2π
L
,Δ ≥

0:2L
π

= 0:064L ð9:77Þ

6Actually we should consider the spectrum of the target normalized to the square root of the depth; but for a
qualitative evaluation we can neglect this, especially if we consider a vertically thin target.

Target

Air

Soil

Rx RxTx

Δ Δ

Figure 9.18. Pictorial of a prospecting in differential configuration on a long target (x and z are

in arbitrary units). If the edges are far enough, the buried scenario is symmetric and the datum

vanishes.
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On the other hand, to increase the offset indeterminately is not a good idea. In fact,
apart some possible degradation of the signal-to-noise ratio, we have to consider
the problem of the periodicity of the sine function. In particular, the zeroes of the
sine are at a 2π=Δ distance from each other; and this means that, in order to avoid that
further erasing belts enter the retrievable spectral set, we should also guarantee the
condition

2π
Δ

−
0:2
Δ

=
6:08
Δ

≥ 2ksmax sin θemaxð Þ,Δ ≤
3:04

ksmax sin θemaxð Þ =
0:48λsmin

sin θemaxð Þ ð9:78Þ

It is not an easy task to establish a priori an optimal choice for Δ, but Eqs. (9.77) and
(9.78) provide two relevant trade-offs.

Let us also note that the two conditions (9.77) and (9.78) are incompatible with
each other if L> 0:48λsmin=0:064sin θemaxð Þ= 7:5λsmin=sin θemaxð Þ. The coefficient
7.5 becomes larger if the criterion for the choice of the erase band is relaxed
(e.g. −30 dB instead of −20 dB). However, the general sense of Eq. (9.78) is that the
targets horizontally large in terms of wavelength will be poorly reconstructed under a
differential configuration, especially if buried at a shallow depth.

Four examples are shown in Figures 9.19 and 9.20. In particular, in Figure 9.19 the
erasing effect is shown at several values of the offset, and the resulting spectral sets are
shown in Figure 9.20.

9.14 DT RELATIONSHIP IN THE PRESENCE OF
BACKGROUND REMOVAL

Let us now consider the DT in the presence of background removal (BKGR). The
hypotheses adopted are the same of the previous section. The BKGR is a procedure
widely known and exploited (Conyers, 2004), and it is also widely known that the BKGR
constitutes a spatial filtering. A quantitative evaluation of the spatial filtering effects of
the BKGR has been provided, in recent years, in Persico and Soldovieri (2008) and in
Persico and Soldovieri (2010).

So, let us consider relationship (7.11), that provides the datum under background
removal in frequency domain. The Fourier transform of Eq. (7.11) with respect to the
abscissa provides

Êb p,ωð Þ= Ês p,ωð Þ 1−
1

2N + 1

XN
n= −N

exp − jpnsð Þ
" #

ð9:79Þ

By following the same formal passages shown in Chapter 3 [see Eq. (3.18)], Eq. (9.79)
can be still rewritten as
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Figure 9.19. Red dashed lines: the modulus of the erasing function (emphasized by a factor 5

for graphic reasons). Blue dot lines: the erasing belts deriving from the erasing function. Solid

black line: the spectral set without the differential effect. The parameters are: fmin = 200 MHz,

fmax = 600 MHz, εsr = 4, μsr = 2. Panel a: Δ = 3.83 cm. Panel b: Δ = 7.65 cm. Panel c: Δ = 10.21 cm.

Panel d: Δ = 15.31 cm. The erased belt is calculated according to Eq. (9.75). For color detail,

please see color plate section.
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Êb p,ωð Þ= f1 pð ÞÊs p,ωð Þ= 1−
1

2N + 1

sin 2N + 1ð Þps
2

� �
sin

ps

2

� �
2
64

3
75Ês p,ωð Þ ð9:80Þ

Substituting Ês p,ωð Þ from Eq. (9.11), we have

Êb p,ωð Þ= f p,ωð Þf1 pð Þ ^̂χe1 η pð Þ,ς pð Þð Þ ð9:81Þ

where the transformation of coordinates is given by Eq. (9.14), the spectral weight f(p,ω)
is given in Eq. (9.12), and the further spectral weight f1(p) is specified in Eq. (9.80) and is
the complement to 1 of a normalized Dirchlet sine function. With respect to Eq. (9.11),
Eq. (9.80) just shows the extra-spectral weight f1(p). The dealing reveals noticeable simi-
larities to that relative to a differential configuration, where the substantial effect of the
displacement of source and receivers is to provide a spectral extra-weight. Wemight even
say that the differential configuration is an hardware way to implement a simple kind of
background removal.

The extra-weight f1(p) is quantitatively represented in four cases in Figure 9.21. The
effect of the weighting function on the retrievable spectral set is in some aspect analogous
to that illustrated in Figures 9.19 and 9.20 with regard to a differential configuration.

In particular, similar to the case of a differential configuration, the extra-weight is
periodical and has a root at p = η = 0. So, also the background removal necessarily
involves a filtering of the lowest horizontal spatial frequencies, with periodical
erasing belts of the same thickness in the plane (η,ς). The wideness of the main lobe
of the Dirichlet sine at hand is given by
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Figure 9.20. The resulting retrievable spectral sets in relationship to Figure 9.19.
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4π
2N + 1ð Þs ð9:82Þ

and the function is periodic with period

P=
2π
s

ð9:83Þ

Consequently, in order to guarantee that there is only the central “erasing belt”
within the retrievable spectral set, we have to guarantee that

2π
s
−

2π
2N + 1ð Þs =

4πN
2N + 1ð Þs ≥ 2kslmax sin θeslmaxð Þ, s ≤

Nλslmin

2N + 1ð Þsin θeslmaxð Þ ð9:84Þ

Also in this case, we have to minimize the thickness of the central horizontal belt.
However, this time we have at our disposal two parameters to handle, namely the number
of averaged traces and the spatial step s of the data.7 Actually, the product (2N + 1)s in
Eq. (9.82) has the physical meaning of the “averaged distance” along the B-scan, starting
at a distance s=2 before the first averaged trace and ending at a distance s=2 after the last
one. The importance of having two parameters at our disposal is that we can reduce the
thickness of the central erasing belt without “pulling in” further erasing belts within the
spectral retrievable domain. To do this, we have to increase the number of averaged traces
without enlarging the spatial step. On the other hand, it is also wrong to choose a spatial
step too narrow. In this way, in fact, the background removal makes the scattering oper-
ator tend toward a null operator unless the number of averaged traces is correspondingly
increased. In other words, if the averaged traces are too close to each other, their average
value is substantially the same as the central trace, and so the difference between the two
quantities vanishes. The averaged length should also account for the kind of targets
looked for. In particular, we can define a critical length equal to

L= 2N + 1ð Þs ð9:85Þ

The critical length represents the maximum horizontal size that a target should
have in order not to be strongly filtered out by the background removal. The proof is
straightforward on the basis of the same reasoning of the previous section. With regard
to the choice of an optimal N, due to Eq. (9.82), we have that the maximum amount of
information is achieved when all the gathered traces are averaged, because this choice
makes the critical length substantially as long as the entire B-scan.

Practically, some further issues should be accounted for. One of them is the smooth-
ness of the possible layering—that is, the flatness of the interface layers. Another issue is
the possibility that a strong scattering object modifies the retrieved average value of the
traces at a fixed time depth. Both these phenomena are not accounted for within a BA

7The offset between the antennas, unlike the differential configuration, represents at a first approximation just a
phase term.
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Figure 9.21. The masking function f1(p) under background removal. Panel a: N = 5, s = 10 cm.

Panel b: N = 5, s = 20 cm. Panel c: N = 10 , s = 20 cm. Panel d: N = 10, s = 10 cm.
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model funded on a couple of homogeneous half-spaces. It is also important to emphasize
the fact that, usually, commercial codes do not account for the performed background
removal when performing the migration (dealt with in the next chapter) of the data,
which instead should theoretically be done. All these factors can make a moving average
BKGR preferable. The evaluation of the best choice, in many cases, can be only
heuristic—that is, performed on the basis of the results achieved from several
applied BKGRs.

To sum up, it has been shown that the BKGR, as any spatial filtering, has some
drawbacks. In particular, it unavoidably involves some filtering effect on the targets
of interest too. In many cases the background removal is needed, and this drawback
is just a price to be paid. However, sometimes the targets are deep enough and the
scenario is quite “clean.” In these cases, it is not well-advised to apply the BKGR.

In Section 15.8 the reader can find some exercises on the effects of the background
removal. Please note that they are also based on the 2D migration exposed in Chapter 10
and on the SVD theory exposed in Chapter 14.

QUESTIONS

1. On which parameters does the visible interval depend?
2. Do the spatial and frequency steps affect the retrievable spectral set?
3. Do the time step and the time bottom scale influence the spectral retrievable set?
4. Does a narrowing of the spatial (frequency) step essentially improve the available

horizontal (vertical) resolution in any case?
5. Does the resolution essentially improve if the observation line becomes longer? And

is this improvement progressive?
6. Does a more directive couple of antennas improve the horizontal resolution?
7. Does a more directive couple of antennas influence the vertical resolution?
8. Could the frequency step needed for data processing be relaxed with respect to that

needed for gathering the data with a stepped frequency system?
9. Can the time step needed for data processing be relaxed with respect to that needed in

order to properly gather the data with a pulsed system?

10. Can an enlargement of the available band improve the reconstruction? Might it also
cause problems?

11. Does a background removal on an increased number of traces increase the theoretical
amount of information indefinitely?

12. Does an increased amount of information improve the achieved image?
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10

TWO-DIMENSIONAL
MIGRATION ALGORITHMS

10.1 MIGRATION IN THE FREQUENCY DOMAIN

In this section we will focus on data in the frequency domain, and in the next one we
will focus on data in the time domain. In both cases, we will limit ourselves to the case
of common offset data gathered at the air–soil interface, as well as to the case of only
dielectric soils and dielectric targets.

Let us start from Eq. (9.11), reported here for sake of easy readability;

Ês p;ωð Þ= f p;ωð Þ ^̂χe1 η p,ωð Þ,ς p,ωð Þð Þ ð10:1Þ

where (let us remind ourselves)

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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The transformation (10.1) is algebraically inverted as

^̂χe1 η p,ωð Þ,ς p,ωð Þð Þ = g p,ωð ÞÊs p;ωð Þ ð10:5Þ

where
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where Ω is meant as the visible 2D multifrequency set, that ranges in the
interval [ωmin,ωmax] along the ω-axis and ranges in the interval −2ks sin θemaxð Þ,½
2ks sin θemaxð Þ�= −2

ω

c
sin θemaxð Þ,2ω

c
sin θemaxð Þ

h i
along the p-axis at any fixed ω.

Ω is of course a trapezium in the plane (p,ω).
At this point, we can solve for the spectrum of the object function

inverting relationship (10.4) between the coordinatives, thereby obtaining a relationship
of the form

^̂χe1 η,ςð Þ= g p η,ςð Þ,ω η,ςð Þð ÞÊs p η,ςð Þ,ω η,ςð Þð Þ ð10:7Þ

Equation (10.7) is a nonambiguous relationship because the correspondence
(10.4) between the point (p,ω) (with p belonging to the visible interval) and the
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point (η,ς) is bi-univocal.1 Finally, the inverse Fourier transform of Eq. (10.7) in
the spatial domain provides the solution of the problem, given by

χe1 x0,z0ð Þ = 1
4π2

ð+∞
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−∞
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ð10:8Þ
Equation (10.8) can be explicated inverting Eq. (10.4), thereby obtaining2
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where Ω1 is the image in the plane (η,ς) of the set Ω through the transformation (10.4),
which is just the retrievable spectral set. Equation (10.10) constitutes a migration formula
in frequency domain. It essentially consists in an interpolation of the spectrum of the data
multiplied times a known function and then back Fourier transformed in the spatial
domain. Equation (10.10) has the drawback that it requires some interpolation of the
spectrum of the data, but has the computational advantage that it is a two-dimensional

1 Let us stress that this depends on the fact that we are considering the multibistatic (common offset)
configuration. For example, if the source and the receiver can be moved independently from each other,
this does not happen (Soldovieri et al., 2005a).
2We maintain the formal difference between p and η, even if they are numerically the same value, because the
two quantities are semantically different: The first one is the conjugate variable of the measurement abscissa,
and the second one is the conjugate variable of the abscissa in the investigation domain.
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inverse Fourier transform and therefore can be implemented by means of computation-
ally effective IFFT algorithms.

Alternatively, we can substitute the following in Eq. (10.10):
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where Ω is the same set defined after Eq. (10.6), this time formally represented in the
plane (η,ω) instead of (p,ω)

Equation (10.13) is an alternative form of the migration in the frequency domain,
where no interpolation of the data is required but, on the other hand, the achieved
integral is not an inverse Fourier transform and thus cannot be calculated by means of
a fast IFFT algorithm.

Equations (10.10) and (10.13) express the so-called Stolt’s migration or f − k
(or ω − k) migration (Stolt, 1978). The name derives from the fact that the integration
can be performed either making use of the variable ω or of the variable ς, labeled
elsewhere as k.3 Actually, we can also adopt a more simple migration formula that
does not include the factor g2(η,ω).

3We have preferred the symbol ς in order to avoid a possible confusion between the vertical spatial frequencies
of the spectrum of the object function and the wavenumber.
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where F is a unitary but not dimensionless factor, included just in order to
preserve the dimensional coherence of the equation (the factor g2(η,ω), in fact, was
not dimensionless). In particular, the integration ranges on the entire 2D plane
relying on the fact that the integrand Ês η,ωð Þ attenuates outside the multifrequency
visible spectrum. Equation (10.13) is obviously mathematically more rigorous than
Eq. (10.15.) However, Eq. (10.15) is somehow more robust against uncertainties on
the sources and the receiver and against the singular behavior of the spectral weight
g2(η,ω) for η! ± 2ks.

4 It is also much more similar to the classical migration formulas
derived from the seismic (Stolt, 1978).

Assuming the model of Eq. (10.15) for the integration in dηdω, the integration in
dηdς can be performed according to the substitution
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And consequently (Stolt, 1978; Oden et al., 2007) Eq. (10.15) can be also written as
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The two formulas (10.15) and (10.17) show the same trade-offs as the formally
more rigorous formulas (10.10) and (10.13), namely one of them (10.17) is an inverse
Fourier transform but requires some interpolation of the data and the other one (10.15)
does not require any interpolation but is not an inverse Fourier transform. There is
also a third possible form for the migration integral, that can be worked out
expressing the integral (10.10) in polar coordinatives in the plane (η,ς). In particular,
let us put

η = kcos Φð Þ, ς = k sin Φð Þ ð10:18Þ

4 Theoretically, this diverging behavior is counteracted by the fact that the spectrum of the scattered field
should be a null quantity at the edge of the visible interval, but the parametric uncertainties in general affect this
equilibrium.
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Substituting into Eq. (10.10), we have

χe1 x0,z0ð Þ = 1
4π2

ðπ
0

dϕ

ð+∞
0

kg1 kcos ϕð Þ, k sin ϕð Þð ÞÊs kcos ϕð Þ, ck
2

� �

× exp jk cos ϕð Þx0ð Þexp jk sin ϕð Þz0ð Þ dk ð10:19Þ

and, after the further change of variable

θ =ϕ−
π

2
ð10:20Þ

we obtain

χe1 x0,z0ð Þ = 1
4π2

ðπ=2
− π=2

dθ

ð+∞
0

kg1 −k sin θð Þ, k cos θð Þð ÞÊs −k sin θð Þ, ck
2

� �

× exp − jk sin θð Þx0ð Þexp jk cos θð Þz0ð Þ dk ð10:21Þ

Equation (10.21) requires an interpolation of the data and is not a double inverse
Fourier transform. Therefore, it is not commonly exploited. However, it can be
instructive because it shows directly the essential role of the view angle and of the band.
In particular, in Eq. (10.21), θ is easily recognized to be just the view angle, whereas k is
easily recognized to be the wavenumber. This also allows us to express explicitly (instead
of implicitly by means of the essential support of g1) the extremes of integration—that is,
to express a regularized migration integral formula. In particular, supposing that the
maximum view angle is symmetric, Eq. (10.21) can be rewritten as

χe1 x0,z0ð Þ = 1
4π2

ðθemax

−θemax

dθ

ð2ksmax

2ksmin

kg1 −k sin θð Þ, kcos θð Þð ÞÊs −k sin θð Þ, ck
2

� �

× exp − jk sin θð Þx0ð Þexp jk cos θð Þz0ð Þ dk ð10:22Þ

Of course, it is possible to provide a “polar” migration formula also neglecting the
spectral weight, within a nonrigorous but somehow more robust formulation. This can
be derived e.g., from Eq. (10.17) after some straightforward manipulations, so to obtain

χe1 x0,z0ð Þ= F

2cπ2

ðθemax

−θemax

cos θð Þdθ
ð2ksmax

2ksmin

kÊs −k sin θð Þ,k c
2

� �

× exp − jk sin θð Þx0ð Þexp jk cos θð Þz0ð Þ dk ð10:23Þ
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10.2 MIGRATION IN THE TIME DOMAIN

Raffaele Persico and Raffaele Solimene

In GPR prospecting, it is often found comfortable to migrate the data in the time domain.
The formula for the migration in the time domain can be worked out starting from
Eq. (10.13) and observing that, by definition,

Ês η,ωð Þ=
ð+∞
−∞

ð+∞
0

Es x, tð Þexp − jηxð Þexp − jωtð Þ dxdt ð10:24Þ

where the extremes of the integral account for the fact that the signal starts at the time
instant t = 0.

Substituting Eq. (10.24) into Eq. (10.13), we obtain

χe1 x0,z0ð Þ = 1
c2π2

ð+∞
−∞

dx

ð+∞
0

dtEs x, tð Þ
ð+∞
−∞

exp − jωtð Þ
ð+∞
−∞

g2 η,ωð Þ
2
4

× exp − jη x−x0ð Þð Þexp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2

vuut z0

0
@

1
Adη

3
5dω

=
1

c2π2

ð+∞
−∞

dx

ð+∞
0

g3 x−x0,z0, tð ÞEs x, tð Þ dt ð10:25Þ

Equation (10.25) expresses the most general form of the migration in the time domain,
also called Kirchhoff’s migration, where the convolutional weight in the time domain is
given by

g3 x−x0,z0, tð Þ =
ð+∞
−∞

exp − jωtð Þ
ð+∞
−∞

g2 η,ωð Þ × exp − jη x−x0ð Þð Þexp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2

s
z0

 !
dη

2
4

3
5dω

ð10:26Þ

The integral (10.26) cannot be solved in a closed form, but can be effectively calculated
because, for any fixed z0, it is the double Fourier transform of the quantity g2 η,ωð Þ
exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2 −η2
q

z0
� �

calculated in the points x − x0 and t. However, as said in the previous

section, the spectral weighting is often neglected, following seismic models. In the case
at hand, this provides the following expression for the migration in the time domain:
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χe1 x0,z0ð Þ = F

c2π2

ð+∞
−∞

dx

ð+∞
0

dtEs x, tð Þ
ð+∞
−∞

exp − jωtð Þ
ð+∞
−∞

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2

vuut z0

0
@

1
A

2
4

× exp − jη x−x0ð Þð Þdη
#
dω ð10:27Þ

where again F is meant as unitary but not dimensionless. Under the approximated model
of Eq. (10.27), the double integral in square brackets can be calculated in a closed form.
To show this, let us preliminarily write

g4 x−x0,z0, tð Þ =
ð+∞
−∞

ð+∞
−∞

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2

r
z0

 !

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2

r exp − jη x−x0ð Þð Þexp − jωtð Þ dηdω ð10:28Þ

The integral in dη in Eq. (10.27) is proportional to the Hankel function of zeroth order
and of second kind (Harrington, 1961). Physically, this means that by neglecting the
spectral weight we essentially neglect the interface and assimilate the air–soil space to
a homogeneous medium entirely composed of “soil.”

It is immediate that the integral (10.28) can be rewritten as

χe1 x0,z0ð Þ= F

c2π2
∂

∂z0

ð+∞
−∞

dx

ð+∞
0

g4 x−x0,z0, tð ÞEs x, tð Þ dt ð10:29Þ

At this point, the integral expansion of Eq. (10.28) can be also rewritten as follows
(Heidary, 2003):

g4 x−x0,z0, tð Þ=
ð+∞
−∞

ð+∞
−∞

exp j
2ω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02 + y2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02 + y2

q exp − jωtð Þ dydω

= 2
ð+∞
−∞

exp − jωtð Þ dω
ð+∞
0

exp j
2ω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02 + y2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02 + y2

q dy ð10:30Þ

The passages that work out Eq. (10.30) from Eq. (10.28) are shown in Appendix A.
So, substituting Eq. (10.30) into Eq. (10.29), we obtain
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χe1 x0,z0ð Þ =

=
2F
c2π2

∂

∂z0

ð+∞
−∞

dx

ð+∞
0

dtEs x, tð Þ
ð+∞
−∞

exp − jωtð Þ
ð+∞
0

exp j
2ω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02 + y2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02 + y2

q dy

2
664

3
775dω

ð10:31Þ
At this point, let us write

τ =
2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02 + y2

q
) y2 =

τc

2

� �2

− r−r0k k2

) y=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τc

2

� �2

− r−r0k k2
s

=
c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2−

4 r−r0k k2
c2

s

) dy=
c

2
τdτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2−
4 r−r0k k2

c2

s ð10:32Þ

where of course r−r0k k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02

q
. Substituting in Eq. (10.31), we have, with

straightforward manipulations, the following:

χe1 x0,z0ð Þ=

=
2F
c2π2

∂

∂z0

ð+∞
−∞

dx

ð+∞
0

dtEs x, tð Þ
ð+∞
−∞

exp − jωtð Þ×
ð+∞

2 r−r0k k
c

exp jωτð Þ
cτ

2

cτ

2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2−
4 r−r0k k2

c2

s dτ

2
66664

3
77775dω

=
F

c2π2
∂

∂z0

ð+∞
−∞

dx

ð+∞
0

dtEs x, tð Þ
ð+∞

2 r−r0k k
c

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2−

4 r−r0k k2
c2

s ð+∞
−∞

exp jω τ− tð Þð Þdω

=
2F
c2π

∂

∂z0

ð+∞
−∞

dx

ð+∞
0

dtEs x, tð Þ
ð+∞

2 r−r0k k
c

δ τ− tð Þdτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2−

4 r−r0k k2
c2

s

=
2F
c2π

∂

∂z0

ð+∞
−∞

dx

ð+∞
0

dtEs x, tð Þ
ð+∞

2 r−r0k k
c − t

δ uð Þduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u+ tð Þ2− 4 r−r0k k2

c2

s ð10:33Þ
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At this point, we have

ð+∞
2 r−r0k k

c − t

δ uð Þ duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t + uð Þ2− 4 r−r0k k2

c2

s

=

0 if
2 r−r0k k

c
− t > 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2−

4 r−r0k k2
c2

s if
2 r−r0k k

c
− t < 0 )

ð+∞
2 r−r0k k

c − t

δ uð Þ duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t + uð Þ2− 4 r−r0k k2

c2

s =
H t−

2 r−r0k k
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2−

4 r−r0k k2
c2

s
8>>>>>><
>>>>>>:

ð10:34Þ

where H is the Heaviside’s function, equal to 1 if its argument is greater than 0 and
equal to 0 if its argument is negative. Substituting Eq. (10.34) into Eq. (10.33), we
achieve

χe1 x0,z0ð Þ = 2F
c2π

∂

∂z0

ð+∞
−∞

dx

ð+∞
0

dtEs x, tð Þ
H t−

2 r−r0k k
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2−

4 r−r0k k2
c2

vuut

=
2F
c2π

∂

∂z0

ð+∞
−∞

dx

ð+∞
2 r−r0k k

c

Es x, tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2−

4 r−r0k k2
c2

vuut
dt ð10:35Þ

Equation (10.35) expresses the migration in time domain, or Kirchhoff’s migration, in
a way similar to the classical seismic formulation as given in (Schneider, 1978).
In particular, having neglected the spectral weight g2(η,ω) the convolutional weight

g3(x − x0, z0, t) has been calculated as H t− 2 r−r0k k
c

� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2− 4 r−r0k k2

c2

q
.

Performing the derivative ∂=∂z0 under the sign of integral (and accounting for the
fact that ∂ r−r0k k=∂z0 = z0= r−r0k k= cos θð Þ is just the cosine of the view angle), we
obtain another expression for the Kirchhoff’s migration formula:
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χe1 x0,z0ð Þ = 2F
c2π

∂

∂z0

ð+∞
−∞

dx

ð+∞
2 r−r0k k

c

Es x, tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2−

4 r−r0k k2
c2

s dt

=
2F
c2π

∂

∂z0

ð+∞
−∞

dx

ð+∞
0

Es x,u+
2 r−r0k k

c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u+

2 r−r0k k
c

� �2

−
4 r−r0k k2

c2

s du

=
2F
c2π

∂

∂z0

ð+∞
−∞

dx

ð+∞
0

Es x,u+
2 r−r0k k

c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u u+

4 r−r0k k
c

� �s du =
2F
c2π

∂

∂z0

ð+∞
−∞

dx

ð+∞
0

1ffiffi
t

p
Es x, t +

2 r−r0k k
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t +

4 r−r0k k
c

� �s dt

=
2F
c2π

ð+∞
−∞

dx

ð+∞
0

1ffiffi
t

p ∂

∂z0

Es x, t +
2 r−r0k k

c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t +

4 r−r0k k
c

� �s dt

=
4F
c3π

ð+∞
−∞

dxcos θð Þ
ð+∞
0

1ffiffi
t

p

∂

∂t
Es x, t +

2 r−r0k k
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t +

4 r−r0k k
c

� �s −

Es x, t +
2 r−r0k k

c

� �

t +
4 r−r0k k

c

� �3
�
2

0
BBBB@

1
CCCCAdt ð10:36Þ

sometimes (indeed more often in seismic than in GPR applications) it is used a far-field
approximation of Eq. (10.36) that retains only the first term in the parentheses,
which decays more slowly than the other one versus the distance kr − r0k. Making
use of Heaviside’s function, this approximated far-field formula can be written as

χe1 x0,z0ð Þ = 4F
c3π

ð+∞
−∞

dxcos θð Þ
ð+∞
0

1ffiffi
t

p

∂

∂t
Es x, t +

2 r−r0k k
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t +

4 r−r0k k
c

� �s dt

=
4F
c3π

ð+∞
−∞

dxcos θð Þ
ð+∞
−∞

H tð Þffiffi
t

p

∂

∂t
Es x, t +

2 r−r0k k
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t +

4 r−r0k k
c

� �s dt

=
4F
c3π

ð+∞
−∞

dxcos θð Þ
ð+∞
−∞

H τ−
2 r−r0k k

c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ−

2 r−r0k k
c

s
∂

∂t
Es x, t = τð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ +

2 r−r0k k
c

� �s dτ ð10:37Þ
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At this point, let us note that the integrand is null up to the time instant τ = 2 r−r0k k
c

−
whereas,

afterward, we have that the piece with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ− 2 r−r0k k

c

q
is singular at τ = 2 r−r0k k

c

+
, whereas the

piece with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ + 2 r−r0k k

c

q
is instead quite flat because of the far field hypothesis. So, there

is an error vanishing versus kr − r0k if we introduce the further approximation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ +

2 r−r0k k
c

r
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ +

2 r−r0k k
c

r �����
τ =

2 r−r0k k
c

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 r−r0k k

c

r
=
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−r0k kp
ffiffiffi
c

p ð10:38Þ

Under this approximation, we have

χe1 x0,z0ð Þ = 2F
c2:5π

ð+∞
−∞

dx
cos θð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−r0k kp ð+∞

−∞

H τ− 2 r−r0k k
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ− 2 r−r0k k

c

q ∂

∂t
Es x, t = τð Þ dτ ð10:39Þ

The integral in dτ is the convolution product between the two functions
H tð Þffiffi

t
p and

∂

∂t
Es x, tð Þ, calculated in the point t = 2 r−r0k k=c. This convolution is equal to the so-called

“half-derivative” of the electric field (see Appendix B), so that Eq. (10.37) can be
also written with a more compact notation as (Gazdag and Squazzero, 1984)

χe1 x0,z0ð Þ= 2F
c2:5π

ð+∞
−∞

dx
cos θð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−r0k kp ∂0:5

∂0:5t
Es x, t =

2 r−r0k k
c

� �
ð10:40Þ

In order to compare the obtained formulas (both in frequency and in time domain) with
the “classical” formulas available in the literature, a brief aside is still needed. In
particular, in the classical migration algorithms derived from the seismic processing
(Schneider, 1978), the unknown looked for is not the contrast but the scattered field
in the time domain in the buried investigated points (Es(x0,z0,0)) starting from the
scattered field in the observation line in air (Es(x0,0,t)). This involves the fixing of a
conventional zero time at the instant when the buried point begins its re-scattering of
the energy impinging on it. Of course, the buried targets are not illuminated at the same
instant, because of the finite velocity of propagation of the incident field radiated by
the primary sources, and this is “amortized” by considering waves that “start” from
the buried points within the investigation domain at the same instant but propagate at
one-half the actual propagation velocity of the electromagnetic waves in the soil. Such
a formulation is not rigorous in the framework of Maxwell’s equations, because the
propagation velocity is univocally determined by the same Maxwell’s equations. So,
we have recast (as often is done in the literature on inverse problems) the problem in
terms of contrast functions. In particular, the contrast does not represent the “temporal
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origin” of the scattered field, but rather its “causal origin.” That said, the interested
reader can compare the retrieved migration formulas in frequency domain with
Eqs. (51) and (52) in (Stolt, 1978) and the retrieved migration formulas in time domain
with Eq. (12) in Schneider (1978): He/she will see that, if the spectral weight is
neglected, then the integrals are the same.

The Stolt’s and the Kirchhoff’s migrations are equivalent in theory, but the
Kirchhoff’s formulation allows us to impose more immediately some regularization.
In particular, when performing the numerical integration of the data along the x-axis,we
can limit the integration interval on the basis of the wideness of the visible diffraction
curves. This implicitly means to choose the extension of the spectral retrievable set in
relationship to the maximum effective view angle. Several commercial codes for GPR
data processing allow us to choose the number of traces to be taken into account
when performing the Kirchhoff’s migration (but usually not when performing the Stolt’s
migration), which is equivalent to limiting the extremes for the integration in dx.

QUESTIONS

1. Do 2D migration algorithms account for all the aspects of the 2D electromagnetic
scattering?

2. Are 2D migration algorithms directly derived by the Born approximation?

3. Is the air–soil interface accounted for in migration algorithms?

4. Can the radiation pattern of the antennas be partially (roughly) accounted for within
a commercial migration code for migration, even if not explicitly enclosed in the
available menus?

5. Is it always true that to account for the spectral weight improves the result?

6. Suppose we perform a GPR prospecting crossing a buried empty crypt. The crypt is at
the depth of 1 m, and its cross section is about 2 m long and 3 m deep. The soil shows a
relative permittivity equal to 9, no magnetic properties are present, and the losses are
negligible. The B-scan is centered on the crypt and is 9 m long. The central frequency
of the antennas is 500MHz. What apparent size would show the room after being
focused by means of a standard migration algorithm accounting for the propagation
velocity of the surrounding soil? Suppose now that the room is filled with fresh water
and that the water is so pure (low concentrations of salts) that it allows the penetration
of the GPR signal until the bottom and then back until the antennas. What apparent
size would provide the standard migration algorithm in this case?
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THREE-DIMENSIONAL
SCATTERING EQUATIONS

Lorenzo Lo Monte, Raffaele Persico, and Raffaele Solimene

11.1 SCATTERING IN THREE DIMENSIONS: REDEFINITION
OF THE MAIN SYMBOLS

So far, the discussion has been focused on 2D inverse scattering. This is the most
common model in GPR data processing. However, recent advances in distributed
GPR, coherent GPR, HF GPR, and RF tomography led to an extension of classical
2D work in a more proper 3D scenario. The basic principles hold the same, but the
formulas become more complicated.

To avoid confusion, we will differentiate between 2D and 3D geometries by renam-
ing our previous variables with different symbols. In this chapter:

• E is a 3D complex vector representing the electric field; similarly, Einc will be the
incident field and Es will be the scattered field.

• rs = xsix + ysiy + zsiz is the source point. Since we are dealing with 3D space, the
source must also have an orientation vector, which is the direction of the effective
length of the transmitting antenna; this vector is labeled â (see Figure 11.1).

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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• r0 = x0ix + y0iy + z0iz is the receiver point. Since we are dealing with 3D space,
the receiver must also have an orientation vector, which is the direction
of the effective length of the receiving antenna; this vector is labeled as
b̂ (see Figure 11.1).

• r = xix + yiy + ziz is a generic point within the investigation domain, beneath the
air–soil interface.

Capitalized, bold, and underlined quantities describe dyadics, which are represented
by 3 × 3 matrices as described in Tai, (1991). Bold variables represent vectors, and
circumflexed vectors are real-valued with unitary norm, generally representing
directions.

Within the proposed 3D discussion, we will not consider the case of magnetic
anomalies, nor will we consider the case of magnetic soils.

In general, a set of n = 1, …, N field measurements are collected: A distinct nth
measurement is obtained by varying one of the following:

1. transmitter position rs
2. transmitter direction â (unit norm)

3. receiver position r0
4. receiver direction b̂ (unit norm)

5. angular frequency ω = 2πf

Targets reside only within a volumetric region D named investigation domain. The elec-
tric field E [V/m], the magnetic field H [A/m], the electric current density J [A/m2], and

â
b̂

rs r0

r
Anomaly

iy

iz

Rx ε0, μ0

εs, μ0

D

ix

Tx

Σ

Figure 11.1. Geometry of the problem.
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the magnetic current density M [V/m2] are all expressed in phasor form using the exp
(jωt) convention (Lo Monte et al., 2010).

Please note that in Figure 11.1 the z-axis is oriented versus the air, unlike the con-
vention followed for the 2D dealing (see Figure 4.1).

11.2 THE SCATTERING EQUATIONS IN 3D

Due to the linearity of Maxwell’s equations, we can state that the 2D scalar scattering
equations (4.44) and (4.45) evolve into a more general formulation given by

E r,rsð Þ =Einc r,rsð Þ + k2s
ð ð ð
D

χe r0ð ÞGi r,r0ð ÞE r0,rsð Þ dr0, r2D,rs 2Σ ð11:1Þ

Es r0,rsð Þ = k2s
ð ð ð
D

χe r0ð ÞGe r0,r0ð ÞE r0,rsð Þ dr0, r0,rs 2Σ ð11:2Þ

where, D is the investigation domain embedded in the soil and Σ is the observation
domain in air, as depicted in Figure 11.1. The product between the dyadic Green’s func-
tions and the field is implemented as the usual product between a 3 × 3 matrix times a
column vector with three elements. The result is a column vector of three elements that
are the components of the vector result along the axes x, y, and z.

So, to specify the 3D scattering equations (11.1) and (11.2) means to find the expres-
sions of Green’s functions and (for a given and characterized source) of the incident field.

11.3 THREE-DIMENSIONAL GREEN’S FUNCTIONS

Due to the increased complexity of the 3D dealing, it is useful to generalize the definition
of Green’s function. First of all, let us remind that the Green’s function is the response to a
spatially impulsive source as has been shown in 2D. In 3D, any Green’s function is
dyadic and thus can be expressed by means of a general matrix scheme of the following
kind:

G=
Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

0
@

1
A ð11:3Þ

Each element of the matrix is a function of the source point, the observation point,
and the frequency. The dyadic nature of Green’s function corresponds to the fact that
the source and the resulting electric field in general are not parallel to each other, unlike
in the scalar 2D case. It is easily recognized that the generic element of the matrix
Ghk (h, k = x, y, z) represents the component along ih of the response to a spatially
impulsive source directed along ik.
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It may be useful to warn the reader about the fact that in Eqs. (11.1) and (11.2) the
Green’s functions have dimensions of m−1, whereas in the scalar 2D equations (4.44) and
(4.45) the Green’s functions were dimensionless. Of course, this results from the fact that
in the 3D case the scattering equations are based on volume integrals instead of surface
integrals.

Let us also remind that the internal Green’s function represents the impulsive
response of the system with both source and observation points embedded in the soil,
whereas the external Green’s function is the impulsive response of the systemwith source
point embedded in the soil and observation point in air (see Chapter 4). This can be better
specified by using the subscripts “a” (which stands for “air”) and “s” (which stands for
“soil”) as follows:

Gss r,r0ð Þ =Gi r,r0ð Þ z,z0 < 0ð Þ,
Gsa r,r0ð Þ=Ge r,r0ð Þ z> 0,z0 < 0ð Þ

ð11:4Þ

It is useful to consider also the two additional quantities

Gaa r,r0ð Þ= internalGreen's function in air z,z0 > 0ð Þ,
Gas r,r0ð Þ = external air−soilGreen's function z < 0,z0 > 0ð Þ

ð11:5Þ

In particular, the dual quantities of Eq. (11.5) represent the Green’s function of a formally
“mirrored” inverse scattering problem with virtual targets embedded in air and a virtual
GPR moving underground. Moreover, it is also useful to consider the degenerated case
where the two involved half-spaces have the same electromagnetic characteristics, so that
one is actually considering the targets and the GPR embedded in a homogeneous space.
In this inverse problem, we cannot distinguish any longer an internal and an external
Green’s function, but there is just a unique Green’s function of the medium. Thus, from
now on we will label

Ga r,r0ð Þ=Green's function of a homogeneous spacemade up of air,

Gs r,r0ð Þ =Green's function of a homogeneous spacemade up of soil
ð11:6Þ

Later on in this chapter, we will see that the half-space Green’s functions (11.4)–(11.5)
can be expressed versus the homogeneous Green’s functions of Eq. (11.6). Actually, this
happens also in 2D, even if we didn’t need to specify the homogeneous Green’s function
in that case.

11.4 THE INCIDENT FIELD

For the three-dimensional case, we will assume a spatially impulsive source directed
along the unitary vector â, which means that the primary source is described as
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J r0ð Þ = I0lδ r0−rsð Þâ ð11:7Þ

where I0 is the current flowing into the dipole and l is its length. Please note that, unlike
Chapter 4, we will now make use of the common synthetic notation for the delta function
with respect to vector variables, so that, by definition, we mean

δ r0−rsð Þ≡ δ x0−xsð Þδ y0−ysð Þδ z0−zsð Þ ð11:8Þ

In order to calculate the incident field due to an impulsive primary source, we can start
from Eq. (11.2). In particular, based on Eq. (4.20), on Eq. (11.4), and on the definition of
the dielectric contrast [see Eq. (4.1)], we can rewrite Eq. (11.2) as

Es r0,rsð Þ = k2s
jω

ð ð ð
D

Ge r0,r0ð Þjωχe r0ð ÞE r0,rsð Þ dr0

=
k2s

jωε0εsr

ð ð ð
D

Gsa r0,r0ð ÞjωΔε r0ð ÞE r0,rsð Þ dr0

=
k2s

jωε0εsr

ð ð ð
D

Gsa r0,r0ð ÞJeq r0ð Þdr0 = − jωμ0

ð ð ð
D

Gsa r0,r0ð ÞJeq r0ð Þ dr0, r0,rs 2Σ

ð11:9Þ

At this point, let us note that Maxwell’s equations are the same for both equivalent (sec-
ondary) and actual (primary) sources. Consequently, Eq. (11.9) also provides the electric
field evaluated in air due to a generic current distribution embedded in the soil, which
can be rewritten as

E r0ð Þ= − jωμ0

ð ð ð
D

Gsa r0,r0ð ÞJ r0ð Þdr0, r0 in air,r0 2D embedded in the soil

ð11:10Þ
For the sake of symmetry, the electric field in the soil due to a generic current distribution
embedded in air is given by

E r0ð Þ= − jωμ0

ð ð ð
D

Gas r0,r0ð ÞJ r0ð Þdr0, r0 in the soil,r0 2D embedded in air

ð11:11Þ
In the special case of the spatially impulsive source given by Eq. (11.7), Eq. (11.11)
provides the incident field relative to an impulsive source, that is therefore achieved
substituting Eq. (11.7) into Eq. (11.11). The result is

Einc rð Þ = − jμ0ωI0lGas r,rsð Þ�â, z < 0 ð11:12Þ
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A similar relationship holds also in 2D, and the reader can retrieve it as an exercise start-
ing from Eq. (4.48).

Equation (11.12) provides the incident field to be put into the scattering equation. By
a similar derivation, the incident field in air is provided by

Einc rð Þ = − jμ0ωI0lGaa r,rsð Þ�â, z > 0 ð11:13Þ

Often, in 3D cases, rather than the vector incident field, it is important to consider the com-
ponentalong theeffective lengthof the receivingantennaof this incident field. In this text,we
will suppose that the receiving antenna is a Hertzian dipole as the transmitting one. More-
over, the derivationwill be simplified in the fact thatwewill not consider the effective length
of the receiving dipole but just its direction b̂. This means that the formal expression of the
recorded incident field datum in the observation point (i.e., the direct coupling between
the antennas) is given by

Einc r0ð Þ= − jωμ0I0lb̂�Gaa�â, z > 0 ð11:14Þ

In Eq. (11.14) we have used the scalar symbol Einc to indicate the projection of the vector
Einc along the unitary vector b̂. In terms of vector–matrix product, the product in
Eq. (11.14) is to be meant as a raw vector (1 × 3) times a matrix (3 × 3) times a column
vector (3 × 1). The result is clearly a scalar quantity.

The provided dealing shows that, in order to specify the scattering equations, we just
need to find Green’s functions Gas, Gsa and Gss, and in order to specify the incident field
everywhere (which means to retrieve the theoretical expression of the direct coupling
between the antennas) we have to find Gaa. Let us emphasize that this is because we have
chosen to model both the transmitting and receiving antennas as two ideal dipole-like
ones. If more complicated antennas are considered, the problem of the behavior of the
currents on the antennas has to be considered too. In 2D we have seen that this can
be done by means of the plane wave spectra (or equivalently the effective lengths) of
the antennas, but in the 3D discussion we will avoid this complication, limiting to the
case of Hertzian dipoles both in transmission and in reception.

11.5 HOMOGENEOUS 3D GREEN’S FUNCTIONS

As said, the calculation of the half-space Green’s functions requires the preliminary
calculation of the Green’s function of a homogeneous space. So, in this section the
expressions of the homogeneous Green’s functions Ga and Gs are retrieved. Of course,
the calculations are the same in the two cases, with just the wavenumbers being different.
So, let us focus on the homogeneous Green’s function in air Ga.

In the same way followed for a half-space geometry, the dyadic Green’s function
under study Ga r,r0ð Þ relates the electric field E(r) to the electric current density J(r0) that
generated it (either real or equivalent) in free space via the integral relationship:

E rð Þ= − jωμ0

ð ð ð
D

Ga r,r0ð Þ�J r0ð Þ dr0 ð11:15Þ

187HOMOGENEOUS 3D GREEN’S FUNCTIONS



Manipulating the Maxwell’s equations as done in Chapter 4 [see, in particular,
Section 4.2 and Eq. (4.23)], we have that free space E(r) is a solution of the vector
equation:

r×r ×E rð Þ−k20E rð Þ = − jωμ0J rð Þ ð11:16Þ

Substituting Eq. (11.15) into Eq. (11.16), deriving under the integral, and accounting for
the fact that the achieved equality holds for any current density (in particular for spatially
impulsive currents) we obtain the following differential equation for Green’s function1:

r ×r ×Ga r,r0ð Þ−k20Ga r,r0ð Þ= Iδ r−r0ð Þ ð11:17Þ

where I is the 3 × 3 identity matrix, whose elements are equal to 1 along the diagonal and
zero elsewhere. The curl operator on a matrix is meant to be performed on the columns;
that is,r ×r×G r,r0ð Þ is a 3 × 3matrix where each column is given by the curl of the curl
of the homologous column of G r,r0ð Þ. The spatial derivations are meant with regard to r.

To find the Green’s function Ga r,r0ð Þ, we can use the vector potential theory, in a
way formally similar to that followed in Chapter 5 with regard to the magnetic anomalies.
Actually, the vector potential theory is fundamental in electromagnetism; a more com-
plete description of this theory can be found in Chew (1995), Balanis (1989), Van Bladel
(2007), Jackson (1998), and Tai (1994).

Here we can start from theMaxwell’s equations given in Eq. (4.5). Since nomagnetic
source (neither magnetic anomaly) is involved, Eq. (4.5) can be rewritten as follows:

r ×E= − jωμ0H,

r ×H = jωε0E+ J,

r�ε0E= ρ,

r�μ0H = 0

ð11:18Þ

The fourth Maxwell’s equation r � μ0H = 0 implies that μ0H (and thus H, being μ0
a constant quantity) is solenoidal; therefore, it can be represented as the curl of
another vector function, called “potential vector” (let us recall the vector identityr ×r�
A = 0). Hence, we can assume that

μ0H=r×A rð Þ ð11:19Þ
whereA(r) is the vector potential. Consequently, the first Maxwell’s equations in (11.18)
becomes

r ×E= − jωr×A rð Þ,r× E+ jωA rð Þð Þ = 0 ð11:20Þ

1Actually Eq. (11.17) is a general condition that regards Green’s function in any geometry, not only in
free space.
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As is well known (Franceschetti, 1997), Eq. (11.20) ensures the presence of a scalar
potential function ϕ(r) such as

E = − jωA rð Þ−rϕ rð Þ ð11:21Þ

Substituting Eq. (11.21) in the second of the Maxwell’s equations (11.18), we obtain

r×r ×A rð Þ =ω2ε0μ0A rð Þ− jωε0μ0rϕ rð Þ+ μ0J rð Þ
= k20A rð Þ− jωε0μ0rϕ rð Þ+ μ0J rð Þ ð11:22Þ

Similar to what is done in Chapter 4 (see Eqs. (4.23) and (4.24), at this point we exploit
the definition of the Laplacian vector, namely r2 v

! =r r� v!� �
−r ×r × v

!. Applied in
Eq. (11.22), this leads to

r2A rð Þ+ k20A rð Þ =r r�A+ jωε0μ0ϕ rð Þð Þ−μ0J rð Þ ð11:23Þ

In the same way shown in Chapter 4 with regard to the Fitzgerald vector, also in this case
we have that neither the potential vector nor the scalar potential function are univocally
determined, and thus also in this case we can exploit this indeterminateness in order to
impose the gauge of Lorentz, which means to choose a priori the couple of potential func-
tions that satisfies the condition

r�A + jωε0μ0ϕ rð Þ= 0 ð11:24Þ

which reduces Eq. (11.23) to a Helmholtz equation as follows:

r2A rð Þ+ k20A rð Þ= −μ0J rð Þ ð11:25Þ

Moreover, considering the divergence of Eq. (11.21) and substituting in the third
Maxwell’s equation (11.18), we obtain

r�E= − jωr�A rð Þ−r�rϕ rð Þ = ρ

ε0
,r2ϕ rð Þ+ jωr�A rð Þ= −

ρ

ε0
ð11:26Þ

In Eq. (11.26) we have accounted for the fact that the scalar Laplacian operator is defined
as the divergence of the gradient. Substituting Eq. (11.24) in Eq. (11.26), we obtain

r2ϕ rð Þ+ k20ϕ rð Þ = −
ρ rð Þ
ε0

ð11:27Þ

So, under the gauge of Lorentz, also the scalar potential is the solution of a Helmholtz
equation. The calculation steps for solving Eqs. (11.25) and (11.27) are reported in
Appendix C. The solution is given by
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A rð Þ= μ0
ð ð ð
D

exp − jk0 r−r0k kð Þ
4π r−r0k k J r0ð Þ dr0 ð11:28Þ

ϕ rð Þ= 1
ε0

ð ð ð
D

exp − jk0 r−r0k kð Þ
4π r−r0k k ρ r0ð Þ dr0 ð11:29Þ

Substituting (11.28) and (11.29) into (11.21), the electric field is given by

E rð Þ = − jωμ0

ð ð ð
D

exp − jk0 r−r0k kð Þ
4π r−r0k k J r0ð Þdr0− 1

ε0
r

ð ð ð
D

exp − jk0 r−r0k kð Þ
4π r−r0k k ρ r0ð Þdr0

0
@

1
A

ð11:30Þ

Making use of the continuity equation

r�J+ jωρ= 0, ρ rð Þ= −
r�J rð Þ
jω

ð11:31Þ

we have

E rð Þ= − jωμ0

ð ð ð
D

exp − jk0 r−r0k kð Þ
4π r−r0k k J r0ð Þdr0 + 1

jωε0
r

ð ð ð
D

exp − jk0 r−r0k kð Þ
4π r−r0k k r0�J r0ð Þdr0

0
@

1
A

ð11:32Þ

The gradient symbol in the second integral inEq. (11.32) is primed because the derivations
refer to the variable r0. Performing the integration of the second term by parts, we achieve

E rð Þ = − jωμ0

ð ð ð
D

exp − jk0 r−r0k kð Þ
4π r−r0k k J r0ð Þdr0 + 1

jωε0
r

ð ð ð
D

r0 exp − jk0 r−r0k kð Þ
4π r−r0k k

� �
�J r0ð Þdr0

0
@

1
A

ð11:33Þ

Now, it is easy to see that

r0 exp − jk0 r−r0k kð Þ
4π r−r0k k = −r exp − jk0 r−r0k kð Þ

4π r−r0k k ð11:34Þ

so that we have

E rð Þ= − jωμ0

ð ð ð
D

exp − jk0 r−r0k kð Þ
4π r−r0k k J r0ð Þdr0 + 1

jωε0
rr�

ð ð ð
D

exp − jk0 r−r0k kð Þ
4π r−r0k k J r0ð Þdr0

0
@

1
A

ð11:35Þ
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Equation (11.35) allows us to express the dyadic Green’s function. In fact, it can be
compacted in the form

E rð Þ= − jωμ0

ð ð ð
D

Ga r,r0ð ÞJ r0ð Þ dr0 ð11:36Þ

on condition that

Ga r,r0ð Þ= I+
1

k20
rr

� �
exp − jk0 r−r0k kð Þ

4π r−r0k k
� �

ð11:37Þ

where I is the identity matrix 3 × 3. Developing the spatial derivations in Eq. (11.37), the
explicit expression of the terms of the free space dyadic Green’s function, according to
Eq. (11.3), are given by

Gaxx =
exp − jk0 r−r0k kð Þ

4πk20

3 x−x0ð Þ2
r−r0k k5 + j

3 x−x0ð Þ2k0
r−r0k k4 −

x−x0ð Þ2k20 + 1
r−r0k k3 − j

k0

r−r0k k2 + j
k20

r−r0k k

" #

ð11:38Þ

Gaxy =
exp − jk0 r−r0k kð Þ

4πk20

3 x−x0ð Þ y−y0ð Þ
r−r0k k5 + j

3 x−x0ð Þ y−y0ð Þk0
r−r0k k4 −

x−x0ð Þ y−y0ð Þk20
r−r0k k3

" #

ð11:39Þ

Gaxz =
exp − jk0 r−r0k kð Þ

4πk20

3 x−x0ð Þ z−z0ð Þ
r−r0k k5 + j

3 x−x0ð Þ z−z0ð Þk0
r−r0k k4 −

x−x0ð Þ z−z0ð Þk20
r−r0k k3

" #

ð11:40Þ

Gayx =Gaxy ð11:41Þ

Gayy =
exp − jk0 r−r0k kð Þ

4πk20

3 y−y0ð Þ2
r−r0k k5 + j

3 y−y0ð Þ2k0
r−r0k k4 −

y−y0ð Þ2k20 + 1
r−r0k k3 − j

k0

r−r0k k2 + j
k20

r−r0k k

" #

ð11:42Þ

Gayz =
exp − jk0 r−r0k kð Þ

4πk20

3 y−y0ð Þ z−z0ð Þ
r−r0k k5 + j

3 y−y0ð Þ z−z0ð Þk0
r−r0k k4 −

y−y0ð Þ z−z0ð Þk20
r−r0k k3

" #

ð11:43Þ

Gazx =Gaxz ð11:44Þ
Gazy =Gayz ð11:45Þ
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Gazz =
exp − jk0 r−r0k kð Þ

4πk20

3 z−z0ð Þ2
r−r0k k5 + j

3 z−z0ð Þ2k0
r−r0k k4 −

z−z0ð Þ2k20 + 1
r−r0k k3 − j

k0

r−r0k k2 + j
k20

r−r0k k

" #

ð11:46Þ

11.6 THE PLANE WAVE SPECTRUM OF A 3D HOMOGENEOUS
GREEN’S FUCNTION

Wehave seen that the three columns ofGreen’s function represent three electric fields, and
more precisely they are, apart from an unessential factor, the fields (calculated in the point
r = (x,y,z)) generated by an impulsive source (located in the point r0 = (x0,y0,z0)) oriented
along the x-, y-, and z-axis, respectively. Therefore, each of the columns can be expressed
bymeans of its planewave spectrum according to the calculations shown inChapter 4 (see
Section4.4), and consequently also theoverall dyadicGreen’s function canbeexpandedas
an integral sum of plane waves. In particular, choosing the plane z = z0 as reference, anal-
ogously to Eq. (4.60), we can define the plane wave spectrum of Green’s function as2

^̂Ga u,v,r'ð Þ =
ð+∞
−∞

ð+∞
−∞

Ga x,y,z! z0,x0,y0,z0ð Þexp − juxð Þexp − jvyð Þ dxdy ð11:47Þ

However, the integral (11.47) is not immediate, because of the singular behavior of
Green’s function for r = r0. So, specific passages are required as illustrated in the follow-
ing. In particular, let us start from the three-dimensional spatial Fourier transform of
Eq. (11.17), calculated in three independent variables u, v,w. So, we retrieve the equality

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

r ×r×Ga r,r0ð Þ−k20Ga r,r0ð Þ� �
exp − j ux + vy +wzð Þð Þ dxdydz

=
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

Iδ r−r0ð Þð Þexp − j ux+ vy +wzð Þð Þ dxdydz

ð11:48Þ

Let us label as k the symbolic vector uix + viy +wiz, and let us label as
^̂
Ĝa k,r0ð Þ the three-

dimensional transform of Ga r,r0ð Þ. It is straightforward to recognize that the nabla vector
translates into jk in the transformed domain and that the formal vector product (which
indicates the curl vector in the spatial domain) translates into an “authentic” vector
product in the transformed domain. Consequently, we have

−k× k×
^̂
Ĝa k,r0ð Þ−k20

^̂
Ĝa k,r0ð Þ = Iexp − jk�r0ð Þ ð11:49Þ

2 The reason why, unlike the 2D case, have considered z tending to z0 instead of z = z0 will be clear in the
following.
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where the double vector product is applied on the columns of the dyadic Green’s function
and where the dot stands for scalar product.3 Due to the general vector identity

v1 × v2 × v3 = v1 v2�v3ð Þ−v3 v1�v2ð Þ ð11:50Þ

we can rewrite Eq. (11.49) as

−k k� ^̂Ĝa k,r0ð Þ
� �

+ kk k2 ^̂Ĝa k,r0ð Þ−k20
^̂
Ĝa k,r0ð Þ

= −k k� ^̂Ĝa k,r0ð Þ
� �

+ kk k2−k20
� � ^̂

Ĝa k,r0ð Þ = Iexp − jk�r0ð Þ ð11:51Þ

where the scalar product k� ^̂Ĝa k,r0ð Þ is meant with respect to the columns of the dyadic
Green’s function (so that the result is a vector) and the dyadic product v1v2 [that is meant
applied to the first term in Eq. (11.51)] is meant in terms of components as

v1v2 =
v1x
v1y
v1z

0
@

1
A v2xv2yv2zð Þ=

v1xv2x v1xv2y v1xv2z
v1yv2x v1yv2y v1yv2z
v1zv2x v1zv2y v1zv2z

0
@

1
A ð11:52Þ

Let us now calculate the scalar product of Eq. (11.51) times k:

− kk k2 k� ^̂Ĝa k,r0ð Þ
� �

+ kk k2 k� ^̂Ĝa k,r0ð Þ
� �

−k20 k� ^̂Ĝa k,r0ð Þ
� �

= −k20 k� ^̂Ĝa k,r0ð Þ
� �

= k�Ið Þexp − jk�r0ð Þ) k� ^̂Ĝa k,r0ð Þ= −
k�Ið Þexp − jk�r0ð Þ

k20
ð11:53Þ

Substituting in Eq. (11.53) into Eq. (11.51), we obtain

k k�Ið Þexp − jk�r0ð Þ
k20

+ kk k2 ^̂Ĝa k,r0ð Þ−k20
^̂
Ĝa k,r0ð Þ

=
kkexp − jk�r0ð Þ

k20
+ kk k2−k20
� � ^̂

Ĝa k,r0ð Þ = Iexp − jk�r0ð Þ

) ^̂
Ĝa k,r0ð Þ = Ik20 −kk

� �
exp − jk�r0ð Þ

k20 kk k2−k20
� �

ð11:54Þ

3 It is meant as a non-Hermitian scalar product: If v1 = v1xix + v1yiy + v1ziz and v2 = v2xix + v2yiy + v2ziz are two
vectors, either real or complex, the non-Hermitian scalar product is defined as v1 � v2 = v1xv2x + v1yv2y + v1zv2z,
whereas the Hermitian scalar product is defined as v1∘v2 = v1xv∗2x + v1yv∗2y + v1zv∗2z, where “∗” stands for
conjugation. Clearly, the two scalar products are the same thing for real vectors, but not for complex vectors.
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Consequently, inverting the Fourier transform, we can write

Ga r,r0ð Þ = 1

2πð Þ3
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

Ik20 −kk

k20 kk k2−k20
� �ejk� r− r0ð Þ dudvdw

=
1
4π2

ð+∞
−∞

du

ð+∞
−∞

dv

k20

1
2π

ð+∞
−∞

Ik20 −kk
u2 + v2 +w2−k20
� �ejk� r− r0ð Þ dw

0
@

1
A

=
1
4π2

ð+∞
−∞

du

ð+∞
−∞

dv

k20

1
2π

ð+∞
−∞

k20 −u
2 uv uw

uv k20 −v
2 vw

uw vw k20 −w
2

0
@

1
A

u2 + v2 +w2−k20
� � ejk� r− r

0ð Þ dw

0
BBBBBB@

1
CCCCCCA

ð11:55Þ

Equation (11.55) shows that the argument of the integral in dw does not tend to a null
matrix for high values of w, because we have

lim
w!±∞

1

u2 + v2 +w2−k20
� � k20 −u

2 uv uw
uv k20 −v

2 vw
uw vw k20 −w

2

0
@

1
A

0
@

1
A=

0 0 0
0 0 0
0 0 −1

0
@

1
A= − iziz

ð11:56Þ
Subtracting and adding again the limit value (11.56) to the integrand in Eq. (11.55), we
obtain

Ga r,r0ð Þ= 1

2πð Þ3
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

Ik20 −kk

k20 kk k2−k20
� �ejk� r− r0ð Þ dudvdw

=
1
4π2

ð+∞
−∞

du

ð+∞
−∞

dv

k20

1
2π

ð+∞
−∞

Ik20 −kk

kk k2−k20
� � + iziz

0
B@

1
CAejk� r− r

0ð Þdw

2
64

3
75

−
1
4π2

ð+∞
−∞

du

ð+∞
−∞

dv

k20

1
2π

ð+∞
−∞

izize
− jk� r− r0ð Þ dw

2
4

3
5

=
1
4π2

ð+∞
−∞

du

ð+∞
−∞

dv

k20

1
2π

ð+∞
−∞

Ik20 −kk+ iziz kk k2−k20
� �

kk k2−k20
� �

0
B@

1
CAejk� r− r

0ð Þdw

2
64

3
75−

1

k20
izizδ r−r0ð Þ

ð11:57Þ
This passage has allowed us to integrate separately the piece not integrable in classical
terms (in fact it has been integrated in distributional terms). So, now the integrand in
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Eq. (11.57) vanishes for w! ±∞, and so it is licit to solve it by resorting to the theory of
the residuals, in the same way followed for the (scalar) spectral integral in Appendix A.
So, in the case at hand we obtain

Ga r,r0ð Þ= j

8π2k20

×
ð+∞
−∞

ð+∞
−∞

exp ju x−x0ð Þð Þexp jv y−y0ð Þð Þexp jkz1 z−z0j jð Þ
kz10

Ik20 −k0k0
� �

dudv

−
1
k20
izizδ r−r0ð Þ ð11:58Þ

where, analogously to the notation followed in Chapter 4 [see Eq. (4.57)], we have

kz10 u,vð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −u

2−v2
q

ð11:59Þ

where the imaginary part is meant as non-negative and where

k0 =
uix + viy + kz10 u,vð Þiz, z−z0 > 0,

uix + viy−kz10 u,vð Þiz, z−z0 < 0

(
ð11:60Þ

From a mathematical point of view, the different sign of the z-component of the
wavevector descends from the fact that |z − z0| is equal either to z − z0 or to z0 − z, and
so the integral path for the application of the theory of the residuals has to enclose either
the pole at w=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −u

2−v2
p

or the pole at w= −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −u

2−v2
p

(where the square root is
meant with a nonnegative imaginary part). From a physical point of view, the different
sign of the z component of the wavevector is due to the fact that the field propagates in
any case away from the sources.

In the integral in Eq. (11.58) we easily identify an inverse double Fourier transform,
so that we have

jexp jkz1 z−z0j jð Þ
2k20kz1

Ik20 −k0k0
� �

−
1
4π2

iziz

ð+∞
−∞

ð+∞
−∞

δ r−r0ð Þexp ju x−x0ð Þð Þexp jv y−y0ð Þð Þ dxdy

=
jexp jkz1 z−z0j jð Þ

2k20kz1
Ik20 −k0k0
� �

−
izizδ z−z0ð Þ

4π2

=
ð+∞
−∞

ð+∞
−∞

Ga r,r0ð Þexp − ju x−x0ð Þð Þexp − jv y−y0ð Þð Þ dxdy ð11:61Þ
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Comparing Eq. (11.61) with Eq. (11.47), we retrieve the expression of plane wave
spectrum of Green’s function in air, which is given by

^̂Ga u,v,r'jz!z0
� �

=
j

2k20kz10
Ik20 −k0k0
� �

exp − j ux0 + vy0ð Þð Þ

=

jexp − jux0ð Þexp − jvy0ð Þ
2k20k1z0

k20 −u
2 −uv −uk1z0

−uv k20 −v
2 −vk1z0

−uk1z0 −vk1z0 u2 + v2

0
BBBB@

1
CCCCA, z−z0 > 0,

jexp − jux0ð Þexp − jvy0ð Þ
2k20k1z0

k20 −u
2 −uv uk1z0

−uv k20 −v
2 vk1z0

uk1z0 vk1z0 u2 + v2

0
BB@

1
CCA, z−z0 < 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð11:62Þ

Due to the impulse present in Eq. (11.61), the plane wave spectrum of Eq. (11.62) is
bi-univocally related to Green’s function for any z 6¼ z0 but not for z = z0.

The following calculation steps are of course the same for any homogeneous
medium, on the condition that we make use of the wavenumber of that medium. There-
fore, we can express the plane wave spectrum of a homogeneous Green’s function
Gs r,r'ð Þ relative to an ideal world “made up of soil” as follows:

^̂Gs u,v,r'jz!z0
� �

=
j

2k2s kz1s
Ik2s −ksks
� �

exp − j ux0 + vy0ð Þð Þ

=

jexp − jux0ð Þexp − jvy0ð Þ
2k2s k1zs

k2s −u
2 −uv −uk1zs

−uv k2s −v
2 −vk1zs

−uk1zs −vk1zs u2 + v2

0
BBB@

1
CCCA, z−z0 > 0,

jexp − jux0ð Þexp − jvy0ð Þ
2k2s k1zs

k2s −u
2 −uv uk1zs

−uv k2s −v
2 vk1zs

uk1zs vk1zs u2 + v2

0
BBB@

1
CCCA, z−z0 < 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð11:63Þ

where

kz1s u,vð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s −u

2−v2
q

ð11:64Þ

with nonnegative imaginary part.
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11.7 HALF-SPACE GREEN’S FUNCTIONS

The calculation of the homogeneous Green’s functions is a preliminary step for the calcu-
lation of the half-space Green’s functions. Indeed, since the homogeneousGreen’s function
can be (and has been) expressed by mean of an integral superposition of plane waves, the
half-space Green’s function is achieved by considering the homogeneous Green’s function
as an incident “triple” of fields, wherein each plane wave component is reflected and
refracted at the air–soil interface. The integral sum of the transmitted waves will provide
the external Green’s function, whereas the integral sum of the reflected waves, plus the
incident (homogeneous) Green’s function itself, will provide the internal Green’s function.

However, the Fresnel coefficients, i.e. the reflection and transmission coefficient of
the plane waves at the interface depend on the polarization of the incident field too
(Franceschetti, 1997). Consequently, we will distinguish the TE component and the
TM component in the homogeneous Green’s function, and each component will be
reflected and transmitted according to its own Fresnel coefficients.

So, the first step is to calculate the matrix decomposition of the plane wave spectrum
of the homogeneous Green’s functions such as

^̂Ga
u,vð Þ= ^̂GaTE u,vð Þ+ ^̂GaTM u,vð Þ,

^̂Gs u,vð Þ= ^̂GsTE u,vð Þ+ ^̂GsTM u,vð Þ ð11:65Þ

The decomposition of a plane wave impinging at the air soil interface along its TE and
TM components is derived in Appendix D. Applying this decomposition to the columns
of the homogeneous Green’s function in air we achieve

^̂GaTE u,v,z,r'ð Þ = j exp − jux0ð Þexp − jvy0ð Þ
2k20kz10

k20v
2

u2 + v2
−k20uv

u2 + v2
0

−k20uv

u2 + v2
k20u

2

u2 + v2
0

0 0 0

0
BBBBB@

1
CCCCCA 8z ð11:66Þ

^̂GaTM
u,v,z! z0,r'ð Þ = j exp − jux0ð Þexp − jvy0ð Þ

2k20kz10
×

u2k2z10
u2 + v2

uvk2z10
u2 + v2

−ukz10

uvk2z10
u2 + v2

v2k2z10
u2 + v2

−vkz10

−ukz10 −vkz10 u2 + v2

0
BBBBBB@

1
CCCCCCA
, z−z0 > 0,

u2k2z10
u2 + v2

uvk2z10
u2 + v2

ukz10

uvk2z10
u2 + v2

v2k2z10
u2 + v2

vkz10

ukz10 vkz10 u2 + v2

0
BBBBBB@

1
CCCCCCA
, z−z0 < 0

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð11:67Þ
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The reflection and transmission TE and TM coefficients are retrieved in Appendix E.
Applying in particular Eqs. (E.18) and (E.20) to the columns of the TE components
of Green’s function and applying Eqs. (E.32) and (E.34) to the columns of the TM com-
ponent of Green’s function, we have

^̂Gas = j
exp − j ux0 + vy0ð Þð Þ

2k20kz10
TTE

k20v
2

u2 + v2
−k20uv

u2 + v2
0

−k20uv

u2 + v2
k20u

2

u2 + v2
0

0 0 0

0
BBBBB@

1
CCCCCA

2
666664

+ TTM

u2k2z10
u2 + v2

uvk2z10
u2 + v2

ukz10

uvk2z10
u2 + v2

v2k2z10
u2 + v2

vkz10

0 0 0

0
BBBBBB@

1
CCCCCCA

+
kz10
kz1s

TTM

0 0 0
0 0 0

ukz10 vkz10 u2 + v2

0
@

1
A
3
7777775

= j
exp − j ux0 + vy0ð Þð Þ

2k20kz10
TTE

k20v
2

u2 + v2
−k20uv

u2 + v2
0

−k20uv

u2 + v2
k20u

2

u2 + v2
0

0 0 0

0
BBBBB@

1
CCCCCA

2
666664

+ TTM

u2k2z10
u2 + v2

uvk2z10
u2 + v2

ukz10

uvk2z10
u2 + v2

v2k2z10
u2 + v2

vkz10

uk2z10
kz1s

vk2z10
kz1s

kz10 u2 + v2ð Þ
kz1a

0
BBBBBBBBB@

1
CCCCCCCCCA

3
7777777775

= j
exp − j ux0 + vy0ð Þð Þ

2k20kz10

2kz10
kz10 + kz1s

k20v
2

u2 + v2
−k20uv

u2 + v2
0

−k20uv

u2 + v2
k20u

2

u2 + v2
0

0 0 0

0
BBBBB@

1
CCCCCA

2
666664

+
2kz1sε0

kz1s + kz10εs

u2k2z10
u2 + v2

uvk2z10
u2 + v2

ukz10

uvk2z10
u2 + v2

v2k2z10
u2 + v2

vkz10

uk2z10
kz1s

vk2z10
kz1s

kz10 u2 + v2ð Þ
kz1s

0
BBBBBBBBB@

1
CCCCCCCCCA

3
7777777775

ð11:68Þ
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After summing the matrixes, the final result is

^̂Gas
= j

exp − j ux0 + vy0ð Þð Þ
k20 u2 + v2ð Þ

×

k20v
2

kz10 + kz1s
+

ε0u2kz1skz10
kz1sε0 + kz10εs

−k20uv

kz10 + kz1s
+

ε0uvkz1skz10
kz1sε0 + kz10εs

ε0ukz1s u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

−k20uv

kz10 + kz1s
+

ε0uvkz1skz10
kz1sε0 + kz10εs

k20u
2

kz10 + kz1s
+

ε0v2kz1skz10
kz1sε0 + kz10εs

ε0vkz1s u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

ε0ukz10 u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

ε0vkz10 u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

ε0 u2 + v2ð Þ2
kz1sε0 + kz10εs

0
BBBBBBBBB@

1
CCCCCCCCCA

ð11:69Þ

Equation (11.69) accounts for the fact that the source point is in air and the observation
point is buried, so that we have z − z0 < 0. For brevity of notation, let us label asMas1 u,vð Þ
the matrix in the large parentheses in Eq. (11.69).

The air–soil Green’s function is given by the inverse Fourier transform of
Eq. (11.69) as follows:

Gas r,r
0ð Þ= j

4π2k20

ð+∞
−∞

ð+∞
−∞

exp j u x−x0ð Þ+ v y−y0ð Þ−kz10z0−kz1szð Þð Þ
u2 + v2ð Þ Mas1 u,vð Þ dudv

ð11:70Þ

For conventional reasons, it is more comfortable to express the quantity (11.70) as

Gas r,r0ð Þ = j

4π2k20

ð+∞
−∞

ð+∞
−∞

exp j −u x−x0ð Þ−v y−y0ð Þ−kz10z0−kz1szð Þð Þ
u2 + v2ð Þ Mas u,vð Þ dudv

ð11:71Þ

with

Mas =

k20v
2

kz10 + kz1s
+

ε0u2kz1skz10
kz1sε0 + kz10εs

−k20uv

kz10 + kz1s
+

ε0uvkz1skz10
kz1sε0 + kz10εs

−ε0ukz1s u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

−k20uv

kz10 + kz1s
+

ε0uvkz1skz10
kz1sε0 + kz10εs

k20u
2

kz10 + kz1s
+

ε0v2kz1skz10
kz1sε0 + kz10εs

−ε0vkz1s u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

−ε0ukz10 u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

−ε0vkz10 u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

ε0 u2 + v2ð Þ2
kz1sε0 + kz10εs

0
BBBBBBBBB@

1
CCCCCCCCCA

ð11:72Þ
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It is easy to check that the expressions (11.70) and (11.71) are equivalent, so from now on
we will refer to (11.71).

Substituting Eq. (11.71) into Eq. (11.11), we retrieve the incident field in the soil due

to a dipole oriented according to some direction â≡
ax
ay
az

0
@

1
A, which is the first “piece” to

be put in the scattering equation (11.1):

Einc rð Þ= μ0ωI0l

4π2k20

ð+∞
−∞

ð+∞
−∞

exp j −u x−x0ð Þ−v y−y0ð Þ−kz10z0−kz1szð Þð Þ
u2 + v2ð Þ Mas u,vð Þ

ax
ay
az

0
@

1
Adudv

=
μ0ωI0l

4π2k20

ð+∞
−∞

ð+∞
−∞

exp j −u x−x0ð Þ−v y−y0ð Þ−kz10z0−kz1szð Þð Þ
u2 + v2ð Þ Mas u,vð Þ dudv

0
@

1
A ax

ay
az

0
@

1
A

ð11:73Þ

The Green’s function Gsa r,r0ð Þ, with buried source and observation point in air, is derived
in the same way, accounting for the fact that now the field propagates toward the positive
side of the z-axis (z < z0) and the Fresnel coefficients from the soil to the air have to be
accounted for (see Appendix E). The result is

^̂Gsa
= j

exp − j ux0 + vy0ð Þð Þ
k2s u2 + v2ð Þ

×

k2s v
2

kz10 + kz1s
+

εsu2kz1skz10
kz1sε0 + kz10εs

−k2s uv

kz10 + kz1s
+

εsuvkz1skz10
kz1sε0 + kz10εs

−
εsukz10 u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

−k2s uv

kz10 + kz1s
+

εsuvkz1skz10
kz1sε0 + kz10εs

k2s u
2

kz10 + kz1s
+

εsv2kz1skz10
kz1sε0 + kz10εs

−
εsvkz10 u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

−
εsukz1s u2 + v2ð Þ
kz1sε0 + kz10εsð Þ −

εsvkz1s u2 + v2ð Þ
kz1sε0 + kz10εsð Þ

εs u2 + v2ð Þ2
kz1sε0 + kz10εs

0
BBBBBBBBB@

1
CCCCCCCCCA

ð11:74Þ

Equation (11.74) expresses the plane wave spectrum of the external Green’s function.
Similarly to the position introduced with regard to Eq. (11.72), from now on we will label
as Msa u,vð Þ the matrix in large parentheses in Eq. (11.74). This allows us to express the
external 3D Green’s function in a compact way as follows:

Ge r,r0ð Þ =Gsa r,r0ð Þ = j

4π2k2s

ð+∞
−∞

ð+∞
−∞

exp j u x−x0ð Þ + v y−y0ð Þ−kz1sz0−kz10zð Þð Þ
u2 + v2ð Þ Msa u,vð Þ dudv

ð11:75Þ
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Finally, let us now retrieve the internal Green’s function Gi r,r0ð Þ. From the discus-
sion carried out in this chapter, it is by now clear that this function represents the set of
the answers to an impulsive buried source, observed in any buried point. So, the inter-
nal Green’s function is provided by the sum of the Green’s function of a homogeneous
soil (given by Gs r,r0ð Þ) plus the contribution back-reflected in the soil from the
soil-air interface. So, let us start with the decomposition of Gs r,r0ð Þ into its TE and
TM components:

^̂GsTE u,v,z,r'ð Þ = j exp − jux0ð Þexp − jvy0ð Þ
2k2s kz1s

k2s v
2

u2 + v2
−k2s uv

u2 + v2
0

−k2s uv

u2 + v2
k2s u

2

u2 + v2
0

0 0 0

0
BBBBB@

1
CCCCCA 8z ð11:76Þ

^̂GsTM
u,v,z! z0,r'ð Þ = j exp − jux0ð Þexp − jvy0ð Þ

2k2s kz1s
×

u2k2z1s
u2 + v2

uvk2z1s
u2 + v2

−ukz1s

uvk2z1s
u2 + v2

v2k2z1s
u2 + v2

−vkz1s

−ukz1s −vkz1s u2 + v2

0
BBBBBBBB@

1
CCCCCCCCA
, z−z0 > 0,

u2k2z1s
u2 + v2

uvk2z1s
u2 + v2

ukz1s

uvk2z1s
u2 + v2

v2k2z1s
u2 + v2

vkz1s

ukz1s vkz1s u2 + v2

0
BBBBBBBB@

1
CCCCCCCCA
, z−z0 < 0

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð11:77Þ

which can be more compactly written as

^̂GsTM
u,v,z! z0,r'ð Þ = j

exp − jux0ð Þexp − jvy0ð Þ
2k2s kz1s

×

u2k2z1s
u2 + v2

uvk2z1s
u2 + v2

− sgn z−z0ð Þukz1s
uvk2z1s
u2 + v2

v2k2z1s
u2 + v2

− sgn z−z0ð Þvkz1s
−usgn z−z0ð Þkz1s −vsgn z−z0ð Þkz1s u2 + v2

0
BBBBBB@

1
CCCCCCA

ð11:78Þ
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where sgn stands for the sign function, equal to 1 if its argument is positive and equal
to −1 if its argument is negative. At this point, based on the calculations presented in
Appendix E [see, in particular, Eqs. (E.18), (E.19), (E.32), and (E.33)], and reminding
ourselves that the soil–air reflection coefficients are the opposite of the air–soil ones
(see again Appendix E), we obtain the plane wave spectrum of the “reflected Green’s
function”, given by

^̂Grss
= j

exp − j ux0 + vy0ð Þð Þ
2k2s kz1s

−RTE

k2s v
2

u2 + v2
−k2s uv

u2 + v2
0

−k2s uv

u2 + v2
k2s u

2

u2 + v2
0

0 0 0

0
BBBBB@

1
CCCCCA

2
666664

−RTM

u2k2z1s
u2 + v2

uvk2z1s
u2 + v2

−usgn z−z0ð Þkz1s

uvk2z1s
u2 + v2

v2k2z1s
u2 + v2

−vsgn z−z0ð Þkz1s
0 0 0

0
BBBBBB@

1
CCCCCCA

+RTM

0 0 0
0 0 0

−usgn z−z0ð Þkz1s −vsgn z−z0ð Þkz1s − u2 + v2ð Þ

0
@

1
A
3
5

= j
exp − j ux0 + vy0ð Þð Þ

2k2s k
2
z1s

−RTE

k2s v
2

u2 + v2
−k2s uv

u2 + v2
0

−k2s uv

u2 + v2
k2s u

2

u2 + v2
0

0 0 0

0
BBBBB@

1
CCCCCA

2
666664

−RTM

u2k2z1s
u2 + v2

uvk2z1s
u2 + v2

−usgn z−z0ð Þkz1s
uvk2z1s
u2 + v2

v2k2z1s
u2 + v2

−vsgn z−z0ð Þkz1s

usgn z−z0ð Þkz1s vsgn z−z0ð Þkz1s u2 + v2ð Þ

0
BBBBBB@

1
CCCCCCA

3
7777775

ð11:79Þ

Substituting the reflection coefficient as retrieved in Appendix E, we obtain
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^̂Grss
= − j

exp − j ux0 + vy0ð Þð Þ
2k2s kz1s

×

k2s v
2 kz10−kz1sð Þ

u2 + v2ð Þ kz10 + kz1sð Þ +
u2k2z1s kz1sε0−kz10εsð Þ
u2 + v2ð Þ kz1sε0 + kz10εsð Þ

−k2s uv kz10−kz1sð Þ
u2 + v2ð Þ kz10 + kz1sð Þ +

uvk2z1s kz1sε0−kz10εsð Þ
u2 + v2ð Þ kz1sε0 + kz10εsð Þ

−usgn z−z0ð Þkz1s kz1sε0−kz10εsð Þ
kz1sε0 + kz10εsð Þ

−k2s uv kz10−kz1sð Þ
u2 + v2ð Þ kz10 + kz1sð Þ +

uvk2z1s kz1sε0−kz10εsð Þ
u2 + v2ð Þ kz1sε0 + kz10εsð Þ

k2s u
2 kz10−kz1sð Þ

u2 + v2ð Þ kz10 + kz1sð Þ +
v2k2z1s kz1sε0−kz10εsð Þ
u2 + v2ð Þ kz1sε0 + kz10εsð Þ

−vsgn z−z0ð Þkz1s kz1sε0−kz10εsð Þ
kz1sε0 + kz10εsð Þ

usgn z−z0ð Þkz1s kz1sε0−kz10εsð Þ
kz1sε0 + kz10εsð Þ

vsgn z−z0ð Þkz1s kz1sε0−kz10εsð Þ
kz1sε0 + kz10εsð Þ

u2 + v2ð Þ kz1sε0−kz10εsð Þ
kz1sε0 + kz10εsð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð11:80Þ

Let us now label as Mrss the matrix in large parentheses. In this way, the contribution to
the half-space Green’s function coming from the reflection at the soil-air interface can be
compactly written as

Grss r,r
0ð Þ = j

4π2k2s

ð+∞
−∞

ð+∞
−∞

exp j u x−x0ð Þ + v y−y0ð Þ−kz1s z+ z0ð Þð Þð Þ
kz1s

Mrss u,vð Þ dudv

ð11:81Þ

Let us remind, at this point, after Eq. (11.37), that we can express compactly the Green’s
function of a homogeneous soil4 as

Gs r,r0ð Þ= I+
1
k2s
rr

� �
exp − jks r−r0k kð Þ

4π r−r0k k
� �

ð11:82Þ

Equation (11.82) provides the direct contribution to the Green’s function in a half space,
with both a buried source and observation point. Eventually the internal Green’s function
of the problem is given by

Gi r,r0ð Þ =Gss r,r0ð Þ =Grss r,r
0ð Þ+Gs r,r

0ð Þ

j

4π2k2s

ð+∞
−∞

ð+∞
−∞

exp j u x−x0ð Þ + v y−y0ð Þ−kz1s z+ z0ð Þð Þð Þ
kz1s

Mrss u,vð Þ dudv

+ I+
1
k2s
rr

0
@

1
A exp − jks r−r0k kð Þ

4π r−r0k k

0
@

1
A ð11:83Þ

4Actually Eq. (11.37) refers to the free space, but the extension to the case of any homogeneous space is
straightforward.
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At this point, the scattering equations have been fully specified. In fact, they are given by
Eqs. (11.1) and (11.2), with the incident field specified in Eq. (11.73), the external
Green’s function specified in Eq. (11.75), and the internal Green’s function specified
in Eq. (11.83).

The same procedure can be followed in order to calculate also the Green’s function
Gaa r,r0ð Þ, relative to the case of a half-space with both the source and observation points
in air. However, this quantity does not enter the scattering equations, and we leave it as a
possible exercise. The quantity Gaa r,r0ð Þ is theoretically relevant if one wants to retrieve
the scattered field data by subtraction of the incident field data from the total field data
[see Eq. (11.13)]. However, as already emphasized in Chapter 7, this is not a robust pro-
cedure with experimental GPR data.

QUESTIONS

1. Is the 3D inverse scattering problem ill-posed? How could we prove this?

2. In the 2D case dealt with in Chapters 4 and 5, we have that the electric field is parallel
to the direction of the source. Is it the same in 3D?

3. What is the main difference between the gauge of Lorentz applied in the calculations
in Chapter 5 and that applied in Chapter 10?

4. In the 2D case we did not distinguish a reflection coefficient for TE polarization and
another one for TM polarization. Why?

5. Is the GPR datum gathered under a 3D model a vector quantity for each observa-
tion point?
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12

THREE-DIMENSIONAL
DIFFRACTION TOMOGRAPHY

12.1 BORN APPROXIMATION AND DT IN 3D

The (first-order) Born approximation (BA) in 3D can be introduced in the same
way as done in 2D, namely approximating the internal field with the incident one.
The underlying physical rationale is the same as in 2D, and therefore it will be not
repeated.

With the symbols introduced in Chapter 11, and with reference to Figure 11.1, this
means that, under BA, the scattering equations reduce to

E r,rsð Þ =Einc r,rsð Þ, r2D, rs 2Σ ð12:1Þ

Es r0,rsð Þ = k2s
ð ð ð
D

χe r0ð ÞGe r0,r
0ð ÞEinc r0,rsð Þ dr0, r0, rs 2Σ ð12:2Þ

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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The linear scattering equation (12.2) is a vector relationship. However, the GPR datum is
in any case a scalar quantity, because it is essentially the tension value gathered by the
receiving antenna. The correct relationship between the field and retrieved tension should
account for the effective length of the receiving antenna, as illustrated in Chapter 4.
However, as said in Chapter 11, we will approximate the received datum as the projection
of the field in the observation point along the direction of the receiving dipole. Moreover,
we will refer to the customary GPR prospecting performed in common offset (Daniels,
2004), so that we will assume that the transmitting and receiving antennas are two dipoles
parallel to each other and also parallel to the air–soil interface. Therefore, with reference
to Figure 12.1, it is comfortable to assume that a reference system such as the transmitting
and receiving dipoles are directed either along the x-axis either along the y-axis. Let
us focus on the case when the two dipoles are directed along the x-axis, are separated
by a fixed offset Δ, and move sequentially along several lines parallel to the y-axis
separated from each other by a fixed interline distance (transect) T and at a fixed
height h (possibly and hopefully equal to zero, due to the considerations exposed in
Chapter 9). This configuration is commonly called a C-scan (Daniels, 2004). Thus,
resorting to Eqs. (11.4) and (11.11), the scalar scattered field datum under BA can be
written as

Esx r0,rsð Þ= − jk2s μ0ωI0l

ð ð ð
D

χe r0ð Þix�Gsa r0,r
0ð ÞGas r

0,rsð Þ�ix dr0, r0, rs 2Σ ð12:3Þ

Substituting the expressions of Gas r,rsð Þ and Gsa r0,r0ð Þ from Eqs. (11.71) and (11.75),
we obtain

y

x

z

h T

Air

Soil

Parallel B-scans

Figure 12.1. Geometrical schemeof the commonoffset C-scan. For color detail, please see color

plate section.
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Esx r,rsð Þ= − jμ0ωI0l

16π4k20

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

dx0dy0dz0χe x0,y0,z0ð Þ

×
ð+∞
−∞

ð+∞
−∞

du1dv1

ð+∞
−∞

ð+∞
−∞

du2dv2
ix�Msa u1,v1ð ÞMas u2,v2ð Þ�ixð Þ

u21 + v
2
1

� �
u22 + v

2
2

� �

× exp j u1 x−x0ð Þ+ v1 y−y0ð Þ−u2 x0−xsð Þ−v2 y0−ysð Þ− zkz10 u1,v1ð Þððð

+ zskz10 u2,v2ð ÞÞ− kz1s u1,v1ð Þ + kz1s u2,v2ð Þð Þz0ÞÞ, r, rs 2Σ ð12:4Þ

Due to the considered configuration, we have

ys = y +Δ,

xs = x,

z = zs = h

ð12:5Þ

Consequently the scalar scattered field datum is given by

Esx x,y;ω,h,Δð Þ= − jμ0ωI0l

16π4k20

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

dx0dy0dz0χe x0,y0,z0ð Þ

×
ð+∞
−∞

ð+∞
−∞

du1dv1

ð+∞
−∞

ð+∞
−∞

du2dv2
ix�Msa u1,v1ð ÞMas u2,v2ð Þ�ixð Þ

u21 + v
2
1

� �
u22 + v

2
2

� �

× exp − j u1 + u2ð Þx0 + v1 + v2ð Þy0ð Þð Þexp j u1 + u2ð Þxðð

+ v1 + v2ð ÞyÞÞexp − jz0 kz1s u1,v1ð Þ + kz1s u2,v2ð Þð Þð Þð Þ

× exp jv2Δð Þexp − jh kz10 u1,v1ð Þ + kz10 u2,v2ð Þð Þð Þ, r, rs 2Σ ð12:6Þ

In the 3D case, we will focus only on the case with data gathered at the air–soil interface
(h = 0). That said, let us pose

u1 + u2 = p

v1 + v2 = q
ð12:7Þ

Thus, Eq. (12.6) is rewritten as

207BORN APPROXIMATION AND DT IN 3D



Esx x,y;ω,0,Δð Þ = − jμ0ωI0l

16π4k20

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

dx0dy0dz0χe x0,y0,z0ð Þ

×
ð+∞
−∞

ð+∞
−∞

dpdq

ð+∞
−∞

ð+∞
−∞

du2dv2
ix�Msa p−u2,q−v2ð ÞMas u2,v2ð Þ�ixð Þ

p−u2ð Þ2 + q−v2ð Þ2
� �

u22 + v
2
2

� �
× exp − j px0 + qy0ð Þð Þexp j px + qyð Þð Þexp − jz0 kz1s p−u2,q−v2ð Þððð

+ kz1s u2,v2ð ÞÞÞÞexp jv2Δð Þ, r, rs 2Σ ð12:8Þ

In Eq. (12.8) we can recognize a double direct Fourier transform with respect to the
contrast and a double inverse Fourier transform with respect to the data. Thus, from
Eq. (12.8) we obtain

^̂Esx p,q;ω,0,Δð Þ= − jμ0ωI0l

4π2k20

ð+∞
−∞

dz0 ^̂χe p,q,z0ð Þ

×
ð+∞
−∞

ð+∞
−∞

ix�Msa p−u2,q−v2ð ÞMas u2,v2ð Þ�ixð Þ
p−u2ð Þ2 + q−v2ð Þ2

� �
u22 + v

2
2

� �
× exp − jz0 kz1s p−u2,q−v2ð Þððð

+ kz1s u2,v2ð ÞÞÞÞexp jv2Δð Þdu2dv2, r, rs 2Σ ð12:9Þ

The double integral in du2dv2 is solved under the stationary phase approximation for
high values of z0, which amounts to assume targets that are not too shallow, analogously
to the 2D case. There is a unique first-order stationary point at

u2 =
p

2
, v2 =

q

2
ð12:10Þ

Thus, under the above approximations we have

^̂Esx p,q;ω,0,Δð Þ=
ð+∞
−∞

W p,q;ω,0,Δð Þ
^̂χe p,q,z0ð Þ

z0
exp − j2z0kz1s

p

2
,
q

2

� �� �
dz0 ð12:11Þ

where the spectral weight W(p,q;ω,0,Δ) is given by
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W p,q;ω,0,Δð Þ

=
μ0ωI0l

πk20

4k2s −p
2−q2

� �3=2
ix�Msa

p

2
,
q

2

� �
Mas

p

2
,
q

2

� �
�ix

� �
exp − j

p

2
Δ

� �

p2 + q2ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2s −p

2
� �

4k2s −q
2

� �q

=
μ0ωI0lexp − j

p

2
Δ

� �
4k2s −p

2−q2
� �3=2

πk20 p2 + q2ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2s −p

2
� �

4k2s −q
2

� �q X3
n = 1

Msa1n
p

2
,
q

2

� �
Masn1

p

2
,
q

2

� �

=
8μ0εsrωI0lexp − j

p

2
Δ

� �
k3z1s

πk20 p2 + q2ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2s −p

2
� �

4k2s −q
2

� �q k20q
2

kz10 + kz1s
+

ε0p2kz1skz10
kz1sε0 + kz10εs

0
@

1
A22

4

+
k20pq

kz10 + kz1s
−

ε0pqkz1skz10
kz1sε0 + kz10εs

0
@

1
A2

+
ε0pkz10 p2 + q2ð Þ
2 kz1sε0 + kz10εsð Þ

0
@

1
A235 ð12:12Þ

The second member of Eq. (12.11) represents the Fourier transform of the auxiliary
quantity

χe1 x0,y0,z0ð Þ = χe x0,y0,z0ð Þ
z0

ð12:13Þ

calculated in the point

η p,qð Þ= p,
ξ p,qð Þ = q,

ς p,qð Þ = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s −

p2

4
−
q2

4

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2s −p

2−q2
p

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
ω2

c2
−p2−q2

s ð12:14Þ

In the end, the DT relationship in 3D is given by

^̂Esx p,q;ω,0,Δð Þ=W p,q;ω,0,Δð Þ ^̂χ̂e1 η p,qð Þ,ξ p,qð Þ,ς p,qð Þð Þ ð12:15Þ

with the spectral weight given by Eq. (12.12) and the coordinative transformation
given by Eq. (12.14).

As can be seen, Eq. (12.15) is a conceptually straightforward extension of the
DT relationship in 2D, expressed by Eq. (9.11).
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12.2 IDEAL AND LIMITED-VIEW-ANGLE 3D RETRIEVABLE
SPECTRAL SETS

Based on the coordinative transformation given in Eq. (12.14), relationship (12.15)
provides a Fourier relationship between the spectrum of the data and that of the
contrast normalized to the depth if and only if the soil is lossless and the couple
(p,q) verifies the inequality p2 + q2 ≤ 4k2s . This means that the 2D ideal (i.e., relative
to an infinite observation line) visible interval in 3D becomes the ideal visible circle,
centered in the origin and with ray equal to 2ks in the plane (p,q). It is characterized
by the inequality

Cv = p,qð Þ : p2 + q2 ≤ 4k2s ð12:16Þ

This ideal circle corresponds to the case of an infinite observation plane with effective
view angle ranging from −π=2 to π=2 along any horizontal direction.

At any fixed frequency, from Eq. (12.14) we recognize that the visible circle is
transformed in a curved surface in the space (η,ξ,ς), whose equation is given by

η2 + ξ2 + ς2 = 4k2s ð12:17Þ

Equation (12.17) is the equation of a sphere centered in the origin and with ray 2ks in the
space (η,ξ,ς). It is easy to recognize, in particular, that the visible circle Cv corresponds to
the half-sphere of Eq. (12.17) enclosed in the half-space ς ≥ 0.

At variance of the frequency, the spectral retrievable set in 3D is given by the points
(η,ξ,ς) enclosed between the two half spheres centered in the origin with minimum ray
2ksmin and maximum ray 2ksmax, respectively. This means that the retrievable spectral
set is limited. In particular, we have that the 3D retrievable spectral set is given by
the solid of revolution of the homologous 2D set around the ς-axis.

It is important to outline that the spectral weight tends to zero all over the bound
of the visible circle, so that the “actual” retrievable spectral set is never equal to the ideal
one, in the sense that it would not be equal to the ideal set even if the measurement
plane surface were unlimited, analogously to what happened in 2D (see Section 9.2).

With regard to the case of a limited view angle, the equivalent in 3D of Section 9.3
should be developed. The procedure is conceptually straightforward but of course
quite long. In particular, the maximum view angle (meant at the moment in a merely
geometrical sense) obviously depends on the shape of the bound of the observation
surface and in general is not the same along any horizontal direction.

In the (common) case that the area of interest is large with respect to the square of
the central wavelength in the soil, and on condition that the shape of this area is not
extremely elongated, it makes a sense to introduce the concept of an effective maximum
view angle, which can be averagely estimated from the data in the same way shown in the
2D case. Rigorously, the maximum view angle is in general a quantity depending on the
particular horizontal direction, and in particular it is in general not the samealong the x-axis
or along the y-axis. Physically, this is because the radiation patterns of the antennas are in
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general not symmetrical around the z-axis. In particular, in the considered case (a Hertzian
dipole as source andamere “projector” as receiver) this canbe recognized from the fact that
in Eq. (12.12) the spectral weight is not a function of p2 + q2, nor do we haveW(p,q) =W
(q,p).

If a particularly refined analysis is required or desired, we might estimate from the
data the maximum effective view θemax y along the y-axis (i.e., the axis along which the
B-scans develops) and the effective maximum view angle θemax x along the x-axis
(theoretically, this can be retrieved joining the traces of the different B-scans at the same
value of y). In this case, the visible set can be approximated by the canonical ellipsis with
axes 4ks sin(θemax y) and 4ks sin(θemax x) in the plane (p,q). The fact that the visible
effective set in general is not circular drives to the consideration that (rigorously) the
retrievable spectral set is not rotationally symmetric around the axis ς. This means, on
one side, that the optimal spatial step along y and along x, namely the spatial step between
the traces along any B-scan and the transect between any two adjacent B-scans, are not
rigorously equal to each other, and this also means that the resolution achievable along x
is rigorously not the same as that expected along y or along any other horizontal direction.
However, θemax x and θemax y are expected of the same order, and since we look for an
order of magnitude with regard to both the spatial step to adopt and the resolution that we
can hope to achieve, we will refer just to a θemax that will be assumed equal along any
horizontal direction. Operatively, it is more simple to evaluate θemax from the B-scans,
gathered along the y-axis in the considered case. Under this assumption, the effective
visible set accounting for the finite view angle is circular, and its equation is

Cve = p,qð Þ : p2 + q2 ≤ 4k2s sin2 θemaxð Þ ð12:18Þ

Inequality (12.18) describes the circle centered in the origin and with ray equal to
2ks sin(θemax).

If the frequency is between fmin and fmax, we will achieve the spectral set as the inter-
section (in the half-space ς > 0) of volume enclosed between the two spheres centered in
the origin with ray 2ksmin and 2ksmax and the cone of angular aperture θemax.
Mathematically, the spectral set S is described as follows:

S = S1\S2\S3\S4 ð12:19Þ

where

S1 = η,ξ,ςð Þ : ς ≥ 0,
S2 = η,ξ,ςð Þ : η2 + ξ2 + ς2 ≥ 4k2smin,

S3 = η,ξ,ςð Þ : η2 + ξ2 + ς2 ≤ 4k2smax,

S4 = η,ξ,ςð Þ : η2 + ξ2 ≤ ς2 sin
2 θemaxð Þ

cos2 θemaxð Þ

ð12:20Þ

A quantitative representation of the retrievable spectral set is given in Figure 12.2.
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12.3 SPATIAL STEP AND TRANSECT

The spatial step and the transect or, in other terms, the spatial needed steps along the direc-
tion of the movement of the antennas and along the horizontal direction orthogonal to this
are driven by the Nyquist criterion. Therefore, the spatial step both along the x- and y-axis
has to be not larger than 2π times the inverse of the diameter of the visible circle, both
along the x-axis and along the y-axis. This step is the maximum one allowed in
order to guarantee an aliasing-free reconstruction of the effective visible circle. Of course,
we are mainly interested in mutlifrequency prospecting and so, conservatively, the bound
will be referred to the maximum involved frequency. Consequently, in the end we have

spatial step = s=
2π

2 2ksmax sin θemaxð Þð Þ =
2π

4sin θemaxð Þ 2π
λsmin

=
λsmin

4sin θemaxð Þ ,

transect =T =
2π

2 2ksmax sin θemaxð Þð Þ =
2π

4sin θemaxð Þ 2π
λsmin

=
λsmin

4sin θemaxð Þ
ð12:21Þ

Analogously to the 2D case, the needed spatial step (and also the needed transect) can be
relaxed if the targets of interest are not very shallow.
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Figure 12.2. Quantitative representation of the effective 3D retrievable spectral set. Involved

parameters: fmin = 200MHz, fmax = 600MHz, εsr = 4, and θemax = 0.8481 radians (sin(θemax) = 0.75).
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With regard to the spatial step, the 3D result confirms the 2D result [see
Eq. (9.49)]. Instead, the evaluation of the needed transect makes sense only within a
3D model. From a practical point of view, in most cases it is not a problem to guarantee
the Nyquist rate with regard to the spatial step along the B-scan, because the step
guaranteed by the odometer is in most cases automatically narrower than the Nyquist
rate. Instead, to guarantee the Nyquist rate with regard to the transect is in most cases
unpractical, at least with a classical (single antenna) GPR system. To mitigate this
problem, in many cases a grid of measurements along two orthogonal C-scans, along
both the x-axis and the y-axis (Conyers, 2004), is taken. In this way, the combination
(i.e., the multiplication, pixel by pixel, after some suitable interpolation) of the
two images achieved from the two C-scans mitigates the “necessarily too large”
transect.

On the other hand, it is also to be outlined that, in most cases, even if the transect is
larger than that theoretically required, the user can achieve meaningful and above all use-
ful results (the published case histories are endless because indeed a transect larger than
the Nyquist rate is the praxis). This happens for two reasons:

1. Based on the DT equation (12.15), the spectrum of the field within the visible
circle is proportional to the spectrum of the object function. The effective visible
circle is approximately the maximum possible extension of the spatial spectrum
of the field at a given frequency. However, the actual extension of the spectrum
of the field might be even narrower, which relaxes the anti-aliasing
requirements. This can happen if the targets of interest are larger than the
Nyquist rate. In other words, we really need the Nyquist rate only if we have
to achieve the maximum available resolution, which fortunately does not occur
in all the case histories.

2. The effective visible spectrum depends also on the depth of the targets of interest,
because of the sine of the maximum effective view angle, which customarily
decreases versus the depth, as said. Thus, the Nyquist rate is “fully” needed only
if the targets of interest are small and shallow. In particular, for deeper targets the
achievable performances get unavoidably degraded but, on the other hand, also
the sampling requirements get consequently relaxed.

12.4 HORIZONTAL RESOLUTION

Raffaele Persico and Raffaele Solimene

In order to estimate the horizontal (and then the vertical) resolution, we will follow the
same steps already implemented in the 2D case (see Section 9.5). In particular, neglecting
the effect of the spectral weighting function, we will approximate the reconstruction of a
point-like target—that is, the point spread function, with the inverse Fourier transform of
the spectrum of the object function restricted to the retrievable spectral set.
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Still, in order to achieve a closed-form solution, we will approximate the retrievable
spectral set as a cylinder. The basis of the cylinder is the visible circle at the central
frequency—that is, the circle with equation

η2 + ξ2 = 4k2sc sin
2 θemaxð Þ ð12:22Þ

The height of the cylinder ranges between 2ksmin and 2ksmax along the ς-axis.
In Figure 12.3, the approximated cylindrical spectral set is quantitatively represented,
in comparison with the actual spectral set. The involved parameters are the same as in
Figure 12.2. Let us refer to this volume as Cyl. This cylinder is the solid of revolution
around the ς-axis of the dashed rectangle that approximates the spectral set in 2D
(see Figure 9.11).

At this point, neglecting also the unessential normalization of the contrast to the
depth [see Eq. (12.13)], let us consider a point-like target described as

χe x0,y0,z0ð Þ= χ0δ x0−x0ð Þδ y0−y0ð Þδ z0−z0ð Þ ð12:23Þ

Its point spread function is given by

χer x0,y0,z0ð Þ= χ0
8π3

ð ð ð
Cyl

exp j x0−x0ð Þηð Þexp j y0−y0ð Þξð Þexp j z0−z0ð Þςð Þ dηdξdς ð12:24Þ

It is convenient to solve in polar coordinatives the double integral, so we write

η= ρcos φð Þ,
ξ= ρsin φð Þ,
x0−x0 = ρ1 cos φ1ð Þ,
y0−y0 = ρ1 sin φ1ð Þ

ð12:25Þ
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Figure 12.3. Actual and approximated (cylindrical) spectral retrievable set.
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where

ρ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 + ξ2

p
,

ρ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0−x0ð Þ2 + y0−y0ð Þ2

q
,

φ=

arcsin
ξffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 + ξ2
p

0
@

1
A if η ≥ 0,

π− arcsin
ξffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 + ξ2
p

0
@

1
A if η< 0

8>>>>>>>>><
>>>>>>>>>:

φ1 =

arcsin
y0−y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0−x0ð Þ2 + y0−y0ð Þ2
q

0
B@

1
CA if x0−x0 ≥ 0,

π− arcsin
y0−y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0−x0ð Þ2 + y0−y0ð Þ2
q

0
B@

1
CA if x0−x0 < 0

8>>>>>>>><
>>>>>>>>:

ð12:26Þ

Thus, Eq. (12.24) can be rewritten as

χer x0,y0,z0ð Þ = χ0
8π3

ð2ksmax

2ksmin

exp j z0−z0ð Þςð Þ dς
ð2ksc sin θemaxð Þ

0

ρdρ

ð2π
0

exp jρρ1 cos φ−φ1ð Þð Þ dφ=

=
χ0
8π3

ð2ksmax

2ksmin

exp j z0−z0ð Þςð Þ dς
ð2ksc sin θemaxð Þ

0

ρdρ

ð2π
0

exp jρρ1 cos φð Þð Þ dφ=

=
χ0
8π3

ksmax−ksminð Þexp j2ksc z0−z0ð Þð Þsinc ksmax−ksminð Þ z0−z0ð Þð Þ×

×
ð2ksc sin θemaxð Þ

0

ρ dρ

ð2π
0

exp jρρ1 cos φð Þð Þ dφ ð12:27Þ

In particular, in Eq. (12.27) we have exploited the periodicity of the argument of the third
integral, which makes the result independent of φ1.
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Based on the calculation steps developed in Appendix F, we can solve the integral
(12.27) in terms of the Bessel’s function of first kind and order one (Abramowitz and
Stegun, 1972) as follows:

χer x0,y0,z0ð Þ

=
4χ0 ksmax−ksminð Þexp j2ksc z0−z0ð Þð Þk2sc sin2 θemaxð Þ

π2

× sinc ksmax−ksminð Þ z0−z0ð Þð Þ
J1 2ksc sin θemaxð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0−x0ð Þ2 + y0−y0ð Þ

q� �

2ksc sin θemaxð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0−x0ð Þ2 + y0−y0ð Þ

q
ð12:28Þ

In Figure 12.4, the function J1 xð Þ=x is represented versus x: It is an even function some-
how similar to a sinc function. In particular, the first zeroes of the function are at x = 3.84.
Thus, the extension of the main lobe of the function is provided by the following
equation:

2ksc sin θemaxð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0−x0ð Þ2 + y0−y0ð Þ2

q

= 2× 3:84)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0−x0ð Þ2 + y0−y0ð Þ2

q
=

3:84
ksc sin θemaxð Þ =

3:84
π

λsc
2sin θemaxð Þ ð12:29Þ

Similarly to the 2D case, this distance also provides the horizontal resolution, which
therefore is given by
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Figure 12.4. Graph of J1 xð Þ=x.
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HR =
3:84
π

λsc
2sin θemaxð Þ ≈1:22

λsc
2sin θemaxð Þ ð12:30Þ

Since what we can retrieve is (only) an order of magnitude, Eq. (12.30) essentially con-
firms the 2D result of Eq. (9.44), namely the fact that best retrievable horizontal resolu-
tion is expected of the order of one-half of the internal wavelength for shallow targets and
is expected to degrade progressively versus the depth.

12.5 VERTICAL RESOLUTION, FREQUENCY AND TIME STEPS

The calculation of the vertical resolution is fully analogous to the 2D case. This stems
from the fact that, in the calculation of the point spread function, the integral in dς is
decoupled from the integrals along the other spectral variables and is exactly the same
in 2D and 3D [see Eqs. (9.42) and (12.28)]. Consequently, the vertical achievable
resolution can be quantified by means of Eqs. (9.45) and (9.46), here repeated for a
more comfortable reading:

Lossless case

VR=
c

B
≈

c

fc
= λsc ð12:31Þ

Lossy case (perturbative approach)

VR =
c

Be
≈

c

fce
= λsce ð12:32Þ

With regard to the needed frequency step, the calculations are straightforwardly derived
from the 2D dealing of Section 9.8, with the only difference that condition (9.53) is
replaced by its equivalent in 3D

Δς η,ξð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ks +Δksð Þ2−η2−ξ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2s −η

2−ξ2
q

ð12:33Þ

whose minimum versus η and ξ is achieved at (η,ξ) = (0,0).
Thus, also in this case we will not repeat the passages, referring the reader to

Section 9.8. Here, we will just repeat the result, which is [see Eq. (9.52)]

Δf =
c0

2b
ffiffiffiffiffiffi
εsr

p ð12:34Þ

where b is the vertical extent of the investigation domain and εsr is the relative
permittivity of the soil (we are not considering the case of magnetic soils in this chapter).
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Let us also remind that this is the frequency step for processing the data, which is
possibly different from the frequency step needed to gather the data in the frequency
domain, for which the reader is referred to Chapter 3.

Finally, with regard to the time step, the dealing remains the same as in Section 9.9,
and also in this case there is no difference with respect to the 2D case. In particular, the
time step needed for gathering the data is given in any case by Eq. (3.39), and the time
step needed to process the data in the time domain after filtering them for any reason
(in particular, for some possible narrow band interferences) is given by Eq. (9.54).

QUESTIONS

1. Does the ideal (with infinite observation line) 2D visible interval at fixed frequency
translate into a square range in the analogous 3D case?

2. Is the 3D retrievable spectral set the rotation volume of the 2D spectral set around
its symmetry axis?

3. Is the horizontal resolution in 3D better than that available in 2D, because of the more
accurate model?

4. Is the Nyquist criterion an indispensable requirement with regard to the spatial step of
the data along both the x and y horizontal directions?
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13

THREE-DIMENSIONAL
MIGRATION ALGORITHMS

13.1 3D MIGRATION FORMULAS IN THE FREQUENCY DOMAIN

In this section we will provide 3D migration formulas for the case developed in the
previous chapter, namely data gathered at the air–soil interface in common offset on a
nonmagnetic soil and without magnetic targets. The source is assimilated to a Hertzian
dipole, and the received signal is approximated as the projection of the field along the
direction of the receiving dipole in the observation point.

The migration in 3D is based on the inversion of Eq. (12.15), which (omitting
the dependence of the spectral weight on the height of the measurement line and on
the offset) is formally written as

^̂χ̂e1 η,ξ,ςð Þ= 1
W p η,ξ,ςð Þ,q η,ξ,ςð Þ;ω η,ξ,ςð Þð Þ

^̂ESX p η,ξ,ςð Þ,q η,ξ,ςð Þ;ω η,ξ,ςð Þð Þ ð13:1Þ

Where the spatial spectral weightW is provided by Eq. (12.12) and where the inversion is
defined only for (η,ξ,ς) belonging to the spectral retrievable set, which automatically
provides also a regularization of the result. The formal expression of the coordinative

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
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transformation from a volume in the space (η,ξ,ς) to a volume in the space (p,q,ω) is
achieved by inverting Eq. (12.14), which provides

p = η,

q = ξ,

ω=
c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 + ξ2 + ς2

q ð13:2Þ

where c is the propagation velocity of the electromagnetic waves in the soil. Thus
Eq. (13.1) can be more simply rewritten as

^̂χ̂e1 η,ξ,ςð Þ= 1

W η,ξ;
c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 + ξ2 + ς2

q� � ^̂Esx η,ξ;
c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 + ξ2 + ς2

q� �
ð13:3Þ

The object function is provided by the 3D inverse Fourier transform of Eq. (13.1):

χe1 x0,y0,z0ð Þ = 1
8π3

ð ð ð
Sp−set

1

W η,ξ,
c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 + ξ2 + ς2

q� � ^̂Esx η,ξ;
c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 + ξ2 + ς2

q� �

× exp j ηx0 + ξy0 + ςz0ð Þð Þ dηdξdς ð13:4Þ

where the integration is performed over the retrievable spectral set.
Equation (13.4) requires an interpolation of the spectrum of the data, but it is a

three-dimensional inverse Fourier transform and thus can be implemented by means
of fast IFFT algorithms.

Alternatively, the integration can be performed in the variables η, ξ, andω, by means
of the substitution

c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 + ξ2 + ς2

q
=ω) ς =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

vuut ) dς=
4ωdωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ω2

c2
−η2−ξ2

s ð13:5Þ

In this way, we can rewrite Eq. (13.4) as

χe1 x0,y0,z0ð Þ= 1
4π3

ð ð ð
Sp−set1

ω ^̂Esx η,ξ;ωð Þ

W η,ξ;ωð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s

× exp j ηx0 + ξy0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s
z0

 ! !
dηdξdω ð13:6Þ
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Equation (13.6) does not require any interpolation of the spectrum of the data, but it is not
an inverse Fourier transform, and so the integral cannot be calculated by means of fast
IFFT algorithms. In Eq. (13.6) the integration domain has been labeled as the Sp_set1
because it is the spectral retrievable set in the space (η,ξ,ω) straightforwardly specified
from the spectral retrievable set Sp_set in the space (η,ξ,ς), which coincides with the set S
characterised by Eqs. (12.19) and (12.20).

We can achieve an integral expression where the extremes of the integration
are explicated, by passing to polar coordinatives. In particular, we can substitute
in Eq. (13.4)

η= ρcos φð Þsin θ1ð Þ,
ξ= ρsin φð Þsin θ1ð Þ,
ς= ρcos θ1ð Þ

ð13:7Þ

where the symbol θ1 has been adopted in order not to confuse the integration variable
with the maximum effective view angle. Substituting into Eq. (13.4) and putting in
the integral also the Jacobian of the transformation ρ2 sin(θ1), we obtain

χe1 x0,y0,z0ð Þ= 1
8π3

ð2π
0

dφ

ðπ2
π
2 − θemax

sin θ1ð Þdθ1
ð2ksmax

2ksmin

ρ2dρ

×

^̂Esx ρcos φð Þsin θ1ð Þ,ρsin φð Þsin θ1ð Þ, c
2
ρ

� �

W ρcos φð Þsin θ1ð Þ,ρsin φð Þsin θ1ð Þ, c
2
ρ

� �

× exp j ρcos φð Þsin θ1ð Þx0 + ρsin φð Þsin θ1ð Þy0 + ρcos θ1ð Þz0ð Þð Þ ð13:8Þ

Equation (13.8) requires some interpolation of the data and is not an inverse Fourier
transform, so it is computationally less convenient with respect to the previous expressions.
However, it allows us to write in a closed form the extremes of the integrals and
allows us to appreciate more immediately the effect (and the relevance) of the maximum
view angle.

Equations (13.4), (13.6), and (13.8), are three alternative expressions for the f–k
migration in 3D. Similarly to the 2D case, a simplified but robust expression of the migra-
tion can be achieved by neglecting the effect of the spectral weightW and extending the
spectral integral to the entire space (η,ξ,ς), or alternatively the entire space (η,ξ,ω),
relying on the fact that the spectrum of the data automatically vanishes outside the visible
circle. In particular, assimilating to a unitary (but not dimensionless) factor F the
quantity 2ω

W η,ξ;ωð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

r in Eq. (13.6), we can write:
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χe1 x0,y0,z0ð Þ≈ F

8π3

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

^̂Esx η,ξ;ωð Þ exp j ηx0 + ξy0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s
z0

 ! !
dηdξdω

ð13:9Þ

or alternatively in the space (η,ξ,ς)

χe1 x0,y0,z0ð Þ≈ cF

16π2

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

ς ^̂Esx η,ξ;
c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 + ξ2 + ς2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 + ξ2 + ς2

p exp j ηx0 + ξy0 + ςz0ð Þð Þdηdξdς

ð13:10Þ

The expressions (13.9) and (13.10) correspond to classical expressions of the f–k
migration in 3D [see, e.g., Eqs. (67a) and (67b) in Stolt (1978), under the same clarifi-
cations provided in Chapter 10 with regard to the 2D case].

13.2 3D MIGRATION FORMULAS IN THE TIME DOMAIN

In order to express the migration formulas versus the data in space and time domain,
we can start from Eq. (13.6). In particular, it is comfortable to define

g η,ξ,ωð Þ=

ω

4π3W η,ξ;ωð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s , η,ξ,ωð Þ 2 Sp−set1

0, η,ξ,ωð Þ =2 Sp−set1

8>><
>>: ð13:11Þ

So that Eq. (13.6) can be more compactly rewritten as

χe1 x0,y0,z0ð Þ=
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

g η,ξ,ωð Þ ^̂Esx η,ξ;ωð Þ×

× exp j ηx0 + ξy0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s
z0

 ! !
dηdξdω ð13:12Þ

Now, the spectrum ^̂Esx η,ξ;ωð Þ is expressed versus the data in space and time domain as

^̂Esx η,ξ;ωð Þ =
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

Esx x,y, tð Þexp − j ηx+ ξyð Þð Þexp − jωtð Þdxdydt ð13:13Þ
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Substituting Eq. (13.13) into Eq. (13.12), we obtain

χe1 x0,y0,z0ð Þ =
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

g η,ξ,ωð Þexp j ηx0 + ξy0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s
z0

 ! !
×

×
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

Esx x,y, tð Þexp − j ηx + ξyð Þð Þexp − jωtð Þ dxdydtdηdξdω=

=
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

g1 x−x0,y−y0,z0, tð ÞEsx x,y, tð Þ dxdydt ð13:14Þ

where the function g1(x − x0, y − y0, z0, t) is defined as

g1 x−x0,y−y0,z0, tð Þ =
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

g η,ξ,ωð Þ − j ωt + η x−x0ð Þ+ ξ y−y0ð Þ +
 "

−z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s !#
dηdξdω ð13:15Þ

In general, the integral (13.15) cannot be solved in a closed form; thus, in general,
integral (13.14) cannot be solved in closed form either. However, if we assume that the
function g(η,ξ,ω) is unitary, then we can close the integrals. In fact, in this case we can
approximate

χe1 x0,y0,z0ð Þ =
ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

g2 x−x0,y−y0,z0, tð ÞEsx x,y, tð Þ dxdydt ð13:16Þ

with

g2 x−x0,y−y0,z0, tð Þ=F
ð+∞
−∞

exp − jωtð Þ dω

×
ð+∞
−∞

ð+∞
−∞

exp − j

 
η x−x0ð Þ+ ξ y−y0ð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

vuut z0
!2

4
3
5dηdξ
ð13:17Þ

where F is a unitary but not dimensionless factor. Equation (13.17) can also be put
in the form
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g2 x−x0,y−y0,z0, tð Þ =F ∂

∂z0

ð+∞
−∞

exp − jωtð Þ dω×

×
ð+∞
−∞

ð+∞
−∞

exp − j

 
η x−x0ð Þ + ξ y−y0ð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s
z0
!" #

− j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s dηdξ

ð13:18Þ

At this point, let us remind that in the 3D case the axis z0 is directed upward—this is, in the
air half-space—we have that z0 in Eq. (13.18) is a negative quantity, and so the function
can again be rewritten as

g2 x−x0,y−y0,z0, tð Þ = jF ∂

∂z0

ð+∞
−∞

exp − jωtð Þ dω×

×
ð+∞
−∞

ð+∞
−∞

exp − jη x−x0ð Þ− jξ y−y0ð Þ− j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s
z0j j

" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s dηdξ

ð13:19Þ

At this point, the integral in Eq. (13.19) can be solved in dηdξ by using the calculations
shown in Appendix A. In particular, based on Eq. (A.19) we have

ð+∞
−∞

ð+∞
−∞

exp − jη x−x0ð Þ− jξ y−y0ð Þ− j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s
z0j j

" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c2
−η2−ξ2

s dηdξ

=

2jπ exp j
2ω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q ð13:20Þ

Substituting Eq. (13.20) into Eq. (13.19), we obtain
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g2 x−x0,y−y0,z0, tð Þ= −2πF
∂

∂z0

ð+∞
−∞

exp − jω t−
2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q dω

= −4π2F
∂

∂z0

δ t−
2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q ð13:21Þ

Substituting Eq. (13.21) into Eq. (13.16), eventually we obtain

χe1 x0,y0,z0ð Þ= −4π2F
∂

∂z0

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

δ t−
2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q Esx x,y, tð Þ dxdydt

= −4π2F
∂

∂z0

ð+∞
−∞

ð+∞
−∞

Esx x,y, t =
2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q dxdy ð13:22Þ

Apart from an unessential factor, Eq. (13.22) is the classical 3D migration formula in the
time domain, as reported (for example) in Schneider (1978, page 53).

Performing the derivative under the sign of integral, we can still write

χe1 x0,y0,z0ð Þ≈ −4π2F
∂

∂z0

ð+∞
−∞

ð+∞
−∞

Esx x,y, t =
2r
c

� �
r

dxdy

= −4π2F
ð+∞
−∞

ð+∞
−∞

2z0

cr2
∂

∂t
Esx x,y, tð Þ

�����
t =

2r
c

−

z0Esx x,y, t =
2r
c

� �
r3

0
BB@

1
CCAdxdy ð13:23Þ

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z02

q
is the distance between the source point (x,y,0) and

the investigation point (x0,y0,z0). The quantity z0=r is easily recognized to be just the view
angle for the current source and investigation points, so that Eq. (13.23) can be also
rewritten as
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χe1 x0,y0,z0ð Þ= 4π2F
ð+∞
−∞

ð+∞
−∞

2cos θð Þ
cr

∂Esx x,y, tð Þ
∂t

�����
t =

2r
r

dxdy

−4π2F
ð+∞
−∞

ð+∞
−∞

cos θð ÞEsx x,y, t =
2r
c

� �
r2

dxdy ð13:24Þ

The signa are linked to the fact that z0 < 0 whereas we mean θ as the (acute) view
angle, so that cos(θ) = −z0/r. Some commercial code, such as e.g., the GPRSLICE,
allow to perform 3D migrations. The reader will find an example in Section 15.9.

13.3 3D VERSUS 2D MIGRATION FORMULAS IN
THE TIME DOMAIN

We think it might be of interest, at this point, to expose the physical reason why in the
formulas of the 2D migration in the time domain [Eqs. (10.35) and (10.36)] the datum is
integrated versus the time, whereas in the homologous 3D formulas [Eqs. (13.22) and
(13.23)] the integration along the time disappears.1

The reason is illustrated by means of Figure 13.1. In particular, in a 2D geometry
(panel A), we have depicted a 2D source constituted by a filamentary current at the
air–soil interface and a point-like 2D target, parallel to each other and both indefinitely
long along one of the axes. For the sake of clarity, the air–soil interface has been made
fully transparent in Figure 13.1. Moreover, the observation point along the axis orthog-
onal to the axis of invariance is evidenced too.

Let us now assume that the source is a filamentary current and radiates an
electromagnetic pulse in a nondispersive soil. This means that the filament is crossed
by a temporally impulsive electrical current. This situation can be also viewed as the
contemporary radiation of an infinite series of (3D) electromagnetic pulses emanated
by a series of adjacent elementary Hertzian dipoles: The single pieces of the blue dashed
line in Figure 13.1 can be interpreted as representative of this series. Let us now con-
centrate on the cross section of the target at x = 0 according to the Cartesian system in
Figure 13.1. The incident field in this point will be not temporally impulsive, because
the waves radiated by all the equivalent Hertzian dipoles that compose the 2D source
propagate at the same finite velocity. So, the elementary Hertzian dipole d1 (see
Figure 13.1, panel A) at x = 0 will be the first one to illuminate the cross section at
x = 0 of the target at hand, at the instant time rst=c (where rst is the minimum distance
between the source and the cross section of the target at x = 0 and where c is the
propagation velocity in the soil). Immediately afterward, at the time rst=c+ dt, the cross
section will be illuminated by the two “adjacent” equivalent Hertzian dipoles d2a and d2b,
placed at x = dx and x = − dx along the filamentary source, respectively. Then, at the time

1 In particular, this also means that the 2D formula is not merely given by the 3D formula with one less spatial
integration.
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rst=c + 2dt the cross section at hand is illuminated by the two dipoles d3a and d3b, placed
at x = 2dx and x = −2dx along the filamentary source, and so on. The subsequent
contributions are progressively weaker because of the geometrical spreading and because
of the possible losses in the propagation medium, so the field incident in the cross
section of the target at x = 0 vanishes versus the time. However, theoretically its duration
time ranges from the time instant rst=c up to +∞ The same reasoning also holds with
regard to the field scattered from the 2D target and so, in the end, the scattered field
received in the observation point ranges in time from the instant rst + rtoð Þ=c [where
rto is the distance between the cross section of the target at x = 0 and the observation point
(that also is placed at x = 0)] up to the time +∞. If we neglect the offset between the
source and observation points along the y-axis (as implicitly done when putting equal
to 1 the spectral weight), then we have that the scattered field is a vanishing quantity
theoretically observed from the time instant 2r=c (where r = rst = rto) up to the time

Target

Z

Observation

X

Y

Source

d3a

d2a

d2b

d3b

d1

(a) Panel A : 2D

Target

Z

Observation

X

Y

d1

Source

(b) Panel B : 3D

Figure 13.1. Pictorial of a 2D (panel A) and a 3D (panel B) geometry with an impulsive

point-like source and a point-like target. For color detail, please see color plate section.
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instant +∞. In the end, we can say that a trace of the actual three-dimensionality of the
“world” inexorably remains also within a 2D model.

Instead, within a 3D model (Figure 13.1, panel B), if we assume a point-like
impulsive source (i.e., a Hertzian dipole crossed by a temporally impulsive current)
and a point-like target, then we will measure an impulsive scattered field in the
observation point.

QUESTIONS

1. Are the 2Dmigration formulas obtained from the 3D ones with the suppression of one
of the integrals?

2. Could 3D migration formulas be obtained also if the transmitting and receiving
antennas were orthogonal to each other?

3. Suppose we have at our disposal an ideal array of dipole antennas. The dipoles are at a
λsmin=4 distance from each other and are orthogonal to the direction of the B-scans.
Does this make the gathering of orthogonal B-scans useless, in principle?

4. Is there some way to gather in a unique going-through all the information gathered
with two orthogonal sets of B-scans?
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14

THE SINGULAR VALUE
DECOMPOSITION

14.1 THE METHOD OF MOMENTS

Let us start from the 2D scattering equation under the Born approximation without
considering magnetic contrasts. The data are gathered in common offset configuration
and the height of the data is possibly greater than zero. So, the starting point is Eq. (9.55),
repeated here for readability.

Es x;ωð Þ = k2s
ð ð
D

Ge x,x0,h,z0;ωð ÞEinc x +Δ,x0,h,z0;ωð Þχe x0,z0ð Þ dx0dz0, x2Σ ð14:1Þ

where the involved symbols have been already explained in Chapter 9. Equation (14.1)
can be discretized by means of the method of moments (MoM). MoM is a well-known
subject, so its description will be very brief. Let us just state that the kind of MoM used
here is based on point matching in both spatial and frequency domains. Thus, we will
expand the contrast in a finite set of basis functions φk(x0,z0) k = 1,…,K, assuming that
K is high enough to allow a good representation of the targets of interest. That said, the
contrast is expressed as

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
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χe x0,z0ð Þffi
XK
k = 1

αkφk x0,z0ð Þ ð14:2Þ

Under the assumption (14.2), to retrieve the contrast means to retrieve its expansion
coefficients α1,… αK. Substituting Eq. (14.2) in Eq. (14.1) and particularizing it to a
finite set of points x1,…, xM and ω1,…,ωN, we have a finite number of linear equations
as follows:

Es x1;ω1ð Þ =
XK
k = 1

αkk
2
s1

ð ð
D

Ge x1,x
0,h,z0;ω1ð ÞEinc x1 +Δ,x0,h,z0;ω1ð Þφk x0,z0ð Þ dx0dz0,

Es x2;ω1ð Þ=
XK
k = 1

αkk
2
s1

ð ð
D

Ge x2,x
0,h,z0;ω1ð ÞEinc x2 +Δ,x0,h,z0;ω1ð Þφk x0,z0ð Þ dx0dz0,

…

Es xM ;ω1ð Þ=
XK
k = 1

αkk
2
s1

ð ð
D

Ge xM ,x
0,h,z0;ω1ð ÞEinc xM +Δ,x0,h,z0;ω1ð Þφk x0,z0ð Þ dx0dz0,

Es x1;ω2ð Þ=
XK
k = 1

αkk
2
s2

ð ð
D

Ge x1,x
0,h,z0;ω2ð ÞEinc x1 +Δ,x0,h,z0;ω2ð Þφk x0,z0ð Þ dx0dz0,

Es x2;ω2ð Þ=
XK
k = 1

αkk
2
s2

ð ð
D

Ge x2,x
0,h,z0;ω2ð ÞEinc x2 +Δ,x0,h,z0;ω2ð Þφk x0,z0ð Þ dx0dz0,

…

Es xM ;ωNð Þ=
XK
k = 1

αkk
2
sN

ð ð
D

Ge xM ,x
0,h,z0;ωNð ÞEinc xM +Δ,x0,h,z0;ωMð Þφk x0,z0ð Þ dx0dz0

ð14:3Þ

Equation (14.3) can be resumed in a general way as

Aα = d ð14:4Þ

where d is the column vector of the data d1,…, dNd = Es(x1,ω1),…, Es(xM,ωN), Nd =NM
is the number of data, and α = α1,…, αK is the column vector of the unknown expansion
coefficients of the contrast.

The size of the matrix A is (Nd,K) = (NM,K); that is, it has as many rows as the
data and as many columns as the unknowns. The matrix A is given by the piling
of the submatrixes relative to all the exploited frequencies. For each frequency ωn, the
relative submatrix S is characterized as
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S i, jð Þ = k2sn
ð ð
D

Ge xi,x
0,h,z0;ωnð ÞEinc xi +Δ,x0,h,z0;ωnð Þφj x

0,z0ð Þ dx0dz0 ð14:5Þ

Of course, the wavenumber has been indexed after the frequency. Three-dimensional
problems can be discretized in a similar way: In this case, the data column is achieved
by reordering after a unique index the values of the field in the points (xi,yj) and at the
frequency ωk, whereas the unknown is expanded in this case along a three-dimensional
basis as follows:

χe x0,y0,z0ð Þ ffi
XK
k = 1

αkφk x0,y0,z0ð Þ ð14:6Þ

Formally, the number of unknowns is still given by K and the number of data is still
equal Nd =NM, where N is the number of observation points and M is the number of
frequencies. Of course, however,K andN are expected quite larger in a three-dimensional
problem than in a two-dimensional one, which makes three-dimensional inversions
computationally more demanding than two-dimensional ones.

14.2 REMINDERS ABOUT EIGENVALUES AND EIGENVECTORS

The SVD of a rectangular matrix will be introduced in this chapter as an extension of the
basic theory of the eigenvalues and eigenvectors of a square matrix. So, preliminarily,
some reminders about the eigenvalues and eigenvectors are provided in relationship
to matrix inversions. In particular, the basic theory of the linear transformations
between two complex vector spaces, equipped with the usual scalar Hermitian (see foot-
note 2 in Section 11.6) product for complex vectors, is taken for granted. Of course, also
the basic concepts about eigenvalues and eigenvectors are taken for granted.

That said, let us consider a square [let’s say sized (N,N)] maximum rank matrix M,
and let λ1,…, λN be its eigenvalues ordered after a decreasing modulus. Possibly, some
of the eigenvalues can be equal to each other; that is, the case of multiple eigenvalues is
enclosed too. Let be m1,…,mN be the unitary norm eigenvectors corresponding to the
eigenvalues. The set m1,…,mN constitutes (either “naturally” for different eigenvalues
or by construction thanks to the Gram–Schmidt procedure) an orthonormal basis
for CN. Consequently, we have

mh,mkh i= δh,k ð14:7Þ

where the symbol mh,mkh i stands for the Hermitian scalar product in [CK] and δh,k is the
Kronecker’s delta function, equal to 1 if h = k and 0 if h 6¼ k.

Let us now write

U = m1,…,mnð Þ ð14:8Þ
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The matrix U is a unitary1 matrix, sized (N,N), whose columns are the eigenvectors.
Equation (14.7) implies that

U +U = I ð14:9Þ

where U + is the adjoint (i.e., the transposed and conjugate) of U and I is the identity
matrix, sized (N,N). This shows that a unitary matrix is invertible and its inverse coin-
cides with its adjoint, which is in turn a unitary matrix.2

Now, from the definition of eigenvalues and eigenvectors, we have

Mm1 = λ1m1

Mm2 = λ2m2

…

MmN = λNmN

ð14:10Þ

which in matrix terms can be expressed as

MU =UΛ)M =UΛU−1 =UΛU + ð14:11Þ

where Λ is a diagonal square matrix [also sized (N,N)] whose non-null elements are the
eigenvalues.

At this point, let us consider a generic algebraic system with a square maximum rank
matrix:

M x = y ð14:12Þ

Since the matrix has by hypothesis maximum rank, we can formally express the unique
exact solution of the system as

x=M −1y ð14:13Þ

However, this solution might be unstable if the condition number—that is, the modulus
of the ratio between the first (largest level) and the last (smaller level) eigenvalues—is
much larger than 1. We can understand this by exploiting the eigenvalue decomposition
(14.11), as follows:

M x= y)UΛU + x= y) x=UΛ−1U + y ð14:14Þ

1A matrix is said to be unitary when its columns are orthogonal to each other and have unitary norm.
2 This also means that the property of being unitary can be indifferently defined with regard to the rows or to the
columns of the matrix.
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where Λ−1 is the inverse of Λ and is a diagonal matrix whose elements along the diagonal
are the inverse of the eigenvalues.

In terms of eigenvalues and eigenvectors, the solution shown in Eq. (14.14) is
written as

x=
XN
n= 1

1
λn

y,mnh imn ð14:15Þ

This makes clear that Eq. (14.14) expresses the solution after a change of basis, and the
adopted basis is just constituted by the eigenvectors.

This also suggests a possible regularization scheme. In fact, the terms that can
generate instability are those relative to the smallest eigenvalues. In particular,
inserting in Eq. (14.15) the data affected by any kind of equivalent noise3 Eq. (14.15)
evolves into

x=
XN
n= 1

1
λn

y0 + noise,mnh imn =
XN
n = 1

1
λn

y0,mnh imn +
XN
n= 1

1
λn

noise,mnh imn ð14:16Þ

where y0 is the vector of the ideal (noise-free) data. The stability can be guaranteed by
arresting the sum to some,N1 ≤ N, thus eliminating the contribution related to the smallest
eigenvalues:

x≈
XN1

n= 1

1
λn

y,mnh imn ð14:17Þ

Of course, the choice of N1 is dictated by a trade-off between accuracy and robustness of
the solution, and so it should account for the level of the involved uncertainties affecting
the data. In a matrix form, the regularized solution can be expressed by

x=UΛ−1
R U + y ð14:18Þ

where Λ−1
R is the regularized inverse of Λ; that is, it is a diagonal matrix where the

elements on the diagonal are equal to

Λ−1
R i, ið Þ=

1
λi
, i ≤N1,

0, i >N1

8<
: ð14:19Þ

3 This includes any source of uncertainty for the data, as for example the model error and the interferences,
further than the “actual” thermal noise generated by the receiver.
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At this point, we can extend the discussion also to the case of a square matrix
that does not show the maximum rank. In fact, this can be seen in a sense as the
limit case for a very ill-conditioned matrix. Indeed, while very low eigenvalues lead
to a progressively more instable solution, if we loosely admit the concept of null
eigenvalues,4 they lead to an indeterminate (which somehow means completely
instable) solution. In this case, in order to have any solution, the regularization is
mandatory, and the inversion formulas are still provided by Eqs.(14.17) and (14.18),
taking for granted that the choice of N1 cuts out the “naturally null” eigenvalues plus
possibly the smallest non-null ones. The eigenvectors relative to null eigenvalues are
just the eigenvectors belonging to the null space of the linear transformations. Of course,
the regularized solution is not an exact solution, in the case of both a maximum rank
matrix and a nonmaximum rank matrix.

14.3 THE SINGULAR VALUE DECOMPOSITION

In GPR problems, after linearizing the scattering equations, the algebraic system is in
general rectangular; that is, the number of equations in general is not equal to the number
of unknowns. In particular, in most cases, GPR systems work with an odometer, as said,
and this means that usually we don’t choose apriori the number of gathered data. Of
course, we might resample the data so to have as many data as unknowns, but in general
this is not a convenient operation, because an increased number of data can help in amor-
tizing the noise. Thus, in general we have to deal with the problem of solving rectangular
linear algebraic systems in a regularized way, which requires an extension of the eigen-
value theory; this extension is the singular value decomposition (Bertero and Boccacci,
1998). In these conditions, we are not guaranteed that an exact solution even exists, and
we will look for a least square solution.

So, with reference to Eq. (14.4), we are now looking for a vector α such as the
quantity

F αð Þ= Aα−dk k2 ð14:20Þ

is minimum. Such a quantity is achieved by identifying the vector α such as the residual
Aα−d is orthogonal to all the elements of the range of the linear transformation identified
by the matrix A. In fact, in this case, for any chosen α1 belonging to the space of the
unknowns CK, we have

Aα−d,Aα1h i= 0)α+
1 A

+Aα−α +
1 A

+ d = 0 8α1 2CK ð14:21Þ

Such an α makes minimum F(α). In fact, given any α12 CK, we have

4We mean them just as the null elements of the main diagonal of the matrix Λ.
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F α1ð Þ= Aα1−dk k2 = Aα1−Aα+Aα−dk k2 = A α1−αð Þ+Aα−dk k2

= A α1−αð Þ+Aα−d,A α1−αð Þ+Aα−dh i
= A α1−αð Þk k2 + Aα−d,A α1−αð Þh i+ A α1−αð Þ,Aα−dh i + Aα−dk k2

= A α1−αð Þk k2 + Aα−dk k2 ≥ Aα−dk k2 =F αð Þ ð14:22Þ

because A α1−αð Þ is an element of the range of the linear transformation, and so it is by
definition orthogonal to Aα−d:

Moreover, condition (14.21) can be verified only if A+Aα−A+ d is a null vector,
because α1 is an arbitrary vector. This means that α has to be an exact solution of the
algebraic system

A+Aα =A+ d ð14:23Þ

Let us note that A+ A is a square matrix sized (K,K), and this makes it possible to resort to
the eigenvalue theory for the solution of the system (14.23). In a first moment, let now
suppose that A+A is invertible (it is easy to test that this happens if and only if A
has maximum rank). In this case, there exists a unique least square solution of the
problem, expressed by

α= A+Að Þ−1A+ d ð14:24Þ

The matrix A+Að Þ−1A+ is customarily called the pseudo-inverse of A:However, since the
underlying physical problem is ill-posed, the stability of the solution has to be guaranteed
in the case where we look either for an exact solution or for a least square solution. In
particular, the matrix A+A is in general ill-conditioned, and its eigenvalues can show a
meaningful dynamic range. Thus, a regularization is needed. In order to perform it, let us
start noting that the eigenvalues of the matrix A+A are real and nonnegative quantities.
This can be shown by calculating the square norm of the Ami, given by the scalar product
of the vector times itself:

Ami,Amih i =m+
i A

+ Ami = λim+
i mi = λi = Amik k2 ≥ 0 ð14:25Þ

Consequently, we can order the eigenvalues of A+A in a decreasing series of nonnegative
numbers, which we will call σ21 ,σ

2
2,…,σ2K . The nonnegative square roots of these

eigenvalues σ1, σ2,…, σk will be taken as the singular values of the matrix A.5

At this point, let us consider the quantities

ni =
1
σi
Ami ð14:26Þ

5 This choice is conventional: For example, the singular values might be chosen negative on condition to reverse
the corresponding singular vector.
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By definition, we have

Ami = σini ð14:27Þ

Moreover, we have

A+ σinið Þ = σiA+ ni =A
+Ami = σ

2
imi )A+ ni = σimi ð14:28Þ

which is the dual of Eq. (14.27). Moreover, from Eqs. (14.27) and (14.28), we have

AA+ ni =A σimið Þ= σiAmi = σ
2
i ni ð14:29Þ

This shows that the matrix AA+ has the same eigenvalues as A+A, and the vectors ni are
the eigenvectors of AA+. Let us specify that AA+ is a square matrix sized (Nd,Nd). Thus,
the size of this matrix is different from the size of A+ A. However, having the same (non
null) eigenvalues, the two matrixes have the same rank. Therefore, in order to be guar-
anteed that A+A achieves its maximum rank, as supposed up to now, at the moment we
will suppose that Nd ≥ K; that is, we will suppose that the data are more than the
unknowns. So, when saying that the two matrixes have the same eigenvalues, we mean
more precisely that they have the same K non-null eigenvalues, whereas AA+ will have
Nd −K extra null eigenvalues. It can be also seen that the K eigenvectors ni result
automatically orthonormal to each other. In fact,

ni,nj
� �

=
1

σiσj
Ami,Amj

� �
=

1
σiσj

m +
j A

+Ami =
σ2i
σiσj

mi,mj

� �
=
σi
σj
δi, j = δi, j ð14:30Þ

The interested reader can easily verify that also AA+ is a Hermitian matrix. The vectors
mi are by definition the singular vectors in the space of the unknowns, whereas the vec-
tors ni are by definition the singular vectors in the space of the data. The singular value
decomposition (SVD) of the matrix A is eventually the triple {mi,σi,ni}i = 1,…, K. As
shown, its evaluation can be recast as the calculation of the eigenvalues and eigenvectors
of suitable auxiliary square matrixes. At this point, we can provide a matrix factorization
based on SVD. In fact, from Eq. (14.28), we have

A+ n1,n2,…, nKð Þ= m1,m2,…,mKð Þ
σ1 0 0.:0
0 σ2 0::0
…

0 0…σK

0
BB@

1
CCA)A+ V =U Σ ð14:31Þ

where V is the matrix of the singular vectors in the space of the data, U is the matrix of the
singular vectors in the space of the unknowns, and Σ is the diagonal matrix of the singular
values.
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Consequently, being V a unitary matrix, we have

A+ =U ΣV + ð14:32Þ

On the other hand, based on the classical eigenvalue theory resumed in the previous
section, the square matrix A+A can be factorized as

A+A=U Σ2U + ð14:33Þ

where Σ2 is a diagonal matrix where Σ2 i, ið Þ= σ2i . Therefore, the inverse of A+A can be
factorized [see Eq. (14.14)] as

A+Að Þ−1 =U Σ−2U + ð14:34Þ

where Σ−2 is a diagonal matrix where Σ−2 i, ið Þ = 1=σ2i .
Substituting Eqs. (14.32) and (14.34) in Eq. (14.24), we can express the least square

solution as

α =U Σ−2U +U ΣV + d =U Σ−1V + d ð14:35Þ

where Σ−1 is a diagonal matrix where Σ−1 i, ið Þ = 1=σi.
The least square solution (14.35) can be equivalently expressed as

α =
XK
i= 1

1
σi

d,nih imi ð14:36Þ

Equation (14.36) makes it clear that the SVD is based on a double change of basis, both in
the space of the unknowns and in the space of the data. The ill-conditioning is expressed
by the high ratio between the first (maximum) and the last (minimum) singular value.
As shown in the previous section with regard to the exact solution of a square
algebraic system, also the least square solution can be regularized by thresholding
the singular values,6 so that, choosing N1 <K, we have a regularized solution that can
be expressed as

α≈
XN1

i= 1

1
σi

d,nih imi ð14:37Þ

Similarly to the case of square matrixes, at this point we can remove the hypothesis
of maximum rank matrix. In particular, we can account for this situation by choosing

6Also other kinds of regularizations are possible, where the contributions of the smallest singular values are
progressively dumped instead of being abruptly thresholded, but we will not deal with them.
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N1 such that the null singular values are cut out, further than possibly the smallest
non-null ones.

Finally, under the viewpoint of a regularized reconstruction, even the hypothesis that
the system is overdetermined can be removed. In fact, when performing a regularization
of the kind (14.37), the actual number of unknowns looked for is in the end N1. However,
please note that this does not mean that we can a priori impose the problem looking
formally for N1 unknowns: actually, the problem has to be discretized suitably, in order
to guarantee that the singular vectors do not (meaningfully) depend on the discretization
itself. In other words, the singular vectors have to approximate quantities independent of
the discretization, which are the singular functions of the scattering operator (Bertero and
Boccacci, 1998).

In other words, the question is not only howmany unknowns we should look for, but
also what kind of unknowns we should look for. The optimal choice for the unknowns is,
as shown, the coefficients of the object function along the singular functions, because this
allows us to separate the “invertible” part form the “noninvertible” part of the linear
relationship at hand. However, the singular functions are not known in a closed form,
and so the initial (trial) representation of the object function has to be refined enough
in order to represent them adequately. In Section 15.4, the reader will find some exercises
on the number of trial unknowns.

In conclusion, the SVD is a way to solve the problem in a regularized way and it is
calculable from two correlated eigenvalue–eigenvector problems. This fact also provides
the formal way for the calculation of the SVD. However, the formal “classical” calcula-
tion of the eigenvalues (performed by means of the roots of the characteristic polynomial
of the matrix) and of the relative eigenvectors is practicable only for small matrixes.
In inverse scattering problems applied to GPR data, the matrix might have thousands
of rows and columns. This makes it necessary to make use of suitable numerical
algorithms for the evaluation of the SVD. Numerical algorithms for SVD are the object
of a specific research field (Golub and van Loan, 1996), underlying all the computational
available SVD routines.

14.4 THE STUDY OF THE INVERSE SCATTERING
RELATIONSHIP BY MEANS OF THE SVD

The singular value decomposition provides not only a method for the solution of the
problem but also a possible method for the analysis the problem. In particular, even if
numerically, the SVD can help us to understand the characteristics of the scattering oper-
ator. In particular, the class of retrievable object functions is characterized by the span of
the singular functions relative to the the singular values smaller than or at most equal to
the chosen threshold. This means that the regularization influences the class of retrievable
targets and that there is a trade-off between the details that we can retrieve (related to the
dimension of the space where the solution is looked for) and the robustness of the solu-
tion (provided by the ratio between the smallest and the maximum retained singular
value). The two exigencies are contrasting to each other, and the choice of the threshold
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is a compromise between them. The optimal choice of the threshold (i.e., the level of the
regularization) is in general a nontrivial problem.

Some solutions have been proposed (Bertero and Boccacci, 1998), but they refer to
linear problems where the data are affected by white noise. Actually, in GPR prospecting
we are not guaranteed that the data are affected (only) by white noise and in general we
don’t have at our disposal an objective measure of the level of the noise [i.e., we don’t
know the signal-to-noise ratio (SNR), because customarily we cannot switch on the
receiver of a GPR system without switching on its transmitter too]. Of course, it is even
more improbable to have at our disposal a measure of the statistics of the noise.
Moreover, the regularization should account not only for the “real” noise (i.e., the noise
produced in the electronics of the receiving system) but also for several further kinds of
disturbances, provided (for example) by the clutter (i.e., the impossibility to insert in a
deterministic inversion model the roughness of the surface), the model error (i.e., the fact
that we are modeling a 3D vector nonlinear world by means of a linear, possibly even
2D and scalar, model), and possible interferences by other electromagnetic sources
(in particular, radio and TV transmissions and mobile phones). Thus, the comprehensive
“equivalent noise” is in general “colored” and has an unknown level, and it is rigorously
even correlated to the signal itself (because of the model error). Finally, it is also worth
emphasizing that the noise superposed to the signal depends on our exigencies, because it
also depends on the depth range that we need to investigate: Of course the signal reflected
by deepest targets is usually weaker and thus noisier than that reflected by the shallowest
targets.

In these conditions, it is practically impossible to predict an optimal level for the
regularization. On the other hand, the SVD allows us to easily retrieve the reconstruction
at several levels of regularization, so that a heuristic choice of the best one is possible
based on the experience of the human operator. Incidentally, this also means that the
personal experience regarding the kind of problem at hand is essential: Physics–
mathematics cannot automatically provide the best solution and, in particular, the best
interpretation.

At any rate, whatever the adopted regularization method, the SVD can help in
understanding the class of retrievable profiles and thus can provide an important insight
about the possibilities of our reconstruction strategy.

For example, in order to know whether the spatial step or the frequency step is
sufficiently narrow, we can compare the curves7 of the singular values (some exercises
are proposed in the next chapter); in particular, a comparative analysis between singular
values and singular functions can back up, correct, or possibly deny the conclusions
retrieved from DT. In particular, let us stress that the SVD analysis accounts for the linear
scattering operator “as it is,” without the further assumption of a lossless media and of
electrically deep targets.

A quantity possibly useful for comprehension purposes is given by the spectral
content (SPEC) of the singular functions’ (in the space of the unknowns) upper threshold.
In particular, if N1 is the number of singular functions upper threshold, and un(x,z)

7 The curve of the singular values is a common but not rigorous term (because the singular values are a sequence)
often used in literature. It is generically meant as a smooth curve that interpolates the singular values.
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[un(x,y,z) if we adopt a 3D model] is the nth singular function in the space of the
unknowns, the spectral content is defined as (Persico et al., 2005, Persico, 2006, Persico
and Soldovieri, 2010)

SPEC =
XN1

N = 1

^̂un η,ζð Þ�� �� within a 2D approach

SPEC =
XN1

N = 1

^̂ûn η,ξ,ζð Þ
��� ��� within a 3D approach

ð14:38Þ

that is, the spectral content is the sum of the moduli of the spectra of the singular func-
tions in the space of the unknowns. The spectral set is a tool that can provide an insight
about the spatial frequencies retrievable in realistic cases. In particular, we can hope to
retrieve correctly only the spectral components of the object function where the spectral
content is meaningful. Please note that the support of the spectral content does not
provide the spatial frequencies surely retrievable, but its information is to be meant
in negative, in the sense that it shows the spatial frequencies surely not retrievable.
Notwithstanding, it can be an immediate (even if incomplete) way to visualize the
filtering properties of the operator in a framework that overcomes the constraints
imposed by DT.

Another quantity worth considering is the spatial content (SPAC) of the singular
functions in the space of the unknowns, defined as

SPAC =
XN1

N = 1

un x,zð Þj j within a 2D approach,

SPAC =
XN1

N = 1

un x,y,zð Þj j within a 3D approach

ð14:39Þ

where the symbol have the samemeaning as in Eq. (14.38). To show the usefulness of the
spatial content, let us start from the fact that it is intuitive (and can be easily shown
numerically) that the singular functions relative to lower and lower singular values have
their support (meant under some energetic criterion) centered on progressively deeper
buried levels. This just means that, due to the progressive attenuation of the GPR signal
(due both to the geometrical spreading and above all to the losses), the deeper layers of
the soil provide a weaker “echoes” and are progressively more difficult to be retrieved.
This fact is not accounted for by the spectral content. The spatial content can help in
understanding whether the applied regularization is excessive. In particular, given a tar-
get at depth d, we cannot retrieve it if the support of the spatial content is not extended at
least up to the depth d.

In Section 15.5 the reader will find some exercises on the spectral and the
spatial content. Finally, he/she will find some 2D reconstructions based on numerical
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regularized SVD throughout Chapter 15, along with some examples of 3D recon-
structions based on numerical regularized SVD in Section 15.10.

QUESTIONS

1. Does the SVD provide a model more refined than that provided by a migration?

2. Does a more refined model necessarily provide a better result?

3. Is the computational burden only a CPU time problem?

4. Does a nontruncated SVD ideally provide the exact solution of a linear problem?

5. Can we control the investigated depth range changing the available regularization
parameters making use of a migration algorithm?

6. Can we control the investigated depth range changing the available regularization
parameters making use of an SVD algorithm?
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15

NUMERICAL AND
EXPERIMENTAL EXAMPLES

15.1 EXAMPLES WITH REGARD TO THE MEASURE
OF THE PROPAGATION VELOCITY

In this section, some examples of measure of propagation velocity based on the
diffraction curves are shown. In order to introduce the examples, let us preliminarily
emphasize that, of course, the real GPR pulses cannot have a zero duration, because
the band of the system (in particular the band of the antennas) is never infinite. Therefore,
the diffraction curves introduced in Chapter 2 are didactic abstractions. In the real
word, the diffraction curves have some “thickness,” and this constitutes an unavoidable
source of uncertainty, both with regard to the propagation velocity of the waves and with
regard to the depth of the buried targets.

15.1.1 Common Offset Interfacial Data with
Null Offset on a Homogeneous Soil

The first example is about the method of the diffraction hyperbolae in common
offset configuration and is implemented with simulated data. The simulation has been
implemented with the GPRMAX code (Giannopulos, 2003), based on the method of

Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing,
First Edition. Raffaele Persico.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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the finite differences in time domain FDTD (Kunz and Luebbers, 1993). The simulated
“ground truth” is given in Figure 15.1.

The target is a metallic (perfect electric conductor) cylindrical pipe with ray equal to
1 cm. The depth of the center is 50 cm, whereas the abscissa of the center is 1.3 m after
the starting position of the B-scan. The soil shows a relative dielectric permittivity equal
to 5, a relative magnetic permeability equal to 1, and an electric conductivity equal to
0.01 S/m. A B-scan that is 2.5 m long is considered, with spatial step of 2.5 cm. The
source is a Ricker pulse with nominal central frequency of 500MHz. The offset between
source and observation point is equal to zero. The data are represented in Figure 15.2,
after zero timing and interface muting.

Let us now evaluate the propagation velocity from the data. Didactically, let us
first do this in a “manual” fashion—that is, by means of a simple homemade code.
The procedure has consisted in the following steps:

1. A vector of data has been identified by choosingN points (x1,t1),…, (xn,tn), where
for every position xn (corresponding to a radar trace) the relative return time tn has
been chosen as the time corresponding to the maximum modulus of the radar
trace (after zero timing and interface muting). The couple corresponding to
the minimum return time has been assumed as the couple (x0,t0) in relationship
with Eq. (2.2).

2. A heuristic regularization has been applied to the data, retaining only those
traces for which the value of the maximum along the trace was not smaller
than 0.1 times the value of the global maximum level, which is achieved at the
point (x0,t0).

3. A vector of trial values for the propagation velocity has been set. In particular,
we have spanned the range [c1,c2] = [0.33 × 108 m/s, 3 × 108 m/s], with a step
of 267,000 m/s, corresponding to 1/1000 of the investigated range. The initial
trial value corresponds to the propagation velocity of the electromagnetic waves
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Figure 15.1. Geometry of the simulated scenario.
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in fresh water, whereas the final value corresponds to the value of the propagation
velocity in free space.

4. For each trial value ctrial of the propagation velocity, a vector of model data has
been calculated according to Eq. (2.2) as

tmodn =
2

ctrial

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn−x0ð Þ2− ctrialt0

2

� �2
r

ð15:1Þ

5. A cost function has identified as the least square difference between the retained
data and corresponding model data. Thus, the cost function is given by

f ctrialð Þ=
XN
n = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tn− tmodnð Þ2

q
ð15:2Þ

6. The result has been achieved as the values of ctrial that makes minimum the
cost function.

In Figure 15.3 the graph of the cost function is provided, with a zoom about its (unique)
minimum.As it can be seen, theminimum is reached at the value ctrial = 1.33 × 108 m/s. Let
us remind that the data had been simulated imposing a relative dielectric permittivity equal
to 5, a conductivity of 0.01 S/m and no magnetic property to the soil. This means that we
can neglect the conductivity for the evaluation of the velocity, so that the actual
propagation velocity is c = c0=

ffiffiffi
5

p
= 1:34 × 108m=s: Therefore, the propagation velocity

has been estimated with an excellent precision.
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Figure 15.2. The data relative to the ground truth of Figure 15.1.
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As said, the proposed exercise is didactic: In the real practice, such a procedure
would be time-consuming, because each of the data points tn should be identified “almost
manually” (in particular, the maximum value within the “hyperbola thickness” in general
is not the same as the maximum value along the trace). However, there are commercial
code can calculate the propagation velocity from the shape of the diffraction hyperbolas
in a more automatic and faster fashion. This is theoretically less refined than the least
square minimization just shown, but it is essentially the same in conceptual terms and
in terms of available precision in the field. In particular, we have imported the data of
the presented exercise in Reflexw (Sandmeier, 2003).

The evaluation in this case is graphical, achieved by superposing a hyperbola relative
to a trial value of the propagation velocity to the apex of the diffraction curve. In
Figure 15.4, a screen of this code is shown, where five trial hyperbolas are superposed
to the diffraction hyperbola of the data. The trial values for the propagation velocity
range from 1.16 × 108 m/s (corresponding to the narrower hyperbola) to 1.56 × 108 m/s.
(corresponding to the larger hyperbola) with a step of 0.1 × 108 m/s. The central
hyperbola clearly provides the best matching between model and data. It corresponds
to the value 1.36 × 108 m/s, in good agreement with the actual propagation velocity.

15.1.2 Common Offset Interfacial Data on a Wall,
Neglecting the Offset Between the Antennas

Let us now show an example with experimental data. The data are those gathered in the
situation depicted in Figure 2.1, where a metallic road is placed and then removed from
one side of the wall. Let us emphasize that even if this time the scenario is not constituted
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Figure 15.3. The cost function for a numerical evaluation of the propagation velocity.
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by a homogeneous half-space, the propagation from the antennas to the target and vice
versa occurs in the wall, so that the diffraction hyperbola is substantially the same that
one would achieve in a soil made up of the same material constituting the wall (that is
concrete). The data were gathered with a Ris Hi-mode system, equipped with antennas at
nominal central frequency of 2000MHz. The scan was performed in continuous mode,
downward along a vertical B-scan. The metallic road was placed in horizontal position
behind the wall, in order to maximize the reflected signal from it (Conyers, 2004). The
results are provided in Figure 15.5.

Of course, a real case presents a much more confused scenario. In particular, on
purpose we didn’t choose a controlled test site, and we just gathered the data on the wall
of a dismissed hovel: The several anomalies visible in the wall are probably internal
reinforcement metallic bars.

However, the “extra” diffraction hyperbola due to the marker (represented by the
circle) is clearly identified, even if its left-hand half-branch is masked by some other
internal target. In the case at hand the thickness of the wall was directly measurable
(see Figure 2.1), and so we know that this thickness is 40 cm. Now, since the top of
the hyperbola occurs at 5.3 ns, this provides a propagation velocity of 1.5 × 108 m/s,
which is a value plausible for a concrete, even if slightly smaller than the average
expected values, presented in tables (for example) in Conyers (2004), Daniels
(2004), and Jol (2009). For comparison, also the shape of the diffraction hyperbola
has been exploited. We have made use for this of the Reflexw code, and the result
was 1.40 × 108 m/s. This case requires the watchfulness to match only the right-hand
side of the hyperbola, because its right-hand side is not visible. Actually, there is a sort
of branch of hyperbola also on the left side of the bar, but it is a feature visible also in
absence of the bar, and so it is not due to the bar but to something else (even if we don’t

Figure 15.4. Evaluation of the propagation velocity performed graphically in Reflexw.
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know what). It is not simple to determine the better estimation, because the wall is not
perfectly homogeneous. So, we might choose the average value 1.45 × 108 m/s. The
discrepancy between the two retrieved values and the central value is 3.45%.

15.1.3 Interfacial Common Offset Data on a Homogeneous Soil:
The Effect on the Offset Between the Antennas

Let us now present a simulation depicting the effect of the offset. In particular, we
propose a simulation with realistic parameters, where the source is a Ricker pulse at
central frequency equal to 2 GHz and the offset between source and observation point
is 5 cm. We have considered a small metallic target at the depth of 5 cm. The soil shows
a relative dielectric permittivity εsr = 5 and an electric conductivity σ = 0.01 S/m. The soil
does not show magnetic properties. The spatial step is 1.25 cm. In Figure 15.6 several
diffraction curves achieved with a null offset are represented, superposed to the data,
whereas in Figure 15.7 several diffraction curves achieved considering the actual offset
are superposed to the data. The data have been simulated by means of GPRMAX. In both
cases, the solid lines range from the trial values εsr = 1 (top curve) to the trial value εsr = 7
(lowest line), and in both cases the best matching with the data is heuristically achieved
for the diffraction curve relative to εsr = 3.5 (dotted line). This means that we retrieve the
propagation velocity with an error of about 19.5%. The result is less good than that
achieved in the previous simulations. This is due to some near-field effects and possibly
also due to some numerical problem resulting from the closeness of the target to the

Figure 15.5. The experimental example relative to the photographs shown in Figure 2.1.

Left-hand image: The signal achieved without the auxiliary target. Right hand image:

The signal achieved with the auxiliary target.
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interface. However, to consider a deeper target would have made obvious the result,
unless we had simulated an improbably large offset. The relevant result is that the offset
does not have too much effect on the result.

15.1.4 Noninterfacial Common Offset Data with a Null
Offset Between the Antennas

Let us now show some results relative to the effect of the height of the observation line:
In particular, we have considered a small metallic target at the depth of 0.5 m and an
observation line at the height of 0.5 m above the air–soil interface. The soil has the same
characteristics of the previous exercise.

The source is a Ricker pulse with central frequency 500MHz and the spatial step of
the data is 5 cm. In Figure 15.8 the effect of the refraction at the interface is neglected,
whereas in Figure 15.9 it is accounted for. The set of diffraction curves are analogous to
that considered in the previous exercise. Figures 15.8 and 15.9 allow some observations:
First of all, we see that the height of the observation line has a consistent weight, and to
neglect it can lead to meaningful errors. However, it is also important to stress that, at
variance of the trial propagation velocity, the diffraction curves considering the height
are “closer” to each other than in the case of data gathered at the air–soil interface. In
other terms, if one calculated the cost function [i.e., the homologous of Eq. (15.2)]
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in the case of data gathered at some distance from the air–soil interface, he/she
would see a much flatter behavior regarding the minimum with respect to the case of
interfacial data, which makes it more difficult to perform a reliable measurement.
The physical reason has been exposed in Section 2.3.4.

15.1.5 Common Midpoint Data

Let us now show an example with common midpoint data. In particular, let us in a first
moment erase the effect of the air–soil interface. The data are obtained with GPRMAX,
and the reference scenario is the same as in the example of the common (null) offset
relative to Figures 15.1 and 15.2. The data start over the target and extend along the
same observation line of the previous example, with the same spatial step. We have
kept also the same Cartesian reference system of the previous example, for
comparison. The result is the half-hyperbola shown in Figure 15.10. This time, the eval-
uation of the propagation velocity is achieved from the slant of the tail of the diffraction
hyperbola. In Figure 15.10 we have represented the same diffraction curve in both
panels, for sake of graphical clarity. However, in the lower panel we have gridded
the image and have superposed the tangent to the farthest (from the vertex) visible point
of the hyperbola.
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Figure 15.9. Diffraction curves considering the height of the observation line. Solid lines from

top to bottom: Curves relative to trial relative permittivities ranging from 1 to 7. Dotted line:

Heuristic best matching curve relative to the trial value 3.5.
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The extreme points of the dashed line in Figure 15.10 are (x, t) = (1.25 m, 3 ns) on
the left-hand side and (x, t) = (2.5 m, 21 ns) on the right-hand side. So, the slant of the line
is given by

s=
21−3ð Þ × 10−9s
2:5−1:25ð Þm =14:4 × 10−9 s=m ð15:3Þ

On the basis of Eq. (2.3), the propagation velocity can be estimated as

c=
2
s
= 1:39 × 108m=s ð15:4Þ

Let us remind ourselves that the actual value for this example was 1.34 × 108 m/s, so the
percentage error is 3.7%.

At this point, let us reconsider the complete data—that is, the data of the same CMP
without erasing the interface contribution and the direct coupling. The amplitude of the
signal received from all the points has been made at the same level, thereby mitigating the
effect of the natural high dynamic range, due to the fact that the antennas get progres-
sively farther from each other. This is equivalent to radiating some more power when
the antennas gets farther apart. The result is shown in Figure 15.11: The difference
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Figure 15.10. The diffraction curve retrieved from common midpoint data. The curve is the
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between the direct signal in air and that in the soil is evident, and it is also evident that
direct signal received through the soil provides a line almost parallel to the tangent to the
diffraction hyperbola (far from the vertex) relative to the buried target.

We have then zoomed apart (this is not shown here) the image in Figure 15.11 and
have seen that the line relative to the path in air passes for the two points (1.3 m, 2 ns)
and (1.6 m, 4 ns), whereas the second line passes for the two points (1.5 m, 6 ns) and
(1.9 m,12 ns). This allows us to retrieve the slants of the two lines, from which the
two (definitely satisfying) values c0 = 3 × 108 m/s and c = 1.33 × 108 m/s are worked out.

15.2 EXERCISES ON SPATIAL STEP AND
HORIZONTAL RESOLUTION

In this section, we propose some examples about the needed spatial step and the
correlated achievable horizontal resolution. To construct a first example, let us consider
a 2D investigation domain D sized 2 × 2 m2, starting from the depth of 0.5 m. The
relative permittivity of the soil is equal to εsr = 5, and the electric conductivity is equal
to 10−3 S/m. The frequency band ranges from 200 to 710MHz and the frequency step is
15MHz. The investigation domain has been discretized by means of 51 complex Fourier
harmonics along the horizontal direction and 45 step functions along the depth. The
observation line Σ is at the air–soil interface and has the same length as the investigation
domain. The offset between the source and the observation point is equal to zero.

In Figure 15.12 the reference geometry for this simulation is shown, whereas in
Figure 15.13 the singular values of the discretized linear scattering operator are
shown at variance of the spatial step, having fixed the frequency step at 15MHz.
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Figure 15.11. Measure of the propagation velocity from complete CMP data.
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In particular, the spatial step is progressively halved starting from 40 cm to 20 cm, to
10 cm, to 5 cm, and to 2.5 cm. From Figure 15.13, it is clearly seen that the curve of
the singular values grows meaningfully up to the spatial step of 5 cm. However, pass-
ing from 5 to 2.5 cm the curve keeps substantially unchanged. This means that the
quantity of information is saturated; that is, adding more measurement points doesn’t
add a meaningful quantity of information. It is implicit that the validity of this rea-
soning is also related to the dynamic range of the singular values taken into consid-
eration. In other words, one has to establish the level up to which the singular values
are meaningful. As widely stressed in Chapter 14, from a practical point of view, it is
difficult to establish how many singular values should be accounted for in a nonheur-
istic way. On the basis of the specific practical experiences of this author, however,
the heuristically optimal choice in most cases lies within the range between −20 and
−40 dB. Consequently, the interval considered in Figure 15.13 (which extends up to
−60 dB) can be practically viewed as a conservative range. Let us now compare this
result with those achieved under DT in Chapter 9. In particular, let us first note that,
in the case at hand, the minimum involved wavelength in the soil (neglecting the
losses) is equal to λsmin = c0=fmax

ffiffiffiffiffiffi
εsr

p
= 18:9 cm. Moreover, in the case at hand we

are considering a relatively small investigation domain, and therefore we can approxi-
mate the effective maximum view angle with the geometrical maximum view angle.
The sine of the maximum view angle with respect to the shallowest part of the investi-

gation domain (shown in Figure 15.12) is equal to sin θesmaxð Þ = 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 + 0:52

p
= 0:89.

Therefore, the optimal spatial step under the DT approximation in the case at hand
[see Eq. (9.49)] is equal to s= λsmin=4sin θesmaxð Þ= 5:3 cm. This means that, according
to DT, a spatial step meaningfully smaller than 5 cm is redundant, whereas a step mean-
ingfully larger is inadequate and causes a loss of information. So, the behavior of the
singular values is in noticeable agreement with the predictions achieved under a
DT model.

Let us now show some reconstruction examples. The spatial step of the data is 5 cm
and the model is built up as just previously described. The data have been achieved from
FDTD simulations performed with GPRMAX, and the central frequency of the
exploited Ricker pulse was heuristically chosen at 320MHz, so that the −6 dB band
of the data was extended from about 200 to 710MHz. In the six reconstructions shown
in Figure 15.14, we propose the case of two circular, electrically small (ray = 1 cm)
metallic targets buried at the depth of 55 cm (meant as the depth of the centers), progres-
sively shifted toward each other from 35 to 10 cm (meant as the distance of the two cen-
ters). The reconstruction has been achieved from an inversion of the linear scattering
operator performed by means of a singular value decomposition regularized with a
threshold at −20 dB on the singular values. As can be seen, the two targets are well dis-
tinguished from each other if their reciprocal distance is equal to or larger than 20 cm.
Instead, if their distance is equal to 15 cm, then their reconstructed images touch each
other and they are hardly distinguishable. Finally, if their distance is equal to or smaller
than 10 cm, they are definitely fused into a unique target. In the case at hand, the DT
resolution is of the order of 16.6 cm [see Eq. (9.43)], in noticeable agreement with
the achieved results.
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In order to show the worsening of the horizontal resolution versus the depth, we have
repeated the example shifting the two targets 1 m below, at the depth of 155 cm. The sine
of the maximum view angle for these two targets is restricted to 0.51, which leads to a DT
resolution of about 29 cm [see Eq. (9.43)]. Figure 15.15 is the analogous of Figure 15.14
for these deeper targets, and it shows results in good agreement with the DT previsions.
In particular, the two spots are hardly distinguished at 30 cm and collapse into a unique
spot for smaller values of the spacing between them.

The data exploited in Figures 15.14 and 15.15 are noiseless. In order to show the
robustness versus the noise, in Figures 15.16 and 15.17 the same cases of Figures 15.15
and 15.16 are proposed, with the only difference being the addition of a white Gaussian
noise to the data. The signal-to-noise ratio, referring to the total field data, is 60 dB.
The comparison between Figure 15.14 and Figure 15.16 and between Figure 15.15
and Figure 15.17 shows that the inversion is quite robust against noise.
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At this point, let us investigate the dependence of the resolution on the degree
of regularization. In particular, in Figures 15.18 and 15.19 the same noisy data of
Figures 15.16 and 15.17 are inverted, thresholding the singular values at −40 dB instead
of −20 dB. Figures 15.18 and 15.19 show clearly the trade-off between resolution and
robustness. In particular, in the case of the shallower targets, we can say that the lower
threshold allows a marginal improvement of the resolution. However, in the case of the
deeper targets, the lower threshold makes the reconstruction much poorer. It is interesting
to stress that this happens at a parity of signal-to-noise ratio, because the echoes from the
deeper targets are weaker than those from analogous targets at a shallower depth. Indeed,
the signal-to-noise ratio is an integral parameter referring to the entire recorded time
range (either real or synthetic). During this time, however, the instantaneous signal power
gets progressively lower whereas the instantaneous noise power remains of the same

0.5
35 CM

25 CM

15 CM 10 CM

20 CM

30 CM

1

1.5

2

2.5
–1 0 1

0.5

1

1.5

2

2.5
–1 0 1

0.5

1

1.5

2

2.5
–1 0 1

0.5

1

1.5

2

2.5
–1 0 1

0.5

1

1.5

2

2.5
–1 0 1

0.5

1

1.5

2

2.5
–1 0 1

Figure 15.15. Reconstruction by inversion of two circular targets at the same depth (155 cm)

progressively closer to each other. The title of each panel refers to the distance between the cen-

ters of the two targets. The axes are in meters.
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order. This is sometimes loosely but explicatively expressed saying that the signal-
to-noise ratio gets worse versus the depth of the targets.

This confirms the prevision (see Section 14.4) that in most cases the optimal
threshold should be chosen heuristically on the basis of the results achieved with several
threshold levels or more in general under several regularization degrees. At the
same time, these examples also show that, in any case, the resolution improvements
possibly achievable from a weaker regularization are expected to be marginal with
respect to the DT predictions.

In Figures 15.20 and 15.21 the same noisy data of the previous examples have been
migrated in the time domain. The migration has been performed with the commercial
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Figure 15.16. Reconstruction by inversion of two circular targets at the same depth (55 cm)

progressively closer to each other. The title of each panel refers to the distance between the cen-

ters of the two targets. The axes are inmeters. The data are noisy with SNR = 60 dB, evaluated on

the total field.
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code Reflexw (Sandmeier, 2003). More precisely, after importing the raw noisy data in
Reflexw, a data-driven processing has been performed as follows:

1. The zero time has been moved of 2.75 ns.

2. A background removal up to 4 ns on all the traces has been performed in order to
erase the residual air–soil interface.

3. The data have been filtered by means of a Butterworth filter in order to clean
some noise. The chosen cutoff frequencies for the filters have been set at 200
and 710MHz, respectively, in order to make the migration-based processing
homologous to the inversion.
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Figure 15.17. Reconstruction by inversion of two circular targets at the same depth (155 cm)
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4. A gain versus the depth has been applied in order to makemore visible the targets.
The value of the gain has been set at 5 dB/ns up to amaximumgain equal to 40 dB.

5. Kirchhoff migration on 25 traces has been applied, on the basis of the wideness of
the diffraction hyperbolas.

6. After exporting the migrated data in MATLAB, time–depth conversion has been
achieved from the propagation velocity retrieved from the diffraction hyperbolas,
and the same spatial window shown for the inversion results has been adopted.

The results of Figures 15.20 and 15.21 basically drive to the same considerations of
the inversion results. Namely, the resolution is of the same order as that foreseen within
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Figure 15.18. Reconstruction by inversion of two circular targets at the same depth (55 cm)

progressively closer to each other. The title of each panel refers to the distance between the cen-
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the total field. The SVD is thresholded at −40 dB.
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DT, and it degrades versus the depth. The artifact due to the crossing point between the
diffraction hyperbolas is evident both within the inversion-based and migration-based
result.

Before ending this section, we found it interesting to show a case where the effective
maximum view angle is different from the geometrical maximum view angle. This
example has been achieved by just adopting a time bottom scale of 30 ns in the simulated
data (in the previous examples the bottom scale was 40 ns in all cases). We have
simulated two targets at the depth of 1.95 m, with the same measurement parameter
of the other examples shown in this section. Now, with reference to panel A in
Figure 15.22, since the observation line is 2 m long, if we calculate the maximum view
angle geometrically with respect to the initial or the final point of the scan and
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Figure 15.19. Reconstruction by inversion of two circular targets at the same depth (155 cm)

progressively closer to each other. The title of each panel refers to the distance between the cen-

ters of the two targets. The axes are inmeters. The data are noisy with SNR = 60 dB, evaluated on

the total field. The SVD is thresholded at −40 dB.

260 NUMERICAL AND EXPERIMENTAL EXAMPLES



with respect to the midpoint between the targets, it is easy to recognize that the sine of the
geometrical maximum view angle is equal to sin θemaxð Þ= 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1:952

p
= 0:456

θemax = 27:13 degreesð Þ. In this case, the hypotenuse of the triangle ABC is longffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1:952

p
= 2:191m (see Figure 15.22, panel A) and, according to Eq. (9.43), the

expected horizontal resolution should be of the order of 32 cm. However, the longest
time up to which we are now recording the signal is 30 ns, and therefore the maximum
hypotenuse that we have to consider for the triangle ABC restricts to (see Figure 15.22,
panel B) AC = 0:5c0 × 30 × 10−9s:=

ffiffiffiffiffiffi
εsr

p
= 2:0125m. Consequently, the segment BC, that

represents the maximum abscissa under which we still see some tail of the diffraction

hyperbola restricts from 1m to AB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:01252−1:952

p
m=0:498m, and coherently
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Figure 15.20. Reconstruction by Kirchhoff migration of two circular targets at the same depth

(55 cm) progressively closer to each other. The title of each panel refers to the distance between
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the sine of the effective view angle restricts to sin θemaxð Þ= BC=ACð Þ 0:4977=ð
2:0125Þ = 0:247 θemax = 14:32 degreesð Þ. Accordingly, based on Eq. (9.43) the expected
horizontal resolution degrades to about 58 cm.

In Figures 15.23 and 15.24 the reconstruction of two circular small (ray = 1 cm)
metallic targets at the same depth (1.95 m) is shown. The distance between the two targets
is labeled on each subfigure. We have considered distances larger than in the previous
figures, because of the foreseen loss of resolution. The reconstructions in Figure 15.23
are achieved from a linear inversion performed by SVD and regularized by truncation of
the singular values with threshold at −20 dB. The reconstructions of Figure 15.24 are
achieved from the same migration-based processing adopted in Figures 15.20 and
15.21. The synthetic data are affected by a Gaussian white noise with SNR = 60 dB,
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Figure 15.21. Reconstruction by Kirchhoff migration of two circular targets at the same depth

(155 cm) progressively closer to each other. The title of each panel refers to the distance between

the centers of the two targets. The axes are in meters. The data are noisy with SNR = 60 dB, eval-

uated on the total field.
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evaluated with respect to the total field. From both Figures 15.23 and 15.24, we can
appreciate the loss of resolution due to the restriction of the effective maximum view
angle, which appears completely fused into each other if their distance is 30 cm and
appears fully detached from each other only if their distance is 60 cm or more. As a
corollary, this exercise also shows that the chosen time bottom scale should be longer
than the expected (if any) time depth of the targets of interests, because we need the whole
tails of the diffraction hyperbolas in order to focus at best the buried objects.

15.3 EXERCISES ON FREQUENCY STEP AND
VERTICAL RESOLUTION

Some exercises on the frequency step and on the vertical resolution can be proposed on
the basis of the same examples proposed in the previous section. In particular, let us
remind ourselves that we have made use of a matrix calculated in the frequency
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band 200–710MHz, sampled with a frequency step equal to 15MHz. Moreover, the
investigation domain ranges along the depth from 0.5 to 2.5 m. This means that,
according with the DT model [Eq. (9.52)], the frequency step should be not larger than
Δf = c0=2b

ffiffiffiffiffiffiffiffiffiffiffi
εsrμsr

p
= 33:54MHz. Thus, the first question is whether or not the chosen

frequency step of 15MHz was redundant. In order to answer this question, in
Figure 15.25 we show the behavior of the singular values while progressively enlarging
the frequency step from 15 to 30, 63.75, and 127.5 MHz.1 The other parameters are
unchanged with respect to the simulations of the previous section, and in particular
the spatial step is 5 cm.

From Figure 15.25, we see that the suitable frequency step is actually dependent on
the level of the allowed regularization. In particular, if the singular values are to be
thresholded at −20 dB, then a frequency step of 15MHz is redundant and the DT bound
of 30MHz is adequate. However, if the data are particularly “good” and allows us to
make use of a weaker regularization, then it can be useful to reduce the frequency step
with respect to the DT previsions. The evaluation of this possibility is case-dependent
but, as said, to the best of our experience it is quite hard that the GPR data allow to
achieve a good reconstruction with a regularization threshold lower than −40 dB. In order
to test the effect of these considerations versus the quality of the reconstruction and in
particular versus the vertical resolution, we now propose some examples with two
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Figure 15.25. Behavior of the singular values at variance of the frequency step. Crosses

(lower curve): Δf = 127.5 MHz. Dots: Δf = 63.75 MHz. Dashes: Δf = 30 MHz. Solid (upper curve):

Δf = 15 MHz.

1 This means to consider 5, 9, 18, and 35 frequencies equally spaced in the band 200–710MHz, respectively.
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circular and electrically small (ray = 1 cm) metallic targets superposed to each other at the
same abscissa but at different depths. The data are noisy with white Gaussian noise, and
the signal-to-noise ratio with respect to the total field is equal to SNR = 60 dB. The
soil parameters are the same as the previous examples, as well as the number and dislo-
cation of data. The frequency step is 15MHz. In Figure 15.26, some inversion results are
shown: The upper target is buried at 55 cm and the distance between the upper and the
lower target is labeled on each panel. The SVD is thresholded at −20 dB. In Figure 15.27,
the analogous results for two deeper targets of the same kind are shown; this time the
upper target is at the depth of 155 cm. Also for Figure 15.27 the SVD is thresholded
at −20 dB. The comparison between Figures 15.26 and 15.27 shows that the evaluation
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Figure 15.26. Reconstruction by inversion of two circular superposed targets (the upper one

buried at 55 cm) progressively closer to each other. The title of each panel refers to the distance

between the centers of the two targets. The axes are inmeters. The data are noisy with SNR = 60

dB, evaluated on the total field. The SVD is thresholded at −20 dB.
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of the vertical resolution is more “tricky” than that of the horizontal resolution.
In particular, in the proposed examples it is clear that the upper target partially masks
the lower one, whose image appears faded. Then, as said in Chapter 9 (see Section 9.6)
there is an interference term between the two targets that depends on the position of the
targets and of the source.

In particular, this can cause some anomalies such as, with reference to Figure 15.26,
an artifact in the middle between the two targets when these are at the distance of 35 cm
or, with reference to Figure 15.27, the fact that the two targets seem better distinguishable
from each other when their distance is 30 cm instead of 35 cm.

The DT vertical resolution in the case at hand is of the order of 26 cm according to
Eq. (9.45). The rougher equation (9.46) yields to 29 cm. In the case at hand, the dispersion
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Figure 15.27. Reconstruction by inversion of two circular superposed targets (the upper one

buried at 155 cm) progressively closer to each other. The title of each panel refers to the distance

between the centers of the two targets. The axes are inmeters. The data are noisy with SNR = 60

dB, evaluated on the total field. The SVD is thresholded at −20 dB.
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of the soil is not meaningful and we do not appreciate a different band between the signal
coming froma target at 55 cmanda target at 155 cm.Aswecan see, the achieved results are
in good agreement with the DT previsions, and in particular we distinguish the two
targets from each other if their distance is equal to 25 cm or larger. Moreover, in the case
at hand, unlike the case of the horizontal resolution, we don’t see any meaningful loss of
resolution versus the depth, and actually the vertical resolution seems even better for the
deeper targets of Figure 15.27 than for the shallower targets of Figure 15.26.

In order to show the dependence of the resolution on the regularization,
in Figures 15.28 and 15.29 we show the results achieved thresholding the SVD at
−40 dB instead of −20 dB, in the same cases of Figure 15.26 and 15.27, respectively.
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Figure 15.28. Reconstruction by inversion of two circular superposed targets (the upper one

buried at 55 cm) progressively closer to each other. The title of each panel refers to the distance

between the centers of the two targets. The axes are inmeters. The data are noisy with SNR = 60

dB, evaluated on the total field. The SVD is thresholded at −40 dB.
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Figures 15.28 and 15.29 make us appreciate that, in the case at hand, no meaningful
improvement is achieved from a weaker regularization. This results is at least partially
due to the masking of the deeper target of behalf of the shallower one. In particular, the
results of Figures 15.28 and 15.29 indirectly show that a frequency step of 30MHzwould
havebeen“sufficient” for the inversionat hand. Inparticular,when thresholdingat−20 dB,
the number of upper threshold singular values are substantially the same forΔf = 30MHz
andΔf = 15MHz (seeFigure 15.25).This shows in turn that theDT-basedprevisions about
the needed frequency step [see Eq. (9.52)] provide a reasonable order of magnitude.

In Figures 15.30 and 15.31 the data of Figures 15.28 and 15.29 are focused by a
migration-based algorithm. The details of the processing are the same of those described
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Figure 15.29. Reconstruction by inversion of two circular superposed targets (the upper one

buried at 155 cm) progressively closer to each other. The title of each panel refers to the distance

between the centers of the two targets. The axes are inmeters. The data are noisy with SNR = 60

dB, evaluated on the total field. The SVD is thresholded at −40 dB.
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for Figures 15.20 and 15.21. From Figures 15.30 and 15.31 we see that the migration-
based algorithm provides some more “tails” starting from the focused targets but, on the
other hand, the capability of distinguishing the two targets seems even better than those
provided by the inversion algorithm.

To sum up, the vertical resolution is intrinsically a concept definable in a way
less rigorous than the horizontal resolution, because the class of retrievable targets is
characterized (in terms of spatial frequencies) by a low-pass behavior along the abscissa
and a band-pass behavior along the depth. In particular, there is an irresolvable ambiguity
specifically linked to this fact, and there is a question about whether two superposed spots
should refer to two distinct targets or to the top and the bottom of a unique structure; this
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Figure 15.30. Reconstruction by Kirchhoff migration of two circular superposed targets

(the upper one buried at 55 cm) progressively closer to each other. The title of each panel refers

to the distance between the centers of the two targets. The axes are inmeters. The data are noisy

with SNR = 60 dB, evaluated on the total field.
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is actually deduced (when possible) from the context of the case history at hand and not
really from the involved physics–mathematics.

15.4 EXERCISES ON THE NUMBER OF TRIAL UNKNOWNS

In the two previous sections, we have shown examples on the achievable resolution and
(related to this) on the needed spatial and frequency steps, which means examples on the
number of data to be gathered. Clearly, in order to discretize the problem for a numerical
inversion, we also need some criterion to choose the number and kind of unknowns
formally looked for. We say formally looked for because, within a regularized
SVD-based approach, the kind of unknowns really looked for are the expansion
coefficients of the object function along the singular functions in the space of the
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unknowns (see Chapter 14). On the other hand, we don’t know the singular functions in a
closed form, and so we cannot choose them “directly” to represent the object function.
Consequently, we have to adopt a trial basis through which we can represent in an
approximate but adequate way the singular functions of the linear scattering operator.
In particular, the basis expansion should not be too coarse because otherwise it would
spuriously limit or alter the capabilities of the linear scattering operator with respect
to the class of theoretically retrievable targets and should not be uselessly refined
because, beyond a certain limit, this would increase the computational burden without
improving the resolution. The kinds of adoptable trial bases functions are infinite, of
course, but whatever the choice, a quantification of a convenient number of coefficients
that are worth looking for can be based on DT, as will be shown in a while. In particular,
in this chapter we will make use of bilateral Fourier harmonics along the horizontal
direction and step functions along the depth. This specifically means that, indexing
the basis functions after two indexes (namely m, ranging from 1 and 2M + 1, for the
horizontal variability, and n, ranging from 1 to N, for the vertical variability) the generic
basis function is expressed as

φm,n x,zð Þ=φhm xð Þφvn zð Þ ð15:5Þ

with the horizontal expansion given by

ϕhm xð Þ = exp j
π

a
m−M−1ð Þx

� �
Π

x

a

� �
ð15:6Þ

and the vertical expansion given by

ϕvn zð Þ=Π Nz−0:5nb
b

� �
ð15:7Þ

In Eqs. (15.6) and (15.7), a and b are the horizontal and vertical size of the investigation
domain, respectively, according to Figure 4.1, and the Π step function is defined as
usual as

Π wð Þ=
1 if wj j ≤ 1

2

0 if wj j > 1
2

8<
: ð15:8Þ

Under this choice, the comprehensive number of unknowns formally looked for is given
by N(2M + 1) and the problem at hand is just to address a convenient choice of N andM.
With regard to the horizontal variability, following the same reasoning exposed with
reference to Figure 9.11, we can approximate the horizontal extent (HE) of the retrievable
spectral set as

HE = 4ksc sin θemaxð Þ ð15:9Þ
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where ksc is the central wavenumber in the soil and the spectral set is symmetric
with respect to the ς-axis; that is, it extends along the η-axis from − 2ksc sin(θemax) to
2ksc sin(θemax). Therefore, it is reasonable to choose M such that the maximum-order

Fourier harmonic, given by ϕh 2M + 1ð Þ xð Þ= exp j
π

a
2M + 1−M−1ð Þx

� �
= exp j

πM

a
x

� �
,

has the same spatial period as exp( jHEx) = exp ( j2ksc sin(θemax) x), which yields the
equation

Mπ

a
= 2ksc sin θemaxð Þ= 4π

λsc
sin θemaxð Þ,M =

4a
λsc

sin θemaxð Þ ð15:10Þ

In general, the result of Eq. (15.10) is not an integer number, and therefore nowM should

be meant as the first integer number equal to or greater than
4a
λsc

sin θemaxð Þ.
Equation (15.10) shows that the number of horizontal harmonics also depends on the sine
of the effective maximum view angle, which means that we might progressively relax the
number of Fourier harmonics at deeper levels. This is coherent with the loss of resolution
versus the depth, of course. At any rate, we will not do that in this book, and we will
conservatively evaluate sin(θemax) with respect to the central point at the top of the
investigation domain, according to Figure 15.12. Clearly, some redundancy is accepted
in this way. In the cases considered throughout this chapter (frequency band ranging
from 200 and 710MHz, εsr = 5, a = 2 m), this evaluation yields M = 25.

With regard to the number of vertical steps, we propose an evaluation slightly looser,
because the DT spectral set is intrinsically matched with complex Fourier harmonic
functions. At any rate, again approximating the spectral set with a rectangle as shown
in Figure 9.11, the vertical extent (VE) of the spectral set is given by

VE = 2ksmax−2ksmax =
4π

ffiffiffiffiffiffi
εsr

p
c0

fmax− fminð Þ= 4π
ffiffiffiffiffiffi
εsr

p
B

c0
ð15:11Þ

and it seems reasonable to guarantee that the length of the vertical step function is equal
to one-half of the period of the spatial harmonic function exp ( jVEz). This yields

b

N
=
1
2
2π
VE

=
c0

4
ffiffiffiffiffiffi
εsr

p
B
,N =

4bB
ffiffiffiffiffiffi
εsr

p
c0

ð15:12Þ

Again, N is to be meant as the first integer number equal to or greater than 4bB
ffiffiffiffiffiffi
εsr

p
=c0.

In the cases dealt with before in this chapter (b = 2 m, B = 510 MHz, εsr = 5), this drives
to N = 31.

In all the inversion results shown in this chapter, we have hadM = 25 and N = 45, for
a comprehensive number of trial unknowns equal to (2 × 25 + 1) × 45 = 2295, which is
therefore a reasonable (even if redundant) number of trial unknowns. In Figure 15.32,
the behavior of the singular values for three choices of the trial unknowns are shown.
Figure 15.32 confirms that the proposed evaluation is slightly redundant but reasonable.
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In particular, up to a threshold of −20 dB, the three curves of singular values are
substantially superposed, and beyond a threshold of −40 dB we should make twice
larger the number of unknowns in order to increase the number of upper threshold
of about 20%. However, in previous examples we have also seen that the use of a lower
regularization threshold can improve the result only if the data are sufficiently clean,
which in turn is related also to the depth of the targets of interest. To give a final rule of
thumb, in the choice of the number of trial unknowns, some redundancy with respect to
a DT-based evaluation is in general well-advised, both because the DT calculations are
derived under several approximations and assumptions and because a larger number of
basis functions will provide a better approximation of the actual singular function of the
linear scattering operator. However, it is pointless (further than computationally
burdening and potentially even harmful) to increase of an order of magnitude the
number of trial unknowns with respect to a DT evaluation.

15.5 EXERCISES ON SPECTRAL AND SPATIAL CONTENTS

In Chapter 14 (Section 14.4) we have defined the spectral content and the spatial content
of the upper threshold singular functions. In this section, we show a few examples about
the possibilities that these quantities offer in order to characterize (in a nonrigorous
but effective way) the class of the retrievable targets. In particular, this implicitly
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Figure 15.32. Singular values looking for 31 horizontal Fourier harmonics and 31 vertical
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completes the numerical analysis of the previous sections, where the nonredundancy of
the data has been related to some saturation of the behavior of the singular values. Indeed,
the saturation of the behavior of the singular values is not a sufficient condition in
order to show that the class of retrievable profiles is saturated too. In fact, the class of
the retrievable profiles is the span of the singular function upper threshold; and even
if the number of singular values higher than a fixed threshold is saturated, theoretically
this does not mean that the retrievable targets are definitively (namely, in a way not
modifiable through the gathering of further data) characterized. In particular, the span
of the upper threshold singular functions might hypothetically still change when
increasing the number of data. The spectral and the spatial content of the singular
function are qualitative but immediate instruments to show that indeed not only the
number but also the class of retrievable targets tends to become stabilized when the data
sampling, either in space or in frequency (or in time), is slightly more intense than the DT
values. In Figure 15.33 we show the spectral content [as defined in Eq. (14.38)] of the
singular function relative to the singular values depicted in Figure 15.25. In particular,
Figure 15.33 shows the spatial frequencies that we have some hope to retrieve making
use of 5, 9, 18, and 35 time frequencies, respectively. The line describes the bound of the
retrievable spectral set according to DT (see Chapter 9). The DT set has been calculated
neglecting the conductivity and accounting from the maximum view (geometrical) angle,
evaluated with respect to the central upper point of the investigation domain, as shown in
Figure 15.12. Figure 15.33 makes us appreciate that there is a noticeable agreement
between the DT spectral set and maximum achievable support of the spectral content
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of the singular functions. However, when the frequency step is too large, this maximum
achievable support is not completely filled. To make narrower the frequency step is
equivalent to fill progressively better the available spectral set. In this regard, in
Figure 15.33 it is evident that we can even distinguish the contributions of each involved
frequency that is associated with a well-localized “spectral arch.” Some effect of the
frequency step on the reconstruction can be appreciated from Figure 15.34.

The examples of Figure 15.34 represent a variation on the theme of the first case
presented in Figure 15.27. In particular, the first (upper left-hand side) panel is the same
in the two cases. Then, in Figure 15.34, the frequency step has been progressively
enlarged in the subsequent panels to 30, 63.75, and 126.5 MHz.

From Figure 15.34, we can appreciate that the main effect of the spectral holes is the
introduction of false targets, the majority of which are actually related to aliasing effects
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that replicate (in a distorted way) the actual targets. We can also appreciate that it is not
wrong to take data with some (nonexcessive, i.e., not an order of magnitude) redundancy
with respect to the DT previsions [which in the case at hand would suggest a frequency
step of 33MHz according to Eq. (9.45)]: The expected improvement is marginal but
clearly visible from the comparison of the two upper panels in Figure 15.34. Finally,
Figures 15.33 and 15.34 also show that the class of the retrievable targets can be different
even at a parity (or almost at a parity) of singular value behavior. In particular, from the
two upper panels of Figure 15.33 we appreciate that, even if the upper threshold singular
values are almost the same (281 making use of 35 frequencies and 275 making use of
18 frequencies, according to Figure 15.25), actually the span of the upper threshold sin-
gular function is not the same, and that with 35 frequencies allows a better coverage of the
lower central part of the theoretically available spectral set.

Let us pass to an example regarding the spatial content of the singular functions. To
do that, now we propose an example with higher losses in the soil than those considered
up to now. In particular, let us consider a soil with electrical conductivity σ = 0.05 S/m
(the value considered before was σ = 0.01 S/m). The other parameters keep unchanged
with respect to the previous case relative to Figure 15.33. In Figure 15.35 we show the
spatial content, defined in Eq. (14.39), normalized to its maximum value, at variance of
the regularization threshold for the singular values. The gray tones make us appreciate
that the bottom of the investigation domains is much clearer than the top if the threshold
is fixed at −10 or at −20 dB. In other words, the span of the singular functions upper
threshold in these two cases does not portray adequately the bottom of the investigation
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Figure 15.35. Normalized spatial content at variance of the threshold: σ = 0.05 S/m.
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domain. This is made still more evident if we threshold the normalized spatial content
at 0.1—that is, at one order of size with respect to its maximum value. We mean
this quantity as a function whose value is 1 in the points where the normalized spatial
content is equal to or greater than 0.1 and 0 elsewhere. The relative image is shown
in Figure 15.36, and we can appreciate that with threshold equal to −20 dB (or even
more −10 dB), the bottom of the investigation domain is not adequately “covered.”

To show the effect of the lack of spatial coverage, let us propose the reconstruction of
two metallic circular targets at the depth of 2.4 m (with reference to their centers: the ray
is 1 cm). The distance between the two targets is 80 cm. The data are achieved, as before,
by means of a two-dimensional FDTD simulation performed with GPRMAX, and a
white Gaussian noise has been superposed to the data so that we have SNR = 60 dB with
respect to the total field data. From Figure 15.37, we can appreciate that in this case we
cannot regularize at −20 dB (or even more at −10 dB) the singular values if we want to
see these two targets; we need more singular functions in order to image the bottom of
the investigation domain. In particular, from Figure 15.37 we also appreciate that the
threshold at −30 dB is certainly the best one among the four presented trial values. In
fact, it allows the imaging of the two targets without artifacts, which instead appears
when the threshold is further on decreased to −40 dB, in which cases the same image
of the two targets is distorted. In other words, Figure 15.37 documents, in the case at hand,
the progressive passage from an overregularization (threshold at −10 and −20 dB) to a
reasonable regularization (−30 dB) to an underregularization (−40 dB). In previous cases
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(see Figures 15.16–15.19), we have seen that, at parity of signal-to-noise ratio, the best
threshold might be lower or higher than that exploited here. This confirms that the signal-
to-noise ratio is not a sufficient parameter to establish any optimal degree of regulari-
zation, because it depends on the losses and on the position of the targets of interest
too. Before closing this section, we find it interesting also to show the data relative to
the reconstruction of Figure 15.37. In particular, in Figure 15.38 the noisy data after zero
timing and muting of the interface are shown, as they appear (upper panel) and after a
filtering in the band 200–710MHz (that is, the band of the source and the band exploited
for the inversion) in the lower panel. From Figure 15.38, we can appreciate that the two
targets are well-visible from the data. In other words, the data speak and tell us up to what
depth we can reasonably try to focus the targets (even if under some progressive degra-
dation of the resolution).
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Figure 15.37. Reconstruction of two metallic targets (ray = 1 cm) at the depth of 2.5 cm at var-

iance of the regularization threshold. The distance between the two targets is 80 cm.
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15.6 EXERCISES ON THE EFFECT OF THE HEIGHT
OF THE OBSERVATION LINE

In the previous sections the data were at the air–soil interface. In this section we show
some examples regarding the effect of the height of the observation domain. In particular,
here we consider a soil with relative dielectric permittivity εrs = 5 and electric conduc-
tivity σ = 0.01 S/m. The investigation domain is sized 1.5 × 1.5 m2 and ranges in depth
from 1 cm to 151 cm. This investigation domain is discretized with 31 Fourier harmonic
functions along the horizontal direction and 31 step functions along the depth. The
frequency band ranges from 200 to 600MHz with frequency step 25MHz. The spatial
step of the data is 2.5 cm, within a multimonostatic configuration where the offset
between source and observation point is equal to zero. The observation line is 1.5 m long
and is superposed to the investigation domain. Figure 15.39 shows the behavior of the
singular values for h = 0 cm, h = 10 cm, h = 20 cm, h = 30 cm, h = 40 cm, and h = 50 cm.
The figure shows that, as expected, the curve of the singular values becomes lower and
lower when increasing the height of the observation line. Actually, in its initial part, the
curve for h = 0 cm is lower than some among the other ones; this is due to some
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redundancy of the data (Persico, 2006). However, by adopting a reasonable level of
regularization (let’s say with threshold chosen within the range between −15 and
−40 dB), the behavior of the singular values tells us that the height of the observation
line makes the retrievable amount of information decrease.

In order to show the relationship between this loss of information and the class of
retrievable targets, let us remind that the height of the observation line is related to a
decrease in the effective maximum view angle, as shown in Section 9.10. The
progressive reduction of the maximum view angle while increasing the height of the
observation line is shown in Figure 15.40.

In Figure 15.40 the minimum depth of the investigation domain (dmin) has been
voluntarily exaggerated with respect to the data of the example of Figure 15.39 (where
dmin = 1 cm and the investigation domain is sized 1.5 × 1.5 m2). However, this is only for
a graphical evidence: Indeed, for any fixed height and extent of the observation line, the
maximum view angle is dictated by Snell’s law on the refraction, and therefore the max-
imum view angle does not vanish while decreasing dmin. Instead, of course the maximum
view angle vanishes for h! +∞, because we are considering an observation line of
finite length. In particular, we have found numerically the effective maximum view
angles solving Eq. (2.16) for the refraction point at the air–soil interface. According
to Figure 15.40, the reference buried point is the upper central point of the investigation
domain, so that, with reference to the symbols in Eqs. (2.16) and (2.17), in the case at
hand we have x = 1.5 m, x0 = 0 m, c= c0=

ffiffiffiffiffiffi
εsr

p
= 3× 108
� �

=
ffiffiffi
5

p
m=s≈1:342 × 108m=s,

ct01=2 = dmin = 0:01 m. After solving for the refraction point x1, the maximum effective
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Figure 15.39. Singular value behavior at variance of the height h of the observation line. Solid

line (upper curve): h = 0 cm. Dashed line: h = 10 cm. Dashes and dots: h = 20 cm. Dots: h = 30 cm.

Asterisks: h = 40 cm. Crosses (lower curve): h = 50 cm.
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angle is given by θemax = arcsin x1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 + d
2
min

p� �
and the expected horizontal resolution,

according to Eqs. (9.62) and (9.63), is given by HRh = λsc=2sin θemaxð Þ=
λsc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + d

2
min

p .
2x1. In the case at hand, the central frequency is equal to fc = 400 MHz,

and therefore the central internal wavelength is equal to λsc = c=fc = 33:54 cm. The
numerical results at variance of the height h are presented in Table 15.1.

In Figure 15.41, we show the spectral content of the singular functions at variance of
the height, with reference to a threshold equal to −20 dB. Together with the spectral
content, we show the DT retrievable spectral set, accounting for the maximum view angle
at variance of the height as shown in Table 15.1. As can be seen, the agreement between
the DT contour of the retrievable set (red lines) and the edges of the support of the spectral
content is very good for h ≥ 20 cm. At h = 10 cm this matching is still good, even if the
spectral content extends slightly beyond the lateral bounds. This discrepancy is probably
due to near-field effects, which as said are not accounted in DT. Instead, for h = 0 cm the
support of the spectral content is substantially smaller than the DT bounds. This is
because the spectral weight of the DT algebraic relationship is equal to zero at the
extremes of the visible interval, as already outlined in Section 9.2.
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Observation line Σ

Investigation domain D

Soil

dmin

h3

h2

θ3
θ2

θ1

h1 = 0

Figure 15.40. Pictorial of the reduction of the maximum view angle when increasing the

height of the observation line. For color detail, please see color plate section.

TABLE 15.1 Numerical Results at Variance of the Height h

h (m) θe max (degrees) HRh (cm)

0.0 89.24 16.8
0.1 34.6 29.5
0.2 32.8 31
0.3 31 32.6
0.4 28.37 35.3
0.5 25.24 39.3
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Figure 15.41 shows that the degradation of the reconstruction expected for higher
observation lines is mainly related to a decreasing of the maximum effective view angle,
which essentially (see Chapter 9) makes us expect a degradation of the horizontal
resolution,asexplicitlycalculated inTable15.1according toEqs. (9.62)and(9.63). Inorder
to show this on a reconstruction, we have simulated the data relative to two small circular
metallic targets with GPRMAX. The centers are at the depth of 3 cm and the rays are 2 cm.
Thus, the targets are superficial and the horizontal resolution limits in Table 15.1 can be
tested (otherwise a further degradation due to the depth of the buried targets should be
accounted for). The data are noisy with SNR = 60 dB with respect to the total field.
The reconstruction is regularized by thresholding the singular values at −20 dB. The
distance between the centers of the two targets is 30 cm. Since the targets are quite shallow,
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the relative diffraction curves were partially embedded in the echo of the airsoil interface.
Therefore, background removalhasbeenappliedon thedata.FromFigure15.42,we see the
progressive degradation of the horizontal resolution. In particular, the two targets are well-
distinguished for h = ≤ 20 cm, are hardly distinguished for h = 30, 40 cm (and ameaningful
artifact centered below the two targets appears too), and are substantially fused together
for h = 50 cm (at this height the artifacts are still more relevant). These results are in good
agreement with the DT horizontal resolution previsions of Table 15.1.

15.7 EXERCISES ON THE EFFECT OF THE EXTENT
OF THE INVESTIGATION DOMAIN

Up to now, we have discussed two linear focusing methods, one essentially based
on the migration and one essentially based on the linear inversion. The expected
characteristics of the reconstruction in terms of retrievable spatial harmonic components
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are not much different, because in both cases the physical “point” driving the resolution is
the filtering behavior of the linear scattering operator. These are more explicitly foresee-
able under a DT model but they are essentially confirmed by the numerical SVD of the
linear operator, even if this one accounts for losses, near-field effects and truncation of
the observation line without introducing further approximations. The trade-off usually
reported between migration and inversion is that the first one is a faster but mathe-
matically less refined focusing method with respect to the second one. This is true, but
there is an important corollary that customarily is not stated: The stronger computational
burden required for an inversion compels us to restrict the investigation domain that
(depending on the single case and on the available computational power) is usually
extended up to a few central wavelengths within an inversion approach, whereas it
can be extended up to hundreds of wavelengths within a migration-based approach.
Now, in common GPR practices, a B-scan is often quite long in terms of wavelength
(hundreds or even thousands). Therefore, in such a case, it is not possible to apply an
inversion approach to the whole set of data. What has been done, up to now, is to join
side by side several inversion results (Pettinelli et al., 2009; Persico, Soldovieri, and Utsi,
2010), according to the scheme of Figure 15.43, where the B-scan line has been divided
into several observation lines Σ and the underlying portion of soil of interest has been
divided into several corresponding investigation domains D.

As depicted in Figure 15.43, it is well-advised that, for each subportion of the B-scan,
the subobservation line is of the same length of the underlying sub-investigation domain
and is perfectly superposed to it. This is because, for each inversion, the adopted model
(see Section 4.1) assumes that the targets are present only within the current investigation
domain. This is not true in the real world, and therefore an observation line quite longer
than the underlying investigation domain would enhance the effects of targets external to
the investigation domain on the achieved image. However, even choosing observation
lines superposed to the investigation domains, the targets within each investigation
domain can influence the reconstruction in adjacent investigation domains, and the targets
in the adjacent investigation domains can in turn affect the reconstruction in the current
investigation domain. The possible situations are pictorially shown in Figure 15.44.

In particular, with reference to Figure 15.44, a target T1 is expected to be optimally
reconstructed, because it is centered with respect to the sub-observation line superposed
to it, so that it is seen under a presumably adequate maximum effective view angle.

Air
ΣN–1 ΣN+1ΣN

DN–1 DN+1DN

Soil

Figure 15.43. Subdivision of a long B-scan into several observation and investigation domains.
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Instead a target like T2 is seen under an asymmetric maximum view angle, because the
sub-observation line is not centered on it. This makes us expect that the reconstruction of
T2 will be somehow poorer than that of T1. Moreover, the external target T3 is certainly
“seen” by the GPR system when it reaches the right-hand bound of the sub-
observation line ΣN, and therefore it is a potential source of artifacts within the investi-
gation domain DN. For the same reason, T2 is a potential source artifact within the
investigation domain DN − 1 and T3 is a peripheral target within the investigation domain
DN+1, so that its reconstruction is subject to the effects of an asymmetric effective
maximum view angle. At this point, it is clear that the presence of possibly many
peripheral targets and the production of artifacts due to close external targets are the
two sides of the same coin and are a consequence of the fact that we have partitioned
the original whole observation line and the underlying whole investigation domain of
interest. Figure 15.44 comprises also apparently more complicated cases. For example,
a target that crosses the lateral bound between two investigation domains can be seen as a
couple of adjacent targets, one of which is peripheral and another one external to the
current investigation domain. Similarly, a long target that crosses the whole investigation
domain on both sides can be seen as five adjacent targets: two external (one on the right-
hand side and another one on the left-hand side), two internal but peripheral (one on the
right-hand side and another one on the left-hand side), and one internal and centered.
In order to show some effects of the subdivision, we propose an example constructed
as follows: The relative dielectric permittivity of the soil is equal to εrs = 5, and its electric
conductivity is equal to σ = 0.001 S/m. The offset between source and observation point is
equal to zero, the spatial step of the data is 2.5 cm, and a B-scan 4.5 m long is considered.
With these parameters, we have 181 observation points all together. For the inversion
results, the B-scan at hand has been divided into three adjacent observation domains,
each of which is 1.5 m long. In this way, we have 61 measurement points for each
investigation domain, and the last point of the first (second) observation domain is also
“re-exploited” as the first point of the second (third) observation domain. For each
observation domain, the corresponding investigation domain starts from the interface
and ends at the depth of 1.5 m. The investigation domain has been discretized by means

Air
ΣN–1 ΣN+1ΣN

DN–1 DN+1DN

T2

T1

T3
Soil

Figure 15.44. Pictorial of the possible situations: with respect to the current investigation

and investigation domains Dn and Σn, the targets might be centered as T1, peripheral as T2 or

external as T3.
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of 31 bilateral Fourier harmonic functions along the horizontal direction and 31 step func-
tions along the depth. The inversion has been performed in the frequency domain, and
the exploited band for the inversion has been 200–600MHz sampled with frequency step
25MHz. The SVD has been regularized by thresholding the singular values at −20 dB
with respect to the first (maximum) one. The data have been simulated with GPRMAX,
making use of a Ricker source with central frequency at 300MHz. We have checked
that the band at −3 dB of such a source is about equal to the interval 200–600MHz.
In Figure 15.45 we show the reconstruction of three centered square cavities, each of
which is 30 × 30 cm2, with the depth of the top at 1 m, and in Figure 15.46 we show the
reconstruction that we achieve if the cavities are shifted 55 cm toward the right-hand side.

It is evident that the reconstruction in Figure 15.46 is worse than that in Figure 15.45,
because the targets are peripheral. In particular the three spots relative to the reconstruc-
tions appear as spuriously “pulled” toward the centers of the investigation domains.
This example shows that, if possible, the subdivision of the investigation domain
should account of the most relevant targets in order to make them, if possible, centered.
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Figure 15.45. Reconstruction of three centered cavities at the depth of 1m.
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Figure 15.46. Reconstruction of three cavities of Figure 15.45 shifted 55 cm toward the right-

hand side.
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This can be achieved in some cases with a shift of the subdivision, which in turn can
require some zero padding of the B-scan at its beginning and/or at its end. Incidentally,
some zero padding is customarily needed in any case if we want to invert the entire
gathered B-scan. In fact, the length of the physically gathered observation line in general
is not an integer multiple of the chosen length of the subportion selected for the
inversions. In particular, with some zero padding on the same data of Figure 15.46,
we have performed the same inversion on four investigation domains instead of three,
and we have achieved the result of Figure 15.47. In Figure 15.47 the vertical solid lines
indicate the start and end point of the real B-scan. As can be seen, in Figure 15.47 the
same targets of Figure 15.46 are made centered with respect to the subportions of the
observation line exploited for each inversion, and this improves the reconstruction.
In particular, some limited view angle effect is perceived only with regard to the third
cavity on the right-hand side, because this cavity is placed close to the end of the gathered
observation line. In other words, it is a “really peripheral” target and therefore the lack of
a symmetric and adequate maximum view angle is an intrinsic (physical) unavoidable
phenomenon in this case.

For completeness, in Figure 15.48 the result of a migration-based processing is
shown too. In particular, the data have been imported in Reflexw and have been migrated
in the time domain (Schneider, 1978). The exploited propagation velocity has been that
corresponding to the real part of the complex permittivity, which is licit because the soil is
low-lossy. The number of traces considered for the migration has been 181—that is, the
total and not a subset, because the diffraction curves visible from the data appeared as
large as the comprehensive length of the B-scan. From Figure 15.48 we can see some
residual effect of the diffraction curves and the image appears somehow noisier than
that in Figure 15.47. Moreover, as in Figure 15.47, also in Figure 15.48 we appreciate
some limited view angle effect only with regard to the cavity on the right-hand side
(which appears slightly pulled toward the left-hand side).

We find also interesting to present some examples about the problem of artful
anomalies due to targets external to the observation domain. In the previous example this
problemwas formally present too, but not meaningful because the three targets were scat-
tering objects of the same shape, size, and nature. Instead, let us now consider a situation
where both strong and weak scattering targets are present. In particular, let us consider,
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Figure 15.47. Reconstruction of three cavities of Figure 15.46 achieved after a zero padding

that makes the targets centered.
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at a parity of measurement and scenario parameters, three new targets with the same
geometry (namely size, position, and orientation) as that of the targets above. However,
now the left-hand side target is a perfect electric conductor, the central target is a weak
scattering object with relative permittivity equal to 6 and with the same conductivity of
the surrounding soil, and the right-hand target is a void.

This time we show first of all the data (Figure 15.49) after zero timing and muting of
the interface contribution. This is done because we are considering a scenario with weak
and strong scattering targets put together. In particular, it is natural that a strong scattering
object can partially or even totally cover the visibility of a weaker scattering targets, and
therefore we want to show preliminarily that the weak target is visible in the raw data and
therefore it should be visible also after a correct focusing processing. The data of
Figure 15.49 make us appreciate that, even if it is meaningfully weaker than the other
two, the diffraction curve of the weak target—that is, the central one among the three
diffraction curves—is clearly visible. In Figure 15.50 the result with the investigation
domain sequence of Figure 15.46 is shown. As can be seen, the central weak scattering
target has been substantially erased, because it is completely masked by the false target
produced by the tail of the diffraction curve of the perfect electric conductor within the
central investigation domain. In Figure 15.51, instead the result of a Kirchhoff migration
similar to that of Figure 15.48 is shown. Indeed, the image of Figure 15.51 has been
enhanced by means of some gain variable versus the depth and some saturation, which
is a common “trick” to enhance the achieved image. However, the shape of the retrieved
target and the comparison with the data provide a trustful result. Incidentally, we have
tried similar and also further or alternative manipulations also on the image of
Figure 15.50, but we didn’t achieve any reliable image of the central target.

Let us now show the reconstruction of the same underground scenario according to
the sequence of four investigation domains considered in Figure 15.47. The result is
shown in Figure 15.52, and the image of the central target has been slightly enhanced
by means of some darkening of the image. Alternatively, one might normalize each
of the achieved adjacent reconstructions to its own maximum level. In this way, the
image of Figure 15.53 is achieved.
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Figure 15.48. Reconstruction of three cavities of Figure 15.47 achieved from Kirchhoff

migration.

289EXERCISES ON THE EFFECT OF THE EXTENT OF THE INVESTIGATION DOMAIN



Figure 15.49. GPR data with three targets. From left to right: A perfect electric conductor,

a weak scattering target, and a void.
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Figure 15.50. The reconstruction of three targets. From left to right: A perfect electric conduc-

tor, a weak scattering target, and a cavity.
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Any choice has its pros and cons, and clearly in this example we have an intrinsic
physical problem due to the different amount of energy scattered by the targets at hand.
However, from Figure 15.50 it is clear that the adopted investigation domain sequence
makes much worse the effect of this problem.
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Figure 15.51. Themigration result achieved for three targets. From left to right: A perfect elec-

tric conductor, a weak scattering target, and a cavity.
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Figure 15.52. The reconstruction of the three targets of Figure 15.50, making use of

four-investigation domain.
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Figure 15.53. The reconstruction of the three targets of Figure 15.50, making use of the

four-investigation domain and normalizing each reconstruction to its own level.
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Summarizing, we work out a first conclusion that, when possible, the choice of the
investigation domain should be done such that the targets of interest are all relatively
centered with respect to the investigation domains.

However, such a sequence is not identifiable in all cases, because it can happen that
the distribution of the targets is too “random” and/or the buried targets are too long and/or
too many to allow us to identify the desired sequence of adjacent investigation domains.
In these cases, a possible solution is the use of a multiple sequence of investigation
domains. In particular, let us explain this concept starting with a double sequence of
investigation domains. The double sequence is illustrated in Figure 15.54. Of course,
some further trivial zero-padding operations are needed at the beginning and at the
end of the B-scan in order to identify the two complete sequences.

It is clear that, adopting a double sequence of investigation domain, only the central
part of each investigation domain is retained, thereby mitigating the problems due to the
maximum view angle. On the other hand, each piece of reconstruction is as large as
one-half of the width of the investigation domain (labeled “a” in Figure 15.54, analo-
gously to Figure 4.1) instead of its entire width. Actually, it is unavoidable to see a sort
of seam point between any two adjacent sub-investigation domains, due to the different
average values of the image relative to two adjacent sub-reconstructions. Consequently,
when adopting a double sequence, we will see on the reconstruction about twice the seam
points with respect to the case with a single sequence. Therefore, the choice should be
data-driven. With regard to the computational burden, there is some additional time
required for the double sequence but it is marginal. In fact, most of the required RAM
and computational time is due to the calculation of the matrix and of its SVD, and this
is done once and for all with regard to one single sub-investigation (and sub-observation)
domain. The idea of a multiple series of investigation domains is a straightforward exten-
sion of the double sequence. In particular, Figure 15.55 shows how a triple sequencemight
be chosen. In this case the retained part of the reconstruction is still more centered, but the
number of seams is about threefold with respect to those needed for a single sequence of
investigation domains. However, on the other hand, the difference between the average
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N–2N–4

N+1 N+3

N+4N+2N
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Figure 15.54. Double sequence of investigation domains. The second sequence is shifted with

respect to the first one-half of an investigation domain. For each investigation domain the cen-

tral half of the focused area is retained. Then the retained pieces of reconstruction are joined

side by side after the indicated order.
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value of the reconstruction between two adjacent domains is expected to be reduced
because the amount of the shift between two adjacent sets of data is reduced. Finally, there
will also be a further marginal increase of the required computational time with respect to
the double sequence.

At this point, we provide an example of reconstruction achieved from a
double investigation domain. In this example, the targets are nine square cavities sized
30 × 30 cm2 with the depth of the top equal to 1 m. The abscissas of the centers of the
cavities are at 0.20 m, 0.75 m, 1.30 m, 1.70 m, 2.25 m, 2.80 m, 3.20 m, 3.75 m, and
4.30 m, respectively. The scenario and measurement parameters are the same as those
given in the previous examples. In this case, the investigation domains are too “crowded”
to allow us to identify any well-advised single sequence. In particular, making use of the
single sequence with three investigation domains (as in Figure 15.46), we achieve the
result of Figure 15.56, and making use of the single sequence of four investigation
domains (as in Figure 15.47) we achieve the result of Figure 15.57. In both cases, limited
view angle effects are quite evident with regard to some of the peripheral targets. In
particular, in Figure 15.57 some of the cavities cross the boundary between two adjacent
investigation domains, and this affects in a particularly negative fashion their focusing.
In Figure 15.58, instead, the result achieved from the double sequence (with seven
investigation domains) is shown. The seam-points have not been indicated in this case,
in order not to make the figure confusing; this also shows that their locations are
intrinsically evident. The focusing of all the targets is meaningfully better by making
use of a double sequence of investigation domains. Actually, some artifacts appear
too, but these are due to some unavoidable interference between the targets, which

a

N–3

N–1

N–2 N+1

N+2

N

a/3

a/3 a/3

Figure 15.55. Triple sequence of investigation domains. The second sequence is shifted with

respect to the first one-third of an investigation domain, and the third sequence is shifted

with respect to the second one-third of an investigation domain. For each investigation domain

the central one-third of the focused area is retained. Then the retained pieces of reconstruction

are joined side by side after the indicated order.
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are quite close to each other. Such artifacts are present (and actually appear even worse)
if the reconstruction is achieved from a Kirchhoff migration, as shown in Figure 15.59.
As in some previous cases, the image of Figure 15.59 has been enhanced with some gain
variable versus the depth.
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Figure 15.56. The reconstruction of nine cavities with three investigation domains.
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Figure 15.57. The reconstruction of nine cavities with four investigation domains.
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Figure 15.58. The reconstruction of nine cavities with a double sequence of investigation

domains.
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For the interested reader, the effects of the observation and investigation domain
subdivision have been tested also versus experimental data (Persico and Sala, 2014).

15.8 EXERCISES ON THE EFFECTS OF THE
BACKGROUND REMOVAL

In this section, some examples about the background removal are shown. Preliminarily,
let us show how to discretize the linear scattering operator so that the operation of the
background removal is included. Let us consider at the moment a single frequency.
To do this, let us start considering the matrix relative to a common offset prospecting
and let us focus on a single-frequency case with K measurement points and H trial basis
functions. It is taken for granted that the observation line is of the same length of the
underlying investigation domain and is perfectly superposed to it. Let us label s the
spatial step, so that the length of the investigation and observation domains is equal
to s(K − 1). Let us label M the matrix of the system and c the column vector of the
coefficients. Given any combination of coefficients, the product Mc is, by definition,
the scattered field at the first order (with respect to the Born series, defined in
Section 8.1) produced by the chosen combination of coefficients, which in turn
represents some chosen buried target. Let us now consider, as chosen target, the first trial
basis function. In this case the first element of the column vector of the coefficients is
equal to 1, and the remaining H − 1 are equal to 0. Consequently, the relative scattered
field at the first order is given by

Mc=

M11 M12 …M1H

M21 M22 …M2H

…

MK1 MK2 …MKH

0
BB@

1
CCA

1
0
…

0

0
BB@

1
CCA=

M11

M21

…

MK1

0
BB@

1
CCA ð15:13Þ

Equation (15.13) shows that the first column of the matrix represents the scattered
field relative to the first trial basis function. In the same way, the generic hth column
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Figure 15.59. The reconstruction of nine cavities with a Kirchhoff migration.
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of the matrix represents the scattered field relative to the hth trial basis function. At
this point, in order to perform a background removal on 2N + 1 traces, we need N
additional traces before the original scan and N additional traces after it. This means
that we have to calculate the common offset matrix relative to K + 2N measurement
points, and these K + 2N points have to be referred to an enlarged equivalent
observation line of length (K − 1)s + 2Ns, centered on the investigation domain. These
K + 2N measurement points lead to a matrix (at single frequency) with K + 2N lines.
Let us call M1 this “augmented” matrix. Now, referring the background removal to the
first-order samples of the scattered fields—that is, to the columns of the matrix—it is
immediate that

Mb k,hð Þ=M1 k +N,hð Þ+ 1
2N + 1

XN
n= −N

M1 k + n +N,hð Þ k = 1…K ð15:14Þ

where Mb is the matrix relative to the scattering operator including the background
removal. As can be seen, Mb has K rows as the original common offset matrix. With
regard to the data, instead, the extra data needed for BKGR can be fictitious or actual
if we are considering a long observation line partitioned into adjacent sub-lines for inver-
sion purposes as discussed in the previous section. The best choice is case-dependent.

In a first example, we consider a stratified medium with a thin cavity between the
two media as shown in Figure 15.60. The cavity is large (55 cm) and thick (2 cm). The
depth of its top is 69 cm. The data have been simulated with GPRMAX, and the soil
shows a relative dielectric permittivity equal to εsr = 5 and an electric conductivity
equal to σ = 0.01 S/m. The underlying rock shows a relative dielectric permittivity equal
to εrr = 35 and an electric conductivity equal to σr = 0.01 S/m The soil–rock interface is at
the depth of 70 cm. The data are shown in Figure 15.61.

In particular, a central measurement line 1.5 m long has been considered for the
common offset data, prolonged with an additional 25 cm on both sides for gathering
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Figure 15.60. Geometry of the case history at hand in a stratified medium.
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the extra data needed for the background removal, which is performed on 11 traces
(corresponding to a distance of 50 cm). The data have been gathered with spatial step
5 cm, and the source is a Ricker pulse with central frequency 300MHz. Gaussian noise
has been added to the data with signal-to-noise ratio equal to 60 dB, evaluated on the total
field data. The data shown in Figure 15.61 have been filtered in the band 300–620MHz,
which is the band used for the inversion, about corresponding to the (−6 dB) band of the
source. From Figure 15.61, we appreciate that the operation of background removal
makes the target muchmore visible in the case at hand. This is obvious, because the target
is embedded in the interface between two buried layers.

In Figure 15.62, the result of an inversion of these data without and with applying
background removal on 11 traces is shown. In particular, the two inversion results of
Figure 15.62 are achieved from two different data (namely the data without and with
background removal) and the two different matrixes (namely the common offset matrix
relative to an observation line 1.5 m long and the matrix including the background
removal operation on the same observation line, which is achieved from a common offset
matrix relative to an augmented common offset observation line, 2 m long). It can be seen
that the target is visible only in the lower panel, because the upper one substantially
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Figure 15.61. The data before (upper panel) and after (lower panel) a background removal on

11 traces in the layered medium of Figure 15.60.
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represents the interface between the soil and the underlying rock. The reconstruction in
the lower panel, however, shows a band-pass version of the target along both the
horizontal and the vertical directions, in agreement with the considerations discussed
in Chapter 9. Let us note that, in the case at hand, the critical length as defined in
Eq. (9.85) is just 55 cm long, so the length of the target is equal to the critical length.
This is the reason why the background removal affects its reconstruction but does not
“destroy” it completely. In Figure 15.63, the homologous migration-based results
are shown.

Let us note that Figure 15.63 is based on the same procedure applied to two different
sets of data.2 In other words, since we have migrated the data with a commercial code,
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Figure 15.62. Reconstruction without

(upper panel) and with (lower panel) back-

ground removal. The target is the same as

in Figure 15.60. The reconstruction is based

on a linear inversion.

2Unlike Figure 15.62, where the matrix (i.e., the model) combined with the two different sets of data was not
the same.
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we didn’t have the possibility to apply a migration algorithm conceived “ad hoc” for
data undergoing background removal, and this can cause artifacts. In particular, in
Figure 15.63 (lower panel) we have a spurious prolongation of the target, due to the
“weight” of the cavity on the average trace at the time corresponding to its depth. This
did not happen in the inversion result of Figure 15.62 (lower panel), where the filtering
effect is accounted for in the model. The distortion of the spectrum of the target can be
reduced adopting a background removal on all the (31) traces. In Figure 15.64we compare
the migration result achieved after background removal on all the traces (upper panel)
and background removal on 11 traces (lower panel). It can be seen that the target is
better retrieved with background removal on all the traces but, on the other hand,
the background removal on all the traces leaves a “contrail” as long as the entire scan.
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This happens because the weight of the target at its time depth is spread out over all the
traces [the phenomenon is analogous to the belt shown in Figure 7.3 (panel b)].

At this point, let us consider the case analogous in a homogeneous (not layered)
half-space. The geometry of the problem is shown in Figure 15.65. The values of the
parameters are the same as in the previous example, with the only exception that the
rock of Figure 15.60 is replaced with the same overlying soil. The data without and with
background removal are shown in Figure 15.66.

The data shown in Figure 15.66 are noisy (SNR = 60 dB) and filtered in the band
300–620MHz, analogously to those in Figure 15.60. It can be appreciated that the data
this time appear clearer without background removal than with background removal.
Indeed, in this case the background removal is not really needed at the depth level of
the target, because the host medium is homogeneous. This is confirmed by the inversion
results shown in Figure 15.67 without (upper panel) and with (lower panel) background
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Figure 15.65. Geometry of a problem analogous to that represented in Figure 15.60, in the
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Figure 15.66. The data before (upper panel) and after (lower panel) a background removal on

11 traces in the homogeneous medium of Figure 15.65.
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removal on 11 traces. The reconstruction of the upper panel this time is much better than
that of the lower panel, because it doesn’t suffer the filtering effect accounted for in the
inversion algorithm, nor does any particular distortion occur in the data with the possible
generation of horizontal artifacts.

In Figure 15.68, two migration results are shown, obtained from the commercial
code Reflexw. The upper panel refers to a Kirchhoff migration applied without any back-
ground removal, whereas the lower panel refers to a Kirchhoff migration applied after
background removal on 11 traces. As said, this is a commercial migration code and does
not account for the fact that one has applied any background removal on the data. At any
rate, the results of Figure 15.68 confirm the fact that in this case the best result is achieved
without any background removal.
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In Figure 15.69 we see that the background removal on all the traces drives to a better
reconstruction of the target, but prolongs the contrail of the cavity along the entire scan,
analogously to the case of Figure 15.64. In order to mitigate this problem, one might
apply a filtering of the data after the migration, in order to erase the false horizontal belts
possibly produced in the data by the background removal procedure. This erasing should
be result-driven, because it should not erase the targets of interest too. In particular, we
have applied such a filtering to the result of Figure 15.69 relative to background removal
on all the traces. The filter was an ideal high-pass one with respect to the horizontal fre-
quencies equal or greater than twice the inverse of the critical length. The filter has been
implemented by a homemade MATLAB code, and the result is shown in Figure 15.70.
As can be seen, the contrail is attenuated by the filtering without any meaningful distor-
tion of the focused target.
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15.9 2D AND 3D MIGRATION EXAMPLES WITH A SINGLE
SET AND TWO CROSSED SETS OF B-SCANS

Marcello Ciminale, Giovanni Leucci, Loredana Matera, and Raffaele Persico

In this section we aim to show both a 2D and a 3D migration algorithm applied to
field data. Moreover, since it can be an aspect of interest too, we will show both
results achieved from a set of B-scans parallel to each other and from two sets of crossed
B-scans. In this last case, quite common in GPR prospecting, the final result can be
considered as achieved as some combination of the two images achieved from the two
sets of B-scans. The data were gathered in the archaeological park of Egnazia (Apulia,
Southern Italy). The park is one of the largest in Apulia. However, its importance lies
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not only in its extension, but also in the continuous frequentation that occurred over time,
which is well-documented in the archaeological remains. The first occupation concerning
Egnazia dates back to the Bronze Age; and after a period of abandonment, the site was
occupied again. In particular, very important are the periods ofMessapian (from 8th to 3rd
century B.C.) and Roman (starting from the year 267 B.C.) civilizations. Testimonies of
the Messapian period are the mighty defensive walls and the necropolis, while the main
remains of the Roman town are the civil basilica, the amphitheater, an arcaded square, and
the well-preserved cryptoporticus. The plunder and destruction (545 A.D.) carried out by
Totila, the Goths’ king, could not impede a further rebirth of Egnazia, at least up to the 8th
century A.D., when its definitive decline started.

The GPR investigated area is a square zone sized 12 × 12 m2, located near an
underground and accessible portico (the cryptoporticus) where a previous, more
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extended magnetic survey revealed, at a shallow depth, an articulated plan composed of a
main rectangular building (15 m × 17 m) and several rooms connected to it (Caggiani
et al., 2012).

The GPR data have been gathered in the framework of a Ph.D. research activity
in collaboration between the University of Bari and the Institute for Archaeological
and Monumental Heritage IBAM-CNR and these data have been used to test an
innovative stepped-frequency GPR system (Persico et al., 2013a). This innovative
system has been projected by IBAM-CNR, IDS, and University of Florence within
the research project AITECH (http://www.aitechnet.com/home.html), financed by the
Puglia Region. Here, the purpose is to show the results achieved from both a 2D and
a 3D migration algorithm on this area, exploiting data gathered with this prototypal
system. The system at hand, in particular, is equipped with three equivalent couples
of antennas, achieved by means of suitable switches programmable versus the frequency,
according to the scheme of Figure 15.71. In particular, the equivalent comprehensive
covered band ranges from 50MHz to 1 GHz and the system can gather up to three sets
of data for each going through, one with the “short antennas” one with the “medium
antennas,” and one with the “long antennas.” As is well known, the band and the central
frequency of each equivalent couple of antennas tend to increase when the antennas
become shorter.

With reference to the scheme of Figure 15.71, in this section we show results
obtained from the “medium length” antennas, whose band (evaluated directly from
the spectrum of the data) in the case at hand ranged between approximately 150 and
600MHz.

“Short antenna”

“Medium  antenna”

“Long  antenna”

Internal series
of switches

External series of switches

Figure 15.71. Schematic (nonquantitative) of the exploited reconfigurable GPR antennas.

The system is equipped with “short antennas” if all the switches are open. It is equipped with

“medium antennas” if the internal switches are closed and the external ones are open. It is

equipped with “long antennas” if all the switches are closed.
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The data have been gathered with an interline space (transect) of 50 cm, and two sets
of orthogonal B-scans have been gathered. With regard to the spatial step of the data
along any single B-scan, for technical reasons, the system is equipped with an odometer
that records both the position at which each burst is radiated, but does not guarantees
by itself a constant spatial step during the data acquisition. This does not cause any
undersampling problem because the maximum recorded spatial step is in any case small
enough to avoid aliasing. However, in order to achieve data with a constant spatial
step, a homemade interpolation code has been implemented. In the case at hand, we have
interpolated the data with a 2-cm spatial step along each B-scan. The data have first
undergone a 2D processing, essentially based on the 2D Kirchhoff migration in the time
domain (the complete sequence of steps has been zero timing, background removal, and
numerical gain variable versus the depth, migration, and time slicing). The processing
has been implemented twice, the first time making use of the commercial software
Reflexw (Sandmayer, 2003) and the second time with the commercial software
GPRSLICE (Goodman and Piro, 2013). In Figure 15.72, three depth slices are obtained
from the software Reflexw. The chosen depth is 47 cm, because it seemed to be the most
interesting one. Some division wall structures are well visible, and an oblique rectangular
anomaly may be ascribable to a floor.

In Figure 15.73, the homologous of Figure 15.72 achieved from a 2D processing
performed with GPRSLICE is shown.

The fundamental anomalies in the two cases are the same, but some important
differences also appear between the Refexw and the GPRSLICE results. In
particular, the slices obtained with GPRSLICE appear more “definite” in the case
at hand.

Here, it is of interest to note that the use of crossed B-scan had in both cases a
well-perceivable, even if not dramatic, effect. In particular, rather than “adding” features,
the effect of the crossed B-scans seem to have cleaned the image. Let us now discuss the
case of a 3D migration, performed again by means of GPRSLICE. In Figure 15.74 the
results obtained from the x-directed B-scans, the y-directed B-scans, and both joined
together are shown.

Unlike the 2D cases, in Figure 15.74 it seems that the use of two crossed sets of
of B-scans improves the image in a meaningful fashion.

In the case at hand the 2D migration-based images appear better than the
image obtained from a 3D migration-based image. However, this should not lead
to the precipitous conclusion that 2D algorithms are better than 3D ones. Indeed,
a nonnegligible point is the fact that the transect is much larger than one-fourth of the
central wavelength, which for the 3D cases yields a meaningful undersampling. On
the other hand, the data have been obtained with a GPR system able to gather data along
a single B-scan for each going-through, and so it would have been experimentally pro-
hibitive to gather data with an adequate interline step. Things are probably going to
change in the future with a larger use of GPR systems equipped with arrays of antennas.
In this case, it is possible to gather up to 14 or more parallel B-scans with an interline
space of the order of 10 cm (Sala and Linford, 2010) with a unique “going-through.”
Under these conditions, the performance of a 3D migration algorithm versus field data
can improve meaningfully.
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Figure 15.72. Depth slices at 47 cm obtained with Reflexw through a 2D migration-based pro-
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15.10 2D AND 3D INVERSION EXAMPLES

Ilaria Catapano and Raffaele Persico

This section aims at investigating a full 3D linear inversion-based GPR data processing
versus the commonly adopted pseudo 3D imaging, which is achieved by interpolating
2-D reconstructions obtained by processing independently the radargrams collected
along each B-scan, as shown in the previous section. We will show both tests with
synthetic and experimental data. In the first examples, synthetic data are considered.
These data have been generated by means of the free software GPRMAX (the
3D version). In particular, let us now refer to the case of a square box, whose side is
2 m long, filled by dry sand having relative permittivity εB = 4 and conductivity
σB = 10 m S/m, hosting one or more voids with different shape. The data have been
acquired along five parallel 1.5-m-long measurement lines and moving the antenna
system in seven different positions spaced 0.25 m apart. This spatial step is electrically
large (as it will be clear in a while), but this example is introductive. The offset between
the antennas is 0.25 m too. The simulated primary source is a y-oriented Hertzian dipole,
according to the reference system introduced in Figure 11.1, that is fed with a Richer
pulse signal having central frequency fc = 300MHz. The data have been simulated by
assuming a time windows of 45 ns and discretizing the box with cubes whose edge
is 0.02 m long. For the inversion, the investigation domain has been discretized in
3D cells with edge equal to 0.0625 m. The simulated data have been pre-processed
by means of a background removal filtering procedure. Moreover, since the inversion
procedure works in the frequency domain, a discrete Fourier transform has been applied
to transform the filtered time domain data; and the meaningful bandwidth, which ranges
between fmin = 150MHz and fmax = 450MHz, has been sampled with a frequency offset
of 30MHz (11 frequencies).

As a first example, let us consider the case of two voids both having size 0.30 m ×
0.30 m × 0.5 m and centered in (−0.25 m, −0.25 m, 0.5 m) and (0.25 m, 0.25 m, 0.5 m),
respectively (see Figure 15.75). The reconstruction obtained by applying the full 3D
imaging approach are shown in Figure 15.76 panels a and b, while those provided by
the interpolation of the 2D results are in Figure 15.77, panels a and b. The reconstruction
figures show the amplitude of the reconstructed contrast function normalized to its max-
imum value.

By comparing these images, we see that, in the case at hand, the use of a full 3D
imaging procedure allows an improvement of the localization and shape reconstruction
of the upper side of the objects.

As a second case, we have considered an L-shaped cavity, made of two parallele-
pipeds having size 0.25 m × 0.80 m × 0.25 m and 0.55 m × 0.25 m × 0.25 m, respectively,
hidden into the sandy box as shown in Figure 15.78, panels a and b. The reconstruction
obtained with the full 3D imaging approach is shown in Figure 15.79, panels a and b,
while that provided by the interpolation of the 2D results is in Figure 15.80, panels a
and b. By comparing these figures, we can clearly appreciate the advantages offered
by the use of a full 3D data processing procedure. As a matter of fact, it allows us to cor-
rectly estimate the shape of the target (more precisely, the shape of its upper face) as well
as its size in the (x, y) plane.
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Figure 15.75. Reference profile. Panel a: Depth slices.
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Figure 15.75. (Continued) Panel b: 3D view.
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Figure 15.76. Full 3D linear inversion reconstruction. Panel a: Depth slices.
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Figure 15.76. (Continued) Panel b: 3D view.
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Figure 15.77. Tomographich reconstruction via 2D slice reconstruction method. Panel a: Depth slices.
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Figure 15.77. (Continued) Panel b: 3D view.
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Figure 15.78. Reference profile. Panel a: Depth slices.



2
(b)

1.8

1.6

1.4

1.2

1

0.8

z 
[m

]

0.6

0.4

0.2

0
0.5

0

y [m]
–0.5

x [m]
–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

Figure 15.78. (Continued) Panel b: 3D view.
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Figure 15.79. Full 3D linear inversion reconstruction. Panel a: Depth slices.
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Figure 15.79. (Continued) Panel b: 3D view.
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Figure 15.80. Tomographic reconstruction via 2D slice reconstruction method. Panel a: Depth slices.
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Let us now consider an example concerning experimental data. The experiment has
been carried out at the Electromagnetic Diagnostic Laboratory of IREA-CNR. The data
have been gathered by using a GPR system, manufactured by IDS Corporation, working
in the time domain and equipped with a single polarization antenna pair with central
frequency fc = 2 GHz. The antenna has been manually moved along the upper surface
of a solid polystyrene box wherein the object to be imaged was concealed. The data
have been collected over a rectangular measurement domain

P
= 30 × 30 cm2 at height

h = 0.001 mabove the air–polystyrene interface. Themeasurementswere takenwith a spa-
tial discretization step equal to 0.05 m along both the x- and y- axis (49 points) in a time
window of 32 ns, whichwas sampled in 512 points spaced 0.0625 ns from each other. The
measured data had been pre-processed by means of a background removal filtering pro-
cedure in order to eliminate the direct coupling between the antennas and the signal due to
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Figure 15.81. Singular values of the discretized operator: (a) Full 3D case; and (b) 2D case.
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the air–polystyrene interface, and then they were transformed into the frequency domain.
The frequency range [850, 1950] MHz with a step of 110MHz (11 points) has been con-
sidered for the inversion. The relative permittivity of the box εB is assumed constant and
equal to 2.7. With regard to the selection of the investigation region Ω to be used for the
full 3D inversion, it is a cubic domain with edge 0.6 m and its discretization for the pixel
basis expansion has been set to 0.02 m along x, y, and z directions.

The following example accounts for a U-shaped chipboard object made by three
parallelepipeds, each of which are 0.2 × 0.05 × 0.02 m3and located about 0.1 m apart from
the air–polystyrene interface. The typical value of the relative dielectric permittivity of the
chipboard is around 2, so the object is likely to act as a weak scattering target.

Such an example enables a comparison between the imaging capabilities of the full
3D inversion strategy and the 2D slice reconstruction one. In this respect, the amplitude
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Figure 15.82. Full 3D tomographic reconstruction of the chipboard C. (a) z = 0.02m, (b)

z = 0.04m, (c) z = 0.06m, (d) z = 0.08m, (e) z = 0.1m, (f ) z = 0.12m, (g) z 0.14m, (h) z = 0.16m,

(i) z = 0.18m.
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of the reconstructed contrast χ(�) is shown over cut planes XY located at different depths
with respect to the interface. According to Figure 15.81, panels a and b, which show the
behavior of the singular values of the discretized version of the 3D and 2Dlinear opera-
tors, respectively, the provided reconstructions have been obtained by setting the thresh-
old in a specific manner to neglect the singular values that are lower than −20 dB with
respect to the first one.

Figure 15.82 shows the reconstructions attained with the full 3D linear
imaging approach. As can be seen, the object can be clearly identified at a depth of about
0.1 m. Moreover, its size can be estimated from this reconstruction, and it closely
resembles the actual one. The results of the 2D slice reconstruction algorithm are shown
in Figure 15.83. From Figure 15.83, we can detect the presence of a buried target, but its
actual shape cannot be identified at all.
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Figure 15.83. Tomographic reconstructions of the chipboard C via the 2D slice reconstruction

method. (a) z = 0.02m, (b) z = 0.04m, (c) z = 0.06m, (d) z = 0.08m, (e) z = 0.1m, (f ) z = 0.12m,

(g) z = 0.14m, (h) z = 0.16m, (i) z = 0.18m.
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APPENDIX A
Raffaele Persico and Raffaele Solimene

The purpose of this appendix is to show that

ð+∞
−∞

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω
c

� �2

−η2

s
z0

 !

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω
c

� �2

−η2

s exp − jη x−x0ð Þð Þ dη=
ð+∞
−∞

exp j
2ω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02 + y2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + z02 + y2

q dy

ðA:1Þ
To do that, let us start from the following equation:

r2G x,y,zð Þ + k2G x,y,zð Þ= −δ x−x0ð Þδ y−y0ð Þδ z−z0ð Þ ðA:2Þ

Equation (A.2) is, as is well known, the equation of the three-dimensional scalar
Green’s function in a homogeneous medium with wavenumber k.

Let us Fourier transform Eq. (A.2) according to the convention

^̂
Ĝ k1,k2,k3ð Þ=

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

G x,y,zð Þexp − jxk1− jyk2− jzk3ð Þ dxdydz ðA:3Þ

In the transformed domain, Eq. (A.2) can be rewritten as

k2−k21−k
2
2 −k

2
3

� � ^̂
Ĝ k1,k2,k3ð Þ= − exp − jk

!�r!0
� �

) ^̂
Ĝ k1,k2,k3ð Þ= −

exp − jk
!�r!0

� �
k2− k21 + k

2
2 + k

2
3

� �
ðA:4Þ

where k
!
= k1ix + k2iy + k3iz and r

!
0 = x0ix + y0iy + z0iz. The multiplication dot stands for

scalar product.
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Considering the inverse Fourier transform of Eq. (A.4), we have

G x,y,zð Þ= −
1
8π3

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

exp j k
!� r!−r!0
� �� �

k2− k21 + k
2
2 + k

2
3

� � dk1dk2dk3

= −
1
8π3

ð+∞
−∞

ð+∞
−∞

ð+∞
−∞

exp − j k
!� r!−r!0
� �� �

k2− k21 + k
2
2 + k

2
3

� � dk1dk2dk3 ðA:5Þ

where r! = xix + yiy + ziz and, in Eq. (A.5), a change of integration variable from k
!
to − k

!

has been performed too.
Now, let us rewrite Eq. (A.5) as

G x,y,zð Þ

= −
1
4π2

×
ð+∞
−∞

ð+∞
−∞

exp − jk1 x−x0ð Þ− jk2 y−y0ð Þð Þdk1dk2 1
2π

ð+∞
−∞

exp − jk3 z−z0ð Þð Þ
k2− k21 + k

2
2

� �	 

−k23

dk3

ðA:6Þ

The integral in dk3 is calculable on the basis of the theory of the residuals and of Jordan’s
lemma. They are both well known, so they will taken for granted here. In particular,

since the poles of the function are placed at k3 = ± kz = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2− k21 + k

2
2

� �q
, the result of

the integral is

G x,y,zð Þ= −
j

8π2

ð+∞
−∞

ð+∞
−∞

exp − jk1 x−x0ð Þ− jk2 y−y0ð Þð Þexp − jkz z−z0j jð Þ
kz

dk1dk2 ðA:7Þ

At this point, Eq. (A.1) can be rewritten in spherical coordinative as

r2G r,θ,φð Þ + k2G r,θ,φð Þ= −δ r
!
−r

!
0

�� ��� � ðA:8Þ

Due to the intrinsic symmetries of Eq. (A.8), it is licit to postulate a solution that depends
only on the distance between the observation point and the source; thus, under the change
of variable r!1 = r

!
−r

!
0, we have

r2G r1ð Þ+ k2G r1ð Þ = −δ r1ð Þ ðA:9Þ

Making use of the expression of the scalar Laplacian operator in polar coordinates in the
case of nodependence from the angular coordinates,we rewriteEq. (A.9) as (Collin, 1985)
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d2

dr21
G r1ð Þ+ 2

r1

d

dr1
G r1ð Þ+ k2G r1ð Þ= −δ r1ð Þ ðA:10Þ

Let us now examine the associated homogeneous equation:

d2

dr21
G r1ð Þ+ 2

r1

d

dr1
G r1ð Þ+ k2G r1ð Þ= 0 ðA:11Þ

The general solution is in this case is easily found after putting G r1ð Þ= g r1ð Þ=r1 and
substituting in Eq. (A.11). This yields to a harmonic equation in the unknown g(r1)
and consequently we obtain

G r1ð Þ =Ce− jkr1

r1
+D

e+ jkr1

r1
ðA:12Þ

Since waves propagate away from the sources toward the infinite but not vice versa, there
is only one physically meaningful term, so that necessarily we haveD = 0 and Eq. (A.12)
is rewritten as

G r1ð Þ=Ce− jkr1

r1
ðA:13Þ

Of course, Eq. (A.13) also represents the solution with an impulsive source [i.e., the
solution of Eq. (A.10)] in any point except the origin, where the impulsive source
makes the function singular. The integration of Eq. (A.9) about the source provides
the value of the constant C. In fact, substituting the solution (A.13) into Eq. (A.9) and
considering the volume integral within a small sphere centered about the origin, we obtain

C

ð ð ð
V

r�re− jkr1

r1
dV +C

ð ð ð
V

k2
e− jkr1

r1
dV = −

ð ð ð
V

δ r1ð Þ= −1 ðA:14Þ

The second integral term vanishes for r1! 0 because the integrand diverges as the
inverse of the ray but the volume element r21 sin θð Þ dθdφ dr1

� �
vanishes more rapidly.

Using the Gauss divergence theorem, we obtain

ð ð ð
V

r�re− jkr1

r1
dV =

ð ð
S

re− jkr1

r1
dS=

ð ð
S

d

dr1

e− jkr1

r1
dS= 4πr21

d

dr1

e− jkr1

r1
ðA:15Þ

Substituting (A.15) into (A.14), and taking the limit of r1! 0, we obtain
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C4πr21
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C 4πr21e
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1
A

2
4
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5= −1 ðA:16Þ

which becomes

C =
1
4π

ðA:17Þ

So, the final solution of Eq. (A.13) is

G x,y,zð Þ= e− jkr1

4πr1
=
e− jk r
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−r
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0k k

4π r
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The comparison between Eq. (A.7) and Eq. (A.18) provides the equality
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Integrating Eq. (A.19) in the variable y − y0 we obtain
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ffiffiffiffiffiffiffiffiffiffiffiffi
k2−k21

p
z−z0j j

� �
j
ffiffiffiffiffiffiffiffiffiffiffiffi
k2−k21

p dk1 ðA:20Þ
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Equation (A.20) holds for any value of x − x0, k, and z − z0. At this point, let us
remind ourselves that z0 in Eq. (A.1) is nonnegative because it is the depth
coordinate of the generic buried point within the investigation domain, which is positive
because of the downward verse of the z-axis (see Figure 4.1). Consequently, it is easily
recognized that Eq. (A.20) is fully equivalent to Eq. (A.1), which completes the
demonstration.
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APPENDIX B

The purpose of this appendix is to show the expression of the half-derivative in the time
domain.

The half-derivative is defined as the operation that in frequency domains is
expressed by the multiplication of the spectrum times

ffiffiffiffiffi
jω

p
, and it is a particular case

of the fractional derivative. Therefore, given any function f(t) whose spectrum is
F(ω), by definition we have

∂0:5f

∂0:5t
≡

1
2π

ð+∞
−∞

ffiffiffiffiffi
jω

p
F ωð Þexp jωtð Þ dω

=
1
2π

ð+∞
−∞

1ffiffiffiffiffi
jω

p jωF ωð Þexp jωtð Þ dω
ðB:1Þ

This inverse transform (B.1) is equal to the convolution of the inverse transforms of
the two functions 1=

ffiffiffiffiffi
jω

p
and jωF(ω). Now, 1=

ffiffiffiffiffi
jω

p
back-transforms intoH tð Þ= ffiffi

t
p

, where
H is the Heaviside function, equal to 1 for positive arguments and equal to 0 for negative
arguments. Moreover as is well known, jωF(ω) back-transforms into ∂f =∂t. This leads
to the expression of the half-derivative in the time domain, which is

∂0:5f

∂0:5t
=
ð+∞
−∞

H τ− tð Þffiffiffiffiffiffiffiffi
τ− t

p ∂f

∂t
τð Þ dτ ðB:2Þ
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APPENDIX C

The purpose of this appendix is to provide the solution for the potential vector in a
homogeneous space related to a current element z-directed and placed in the origin of
the geometrical reference system. Let us start from the Helmholtz equation (11.25), here
repeated for commodity of reading:

r2A+ k20A= −μ0J ðC:1Þ

since

r2A= ixr2Ax + iyr2Ay + izr2Az

We can decompose (C.1) as

r2Ax + k20Ax = −μ0Jx,

r2Ay + k20Ay = −μ0Jy,

r2Az + k20Az = −μ0Jz

ðC:2Þ

In order to solve any of Eqs. (C.2), let us preliminary study the solution of the following
scalar differential equation:

r2ϕ rð Þ+ k20ϕ rð Þ= −δ rð Þ ðC:3Þ

Since the source is point-like, it is expected that the solution has spherical symmetry.
Therefore, using the spherical representation of the curl operator, we obtain

d2

dr2
ϕ rð Þ+ 2

r

d

dr
ϕ rð Þ + k20ϕ rð Þ = −δ rð Þ ðC:4Þ

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
. Actually, this equation has been already examined in

Appendix A [see Eq. (A.10)]. Therefore, without repeating the procedure, the solution is
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ϕ rð Þ= e− jk0r

4πr
ðC:5Þ

Now, Eqs. (C.2) are linear, and so we can retrieve their solution integrating the solution of
the corresponding impulsive problem. The procedure has been widely dealt with and
exploited in Chapter 4, and so we will not discuss it again. So, Eq. (C.5) provides a result
to be integrated all over the elementary equivalent source points [see Section 4.2, and in
particular Eqs. (4.41) and (4.42)]. This provides immediately the result of Eq. (11.28)
with regard to the potential vector and the result of Eq. (11.29) with regard to the scalar
potential function.
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APPENDIX D

In this appendix the decomposition of a generic plane wave impinging at the air–soil
interface (from the air side) along its TE and TM components is retrieved, with the
purpose of applying this decomposition to the plane waves that compose the homo-
geneous Green’s function.

The generic impinging plane wave has the form

E= exp ju x−x0ð Þð Þexp jv y−y0ð Þð Þexp jkz10 z−z0ð Þð Þ vx u,vð Þix + vy u,vð Þiy + vz u,vð Þiz
� �

ðD:1Þ

It is immediate to see that the solenoidality of the plane wave imposes the condition1

vz u,vð Þ = −
uvx u,vð Þ + vvy u,vð Þ

kz10 u,vð Þ ðD:2Þ

Substituting Eq. (D.2) into Eq. (D.1), we have that the expression of the generic plane
wave composing the Green’s function is given by

E= exp ju x−x0ð Þð Þexp jv y−y0ð Þð Þexp jkz10 z−z0ð Þð Þ vx u,vð Þix + vy u,vð Þiy− uvx u,vð Þ+ vvy u,vð Þ
kz10 u,vð Þ iz

� �
ðD:3Þ

The air–soil interface is the plane of the equation z = 0. The TE component of the plane
wave of Eq. (D.3) has an electrical field parallel to this interface, by definition. Thus,
the electric field of the TE component does not have the z-component, and consequently
we can write it as

ETE = exp ju x−x0ð Þð Þexp jv y−y0ð Þð Þexp jkz10 z−z0ð Þð Þ vx1 u,vð Þix + vy1 u,vð Þiy
� � ðD:4Þ

1As an exercise, the reader can verify that the columns of the plane wave spectrum of the homogeneous dyadic
Green’s function [Eq. (11.55)] satisfy Eq. (D.2).
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The solenoidality of the plane wave D.4 imposes the condition

uvx1 u,vð Þ + vvy1 u,vð Þ= 0 ðD:5Þ

The TM component of the plane wave of Eq. (D.3) has to be equal to the difference
between Eq. (D.3) and Eq. (D.4):

ETM = exp ju x−x0ð Þð Þexp jv y−y0ð Þð Þexp jkz10 z−z0ð Þð Þ

× vx u,vð Þ−vx1 u,vð Þð Þix + vy u,vð Þ−vy1 u,vð Þ� �
iy−

uvx u,vð Þ + vvy u,vð Þ
kz10 u,vð Þ iz

� �
ðD:6Þ

The magnetic field relative to this TM component is given by

HTM = −
1
jω

r ×ETM = −
1
jω

ix iy iz

∂

∂x

∂

∂y

∂

∂z

ETMx ETMy ETMz
























ðD:7Þ

In particular, the z-component of this quantity has to be equal to zero, by definition of
TM field. Therefore, substituting the component of the electric field from Eq. (D.6),
we retrieve the condition

u vy u,vð Þ−vy1 u,vð Þ� �
−v vx u,vð Þ−vx1 u,vð Þð Þ = 0 ðD:8Þ

Equations (D.5) and (D.8) provide a linear algebraic system that allows us to retrieve
vx1 and vy1 versus vx and vy. The solution is

vx1 =
v2vx u,vð Þ−uvvy u,vð Þ

u2 + v2
,

vy1 =
u2vy u,vð Þ−uvvx u,vð Þ

u2 + v2

ðD:9Þ

Substituting Eq. (D.9) into Eqs. (D.4) and (D.6), we retrieve the TE and TM components
of the plane wave, which are

ETE = exp ju x−x0ð Þð Þexp jv y−y0ð Þð Þexp jkz10 z−z0ð Þð Þ

×
v2vx u,vð Þ−uvvy u,vð Þ

u2 + v2
ix +

u2vy u,vð Þ−uvvx u,vð Þ
u2 + v2

iy

0
@

1
A ðD:10Þ
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ETM = exp ju x−x0ð Þð Þexp jv y−y0ð Þð Þexp jkz10 z−z0ð Þð Þ

×
u2vx u,vð Þ + uvvy u,vð Þ

u2 + v2
ix +

v2vy u,vð Þ+ uvvx u,vð Þ
u2 + v2

iy−
uvx u,vð Þ+ vvy u,vð Þ

kz10 u,vð Þ iz

0
@

1
A

ðD:11Þ

Substituting Eqs. (D.10) and (D.11) into the columns of the plane wave spectrum of the
homogeneous Green’s function in air [Eq. (11.62)], we achieve Eqs. (11.66) and (11.67).
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APPENDIX E

In this appendix the reflection and transmission coefficients are retrieved for a TE and a
TM plane wave impinging on the air–soil interface.

Let us consider a generic TE impinging plane wave. Since phase factors are not
of interest in this appendix, we can make use of a simple general expression of the
following kind2:

Ei =E0 exp j ux+ vy + kz10zð Þð Þ vxiix + vyiiy
� � ðE:1Þ

There is no z-component of the field because the wave is TE with respect to the plane
z = 0. Moreover, the condition of solenoidality of the field imposes the constraint

uvxi + vvyi = 0, vyi = −
u

v
vxi ðE:2Þ

Substituting into Eq. (E.1), we can write the generic TE impinging wave as

Ei =E0vxi exp j ux+ vy+ kz10zð Þð Þ ix−
u

v
iy

� �
ðE:3Þ

Coherently, the reflected and the refracted waves are expressed in general as

Er =E0vxr exp j u1x+ v1y−kz101zð Þð Þ ix−
u1
v1
iy

� �
ðE:4Þ

Et =E0vxt exp j u2x + v2y + kz1s2zð Þð Þ ix−
u2
v2
iy

� �
ðE:5Þ

with

2 The dependence along z is related to the dependence along x and y by means of the relationship
kz10 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −u

2−v2
p

, which is a constraint due to the Maxwell’s equations.
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kz101 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −u

2
1−v

2
1

p
,

kz1s2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s −u

2
2−v

2
2

p ðE:6Þ

where the square roots are meant with nonpositive imaginary parts.
Equations (E.4) and (E.5) account for the Maxwell’s equations, the different

propagation media and the fact that the reflected waves back-propagate with respect
to the interface, which arises the minus sign before kz101 in Eq. (E.4).

At the interface, the Maxwell’s equations impose that the tangential components of
both the electric and magnetic fields are equal at the air and soil sides. This has to hold for
any point of the interface, which leads to the conditions

u1 = u2 = u,

v1 = v2 = v
ðE:7Þ

Substituting Eq. (E.7) into Eqs. (E.4) and (E.5) we rewrite the reflected and the
transmitted wave as follows:

Er =E0vxr exp j ux+ vy−kz10zð Þð Þ ix−
u

v
iy

� �
ðE:8Þ

Et =E0vxt exp j ux+ vy + kz1szð Þð Þ ix−
u

v
iy

� �
ðE:9Þ

Equations (E.1), (E.8), and (E.9) show that the incident, reflected, and transmitted electric
fields are parallel to each other, and so the preservation of the tangential component of the
electric field before and after the interface reduces to the equation

vxi + vxr = vxt ðE:10Þ

Let us now consider the magnetic field. This is retrieved from the incident electric field
from the first Maxwell equations. In particular, distinguishing also for the magnetic field
an incident, a reflected, and a transmitted wave, we have

Hi =
1

− jωμ0
r ×Ei,

Hr =
1

− jωμ0
r×Er,

Ht =
1

− jωμ0
r×Et

ðE:11Þ

In Eq. (E.11) we have accounted for the fact that the soil does not show magnetic
properties.
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By expanding the expression of the incident magnetic field, we achieve

Hi =
E0vxi
− jωμ0

ix iy iz

∂

∂x

∂

∂y

∂

∂z

exp �ð Þ −
u

v
exp �ð Þ 0




























ðE:12Þ

where for brevity exp(�) stands for exp(j(ux + vy + kz10z)). Calculating the derivatives,
we obtain

Hi =
E0vxi
− jωμ0

jukz10
v

ix + jkz10iy + −
ju2

v
− jv

� �
iz

� �
exp j ux+ vy + kz10zð Þð Þ

= −
E0vxikz10
ωμ0

u

v
ix + iy−

u2 + v2

vkz10

� �
iz

� �
exp j ux+ vy + kz10zð Þð Þ

ðE:13Þ

Following the same passages with the reflected and refracted waves, we obtain

Hr =
E0vxrkz10
ωμ0

u

v
ix + iy +

u2 + v2

vkz10

� �
iz

� �
exp j ux+ vy−kz10zð Þð Þ ðE:14Þ

Ht = −
E0vxtkz1s
ωμ0

u

v
ix + iy−

u2 + v2

vkz1s

� �
iz

� �
exp j ux+ vy+ kz1szð Þð Þ ðE:15Þ

From Eqs. (E.13)–(E.15), the preservation of the tangential component of the magnetic
field at the interface imposes the condition:

vxi−vxr = vxt
kz1s
kz10

ðE:16Þ

Considering the scalar complex amplitude of the incident, reflected, and refracted wave
at the interface (i.e., Ei, Er and Et), the reflection and transmission coefficients are by
definition given by RTE =Er=Ei = vxr=vxi and TTE =Et=Ei = vxt=vxi, respectively. Let us
note that, even if only the x-component appears, RTE and TTE are the ratios between
the complex amplitudes of the field, because the y-component is proportional to the
x-component of the field [see Eq. (E.2)]. Equation (E.10) and (E.16) provide the
algebraic system

1 +RTE =TTE, 1−RTE = TTE
kz1s
kz10

ðE:17Þ
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Solving the algebraic system, we obtain

RTE =
kz10−kz1s
kz10 + kz1s

, TTE =
2kz10

kz10 + kz1s
ðE:18Þ

Substituting into Eqs. (E.8) and (E.9), the reflected and transmitted waves can be then
expressed as

Er x,y,zð Þ =E0RTEvxi exp j ux+ vy−kz10zð Þð Þ ix−
u

v
iy

� �
=RTEEi x,y,0ð Þexp − jkz10zð Þ

ðE:19Þ

Et x,y,zð Þ=E0TTE vxi exp j ux + vy + kz1szð Þð Þ ix−
u

v
iy

� �
= TTEEi x,y,0ð Þexp jkz1szð Þ

ðE:20Þ

Let us now consider the case of a TM impinging plane wave. In this case, by definition,
the incident magnetic field is expressed as

Hi =H0 exp j ux+ vy + kz10zð Þð Þ vxiix + vyiiy
� � ðE:21Þ

Considering the solenoidality of the magnetic field, as well as the condition of continuity
at any interface point of the tangential component of the magnetic field, dually to the TE
case we can rewrite the incident, reflected, and transmitted magnetic fields as

Hi =H0vxi exp j ux+ vy + kz10zð Þð Þ ix−
u

v
iy

� �
ðE:22Þ

Hr =H0vxr exp j ux+ vy−kz10zð Þð Þ ix−
u

v
iy

� �
ðE:23Þ

Ht =H0vxt exp j ux+ vy + kz1szð Þð Þ ix−
u

v
iy

� �
ðE:24Þ

The electric field is retrieved versus the magnetic one from the (homogeneous, i.e.
without sources) Maxwell’s equations, so that we have

Ei =
1

jωε0
r×Hi,

Er =
1

jωε0
r×Hr,

Et =
1

jωεs
r ×Ht

ðE:25Þ

Developing the spatial derivatives, Eq. (E.25) can be rewritten as
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Ei =
H0vxikz10

ωε0
exp j ux + vy + kz10zð Þð Þ u

v
ix + iy−

u2 + v2

kz10v
iz

� �
ðE:26Þ

Er = −
H0vxrkz10

ωε0
exp j ux+ vy−kz10zð Þð Þ u

v
ix + iy +

u2 + v2

kz10v
iz

� �
ðE:27Þ

Et =
H0vxtkz1s

ωεs
exp j ux + vy + kz1szð Þð Þ u

v
ix + iy−

u2 + v2

kz1sv
iz

� �
ðE:28Þ

From Eqs. (E.22)–(E.24) and from Eqs. (E.26)–(E.28) we retrieve the conditions on the
amplitudes of the waves in order to verify the continuity of the tangential components of
the fields at the interface:

vxi + vxr = vxt

vxikz10
ε0

−
vxrkz10
ε0

=
vxtkz1s
εs

,
1 +

vxr
vxi

=
vxt
vxi

,

1−
vxr
vxi

=
vxtkz1sε0
vxikz10εs

8>>>>>><
>>>>>>:

ðE:29Þ

Now, let us remind that the reflection coefficient is defined the ratio between the
tangential components of the reflected and incident electric fields, whereas the transmis-
sion coefficient is defined as the ratio between the tangential component of the
transmitted and incident electric fields, so that we have

RTM≡−
vxr
vxi

TTM≡
kz1sε0vxt
kz10εsvxi

,

vxr
vxi

≡−RTM ,

vxt
vxi

≡
kz10εs
kz1sε0

TTM

8>>>>>><
>>>>>>:

ðE:30Þ

Substituting Eqs. (E.30) in Eqs. (E.29), we achieve

1−RTM = TTM
kz10εs
kz1sε0

, 1 +RTM = TTM ðE:31Þ

which eventually provide

RTM =
kz1sε0−kz10εs
kz1sε0 + kz10εs

, TTM =
2kz1sε0

kz1sε0 + kz10εs
ðE:32Þ
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Finally, substituting Eqs. (E.32) into Eqs. (E.27) and (E.28), the reflected and transmitted
waves can be rewritten as

Er x,y,zð Þ= H0vxiRTMkz10
ωε0

exp j ux + vy−kz10zð Þð Þ u

v
ix + iy +

u2 + v2

kz10v
iz

� �

=Eixy x,y,0ð ÞRTM exp − jkz10zð Þ−Eiz x,y,0ð ÞRTM exp − jkz10zð Þ
ðE:33Þ

Et x,y,zð Þ= H0vxiTTMkz10
ωε0

exp j ux+ vy + kz1szð Þð Þ u

v
ix + iy−

u2 + v2

kz1sv
iz

� �

=Eixy x,y,0ð ÞTTM exp jkz1szð Þ+Eiz x,y,0ð ÞTTM kz10
kz1s

exp jkz1szð Þ
ðE:34Þ

where Eixy is the (vector) component of the incident field along the plane xy and Eiz is the
(vector) component of the incident field along the z-axis.

The calculated Fresnel coefficients are “from air to soil.” If the plane waves impinge
from underground, it is straightforward to recognize that the Fresnel coefficients are
obtained by exchanging the permittivity and the wavenumber in the soil with those in
air and viceversa. In particular, this means that the soil–air reflection coefficients are
the opposite of the air–soil reflection coefficients.
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APPENDIX F
Raffaele Persico and Raffaele Solimene

In this appendix we provide the solution in terms of Bessel’s functions of the integral in
polar coordinatives in Eq. (12.27), namely,

f ρ1,2ksc sin θemaxð Þð Þ =
ð2ksc sin θemaxð Þ

0

ρ dρ
ð2π
0

exp jρρ1 cos φð Þð Þ dφ ðF:1Þ

where [see Eq. (12.26)]

ρ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0−x0ð Þ2 + y0−y0ð Þ2

q
ðF:2Þ

To do this, let us start reporting one of the integral expressions for Bessel’s functions of
the first kind and integer order (Abramowitz and Stegun, 1972), namely,

Jn xð Þ= j−n

π

ðπ
0

exp jxcos φð Þð Þcos nφð Þ dφ=
j−n

π

ðπ
0

exp − jxcos φð Þð Þcos nφð Þ dφ ðF:3Þ

The sign of the imaginary exponential is indifferent because the real part of the integrand
is even with regard to the central point φ= π=2 and the imaginary part is odd with respect
to the same central point.

Particularizing to the two cases n = 0, 1, we have

J0 xð Þ= 1
π

ðπ
0

exp jxcos φð Þð Þdφ=
1
π

ðπ
0

exp − jxcos φð Þð Þdφ ðF:4Þ

J1 xð Þ= 1
jπ

ðπ
0

exp jxcos φð Þð Þcos φð Þdφ=
1
jπ

ðπ
0

exp − jxcos φð Þð Þcos φð Þdφ ðF:5Þ
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From Eq. (F.3), it is also easy to recognize that Bessel’s functions of integer order are real
for real values of their argument (which is the only case that we will consider). Moreover,
from Eqs. (F.3) and (F.4), it is easily recognized that J0 is an even function and J1 is an
odd function and that J0(0) = 1 and J1(0) = 0 (as due because of the oddness).

That said, by integrating Eq. (F.3) for parts, we obtain

Jn xð Þ= j−n

π

ðπ
0

exp jxcos φð Þð Þcos nφð Þ dφ

=
j−n

nπ
exp jxcos φð Þð Þsin nφð Þ½ �π0 −

j−n

nπ

ðπ
0

exp jxcos φð Þð Þ − jxsin φð Þð Þsin nφð Þ dφ

=
xj−n+ 1

nπ

ðπ
0

exp jxcos φð Þð Þsin nφð Þsin φð Þ dφ)

) j−n + 1

π

ðπ
0

exp jxcos φð Þð Þsin nφð Þsin φð Þ dφ=
nJn xð Þ

x
ðF:6Þ

Let us now consider the derivative of Bessel’s function of integer order

dJn xð Þ
dx

=
j−n

π

ðπ
0

jcos φð Þexp jxcos φð Þð Þcos nφð Þdφ

=
j− n−1ð Þ

π

ðπ
0

exp − jxcos φð Þð Þcos nφð Þcos φð Þdφ

=
j− n−1ð Þ

π

ðπ
0

exp − jxcos φð Þð Þ cos nφð Þcos φð Þð

+ sin nφð Þsin φð Þ− sin nφð Þsin φð ÞÞ dφ

=
j− n−1ð Þ

π

ðπ
0

exp − jxcos φð Þð Þcos n−1ð Þφð Þ dφ

−
j− n−1ð Þ

π

ðπ
0

exp − jxcos φð Þð Þsin nφð Þsin φð Þ dφ

= Jn−1 xð Þ− j−n + 1

π

ðπ
0

exp − jxcos φð Þð Þsin nφð Þsin φð Þ dφ ðF:7Þ

Substituting Eq. (F.6) into Eq. (F.7), we obtain

dJn xð Þ
dx

= Jn−1 xð Þ− nJn xð Þ
x

ðF:8Þ
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Particularizing to the case n = 1, we obtain

dJ1 xð Þ
dx

= J0 xð Þ− J1 xð Þ
x

ðF:9Þ

As a consequence of Eq. (F.9), we have

d

dx
xJ1 xð Þð Þ= J1 xð Þ+ xdJ1 xð Þ

dx
= J1 xð Þ + x J0 xð Þ− J1 xð Þ

x

� �
= xJ0 xð Þ ðF:10Þ

Thus, we have worked out that the function xJ1(x) is a primitive of the function of xJ0(x).
At this point, coming back to Eq. (F.1), through some straightforward calculation

steps, we obtain

f ρ1,2ksc sin θemaxð Þð Þ=
ð2ksc sin θemaxð Þ

0

ρdρ

ð2π
0

exp jρρ1 cos φð Þð Þ dφ

=
ð2ksc sin θemaxð Þ

0

ρdρ

ðπ
0

exp jρρ1 cos φð Þð Þ dφ+
ð2π
π

exp jρρ1 cos φð Þð Þdφ
2
4

3
5

=
ð2ksc sin θemaxð Þ

0

ρdρ

ðπ
0

exp jρρ1 cos φð Þð Þ dφ+
ðπ
0

exp jρρ1 cos φ0−πð Þð Þdφ0

2
4

3
5

=
ð2ksc sin θemaxð Þ

0

ρdρ

ðπ
0

exp jρρ1 cos φð Þð Þ dφ+
ðπ
0

exp − jρρ1 cos φ0ð Þð Þdφ0

2
4

3
5

= 2π
ð2ksc sin θemaxð Þ

0

ρJ0 ρρ1ð Þdρ= 2π

ρ21

ð2kscρ1 sin θemaxð Þ

0

αJ0 αð Þ dα

=
2π

ρ21
αJ1 αð Þ½ �2kscρ1 sin θemaxð Þ

0 =
2π

ρ21
2kscρ1 sin θemaxð ÞJ1 2kscρ1 sin θemaxð Þð Þ

=
4πksc sin θemaxð ÞJ1 2kscρ1 sin θemaxð Þð Þ

ρ1
= 8πksc

2 sin 2 θemaxð ÞJ1 2kscρ1 sin θemaxð Þð Þ
2kscρ1 sin θemaxð Þ

= 8πksc
2 sin2 θemaxð Þ

J1 2ksc sin θemaxð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0−x0ð Þ2 + y0−y0ð Þ2

q� �

2ksc sin θemaxð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0−x0ð Þ2 + y0−y0ð Þ2

q ðF:11Þ

Substituting into Eq. (F.11) into Eq. (12.27), we obtain Eq. (12.28).
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APPENDIX G:
ANSWERS TO QUESTIONS

Chapter 2

1. No, GPR data essentially can help to retrieve the propagation velocity and (with some more
difficulty) the losses in the soil. This is sufficient in most cases, but (for example) we cannot
distinguish whether the soil has magnetic properties from the mere GPR data.

2. Yes they do, because the electric conductivity influences the imaginary part of the equivalent
permittivity. The propagation velocity of the waves is inversely proportional to the real part of
the square root of the equivalent complex permittivity, and thus it is rigorously influenced by
both the permittivity and the conductivity of the soil (further than by possible magnetic proper-
ties of the soil). However, in the relatively common case of low lossy soil, a first-order approx-
imation of the square root of the complex permittivity can be exploited, and in this case the
influence of the conductivity of the soil on the propagation velocity is usually negligible with
respect to the effect of the permittivity (the relative calculations are straightforward and are left
as an exercise).

3. In general we can’t, even theoretically. For example, if we know that the buried target is circular
and we apply the diffraction equation (2.7) to any two points, we have two equations and four
unknowns (the ray, the propagation velocity, the minimum return time, and the abscissa of the
minimum return time). Of course we can read the couple (x0,t0) from the data too, but this is to
say that “any two points” of the curve in any case are not enough. In the case of a point-like
target, instead, two points are sufficient because there is no need to have or achieve information
about the size and the shape of the target. However, this is not the general case and, even in this
case, to evaluate the propagation velocity from two points it is not well-advised, because a more
extended matching between model and data can average better all the sources of uncertainty.

4. Essentially because in CMP the reflection comes from the same point: This makes the
diffraction curve less dependent on the size and shape of the buried target from which it comes.
In particular, the hypothesis of point-like reflector can be relaxed.

5. A TDR probe forces a reflection from a point at known depth without a meaningful alteration of
the consistence of the soil, which is impossible to achieve with a cooperative target buried on
purpose and looked for with a GPR. Moreover, the wave received with a TDR probe is a guided
wave, and this provides the possibility to retrieve not only the propagation velocity of the wave
(related to the product between the dielectric permittivity and the magnetic permeability of the
soil), but also the impedance of the transmission line (related to the ratio between the dielectric
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permittivity and the magnetic permeability of the soil). Incidentally, GPR data are instead not
able to provide the wave impedance, essentially because the datum is proportional to the electric
field and does not provide information on the magnetic field in the observation point.

6. A TDR probe knocked in the soil provides a local measure, usually up to a depth not greater
than 50 cm. A GPR system can prospect more extended areas and can provide data based on
deeper targets, which means to average the propagation velocity on a more extended range
of depths.

Chapter 3

1. No, it isn’t. Actually, 75MHz is a frequency step equal to one-half of the frequency step at
which the nonambiguous depth is equal to 50 cm, which would guarantee against any spurious
replica of targets embedded in the first 50 cm and would guarantee also against the Hermitian
image of any target embedded in the first 50 cm. In other words, the frequency step of 75MHz
corresponds to a nonambiguous depth of 100 cm in the case at hand. However, in a dry sandy (in
particular, not clay) soil the penetration of the wave is expected quite good, up to a depth
depending on the exploited antennas (in particular their central frequency) but likely to be quite
greater than 100 cm. So, for example a target with its top buried at 101 cm might provide a
strong replica with its top at the depth of 1 cm. Even without a specific deeper knowledge about
the penetration of the radiation in the case at hand, it is certainly better advised to hypothesize
the possibility of a maximum penetration of 5 m (even more if low-frequency antennas were
used, but in this case the targets of interest would probably be deeper than 50 cm), which
leads to a frequency step of 15MHz if the Hermitian images can be neglected, 7.5MHz
otherwise.

2. The required time step is given by the Nyquist criterion [Eq. (3.39)]. As said, lacking more
specific information, we can assume that the band and the central frequency of the antennas
are quantities of the same order, which leads to B = 2 GHz and consequently Δt = 0.5 ns. Let
us be reminded that the effect of the soil might change the band of the antennas with respect
to its nominal one. However, generally this effect is some decrease of the central frequency
and not an increase of the band. That said, the bottom scale in time corresponding to a maximum
reached depth of 50 cm is given by T = 2p=c= 2p

ffiffiffiffiffiffi
εsr

p
=c0 = 3:3ns. This would lead to seven time

samples. However, as it is shown in Chapter 9, in order to focus in the best way the buried targets
up to 50 cm, it is well-advised that the bottom scale time be longer than that needed to reach the
depth of 50 cm along a vertical path. Actually, this would make us “see” a target at 50 cm only
when the GPR system is over it, whereas it is better to also have some possibility of lateral view.
Moreover, in order to amortize possible uncertainties that we can have about the band of the
antennas and the characteristics of the soil, and in order to better average (and so filter out)
the noise, it is also well-advised to make narrow the time step. It is not possible to provide exact
numbers for these choices, but let us suppose that we want to guarantee that the GPR can still
receive an echo from a target at the depth of 50 cmwhen it is 2 m beyond this target. In this case,
the maximum “communicative” distance between the target and the GPR can be estimated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 + 0:52

p
m=2:062m, and the corresponding time bottom scale is about 27 ns. Narrowing the

time step to 0.25 ns, this leads to 109 samples.

3. The effect of the aliasing for a stepped frequency GPR system is the production of replicas of the
echoes from the targets in time domain; practically, this means the production of spurious targets
along the depth, which add to the actual ones. These replicas can be in some cases recognized
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from the result because they are somehow similar to some actual target that gets “copied,” but
they can be eliminated only repeating the measure with a correct frequency step.

4. The effect of the aliasing for a pulsed system is toprovide replicas of the spectra of the echoes from
the targets in frequency domain. This generates a distortion of the targets and possibly artifacts,
but it is not immediate to quantify it from the results. In other words, the aliasing in frequency
domain is more easily recognized from the results with respect to that in time domain.

5. No, we can’t. In particular, with a stepped frequency system we gather the data directly in the
frequency domain. Thus, we obtain the time domain data to be truncated by back Fourier
transforming the gathered stepped frequency data. However, these data are already sampled
in frequency domain, and so they should already be aliasing-free.

6. No, we can’t. In this case we obtain the data in the frequency domain by forward Fourier
transforming the gathered pulsed GPR data. Also in this case, the sampling comes intrinsically
before the Fourier transformation, and so we can’t think of erasing the aliasing effects by
filtering them.

Chapter 4

1. No. The scattering equations essentially link the targets with the scattered field in the
observation point. Any antenna system in the observation point measures a voltage
approximately proportional to the total field in the observation point. It is a task of the human
operator to extract the scattered field data from the total field data.

2. No. The incident field in the subsoil will be not the same as what we would have in a
homogeneous medium, even if the energy radiated toward the air is strongly dissipated. In
particular, the air–soil interface is necessarily a direction of null of the radiation pattern. Not-
withstanding, a model based on a homogeneous propagation medium can be exploited in GPR
data processing providing useful results in many cases.

3. The reason of this dissymmetry is the fact that the primary source is an electrical
filamentary current, or in any case a source that radiates an electric field parallel to the axis
of invariance. In order to have a formulation where the dielectric permittivities appear explicitly
instead of the magnetic permeabilities, we should solve the scattering problem for a filamentary
magnetic current, and the datum should be the magnetic scattered field instead of the
electric one.

4. No. In this way we would implement a long wire antenna where the current behaves as a wave
propagating along the wire. In particular, in the case of a sinusoidal imposed voltage, we would
have a sinusoidal current along thewire but the phase of this sinewould change frompoint to point.

5. No. The reciprocity theorem assures us (under wide hypotheses) that the behavior in reception
of an antenna is linked to its behavior in transmission mode, because the effective lengths are
equal for the two modes. In particular, it is impossible that an antenna behaves as a 3D structure
in transmission mode and as a 2D structure in reception mode.

6. No. In particular, for energy conservation reasons, in a lossless medium, the geometrical
spreading of the far field is proportional to the inverse of the distance from the source in
3D and is instead proportional to the square root of the inverse of the distance from the source
in 2D. Notwithstanding, in GPR prospecting, usually the phase behavior is sufficiently similar
and the distances involved are not so large to make the different geometrical spreading cause
dramatic effects. Therefore, a 2D model in many cases provides a useful representation of a
3D buried scenario.
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Chapter 5

1. No, it is solenoidal in the absence of a net accumulation of charges. However, within a 2Dmodel
we have a current flux without having accumulation of charges, and this makes the electric field
solenoidal.

2. No. What is solenoidal in any case is the magnetic induction. Within the kind of propagation
media considered in this text, this is equivalent to saying that the product between the magnetic
field and the magnetic permeability is a solenoidal quantity, but not necessarily the magnetic
field alone.

3. No. The incident field is the field in the backgroundmediumwithout targets, and it depends only
on the sources and on the characteristics of the soil.

4. Yes, because both quantities are involved in the determination of the internal field. Actually, the
magneticpart and thedielectricpartof thecontrast interact as two targetsplaced in the samevolume.

5. Yes, because the total field is the sum of the incident and scattered field.

6. Yes. In particular, if the source is a filamentary magnetic (instead of electric) current, then the
magnetic field is parallel to the axis of invariance and the electric field is orthogonal to it. The
same happens if the source is constituted by a continuous series of parallel Hertzian dipoles
directed along any direction orthogonal to the axis of invariance. This situation is usually
labeled as the vector 2D case (the 2D geometry dealt with in this text, instead, is more precisely
labeled as the 2D scalar geometry).

Chapter 6

1. No, both the statements are not true because in general the Born series is not guaranteed to
converge.

2. Yes, because the scattered field is a linear quantity with respect to the incident field, which in
turn is a linear quantity with respect to the density current that generated it.

3. No, because the antennas are not structures that impose a density current but essentially struc-
tures where a voltage (real or equivalent) can be imposed. Now, especially if close to each other,
the two antennas interact with each other (i.e., are coupled), and the current densities that
develop along their arms are not the same that we would have on each of them in absence
of the other one.

4. No, because the two targets interact with each other, which leads to the nonlinearity of the rela-
tionship between contrast and scattered field.

5. Yes, because the amount of energy that causes the interactions between the targets is decreased
if they are placed far from each other.

6. Yes, because in this case the amount of energy that causes the interactions between the targets is
decreased by the losses, which transform part of the electromagnetic energy into heat.

Chapter 7

1. No, because in any case there is the propagation time of the signal inside the GPR, which can
be amortized by means of zero timing that is easily performed only in the time domain.

2. Yes: This can be done in a hardware way (e.g., by means of a differential configuration) or in a
software way (e.g., by means of a background removal).
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3. No, and actually a negative effect is expected in this case. In fact, in the limit for a very narrow
spatial step, the N averaged traces become too close to each other (in terms of the central
wavelength). In these conditions, the field does not have a sufficient “space” to vary
meaningfully within the considered set of traces. Consequently, the central trace and the average
trace become the same, and their difference vanishes.

4. No. We have to gather the maximum extractable information from the scattered field, and this
makes it in any case well-advised to keep the spatial step not too large. A quantification in this
sense is worked out in Chapter 9.

5. No, it provides an approximation of the scattered field. The only way to achieve the scattered
field from the total one is to subtract the incident field, which should be measured or calculated
some way. This is difficult to be performed in a reliable way in the case of the GPR prospecting.

6. Yes, because the incident field in the case of homogeneous soil (of course with a flat air soil
interface) is the same for any observation point.

Chapter 8

1. When the target is embedded in the masonry, the impinging radiation crosses it more times, due
to the presence of the far interface of the masonry that leads to a partial reflection of the waves
impinging on it. This makes the mutual interactions between different parts of the targets
change, and so it is highly probable that the ratio between the norms of the internal incident
field and the internal total field is not the same in the two cases. This shows that the degree
on nonlinearity of the scattering also depends on the kind of background medium. It is implicit
that a masonry is expected to worsen the nonlinearity with respect to a homogeneous soil ideally
composed of the same material.

Chapter 9

1. The visible interval depends on the frequency, the dielectric permittivity of the soil, the magnetic
permeability of the soil and on the maximum effective view angle.

2. Formally theydon’t, because the retrievable spectral set is related to the visible intervals achieved at
all the available frequencies and therefore depends on the frequency band, the dielectric and mag-
netic permeability of the soil and the maximum effective view angle. However, the spatial and fre-
quency step are essential in order to “sample” the retrievable spectral set properly.

3. Formally they don’t, but a proper time step is indispensable in order to calculate an un-aliased
version of the spectrum, and an adequate time bottom scale is indispensable to include and focus
properly the targets of interest.

4. No, because we have identified and quantified the Nyquist rate for the spatial and frequency
(and also time) step. Below the Nyquist rate, there is no theoretical improvement still available,
because the sampled function can be perfectly reconstructed from its samples.

5. The resolution improves when the observation line is longer, because the maximum view angle
increases. However, this improvement is not progressive because at a certain point we reach
the maximum effective view angle, which no longer increases even if the maximum geometrical
view angle continues to increase.

6. No, because an excessive directivity makes the antennas look only under them and hinders the
lateral view of the targets, which is instead essential in order to allow a processing that improves
the resolution.
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7. No, because the vertical resolution is essentially influenced by the available frequency band,
as said.

8. Yes, this can be done muting the data in time domain before and after the time-depth range of
interest. This truncation of the signal in time domain has to be done before the frequency
resampling, and it allows us to relax the frequency step. This one, in fact, can be found on
the basis of the Nyquist the criterion in the frequency domain relative to a “narrower” function
in the time domain. The price paid for this is the renounce to focus targets before or beyond the
chosen depth range.

9. Yes, this can be done filtering the data in the frequency domain before and after the band
of interest. This truncation of the signal in the frequency domain has to be done before the
time resampling, and it allows us to relax the time step. This one can be found on the basis
of the Nyquist criterion in the time domain relative to a narrower function in frequency domain.
The price paid for this is to renounce to retrieve part of the band of the signal, which leads to a
loss of resolution.

10. An enlargement of the band can of course improve the reconstruction because the resolution
can improve in this case. However, a progressive increasing of the band can also cause pro-
blems, both computational and related to the fact that the Born approximation, underlying the
diffraction tomography deductions proposed in this chapter, eventually becomes poor
because the targets become large in terms of wavelength. Moreover, a larger band can be
more sensible to interferences caused by other sources. Notwithstanding, from a practical
point of view, it is usually better to have at disposal a larger band because, after gathering
the data, commercial codes for the processing usually make it possible to filter them, thereby
making the results less detailed but more robust. The computational extra-price paid for this
is usually not dramatic.

11. No, because the increasing is negligible beyond a certain limit. In particular, the number of
averaged traces can be indefinitely increased by a progressive artificial prolongation of the
B-scan, achieved by adding the average trace on both sides. In particular, the number of
averaged traces in this way can go even beyond the same actual number of traces of the B-scan.
However, the substantial effect is a progressive narrowing of the spatial filtering constituted by
the complement to one of the Dirichlet sine (see Section 9.14), which involves progressively
marginal effects.

12. Not necessarily. As said, the information we need in GPR prospecting is not merely quanti-
tative but above all qualitative: We are not merely interested in the potentialities of the
involved mathematical operator, but in the reliability and usefulness of the interpretation of
the results that we can provide. For example, if a larger band provides a too noisy signal, it
is better to use a narrower band. If some not perfectly horizontal layer is present, a background
removal on a smaller number of traces can make the datummore readable, even if the available
information is formally larger with a background removal on more traces (because the spatial
filtering effect is reduced). Eventually, the quality of the result is optimal when we have a use-
ful “combination” between the data and the exploited mathematical model (not between some
mathematical model and itself ).

Chapter 10

1. No. Migrations are linear algorithms derived under the Born approximation and do not account
for the intrinsic nonlinearity of the scattering phenomenon.

2. No. They are derived under the Born approximation, but formally require the further conditions
that the soil is lossless and the targets are not shallow.
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3. It depends on whether the spectral weight is accounted for or not. In fact, the refraction at
the air–soil interface is accounted for by means of the spectral weight.

4. Yes, because we can usually choose the number of traces involved in the migration algorithm
(at least in the case of the Kirchhoff migration algorithm). This indirectly means to account
for the maximum effective view angle, which is influenced, among other things, also by the
radiation pattern of the antennas. Of course, this does not mean to account for the radiation
pattern in a rigorous way.

5. No, because it depends on whether we reliably know the involved parameters—in particular, the
effective length of the antennas.

6. The target at hand is a strong scattering object quite large with respect to the central wave-
length in the soil (equal to 20 cm in the case at hand), and therefore a linear BA model
cannot provide a precise model of the scattering in the case at hand, and so we cannot hope
to retrieve the exact shape of such a big target with a standard migration algorithm, unless
some a priori extra information is available or alternatively some nonlinear and/or iterative
approach can be tried. That said, if the room is empty, the propagation velocity in it is 3
times larger than that in the surrounding soil. Since the migration has been supposed to
account for the propagation velocity of the waves in the soil, the room is imaged com-
pressed in the depth direction, and after time–depth conversion its thickness will appear
to be of the order of 1 m instead of 3. More correctly, the distance between the top
and the bottom of the reconstructed main anomaly appears of the order of 1 m instead
of 3. Instead, if the room is filled with fresh water (whose relative dielectric permittivity
is well known to be of the order of 81), then the propagation velocity in the room is
3 times smaller than that in the surrounding soil, and the room is imaged elongated. In
particular, its top and bottom are imaged at the distance of 9 m (instead of 3) from
each other.

Chapter 11

1. Yes it is. The proof might be performed as a straightforward extension of that exposed in
Chapter 6 with regard to the 2D inverse scattering. In particular, a contrast varying as a sinusoid
along all the three directions x, y, and z can be exploited. Also in this case, this would
demonstrate that the problem is ill-posed but would not provide a full characterization of the
nonretrievable targets.

2. No. In general the electric field (either incident, scattered, or total) has three components.
However, at least for wire antennas parallel to the air–soil interface, the component of the
incident field parallel to the transmitting antenna is usually the most important one.

3. The gauge of Lorenz applied in Chapter 5 was referred to the potential (Fitzgerald) vector
relative to the electric scattered field in the case of secondary magnetic sources. In the 3D case
dealt with in Chapter 10, the gauge of Lorentz is referred to a potential vector relative to the
magnetic field.

4. In the scalar 2D case dealt with, we have only TM polarized waves—that is, waves where the
electric field is directed along the axis of invariance and the magnetic field is orthogonal to it.
So, in that case there isno reason todistinguishaTEfromaTMreflectionor transmissioncoefficient.

5. No, it isn’t. In particular, the GPR datum is the same whatever (2D or 3D) processing we apply
on it. In particular, the GPR gathers a scalar quantity in any observation point, given by the
retrieved voltage, which is proportional to the scalar product of the electric field and of the effec-
tive length of the antenna.
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Chapter 12

1. No, the ideal visible interval translates into the ideal visible circle, given by the rotation of the
(symmetric) visible interval around the origin.

2. Rigorously not, essentially because the antenna pattern is not symmetrical around the broadcast
(depth) direction. However, this dissymmetry can be neglected if an order of size for the
resolution and the needed spatial step along x and y are looked for. In this case, the 3D retrievable
spectral set is given by the 2D retrievable spectral set rotated around its symmetry axis.

3. No, the horizontal resolution is essentially the same, with a theoretical worsening of 22% in the
3D case [see Eqs. (12.30) and (9.44)].

4. Fortunately it is not indispensable, because the target might be relatively large and this
makes somehow smoother the spatial behavior of the scattered field. In particular, as said, it
is customarily quite easy to gather data at the Nyquist rate along the direction of the B-scan,
but it is critical to do the same with respect to the transect. Therefore, as a matter of fact, along
the transect direction we have in most cases a spatial undersampling. To gather B-scans
along two orthogonal directions partially mitigates the effects of this undersampling, but not
rigorously and not completely.

Chapter 13

1. No, and the physical reason has been explicitly shown in Section 12.3.

2. Yes, the calculations would be analogous to those exposed [see, in particular, Eq. (12.9)], but
with different unit vectors, which would lead to the multiplication of two different columns of
the matrixes of Eq. (12.9). The final result would be a formulation with the same retrievable
spectral set but with a different spectral weight.

3. No, because in the case at hand two orthogonal B-scans would gather data in the same points but
with the antennas oriented along two orthogonal directions: in particular, the scattered field also
depends on the relative angle between the incident field and the buried target, that of course
would change in the two cases.

4. Yes, but the array should be constituted by two couples of orthogonal dipoles, so that two
orthogonal polarizations would be radiated and received at each observation point with a unique
going-through.

Chapter 14

1. Yes, an SVD algorithm accounts for losses of the soil and near field effects. Moreover, the
truncation of the investigation domain is accounted for without introducing further
approximations.

2. No, it depends (among other things) on the reliability of our knowledge about the involved
parameters, such as e.g., the losses and the characteristics of the antennas.

3. No, first of all there is a problem of RAM availability. In particular, commercial routine for the
calculation of the SVD can fail if the RAM requirements are too high. Second, the
computational burden implicates the necessity of the partition of the B-scan into several
observation–inversion domains. This can cause some problems, described in detail in Chapter
15 (see in particular Section 15.7).
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4. No, the SVD ideally provides a least square solution of the problem, which coincides with
the exact one if and only if the problem admits an exact solution. With overdetermined linear
problems, this happens very rarely.

5. No. The regularization parameter that we have at our disposal when performing a migration is
the number of involved traces, which is related to the maximum view angle that we can exploit.
This does not drive directly to a check of the investigated depth.

6. Yes, we can perform this “check” thanks to the spatial content of the upper-threshold singular
functions.
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Convergence (cont’d)
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uniform, 40

Data
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Diffraction curves, 15–27, 242, 245, 247–251
Diffraction hyperbola, 14–18, 242, 245–246,

250–252
Diffraction tomography (DT), 122–123, 130,
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Double sequence of investigation
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Equation

continuity, 50, 80, 190
harmonic, 55, 331
Helmholtz, 54, 62, 82, 189, 335
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Fast Fourier transform (FFT), 33
Field
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Finite difference in time domain (FDTD),

243, 254, 278
Fitzgerald vector, see Potential
Forensic applications, 6
Forward problem, 96
Fourier–Laplace transform, 126
Fourier transform, 4, 33, 45, 49–50, 54–55,
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Function
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homogeneous 3D scalar, 329
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Hermitian, 33
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Gauss theorem, 331
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Geometrical series, 102
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reconfigurable, 306
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Hermitian image, 40, 45
Hermitian scalar product, 193, 231
Hertzian dipole, see Antenna

Ice, 6–7
Ill-conditioning, 237
Ill-posedness, 96–97, 100, 103
Impedance, 28–31, 73
Integration time, 31
Inverse fast Fourier transform (IFFT),

33, 172, 220–221

Jacobian, 221

Laplacian
scalar, 54, 189, 330
vector, 54, 81, 189

Least square solution, 18, 98, 234–235
Length

critical, 166
effective, 73–74, 182–183, 187

Linear inversion, 48, 262
sampling, 8

Local minima, 98–100
Losses, 10–11, 27–29, 145

Magnetic permeability, 10, 30,
48–49, 51, 54, 80

Marker, 3
Mars, 6
Matrix

Hermitian, 236
pseudo-inverse, 235
unitary, 232

Method of moments (MoM), 229
Microwave

frequency range, 2, 7, 77
imaging, 109

Migration
f–k, see Stolt
Kirchhoff

2D, 175, 178–179
3D, 222–226

polar
2D, 173–174
3D, 221

Stolt
2D, 9, 173
3D, 219, 222

Mines and pits, 6
Monostatic, 18
Multibistatic, 171
Multimonostatic, 280
Multiple reflections, 12
Muting, 106, 109

Non-ambiguous depth, 35, 46
Non-Hermitian scalar product, 193
Non-interfacial data, see Contactless data
Non-linearity, 96–97, 103, 110, 118,

120–121
Nyquist rate, 46–47, 147–148, 150,

212–213

Odometer, 2–3, 213
Optical path, 22, 134
Orthonormal basis, 231

Peripheral targets, 142, 286–288
Point matching, 229
Point spread function, 143, 214
Potential

Fitzgerald vector, 80, 82, 88, 93
scalar, 81, 189
vector, 188–189, 335

Plane wave spectrum, 61, 63–65,
69, 192, 196–197, 200, 202

visible, 65
Problem

forward, 96
inverse, 97

Propagation velocity, 10–27, 30, 242–252

Radiation condition, 53, 55–56, 62, 72, 83
Rank, 231–232
Reciprocity theorem, 74
Regularization, 97, 219, 233, 237–240
Residuals, 195, 330
Resolution

horizontal
2D, 142–145, 155, 252, 261–262
3D, 213, 216–217

vertical
2D, 145–146
3D, 217, 264–270
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Retrievable spectral set
2D, 126–128, 137, 139–140, 143, 171
3D, 210–213, 220

Ringing, 12, 109
Round-trip, 12, 22–23, 35, 110, 134

SAR effect, 8, 145
Scan

A-, 4
B-, 4, 8–9, 112, 140, 145, 211, 304
C-, 4, 8, 206, 213

Scattered voltage, 75–76
Scattering

2D, 48, 60, 79, 93–95
3D, 182, 184, 204
inverse, 9, 96–97, 100, 103

Sedimentology, 6
Singular value decomposition (SVD),

229, 234, 236, 238
Singular values, 235–239
Singular vectors, 235–238
Slices, 307–310, 312–322, 325–326
Snell’s law, 23, 26, 67, 152, 281
Sommerfeld’s integrals, 60
Source

elementary, 53, 55
primary, 53, 69, 86, 94, 185–186
secondary, 53, 80, 83, 86, 94, 120, 186

Spectral weight, 126–130, 151–167, 175,
208–211, 219, 221

Stationary phase, 71–73, 124–125,
133–135, 151–153, 208

Statistical minimization, see Stochastic
minimization

Stochastic minimization, 8, 99
Step

frequency, 32–35, 40, 45, 148–149,
217–218, 264–269

spatial, 147–148, 166, 211–213, 252–264
time, 32, 45–47, 149–150, 217–218

Synthetic pulse, 34, 38–42
Synthetic time, 33–35

Thresholding, 237–239
Time domain reflectometry (TDR),

11, 28–31
Transect, 206, 211–213
Trial unknowns, 238, 271–274

Visible circle, 65, 210–214
Visible interval, 126–127, 137–138, 147,

152–154

Waveguide, 8, 26
Wavelength, 14, 99, 122, 139-147, 151–155,

163, 201, 217, 254, 282, 285, 307,
353–355

Wave-number, see Wavenumber
Wavenumber, 10, 29, 65, 138,

140, 143, 145, 174, 187, 231,
329, 345

Wavevector, 63, 66, 72–74, 195
Weak scatterer, 120–121
Wide angle reflection and

refraction (WARR), 7

Zero padding, 288, 292
Zero timing, 105–106
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Figure 2.6 Quantitative comparison between the diffraction curve with offset equal to 0 cm

(blue line), 10 cm (red line), and 50 cm (black line). The propagation velocity is 108m/s. The

depth of the target is 12.5 in the upper panel and 75 cm in the lower panel.
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A B

Figure 8.1 Schematic for the physical reason of the nonlinearity of the scattering. The black

arrows represent the direct contributions of the two small buried targets separately

considered. The red arrows represent the contribution of the mutual interaction between

A and B to the scattered field.
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Figure 9.19 Reddashed lines: themodulus of the erasing function (emphasized by a factor 5 for

graphic reasons). Blue dot lines: the erasing belts deriving from the erasing function. Solid black

line: the spectral set without the differential effect. The parameters are: fmin = 200 MHz, fmax =

600MHz, εsr = 4, μsr = 2. Panel a: Δ = 3.83 cm. Panel b: Δ = 7.65 cm. Panel c: Δ = 10.21 cm. Panel d: Δ

= 15.31 cm. The erased belt is calculated according to Eq. (9.75).
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Figure 15.72 Depth slices at 47 cm obtained with Reflexw through a 2D migration-based

processing. Upper panel: Result obtained from the B-scans parallel to only the x-axis. Middle

panel: Result obtained from the B-scans parallel to only the y-axis. Lower panel: Result

obtained from the B-scans parallel to both the x-axis and the y-axis. The axes are in meters.
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Figure 15.73 Depth slices at 47 cm obtained with GPRSLICE through 2D migration-based

processing. Upper panel: Result obtained from the B-scans parallel to only the x-axis. Middle

panel: Result obtained from the B-scans parallel to only the y-axis. Lower panel: Result

obtained from the B-scans parallel to both the x-axis and the y-axis. The axes are in meters.
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Figure 15.74 Depth slices at 47 cm obtained with GPRSLICE through a 3D migration-based

processing. Upper panel: Result obtained from the B-scans parallel to only the x-axis. Middle

panel: Result obtained from the B-scans parallel to only the y-axis. Lower panel: Result

obtained from the B-scans parallel to both the x-axis and the y-axis. The axes are in meters.
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