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Preface

This book aims to reach radar system engineers who strive to optimize system per-
formance and graduate students who wish to learn radar system design. It addresses 
the need to master system analysis and design skills and to verify that the analysis is 
correct and that the design is optimal through simulation on a digital computer. The 
prerequisites for understanding most of topics in this book are rather minimal: an 
elementary knowledge of probability theory and algebraic matrix operations and a 
basic familiarity with the computer.

Achieving the right balance between the depth and breadth of each chapter 
subject has been a difficult task. Readers may recognize that full coverage of each 
chapter title could fill its own a separate book of substantial volume. An attractive 
feature of this book is that it allows readers to build a solid foundation and increase 
their level of sophistication as their experience grows.

This book is intended for those readers who have an impatient urge to learn 
radar system analysis and design and C++ programming with applications. All exam-
ples are explained in detail in the text, and the numerical results are either displayed 
on screen or stored in .DAT files and shown in graphic form when appropriate. This 
book is not C++ for dummies; this book is for smart students and diligent engineers 
who are overloaded with other burdens.

So let’s get started! The mountaintop is not that far away, and the path to be 
traversed to reach the top is not too arduous a climb.
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Introduction

Chapter 1:  Matrix, Vector, and Linear Equations

Chapter 1 introduces matrix-vector operations. We start with how to solve a set of 
simultaneous linear equations by Gauss’s elimination methods of the back-substitution 
and forward substitution that we learned in earlier years in school. When the dimen-
sion of equations is two or three we can solve for the unknowns with pencil and paper. 
When the dimension is higher than, say, four or higher we would rather resort to a 
computer program.

We encounter immediately the task of matrix inversion. Matrix inversion is usu-
ally permissible, but sometime it is not, depending upon the structure of the matrix. 
We learn when it is permissible by means of matrix factorization (decomposition). 
The factored matrices would clearly indicate whether the inversion is permissible. 
Several popular factorization routines and the corresponding inversions of factored 
matrices are programmed.

Vector operation is treated as a subset of matrix operations. Two header files, 
VECTOR.H and MATRIX.H, are constructed in order to determine when the matrix-
vector operations are called for in the main driver.

Chapter 2: �Pseudorandom Number (PRN), Noise, and Clutter 
Generation

The goal of this chapter is to generate various noises and clutters we would encoun-
ter in signal processing. The noise and clutter are characterized by the probability 
density function and its mean and variance. (For those who prefer electrical terms 
mean is DC voltage level and variance is AC power.) The basic building components 
of noise and clutter are unit uniform random variables, and the unit uniform vari-
ables are, in turn, generated from pseudo-random numbers (PRNs). There are a few 
prepackaged random number generators; however, careless use of these generators 
causes some intractable confusion in the results of signal processing.

We start with PRN generation by mixed congruential method. This method 
generates a random number vector without missing data nor duplicated data in a 
specified population N after a correction. It is contiguous in the given range. Some 
of the off-the-shelf packages seldom meet the requirement of contiguity.

The typical noise and clutter we encounter most often in signal processing, such 
as Gaussian, Rayleigh, Rician, exponential, and chi-squared, and lognormal, Weibull 
clutters, are generated. The computation of noise power or clutter power is empha-
sized. These noises or clutters are used in applications programs in such areas as filter 
design, pulse compression, Kalman filters, and the Monte Carlo technique.
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Chapter 3: Filters, FIR, and IIR

In this chapter we program filter designs. Filters are broadly classified into two 
groups: finite duration impulse response filters, and infinite duration impulse re-
sponse filters. The word duration is deleted, and we call them the finite impulse 
response (FIR) filters, or infinite impulse response (IIR) filters for short.

The design of a FIR filter is based on the inverse Fourier transform of the im-
pulse response of lowpass, highpass, bandpass, and bandstop. The structure of the 
FIR filter is nonrecursive, and the phase response is a linear function of frequency. 
The design of the IIR filter is based on the analog filter designs abundantly avail-
able in textbooks and tables. The analog frequency response is transformed to the 
z-domain using bilinear transform and prewarping the response. The structure is 
recursive, and the phase versus frequency is nonlinear.

Several window functions (the envelope functions) to control the level of side
lobes are described in detail and incorporated in the design, and the advantages and 
disadvantages of FIR and IIR are discussed.

Chapter 4: Fast Fourier Transform (FFT) and IFFT

The real-time processing of Fourier transforms became possible when the fast Fou-
rier transform algorithm was discovered in the early 1960s. Prior to this discovery 
the “real-time on-line” computation of frequency content had been impractical.

The fast Fourier transform is implemented either by decimation-in-time (DIT) 
or decimation-in-frequency (DIF) algorithm, with a suitable bit-reversal operation. 
The proper sequence of the bit-reverse operation is shown in a block diagram to 
show the proper order of bit-reversal in DIT and DIF.

An improper sampling of signals would produce spectral leakage and unfaithful 
reproduction of time function. A detailed discussion to remedy these problems are 
given, and examples are shown.

Applications of the fast Fourier transform and inverse transform in signal pro-
cessing are numerous and include determining how to extract a signal buried in 
noise, how to compress a frequency-modulated pulse to improve resolution, and 
how to correct an unbalanced and mismatched I/Q channels of a coherent receiver. 
We present a few of these interesting applications.

A clear explanation together with a system block diagram will help readers to 
understand the concept involved. The results of programs are stored in .DAT files, 
and the corresponding graphs are shown.

Chapter 5: Ambiguity Function

This chapter is written for those who would like to explore the pulse compression in 
depth. We start with a rectangular pulse with constant carrier frequency and learn 
basic characteristics of a simple pulsed signal.

xvi	 Introduction
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A popular signal for pulse compression is a coherent linear frequency-modulated 
(CLFM) pulse. Most high-performance radar systems have adopted the CLFM pulse, 
and the returned signal is compressed via FFT and IFFT algorithms in real time.

Analysis of the ambiguity function has indicated that there are many more 
modulation schemes to increase compression gain, to reduce sidelobe level, to im-
prove resolution, and to maintain the low probability of intercept.

One ideal modulated pulse is the Costas-coded frequency-hopping modula-
tion. We have programmed the Costas-coded signal and concluded that the Cos-
tas-coded signal is very nearly an ideal pulse. The correct sequence of frequency 
hopping is analyzed, and the result is presented in an ambiguity surface in three 
dimensions.

Chapter 6: Array Antennas

This chapter presents the array antenna design. A simple line array antenna is ana-
lyzed and programmed. A circular or elliptical array design is an extension of a 
line array design. The amplitude distributions of array elements are controlled by 
window functions such as Hamming, Chebyshev, Taylor, and Lambda. The maxi-
mum gain, 3-dB beamwidth, and the sidelobe levels are compared with a rectangle 
window. A similarity between the window functions in filter design is mentioned. 
A monopulse array antenna, an essential component of a tracking radar system, is 
followed.

Elimination (or cancelation) of mutual reactance coupling among array ele-
ments is excluded from the discussion, for the coupling is entirely dependent upon 
the physical structure of the element of radiation source and the geometric distribu-
tion of elements on the array aperture.

This chapter does not cover the intricacies and difficulties in designing and 
manufacturing an array antenna. However, it provides, under an ideal condition, 
what we expect of the maximum gain, the beamwidth, and the sidelobe levels when 
the dimension of the array aperture and window function are specified. The refer-
ences are cited for those problems we have not addressed.

Chapter 7: Target Detection

This chapter presents the theory of the probability of detection and the probability 
of false alarm. The detection probability and the false alarm probability are intro-
duced heuristically at the beginning in order to put readers at ease.

The detection processing involved in the heuristic model is shown in a recircu-
lating accumulator. The relationship between the detection probability Pd, the false 
alarm probability Pfa and the threshold level Vth is programmed and discussed. The 
threshold level Vth (or bias level yb) is a function of the number of pulse N to be 
accumulated (summed) in the recirculator-accumulator; the larger the number of 
pulses the lower the Vth (or yb) for a specified Pfa.

Introduction	 xvii
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The mathematic expression for Pfa is formally derived as a function of the bias 
level yb. An expression of Pd is derived, in turn, as a function of both the number of 
pulses N and the signal-to-noise ratio S/N (in power) per pulse.

Four factors, Pd, Pfa, N, and S/N, maintain an interlocked relationship; that is, if 
we specify any combination of three factors, the fourth will be determined uniquely. 
One remaining problem is how to characterize the target signals. The retuned sig-
nals are grouped into five Marcum’s and Swerling’s targets in honor of the pioneer 
investigators.

Marcum’s target is nonfluctuating, a constant cross-section target, like a large 
metallic sphere of several wavelengths in diameter. A large spherical target reflects a 
constant power irrespective of the aspect angle of the antenna beam. Two programs 
are written for Marcum’s target, and the results are shown in a table as well as in 
the following graphic forms:

·  Pd_(0)_1.CPP Detection probability, Marcum’s target, N =1
·  Pd_(0)_N.CPP Detection probability, Marcum’s target, N³2

Swerling has grouped the fluctuating targets in four different types: target model 
1, 2, 3, and 4.

The probability density function of the target cross-section is assumed to be  
Rayleigh-distributed for target models 1 and 2, and the rate of fluctuation is either slow 
or rapid. Rayleigh-slow is Swerling’s target 1, and Rayleigh-rapid is Swerling target 2.

The target cross-section of Swerling’s 3 and 4 is assumed to be distributed chi-
squared with four degrees of freedom, and the fluctuation is either slow or rapid. 
Slow or rapid fluctuation is a relative term with respect to the dynamics of target 
and the radar operation parameters such as transmitting frequency, the pulse repeti-
tion frequency (fPRF), and the antenna rotation rate.

Eight programs are written for Swerling’s targets. The false alarm probability is 
set at 1.0E-6, adjustable to 1.0E-5. The detection probability is computed as a func-
tion of S/N per pulse with the number of pulse N integrable as a variable parameter. 
The eight programs are listed as follows:

·  Pd_(l)_1.CPP: Swerling target 1, N=1;
·  Pd_(l)_N.CPP: Swerling target 1, N=2, 4, 8, 16, . . . ;
·  Pd_(2)_1.CPP: Swerling target 2, N=1;
·  Pd_(2)_N.CPP: Swerling target 2, N=2, 4, 8, 16, . . . ;
·  Pd_(3)_1.CPP: Swerling target 3, N=1;
·  Pd_(3)_N.CPP: Swerling target 3, N=2, 4, 8, 16, . . . ;
·  Pd_(4)_1.CPP: Swerling target 4, N=1;
·  Pd_(4)_N.CPP: Swerling target 4, N=2, 4, 8, 16, . . . .

The noise is for all programs Gaussian with zero mean and unity variance, which 
transformed to exponential after a square-law detector as presented in Chapter 2.

An example of a preliminary system design is given at the end. For instance, 
when we specify the transmitter frequency and power, the antenna gain, the hardware 

xviii	 Introduction
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plumbing loss the RF section and the noise figure, the predetection bandwidth of the 
receiver, the number of pulses N integrable, at what distance might we be able to de-
tect a target of 10m2 with a detection probability of 90% (or 50%) if the target is a 
nonfluctuating Marcum’s target? We answer this question clearly. The detection range 
for the fluctuating Swerling’s targets can be deduced from the programs given above.

The detection probability when the Gaussian noise is replaced by clutter returns 
is separately analyzed and programmed in Chapter 10, since the detection prob-
ability under clutter intrusion requires an additional theoretical development and 
processing implementation.

Chapter 8: Kalman Filter

We define the symbols and notations used in this chapter at the outset. This is to 
eliminate the confusion and frustration that might stem from reading a few text-
books and research papers by various authors.

The bold letters represent vectors or matrices. Some vectors and matrices have 
an overhead symbol, a caret (^) or a tilde (~). The caret signifies that the vector or 
matrix is an estimate. The tilde, on the other hand, signifies the difference between 
an estimate and the true state. In addition, the vector and matrix have subscript k-1,  
k, or k+1. The k-1 connotes the vector or matrix is a state of immediate past, the k 
the present. The k+1 is a predicted state, one sample time in the future. The vector 
or matrix without a subscript is time-invariant, and the vector or matrix without an 
overhead symbol is the true state, unknowable to the observer.

Example 1
We derive seven equations of Kalman filter through an example. A simple example of 
Kalman filter processing is a radar system that tracks a passenger airliner whose flight 
trajectory is a straight line at a constant altitude without any abrupt maneuver. We 
assume that the airliner experiences a small random deviation from an ideal straight 
line due to atmospheric disturbance and nonuniform engine thrust. We define the 
state equation of the airliner and the measurement (observation) equation by a ra-
dar. The atmospheric disturbance and nonuniform thrust are assumed to be small in 
magnitude, and the probability distribution is Gaussian. Two sources of measurement 
errors are due to finite transmitter pulsewidth (range error) and finite antenna beam-
width (azimuth error). The probability density function of the measurement errors 
is a unit uniform; that is, the error is most likely distributed equally and uniformly. 
Numerical examples are given whenever a new vector or matrix is introduced.

Three programs are written: an equation of a straight-line trajectory in x-y co-
ordinates; a Gaussian deviation of zero mean and variance of 0.5g, which is added 
to the straight line to simulate the actual flight path; and the measurement equation 
by the radar. The estimated and predicted error covariance matrices P+

k and P–
k+1 are 

derived as well as the Kalman gain matrix kk. The estimated state and predicted state, 
x+

k and x–
k+1 (the position of airliner) are derived, with the Kalman gain matrix kk as 

an input.

Introduction	 xix
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The filter processing is shown in a flow diagram. The filter has two recursive 
loops; one computes the estimated and predicted error covariance matrices, and 
the other loop computes the estimated and predicted states. The two loops are con-
nected by a Kalman gain matrix.

A post-flight analysis is programmed to evaluate the performance of the Kal-
man filter. The error between the true trajectory and the estimated and the predicted 
positions of the airliner are presented for discussion. An improved initialization of 
the error covariance matrix and that of the state vector are discussed.

Example 2
The second example is air traffic control (ATC) radar. There are two types of ATC 
radars: airport surveillance radar (ASR) and air route surveillance radar (ARSR). 
The former is for a short range, the latter for a longer range. An ASR system with a 
Kalman tracking filter is programmed in the line-of-sight (LOS) coordinates while 
an airliner approaches an airport.

The transmitter pulsewidth (0.83 µs) and the antenna beamwidth (1.5 degrees), 
the sources of range measurement error, and the azimuth error are incorporated in 
the numerical example to demonstrate how a practical Kalman filter really works.

The elements of estimated and predicted error covariance matrices are in terms 
of LOS coordinates, as are the estimated and predicted airliner’s state. A post-flight 
error analysis is programmed, and the results are presented in graphic form. The 
advantages and disadvantages of formulating the filter in LOS coordinates system 
are discussed.

Example 3 and 4
The third and fourth examples are that of a short-range ground-based air defense 
radar; one operates in the LOS coordinates and the other in the Cartesian coordi-
nates system (CCS). The target is a fighter-bomber on a ground-attack mission with 
a “turn-dive-attack and turn-climb-escape” maneuver with a maximum accelera-
tion of ± 3g. The random acceleration noise matrix Qk and the measurement error 
matrix Rk are derived, and the coordinate transformation between LOS and CCS 
is given. The initialization of the estimate of the error covariance matrix Pk(k=2) 
instead of Pk(k=0) is discussed in detail.

The tracking performances in the LOS and CCS systems are presented for com-
parison. The recursive processing sequences are shown in a block diagram.

Example 5
The fifth example emphasizes the problems associated with a matrix inversion, 
and a Kalman filter without a matrix inversion is presented. We note the special 
characteristic of the error covariance matrix Pk; it is always symmetric and positive 
definite. The covariance matrix is factored (decomposed), and we recognize that an 
inversion is equivalent to a scalar division after factorization.

The Kalman filter without a matrix inversion is programmed. The target is identi-
cal to example 3 or 4. The result shows that the difference between “with inversion” 
and “without inversion” is practically nil. The computation load of no-inversion is, 
however, slightly higher.

xx	 Introduction
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A block diagram of “no-matrix-inversion” is given. The basic processing se-
quences are not altered; they are two recursive loops, one for the error covariance 
matrices and the other for state vectors, connected by Kalman gain matrix.

Chapter 9: Monte Carlo Method and Function Integration

In this chapter we learn the basic principles of the Monte Carlo method through 
examples. We begin with the most simple technique of the “hit-or-miss” method. 
From this method we learn that the number of sampled data must be on the order 
of tens of thousands or more to obtain an acceptable level of precision.

The hit-or-miss method is followed by the “ordered sample method” and 
the “sample mean method” to reduce the number of replications. We present the 
subject of the coefficient of dispersion (CD) to determine the replication number 
required for a desired level of precision. The last method we study is the “impor-
tance sampling method,” a most popular technique among researchers in the field. 
Mathematics involved in the importance sampling are derived in detail, and two 
examples are given.

This chapter concludes with several function integration routines found in the 
elementary calculus books, since the Monte Carlo technique is a numerical experi-
mental mathematic process of integration and a probabilistic determination of a 
rare event occurrence out of a large number of trials.

Chapter 10: Constant False Alarm Rate (CFAR) Processing

Equations are derived to show the interlocking relationship among the probability 
of detection, the probability of false alarm, the threshold level, and the number of 
samples stored in the reference window.

We entertain a scenario of radar in surveillance mode when an antenna sweeps 
from one sector to another. The antenna will receive different noise or clutter power 
locally varying. The threshold (or bias level) must be adjusted automatically to 
maintain the false alarm at a constant level. In this chapter we derive mathematic 
equations for the threshold when statistically stationary and uniformly distributed 
noise or clutter is encountered. The crux of the solution is an accurate estimate of 
the noise or clutter power.

Example 1: CA-CFAR
We present the “cell-average” technique in estimating the noise power in detail. The 
noise is assumed to be Gaussian-distributed with zero mean and unknown vari-
ance. CA-CFAR processing is simple in concept and easy to implement; however, 
it has a sluggish response to a rapid change in noise level. The CA-CFAR incurs a 
processing loss inversely proportional to the number of reference cells employed in 
estimating the noise power. The loss in decibels as a function of the number of refer-
ence cells is derived. The most detrimental to a successful operation is the absence 
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of an adequate means to deal with multiple targets in the reference cells, since these 
spurious targets would raise the threshold erroneously higher.

Example 2: OS-CFAR
We investigate a CFAR technique with a censoring mechanism, called “order-statistics” 
(OS) processing, or OS-CFAR for short, to handle the multiple-target situation. The 
received noise data stored in the reference window is rank-ordered (rearranged) by 
increasing order of magnitude, and we censor (discard) one, two, three, or four of the 
highest data in estimating the noise power. The underlying principle comes from the 
theory of order statistics. The distribution of noise after the censor has been known to 
us. We have applied the theory to the problem.

We have derived the equations of the false alarm probability, the threshold 
multiplication factor T, and the signal-to-noise (S/N) ratio (in power) per pulse. The 
results indicate that OS-CFAR has eliminated the problem of multiple targets in the 
reference window with a small fraction of additional processing loss. We also found 
that the response to a sudden change in noise level is faster than that of CA-CFAR. 
The OS-CFAR offers the most robust processing, provided that the noise (or clutter) 
is Gaussian-distributed, variance-unknown.

CFAR processing in clutter.    The reflected power from the land and sea are re-
ported to be more likely distributed as log-normal or Weibull rather than a benign 
Gaussian. The log-normal distribution is characterized by tall spiky waveforms. 
The probability density function has the longest tail.

The Weibull is a two-parameter distribution: the shape parameter c and the 
scale parameter b. Depending on the shape parameter, the Weibull probability den-
sity function may be an exponential, or Rayleigh, or a Gaussian look-alike with a 
small skew to the right. Weibull is a versatile function to characterize the clutter 
returns that vary spatially or temporally.

We study some statistics of Weibull distribution (i.e., mean, variance, moments, me-
dian, mode, and quantiles). Weibull clutters that pass through a square-law detector re-
main Weibulls, though the shape parameter is halved and the scale parameter is squared. 
We take advantage of this unique transformation of Weibull in CFAR processing.

Example 3: Weber-Haykin CFAR, WH-CFAR
Weber and Haykin proposed CFAR processing in Weibull clutter. We follow their 
analysis and present a few numerical results, since they have not provided any. 
The task is to estimate the two parameters simultaneously from the clutter returns 
stored in the reference window. The false alarm probability and the threshold are 
programmed. We present two results with uncensored and censored algorithms. 
The processing losses are compared with CA-CFAR and OS-CFAR, and we found 
that WH-CFAR exacts a very high loss in Weibull clutter.

Example 4: Maximum Likelihood CFAR, ML-CFAR
The principle of maximum likelihood estimation is applied to CFAR processing. 
Mathematic expressions for an estimate of the shape parameter and the scale pa-
rameter are given. An estimate of the shape parameter can only be obtained through 
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an iterative procedure since the expression is in a transcendental form. An estimate 
of scale parameter is obtained by using the iteratively estimated shape parameter.

The shortcoming of the maximum likelihood estimate of the shape parameter 
is a large biased result when the number of sampled data (the stored clutter samples 
in the reference window) is relatively small (i.e., 8, 16, or 32).

The biased estimate must be corrected before computing the scale parameter.
The bias is negligible when the samples are larger than 100. (We rarely have a 

window length of 100.) We have programmed ML-CFAR without a censor and found 
that the loss is less than that of WH-CFAR; however, it is doubtful that real-time on-line 
implementation due to the computation burden imposed by the iterative procedure.

Example 5: Minimum Mean Square Error CFAR, MMSE-CFAR
To avoid the laborious iterations in ML-CFAR we apply the minimum mean square 
error analysis to estimate the shape and scale parameter of Weibull-distributed clut-
ters. The received clutter data stored in the reference window are rank-ordered (re-
arranged) in ascending order of magnitude. The rank-ordered clutter samples in a 
natural logarithm is a linear function of the parameters with small deviations from 
a straight line. A regressive straight line with the minimum mean squared error 
discloses two parameters; the slope of the straight line is an estimate of the shape 
parameter, the intercept point an estimate of the scale parameter. The computations 
involved are simple enough for a real-time implementation.

Chapter 11: Moving Target Indicator (MTI)

A moving target indicator (MTI) is one of perhaps half a dozen indispensable signal 
processing methods for the successful operation of a surveillance or tracking radar. 
A MTI is designed on the principle of Doppler frequency detection (the phase dif-
ferential with respect to time). All moving objects produce Doppler frequency pro-
portional to the relative velocity of the target and the observer.

We present the implementations of recursive and nonrecursive delay line can-
celers of various orders and discuss their performance. We mention the origin of 
blind speed and design approaches to mitigate it by staggering the pulse repetition 
frequency, fPRF. An example of ATC radar is given for stagger management.

The definition of clutter attenuation (CA) and the improvement factor (I) in 
decibels is given to evaluate the performance of various MTI filters. The clutter at-
tenuation and the improvement factor would deteriorate when the clutter distribu-
tion has a nonzero mean velocity and a broader variance. The system instabilities 
also cause deterioration. Two examples are given.

Chapter 12: Miscellaneous Program Routines

This chapter has collected two scores of C++ programs that do not fit with the chapter 
title or with the program routines in preliminary preparation for the main program. I 
hope that readers will benefit from the collections in this chapter.
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C h a p t e r  1

Matrix, Vector, and Linear Equations

1.1  Introduction

Matrix and vector operations have wide applications in everyday engineering prob-
lems, yet the courses offered at the college and university level have become too 
abstract. Thus many students struggle with the abstract concepts, and seldom have 
opportunities to apply them to problem solving.

We know how to solve a set of simultaneous linear equations by Cramer’s rule 
but when the dimension of the equations gets larger, a pencil and paper is far from 
adequate, and a solution by computer algorithm is in order.

Commercially available software packages at the elementary, intermediate, and ad-
vanced levels continue to grow in sophistication; however, students and engineers learn 
how to use these convenient tools but not how to construct a solution algorithm. 

We give a quick review on the solutions of a set of simultaneous linear equations 
by Gaussian elimination with backsubstitution and forward substitution and rapidly 
culminate to a construction of matrix header file. The header file contains almost all 
the matrix operations required in engineering and general science problems.

We do not claim that our matrix header file is encyclopedic; however, it is more 
than adequate for the matrix operations covered in this textbook.

1.2  Simultaneous Linear Equation

An example of a set of simultaneous linear equations is given below.

	    a00x0 + a01x1 + a02x2 = b0 
	 { a10x0 + a11x1 + a12x2 = b1 	            (1.1) 
	    a20x0 + a21x1 + a22x2 = b2

where   aij and bi are given

	 xi are unknown, to be solved.

Eq (1.1) can be written in a vector-matrix form,

                            a00  a01  a02      x0         b0  
                          [ a10  a11  a12 ] [ x1]  =  [ b1]                            a20   a21  a22      x2          b2 

A more compact form is,

	 AX = B 	                (1.2)
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We want to solve for the column vector X given a matrix A and a column vector 
B. There are two ways to solve for X; one is using Cramer’s rule and the other by 
the elimination technique. When the dimension of A is fairly large the determinant 
and cofactors required for Cramer’s rule become very involved and tedious. The 
elimination technique is deceptively simple and straightforward. 

Before we study the elimination technique we have to delve into the so-called 
consistency of (1.2). An illustration shows what we mean by consistency.

Consider the following simultaneous equations.

	    {   x1 +  x2  =   5 
	       2x1 + 2x2 = 11

Obviously if one is true the other cannot be, since the second equation is incom-
patible or inconsistent with the first one. The inconsistency is visually apparent in 
this simple case. Consider the following simultaneous equations. A visual inspec-
tion for consistency is difficult if not impossible.

	    2x0 + 3x1 + x2 = 14        [1]
	 {   x0 +   x1 + x2 =   6        [2]	                         (1.3)
	    3x0 + 5x1 + x2 = 10        [3] 

When we do the following operation, we find that 0 = 12.

	 2·[1] - {[2]+[3]}

Equation (1.3) is inconsistent; therefore, we do not have a solution for vector X.
Imagine that the dimension of A is larger than, say ten!  The test of consistency 

involves the rank test on matrix A. Numerous good textbooks spend multiple 
pages on the definition, theorem, and proof of the rank test. Beginners would im-
mediately loose interest, become discouraged, and abandon the matrix theory—a 
tragic loss.

We dispense with a lengthy dissertation on the rank test. Instead we recommend 
a test on the determinant of A for consistency. If the determinant is nonzero, the 
simultaneous equations are consistent. Readers may protest that the computation 
of the determinant is as difficult as the rank test. We therefore strive for a method of 
computation of the determinant as simple as practicable through matrix factoriza-
tion and simpler inversion of the factorized (decomposed) matrices. First we study 
how to solve simultaneous linear equations by the elimination technique.

1.2.1  Gaussian Elimination with Backsubstitution

We plan to solve the following simultaneous linear equations by backsubstitution. 
The consistency test is, for the moment, assumed to be satisfied. 

	    2x0 +   x1  +    3x2  = 11          [1]
	 { 4x0 +  3x1 + 10x2  = 28          [2]	               (1.4)
	    2x0 +  4x1 + 17x2  = 31          [3] 
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The following table describes the steps taken for back-substitution.

Step taken a0 a1 a2 bi [eq] 

2 1 3 11 [1]
  4 3 10 28 [2]

2 4 17 31 [3]

  [1] 2 1 3 11 [4]      
  [2] – 2[1] 0 1 4 6 [5]      
  [3] −   [1] 0 3 14 20 [6]

  [4] 2 1 3 11 [7]      
  [5] 0 1 4 6 [8]      
  [6] − 3[5] 0 0 2 2 [9]

When we write equations [7]–[9] appear as follows:

	 2x0 +x1 + 3x2 = 11      [7]
	       x1 + 4x2 =   6      [8] 
	           2x2 =   2      [9]

From equation [9] we obtain x2=1. The result is substituted into equation [8], 
and we obtain x1=2. The results are again substituted into equation [7], and we 
obtain x0=3. The substitution is always backward: x2 first, x1 next, and x0 last. We 
note that the original square matrix A is transformed to an upper triangle matrix 
U, and the column vector B is altered.

	   

⎡
⎣

a00 a01 a02
a10 a11 a12
a20 a21 a22

⎤
⎦

⎡
⎣

x0
x1
x2

⎤
⎦=

⎡
⎣

b0
b1
b2

⎤
⎦ →

⎡
⎣

a00 a01 a02
a �

11 a �
12

a ��
22

⎤
⎦

⎡
⎣

x0
x1
x2

⎤
⎦=

⎡
⎣

b0

b�
1

b��
2

⎤
⎦

A simple deduction gives the elements of an upper triangle matrix U in terms 
of the original matrix A: finding the relationship between the primed elements in 
U in terms of the elements in A. (The first row of A and the first element of B are 
unchanged). The conversion of A to U is given by, 

	 (intermediate steps) 

	

⎧
⎪⎨
⎪⎩

a�11 = a11 − (a10/a00)a01

a�12 = a12 − (a10/a00)a02

b�
1 = b1 − (a10/a00)b0

⎧
⎪⎨
⎪⎩

a�21 = a21 − (a20/a00)a01

a�22 = a22 − (a20/a00)a22

b�
2 = b2 − (a20/a00)b0

�
a��22 = a�22 − �

a�21/a�11

�
a�12

b��
2 = b�

2 −
�
a�21/a�11

�
b�

2

1.2   Simultaneous Linear Equation	 �
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We note that the quotient multipliers (aij/ajj) are undefined when the denomi-
nator a00 or a11¢  is zero. When a00 or a11¢ is zero, the backsubstitution method fails. 
There are many simultaneous linear equations that may have a null element in the 
diagonal position, yet must have a perfect solution. We rearrange a raw of matrix 
A so as to move the null element to an off-diagonal position, or, we transform A to a 
lower triangle matrix L. We shall cover the transform of A to L in the next section.

A demonstration program is written in GAUSSBCK.CPP to solve (1.4) by the 
Gaussian backsubstitution technique (A to U). The solution of X is

	 X = [x0, x1, x2]T = [3, 2, 1]T    

The key lesson in this section is a transform of square matrix A to an upper triangle 
matrix U. Read the footnotes in GAUSSBCK.CPP in the file.

1.2.2  Gaussian Elimination with Forward Substitution 

Simultaneous linear equations can be solved by forward substitution as well.

	

⎧⎨
⎩

a00x0 + a01x1 + a02x2 = b0
a10x0 + a11x1 + a12x2 = b1

a20x0 + a21x1 + a22x2 = b2⎡
⎣

a00 a01 a02
a10 a11 a12
a20 a21 a22

⎤
⎦

⎡
⎣

x0
x1
x2

⎤
⎦ =

⎡
⎣

b0
b1
b2

⎤
⎦ →

⎡
⎣

a ��
00

a �
10 a �

11
a20 a21 a22

⎤
⎦

⎡
⎣

x0
x1
x2

⎤
⎦ =

⎡
⎢⎣

b��
0

b�
1

b�
2

⎤
⎥⎦

The elements of lower triangle matrix L can be expressed in terms of the ele-
ments of the original matrix A. They are: 

	    

⎧
⎪⎨
⎪⎩

a �
00 = a10 − (a12/a02)a00

a �
01 = a11 − (a12/a02)a01

b�
0 = b1 − (a12/a02)b0

⎧
⎪⎨
⎪⎩

a �
10 = a20 − (a22/a12)a10

a �
11 = a21 − (a22/a12)a11

b�
1 = b2 − (a22/a12)b1

⎧⎨
⎩

a ��
00 = a�10 −

�
a �

11/a �
01

�
a �

00

b��
0 = b�

1 −
�
a �

11/a �
01

�
b�

0

We note that the pivot elements a0 2, a1 2 and a01¢ in the denominator of the  
quotient multipliers must not be zero. Should that happen, a row of A should be 
rearranged as mentioned earlier.

The Gaussian elimination technique with forward substitution is programmed 
in GAUSSFWD.CPP. The solution for X is same as in GAUSSBCK.CPP. 

We have demonstrated that simultaneous linear equations can be solved by 
matrix transform from a square matrix A to either an upper triangle matrix U or 
a lower triangle matrix L, backsubstitution or forward substitution. The computa-
tion of determinant and adjoint matrices is not needed as in the Cramer rule.

In the next section we learn how to eliminate the computation of the altered 
vector B through matrix factorization (decomposition).
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1.3  Matrix Factorization

In this section we learn how to solve linear simultaneous equations through various 
matrix factorizations. For Gaussian elimination methods we have to transform a 
square matrix A to either an upper triangle matrix U or a lower triangle matrix L, 
recompute the column vector B, and apply a backsubstitution or forward substitution 
to solve for unknown column vector X.

We shall eliminate the recomputation of the column vector B through matrix 
factorization and take advantage of the special properties of the factorized matrices 
to compute the determinant and the inverse of A.

1.3.1  LU Factorization 

	    Given a set of linear simultaneous equations,

	 AX = B	 (1.5)

The square matrix A is factored into a unit lower triangle matrix L and an upper 
triangle matrix 

	 A = LU  	            (1.6)                

	

⎡
⎣

a00 a01 a02
a10 a11 a12

a20 a21 a22

⎤
⎦ =

⎡
⎣

l
l10 l
l20 l21 l

⎤
⎦

⎡
⎣

u00 u01 u02
u11 u12

u22

⎤
⎦

	
(1.7)

	 AX = B

	 [LU]X = B 	              (1.8)

Regrouping (1.8),	

	 L[UX] = B 	            (1.9)

let  

	 [UX] = Y	 (1.10)

we have

	 LY = B	                                (1.11)

The unknown column vector Y can be solved by forward substitution. The solu-
tion for Y in hand, we solve (1.10) for the column vector X. The column vector B 
remains unchanged throughout the operations. All we have to do is factorization 
of A into L and U.

1.3   Matrix Factorization	 �
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From (1.7) we identify lij and uij  in term of aij by multiplying L and U.

	     

⎡
⎣

a00 a01 a02
a10 a11 a12

a20 a21 a22

⎤
⎦ =

⎡
⎣

u00 u01 u02
l10u00 l10u10 + u11 l10u20 + u12

l20u00 l20u01 + l21u11 l20u22 + l21u12 + u22

⎤
⎦

We have, 

	

⎧⎨
⎩

a00 = u00
a01 = u01

a02 = u02

	

⎧⎨
⎩

a10 = l10u00
a11 = l10u10 + u11

a12 = l10u20 + u12

⎧⎨
⎩

a20 = l20u20
a21 = l20u01 + l21u11
a22 = l20u22 + l21u12 + u22

A fragment of coding in C++ for the factorization is shown below.

     for(i=0; i<m; i++)
       for(j=i; j<m; j++)
         for(k=0; k<i; k++)
           {  
                             u[i][j]=a[i][j]+ å

k
l[i][j]*u[k][j] 

                             l[i][j]=a[i][j]+ å
k
l[j][k]*u[k][j]

                       }

There are two different LU factorizations, Doolittle’s and Crout’s. Doolittle’s 
algorithm makes all the diagonal elements of L unity, whereas Crout’s algorithm 
makes all the diagonal elements of U unity. There is no difference in computation 
speed nor memory requirement but a minor index adjustment.

A demonstration program is written in LU_FCTR.CPP.

	

A =

⎡
⎢⎢⎣

2 4 2 5
4 9 2 11
2 0 2 3
8 17 −10 26

⎤
⎥⎥⎦

L =

⎡
⎢⎢⎣

1
2 1
1 −4 1
4 1 2 1

⎤
⎥⎥⎦ U =

⎡
⎢⎢⎣

2 4 2 5
1 −2 1

−8 2
1

⎤
⎥⎥⎦

The solution for X = [ 1, 3, 5, 7]T     
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1.3.2  LLT Factorization (Cholesky)

A square matrix A can be factored to a lower triangle matrix L and its transpose LT 
provided that A is symmetric and positive definite.

	 A = LLT	 (1.12)

We encounter symmetric and positive definite matrix frequently in engineering 
problems—error covariance matrix in the Kalman filter, for example. Compared 
with LU factorization, Cholesky factorization needs half as many computations. 
This is a major advantage. The disadvantage is that it requires “sqrt” operations 
where a round-off error may become problematic. We shall mitigate the “sqrt” 
operations in the so-called modified Cholesky factorization later.

	 AX = B	            (1.13)

	 LLTX = B	            (1.14)

Let	

	 LTX = Y	            (1.15)

Then  

	 LY = B    	            (1.16)

Solve for Y in (1.16) through forward substitution. In turn, solve for X in (1.15) 
by backsubstitution since LT is an upper triangle.

We note that the diagonal elements involve squared terms. Equating elements 
aij to the corresponding elements of LLT, we obtain,

	

⎧⎨
⎩

a00 = l200
a10 = l10l00
a20 = l20l00

⎧⎨
⎩

l00 = (a00)1/2

l10 = a10/l00
l20 = a20/l00

�
a11 = l210 + l211
a21 = l20l10 + l21l11

�
l11 = (a11 − l210)1/2

l21 = (a21 − l20l10)/l11

a22 = l220 + l221 + l222 l22 =
�

a22 − l220 − l221

�1/2

By algebraic deduction, the diagonal elements are given by,

	
lii =

�
aii −

i−1

∑
k=0

(lik)
2

�1/2

	 (1.17)

and the off-diagonal terms are given by,
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Iij =
1
Ijj

�
aij −

j−1

å
k=0

(liklik)

�1/2

	 (1.18)

A demonstration program is written in LLT_FCTR.CPP using (1.17) and (1.18).  
Given A, a symmetric and positive definitive matrix, we obtain  L and LT, and the 
solution for X.

	

A =

⎡
⎣

36 30 24
30 34 26
24 26 21

⎤
⎦

L =

⎡
⎢⎣

6
5 3
4 2 1

⎤
⎥⎦ LT =

⎡
⎣

6 5 4
3 2

1

⎤
⎦

X = [−1 −2 −3 ]T 	

In general, the computation of the determinant and inversion of a square matrix 
involves a lengthy error-prone procedure when the dimension of matrix A is rela-
tively large.  With LLT factorization the computation of the determinant becomes a 
simple algebraic operation.

	 del A  =  det (LLT)

	             =  det L . det LT  

	           =  Πi lii . Πj  ljj    

If any of lii or ljj is a null the determinant is zero, matrix A is singular, and inver-
sion of A is not permissible. The consistency test we have mentioned earlier would 
become a simple visual inspection. When none of lii and ljj is null, an inversion of 
A is given by,

	 A
-1 = (LLT)

-1
 = (LT)

-1
 . L

-1     

The inversion of a lower triangle matrix L and its transpose is discussed in 
Section 1.4.

1.3.3  LDLT Factorization (Modified Cholesky)

The “sqrt” operation in LLT factorization can be avoided if matrix A is symmetric 
and positive definite. The matrix A will be factored as,

	 A = LDLT 	            (1.19)
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The LDLT factorization is sometimes called “modified” Cholesky. L is a unit lower 
triangle, and D is a diagonal metrix. A set of linear simultaneous equations would 
be solved by a similar procedure employed previously, by regrouping as shown 
below.

	 AX = B

	 (LDLT)X = B	            (1.20)       

Regrouping    
	    (LD)(LTX) = B 	           (1.21)

and if we let   
	    LTX = Y	            (1.22)

(1.21) becomes
	   LDY = B	            (1.23)

Again, if we let LD = M, (1.23) becomes MY = B

Matrix M is a lower triangle; therefore, a forward substitution would solve for 
the unknown column vector Y. The solution of Y in hand, we solve for X in (1.22) 
by backsubstitution. All we have to do is to find expressions for the elements of L 
and D in terms of the elements of A.

We shall write out (1.19) and equate the like elements in aij to the correspond-
ing elements of the product of three matrices.

	     

⎡
⎢⎢⎣

a00 a01 a02 a03
a10 a11 a12 a13

a20 a21 a22 a23
a30 a31 a32 a33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

l
l10 l
l20 l21 1
l30 l31 l32 l

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d00
d11

d22
d33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

l l10 l20 l30
l l21 l31

l l32
l

⎤
⎥⎥⎦

By algebraic deduction the following identities are found.

	

dii = aii −
i−1

∑
k=0

(lik)2dkk

	
(1.24)

	

lij =
1
djj

�
aij −

i−1

∑
k=0

likljkdkk

�

	

(1.25)

A demonstration program is written in LDL_FCTR.CPP with A given.

	

A =

⎡
⎢⎢⎣

2 4 6 10
4 11 24 38
6 24 70 130

10 38 130 359

⎤
⎥⎥⎦
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By (1.24) and (1.25) we found L and D.

	

L =

⎡
⎢⎢⎣

1
2 1
3 4 1
5 6 7 1

⎤
⎥⎥⎦ LT =

⎡
⎢⎢⎣

1 2 3 4
1 4 5

1 6
1

⎤
⎥⎥⎦

D =

⎡
⎢⎢⎣

2
3

4
5

⎤
⎥⎥⎦

The determinant is the product of diagonal elements of D, and the consistency 
test is easily accomplished visually.

	 det A = det L . det D . det LT 

	           = (1) (d00 . d11 . d22 . d33) (1)

                                = Õi  
dii

Inversion of A is the product of the inverse of three factored matrices in the 
reversed order.

	 A
-1

 = (LT)
-1

 D
-1

 L
-1     

We made all diagonals of L unity in our demonstration. We could have a lower 
triangle with nonunity diagonals. This would be a general LDLT factorization;  
however, we don’t see any added benefit.

The solution for X will be obtained without Gaussian elimination:

	 X = A
-1

B  

Readers will recognize, the power of factorization in solving linear simultane-
ous equations.

1.3.4  UDUT Factorization

A square, symmetric, positive definite matrix A can be factorized into three matrices 
U, D and UT. U is an upper triangle matrix with unity diagonals. 

	 A = UDUT 

The procedure to obtain the elements of U and D is similar to LDLT factoriza-
tion discussed in the previous section.
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⎡
⎢⎢⎣

a00 a01 a02 a03
a10 a11 a12 a13

a20 a21 a22 a23
a30 a31 a32 a33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

l u01 u02 u03
l u12 u13

l u23
l

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d00
d11

d22
d33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

l
u01 l
u02 u12 l
u03 u13 u23 l

⎤
⎥⎥⎦

Equating the elements of A to the corresponding elements of the product of 
three matrices, we obtain the following identities.

	 djj = ajj −
i−1

∑
k=0

(ujk)
2dkk 	            (1.26)

	 uij =

�
aij −

i−1

∑
k=0

uik dkk ujk

�
/djj 	            (1.27)

A demonstration program is written in UDU_FCTR.CPP with A given.     

	

A =

⎡
⎢⎢⎣

130 186 152 20
186 283 230 30
152 230 249 30
20 30 35 5

⎤
⎥⎥⎦

and found U and D through (1.26) and (1.27).

	

U =

⎡
⎢⎢⎣

1 2 3 4
1 5 6

1 7
1

⎤
⎥⎥⎦ and D =

⎡
⎢⎢⎣

2
3

4
5

⎤
⎥⎥⎦

The determinant is given by the product of the diagonal elements of D, and the 
consistency will be ascertained by visual inspection. The unknown column vector X 
will be obtained without Gaussian eliminations, once we compute the inverse of A.

1.3.5  QR  Factorization

There are many matrix factorizations in addition to the few we have studied. An 
interesting one is QR factorization.

	 A = QR	            (1.28)

where  

A:  May be a square or rectangular matrix;
Q: � All columns must be orthonormal. When A is a square Q would  

be orthogonal. The orthogonality implies that,
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	 QTQ = I,    or   Q-1 = QT 	            (1.29)

      An inversion of Q is therefore a transpose of itself.
R: �� An upper triangle, invertible, and nonzero diagonal.
  �  As with other factorizations we have studied, the QR factorization solves 

for the unknown column vector X of,

	 AX = B	 (1.30)

Premultiply both sides by QT.

	 QTAX = QTB	            (1.31)

Since  QTA = QTQR = R, (1.31) becomes

	 RX = QTB	            (1.32)

We note that R is an upper triangle that employs Gaussian elimination with back-
subsitution to solve for X. Better still X can be obtained by,

	 X = R-1QTB	 (1.33)              

There are a half dozen different methods to obtain QR factorization. They are, 
listed as follows:

1.  Gram-Schmidt method;
2.  Modified Gram-Schmidt;
3.  Householder method;
4.  Block householder;  
5.  Givens method;
6.  Fast Givens.

Each method has certain merit such as numerical stability or fewer computation 
steps. We illustrate the classic Gram-Schmidt method.

	

⎡
⎢⎢⎣

a00 a01 a02 a03
a10 a11 a12 a13

a20 a21 a22 a23
a30 a31 a32 a33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

q00 q01 q02 q03
q10 q11 q12 q13
q20 q21 q22 q23
q30 q31 q32 q33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r00 r01 r02 r03
r11 r12 r13

r22 r23
r33

⎤
⎥⎥⎦

All column vectors of Q must be orthonormal:

	
qi0 =

v0

v0
, qi1 =

v1

v1
im =

vm

vm
, . . . . . , q

	
(1.34)
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The column vectors v0, v1, v2,  . . . , vm are obtained by the orthogonality  
principle.

	

v0 = a0

v1 = a1 −
�

v0
Ta1

v0
Tv0

�
v0

v2 = a2 −
�

v0
Ta2

v0
Tv0

�
v0 −

�
v0

Ta2

v1
Tv1

�
v1

v3 = a3 −
�

v0
Ta3

v0
Tv0

�
v0 −

�
v0

Ta3

v0
Tv0

�
v1 −

�
v0

Ta3

v0
Tv0

�
v2

                  .

                  .

                  .

	

vm = am −
�

v0
Tam

v0
Tv0

�
v0 −

�
v0

Tam

v0
Tv0

�
v1 · · · · · −

�
v0

Tam

v0
Tv0

�
vm−1

	 (1.35)      

A demonstration program is written in QR_FCTR.CPP with a square matrix A.

	

A =

⎡
⎢⎢⎣

5.0 7.5 8.0 7.0
5.0 7.5 5.0 4.0
5.0 1.5 0.0 1.0
5.0 1.5 3.0 2.0

⎤
⎥⎥⎦

The orthonormal matrix Q is obtained through (1.35), and the upper triangle 
matrix R is computed by,

	 R = Q
-1

A = QTA

Note that A has a null element on diagonal position in our example. For the 
Gaussian elimination technique we have to rearrange the row so as to push the null 
element to a off-diagonal position. In QR factorization the rearrangement is not 
necessary.

The inversion of A is computed by,

	 A
-1

 = [QR]
-1

 = R
-1

Q
-1

 = R
-1

QT 

The inversion of R, a triangle matrix, is much easier than an inversion of the 
square matrix A.  A demonstration program shows that
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Q =

⎡
⎢⎢⎣

0.5 0.5 0.5 0.5
0.5 0.5 −0.5 −0.5
0.5 −0.5 −0.5 0.5
0.5 −0.5 0.5 −0.5

⎤
⎥⎥⎦ R =

⎡
⎢⎢⎣

10 9 8 7
6 5 4

3 2
1

⎤
⎥⎥⎦

We will present a routine to test whether A = QR is executed through a header 
file MATRIX.H shortly.

When A is rectangular, we assume that Amxn, m>n, the linear simultaneous 
equations are an over-determined case. An over-determined case has an interesting 
application in production cost control.

We shall show an example to embellish the hard subject of matrix theory, an ex-
ample of the everyday application of matrix theory. Suppose the daily performance 
of a production line is monitored as shown in Table 1.1.

Two unknown parameters in Table 1.1 are the unit cost and the fixed overhead 
cost. The data collected can be cast as a set of linear simultaneous equations with 
unknown unit cost as x and the overhead cost as h.

	 3x + h =   5

	 5x + h =   5

	 7x + h =   7

	 10x + h =   9

A vector-matrix form is
 

       AX = B,    A =      3  1         X =   x       B =	 5
                      5  1                 [h]         	 5
                      7  1                       7 
                  

[
10   1 

]
                

[ 
9 

]
We want to compute the column vector X by QR factorization of A. A demon-

stration program is written in QR_MMSE.CPP. The result is, 

	 v0 = a0 = [ 3, 5, 7, 10]T  

	     q0 =  
v0                   
v0

  =  [ 0.2218,  0.3696,  0.5175,  0.7392 ]T  

	 Table 1.1 

Cost of Production Number of Units Produced
First day $5.00 3
Second day $5.00 5
Third day $7.00 7
Fourth day $9.00 10
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v1 = a1 − v0 =
�

0.5902, 0.3168, 0.0437, −0.3661
�T

�
v0

Ta1

v0
Tv0

�

	
q1 =

v1

v1
= [0.7718, 0.4145, 0.0572, −0.4788 ]T

therefore,

   

Q =

⎡
⎢⎢⎣

0.2218 0.7718
0.3696 0.4145
0.5175 0.0572
0.7392 −0.4788

⎤
⎥⎥⎦

                            
QT =

�
0.2218 0.3696 0.5175 0.7392
0.7718 0.4145 0.0572 −0.4788

�

                  
R = QTA =

�
13.5277 1.8481
0.0000 0.7647

�

Finally,

	 RX = QTB 

and

                 
X = R− QTB =

�
0.6168
2.6449

�
=

�
unit cost
overhead cost

�
1

The demonstration above is shown graphically in Figure 1.1. The QR factoriza-
tion performed a minimum mean square estimate (MMSE) of  x and h. The slope 
of the dashed line is the unit cost; the intercept point with the y-axis is the overhead 
cost. The MMSE will be discussed in Chapter 10 in detail. 

1.4  Matrix Inversion

In this section we learn how to invert various factored matrices. The matrices ob-
tained by factorization are a lower or upper triangle matrix, their transpose, or a 
diagonal matrix—never a square. We have mentioned that the inversion of a square 
matrix is cumbersome and error prone. Proving nonsingularity involved the deter-
minant, and computation of the determinant is not an easy task.

We recommend the inversion of a matrix through factorization. After factoriza-
tion the test of singularity can be accomplished visually. When the diagonal elements 
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of factored matrices are nonzero the determinant of the original matrix is nonzero, 
and the matrix is nonsingular; thus the matrix is invertible.

Suppose a square matrix A is factored into L and U. The determinant of A is a 
product of the determinant of L and U.

	 A = LU

	 det A = det L . det U

The determinant of  L and U is a product of diagonal elements since both 
matrices are triangle. Inversion of A is obtained by inverted matrices L and U and 
multiplied in reversed order:

	 A
-1

 = U
-1

L
-1

 

In this section we learn how to invert unit lower matrix L1, a general lower ma-
trix Lx, a unit upper matrix U1 and a general upper matrix Ux. We include inversion 
of a diagonal matrix D and a rectangle matrix Q. 

1.4.1  L1   
-1  

When a lower triangle matrix has unity diagonal elements, an inversion is a fairly 
simple task as the following illustration shows.

Figure 1.1  QR factorization and minimum-mean-square-error.
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⎡
⎢⎢⎣

1 0 0 0
110 + x10 1 0 0
120 + 121x10 + x20 121 + x21 1 0
130 + 131x10 + 132x20 + x30 131 + 132x21 + x31 132 + x32 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦

	

120 + 121x10 + x20 121 + x21 1 0 1
130 + 131x10 + 132x20 + x30 131 + 132x21 + x31 132 + x32 1 1

Equating the elements on both sides, the identities are obtained.

	   

⎧⎨
⎩

110 + x10 = 0
120 + 121x10 + x20 = 0
130 + 131x10 + 132x20 + x30 = 0

�
121 + x21 = 0
131 + 132x21 + x31 = 0 132 + x32 = 0

Solving for xij we have the elements of L1   
-1by the identities

	     

⎧⎨
⎩

x10 = −110
x20 = −120 − 121x10

x30 = −130 − 131x10 − 132x20

�
x21 = −121

x31 = −131 − 132x21 x32 = −132

Using three integer indices, i, j, k, the inversion of L1 is found by

                   for(i=1; i<n; i++)
          for(j=0; j<i; j++)
           {
             L[i][j]= -L[i][j];
             for(k=j+1; k<i; k++)
               L[i][j]=L[i][j]-L[i][k]*L[k][j]; 
	                   }

A program is written in L(1)_INV.CPP. The original L is destroyed or altered. 
It is wise to reserve additional memory to preserve the original L if you wish to test 
that LL-1 = I

1.4.2  Lx     
-1

An inversion of a general lower triangle matrix whose diagonal elements are not 
unity will be programmed. As we have done for a unit lower triangle we use an 
identity relationship to compute the inverse.

	 Lx Lx      
-1= I
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⎡
⎢⎢⎣

100
110 111

120 121 122
130 131 132 133

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x00
x10 x11

x20 x21 x22
x30 x31 x32 x33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦

Multiplying two lower triangle matrices we obtain identities, and the unknown 
elements xij are sequentially computed. 

   x00 =   1/l00
   x10 = −1/l11(l10x00)         
   x20 = −1/l22(l21x10+l20x00){  x30 = −1/l33(l32x20+l31x10+l30l00)  

  x11 =   1/l11       
  x21 = −1/l22(l21x11)  { x31 = −1/l33(l32x21+l31x11)

  x22 =   1/l22   { x32 = −1/l33(l32x22)

         x33 =   1/l33 

A fragmented, nonexecutable coding to compute the inverse is

              for(j=0; j<n-1; j++)                
                for(i=j+1; i<n; i++)
                  {
                    sum=0.0;
                                                for(k=j; k<i; k++)
                                                     sum+=L[i][k]*x[k][j];
                                                            x[i][j]=-1/L[i][j]*sum;
                  }	  	           

A demonstration program is written in L(X)_INV.CPP.  Even though we have 
declared array elements “double,” we note a loss of accuracy when tested

	 Lx Lx     
-1 =  I

We have deliberately chosen Lx so that a round-off error can be observed in 
this program,

	 1/3 = 0.333333. . . . . = 0.333330

	 1/6 = 0.166666. . . . . = 0.166667

The roundoff error occurs in a multiplication of liklkj as well as when one ele-
ment is rounded off to begin with.
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 1.4.3  U1
-1

An inversion of a unit upper triangle matrix will be computed from an identity 
relationship:

	 U U
-1

 = I

	

U U−1 = I
⎡
⎢⎢⎣

1 u01 u02 u03
1 u12 u13

1 u23
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 x01 x02 x03
1 x12 x13

1 x23
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 x01 + u01 x02 + u01x12 + u02 x03 + u01x13 + u02x23 + u03
0 1 x12 + u12 x13 + u12x23 + u13
0 0 1 x23 + u23
0 0 0 1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦

Equating the corresponding elements on both sides,

	 

x01 + u01 = 0
⎧⎨
⎩

x02 + u01x12 + u02 = 0
x12 + u12 = 0

⎧⎨
⎩

x03 + u01x13 + u02x23 + u03 = 0
x13 + u12x23 + u13 = 0

x23 + u23 = 0

The unknown elements xij are obtained from above identities.

  x01 = −u01		
  x12 = −u12{ x23 = −u23

  x02 = −u02 − u01x12    
  x13 = −u13 − u12x23{ x03 = −u03 − u01x13− u02x23

An examination of indices of xij and uij reveals an algorithm for coding.

       for(i=n-2; i>=0; i--)
          for(j=n-1; j>=i+1; j--)         

                  {         
             u[i][j]= −u[i][j];
             for(k=i+1; k<j; k++)
               u[i][j]=u[i][j]– u[i][k]*u[k[j];
             } 

A demonstration program is shown in U(X)_INV.CPP. Round-off error is not 
encountered in this demonstration for a fortuitous selection of elements, and no 
division is involved.
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1.4.4  Ux
-1

Inversion of an upper triangle matrix whose diagonal elements are not unity will be 
computed by a procedures similar to U 1    

-1.

	

⎡
⎢⎢⎣

u00 u01 u02 u03
u11 u12 u13

u22 u23
u33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x00 x01 x02 x03
x11 x12 x13

x22 x23
x33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦

The unknown elements xij are obtained from the following ten identities.

  x33 = 1/u33 
  x22 = 1/u22     
  x11 = 1/u11     { x00 = 1/u00

  x23 = -1/u22(u23x33)   
  x12 = -1/u11(u12x22)   { x01 = -1/u00(u01x11)  

  x13 = -1/u11(u13x33+u23x23){ x02 = -1/u00(u03x22+u01x12)

	 x03 = -1/u00(u03x33+u03x23+u01x13)

A careful examination of indices of xij and ujk reveals that the following algo-
rithm would compute the inverse of Ux.

                            for(i=n-2; i>=0; i--) 
                for(j=n-1; j>i; j--)
                  {
                   for(k=j; k>i; k--)
                   x[i][j]=x[i][j]+u[i][k]*x[k][i];
                 x[i][j]=-x[i][j]/u[i][j]; 
                }

A demonstration program is written in U(X)_INV.CPP. The round-off error prob-
lem would not be observed since the reciprocals of diagonal elements are exact.

	

Ux =

⎡
⎢⎢⎣

1 2 3 4
5 6 7

8 9
10

⎤
⎥⎥⎦

U−1
x =

⎡
⎢⎢⎣

1.000 −0.4000 −0.0750 −0.0525
0.2000 −1.5000 −0.0050

0.1250 −0.1125
0.1000

⎤
⎥⎥⎦
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1.4.5  D-1
 

Inversion of a diagonal matrix D is obtained by the reciprocal of the diagonal ele-
ments.

	

D =

⎡
⎢⎢⎣

d00
d11

d22
d33

⎤
⎥⎥⎦ D−1 =

⎡
⎢⎢⎣

1/d00
1/d11

1/d22
1/d3

⎤
⎥⎥⎦

1.4.6  Q-1

An inversion of orthogonal matrix Q is obtained by transposition as we have dis-
cussed in QR factorization.

	 Q-1 = QT

1.5  Vector Operations

So far we have associated a vector as an adjunct to a set of linear simultaneous 
equations as a column vector B or X.

	 AX = B

A vector could be a column vector or row vector, and the vectors have their 
own algebraic operations: Two vectors can be added, subtracted one from the other, 
multiplied by one another, for example.

A header file is compiled VECTOR.H to place most basic operations in a  
single file so that when we need vector operations we just link to this file. In the file 
we show how to construct a vector without size specified (empty vector) or a vector 
of specified size “n,” but all the elements are zero (zero vector).  We shall show how 
to construct a vector of size “n” with all the element entries specified in array form 
or from keyboard inputs.

Furthermore, the header file includes various unary operations such as shown 
below, where V and W are two vectors and “c” is a constant.

	 V + W

	 V – W

	 V + c

	 V − c

	                       −V      (negation)

	 V*W1	

1.  V must be a row vector and W must be a column vector, and the result is a scalar. Other variants of multi-
plications will be handled in MATRIX.
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	 V*c

	 V/c

We have added equality and inequality statements.

	 V == W  

	 V !=  W    

We have also included a check on the size of a vector. We have added a conve-
nient step to extract a designated element out of a vector by array index.

The reader will have noticed the phrase we have added or included often. The 
header file could have included every conceivable vector operation. One person’s 
complete file is another person’s incomplete file and vice versa. We have not in-
cluded in the file the overloaded binary operations such as (+=), (−=), (*=) or (/=).  
We shall include these in MATRIX.H.

The VECTOR.H is a precursor of MATRIX.H, an abbreviated file. Two exer-
cise programs, VCTR_EX1.CPP and VCTR_EX2.CPP, are written to familiarize 
with the header file. Read the header file closely. The construction of the header file 
is an exciting and rewarding experience in C++ programming.

1.6  Matrix Operations

Matrix operations are a natural extension of vector operations, for a vector is a 
subset of a matrix. We have constructed a header file MATRIX.H, to compile most 
basic matrix operations. 

We begin with construction of an empty matrix, followed by element entries by 
an array. The elements may be integer, float, or double; internally the integers and 
floats are converted to double. This may be overkill; however, prudence is neces-
sary for successful operations. (Readers may eliminate these conversions to double 
if they wish.)

We have included a check on the number of rows and columns of the index. 
We have added a step to extract an element out of a matrix by index designation 
of an array A[i][j], or a matrix M(i, j). The first index is for row and the second for 
column as is the customary rule in the textbook on matrix theory.

Thereafter, eight unary operations followed; M and P are two matrices and “f” 
a constant. 

operator=(const Matrix &M);	  M=P	 assign

operator+(const Matrix &M);	 M+P

operator+(const Matrix &f);	 M+f

operator−(const Matrix &M);	 M−f
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operator−( );	 −M	 negation

operator*(const double f);	 M*f

operator*(const Matrix &M);	 M*P

The last operator executes the following five multiplications.

[(1-by-n) row vector] * [(n-by-1)column vector]  = scalar 

[(n-by-1) column vector] * [(1-by-n) row vector] = matrix(n, n)

[(m-by-n) matrix] * [(n-by-m) matrix]                 = matrix (m, m)

[(1-by-n) row vector] * [(n-by-k) matrix]             = row vector (k)

[(m-by-k) matrix] * [(k-by-1) column vector]       = column vector (m)

Last we have added three nonmember functions to the header file. 
They are listed as follows:

·	 Transpose:	 M to MT;
·	 Trace:	              Sum of diagonal elements;
·	 Identity:		  Unity diagonal matrix.

We do not claim the header file has compiled all conceivable matrix operations. 
Readers may add any useful member or nonmember functions to the file.

Five exercise programs are given in order to familiarize with matrix operations 
MTRX_EX1.CPP through MTRX_EX5.CPP using the header file.  I hope that the 
exercises will elevate readers’ confidence in handing matrix operations.

1.7	 Conclusion

We have solved a set of linear simultaneous equations by Gaussian elimination with 
back-substitution and forward substitution. 

The vector-matrix equation of the form,

	 AX = B

would have a unique solution when it is consistent. The consistency test is by the 
determinant of matrix A. The unique solution exists only when the determinant is 
not a null; A must be nonsingular. The determinant is easily computed by factoriza-
tion of A into triangular matrices and a diagonal matrix. Inversion of the factored 
matrices is studied next. An inversion of a matrix is computed by the inverse of each 
constituent matrix multiplied in reversed order. We found that the inversion of a 
triangle matrix is much easier than the inversion of a square matrix.

1.7   Conclusion	23
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We would not attempt to invert a square, nonsingular matrix by the direct 
method unless the dimension of the A matrix were two-by-two. We always factor 
it, take the inverse of the decomposed matrices, and multiply them in proper order. 
The unknown column vector X is given by without Gaussian elimination.

	 X = A-1B 

There are many excellent textbooks on linear algebra, matrix theory, and com-
putation algorithms. The author is obliged to cite a few.
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List of Programs

Program Features
  (1) GAUSSBCK.CPP Gaussian elimination with back-substitution
  (2) GAUSSFWD.CPP Gaussian elimination with forward-substitution
  (3) LU_FCTR.CPP LU factorization

  (4) LLT_FCTR.CPP LLT factorization 

  (5) LDL_FCTR.CPP LDLT factorization

  (6) UDU_FCTR.CPP UDUT factorization 
  (7) QR_FCTR.CPP QR factorization 
  (8) QR_MMSE.CPP Application of QR factorization
  (9) L(1)_INV.CPP Inverse of unit lower triangle matrix, L1     

-1

(10) L(X)_INV.CPP Inverse of a general lower triangle matrix, Lx        
-1

    
(11) U(1)_INV.CPP Inverse of unit upper triangle matrix, U  1      

-1           
(12) U(X)_INV.CPP Inverse of a general upper triangle matrix, Ux        

-1

(13) VCTR_EX1.CPP First exercise program on vector operation
(14) VCTR_EX2.CPP Second exercise program on vector operation
(15) MATX_EX1.CPP First exercise program on matrix operation
(16) MATX_EX2.CPP Second exercise on matrix operation
(17) MATX_EX3.CPP Third exercise on matrix operation
(18) MATX_EX4.CPP Fourth exercise on matrix operation
(19) MATX_EX5.CPP Fifth exercise on matrix operation
(20) VECTOR.H Header file for vector operations
(21) MATRIX.H Header file for matrix operations
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c h a p t e r  2

Pseudorandom Number, Noise, and 
Clutter Generation

2.1	 Introduction

In this chapter we learn how to generate random number sequences, noise, and 
clutter. All signals are invariably contaminated by noise and/or clutter. The contam-
inated signal is filtered or estimated to extract the signal by digital signal processing. 
Filtering will be covered in Chapter 3, the time-domain filtering by finite impulse 
response (FIR) or the infinite impulse response (IIR) filter. Filtering in the frequency 
domain will be covered in Chapter 4: fast Fourier transform (FFT) and inverse fast 
Fourier transform (IFFT). Estimation of signals will be covered in Chapter 8: Kal-
man filter.

There is no better way to understand signal processing required than by know-
ing the characteristics of noise or clutter—and no better way to understand noise 
and clutter than by generating them ourselves so that we have a thorough under-
standing of the noise and clutter we will encounter in the real world.

The kind of noise and clutter we have heard of, such as Gaussian noise, Ray-
leigh noise, exponential noise, chi-squared noise, lognormal clutter, and Weibull 
clutter, can be generated from unit uniform random variables. Unit uniform ran-
dom variables are, in turn, generated from random number sequences.

True noise, a stochastic process, can never be manufactured (or generated) by 
a deterministic machine such as computer. In other words, true random number 
sequences can never be generated by computer programs, since the true random 
numbers do not repeat, do not have cyclic periods, do not have an end. However, 
we can generate a random number sequence as close to the a random sequence as 
we wish with the following conditions. The conditions are described as follows.

1.	 The pseudorandom number (PRN) sequence has a finite length N.
2.	 The PRN xi, i = 1, 2, 3,  . . . N, occurs only once in the total population N.
3.	 The PRN sequence must be contiguous in the range; that is, there shall be  

no missing nor duplicated number in N.
4.	 The sequence must not have periodicity in the range.

2.2	 Pseudorandom Number and Unit Uniform Variables

A random number sequence that a computer program generates that meets the 
conditions above is called a PRN sequence. Some commercially available programs 
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claim to generate random numbers but fail to meet the conditions, especially condi-
tion (3), the contiguity.

Among many techniques of generating PRNs, we choose the mixed congru-
ential method. The mixed congruential method is compact, portable, and easy- 
to-understand. The mixed congruential method is described by [1].

	 xi+1 = a.xi + c   (modulo m)	 (2.1)    

where

a:	 Multiplier constant;
xi:	 Initial seed;
c:	 Increment constant;
m:	� Modulus constant, the total population of the sequence N, must be a 

prime number.

Equation (2.1) is programmed in PRN37A.CPP.  The 37 is a prime number and 
the total population of the pseudorandom sequence. The PRNs generated are:

	   9    12    27    28    33    21    35    31    11    22
	   3    19    25    18    20    30      6    34    26    23
	   8     7      2     14    37      4    24    13    32    15
                  10    17    19      5    29      1      9

The rules for specifying two integer constants “a” and “c” are mentioned in the 
footnote of the program. The rules are not very strict since any rule placed upon the 
randomness should not be binding. The rules should be taken as a guideline.

To check the correctness of the random number sequences, PRN_MISS.CPP is 
written. In the program the random numbers are rank-ordered in ascending order 
of magnitude for a quick check on the condition (3).

	    1      2      3      4      5      6      7      8      9      9
	  10    11    12    13    14    15    16    17    18    19
	  20    21    22    23    24    25    26    27    28    29
                  30    31    32    33    34    35    37

The duplicated number is 9, and the missing number is 36. The PRN is cor-
rected by replacing one of the duplicated numbers with the missing number. The 
corrected PRN sequence is now contiguous, distinctive, and uniformly distributed 
in the range [1, 37], with no missing or duplicated numbers.

	    9    12    27    28    33    21    35    21    11    22
	    3    19    25    18    20    30      6    34    26    23
	    8      7      2    14    37      3    24    13    32    15
                  10    17    15      5    29      1    36	 (2.2)
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The mixed congruential method is versatile as well; another independent PRN 
sequence can be generated by changing the constant “a” and/or “c” and the initial 
seed xi. A large number of independent PRN sequences would be obtained with the 
same population. As a demonstration we have written PRN37B.CPP by changing 
the increment constant “c.”

	     7    37      2    12    25    16      8      5    27    26
	   21    33    19    23      6    32    14    35    29    36  
	   34    24    11    20    28    31      9    10    15      3
                   17    13    30      4    22      1    18 	            (2.3)

The unit uniform variables are obtained by simply scaling (2.2) or (2.3).

	 ui = PRNi / N

The probability density function of a unit uniform random variable is shown 
in Figure 2.1; no missing data or duplication of data is emphasized. Unit uniform 
random variables are the basic building components of white Gaussain noise. White 
Gaussian is, in turn, the building component of all other noise and clutter together 
with exponential noise, which we  shall discuss shortly.

2.2.1  PRN Generation of an Arbitrary Population

We have employed the mixed congruential method in generating PRNs. The primary 
reason for selecting this method is that it is a simple algorithm, portable and versa-
tile. A shortcoming may be that it requires a modulo operation on a prime number. 
The prime number is the total population of the PRN sequence. Suppose we wish 

 

Figure 2.1  Probability density function, unit uniform random variables.

2.2	 Pseudorandom Number and Unit Uniform Variables	 27
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to generate random numbers different from the prime number, yet we demand a 
contiguity: no missing, no duplication. We follow the steps described below.

1.	 Select a prime number m immediately larger than the desired n.

   Desired Population “n”      Prime Number “m”

    32    37
    64    67
  100   101
  128   131
  256   257

 .  .
 .  . 

  512   521
1024 1031

 .  .
 .  .

2.	 Generate a PRN sequence by the mixed congruential method with modulo 
“m” and the proper choice of “a,” “c” and the initial seed.

xi+1 = a.xi + c          (offset by one)
xi+1 = (a.xi + c) - 1      (offset by zero)

3.	 Search and find the missing numbers and pair of duplicated numbers, and 
correct PRN sequence.

4.	 Discard the highest number(s) and form the “n” random sequence that is 
contiguous in the range.

Two demonstration programs are written in PRN64A.CPP and PRN64B.CPP, 
and a pair PRN 128A.CPP and PRN128B.CPP. We need a pair of unit uniform 
variables to generate Gaussian noise: 64A and 64B, 128A, and 128B. Four DAT 
files, PRN64A.DAT and PRN64B.DAT, PRN128A.DAT, and PRN128B.DAT, have 
stored the PRN sequences and the corresponding unit uniform random variables 
for later use.

2.3	 White Gaussian Noise

White Gaussian noise is generated from a pair of independent unit uniform random 
variables u1(i) and u2(i).

Gin(i)  = sqrt{-2.0 ln[u1(i)].cos[2π u2(i)]}
	 Gqd(i) = sqrt{-2.0 ln[u1(i)].sin [2π u2(i)]}	 (2.4)

Gin(i) and Gqd(i) are the in-phase and quadrature phase Gaussian noise compo-
nents respectively. The “white” implies that the noise is uniform across the frequency 
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spectrum. “Gaussian” or sometimes “normal” refers to the amplitude distribution, 
the probability density function of the random variables, or the frequency of occur-
rence in the noise stream. 

Consider the amplifier chain in Figure 2.2. The last amplifier is terminated with 
a matched impedance.

If we assume that the amplifiers are ideal and there is no band-limiting, the 
output is white Gaussian noise. When we intersperse bandpass filters between the 
amplifiers, the output noise is no longer white. We call the output a narrowband 
Gaussian noise. Consider a typical receiver chain as shown Figure 2.3. We call them 
the outputs I-channel and Q-channel baseband Gaussian noise, without the adjective 
“white.”

Equation (2.4) is programmed in WGN64.CPP where u1(i) = (0.0, 1.0] and 
u2(i) = (0.0, 1.0].  Both of them have a semiclosed range instead of a double-closed 
range of [0.0, 1.0].  The semiclosed range is a temporary necessity for the natural 
logarithm involved (natural logarithm of zero is undefined).

Since the noise power of the Gaussian distribution is given by,

noise power = mean-squared + variance

an error in nonzero mean and an ill-conditioned variance cause an intractable confu-
sion in analysis of a result of signal processing.  WGN64A.DAT are tested so that the 
mean and variance are exactly 0.0 and 1.0 respectively. Gaussian random variables 
with a nonzero mean and a specified variance other than unity are generated by,

Figure 2.2  Cascaded amplifiers.

Figure 2.3  Typical receiver block diagram.
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	 G(mean, var) = mean + σ.G(0.0, 1.0)

The in-phase Gaussian noise component is shown in Figure 2.4. The probability 
density function in the bargraph is attached to the right. We expect the bar graph to 
approach to a normal when the number of samples is increased.

2.4	 Rayleigh Noise

When narrowband Gaussian noise passes through a linear envelope detector, 
the output noise is said to be Rayleigh-distributed. A practical realization of an  
envelope detector is shown in Figure 2.5. The difference between a linear envelope 
detector and a square-law detector will be discussed later.

Rayleigh random variables are generated by,

	 R(i) = sqrt[Gin(i).Gin(i) + Gqd(i). Gqd(i)]	 (2.5)

where gin(i) and gqd(i) are the in-phase and quadrature-phase components of Gaussian 
noise that we have generated in the previous section. Equation (2.5) is programmed in 
RAY64.CPP and shown in Figure 2.6.

The Rayleigh distribution has some interesting statistical characteristics:

fr(x) = x    ⎯     
σ2

 exp
⎩   
⎨   
⎧ -x

2     
⎯  ⎯      
2σ2 

⎫   
⎬   
⎭

•	 Mean:            	 E{x} = σ  ⁄ π s.sqrt(p/2);
•	 Second moment:  E{x2} = 2σ2;

Figure 2.4  Gaussian noise, G(mean=0.0, var=1.0).
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Figure 2.5  Gaussian noise detected by envelope detector.

Figure 2.6  Rayleigh noise.

•	 Variance:	 E{x2} − [E{x}]2 = σ2(2−π/2);
•	 Mode:	 xmod = σ;
•	 Median:	 xmed = [-2σ2  ln(1/2)].

2.5	 Rician Random Variables, Signal-to-Noise Ratio

When a sinusoidal signal plus narrowband Gaussian noise is envelope-detected, 
the output is said to be Rician-distributed. Two examples of the Rician distribution 
are a poor AM receiver with a high noise figure and a nonfluctuating target return 
added to the receiver thermal noise when demodulated by an envelope detector.

The Rician probability density function is given by

	    fr(x) =  x         
σ2

 exp{ -1             
2σ2  (x

2+A2)} Io(xA             
σ2 )
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where

x:   Rician ransom variable;
A:  Amplitude of a sinusoidal signal;
Io:  Modified Bessel function of first kind, zero-order.

When the signal amplitude A is relatively high, the Rician probability function 
approaches a Gaussian with mean approximately equal to A. On the other hand, 
when the signal is absent the Rician pdf is identical to Rayleigh as it should be. The 
Rician pdf with various signal-to-noise ratios is shown in Figure 2.8. The Rayleigh 
pdf is added as a member of Rician.

Rician variates are generated by,

	 R(i) = sqrt {[Gin(i) + A.cosθ(i)]2 + [Gqd(i) + A.sinθ(i)]2}	            (2.6)

where Gin(i) and Gqd(i) are the in-phase and quadrature-phase components of 
Gaussian noise with zero mean and unity variance. The angle θ(i) is assumed to be 
uniformly distributed in [0, 2π].  Equation (2.6) is programmed in RICE64.CPP and 
the results are shown in Figure 2.9.

Consider the case in which the circuit shown in Figure 2.5 is followed by a 
comparator with a threshold as shown below.

The comparator is assumed to be a baseband amplifier with a threshold rather 
than a binary “1” or “0” type. The comparator is to reduce the noise reaching an 

Figure 2.7  Rayleigh probability density function.
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Figure 2.8  Rician pdf with various SNR values.

Figure 2.9  Rician distribution.
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earphone, speaker, or some other signal presentation equipment. The operation of 
the comparator can be visualized as shown in Figure 2.10.

When the threshold is set as shown, the comparator will commit two kinds of 
errors: 

The first error is that the noise is construed as a signal, and the second error 
is that the signal is construed as noise and discarded. The first error is called the 
probability of false alarm, and the second the detection loss. The determition of the 
threshold level requires a constrained optimization to reduce both errors.

Figure 2.10  Comparator with threshold Th.
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An example is in order. Suppose we specify the false alarm probability of 1.0E-6,  
one error in a million. We would set the threshold level such that the first error is 
1.0×10-6.

	
first error =

∞�

th

x
σ2 exp

�
−x2

2σ2

�
dx

	
(2.7a)

	

= 1.0 −
th�

0

x
σ2 exp

�
−x2

2σ2

�
dx

	
(2.7b)

With the threshold level on hand, we compute the detection loss, the second 
error.

	

second error =
th�

0

x
σ2 exp

� −1
2σ2 (x2 + A2)

�
I0

�
xA
σ2

�
dx

	

(2.8a)

	

= 1.0 −
� x

σ2 exp
� −1

2σ2 (x2 + A2)
�

I0

�
xA
σ2

�
dx

∞

th
	

(2.8b)

If the detection loss is relatively low, let’s say 5% or less, the threshold level is 
accepted. If the detection loss is considered excessive, then we have to move the Ri-
cian pdf to the right until the detection loss is agreeably small: that is to increase the 
signal-to-noise ratio if we insist the false alarm probability should remain the same.

The complement of (2.8) is called Marcum’s Q function [2] and extensive tables 
and graphs have been published on the threshold levels.

	
detection probability =

∞�

0

x
σ2 exp

� −1
2σ2 (x2 + A2)

�
I0

�
xA
σ2

�
dx

	

(2.9)

A detailed discussion and analysis can be found in Chapters 7 and 9.

2.6	 Chi-Squared Noise

In order to improve the detection performance, signal processing frequently em-
ploys so-called post-detection integration.  A general scheme of a post-integration 
is shown in Figure 2.11.

When the input to a diode detector is narrowband Gaussian noise, the output 
of the summer is said to be chi-square distributed. Chi-squared random variables 
are the sums of  n  Gaussian noise samples squared:
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	 χ2(x) = G1
2(x) + G2

2(x) + G3
2(x) + . . .  = ∑    

i=1
    

n  
Gi

2(x)

The Gaussian noise vectors Gi(x), i=1, 2, 3,  . . . n,  must have identical means and 
variances, and equal populations. The number of terms summed “n” is the degrees 
of freedom of the chi-squared random variable. The probability density functions of 
various degrees of freedom are shown in Figure 2.12. Degrees of freedom, 1 and 2 
are exponential functions. The degree 1 has infinity value at x= 0, the degree 2 is 0.5 
at x=0. The degree 4 mimics a Rayleigh. As the degree of freedom increases further, 
the chi-squared approaches Gaussian.

2.7	 Square-Law Detector

In this section we discuss the square-law detection of noise or signals, see Figure 2.13, 
where the current and voltage relationship of a diode is shown.

Figure 2.12  Probability density function, chi-squared, degree of freedom 2, 4, 8.

Figure  2.11  Post-detection integration, exponentially weighted.
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The i-v curve may be divided into two regions, the squared region and the linear 
region. The cutoff vc for a silicon diode is 0.7V, 0.3V for a germanium, and 0.12V 
for a hot-carrier diode.

High-level noise will be detected in the linear region whereas low-level noise will 
be detected in the square region. When we contemplate inclusion of post-detection 
integration, Figure 2.11, an analysis for a linear envelope detector is quite difficult 
because in part the probability density function of sum of Rayleigh or Rician random 
variables is not known in a closed analytic form. The difference between a linear en-
velope detector and a square-law detector is less than 0.2 dB when the probability of 
false alarm is 1.0E-5 or less and the detection probability is 50% or higher. For this 

Figure 2.13  Current  versus  voltage characteristic of diode.

Figure 2.14  Comparison between linear and square-law Detector for N pulses integrated.
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reason the analysis is exclusively executed on the assumption of a square-law detec-
tor (more about this in Chapter 7).

2.8	 Exponential Noise

The probability density function out of a square-law detector when the input noise 
is Gaussian is given by [3],

	

fY(y) =
fx(x1)
|g�(x1)| +

fx(x2)
|g�(x2)| + . . .+

fx(xn)
|g�(xn)|

	

(2.10)

where
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(2.11)

The output noise is distributed as an exponential function, infinite at y= 0. This 
is the chi-squared probability density function with one degree of freedom.

Narrowbanded Gaussian noise whose instantaneous amplitude is z can be con-
sidered as a vectorial sum of real and imaginary components. The instantaneous 
angle θ is assumed uniformly distributed in [0, 2π].

	 z = r cosθ + j(r sinθ) = x + j y

The probability distribution function Fxy(x,y) is obtained by integrating the 
joint probability density function fxy(x,y). 
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	 = 1.0 - exp{ -z             
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}

By differentiating the probability distribution function above we obtain the 
probability density function of z.

	 fZ(z) =   1             
2σ2

 exp{ -z             
2σ2

}	 (2.12)

The output noise is distributed exponentially, fZ(z) = 0.5 at z = 0, with variance 
σ2=1.  This is chi-squared with two degrees of freedom, see Figure 2.12. The mean 
(expectation) and variance of the exponential probability density function are

	
E{x} =

∞�

0
z fz(z)dz =

∞�

0

−z
2σ2 exp

� −z

2σ2

�
dz = 2σ2

	
E{x2} =

∞�

0
z2 fz(z)dz =

∞�

0

−z2

2σ2 exp
� −z

2σ2

�
dz = 8σ4

Therefore, the variance σ2 = E{x2} - [E{x}]2 = 4σ4,  and the standard deviation 
and the median are given by

standard deviation = 2σ2

	 median = ∫
0

zm

fZ(z) dz = 1      
2 

,     zm = 2σ2 [-ln(1/2)] 

The generation of exponential random variables is by the inverse transform 
method [4].

u = FZ(z) = 1 - exp{ -z             
2σ2}       (u is the unit uniform random variable)

1–u = exp{ -z             
2σ2},    and  ln (1–u) =  -z             

2σ2
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Since (1–u) is identically distributed as u, 

	 -ln u =    z             
2σ2

          

	 zi = 2σ2 [- ln(ui)]	 (2.13)

Equation (2.13) is programmed in EXP128.CPP, and the result is shown in 
Figure 2.15.

2.9	 Lognormal Clutter

The reflected power from the sea observed by a high-resolution radar at a low 
grazing angle is said to be distributed as logarithmic Gaussian, lognormal for 
short.

	
fL(x) =

1

σ
√

2π
exp

� −1
2σ2 (ln x − m)2

�

	 (2.14)

A harbor surveillance radar receives log-normal clutter when the sea state is 
high, a windy and choppy sea [5]. Lognormal probability density functions with a 
mean of 1, 2, and 4 with unity variance are shown in Figure 2.16. The mean and 
variance are referred to the parent Gaussian, not to the lognormal. The lognormal 
probability density function exhibits a longer tail than any other distribution. The 
longer tail implies a spiky amplitude of clutter in the time domain.

Figure 2.15  Exponential noise.
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Lognormal random variables are generated from Gaussian random variables:

1.	 Generate Gaussian random variables Gi(mean=0, var=1.0);
2.	 Let temporary variables yi as,

	 yi = mean + σ . Gi(0.0, 1.0)

3.	 Lognormal clutters  xi = exp{yi}.

Lognormal clutter is generated in LOGNORM.CPP and shown in Figure 2.17.

Figure 2.16  Lognormal probability density function.

Figure  2.17  Lognormal clutter.
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2.10	 Weibull Clutter

The Weibull probability density function is given by,

	 fW(x) = ⎛  
⎝
c  −  
b

⎞  
⎠ 

⎛  
⎝
x  −  
b

⎞  
⎠ 

c-1 
exp{-⎛  

⎝
x  −  
b

⎞  
⎠ 

c}	 (2.15)

where

c:  The shape parameter;
b:  The scale parameter.

A Weibull pdf with various “c” parameters are shown in Figure 2.18. When “c” 
is unity and “b” arbitrary, the Weibull pdf is identical to the exponential pdf. When  
c=2 and b=2σ2, the Weibull is identical to the Rayleigh while when c is greater than 
2.5, the Weibull resembles Gaussian. The Weibull pdf is a flexible function.

The Weibull pdf (named for Swedish engineer Weibull) was originally applied 
to the analysis of strength of materials: fatigue and breakdown of mechanical com-
ponents of a structure, or a life-test (longevity) of electrical devices such as incan-
descent bulbs.

Since the probability density function is so adaptable, the function is now applied 
to the analysis of radar clutter returns. A large volume of returned data collected and 
analyzed indicates that the land and sea returns are distributed as Weibull. A vegetated 
field and forest viewed by a low-resolution radar at a high grazing angle approaches 
Rayleigh. On the other hand, in a high-resolution radar at a low grazing angle on land 
and sea the return powers are distributed as Weibull of varying “c” [5].

Weibull random variables are generated by the inverse transform method. The 
probability distribution function FW(x) is obtained by integrating the probability 
density function.

Fig  2.18  Weibull probability density function with various shape parameters.
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FW(x) =
x�

0

� c
b

��x
b

�c−1
exp

�
−

�x
b

�c�
dx

= 1 − exp
�
−

�x
b

�c�

The unit uniform random variable u(0.0, 1.0] is equated to the probability dis-
tribution function FW(x),

	 u = FW(x) = 1- exp{- ⎛  
⎝
x  −  
b

⎞  
⎠ 

c}
so that

	 1−u = exp{-⎛  
⎝
x  −  
b

⎞  
⎠ 

c},   and  ln(1-u) = -⎛  
⎝
x  −  
b

⎞  
⎠ 

c
    

Since (1−u) is identically distributed as u, we set,

	 -ln(u) = ⎛  
⎝
x  −  
b

⎞  
⎠ 

c

	 Finally,       xi = b.[ -ln(ui)]1/c.	 (2.16)

Equation (2.16) is programmed in WEIBULL.CPP and the result is shown in Fig
ure 2.19. We have chosen c = 1.5 and b = 1.0, somewhere between exponential and 
Rayleigh in the program.

What would be the output distribution when Weibull clutters are detected by 
a square-law detector?  We apply the transformation principle of the input-output 
relationship of the probability density function given by (2.10).

Figure 2.19  Weibull clutter and probability density function.
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fY(y) =
fx(x1)
|g�(x1)|

=
1

2
√

y

� c
b

��x
b

�c−1
exp

�
−

�x
b

�c����x1=√y

=
c/2

b2

�
y

b2

�c/2−1

exp

�
−

�
y

b2

�c/2
�

Weibull clutter Weibull clutter
	 with c and b           with c/2 and b2

We recognize that the output probability density function is another Weibull 
with altered c and b. This may be another reason we may prefer a square-law detec-
tor over a linear detector. The output shape parameter is one-half that of the input, 
and the output scale parameter is the square of the input. When the input scale 
parameter is less than unity, the corresponding output scale parameter decreases; 
when it is larger than unity it increases at the output.

The Weibull probability density function can be changed to an exponential, 
Rayleigh, or Gaussian by merely selecting a different value for the shape parameter.  
The parameters such as mean, variance, standard deviation, median, and mode are 
presented in Chapter 10.

2.11	 �Postulate of Probability Density Function from 	
Sampled Data

We have generated various types of noise and clutter in the previous sections. In this 
section we study the inverse problem. Suppose we are given a set of sampled data of 
unknown distribution, and we wish to find the probability density function of the 
data. We present two demonstrations of how to find the pdf.

Demonstration 1
A group of electronic components are tested for their longevity under stress. The 
following data of their lifetime, in hours, is collected. We suspect the longevity may 
be distributed as Gaussian. In order to test the postulate we plot the data on normal 
probability paper. (We shall show how to construct the paper shortly). If a straight 
line is observed, our postulate is correct; if not, we postulate another distribution. 
The collected data follow (in hours):

		 77    21    18    51    65    48    83    37    43    48
		 29    55    13    77    30    23    29    55    72    28
		 49    12    73    56    33    78    47    50    59    19
		 44    50    41    39    63    66    19    94    34    24
		 34    85    57    30    45    59    52    40    56    33
		 30    59    50    45    55    86    56    56    53    82
		 80    62    52    97
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We construct the following table showing the rank-ordered subgroup, the ob-
served frequency count, the cumulative frequency count, and the expected cumula-
tive frequency as follows:

[i] rank-ordered
subgroup

freq
count

cumulative
freq count

expected cumulative
freq, 1/64 (column 5)

  1 10 – 14   2   2 0.031
  2 15 – 19   3   5 0.078
  3 20 – 24   2   7 0.109
  4 25 – 29   3 10 0.156
  5 30 – 34   8 18 0.281
  6 35 – 39   2 20 0.313
  7 40 – 44   4 24 0.375
  8 45 – 49   6 30 0.460
  9 50 – 54   7 37 0.578
10 55 – 59 11 48 0.750
11 60 – 64   3 51 0.797
12 65 – 69   2 53 0.828
13 70 – 74   2 55 0.858
14 75 – 79   3 58 0.906
15 80 – 84   2 60 0.938
16 85 – 89   2 62 0.969
17 90 – 94   1 63 0.984
18 95 – 99   1 64 1.000

Columns 2 and 5 are plotted on normal probability paper as shown in Figure 2.20 
by taking the midpoint of column 2 as the abscissa, and column 5 as the ordinate. A 
straight line is drawn by visual adjustment. A straight line indicates that our initial 
postulate is correct: The sampled data are distributed as Gaussian. We note that the 
mean (0.5) is approximately 50 hours, and  the standard deviation (0.159 and 0.841) 
is approximately 70–27=43. We can test the two parameters by the sample mean and 
variance; however, the plotting checks the correctness of our postulate.

mean =
1

N

N

∑
j=1

xj

variance =
1

N − 1

N

å
j=1

(xj − m)2

When the sampled data are postulated as lognormally distributed, we still use 
normal probability paper after column 2 is converted to logarithm.

Demonstration 2
The proper function of electronic equipment depends critically on the weakest com-
ponent. The weakest component on a circuit board may be a transistor, diode, resis-
tor, inductor, or another constituent element. When the weakest component fails 
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the circuit board’s function fails and so does the equipment. (No parallel redun-
dancy is considered here.) The failure rate is postulated to be Weibull with unknown 
parameters. The Weibull probability density function and distribution function are 
repeated below for convenience.

	 fW(x) = ⎛  
⎝
c  −  
b

⎞  
⎠ 

⎛  
⎝
x  −  
b

⎞  
⎠ 

c-1 
exp{- ⎛  

⎝
x  −  
b

⎞  
⎠ 

c}	          (2.18) 

	 FW(x) = 1- exp{-(xb)
c
}	          (2.19)

Taking the natural logarithm of (2.19) twice, we have

	
ln

�
ln

�
1

1 − FW(x)

��
= c ln(x) − c ln(b)

	
(2.20)

If we equate the left-hand side to yi, (2.20) leads us to a linear equation

Figure 2.20  Sampled data postulated as gaussian.
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	 yi = c ln(xi) - c ln(b)

The data plotted on a linear-linear graph should look as shown in Figure 2.21.  
The slope of the straight line would give us an approximation of the shape param-
eter c and the intercept point the scale parameter b. Our primary object in plotting 
is to test the postulate of the distribution of the sampled data.

A better estimate of two parameters can be obtained by the method of MMSE.

	 minimize 
i=0

    ∑    
N
  [yi-c ln(xi)+ c ln(b)]2

Estimates of c and b are given by

	

ĉ =
∑ yiln(xi) − E{ln x} E{y}

∑ (ln x)2 − [E{ln y} ]2

	

(2.21)

	 b̂ = exp
�−E{y}

ĉ
+ E{ln x}

�
	 (2.22)

where

E{ln x} =
1

N ∑ ln xi;

E{y} =
1
N ∑yi;

Figure 2.21  Linear Equation of (2.20). Sampled data postulated as Weibull.
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xi and yi are a rank-ordered pair.

All that remains is to compute the left-hand side of (2.20) where FW(x) is in-
volved, and we have equated it to yi. An estimate of  FW(x) is given by Bury [6] and 
Ross [7].

	 E{FW(x)} =     i                
N+1

	 (2.23)

Therefore,

yi = ln
�

ln
�

1
1 − FW(x)

��
= ln{−ln[1 − FW(x)]}

	
= ln

�
−ln

�
N + 1 − i

N + 1

��

	
(2.24)

Numerical Demonstration 3
A group of batteries is tested under stress for longevity. Stress tests are often per-
formed to shorten the testing time in laboratory. The following data (in months) is 
collected, and we postulate that the life-length is distributed as Weibull.

		 1.878    0.756    0.847    1.310    0.454
		 1.024    0.665    0.316    0.569    1.545
		 1.420    0.935    2.162    1.209    1.692
		 1.115

After 16 failures the testing is terminated. We rank-order the longevities, (in 
months) in ascending order and construct the following table.

[i] rank-ordered xi ln (xi ) yi = ln {−ln [ N+1−i     ⎯⎯⎯    
N+1  ]}

 1 0.316 -1.152 -2.803
 2 0.454 -0.790 -2.078
 3 0.569 -0.564 -1.639
 4 0.665 -0.408 -1.316
 5 0.758 -0.279 -1.055
 6 0.847 -0.166 -0.832
 7 0.935 -0.067 -0.634
 8 1.024  0.024 -0.455
 9 1.115  0.109 -0.283
10 1.209  0.190 -0.120
11 1.310  0.290  0.041
12 1.420  0.351  0.202
13 1.545  0.435  0.369
14 1.691  0.525  0.551
15 1.878  0.639  0.761
16 2.161  0.771  1.041
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The data is plotted in Figure 2.22;  ln (xi) is the abscissa, yi is the ordinate. A 
straight line is drawn visually. The straight line confirms our initial postulate of a 
Weibull distribution. The slope of the line, the shape parameter, is approximately 2. 
The intercept point indicates that the scale parameter is approximately 1.3. Once 
a straight line is observed the estimates of  the parameters would be computed by 
MMSE via (2.20) and (2.21).

Plotting the sampled data on either Gaussian probability paper or linear- 
linear paper is a powerful tool to test a postulate on the distribution of the sampled 
data.

2.12	 Construction of Gaussian (Normal) Probability Paper

Normal probability paper (Gaussian graph) is commercially available; however, we 
would like to construct one ourselves.  See Figure 2.20 without the sample points. 
The Gaussian density function and distribution function are

	
fG(x) =

1

σ
√

2π
exp

�
−x2

2σ2

�

	
(2.25)

Figure 2.22  Failure rate test on batteries.
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FG(x) =
1

σ
√

2π

x�

−∞
exp

�−x2

2σ2

�
dx

	

(2.26)

When we specify, for example, FG(x) = 0.8, we wish to know the corresponding 
value of x through (2.25); that is,

	

0.8 =
1

σ
√

2π

x�

−∞
exp

�−x2

2σ2

�
dx

An iterative integration technique would give us the value of x (see Chapter 9); 
however, the Gaussian table and a linear interpolation may be a simpler way to ob-
tain the values of x.

Using a Gaussian table and a straight-line interpolation we have written NOR-
MGRAP.CPP. The result is shown below.  The x’s are the ordinate scale, labeled as 
FG(x). The abscissa is in linear scale.

FG(x) x

0.99 2.3264
0.98 2.0539
0.95 1.6450
0.90 1.2816
0.80 0.8417
0.70 0.5244
0.60  0.2534
0.60 0.0000  (symmetry)
0.40 -0.2534
0.30 -0.5244
0.20 -0.8417
0.10 -1.2816
0.05 -1.6450
0.02 -2.0539
0.01 -2.3264

Exponential probability paper is easier to construct since the probability distri-
bution function is integrable analytically.

	 fE(x) =   
1
          

σ2  exp { 
-x

          
σ2 }

	 FE(x) = 1 - exp { 
-x

          
σ2 }

	 x = - ln [1 - FE(x)]                  (σ2=1)

The x is ordinate, labeled as  FE(x), and the abscissa is in linear scale. We have 
not drawn the graph.
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Weibull probability paper is a blank sheet with linear-linear scale as shown in 
Figure 2.21 and 2.22.

2.13	 Conclusion

We have generated PRNs by the mixed congruential method with contiguity; no 
missing numbers, no duplicated numbers. The unit uniform random variables are 
generated from the PRNs.

Gaussian, Rayleigh, Rician, and chi-squared noise sequences are generated 
from the unit uniform random variables by the direct method. (Noise is engineering 
terminology; the random variable is probability/statistical terminology.)

We have learned how to derive the output probability density function of a 
square-law detector. We have learned different names for chi-squared noise. We 
have learned how to generate exponential noise, lognormal clutter, and Weibull 
clutter by the inverse transform method. Lognormal distributions have very spiky 
waveforms. 

The Weibull probability density function is a very flexible, adaptable function 
with variable shape parameter “c.” It can be an exponential, Rayleigh, Gaussian 
look-alike, or somewhere between.

Noise and clutter are generated from unit uniform random variables. We claim 
that all the noises and clutters we would encounter in communication and radar 
signal processing are generated in this chapter.
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List of Programs

Program Features
    (1) PRN37A.CPP Generates PRN sequence of population 37.
    (2) PRN_MISS.CPP Checks any missing or duplicated numbers in PRN37A.CPP, 

corrects the PRN sequence and generates a unit uniform 
random variables.

    (3) PRN37B.CPP Generates another PRN of length 37, corrects the sequence, 
generates second set of independent unit uniform random 
variables.

    (4) PRN64A.CPP Generates PRN sequence of length 64, two
    (5) PRN64B.CPP independent unit uniform random variables for later use.
    (6) PRN64B.CPP independent unit uniform random variables for later use.
    (7) PRN128A.CPP Generates a pair of PRN sequences, N=128,
    (8) PRN128B.CPP independent and identically distributed.
    (9) WGN64.CPP Generates white Gaussian noise,
  (10) WGN128.CPP N=64 and N=128.
  (11) RAYLEIGH.CPP Generates Rayleigh noise, N=64.
  (12) RICE64.CPP Generates Rician random variables of length 64 with a speci-

fied signal-to-noise ratio.
  (13) GRAPHRIC.CPP Generates a Rician probability density function with three 

different SNRs, 0 dB, 3 dB, 6 dB, and 10 dB.
  (14) GRAPHCHI.CPP Generates a χ2 probability density function with degree of 

freedom 2, 4, and 8.
  (15) EXP128.CPP Generates exponential noise from unit uniform random vari-

ables by inverse transform.
  (16) LOGNORM.CPP Generates lognormal clutter from WGN128.DAT
  (17) GRAPHLOG.CPP Generates a lognormal clutter probability density function 

with mean 1, 2 and 3.
  (18) WEIBULL.CPP Generates Weibull clutter from PRN128. DAT with two 

parameters specified.
  (19) GRAPHWBL.CPP Generates three Weibull pdf’s with the shape parameter 

c=1.0, c=2.0 and c=3.0, while the shape parameter b is held 
constant.

  (20) NORMGRA.CPP Computes data to construct Gaussian probability paper.
  (21) STATIST.H A header file attached to CPP driver whenever statistics of 

data such as mean, variance, standard deviation, median, or 
mode are needed to compute.
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C h a p t e r  3

Filters, FIR, and IIR

3.1	 Introduction

A digital filter can be designed in a variety of ways. A practical digital filter imple-
mentation is very dependent on the filter structure whether the filter is nonrecursive 
or recursive. We define the nonrecursive and recursive structure of a filter at the 
outset.

The output sequence y(n) of a nonrecursive filter is a function only of the past 
inputs and the present input x(n).

	 y(n) = å  
N  

i = 0 
bi x(n - i)	 (3.1)

The transfer function of nonrecursive filter is given by, in the z domain,

	 x(z)→      H(z)  →y(z)	

	     

H(z) =
y(z)
x(z)

=
N

∑
i=0

bi z
−i

= b0 + b1z−1 + b2z−2 + . . . + bNz−N 	
(3.2)

The structure of a nonrecursive filter of order N is shown in Figure 3.1.
The output sequence y(n) of a recursive filter is a function of the past output, 

the past inputs and the present input x(n).

	 y(n) = å  
N  

i = 0
bi x(n-i) - å  

N  

j = 0
aj x(n-j)	 (3.3)

The transfer function of a recursive filter in the z domain is,

	 x(n) →      H(z)  → y(n)	

	

H(z) =
∑biz−i

∑ajz−j

=
b0 + b1z−1 + b2z−2 + · · · + bNz−N

a0 + a1z−1 + a2z−2 + · · · + aNz−N 	
(3.4)
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(we usually normalize a0=1)
The structure of a recursive filter is shown in Figure 3.2.
The transfer function (3.4) may be implemented as shown in Figure 3.3. We call 

the structure a canonical form. It has the least number of delay elements but twice 
the number of summers.

The transfer function can be interpreted as a cascade of several transfer func-
tions where Hi(z) is either a first-order section or a second-order section.

	
H(z) =

∑biz−i

∑ajz−j = H1(z)H2(z)H3(z) · · ·HN(z)
	

	
Hi1(z) =

b0 + b1z−1

1 + a1z−1 , Hi2(z) =
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 	

	 x(z)         H1(z)            H2(z)                   H3(z)                          HN(z) →  y(z)	

Figure 3.1  Nonrecursive filter of order N.

Figure 3.2  Recursive filter of order N.
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Another variation in implementation is a partial expansion of the transfer func-
tion (3.4) (see Figure 3.4).  The structure corresponding to the partial expansion is 
a parallel summing of all Hi(z).  Hi(z) is either a first-order section or a second-order 
section.

	   
H(z) =

∑biz−i

∑ajz−j = H1(z) + H2(z) + H3(z)+ · · · + HN(z)
	

Figure 3.3  Recursive filter, canonical form.

Figure 3.4  Partial fraction expansion.

3.1    Introduction	 55
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There are many other structures, and they may be constructed in a countless 
varieties of ways. The choice among the various structures is dictated by several 
factors such as the economy of implementation (whether the structures are imple-
mented by hardware or software), the degree of susceptibility to component toler-
ance, and the round-off errors in software.

3.2	 Finite Impulse Response Filter (FIR)

A FIR for short, is usually implemented by a nonrecursive structure shown in Figure 3.1  
most of the time. The output y(n) is a function of only the past inputs and the pres-
ent input x(n).

	

y(n) =
N

∑
i=0

bi x(n − i)

= b0(n) + b1x(n − 1) + b2x(n − 2) + · · · + bNx(n − N) 	

(3.5)

When the input sequence ceases, the output sequence stops after an N sample de-
lay, and therefore, we use the phrase finite duration. There is no feedback path in the 
structure, and it is always stable. The input and output phases hold a linear relation-
ship. The phase linearity is an important characteristic of the nonrecursive FIR filter.

How to determine the coefficients b0, b1, b2 ,  . . .  bN?   Three techniques appear 
in the literature [1, 2]. They are listed as follows:

1.   Impulse response method  (plus window functions);
2.   Frequency sampling method;
3.   Optimal min-max error approximation method
       (Remez exchange method).

3.2.1	 FIR Filters, Lowpass, Highpass, Bandpass, and Bandstop

In this section we study the impulse response plus window function. Even though 
this method results in a suboptimal design, the coefficients are obtained in a straight-
forward closed form. Those interested in the other methods should consult the ref-
erences cited.

Let us study an ideal lowpass filter prototype. The response of a lowpass filter 
is given by,

	
H(ω) =

�
e−jω(N−1)/2 0 ≤ ω ≤ ωc

0 otherwise 	
(3.6)
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An inverse Fourier transform of H(w) that corresponds to the impulse response 
of an ideal lowpass prototype is given by,

	

h(n) =
1

2π
ω�

−ω
H(ω) ejωn dω

=
sin

�
ωc

�
n−N−1

2

��

π
�

n − N−1
2

�
	

(3.7)

The impulse response of (3.7) holds true only when N=∞. For a finite number of 
FIR coefficients we must truncate N to a finite number. We call N the order of the 
filter. The truncation of the infinite Fourier series results in the Gibb’s oscillation, or 
Gibb’s ripple. Various window functions are applied to reduce the amplitude of the 
Gibb’s ripples. The coefficients bi of an FIR lowpass filter are obtained by convolv-
ing the impulse function with a selected window function.

The impulse response of an ideal, prototype, highpass filter is similarly obtained 
by an inverse Fourier transform.

	
H(ω) =

�
e−jω(N−1)/2 ωc ≤ ω ≤ π
0 otherwise 	

(3.8)

	 		

	
h (n) =

sin
�
p

�
n − N−1

2

��

p
�

n − N−1
2

� −
sin

�
wc

�
n−N−1

2

��

p
�

n − N−1
2

�
	

(3.9)
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For an ideal bandpass prototype, the frequency response is

	
H(ω) =

�
e−jω(N−1)/2 ωL ≤ ω ≤ ωH

0 otherwise 	

(3.10)

	

	

h(n) =
sin

�
ωH

�
n − N−1

2

��

π
�

n − N−1
2

� −
sin

�
ωL

�
n − N−1

2

��

π
�

n − N−1
2

�
	

(3.11)

For an ideal bandstop prototype, the frequency response is,

	
H(ω) =

�
e−jω(N−1)/2 0 ≤ ω ≤ ωL and ωH ≤ ω ≤ π
0 otherwise 	 (3.12)

	 	

The corresponding impulse function h(n) is

	
h(n) =

sin
�
ωL

�
n − N−1

2

��

π
�

n − N−1
2

� +
sin

�
π

�
n − N−1

2

��

π
�

n − N−1
2

� −
sin

�
ωH

�
n − N−1

2

��

π
�

n − N−1
2

�
	

(3.13)

The impulse responses of four prototypes are programmed in IMPULSE. CPP, 
and the results are shown in Figures 3.5–3.8, with N=21.
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3.2.2	 Window Functions: Rectangle, von Hann, Hamming, and Blackman

The impulse response h(n) will be convolved with window function w(n) to obtain 
the coefficients of  bi of (3.5). There are many interesting window functions [3].  
We study the following four windows.

Figure 3.5  Impulse response, lowpass, fc=0.2.

Figure 3.6  Impulse response, highpass, fc=0.3.
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1.   Rectangular window;
2.   von Hann window;
3.   Hamming window;
4.   Blackman window.

Figure 3.8  Impulse response, bandstop, fL=0.15, fH=0.35.

Figure 3.7  Impulse response, bandpass, fL=0.15, fH=0.35.
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The window functions are generated as follows:

1.  Rectangular:     w(n) = 1.0;

2.  von Hann:        w(n) = 0.50 − 0.50 cos(2np               
N  );

3.  Hamming:        w(n) = 0.54 – 0.46  cos (2np               
N  );

4.  Blackman:        w(n) = 0.42 – 0.50  cos(2np               
N  ) + 0.08 cos(4np               

N  ).
Rectangle, von Hann, and Hamming windows are special cases of the following

function which is a cosine function on a pedestal:

	 w(n) = c - (1- c) cos( 2np               
N -1)	

where

c = 1.00: rectangle;
c = 0.50: von Hann;
c = 0.54: Hamming.

Window functions are shown in Figure 3.9.
Lowpass filters with rectangle, von Hann, Hamming, and Blackman window 

are programmed in FIR_LP.CPP, and the frequency responses are shown in Figure 
3.10(a–c).

Highpass filters with rectangle, von Hann, Hamming, and Blackman windows are 
programmed in FIR_HP.CPP, and the frequency responses are shown in Figure 3.11.

The frequency responses of bandpass filters are programmed in FIR_BP. CPP,  
bandstop filters in FIR.BS.CPP. The results are shown in Figure 3.12 and Figure 3.13. 
and the stopband attenuation level. We do not have in advance any knowledge of 

Figure 3.9  Window functions.
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what the order of filter N would satisfy the specifications. Thus, several trial-error 
designs are required. Kaiser has proposed his window to remedy this problem [4, 5].

The parameter a controls the height of the pedestal when a is 4.1164.
All the filters we have designed are prototypes. In practical applications, we 

would convert the normalized frequency to hertz as follows.

Figure 3.10(b)  Lowpass prototype, fc=0.2, N=21 (Hamming window).

Figure 3.10(a)  Lowpass prototype, fc=0.2, N=21 (von Hann Window).
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Prototype Designed in Hertz

fL = 0.15 fL = 15 KHz
fH = 0.35 fH = 35 KHz
wL = 2p fL= 0.3p wL = 2p fLT = 0.3p
w H = 2p fH=0.7p w H = 2p fHT = 0.7p
Note: T = sampling interval of A/D  converter;       1                 

100 KHz
 = 1.0×10-5 second.

Figure  3.10(c)  Lowpass prototype, fc=0.2, N=21 (Blackman window).

Figure  3.11  Highpass prototype,  fc=0.3, N=21.
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As demonstrated, FIR filters are simple to design. First compute the impulse 
response of lowpass, highpass, bandpass, or bandstop; select a window function; 
and convolve them. A latent shortcoming of FIR filter design is that we do not have 
design guidance as to what order of the filter N would meet design specifications 
such as the magnitude of passband ripples and the transition width. 

Figure  3.13  Bandstop prototype,  fL=0.15, fH=0.35, N=21.

Figure 3.12  Bandpass prototype, fL=0.15, fH=0.35, N=21.
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3.2.3  Kaiser Filter: Lowpass, Highpass, Bandpass, and Bandstop

The Kaiser filter (Kaiser window) is a very flexible design based on the modified 
Bessel function of first kind, zero order.

	
w(n) =

Io

�
α

�
1 −

�
1 − 2n

N−1

�2
�

Io(α)
=

Io(β)
Io(α) 	

	
Io(x) = 1+

∞
∑
i=1

��x
2

�i
�2

i!
	

The pedestal height is equal to that of Hamming. When a is very large the pedestal 
height approaches zero. Kaiser window is shown below.

The attractive property of Kaiser filter is that the order of filter N can be de-
termined by a single parameter a. (See two filters in Figure 3.14). All filters have 
specifications on the passband ripple Ap, the transition width, and the stopband 
attenuation level As. The lowpass filter has two corner frequencies, fp and fs. The 
bandpass filter has four corner frequencies, fs1, fp1, fp2, and fs2. Kaiser has empiri-
cally derived the following formula between the stopband attenuation and the pa-
rameter a,

	

α =

⎧
⎨
⎩

0.0 As ≤ 21
0.5842(As − 21)0.4 + 0.07886(As − 21) 21 < As ≤ 50
0.1102(As − 8.7) As > 50

(As in dB)
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and an auxiliary parameter D to compute the order of filter N.

	

D =

⎧⎨
⎩

0.9222 As ≤ 21
As − 7.95

14.36
As > 21

(As is in decibel)

The order of filter N is given by,

	 N ³ 1 +             D                   
transition width

	

The transition width shown in Figure 3.14, is defined by,

·  fs – fp: lowpass;
·  fp – fs: highpass;

Figure 3.14  Specifications of filter design.
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·  min [(fp1 – fs1), (fs2 – fp2)]: bandpass;
·  min [(fs1 -  fp1), (fp2 – fs2)]: bandstop.

The Kaiser filter design steps are reiterated as follows:

1.   Compute the sidelobe level (decibels):

	

Δ1 = 10−0.05As (As and Ap are in dB)

Δ2 =
100.05Ap − 1

100.05Ap + 1

	

Δ = min(Δ1,Δ2)
sidelobe (dB) = −20 log (Δ)

	

2.   Compute a:

	       

α =

⎧
⎪⎨
⎪⎩

0.0 SLL ≤ 21

0.5842(SLL − 21)0.4 + 0.07886(SLL − 21) 21 < SLL ≤ 50
0.1102(SLL − 8.7) SLL > 50

3.   Compute D:

	

D =

⎧
⎨
⎩

0.9222 SLL ≤ 21
SLL − 7.95

14.36
SLL > 21

	

4.   Compute N: 

	 N = 1 +   D           DF    DF: minimum transition width	

Numerical Example: Kaiser Filter Design

A lowpass filter with the following specifications will be designed: passband ripple 
Ap=0.1dB, stopband attenuation As=40.0 dB, fp=0.2, fs=0.3.             

1.   D1 = 0.01

    D2 = 0.0058
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    D = min(0.01, 0.0058) = 0.0058

    SLL = - 20 log(D) = 44.73 dB  

2.   α = 0.5842 (SLL - 21)
0.4

 + 0.07886 (SLL - 21) = 3.945

3.   D = SLL - 7.95                         
14.36     

 = 2.56

4.   N = 1 +  D             
DF = 26.6 → 27

A Kaiser lowpass filter with the above specifications is programmed in KAISER.
CPP, and the frequency response is shown in Figure 3.15. The reader may enjoy 
designing a highpass, bandpass, or bandstop filter with different specifications.

3.3	 Infinite Impulse Response Filter (IIR)

The output of a recursive filter is a function of both past inputs and the past outputs.

	 y(n) =
N

∑
i=0

bi x(n − 1)−
N

∑
j=0

aj x(n − j) 	 (3.14)

Figure 3.15  Kaiser lowpass, N=27, Ap=0.1dB, As=40.0 dB, fp=0.2, fs=0.3.
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The structure of a recursive filter is shown in Figure 3.2. It has positive feed-for-
ward as well as negative feedback paths. The transfer function of a recursive filter 
in the z-domain is given by

	

H(z) =
Y(z)
X(z)

=
∑ biz−i

∑ ajz−j

=
b0 + b1z−1+b2z−2 + · · · + bNz−N

a0 + a1z−1+a2z−2 + · · · + aNz−N

(a0 = 1) 	

(3.15)

Since the present output y(n) is a function of the past output y(n-i), the output 
duration is infinite at least theoretically, even though the output levels diminish to 
a negligible level very quickly. Thus, the name infinite duration impulse response 
filter (IIR).

The IIR filter is not always stable as the FIR filter is. The poles of H(z) in (3.15) 
must reside within a unit circle of the z-plane for stability. In other words, the coef-
ficients aj must be such that all poles pj are within a unit circle when the denomina-
tor of H(z) is factored as,

	     
X(z) = 1 + a1z−1 + a2z−2 + . . . + aNz−N = (z − p1)(z − p2) . . .(z − pN)

	

The constraining conditions did not exist for FIR filter (feed-forward path only 
structures). The problem of designing an IIR filter is then to find a set of coefficients 
bi and aj of (3.15) that meet frequency response specifications such as passband 
ripple, narrow transition width, and stopband attenuation level with the lowest 
possible order N, and most of all it must be stable.

When the design domain is in z-plane, the resultant filter is a digital filter 
whereas in the s-domain design they are analog filters. This does not mean that 
all IIR digital filters are domain-transformed analog filters. Since there is a large 
body of theory and design techniques available for analog filter design, the domain- 
transform approach has become a popular method.

An IIR digital filter can be designed (determination of the coefficients aj  and 
bi) by,

(1)   Mapping of differentials method (backward or forward);
(2)   Impulse = invariant transform method;
(3)   Matched z-transform method;
(4)   Bilinear transform method.

Voluminous publications appeared in the past on the first three methods. In the 
following sections we study exclusively the bilinear transform  method, a transfor-
mation of s-domain design to z-domain design.

3.3.1  Bilinear Transform

Why the bilinear transform?  The bilinear transform enables us to tap into the large 
body of already proven analog filter design techniques. Some analog designs have 
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relatively simple closed-form design formulas. A digital filter design based on an 
analog filter is therefore relatively simple to implement.

IIR filter designs based on the mapping of differentials (forward or backward), 
the impulse-invariant transform method, or the matched z-transform method have 
certain critical flaws. The first method fails to preserve a one-to-one relationship, 
and a stable analog filter may end up as an unstable digital filter. The second method 
results in a digital filter that is an aliased version of analog filter unless the frequency 
response is band-limited absolutely. The absolute band-limitedness precludes a large 
family of filter design. The third method is not free from defects. When an analog 
filter has zeroes with center frequencies greater than half the sampling frequency, 
z-transformed poles will be greatly aliased.

All in all, the bilinear transform is the best method for designing IIR digital fil-
ters from proven analog filters. The bilinear transform avoids the aliasing problem 
encountered in the other methods, but there is a small price to pay, really a small 
inconvenience, of introducing a frequency compression (distortion or warping) be-
tween the analog and digital frequency.

The bilinear transform is a conformal mapping from the s-plane to the z-plane. 
It is defined by,

	
s → 2

T
1 − z−1

1 + z−1 	
(3.16)

or

	
z → 2

T

�
2/T + s
2/T − s

�

	
(3.17)

The one-to-one reversible relationship of the bilinear transform makes IIR digi-
tal filter design a simple algebraic operation in designing a stable digital filter from 
a stable analog filter. In order to appreciate the distortion or warping in frequency 
we substitute  s=jW and z=jwT in (3.16).

	

jΩ → 2
T

1 − e−jωT

1 + e−jωT

=
2

T
ejωT/2 − e−jωT/2

ejωT/2 + e−jωT/2

= j
2
T

tan
�

ωT
2

�

	           
(3.18)

Equation (3.18) is graphically shown in Figure 3.16. We note that the analog 
frequency Ω is compressed (distorted or warped) in the digital frequency ωT.

Equally spaced analog frequencies Ω1, Ω2  Ω3, . . . are compressed to or stretched 
to ω 1T, ω 2T, ω 3T, . . . in the digital frequencies. 

To design a digital filter with specified corner frequencies at ω 1T, ω 2T, ω 3T, . . . ,  
all we have to do is to decompress (predistort or prewarp) the analog frequencies 



3.3    Infinite Impulse Response Filter (IIR)	 71

ART_Kang_Ch03_v_1.indd                                                  MTC                                                  07/24/2008  10:17PM

Ω1, Ω2 Ω3, . . . .  With this in mind, all the stable analog filter transfer functions H(s) 
can be transformed to the corresponding stable digital IIR filter transfer functions 
H(z) by a simple substitution of (3.16).

	 H(z) = H(s)• 
• 
s	           (3.19)

	 s = 2  −  T  
8−1    ⎯    8+1

The mapping strategy of (3.16) or (3.17) is shown in Figure 3.17. From the 
equations and figure, we see that when s=0, z=1. When σ=0 and Ώ=±j∞, z=−1.  
The positive imaginary axis in the s-plane is mapped into the upper half circle in the 
z-plane, and the negative imaginary axis in the s-plane is mapped into a lower circle 
in the z-plane. All the complex roots located in the left half of the s-plane would be 
mapped inside the unit circle in the z-plane.

3.3.2	 Review of Analog Filters

Since the z-plane IIR digital filter designs are derived from the s-plane analog fil-
ter designs, we review analog filter design briefly. It is not a thorough, in-depth 
study but just adequate enough to understand analog filter design, so that we can  

Figure 3.16  Frequency warping between analog and digital  frequency due to bilinear transform.



72	 Filters, FIR, and IIR

ART_Kang_Ch03_v_1.indd                                                  MTC                                                  07/24/2008  10:17PM

transform analog design techniques to digital design. We shall cover Butterworth, 
Chebyshev, Inverse Chebyshev, and elliptical filters.

Butterworth Lowpass
The Butterworth lowpass filter is characterized by the property that the frequency 
response is maximally flat at the origin and monotonically decreasing in the stop-
band. The transition width is moderately wide.

The frequency response of Butterworth lowpass prototype is given by,

	
|H(s)|2 = |H(j Ω)|2 =

1

1 + (Ω/Ωc)2N
¢

	           
(3.20)

N is the order of Butterworth filter. (See Figure 3.18.)
Equation 3.20 can be rewritten as 

	
H(s)H(−s) =

1

1 − (−s2)N
	           

(3.21)

The poles of (3.21) are located equally spaced on a unit circle on the s-plane. 
Figure 3.19 shows the locations of poles on left-half of the s-plane, N=7 assumed. 
When we take these poles on the left-half s-plane,

	

H(s) =
Co

(s − p1)(s − p2) . . .(s − pN)
	          

(3.22)

where p1, p2, p3, . . . pN = exp{jπ [1/2+(2k-1)/2N]}, k=1, 2, 3, . . . N. and, the con-
stant Co makes H(s)=1 when s=0.

Figure 3.17  Mapping of s-plane(analog) to z-plane(digital) by bilinear transform.
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From (3.20) and (3.22)  we see that:

1. � The Butterworth lowpass filter is an all-pole design;
2. � At Ω=Ωc, the frequency response is down 3 dB;
3. � The frequency response is monotonic, and the transition width would be-

come narrower as the order of filter N increases.

Butterworth filter design is generally determined by specifying the attenuation 
level A at Ωc. The order of filter N is given by,

Figure 3.18  Butterworth lowpass filter, analog.

Figure 3.19  Pole locations of butterworth lowpass, N = 7.
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N =

log10(A
2 − 1)

2 log10(Ωc)

For example,  A=1/100 (-40.0 dB), at Ωc=2.0 in a prototype lowpass. The re-
quired order of the filter N is,

	
N =

log10(1002 − 1)
2 log10(2)

= 6.64 → 7

The pole locations of the Butterworth lowpass in (3.22) are listed in Table 3.1 
together with the factored form of Butterworth polynomials. Later we show that 
the factored forms are domain transformed to the z-plane to design IIR digital 
lowpass filters. A simple conversion technique from the prototype lowpass to high-
pass, bandpass, or bandstops filter will be shown at the end of the review of analog 
filters.

The factors of Butterworth polynomials are listed as follows.

N             H(s)
2	             (s2+1.4142s+1)
3	             (s+1)(s2+s+1)
4	             (s2+0.7654s+1)(s2+1.8478s+1)
5	             (s+1)(s2+0.6180s+1)(s2+1.6180s+1)
6	             (s2+0.5176s+1)(s2+1.4142s+1)(s2+1.9319s+1)
7	             (s+1)(s2+0.4450s+1)(s2+1.2470s+1)(s2+1.8019s+1)

Chebyshev Lowpass
The relatively wide transition width of Butterworth lowpass can be made narrower 
by the Chebyshev lowpass. The Chebyshev filter (many designers call it type 1 
Chebyshev) is an all-pole design that exhibits equal ripple in the passband and 
monotonic in the stopband.

Table 3.1  Complex Roots of Butterworth Polynomials [6, 7]

N=2 N=3 N=4 N=5 N=6 N=7

-0.707107 -1.000000 -0.382683 -1.000000 -0.258819 -1.000000
±j0.707107 ±j0.923879 ±j0.965926

-0.500000 -0.923879 -0.309017 -0.707107 -0.222521
±j0.866025  ±j0.382683 ±j0.951056 ±j0.707107 ±j0.974928

-0.809017 -0.965926 -0.623489
±j0.587785 ±j0.258819 ±j0.781832

-0.900969
±j0.433884

	

|H(Ω)|2 =
1

1 + ε2 T2
N(Ω /Ωp)
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where  ε  is a parameter that controls the magnitude of ripple, and TN(.) is an Nth 
order Chebyshev polynomial defined by,

	
TN(x) =

�
cos[N cos−1(x)] Ω ≤ Ωp

cosh[N cosh−1(x)] Ω > Ωp 	

Chebyshev polynomials have a recurrence formula: 

           

N TN(x)

1 cos [cos−1(x)] = x
2 cos [2 cosh−1(2x)] = 2x2 − 1

	

	

3 cos [3 cosh−1(3x)] = 4x3 − 3x
. .
. .
. .
N + 1 cos [(N + 1) cosh−1((N + 1)x)] = 2x TN(x) − TN−1(x)

	

The frequency response of the Chebyshev lowpass when N is odd is shown in 
Figure 3.20. When the order N is even the black dot moves to the 1/(1+ε 2) level. 

The poles are located on an ellipse in the left-half of s-plane. The major and 
minor axis of the ellipse are given by,

	 major axis:      1
2 (γ + γ-1

) 

	 minor axis:     
1
2 (γ − γ-1

)	

	
where   γ =

�
1+

�
1 + ε2

ε

�1/N

The locations of the Nth order Chebyshev lowpass are given by,

	
σk = sinhϕ sin

�
(2k − 1)π

2N

�
k = 1,2,3, . . .N

	
Ωk = coshϕ cos

�
(2k − 1)π

2N

�

	

where

sinh φ = minor axis;
cosh φ = major axis.
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Figure 3.20  Chebyshev lowpass, (type 1).

Figure 3.21  Pole locations of Chebyshev on ellipse.
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Table  3.2(b)  Complex Roots of Chebyshev Polynomials (1.0-dB ripple, ε 2=0.2589254)

N=2 N=3 N=4 N=5 N=6 N=7

  -0.548867   -0.494171   -0.139536 -0.289493 -0.062181   -0.205416
±j0.895129 ±j0.983379 ±j0.943412 

  -0.247085    -0.336869 -0.089158 -0.169882   -0.045709
±j0.965998  ±j0.407329 ±j0.990107 ±j0.727228 ±j0.995284

-0.234205 -0.232063   -0.128074
±j0.611919 ±j0.266184 ±j0.798156

  -0.185072
±j0.442943

Factors of Chebyshev Polynomials (1.0-dB ripple, ε 2=0.2589254)

N H(s)

2 (s2+1.0977s+1.1085)
3 (s+0.4942)(s2+0.4942s+0.9942)
4 (s2+0.2791s+0.9865)(s2+0.6737s+0.2794)
5 (s+0.2895)(s2+0.1789s+0.9883)(s2+0.4684s+0.4293)
6 (s2+0.1244s+0.8939)(s2+0.3398s+0.5577)(s2+0.4641s+0.1247)
7 (s+0.2054)(s2+0.0914s+0.9926)

                            (s2+0.2561s+0.6536)( s2+0.3701s+0.2305)

Table  3.2(a)  Complex Roots of Chebyshev Polynomials (0.5-dB ripple, ε 2=0.1220184)

N=2 N=3 N=4 N=5 N=6 N=7

  -0.712812 -0.626457    -0.175353 -0.362319   -0.077650   -0.256170
±j1.004043  ±j1.016253 ±j1.008461  

-0.313228    -0.423339   -0.111963   -0.212144   -0.057003
±j1.021928  ±j0.420946 ±j1.011557 ±j0.738245 ±j1.006409

  -0.293123   -0.289794   -0.159719
±j0.625177 ±j0.270216 ±j0.807077

  -0.230801
±j0.447894

Factors of Chebyshev Polynomials (0.5-dB ripple, ε 2=0.1220184)

N H(s)

2 (s2+1.4256s+1.5162)
3 (s+0.6265)(s2+0.6265s+1.1424)
4 (s2+0.3507s+1.0635)(s2+0.8467s+0.3564)
5 (s+0.3623)(s2+0.2239s+1.0358)(s2+0.5362s+0.4768)
6 (s2+1.1553s+1.0230)(s2+0.4243s+0.5900)(s2+0.5796s+0.1570)
7 (s+0.2562)(s2+0.1140s+1.0161)

                 (s2+0.3194s+0.6769)( s2+0.4616s+0.4314)
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Table 3.2 lists the pole locations for ε 2=0.1220184 (0.5-dB ripple), and 
ε 2=0.2589254(1.0-dB ripple), N=2 to N=7. More extensive tables are available else-
where.  Later we show the factored forms are domain transformed to the z-plane to 
design IIR lowpass Chebyshev filters.

In order to design Chebyshev lowpass filters the following specifications are 
required: 

1.  Magnitude of ripple  ε 2  up to Ωp ;
2.  Attenuation A at Ωa;
3.  The order of filter N.

When we specify two design specifications the third will be uniquely deter-
mined. The order N to achieve  ε 2  at  Ωp=1.0,  A at Ωa is given by,

	

N =
log(D +

�
D2 − 1)

log(Ωa/Ωp +
�

(Ωa/Ωp)2 − 1)

where  D =

�
A2 − 1

ε

Please note the following example. (See Figure 3.20.)

1.  Passband ripple=3.0 dB, up to Ωp=1.0;
2.  Attenuation level =40.0 dB at  Ωa=2.0.

then

	

20 log10
1√

1 + ε2
= −3.0(dB), ε2 = 0.9953

20 log10
1√
A

= −40.0 (dB), A = 10,000

D =

�
A2 − 1

ε
= 10,047

	
N ≈ 7.52

Thus, N = 8 will meet the design goal.
The locations of complex roots of Chebyshev polynomials and the factored 

forms are listed in Table 3.2, up to N=7.  The extended tables are found in the 
references.

Inverse Chebyshev Lowpass (Figure 3.22)
The inverse Chebyshev lowpass filter exhibits a monotonic response in the passband 
and ripples in the stopband. The inverse Chebyshev is sometimes called Chebyshev 
Type 2. The transfer function is given by,
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|H(Ω)|2 =
T2

N(Ωa/Ω)
T2

N(Ωa/Ω) + ε2 T2
N(Ωa/Ωp)

The transfer function has both zeroes and poles in the left half of the s-plane. 
The zeroes are purely imaginary, and are located at

	

zerok =
jΩ

cos
�

(2k−1)π
2N

� k = 1, 2, 3, . . .N

The locations of poles are given by

	

σk =
Ωkak

a2
k + b2

k

, Ωk =
Ωkbk

a2
k + b2

k

where

ak = − sinhφ  sin[(2k-1)π                       2N   ]    (k=1, 2, 3,  . . . N);

bk =    coshφ cos[(2k-1)π                       2N   ];

sinh φ = 12(γ − γ-1
);

cosh φ = 12(γ + γ-1
);

γ = [A+√
           

A2-1 ]1/N
.

Figure 3.22  Inverse Chebyshev, lowpass.
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We note that a zero is located at infinity on the imaginary axis when N is odd, 
and the poles are not located on an ellipse as in the Chebyshev Type 1. A table simi-
lar to Table 3.2(a,b) can be generated. The order of filter N of inverse Chebyshev is 
identical to Type 1:

	

N =
log(D +

�
D2 − 1)

log(Ωa/Ωp +
�

(Ωa/Ωp)2 − 1)

where

	
D =

�
A2 − 1

ε

Elliptic lowpass (Figure 3.23)
The last analog filter we review is the elliptic filter (sometimes called the Cauer  
filter). An elliptic filter has ripples both in the passband and stopband. The transfer 
function is given by

	 |H(Ω)|2 =         1                                     1+ε 2 RN
2  (Ωk)

where RN(.) is the Jacobian elliptical function. The elliptical filter has the narrowest 
transition width among all filters, given an identical frequency response specifica-
tion. In this sense, we say that the elliptical filter is an optimal filter; however, com-
putations of zeroes and poles locations are much more complicated. 

Figure 3.23  Elliptic lowpass.
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The theory of elliptical filter design may be mastered from the potential theory 
analogy, or from Chebyshev rational functions [7–9]. We omit the derivation for the 
locations of zeroes and poles, for a satisfactory exposition takes more than dozen 
scores of pages; the subject deserves a separate textbook. Interested readers should 
consult the references mentioned.

Why an elliptic filter?  In the microwave region where waveguides are used, the 
optimality (the lowest order N among the competing designs) translates to a shorter 
length of heavy guides and a smaller number of tuning elements. The controlling 
issues are the weight and the economics of production.

Instead of deriving the locations of zeroes and poles we suggest the use of design 
tables already published [10,11]. The handbooks have compiled hundreds of design 
data covering almost all conceivable elliptical filters. Su [10] has even included an 
interpolation technique in case his table does not exactly match one’s specification. 
His handbook presents the results in factored forms that are much more convenient 
in transforming to IIR digital filters. For example,

	       
H(s) = he

(s2 + ω2
1 )(s2 + ω2

2 )
(s2 + a1s + b1)(s2 + a2s + b2)

(fourth order, N even)

	       
H(s) = ho

(s2 + ω2
1 )(s2 + ω2

2 )
(s + ao)(s2 + a1s + b1)(s2 + a2s + b2)

(fifth order, N odd)

he and ho are the constants to make H(s)=1 when all s’ are zero.
At the outset we will compute the order N for a speedy search for the best design 

data in his thick volume.

	

N =
K(k)
K(k1)

K(
�

1 − k2
1)

K(
�

1 − k2)

	      
k =

Ωp

Ωa
, k1 =

ε�
A2 − 1 	

	

K(k) =
π /2�

0

dϕ
[1 − k2sin2ϕ]1/2

(the complete elliptical integral)

	

As an example, consider the following: We plan to design an elliptic lowpass 
that meets the following specifications.  See Figure 3.23.

1/(1+ε 2) = 0.5 dB;
1/A2 ≥ 50.0 dB;
Ωp = 1.0 rad/sec;
Ωa  ≤ 1.5 rad/sec.
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then,

	

k =
1

1.5
, k1 =

0.349311�
1 × 105 − 1

= 0.001105

	 N =  K(0.6667)                                 K(0.001105)  
K(0.9999)                               K(0.7453)  ≈ 4.29  

For computation of K(⋅), see K(m)_JAC.CPP and K(m)_ELP. CPP in Chapter 12.
N = 5 should satisfy our design specifications. We find candidates design data 

fairly quickly in Su [10] (Table 2.52  and Table 3.66).

	     
H1(s) =

0.01918
(s + 0.4254)

(s2 + 2.4255)
(s2 + 0.1635s + 1.0319)

(s2 + 5.4376)
(s2 + 0.5702s + 0.5761)

	     
H2(s) =

0.02029
(s + 0.4279)

(s2 + 2.3747)
(s2 + 0.1619s + 1.0319)

(s2 + 5.3018)
(s2 + 0.5695s + 0.5789)

The first transfer function gives A=50.61 dB at Ωa=1.5 rad/sec; the second 
transfer function gives A=50.0 dB at  Ωa=1.4847 rad/sec.  The factored form would 
be prewarped and bilinear-transformed to obtain the coefficients bi and aj of the 
IIR filter.

The following tabulation shows the order of filter N required to meet the speci-
fications of the above example.

·	 Elliptic:	 N =
K(k)
K(k1)

K(
�

1 − k2
1)

K(
�

1 − k2)
= 4.29, N = ;5

·	 Chebyshev:      N =
log(D +

�
D2 − 1)

log(Ωa/Ωp +
�

(Ωa/Ωp)2 − 1)
= 10.9, N = 11;

·	 Butterworth:    N =
log(A2 − 1)
2 log(Ωc)

= 28.39, N = 29.

Frequency Band Transformation
So far we have reviewed the design procedures for analog lowpass filters in pro-
totype. The lowpass prototype would be transformed to other lowpasses with dif-
ferent cutoff frequencies, to a highpass, to a bandpass, or to a bandstop filter. The 
following substitutions would accomplish the transformations.

·  Lowpass-to-lowpass:	 s →    s    ⎯  ⎯    ΩnL
              (nL:  new low cutoff frequency);

·  Lowpass-to-highpass:	 s → 
ΩnH    ⎯  ⎯    s               (nH:  new high corner frequency); 

·  Lowpass-to-bandpass:	� s → s2+ΩLΩH         ⎯⎯⎯⎯            sΩH-ΩL
   (ΩL, ΩH: new low, high frequency);

·  Lowpass-to-bandstop:	 s →  sΩH-ΩL        ⎯⎯⎯⎯          s2+ΩLΩH

.
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New transfer function H(s) will first be frequency-prewarped and bilinear-
transformed to obtain the coefficients bi and aj for IIR digital filters. A few demon-
strations will be given in the next sections.

3.3.3	 IIR Filter, Butterworth Lowpass

A design procedure for an IIR Butterworth lowpass prototype, N=2 will be shown. 
We have chosen deliberately a low order to learn the prewarp operation and bilin-
ear transform. The steps in this process are listed as follows.

1.  Selected analog transfer function H(s) of Butterworth, N=2.

	
H(s) =

1

1 +
√

2s + s2
=

B0 + B1s + B2s2

A0 + A1s + A2s2

2.  Specify the cutoff frequency.

	 fc = 0.2 Hz,   ωcT = 2π fcT = 0.4π  rad/sec

3.  Prewarp the analog frequency.

	

H(s) =
1

1 +
√

2(s/Ωc) + (s/Ωc)2
=

Ω2
c

Ω2
c +

√
2Ωcs + s2

Substitute Ωc = 2 tan
�

ωT
2

�

Substitute Ωc = 2 tan( ω T             2  )   

	
H(s) =

B0PW

A0PW + A1PWs + A2PWs2

4.  Bilinear transform the prewarped H(s) by substituting s = 2[ z-1
             

z+1]                  

	
H(s) =

B0PW

A0PW + A1PWs + A2PWs2 =
b0 + b1z−1 + b2z−2

a0 + a1z−1 + a2z−2
	

(normalize the coefficients so that a0=1)

The steps described above have been programmed in IIR_B_LP.CPP; B stands for 
Butterworth, LP for lowpass. The result is shown in Figure 3.24. The slope of the fre-
quency response is not very impressive, N being only 2. The program IIR_B_LP.CPP 
can be extended to accommodate a higher order. Regardless of the order, all But-
terworth lowpasses are characterized by a 3-dB drop at the corner frequency and a 
monotonic response throughout the range.  We note that the phase and time delay 
are nonlinear. The nonlinearity in phase and time delay would become a critical issue 
if any subsequent signal processing requires linearity. More about that later.
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Figure 3.24  Butterworth lowpass, N = 2, ωp = 0.2.

3.3.4	 IIR Filter, Chebyshev Lowpass

In this demonstration program the prewarping and bilinear transform opera-
tions are executed in two separate header files; PRE_WARP.H and BILINEAR.
H  since these two operations are repetitively needed in an IIR filter designs. 
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We take up the following analog transfer function, N=5, 1.0-dB ripple, Table 
3.2(b).

	   
H(s)

B(s)
A(s)

=
1

(s + 0.2895)
1

(s2 + 0.1789s + 0.9883)
1

(s2 + 0.4684s + 0.4293)

The denominator A(s) has one simple factor and two quadratic factors.

	   

Section ‘0’ =
1

(s + 0.2895)
→ B[0][0] + B[0][1] + B[0][2]

A[0][0] + A[0][1] + A[0][2]

Section ‘1’ =
1

(s2 + 0.1789s + 0.9883)
→ B[1][0] + B[1][1] + B[1][2]

A[1][0] + A[1][1] + A[1][2]

Section ‘2’ =
1

(s2 + 0.4684s + 0.4293)
→ B[2][0] + B[2][1] + B[2][2]

A[2][0] + A[2][1] + A[2][2] 	

We have used the following convention for the index of coefficients:

	 —— section designation —		
	 A[.][.]                                   B[.][.] 
	 ∟— quadratic index ——

We treat section ‘0’ as if it were a standard quadratic factor even through some 
coefficients are zero. We execute the prewarping and bilinear-transform for each 
section. The program is written in IIR_C_LP.CPP, the result is shown in Figure 3.25. 
The frequency response is steeper and the phase and time delay are nonlinear. Since 
the coding for the log magnitude is long, a third header file FREQRESP.H will be 
created for the next demonstration.

3.3.5	 IIR Filter, Elliptic Lowpass

The analog filter transfer function for this demonstration is an elliptic lowpass, 
N=5, passband ripple=0.5 dB. Su [10] (Table 2.52).

	   
H(s) =

0.01918
(s + 0.4254)

(s2 + 2.4255)
(s2 + 0.1635s + 1.0319)

(s2 + 5.4376)
(s2 + 0.5702s + 0.5761)

The transfer function would meet the following specifications:

ripple ≤ 0.5 dB;
Aa ≥ 50.0 dB;
Ωp = 2.0 rad/sec;
Ωa ≤ 3.0 rad/sec.
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Figure 3.25  Chebyshev lowpass, N = 5, ωc = 0.2.

The analog transfer function is frequency-prewarped, followed by bilinear trans-
form to obtain the coefficients aj and bi. The program is written in IIR_E_LP.CPP. 
This program has a third header file, FREQRESP.H in order to shorten the driver 
coding CPP.  The result is shown in Figure 3.26. The attenuation slope is steepest 
and the phase and time-delay are nonlinear.
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3.3.6	 IIR Filter, Elliptic Bandpass

We demonstrate how to design a bandpass filter from a lowpass prototype. We have 
listed the frequency band transformation previously; it is repeated below.

	 lowpass-to-bandpass:  s → s
2+ΩLΩH

                               s(ΩH-ΩL)
   ΩL, ΩH: new low, high frequency

Figure 3.26  Elliptic lowpass, N = 5, ripple = 0.5dB.
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The elliptic lowpass filter, N=5, ripple = 0.5 dB that we designed in the previous 
section will be transformed to a bandpass filter. The procedure is quite simple and 
mechanical:

   1. � The lowpass transfer function HLP(s) will be transformed to a  bandpass 
transfer function HBP(s) by the transformation listed above.

Figure 3.27  Elliptic bandpass, N = 5, ω lo = 0.15, ω hi = 0.35.
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   2. � A frequency warping is followed by bilinear transform to obtain the coef-
ficients aj and bi.

   3. � Compute the frequency response, phase, and time delay of the IIR band-
pass.

A demonstration program is written in IIR_E_BP.CPP, and the result is shown 
in Figure 3.27. We note the phase response is nonlinear, as is the time-delay  
response.

3.3.7	 Issue of Nonlinearity

We have observed that all IIR filters have a nonlinear response in phase and time de-
lay. If any signal processing following the IIR filter requires the linearity we must have 
an equalizer immediately after the IIR filter. The equalizer must be an all-pass net-
work; that is, the magnitude response must be a constant (flat) in the passband, and 
the time delay must be the inverse of the IIR filter that precedes it. See Figure 3.28.

A design procedure for an equalizer is reported in [12–14]. It is an interesting 
subject in the filter design regime. A question arises as to whether there is a way to 
design an IIR filter that meets both specified frequency response and phase linearity. 
There appear to be at least three methods to accomplish the task:

   1.  Direct synthesis method of Pade approximation;
   2.  Minimum-mean-square-error method;
   3.  Minimum p-error method.

The first method involves Pade’s procedures to approximate the magnitude and 
phase response. The second method is called the steepest gradient algorithm, and 
the gradient of the function to be minimized has to be known. The design involves 
4S+1 simultaneous equations to be solved where S is the number of sections of the 
factored quadratics. The third method is an extension of the second method in that 
a higher-order error criteria must be met. The “square” in the second method is 
raised to the pth power (p>2) for the third method. 4S+1 nonlinear equations must 
be solved through iterative procedures.

We omit the analysis and discussion on these design methods. Interested read-
ers should consult with the references cited to explore the methods. The necessary 
mathematics are given by the authors. The reasons for the omission are discussed 
in the next section.

Figure 3.28  Role of time-delay equalizer.
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3.3.8	 Comparison Between FIR and IIR Filters

When a filter design assignment is given, the first question should be whether there 
is any follow-on signal processing after the filter, and if so, does it require phase 
linearity. When there is no requirement for phase linearity, the obvious choice is an 
IIR filter, preferably an elliptic filter.

On the other hand, if the follow-on signal processing demands phase linearity 
we must choose a FIR filter or IIR filter plus an all-pass equalizer. When the transi-
tion width is relatively narrow, (i.e., NFIR ≥ 21, or IIR elliptic NIIR ≥ 5) the order of 
an equalizer NEQ required would be twice that of NIIR if the delay ripple must be 
less than 1%.  The complexity of an equalizer may be evaluated by the number of 
multiplications in the equalizer.

The number of multiplications for a FIR is given by (N+1)/2, and the corre-
sponding number for an IIR filter is (4N+3)/2. If we assume for a moment that the 
order of an equalizer is twice that of the IIR filter (1% delay ripple), the number of 
multiplications for an equalizer is (4N+3). Then, for NFIR=21,  NIIR=5 and NEQ=10, 
eleven multiplications are required for a FIR, 38 multipli-cations for an IIR elliptic 
plus an equalizer, almost four times more multiplications. Suffice it to say that for 
most cases the FIR filter is the preferred one, the exception being when NIIR is less 
than 3 and the delay ripple is relaxed to 10%. 

3.3.9	 Quantized Noise and the Dynamic Range of A/D Converter

Throughout this chapter the various coefficients are declared “float.” The float 
declaration has a word length of four bytes, six significant digits after the decimal 
point. The smallest number ε (epsilon) summed to unity that is recognized greater 
than unity is 1.192092×10-7. 

Often in implementing a filter design we wish to reduce the word length to three 
bytes or two bytes for speed. A reduced word length will degrade the filter perfor-
mance. The expected filter performance cannot be realized with quantized coeffi-
cients in reduced word length, and the extent of degradation can never be predicted, 
so several trial-error programs would be required. The coefficients of a lowpass FIR 
filter with a Hamming window is quantized to 8 bits, and the frequency response is 
shown in Figure 3.29 for comparison. 

The quantization of an analog signal by an A/D converter introduces quantiza-
tion noise. We take an example of the A/D converter shown in Figure 3.30. The 
discussion on the quantization noise is based on expedient assumptions about the 
probability and statistics of sampled noise; that is, we assume the following:

   1. � The sequence of error e[n] is the sample sequence of stationary random 
process;

   2. � The sequence of error e[n] is uncorrelated from one sample to another, a 
white noise process;

   3. � The sequence of error e[n] is uncorrelated with the unquantized analog 
signal S(t).

There are cases where the assumptions made cannot be justified; however, in 
many practical situations when the signal fluctuates rapidly, as in speech, music, 
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or radar return, the assumptions are realistic and acceptable. Figure 3.31 shows a 
small segment of a music note, a sum of four trigonometric functions with different 
periods and amplitudes.

Assuming the quantized errors e[n] are uniformly distributed in the range

	 -Δ
2
  ≤ e[n] ≤ Δ

2
 

the probability density function of e[n] can be visualized.

Figure 3.29  Performance degradation due to reduced word-length quantization of coefficients.

Figure 3.30  Quantization by A/D converter.
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Figure 3.31  Analog signal s(t) and quantized error e[n].

The mean and variance of quantized error e[n] are,

	 mean = 0.0

	 σn 
2  = Δ

2    ⎯     12  1    ⎯      12 (2
–2b)

In other words the quantization noise power is inversely proportional to the square 
of the number of quantization bits; the larger the number of bits the smaller the noise 
power. In signal processing we are concerned with signal-to-noise ratio in power, that 
is, how clean the quantized signal is relative to how dirty the quantized noise.

	
σ2

s

σ2
n

=
σ2

s
1
12

(2−2b)
= (12)22bσ2

s
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When the ratio is expressed as a logarithm, SNR in power is

	     
SNRpower = 10 log10

�
σ2

s

σ2
n

�
= 10.79 + 6.02b + 10 log10(σ

2
s )

How to determine the variance of signal σs 
2 ?  Examine Figure 3.30 where the 

quantization is shown together with the clipping levels. To eliminate (or to avoid) 
the clipping distortion we must reduce the maximum amplitude of signal s(t) or 
increase the dynamic range of A/D converter.

Many experiments have proven that the present amplitude of a signal is com-
pletely independent of the past history of magnitudes except one or two immediate 
past ones. The magnitude fluctuation is a Gaussian-Markov process. The probabil-
ity density function of a Gussian Markov process is characterized by an exponential 
or Gaussian look-alike as shown in Figure 3.32. The probability of  signal ampli-
tude is peaked at zero and rapidly falls off as the signal amplitude increases.

If we set  A= σs 
2 /4, the probability of clipping is very, very low. Then we rewrite 

the SNR as

	

SNRpower = 10 log10(
A2σ2

s

σ2
n

)

= 10.79 + 6.02b + 10 log10(σ
2
s ) + 20 log10(A)

= 6.02b − 1.25 dB (σ2
s = 1,A = 1/4) 	

The last expression indicates that the SNR in power increases by 6.02 dB with 
each bit added to A/D converter. Thus, SNR>=60 dB requires 11 bits, SNR>=80 dB 
requires 12 bits.

Figure 3.32  Gauss-Markov process.
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List of Programs

Program Features
  (1) IMPULSE.CPP FIR impulse response of lowpass, highpass, bandpass, and bandstop
  (2) FIR_LP.CPP FIR lowpass prototype and choice of window function
  (3) FIR_HP.CPP FIR highpass prototype and choice of window function
  (4) FIR_BP.CPP FIR bandpass prototype and choice of window function
  (5) FIR_BS.CPP FIR bandstop prototype and choice of window function
  (6) KAISER.CPP Kaiser filter design, lowpass, highpass, bandpass and bandstop by switch  

command
  (7) IIR_B_LP.CPP IIR Butterworth lowpass
  (8) IIR_C_LP.CPP IIR Chebyshev lowpass
  (9) IIR_E_LP.CPP IIR elliptic lowpass
(10) IIR_E_BP.CPP IIR elliptic bandpass
(11) PRE_WARP.H Analog frequency prewarping operations
(12) BILINEAR.H Bilinear transform from analog to digital
(13) FILT_SEL.H Computes Kaiser α  and the order N, and select lowpass, highpass, bandpass, or 

bandstop
(14) FREQRESP.H Frequency response of filters, log magnitude
(15) FFTDIF.H Fast Fourier transform, decimation-in-frequency  (replica in Chapter 4)
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95

C h a p t e r  4

Fast Fourier Transform (FFT) and IFFT

4.1	 Introduction

The fast Fourier transform, forward and inverse, has found many applications in 
signal processing. Although the theory of fast Fourier transforms is well-known, 
numerous commercially available software packages have caused some confusion 
for beginners; some of them are written in radix 2, 4, or 8; in mixed radix 8 (4x2); 
decimation-in-time; or decimation-in-frequency scheme. Some codings are dedi-
cated to real input/output only, others for complex input/output only, or sinusoidal 
input/output only, for example.

This chapter describes the basic building blocks of FFT and IFFT in radix 2 
exclusively. The decimation-in-time and decimation-in-frequency algorithms will 
be explained in detail. All other algorithms readers may encounter are the variants 
of radix 2 of FFT and IFFT in order to shorten the computation time (to lessen the 
computation load) or minimize the memory size for certain specific applications.

The Fourier transform of a finite sequence is defined as

	
X(k) =

N−1

∑
n=0

x[n]e−j(2π/N)kn (indexed in n)	 (4.1)

	
x[n] =

1
N

N−1

∑
k=0

X[k]e+j(2π/N)nk (indexed in k)	 (4.2)

where

X[k]:   Frequency sampled data;
x[n]:    Time sampled data;
N:       Total number of samples;
n:        Time index,  n=0, 1, 2, 3, . . . . , N-1;
k:        Freq index,   k=0, 1, 2, 3, . . . . , N-1.

Using a shorthand notation,

	 e –j(2π/N)
 
 =  WN 

Equation (4.1) and (4.2) can be written as,

	
X[k] =

N−1

∑
n=0

x[n]Wnk
N (index in n) 	 (4.3)
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x[n] =

1
N

N−1

∑
k=0

X[k]W−nk
N (index in k) 	 (4.4)

When we examine (4.3) and (4.4), there is quite a large number of  duplicated 
multiplications, and this adds operations. The FFT is an algorithm that eliminates 
the duplications by recognizing which indices “n” and “k” are repeated by what 
sequences. There are a few excellent textbooks that describe a rather simple concept 
but intricate steps to eliminate these duplicated operations, Oppenheim and Scha-
fer[1], Rabiner and Gold[2], and Brigham[3].

4.2	 �Fast Fourier Transform, Decimation-in-Time and 	
Decimation-in-Frequency

The signal flow diagram shown in Figure 4.1 describes how (4.3) is implemented 
without any duplication; eight pieces of time-sampled data, x[n], are to be trans-
formed to eight pieces of frequency data, X[k], without any duplication. We note 
the eight pieces of time-sampled data are split into even and odd sequences, and 
they are not in the natural increasing order. This scrambled input sequence is to 
eliminate the duplications. The scrambled input sequence is called “bit-reversed,” 
which will be discussed shortly. The basic operation in Figure 4.2 is called the “but-
terfly” operation.

Figure 4.1  FFT, decimation-in-time, N = 8.
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The butterfly operation for decimation-in-time is coded as,

	 for(i=0; i<N; i++)
	 {
	 T=x[j]*W		  //T: temporary memory
	 x[j]=x[i]−T
	 x[i]=x[i]+T
	 }

The results, x[i] and x[j] on the right in Figure 4.2, will replace the input data. 
We call this an “in place” operation; that is, we do not need separate memories to 
store the results as we progress from left to right in Figure 4.1.

If we prefer the time-sampled input data sequence to be in natural increaseing 
order, the butterfly diagram shown in Figure 4.3 results. We note that the output 
frequency sequence is all scrambled. This is an FFT in decimation-in-frequency. The 
basic butterfly operation in decimation-in-frequency is shown in Figure 4.4, and 
coded as follows.

Figure 4.2  Butterfly operation, decimation-in-time.

Figure 4.3  FFT, decimation-in-frequency, N = 8.
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                 for(i=0,i<N,i+)
		     for(i=0, i<N; i++)
		       {
             T=x[i]−x[j];		  //T: temporary memory    
                    x[i]=x[j]+x[i]
                    x[j]=T*W
                        }

When we examine Figure 4.1, FFT with decimation-in-time, the output fre-
quency spectral terms are in natural increasing order but the input time data  must 

Figure 4.4  Butterfly operation, decimation-in-frequency.

Figure 4.5  Comparison between DFT and FFT.
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be bit-reversed. On the other hand, for FFT by decimation-in-frequency, in Figure 
4.3, the input time data are in natural increasing order but the output frequency 
spectral terms are in bit-reversed. This is the consequence of eliminating the dupli-
cated operations.

How many duplicated multiplication/add operations are eliminated by  
decimation-in-time or decimation-in-frequency is computed in DFTvsFFT. CPP, and 
the result is shown in Figure 4.5. When the input data is moderately large the saving 
in computation is substantial. This is the power of the fast Fourier transform algo-
rithm. The saving enables us to perform the Fourier transform in real time, which 
was heretofore impractical.

To have the input data in the natural increasing order and the output data in 
increasing natural order, we need the bit-reversal operation. The principle idea of 
the bit-reversal is shown below.

Input time data Binary Binary reversed Output freq data

x[0] 0  0  0 0  0  0 X[0]
x[1] 0  0  1 1  0  0 X[4]
x[2] 0  1  0 0  1  0 X[2]
x[3] 0  1  1 1  1  0 X[6]
x[4] 1  0  0 0  0  1 X[1]
x[5] 1  0  1 1  0  1 X[5]
x[6] 1  1  0 0  1  1 X[3]
x[7] 1  1  1 1  1  1 X[7]

The index of time data, first column, in decimal is converted to binary, second 

column. The binary bits are reversed in order in the third column. The reversed 
binary is converted back to decimal in the fourth column, the output of frequency 
spectra sequence. An example of bit-reversal for N = 16 is shown.

Index of input data Index of bit-reversed data

0 0
1 8
2 4
3 12

4 2
5 10
6 6
7 14

8 1
9 9

10 5
11 13

12 3
13 11
14 7
15 15
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The bit-reversal algorithm is programmed in BIT_REV.CPP. The number of 
input data N must be a power of 2 (radix-2 requirement). Figures 4.6 and 4.7 show 
decimation-in-time and the decimation-in-frequency with bit-reversal operation in 
proper sequence.

Nonexecutable fragmented FFT_DIT code is shown below. The fragment ex-
ecutes the butterfly flow diagram of Figure 4.1.

	for(L=0; L<m; L++)		            //m: number of butterfly               
                                  //stages from left to right,
	   {					               //radix 2.
	      LE=pow(2, L+1);
	      LE1=LE/2.0;
	      W=complex(1.0, 0.0);	

	 U=complex(cos(PI/LE1)	 //U=e
-j(.)

= cos(.)−jsin(.) 
              -(sin(PI/LE1));	 //PI= π

Figure 4.6  FFT, decimation-in-time.

Figure 4.7  FFT, decimation-in-frequency.
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	   for(j=0; j<LE1; j++)
      {
	 for(i=0; i<N; i++)      //basic butterfly operation
	 {
	 ip=i+LE1;	 //index i primed,  i’
	 T=x[ip]*W;	 //multiply and add

	 x[ip]=x[i]-T;
	 x[i]=x[i]+T; 
	 }
	 W=W*U;
	 }

An identical code for the FFT_DIF algorithm can be written down except for a 
small alteration in the basic butterfly operation as shown in Figure 4.3.

FFT with decimation-in-time and decimation-in-frequency are programmed in 
FFT_DIT.CPP and FFT_DIF.CPP with a header file that performs the bit-reversal 
operation in proper order. Both programs require that the number of input data 
must be a power of 2. In the literature this is called the “radix-2” scheme.

	 N = 2m,     m = 1, 2, 3, . . . 

Readers who are interested in the radix-4, radix-8, or mixed radix scheme 
should consult the references cited. When the number of pieces of input data does 
not meet the radix-2 requirement we shall add zeros to the input sequence to satisfy 
the requirement.

4.3	 Demonstration of FFT_DIT and FFT_DIF

For a demonstration we choose a trigonometric function as an input.

	 f(t) = cos(2πf0t) = cos (2nπ          N )

where

N=16;
n=0, 1, 2, 3, . . . 15.

From mathematic textbooks on the Fourier transform, the transform pair is 
given by

	 f(t) = cos(2πf0t) = 1/2(ej2πf0 t + e-j2πf0 t) 

	 F(f) = ∫-
∞  

∞ cos(2πf0t) e-j2πft dt
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Figure 4.8  Spectrum of cos(ωt).

Figure 4.9  Spectra of FFTed cosine function.

	 = 1/2 ∫-
∞  

∞ [e
j2π(f0-f)t + e-j2π(f0-f)t] dt 

= 1/2 δ(f0−f) + 1/2 δ(f0+f)

Our demonstration program, FFT_DIT.CPP, produced the frequency data, pic-
torially presented in Figures 4.8 and 4.9.

When we cut out the right half of the spectrum, index 8 to 16, and slide to the 
negative frequency axis to make index 16 coincide with index 0, we see the spectra 
illustrated in Figure 4.10.

The amplitude of 1/2 in the analytic result and the amplitude 8 of the FFTed re-
sult is a scaling problem we have ignored in the butterfly operation. Equation (4.2) 
indicates the scaling by 1/16.

As a second demonstration we choose the sine function. The program is written 
in FFT_DIF.CPP.

	 f(t) = sin(2πf0t) = sin (2nπ          N )

where

N=16;
n=0, 1, 2, 3, . . . 15.
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Figure 4.10  Interpretation of Figure 4.9.

Figure 4.11  Spectra of  sin(2πf0t).

The Fourier transform pair is

f(t) = sin(2πf0t) =
1
j2

[ej2π (f0−f)t − e−j2π (f0−f)t]

F(f) =
1
j2

∞�
−∞

[ej2π (f0−f)t − e−j2π (f0−f)t]e−j2π ftdt

=
1
j2

[δ (f0 + f) − δ (f0 − f)]

See Figure 4.11.
Our demonstration program FFT_DIF.CPP produced the frequency data that is 

pictorially presented in Figure 4.12.
The right half of the spectrum is shifted to the negative frequency axis as we 

have done before, shown in Figure 4.13. We should apply the scaling mentioned 
previously. Note that the vertical axis is imaginary.

From Figures 4.10 and 4.13 we see that cosine and sine functions maintain a 
quadrature angle relationship between them.

	 ejx = cos x + j sin x,     e j(π/2) = 90° 
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Figure 4.13  Interpretation of Figure 4.12.

Sometimes, the cosine function is called the “in-phase” function, the sine func-
tion the “quadrature-phase” function.

4.4	 Spectral Leakage and Window Function

We note that in demonstration programs FFT_DIT.CPP and FFT_DIF. CPP that 
the sampling time interval is an exact submultiple of the duration of the function, 
and the number of samples N is matched to the duration of the time function. The 
results of the FFTed spectra agreed with analytic results.

In practical situations we seldom meet the exact multiplicity and the complete 
duration of time function. More often than not we would never know in advance 
the exact period nor the duration of the function. That is why we compute the spec-
trum through FFT to begin with.

Figure 4.12  Spectra of FFTed  sine function.



4.4   Spectral Leakage and Window Function	 105

ART_Kang_Ch04_v_1.indd                                                  Achorn International                                                  07/23/2008  12:17AM

When the number of samples does not cover the entire time function and the 
sampling interval is not an exact submultiple of the time function, we observe that 
the FFTed spectrum spills over to the neighboring bins. When the duration of time 
function is not an exact integer multiples of sampling interval, a spectrum spillage 
will result. The former case is programmed in LEAKAGE1.CPP and the latter in 
LEAKAGE2.CPP. The results of two programs are shown in Figures 4.14 and 4.15.

The spectrum leakage can be controlled but not completely eliminated by ap-
plying a window function. We investigate von Hann, Hamming, Blackman, and 
Kaiser windows in FIR filter design in Chapter 3; however, these windows are not 
suitable for leakage control. These windows associated with filter designs have  
nonzero end values. Here we must have zero at the end points.

The input time function used in LEAKAGE1.CPP is multiplied by a Welch win-
dow and FFTed in LEAKAGE3.CPP. The result is shown in Figure 4.16. We note 
a substantial reduction in spectral leakage. The best windows for FIR filters are 
not necessarily the best for leakage control. For leakage control a window should 
have zeros at the end points and the largest area under the window envelope. A 
trapezoid with a rounded shoulder may be a good candidate. We avoid a lengthy 
discussion on the choice of window; all windows serve the purpose in contrast to 
no-windowed processing, more or less.

Figure 4.15  Spectrum leakage, LEAKAGE2.CPP.

Figure 4.14  Spectrum leakage, LEAKAGE1.CPP.
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4.5	 �Inverse Fast Fourier Transform, Decimation-in-Time, and 
Decimation-in-Frequency

The inverse Fourier transform of a finite duration sequence is defined by (4.5), 
which is a repeat of (4.1).

	
X(k) =

N−1

∑
n=0

x[n]e−j(2π /N) kn (indexed in n) 	 (4.5)

When  e –j(2π/N) =  WN  is substituted, we have

	
X(k) =

N−1

∑
n=0

x[n] Wnk
N 	 (4.6)

The butterfly flow diagrams for decimation-in-time and decimation-in-frequency 
are identical to Figures 4.1 and 4.3 except the sign of (nk) on W. As in the forward 

Figure 4.17  IFFT, decimation-in-time.

Figure 4.16  Leakage reduction by window, LEAKAGE3.CPP.
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transform, the inverse FFT with decimation-in-time requires a bit-reversal first, fol-
lowed by butterfly operations. For inverse FFT with decimation-in-frequency the 
order of bit-reversal and butterfly operations is reversed. We do not draw the but-
terfly for IFFT; we just change the sign on the power of W and replace the time 
input data x[n] by frequency data X[k] in Figures 4.1 and 4.3. See Figure 4.17.

Two demonstration programs for the inverse transform are written in IFFT_ DIT.
CPP and IFFT_DIF.CPP. The input data are those we have obtained in the forward 
transform by FFT_DIT.CPP and FFT_DIF.CPP. The correct answer should be the time-
sampled sequence we had as an input in the forward transform. See Figure 4.18.

4.6	 Applications of FFT and IFFT

A very large number of application reports poured out of academia and industry 
analogous to opened flood gates, once the power of the fast Fourier transform al-
gorithm was understood. Hundreds, if not thousands, of application notes covering 
almost all fields of science and engineering have been published.

We quote [4],  “. . . the best mouse trap stand aside: if you speed up any non-
trivial algorithm by a factor of a million or more, the world will beat the path in 
finding useful applications for it.”  

We will classify these application reports under major topics:

1.	 Spectral computation and filtering in frequency domain;
2.	 Convolution and deconvolution;
3.	 Autocorrelation and cross-correlation;
4.	 Speech analysis, voice synthesis and recognition;
5.	 Two dimensional FFT_IFFT for image processing;
6.	 Others.

Filtering in the frequency domain is an obvious application of the FFT-IFFT 
algorithm (see Figure 4.19). A noise-contaminated signal is forward-transformed, 
multiplied by a suitable filter function (window), and inverse FFTed to recover the 
signal. The signal-to-interference + noise ratio will be greatly improved.

Figure 4.18  IFFT, decimation-in-frequency.
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We have discussed the transition width in FIR and IIR filter design. Here we can im-
plement the transition width in a single sampling interval, the steepest possible slope.

The convolution of two finite duration signal sequences is given by, 

	
conv(g,h) =

t�

−t
g(τ)h(t−τ)dτ

When we compute the forward Fourier transforms of g(t) and h(t) the convolu-
tion is obtained by the product of G(f) and H(f). Thus,

	
conv(g,h) =

t�

−t
g(τ) h(t− τ)dτ = G(f) · H(f)

The correlation of two functions g(t) and h(t) can be obtained similarly as the 
product of two time functions Fourier transformed: H*(f) is the conjugate of H(f).

	
corr(g,h) =

t�

−t
g(τ + t) h(τ)dτ = G(f) · H∗(f)

When two functions are identical, g(t) = h(t), we obtain the autocorrelation 
function. 

	
auto-corr(g,h) =

t�
−t

g(τ + t) g(τ) dτ = |G(f)|2

Parceval’s theorem states that the total power of a signal can be computed in the 
time domain or in frequency domain:

t�

−t
|g(t)|2dt =

f�

−f
|G(f)|2 df

We ask readers to forgive the author for not covering the next two topics: voice syn-
thesis and recognition and image processing, for these topics deserve separate books.

Figure 4.19  Filtering in frequency domain, FFT+Window+IFFT.
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Figure 4.20  (a) Input signal,  mixture of 20 Hz, 40 Hz, and 60 Hz. (b) Result of lowpass filter.

Figure 4.21(a)  Input signal: First half is contaminated by noise; second half is noise-free.

4.6.1	 Filtering in the Frequency Domain

Filtering in the frequency domain is demonstrated in FFT_FILT.CPP. A sinusoidal 
signal with a mixture of 20 Hz, 40 Hz and 60 Hz is the input to the FFT-filter-IFFT 
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Figure 4.21(b)  Recovered signal.

algorithm. The input signal is shown in Figure 4.20(a), and the output of a lowpass 
filter with a cutoff frequency at 21 Hz is shown in Figure 4.20(b).

The output waveform is not pure 20 Hz. Would you recall the subjects of leak-
age we have discussed earlier? Readers who are interested should compute the mag-
nitude of the leakage components.

4.6.2	 Detection of Signal Buried in Noise

A second demonstration program is written to recover a signal buried under white 
Gaussian noise, SIGNOISE.CPP. The signal-to-noise ratio of the input signal is  
–3 dB, shown in Figure 4.21(a) in the first half period.

4.6.3	  Interpolation of Data

In some signal processors the input sampling rate may be made different from the 
output sampling rate for efficiency of processing. A slow sampling rate can be in-
terpolated by the FFT-IFFT algorithm to increase the spectral detail of the output. 
For example, an interpolation is implemented to prepare the received time data for 
a subsequent D/A converter to produce pleasant music or a clear voice. A case in 
point is demonstrated in INTER-PO.CPP. Suppose we have received the time data 
shown in Figure 4.22(a).

We stretch the input spectrum, Figure 4.22(b), by breaking the spectrum into two 
at N/2=8 and insert enough zeros to meet the ratix-2 requirement, Figure 4.22(c). The 
stretched frequency data is IFFT’ed. The output is shown in Figure 4.22(d).

Compare Figure 4.22(a, d). It shows quite an improvement in signal quality.

4.6.4	 Pulse Compression

In pulsed radar systems a transmitted power of a megawatt or higher is not rare in 
order to cover a longer search range. A high-power system is voluminous, heavy, 
and expensive. Let us examine the following two pulsed radar systems. One has 
one megawatt output power with 1-ms pulse width, the other a 100-kW and 10-ms 
pulse width. The energies in both systems are identical. One has the range resolu-
tion of 150m, the other 1.5 km.
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Figure 4.22(a)  Time-sampled input data.

Figure 4.22(b)  Spectrum of input data.

Figure 4.22(d)  Interpolated input signal.

Figure 4.22(c)  Stretched spectrum, zero-padded.
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The pulse compression scheme is to improve the range resolution of the second 
radar comparable to the first by modulating the 10-ms waveform. The reflected 
returned signal will be compressed by an FFT-IFFT algorithm since the fast Fourier 
transform can be implemented in real time. There are three basic modulation tech-
niques: frequency modulation, phase modulation, and polarization modulation.

We discuss a typical linear frequency modulation. The transmitter frequency 
is linearly modulated, up-chirp or down-chirp, and upon reception of the returned 
signal we plan to compress the 10-ms pulse to a narrower pulse width. Figure 4.23 
depicts the principle idea involved.

If we somehow delay the lower frequencies of the signal most, in Figure 4.23 
by almost 2T, and the higher frequencies by T, and the intermediate frequencies 
linearly between T and 2T, the returned signal waveforms will be heaped upon one 
another to produce a peaked pulse of a narrower pulse width comparable to the 
first radar. Detailed theoretical analysis can be found in [5–7].

Figure 4.23  Linear FM pulse and compressed pulse.
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Figure 4.24  Pulse compression, FFT-conjugation-IFFT.

Table 4.1  Waveforms with a Time-Bandwidth Product of 32

T(μ sec) Δf(MHz) A/D converter speed 
(Nyquist rate)

N, number of time samples

  6.4 5.0 10.0 64
  8.0 4.0   8.0 64
12.8 2.5   5.0 64
16.0 2.0   4.0 64
32.0 1.0   2.0 64

In earlier days, the proportional time delay was implemented by cascading 
a dozen or so of “bridged-tee” circuits of high-quality inductors and capacitors. 
There were other implementations using surface-acoustic wave devices.

Once the FFT-IFFT algorithm was understood the implementation took a dif-
ferent form, eliminating the bulky and hard-to-maintain circuits and devices.

Pulse compression through FFT-IFFT can be heuristically described by the fol-
lowing receiver structure.

In this section we study pulse compression using coherent linear frequency 
modulation (CLFM) through a receiver structure shown in Figure 4.24. For a dem-
onstration the CLFM has a time-bandwidth product of 32, TΔf=32 and a compres-
sion gain of 15.05 dB with a rectangular window. There are many waveforms that 
have a time-bandwidth product of 32 as shown in Table 4.1.

There are many pulse compression radars with time-bandwidth products of 
thousands or more already developed and deployed. Certainly we can extend the 
above table to accommodate a large time-bandwidth product for a higher compres-
sion gain. (See Figure 4.25.)
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Our modularized demonstration programs follow Figure 4.25. The intermedi-
ate results are stored in DAT files for examination.

1.	 CLFM_64.CPP:    �Generation of CLFM, up-chirp signal; in-phase and 
quadrature-phase, N=64, T=12.8 μsec, Δf=2.5 MHz.

2.	 FFT_64.CPP:         �Two signals, in-phase and quadrature-phase are FFTed 
by decimation-in-frequency. The spectral magnitude is 
shown in Figure 4.27.

3.	 CONJ_MATCH: � Conjugate-matched window. The envelope of the  
window is either rectangle or Hamming. Conjugate 

Figure 4.26(a)  In-phase waveform.

Figure 4.25  CLFM compression,  TΔf=32, N = 64.
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Figure 4.27  Spectrum magnitude.

Figure 4.26(b)  Quadrature-phase waveform.

matching is synonymous to the auto-correlation previ-
ously mentioned: 

G(f) G*(f) = | G(f) |2 

When G(f) is a complex, G(f) = a +jb

G(f) G*(f) = (a+jb)(a-jb) = a2+b2,  real 

4.	 IFFT_64.CPP:	� The conjugately matched signals, real, are the input to the 
IFFT module, decimation-in-frequency. Two outputs are 
squared, summed, and square-rooted. The compressed 
pulse is stored in IFFT_64.DAT, shown in Figure 4.28.
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Figure  4.28  Compressed pulse.

The result indicates that the compression gain is 14.21 dB instead of the 15.05 
dB theoretically predicted. The main reason for the discrepancy is spectrum spill 
over beyond Δf/2, as shown in Figure 4.29(a, b). We incur an additional loss if we 
apply a Hamming window to reduce the sidelobe levels.

There is a trade-off between sidelobe reduction and the loss of compresion 
gain. A Chebyshev window gives the narrowest pulsewidth with constant sid-
elobe level. The Hamming window gives sidelobes diminishing in amplitude but 
a slightly wider compressed pulse. Taylor window [8], (a modified Chebyshev) 
may be the most popular window. Consult Harris [9] for a variety of windows 
available.

Our demonstration program is written in three separate programs to show the 
step-by-step procedure. A second demonstration program, CMPR_128. CPP is writ-
ten in one continuous operation. The design specifications are listed as follows.

•	 T	 12.8 msec
•	 Δf:	 5.0 MHz
•	 TΔf:	 64
•	 A/D converter speed
•	 (Nyquist rate)	 10.0 MHz
•	 ts: sampling interval	 100.0 nsec
•  N:	 128

The compressed data is stored in CMPR_128.DAT. The result shows a com-
pression gain of 17.17 dB with a rectangle window instead of the 18.06 dB theoreti-
cal and 11.98 dB with a Hamming window.
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We should remind ourselves that if we limit the word length of the A/D con-
verter to less than 12 bits (let’s say 8 bits) we should expect the gain and sidelobe 
levels to deteriorate.

In earlier days we had to design a rack of dedicated PCB boards for pulse compres-
sion. Nowadays the system engineers routinely integrate modified PC in their system.

Phase modulation instead of frequency modulation may be entertained if the 
propagation medium would support the coherency of phase modulation. The ocean 
may not maintain the phase coherency. Frequency-hopping modulation (Chapter 5) 
should be given serious consideration in a nonuniform saline medium.

Figure 4.29  (a) Power loss, rectangular window. (b) Power loss, hamming window.
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4.6.5	 Amplitude Unbalance and Phase Mismatch

Let us examine Figure 4.30 where an in-phase and quadrature channel of a coherent 
receiver is shown. A coherent receiver consists of a power divider, a phase splitter, 
two frequency down-converters, two lowpass filters, and two A/D converters. This 
hardware will invariably produce an amplitude unbalance and phase mismatch 
between the two channels.

An amplitude unbalance of 0.5–2.0 dB, and phase mismatch of anywhere be-
tween 2.0–10.0 degrees over the operating environment of temperature, humidity, 
and the component fatigue are expected.

The amplitude unbalance and phase mismatch are lumped in I channel and Q 
channel, respectively.

Let us analyze the effects of the unbalance and mismatch on subsequent signal 
processing such as pulse compression or Doppler detection. The unbalance and 
mismatch are lumped in the I and Q channels as,

	     

f(t) = I(t) + jQ(t)
= A/2(1 + Δ) cos ωbt + jA/2 sin(ωbt + θ )
= A/2 cos ωbt + ΔA/2 cos ωbt + jA/2 (sin ωbt · cos θ + cos ωbt · sin θ ) 	

        For a very small θ, let cos θ ≈1, sin θ ≈ θ. Then,	

         

f(t) = A/2 cos ωbt + ΔA/2 cos ωbt + jA/2 sin ωbt + jAθ /2 cos ωbt

= A/2 e+jωbt + ΔA/4(e+jωbt + e−jωbt) + jAθ /4(e+jωbt + e−jωbt)

= A/2[(1 + Δ/2) + jθ /2] e+jωbt + A/4(Δ + jθ ) e−jωbt
	

The final expression shows that the unbalance and mismatch produce an im-
age frequency at  e-jω bt . The ratio of power at the image frequency to the primary 
frequency is given by,

	 power at imaginary                                                         power at primary   =        
(A/4)2(Δ2+θ 2)

                                                                   
(A/2)2[(1+Δ/2)2+(θ/2)2]

	               =             
Δ2+θ 2

                                          
4[(1+Δ/2)2+(θ/2)2]

	           (4.7)

Figure  4.30  Representation of amplitude unbalance and phase mismatch between I and Q channels.
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The following table gives the power levels (decibels) at the image frequency 
with respect to the primary, computed from (4.7).

Δ 0.5 dB 1.0 dB 1.5 dB

θ

1o -30.5 -24.7 -21.3
5o -25.8 -23.0 -20.5

10o -21.0 -20.0 -18.6

All combinations in the table produce an image power higher than -30 dB ex-
cept one.  Equation (4.7) is programmed in IQ_IMAGE.CPP. If we must have the 
image power level below –30 dB for any signal processing subsequent to A/D con-
verters, we have a problem unless the amplitude unbalance is less than 0.5 dB and 
the phase mismatch less than 1o. The conditions are very stringent, and the hard-
ware would be unable to meet them. See Figure 4.31.

In order to correct the amplitude unbalance and phase mismatch, Churchill 
et al. [10] proposed a corrective operation shown in Figure 4.31.

	

�
I� = EI

Q� = PI + Q 	

or

	

�
I�

Q�
�

=
�

E 0
P 1

��
I
Q

�

	

if

	
E =

cos θ
1 + Δ

, and P =
−sin θ
1 + Δ

Figure 4.31  Power level at image frequency.
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then,

	

I� = A/2 cos θ · cos ωbt

Q� = A/2 cos θ · sin ωbt

We see that the corrected I’ and Q’ have equal amplitudes and that the phase 
mismatch has vanished. The task is to determine E and P when Δ and θ are un-
known a priori and time-varying.

We take the fast Fourier transform of the unbalanced and mismatched signals 
I and Q.

	 f[n] = A/2 (1+Δ) cos [n] + jA/2 sin(n+θ) 

	
F[k] =

1
N

N−1

∑
n=0

f[n]e−j(2π /N)nk

It can be shown that the real and imaginary components of F[k] are given by, 
(See Appendix 4A)

	

F[k]real =
1
N

A
4

(1 + Δ)
N−1

∑
n=0

[ej2πn(1−k)/N + e−j2πn(1+k)/N]

	

F[k]imag =
1
N

A
4

cos θ
N−1

∑
n=0

[ej2πn(1−k)/N − e−j2πn(1+k)/N]

+
1

N
jA
4

sin θ
N−1

∑
n=0

[ej2πn(1−k)/N + e−j2πn(1+k)/N]

When k=1, the primary frequency, the spectrum is given by

	
F[1] =

1
N

A
2

[(1 + Δ) + cos θ + j sin θ ]

When k=N−1, the image frequency, the spectrum is given by

	
F[N − 1] =

1
N

A
2

[(1 + Δ) − cos θ + j sin θ ]

We take the following ratio:

	

F[N − 1]
1/2{F∗[1] + F[N − 1]} = 1 − cos θ

1 + Δ
+ j

sin θ
1 + Δ
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We note that the real term contains the correction factor E. The imaginary term 
is negative of correction factor P. We modify Figure 4.32 accordingly as shown in 
Figure 4.33.

The final corrective network is shown in Figure 4.34. The FFT module is ac-
tivated periodically, preferably at the end of range bins having a specified test fre-
quency injected at the IF port. In order to improve the accuracy of E and P, we 
should average several E’s and P’s. A demonstration program is written in IQ_ERROR.
CPP without averaging. The program assumed the following parameters:

·	Δ:	 1.0 dB unbalance;
·	θ:	 5.0 degrees mismatch;
·	ts:	 0.25 μsec, sampling interval;
·	N:	 32;
·	Test frequency:	 62.5 KHz = MHz/32;
·	F[1]:	 Primary frequency;
·	F[63]:	 Image frequency.

Figure 4.32  Correction factor E and P.

Figure 4.33  Correction factors found by FFT.
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The correction factors E and P turn out to be –0.1121 and –0.0776, respectively.
We have demonstrated that a long pulse with a lower transmitter power radar 

could replace a high power with short pulse provided that the long pulse is lin-
early frequency-modulated and that the returned signal is compressed by the FFT-
IFFT operation in a coherent IQ receiver. This amazing achievement has a hidden  
shortcoming: so-called range-Doppler coupling. The phenomenon of the coupling 
will be analyzed in Chapter 5. The ambiguity principle states that if we improve the 
range resolution, the velocity measurement (Doppler frequency) would deteriorate, 
and vice versa. We shall study the ambiguity function in Chapter 5.

Appendix 4A

The Fourier transform pair of amplitude unbalance and phase mismatch are given 
by

	 f[n] = A/2 (1+Δ) cos [n] + jA/2 sin(n+θ)

	

F[k] =
1
N

N−1

∑
n=0

f[n]e−j(2π /N)nk

Substitute exponential expressions for the cosine and sine functions

	

cos [n] = 1/2(ej(2π /N)nk + e−j(2π /N)nk)
sin [n] = 1/j2(ej(2π /N)nk − e−j(2π /N)nk) 	

Then, the real and imaginary F[k] are given by

Figure 4.34  Unbalance and mismatch corrections through FFT.
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F[k]real =
1
N

N−1

∑
n=0

A
2

(1 + Δ)
1
2
(e j(2π /N)nk + e−j(2π /N)nk)e−j2πnk/N

=
1
N

A
4

(1 + Δ)
N−1

∑
n=0

[e j2πn(1−k)/N+ e−j2πn(1−k)/N]
	

          

F[k]imag =
1
N

jA
2

N−1

∑
n=0

sin (n + θ )e−j2πnk/N

	       

=
1
N

jA
2

N−1

∑
n=0

{sin [n] cos θ + j cos [n] sin θ} e−j2πnk/N

=
1
N

A
4

cos θ
N−1

∑
n=0

[ej2πn(1−k)/N− e−j2πn(1+k)/N]

+
j
N

A
4

sin θ
N−1

∑
n=0

[ej2πn(1−k)/N+ e−j2πn(1+k)/N]
	

When k=1,

	
F[1] =

1
N

A
4

[(1 + Δ) + cos θ + j sin θ ]

When k=N-1, 

	
F[N − 1] =

1
N

A
4

[(1 + Δ) − cos θ + j sin θ ]

The ratio:

	   

F[N − 1]
1/2{F∗[1] + F[N − 1]} =

numerator
denominator

= 1 − cos θ
1 + Δ

+ j
sin θ
1 + Δ

	

where:

	 Numerator =  (1+Δ) − cos θ + j sin θ;
   Denominator = ½{[(1+Δ) + cos θ − j sin θ] + [(1+Δ) − cos θ + j sin θ]}.

Appendix 4A	 123
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List of Programs

Program Features

  (1) DFTvsFFT.CPP Compares the number of multiplications and adds required in the discrete 
Fourier transform and fast Fourier transform

  (2) BIT_REV.CPP Bit-reversal operation
  (3) FFT_DIT.CPP Fast Fourier transform with decimation-in-time
  (4) FFTDIT.H Header file where bit-reversal and butterfly operations are executed
  (5) FFT_DIF.CPP Fast Fourier transform with decimation-in-frequency
  (6) FFTDIF.H Header file where the butterfly operation is first and bit-reversal follows
  (7) LEAKAGE1.CPP First example of spectral leakage
  (8) LEAKAGE2.CPP Second example of spectral leakage
  (9) LEAKAGE3.CPP Third example of spectral leakage
(10) IFFT_DIT.CPP Inverse FFT with decimation-in-time
(11) IFFTDIT.H Header file where bit-reversal is first, then butterfly follows
(12) IFFT_DIF.CPP Inverse FFT with decimation-in-frequency
(13) IFFTDIF.H Header file where butterfly operation is first, and bit-reversal follows
(14) FFT_FILT.CPP Filtering through FFT+window+IFFT
(15) SIGNOISE.CPP Signal-to-noise ratio enhancement through FFT+IFFT
(16) INTERPO.CPP Interpolation of time-sampled data
(17) CLFM_64.CPP Generation of I and Q channel signals, N=64
(18) FFT_64.CPP Spectral computation of I and Q signals
(19) IFFT_64.CPP Pulse compression by IFFT after conjugate window
(20) CMPRS128.CPP Second demonstration of pulse compression, N=128
(21) IQ_IMAGE.CPP Computes power levels at the image frequency
(22) IQ_ERROR.CPP Computes the correction factors for amplitude unbalance and phase 

mismatch
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C h a p t e r  5  

Ambiguity Function

5.1	 Introduction

The measurement uncertainties in range and Doppler frequency can be analyzed 
by the ambiguity function. The function is originally introduced by Woodward [1] 
from a different perspective; however, the credit is accorded to him. The response 
function describing the output of a matched filter to a waveform u(t) that is shifted 
in time delay τ and Doppler frequency fd is

	

χ(τ , fd) =
1

2E

� ∞

−∞
u(t) u*(t − τ) e+j2πfdt dt	 (5.1)

where

u(t):    The complex envelope of transmitted signal;
u*(t-τ): � The complex conjugate of transmitted signal delayed by τ due to tar-

get range;
fd:        The Doppler shifted carrier frequency;
E:      The total energy.

The above expression is sometimes called the “Time-frequency correlation func-
tion” from a mathematician’s point of view, or the “uncertainty function” from a 
physicist’s point of view, analogous to Heisenburg’s uncertainty principle.

The squared magnitude | χ(τ, fd) |2  is called the ambiguity function. In our dis-
cussion the ambiguity function is | χ(τ, fd) |2,  and when a need arises to clarify we 
shall note it with absolute symbol  | . |  or  | . |2.

The ambiguity function has an alternative expression in the frequency domain. 
The ambiguity function has the following three principal properties:

1.	
∞
∫

-∞  
∞
∫

-∞ | χ(τ, fd) |2 dτ dfd  =  1;
2.	 | χ(τ, fd) |  ≤  | χ(0, 0) |  =  1;
3.	 | χ(τ, fd) |  =  | χ(-τ, -fd) |.

The property (1) states that the volume under the surface of the ambiguity func-
tion in the τ-fd plane is constant, unity. The property (2) states that the function 
is maximum at the origin and is smaller in magnitude elsewhere. The property (3) 
states that the function is symmetrical with respect to τ = 0 and fd = 0.
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The ambiguity surface (plot of  | χ(τ, fd)|2) is the central part of an analysis of 
target resolution or separability of targets in the range and Doppler frequency. The 
width of the main peak of the function at the origin is a measure of resolution.

We shall study the ambiguity function of three basic transmitted signals.

1.	 Rectangular pulse with a single constant frequency;
2.	 Rectangular pulse with linear frequency modulation;
3.	 Rectangular pulse with Costas-coded frequency hopping.

Phase modulations are excluded in our discussion because of their poor tole- 
rance to high-Doppler targets [2]. The binary phase code or the Frank polyphase 
code has higher sidelobes responses than a linear frequency modulation.

5.2	 Rectangular Pulse with a Single Constant Frequency

The ambiguity function of rectangular pulse without any modulation on carrier 
frequency is obtained by substituting

u(t) =

�
e+j2πft τ ≤ t ≤ T
0 otherwise

into (5.1). The response function of a simple rectangular pulse is given by,

                                 

χ(τ , fd) =
� ∞

−∞
u*(τ)u(σ − τ) e+j2πfdσ dσ

	

=
1
T

T�

τ
e−j2πfσ e+j2πf(σ−τ) e+j2πfdσ dσ

= e−j2πfτ e+jπfd(T+τ)
�

1 − τ
T

� sin
�
πfdT

�
1 − τ

T

��

fdT
�
1 − τ

T

� 	 (5.2)

The magnitude of the response function of a rectangular pulse with constant 
frequency is then

	

|χ(t, fd)| =
�

1 − |τ |
T

�
�������

sin
�
πfdT

�
1 − τ

T

��

πfdT
�

1 − τ
T

�

�������
	 (5.3)
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Figure 5.1  Two principal cuts of response function.

Figure 5.2  The ambiguity function of a rectangular pulse with constant frequency.

In order to visualize the ambiguity function we take two principal planes, one 
with τ = 0, the other fd = 0.  Two magnitude expressions are shown in Figure 5.1.

When τ = 0,

|χ(0, fd)| =
����
sin[πfdT ]

πfdT

����
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When fd = 0,

|χ(τ ,0)| = 1 − |τ |
T

We note that the longer the pulse, the higher the resolution in Doppler measure-
ment, but the poorer in range resolution. The reverse is true: The shorter the pulse, the 
higher the resolution in range measurement but the poorer the Doppler resolution.

Eq (5.3) is programmed in AMB_RECT.CPP, and the ambiguity surface in 3D is 
shown in Figure 5.2. The contour level at –3dB is approximately an ellipse but the 
contour changes to a dog-biscuit-like shape when the level is –10 dB or lower.

5.3	 Linear Frequency Modulation (LFM)

The complex envelope u(t) of a rectangular pulse with carrier frequency that is lin-
early frequency modulated is given by

	
u(t) =

�
e+jπ μ t2 τ ≤ t ≤ T
0 otherwise

	 (5.4)

The jπμt2 is the instantaneous phase of the carrier. The carrier frequency is ob-
tained by differentiating the phase

	 f(t) =  d        
dt 

Φ(t) =  1     
2π 

(2π μt) = μt

The constant μ is the modulation rate in Hertz/second. We study linear FM for 
pulse compression in Chapter 4. There we mention the “range-Doppler coupling” 
phenomenon. We shall also analyze the ambiguity function of the LFM the pulse 
and the coupling between the range and Doppler frequency. 

Figure 5.3  Contour map.
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The response function is obtained by substituting (5.4) into (5.1).

         

χ(τ , fd) =
1

2E

∞�

−∞
u∗(t)u(σ − τ)e+j2πfdσ dσ

	

=
1
T

� T

τ
e−jπ μσ2

e+jπ μ(σ−τ)2 e+j2πfdσ dσ

=
1
T

e+jπ μτ2
� T

τ
e−j2π(μσ−fd) dσ

=
�

1 − τ
T

� sin
�
πT

�
1 − τ

T

�
(μτ − fd)

�

πT
�

1 − τ
T

�
(μτ − fd)

	 (5.5)

The magnitude of the response function is given by

	

|χ(τ , fd)| =
�

1 − |τ |
T

�
�������

sin
�
πT

�
1 − τ

T

�
(μτ − fd)

�

πT
�

1 − τ
T

�
(μτ − fd)

�������
	 (5.6)

Equation (5.6) is identical to (5.3) except that the Doppler frequency fd in (5.3) 
is replaced by μτ-fd in (5.6). This means that the ellipse of the contour map of rect-
angular pulse with no modulation is sheared off the principal axis. The center line 
of the sheared ridge is fd = μτ. This shearing causes coupling between the range and 
Doppler measurements.

Figure 5.4  Long and short pulse sheared off from the principal axis.
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Figure 5.5  Two principal cuts of CLFM.

A straight line  fd = μτ  on  τ-fd  plane is shown in Figure 5.4 for long pulses and 
short pulses. From (5.6) we obtain two principle cuts, τ = 0 and fd = 0 of a CLFM 
pulse.

	
|χ(0, fd)| =

����
sin(πfdT)

πfdT

����	 (5.7a)

	

|χ(τ ,0)| =
����
�

1 − |τ |
T

�����

�������

sin
�
πμτT

�
1 − τ

T

��

πμτT
�

1 − τ
T

�

�������
	 (5.7b)

Equation (5.6) is programmed in AMB_CLFM.CPP, and the result is shown in 
Figure 5.6. Resolution is somewhat poor due to the slower A-D converter speed 
assumed.

An ideal ambiguity function (surface plot in 3D) is one that has a central peak 
at the origin of  the τ-fd plane with a circular or nearly circular contour level and 
rapidly, uniformly decreasing surface as depicted in Figure 5.7.

What transmitter waveform would produce a thumbtack-like ambiguity sur-
face? A large number of research papers have reported on the subject. 

We shall cover one of the waveforms that produces a thumbtack-like ambiguity 
surface on the τ-fd plane in the next section. 
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Figure 5.6  Ambiguity surface of the LFM pulse.

Figure 5.7  An ideal ambiguity surface, thumbtack-shape.

5.4	 Costas-Coded Frequency Hopping Modulation 

The Costas-coded waveform [3] has been analyzed with great interest because the 
ambiguity function resembles an ideal thumbtack. A rectangular pulse of duration 
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NT is divided into N subpulses where each subpulse has different and distinct fre-
quency assigned.

The (6x6) time-frequency matrix shown in Figure 5.8 is one of many permuta-
tions available in time-frequency assignments. As a matter of fact there are N! such 
matrices for N=6: N!=720. Among the 720 matrices only 116 are Costas-coded 
waveforms. The Costas-coded signal is defined such that the ambiguity function 
produces a central peak at the origin and much lower sidelobes else- where in the 
τ-fd plane.

Example of time-frequency matrices for N=4, N!=24 are shown in Figure 5.9 
below; only 12 of them are Costas-code. Costas-code is indicated by a square 
bracket under the matrix. Matrices marked by a circular bracket do not belong to 
Costas-code. Whether or not a matrix belongs to Costas-code is determined by a 
triangle difference matrix originally reported by Costas [3], and later in a search 
algorithm presented by Golomb [4].

We note that the code at the upper left corner is that of a quantized staircase 
FM up-chirp and that the code at the lower right corner is that of a quantized stair-
case FM down-chirp. We have seen that a linear FM pulse has an elliptical contour 
sheared off the principal axis. From the point of view of thumbtack-like require-
ment, a linear FM is the worst choice even though linear FM has the versatility of 
adjusting the time-bandwidth product at will.

We shall derive the ambiguity function of a Costas-coded signal for N=5. The 
transmitted pulse is shown in Figure 5.10. A rectangular pulse of NT seconds long 
transmits five distinct and different frequencies for T seconds.

Figure 5.8  Time-frequency assignment matrix.



MTC

The transmitted signal u(t) is defined by,

	 u(t) = 
N-1

    ∑     
n=0

un(t – nT)	 (5.8)

and the complex envelope representation of each subpulse is given by,

Figure 5.9  Costa-coded signals.

Figure 5.10  Costas-coded signal.
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un(t) =

�
e+j2πfnt τ ≤ t ≤ T
0 otherwise

	 (5.9)

The response function is obtained by substituting (5.8) and (5.9) into (5.1).

               

χ(τ , fd) =
1

NT

∞�

−∞
u∗(σ)u(σ − τ)e+j2πfdσ dσ

	

=
1

NT

∞�

−∞

N−1

∑
n=0

e−j2πfn(σ−nT)
N−1

∑
m=0

e+j2πfm(σ−τ−mT)e+j2πfdσ dσ
	

Let σ-nT = t, then σ-mT = t+(n-m)T and dσ = dt. Then, interchanging the order 
of summations and integration yields

	

χ(τ , fd) =
1

NT

N−1

∑
n=0

e+j2πfnnT
N−1

∑
m=0

e−j2πfm[τ−(n−m)T ]
∞�

−∞
e−j2π(fn−fm−fd)t dt

	 (5.10)

First we integrate correlation over one chip. Later we analyze the integration 
over NT. The reason will become clear very shortly. 

T�

τ
e−j2πfnmdt dt = e−j2πfnmdτ e−j2πfnmd(T−τ) sin[πfnmd(T − τ)]

πfnmd

where fnmd = fn-fm-fd for short notation.

Substituting the above result into (5.10), we obtain

	

χ(τ , fd) =
1

NT

N−1

∑
n=0

e+j2πfdnT
N−1

∑
m=0

e−j2πfm[τ−(n−m)T] e−j2πfnmd(T+τ)

·
�
1 − τ

T

� sin
�
πfnmdT

�
1 − τ

T

��

πfnmdT
�

1 − τ
T

� 	 (5.11)

We rewrite (5.11) as sum of two response functions; one for the auto-response 
function when n=m, and other cross-response when n ≠ m.

	 χ(τ, fd) =  χnn(τ, fd) + χnm(τ, fd)



5.4   Costas-Coded Frequency Hopping Modulation	 135

MTC

The auto-response function χnn(.) is then

	

χnn(τ , fd) =
1
N

N−1

∑
n=0

e+j2πfdnT e−jπfnτ e+jπfd(T+τ)

·
�

1 − τ
T

� sin
�
πfdT

�
1 − τ

T

��

πfdT
�
1 − τ

T

� 	 (5.12)

The auto-response function reveals some interesting characteristics. First, we 
view the function at zero-delay Doppler cut.

χnn(0, fd) =
1
N

N−1

∑
n=0

e+j2πfdnT e+jπfdT sin[πfdT]
πfdT

=
1
N

N−1

∑
n=0

e+jπfdT(2n+1) sin[πfdT]
πfdT

and

	
|χnn(0, fd)| =

����
sin[πfdT]

πfdT

����	 (5.13)

Equation (5.13) is the form of familiar sin z/z shown in Figure 5.11(a). We note 
that Doppler resolution of this Costas-coded signal is identical to that of a LFM 
pulse of NT seconds.

The zero-Doppler delay cut is given by

χnn(τ ,0) =
1
N

N−1

∑
n=0

e−j2πfnτ
�
1 − τ

T

�

Figure 5.11  (a) Zero-delay Doppler cut. (b) Zero-Doppler delay cut.
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Since the summation of fn in proper sequence is immaterial, we can write the 
above expression as

                                           
χnn(τ ,0) =

1
N

N−1

∑
n=0

e−j2πfnτ
�
1 − τ

T

�

	                           
=

1
N

e−jπ(N−1)τ
�
1 − τ

T

� sin[πNτ ]
sin(πτ)

	 (5.14)

            
and

	
|χnn(τ ,0)| =

1
N

�
1 − |τ |

T

�����
sin(πNτ)
sin(πτ)

���� .	 See Appendix 5A.

Figure 5.11(b) indicates that the range resolution of Costas-code is much higher 
than that of a rectangular pulse of NT long with no modulation. The width of 
the main lobe is as narrow as a compressed pulse of LFM. By combining Figure 
5.11(a, b), we can visualize that the auto-response surface is peaked at the origin  
and decreases as |τ| and |fd| increased, a thumbtack-like without being sheared off 
the principal axis as in LFM.

Next we derive an expression for the cross-response function where the integra-
tion of Equation (5.10) must be from τ to NT, and n ≠ m.  Following the steps we 
had taken in the case of auto-response, we obtain,

	

χnm(τ , fd) =
1

N(N − 1)

N−1

∑
n=0

e+j2πfdnT
N−1

∑
m=0 m�=n

e−j2πfm[τ−(n−m)T ]

· e−jπfnmd(NT+τ)
�
1 − τ

NT

� sin
�
πfnmdNT

�
1 − τ

NT

��

πfnmdNT
�
1 − τ

NT

�
	

(5.15)

Two principal cuts of the cross-response function are difficult to visualize, 
for two exponential summations have different summing indices and their phases 
would interact. The cross-response function with fd = 0 is given by

	

χnm(τ ,0) =
1

(N − 1)

N−1

∑
m �=n

e−j2πfm[τ−(n−m)T] e−jπfnm(NT+τ)

·
�

1 − τ
NT

� sin[πfnmNT]
πfnmNT

	 (5.16)

and with τ = 0 is given by

	
χnm d

1
N(N − 1)

N−1

∑
n=0

e+j2πfdnT
N−1

∑
�

e j2πfm(n−m)T( , f ) =0
m=n

+
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Figure 5.12  Locations of cross-ambiguity peaks.

	

· e−j2πfnmdNT
sin

�
πfnmdNT

�
1 − τ

NT

��

πfnmdNT
�
1 − τ

NT

�

	

(5.17)

An examination of χnm(τ, 0) reveals that the zero-Doppler delay cut will be zero 
when τ is zero or ± an integer since fnm is always an integer; therefore, the argument 
of sine function is ± an integer multiple of π.

An examination of χnm(0, fd) reveals that the zero-delay Doppler cut will peak 
when | fn - fm | = fd and fall to zero when fd is either zero or ± an integer.

We conclude that the cross-response function would either peak or fall to zero 
at the integer multiple points on the τ−fd plane. The locations of peaks can be eas-
ily determined by a transparent overlay on the original time-frequency matrix. By 
shifting the overlay to the right (or to the left) along the delay axis or shifting the 
overlay up (or down) along the Doppler axis in increment demonstrated by [5], 
we will find the locations of the peaks. An example of the shifting and locating the 
peaks is shown in Figure 5.12. There are N(N-1) minor peaks. 

The auto-response function is confined to the inner square where the cross- 
response function has a near zero level, indicated by dark lines. Two principal cuts 
of the cross-response functions, (5.16) and (5.17) are shown in Figure 5.13(a, b) 
with magnified vertical scales.

We observe that the gain of the Costas-coded signal is N and that the ambiguity 
surface resembles a thumbtack with a few sidelobes spikes around the central main 
lobe (see Figure 5.14). The average height of the clutter pedestal is 1/N, and a few 
spikes reach 2/N. In order to reduce the height of the spikes of the sidelobes we have 
to increase the number of subpulses N.

A compound scheme of frequency plus phase code sequence has produced mod-
erate success [6] in reducing the sidelobe levels. A width modulation subpulses, 
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Figure 5.13  (a) Zero-Doppler delay cut. (b) Zero-delay Doppler cut.

unequal pulsewidth control should be entertained. Polarization  modulation on the 
subpulses is another consideration.

The original object of Costas was underwater target detection where the phase 
coherency is impossible to maintain and the clutter environment is extremely severe. 
Costas-coded frequency hopping is a near optimum waveform for a thumbtack-like 
ambiguity function (Figure 5.15). The search for a better waveform design should 
continue [7].



5.4   Costas-Coded Frequency Hopping Modulation	 139

MTC

Figure 5.14  Ambiguity surface of Costas-coded signal, N=5.

List of Progams

Program Feature
(1) AMB_RECT.CPP Ambiguity function of a rectangular pulse with single constant frequency
(2) AMB_CLFM.CPP Ambiguity function of a rectangular pulse with coherent linear frequency 

modulation
(3) X(T_0)FM.CPP Zero-Doppler delay cut of CLFM
(4) X(0_F)FM.CPP Zero-delay Doppler cut of CLFM
(5) Xnm(T_0).CPP Cross-response function, zero-Doppler delay cut
(6) Xnm(0_F).CPP Cross-response function, zero-delay Doppler cut
(7) AMB_COST.CPP Ambiguity function of Costas-coded signal
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Figure 5.15  Contour map, Costas-coded signal.
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Appendix 5A

1.	  
N-1    
∑      
n=0

xn =  1- xN
        

1- x
    =   x N/2

        
x 1/2

    x N/2 - x -N/2
                            

x 1/2 - x -1/2

	 Let x = e+j2πτ 

	 Σ e+j2πnτ =  e
jπNτ              
ejπτ

       e
jπNτ - e-jπNτ            
ejπτ - e-jπτ

     = e jπ(N-1)τ  sin(πNτ)                    
sin(πτ)

2.	  sin(πNτ)                            
sin(πτ)    

| 
|τ=0 

  at  τ = 0  is obtained by L’Hospital rule:

	  sin(πNτ)                            
sin(πτ)    

| 
|τ=0

 =  cos(πNτ) πN                                        
cos(πτ) π

 
     

| 
|τ=0

 = N 
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C h a p t e r  6

Array Antennas

6.1	 Introduction

In this chapter, we study the basic principle of array antenna synthesis techniques 
and show the radiation patterns of several array antennas.

  An array antenna may be linear, circular, or elliptical (rectangular). The array 
antenna may consist of fewer than ten elementary radiating sources arranged in a 
line or tens to thousands arranged on a planar grid.

  The elementary radiator may be a slot on the wall of a rectangular waveguide, 
a dipole or crossed-dipole on a ground plane, a rectangular pyramidal horn, or an 
open-ended waveguide. These elementary radiating sources can be arranged in a 
linear array, a circular aperture, or an elliptical (or rectangular) aperture. 

Three examples of the elementary radiator are shown in Figures 6.1 through 
Figure 6.3 [1–4]. The radiation pattern of an array antenna is the product of the 
elementary radiator and the array pattern.

6.2	 Linear Array

A linear array antenna is constructed by arranging the radiating elements  on a line. 
The powers radiating from the elements may be equal or different from one another 
by design.

To begin our design of a linear array, we take a pair of isotropic radiating point 
sources arranged as shown in Figure 6.4, and derive the field strength at point P.

A phase delay of a wave radiating from A on the left with respect to that on the 
right is,

	

L = d sin q ,
2p
j

=
l
L

j =
2pL
l

=
2pd
l

sin q
	

where l is the wavelength of transmitted carrier frequency in the propagating me-
dium. The effective field strength at point P will be the vectorial sum of radiations 
from the pair.
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	 Ef(θ ) = A e−jϕ /2 + A ejϕ /2 = 2A cos
�ϕ

2

�
= 2A cos

�
πd
λ

sin θ0

�
	 (6.1)

When we have multiple pairs, the effective field strength would be the total 
vectorial sums of all pairs.

	

Ef(θ ) = 2A0 cos
�

πd
λ

sin θ0

�
+ 2A1 cos

�
3πd

λ
sin θ1

�
+ 2A2 cos

�
5πd

λ
sin θ2

�
+ · · ·

=
N−1

∑
i=0

2Ai cos
�
(2i + 1)πd

λ
sin θi

�

		
		

(6.2)

Figure 6.1 � Radiating slots on the wall of a rectangular waveguide, off-centered longitudinal slot 
on the broad wall, or inclined slot on the narrow wall.
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Figure 6.4  A pair of isotropic point sources.

Figure 6.3  Open-ended square waveguides stacked to form an array. The square waveguides may 
be replaced by rectangular waveguides, or pyramidal horns.

Figure 6.2  Dipole radiator on ground plane.



146	 Array Antennas

MTC

where N is the number of element pairs in the array. Point P is far out with respect 
to the dimension of the linear array so that angle qi is assumed to be equal for all 
pairs. The far-field pattern would be the product of the element pattern and array 
pattern.

	 Ef = Ei Ea	

where

	 Ei: field pattern of individual pair	

	 Ea: field pattern of array aperture	

When the powers radiated from the pairs are all equal in (6.2),

	 A1 = A2 = ¼ = An	

we call the array a “uniform” array. The magnitudes of Ai can be made equal to 
the coefficients of certain polynomials such as Chebyshev, Taylor (a modified Che-
byshev), or function such as Lambda, Hamming, and many more [5–8]. We study 
a few of them.

The radiation patterns of a linear array with 14 pairs of isotropic point sources 
are programmed in ANT_LINE.CPP. The program selects the element excitation 
amplitude distribution from the following set:

(1)  Uniform;
(2)  Chebyshev;
(3)  Taylor (n̄ = 5).

Figure 6.5  Element excitation amplitude distribution.



6.2   Linear Array	 147

MTC

Different excitation amplitude distributions produce unique patterns. They are 
shown in Figures 6.6 through 6.8.

The uniform distribution produces the highest gain and the narrowest beam-
width, but very poor sidelobe levels. The Chebyshev distribution produces equal 
sidelobe levels. The sidelobe level is a design parameter of the Chebyshev distribu-
tion [5]. The Taylor distribution is an interesting one. The closest pairs of the side
lobes have an approximately equal sidelobes but the next sidelobe pair is slightly 
below it, the next pair out are further lower, and so on [6–8]. 

The Table 6.1 summarizes the three linear arrays.
The gain of Taylor excitation distribution is higher than Chebyshev can be seen 

when we compare Figure 6.7 and 6.8. The Chebyshev distribution radiates more 
power through the sidelobes than the Taylor distribution does.  This is always true 
when the 3-dB beamwidth is equal or nearly equal within a one-tenth of degree. The 
difference in gains between the two distributions will diminishes when the highest 
sidelobe is reduced below -30 dB or lower and simultaneously increased the n̄ of 
the Taylor distribution.

Certainly an array design is a compromise between the gain, beamwidth, side
lobe level and the rate of decrease of the sidelobe levels.

Figure 6.6  Linear array, uniform.

Table 6.1

Uniform Chebyshev Taylor

Maxim gain (dB) 14.47 14.14 14.32
Loss (dB) 3 dB — 0.33 0.15
Beamwidth (deg) 3.6 3.8 3.9
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Figure 6.7  Linear array, Chebyshev, -20-dB sidelobes.

Figure 6.8  Linear array, Taylor, -20-dB sidelobe.
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The maximum gain is given by [1], Equation (5.4.2). 

	

D =

�
N

å
−N

In

�2 � N

å
−N

In
2 =

�
2

N−1

å
0

In

�2 �
2

N−1

å
0

I2
n

(odd) (even) 	

The odd number of radiators in an array is awkward when a differential pat-
tern is desired, for the central element in an array interferes the differential pattern. 
Readers should be aware of the difference between the directivity and gain. Both of 
them are dimensionless, pure numeric. The maximum directivity is defined as the 
power density, watt/m2, in the boresight direction divided by the power density av-
eraged over all directions. The directivity and gain differs when the power received 
from the transmitter is absorbed by antenna structure. A slotted waveguide array is 
usually assumed to be lossless, hence directivity is equal to gain.

A horizontal linear array is usually covered with a flared horn in order to con-
trol the vertical radiation pattern. A sketch of such an antenna is shown with in-
clined slots on the narrow wall of a rectangular waveguide.

6.3	 Circular Aperture Array

The radiating elements may be the slots in waveguides, dipoles, or crossed dipoles 
on a ground plane, open-ended squares or rectangular wave-guides, pyramidal 
horns, and they are arranged to form a circular aperture.

The powers radiated from the elements may be equal or different from the ad-
jacent elements by design. The radiating power of an element at (m, n) AmAn, is a 
product of distribution functions on the x-axis and y-axis as shown in Figure 6.10, 
the principle of separable excitation distributions.

Those elements outside the radius are deleted (excluded) from the pattern com-
putation. See Figure 6.11 below and Figure 6.A.1 at the end of this chapter.

Figure 6.9  Line array antenna with flaredhorn.
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The effective field strength at point P contributed by the element at AmAn is 
shown in Figure 6.12.

The field strength at P, located at far distance compared with the dimension of 
the aperture is given by,

	 Ef(θ ,ϕ) =
M

∑
m=1

N

∑
n=1

AmAn cos
�

mπdx

λ
sinθ cosϕ

�
cos

�
nπdx

λ
sinθ sinϕ

�
	 (6.3)

Figure 6.11  Circular aperture array by deleting elements outside of radius. See Figure 6.A.1 for details.

Figure 6.10  Elementary excitation amplitude distribution.
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Figure 6.12  Phase of an Element AmAn in Spherical Coordinates.

Figure 6.13  Circular aperture, uniform–uniform.



152	 Array Antennas

MTC

where M and N are the number of elements in x and y coordinates, and dx and dy 
are the spacing in x and y coordinates.

We compute the radiation patterns of the following three primary distributions:

(1)  Uniform–uniform;
(2)  Chebyshevz–Chebyshev;
(3)  Taylor–Taylor (n̄ = 5).

There are three other combinations of two distributions when we consider dif-
ferent distributions on x- and y-axis.

(1)  Uniform–Chebyshev;
(2)  Uniform–Taylor;
(3)  Chebyshev–Taylor.

A circular aperture is symmetric; therefore, there are three combinations only. 
No permutation is necessary. For an elliptical aperture the permutations should be 
considered for the beamwidth control in the vertical and horizontal planes. 

Figure 6.14  Circular aperture, Taylor–Taylor.

Table 6.2 summarizes the results.

Table 6.2

Uniform–Uniform Chebyshev–Chebyshev Taylor–Taylor
Max grain (dB) 28.06 * 26.24
Gain Loss — * 1.82
Beamwidth (degrees) 4.1 * 4.4
*  Read the closing remark at the end of this chapter.
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The radiation patterns are computed in ANT_CIR.CPP for the primary distri-
butions, shown in Figures 6.13. and 6.14. 

6.4	 Elliptical Aperture Array

The radiating elements may be arranged to form an elliptical (or rectangular) 
aperture. Figure 6.15 shows an example of such an array antenna. The element ex-
citation distributions could be the coefficients of polynomials or a selected function. 
They may be equal or different for x- and y-axes. For a rectangular aperture array, 
ANT_ELIP.CPP has a selection command in the programs.

We shall compute the radiation patterns of the following three primary distri-
butions. There are six more combinations of the functions mentioned previously. 
As with the circular array, two separable linear distribution functions have been 
applied to x-axis and y-axis, and elements deleted to form  the elliptical aperture 
(see Figure 6.A.2 at the end of this chapter).

Figure 6.15  Elliptical (or rectangular) aperture array, two separable excitation distribution functions.
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(1)  Uniform–uniform;
(2)  Chebyshev–Chebyshev;
(3)  Taylor–Taylor (n̄ = 5).

The effective field strength at point P in the far field is given by, identical to 
(6.3).

	
Ef(q ,j) =

M

å
m=1

N

å
n=1

AmAn cos
�

mpdx

l
sinq cosj

�
cos

�
npdx

l
sinq cosj

�

	

The radiation patterns are programmed in ANT_ELIP.CPP by selecting  the ex-
citation function by command. Two of them are shown in Figures 6.16 and 6.17.

Two radiation patterns are shown, one with j = 0o and another q = 90o. Inter-
mediate patterns can be obtained by changing declaration in the program.

Table 6.3 summarizes the elliptical aperture array antennas.

6.5	 Monopulse Array Antenna

The word monopulse is derived from an antenna’s capability to detect target posi-
tion in azimuth and elevation planes simultaneously by a single pulse. A mono-
pulse antenna is an essential component of a tracking radar system. A angle error 
signal from the difference channels would drive a servomechanism (mechanical or 
electronic) to track a target. Phased array antennas have virtually eliminated the 
mechanical servo-structure.

Figure 6.16  Elliptical array, uniform–uniform.
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The principle of the monopulse antenna can be visualized by Figure 6.18. Imag-
ine that an antenna aperture is divided into four separated subapertures and con-
nected as shown.

The sum channel is connected to the transmitter/receiver through a circulator- 
isolator-limiter combination as in an ordinary radar front end. The radiation pat-
terns of the sum channel have been discussed in Sections 6.3 and 6.4, circular or 
elliptical. The response of difference channels can be analyzed by pairs of two point 
sources as shown in Figure 6.19.

Note the difference between (6.2) and (6.4). The former is the response of dif-
ference channel and the latter is that of sum channel. The response of azimuth dif-
ference channel and that of elevation difference channel is given by

Figure 6.17  Elliptical array, Taylor–Taylor.

Table 6.3

Uniform–Uniform Chebyshev–Chebyshev Taylor–Taylor

Max grain (dB) 24.83 D 23.86
Loss — D 0.97

Beamwidth *5.3 *5.7
3dB (deg) ** 8.6 ** 8.8

  D    Read the closing remark at the end of this chapter.
  *    Beamwidth parallel to the major axis.
  **  Beamwidth parallel to the minor axis.
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Ef(az diff) =

M

∑
m=1

N

∑
n=1

AmAn sin
�

mπdx

λ
sinθ cosϕ

�
cos

�
nπdy

λ
sinθ sinϕ

�
	 (6.4)

	
Ef(el diff) =

M

∑
m=1

N

∑
n=1

AmAn cos
�

mπdx

λ
sinθ cosϕ

�
sin

�
nπdy

λ
sinθ sinϕ

�
	 (6.5)

where AmAn are the element distributions used for sum channel. For a circular array 
the response of azimuth channel would be identical to that of elevation channel, but 
rotated 90° about the beam axes, by a trigonometric identity,

	
sin

�
j +

p
2

�
= sinj cos

p
2

+ cosj sin
p
2

= cosj
	

provided the excitation amplitude distributions for both axes are the same. If not 
we expect the responses of two channels would be different from one another.

Figure 6.18  Basic monopulse array antenna structure.
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Figure 6.20  Monopulse, linear, Chebyshev.

Figure 6.19  Difference channel response.
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Figure 6.22  Monopulse, circular, Taylor.

Figure 6.21  Crossover angle, linear, Chebyshev.

We programmed the sum and difference channels patterns for various excita-
tion distributions for linear, circular and elliptical array. Three programs are writ-
ten.

(1)  MONO_LIN.CPP
(2)  MONO_CIR.CPP
(3)  MONO_ELP.CPP



and the results are shown in Figures 6.20 through 6.23. For a monopulse antenna 
the crossover angle between the sum and difference channel is a parameter to be 
considered seriously: the smaller crossover angle for a higher resolution tracking, a 
larger crossover angle for a higher acquisition probability. 

There are a half dozen different signal processing techniques, amplitude com-
parison, phase comparison or combined one, to extract the error signal to steer the 
antenna [10].

There are two different crossover angles in elliptical monopulse antenna, one 
for j = 0°,  and another for j = 90°. 

6.6	 Conclusion

1. � Our analysis and computation of radiation patterns are based on the as-
sumption that the radiating element is a point source, a hemispherical radia-
tor on a very large ground plane, and the E-field and the H-field are identical 
in magnitude.

Slots on the rectangular waveguide, dipoles, crossed-dipole, and pyrami-
dal horns would not have such an ideal radiation pattern. 

The closest to a hemispherical radiation may be an open-ended square 
waveguide on a fairly large ground plane.  

The radiation pattern of an array is the product of array pattern and that 
of constituent elements.

Figure 6.23  Monopulse, elliptic, Hamming.
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	 Efield = Earray ´ Eelement	

We have assumed throughout that the radius of the Eelement pattern is 
unity and that E- and H-field are identical and orthogonal. These assump-
tions are very difficult to meet in a practical design.

2. � We have limited our demonstration computations to three of element exci-
tation amplitude distributions because the coefficients of polynomials must 
not have zero end points. For a planar slotted waveguide array, the smallest 
coefficient should not be less than 0.05 of the largest coefficient for manu-
facturing tolerance.

3. � We have used four significant digits in our excitation amplitude distributions. 
In a practical design control within three significant digits is extremely dif-
ficult. Imagine a power divider required for the open-ended waveguide with 
three-significant-digit accuracy. The radiation patterns presented should be 
taken as a design guide.

4. � Planar slotted waveguide array antennas above the Ku band are rare, for 
the precision required to manufacture such an antenna is prohibitively ex-
pensive, while below L band they are bulky and heavy even with half-height 
waveguides. Slotted waveguide array antennas are usually found between 
the S-band and X-band. Outside of this range, a different radiator design or 
a reflector antenna is preferred.

5. � Then why the array antenna? The aperture efficiency of an array antenna 
can be relatively high, between 70% to 76%, whereas the efficiency of re-
flector is between 50% to 55%. More importantly, array antennas can be 
designed with sidelobe level of -55 dB or lower. The lowest sidelobe level of 
reflector antenna may be around -30 to -35 dB at best.

6. � It is clear that the best excitation distribution is Taylor distribution for all ar-
ray apertures. The Taylor distribution combines the lower gain loss and the 
narrower beamwidth that are competitive with Chebyshev and it controls 
the rate of decrease of the sidelobes.

List of Programs

  (1) ANT_LINE.CPP Radiation patterns, linear array; uniform, Chebyshev, Taylor, Hamming, and Lambda 
excitation amplitude distribution.

  (2) ANT_CIRC.CPP Radiation patterns, circular array; uniform, Chebyshev, Taylor, Hamming, and 
Lambda excitation amplitude distribution.

  (3) ANT_ELIP.CPP Radiation patterns, elliptic array; uniform, Chebyshev, Taylor, Hamming, and Lambda 
excitation amplitude distribution. 

  (4) MONO_LIN.CPP Radiation patterns, monopulse linear array.
  (5) MONO_CIR.CPP Radiation patterns, monopulse circular array.
  (6) MONO_ELP.CPP Radiation patterns, monopulse elliptical array.
  (7) ANT_LINE.H Header file, linear array for various excitation distributions.
  (8) ANT_CIRC.H Header file, circular array for various excitation distributions.
  (9) ANT_ELIP.H Header file, elliptical array for various excitation distribution.
(10) MONO_LIN.H Header file, linear array for Chebyshev distribution.
(11) MONO_CIR.H Header file, circular array for Taylor distribution.
(12) MONO_ELP.H Header file, elliptical array for Hamming distribution.
(13) BESSELLI0.H Computes the modified Bessel function of the first kind, zero order, line source.
(14) BSLI0CIR.H Computes the Bessel function for a circular array.
(15) BSEI0ELP.H Computes the Bessel function for an elliptical array.
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Figure 6.A.1  Circular aperture by eliminating some elements from square grid points.

Figure 6.A.2  Elliptical aperture by eliminating some elements from a rectangular grid points.
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Closing Remarks

For the circular aperture we put the element excitation distribution for the Cheby-
shev as:

	 cheby[]={1.0000, 0.9908, 0.9724, 0.9455, 0.9104,
	          0.8679, 0.8189, 0.7643, 0.7052, 0.6428,
	   0.5782, 0.5127, 0.4472, 1.3590};

The distribution is correct for rows 0, 1, 2, and 3. For rows 4, 5, and 6, the dis-
tribution should be recomputed, which will be different from the distribution given 
above, and the distribution for rows 7 and 8 should be recomputed, which will be 
different from the rows above, and so on. We haven’t done that for simplicity and 
brevity. This applies to the column distributions as well. The same arguments apply 
to the elliptical array.

Figure 6.A.3  Taylor distributions.
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C h a p t e r  7

Target Detection

7.1  Introduction

In this chapter we study the principles of radar target detection. We analyze the 
probability of detection, the probability of false alarm, the threshold (bias) level and 
pulse integration. We investigate how to determine the threshold so that a desired 
detection probability and the false alarm probability are obtained and how many 
return pulses are to be integrated.

Let us examine a basic structure of pulse integration shown in Figure 7.1. The 
IF signal plus noise is detected by a diode detector and converted to digital levels by 
an A/D converter. The digital numbers are stored in a bank of memories through a 
summer whose other inputs are the fed-back numbers from a scalar Q. The length 
of the memory bank is equal to the number of range bins of display the indicator 
(maximum detection range). The feedback path includes the scalar Q that prevents 
an overflow in the memory bank by dividing the output of memory bank by 1/2, 
3/4, 7/8, . . . (N-1)/N. The output of the range bin memory is sequentially compared 
with the threshold VTh by a comparator. When the output of the memory exceeds 
the threshold we declare that a target is present in that range bin; otherwise no tar-
get is declared. The basic structure is called a noncoherent recirculating accumula-
tor, or pulse integrator, for short.

Let us examine how the pulse integrator detects a target signal embedded in 
noise. We simulate three targets: target 1, target 2, and target 3; a strong target, 
an intermediate target, and a weak target, respectively. For a simulation we take 
Rayleigh noise, uniformly and identically distributed throughout. (See Chapter 2 
for the characteristics of Rayleigh noise.) Rayleigh noise has mean σ(π/2)1/2 and 
variance σ2 (2−π/2), and we assume σ=1.       

	 Noise power = mean squared + variance
	            =  (1.253314)2  + 0.429204
                                                         =  2 watts

	 Signal power  first target:     4.0×4.0 = 16 watts
	                  second target:    2.0×2.0 =  4 watts
	                    third target:     1.0×1.0 =  1 watt

Thus, the SNR in power is

First target:      16/2 =    8 =  9.03 dB;
Second target:    4/2 =    2 =  3.01 dB;
Third target:       1/2 = 0.5 = -3.01 dB.
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The third target is buried under the noise, we would say. The signal plus noise 
is envelope detected, A/D-converted, stored in the range bin memories, and recircu-
lated eight times. Read PULSEDET.CPP and PULSEDET.DAT to see how the signal 
plus noise accumulates as they circulate once, twice, three times,¼, eight times. The 
target levels are identical for all eight sweeps but Rayleigh noise samples are different 
from sweep to sweep. After eight recirculations/accumulations we compare the levels 
of the memory bank with a threshold (bias) level VTh. We have varied VTh from 90 to 
115 in increments of five and counted the number of false declarations, the number 
of missed detections, and the detection success as percentage. Read the footnote at 
the end of the program. The result of the program is summarized in the following:

VTh is set at: Number of false  
declarations

Number of missed  
detections

Detection success

90 13 15 88%
95 7 21 84%

100 4 34 73%
105 3 47 63%
110 1 57 55%
115 0 70 45%

We note that as we increased the threshold level, the number of false declara-
tion decreased (good news), but the number of missed detection increased (bad 
news), and the detection success suffered (bad news). If we desire to have a detec-
tion success of 50%, the threshold bias level must be set at somewhere between  
110 and 115. On the other hand, if we desire a detection success of 90% the signal-
to-noise ratio of the weak target must be increased or we must circulate more than 
eight times.

Figure 7.1  Pulse integrator.
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The threshold VTh, the false alarm probability Pfa, the probability of detection 
Pd, and the SNR (in power) are all interlocked. If we alter one parameter the other 
three parameters will be affected. When we specify three parameters the fourth 
parameter will be automatically determined. The number of pulses integrable N 
is dictated by the pulse repetition frequency, antenna 3-dB beamwidth, and the 
antenna rotation rate. 

	 N = (θ/  
.
θ ) fPRF	

So far we have conducted an inexact heuristic experiment to show the relation-
ship among the detection probability, the false alarm probability, the threshold bias 
level, the SNR, and the number of pulses integrated. In the next sections we derive 
the mathematical expression for each term and their interlocked relationship.

Before we proceed we should discuss the law governing the diode detector in 
Figure 7.1. A diode conductance characteristic is shown in Figure 7.2.

What would be the best characteristic of the diode detector for target detection?
Marcum [1] takes the maximum likelihood ratio of Rician random variables 

(signal plus noise) to Rayleigh random variables (noise only) in order to investigate 
the best diode detector characteristics. 

	

MLR = ∏N
i=1 vi exp

�
−(v2

i + S2)
2

�
Io(viS)

�
∏N

i=1 vi exp

�
−v2

i

2

�

= exp{−S2/2}∏N
i=1 Io(viS) 	 (7.1)

where

vi:  Noise samples;
  S:  Signal amplitude;
Io:  Modified Bessel function of first kind, zero order.

Figure 7.2  Diode conductance characteristic.
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Taking the natural logarithm of both sides of (7.1) gives,

	

N

∑
i=1

ln[Io(viS)] = ln MLR + S2

	

or

	

N

∑
i=1

ln[Io(viS)] = λ
	

The λ is a constant that would determine the presence or absence of target; when 
the summation is equal to or greater than λ, a target present is declared; otherwise 
no target is declared. Thus the best diode detector law should be a logarithmic.

	 y = ln[Io(vS)]	

Assume that the signal level is very low, below the conduction knee, Vc, which 
implies that a large number of pulses must be integrated to reach the λ. Then,

	

Io(vS) = 1+
v2S2

4
+

v4S4

252!
+ · · ·

y = ln[Io(vS)] = ln

�
1 +

v2S2

4
+ · · ·

�
≈ v2S2

4
	

Therefore, a square-law detector is the best choice.  On the other hand, if the 
signal level is high, then

	

Io(vS) =
exp{vS}√

2πvS

�
1 +

1
8vS

+ · · ·
�
≈ exp{vS}√

2πvS

y = ln[Io(vS)] ≈ vS − 1
2

ln(2πvS) ≈ vS
	

Thus, a linear detector is the choice. A smaller number of pulses would be in-
tegrated to reach λ. Marcum [1] presented the performance of the two detectors as 
shown in Figure 7.3, where the ordinate is the decibel advantage of the square-law 
detector over the linear detector.

Figure 7.3 shows there is negligible difference between two detector laws. Note 
that for N=1 and N=70 the two detectors are identical in performance. For small 
N, a linear detector is better by an amount not exceeding 0.12 dB. For large N, a 
square-law detector is better than a linear detector by an amount that asymptoti-
cally approaches 0.19 dB as N becomes larger than 10,000. (We rarely integrate 
more than 100 return pulses, if ever.)

The practical implementation of the detector by a diode whether the diode is a 
hot-carrier diode, germanium, or silicon diode exhibits a square-law characteristic 
for small signals and a linear characteristic for large signals, thereby approximating 
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the ideal logarithmic detector law. For certain mathematical erivations a square-law 
is more often convenient. The performance difference between the two-detectors 
law is less than 0.12 dB when the number of pulses integrated is less than, say, 
100.

7.2  �Probability of Detection and the False Alarm Probability for  
Marcum’s Target Model 

This section follows the classic work of Marcum [1]. Marcum analyzed the detection  
problem when the target is nonfluctuating, that is, the target is a pherical object 
several wavelength in diameter so that the target cross-section is constant for all ob-
servation angles. Swerling has extended the problem to cover when the target cross-
section is fluctuating from one observation to the next. The problem of fluctuating 
Swerling’s target models will be discussed in detail in the following sections.

The mathematical analysis starts with help from Figure 7.4. The probability 
density function (pdf) of Rayleigh noise and that of the Rician pdf (signal plus 
noise) are given by,

	 fN =
v

σ2 exp

�
−v2

2σ2

�
,             Rayleigh pdf	 (7.2) 

	 fS+N =
v

σ2 exp
� −1

2σ2 (v2 + S2)
�

Io

�
vS
σ2

�
          Rician pdf	 (7.3)

Figure 7.3  Comparison between the linear and square-law detector.
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where

v:    Instantaneous noise amplitude;
σ 2:  The variance of noise;
S:    Instantaneous signal amplitude;
Io:   Modified Bessel function of first kind, zero order.

The probability of false alarm is given by 

	
Pfa =

∞�

VTh

v
σ2 exp

�
−v2

2σ2

�
dv

	

(7.4)

 

If we let

	

v√
2σ

= x, dv =
√

2σ dx,
	

then

	

v
σ2 =

1

σ

� v
σ

�
=

√
2

σ

�
v√
2σ

�

	

Substitution of the variable leads to an expression for Pfa.

Figure 7.4  Probability density function, Rayleigh and Rician and the threshold.
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Pfa =
∞�

VTh/
√

2σ

√
2

σ
x exp{−x2}

√
2σ dx

=
∞�

VTh/
√

2σ
2x exp{−x2} dx = exp

�
−V2

Th

2σ2

�

	
(7.5)

We define two terminologies frequently used in detection literature: the thresh-
old level and bias level, which we have used ambiguously in the past discussion.

Taking the natural logarithm of (7.5) we have,

	
ln Pfa =

−V2
Th

2σ2 , VTh =
�
−2σ2 ln(Pfa)

	
(7.6)

If we set  Pfa = 1.0E-6  and the variance of noise σ 2 is unity, σ 2 = 1,	

	 VTh = 5.2526	

On the other hand, we could define the bias level yb as follows from (7.5),

	
Pfa = exp

�
−V2

Th

2σ2

�
= exp{−yb}, yb = −ln(Pfa)

	
(7.7)

If we desire that Pfa = 1.0E-6, regardless of the variance of noise, 

	 yb =  −ln (1.0E-6) = 13.8155	

Thus the threshold level is in the unit of volts provided the variance of noise is 
known, whereas the bias level is the dimensionless power ratio. Readers may have 
preference for one over the other; however, when noise power varies over one sur-
veillance sector to another, and the threshold is automatically adjusted to follow, 
the bias level is the preferred. We remind ourselves that the threshold and the bias 
given above are for the case of single-pulse detection. The bias level for multiple 
pulses will be presented shortly.

Next we derive an expression for the detection probability Pd, given from 7.3 
and Figure 7.4.

	
Pd =

∞�

Vth

v
σ2 exp

� −1
2σ2 (v2 + S2)

�
Io

�
vS
σ2

�
dv

	

For convenience we change the variable as follows:

	
α =

v
σ

and β =
S
σ

, then dv = σdα
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The integrand becomes 

	

v
σ2 exp

� −1
2σ2 (v2 + S2)

�
Io

�
vS
σ2

�

=
v

σ2 exp

�
−

�
v2
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2σ2

��
Io

�
v
σ

S
σ

�

=
α
σ

exp

�
−(α2 + β2)

2

�
Io(αβ )

	

The detection probability is then,

	
Pd =

∞�

Vth/σ
α exp{− (α2 + β2)

2
}Io(αβ ) dα = Q(α ,β)

	
(7.8)

Interested readers should consult Brennan [2]. We don’t pursue any further the 
Q function in this form, since the form (7.8) is good for only  single-pulse detection, 
N=1.  Anticipating N > 2, perhaps N=4, 8, 16 ¼, we plan to compute the detection 
probability through the characteristic function.

The characteristic function and the probability density function are a Fourier 
transform pair [3, 4], and the characteristic function of multiple pulses is easily ob-
tained by raising the characteristic function of a single pulse to the Nth power.

	

fx(x) =
1

j2π

∞�

−∞
Cx(jω)exp{− jωx} dω

Cx(jω) =
∞�

−∞
fx(x)exp{jωx} dx

	

(7.9a)

 
		

(7.9b)

and,

	 CN = (C1)N
	 (7.10)

Marcum and Swerling have presented the characteristic functions in their re-
ports and we have tabulated them in Section 7.5.1. The characteristic function of 
Marcum’s target model, a nonfluctuating, constant cross-section target is given by

	 C1(p) =
exp{−x} exp

�
x

1+p

�

(p + 1)

CN(p) = (C1)N =
exp{−Nx} exp

�
Nx
1+p

�

(p + 1)N

	 (7.11)

		  (7.12)

where   
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C1:    Characteristic function for N=1;
CN:  Characteristic function for N≥2;
N:     Number of pulses; 
p:      Fourier transform variable, jω.

The probability density function for multiple pulses is obtained by Fourier 
transformation of CN(p).

	

f(t) =
1

j2p

� j∞

−j∞
CN(p) exp{pt} dp

=
1

j2p
exp{−Nx} exp{−t}

� j∞

−j∞

exp{t(p + 1)} exp
�

Nx
p+1

�

(p + 1)N dp

	

We replace the two exponential terms of integrand by summation of infinite 
series. 

	

exp{Nx/(p + 1)} =
∞
∑
k=0

1
k!

�
Nx

p + 1

�k

exp{t(p + 1)} =
∞
∑

m=0

1
m!

[t(p + 1)]m

	  

then,  

	

f(t) =
1

j2π
exp{−Nx} exp{−t}

j∞�

−j∞

∞
∑
k=0

∞
∑

m=0

(Nx)ktm(p + 1)m

k! m!
dp

= exp{−Nx} exp{−t}
∞
∑
k=0

(Nk)k

k!
t(N−1+k)

(N − 1 + k)! 	

The integration is by the residue theorem in the complex plane. Since f(t) is 
probability density function, the detection probability is obtained by integrating t 
from yb to infinity,

	

Pd =
� ∞

yb

f(t)dt
or= 1 −

� yb

0
f(t)dt

=
� ∞

yb

exp{−Nx} exp{−t}
∞
å
k=0

(Nk)k

k!
t(N−1+k)

(N − 1 + k)!
dt

	

Interchanging the order of integration and summation, the detection probabil-
ity Pd is given by,
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Pd =

∞
∑
k=0

e−Nx(Nk)k

k!

∞�

yb

e−tt(N−1+k)

(N − 1 + k)!
dt

	
(7.13)

The integral is a form of the incomplete Gamma function [5]. The Gamma 
function has an interesting property,

	

∞�

0

e−xxm

m!
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−e−x

m
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0
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so that the incomplete Gamma function can be expressed as

	
yb

�

0

e−xxm

m!
dx =

�
−e−x

m

∑
r=0

xm−r

(m − r)!

�yb

0

= 1 − e−yb
m

∑
r=0

xm−r

(m − r)! 	
or,

	
∞�

yb

e−xxm

m!
dx = 1 −

yb�

0

e−xxm

m!
dx = e−yb

m

∑
r=0

xm−r

(m − r)! 	
Substituting the above result into (7.13), we have finally obtained an expression 

for Pd of Marcum’s target model for N pulses. 

	
Pd =

∞
∑
k=0

e−Nx(Nk)k

k!

N−1+k

∑
r=0

e−ybyr
b

r!
	

(7.14)

Equation (7.14) cannot be programmed directly since both summations involve 
the index that must go up to infinity. Reference [6] has some suggestions how to 
handle the problem.

The infinite summation can be handled as follows, using shorthand notations:

	

∞
∑
k=0

e−Nx(Nk)k

k!

N−1+k

∑
r=0

e−ybyr
b

r!

=

�
L

∑
k=0

(x,k) +
∞
∑

k=L+1

(x,k)

�
·

N−1+k

∑
r=0

(yb,r)

=
L

∑
k=0

(x,k) ·
N−1+k

∑
r=0

(yb,r) +
∞
∑

k=L+1

(x,k) ·
N−1+k

∑
r=0

(yb,r)

=
L

∑
k=0

(x,k) ·
N−1+k

∑
r=0

(yb,r) +

�
1 −

L

∑
k=0

(x,k)

�
·

N−1+k

∑
r=0

(yb,r)
	  

All summation indices are finite now. For a sufficiently large L the bracketed 
expression of the second term can be made as small as we wish, (i.e., 1.0E-12 
or less). 
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�
1 −

L

∑
k=0

(x,k)

�
·

N−1+k

∑
r=0

(yb,r) => ε
N−1+L

∑
r=0

(yb,r)	
The last summation, being the incomplete Gamma integral, approaches unity 

for sufficiently large L.  
Therefore, the detection probability will be given by the first term, a product of 

two summations.

	

Pd =
L

∑
k=0

(x,k) ·
N−1+k

∑
r=0

(yb,r) + remainder

=
L

∑
k=0

e−Nx(Nx)k

k!

N−1+k

∑
r=0

e−ybyr
b

r!
+ remainder

	
(7.15)

 

Considering the highest useful Pd is 0.999999, if we ascertain that the re-
mainder is less than 0.000001 we can safely terminate the infinite summation at 
a large L. 

Equation (7.15) is programmed in PD_(0)_1.CPP. The (0) identifies that the 
target is Marcum’s nonfluctuating, constant cross-section target. The _1 signifies 
that the number of pulse integrated is one, N=1. The false alarm probability is set 
at Pfa=1.0E-6, and the bias Yb=13.8155 per Eq (7.7). The detection probability is 
computed as SNR is incremented in step of 1 dB.

SNR (dB) Index L Pd 

   0.0   17 0.000122
   1.0   18 0.000229
   2.0   19 0.000453
   3.0   20 0.000941
   4.0   22 0.002040
   5.0   23 0.004585
   6.0   25 0.010554
   7.0   28 0.024530
   8.0   30 0.056120
   9.0   33 0.122824
 10.0   37 0.248049
 11.0   41 0.444041
 12.0   47 0.679386
 13.0   54 0.874437
 14.0   62 0.972142
 15.0   72 0.997221
 16.0   84 0.999905
 17.0   99 0.999997
 18.0 117 0.999999
 19.0 139 0.999999
 20.0 153 0.999999

The results are stored in PD_(0)_1.DAT and a graph is shown in Figure 7.5. 
The DAT and the graph indicate that SNR required for 90% detection probability 
is 13.18 dB. For a detection probability of 50%, the required SNR is 11.2 dB. 
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For multiple-pulse integration, N=2, 4, 8, . . . , we must compute the bias level 
Yb that corresponds to the number of pulses to be integrated. The yb for N>1 
should be different from that for N=1.

The probability density function of noise alone at the output of a square-law 
detector is given by Marcum, DiFranco, and Rubin [8].

	
fN(y) =

e−YyN−1

(N − 1)! 	  
(7.16)

where 	

N:  Number of noise pulses;
y:    Instantaneous noise power.

The probability of false alarm is determined by integrating (7.16) over an ap-
propriate limit.

Figure 7.5  Pd  vs  SNR, Marcum’s target model.



7.2  Probability of Detection and the False Alarm Probability	 177

MTC

 	
Pfa =

∞�

yb

e−YyN−1

(N − 1)!
dy = 1

yb
�

0

e−YyN−1

(N − 1)!
dy−

	
(7.17)

where yb is the bias level required for a specified Pfa and number of pulses inte-
grated. The integral is again a form of the incomplete Gamma function. The inte-
gral is replaced by sum of an infinite power series.

	
Pfa =

∞
∑
k=0

e−ybyk
b

k! 	
(7.18a)

 

and

	

yb = ln

⎡
⎢⎢⎢⎣

N−1
∑

k=0
yk

b/k!

Pfa

⎤
⎥⎥⎥⎦
	

(7.18b)

Equation 7.18b  is a transcendental form. We want to compute yb when the 
number of pulses may be as large as 100. In order to solve (7.18b) we would employ 
either a bisection method, or the Newton-Raphson method, or some other root-
finding methods. See Chapter 12.

For a fast convergence we adopt the Newton-Raphson method. This method is 
an iterative procedure to find the solution of a transcendental equation after we find 
the first derivative, and the derivative must not be zero.

	
yk+1 = yk −

f(yb)

f �(yb) 	

We let

	

f(yb) = yb − ln

⎡
⎢⎢⎢⎣

N−1
∑

k=0
yk

b/k!

Pfa

⎤
⎥⎥⎥⎦ = yb − ln

�
S(yb,k)

Pfa

�

	

or

	
S(yb,k) =

N−1

∑
k=0

yk
b/k!

	

for a shorthand notation.
The first derivative of  f(yb) with respect to yb is,

	
f �(yb) = 1 − S �(yb,k)

S(yb,k)
=

yN−1
b

S(yb,k)(N − 1)! 	
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Thus, the iterative algorithm to obtain the bias level yb for N≥2 is given by

	
yb(K + 1) = yb(K) −

yb−ln

�
S(yb,k)

Pfa

�

y
N−1
b

S(yb,k)(N − 1)! 	
( 7.19)

Equation 7.19  is programmed in BIAS_YB.CPP for Pfa=1.0E-6, N=1 to N=100. 
The iteration is terminated when yb(k+1) – yb(k) ≤ 1.0E-12. The number of iterations 
required is dependent upon the initial estimate of yb(k). For example, we estimate 
(initialize) yb(1)≈13.0 for N=1 per (7.7). The program produced yb(1)=13.815511,  
a correct answer with six significant digits. The initial estimate of yb(2) is set at yb(1), 
the previous yb. The initial estimate of yb(i+1) is set to yb(i), and so on. This is permis-
sible since yb is a monotonic function of N. 

Pachares [8] has published yb with four significant digits for N<150. Mar-
cum reported yb for N>150, and Meyer and Meyer [9] in a graphic form. With yb  

Figure 7.6  Pd  versus  SNR, Marcum’s target. 
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computed for N ≥2 on hand we are ready to compute the detection probability for 
Marcum’s nonfluctuating target model.

Equation (7.15)  is programmed in PD_(0)_N.CPP for N=2, 4, 8, 16 and 32 
with matching yb and Pfa=1.0E-6. The results are stored in PD_(0)_N.DAT, are 
shown in Figure 7.6.

As an additional reference we mention Albersheim’s work [10] on Marcum’s 
target model. He published an empirical equation that shows the SNR per pulse re-
quired when the number of pulses to be integrated N is given and the detection prob-
ability and the false alarm probability are specified. His closed-form approximation 
is remarkably accurate, within two-tenths of a decibel. Interested readers should 
read an article by Tufts and Cann [11].  Albersheim’s empirical approximation is

	

SNR(db) =

−5.0 log10 +
�

6.2 +
4.54√

N + 0.44

�
log10[A + 0.12AB + 1.7B]( )N

	

(7.20)

where

	
A = ln

�
0.62
Pfa

�
, B = ln

�
Pd

1 − Pd

�

	

Equation (7.20) is programmed in DET_SNR.CPP, and the results are shown in 
Figure 7.7. The results and the graph indicated that the SNR per pulse required for 
Pfa=1.0E-6, N=1, 2, 4, . . . 64, agree astonishingly well with PD_(0)_N. CPP.

Figure 7.7  SNR required  versus  N,  Albersheim’s equation.
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7.3  The Probability of Detection, Swerling Target Models

Swerling has extended Marcum’s analysis to targets whose cross-sections fluctuate 
from one observation to the next. He classified targets into four basic models. (See 
Table 7.1.)

It is difficult to assign a target such as aircraft, battle tank, or surface ship, or 
farmland, or hill and mountain to any specific target model because the character-
istics of a target cross-section are also dependent upon the operating parameters of 
the radar system. The number of published reports on target models is numerous 
and increasing [12].

It is claimed that the observed data on airborne aircraft targets agrees with the 
density distribution assumed as model 1 and 2. Models 3 and 4 apply to targets that 
can be represented as one large target surrounded by a number of small reflectors,  
one large target subjected to small changes in the aspect angle, a frigate or corvette 
with complex superstructures, or to a target observed by two-channel frequency 
diversity radar.

Target models 1 and 3 apply when the cross-section fluctuates from scan to 
scan. The return signals are highly correlated, that is to say, the pulse repetition rate 
is high with respect to the target dynamics. The fPRF, high or low, and target mo-
tions, slow or fast, hold mutual relative meanings.

Target models 2 and 4 apply when the fluctuation is rapid, from one pulse to 
the next. The return signals are decorrelated, the pulse repetition rate is low with 
respect to the target dynamics, or the target aspect angle changes rapidly with re-
spect to the pulse repetition frequency.

In this section we derive mathematical expressions for the detection probability 
of Swerling target model 1 through 4. The source codes for each model are written.  
Table 7.2 summarizes the equations for Pd.

We review the transformation of the probability density function at the out-
put of square-law detector. What would be the output probability density function 
when a narrowband Gaussian noise is the input?  Equation (7.21) provides an 
answer, Papoulis [3].

	
fX(x) =

1

sx
√

2p
exp

�
−x2

2s2
x

�
→ y = x2 → fY(y) = ?

	

Table 7.1  Swerling’s Target Classification Models

Target Model Probability Density Function of  
Target Cross-Section

Rate of Fluctuation of Cross-Section

1 Rayleigh Slow (scan-to-scan fluctuation)
2 Rayleigh Fast (pulse-to-pulse fluctuation)
3 Chi-squared pdf  

4 degrees of freedom
Slow(scan-to-scan fluctuation)

4 Chi-squared pdf Fast (pulse-to-pulse fluctuation)
4 degrees of freedom 



	

fy(y) =
fx(x1)
|y �(x1)| +

fx(x2)
|y �(x2)|

�
y �(x) =

d
dx

y(x)
�

=
1

2
√

y
1

σx
√

2π
exp

� −y
2 2

x

�
+

1
2
√

y
1

σx
√

2π
exp

� −y
2σ2

x

�

=
1

σx
√

2πy
exp

� −y
2 2

x

�
σ

σ 	

(7.21)

									                

(7.22)

Equation (7.22) is a chi-squared pdf with one degree of freedom.

Suppose a variable z is the sum of the square of two independent Gaussian ran-
dom variables x and y with zero mean and an equal variance σ 2. 

	 z = x2 + y2
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fx(x) =
1

σ
√

2π
exp{−x2

2σ2 }

fy(y) =
1

σ
√

2π
exp{−y2

2σ2 }
	

The probability density function of z is easily obtained by convolution, for 
instance.

	
fz(z) =

1
2σ2 exp

� −z
2σ2

�

	
(7.23)

Equation (7.23)  is a chi-squared pdf with two degrees of freedom. (See Figure 
7.8) In general a random variable z would be sum of the squares of  N independent 
Gaussian random variables.

	 z = x2
1 + x2

2 + x2
3 + · · · + x2

N	

When all xi are Gaussian with zero mean and equal variance σ 2, the random 
variable z is said to have a probability density function that is chi-squared with N 
degrees of freedom. The probability density function of z is

	
fz(z) =

1

σ22N/2Γ(N/2)

� z
σ2

�N/2−1
exp

� −z
2σ2

�

	
(7.24)

Figure 7.8  Chi-squared probability density function degree of freedom, 2, 4 and 8.
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Chi-squared with four degrees of freedom is then

	
fz(z) =

z
4σ4 exp

� −z
2σ2

�

	
(7.25)

Equation 7.23 can be rewritten in a slightly different form when we substitute 
σ 2=x/2 in (7.23), and  σ 2=x/4 in (7.25).

	
fz(z) =

1
x

exp
�−z

x

�

fz(z) =
4z
x2 exp

�−2z
x

�

	 (7.26) 

		  (7.27)

where  

z:  Signal-to-noise ratio in power;
x:  Average of z over all target fluctuation.

Equation (7.26) is the probability density function of Swerling target models 1 
and 2, and (7.27) is that of models 3 and 4. 

7.3.1  Swerling Target Model 1

Swerling derived the characteristic function for model 1 from that of Marcum’s 
nonfluctuating target for N pulses.

		
(7.28)

For a single pulse N=1, 

	
C1(p) =

1
1 + p(1 + x) 	

(7.29)

The probability density function will be obtained by Fourier transform,

	
f1(z) =

1
2π

∞�

−∞
C1(p) exp{pz} dz =

1
1 + x

exp
� −z

1 + x

�

	
(7.30)

Often we consult Fourier transform pairs prepared by Campbell and Foster [4].  
Equations (7.29) and (7.30) are the pair given by the Campbell and Foster Eq. 438.

CN(p) =
� ∞

0

1
x

exp
�−z

x

� exp
�
−Nz

�
1

p+1

��

(p + 1)N dz

=
1

(p + 1)N−1[1 + p(1 + Nx)]



184	 Target Detection

MTC

The detection probability for N=1 is found by integrating (7.30) over a proper 
limits. 

	
Pd =

∞�

yb

f1(z) dz = 1 −
yb

�

0
f1(z) dz = exp

� −yb

1 + x

�

	
(7.31)

The probability density function for N≥2 is obtained by,

	

fN(z) =
1

2π

∞�

−∞
CN(p) exp{− pz} dz

=
1

2π

∞�

−∞
1

(p + 1)N−1[1 + p(1 + Nx)]
exp{− pz} dz	

The pair [581.7] of Campbell and Foster gives an expression for the probability 
density function.

	

1

(p + r)(p + b )a−1 ↔ 1

G(a − 1)(r + b )a−1 exp{−bg} g[a − 1,(r − b )g]

=
1

(1 + Nx)
1

G(a − 1)
�

Nx
1+Nx

�N−1

× exp{−x/(1 + Nx)} g
�
a − 1,

Nxz
1 + Nz

�

=
1

Nx

�
1 +

1
Nx

�N−2

exp{−x/(1 + Nx)}

× I
�
N − 2,

1√
N − 1

Nxz
(1 + Nx)

�

	
where I[.] is an Incomplete Gamma function of Pearson’s form given by Abramow-
itz and Stegun [13], (Equation [6.5.6]).

The probability density function given above must be integrated over proper 
limits to obtain the detection probability. It is a daunting task indeed.  A simpler 
way is found by Swerling by noting that

	

1

(1 + p)N−1 =
1

(1 + p)N−1[1 + p(1 + Nx)]
+

p(1 + Nx)

(1 + p)N−1[1 + p(1 + Nx)]

= CN(p) + p(1 + Nx)CN(p) 	
and,

	

zN−2 exp{− z}
(N − 2)!

= f(z) + (1 + Nx)f �(z)
	

The left-hand side is from the pair [431] of Campbell and Foster, and the dif-
ferential on the right-hand side is from the pair [208] of Campbell and Foster.  The 
detection probability is obtained by integrating both sides.
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Pd =
∞�

yb

fN(z) dz

=
∞�

yb

zN−2 exp{z}
(N − 2)!

dz − (1 + Nx)
∞�

yb

f �N(z) dz
	

(7.32)

Since

	

Pd = 1 −
yb

�

0
fN(z) dz

= 1 −
yb

�

0

zN−2 exp{−z}
(N − 2)!

dz + (1 + Nx) fN(yb)
	

Substituting  

	

fN(yb) =
1

1 + Nx
1�

Nx
1+Nx

�N−1 exp{− yb/ (1 + Nx)}

· I

⎡
⎣N − 2,

yb√
N − 1

�
1 + 1

Nx

�
⎤
⎦

	

we obtain an expression of the detection probability Pd.

	

Pd = 1 − I
�
N − 2,

yb√
N − 1

�

+ (1 + Nx)N−1 I
�
N − 2,

yb√
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�
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� −yb

1 + Nx

�

= 1 −
∞
∑

k=N−1

exp{− yb} yk
b

k!

+
�

1 +
1

Nx

�N−1 ∞
∑

k=N−1

exp{yb/ (1 + Nx)}
�

yb
(1+Nx)

�k

k!
exp

� −yb

1 + Nx

�

	
(7.33)

Swerling found that both incomplete Gamma functions are very nearly unity 
for most cases of interest when Pfa=1.0E-6 or 1.0E-5. Therefore, two infinite sum-
mations could be replaced by unity. Then Pd would be given by
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Pd =

�
1 +

1
Nx

�N−1

exp
� −yb

1 + Nx

�

	
(7.34)

Equation (7.31)  for N=1 is programmed in PD_(1)_1.CPP. The (1) stands for 
Swerling target model 1, and ‘_1’ stands for N=1.  The data are stored in PD_(1)_
1.DAT. The results are shown in Figure 7.9.

Equation (7.34)  for N ≥ 2 is programmed in PD_(1)_N.CPP. The number of 
pulses integrated is N=2, 4, 8, 16 and 32. The data are stored in PD_(1)_N. DAT. 
The results are shown in Figure 7.9.

7.3.2  Swerling Target Model 2

The characteristic function for Swerling target model 2, N=1, is

Figure 7.9  Pd  versus  SNR, Swerling target model 1. (For accurate reading, refer to correspond-
ing DAT files.)
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C1(p) =
∞�

0

1
x

exp
�−z

x

� exp
�
−z

�
p

p+1

��

(p + 1)
dz

=
1

1 + p(1 + x) 	
(7.35)

The characteristic function for N≥2 is given by (7.35) raised to the Nth power. 
This is permissible since the return signals are assumed to be uncorrelated. For 
Swerling target model 1, we have to derive CN(p) first in order to obtain C1(p) since 
the return signals are correlated. 

	
CN(p) =

1
[1 + p(1 + x)]N	

(7.36)

We note that the characteristic function of Swerling target 2, N=1, is identical 
to that of Swerling target 1, N=1. Thus, the detection probability of Swerling target 
2, N=1 is identical to that of Swerling target 1, N=1. 

The probability density function for N≥2 is given by pairs [431] of Campbell 
and Foster.

	
fN(z) =

1

(1 + x)N(N − 1)!
zN−1 exp

� −z
1 + x

�

	
(7.37)

Then
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∞�
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�
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�
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�
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∞
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exp
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1 + x

��
yb

1 + x

�k

	
(7.38)

Equation (7.38) is programmed in PD_(2)_N.CPP. The (2) stands for Swerling 
target model 2, and the “_N” stands for N pulses integrated. The infinite summa-
tion in k is terminated when the last incrementing term is less than 1.0E-9. The 
results are stored in PD_(2)_N.DAT, shown in Figure 7.10.

7.3.3  Swerling Target Model 3

The characteristic function of Swerling target model 3 is given by 

	

CN(p) =
1

(1 + p)N−2

1�
1 + p

�
1 + Nx

2

��2

	 (7.39) 
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For N=1,

	  
C1(p) =

1 +�
1 + p

�
1 + x

2

��2

p

	
(7.40)

For N=2,

	
C2(p) =

1
[1 + p(1 + x)]2 	

(7.41)

The probability density function for N=1 is given by pairs [442] and [449.5] 
of Campbell and Foster. The pdf for N=2 is by pairs [442], and for N≥3 by pairs 
[581.1].

	

N = 1, f(z) =
1

(1 + x/2)2 exp
� −z

1 + x /2

��
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z
1 + 2 /x

�

N = 2, f(z) =
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1 + x

�

N ≥ 3, f(z) =
1

(1 + Nx/2)2(N − 1)!
xN−1 exp{− z} 1F1

�
2; N;

1
1 + 2 /Nx

�
	

(7.42)

		

(7.43)

Figure 7.10  Pd  versus  SNR,  Swerling target model 2. (Refer to DAT file for accurate reading.)
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(1 + Nx/2)2(N − 1)!
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(7.44)

where  nFm[.] is a generalized hypergeometic function.

The probability of detection for N=1 and N=2 is obtained by direct integration.

		
(7.45)

	

N = 1, Pd =
�
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(x/2)yb

(1 + x /2)2

�
exp

� −yb
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exp
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1 + x

�
	 (7.46)

For N≥3, Swerling transformed the hypergeometric function to a combination 
of an exponential and two incomplete Gamma functions. Swerling found that the 
incomplete Gamma functions are nearly unity for the cases in which we are inter-
ested; Pfa=1.0E-6, and SNR=x is greater than 1.0 dB. He presented an approximate 
expression for N≥3. 

	
Pd =

�
1 +

2

Nx

�N−2
�

1 +
yb

1 + Nx
2

− 2(N − 2)
Nx

�
exp

�
−yb

1 + Nx
2

�

	
(7.47)

This is an exact equation when N=1 and N=2. 
Myer and Mayer [9] obtained an exact expression for N≥2 by a contour inte-

gration in the complex plane through the residue theorem. It is a lengthy arduous 
path they have taken, Myer and Myer’s appendix equation (A-85).

	

Pd =
cyN−1

b e−yb

(N − 2)!
+

N−2

∑
k=0

ybe−yb

k!

+
e−yb

(1 − c)N−2

�
1 − c(N − 2)

(1 − c)
+ cyb

��
1 −

N−1

∑
k=0

1
k!

(1 − c)k yk
b e−yb(1−c)

�

	
(7.48)

where  c = 1/(1+Nx/2).
We found that the difference between Swerling’s approximation (7.47) when 

N≥3 and Myer and Myer’s exact equation (7.48) is practically nil for the range  
Pd >10% and Pfa=1.0E-6 through two separate programs.

Equation (7.47) is programmed in PD_(3)_1.CPP. The data are stored in PD_(3) 
_1. DAT.  Myer and Mayer’s exact equation is programmed in PD_(3)_N.CPP for N=2, 
4, 6, 16, and 32. The results are stored in PD_(3)_N.DAT, shown in Figure 7.11.
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7.3.4  Swerling Target Model 4

The characteristic functions for Swerling’s target model 4 are given by,

		
(7.49)

 

	

C1(p) =
1 + p

[1 + p(1 + x/2)]2

CN(p) =
(1 + p)N

[1 + p(1 + x/2)]2N 	 (7.50)

For N=1 the probability density function is identical to that of model 3, (7.42), 
and the detection probability (7.45).

For N≥2, Swerling employed the Gram-Charlier series or Edgeworth series to 
obtain the probability density function and integrated term by term to compute the 
detection probability. Since the Gram-Charlier is an infinite series, the last term to 

Figure 7.11  Pd  versus  SNR, Swerling target model 3.
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be included must be less in magnitude comparable to the precision desired. It turned 
out that four terms of the series have been sufficient. Interested readers would ben-
efit by consulting Helstrom [14] and DiFranco and Rubin [7].

Myer and Mayer obtained an exact expression for the detection probability for 
N≥2 through the method of contour integration in the complex plane via the theory 
of residue theorem. We do not repeat their derivation.

	
Pd = eN

N

∑
k=0

N!
k!(N − k)!

�x
2

�N−k 2N−1−k

∑
r=0

e−cyb(cyb)r

r! 	
(7.51)

 

where c =     1                  
1+x/2 

.

Equation (7.51) is programmed in PD_(4)_N.CPP, shown in Figure 7.12.

Figure 7.12  Pd versus SNR, Swerling target model 4.
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7.4  Conclusion

The probability of detection for Marcum’s and Swerling’s target models with cor-
responding bias levels have been computed. Marcum’s target is nonfluctuating, a 
constant cross-section for all observations.

Four Swerling target models are either Rayleigh or chi-squared fluctuating tar-
gets. The returned signals may be correlated (slow fluctuation) or completely uncor-
related (fast fluctuation). The expressions for the probability of detection of the five 
target models are listed in Table 7.2.

Another computation algorithm through the moment generation function in or-
der to avoid a summation of infinite series has been reported with a fixed or adaptive 
bias level in [15]. We shall cover the adaptive detection problem in Chapter 10.

As more experimental data is accumulated and analyzed there appear to be other 
target models that suit better than the five models we have studied. A lognormal 
model and a Weibull model have been suggested; they may be either fluctuating or 
nonfluctuating, slow or fast. We shall cover Weibull target models in Chapter 10.

Swerling [16] states  “ . . . we must understand and establish the underlying true 
mechanism of physical scattering of an object so that resultant statistics of radar 
cross-section can be formulated.”  We do not wish to entertain any plausible target 
model merely because it is in an advanced textbook on probability and statistics. 
The study on radar target models is broad and expanding, and the explorative en-
deavors will continue [12, 17].

At the end of Section 7.2  we mentioned Albersheim’s empirical formula for 
Marcum’s target. His equation is very convenient for a preliminary system design. 
We demonstrate with an example. The basic radar equation of return signal power 
and the signal-to-noise ratio are

	
Pr =

PtG2λ2σo

(4π)3R4Loss	
(7.52)

or   

 	

S
N

=
PtG2λ2σo

(4π)3R4 kTBw NF Loss	
(7.53)

Where  

Pr:       Received power, watts;
Pt:       Transmitted power, watts;
G:        Antenna gain, dimentionless;
λ:       Transmitted carrier wavelength, m;
σo:     Target cross section, m2;
R:     Target range, m;
K:      Boltzmann’s constant, 1.3905E-23 Joule/Ko;

T:         Absolute temperature of system in kelvin, Ko;

Bw:   Predetection bandwidth, Hz;
Loss:  Hardware plumbing loss and other losses;
NF:    Noise figure of system.
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Let us assign the following parameters for a preliminary system design:

Pr :	 50.0 KW,	 47.0  dBW;
G:	 1000.0  (30 dB),	 60.0  dB;
λ2:	 (0.032 m)2, X-band,	 -29.9 dBm2;
σo:	 10.0 m2,	 10.0 dBm2;
(4π )3:	 1984.4,	 32.98 dB;

K:	 1.38054E-23 J/Ko;
T:	 300.0 Ko, 27 Co;
Bw:	 1.0 MHz;
KTBw: 4.14E-15,	 -143.83 dBW;
Loss:    -3.0 dB;
NF:      -6.0 dB.

From Albersheim’s equation (7.20) or graph, Figure 7.7, we obtain the following:

•  S/N required:	 Single pulse		            (13.11  dB)

	 Pd=0.9, Pfa=1.0E-6

Figure  7.13  Computation of detection range.



194	 Target Detection

MTC

•  S/N required:   Two pulses		            (10.46  dB)
•  S/N required:   Four pulses		            (7.96  dB)
•  S/N required:   Eight pulses		            (5.68  dB)

The power returned Pr is plotted in Figure 7.13. The slope of the returned 
power is –40 dB per decade. The noise power level is indicated by the dashed  
line. S/N=0.0 dB where the power line intercepts the KTBw.NF is marked by an 
open circle.

The maximum detection range where S/N must be at least 5.68 dB, eight  
pulses noncoherently integrated, is computed by summing the furthest right most 
column.

	 R4 = 183.27 dBm4,   R = 45.82 dBm,    R = 38.2 km

Table 7.2  Characteristic Functions of Five Target Models

Target  
Model

N=1 N≥2

0
C1(p) =

exp{−x} exp
�

x
1 + p

�

1 + p
CN(p) =

exp{−Nx} exp
�

Nx
1 + p

�

(1 + p)N

1 C1(p) =
1

1 + p(1 + x)
CN(p) =

1

(1 + p)N−1 + [1 + p(1 + Nx)]

2 C1(p) =
1

1 + p(1 + x)
CN(p) =

1

[1 + p(1 + x)]N

3 C1(p) =
1

[1 + p(1 + x/2)]2
CN(p) =

1

(1 + p)N−2[1 + p(1 + Nx/2)]2

4 C1(p) =
(1 + p)

[1 + p(1 + x/2)]2
CN(p) =

(1 + p)N

[1 + p(1 + x/2)]2N

N:  Number of pulses noncoherently integrated;

  x:  Average signal-to-noise ratio, in power;

  p:  Fourier transform variable, jω.

	

⎧⎪⎪⎪⎪⎨
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� −∞

∞
f(x)e jwx dx
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1
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∞
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⎧
⎪⎪⎪⎨
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C(p) =
� −∞

∞
f(x)e pz dx
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1

2p

� −∞

∞
C(p)e−pz dp
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Table 7.3  The Probability of Detection

Target  
Model

Probability of Detection

0 Pd =
∞
å

k=0

e−Nx(Nx)k

k!

N−1+k

å
r=0

e−yb yr
b

r!
for all N for all N

1 Pd = exp
� −yb

1 + x

�
N = 1
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∞
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b
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+
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1 +
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N≥2
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�
N = 1
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1
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exp
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��
yb

1 + x

�k

N ≥ 2

N=1

N≥2

3 Pd =
�
1 +

(x/2)yb
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�
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1 + x/2

�
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�
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1 + x

�
exp
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1 + x

�
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�

1 +
2

Nx

�N−2
�

1 +
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2
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�
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�
c = 1/(1 + Nx/2) N ≥ 2

N=1

N≥2

4 Pd =
�
1 +

(x/2)yb

(1 + x/2)2

�
exp

� −yb

1 + x/2

�
N = 1

Pd = eN
N

å
k=0

N!
k!(N − K)!

�x
2

�N−k 2N−1−k

å
r=0

e−cyb (cyb)r

r!
N ≥ 2

c = 1/(1 + x/2)

N=1

N≥2

N:  Number of pulses noncoherently integrated;

x:     Signal-to-noise ratio in power;

yb:  Bias level required to maintain a specified Pfa.
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List of Programs

Program Features

  (1) PULSEDET.CPP Pulse detection by recirculating accumulator
  (2) BIAS_YB.CPP Computes bias level, N=2 to N=100
  (3) PD_(0)_1.CPP Detection probability, Marcum target 0, N=1
  (4) PD_(0)_N.CPP Detection probability, Marcum target 0, N≥2
  (5) PD_(1)_1.CPP Detection probability, Swerling target 1, N=1
  (6) PD_(1)_N.CPP Detection probability, Swerling target 1, N≥2
  (7) PD_(2)_1.CPP (Did not program) Identical to PD_(1)_1.CPP
  (8) PD_(2)_N.CPP Detection probability, Swerling target 2, N≥2
  (9) PD_(3)_1.CPP Detection probability, Swerling target 3, N=1
(10) PD_(3)_N.CPP Detection probability, Swerling target 3, N≥2
(11) PD_(4)_1.CPP (Did not program) identical to PD_(3)_1.CPP
(12) PD_(4)_N.CPP Detection probability, Swerling target 4, N≥2
(13) DET_SNR.CPP Albersheim’s detection equation
(14) BINOMIAL.H Header file, computes binomial coefficients
(15) FACTORIA.H Header file, computes factorial, N!
(16) BIAS_YB.H Header file, computed bias level yb
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C h a p t e r  8   

Kalman Filter

8.1  Introduction

The term Kalman filter stirs excitement in the heart of every student of engineer-
ing and science. Kalman’s epoch-breaking solution [1] to the problems of discrete 
state estimation has been applied successfully to a wide and diverse area including 
aerospace and marine navigation, power grid control, plant operation control, bio-
medical sample cultivation, prediction of demographic distribution, and even crop 
harvest forecast.

Scores of books and hundreds of research reports have been published, some 
theoretical, some applied, and others in between. This chapter is written for those 
students and engineers who plan to broaden their knowledge of Kalman filters in 
a quick order.

Estimation is a process of extracting information from available measure- 
ments, though the measurements are invariably contaminated with errors. The 
most important information we wish to extract from the measurements may be 
a prediction, such as the future position of an aircraft or ocean liner or the future 
power demand and the future plant control required to produce goods with speci-
fied tolerance.

The object of this chapter is to provide practical working familiarization in the 
subject of estimation, prediction, and computation algorithms that extract the best 
information from contaminated measurements.

An implementation of the Kalman filtrering process on a computer illuminates 
the importance of the finite word length of computing machines. The finite word 
length causes a loss of precision through round-off error, destruction of symmetry 
in a matrix, accumulation of error build-up, and so on. We sometimes encounter 
a numerically unstable algorithm that leads to an utterly meaningless result, even 
though the supporting theoretical equations are perfect.

Authors of numerous books and research reports have used symbols and nota-
tions of bewildering varieties that cause confusion and discouragement to  begin-
ners. We rectify this problem at the outset. We shall adhere to the following two 
rules in the symbols and notations. The state under investigation is discretized in 
time as past, present and future as shown in Figure 8.1, k-1, k and k+1, the imme-
diate past, present and immediate future, respectively. The notation xk denotes the 
present state in vector form. The overhead triangle caret (^) signifies an estimate of 
xk based on all the past information. The notation xk+1 with a caret is an estimate 
of future states based on all the information including xk.

We introduce an estimate with an overhead tilde x̃ k. This notation denotes an 
error between the true state xk , unknowable to observer, and an estimate x̂k. We 
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will never know the true state xk; we only surmise what it could be by the magni-
tude of x̃ k; the smaller the x̃ k, the closer x̂k  is to the true state xk.

	 x̃ k = x̂k - xk	 (8.1)

The Kalman filter is often called a recursive filter. Recursive filtering is a process 
that is not required to store all the past measurements to estimate the present state 
and predict the future state. An example is given to convey the concept of a recur-
sive filter, or a recursive algorithm. 

Suppose we have a lathe that produces precision machine screws of exactly one 
inch in length. Imagine we have produced 100 screws. Due to fatigue in the lathe 
and the nonuniformity of the steel rod from which the screws are made there will be 
a few screws ever so slightly longer or shorter than one inch. We wish to compute 
the accurate average length of the screws. We would do the following:

	
x̂k =

1
k

k

∑
i=1

zi
	

(8.2)

where zi is the measurement of each screw with precision micrometer. We would 
record all the measured lengths, 100 of them, sum them up and take the average. 
Suppose further that the lathe takes one minute to produce one screw. We would 
have to wait one hour and 40 minutes to produce 100 screws and need sometime to 
compute the average. The measurements may have unknown errors as the result of 
turning the knuckles too tightly or too loosely. The measurement uncertainty can 
be formulated as follows:

	 zk = xk + vk	 (8.3)

where zk is measured length, xk is true length, and vk is measurement error.  When 
we say this screw is one inch long, we imply that the best estimated length of the 
screw is one inch. Back to the problem of one hour and 40 minutes of waiting. 
When the hundredth screw is produced the average length of screws is given by

	
x̂k =

1
k

k

∑
i=1

zi
	

(8.4)

Figure 8.1  Estimate of state: past, present and future.
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The expression above can be manipulated to separate the prior estimate, ^ xk, 
based on the average of 99 screws and the measurement of the hundredth screw.

	

x̂k+1 =
1

k + 1

�
k

∑
i=1

zi + zk+1

�

=
k

k + 1

�
1
k

k

∑
i=1

zi

�
+

1
k + 1

zk+1

=
k

k + 1
x̂k +

1
k + 1

zk+1
	

(8.5)

Thus, (8.5) eliminates the storage (recording) problem and the waiting time, as 
long as the previous estimate x̂k has been retained. In light of this recursive concept, 
we refine Figure 8.1 as shown in Figure 8.2. 

A few words on the superscripts (-) and (+). x ^
k 
- is an estimate based on all in-

formation available just before the measurement zk is made. This is the a priori 
estimate and is the embodiment of all the past data, xk-1, zk-1 and x+ 

k-1. On the 
other hand, xk 

+ is the a posteriori estimate just after the present measurement zk  is 
taken. x- 

k+1 is a prediction based on all the past data plus the present measurement  
zk. All the vectors x shown in Figure 8.2 may have an overhead caret(^) or overhear 
tilde (~).

For a moment, imagine you stand at point k-1 in time. xk 
- is really a prediction 

based on all the information you have up to point k-1. Next, shift your position to 
the kth time (present). x- 

k+1 is a predicted future state based on all the information 
you have at the kth time, xk 

-, zk and xk 
+. The xk with superscript (-) is a prediction 

made after the measurement zk-1 and the superscript (+) is an estimate immediately 
after the measurement zk.  Incidentally x+ 

k+1, a dashed line at the extreme right, is a 
meaningless notation in as much as we cannot estimate the state without knowing 
the future measurement zk+1. We adhere to these two rules and notations through-
out our discussions: overhead carret (^) and tilde (~), superscript (-) and (+).

This chapter presents several “real-world” programs, starting with an easier 
program followed by progressively more difficult ones. Some authors present seven 

Figure 8.2  Estimate of xk before and after measurement zk.
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Kalman equations at the onset with unfamiliar symbols and notations. We prefer 
to avoid this practice. We shall present seven equations in an orderly sequence with 
numerical examples when necessary for the uninitiated.

8.2  Derivation of Kalman Filter Equations

Refer to Figure 8.3. A passenger airliner has a smooth flight plan. The pilot plans 
to fly at a constant velocity at a constant altitude on a straight path. Due to non
constant engine thrust and nonuniform atmospheric conditions, the passenger air-
liner would traverse at varying velocities and an off-straight-line path.

The position of the aircraft can be expressed in the Cartesian coordinate system 
(CCS) as follows. The overhead single dot (.) is velocity and two dots (..) accelera-
tion. T is the discrete time measurement interval in seconds. 

	

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk+1 = xk + ẋkT + 1/2ẍkT2

ẋk+1 = ẋk + ẍkT

yk+1 = yk + ẏkT + 1/2ÿkT2

ẏk+1 = ẏk + ÿkT 	

(8.6)

Recast the above Newtonian motion equations into a more compact form with 
ax and ay, representing accelerations in x and y axis.

	

⎡
⎢⎢⎣

xk+1
ẋk+1
yk+1
ẏk+1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xk
ẋk
yk
ẏk

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

T2/2 0
T 0
0 T2/2
0 T

⎤
⎥⎥⎦

�
ax
ay

�

	

(8.7)

Figure 8.3  Flight trajectory.
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Equation (8.7) is still cumbersome. Can we write it the following vector-matrix 
form?

	 xk+1 = Φxk + Γwk 	 (8.8)

where

	

ΦΦΦ =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ ΓΓΓ =

⎡
⎢⎢⎣

T2/2 0
T 0
0 T2/2
0 T

⎤
⎥⎥⎦ wk =

�
ax
ay

�

	

Equation (8.8) is the first of Kalman’s seven equations and is called the state 
equation (the state of , or the position and the motion of, the passenger airliner). 

The disturbance wk is assumed to be distributed as Gaussian with mean zero 
and variance σ 2. The covariance matrix Qk is given by,

	

Qk = E{wk,w
T
k} = E

��
ax
ay

�
[ax ay ]

�

= E

��
a2

x axay

ayax a2
y

��
=

�
σ2

x 0

0 σ2
y

�

	

We assumed that the accidental acceleration perturbations ax and ay at each 
measurement are completely uncorrelated and are small in magnitude, say ± 0.5g, 
uniformly distributed. (1g = 9.8 m/sec2). (See Figure 8.4.) The expectation E{axay} 
is identically zero, for ax and ay are completely uncorrelated. The variance of the 
uniformly distributed disturbance is given by,

	 sx
2 = sy

2 =  1        12 [4.9 - (-4.9)]2 = 8.0 (m/sec2)2

The passenger airliner’s position is observed (or measured) by a tracking radar 
located at the origin. The radar will report the distance rk and the angle qk in the 
line-of-sight (LOS) coordinate system.

Figure 8.4  Acceleration perturbation distribution.
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�
r̂k = rk + nr

θ̂k = θk + nθ 	
(8.9)

where nr and nq are the errors in the range and angle measurements. The error in 
the range measurement is due to a finite transmitter pulsewidth. The true target 
position may be at the leading edge of the pulse, at the trailing edge, or somewhere 
between. (See Figure 8.5.)

The measurement error in angle is due to a finite antenna beamwidth. The tar-
get may be located at the upper edge of the beam, at the lower edge of the beam, or 
somewhere within the -3dB beamwidth, as shown in Figure 8.6.

We cast (8.9) in a vector-matrix form as we have done previously.

	

�
rk
θk

�
=

�
1 0 0 0
0 0 1 0

�
⎡
⎢⎢⎣

rk
ṙk
θk

θ̇k

⎤
⎥⎥⎦ +

�
nr
nθ

�

	

(8.10)

and further we write in a compact form,

	 zk = Hxk + vk 	 (8.11)

where

	
zk =

�
rk
θk

�
H =

�
1 0 0 0
0 0 1 0

�
vk =

�
nr
nθ

�

	

Figure 8.5  Finite pulsewidth and range measurement error.

Figure 8.6  Antenna beamwidth and angle measurement error.
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Equation (8.11) is the second equation of Kalman’s seven. It is called the mea-
surement equation. A numerical example of the covariance matrix Rk of vk will be 
presented shortly.

Derivation of the Kalman gain
Please look at Figure 8.2. Suppose you are at time k. You see xk 

-, zk, and xk
 + where xk 

-  
is the a priori estimate based on all information available at k-1; zk is the present 
measurement; and  xk 

+ is the a posteriori estimate after zk is taken. The a posteriori 
estimate can be expressed as

	 xk
+= kk¢ xk

- + kkzk	 (8.12)

where k¢ k and kk are yet to be determined. Equation (8.12) is identical in form to 
(8.5), the recursive estimation. We substitute the following two expressions into 
(8.12). One is the a priori estimate error and other the a posteriori estimate error.

	 x̃k
- = xk- xk

-	 (8.13)

	 x̃k
+ = xk - xk 

+	 (8.14)

Substituting (8.11), (8.13), and (8.14) into (8.12) yields,

	 x̃+
k = [I − k�

k − kkH]xk + k�
kx̃−

k + kvvk	 (8.15)

Some remarks on (8.15) follow: By definition, E{vk} = 0, that is, the means of 
the range and angle errors are identically zero. The second term involves ~ xk 

-, the a 
priori estimate error. Had we been correct in our computation in the past, this term 
would have been zero. Therefore, in order for the a posteriori estimate error ~ xk 

+ to 
be zero, the bracketed term must be a null matrix. 

	 kk¢ = I - kkH 

Substitution of the above results in (8.12) leads to an updated estimate.  

	 xk
+ = [I - kkH] xk

-+ kkzk

or 

	 xk
+ = xk

- + kk [zk - Hxk
-]	 (8.16)

Equation (8.16) is the third equation of Kalman’s seven. We don’t know exactly 
what kk is yet, but when we do, an updated estimate xk 

+ can be computed from xk 
-. 

In order to obtain an expression for kk , Kalman gain matrix, we consider the a 
posteriori error covariance matrix Pk 

+defined below and force the error covariance 
matrix to a null matrix.

	 Pk
+ = E { ~ xk

+ ( ~ xk
+ )T} → [0]
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 The residual error in (8.15) when kk' = I - kkH  is given by

	 ~ xk
+ = [I - kkH ] ~ xk

- + kkvk 

Substituting the above result in the expression for Pk 
+ we obtain,

	 P+
k = E{[(I − kkH)x̃−

k + kkvk][(I − kkH)x̃−
k + kkvk]

T} 	

Expanding the expectation operation E{[.][.]T} using the following definition, 
we finally obtain an expression for the a posteriori error covariance matrix:

	 P+
k = [I − kkH]P−

k [I − kkH]T + kkRkkT
k 	 (8.17)

where

	

E
�

x̃−
k (x̃−

k )T
�

= P−
k

E
�

vkvT
k

�
= Rk

E
�

vk(ṽ
−
k )T

�
= 0

E
�

ṽ−k vT
k

�
= 0

	

Equation (8.17) is the fourth equation of Kalman’s seven.  Next we want to find 
kk such that Pk

+ will be a null matrix. We take a partial derivative of Pk
+ with respect 

to  kk  and set it to a null matrix. We use the following identity.

	

∂
∂A

trace [ABAT] = AB + ABT = 2AB
	

The last identity is valid only when B is symmetric [2, 3].    

	 -2(I-kkH) Pk
- HT + 2kkRk = 0

Solving for kk, the Kalman gain matrix is given by

	 kk = Pk
- HT[ H Pk

- HT + Rk ] -1	 (8.18)

Equation (8.18) is the fifth equation of Kalman’s seven. We shall show in a 
flow diagram, Figure 8.7, where the Kalman gain matrix should be placed in the 
recursive loop.

Substituting (8.18) into (8.17) and after some matrix manipulation we obtain 
another expression for Pk

+:

	 Pk
+ = Pk

- - Pk
- HT [ H Pk

- HT + Rk ]-1 H Pk
- 

or
	 Pk

+ = [ I - kkH] Pk
-
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Of the three expressions for Pk
+, the last one is the simplest, and it is used more 

frequently than the others; however, the last expression is computationally inferior 
as pointed out by Busy and Joseph [4]. An accumulation of round-off error can 
sometimes destroy the positive definiteness and symmetry of Pk

+. The preferred one 
is (8.17).

Next we derive an expression for Pk
-, the a priori error covariance matrix so that 

Pk
+ and Pk

- can be linked in a recursive loop. We start with the definition of Pk
- and 

an error-free state xk
-.

	

P−
k = E{x̃−

k (x̃−
k )T}

x−
k = ΦΦΦk−1x+

k−1 	 (8.19)

Subtract xk from both sides of (8.19) and substitute (8.8) for xk. We obtain the 
a priori error x̃k

-.

	

x−
k − xk = ΦΦΦk−1x+

k−1 − xk

= ΦΦΦk−1x+
k−1 − (ΦΦΦk−1xk−1 + ΓΓΓwk−1)

= ΦΦΦk−1[x
+
k−1 − xk−1] −ΓΓΓwk−1 	

and

	
x̃−

k = ΦΦΦk−1x̃+
k−1 − ΓΓΓwk−1 	

Figure 8.7  Flow diagram of Kalman recursive filter.



208	 Kalman Filter

ART_Kang_Ch08.indd                                                  Achorn International                                                  07/23/2008  01:40AM

Then, the a priori error covariance matrix is given by

	

P−
k = E{x̃−

k (x̃−
k )T}

= E{[ΦΦΦk−1x̃+
k−1 −ΓΓΓwk−1] [ΦΦΦk−1x̃+

k−1 −ΓΓΓwk−1]
T}

= ΦΦΦk−1P+
k−1ΦΦΦT

k−1 + ΓΓΓQk−1ΓΓΓT
	 (8.20)

where

	  E {wk-1(wk-1)T} = Qk-1 

We have used the uncorrelated relationship between wk-1 and x̃- 
k-1 in arriving 

at (8.20):

	

E{wk−1(x̃−
k−1)T} = 0

E{x̃−
k−1(wk−1)T} = 0

Equation (8.20) establishes a linkage between Pk
- and P+ 

k-1.  This is the sixth 
equation of Kalman’s seven. The seventh equation is simply

	 x-
k+1 = F xk

+	 (8.21) 

We have derived all seven equations of the Kalman filter. They are listed below 
as a summary. The recursive filter algorithm is shown in Figure 8.7 without sub-
scripts for those matrices that are time-invariant.

The Kalman recursive filter consists of two loops as shown; the one on the left 
computes the error covariance matrix Pk

- and Pk
+, producing the Kalman gain matrix 

kk. The loop on the right computes xk
+ and the predicted state x-

k+1. The two loops 
are connected by the Kalman gain kk.

We are ready to program the recursive filter except for the different coordinate 
system we have used for the passenger airliner: the state equation is in the CCS and 
the measurement equation in the LOS system.

	

�
xk+1 = ΦΦΦxk + ΓΓΓwk (CCS)

zk = Hxk + vk (LOS)
	 (8.22)

The coordinate conversion will be discussed shortly.
Summary of Kalman filter equations: 

State equation (8.8):	 xk+1 = ΦΦΦxk + ΓΓΓwk

Measurement equation (8.11):	 zk = Hxk + vk

State update equation (8.16):	 x+
k = x−

k + kk[zk − Hx−
k ]

Predicted error covariance matrix (8.17):	 Pk
+ �= [I - kkH ] Pk

- [I - kkH ]T 

+ kkRkkk
T

Kalman gain matrix (8.18)	 kk = P−
k HT[HP−

k HT + Rk ]−1
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Estimated error covariance matrix (8.20).  
(You may drop k-1 on Φk-1):           P−

k = ΦΦΦk−1P+
k−1ΦΦΦT

k−1 + ΓΓΓQk−1ΓΓΓT

State predicted equation (8.21):	 x−
k+1 = ΦΦΦx+

k

Some alternative forms for kk are found in [5, 6].
In order to be consistent in coordinate systems in (8.22), the measurements zk 

should be converted to CCS or the state equation xk+1 should be converted to LOS. 
Let us look at (8.11) once more.

	 zk = Hxk + vk

where 

	
zk =

�
rk
θk

�
H =

�
1 0 0 0
0 0 1 0

�
vk =

�
nr
nθ

�

	

We can certainly change zk to CCS; H would remain unchanged as is shown 
below, but vk is a problem. Let us look at Figure 8.8 in the next page that helps a 
coordinate transformation we have in mind: from LOS to CCS.

	

�
x
y

�

k
=

�
1 0 0 0
0 0 1 0

�
⎡
⎢⎢⎣

x
ẋ
y
ẏ

⎤
⎥⎥⎦

k

+ [vLOS
k → vCCS

k ]

	

From Figure 8.8 we can write the following transformation equations:

	

�
Δx = Δr cosθ − rΔθ sinθ
Δy = Δr sinθ + rΔθ cosθ 	

Figure 8.8  Coordinate transformation from (r,θ) to (x,y).
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The above equations can be cast into a vector-matrix form,

	

�
Δx
Δy

�
=

�
cos θ −r sin θ
sin θ r cos θ

��
Δr
Δθ

�

	

or

	

�
Δx
Δy

�
=

�
cos θ −sin θ
sin θ cos θ

��
Δr

rΔθ

�

	

The first transform is called a Jacobian transformation, the second a unitary ro-
tation transformation. The determinant of the Jacobian is r, the determinant of the 
unitary rotation is unity. The transformation of vk 

LOS to vk 
CCS, or Rk(r,θ) to Rk(x,y) is 

obtained by matrix multiplications

	  Rk(x,y) = Jk(r,q) Rk(r,q) Jk
T(r,q)

Substitution of the Jacobian and its transpose leads to an expression for Rk(x,y) 
in terms of Rk(r,q).

	

Rk(x,y) =
�

cos θk −rk sin θk
sin θk rk cos θk

��
σ2

r 0
0 σ2

θ

��
cos θk sin θk

−rk sin θk rk cos θk

�

=

�
σ2

r cos2 θk + σ2
θ r2

k sin2 θk
1/2 sin(2θk)(σ2

r − σ2
θ σ2

r )
1/2 sin(2θk)(σ2

r − σ2
θ σ2

r ) σ2
r sin2θk + σ2

θ r2
k cos2 θk

�

	

where the subscript k in sr and sθ has been dropped since they are time-invariant. 
The range and angle are measured (or reported) by the radar for each sample k. 
In order to incorporate Rk(x,y) into our computer program, we have to define s r

2 
and sθ

2.
Let us assume that the transmitter pulsewidth is 1 ms and that the –3dB antenna 

beamwidth is 2 degrees. The target is equally likely located within these limits uni-
formly. Then the variance of the range error and that of angle are given by

	

σ2
r =

(1.0e − 6)2

12
→ (150 m)2

12
= 1,850 m2

σr = 43.3 m 	

and

	 sθ
2 = 

(2°)2

              12   = 
(3.49e-2)2

                         12       = 1.015e-4 radian-squared

	 sθ = 1.008e-2 radian, or sθ = 0.58 degree

Finally we are ready to program the Kalman recursive filter shown in Figure 8.7.  
Note the injections of the initial values of P0

+ and x0
+ through one-pole switches at 
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the top. Once the initial values are injected the switch will be opened. The program 
for the passenger airliner will be given in the next section.

8.3  Passenger Airliner

First, we shall generate two flight trajectories: one trajectory for an intended 
straight line path and other actual trajectory perturbed by small accidental accelera-
tions in both x and y (see Figure 8.3).

FLT_XY.CPP generates the ideal path, TRAJ_XY.CPP generates an actual path. 
The acceleration perturbation is assumed distributed uniformly with zero mean and 
variance sx

2 = sy
2 = 8.0 (m/sec)2. 

The measurement data is generated in MEA_XY.CPP. The measurement errors 
in range and angle are also assumed distributed uniformly with zero mean and vari-
ance sr

2 = 1,850 m2, sθ
2 = 1.015e-4 rad2.  

Kalman filter processing is programmed in KAL_XY.CPP with a header file 
MATRIX.H.  All the relevant data computed is recorded. The data is listed as 
follows:

1.  Pest.DAT:	 Estimated error covariance matrix;
2.  Ppre.DAT:	 Predicted error covariance matrix;
3.  K_gain.DAT:	 Kalman gain matrix;
4.  Xest.DAT:	 Estimated state (estimated position);
5.  Xpre.DAT:	 Predicted state (predicted position).

We have generated two additional data files from (4) and (5) above for a post-
flight analysis. They are listed as follows:

6.  EST_RAZ.CPP:  Estimated range and azimuth angle;
7.  PRE_RAZ.CPP:  Predicted range and azimuth angle.

The last two data files plus FLT_XY.DAT, TRAJ_XY.CPP and MEA_RAZ.DAT 
are used for a postflight analysis and graphic displays, Figures 8.9 and 8.10.

Postflight Analysis and Discussions

1. � We notice that there is a large deviation between estimated and predicted 
ranges and azimuth angles during the earlier period. The large down-bulge 
is caused by an inappropriate initialization of P0

+ and x0
+. For the initializa-

tion of x0
+ we had injected the value shown below since we didn’t know the 

velocity components.

	

x+ =

⎡
⎢⎢⎣

x
ẋ

ẏ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

⎤
⎥⎥⎦

ẋ 0.00
ẏ 0.00

0 0.00
0

0

0

y 300.00
0.00

0.00

=
==0

0

03
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Figure 8.9  Errors in estimated and predicted range.

Figure 8.10  Errors in estimated and predicted azimuth.
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  �  We will modify the initialization by two-points measurement and inject x1
+ 

instead of x0
+ in the next program.

	

x+
1 =

⎡
⎢⎢⎣

x1
ẋ1

y1
ẏ1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1
(x1 − x0/T)

y1
(y1 − y0)/T

⎤
⎥⎥⎦

ẋ1 �= 0.00
ẏ1 �= 0.00

	

  �  For the estimated error covariance matrix P0
+, a 4-by-4 matrix, all the ele-

ments are initialized a unity without any physical justification. After com-
putation and an examination of data, we are pleasantly surprised the system 
had ever stabilized at all with such arbitrary initialization. In the next pro-
gram we shall initialize using P1

+ instead of P0
+ with some physical meaning 

attached. We shall adopt modifications in both x1
+ and P1

+.
2. � Some readers may feel the errors in range are too large. The remedy may 

be to shorten the transmitter pulsewidth. The consequence would be less 
energy radiated for target tracking. A pulse compression scheme may be 
entertained. See Chapter 4.

  �  If you feel that the errors in angle are too large, the size of the antenna 
should be increased or the carrier frequency should be increased. The an-
tenna must be redesigned in either case. The consequence of the latter would 
be less energy return from target. See Chapter 7.

3. � Some program algorithm may exhibit a divergent behavior—that is, the 
error in the estimate xk

+ or xk
- fails to converge within one sigma boundary. 

A quick check is to see that semidefiniteness and symmetry of the covari-
ance matrix are maintained. We should include test procedures to insure the 
unique properties of the error covariance matrices during the initial develop-
ment phase.

  �  The word length of the computer and the round-off may cause a problem. 
Inversion of a matrix with large dimensions is often a troublesome source 
of broken symmetry and the birth of negative elements in Pk

+ or Pk
-. We shall 

study a better matrix inversion algorithm using the factorization method, or 
inversion-less algorithm in later sections.

4. � In spite of all the precautions, some algorithms may wander around with-
out any semblance of convergence. We should examine the state and mea-
surement equations It is not uncommon that the dimension of F matrix is 
larger than ten-by-ten by including some functionality in a zealous pursuit 
of perfection that upsets the basic structure of the state equation. Reduce the 
dimension of the transition matrix F to be no larger than essential.

  �  Modeling a system requires a blend of science and art through experience.
    Let us get some experience through more examples.
5.  In this section we have programmed the following:

    ·   FLT_XY.CPP:     Generates a straight line flight path;
    ·   TRAJ_XY.CPP: � Gaussian noise with zero mean and varianceof plus/

minus 0.5 g  is added to the straight-line trajectory to 
simulate the actual motion of the airliner;
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Figure 8.11  Examples of divergence and oscillatory behavior outside the sigma boundary.

    ·   MEA_XY.CPP:�	� The passenger airliner’s position is tracked by a radar 
with 1.0-microsecond pulsewidth and antenna beam-
width of 2 degrees.

    ·   KAL_XY.CPP:	 The Kalman filter algorithm is executed.
    ·   MATRIX.H:	 This program generated seven data files:

       1.  Pest.DAT:	 Estimated error covariance matrix;
       2.  Ppre.DAT:	 Predicted error covariance matrix;
       3.  K_gain.DAT:	 Kalman gain matrix;
       4.  Xest.DAT:	 Estimated position of airliner;
       5.  Xpre.DAT:	 Predicted position of airliner;
       6.  Est_RAZ.DAT:	Estimated position of airliner in range and azimuth;
       7.  Pre_RAZ.DAT:	Predicted position of airliner in range and azimuth;

    ·   ERR_RAZ.DAT:	� Computes errors between the measured position and 
estimated and predicted position in range and azi-
muth.

8.4  Air Traffic Control Radar

In this section we study the tracking function of an air traffic control (ATC) radar. 
There are two radars in the ATC system: one for a shorter range and the other for a 
longer range. The relevant parameters of two radars are listed below. (Later models 
have improved some parameters).

ATC radars detect airborne targets in range and bearing angle. No elevation 
angle (altitude) of the target is measured. The altitude of the target aircraft is re-
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ported to the ground control center by a transponder onboard the aircraft when 
interrogated by a co-located beacon radar on the ground. A counterpart in the 
military air control is called the identification friend or foe (IFF).

In this second example of Kalman filter processing, the state equation will be 
written in the LOS coordinate system. We write the state equation (aircraft’s posi-
tion and motion) as follows:

	

⎧⎪⎨
⎪⎩

rk+1 = rk + ṙkT

ṙk+1 = ṙk + (rng acc)T

θk+1 = θk + θ̇kT

θk+1 = θk˙ ˙ + ( �������� acc)Taz
	

(8.23)

Equation (8.23) is cast into a vector-matrix form.

	

⎡
⎢⎢⎣

rk+1
ṙk+1
θk+1

θ̇k+1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

rk
ṙk
θk

θ̇k

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
u1
0
u2

⎤
⎥⎥⎦
	

(8.24)

A more compact form of (8.24) is

	 xk+1 = Φxk + wk 

The covariance of wk, denoted by Qk, is given by

	

Qk = E{wkwT
k}

= E

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
u1
0
u2

⎤
⎥⎥⎦ [0 u1 0 u2 ]

⎫
⎪⎪⎬
⎪⎪⎭

= E

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0 0 0
0 u2

1 0 0
0 0 0 0
0 0 0 u2

2

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭

	

Table 8.1

Airport Surveillance Radar (ASR) Air Route Surveillance Radar (ARSR)

Transmitter power 400 kW 4 MW
Maximum range 110 km (60 nm) 370 km (200 nm)
Antenna gain 34 dB 34 dB
Frequency 2.8 GHz 1.3 GHz
Pulse repetition freq 1200 pulse/sec 360 pulse/sec
Antenna scan rate 15 rev/min (90 deg/sec) 6 rev/min (36 deg/sec)
Data update 4 sec 10 sec
Antenna beamwidth 1.5 degrees 1.35 degrees
(-3 dB azimuth) Pulsewidth 0.8 ~ 0.9 μsec (0.83 μsec nominal) 2.0 μsec
Number of received  
pulses integrable

20 13
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We must define u1 and u2. They are the product of range or angle acceleration  
and the sampling time T. As we have formulated the state equation these accelera-
tions are considered to be small uncontrolled disturbances. (In the previous example 
in KAL_XY.CPP, we have taken the accelerations in x and y as definite components 
of Newtonian motion.)

Let us define the range acceleration more realistically. Let us assume that the 
range acceleration ar consists of two parts as shown: a discreet and continuous 
probability distribution [7]. Further we assume that the aircraft experiences a dis-
turbance of ±0.5g (±4.9 m/sec2) 10% of time, zero acceleration 30% of time, and 
that the rest of time the acceleration disturbance is uniformly distributed between 
the two extremes. (See Figure 8.12.)

The variances of discrete and continuous probability density functions are re-
spectively defined as follows:

	 σ2
d ≡ ∑

n
(xn − η)2 P{x = xn}	 (discrete)

	 σ2
c ≡ E{(x − η)2} =

�
(x − η)2 f(x) dx 	 (continuous)

The variance of the discrete distribution sd
2 is given by

	
σ2

d =

�
−g2

2

�
P1 + (0)P2 +

�
g2

2

�
P1

	

and the variance of the continuous distribution s c
2 is given by

	
σ2

c =
[1 − (P2 + P1)]

g

� g/2

−g/2
x2 dx =

g2

12
(1 − P2 − 2P1)

	

Figure 8.12  Probability density function of range acceleration, discrete and continuous.
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The total variance is sum of the two

	
σ2

t =
g2

12
(1 + 4P1 − P2) = 8.804 (m/sec2)2

	

The covariance matrix Qk is given by

	

Qk = E

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0 0 0
0 u2

1 0 0
0 0 0 0
0 0 0 u2

2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 σ2T2 0 0
0 0 0 0

0 0 0
σ2T2

r2
k

⎤
⎥⎥⎥⎥⎥⎦

	

Note that element Q(3,3) is range measurement–dependent. The measurement 
in the LOS coordinate system is identical to that of KAL_XY.CPP.

	

�
rk
θk

�
=

�
1 0 0 0
0 0 1 0

�
⎡
⎢⎢⎣

rk
ṙk
θk

θ̇k

⎤
⎥⎥⎦ +

�
nr
nθ

�

	
	 zk = Hxk+vk

where nr and nθ represent the measurement noise errors in range and angle, and 
they are assumed uniformly distributed with zero mean. We next compute the nu-
merical values of variances of range and angle measurement error.

	             

[ASR]

σ2
r =

(249/2)2

12
= 1291.69 m2

σr = 35.94 m

σ2
θ =

0.02622

12
= 5.712e − 5 rad2

σθ = 7.56e − 3 rad = 0.43 deg
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The measurement error covariance matrix Rk is given by

	

Rk = E
��

nr
nθ

��
nr nθ

��
= E

��
n2

r nrnθ
nθ nr n2

θ

��

=
�

σ2
r 0

0 σ2
θ

�
=

�
1291.69 0.00

0.00 5.712e −5

�

	

The state and measurement equations and their error covariance matrices are 
summarized:

               xk+1 = Φxk + Γwk                 (or xk = Φxk-1 + Γwk-1)	

	

zk = Hxk + vk

x+
k = x−

k + kk[zk − Hx−
k ]

P+
k = [I − kkH] P−

k [I − kkH]T + kkRkkT
k

	

kk = P−
k HT[HP−

k HT + Rk]
−1

P−
k = ΦΦΦk−1P+

k−1ΦΦΦT
k−1 + ΓΓΓQk−1ΓΓΓT (you may drop k − 1 on ΦΦΦk−1) 	

            

x−
k+1 = ΦΦΦx+

k

Qk = E{wkwT
k} =

⎡
⎢⎢⎢⎣

0 0 0 0
0 σ2T2 0 0
0 0 0 0

0 0 0 σ2T2

r2
k

⎤
⎥⎥⎥⎦

	  

               

Rk = E{vk vT
k} =

�
σ2

r 0
0 σ2

θ

�

ΦΦΦ =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ H =

�
1 0 0 0
0 0 1 0

�

	

Compare the above equations and matrices with the corresponding equations 
and matrices of the previous example. We note that the different expressions for 
Qk and Rk. The ATC example in LOS coordinates system is much simpler: there  
is less computation load. The measurement covariance matrix Rk is time-invariant; 
no subscript k is needed.

The predicted and estimated error covariance matrices, P- 
k and Pk 

+, Kalman gain 
matrix kk, and the predicted and estimated state vector xk 

- and xk 
+ are listed below, 

and a computation flow diagram is shown in Figure 8.16.
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P−
k = ΦΦΦP+

k−1ΦΦΦT + Qk−1

kk = P−
k HT[HP−

k HT + Rk]
−1

P+
k = [I − kkH] P−

k [I − kkH]T + kkRkT
k 	

                     

x+
k = x−

k + kk[zk − Hx−
k ]

x−
k+1 = ΦΦΦx+

k 	

We plan to inject two initializations that are different from the previous ex-
ample; instead of x0

+ we plan to inject x1
+.

	

x+
1 =

⎡
⎢⎢⎣

r1
ṙ1

q1

q̇1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r1

(r1 − r0)/T
q1

(q1 − q2)/T

⎤
⎥⎥⎦

	

Instead of P0 
+ we plan to inject P1 

+. Let us examine what P1 
+ should be.

	

P+
1 = E{(x1 − x̂1)(x1 − x̂1)T} = E

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

Δr
Δṙ
Δθ
Δθ̇

⎤
⎥⎥⎦ [Δr Δṙ Δθ Δθ̇ ]

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p32 p33

⎤
⎥⎥⎦

k=1 	

         

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p00 = E{nr1 · nT
r1} = σ2

r

p01 = E{nr1[(nr1 − nr0)/T + u1]T}
= E{n2

r1/T + nr1 · u1} = σ2
r T

p02 = E{nr1 · nT
θ1} = 0

p03 = E{nr1[(nθ1 − nθ0)/T + u2]T} = 0

         

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p10 = p01

p11 = E{[(nr1 − nr0)/T + u1][(nr1 − nr0)/T + u1]T}
= E{[(nr1 − nr0)/T]2 + u2

1} = 2σ2
r /T + σ2

r T2

p12 = E{[(nr1 − nr0)/T + u1][nθ1 + u2]T} = 0

p13 = E{[(nr1 − nr0)/T + u1][(nr1 − nr0)/T + u1]T} = 0
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p20 = p02

p21 = p12

p22 = E{nθ1 · nT
θ1} = σ2

θ

p23 = E{nθ1[(nθ1 − nθ0)/T + u2]T}
E{n2

θ1/T − (nθ1 · nθ0)/T} = σ2
θ /T 	

         

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p30 = p03 = 0

p31 = p13 = 0

p32 = p23

p33 = E{[(nθ1 − nθ0)/T + u2][(nθ1 − nθ0)/T + u2]T}
= E{(nθ1 − nθ0)2/T2 + u2

2} = 2σ2
θ /T2 + θ 2T2/r2

1 	

Therefore, the matrix form of P1
+ is

	

P+
1 =

⎡
⎢⎢⎢⎢⎣

σ2
r σ2

r /T 0 0

σ2
r /T 2σ2

r /T + σ2
r T2 0 0

0 0 σ2
θ σ2

θ /T

0 0 σ2
θ /T 2σ2

θ /T2 + θ 2T2/r2
1

⎤
⎥⎥⎥⎥⎦

	

The numerical value for P1
+ will be computed immediately after zk(k=1) is avail-

able. Next, we generate the trajectory of an airliner that approaches an airport for 
landing. (See Figure 8.13.)

Figure 8.13  Flight trajectory, landing approach.
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The tracking commences when the airliner is 55 km away at the cruising speed 
of approximately 270 knots. The pilot reduces the speed gradually to about 150 
knots for the final approach. The antenna scan rate of the ASR is 90 degress/s, and 
the data rate is therefore 4 seconds. The trajectory is programmed in ATC_RAZ.
CPP. Kalman filter processing is programmed in KAL_ATC.CPP with a header 
file MATRIX.H. The program follows the two-loops recursive diagram shown in  
Figure 8.16.

Since the complete data file is very voluminous, an abbreviated data file is cre-
ated to record the results.

·	 ATC_(P).DAT:	� Predicted and estimated error covariance matrices have 16 
elements, four-by-four, for every sampling, and there are 
128 samplings. We record only two principal data, p(0,0) 
and p(2,2).

·	 ATC_(k).CPP:	� Kalman gain matrix has eight elements, four-by-two, for 
each sampling. We record only two, k(0,0) and k(2,1).

·	 ATC_(X).CPP:	� Predicted and estimated position vectors have four ele-
ments, four-by-one, for each sampling. We record only 
two principal data, x(0,0) and x(2,0).

The differences (errors) between the trajectory and the estimated or predicted 
state are computed in ATC_ERR.CPP. The errors are recorded ATC_ERR. DAT, 
and the results are shown in Figures 8.14 and 8.15.

A considerable dispersion of errors is observed. This is a price we pay for a sim-
pler state equation in LOS coordinates. We have gained an invaluable experience 

Figure 8.14  Predicted and estimated range error.
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in appreciation of the LOS versus CCS state equation and the concomitant simpler 
structures of Rk and Qk. 

An ATC radar is not a precision-approach-control radar. In spite of its large 
error dispersion, the ATC radar serves the purpose of separating aircrafts in the 
air-space around the airport.

When we examine the following two situations we realize the root cause of er-
rors in the present state equation.

Figure 8.16  Flow diagram of Kalman recursive filter.

Figure 8.15  Predicted and estimated angle error.
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The first situation is where a target is radially approaching or receding from an 
observer (radar). The motion of the target is exactly what the observer measures. 
The second situation is where a target is in tangential motion; an observer declares 
that the target has zero range change even though the target may have a large veloc-
ity and/or acceleration.

Figures 8.14 and 8.15 show a relatively large error toward the end of tracking 
the airliner. The airliner is moving in tangentially with respect to the tracking radar. 
A relocation of radar site in Figure 8.13 may be recommended.

We should not, however, hesitate to adopt filter processing in LOS coordinates 
when processing speed is more important and accuracy is not. Nothing should dis-
courage the use of the LOS system.

The complexity and computation load is largely dependent upon the dimen-
sions of transition matrix Φ. In the present example Φ is four-by-four. Later we  
shall design a state equation in LOS coordinates with nine-by-nine and show the 
results for comparison.

8.5  Air Defense Radar, Cartesian Coordinate System

In this section we design a Kalman filter for a short-range air defense radar. The 
radar tracks a hostile fighter-bomber on a ground attack mission. The trajectory is 
a typical “turn-dive-and-turn-climb” maneuver (Figure 8.17). The tracking radar is 
located at the origin of the Cartesian coordinate system.

We write the state equation (aircraft position and motion) in CCS coordinates 
(x,y,z) as follows.

	

⎧⎪⎨
⎪⎩

xk+1 = xk + ẋkT + 1/2ẍkT2

ẋk+1 = ẋk + ẍkT

ẍk+1 = ẍk + nax 	

	

⎧
⎨
⎩

yk+1 = yk + ẏkT + 1/2ÿkT2

ẏk+1 = ẏk + ÿkT
ÿk+1 = ÿk + nay 	
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⎧⎨
⎩

zk+1 = zk + żkT + 1/2z̈kT2

żk+1 = żk + z̈kT
z̈k+1 = z̈k + naz 	

The above three simultaneous linear equations can be written in a vector-
matrix form where  nax, nay, and naz are the random acceleration noise in x, y, 
and z axes.

	
k+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T T2/2
0 1 T
0 0 1

0 0

0
1 T T2/2
0 1 T
0 0 1

0

0 0
1 T T2/2
0 1 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x
ẋ
ẍ

y
ẏ
ÿ

z
ż
z̈ k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+

0
0
nax

0
0
nay

0
0
naz

----------
----------

----------
----------

----------
----------

----------
----------

--------------------------------------------------

--------------------------------------------------

0 0 1

⎥⎥⎥
⎥⎥⎥⎥
⎥ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x
ẋ
ẍ

y
ẏ
ÿ

z
ż
z̈

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎥⎥⎥
⎥⎥⎥⎥
⎥ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎥⎥⎥
⎥⎥⎥⎥
⎥ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥

A more compact form is

	 xk+1 = Φxk + wk 	               (8.25)

Figure 8.17  Target trajectory, turn-dive-and-turn-climb.
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The random acceleration noise covariance matrix Qk is given by

	

Qk = E{wkwT
k} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

σ2
x

----------
0

0
σ2

y

0
0

σ2
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

--------------------

------------------------------
---------- ---------- ----------

----------

---------- ---------- ----------
--

	

The random acceleration noise is assumed equal for three axes: nax = nay = naz, 
uncorrelated and uniformly distributed over ± 3.0 g.

	 	

The variance σ 2 = (6g)2    
¾    
12  

 = 288.12 (m/sec2)2. The measurement equation in LOS 

coordinates system is

 	

⎡
⎣

r
θ
ϕ

⎤
⎦ =

⎡
⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
ṙ
r̈
θ
θ̇
θ̈
ϕ
ϕ̇
ϕ̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎣

Δr
Δθ
Δϕ

⎤
⎦

	

The measurement equation in a compact matrix form is

	 zk = Hxk + vk	               (8.26)

The measurement error covariance matrix Rk in LOS is given by
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Rk = E{vkvT
k} = E

⎧
⎨
⎩

⎡
⎣

Δr
Δθ
Δϕ

⎤
⎦ [Δr Δθ Δϕ]

⎫
⎬
⎭ = E

⎧
⎨
⎩

⎡
⎣

(Δr)2 ΔrΔθ ΔrΔϕ
ΔθΔr (Δθ )2 ΔθΔϕ
ΔϕΔr ΔϕΔθ (Δϕ)2

⎤
⎦
⎫
⎬
⎭

=

⎡
⎣

σ2
r

σ2
θ

σ2

⎤
⎦

ϕ 	

(8.27)

On the other hand, the error covariance matrix Rk in CCS is given by  

	

Rk = E{vkvT
k} = E

⎧
⎨
⎩

⎡
⎣

Δx
Δy
Δz

⎤
⎦ [Δx Δy Δz]

⎫
⎬
⎭ = E

⎧
⎨
⎩

⎡
⎣

(Δx)2 ΔxΔy ΔxΔz
ΔyΔx (Δy)2 ΔyΔz
ΔzΔx ΔzΔy (Δy)2

⎤
⎦
⎫
⎬
⎭

=

⎡
⎣

σ2
x σxσy σxσz

σyσx σ2
y σyσz

σzσx σzσy σ2
z

⎤
⎦

	

(8.28)

Since the state equation is written in CCS coordinates and the measurement equa-
tion in LOS coordinates, we need a conversion formula between the two coordinates.  

	 Rk(LOS) ↔ Rk(CCS)

Figure 8.18 helps us to formulate the conversion between the Cartesian coordi-
nates and the spherical coordinates.

 

r = (x2 + y2 + z2)1/2

θ = tan−1
�y

x

�
= sin−1

�
y

(x2 + y2)1/2

�

ϕ = sin−1
�z

r

�

Figure 8.18  Coordinate conversion,  Rk(LOS) ↔ Rk(CCS).
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The Jacobian transform matrices in (x,y,z) and (r, θ, φ) are defined by

	

Jxyz ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ r
∂x

∂ r
∂y

∂ r
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
r

y
r

z
r

−y
x2 + y2

x
x2 + y2 0

−xz
r2(x2 + y2)1/2

−yz
r2(x2 + y2)1/2

(x2 + y2)1/2

r2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

	

	

Jrθ ϕ ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x
∂ r

∂x
∂θ

∂x
∂ϕ

∂y
∂ r

∂y
∂θ

∂y
∂ϕ

∂z
∂θ

∂z
∂ϕ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣

cosϕ cosθ −r cosϕ sinθ −r sinϕ cosθ
cosϕ sinθ r cosϕ cosθ −r sinϕ sinθ
sinϕ r cosϕ

⎤
⎦

∂z
∂ r

0

	

The two Jacobian matrices are related by

	           [Jxyz] . [Jrθφ] = [I]      (an identify matrix)

or
	 [Jxyz] = [Jrθφ]-1

The measurement error covariance matrix Rk in CCS is obtained by

	

RCCS
k = [ Jrθ ϕ ] [RLOS

k ]T

=

⎡
⎣

cosϕ cosθ
cosϕ sinθ −r sinϕ sinθ
sinϕ

⎤
⎦

⎡
⎣

σ2
r

σ2
θ

σ2
ϕ

⎤
⎦

−r cosϕ sinθ
r cosϕ cosθ

rθ ϕ

−r sinϕ cosθ

] [ J

r cosϕ0 	     

             

×
⎡
⎣

cosϕ cosθ cosϕ sinθ sinϕ
−r cosϕ sinθ r cosϕ cosθ 0
−r sinϕ sinθ −r sinϕ sinθ r cosϕ

⎤
⎦

=>

⎡
⎣

σ2
x σxσy σxσz

σyσx σ2
y σyσz

σzσx σzσy σ2
z

⎤
⎦

	

Multiplying the three matrices, we obtain

	

σ2
x = σ2

r cos2ϕ cos2θ − σ2
θ r2 cos2ϕ sin2θ + σ2

ϕ r2 sin2ϕ cos2θ

σ2
y = σ2

r cos2ϕ cos2θ + σ2
θ r2 cos2ϕ cos2θ + σ2

ϕ r2 sin2ϕ sin2θ

σ2
z = σ2

r sin2ϕ + σ2
ϕ r2 cos2ϕ 	
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σxσy = 1/2 sin(2θ ) [σ2
r cos2ϕ − σ2

θ r2 cosϕ + σ2
ϕ r2 sin2ϕ]

σxσz = 1/2 sin(2ϕ) cosθ [σ2
r − σ2

ϕ r2]
σyσz = 1/2 sin(2ϕ) cosθ [σ2

r − σ2
ϕ r2] 	

We have obtained Rk  in CCS coordinates in terms of the measurements in LOS 
coordinates. Next we shall find the numerical values of the variances.

The air defense radar is assumed to have a transmitter pulsewidth of 1.0 ms, 
unmodulated. The antenna beamwidth is 1.0 degree in azimuth and 1.5 degrees in 
elevation.

The three variances are:

	

σ2
r =

(30)2

12
= 75.0 m2, σr = 8.66 m

σ2
θ =

(1.0)2

12
= 2.5385e −5 rad2, σθ = 0.2887 degrees

σ2
ϕ =

(1.5)2

12
= 5.7116e −5 rad2, σϕ = 0.4330 degrees

	

Next we derive the expressions for the initializations of x2 
+ and P2 

+. We need 
three measurements to initialize both.

	

x+
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
ẋ
ẍ
--
y
ẏ
ÿ
--
z
ż
z̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
(x2 − x1) /T
(x2 − 2x1 + x0) /T2

-------------------------
y2
(y2 − y1) /T
(y2 − 2y1 + y0) /T2

-------------------------
z2
(z2 − z1) /T
(z2 − 2z1 + z0) /T2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

	

where

	

⎧⎨
⎩

xi = (ri cos ϕi cos θi) i=0,1,2
yi = (ri cos ϕi sin θi) i=0,1,2

zi = (ri sin ϕi) i=0,1,2 	

The initialization of P2 
+ will be obtained from an expectation of

	 P+
2 = E{x̃2x̃T

2} = E{(x2 − x̂2)(x2 − x̂2)T} 	
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where the estimated position vector ^ x2 is given by

	

x̂2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂2
ˆ̇x2
ˆ̈x2

--
ŷ2
ˆ̇y2
ˆ̈y2
--
ẑ2
ˆ̇z2
ˆ̈z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 + nx2

[(x2 + nx2) − (x1 + nx1)] /T
[(x2 + nx2) − 2(x1 + nx1) + (x0 + nx0)] /T
-------------------------------------------------------
(same as above with x0, x1 and
x2 0 1

y2)
-------------------------------------------------------
(same as above with y0, y1 and
y2 are replaced by z0, z1 and
z2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

are replaced by y , y and,

,

,
,

	

Therefore, the error vector ˜ x2 is given by

	

x̃2 = x2 − x̂2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−nx2
−(nx2 − nx1) /T
−(nx2 − 2nx1 + nx0) /T2

----------------------------
same as above with
subscript and x2

are replaced by
y0 and y2

----------------------------
same as above with
subscript and y2

are replaced by
z0 and z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,x0 x1

y1,

y0 y1,

z1,

,

,

,

, 	

The expectation operation E{( x2 - ^ x2 )( x2 - ^ x2 )T} will yield initialization of  
P2 

+ as shown below after a lengthy but straightforward algebraic manipulation.

	

P+
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
x σ2

x /T σ2
x /T2

σ2
x /T 2σ2

x /T2 3σ2
x /T3

σ2
x /T2 3σ2

x /T3 6σ2
x /T4

0 0

-------------------

0
(same submatrix
block except σ2

x

is replaced by σ2
y )

0

-------------------

0 0
(same submatrix
block except σ2

y

σ2
z )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

------------------- ---------------------------------------------------------

-------------------------------------- ---------------------------------------------------------

-------------------
-------------------

--------------------------------------
------------------- is replaced by 	
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The Kalman recursive equations for this program are summarized below.

	 P−
k = ΦΦΦP+

k−1ΦΦΦ + Q (no index on Q)
T

	 (8.29) 

                       kk = P−
k HT[HP−

k HT + Rk]
−1

	 (8.30)

	     P+
k = [ I − kkH] P−

k [ I − kkH ]T + kkRkT
k 	 (8.31)

                      x+
k = x−

k + kk[zk − Hx−
k ] 	 (8.32)

                    x−
k+1 = ΦΦΦx+

k 	 	 (8.33)

A flow diagram is shown in Figure 8.22. The program is written in KAL_ MIG.
CPP.  Five data files are created to record the results:

1.  MIG_Ppre.DAT:	� Predicted error covariance matrix. Complete data is con-
sisted of 81 elements per matrix, and there are 128 sam-
plings. We have recorded the principal elements only.

	 p(0,0) = [P_pre]_sub_xx

	 p(3,3) = [P_pre]_sub_yy

	 p(6,6) = [P_pre]_sub_zz

2.  MIG_Pest.DAT:	� Estimated error covariance matrix. We have recorded the 
principal elements only.

	 p(0,0) = [P_est]_sub_xx

	 p(3,3) = [P_est]_sub_yy

	 p(6,6) = [P_est]_sub_zz

3.  MIG_K.DAT:	� Kalman gain matrix, nine-by-three matrix per sampling. 
Only the principal elements are recorded.

k(0,0) = k_sub_xx

k(3,1) = k_sub_yy

k(6,2) = k_sub_zz

4.  MIG_Xpre.DAT:	� Predicted position in CCS. The predicted position vector is 
nine-by-one. Only the principal elements are recorded.

	 Xpre(0,0) = Xpre_sub_x
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	 Xpre(3,0) = Xpre_sub_y

	 Xpre(8,0) = Xpre_sub_z

5.  MIG_Xest.DAT: � Estimated positon in CCS. The estimated position vector 
is nine-by-one. The principal elements only

	 Xest(0,0) = Xest_sub_x

	 Xest(3,0) = Xest_sub_y

	 Xest(8,0) = Xest_sub_z

Finally the differences (errors) between the trajectory and the predicted or es-
timated positions are computed in ERR_MIG.CPP, and the results are shown in 
Figures 8.19–8.21. To some readers the results may appear that the predicted or 
estimated positions are not accurate enough. Two possible remedies are suggested: 
either increase the antenna size or the carrier frequency. 

If this radar is employed for a countermunition guidance control and the muni-
tion is armed with a proximity fuse, the error in range is less important. We may 
increase the transmitter pulsewidth for higher transmit energy.

We have formulated the target state equation in CCS coordinates in using New-
tonian dynamics with random acceleration noise  nax, nay, and naz. The target is 
assumed capable of a ±3 g maneuver. The matrix Q is found to be time-invariant. 

Figure 8.19  Estimated and predicted error in range.
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The matrix Rk is obtained through a Jacobian transform and found to be measurement-
dependent.

The inversion of matrix [ H Pk
- HT + Rk ]-1 is executed after [U][D][U]T  fac-

torization. The inversion through factorization has a superior numerical stability. 
It maintains the symmetry of error covariance matrices and prevents the birth of 
negative elements. 

Figure 8.21  Estimated and predicted error in elevation.

Figure 8.20  Estimated and predicted error in azimuth.
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8.6  Air Defense Radar, LOS Coordinates

In this section we track the same fighter-bomber on a ground-strafing mission. In 
the previous section we wrote the state equation in CCS coordinates. For the pres-
ent demonstration we write the state equation in LOS coordinates.

The state equations are

	

⎧
⎨
⎩

rk+1 = rk + ṙkT + 1/2r̈kT2

ṙk+1 = ṙk + r̈kT
r̈k+1 = r̈k + nar 	

	

⎧⎨
⎩

θk+1 = θk + θ̇kT + 1/2θ̈kT2

θ̇k+1 = θ̇k θ̈kT
θ̈k+1 = θ̈k + naθ

+

	

	

⎧
⎨
⎩

ϕk+1 = ϕk + ϕ̇kT + 1/2ϕ̈kT2

ϕ̇k+1 = ϕ̇k + ϕ̈kT
ϕ̈k+1 = ϕ̈k + naϕ 	

The state equation in a vector-matrix form is

Figure 8.22  Flow diagram of Kalman recursive filter (KAL_MIG.CCP).
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

rk+1
ṙk+1
r̈k+1

θk+1

θ̇k+1

θ̈k+1

ϕk+1
ϕ̇k+1
ϕ̈k+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T T2/2
0 1 T
0 0 1

0 0

-----------

0
1 T T2/2
0 1 T
0 0 1

0

-----------

0 0
1 T T2/2
0 1 T
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

rk
ṙk
r̈k

θk

θ̇k

θ̈k

ϕk
ϕ̇k
ϕ̈k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0
0

nar

0
0

naθ

0
0

naϕ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

---------------------------------

--------------------------------------------

----------- -----------
-----------

-----------
-----------

-----------
-----------

⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥

⎢⎢ ⎥⎥ ⎢⎢ ⎥⎥⎢ ⎥

⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥

	

where nar , naϕ, and naϕ are random acceleration noise in range, azimuth, and  
elevation angle, respectively. The state equation in a more compact vector-matrix 
form is

	 xk+1 = Φ xk + wk

and the corresponding measurement equation is

	 zk = Hxk + vk	

	

⎡
⎣

r
θ
ϕ

⎤
⎦ =

⎡
⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
ṙ
r̈
θ
θ̇
θ̈
ϕ
ϕ̇
ϕ̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎣

nr

nθ
nϕ

⎤
⎦

	

where nr , nθ, and  nφ  are the measurement errors in range, azimuth, and elevation 
angle respectively. The measurement error covariance matrix Rk is given by

	

Rk = E{vkvT
k} = E

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

nr

nθ

nϕ

⎤
⎥⎥⎦

�
nr nθ nϕ

�
⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎣

σ2
r

σ2
θ

σ2
ϕ

⎤
⎥⎦

where E {ni nj} = 0, when i ¹ j,  uncorrelated noise.
The variance in range, azimuth, and elevation angle are taken to be identical to 

those in the previous program, KAL_MIG.CPP. They are

	 σ r
2= 75.0  m2
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	 σθ
2 = 2.5386e-5  rad2   

	 σφ
2 = 5.7116e-5  rad2  

We note that matrix Rk is time-invariant. The elements of the corresponding 
matrix in CCS coordinates are lengthy trigonometric expressions through a Jaco-
bian transform. We have lightened the computation loads in the present example. 
(Trigonometric computation is a lengthy sum of power series expansions.)

The state error covariance matrix Qk is given by

	

Qk = E{wkwT
k} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0 0 0
0 0 E{n2

ar}
------

0 0 0
0 0 0 0 0

0 0 E{n2
aθ}

0 0 0
0 0 0 0 0

0 0 E{n2
a }

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

------

------

------

ϕ 	

where E{n2
ar} = σ2

ar, E{n2
aθ} = σ2

aθ , E{n2
aϕ} = σ2

aϕ .

In the previous program, KAL_MIG.CPP, we had σ2 
ax = σ2 

ay= σ2 
az = 288.12 m2. 

Therefore, in order to be equivalent, we assign

	 σar
2 = √3 σx

2

	 σaθ
2  = √2 σx

2/rk
2

	 σaφ
2  = √2 σx

2/rk
2

We note that matrix Qk is measurement-dependent whereas in KAL_MIG. CPP 
it was time-invariant. The time invariance and the measurement dependency of Rk 
and Qk are reversed in LOS coordinates. 

The recursive filter processing is programmed in KAL_F16.CPP. The target tra-
jectory is identical to that of KAL_MIG.CPP. The algorithm flow diagram is also 
identical with the exception of Rk and Qk. The initialization of x3   

+ and P3 
+ follows 

the rules previously derived. 
Five data files are created out of KAL_F16.CPP to record the filter performance.

1.  F16_Ppre.DAT: � Predicted error covariance matrix, this  matrix has 81 ele-
ments per sampling instant. It is too voluminous to record 
the entire data for 128 samples. The principal elements 
only are recorded.
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	 Ppre(0,0) = Ppre_rr (range)

	 Ppre(3,3) = Ppre_aa (azimuth)

	 Ppre(6,6) = Ppre_ee (elevation)

	 2.  F16_Pest.DAT: � Estimated error covariance matrix. The principal ele-
ments only. 

	 Pest(0,0) = Pest_rr (range)

	 Pest(3,3) = Pest_aa (azimuth)

	 Pest(6,6) = Pest_ee (elevation)

	 3.  F16_K.DAT: � Kalman gain matrix. The gain matrix has nine-by-three 
per sampling. The principal elements only.

	 K(0,0) = K_rr (range)

	 K(3,1) = K_aa (azimuth)

	 K(6,2) = K_ee (elevation)

	 4.  F16_Xpre.DAT: � Predicted position vector. The vector has nine-by-one 
elements for each sampling instant. Three principal ele-
ments only.

	 Xpre(0,0) = Xpre_rng 

	 Xpre(3,0) = Xpre_azd

	 Xpre(6,9) = Xpre_el

	 5.  F16_Xest.DAT: � Estimated position vector. The vector has nine-by-one,  
nine elements per sampling. Three principal elements 
only.

	 Xest(0,0) = Xest_rng 

	 Xest(3,0) = Xest_azd 

	 Xest(6,0) = Xest_eld 

In order to evaluate performance of this filter the errors between the true trajec-
tory and the predicted or estimated positions are computed in F16_ ERR1.CPP and 
F16_ERR2.CPP. The results are shown in Figures 8.23–8.25.
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An examination of the figures indicates that the filter performance is compa-
rable to KAL_MIG.CPP in CCS coordinates, even though the computation load 
is considerably lighter due to the structures of the Rk and Qk matrices. This is not 
always true; we have to test both filters and choose accordingly.

For an air defense radar the primary importance is the accuracy of azimuth and 
elevation angles. The measures to improve the performance discussed previously 
apply in LOS coordinate processing as well.

Figure 8.24  Errors in estimated and predicted azimuth angle.
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Figure 8.23  Errors in estimated and predicted range.
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8.7  Kalman Filter without Matrix Inversion

For Kalman filter processing where matrix inversion is always required the round-
off error can be a problem with small word-length machines. A class of Kalman fil-
ter processing with “square-root” algorithms [8, 9] has been developed for a better 
numerical behavior; however, it has not completely eliminated the problems.

Bierman [10] was the first to report a filter processing without matrix inversion  
through UDUT factorization for numerical stability. We study his inversionless al-
gorithm in this section. We follow his development and appreciate the superiority 
of his approach.

Estimated or predicted error covariance matrix can be factorized (decom-posed) 
as follows, provided that the matrix is symmetrical and positive definite. We shall 
use an overhead caret (^) and an overhead tilde (~) for the estimated and predicted 
error covariance matrices respectively.

	 P̂k = Ûk D̂k Û
T
k 	 (8.34)

	
�Pk = �Uk

�Dk
�UT

k 	 (8.35)

For example,

	

⎡
⎢⎢⎣

p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p32 p33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 u01 u02 u03
0 1 u12 u13

0 0 1 u23
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d00
d11

d22
d33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
u01 1 0 0
u02 u12 1 0
u03 u13 u23 1

⎤
⎥⎥⎦

	

Figure 8.25  Errors in estimated and predicted elevation.
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The UDUT factorization is programmed in Chapter 1. From previous analysis 
the estimated error covariance matrix update is given by

	

P̂k = [I − kkH] �Pk

= �Pk − kkH �Pk

= �Pk − �Pk H [H�Pk HT + Rk]
−1H�Pk

T
	

If the bracketed term, without inversion, is a scalar, (we shall show this shortly) 
the above expression can be written as

	

P̂k = �Pk − �PkH
�

1
s

�
H P̃k

= �Uk
�Dk

�UT
k −

�
1
s

�
(�Uk

�Dk
�UT

k )HT H (�Uk
�Dk

�UT
k )

= �Uk[ �Dk −
�

1
s

�
(�Dk

�UT
k HT) (HŨk

�Dk)]�U
T
k

= �Uk[ �Dk −
�

1
s

�
(�Dk

�UT
kHT)(�Dk

�UT
k HT)T]�UT

k

T

	

(8.36)

Since  ( ˜ Dk ˜ Uk 
T HT ) ( ˜ Dk ˜ Uk 

T HT)T  is symmetric and positive-definite the bracketed 
term is symmetric and positive-definite. Therefore we can apply  UDUT factoriza-
tion to the bracketed term.

	

�
�Dk −

�
1
s

�
(�Dk

�UT
k HT)(�Dk

�UT
k HT)T

�
→ ŪkD̄kŪT

k
	

(8.37)

Then, the estimated error covariance matrix ^  Pk will be expressed as

	

P̂k = �Uk(ŪkD̄kŪT
k )�UT

k

= (�UkŪk)D̄k(Ū
T
k
�UT

k )

= (�UkŪk)D̄k(�UT
k ŪT

k )T

= ÛkD̂kÛ
T
k 	 (8.38)          

where we use Ûk =  Ũk 
-
Uk and  D̂k = 

-
Dk for shorthand notation.

We have proved that the estimated error covariance matrix ̂Pk can be factorized 
as Ûk D̂k Ûk

T.  
Next we prove that the Kalman gain matrix kk can be computed without matrix 

inversion. The Kalman gain matrix is given by

	 kk =  P̃k HT [ H P̃k HT + Rk ]-1 
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Let

	

�Pk =

⎡
⎢⎢⎣

p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p32 p33

⎤
⎥⎥⎦

k

H =
�

1 0 0 0
0 0 1 0

�
Rk =

�
r00 r01

r10 r11

�

k

	

Then,	 [HP−
k HT + Rk] =

�
p00 + r00 p02 + r01
p20 + r10 p22 + r11

�
	

An inversion of the above matrix is given by

	
[HP−

k H + Rk]
−1 =

1
Δ

�
p22 + r11 −(p02 + r01)

−(p20 + r10) p00 + r00

�
T

	 (8.39)

where  Δ = (p00 + r00)(p22 + r11) − (p02 + r01)(p20 + r10) 	

When the predicted error covariance matrix   P̃k is a block diagonal and the 
measurement error covariance Rk is also a diagonal; that is,

	

�Pk =

⎡
⎢⎢⎣

p00 p01
p10 p11

p22 p23
p32 p33

⎤
⎥⎥⎦

k

Rk =
�

r00 0
0 r11

�

k

	

Equation (8.39) can be written as

	

[HP−
k HT + Rk]

−1 =

⎡
⎢⎢⎣

1
(p00 + r00)

0

0
1

(p22 + r11)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
s0

0

0
1
s1

⎤
⎥⎥⎦

	

As we have seen above, the inverted matrix is a scalar division of the elements. 
Finally the gain matrix is given by

	

kk = �PkHT[H�PkHT + Rk]
−1

=

⎡
⎢⎢⎣

p00 p01
p10 p12
p20 p22
p30 p32

⎤
⎥⎥⎦

�
1/s0 0
0 1/s1

�
=

⎡
⎢⎢⎣

p00/s0 p02/s1
p10/s0 p12/s1
p20/s0 p22/s1

p30/s0 p32/s1

⎤
⎥⎥⎦

	 (8.40)

We have proven that gain matrix kk can be obtained without matrix inversion. 
In general form, kk is given by
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kk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p00/s0 p02/s1 .... p0m/sm−1
p10/s0 p12/s1 .... p1m/sm−1

p20/s0 p22/s1 .... p2m/sm−1
. . .
. . .
. . .

pn0/s0 pn2/s1 .... pnm/sm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

	 (8.41a)

where

	 sj = Hj
�PkHT

k + rjj

pij = Hij
�PkHT

ij + rjj

	 (8.41b)

		  (8.41c)

Next we shall prove that  P̃k  is a block diagonal. When P̂k is a block diagonal 
and Qk is also a diagonal, the predicted error covariance matrix P̃k will remain 
block diagonal:

	

�Pk = ΦΦΦP̂kΦΦΦT + Qk

�Uk
�Dk

�UT
k = ΦΦΦ[ÛkD̂kÛ

T
k ]ΦΦΦT + Qk

= ΦΦΦ(�UkD̄k)D̂k(�UT
kD̄k)ΦΦΦT + Qk

= [(ΦΦΦŨkD̄k)D̂k(ΦΦΦŨkD̄k)
T] + Qk

Note that the second circular bracketed term on the right-hand side is a trans-
pose of the first circular term. Therefore the square bracketed term is diagonal.

We have proved that the gain matrix kk can be obtained without matrix in-
version and that both error covariance matrices,  P̃k and P̂k , can be factorized as 
UDUT. All we have to do is factorization of the two error covariances for every 
sampling instant.
Summarized:

	
�Pk = ΦΦΦ P̂kΦΦΦT + Qk = �Uk

�Dk
�UT

k 	 (8.42)

	
kk = P̃kHT[HP−

k HT + Rk]
−1

	 (8.43) 

	
�

sj = Hj
�PkHT

k + rjj

pij = Hij
�PkHT

ij + rjj

	 (8.44)

	 	 (8.45)

	

�Dk =
�

1
s

�
(�Dk

�UT
kHT)(�Dk

�UT
k HT)T

= ŪkD̄kŪT
k 	 (8.46)

	
P̂k = (�UkŪk)D̄k(�UT

kŪT
k )T = ÛkD̂kÛ

T
k 	 (8.47)
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The estimated and predicted states are the same as before,

	 x̂k = �xk + kk[zk − Hx̂k] 	 (8.48)

	
x̂k+1 = Φx̂k 	 (8.49)

A flow diagram of the Kalman filter without matrix inversion is shown in 
Figure 8.29. The predicted and estimated error covariances are factorized into  
UDUT  in the left loop. The loop on the right computes the estimated and pre-
dicted states. Two loops are connected by the Kalman gain kk.

Figure 8.26  Errors in estimated and predicted range.

Figure 8.27  Errors in estimated and predicted range.
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The filter is programmed in KAL_NMI.CPP.  “_NMI” stands for NoMatrixIn-
version. Five data files record the results:

1.  NMI_Ppre.DAT: � Predicted error covariance matrix; only principal ele-
ments are recorded.

2.  NMI_Pest.DAT: � Estimated error covariance matrix, the principal element 
only;

Figure 8.28  Errors in estimated and predicted azimuth.

Figure 8.29  Errors in estimated and predicted elevation.
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3.  NMI_K.DAT:	 Kalman gain matrix; the principal;elements only;
4.  NMI_Xpre.DAT:	 Predicted state vector; the principal elements only;
5.  NMI_Xest.DAT:	 Estimated state vector, only the principal elements.

The errors between the trajectory and the predicted or estimated positions are 
computed in ERR_NMI.CPP, and the results are shown in Figures 8.26–8.28.

The difference between the no-matrix-inversion processing and KAL_F16. CPP 
is hardly discernable except for the elevation angle error. The UDUT factorization 
of the error covariance matrix is a powerful algorithm. Interested readers should 
consult Bierman [10] who has tabulated the computation load of several algorithms. 
The savings in computation through UDUT factorization and the inversion-free 
computation of gain matrix kk is very substantial.

When the target state equation is written in CCS coordinates and the measure-
ment equation in LOS coordinates as in KAL_F16.CPP, the measurement error ma-
trix Rk is symmetric but not necessarily a diagonal. For such a case we apply UDUT 

factorization on Rk as follows so that decorrelated Rk′ becomes a diagonal.

	

Rk = E{vkvT
k} =

⎡
⎣

σ2
x σxσy σxσz

σyσx σ2
y σyσz

σzσx σzσy σ2
z

⎤
⎦ → UkDkUT

k → Dk

	

Then a new measurement vector zk' and a new measurement matrix Hk' an be 
written as

	 zk' = Uk
-1 zk + vk'	

	 H' = Uk
-1 xk + vk'

The modified measurement error matrix R′ kwill be 

	

R�
k = E{v�k(v�k)

T} = E{(U−1
k vk)(U

−1
k vk)

T}
= E{U−1

k vkvT
k(U−1

k )T}
= U−1

k E{vkvT
k}(U−1

k )T

= U−1
k Rk(U

−1
k )T

= U−1
k (UkDkUT

k)(U−1
k )T

= (U−1
k Uk)Dk(U

−1
k Uk)

T

= Dk 	

which is a diagonal.
The importance of numerical accuracy and stability should be emphasized. 

Computers will always make errors in limited finite word-length operations. When 
the effect of round-off is ignored the error accumulates and we may experience a 
major blunder in a critical mission.
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C h a p t e r  9

Monte Carlo Method and  
Function Integration 

9.1  Introduction

The term Monte Carlo method or Monte Carlo technique stirs excitement in every 
engineer and scientist. In this chapter we present rudimentary principles involved in the 
Monte Carlo method or technique. The Monte Carlo technique is a branch of experi-
mental mathematics, and it is extending into wider applications in such fields as nuclear 
physics, molecular chemistry, population demographic study, hydrographic analysis, 
corporate business planning, product quality control, and political opinion survey.

During the infancy period of Monte Carlo development, engineers were introduced 
to the “hit-or-miss” method analogy, which was greeted with a lukewarm reception. 
As the development progressed, many researchers in many diversified fields have rec-
ognized the great utility of this new experimental mathematics. Hundreds of research 
papers have been published in science, engineering, economics, and political science.

This chapter covers the very minimum basics of the Monte Carlo method through 
a few examples for the benefit of beginners without rigorous mathematical proof. 

The Monte Carlo method may be classified by a set of particular techniques ad
opted to solve a problem on hand:

1.  Hit-or-miss method;
2.  Ordered sample method;
3.  Sample mean method;
4.  Importance sampling method;
5.  Correlated sampling method;
6.  Control variate method;
7.  Stratified sampling method;
8.  Antithetic variate method;
9.  Some others.

We shall limit our study to the first four. For other advanced methods, see 
[1–11]. We summarize the mathematic principle involved and the limitation of each 
method through examples.

9.2  Hit-or-Miss Method

Suppose we draw an irregular curve on a unit square as shown in Figure 9.1, and 
wonder how to compute the area under the curve. The curved line is difficult or 
impossible to express by a mathematic equation.
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Let us be more mathematical in computing an area enclosed by curves. Two 
circles with different radii and centers have been drawn as shown in Figure 9.2.

The coordinates of the center o1 and o2 are given as well as two radii r1 and r2. 
Unlike the first example, we should be able to derive a mathematic expression for 
the area enclosed by the circles. However, it is very difficult to obtain an expression, 
or an extremely time-consuming task. (See Appendix 9A.)

The third example is a hypothetical situation where your company plans to mar-
ket a new product. You know the production cost. You know the current bank interest 
rate. You would like to maximize the profit. Let us assume that the following data is 
available: the ordinate is the number of households,  the abscissa the average house-
hold’s income.  If your product is a very luxurious item you would implement a higher 
profit margin and expect to sell fewer. On the other hand, if the product is a popular 
item you would put in place a lower price tag (a lower profit margin per item) but an-
ticipate a larger sales volume. What would be an optimum price? (See Figure 9.3.)

Similar situations abound in our practical world. The three problems we depict 
in Figures 9.1–9.3 can be handled by the various methods mentioned above.

Figure 9.1  An irregular curve on unit square.

Figure 9.2  Two circles on a unit square.
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To be more mathematically tractable we choose a problem of computing (or 
estimating) the area under a unit Gaussian probability density function as shown in  
Figure 9.4. We have chosen this function because there is no closed-form expression to  
compute the area, even though we can find a table with nine significant digits.

We plan to compute, or using the more precise term, to estimate the area in the 
range  0 £ x £ 1 by four different methods: the hit-or-miss, sample mean, ordered 
sample, and importance sampling methods.

We shall compare the results of the four methods, including the accuracy (the 
magnitude of error), ease or difficulty of algorithm (efficiency), and the number of 
samples required to obtain a statistically meaningful result (error bound and con-
fidence level).

For the hit-or-miss method, we generate two sets of unit uniform random numbers 
(x0, x1, x2, . . . , xN–1)  and  (y0, y1, y2, . . . , yN–1), and pair them such that (x0, y0), (x1, 
y1), (x2, y2), . . . , (xN–1,  yN–1)  represent the coordinate of points in the unit square. We 
shall have N points. We shall call a “hit” if (xi, yi) is on or under the Gaussian curve, 

Figure 9.3  Household income versus number of households.

Figure 9.4  Gaussian probability density function.



250	 Monte Carlo Method and Function Integration 

ART_Kang_Ch09_v_1.indd                                                  Achorn International                                                  07/23/2008  03:27AM

and call a “miss” if (xk, yk) is above the curve. (See Figure 9.5.) The area under the 
Gaussian probability density function (pdf),  0 £ x £ 1,  is estimated by

	 area =             number of hits                                                                total number of sample N

An estimate of the area is programmed in HIT_MISS.CPP, using 128 pairs of 
PRNs. The estimated area is 0.335938. The true area (or the answer given in the 
mathematic table) is 0.341345, an error of 0.005407 or 1.6%. Our intuition is that 
if we increase the number of samples the error will decrease. More about that later.  
The important key in the hit-or-miss method is that the random numbers be distrib-
uted uniformly in the range [1].

Digression to error function. The error function is defined in two different 
ways. Although they are essentially equivalent, the different numerical tables more 
often than not cause confusion. The error function is defined as follows:

1. erf(z) =
2√
π

z�

0
exp{−t2}dt;

erf(x) =
2√
π

x�

0
exp{−t2/2}dt.

	

      2.

Abramowitz and Stegun [4] have used the definition (1) and published an ex-
tensive numerical table. Other authors use the definition (2). Depending upon the 
problem on hand, one is more convenient than the other. We show how to convert 
the numerical tables given by two definitions.

Figure 9.5  Hit-or-miss method on Gaussian pdf.
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erf(x) =
1√
2p

� x

0
exp{−x2/2}dx

Let x2/2 = t2, x2 = 2t2, x =
√

2t, dx =
√

2dt

=
1√
2p

� √
2t

0
exp{− t2}

√
2dt

	

Substituting the definition of (1),

	

=
1√
2π

⎡
⎢⎣ 2√

π

√
2t

�

0
exp{−t2}dt

⎤
⎥⎦
√

2
√

π
2

=
1
2

[Abramowitz & Stegun’s table]
	

The error functions defined by (1) and (2) are programmed in ERR_ABST. CPP 
and ERF_GAU.CPP, and shown in Figure 9.6.

9.3  Ordered Sample Method [3]

An integral can be estimated as the sum of trapezoids. A unit uniform random vec-
tor U = (u0, u1, u2, . . . , uN-1) is rearranged in an ascending order,

	 Uordered =  u(0) £ u(1) £ u(2) £  . . . .  £ u(N-1) 

and the ordinates are computed by

	 g[u(0)],  g[u(1)], g[u(2)], . . . , g[u(N-1)]

Figure 9.6  Two different definitions of error function.

9.3  Ordered Sample Method	 251
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An estimate of the integral is obtained by the sum of trapezoids as shown in 
Figure 9.7.

	 I = ½ 
i=0       
S     
N-1

[g(ui)+g(ui+1)] [u(i+1)-u(i)]	               (9.1)

Equation (9.1) is programmed in ORDERED.CPP. The estimate is 0.338227. 
The correct answer is 0.341345, an error of 0.003118, or 0.91%.

9.4  Sample Mean Method

In the hit-or-miss method and the ordered sample method we have applied geometric 
interpretation to the integral. For the sample mean method we apply the probability 
concept to the integral. We shall interpret an integral as an expectation (or mean)  
operation as

	 I = ò a
b
 

g(x) dx = òa
b xfx(x) dx = E{x}	               (9.2)

We rewrite (9.2) as follows:

	
I =

b�

a
g(x) dx =

b�

a

gx(x)
fx(x)

fx(x)dx = E
�

gx(x)
fx(x)

�

	
              (9.3)

where the random variable x has a probability density function fx(x) and probabil-
ity distribution function Fx(x). They meet the axiom of the probability principle.

	 fx(x) ≥ 0 	 (9.4)

Figure 9.7  Area as sum of trapezoids.
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∞�

−∞
fx(x)dx = Fx(x) = 1

	

(9.5)

For the sample mean method we choose fx(x)=1, a unit uniform probability 
density function. Then (9.3) becomes

	

I = E{gx(x)} =
1
N

1√
2π

N−1

∑
i=0

exp

�
−x2

i

2

�

	
(9.6)

Equation (9.6) is programmed in SAMPMEAN.CPP. The integral I is 0.340730. 
The true value is 0.341345, and the error is 0.000615, or 0.18%.

9.5  Importance Sampling Method 

For the importance sampling method we would like to entertain that fx(x) is differ-
ent from a unit uniform probability density function as we have had in the sample 
mean method. The motivating idea is to concentrate the distribution of the random 
variables x in the close vicinity of gx(x) rather than spreading it all over the range. 
We repeat (9.3) below with x as an unbiased estimator of I.

	 I =
b�

a
g(x) dx =

b�

a

gx(x)
fx(x)

fx(x)dx = E
�

gx(x)
fx(x)

�
≈ ξ 	 (9.7)

The  probability density function fx(x) is no longer a unit uniform function but 
instead is an arbitrary pdf that meets the axiom of (9.4) and (9.5). The question is 
what should fx(x) be in order to improve the accuracy of the integral.

The variance of (9.7) is given, by definition,

             var{x} = E{x2} – E2{x} 

	 =
� g2(x)

f2(x)
f(x)dx − E2

�
g(x)
f(x)

�
=

� g2(x)
f(x)

dx − I2 	 (9.8)

We shall prove that var{x} would be minimized when an arbitrary pdf fx(x) is 
proportional to the absolute magnitude of gx(x).  

The Cauchy-Schwarz inequality states that, 

	

��
|u(x)v(x)|dx

�2

≤
�

u2(x)dx ·
�

v2(x)dx
	

Let

	
u(x) =

g(x)�
f(x)

, v(x) =
�

f(x)
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Then,

	
��

|g(x)|dx
�2

≤
� g2(x)

f(x)
dx ·

�
f(x) dx =

� g2(x)
f(x)

dx 	 (9.9)

From (9.8) and (9.9) it follows that

	 var{x} £  [ò | g(x) | dx ]2
 − I2	               (9.10)

We shall prove that the lower bound of var{x} of (9.10) is obtained when an 
arbitrary pdf  f(x) is proportional to the magnitude of g(x).

	 f(x) = c | g(x) |

The extremum (in this case the minimum) of (9.10) can be found through the 
Lagrange operator: 

	 L[var{ξ}] =
� g2(x)

f(x)
dx − λ2

��
f(x) dx

�2
	                 (9.11)

The Lagrange multiplier l is obtained when a partial derivative of (9.11) with 
respect to an arbitrary f(x) is taken and equated to zero:

	

∂L
∂ [f(x)]

=
−g2(x)

f2(x)
− λ2 = 0

Thus,

	

g2(x)

f2(x)
= −λ2, f(x) =

1
λ
|g(x)| , and f(x) = c |g(x)|

	

	

b�

a
f(x)dx = c

b�

a
|g(x)|dx = 1, c =

⎡
⎣ b�

a
|g(x)|dx

⎤
⎦
−1

	

We have proved that var{x} will be minimized when an arbitrary pdf f(x) is 
chosen to be proportional to the magnitude of g(x).

A disturbing question arises: the original function g(x) is assumed to be so com-
plicated to defy an integration, or there is no closed-form analytic expression for 
integration (in our example of Gaussian pdf), and so is the proportional pdf f(x).

Don’t despair, “not all is lost,” says [7].  Hammersley and Handscomb pro-
posed that the strict proportionality can be relaxed to similarity. In other words the 
pdf f(x) is similar in shape to g(x) yet we take a benefit of reduced variance.

For example, we take a cosine function as similar to Gaussian over the range 
of integration [0,1] as shown in Figure 9.8. The proposed f(x), being a probability 
density function, must meet the axiom of (9.4) and (9.5).
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Therefore, 

	

I =
1√
2π

1�

0
exp

�
−x2

2

�
dx =

1√
2π

1�

0

exp
�−x2

2

�
�

cos x
sin(1)

� dx

=
1
N

1√
2π

sin(1)
N−1

∑
i=0

�
exp

�−xi

2

�
/cos xi

�2

	 (9.12)

Equation (9.12) is programmed in IMPRTANC.CPP.  The integral is 0.341507.
The true value is 0.341345, an error of 0.000162, or 0.05%.

9.6  Observations and Remarks

1.   �Results of four different methods are tabulated below for comparison. The 
number of samples used is 128 for all cases.

Method Integral Error Percent

Hit-or-Miss 0.335938 0.005408 1.6%
Ordered Sample 0.338227 0.003818 0.9%
Sample Mean 0.340730 0.000615 0.2%
Importance Sample 0.341507 0.000162 0.05%   

Figure 9.8  �Similarity function, 
1√
2p

exp

�
−x2

2

�
∼ c cos x 

c
� 1

0
cos x dx = c sin(1) = 1, c =

1
sin(1)

.
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2.   �When the integrand f(x) cannot be expressed in a mathematical equation, 
the hit-or-miss method is the only way available. The random variables 
must be uniformly distributed over the range.

3.   �When the integrand is mathematically expressible but the integration does 
not have a closed-form analytic expression, the other three methods can be 
employed.

4.   �The ordered sample method is a straightforward summation of trapezoids.
5.   �The sample mean method is a relatively simple computation of an expectation  

operation, the mean value.
6.   �The importance sampling method yields the best estimate of the integral 

among four methods, but with a heavy computation load. Through the 
importance sampling method we have learned the importance of variance 
reduction. All the methods (5–9) mentioned in the introduction are various 
strategies to reduce the variance efficiently.

7.   The central questions in applying Monte Carlo method are:

a. � How many observations (or samples) would be adequate to ensure a 
statistically meaningful accuracy, and

b. � Conversely, given N observations how accurate is the estimate and what 
level of confidence.

When the cost of collecting the samples is inexpensive (i.e., the generation 
of PRN), we should increase the number of samples N as large as we’d like. 
On the other hand, when the cost of  collecting the samples is prohibitively 
expensive or the time to collect is limited as in a political opinion survey, we 
should like to economize on the number of samples.

Often we encounter a paucity of sampled data as in the flood data of the last 50 
years or wind-gust data of the last 100 years. Under these constrained conditions 
we desire an estimated result with a certain accuracy (reliability) and an acceptable 
level of confidence.

We shall answer (7a, b) in the next section through an example, the Q-function.

9.7  �Probability of False Alarm, Exponential Probability  
Density Function

Applications of the importance sampling method are numerous. We take up the case 
of computing the false-alarm rate in a radar system where the tail of the probability 
density function of noise or clutter has to be examined. When narrowband Gauss-
ian noise passes through a square-law detector, the output noise is exponentially  
distributed (see Chapter 7). An example of the Q-function or the false-alarm prob-
ability is shown in Figure 9.9.

The problem is the reverse of Section 9.5. Here we are given the area Q, the 
false-alarm probability, and we would like to estimate the threshold. The threshold 
is analytically obtainable, as shown below, however, for a moment we pretend we 
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do not know the analytic solution, and we resort to the Monte Carlo technique to 
estimate the threshold.

	 Pfa = 1.0E − 6 =
∞�

Th

1

σ2 exp
�−x

σ2

�
dx = exp

�−Th
σ2

�
	               (9.13)

and,

	 Th            σ 2  = 13.8155

Imagine we have employed the hit-or-miss method. If we distribute one million 
random samples, statistically one point may fall in the Q area, if at all. If we distrib-
ute 10 million random points, 10 points (maybe nine or 11 points) may fall in the 
shaded area. With 10 million sample points we achieve accuracy of 10%!  

The tremendously large number of samples required and the poor estimate 
would discourage us from using the hit-or-miss method. Rescue comes from an 
application of the Importance Sampling method [10, 11]. We shall find a similarity 
function to the exponential pdf and use the technique of variance reduction in order 
to reduce the number of samples and establish a bound on the confidence level. (See 
Figure 9.10.)

Figure 9.10  Exponential pdf and a similarity function.

Figure 9.9  Q-function, the probability of false alarm.
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The similarity function chosen is another exponential with a different variance, 
noise power sm 

2 , sm 
2 > s2. A weighting function w(x) is introduced.

	
w(x) =

f(x)
fm(x)

=
�σm

σ

�2
exp

�
−

�
1

σ2 − 1
σ2

m

�
x
�

	
(9.14)

We digress to introduce the concept of the coefficient of dispersion (CD). The 
CD is defined as the ratio of the standard deviation to the first moment, the expec-
tation, or mean. The CD is a measure of how certain an estimate is. The smaller 
the CD the higher the confidence that the estimate is closer to the true value. Figure 
9.11 illustrates the concept of the CD.

We derive the mean and the second moment of the exponential pdf in terms of 
the weighting function w(x) and the similarity function fm(x). 

	 E{f(x)} =
∞�

Th
w(x)fm(x) dx =

∞�

Th
f(x) dx = exp

�−Th
σ2

�
	 (9.15)

	

E{f2(x)} =
∞�

Th
w2(x)fm(x) dx =

∞�

Th

f2(x)
fm(x)

dx

=
�σm

σ

�2 1
[2 − ( σ

σm
)2]

exp
�
−

�
2

σ2 − 1
σ2

m

�
Th

�

≈
�σm

σ

�2 1
2

exp
�
−

�
2

σ2 − 1
σ2

m

�
Th

�

	

(9.16)

	 ( s          sm
)2 <<< 1

Figure 9.11  Mean, standard of deviation, and the CD.
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The variance of f(x) is given by definition

	 s
f
2 º E{f2(x)} - E2{f(x)}

	
=

1
2

�σm

σ

�2
exp

�
−

�
2

σ2 − 1
σ2

m

�
Th

�
− exp

�−2Th
σ2

�

	

Thus the CD is obtained as a ratio of

	 CD =
σf

E{x} =
σ2

x

E2{x} =
1
2

�σm

σ

�2
exp

�
Th
σ2

�
− 1 	 (9.17)

The value of sm that would minimize CD is given by taking the  partial deriva-
tive of (9.17) with respect to sm and setting the result equal to zero.

	
∂

∂σm

�
σx

E{x}
�

= exp
�

Th
σ2

��
σm

σ2 − Th
σ2σm

�
= 0 	 (9.18)

therefore, sm
2 = Th.

With the optimized value of sm 
2 = Th, the CD is obtained:

	 D =
σ2

x

E2{x}

����σ2
m=Th =

1
2

�
Th
σ2

�
exp{1} − 1C 	 (9.19)

Substituting (Th   ¾   s2) = 13.8155 from (9.13) into (9.19), we obtain the minimized 
CD.

	
CD =

σ2
x

E2{x} =
1
N

�
1
2

(13.8155 exp{1} − 1
�

=
17.78

N 	

For a CD of  1%, the number of samples required is

	 1              100 = 17.78               N   
,      N » 1,778	

For a CD of  0.5%, the number of sample required is

	 5                   1000 = 17.78                    N   ,      N » 3,556

For a CD of  0.1%, 

	 1                   1000 = 17.78                    N   ,      N » 17,780

The optimum choice of sm
2 for the similarity function, a modified exponential 

pdf, that minimizes the CD has reduced the number of samples by several orders of 
magnitude compared with the hit-or-miss method.
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The threshold Th for the false-alarm probability Pfa computed by the impor-
tance sampling method is programmed in Pfa_EXP.CPP with replication N=1,000, 
and an algorithm flow diagram is shown in Figure 9.12. 

	

Ui = unit uniform random variables, i = 0,1,2, . . . ,N − 1

f(x) =
1

σ2
exp

�−x
σ2

�

fm(x) =
1

σ2
m

exp
�−x

σ2
m

�

	

	

w(x) = f(x)/ fm(x) =
�σm

σ

�2
exp

�
−

�
1

σ2 − 1
σ2

m

�
x
�

w(xm) = exp
�
−

�
1

σ2 − 1
σ2

m

�
xm

�

E{Pfa} = P̂fa =
1
N

N

∑
i=1

zm
	

The result of  Pfa_EXP.CPP is shown in Figure 9.13. Although sm is optimized 
for Q = Pfa = 1.0E-6, Figure 9.13 shows no discernible error throughout the range 
of threshold. (Try N=500.)

9.8  �Probability of False Alarm, Gaussian Probability Density Function

For the second example we use the Gaussian probability density function to com-
pute the threshold for the Q-function, Pfa=1.0E-6, by the importance sampling 

Figure 9.12  Flow diagram of Pfa_EXP.CPP.     
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method. We derive an expression for the CD, minimize the dispersion, and establish 
the number of Monte Carlo replications required. (See Figure 9.14.)

Gaussian probability density function with zero mean and variance s2 is

	
f(x) =

1

σ
√

2π
exp

�
−x2

2σ2

�

	

We modify f(x) by increasing the variance. This is the similarity function, not a 
strict proportional function that we have discussed.

	 fm(x) =
1

σm
√

2π
exp

�
−x2

2σ2
m

�
, σm > σ 	

The procedure to obtain an expression for the CD is identical to that for an ex-
ponential pdf.  First we derive the first moment (the expectation, or the mean) and 
the second moment of f(x) in terms of fm(x).

Figure 9.13  Threshold level versus false-alarm probability, exponential probability density function.
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The weighting function w(x) is given by

	
w(x) =

f(x)
fm(x)

=
σm

σ
exp

�
−

�
1

σ2 − 1
σ2

m

�
x2

2

�

	

The first moment of f(x) in terms of fm(x) is

	
E{f(x)} =

∞�

Th
w(x) fm(x) dx =

∞�

Th
f(x) dx =

1
2

erfc
�

Th

σ
√

2

�

	

where erfc(.) is the complementary error function. The second moment is given by 

	

E{f2(x)} =
∞�

Th
w2(x)fm(x) dx =

∞�

Th

f2(x)
fm(x)

dx

=
σm

σ2
√

2π

∞�

Th
exp

�
−

�
2

σ2 − 1
σ2

m

�
x2

2

�

=
1
2

σm

σ
1�

2 − σ2

σ2
m

� erfc

⎡
⎣ Th

σ
√

2

�
2 − σ2

σ2
m

�1/2
⎤
⎦

 
The variance is by definition

Figure 9.14  Gaussian probability density function and similarity function.
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var{f(x)} ≡ E{f2(x)} − E,2{f(x)}

=
1
2

σm

σ
1�

2 − σ2

σ2
m

� erfc

⎡
⎣ Th

σ
√

2

�
2 − σ2

σ2
m

�1/2
⎤
⎦ − 1

4
erfc

�
Th

σ
√

2

�

	

Finally, the CD is obtained as the ratio

	       

CD ≡ STD{f(x)}
E{f(x)} =

var{f(x)}
E2{f(x)}

=
2σm

σ
1�

2 − σ2

σ2
m

� erfc

�
Th

σ
√

2

�
2 − σ2

σ2
m

�1/2
�

�
erfc2

�
Th

σ
√

2

�

	

(9.20)

What should the threshold Th be to yield Pfa=1.0E– 6? 

	
Pfa = 1.0E − 6 =

1

σ
√

2π

∞�

Th
exp

�
−x2

2σ2

�
dx =

1
2

erfc
�

Th

σ
√

2

�

	

We have written a program Q_THRES.CPP and found that the threshold is 
approximately 4.75. Readers may find a numerical table for the complementary 
error function.

By injecting Th » 4.75 into (9.20), we plan to minimize the CD by finding an op-
timum value for sm. For an exponential pdf we have resorted to a partial derivative 
(maximum likelihood principle). For a Gaussian pdf, a partial derivative of (9.20)  
with respect of sm is very lengthy and complicated; therefore, a numerical iterative 
search is appropriate. An iterative numerical search is written in CD_GAU.CPP. 
The result is shown in Figure 9.15.

The CD reaches the minimum of 49.7 when

	 4.8<sm<4.9

with a relatively broad trough. Thus, the relationship between the CD and the num-
ber of Monte Carlo replications is as follows.

	
CD =

STD{f(x)}
E{f(x)} =

var{f(x)}
E2{f(x)} =

49.7
N 	

The number of Monte Carlo simulation samples required N and the CD is 
tabulated below.

	       N        CD =   s               E{x}

	    1,000        5.0%
	    5,000        1.0%
	  10,000        0.5%



264	 Monte Carlo Method and Function Integration 

ART_Kang_Ch09_v_1.indd                                                  Achorn International                                                  07/23/2008  03:27AM

Figure 9.16  Threshold level  versus  false-alarm probability Gaussian probability density function.

Figure 9.15  CD versus sm.
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The number of sample replications for the importance sampling method is three 
or four magnitudes less than the hit-or-miss method. The probability of false-alarm 
and the threshold is programmed in PFA_GAU.CPP, and the results  are shown in 
Figure 9.16.

9.9  Integration of Functions

We have mentioned that the Monte Carlo method is a branch of experimental math-
ematics and that the experiment involves numerical integration of an unmanageably 
complex integrand. In the subsequent sections we analyze and program a few classic 
numerical integrations so that we learn when to employ the Monte Carlo technique.

The faint glow of glamour associated with the Monte Carlo goes out the window,  
as it should unless the problem on hand is extraordinary. 

Numerical integration, sometimes called quadrature, is an obvious technique of 
summing the values of integrands with a sequence of abscissas in the given range. We 
have seen an example of quadrature in Section 9.3, the ordered sample method of 
summing the trapezoids. The quadrature approach, an accumulation of small slivers  
of areas works when the following are true:

1. � The integrand does not have a singularity in a finite range of  
integration;

2. � The integration range does not include positive or negative infinity. 

There are some exceptions, however. We shall analyze and program the classic 
techniques of integration by the trapezoidal rule, Simpson’s rule or an extended 
Simpson’s rule. These are the workhorses when the integrand is moderately smooth 
and the sequence of abscissas is equally spaced. Next we shall program the Gaussian 
quadrature when the abscissas are not equally spaced in order to achieve integra-
tion of a higher order. We program a Gaussian-hyphenated-polynomial quadrature 
such as Gauss-Legendre, Gauss-Laguerre, Gauss-Chebyshev, and Gauss-Hermite. 
We have added simple cases of two- and three-dimensional integration.

9.9.1  Trapezoidal Rule

The ordinates of the interand are computed at a sequence of equally spaced abscissa 
to form trapezoids. The areas of the trapezoids are summed. The two end points 
of integration must be finite, as are the ordinates of the integrand; the integrand 
should not have singularity in the range.

	

I =
b�

a
f(x) dx = h[1/2 f1 + f2 + f3 + . . . + fN−1 +1/2 fN]

=
h
2
[f1 + 2f2 + 2f3 + . . . 2fN−1 + fN]

	

(9.21)

where h is the width of equally spaced abscissa.	
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Equation (9.21) is programmed in TRAPZOID.CPP; f(x) is unit Gaussian prob-
ability density function with a=0 and b=1, N=128. The integral is 0.339438.

There is nothing to be excited about. We expect that the error will decrease as 
N is increased.

9.9.2  Simpson’s Rule and Extended Simpson’s Rule

The extended Simpson’s rule is given by

	

b�

a
f(x) dx = h

�
1
3

f0 +
4
3

f1 +
2
3

f2 + . . . +
2
3

fN−2 +
4
3

fN−1 +
1
3

fN

�

=
h
3

[f0 + 4f1 + 2f2 + . . . + 2fN−2 + 4fN−1 + fN]

=
h
3
{f0 + 4[f1 + f3 + f5 + . . . + fN−1]

+ 2[f2 + f4 + f6 + . . . + fN−2] + fN} 	

(9.22)

The 4/3 and 2/3 factor alternate throughout the interior of the summation. There 
is no mystery about the alternation. A simple three points Simpson’s rule is applied  
to the successive nonoverlapping pairs of intervals.

	

b�

a
f(x) dx = h

�
1
3

f0 +
4
3

f1 +
1
3

f2

�

	
(9.23)

A program is written in SIMPSON.CPP for the unit Gaussian probability den-
sity function with a=0, b=1, and N=128. The integral is 0.341345, a surprisingly 
accurate answer matching the value in mathematical table with six significant dig-
its. The error in the extended Simpson’s rule is 1/N4. By reducing N we obtained 
the following results.

                             N          integral

	 64        0.34134474
	 32        0.34134474
	 16        0.34134477
	   8        0.34134540

The extended Simpson’s rule works surprising well with small N when the inte-
grand is relatively smooth. Simpson’s three-point integration (9.23) can be extended 
to four-point integration.

	

b�

a
f(x) dx = h

�
3
8

f0 +
9
8

f1 +
9
8

f2 +
3
8

f3

�
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Equation (9.22) worked so well that we have added a new program SIMP-
SONX.CPP in the file. SIMPSON.CPP is tailored to the unit Gaussian probability 
density function. What if the integrand is different from the Gaussian pdf? We 
have to alter a few lines in the program, and this is a nuisance. We have inserted an  
arbitrary function name FUNC(x) in the new program for versatility. The declara-
tion of FUNC(x) may be

	

f(x) = e−x

f(x) = x · e−x2

f(x) =
�

1 + x2, etc. 	

as long as the function f(x) is not singular in the range nor at the end points. 

9.9.3  Gaussian Quadrature

So far the integrations have been restricted to a sequence of abscissas equally spaced 
in the range. If we remove the restriction, that is, densely spaced abscissas in a 
region where the integrand changes rapidly, sparsely where the integrand changes 
slowly, we can improve accuracy with an equal number of subintervals.

To introduce the idea of Gaussian quadrature we consider the following inte-
gration that involves certain polynomials:

	

b�

a
w(x)Pn(x)Pm(x)dx =

�
0 n �= m
hn n = m 	

A system of polynomials Pn(x), in which degree of Pn(x) is n, is called orthogo-
nal in the interval [a,b] with respect to a weight function w(x), w(x)>0.  When hn is 
unity the polynomials are called othonormal:

	

b�

a
w(x)P2

n(x) dx = 1	
There are many interesting orthogonal polynomials including Legendre, Cheby-

shev, Jacobi, Laguerre, and Hermite. When the limits [a,b] of integration are certain 
special cases, we select an appropriate polynomial; for example,

	

[a b] = [ − 1,1] Legendre

[a,b] = [ − 1,1] Chebyshev

[a,b] = [0,∞] Laguerre

[a,b] = [ −∞,∞] Hermite

,

	

Integration of the following form can be evaluated by the Legendre polynomial.
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1�

−1
f(x) dx =

N

∑
i=1

wif(xi)	
where wi is the weight and xi is the ith root of the Legendre polynomial of degree n. 
The integrand f(x) is evaluated at xi.

Integration of the following form can be evaluated by Chebyshev polynomial.

	

1�

−1

f(x)√
1 − x2

dx =
N

∑
i=1

wi f(xi)	
where wi is the weight and xi is the ith root of Chebyshev polynomial of degree n.

Integration of the following form can be obtained by Laguerre polynomials of 
degree n when the limits are [0, ¥].

	

∞�

0
e−xf(x) dx =

N

∑
i=1

wi f(xi)	
where xi is ith root of Laguerre polynomial of degree n, and wi is the corresponding 
weight. 

When the integrand is of the form of  exp{-x2} . f(x)  and the integration limits 
are [-¥, ¥], we employ a Hermite polynomial. 

	

∞�

−∞
e−x2

f(x) dx =
N

∑
i=1

wi f(xi)	
The key to a successful integration is how expeditiously we find the roots of the 

selected polynomial and the corresponding weights. We demonstrate a few of these 
quadrature techniques by examples.

9.9.3.1  Gauss-Legendre Quadrature

When a polynomial is Legendre we call the integration Gauss-Legendre quadrature.

	

b�

a
f(x) dx =

N

∑
i=1

wi f(xi)	
An arbitrary limit [a,b] can be transformed to [-1, 1] by using a simple linear 

transformation.

	
yi =

�
b − a

2

�
xi +

�
b + a

2

�

	
(9.24a)

	

b�

a
f(x)dx =

�
b − a

2

� N

∑
i=1

wi f(xi)
	

(9.24b)
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Legendre polynomials have the following recurrence formula:

	 L0(x) =  1

	 L1(x) =  x

	 L2(x) =  (1/2) (3x2-1)

	 L3(x) =  (1/3) (5x2-3x)

	    .	 .
	    .	 .
	    .	 .

	 Ln(x) =  [(2n-1)/n] x . Ln-1(x) - [(n-1)/n] Ln-2(x)

The derivatives and the weights are given by [11],

	
L�

n(x) =
n[x Ln(x) − Ln−1(x)]

(x2 − 1)
, wi =

2

(1 − x2
i )[L�

n(xi)]
2

	

Figure (9.17) shows Legendre polynomials up to degree four. The weights are 
computed in LEGENDRE.CPP, up to degree ten, shown in Figure 9.18. Note the 
unequally spaced x[i], not like Simpsons & trapezoidal method. 

[i] x[i] w[i]

1 0.013047 0.033336

2 0.067468 0.074726

3 0.160295 0.109543

4 0.283302 0.134633

5 0.425563 0.147762

6 0.574437 0.147762

7 0.716698 0.134633

8 0.839705 0.109543

9 0.932532 0.074726

10 0.986953 0.033336

Using the abscissas and weights obtained above, the integral of the unit Gauss-
ian pdf with limits [0.0, 1.0] is computed in GAUS_LEG.CPP.

	
1√
2π

1�

0
exp

�
−x2

2

�
dx =

1√
2π

10

∑
i=0

wi f(xi)	
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The answer is surprisingly accurate with 20 abscissas and weights.
When a change in integration limits is needed (i.e., from [0, 1] to [0, 3]) we use the  

transformation formula of (9.24). As an example the following integration is dem-
onstrated in GAU_LEGX.CPP.

	

1√
2π

3�

0
exp

�
−x2

2

�
dx

	

Check the result with a mathematic table. This is one-half of “three-sigma” we 
hear about often in quality control.

Figure 9.18  Abscissa and weight, Legendre polynomial n=20.

Figure 9.17  Legendre polynomials.
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9.9.3.2  Gauss-Chebyshev Quadrature

The following integration will be evaluated by Gauss-Chebyshev quadrature. 

	

1�

−1

f(x)√
1 − x2

dx =
N

∑
i=1

wi f(xi) 	
Chebyshev polynomials have the recurrence formula,

	

T0(x) = 1

T1(x) = 1

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x 	

	 .	 .
	 .	 .

	 Tn+1(x) = 2x Tn(x) – Tn-1(x)

Figure 9.19 shows Chebyshev polynomials up to the fourth degree. The poly-
nomials are orthogonal in the range  [−1, 1]. 

	

1�

−1

Tn(x) Tm(x)√
1 − x2

dx =

�
0 when n �= m

π when n = m 	
The abscissa xi, the ith root of Chebyshev polynomials in [-1, 1] is given by, 

	
xi = cos

�
π(i − 1/2)

n

�

	

and the corresponding weights are equal for all wi,  wi = p    n . (See Figure 9.20.)

Figure 9.19  Chebyshev polynomials.



272	 Monte Carlo Method and Function Integration 

ART_Kang_Ch09_v_1.indd                                                  Achorn International                                                  07/23/2008  03:27AM

Two functions f(x) =    x
3
                   

√ 1- 
 
x2

,   and   f(x) =  ln x                   
√1- 
   

x2
 are integrated by Gauss- 

Chebyshev quadrature in [0, 1] in GAU_CHEB.CPP. The analytic answer is 2/3 
and –p/2 ln(2). The first integrand has a singularity at x=1.0. The largest abscissa 
is 0.998630, a difference of 1.0−0.998630=0.001370. The second integrand has 
an additional singularity at x=0.0. The smallest abscissa is 0.052336, almost 38 
times as large at x=1.0 of the first integrand. We expect a poor result for the second 
integral if we use the same degree, n=10. A suggestion may be an increase of n, or a 
better approach may be a change of the function ln x so that the additional singular-
ity would be eliminated.

If we let ln x = -t,  x = e-t
,   dx = -e

-t
 dt,  the integrand will be transformed as 

shown below, and the singularity at x=0 is eliminated.

	

� x=1

x=0

ln x√
1 − x2

dx =
� t=0

t=∞
t e−t

√
1 − e−2t

dt
	

An integration with limit [0, ¥] will be discussed in Gauss-Laguerre quadrature 
in the next section. When the limits are [0, 3] in the first integration, we would in-
tegrate in two parts. [0, 1] and [1, 3] and sum them.

9.9.3.3  Gauss-Laguerre Quadrature

The following integration can be evaluated by the Gauss-Laguerre quadrature. 

	

� ∞

0
e−xf(x) dx =

N

å
i=1

wif(xi)
	

Laguerre polynomials have the following recurrence formula,

Figure 9.20  Weights of Chebyshev polynomial, n=10.
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L0(x) = 1

L1(x) = 1 − x

L2(x) = 1/2(x2 − 4x + 2)
. .
. .
. .

Ln+1 =
�

2n + 1 − x
n + 1

�
Ln(x) −

�
n

n + 1

�
Ln−1(x)

	

Laguerre polynomials up to five degrees are shown in Figure 9.21. 
The abscissas and the corresponding weights are computed in LAGUE- RRE.CPP.

[i] x[i] w[i]

1 0.037793 3.084411E-01
2 0.729455 4.011199E-01
3 1.908343 2.180683E-01
4 3.401434 6.208746E-02
5 5.552496 9.501517E-03
6 8.330153 7.530084E-04
7 11.843786 2.825923E-05
8 16.279259 4.249314E-07
9 21.996586 1.839565E-09

10 29.920696 9.911827E-13

Figure 9.21  Laguerre polynomials, n=5.
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A demonstration program is written in GAU_LAG.CPP for two functions:

	

� ∞

0
e−xx sin(x) dx,

� ∞

0

e−x x√
1 − e−2x

dx

	

The second integral is the one we discussed in the previous section while elimi-
nating a singularity. Read GAU_LAG.CPP in the file.

9.9.3.4  Gauss-Hermite Quadrature

The following integration can be evaluated by Gauss-Hermite quadrature. 

	

� ∞

−∞
e−x2

f(x) dx =
N

å
i=1

wif(xi)

	

Hermite polynomials have recurrence formulas in two different forms; one is or-
thogonal polynomials given by [4], and the other orthonormal polynomials by [11].

Orthogonal Orthonormal

H0(x) = 1 H0(z) = 1/ p¼   
H1(x) = 2x H1(z) = z Ö 

 
2/ p¼ 

H2(x) = 4x2 − 2 H2(z) = (z2−1/2) Ö 
 

2/ p¼   
H3(x) = 8x3 – 12x H3(z) = (z3 – 3z/2)(Ö 

 
2/Ö 

 
3) Ö 

 
2/ p¼ 

. .

. .

. .

. .

	
Hn+1(x) = 2xHn(x) − 2nHn−1(x) Hn+1(z) = z

�
2

n + 1
Hn(z) −

�
n

n + 1
Hn−1(z)

The corresponding weights wi are also given in two different forms:

	
wi =

2n−1n!
√

π
n2[Hn−1(xi)]2

wi =
2

[H�(zi)]2
, H�

n =
√

2nHn−1
	

The orthonormal polynomials are preferred, since the weights given by Abra
mowitz and Stegun are very large and often overflow when degree n is moderately 
high due to the factorial n! involved.

The Hermite polynomial (orthonormal) are shown in Figure 9.22 for positive 
z only.
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The abscissa and weight are computed in HERMITE.CPP, n=15.

[i] z[i] w[i]

 1 4.499991 1.522476E-09
 2 3.669950 1.059116E-06
 3 2.967167 1.000044E-04
 4 2.325732 2.778069E-03
 5 1.719995 3.078003E-02
 6 1.136116 1.584889E-01
 7 0.565070 4.120287E-01
 8 0.000000 5.641003E-01 (symmetry)
 9 -0.565070 4.120287E-01
10 -1.136118 1.584889E-01
11 -1.719993 3.078003E-02
12 -2.325732 2.778069E-03
13 -2.967167 1.000044E-04
14 -3.669950 1.059116E-06
15 -4.499991 1.522476E-09

A demonstration program is written in GAU_HERM.CPP for the integrand f(x)= 
e  –x2 x2 in the range [0, + ¥].  A header file HERMITR.H is created to compute the 
abscissas and weights for an arbitrary order of Hermite orthonormal polynomials.

9.10  Quadrature in Two Dimensions

One dimensional quadrature can be extended to two dimensions with careful decla-
ration on the limits of inner and outer integrations. We demonstrate the techniques 
with three examples.

Figure 9.22  Hermite polynomials.
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A two-dimensional quadrature would be evaluated in two steps:

	

I =
� x2

x1

� y2

y1

f(x,y)dx dy

	

A temporary inner integral H(x) is evaluated first,

	

H(x) =
� y2(x)

y1(x)
f(x,y) dy

and, finally the outer integral

	

I =
� x2

x1

H(x) dx

	

The one-dimensional integral algorithm (trapezoidal, Simpson’s extended rule, 
or Gauss-hyphenated-polynomial routine) is executed with an increment Dx on the 
outer integrand and many times, recursively, on the inner integrand over the speci-
fied limits of integration. 

Example 1.

	

� x2=1

x1=0

� y2=1+x

y1=1+x2
2xy dx dy

	

            (9.25)

Equation (9.25) is evaluated by two different algorithms: one by the extended 
Simpson’s rule and other by Gauss-Legendre quadrature. For Simpson’s extended 
rule we follow five steps described as follows.

1. � Declare the integrand f(x,y)=2xy and the limits of inner integration, y1 and 
y2.

2. � Apply Simpson’s extended rule, one-dimensional routine, to the integration.
3. � Declare three pointers; first pointer to f(x,y), second pointer to the lower 

limit y1(x), and third pointer to the upper limit y2(x).
4. � Construct a prototype of 2D_Simpson algorithm; for example, 

	 Simpson_2D(a, b, y1, y2, FUNC_f(x,y), N)

	  � where “a” and “b” are unspecified general limits of outer integration, and N 
the number of subintervals of Simpson’s rule.

5.  Execute Simpson_2D algorithm after x1 and x2 specified.

The steps described above are written in 2D_SIMPS.CPP and the result is shown 
below.
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Number of subintervals Answer Error

10 0.249967 3.328919E-05
12 0.249984 1.601875E-05
14 0.249991 8.657575E-06
16 0.249995 5.081296E-06
18 0.249997 3.218651E-06
20 0.249998 2.056360E-06
22 0.249999 1.415610E-06
24 0.249999 9.685755E-07
26 0.249999 7.301569E-07
28 0.249999 5.513430E-07
30 0.250000 4.023314E-07
32 0.250000 3.129244E-07
34 0.250000 2.682209E-07
36 0.250000 2.086163E-07
38 0.250000 1.341105E-07

As the number of subintervals increases the quadrature approaches the correct 
answer. How do we know the number of subintervals required at the outset of the 
program?

	

� x2

x1

� y2

y1

f(x,y) dx dy =
b

å
a

N

å
i

f(xi,yi) + remainder

	
The remainder (error) is given by [4] (equation [25.9.4]) for Simpson’s rule.

	
remainder (error) ≤ Nh5

90
f (4)(ξ )

	

where h=(b-a)/N, and f(4) (x) is the maximum value of fourth derivative of the inte-
grand in [a, b]. Substituting  f(4) (1) » 120, we estimate the number of subintervals 
N for an error of 1.0E-6. 

	

error ≤ N
90

(b − a)

N5 f(4)(ξ )

=
120

90 N4 	

and,

	 N ≥ 34
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Equation (9.25) is again evaluated by Gauss-Legendre quadrature, written in 
2D_LEGDR.CPP.  The program procedures are identical to 2D_SIMPS. CPP except 
that the step (2) is replaced by one-dimensional version demonstrated in Section 
9.9.3.1, GAU_LEGX.CPP, with only ten xi and wi to obtain a correct answer.

Example 2.

	

� x2=∞

x1=0

� y2=x

y1=0
e−(x+y)dx dy

	
(9.26)

Equation (9.26) is evaluated in 2D_GAUSS.CPP using xi and wi given by Abro-
mowitz and Stegun [4] (Table [25.4]) n=20.  Only one-half of xi and wi are included 
in the program due to symmetry.

Example 3.

	

� x2=1

x1=0

� y2=1+x

y1=1+x2
xy e−y2

dx dy

	
(9.27)

Equation (9.27) is evaluated in 2D_GAUSS.CPP using the previous xi and wi. 
The result is surprisingly accurate with only n=10. 

9.11  Quadrature in Three Dimensions

Integration in three variables x, y and z can be evaluated by extending the two- 
dimensional quadrature having two intermediate integrals G(x, y) and H(x) as 
shown.

	

I =
� x2

x1

� y2

y1

� z2

z1

f (x,y,z) dx dy dz

	

Two intermediate integrals G(x, y) and H(x) would be evaluated first,

	

G(x,y) =
� z2(x,y)

z1(x,y)
f (x,y,z)dz

H(x) =
� y2(x)

y1(x)
G(x,y)dx

	
and finally

	

I =
� x2

x1
H(x) dx

	

A basic one-dimensional quadrature is executed for the outermost integration, and 
the two intermediate integrals G(x, y) and H(x) are called recursively many times.

A rather simple integrand is taken up as a demonstration.
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� x2=1

x1=0

� y2=x

y1=0

� z2=1+xy

z1=0
2xyz dx dy dz

	
(9.28)

Equation (9.28) is evaluated in 3D_LRGDR.CPP with ten xi and wi that we 
have generated in LEGENDRE.CPP previously. The CPP structure is similar to 
2D_LEGDR.CPP or 2D_GAUSS.CPP with an additional intermediate integral.

The number of pointers is increased five, See 3D_LRGDR.CPP.

9.12  Concluding Remarks

I agonized over whether to expand this chapter or delete it entirely—and failed in both!  
I hope readers will be generous and gracious to accept these meager presentations on 
the Monte Carlo. Hammersly and Henderscomb [7] provide a rich trove of historical 
anecdotes and bibliography; Fishman [6] presents exhaustive mathematical deriva-
tions and algorithms; and Rubinstein [3] an excellent selection of materials for gradu-
ates or advanced undergraduates for one semester or two.

List of Programs

Program Features

  (1) HIT_MISS.CPP Monte Carlo integral of irregular, complex f(x) that defies a mathematic 
expression, by the hit-or-miss method

  (2) ERR_ABST.CPP Computes the error function defined by Abramowitz and Stegun [4]
  (3) ERR_GAUS.CPP Computes the error function defined in standard textbooks
  (4) ORDERED.CPP Monte Carlo integral by ordered random numbers
  (5) SAMPMEAN.CPP Monte Carlo integral by sample mean
  (6) IMPRTANC.CPP Monte Carlo integral by importance sampling method
  (7) PRN1KA.CPP Generates 1,000 PRNs
  (8) PRN1KB.CPP Generates a second set of 1,000 PRNs 
  (9) CD_GAUFM.CPP Computes the CD, Gaussion probability density function
(10) Q_THRES.CPP Computes the threshold value, Q-function
(11) PFA_EXP.CPP Monte Carlo integral of the probability of false alarm, exponential pdf
(12) PFA_GAU.CPP Monte Carlo integral of the probability of false alarm, Gaussian pdf
(13) TRAPZOID.CPP Computes an integral by the trapezoidal rule
(14) SIMPSON.CPP Computes an integral by Simpson’s rule
(15) SIMPSONX.CPP Computes an integral by Simpson’s extend rule
(16) LEGENDRE.CPP Generates abscissas and weights of Legendre polynomials
(17) GAUS-LEG.CPP Gauss-Legendre quadrature
(18) GAU_LEGX.CPP Gauss-Legendre quadrature, extended
(19) GAU_CHEB.CPP Gauss-Chebyshev quadrature
(20) LAGUERRE.CPP Generates abscissas and weights of Laguerre polynomials 
(21) GAUS_LAG.CPP Gauss-Laguerre quadrature
(22) HERMITE.CPP Generates abscissas and weights of Hermite polynomials
(23) HERMITE.H A header file for Hermite polynomial abscissas and weights, to be  

attached to the main driver
(24) GAU_HERM.CPP Gaussian-Hermite quadrature
(25) 2D_SIMPS.CPP Two dimensional integration with Simpson’s rule
(26) 2D_LEGDR.CPP Two dimensional integration with Legendre polynomials
(27) 2D_GAUSS.CPP Two dimensional integration with Gaussian abscissas and weights
(28) 2D_GAUSZ.CPP Second demonstration of Gauss-quadrature
(29) 3D_LEGDR.CPP Three-dimensional integration with Legendre polynomials
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Appendix 9A

The area occupied by the overlapped two circles is:

	
A = [πr2

1 + πr2
2] − 4

�
πr2

1

�
θ

360

�
− 1

2

��
r1 − r2 + d

2

�
r1 sinθ

��

	

where  

	 cosθ =  1      r2 (
r1+r2-d

                   2    ).
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281

C h a p t e r  1 0

Constant False Alarm Rate (CFAR) 
Processing

10.1  Introduction

One of most important signal processing objectives in target detection in locally vary-
ing homogeneous noise or clutter is to maintain the false-alarm rate as a constant. 
Constant false-alarm rate (CFAR) processing is one of maybe half a dozen indispens-
able types of signal processing for the successful operation of a radar system.

The classic theory of target detection assumes that the noise is distributed as 
Gaussian with unknown power. When an antenna sweeps the surveillance sectors, 
the radar receives noise and clutter returns, and they may not be distributed as 
Gaussian; clutter may be distributed as lognormal, Weibull, gamma or K distribu-
tion, or the like. We shall investigate a few CFAR processing methods in Gaussian 
noise and Weibull clutter. 

10.2  Cell-Averaged CFAR (CA-CFAR)

Finn and Johnson [1] have reported a CFAR processing method for use when the 
target signal received is embedded in Gaussian noise of unknown power level. The 
probability density function of noise is Gaussian; the unknown is the locally varying 
noise power. We follow their analysis.

When the input to a square-law detector is narrowband Gaussian noise with 
zero mean and unknown variance (noise power), the output is distributed as expo-
nential with unknown variance [2–4]. (See Figure 10.1.)

	 fx(x)➝         y = x2 ➝ fy(y)

		

	

fx(x) =
1

σx
√

2π
exp

�
−x2

2σ2
x

�

fy(y) =
1

2σ2
x

exp
� −y

2σ2
x

�
=

1

σ2
y

exp

�
−y
σ2

y

�
, (2σ2

x = σ2
y )

	

We note that the mean of the exponential is E{y}=σy, and the average of the 
random variable y is equal to the standard deviation of y. In radar literature we call 
fy(y) the probability density function of the square-law detector output when the 
input is a narrowband Gaussian noise, G(mean=0, var=σx

2).
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Consider that we have cascaded a comparator with a threshold voltage, Th, 
after the square-law detector, as shown. 

The probability of false alarm Pfa is given by

	
Pfa =

∞�

Th

1
σ2

y
exp

�
−y
σ2

y

�
dy = exp{−Th}

	
(10.1)

	

The noise or clutter power at the input to the square-law detector varies as 
the antenna observes different features of the surface or volume as it sweeps. The 
following network (or signal processing) would estimate the locally varying noise 
power.

Figure 10.1   Probability density functions: Gaussian and exponential.
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We call y1, y2, . . . , yi, yj, . . . , yN the reference cells. They are grouped into 
two reference windows, and a test cell Y is inserted between the windows in order 
to detect a target as y1, y2, . . . , yi, yj, . . . , yN slide through the reference cells, as 
shown in Figure 10.2.

Mathematically then, the false alarm probability is defined as

	

Pfa =
∞�

z=0

⎡
⎣ ∞�

Th
fy(yo) dy

⎤
⎦ fz(z) dz

	
(10.2)

where fy(yo) is the pdf of the test cell when it is filled with noise

	
fy(yo) =

1
σ2

y
exp

�
−y
σ2

y

�

	
(10.3)

Figure 10.2  CA-CFAR circuits or processing.
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and fz(z) is the pdf of the sum of surrounding reference cells. In order to evaluate 
Pfa we have to know the exression for fz(z). When the random variables yk, k=1, 2, 
3, . . . , N, are distributed exponentially, the sum z = Σyk is distributed as a Gamma 
function [5].

	
fz(z) =

1
Γ(N)

�
1
σ

�N

zN−1 exp
�−z

σ

�

	
(10.4)

Substituting (10.3) and (10.4) into (10.2), the false alarm probability is obtained. 

    

Pfa =
∞�

0

⎡
⎣ ∞�

Tz/N

1
σ2 exp

�−y
σ2

�
dy

⎤
⎦ 1

(N − 1)!

�
1
σ

�N

zN−1 exp
�−z

σ

�
dz

=
1

σN(N − 1)!

∞�

0
zN−1 exp

�
−

�
1 + T/N

σ

�
z
�

dz

=
1

[1 + T/N]N
	

(10.5)

The result shows that the false-alarm probability is independent of noise power 
σ2, and therefore, the circuit or the processing of Figure 10.2. is CFAR. Since the 
local noise power is estimated by averaging noise in the cells, we call it cell-averaged 
CFAR (CA-CFAR).

Solving for T in (10.5), the threshold multiplication factor is obtained.

	
T = N

�
exp

�−ln Pfa

N

�
− 1

�

	
(10.6)

Equation (10.5) is programmed in CA_MULTI.CPP and the results are shown 
below.

N T(Pfa=1.0E-6) T(Pfa=1.0E-5)

4 122.4911 67.1312
6 54.0000 34.8775
8 36.9873 25.7357

10 29.8107 21.6228
12 25.9473 19.3219

. . .

. . .
20 19.9052 15.5656
30 17.5468 14.0340
. . .
. . .
. . .
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100 14.8154 12.2018
. . .
. . . 

Infinity 13.8155 11.5128  

The threshold multiplier T for N = infinity is obtained from (10.1) with σy
2=1.

The expression for the probability of detection Pd is identical to (10.2) except 
that the inner integral, the bracketed term, represents the pdf of a target return plus 
noise in the test cell Y.

	

Pd =
∞�

0

⎡
⎣ ∞�

Tz/N
fy(y1)dy

⎤
⎦ fz(z)dz

	

(10.7)

The probability density functions of Marcum’s target model and Swerling’s 
target models 1, 2, 3, and 4 are given in Chapter 7, repeated below for Swerling’s 
target with a single return.

	 Swerling target model 1 & 2: fy(y1) =
1

1 + y
exp

� −y
1 + y

�
	 (10.8) 

	 Swerling target model 3 & 4: fy(y1) =
y

1 + y
exp

� −y
1 + y

�
	 (10.9)    

where

-y = Average SNR in power;
y = Instantaneous SNR in power.

Substitution of (10.8) and (10.4) into (10.7) yields the detection probability of 
Swerling’s targets 1 and 2. 

Pd =
∞�

0

⎡
⎣ ∞�

Tz/N

1
(1 + SNR)

exp
� −y

1 + SNR

�
dy

⎤
⎦ 1

Γ(N)

�
1
σ

�N

zN−1 exp
�−z

σ

�
dz

=
1�

1 + T
N(1+SNR)

�N N = finite (10.10)

When the number of reference cells is infinity, N=¥, the noise statistics are per-
fectly known, and Pd is given by

	
Pd = exp

� −T∞
(1 + SNR)

�
, N = ∞

	
(10.11)

We call the above detection probability the no-CFAR probability. The reduction 
in Pd incurred by using a finite number of reference cells is the difference between 
(10.10) and (10.11).



286	 Constant False Alarm Rate (CFAR) Processing

ART_Kang_Ch10_v_1.indd                                                  Achorn International                                                  07/23/2008  01:50AM

	 CA-CFAR(loss) = Pd(N = ∞ Pd(N = finite))−

Equation (10.10) is programmed in PdCACFAR.CPP as the signal-to-noise ra-
tio (in power) is incremented by 1 dB, and the number of reference cells N is an 
independent parameter; N=8, 16, 32 and 64. Equation (10.11) is programmed in 
PdNoCFAR.CPP. The results of the two programs are shown in Figure 10.3. The 
loss of the CA-CFAR with a finite number of reference cells is indicated. The CA-
CFAR loss can be computed in another way. The loss is obtained by the ratio of two 
SNRs of (10.10) and (10.11).

	 SNR(N= finite) =
1
N

�
TN

(Pd)−1/ N − 1
− 1

�
− 1	      (10.12) 

	 SNR(N=∞) =
−T∞
Ln Pd

− 1	      (10.13)

Figure 10.3  Probability of detection, CA-CFAR. (For accurate reading, refer to the corresponding 
CPP and DAT file.)
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loss(dB) = 10 log

[(10.12)]
[(10.13)]

≈ 10 log
�

TN

T∞

�

	
(10.14)

 

Equation (10.14), the exact expression, is programmed in CA_LOSS.CPP, 
shown in Figure 10.4. The approximation is accurate within 0.01 dB when N ≥ 8 
and Pd ≥ 0.5.

We observe in Figure 10.4 that the loss decreases as the number of reference 
cells increases; the larger the N, the smaller the loss. However, we cannot increase 
the number of reference cells as much as we wish, since there is a finite number of 
range bins. A compromise must be struck. There is collateral damage in increasing 
the number of reference cells, so-called clutter-edge-widening. We shall discuss this 
problem after we present a simulation program.

We propose, for a demonstration, the following clutter-level profile across the 
range, as shown in Figure 10.5. The proposed clutter profile is not very realistic; 
however, through this demonstration we shall see the response of CA-CFAR pro-
cessing when the clutter levels change abruptly. 

The clutter-edge response is clearly visible. The width of the response is ap-
proximately one-half of the reference window. The target return in these regions 
would be lost. The choice for the number of reference cells must be a compromise 
between a lower loss and the width of edge response.

The effect that is most detrimental to CA-CFAR processing, as depicted in the 
figures is when multiple targets reside in the reference window in addition to a 

Figure 10.4  CA-CFAR Loss versus number of reference cells.
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target in the test cell. These spurious targets will raise the noise level and threshold 
erroneously higher. The target in the test cell may be undetected.

Some papers propose so-called greatest-of- or smallest-of- CFAR processing, 
or GO-CFAR or SO-CFAR, which choose between the left half or right half of the 
reference window, whichever is greater or smaller. Both processing methods have 
some shortcomings. The best remedy appears to be a censoring technique to censor 
the highest one, two or three clutter samples in the reference window (they might 
be targets) from the estimate of clutter power level. We shall investigate one of these 
censoring techniques in the next section.

In a practical design of CA-CFAR processing we add a guard cell at the front 
and rear of the test cell as shown in Figure 10.6 since a strong target return at the 
test cell with a sloping skirt may spill over to the adjacent cells to raise the estimate 
of clutter level.

Figure 10.5  CA-CFAR, noise and threshold level N=16, Pfa =1.0E-6.
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10.3  Order-Statistics CFAR, OS-CFAR

A CFAR processing method based on the theory of order statistics is reported by 
Rohling [6]. The motivation of his investigation is to handle multiple-target situ-
ations by censoring the spurious targets in the reference window. An attendant 
benefit is a narrower width of the clutter-edge response. A OS-CFAR processing is 
schematically shown in Figure 10.7.

We start with a rank-ordering operation on the clutter (or noise) stored in the 
reference window. We discuss the rank-order operations in Chapters 2 and 9. We 
rearrange the clutter samples in ascending order of the magnitude, considering that 
the samples may include spurious targets,

	 y(1) ≤ y(2) ≤ y(3) ≤ . . . ≤ y(i) ≤ y(j) ≤ . . . ≤ y(N)

where y(1) is the lowest noise level, y(i) and y(j) are intermediate levels, and y(N) is the 
highest level. After the rank order we plan to censor one, two, three, or more of the 
highest samples and pick the kth sample level to control the threshold.

The false alarm probability Pfa is given as in CA-CFAR by,

	

Pfa =
∞�

z=0

⎡
⎣ ∞�

y=Tz
fy(yo) dy

⎤
⎦ fz(z) dz

	
(10.15)

The bracketed term is obtained directly,

Figure 10.6   CA-CFAR processing with guard cells.
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∞�

y=Tz

1
σ2 exp

�−y
σ2

�
dy = exp

�−Tz
σ2

�

	
(10.16)

The probability density function of fz(z) is given by [7, 8], with that kth ranked 
cell as a parameter.

	
fz(z) =

k
σ

�
N
k

��
1 − exp

�−z
σ

��k−1 �
exp

�−z
σ

��N−k+1

	
(10.17)

 

where 

	
�

N
k

�
=

N!
k!(N − k)!

The false-alarm probability Pfa is obtained by substituting (10.16) and (10.17) 
into (10.15).

	
Pfa =

k
σ

�
N
k

� ∞�

z=0
exp

�−Tz
σ2

��
1 − exp

�−z
σ

��k−1 �
exp

�−z
σ

��N−k+1

dz
 

(10.18)

Two successive changes in variables yield an expression for the probability of 
false alarm.

Figure 10.7  OS-CFAR processing (no guard cells necessary).
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z
σ

= x, dz = σ dx and e−x = t, dx =
−dt

t

Pfa = k
�

N
k

�
1�

t=0
t(T+N−k)(1 − t)k−1dt

=
N!

(N − k)!
Γ(T + N − k + 1)

Γ(T + N + 1) 	
(10.19)

								               

See [9]

where Γ(.) is Gamma function and T is a threshold multiplier, not the threshold.
Equation (10.19) is solved for T in OS_MULTI.CPP with Pfa=1.0E-6. 

[k] N=12 N=16 N=24 N=28

4 319.609 442.734 688.281 810.781
5 146.895 206.758 325.977 385.391
6 83.955 120.410 192.832 228.945
7 54.155 79.463 129.473 154.355
8 37.534 56.626 94.072 112.686
9 27.146 42.427 72.080 86.787

10 20.061 32.883 57.329 69.390
11 14.838 26.067 46.851 57.046
12 10.585 20.955 39.065 47.886
13 16.952 33.074 40.847
14 13.690 28.333 35.286
15 10.895 24.485 30.784
16 8.294 21.298 27.068
17 18.607 23.934
18 16.293 21.283
19 14.274 18.981
20 12.477 16.967
21 10.848 15.179
22 9.335 13.578
23 7.874 12.122
24 6.342 10.782
25 9.526
26 8.321
27 7.122
28 5.824

The threshold is the product of T and the estimated noise level in the kth cell.

	 Th = T · E{y(k)}	 (10.20)

The expectation of the kth ranked cell is given by [7, 8],

	
E{y(k)} =

N

∑
i=N−k+1

1
i

=
k

∑
j=1

1
N − k + j

	
(10.21)
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Equations (10.20) and (10.21) are programmed in OS_THRES.CPP and the 
result is shown in Figure 10.8.

The broad minimum trough for Th suggests that we may censor two, three, or 
four highest noise samples in the reference window, depending upon the processing 
loss we are willing to accept. 

The loss for OS-CFAR processing is given by,

	 loss(dB) = 10 log
�

Th-OS(N & k specified)
Th-CA(N = ∞)

�
	 (10.22)

The denominator Th-CA(N=¥) = 13.8155 for Pfa=1.0E-6 as mentioned in the 
previous section. Equation (10.22) is computed in OS_LOSS.CPP and the result is 
shown in Figure 10.9. The loss for CA_CFAR is added to the figure in order to show 
the relative merit of OS-CFAR processing. We observe a broad minimum trough 
for all N.

The probability of detection Pd is given by replacing the inner integral in (10.15) 
with the probability density function of noise plus Swerling target models 1 and 2, 
(10.22). 

	

Pd =
∞�

z=0

⎡
⎣ ∞�

y=Tz
fy(y1) dy

⎤
⎦fz(z) dz

	  

(10.23)

	
fy(y1) =

1
1 + ȳ

exp
� −y

1 + ȳ

�

	
(10.24)

 

Figure 10.8  Threshold Th versus estimate of kth cell E{y(k)}.
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Figure 10.9  OS-CFAR Loss versus number of reference cells.

Figure 10.10  Detection probability OS-CFAR, N=16, k=12.
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Substitution of (10.24) and (10.17) into (10.23) yields the detection probability 
as a function of SNR with two parameters N and k.

	
Pd =

N!
(N − k)!

Γ(DT + N − K + 1)
Γ(DT + N + 1) 	

(10.25)

where

	 D =
1

1 + SNR
	

Equation (10.25) is programmed in Pd_OS_NK.CPP, and the result is shown in 
Figure (10.10). The lines for no-CFAR and CA-CFAR with N=16 are added to the 
graph for comparison. Note that the signal-to-noise ratio required for OS-CFAR is 
approximately 1dB higher than for CA-CFAR. This is a small price to pay for the 
inherent protection from spurious intrusion of up to four targets. We do not need 
the guard cells.

A narrower width of clutter-edge response is demonstrated for OS-CFAR. CPP.
Figure 10.11 shows that the clutter-edge response is much faster than that of 

CA-CFAR. In the region between two clutter banks the threshold is approximately 
3 dB lower in OS-CFAR than in CA-CFAR.

So far we have investigated CFAR processing when clutter or noise is distrib-
uted as Gaussian, passed through a square-law detector. A large number of research 

Figure 10.11  Clutter-edge response OS-CFAR, N=16, k=12.
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papers indicate that the clutter returns are distributed as lognormal or Weibull. In 
the next sections we study CFAR processing in Weibull- distributed clutter.

10.4  Weibull Clutter

Before we investigate an optimal CFAR processing against Weibull clutter, we di-
gress to review the statistics of a Weibull random variable. As radar resolution 
capability improves (as demonstrated by such factors as an ultra-narrow transmit 
pulse width and a wider signal bandwidth) it has been observed that the surface 
clutter returns become distributed as Weibull. 

The Weibull probability density function is first reported by Swedish engineer 
Walodi Weibull in his study [10] on the strength of materials and the fatigue analy-
sis. Later Boothe [11] and Sekine [12] and many others observed that clutter returns 
are indeed distributed as Weibull random variables.

10.4.1  Weibull Probability Density Function

The Weibull probability density function is a two-parameter function. It is defined 
variously in the literature, however, we adhere to the following notations through-
out our discussion.

	
fw(x) =

c
b

�x
b

�c−1
exp

�
−

�x
b

�c�
	

(10.26)

where

c:  The shape parameter, c > 0;
b:  The scale parameter, b > 0;
x:  Weibull variates, x ≥ 0.

The scale parameter b of the Weibulll has an equivalent meaning attached to σ 
of a Gaussian or Rayleigh probability density function.

	

Gaussian f(x) =
1

σ
√

2π
exp

�
−(x − m)2

2σ2

�
−∞ ≤ x ≤ ∞

Rayleigh f(x) =
1

σ2 exp

�
−x2

2σ2

�
x ≥ 0

	

The Gaussian and Rayleigh pdf do not have a shape parameter; their shape 
is always the same. They have an equivalent scale parameter σ, that we call it the 
standard deviation. As σ changes the Gaussian or Rayleigh pdf gets sharper or flat-
ter, but the shape is unchanged. The m of the Gaussian, the mean or expectation, 
is a location designator. Gaussian, Rayleigh, and many other probability density 
functions are one-parameter functions.
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When the shape parameter c of Weibull is unity or less, the Weibull pdf is an 
exponential; when c=2 the Weibull is Rayleigh; and when c>2 Weibull resemble a 
Gaussian. The Weibull is very versatile function. See Chapter 2.

The probability distribution function (or the cumulative function) is obtained 
directly by integration of the density function.

	

F(x) =
x�

0

� c
b

��x
b

�c−1
exp

�
−

�x
b

�c�
dx

= 1 − exp
�
−

�x
b

�c�
	

(10.27)

The first, second and rth moments of Weibull random variables are,

	
E{x} =

∞�

0
x f(x) dx = bΓ

�
1 +

1
c

�

	
(10.28)

	

E{x2} =
∞�

0
x2 f(x) dx = b2Γ

�
1 +

2
c

�

·
·
·

E{xr} =
∞�

0
xrf(x) dx = brΓ

�
1 +

r
c

�
	

The variance is given as, by definition,

	
var{x} = σ2

x = E{x2} − E2{x}
= b2

�
Γ

�
1 +

2
c

�
− Γ2

�
1 +

1
c

��	 (10.29)

The mode is equal to the maximum value of the pdf; xmod is the most likely 
value of the random variable, and its probability interpretation is that the sampled 
values in the range xmod ± Δx have the highest probability of occurrence in ±Δx. The 
mode is determined by

	

∂
∂x

[f(x)] = 0

xmod = b
�

c − 1
c

�1/c

	

(10.30)

When 0 < c ≤ 1, the Weibull pdf is an exponential; there is no mode. The median 
xmed is obtained from (10.27) by letting F(x)=1/2.
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1
2

= 1 − exp
�
−

�x
b

�c�

xmed = b[Ln 2]1/c
	

(10.31)

The xmed exists for all c, unlike the mode.
The quantiles of x, q=1/4, q=1/2, q=3/4 is obtained similarly.

	
xq = b

�
ln

�
1

1 − 1/q

��1/c

	
(10.32)

	

x1/4 = b [ln(4/3)]1/c

x1/2 = b [ln(2)]1/c

x3/4 = b [ln(4)]1/c
	

Summarizing the characteristics of the Weibull probability density function we 
observe the following:

1. � When b, the scale parameter, is held constant and the shape parameter c var-
ies, the shape of the Weibull pdf changes from an exponential to Rayleigh to 
a Gaussian slightly skewed to right.

2. � When c, the shape parameter, is held constant and the scale parameter b var-
ies, the Weibull pdf gets sharper or flatter but no change in shape.

Last, we add the term CD to our review. The CD is defined as the ratio of the 
standard deviation to the first moment, the expectation:

	
D =

standard of deviation
first moment

=
σx

E{x} =
σ2

x

E2{x}C
	

(10.33)

The coefficient of dispersion was a key analytic tool in determining the number 
of Monte Carlo replications required in Chapter 9. The CD is a measure of how 
accurate an estimate is, Figure 10.12 illustrates the point.

The systems A and B have an equal means, E{x}, but different standard devia-
tions. System A has a smaller standard deviation than B. Therefore, an estimate 
from system A has a higher accuracy than B. The systems C and D have an equal 
standard deviation but different first moment, E{x}. System C has a better estimate 
than D.

10.4.2  Weibull Clutter After a Square-Law Detector

When random variables pass through a square-law detector, the input probability 
density function transforms to a different pdf. We have seen the transformation of 
narrowband Gaussian noise to an exponential pdf.
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We shall determine the output pdf of a square-law detector when the input is a 
Weibull random variable.

The transformation of the pdf is given by [2].

Figure 10.12  The coefficient of dispersion.
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f(z) =
f(x1)

|g�(x1)| +
f(x2)
|g�(x2)| , g�(x) =

d
dx

f(x)

=
1

2
√

z
c
b

�x1

b

�c−1
exp

�
−

�x1

b

�c����x1=
√

z
	

	

=
1

2
√

z
c
b

�√
z

b

�c−1

exp
�
−

�√
z

b

�c�

=
�

c/2

b2

��
z

b2

�c/2−1

exp

�
−

�
z

b2

�c/2
�

	

(10.34)

The result indicates that the output pdf is another Weibull. The shape param-
eter c is halved, and the scale parameter b is squared. An interpretation of the result 
is that the input Weibull random variables is in amplitude and the output variable 
is in power; b is voltage, b2 is power.

We have reviewed the characteristics of Weibull random variables, such as the 
probability density function f(x), probability distribution (cumulative) function 
F(x), the moments, the variance, mode and median, and quantile. We have reviewed 
the CD in regard to the accuracy of any estimate, given by a ratio of σx/E{x}.

We shall proceed to study CFAR processing in Weibull clutter.

�10.5  Weber-Haykin CFAR (WH-CFAR)

Weber and Haykin have developed a CFAR processing method in Weibull clutter 
[13]. Their development is an extension of Rohling’s OS-CFAR. The OS-CFAR 
originally reported applies when the input noise (or clutter) is a Gaussian with zero 
mean, an exponential after a square-law detector. The unknown to be estimated is 
noise power σ 2. For Weibull clutter we have two parameters to be estimated, the 
shape parameter c (or c/2) and the scale parameter b (or b2).

We shall follow their analysis and present numerical results since they have 
not reported any. We start with the probability density function after a square-law 
detector.

	
f(x) =

�
c/2

b2

��
x

b2

�c/2−1

exp

�
−

�
x

b2

�c/2
�

	
(10.35)

	
F(x) = 1 − exp

�
−

�
x

b2

�c /2
�

	
(10.36)

From (10.36),

	 x = b2{ln [1 − F(x)]} 2/c
	 (10.37)
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The false-alarm probability and the threshold are obtained by

	
Pfa = 1 − F(x) |x=Th = exp

�
−

�
Th

b2

�c/2
�

	
(10.38)

Thus,

	 Th = b2[ − ln Pfa]2/c
	 (10.39)

In order to compute the threshold Th of (10.39) we must know b and c or esti-
mate them simultaneously. This is a task of two-parameters estimation.

Before we proceed further, we digress to demonstrate how sensitive the false 
probability Pfa is to an error in estimating c. In OS-CFAR processing the false alarm 
probability is given by (10.19). Rohling’s noise pdf out of a square-law detector is 
an exponential. Weibull clutter out of a square-law detector is another Weibull with 
c halved. Equation (10.39) is modified accordingly.

	
Pfa =

N!
(N − k)!

Γ(Tc/2 + N − k + 1)

Γ(Tc/2 + N + 1) 	
(10.40)

Equation (10.40) is programmed in Pfa_OS_C.CPP, and the result is shown in 
Figure 10.13. The figure indicates that when c changes from 2.0 to 1.0, the false 
alarm probability changes almost four orders of magnitude. A large variation of Pfa 

Figure 10.13  False alarm probability versus shape parameter c.
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with respect to a small change in the shape parameter c is critical to all CFAR pro-
cessing in Weibull clutter. Finn and Johnson [1] have also mentioned a large varia-
tion of Pfa with respect to a small change in σx of Gaussian noise. The importance 
of an accurate estimate of two parameters is emphasized here.

Back to the task of estimating the two parameters c and b. Suppose we have 
rank-ordered the Weibull clutter samples in the reference window as shown in Fig-
ure 10.14.

We take two clutters x(i) and x(j), i<j, out of the rank-ordered set and take the 
ratio of x(i) to x(j) according to (10.37). The scale parameter b will be cancelled. See 
Figure 10.15.

	

x(i)

x(j)
=

{−ln[1 − F(xi)]}2/c

{−ln[1 − F(xj)]}2/c =
�

ki

kj

�2/c

	
(10.41)

The identity at the right most is for a notational convenience as in Weber and 
Haykin. Taking the natural logarithm of both sides we obtain an estimate of c.

Figure 10.14  Weibull clutters are rank-ordered.

Figure 10.15  Selection of two rank-ordered clutters, and their cumulative values.
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ln
�

x(i)

x(j)

�
=

2
c

ln
�

ki

kj

�

ĉ =
2 ln (ki/kj)
ln (xi/xj)

= 2
ln {− ln[1 − F(xi)]} − ln{ln[1 − F(xj)]}

ln (xi) − ln (xj) 	
(10.42)

Substitution of ĉ into (10.37) yields an estimate of the scale parameter b.

	
b̂

2
=

xi

{− ln [1 − F(xi)]}2/c = xi(ki)
−2/ĉ

	
(10.43)

and the estimate of the threshold Th is obtained from (10.39) by substituting the 
estimates of both b and c, after sliding x(j) to xTh in Figure 10.15:

	

T̂h = b̂
2{− Ln[1 − F(Th)]}2/ĉ

= xi(ki)
−2/ĉ (kTh)2/ĉ

= xi

�
xj

xi

�2/ĉ

= x1−2/ĉ
j x2/ĉ

j 	

(10.44)

Thus,

	 Th = x1−α
i xα

j , α = 2/ĉ	 (10.45)

The indices of i and j are transposed from Weber and Haykin’s result, for they 
had rank-ordered the clutter in descending order whereas we have it ascending or-
der. An estimate of the shape parameter ĉ would be obtained from (10.42).

	
α = 2/ĉ =

ln(xi) − ln(xj)

ln {− ln [1 − F(xi)]} − ln {ln [1 − F(xj)]} 	
(10.46)

and, the false-alarm probability by substituting (10.44) into (10.38).

	 Pfa = exp

�
−

�
Th

b2

�c/2
�

= exp
�
−

�
(x1−α

i xα
j )/b̂

2
�ĉ/2

	 (10.47)

Equation (10.47) is of no use unless we know the denominator of (10.46). 
The denominator is a random variable in xi and xj, as are α and Th. As Weber and 
Haykin pointed out, the threshold Th is a function of joint probability density func-
tion of xi and xj, fxy(xi, yj).

Figure 10.14 is redrawn for further discussion, and we designate x(i) and x(j) as 
x and y respectively for shortened notations for convenience.
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David [7] and Bury [8] have provided the joint probability density function, 
rank-ordered in ascending order, x<y.

	 fxy(x, y) = Q × [F(x)]i−1 [F(y) − F(x)]j−i−1 [1 − F(y)]N−j fx(x) fy(y)	 (10.48)

where

	
Q =

N!
(i − 1)!(j − i − 1)!(N− j)! 	

The false-alarm probability Pfa is obtained by the following integral over proper 
integration limits. 

	

Pfa =
�

y

⎡
⎣

�

x
gxy(x,y)dx

⎤
⎦ fxy(x,y) dy

	

(10.49)

where gxy(x,y) is the right-hand side of (10.47) and fxy(x,y) is (10.48). The proper 
limits can be visualized from the next figure.

Substituting gxy(x,y) and fxy(x,y) in (10.49), and change of variables yields an 
expression for Pfa:

	 u =
�x

b

�ĉ/2
, v =

�y
b

�ĉ/2
	

	

Pfa = Q ·
v2=∞�

v1=0

u2=v�

u1=0
exp{−(u1−α vα)}[1 − exp{−u}]i−1

× exp{−u} [exp{−v}]N−j+1

× exp{−u} − exp{−v}]j−i+1 du dv 	

(10.50)

	     x can be from zero to y, but cannot be greater than y
	     y can be from zero to infinity, but cannot be less than x



304	 Constant False Alarm Rate (CFAR) Processing

ART_Kang_Ch10_v_1.indd                                                  Achorn International                                                  07/23/2008  01:50AM

The parameter α in (10.50) is computed by numerical integration in two dimen-
sions after Pfa is set equal to the required value (e.g., 1.0E-6 or 1.0E-5). See Chapter 
9 for a two-dimensional integration. Equation (10.50) is programmed in PFA_WH_
U.CPP and PFA_WH_C.CPP, the former is for the case of uncensored, the latter for 
censored samples. The programs are executed with the following conditions:

Uncensored Censored

N=16 N=16
 i=3  i=3
 j=16  j=12 (four highest clutters censored)

Q=21,841 Q=10,841,800

The parameter α is found iteratively until we obtained Pfa=1.0E-6 (or 1.0E-5). 
We have found,

 α Pfa=1.0E-6 Pfa=1.0E-5

Uncensored 2.510044 2.134437

Censored 5.931079 4.580292

The probability of detection for Swerling’s target models 1 and 2 is given by 
(10.49) after a modification on derived by Shor-Levanon [14]. The integral is identi-
cal to (10.50) except that the first integrand, an exponential function, is multiplied 
by D, D=1/(1+SCR).

	

Pd = Q ·
v2=∞�

v1=0

u2=v�

u1=0
exp{−D(u1−αvα)}[1 − exp{−u}]i−1

× exp{−u} [exp{−v}]N−j+1

× [exp{−u} − exp{−v}]j−i+1 du dv 	

(10.51)

where Q is given by (10.48)

Equation (10.51) is programmed in PD_WH_U.CPP and PD_WH_C.CPP;  
U stands for the uncensored, C stands for the censored case. The result for the un-
censored case is shown in Figure 10.16, in which we have added lines for no-CFAR 
and OS-CFAR for comparison. We note that WH-CFAR demands 10.55 dB higher 
SCR than OS-CFAR at Pd = 0.5 even though we have set N=16 and j=16 so that 
WH-CFAR has a minimum processing loss. We have given up the protection from 
the spurious targets interference temporarily.

In order to regain the protection we execute PD_WH_C.CPP, the censored ver-
sion with N=16, i=3 and j=12; four highest clutters spikes (or four probable target 
returns) are censored. An additional increase of 18.6 dB in SCR is observed. The 
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censored WH-CFAR required 10.6+18.6=29.2 dB higher SCR at Pd = 0.5 for an 
equal protection.

The conclusion and remark by Weber and Haykin [13] and Shor and Levanon 
[14] are worth a serious consideration in system planning: “Should we estimate 
the two parameters c and b and pay a higher price for it?” They continue, “if the 
surveillance sector environments warrant that the minimum c is 1.5 or higher with 
high degree of certainty, the OS-CFAR with fixed c=1.5 suffers a lesser processing 
loss than WH-CFAR.” On the other hand, the if c is 1.5 or less and varies from the 
sector to sector, then, there is no other choice but to estimate both parameters and 
accept the higher loss.

We have not explored other CFAR processing that might be better than WH-
CFAR. We shall continue our search.

10.6  Maximum Likelihood CFAR (ML-CFAR)

Another CFAR processing method based on the maximum likelihood estimation is 
reported by Ravid and Levanon [15]. Their investigation is supported by several 
research papers on the estimation of Weibull parameters [16–19]. 

Figure 10.16  Pd  versus SCR, WH-CFAR, uncensored.
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Estimation of two parameters simultaneously from samples, whether the samples 
are censored or uncensored is computationally very laborious and it is doubtful that 
real-time processing can be implemented; however, we follow their investigation.

The likelihood function of samples of independent and identically distributed 
Weibull random variables of population N is given by

	
L(xi;c,b) =

� c
bc

�N
∏N

i=1 xc−1
i exp

�
−

�xi

b

�c�
	

(10.52)

We take the natural logarithms of both sides and a partial derivatives of L(.) 
with respect to c and b. The maximum likelihood estimate of the two parameters is 
obtained by equating each partial derivative to zero.

	
b̂ =

�
1
N

N

∑
i=0

xĉ
i

�1/ĉ

	
(10.53)

 

	
1/ĉ =

�
N

∑
i=0

xĉ
i ln xi

��
N

∑
i=0

xĉ
i

�−1

− 1
N

N

∑
i=0

ln xi

	
(10.54)

The ML estimate of c is obtained from (10.54) through iterative procedure. 
More than a dozen iterations may be required depending upon the initial estimate 
of c. An estimate of b is then computed from (10.53) using the ĉ just obtained. For 
a relatively small number of samples N=16, 18, . . . 32, the estimate of c is heavily 
biased. Bias is an unavoidable feature of most maximum likelihood estimators [8]. 
Thoman et al. [19] have published factors b[N] for removing the bias ĉ when N is 
small.

 N b[N] N b[N]

 10 0.859 42 0.968
 12 0.883 44 0.970
14 0.901 46 0.971
16 0.914 48 0.972
18 0.923 50 0.973
20 0.931 54 0.975
22 0.938 58 0.977
24 0.943 62 0.979
26 0.947 66 0.980
28 0.951 70 0.981
30 0.955 75 0.983
32 0.958 80 0.984
34 0.960 85 0.985
36 0.962 90 0.986
38 0.964 100 0.987
40 0.966
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The unbiased estimate of ĉ is obtained by multiplying ĉ by b[N]. The corrected 
ĉ will be used in (10.53) to compute an estimate of b.

The proposed ML processing is shown in Figure 10.17. In order to provide the 
protection from the interfering targets in the reference window, censoring the high-
est N−k cells is necessary as in OS-CFAR or WH-CFAR.

Estimates of b and c with censoring are derived by Bury [8], similar to (10.53) 
and (10.54) with additional terms.

	
b̂ =

�
1
k

N

∑
i=0

xĉ
i +

�
N − k

k

�
xĉ

i

�1/ĉ

	
(10.55)

	
1/ĉ =

�
N

∑
i=0

xĉ
i ln xi + (N − k) xĉ

i

��
N

∑
i=0

xĉ
i + (N − k) xĉ

i

�−1

− 1
k

N

∑
i=0

ln xi

	
(10.56)

The computational burden imposed by (10.56) in estimating c through iterative 
procedure, but still biased, should discourage attempts to implement the processing 
in real time. Nonetheless we push forward to analyze the proposed ML processing 
in order to gain some learning experiences.

We analyze ML-CFAR in two steps. First we take up a simpler uncensored case 
in which the shape parameter c is assumed to be known exactly a priori. Only the 

Figure 10.17  ML-CFAR processing.
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scale parameter b is unknown, to be estimated by the maximum likelihood prin-
ciple. First, we would rewrite (10.53) without the caret (^) on c. 

	
b̂ =

�
1
N

N

∑
i=0

xc
i )

�1/c

	
(10.57)

 

The threshold Th is given by

	
h = T · b̂ = T ·

�
1
N

N

∑
i=0

xc
i )

�1/c

T
 
	

(10.58)

The false-alarm probability is

	

P a =
∞�

z=0

⎡
⎣ ∞�

y=Tz
fy(yo)dy

⎤
⎦ fz(z)dzf

	

(10.59)

The integrand inside the bracket is the probability density function of Weibull 
clutter in the test cell, so that the integral is the probability of clutter that exceeds 
the threshold (false alarm). The integrand fz(z) is the probability density function of 
N samples of the parent Weibull clutter.

	

∞�

y=Tz
fy(yo)dy = Fy(yo ≥ Th) = 1 − Fy(Th) = exp

�
−

�
Th
b

�c�

	
(10.60)

	
fz(z) = ∏N

i=1

� c
b

��zi

b

�c−1
exp

�
−

� zi

b

�c�
	

(10.61)

Substitution of (10.60) and (10.61) into (10.59) yields an expression for Pfa 
when the shape parameter c is exactly known a priori, and the scale parameter b is 
estimated by the maximum likelihood method. 

	
Pfa =

∞�

z=0
exp

�
−

�
Th
b

�c�
∏N

i=1

� c
b

��zi

b

�c−1
exp

�
−

�zi

b

�c�
dz

	
(10.62)

Using a change of variable further substitution of (10.58) and integrating we 
have a compact simple expression for Pfa.

	
et

�zi

b

�c
= ti, then dzi =

�
b
c

�
(ti)

1/c−L
	

	
Pfa =

1
[1 + Tc/N]	

(10.63)
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So far we have assumed an envelope detector (a linear detector). For a square-
law detector we replace c by c/2.

	
Pfa =

1

[1 + Tc/2/N] 	
(10.64)

Equation (10.64) shows that the probability of false alarm is independent of b, 
provided the shape parameter c is known exactly a priori. T is the threshold multi-
plier, not the threshold.

The multipliers T for linear and a square-law detectors are

	 T1 = [N(Pfa)−1/N − 1)]1/c
     linear detector	 (10.65a)

	      Ts = [N(Pfa)−1/N − 1)]2/c
     square-law detector	 (10.65b)

Finally, the thresholds Thl and Ths are given by

	
Th1 = T1 · b̂ = [N(Pfa)−1/N − 1)]1/c

�
1

N

N

∑
i=0

xc
i )

�1/c

	
(10.66a)

	
Ths = Ts · b̂ = [N(Pfa)−1/N − 1)]2/c

�
1

N

N

∑
i=0

xc/2
i )

�2/c

	
(10.66b)

Equation (10.65b) is programmed in ML_MULTI.CPP, and the result is shown 
below. Note a sharp rise of the multipliers when c<1.5 for all N.

N c=2.0 c=1.5 c=1.0 c=0.5

12 25.9473 76.8169 673.2649 4.5328E5
14 23.5577 67.5323 554.9672 3.0799E5
16 21.9420 61.4282 481.4505 2.3179E5
18 20.7798 57.1289 431.8011 1.8645E5
20 19.9052 53.9457 396.2188 1.5699E5
22 19.2240 51.4981 369.5615 1.3658E5
24 18.6787 49.5597 348.8940 1.2172E5
26 18.2326 47.9879 332.4281 1.1050E5
28 17.8610 46.6883 318.0162 1.0177E5
30 17.5468 45.5964 307.8900 0.9479E5
32 17.2776 44.6663 298.5172 0.8911E5

The detection probability is given by an identical form to (10.59) except that 
the integrand inside the square bracket represents the probability density function 
of the target return plus Weibull clutter in the test cell.

	
Pd =

� ∞

z=0

� � ∞

y=Th
fy(y1) dy

�
fz(z) dz

	
(10.67)
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The probability density function fy(y1) must be the vectorial sum of target re-
turn signal and Weibull clutter:

	 fy(y1) = pdf of (target signal + Weibull clutter)	

The “+” sign signifies a vectorial sum. We have failed to obtain an analytically 
closed form of the probability density function for fy(y1). (The Monte Carlo tech-
nique is suggested here.) Absence of an analytic expression forces us to choose a 
next best plausible alternative. We propose that the statistics of the test cell is an 
algebraic sum of the mean of Weibull clutter given by (10.28) with c replaced by c/2 
and Swerling’s target model 1 or 2. 

For notational clarity and further discussion, see Figure 10.18. We plan to mod-
ify Swerling’s target models.

	

fy(y1) =
1

sig + σy + by
exp

� −y
sig + σy + by

�

=
1

by[1 + σy/by + SCR]
exp

�
−y

by[1 + σy/by + SCR]

�

	

             	                    

≈ 1
by[1 + SCR]

�
exp

−y
by[1 + SCR]

�
(σy/by <<< 1)

=
1

σyΓ(1 + 2/c)[1 + SCR]
exp

� −y
σyΓ(1 + 2/c)[1 + SCR]

�

	

(10.68)

Figure 10.18  Probability density functions before and after a square-law detector. 
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The bracketed term of (10.67) is directly integrated.

 

∞�

y=Th
fy(y1)dy =

∞�

y=Th

1
σyΓ(1 + 2/c)[1 + SCR]

exp
� −y

σyΓ(1 + 2/c)[1 + SCR]

�
dy

= exp
� −Tz

σyΓ(1 + 2/c)[1 + SCR]

�
, Th = Tz

	

(10.69)

The fz(z) is the probability density function of the sum of N Weibull clutter 
samples given by Harter and Moore [17].

	
fz(z) =

NN

Γ(N)

�
c/2

b2

��
z

b2

�cN/2−1

exp

�
−N

�
z

b2

�c/2
�

	
(10.70)

Substituting (10.69) and (10.70) into (10.67), the detection probability Pd is 
expressed as 

	

Pd =
∞�

z=0
exp

� −Tz
σyΓ(1 + 2/c)[1 + SCR]

�

· NN

Γ(N)

�
c/2

b2

��
z

b2

�cN/2−1

exp

�
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�
z

b2

�c/2
�
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The following changes of variable and identity

	
N

�
z
by

�c/2

= t, z = by

� t
N

�2/c−1
, dz = by

�
1
N

�� t
N

�2/c−1
, and by = σyΓ(1 + 2/c)

	

are used to obtain the expression for Pd, after a tedious but straightforward alge-
braic manipulation.

	
Pd =

1
Γ(N)

∞�

t=0
tN−1 exp

�
−t − T

[1 + SCR]

� t
N

�2/c
�

dt
	

(10.71)

Equation (10.71) is programmed in PdMLCFAR.CPP with triple conditions; 
Pfa=1.0E-6, N=16, and c=2.0 (or c=1.5, or c=1.0, or c=0.5). The results are shown 
below and in Figure 10.19.

SCR(dB) c=2.0 c=1.5 c=1.0 c=0.5

14.0 0.4410 0.1202
16.0 0.5893 0.2440
18.0 0.7127 0.3974
20.0 0.8059 0.5508 0.0344
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22.0 0.8720 0.6823 0.0914
24.0 0.9169 0.7838 0.1916
26.0 0.9466 0.8567 0.3281
28.0 0.9659 0.9066 0.4784
30.0 0.9783 0/9366 0.6183
32.0 0.9863 0.9616 0.7334
34.0 0.9913 0.9756 0.8200
36.0 0.9945 0.9845 0.8813
38.0 0.9965 0.9902 0.9229
40.0 0.9978 0.9938 0.9505
42.0 0.9986 0.9961 0.9684 0.0175
44.0 0.9991 0.9975 0.9799 0.0374

The very high values of threshold multipliers T in (10.65b) when c=1.0 and 
c=0.5 are reflected in SCR above. We should remind ourselves that the results are 
without protection from spurious target intrusions in the reference window and 
that the shape parameter c is assumed to be known exactly a priori. When the high-
est clutter samples (or targets) are censored, N-k, k<N, we suffer additional loss, 
computed by,

	

Additional loss(dB) = 10 log
�

Th − censored
Th − uncensored

�

= 10 log
�

Eq 10.66b: N = k
Eq 10.66b

�

	

	                                    

= 10 log

�
k
N

· (P−1/k
fa − 1)

(P−1/N
fa − 1)

�2/c

=
�

2
c

�
10 log

�
k
N

· (P−1/k
fa − 1)

(P−1/N
fa − 1)

�

	

For Pfa = 1.0E-6, N=16, k=12, additional losses are 

	

c = 2.0 1.93 dB

c = 1.5 2.64 dB

c = 1.0 3.96 dB

c = 0.5 7.91 dB	

Pd vs SCR, shown in Figure 10.19 (uncensored) would slide further to the right 
by the values shown above. Figure 10.19, uncensored ML-CFAR should be com-
pared with Figure 10.16, for uncensored WH-CFAR.

In the next section we explore an alternative method in estimating c without the 
iterations of (10.54) or (10.56).
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10.7  Minimum Mean Square Error CFAR (MMSE-CFAR)

There appears to be an alternative for estimating the shape parameter c without 
iterations, as some researchers have suggested. We take the ratio of the first moment 
to the square-root of the second moment of Weibull random variable. We note that 
the scale parameter b is cancelled.

	

E{x} =
∞�

x=0
x fx(x) dx = b2Γ(1 + 2/c)

E{x2} =
∞�

x=0
x2 fx(x) dx = b4Γ(1 + 4/c)

z =
E{x}

[E{x2}]1/2 =
Γ(1 + 2/c)

[Γ(1 + 4/c)]1/2
	

(10.72)

Figure 10.19  Pd versus SCR, ML-CFAR, uncensored, N=16.
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Equation (10.72) is shown in Figure 10.20. When we know the value of z we 
are able to compute the shape parameter by an inverse relationship.

It had been suggested that an estimate of c may be obtained by the process de-
picted in Figure 10.21.

We have found that the ratio z is heavily biased and that the variance is very 
large when the number of samples is relatively small. The coefficient of dispersion 
we discuss in Section. 10.4.1 gives us a clue to the poor estimate.

Figure 10.20  E{x}/[E{x2}]1/2 versus shape parameter c.

Figure 10.21  Estimate of parameter c.
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CD =
σx

E{x} =
[Γ(1 + 2/c) − Γ(1 + 1/c)]1/2

Γ(1 + 1/c)

=
�

Γ(1 + 2/c)
Γ2(1 + 1/c)

− 1
�

	

(10.73)

Equation (10.73) is shown in Figure 10.22, which indicates that estimating 
the shape parameter by (10.7.1) is a very risky proposition throughout the range 
0.5<C<2.5. CD is simply too large.

Let us explore a second alternative for avoiding the laborious iterations. We 
start with the probability distribution function.

We proceed with analysis is done with a linear detector. All the results can eas-
ily be converted to a square-law detection by replacing c with c/2, and replacing b 
with b2. 

	
Fy(y) =

∞�

y=0
fy(y) dy = 1 − exp

�
−

� y
b

�c�
	

(10.74)

Taking the natural logarithm of both sides twice we have,

	 ln{−ln[1 − Fy(y)]} = c ln y − ln bc
	 (10.75)

Equation (10.75) can be interpreted as a straight line, as shown in Figure 10.23.

	 z = cx + constant	

Figure 10.22  Coefficient of dispersion versus c.
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where 

z:  ln {− ln[1− Fy(y)]};
c:  The slope of a straight line;
x:  ln y;
ln bc:  Constant, intercept point.

How to determine the left-hand side of (10.75) which we have designated as 
z? Suppose we are given N Weibull random variables, N clutter samples. We rank-
order the clutter samples in ascending order in magnitude.

	 y(1) ≤ y(2) ≤ . . . ≤ y(i) ≤ . . . ≤ y(N) 

so that we have

	 z(i) = c ln(y(i)) + ln bc 	 (10.76)

We choose c and b to minimize the sum of squared error of (10.76). 

	
minimize

N

∑
i=1

[z(i) − c ln(y(i)) − ln bc]2

	
(10.77)

This is the MMSE principle, or the MMSE estimate of the regressive param-
eters c and b. A scatter plot of rank-ordered clutter samples appear as shown in 
Figure 10.24.

Figure 10.23  Linear equation representation of Weibull distribution.
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The minimization of (10.77) is attained when c and b are estimated to be,

	

ĉ =

N
∑

i=1
z(i) ln y(i) − N < ln y > < z >

N
∑

i=1
[ln yi]

2 − N[< ln y >]2
	

(10.78)

	 b̂ = [exp{− <z> +ĉ <ln y>}]1/ĉ
	 (10.79)

where

z(i) and y(i) are rank-ordered pairs;

<ln y> = 1  ¾   N Σ ln yi ,  average of natural logarithm of yi;

<z> =  1  ¾   N Σ zi , average of zi. 

Equation (10.75) is rewritten in sampled form as follows.

	 ln {- ln[1- Fy(yi)]} = c ln yi - ln bc	

In order to estimate c and b through MMSE regression we must know Fy(yi) given 
yi, i=1, 2, 3, . . . , N. An estimate of Fy(yi) is given by Bury [8] and Ross [20].

	
E{Fy(yi)} =

i
N + 1	

(10.80)

Figure 10.24  Scatter plot and regression line.
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so that

	

ẑi = ln { − ln [1 − E{Fy(yi)}]}

= ln
�
−ln

�
1 − i

N + 1

��

= ln
�
−ln

�
N + 1 − i

N + 1

��

	

(10.81)

An estimate ̂zi obtained from (10.81) is used in (10.78) and (10.79). A program 
is written in WBL_MMSE.CPP to check out the estimate of c and b. The program 
proves it can be implemented for a on-line, real-time operation.

MMSE-CFAR processing is shown in Figure 10.25. Two parameters are changed 
after a square-law detector. The censoring of the clutter samples is simply replacing 
N by k, after the rank ordering. MMSE-CFAR is the most robust approach to the 
Weibull environment. It does not require an iterative procedure, a heavy computa-
tion load of doubtful real-time processing.

The two parameters after a square-law detector are the modified forms of 
(10.78) and (10.79):

Figure 10.25  MMSE-CFAR processing.
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ĉ/2 =

N
∑

i=1
z(i) ln y(i) − N <ln y><z>

N
∑

i=1
[ln yi]

2 − N[ <ln y> ]2

	

(10.82)

	 b̂
2

= [exp{− <z> +ĉ/2 <ln y>}]2/ĉ
	 (10.83)

We have removed the assumption in ML-CFAR analysis that “the shape param-
eter c is known a priori”. The two parameters are obtained by the MMSE technique  
given by (10.81)–(10.83). The detection curves in Figure 10.19 remain correct 
without any assumption. The clutter-edge response and the threshold are shown 
in Figure 10.26. The scenario of clutter level profile is similar (but not identical) to 
CA-CFAR and OS-CFAR. We have chosen C=1.0 in the region II, and c=0.75 in 
the region IV to show the spiky clutters. The clutter power levels are equal to those 
of CA-CFAR and OS-CFAR, however. The clutter power is the sum of the mean 
squared and the variance:

	 Clutter power = b2 Γ(1+2/c)   liner detector

	                                   = b4 Γ(1+4/c)   square-law detector

10.8  Conclusion

We have barely scratched the surface of the subject of CFAR processing. Many 
potential techniques to achieve better solutions against clutter disturbances remain 
unexplored. 

Figure 10.26  Weibull clutter and threshold level.
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C h a p t e r  11

Moving Target Indicator

11.1  Introduction

The object of moving target detection and indication is to reject returned signals 
from stationary objects such as buildings, hills, and islands and detect the signal 
from moving targets such as airborne aircrafts or maneuvering surface ships on the 
sea. Figure 11.1 illustrates the phase shifts of returned signals from a moving target 
and a constant phase from a stationary target.

A simplified receiver structure that detects the phase shift from a moving target 
is depicted and the waveform and response of a delay-line canceller is shown in 
Figure 11.2.

The output of the phase detector is applied to a delay-line canceller. The previ-
ous return is subtracted from the present return. The output of the canceller is zero 
for a stationary target or clutter whereas it is nonzero for a moving target.

We call the phase detector plus delay-line canceller an moving target indicator 
(MTI) filter. The desired frequency response of an MTI filter relative to the spec-
trum of stationary clutter is shown in Figure 11.3.

Many techniques are available to realize the delay-line canceller. The canceller 
may have a nonrecursive or recursive structure. There are cancellers that have the 
two structures combined. We analyze a few of them in the next sections.

11.2  Nonrecursive Delay-Line Canceller

A single delay-line canceller is shown below. The transfer function and the magni-
tude of the frequency response are given by

	 	

	

H(z) =
E0(z)
Ei(z)

= 1 − z−1, z−1 = ejωT

|H(jω)| =2
����sin

ωT
2

���� 	

(11.1)

A double-delay line canceller is shown below, and the transfer function and the cor-
responding magnitude of the frequency response are
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H(z) = (1 − z−1)2 = 1 − 2z−1 + (z−1)2

H(jω)| = |1 − e−jωT|2 = 4sin2
�

ωT
2

�
|

	
(11.2)

The frequency responses are shown in Figure 11.4 for a single- and double- 
delay line cancellers after normalization. The responses are similar in general, except  
in the vicinity of the notch-frequencies.

A triple-delay-line canceller with a feed-forward gain k is shown. An adjust-
ment of the gain produce different frequency response. The transfer function and 
the magnitude of frequency response are shown in Figure 11.5.

	 	

The transfer function and the magnitude of the frequency response are 

	

H(z) = (1 − z−1)2(k − z−1)

|H(jω)| = 4sin2(
ωT
2

){[kcos ωT + cos2 ωT − sin2 ωT]2

+ [ksin ωT + sin(2ωT)]2}1/2
	             

(11.3)

Figure 11.1  Moving target causes phase shifts on returned signals.
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Figure 11.2  �Waveform and response of delay line canceller: (a) phase detector output, single 
sweep, (b) phase detector output, multiple sweeps, and (c) output of delay line can-
celler with rectification.
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Figure 11.3  Desired frequency response of an MTI filter.

Figure 11.4  Frequency response of a single and double canceller.

Figure 11.5  Frequency response of a triple-delay canceller.
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There are many more different nonrecursive delay-line cancellers with or with-
out gain block in the feed-forward path.

11.3  Recursive Delay-Line Canceller

One example of a recursive single-delay-line canceller is shown.

	 	

	

H(z) =
1 − z−1

1 − kz−1

|H(jω)| =
2
���� sin

ωT
2

����
[1 + k2 − 2k cos ωT]1/2

	 (11.4)

When k = 0, this canceller is identical to the single-delay canceller of (11.4).
The feedback gain control factor k shapes the frequency response. The recip-

rocal of (1-k) is, in practice, equal to the number of pulses received over the 3-dB 
antenna beamwidth (i.e., when k = 0.9 the number of pulses is 10).

Again, there are many recursive multiple-delay line cancellers. We give two ex-
amples of cancellers with recursive and nonrecursive loops. Readers may benefit by 
consulting Lindon and Steinberg [1] and Scheleher [5] for multiple-delay cancellers.

	 	

	

H(z) =
1 − z−1

1 − kz−1

|H(jω)| =
2
����sin

ωT
2

����
[1 + k2 − 2k sinωT]1/2

	             (11.5)

The canceller shown above has recursive and nonrecursive loop, however, the 
frequency response is identical to Figure 11.6.

One example of a double-delay line canceller with recursive and nonrecursive 
loops is shown below, and the frequency response in Figure 11.7.
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H(z) =
(1 − z−1)2

1 + (k1 + k2)z−1 + k1z−2

|H(jω)| =

�����
(1 − e−jωT)2

1 + (k1 + k2)e−jωT + k1e−j2ωT

�����
	

(11.6)

Figure 11.6  Frequency response of a single-delay line recursive canceller.

Figure 11.7  Frequency response of double-delay canceller with feedback gain k1 and k2.



11.3  Recursive Delay-Line Canceller	 329

ART_Kang_Ch11_v_1.indd                                                  Achorn International                                                  07/23/2008  02:00AM

A canonical configuration of the multiple-delay canceller with recursive and 
nonrecursive loops is show below.

	 	

	
H(z) =

α0zn + α1zn−1 + α2zn−2 + . . . + αn

zn + k1zn−1 + k2zn−2 + . . . + kn 	
(11.7)

The last example of a triple-delay canceller with 3-pole Chebyshev coefficients 
applied to the denominator of (11.7) is shown below.
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H(z) =

(z − 1)3

(z − 0.08821)(z2 − 1.2002z + 0.7012) 	
(11.8)

Equation (11.8) is programmed in DELAY_C3.CPP, and the frequency response 
is shown in Figure 11.8.

Several cancellers are analyzed: recursive, nonrecursive, and combined-structure.  
Cancellers differ from one another in the frequency response, however, all cancel-
lers have nulls at multiples of the pulse repetition frequency, fPRF.

Figure 11.9 shows the frequency response of the air route surveillance ra-
dar (ARSR) without canceller, mentioned in Chapter 8, where the system pa-
rameters are listed. The null points in Doppler frequency and the corresponding 
radial velocities of 41 m/sec, 83 m/sec, 124 m/sec, and so on, are indicated. The 
radar receiver would be unable to detect targets at these velocities. We call them 
“blind speeds.”

	

fc = 1.3 GHz, fPRF = 360 Hz

vblind = k
λ fPRF

2
, k = 0, ± 1, ± 2, . . .

fdopper =
2 vT

λ

λ : transmitter carrier wavelength, λ =
c
f
, m

vT: target radial velocity, m/sec 	

Figure 11.8  Frequency response of triple canceller 3-pole Chebyshev coefficients.
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11.4  Blind Speeds and Staggered PRFs

The blind speeds inherent to all delay-line cancellers impose serious problems in 
moving target indication. The problem can be mitigated by varying the pulse rep-
etition frequency and using corresponding delay-lines in the cancellers. The pulse 
repetition frequency is thereby altered to switching the first blind speed. We call this 
staggered PRFs.

Two examples of stagger-time management are shown in Figure 11.10.
The frequency response of a double-stagger with a single-delay canceller is 

given by

	
|H(jω)| =

�
1
2

���1 − e−jωT1

���
2

+
1
2

���1 − e−jωT2

���
2
�1/2

	

where T1= T−Ts and T2 =T+Ts, and the power response is given by

	

|H(jω)|2 =
1
2

���1 − e−jωT1

���2 +
1
2

���1 − e−jωT2

���2

= 2.0 − cos ωT1 − cos ωT2 	

(11.9a)

	 	

(11.9b)

Eq(11.9) can be further simplified to

	 |H(jω)|2 = 2.0[1.0 − cos ωT cos ωTe] 	

where T is the unstaggered period (in Figure 11.10) and e = Ts/T is the fraction of  
(Ts < T) of delay period. We often hear about the “stagger ratio” rather than the stag-
ger fraction. For a double-stagger when T1 = T − Ts and T2 = T + Ts, or T1 = T(1 − e)  
and T2 = T(1 + e), the stagger ratio r is given by

Figure 11.9  Blind speeds of air route surveillance radar (ARSR).
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r =

T1

T2
=

1 − e
1 + e

or e =
1 − r
1 + r 	

The higher the stagger ratio approaching unity, the higher the first blind speed; 
however, there are some deep attenuations in the passband.

Figure 11.10  Stagger timing diagram. (From: [5], p. 395.)
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The power response for a double-stagger with a double-delay canceller is 
given by

	

|H(jω)|2 =
1
2

���a + b e−jωT1 + c e−jω(T1+T2)
���2

+
1
2

���a + b e−jωT2 + c e−jω(T1+T2)
���2

	

(11.10a)

where a, b, and c are the binomial coefficients: a=1, b= -1, c=1.
Eq(11.10 a) can be further simplified to

	 |H(jω)|2 = 6.0 − 8.0 cos ωT cos ωTe + 2.0 cos 2ωT 	 (11.10b)

	 where = Ts/Te 	

The power response for a triple-stagger with a double-delay canceller is given 
by

 		

	

|H(jω)|2 = |1.0 − 2.0e−jωT1 + e−jω(T2+T3)|2

+ |1.0 − 2.0e−jωT2 + e−jω(T1+T3)|2

+ |1.0 − 2.0e−jωT3 + e−jω(T1+T2)|2 	

(11.11a)

where  T1 =T(1−e), T2 = T,  T3 = T(1 + e), and e = Ts/T, and the simplified form is

	

|H(jω)|2 =
1
3

[18.0 − 8.0(1.0 + 2.0 cos ωTe) cos ωT

+ 2.0(1.0 + 2.0 cos ωTe) cos 2ωT] 	
(11.11b)

Eq (11.11) is programmed in MTI_3s2d.CPP and the result is shown in Figure 
11.11.

For example, if the ARSR radar should not be blind to an aircraft at speeds 
below 1.0 Mach (330 m/sec), the stagger ratio of 3/5 or higher must be designed. 
The product of the order of canceller and the number of staggers should be less than 
the number of return signal over the antenna beamwidth so that the delay lines are 
completely filled, and the integrator (if recursive loop is involved) has reached a 
steady-state level. In practice, nonrecursive cancellers are preferred because of their 
superior transient response.
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For the case of the ARSR, the number of hits (return pulses) is

	
NB = (θ /θ̇)fprf =

1.35
36

(360) = 13.5 → 13
	

Thus, a double (or triple) canceller with triple (or double) staggers would be a 
good candidate structure for the ARSR.

Since there are so many different cancellers that can be candidates, it is logical 
to establish certain criteria to evaluate the performance of cancellers.

An evaluation of an MTI filter would include the order of canceller, the number 
of staggers, a recursive or nonrecursive, the binomial coefficients or other poly-
nomial coefficients for the weights of transfer function, the complexity of signal 
processing, and so forth.

We study two performance criteria; the clutter attenuation and the improve-
ment factor in the next section.

11.5  Clutter Attenuation and Improvement Factor

This section introduces two quantities that provide a measure of MTI filter  
performance: clutter attenuation, CA, and improvement factor, I. The clutter  
attenuation is defined as the ratio of clutter input power to clutter output power. 
The improvement factor is defined as the ratio of signal-to-clutter ratio at the out-
put to that of at the input. Both quantities are dimensionless.

Figure 11.11  A triple-stagger, double-delay-line canceller.
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CA =
clutter power at the input

clutter power at the output

I =
(S /C)o at the output
(S /C)i at the input

Thus,

I =
�

So

Si

��
Ci

Co

�
= (average gain of filter for target) × CA

	
(11.12)

The clutter attenuation CA is obtained by the ratio of the following two 
integrals.

	

Sc(ω) : clutter power spectral density

|H(jω)| : the magnitude of canceller response	

	

A =

� ∞

−∞
Sc(ω)dω

� ∞

−∞
Sc(ω)|H(jω)|2dω

C

	

(11.13)

The lower limit of integration will be replaced by zero and the upper limit by 
2π/T since the spectrum is periodic in 2π/T.

	 	

If we assume that the clutter spectrum is a Gaussian much narrower than 2π /T, 
and that for the moment the clutter has zero mean velocity, the clutter spectrum 
would be expressible as

	
Sc(ω) =

Pc

σc
√

2π
ex

�
−ω2

2σ2
c

�
p

	          
(11.14)

	 Pc : peak power of clutter spectrum

	                  σc : the standard deviation of clutter spectrum
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Equation (11.14) is substituted into (11.13), and CA is to be evaluated for various 
cancellers.

	

CA =

�
1

σc
√

2π

� 2π / T

0
exp

�
−ω2

2σ2
c

�
|H(jω)|2 dω

�−1

	

For a single canceller, whose response is given by (11.1, the integration is

	

4

σc
√

2π

� 2π /T

0
exp

�
−ω2

2σ2
c

�
sin2

�
ωT
2

�
dω

≈ (2)(4)

σc
√

2π

� ∞

0
exp

�
−ω2

2σ2
c

��
ωT
2

�2

dω
�

ωT
2

�
<<< 1

= (Tσc)2

Thus,

CA =
1

(Tσc)2
, and I =

2

(Tσc)2
	 (11.15)

Equation (11.15) indicates that the CA and I are inversely proportional to the vari-
ance of the clutter power spectrum; the wider the spectrum width, the lesser the 
clutter attenuation and the improvement factor.

The exact expressions for CA and I are obtained through autocorrelation func-
tion as follows:

When the clutter input is x(t), the mean-squared clutter input power is

	 E{x(t)x∗(t)} = E{|x2(t)|} = R(0)	

When the output y(t) is expressed as, for a single-delay canceller

	 (t) = x(t) − x(t + T)y 	

The mean-squared output power is

	

E{y2(t)} = E{[x(t)− x(t + T)]2}
= E{x2(t)}− 2E{x(t)x(t + T)} + E{x2(t + T)}
= 2R(0) − 2R(T) 	

The autocorrelation function R(T) and the spectral power spectral density S(ω) 
are Fourier transform pair:



11.5  Clutter Attenuation and Improvement Factor	 337

ART_Kang_Ch11_v_1.indd                                                  Achorn International                                                  07/23/2008  02:00AM

	
S(ω) =

� ∞

−∞
R(T)e−jwt dT

	
(11.16)

	
R(T) =

1
2π

� ∞

−∞
S(ω)ejwt dω

	
(11.17)

When x(t) is real, R(T) is real and even. Then, (11.16) and (11.17) take the form

	

S(ω) =
� ∞

−∞
R(T) cos ωT dT

R(T) =
1

2π

� ∞

−∞
S(ω) cos ωT dω

	

and, assuming the clutter spectrum is a Gaussian, R(0) and R(T) are expressible as

	

R(0) =
1

2π

� ∞

−∞
S(ω) dω =

2
2π

� ∞

−∞
exp

�
−ω2

2σ2
ω

�
dω =

σω√
2π

R(T) =
1

2π

� ∞

−∞
S(ω) cos ωT dω =

2
2π

� ∞

−∞
exp

�
−ω2

2σ2
ω

�
cos ωT dω

=
σω√
2π

exp

�
−T2σ2

ω
2

�

	

Thus, the autocorrelation coefficient ρ(T) is given by

	
ρ(T) =

R(T)
R(0)

= exp

�
−T2σ2

ω
2

�

	

Substituting the result in CA1 and I1 for a single-delay canceller, we have

	

CA1 =
E{x2(t)}
E{y2(t)} =

1
2[1 − ρ(T)]

=
1

2

�
1 − exp

�
−T2σ2

ω
2

��

	

	

I1 = gain × CA1 =
2

2[1 − ρ(T)]
=

1

1 − exp

�
−T2σ2

ω
2

�
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The numerator 2 of I1 comes from the average power gain of a single-delay can-
celler, (11.1). The standard deviation of clutter power spectrum σω (rad/sec) will be 
transformed to an equivalent standard deviation of the clutter velocity σv (m/sec) by 
the Doppler principle, and T=1/fPRF, so that the improvement factor can be related 
to the system parameters λ and fPRF.

and

 

fd =
2vr

λ
, σf =

2σv

λ
σω = 2

�
2πσv

λ

�
(2π converts radian/sec to Hz)

T2σ2
ω

2
= 2

�
2πσv

λ fPRF

�2

	

Finally,

	
I1 =

�
1 − exp

�
−2

�
2πσv

λ fPRF

�2
��−1

	 (11.18)

The expressions for clutter attenuation CA2 and improvement factor I2 for a 
double-delay canceller can be derived by following the identical steps as for the 
single-delay canceller.

	 	

       

y(t) = x(t) − 2x(t + T) + x(t + 2T)

E{y2(t)} = E{[x(t)− 2x(t + T) + x(t + 2T)]2} = 6R(0) − 8R(T) + 2R(2T)

CA2 =
E{x2(t)}
E{y2(t)} =

1

6
�
1 − 4

3
ρ(T) +

1
3

ρ(2T)
�

	

(11.19)

	

I2 = gain × CA2 =
6

6
�
1 − 4

3
ρ(T) +

1
3

ρ(2T)
� 	 (11.20)

 

The numerator 6 of I2 comes from the average power gain of the double-delay 
nonrecursive canceller. Substituting the correlation coefficients

	

ρ(T) = exp

�
−T2σ2

ω
2

�
= exp

�
−2

�
2πσv

λ fPRF

�2
�

ρ(2T) = exp{ − 2T2σ2
ω )} = exp

�
−2

�
4πσv

λ fPRF

�2
�
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The improvement factor I2 is given by

	
I2 =

�
1 − 4

3
exp

�
−2

�
2πσv

λ fPRF

�2
�

+
1
3

exp

�
−2

�
4πσv

λ fPRF

�2
��−1

	
(11.21)

The standard deviation of clutter σv has been experimentally measured by instru-
mented radars by many researchers, and compiled by Barton [2, p. 100],  listed 
below. 

	

Table 11.1  Standard Deviation of Clutter Spectrum

Clutter Type Wind Speed (Knots) σv (m/sec)

Wooded hills Calm 0.017
10 0.04
20 0.22
40 0.32

Sea state - 0.78 ~ 1.0
8 ~ 20 0.48 ~ 1.1

Rain cloud - 1.9   ~ 4.0 	

Equations (11.18) and (11.21) are programmed in IMPRVMT.CPP having σv/(λ 
fPRF) as an independent variable, and the result is shown in Figure 11.12.

Figure 11.12  Improvement factor, mean velocity = 0.0.



340	 Moving Target Indicator

ART_Kang_Ch11_v_1.indd                                                  Achorn International                                                  07/23/2008  02:00AM

A numerical example is given for the airport surveillance radar (ASR), an arrow 
on the horizontal axis of Figure 11.12. The system parameters are given in Chapter 
8 and repeated below:

	 f = 2.8 GHz, λ = 10.71 cm, fPRF = 1,200 Hz	

Assume that the land clutter (hills and mountains with forest cover) has the 
standard deviation σv= 0.32 m/sec when the wind speed is 40 knots. The improve-
ment factors I1 and I2 are

	

I1 =

�
1 − exp

�
−2

�
2πσv

λ fPRF

�2
��−1

≈ 2,045 = 33.1 dB

I2 =

�
1 − 4

3
exp

�
−2

�
2πσv

λ fPRF

�2
�

+
1
3

exp

�
−2

�
4πσv

λ fPRF

�2
��−1

≈ 2,091,831 = 63.2 dB
	

Next, we shall investigate how the mean velocity of clutter would reduce the 
improvement factor. The power spectrum of clutter with a nonzero mean velocity 
is shown below.

	 	

The autocorrelation function is derived analogous to the stationary clutter.

	

(T) =
1

2π

� ∞

−∞
Sc(ω) cos ωT dω =

1
2π

� ∞

−∞
exp

�
−(ω − ωo)2

2σ2
ω

�
cos ωT dωR

	

Let

	

R(T) =
1

2π

� ∞

−∞
exp

�
−Ω2

2σ2
ω

�
cos[(Ω + ωo)T ] dΩ

=
2

2π

� ∞

−0
exp

�
−Ω2

2σ2
ω

�
cos ΩT cos ωoT dΩ

=
σω√
2π

cos ωoT exp

�
−T2σ2

ω
2

�
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We shall relate ωo to the mean velocity of clutter vo by

	

fd =
2vr

λ
, 2πfd =

4πvr

λ

ωo =
4πvo

λ
and ωoT =

4πvo

λ fPRF 	

Substituting the result, we have the improvement factors I1 and I2 when the 
clutter has a nonzero mean velocity vo and the standard deviation σv.

		

(11.22)

	

I1 =

�
1 − exp

�
−2

�
2πσv

λ fPRF

�2
�

cos
�

4πvo

λ fPRF

��−1

I2 =

�
1 − 4

3
exp

�
−2

�
2πσv

λ fPRF

�2
�

cos
�

4πvo

λ fPRF

�

+
1
3

exp

�
−2

�
4πσv

λ fPRF

�2
�

cos
�

8πvo

λ fPRF

��−1

	

(11.23)

We note that exponentials of (11.18) and (11.21) are multiplied by factors 
depending on the cosine of 4π or 8π times the ratio of the mean velocity vo to the 
product of wavelength λ and pulse repetition frequency fPRF. The reduction in the 
improvement is programmed in REDUCTN.CPP and the result is shown in Figure 
11.13.

From Figure 11.12 we read that a double-delay canceller has an improvement 
factor of 39 dB when the clutter is stationary and σv/(λfPRF)=0.01. When the mean 

Figure 11.13  Reduction in improvement factor, mean velocity ≠ 0.
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velocity vo is four times the standard deviation σv, Figure 11.13 indicates there is a re-
duction of 21 dB in improvement factor. The result will be 39 dB - 21 dB = 18 dB.

Another example is given. A double canceller is expected to have an improve-
ment factor of 22 dB when the clutter is stationary and σv/λfPRF = 0.03.

However, if the clutter has a mean velocity vo four times σv, the reduction is 21 
dB. The result will be 22 dB - 21 dB = 1 dB. In this case we do not expect any clut-
ter suppression at all. The mean velocity has a punishing effect on the improvement 
factor unless the canceller’s attenuation notch is matched to the mean velocity of 
the clutter. Can we estimate the mean velocity and reposition the canceller’s null to 
the mean velocity?

There appears to be a few techniques to accomplish the task. The pulse- 
pair-processing (PPP) has been applied in estimating the mean and variance of  
precipitation clutter [6–10]. The TCAR� technique, a canceller at IF frequency (or 
equivalent IQ channel in baseband) has gained the popularity among many devel-
opers [11, 12].

Before we leave the subject of improvement factor, we shall bring a refinement 
to (11.18), (11.24), and Figure 11.12. A question here is: can we expect an improve-
ment of 63.2 dB by the ASR with a double-delay canceller when σv = 0.32 m/sec 
mentioned earlier. Can we expect an improvement factor of, say, 60 dB when the 
noise power level is only 20 dB below the clutter level? The noise will pass through 
the canceller with unchanged power.

	 	

When the power spectrum density of the clutter is Gaussian with σ<<<πT, as 
shown in the previous page, the clutter return and the noise can be combined, and 
we call the combined signal as an interference. Now we have to contend with the 
signal-to-interference ratio (SIR), not the signal-to-clutter ratio (SCR) alone. The 
SIR is given by

	

SIR =
1

1
SNR

+
1

SCR 	
1. � TACCAR stands for time average coherent clutter airborne radar, originally developed for airborne MTI.
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Accordingly, (11.21) shall be modified.

	

I2 =

�
1 − 4

3
exp

�
−2

�
2πσv

λ fPRF

�2
�

+
1
3

exp

�
−2

�
4πσv

λ fPRF

�2
��−1

I�2 = (1 − PCN)[Eq (11.5.10)] + PCN 	

(11.24)

where PCN is a fraction of the noise power to the clutter power. Equation (11.24) 
is programmed in MTI_CNR.CPP and the results are shown in Figure 11.14. A 
single-delay canceller would be modified similarly.

Next we shall analyze the extent of improvement reduction due to antenna 
rotation because the rotation causes the spectrum broadening.

We start with antenna radiation pattern assumed to be Gaussian (see other pat-
terns in Chapter 6.)

	
G(θ ) = Gθo exp

�
−θ 2

2σ2
θ

�

	

When the antenna rotates, the received signal is modulated by G(t) time func-
tion as shown below, and the spectrum of clutter will be obtained by Fourier trans-
formation.

	

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

G(t) = Gto exp

�
−t2

2σ2
t

�
where σt = σθ /θ̇ , θ̇ is rotation rate

G(ω) = Gωo exp

�
−ω2

2σ2
ω

�

	

The standard deviation of the antenna pattern σθ can be replaced by the 
half-power beamwith, θ(-3dB)= θB , which for a Gaussian pattern is related by [3,  
p. 149].

	

θ B = 2.3548 σθ , so that G(θ ) exp

�
−θ 2

2σ2
θ

�
= G(θ ) exp

�
−2.7726 θ 2

θ 2
B

�

exp

�
−θ 2

2σ2
θ

�
→ exp

�
−t2

2σ2
t

�
→ exp

�
−ω2

2σ2
ω

�
→ exp

�
−2.7726 θ 2

θ 2
B

�

σt = σθ /θ̇ 2σ2
ω =

1
2σ2

t
θB = 2.3548 σθ

�
antenna
rotation

� �
Fourier

transform

� �
conversion to

−3d eamwith

�

2σ2
ω =

2
2σ2

t
=

1
2

�
˙ θ

σθ

�
2
, σω =

1
2

�
θ̇
σθ

�
=

2.3548
2

�
θ̇
θB

�

b f b f b f

B b
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The standard deviation σω (rad/sec) can be converted to σf (Hz) by dividing σω 
by 2π, and the standard deviation σf can be related to that of velocity by Doppler 
shift.

	
σf = 0.0338(θ̇ θB)

1
2π

=
2σv

λ 	

Finally

	 σv=0.0169(θ. θ B λ),   or   
σv

         λ
    = 0.0169(θ  

.
   θ B)	  (11.25)

Equation (11.25) is shown in Figure 11.15 having θ   
.
   (deg/sec) as the indepen-

dent variable and θ B as a parameter.
A line for airport surveillance radar (ASR) is added to give readers the magni-

tude of the spectrum broadening of the stationary clutter due to antenna rotation. 
We note the standard deviation of stationary clutter for the ASR due to antenna 
rotarion is σv= 0.244 m/sec, which is comparable to all stationary land clutter (see 
Table 11.1). The improvement factor I2 is lowered to 51 dB compared to 63.2 dB 
with no rotation.

The total standard deviation of clutter seen by a radar is a square-root of sum 
of all variance of contribution cause.

	 σt = [σ2
c + σ2

ar + σ2
si + σ2

pm + . . .]1/2
	

Figure 11.14  Improvement Factor, mean velocity = 0.0, limited by signal-to-interference ratio 
(SIR).
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where  σt:  total standard deviation
	 σc

2:  variance of clutter
	 σar

2:  variance due to antenna rotation
	 σsi

2:  variance due to system instability
	 σpm

2:  variance due to platform motion (tranlational)

The spectrum broadening due to system instability will be analyzed in the next 
section. The translational broadening dependents on platform velocity, antenna 
depression angle as well as azimuth angle, pulsewidth, altitude, and so forth.

MTI design for an airborne radar presents a unique challenge due to platform 
motion. An elaborate motion compensation is required: TACCAR technique plus 
DPCA�. The subject is beyond the scope of this chapter and will not be presented 
here. A shoreline fixed radar for harbor surveillance or maritime control has to 
counter the sea clutter with nonzero mean velocity. A seaborne radar, on corvette 
or frigate for instance, must compensate for the cruising velocity of the vessel (crab-
walk included), and the platform must be stabilized for pitch and roll through 
gimbals mechanism.

A diagram of the clutter situation and a distribution profile for land, sea, and 
precipitation clutter is shown in Figure 11.16.

2.	� DPCA stands for displaced phase centered antenna, a variant of the single-plane monopulse antenna with 
corporate feed network.

Figure 11.15  Spectrum broadening due to antenna rotation.
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11.6  Limitations Due to System Instability

The MTI principle is based on the detection of phase change caused by Doppler 
shift of moving targets, and all cancellers are preceded by phase detector. Unfortu-
nately phase changes are also originated by system instability and we are never able 
to separate the true source of phase change from the system instability. The system 
instability imposes limitations on the theoretically achievable improvement factor.

We list the sources of system instabilities and the limitation on the improvement 
factor [4] (see Table 11.2). We also give numerical examples of the system stability 
requirements.

  Δf:  interpulse transmitter frequency shift
 Δφ:  interpulse phase shift
  Δt:  pulse-to-pulse timing jitter 
Δw:  pulsewidth jitter
ΔA:  pulse-to-pulse amplitude difference
   A:  pulse amplitude
    τ:  transmitted pulsewidth
   T:  two-way transit time to and from target

Figure 11.16  Clutter distributions. (From: [5, p. 16]).
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Consider an S-band (3,000 MHz) radar with a 1.0-μs uncoded pulse, and the 
requirement that no one of six sources of instability limit the improvement factor 
to less than 40 dB.

1. Transmitter frequency shift must be less than

40
20

= log
�

1
πΔfτ

�
, 100 =

�
1

πΔfτ

�
, Δf ≤ 1

πτ(100)
= 3,100 Hz

Δf
f

=
3100

3E + 9
≤ 1.0E − 6, one part in one million

	

2. Transmitter phase shift must be less than

	
100 =

1
Δϕ

, Δϕ =
1

100
rad ≤ 0.57 degree

	

3. Stalo and Coho frequency shift must be less than, assuming the target is located 
at 100 km, the Stalo frequency is 2,940 MHz and Coho frequency at 60 MHz

	

Table 11.2  Sources of System Instabilities and Limitation on 
the Improvement Factor

Source of Instability Limit on Improvement Factor

1.  Δf
I = 20 log

�
1

πΔfτ

�

2.  Δφ
I = 20 log

�
1

Δϕ

�

3.  Δf (stalo and coho)
I = 20 log

�
1

2πΔfT

�

4.  Δt
I = 20 log

�
τ√

2
√

τB Δt

�

(Time-bandwidth product τ B=1

for uncoded transmit signal) 

5.  Δw
I = 20 log

�
1

Δw
√

τB

�

6.  ΔA
I = 20 log

�
A

ΔA

�
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100 =
1

2πΔfT
, Δf =

1
2πT(100)

≈ 2.4 Hz

Stalo :
2.4

2.94E9
≤ 8.0E − 10

Coho :
2.4
6E7

≤ 4E − 8
	

4. Pulse-to-pulse timing jitter must be less than

	
100 =

τ√
2
√

τB ΔT

Δt
τ

≤ 0.7% for uncoded pulse
	

5. Pulsewidth jitter must be less than

	
100 =

τ
Δw

√
τB

Δw
τ

≤ 1%
	

6. Pulse amplitude jitter must be less than

	
100 =

A
ΔA

ΔA
A

≤ 1%
	

Readers are encouraged to compute the system stability requirement for im-
provement factors of 50 dB or higher and appreciate the stringent stability require-
ments. Out of six, the Stalo stability is the most difficult one to meet.

11.7  A/D Converter Quantization Noise

The quantization noise produced by an A/D converter limits the theoretically pre-
dicted improvement factor. When an A/D converter has N bits resolution and the 
phase detector output range is [+1, −1], the quantized interval ΔN is

	
ΔN =

2

(2N − 1) 	

The standard deviation of the quantized noise, assuming a unit uniform prob-
ability density function, is

	
σ =

1√
12

2

(2N − 1) 	

The standard deviation is further broadened due to the pulse-to-pulse deviation by 
a factor of √

− 
2 , and there is another factor of √

− 
2 introduced by the reduction in average  

signal amplitude passing through a phase detector [3, p. 11–50] (see Table 11.3).

	 I = 20log(1/σ ) = 20log[
√

3/4(2N − 1)]	
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It appears that an A/D converter with 10 bits or higher resolution would not 
limit the improvement factor less than 59 dB.

11.8  Clutter Map

So far we have studied the pulse-to-pulse canceller techniques, the temporal pro-
cessing. When an adequate data storage memory is available, we may consider an 
alternative, scan-to-scan cancellation technique, the spatial processing.

The clutter map would reject signals that have not moved from the previous 
scan to the present scan; clutter is stationary between successive scans. Spatial pro-
cessing has no periodic blind speed as in temporal processing; therefore, we need no 
staggered PRF management. This simplifies the system operation, however, unfor-
tunately the clutter mapping works only for a stationary fixed position radar and 
only when the resolution cell is larger than the mean velocity of the clutter, a coarse 
resolution radar. For a seaborne radar an elaborate coordinate transform in vessel 
velocity and the correction for yaw of the platform are required. The performance 
may be unsatisfactory.

11.9  Conclusion

TACCAR is a nonlinear video processing, and it cannot be cascaded as we cascade 
a single-delay canceller to implement a double-delay or a triple-delay canceller. In-
stead of TACCAR we should consider an IF vector canceller, which can be cascaded 
when the improvement factor must be increased for nonstationary clutter.

For the best MTI performance, the system engineer should choose on the low-
est possible carrier frequency (the largest wavelength λ) within the constraint of 
antenna size (or weight), and the highest fPRF permissible for unambiguous range. 
To wit, the engineer should push an operating point σv/λfPRF the lowest possible to 
the left in Figure 11.12.

A bank of Doppler filters has been analyzed for clutter rejections [13, 14]. 
In particular it was demonstrated successfully for clutter rejection through FFT 

Table 11.3

Number of bits Limit on Improvement Factor (dB)

  4 26.27
  5 28.58
  6 34.74
  7 40.83
  8 46.88
  9 52.92
10 58.95
11 64.97
12 70.99
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processing using eight input samples for radix-2 algorithm [15]. The trend in the 
industry leans toward the Doppler filter banks since custom-made microprocessor 
for FFT/IFFT processing are readily available, though expensive.
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List of Programs

  (1) DELAY_NR.CPP Frequency response of single and double delay line canceller, nonrecursive.
  (2) DELAY_N3.CPP Frequency response of triple canceller, nonrecursive, with forward gain k.
  (3) DELAY_R1.CPP Frequency response of single canceller, recursive, with feedback gain k.
  (4) DELAY_R2.CPP Frequency response of double canceller, recursive, with feedback gain k.
  (5) DELAY_R3.CPP Frequency response of triple canceller, with feedback gain k1 and k2.
  (6) DELAY_C3.CPP Frequency response of triple recursive canceller, coefficients of 3rd order 

Chebyshev polynomial.
  (7) IMPRVMT.CPP Computes the improvement factor, the mean velocity of clutter is zero.
  (8) REDUCTN.CPP Computes the reduction in improvement factor for nonzero mean velocity 

of clutter.
  (9) MTI_CNR.CPP Computes the improvement factor, mean velocity = 0.0, limited by clutter-

to-noise ratio.
(10) MTI_3S2D.CPP Computes the frequency response of a triple-stagger with double-delay-line 

canceller, the stagger rario=3/5.
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351

C h a p t e r  12

Miscellaneous Program Routines

This chapter contains 22 miscellaneous program routines we have used on occa-
sion. Some of them do not fit under the proper chapter titles, and some are prepara-
tory works on certain programs.

SORT_BUB.CPP � Sorting an array of data in ascending order analogous to air 
bubbles floating up to the surface, sorting-by-bubble.

SORT_SEL.CPP    Another sorting routine of data array, sorting-by-selection.
SORT_INX.CPP � Third sorting routine, an array of data sorted in ascending 

order without disturbing the sequence of the original array, 
sorting-by-index.

INSERT.CPP �   �   A program routine for an arbitrary data to be inserted in an 
array.

SEARCH_L.CPP    �This program searches an array linearly to find data we have 
designated (target data). When the target data is found this 
program identifies the index of the data (location).

SEARCH_B.CPP    �Similar to above search program except the search is executed 
after the array is partitioned into two subarrays repetitively 
until the data is found, search-by-binary is faster than search-
by-linear.

PRIME.CPP       A program that generates the prime numbers.
FCTRIAL.CPP      Factorial, computes factorial of an integer, K!
K!_EXACT.CPP     Computes the exact value of k! when k< =30.
K!_APPRX.CPP      Computes an approximate of k! when k> =20.
PERMUTAT.CPP  �Computes permutation, given two integers n and k,  n > k. 

P(n, k) = n!/(n-k)!
COMBINAT.CPP �Computes combination, given two integers n and k, n > k. 

C(n, k) = n!/k!/(n-k)!

The next three programs demonstrate how to find the root(s) of a function,  
f(x) = 0. Actually we try to find the crossing point(s) of two functions, f1(x) and 
f2(x). The first two examples employ the “bisection” method and the third example 
the Newton-Raphson method.

ROOT_F1.CPP    � Suppose we are given a function f(x) = sinh(x-2.5) - 5.0 exp 
(-x/2), and we would like to find the root of  f(x) = 0.

Two functions are

	 f1(x) = sinh(x-2.5),   f2(x) = 5.0 exp(-x/2)	

The root (crosspoint) is located somewhere between 3.0 and 4.0 (Figure 12.1). The 
bisection method is used to find the function values at two test points, xlow and xhigh, 
where the function changes the sign from negative to positive or positive to negative.
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flo = sinh(xlo − 2.5) − 5.0 exp(− xlo/2) flo is negative

fhi = sinh(xhi − 2.5) − 5.0 exp(− xhi/2) fhi is positive 	

When we evaluate the function at the midpoint xm, we shall have two distinc-
tive possibilities:

In case (i) we replace (xhi, fhi) by (xm, fm) so that the function will change the 
sign. In case (ii) we replace (xlo, flo) by (xm, fm). We shall repeat the replacement 
until the absolute difference | fhi - flo| reaches some small tolerance (i.e., 1.0E-6 or 
1.0E-7). The root of the function is xm, found at the last iteration. The number of 
iterations N required is given by

	

N = log2(Δ /ε) where Δ = |xh − xl|

ε = tolerance specified	

Figure 12.1  Crosspoint between an exponential and hyperbolic sine function.
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Caution: If you set the tolerance too small (i.e., 1.0E-16 for float), the round-off 
errors play a trick on you and the convergence would never succeed.

ROOT_F2.CPP � This is second demonstration program by the bisection method 
when a given function has multiple roots (Figure 12.2).

	

f(x) = 5 exp(− x/2) sin2x − 0.4

f1(x) = 5 exp(− x/2) sin2x

f2(x) = 0.4 	

ROOT_F3.CPP � The root(s) of function can be found more efficiently by the 
Newton-Raphson method if the derivative of the function is 
easily found (sometimes it is difficult). The iterative proce-
dure to find the root(s) is based on Taylor series expansion of 
given function:

	 f(x + ε) = f(x) + εf �(x) + ε2f ��(x) + ε3f ���(x) + . . .	

When e is very small, the terms of e 2 and the higher power terms can be ignored. 
Then

	 f(x + ε) ≈ f(x) + εf �(x)	

As e becomes smaller and smaller, and for a well-behaved function, we can see 
that 

Figure 12.2  Multiple roots.
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	 f(x + ε) → f(x) + εf �(x) = 0

ε = − f(x)/f �(x)
	

Thus

	 x + ε = x − f(x)/f �(x)	

The root is found by using above relationship iteratively:

	 xn+1 = xn − f(xn)/f �(xn)	

Caution: When the derivative f ¢(x) is zero or nearly zero, the Newton-Raphson 
method would fail. Two functions are parallel (or nearly parallel to each other).

ISUB0(X). CPP     �  This program computes the modified Bessel function of the 
first kind, zero order.

	
I0(x) = 1 +

∞
∑
k=1

[(x/2)k/k!]2 =
∞
∑
k=0

[(x/2)k/k!]2

	

GAM_FUNC.CPP  This program computes the Gamma function.

	

Γ(x∞) =
� ∞

x=0

e−x xk

k!
dx =

∞
∑
x=0

e−x xk

k!
	

INC_GAMM.CPP  This program computes the incomplete Gamma function.

	

Γ(xb) =
� yb

0

e−x xk

k!
dx =

yb

∑
x=0

[(e−x xk)/k!]

	

MAX_MIM.CPP  �  This program demonstrates finding the maximum-minimum 
data in an array by function “Template” when the array data 
is a mixture of integer, float, or double.

DBL_SUM.CPP    �   This program computes the product of two summations. 
One summation is indexed in “m”, the other in “n.” When 
n = m, the second summation will be excluded (see Chapter 
5, Section 5.4.).

	
I =

5

∑
m=0

fm
5

∑
n=0 n�=m

fn

	

K(m)_JAC.CPP     Computes the Jacobian elliptic function.
K(m)_ELP.CPP       �   Computes the elliptic integral when the modulus m is given; 

0< = m < 1.0.

Readers are encouraged to add their favorite routines to this chapter for future 
reference.



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47355

ART_Kang_BM.indd                                                  MTC                                                  07/30/2008  03:37AM

Index

A

Acceleration perturbation distribution, 203
A/D converters

dynamic range, 90–93
quantization, 90, 91
quantization noise, 348–49
quantized error, 92

Air defense radar (CCS), 223–33
antenna beamwidth, 228
azimuth error, 232
coordinate conversion, 226
countermunition guidance control, 231
data files, 230–31
elevation error, 232
error covariance matrix, 226, 227
Jacobian transform matrices, 227
Kalman filter flow diagram, 233
Kalman recursive equations, 230
measurement equations, 225–26
random acceleration noise, 225
range error, 231
state equation, 223
target trajectory, turn-dive-and-turn-

climb, 224
tracking, 223
transmitter pulsewidth, 228
See also Kalman filter

Air defense radar (LOS coordinates), 
233–38

azimuth errors, 237
data files, 235–36
elevation errors, 238
measurement error covariance matrix, 

234
range errors, 237
recursive filter processing, 235
state equations, 233

state equation (vector-matrix form), 
233–34

state error covariance matrix, 235
target trajectory, 235
See also Kalman filter

Airport surveillance radar (ASR), 340
double-delay canceller, 342
stationary clutter, 344

Air route surveillance radar (ARSR), 330
blind speeds, 331, 333
candidate structure, 334
number of hits, 334

Air traffic control (ATC) radar, 214–23
angle error, 222
continuous distribution, 216
data file, 221
discrete distribution, 216
errors, root cause, 222–23
flight trajectory, landing approach, 220
identification friend or foe (IFF), 215
Kalman filter flow diagram, 222
long range, 214
measurement equations, 216–18
purpose, 222
range acceleration pdf, 216
range error, 221
short range, 214
state equation, 215
target detection, 214
tracking, 221
See also Kalman filter

Albersheim’s empirical approximation, 179
Ambiguity function, 125–41

Costas-coded frequency hopping 
modulation, 131–39

defined, 125
expression in frequency domain, 125



356	 Index

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

ART_Kang_BM.indd                                                  MTC                                                  07/30/2008  03:37AM

Ambiguity function (cont.)
linear frequency modulation (LFM), 

128–31
properties, 125
of rectangular pulse, 126–28
surface, 126

Amplitude unbalance, 118–22
corrections, 119
corrections through FFT, 122
FFT, 120
in Fourier transform pair, 122–23

Analog filters
Butterworth lowpass, 72–74, 83–84
Chebyshev lowpass, 74–80, 84–85
elliptic, 80–82, 85–87
frequency band transformation, 82–83
review, 71–83

Angle measurement error, 204, 217
Antenna beamwidth, 204
Antenna rotation, spectrum broadening, 345
Array antennas, 143–59

circular, 149–53
elliptical, 153–54
linear, 143–49
monopulse array, 154–59
phased, 154
uniform, 146, 147

Autocorrelation coefficient, 337
Autocorrelation function, 336, 340
Azimuth errors

air defense radar (CCS), 232
air defense radar (LOS coordinates), 237
Kalman filter without matrix inversion, 

243
passenger airliner, 212

B

Backsubstitution, 2–4
Gaussian elimination with, 2–4
steps, 3

Bandpass filters, 58, 60
elliptic, 87–89
ideal, 58
impulse response, 60
window functions, 61, 64

Bandstop filters, 58, 60
ideal, 58
impulse response, 60
window functions, 61, 64

Bilinear transform, 69–71
Butterworth lowpass, 83
conformal mapping, 70
frequency warping due to, 71
in IIR filter design, 70
mapping by, 72
one-to-one reversible relationship, 70
use of, 69–70

Blackman window, 60, 61, 63
Blind speeds, 331–34

of ARSR, 331, 333
problems, 331
stagger ratio and, 332

Butterfly operation
coding, 97
defined, 96
illustrated, 97

Butterworth lowpass filter, 72–74
analog transfer function, 83
bilinear transform, 83
complex roots, 74
cutoff frequency, 83
design, 73
frequency response, 72
IIR design procedure, 83–84
illustrated, 84
order, 72
pole locations, 73, 74
polynomials, 74
prewarp analog frequency, 83
See also lowpass filters

C

Cartesian coordinate system (CCS), 202
air defense radar, 223–33
error covariance matrix, 226, 227
LOS conversion to, 209
LOS coordinate measurements and,  

228
measurement conversion to, 209
state equation, 223
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Cascaded amplifiers, 29
Cauchy-Schwarz inequality, 253
Cell-averaged CFAR (CA-CFAR), 281–89

circuits, 283
defined, 284
loss versus number of reference cells, 287
multiple targets inside reference window, 

287–88
noise and threshold level, 288
probability of detection, 286
processing, 283
processing with guard cells, 289
threshold multiplication factor, 284
threshold multiplier, 285
See also constant false alarm rate (CFAR)

Chebyshev linear array, 148
Chebyshev lowpass, 74–80

analog transfer function, 85
complex roots, 77
design, 78
frequency response, 75, 85
IIR filter design, 84–85
illustrated, 86
inverse, 78–80
Nth order, 75
pole locations, 76
polynomial definition, 75
polynomial factors, 77
See also Lowpass filters

Chebyshev polynomials, 268
illustrated, 271
ith root, 271
recurrence formula, 271
weights, 272

Chebyshev window, pulse compression, 116
Chi-squared noise, 25, 35–36

with four degrees of freedom, 183
probability density function, 36, 181
probability density function degree of 

freedom, 182
random variables, 35–36

Circular aperture arrays, 149–53
by deleting elements, 150
effective field strength, 150
elementary excitation amplitude 

distribution, 150

element excitation distribution, 163
element phase, 151
by eliminating elements from square 

grid points, 162
field strength, 150
radiating elements, 149
radiation pattern computation, 152
as symmetric, 152
Taylor-Taylor, 152
uniform-uniform, 151
See also array antennas

Clutter
distributions, 346
lognormal, 25, 40–41
mean velocity of, 341, 342
power, 282
power spectrum, 336, 340
spectrum, 335, 337
standard deviation of, 339
stationary, 340, 344
types of, 25
Weibull, 25, 42–44

Clutter attenuation (CA), 334–36
clutter power spectrum and, 336
defined, 334
for double-delay canceller, 338
evaluation, 336
obtaining, 335

Clutter maps, 349
Coefficient of dispersion (CD)

defined, 258
illustrated, 298
minimizing, 259, 263
MMSE-CFAR, 314, 315
obtaining, 259, 261
ratio, 263

Coherent linear frequency modulation 
(CLFM), 113, 114

principal cuts, 130
time-bandwidth product, 113

COMBINAT.CPP, 351
Consistency test, 23
Constant false alarm rate (CFAR)

cell-averaged (CA-CFAR), 281–89
greatest-of (GO-CFAR), 288
maximum likelihood (ML-CFAR), 305–13
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Constant false alarm rate (CFAR) (cont.)
minimum mean square error (MMSE-

CFAR), 313–19
order-statistics (OS-CFAR), 289–95
processing, 281–320
smallest-of (SO-CFAR), 288
Weber-Haykin (WH-CFAR), 299–305
Weibull clutter, 295–99

Continuous distribution, 216
Costas-coded signals, 131–39

ambiguity function, 132
ambiguity surface, 139
auto-response function, 135, 137
contour map, 140
cross-ambiguity peaks, 137
cross-response function, 136, 137
gain, 137
illustrated, 133
indication, 132
response function, 134
transmitted signal, 133
in underwater target detection, 138
zero-delay Doppler cut, 135, 138
zero-Doppler delay cut, 135, 138

Cramer’s rule, 1, 2

D

D-1, 21
DBL_SUM.CPP, 354
Decomposed matrices, 24
Delay-line cancellers

attenuation notch, 342
blind speeds, 331–34
canonical configuration, 329
double, 323, 326, 327, 328
frequency response, 326
nonrecursive, 323–27
recursive, 327–31
single, 323, 326, 327, 328
stagger timing diagram, 332
triple, 324, 326, 329, 330
triple-stagger, 333, 334
waveform and response, 325

Detection range
computation of, 193

maximum, 194
See also target detection

Diode conductance characteristic, 167
Diode detectors

best characteristics, 167
best law, 168
linear, 168, 169
practical implementation, 168
square-law, 168
for target detection, 167

Dipole radiator, 144
Discrete distribution, 216
Discrete Fourier transform (DFT), 98
Disturbance, uniformly distributed, 203
Doppler frequency, 125
Doppler shift, 346
Double delay-line cancellers, 323, 326, 

327, 328
ASR, 342
clutter attenuation, 338
improvement factor, 338, 339
nonrecursive, 323, 326
recursive, 327, 328
See also delay-line cancellers

E

Elementary radiator, 143
Elevation errors

air defense radar (CCS), 232
Elevation errors (cont.)

air defense radar (LOS coordinates), 238
Kalman filter without matrix inversion, 

243
Elliptical aperture arrays, 153–54

effective field strength, 154
by eliminating elements from 

rectangular grid points, 162
radiating elements, 153
separable excitation distribution 

functions, 153
Taylor-Taylor, 155
uniform-uniform, 154
See also array antennas

Elliptic bandpass filter, 87–89
frequency band transformation, 87
illustrated, 88
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procedure, 88–89
See also bandpass filters

Elliptic lowpass filter, 80–82
analog transfer function, 85, 86
defined, 80
design theory, 81
IIR filter design, 85–87
illustrated, 80, 87
See also lowpass filters

Error covariance matrix, 208
in CCS, 226, 227
estimated, 218, 239
Kalman filter without matrix inversion, 

238
measurement, 218, 234
predicted, 218
state, 235

Exponential noise, 25, 38–40
defined, 38
illustrated, 40
random variables, 39

Exponential probability density function, 39
false alarm probability, 256–60
illustrated, 282
similarity function and, 257

Exponential probability paper, 50
Extended Simpson’s rule, 266–67

F

Factorization, 5–15
LDLT, 8–10
LLT, 7–8
LU, 5–6
QR, 11–15
UDUT, 10–11

False alarm probability, 169–79
defined, 170
exponential density function, 256–60
Gaussian probability density function, 

260–65
ML-CFAR, 308
OS-CFAR, 289
Q-function, 257
threshold, 260

Far-field patterns, 146

Fast Fourier transform (FFT), 25
applications, 107–22
cosine function, 102
decimation-in-frequency, 97–98, 100
decimation -in-time, 96, 100
DFT comparison, 98
of mismatched signals, 120
sine function, 104
of unbalanced signals, 120

FCTRIAL.CPP, 351
FFT_DIF

demonstration, 101–4
illustrated, 100
sampling time interval, 104
See also fast Fourier transform (FFT)

FFT_DIT
demonstration, 101–4
illustrated, 100
sampling time interval, 104
See also fast Fourier transform (FFT)

FFT-IFFT algorithm
amplitude unbalance and phase 

mismatch, 118–22
detection of signal buried in noise,  

110
filtering in frequency domain, 107, 108, 

109–10
interpolation of data, 110
pulse compression, 110–18

Filtering in frequency domain, 107, 108, 
109–10

Finite impulse response (FIR) filters, 25, 
56–68

bandpass, 58
bandstop, 58
coefficient determination, 56
defined, 56
highpass, 57
IIR filter comparison, 90
implementation, 56
impulse responses, 58, 59, 60
Kaiser, 65–68
latent shortcoming, 64
lowpass, 56–57
window functions, 59–64
See also FFT-IFFT algorithm
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Finite word length, 199
Forward substitution, 4
Fourier transform

of finite sequence, 95–96
transform pair, 101
See also fast Fourier transform (FFT)

Frank polyphase code, 126
Frequency band transformation, 82–83

G

GAM_FUNC.CPP, 354
Gamma function, incomplete, 174, 177, 

189
Gauss-Chebyshev quadrature, 271–72
Gauss-Hermite quadrature, 274–75
Gaussian elimination

with backsubstitution, 2–4
with forward substitution, 4

Gaussian noise, 25, 28–30
detected by envelope detector, 31
generation, 28–30
illustrated, 30
in-phase component, 28, 30
narrowband, 38, 281
noise power, 29
quadrature phase component, 28
unit uniform random variables in, 27, 28

Gaussian (normal) probability paper, 
49–51

Gaussian probability density function
CD, 262, 263
false alarm probability, 260–65
illustrated, 282
Q-function threshold computation, 260
shape, 295
similarity function and, 262
threshold level versus false-alarm 

probability, 264
variance, 261, 262–63
weighting function, 262
zero mean, 261

Gaussian quadrature, 267–68
Gauss-Laguerre quadrature, 272–74
Gauss-Legendre quadrature, 268–70

defined, 268
Legendre polynomials, 269, 270

Gauss-Markov process, 93
Gram-Charlier series, 190
Gram-Schmidt method, 12–15
Greatest-of CFAR (GO-CFAR), 288

H

Hamming window, 60, 61, 62
power loss, 117
pulse compression, 116

Hermite polynomials, 268
abscissa, 275
illustrated, 275
recurrence formulas, 274
weights, 274, 275

Highpass filters, 57, 59
ideal, 57
impulse responses, 59
window functions, 61, 63

Hit-or-miss method, 247–51
digression to error function, 250–51
examples, 249
on Gaussian pdf, 250
results, 255
unit uniform random variables, 249
See also Monte Carlo method

I

Identification friend or foe (IFF), 215
Importance sampling method, 253–55

applications, 256
Lagrange multiplier, 254
probability density function, 253
results, 255
See also Monte Carlo method

Improvement factor
clutter power spectrum and, 336
defined, 334
for double-delay canceller, 338, 339
limitation on, 347

INC_GAMM.CPP, 354
Incomplete Gamma function, 174, 177, 

189
Infinite impulse response (IIR) filters, 25, 

68–94
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analog filters and, 71–83
bilinear transform, 69–71
Butterworth lowpass, 83–84
Chebyshev lowpass, 84–85
elliptic bandpass, 87–89
elliptic lowpass, 85–87
FIR filters and, 90
mapping of differentials, 70
nonlinearity and, 89

INSERT.CPP, 351
Integration

extended Simpson’s rule, 266–67
of functions, 265–75
Gauss-Chebyshev quadrature, 271–72
Gauss-Hermite quadrature, 274–75
Gaussian quadrature, 267–68
Gauss-Laguerre quadrature, 272–74
Gauss-Legendre quadrature, 268–70
numerical, 265
Simpson’s rule, 266
trapezoid rule, 265–66

INTER-PO.CPP, 110
Interpolated input signal, 110, 111
Inverse Chebyshev lowpass, 78–80

defined, 78
illustrated, 79
pole locations, 79–80
transfer function, 78–79

Inverse fast Fourier transform (IFFT), 25, 
106–7

applications, 107–22
decimation-in-frequency, 107
decimation-in-time, 106
defined, 106
See also FFT-IFFT algorithm

Isotropic point sources, 145
ISUB0(X).CPP, 354

J

Jacobian transformation, 210, 227

K

Kaiser filters, 65–68
defined, 65
design specifications, 66

lowpass, 68
numerical example, 67–68
transition width, 66–67
window illustration, 65

Kalman filter, 199–245
air defense radar (CCS), 223–33
air defense radar (LOS coordinates), 

233–38
ATC radar, 214–23
defined, 199
equation derivation, 202–11
equations, 202–11
equation summary, 208–9
error covariance matrix, 7, 226, 227, 

234, 235, 280, 281
finite word length and, 199
flow diagram, 207, 222, 233
implementation, 199
Jacobian transformation, 210
passenger airliner, 211–14
as recursive filter, 200
state equation, 203
transformation equations, 209–10

Kalman filter without matrix inversion, 
238–44

azimuth errors, 243
data files, 243–44
elevation errors, 243
error covariance matrix, 238
estimated error covariance matrix, 239
gain matrix, 239–40, 241
modified measurement error matrix, 244
range errors, 242
square-root algorithms, 238
target state equation, 244
UDUT factorization, 239, 241

K!_APPRX.CPP, 351
K!_EXACT.CPP, 351
K(m)_ELP.CPP, 354
K(m)_JAC.CPP, 354

L

L-1
1, 16–17

L-1
x, 17–18
inverse computation, 17–18
roundoff error, 18
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Lagrange multiplier, 254
Laguerre polynomials, 268

abscissas and weights computation, 273
Laguerre polynomials (cont.)

illustrated, 273
recurrence formula, 272–73

LDLT factorization, 8–10
defined, 9
determinant, 10
general, 10

Legendre polynomials, 267–68
abscissa and weight, 269, 270
illustrated, 270
recurrence formula, 269

Linear arrays, 143–49
beamwidth, 147
Chebyshev, 148
construction, 143
with flaredhorn, 149
gain, 147, 149
horizontal, 149
radiation patterns, 146
sidelobe level, 147, 148
Taylor, 148
uniform, 146, 147
See also array antennas

Linear detectors, 168, 169
multipliers for, 309
square-law detector comparison, 169

Linear frequency modulation (LFM), 
128–31

ambiguity function, 128–31
ambiguity surface, 131
coherent, 113, 114, 130
magnitude of response function, 129
response function, 129

LLT factorization, 7–8
Lognormal clutter, 25, 40–41

defined, 40
illustrated, 41
probability density function, 40, 41
random variables, 41
See also Clutter

Lowpass filters
Butterworth, 72–74, 83–84
Chebyshev, 74–80, 84–85
coefficients, 57

elliptic, 80–82, 85–87
ideal, 56–57
impulse response, 57
impulse response illustration, 59
Kaiser, 68
window functions, 61, 62, 63
See also finite impulse response (FIR) 

filters
LU factorization, 5–6

Crout algorithm, 6
Doolittle algorithm, 6

M

Marcum’s Q-function, 35
Marcum’s target model

Albersheim’s empirical approximation, 
179

characteristic function, 172–73
closed-form approximation, 179
defined, 169
false alarm probability, 169–79
Gamma function, 174
infinite summation, 174
multiple-pulse integration, 176
nonfluctuating, 179
for N pulses, 174
pd versus SNR, 178
probability density function for multiple 

pulses, 173
probability of detection, 169–79
residue theorem, 173
SNR, 176
summation indices, 174
threshold level, 171

Matrix factorization, 5–15
LDLT, 8–10
LLT, 7–8
LU, 5–6
QR, 11–15
UDUT, 10–11

Matrix inversion, 15–22
D-1, 21
Kalman filter without, 238–44
L-1

1, 16–17
L-1

x, 17–18
Q-1, 21
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square, 23, 24
triangle, 23, 24
U-1

1, 19
U-1

x, 20
vector operations, 21–22

Matrix operations, 22–23
multiplications, 23

Matrix operations (cont.)
nonmember functions, 23
unary operations, 22–23

Maximum directivity, 149
Maximum likelihood CFAR (ML-CFAR), 

305–13
analysis, 307
defined, 305–6
false alarm probability, 308
likelihood function of samples, 306
maximum likelihood estimate, 306
Pd versus SCR, 313
probability density function, 310, 311
processing illustration, 307
uncensored, 312, 313
See also constant false alarm rate

MAX_MIM.CPP, 354
Minimum mean square error CFAR 

(MMSE-CFAR), 313–19
coefficient of dispersion, 314, 315
MMSE estimate of regressive 

parameters, 316
processing illustration, 318
scatter plot and regression line, 317
Weibull clutter and threshold level, 319
Weibull distribution, 316
in Weibull environment, 318
See also constant false alarm rate

Minimum mean square estimate (MMSE), 
15, 16

Mixed congruential method, 27
Modified Cholesky. See LDLT factorization
Monopulse arrays, 154–59

basic structure, 156
circular, Taylor, 158
crossover angle, 158
defined, 154
difference channel response, 157
elliptic, Hamming, 159
linear, Chebyshev, 157

principle, 155
sum channel, 155
See also array antennas

Monte Carlo method, 247–79
defined, 247
hit-or-miss method, 247–51
importance sampling method, 253–55
observations, 255–56
ordered sample method, 251–52
replications, 263
sample mean method, 252–53
technique classification, 247

Moving target indicator (MTI), 323–54
A/D converter quantization noise, 

348–49
for airborne radar, 345
blind speeds, 331–34
clutter attenuation, 334–46
clutter map, 349
frequency response, 323, 326
improvement factor, 334–46
limitations due to system instability, 

346–48
nonrecursive delay-line canceller, 323–

27
recursive delay-line canceller, 327–31
staggered PRF, 331–34

Myer and Mayer exact equation, 189, 191

N

Narrowband Gaussian noise, 38, 281
Newtonian dynamics, 231
Newton-Raphson method, 177
Noise

A/D converter quantization, 348–49
chi-squared, 25, 35–36
exponential, 25, 38–40
power, 282
random acceleration, 225
Rayleigh, 25, 30–31
signal buried in, detection of, 110
types of, 25
white Gaussian, 25, 27, 28–30

Noncoherent recirculating accumulator. 
See pulse integrator

Nonrecursive delay-line canceller, 323–27
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Nonrecursive filters
illustrated, 54
output sequence, 53
transfer function, 53

Numerical integration, 265

O

Ordered sample method, 251–52
Order-statistics CFAR (OS-CFAR), 289–95

clutter-edge response, 294
detection probability, 293
false alarm probability, 289, 300

Order-statistics CFAR (OS-CFAR) (cont.)
loss, 292
loss versus number of reference cells, 293
probability density function, 290
processing illustration, 290
relative merit, 292
See also constant false alarm rate (CFAR)

Orthonormal polynomials, 274

P

Parceval’s theorem, 108
Passenger airliner, 211–14

acceleration perturbation distribution, 
203

actual path, 211
data files, 211
estimated and predicated azimuth errors, 

212
estimated and predicted range errors, 212
ideal path, 211
Kalman filter flow diagram, 207
measurement data, 211
position in CCS, 202
position observation, 203
postflight analysis, 211–14
See also Kalman filter

PERMUTAT.CPP, 351
Pfa_EXP.CPP, 260
Phased array antennas, 154
Phase delay, 143
Phase mismatch, 118–22

correction, 119
corrections through FFT, 122

FFT, 120
in Fourier transform pair, 122–23

Postulate of pdf, 44–49
Power spectral density, 336
PRIME.CPP, 351
PRN generation

of arbitrary population, 27–28
mixed congruential method, 27
See also pseudorandom number (PRN) 

sequences
Probability density functions (pdfs)

chi-squared noise, 36, 181
exponential noise, 39
importance sampling method, 253
lognormal, 40, 41
for multiple pulses, 173
postulate from sampled data, 44–49
of range acceleration, 216
Rayleigh, 169
Rician, 31–32
square-law detector, 38
unit uniform variables, 27
Weibull, 42, 43, 44

Program routines, miscellaneous,  
351–54

Pseudorandom number (PRN) sequences
corrected, 26
defined, 25
total population, 27
See also PRN generation

Pulse amplitude jitter, 348
Pulse compression, 110–18

CLFM, 113, 114
FFT-conjugation-IFFT, 113
illustrated, 116
in-phase waveform, 114
linear FM pulse and, 112
quadrature-phase waveform, 115
scheme, 112
spectrum magnitude, 115

Pulse integrator
defined, 165
illustrated, 166

Pulse-pair-processing (PPP), 342
Pulse-to-pulse timing jitter, 348
Pulsewidth jitter, 348
Pyramidal horns, 145
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Q

Q-1, 21
Q-function, 256, 257

Marcum, 35
probability of false alarm, 257
threshold computation, 260

QR factorization, 11–15
column vector X computation, 14–15
defined, 11–12
Gram-Schmidt method, 12–15
methods, 12
MMSE, 15, 16

Quadrature
defined, 265
Gauss-Chebyshev, 271–72

Quadrature (cont.)
Gauss-Hermite, 274–75
Gaussian, 267–68
Gauss-Laguerre, 272–74
Gauss-Legendre, 268–71
in three dimensions, 278–79
in two dimensions, 275–78

Quantization noise, 92, 348–49

R

Radix-2 scheme, 101
Random acceleration noise, 225
Random variables

chi-squared, 35–36
exponential, 39
lognormal, 41
Rayleigh, 30, 37, 167
Rician, 31–35, 37
unit uniform, 25–28
Weibull, 43, 296, 298

Range errors
air defense radar (CCS), 231
air defense radar (LOS coordinates), 237
ATC radar, 221
Kalman filter without matrix inversion, 

242
passenger airliner, 212

Range measurement error, 204, 217
Rank-ordered clutters, 301
Rayleigh noise, 25, 30–31

distribution characteristics, 30–31

illustrated, 31
random variables, 30, 167

Rayleigh probability density function
defined, 169–70
shape, 295

Rectangular pulse
ambiguity function, 126
contour map, 128
response function, 126
response function magnitude, 126

Rectangular waveguides
radiating slots, 144
square waveguides replacing, 145

Rectangular window, 60, 61, 117
Recursive delay-line cancellers, 327–31

canonical configuration, 329
double, 327, 328
single, 327, 328
triple, 329, 330
See also delay-line cancellers

Recursive filters
bilinear transform, 69–71
canonical form, 55
design, 69
illustrated, 54
Kalman filter as, 200
output, 68
stability, 69
structure, 69
transfer function, 53

Rician distribution, 33
Rician probability density function, 31–32

defined, 31–32
illustrated, 32
with SNR values, 33

Rician random variables, 31–35
ROOT_F1.CPP, 351–53
ROOT_F2.CPP, 353
ROOT_F3.CPP, 353–54
Round-off error, 207

S

Sample mean method, 252–53
SEARCH_B.CPP, 351
SEARCH_L.CPP, 351
Signal-to-clutter ratio (SCR), 342
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Signal-to-interference ratio (SIR), 342, 344
Signal-to-noise ratio (SNR)

Albersheim’s equation, 179
Marcum’s target model, 176, 178
in power, 93
Rician pdf with, 33
Swerling target model 1, 186
Swerling target model 2, 188
Swerling target model 3, 190
Swerling target model 4, 191

SIGNOISE.CPP, 110
Similarity function, 257, 258, 261, 262
Simpson’s rule, 266
Simultaneous linear equations, 1–4

Gaussian elimination (backsubstitution), 
2–4

Gaussian elimination (forward 
substitution), 4

Simultaneous linear equations (cont.)
solving by Cramer’s rule, 1–2

Single delay-line cancellers, 323, 326, 327, 328
Smallest-of CFAR (SO-CFAR), 288
SORT_BUB.CPP, 351
SORT_INX.CPP, 351
SORT_SEL.CPP, 351
Spectral leakage, 104–6

LEAKAGE1.CPP, 105
LEAKAGE2.CPP, 105
LEAKAGE3.CPP, 105, 106

Spectrum broadening, 345
Square-law detectors, 36–38, 168

assumption, 38
linear comparison, 37
linear detector comparison, 169
multipliers for, 309
pdf of noise at output, 176
probability density function, 38
Weibull clutter after, 297–99

Square matrix inversion, 23, 24
Square-root algorithms, 238
Square waveguides, open-ended, 145
Stagger timing diagram, 332
Stalo and Coho frequency shift, 347
Swerling target model 1, 183–86

characteristic function, 183
incomplete Gamma functions, 185
Pd versus SNR, 186

probability density function, 183
rate of fluctuation, 180
target cross section pdf, 180

Swerling target model 2, 186–87
characteristic function, 186–87
Pd versus SNR, 188
probability density function, 183, 187
rate of fluctuation, 180
target cross-section pdf, 180

Swerling target model 3, 187–90
characteristic function, 187–88
exponential function, 189
hypergeometric function, 189
incomplete Gamma functions, 189
Pd versus SNR, 190
probability density function, 183, 188
probability of detection, 189
rate of fluctuation, 180
target cross section pdf, 180

Swerling target model 4, 190–91
characteristic function, 190
detection probability, 191
Edgeworth series, 190
Gram-Charlier series, 190
Pd versus SNR, 191
probability density function, 183
rate of fluctuation, 180
target cross section pdf, 180

System instabilities
limitations due to, 346–48
sources, 347–48
stability requirements, 346

T

TACCAR, 349
Target detection, 165–97

characteristic functions, 194
introduction, 165–69
Marcum’s model, 169–79
probability, 169–91
probability table, 195
range computation, 193
summary, 192
Swerling models, 180–91

Taylor distributions, 163
Taylor linear array, 148
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Taylor-Taylor circular aperture, 152
Taylor-Taylor elliptical array, 155
Taylor window, 116
Test of singularity, 15
Three-dimensional quadrature, 278–79
Threshold multiplication factor, 284
Threshold multiplier, 285
Time-delay equalizer, 89
Time-frequency assignment matrix, 132
Time-frequency correlation function, 125
Transmitter frequency shift, 347
Transmitter phase shift, 347
Trapezoid rule, 265–66
Triangle matrix inversion, 23
Triple delay-line cancellers, 323, 326, 329, 

330
Triple-stagger, 333, 334
Two-dimensional quadrature, 275–78

evaluation, 276
examples, 276–78
See also quadrature

U

U-1
1, 19

U-1
x, 20

UDUT factorization, 10–11
Uniform arrays, 146, 147
Uniformly distributed disturbance, 203
Uniform-uniform circular aperture, 151
Uniform-uniform elliptical array, 154
Unit uniform variables, 25–28

in Gaussian noise, 27
hit-or-miss method, 249
obtaining, 27
probability density function, 27

V

Vector-matrix equation, 23
Vector operations, 21–22
Von Hann window, 60, 61, 62

W

Weber-Haykin CFAR (WH-CFAR), 299–
305

censored, 304–5
defined, 299–300
indices, 302
minimum processing loss, 304
Pd, 305
uncensored, 305, 312
See also constant false alarm rate

Weibull clutter, 25, 42–44
after square-law detector, 297–99
CFAR processing, 295–99
output distribution, 43, 44
random variables, 43, 296, 298
rank-ordered, 301
threshold level and, 319

Weibull probability density function, 42, 
43, 295–97

changing, 44
characteristics, 297
obtaining, 296
shape parameter, 296

Weibull probability paper, 51
Weighting function, 262
White Gaussian noise. See Gaussian noise
Window functions

Blackman, 60, 61, 63
Chebyshev, 116
generation, 61
Hamming, 60, 61, 62, 116
illustrated, 61
rectangular, 60, 61
spectral leakage and, 104–6
Taylor, 116
types of, 60
von Hann, 60, 61, 62

Z

Zero-delay Doppler cut, 135, 138
Zero-Doppler delay cut, 135, 138




