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Preface

Mechanical Engineering Principles aims to
broaden the reader’s knowledge of the basic
principles that are fundamental to mechanical
engineering design and the operation of mechanical
systems.

Modern engineering systems and products still
rely upon static and dynamic principles to make
them work. Even systems that appear to be entirely
electronic have a physical presence governed by the
principles of statics.

For clarity, the text is divided into three sections,
these being:

Part 1 Statics and strength of materials
Part 2 Dynamics
Part 3 Heat transfer and fluid mechanics

Mechanical Engineering Principles covers the
following syllabuses:

(i) National Certificate/Diploma courses in
Mechanical Engineering

(ii) Mechanical Engineering Principles (Ad-
vanced GNVQ Unit 8)

(iii) Further Mechanical Engineering Principles
(Advanced GNVQ Unit 12)

(iv) Any introductory/access/foundation course
involving Mechanical Engineering Principles
at University, and Colleges of Further and
Higher education.

Although pre-requisites for the modules covered
in this book include GCSE/GNVQ intermediate in

Mathematics and Science, each topic considered in
the text is presented in a way that assumes that
the reader has little previous knowledge of that
topic.

Mechanical Engineering Principles contains over
280 worked problems, followed by over 470 fur-
ther problems (all with answers). The further
problems are contained within some 130 Exercises;
each Exercise follows on directly from the rele-
vant section of work, every few pages. In addition,
the text contains 260 multiple-choice questions (all
with answers), and 260 short answer questions,
the answers for which can be determined from the
preceding material in that particular chapter. Where
at all possible, the problems mirror practical situ-
ations found in mechanical engineering. 330 line
diagrams enhance the understanding of the theory.

At regular intervals throughout the text are some
7 Assignments to check understanding. For exam-
ple, Assignment 1 covers material contained in
Chapters 1 to 4, Assignment 2 covers the material
in Chapters 5 to 7, and so on. No answers are given
for the questions in the assignments, but a lecturer’s
guide has been produced giving full solutions and
suggested marking scheme. The guide is offered free
to those staff that adopt the text for their course.

At the end of the text, a list of relevant formulae
is included for easy reference.

‘Learning by Example’ is at the heart of
Mechanical Engineering Principles.

John Bird and Carl Ross
University of Portsmouth



Part 1 Statics and strength of
materials

1

The effects of forces on materials

At the end of this chapter you should be
able to:

• define force and state its unit

• recognise a tensile force and state relevant
practical examples

• recognise a compressive force and state
relevant practical examples

• recognise a shear force and state relevant
practical examples

• define stress and state its unit

• calculate stress σ from σ = F

A

• define strain

• calculate strain ε from ε = x

L

• define elasticity, plasticity, limit of propor-
tionality and elastic limit

• state Hooke’s law

• define Young’s modulus of elasticity E
and stiffness

• appreciate typical values for E

• calculate E from E = σ

ε

• perform calculations using Hooke’s law

• plot a load/extension graph from given
data

• define ductility, brittleness and malleabil-
ity, with examples of each

• define rigidity or shear modulus

• understand thermal stresses and strains

• calculates stresses in compound bars

1.1 Introduction

A force exerted on a body can cause a change in
either the shape or the motion of the body. The unit
of force is the newton, N.

No solid body is perfectly rigid and when forces
are applied to it, changes in dimensions occur. Such
changes are not always perceptible to the human
eye since they are so small. For example, the span
of a bridge will sag under the weight of a vehicle
and a spanner will bend slightly when tightening
a nut. It is important for engineers and designers to
appreciate the effects of forces on materials, together
with their mechanical properties.

The three main types of mechanical force that can
act on a body are: (i) tensile, (ii) compressive, and
(iii) shear
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1.2 Tensile force

Tension is a force that tends to stretch a material,
as shown in Figure 1.1. For example,

(i) the rope or cable of a crane carrying a load is
in tension

(ii) rubber bands, when stretched, are in tension

Force Force

Figure 1.1

(iii) when a nut is tightened, a bolt is under tension

A tensile force, i.e. one producing tension, increases
the length of the material on which it acts.

1.3 Compressive force

Compression is a force that tends to squeeze
or crush a material, as shown in Figure 1.2. For
example,

Force Force

Figure 1.2

(i) a pillar supporting a bridge is in compression

(ii) the sole of a shoe is in compression

(iii) the jib of a crane is in compression

A compressive force, i.e. one producing compres-
sion, will decrease the length of the material on
which it acts.

1.4 Shear force

Shear is a force that tends to slide one face of the
material over an adjacent face. For example,

(i) a rivet holding two plates together is in
shear if a tensile force is applied between the
plates — as shown in Figure 1.3

Force

Rivet

Force

Figure 1.3

(ii) a guillotine cutting sheet metal, or garden
shears, each provide a shear force

(iii) a horizontal beam is subject to shear force

(iv) transmission joints on cars are subject to shear
forces

A shear force can cause a material to bend, slide or
twist.

Problem 1. Figure 1.4(a) represents a crane
and Figure 1.4(b) a transmission joint. State
the types of forces acting, labelled A to F .

Load

Force

B

A

C D E

F

(a) (b)

Figure 1.4

(a) For the crane, A, a supporting member, is
in compression, B, a horizontal beam, is in
shear, and C, a rope, is in tension.

(b) For the transmission joint, parts D and F are
in tension, and E, the rivet or bolt, is in
shear.

1.5 Stress

Forces acting on a material cause a change in dimen-
sions and the material is said to be in a state of
stress. Stress is the ratio of the applied force F to
cross-sectional area A of the material. The symbol
used for tensile and compressive stress is σ (Greek
letter sigma). The unit of stress is the Pascal, Pa,

where 1 Pa = 1 N/m2. Hence

σ =
F

A
Pa
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where F is the force in Newton’s and A is the
cross-sectional area in square metres. For tensile
and compressive forces, the cross-sectional area is
that which is at right angles to the direction of the
force. For a shear force the shear stress is equal
to F/A, where the cross-sectional area A is that
which is parallel to the direction of the force. The
symbol used for shear stress is the Greek letter
tau, τ .

Problem 2. A rectangular bar having a

cross-sectional area of 75 mm2 has a tensile
force of 15 kN applied to it. Determine the
stress in the bar.

Cross-sectional area A = 75 mm2 = 75 × 10−6 m2

and force F = 15 kN = 15 × 103 N

Stress in bar, σ = F

A
= 15 × 103 N

75 × 10−6 m2

= 0.2 × 109 Pa = 200 MPa

Problem 3. A circular wire has a tensile
force of 60.0 N applied to it and this force
produces a stress of 3.06 MPa in the wire.
Determine the diameter of the wire.

Force F = 60.0 N and
stress σ = 3.06 MPa = 3.06 × 106 Pa

Since σ = F

A

then area, A = F

σ
= 60.0 N

3.06 × 106 Pa

= 19.61 × 10−6 m2 = 19.61 mm2

Cross-sectional area A = πd2

4
;

hence 19.61 = πd2

4
, from which,

d2 = 4 × 19.61

π
from which, d =

√

(

4 × 19.61

π

)

i.e. diameter of wire = 5.0 mm

Now try the following exercise

Exercise 1 Further problems on stress

1. A rectangular bar having a cross-sectional

area of 80 mm2 has a tensile force of
20 kN applied to it. Determine the stress
in the bar. [250 MPa]

2. A circular cable has a tensile force of
1 kN applied to it and the force produces
a stress of 7.8 MPa in the cable. Calculate
the diameter of the cable. [12.78 mm]

3. A square-sectioned support of side 12 mm
is loaded with a compressive force of
10 kN. Determine the compressive stress
in the support. [69.44 MPa]

4. A bolt having a diameter of 5 mm is
loaded so that the shear stress in it is
120 MPa. Determine the value of the
shear force on the bolt. [2.356 kN]

5. A split pin requires a force of 400 N to
shear it. The maximum shear stress before
shear occurs is 120 MPa. Determine the
minimum diameter of the pin.

[2.06 mm]

6. A tube of outside diameter 60 mm and
inside diameter 40 mm is subjected to a
load of 60 kN. Determine the stress in the
tube. [38.2 MPa]

1.6 Strain

The fractional change in a dimension of a material
produced by a force is called the strain. For a tensile
or compressive force, strain is the ratio of the change
of length to the original length. The symbol used for
strain is ε (Greek epsilon). For a material of length
L metres which changes in length by an amount x
metres when subjected to stress,

ε =
x

L

Strain is dimension-less and is often expressed as a
percentage, i.e.

percentage strain = x

L
× 100
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x

L

Reaction
force

γ

Applied
force

Figure 1.5

For a shear force, strain is denoted by the sym-
bol γ (Greek letter gamma) and, with reference to
Figure 1.5, is given by:

γ =
x

L

Problem 4. A bar 1.60 m long contracts
axially by 0.1 mm when a compressive load
is applied to it. Determine the strain and the
percentage strain.

Strain ε = contraction

original length
= 0.1 mm

1.60 × 103 mm

= 0.1

1600
= 0.0000625

Percentage strain = 0.0000625×100 = 0.00625%

Problem 5. A wire of length 2.50 m has a
percentage strain of 0.012% when loaded
with a tensile force. Determine the extension
of the wire.

Original length of wire = 2.50 m = 2500 mm

and strain = 0.012

100
= 0.00012

Strain ε = extension x

original length L

hence, extension x = εL = (0.00012)(2500)

= 0.30 mm

Problem 6. (a) A rectangular metal bar has
a width of 10 mm and can support a
maximum compressive stress of 20 MPa;

determine the minimum breadth of the bar
when loaded with a force of 3 kN.

(b) If the bar in (a) is 2 m long and
decreases in length by 0.25 mm when the
force is applied, determine the strain and the
percentage strain.

(a) Since stress, σ = force F

area A

then, area, A = F

σ
= 3000 N

20 × 106 Pa

= 150 × 10−6 m2

= 150 mm2

Cross-sectional area = width × breadth, hence

breadth = area

width
= 150

10
= 15 mm

(b) Strain, ε = contraction

original length

= 0.25

2000
= 0.000125

Percentage strain = 0.000125 × 100

= 0.0125%

Problem 7. A pipe has an outside diameter
of 25 mm, an inside diameter of 15 mm and
length 0.40 m and it supports a compressive
load of 40 kN. The pipe shortens by 0.5 mm
when the load is applied. Determine (a) the
compressive stress, (b) the compressive
strain in the pipe when supporting this load.

Compressive force F = 40 kN = 40000 N,

and cross-sectional area A = π

4
(D2 − d2),

where D = outside diameter = 25 mm and
d = inside diameter = 15 mm. Hence

A = π

4
(252 − 152) mm2

= π

4
(252 − 152)× 10−6 m2

= 3.142 × 10−4 m2
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(a) Compressive stress,

σ = F

A
= 40000 N

3.142 × 10−4 m2

= 12.73 × 107 Pa = 127.3 MPa

(b) Contraction of pipe when loaded,
x = 0.5 mm = 0.0005 m, and original length
L = 0.40 m. Hence, compressive strain,

ε = x

L
= 0.0005

0.4

= 0.00125 (or 0.125%)

Problem 8. A circular hole of diameter
50 mm is to be punched out of a 2 mm thick
metal plate. The shear stress needed to cause
fracture is 500 MPa. Determine (a) the
minimum force to be applied to the punch,
and (b) the compressive stress in the punch
at this value.

(a) The area of metal to be sheared, A = perimeter
of hole × thickness of plate.

Perimeter of hole = πd = π(50 × 10−3)

= 0.1571 m.

Hence, shear area, A = 0.1571 × 2 × 10−3

= 3.142 × 10−4 m2

Since shear stress = force

area
,

shear force = shear stress × area

= (500 × 106 × 3.142 × 10−4) N

= 157.1 kN,

which is the minimum force to be applied to
the punch.

(b) Area of punch = πd2

4
= π(0.050)2

4

= 0.001963 m2

Compressive stress = force

area

= 157.1 × 103 N

0.001963 m2

= 8.003 × 107 Pa

= 80.03 MPa,

which is the compressive stress in the punch.

Problem 9. A rectangular block of plastic
material 500 mm long by 20 mm wide by
300 mm high has its lower face glued to a
bench and a force of 200 N is applied to the
upper face and in line with it. The upper face
moves 15 mm relative to the lower face.
Determine (a) the shear stress, and (b) the
shear strain in the upper face, assuming the
deformation is uniform.

(a) Shear stress, τ = force

area parallel to the force

Area of any face parallel to the force

= 500 mm × 20 mm

= (0.5 × 0.02) m2 = 0.01 m2

Hence, shear stress,

τ = 200 N

0.01 m2

= 20000 Pa or 20 kPa

(b) Shear strain, γ = x

L
(see side view

in Figure 1.6)

= 15

300
= 0.05 (or 5%)

x = 15 mm

L = 300 mm

Reaction
force

γ

Applied
force

500 mm

Figure 1.6
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Now try the following exercise

Exercise 2 Further problems on strain

1. A wire of length 4.5 m has a percentage
strain of 0.050% when loaded with a ten-
sile force. Determine the extension in the
wire. [2.25 mm]

2. A metal bar 2.5 m long extends by
0.05 mm when a tensile load is applied to
it. Determine (a) the strain, (b) the
percentage strain.

[(a) 0.00002 (b) 0.002%]

3. An 80 cm long bar contracts axially
by 0.2 mm when a compressive load is
applied to it. Determine the strain and the
percentage strain. [0.00025, 0.025%]

4. A pipe has an outside diameter of 20 mm,
an inside diameter of 10 mm and length
0.30 m and it supports a compressive
load of 50 kN. The pipe shortens by
0.6 mm when the load is applied.
Determine (a) the compressive stress,
(b) the compressive strain in the pipe
when supporting this load.

[(a) 212.2 MPa (b) 0.002 or 0.20%]

5. When a circular hole of diameter 40 mm
is punched out of a 1.5 mm thick metal
plate, the shear stress needed to cause
fracture is 100 MPa. Determine (a) the
minimum force to be applied to the
punch, and (b) the compressive stress in
the punch at this value.

[(a) 18.85 kN (b) 15.0 MPa]

6. A rectangular block of plastic material
400 mm long by 15 mm wide by 300 mm
high has its lower face fixed to a bench
and a force of 150 N is applied to the
upper face and in line with it. The upper
face moves 12 mm relative to the lower
face. Determine (a) the shear stress, and
(b) the shear strain in the upper face,
assuming the deformation is uniform.

[(a) 25 kPa (b) 0.04% or 4%]

1.7 Elasticity, limit of proportionality
and elastic limit

Elasticity is the ability of a material to return to its
original shape and size on the removal of external
forces.
Plasticity is the property of a material of being
permanently deformed by a force without breaking.
Thus if a material does not return to the original
shape, it is said to be plastic.

Within certain load limits, mild steel, copper,
polythene and rubber are examples of elastic mate-
rials; lead and plasticine are examples of plastic
materials.

If a tensile force applied to a uniform bar of mild
steel is gradually increased and the corresponding
extension of the bar is measured, then provided the
applied force is not too large, a graph depicting these
results is likely to be as shown in Figure 1.7. Since
the graph is a straight line, extension is directly
proportional to the applied force.

Extension x

F
o
rc

e
 F

Figure 1.7

The point on the graph where extension is no
longer proportional to the applied force is known as
the limit of proportionality. Just beyond this point
the material can behave in a non-linear elastic man-
ner, until the elastic limit is reached. If the applied
force is large, it is found that the material becomes
plastic and no longer returns to its original length
when the force is removed. The material is then
said to have passed its elastic limit and the result-
ing graph of force/extension is no longer a straight
line. Stress, σ = F/A, from Section 1.5, and since,
for a particular bar, area A can be considered as a
constant, then F ∝ σ .
Strain ε = x/L, from Section 1.6, and since for
a particular bar L is constant, then x ∝ ε. Hence
for stress applied to a material below the limit of
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proportionality a graph of stress/strain will be as
shown in Figure 1.8, and is a similar shape to the
force/extension graph of Figure 1.7.

Strain ε

S
tr

e
s
s

σ

Figure 1.8

1.8 Hooke’s law

Hooke’s law states:

Within the limit of proportionality, the extension of a
material is proportional to the applied force

It follows, from Section 1.7, that:

Within the limit of proportionality of a material, the
strain produced is directly proportional to the stress
producing it

Young’s modulus of elasticity

Within the limit of proportionality, stress α strain,
hence

stress = (a constant)× strain

This constant of proportionality is called Young’s
modulus of elasticity and is given the symbol E.
The value of E may be determined from the gradient
of the straight line portion of the stress/strain graph.
The dimensions of E are pascals (the same as for
stress, since strain is dimension-less).

E =
σ

ε
Pa

Some typical values for Young’s modulus of
elasticity, E, include: Aluminium alloy 70 GPa

(i.e. 70 × 109 Pa), brass 90 GPa, copper 96 GPa,

titanium alloy 110 GPa, diamond 1200 GPa, mild
steel 210 GPa, lead 18 GPa, tungsten 410 GPa, cast
iron 110 GPa, zinc 85 GPa, glass fibre 72 GPa,
carbon fibre 300 GPa.

Stiffness

A material having a large value of Young’s modulus
is said to have a high value of material stiffness,
where stiffness is defined as:

Stiffness =
force F

extension x

For example, mild steel is a much stiffer material
than lead.

Since E = σ

ε
, σ = F

A
and ε = x

L
,

then E =
F

A
x

L

= FL

Ax
=
(

F

x

)(

L

A

)

i.e. E = (stiffness) ×

(

L

A

)

Stiffness

(

= F

x

)

is also the gradient of the

force/extension graph, hence

E = (gradient of force/extension graph)

(

L

A

)

Since L and A for a particular specimen are con-
stant, the greater Young’s modulus the greater the
material stiffness.

Problem 10. A wire is stretched 2 mm by a
force of 250 N. Determine the force that
would stretch the wire 5 mm, assuming that
the limit of proportionality is not exceeded.

Hooke’s law states that extension x is proportional
to force F , provided that the limit of proportionality
is not exceeded, i.e. x ∝ F or x = kF where k is a
constant.
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When x = 2 mm, F = 250 N, thus 2 = k(250),

from which, constant k = 2

250
= 1

125

When x = 5 mm, then 5 = kF

i.e. 5 =
(

1

125

)

F

from which, force F = 5(125) = 625 N

Thus to stretch the wire 5 mm a force of 625 N
is required.

Problem 11. A force of 10 kN applied to a
component produces an extension of
0.1 mm. Determine (a) the force needed to
produce an extension of 0.12 mm, and
(b) the extension when the applied force is
6 kN, assuming in each case that the limit of
proportionality is not exceeded.

From Hooke’s law, extension x is proportional to
force F within the limit of proportionality, i.e.
x ∝ F or x = kF , where k is a constant. If a force
of 10 kN produces an extension of 0.1 mm, then

0.1 = k(10), from which, constant k = 0.1

10
= 0.01

(a) When an extension x = 0.12 mm, then
0.12 = k(F ), i.e. 0.12 = 0.01F , from which,

force F = 0.12

0.01
= 12 kN

(b) When force F = 6 kN, then
extension x = k(6) = (0.01)(6) = 0.06 mm

Problem 12. A copper rod of diameter
20 mm and length 2.0 m has a tensile force
of 5 kN applied to it. Determine (a) the
stress in the rod, (b) by how much the rod
extends when the load is applied. Take the
modulus of elasticity for copper as 96 GPa.

(a) Force F = 5 kN = 5000 N and

cross-sectional area A = πd2

4

= π (0.020)2

4

= 0.000314 m2

Stress, σ = F

A
= 5000 N

0.000314 m2

= 15.92 × 106 Pa = 15.92 MPa

(b) Since E = σ

ε
then

strain ε = σ

E
= 15.92 × 106 Pa

96 × 109 Pa
= 0.000166

Strain ε = x

L
, hence extension,

x = εL = (0.000166)(2.0) = 0.000332 m

i.e. extension of rod is 0.332 mm.

Problem 13. A bar of thickness 15 mm and
having a rectangular cross-section carries a
load of 120 kN. Determine the minimum
width of the bar to limit the maximum stress
to 200 MPa. The bar, which is 1.0 m long,
extends by 2.5 mm when carrying a load of
120 kN. Determine the modulus of elasticity
of the material of the bar.

Force, F = 120 kN = 120000 N and cross-
sectional area A = (15x)10−6 m2, where x is the
width of the rectangular bar in millimetres

Stress σ = F

A
, from which,

A = F

σ
= 120000 N

200 × 106 Pa
= 6 × 10−4 m2

= 6 × 102 mm2 = 600 mm2

Hence 600 = 15x, from which,

width of bar, x = 600

15
= 40 mm

and extension of bar = 2.5 mm = 0.0025 m

Strain ε = x

L
= 0.0025

1.0
= 0.0025

Modulus of elasticity, E = stress

strain
= 200 × 106

0.0025

= 80 × 109 = 80 GPa

Problem 14. An aluminium alloy rod has a
length of 200 mm and a diameter of 10 mm.
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When subjected to a compressive force the
length of the rod is 199.6 mm. Determine
(a) the stress in the rod when loaded, and
(b) the magnitude of the force.
Take the modulus of elasticity for aluminium
alloy as 70 GPa.

(a) Original length of rod, L = 200 mm, final
length of rod = 199.6 mm, hence contraction,
x = 0.4 mm. Thus, strain,

ε = x

L
= 0.4

200
= 0.002

Modulus of elasticity, E = stress σ

strain ε
, hence

stress, σ = Eε = 70 × 109 × 0.002

= 140 × 106 Pa = 140 MPa

(b) Since stress σ = force F

area A
, then force, F = σA

Cross-sectional area, A = πd2

4
= π(0.010)2

4

= 7.854 × 10−5 m2.

Hence, compressive force,

F = σA = 140 × 106 × 7.854 × 10−5

= 11.0 kN

Problem 15. A brass tube has an internal
diameter of 120 mm and an outside diameter
of 150 mm and is used to support a load of
5 kN. The tube is 500 mm long before the
load is applied. Determine by how much the
tube contracts when loaded, taking the
modulus of elasticity for brass as 90 GPa.

Force in tube, F = 5 kN = 5000 N, and cross-
sectional area of tube,

A = π

4
(D2 − d2) = π

4
(0.1502 − 0.1202)

= 0.006362 m2.

Stress in tube, σ = F

A
= 5000 N

0.006362 m2

= 0.7859 × 106 Pa.

Since the modulus of elasticity,

E = stress σ

strain ε
,

then strain, ε = σ

E
= 0.7859 × 106 Pa

90 × 109 Pa

= 8.732 × 10−6.

Strain,

ε = contraction x

original length L

thus, contraction, x = εL = 8.732 × 10−6 × 0.500

= 4.37 × 10−6 m.

Thus, when loaded, the tube contracts by
4.37 µm.

Problem 16. In an experiment to determine
the modulus of elasticity of a sample of mild
steel, a wire is loaded and the corresponding
extension noted. The results of the experi-
ment are as shown.

Load (N) 0 40 110 160 200 250 290 340
Extension (mm) 0 1.2 3.3 4.8 6.0 7.5 10.0 16.2

Draw the load/extension graph.
The mean diameter of the wire is 1.3 mm
and its length is 8.0 m. Determine the
modulus of elasticity E of the sample, and
the stress at the limit of proportionality.

A graph of load/extension is shown in Figure 1.9

E = σ

ε
=

F

A
x

L

=
(

F

x

)(

L

A

)

F

x
is the gradient of the straight line part of the

load/extension graph.

Gradient,

F

x
= BC

AC
= 200 N

6 × 10−3 m

= 33.33 × 103 N/m

Modulus of elasticity = (gradient of graph)

(

L

A

)
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40
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80

120

160

200

240

280

320

360
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B

D

Extension/mm

L
o
a
d

/N

180 2 4 6 8 10 12 14 16

F

Figure 1.9

Length of specimen, L = 8.0 m and

cross-sectional area A = πd2

4

= π (0.0013)2

4

= 1.327 × 10−6 m2

Hence modulus of elasticity, E

= (33.33 × 103)

(

8.0

1.327 × 10−6

)

= 201 GPa

The limit of proportionality is at point D in
Figure 1.9 where the graph no longer follows a
straight line. This point corresponds to a load of
250 N as shown.

Stress at the limit of proportionality

= force

area
= 250

1.327 × 10−6

= 188.4 × 106 Pa = 188.4 MPa

Note that for structural materials the stress at the
elastic limit is only fractionally larger than the stress
at the limit of proportionality, thus it is reasonable
to assume that the stress at the elastic limit is the
same as the stress at the limit of proportionality; this
assumption is made in the remaining exercises. In
Figure 1.9, the elastic limit is shown as point F .

Now try the following exercise

Exercise 3 Further problems on Hooke’s
law

1. A wire is stretched 1.5 mm by a force of
300 N. Determine the force that would
stretch the wire 4 mm, assuming the
elastic limit of the wire is not exceeded.

[800 N]

2. A rubber band extends 50 mm when a
force of 300 N is applied to it. Assum-
ing the band is within the elastic limit,
determine the extension produced by a
force of 60 N. [10 mm]

3. A force of 25 kN applied to a piece
of steel produces an extension of
2 mm. Assuming the elastic limit is
not exceeded, determine (a) the force
required to produce an extension of
3.5 mm, (b) the extension when the
applied force is 15 kN.

[(a) 43.75 kN (b) 1.2 mm]

4. A test to determine the load/extension
graph for a specimen of copper gave the
following results:

Load (kN) 8.5 15.0 23.5 30.0
Extension (mm) 0.04 0.07 0.11 0.14

Plot the load/extension graph, and from
the graph determine (a) the load at an
extension of 0.09 mm, and (b) the exten-
sion corresponding to a load of 12.0 N.

[(a) 19 kN (b) 0.057 mm]

5. A circular bar is 2.5 m long and has a
diameter of 60 mm. When subjected to a
compressive load of 30 kN it shortens by
0.20 mm. Determine Young’s modulus
of elasticity for the material of the bar.

[132.6 GPa]

6. A bar of thickness 20 mm and hav-
ing a rectangular cross-section carries a
load of 82.5 kN. Determine (a) the min-
imum width of the bar to limit the max-
imum stress to 150 MPa, (b) the mod-
ulus of elasticity of the material of the
bar if the 150 mm long bar extends
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by 0.8 mm when carrying a load of
200 kN. [(a) 27.5 mm (b) 68.2 GPa]

7. A metal rod of cross-sectional area
100 mm2 carries a maximum ten-
sile load of 20 kN. The modulus of
elasticity for the material of the rod
is 200 GPa. Determine the percentage
strain when the rod is carrying its max-
imum load. [0.10%]

8. A metal tube 1.75 m long carries a ten-
sile load and the maximum stress in the
tube must not exceed 50 MPa. Deter-
mine the extension of the tube when
loaded if the modulus of elasticity for
the material is 70 GPa. [1.25 mm]

9. A piece of aluminium wire is 5 m
long and has a cross-sectional area of

100 mm2. It is subjected to increasing
loads, the extension being recorded for
each load applied. The results are:

Load (kN) 0 1.12 2.94 4.76 7.00 9.10
Extension (mm) 0 0.8 2.1 3.4 5.0 6.5

Draw the load/extension graph and
hence determine the modulus of elastic-
ity for the material of the wire.

[70 GPa]

10. In an experiment to determine the mod-
ulus of elasticity of a sample of copper,
a wire is loaded and the corresponding
extension noted. The results are:

Load (N) 0 20 34 72 94 120
Extension (mm) 0 0.7 1.2 2.5 3.3 4.2

Draw the load/extension graph and de-
termine the modulus of elasticity of the
sample if the mean diameter of the wire
is 1.23 mm and its length is 4.0 m.

[96 GPa]

1.9 Ductility, brittleness and
malleability

Ductility is the ability of a material to be plastically
deformed by elongation, without fracture. This is
a property that enables a material to be drawn out
into wires. For ductile materials such as mild steel,
copper and gold, large extensions can result before

fracture occurs with increasing tensile force. Ductile
materials usually have a percentage elongation value
of about 15% or more.
Brittleness is the property of a material manifested
by fracture without appreciable prior plastic defor-
mation. Brittleness is a lack of ductility, and brittle
materials such as cast iron, glass, concrete, brick and
ceramics, have virtually no plastic stage, the elastic
stage being followed by immediate fracture. Little or
no‘waist’ occurs before fracture in a brittle material
undergoing a tensile test.
Malleability is the property of a material whereby it
can be shaped when cold by hammering or rolling.
A malleable material is capable of undergoing plas-
tic deformation without fracture. Examples of mal-
leable materials include lead, gold, putty and mild
steel.

Problem 17. Sketch typical load/extension
curves for (a) an elastic non-metallic
material, (b) a brittle material and (c) a
ductile material. Give a typical example of
each type of material.

(a) A typical load/extension curve for an elas-
tic non-metallic material is shown in Fig-
ure 1.10(a), and an example of such a material
is polythene.

(b) A typical load/extension curve for a brittle
material is shown in Figure 1.10(b), and an
example of such a material is cast iron.

(c) A typical load/extension curve for a ductile
material is shown in Figure 1.10(c), and an
example of such a material is mild steel.

Extension

L
o
a
d

(a)

Extension

L
o
a
d

(b)

Extension

L
o
a
d

(c)

Figure 1.10
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1.10 Modulus of rigidity

Experiments have shown that under pure torsion (see
Chapter 10), up to the limit of proportionality, we
have Hooke’s law in shear, where

shear stress

shear strain
= rigidity (or shear) modulus

or
τ

γ
= G (1.1)

where τ = shear stress,

γ = shear strain (see Figures 1.5 and 1.6) and

G = rigidity (or shear) modulus

1.11 Thermal strain

If a bar of length L and coefficient of linear expan-
sion α were subjected to a temperature rise of
T , its length will increase by a distance αLT , as
described in Chapter 20. Thus the new length of the
bar will be:

L+ αLT = L(1 + αT )

Now, as the original length of the bar was L, then
the thermal strain due to a temperature rise will be:

ε = extension

original length
= αLT

L

i.e. ε = αT

However, if the bar were not constrained, so that
it can expand freely, there will be no thermal
stress.
If, however, the bar were prevented from expand-
ing then there would be a compressive stress in
the bar.

Now ε = original length − new length

original length

= L− L(1 + αT )

L
= L− L− LαT

L

i.e. ε = −α T

and, since stress = strain × E, then

σ = −αTE

Problem 18. A steel prop is used to
stabilise a building, as shown in Figure 1.11.
(a) If the compressive stress in the bar at
20 °C is 30 MPa, what will be the stress in
the prop if the temperature is raised to
35 °C? (b) At what temperature will the prop
cease to be effective?

Take E = 2 × 1011 N/m2 and
α = 14 × 10−6/°C.

Prop

Rigid floor

Building

Figure 1.11

(a) Additional thermal strain,

εT = −αT
= −(14 × 10−6/°C)× (35 − 20) °C

i.e. εT = −14 × 10−6 × 15 = −210 × 10−6

Additional thermal stress,

σT = EεT

= 2 × 1011 N/m2 × (−210 × 10−6)

i.e. σT = −42 MPa

Hence, the stress at 35 °C = initial stress + σT

= (−30 − 42) MPa

i.e. σ = −72 MPa

(b) For the prop to be ineffective, it will be nec-
essary for the temperature to fall so that there
is no stress in the prop, that is, from 20 °C
the temperature must fall so that the initial
stress of 30 MPa is nullified. Hence, drop in
stress = −30 MPa
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Therefore, drop in thermal strain

= −30 × 106 Pa

2 × 1011 Pa

= −1.5 × 10−4 = αT

from which, temperature

T = −1.5 × 10−4

14 × 10−6
= −10.7 °C

Hence, the drop in temperature T from 20 °C
is −10.7 °C

Therefore, the temperature for the prop to
be ineffective = 20° − 10.7° = 9.3 °C

Now try the following exercise

Exercise 4 Further problem on thermal
strain

1. A steel rail may assumed to be stress
free at 5 °C. If the stress required to cause
buckling of the rail is −50 MPa, at what
temperature will the rail buckle?. It may
be assumed that the rail is rigidly fixed at
its ‘ends’.
Take E = 2 × 1011 N/m2 and
α = 14 × 10−6/°C. [22.86 °C]

1.12 Compound bars

Compound bars are of much importance in a num-
ber of different branches of engineering, including
reinforced concrete pillars, composites, bimetallic
bars, and so on. In this section, solution of such
problems usually involve two important considera-
tions, namely

(a) compatibility
(or considerations of displacements)

(b) equilibrium

N.B. It is necessary to introduce compatibility in
this section as compound bars are, in general, stat-
ically indeterminate (see Chapter 4). The follow-
ing worked problems demonstrate the method of
solution.

Problem 19. A solid bar of cross-sectional
area A1, Young’s modulus E1 and coefficient
of linear expansion α1 is surrounded
co-axially by a hollow tube of cross-sectional
area A2, Young’s modulus E2 and coefficient
of linear expansion α2, as shown in
Figure 1.12. If the two bars are secured
firmly to each other, so that no slipping takes
place with temperature change, determine the
thermal stresses due to a temperature rise T .
Both bars have an initial length L and
α1 > α2

Bar

L

1
2Bar

Figure 1.12 Compound bar

α1LT

L α2LT

ε1L

ε2L

A

A

Bar 1

Bar 2

Figure 1.13 “Deflections” of compound bar

There are two unknown forces in these bars, namely
F1 and F2; therefore, two simultaneous equations
will be required to determine these unknown forces.
The first equation can be obtained by considering
the compatibility (i.e.‘deflections’) of the bars, with
the aid of Figure 1.13.

Free expansion of bar (1) = α1LT

Free expansion of bar (2) = α2LT

In practice, however, the final resting position of
the compound bar will be somewhere in between



14 MECHANICAL ENGINEERING PRINCIPLES

these two positions (i.e. at the position A-A in
Figure 1.13). To achieve this, it will be necessary
for bar (2) to be pulled out by a distance ε2L and
for bar (1) to be pushed in by a distance ε1L,
where

ε1 = compressive strain in (1)

and ε2 = tensile strain in (2)

From considerations of compatibility (‘deflection’)
in Figure 1.13,

α1LT − ε1L = α2LT + ε2L

i.e. ε1 = (α1 − α2)T − ε2

Now, σ1 = E1ε1 and σ2 = E2ε2

Hence, σ1 = (α1 − α2)E1T − σ2

E1

E2

(1.2)

To obtain the second simultaneous equation, it will
be necessary to consider equilibrium of the com-
pound bar.

Let F1 = unknown compressive force in bar (1)

and F2 = unknown tensile force in bar (2)

Now, from equilibrium considerations,

F1 = F2

but σ1 = F1
A1

and σ2 = F2

A2

Therefore, σ1A1 = σ2A2

or σ1 = σ2A2

A1

(1.3)

Equating equations (1.2) and (1.3) gives

σ2A2

A1

= (α1 − α2)E1T − σ2

E1

E2

from which,

σ2 = (α1 − α2)E1T
(

E1

E2

+ A2

A1

) = (α1 − α2)E1T
(

A1E1 +A2E2

E2A1

)

i.e. σ2 =
(α1 − α2)E1E2A1T

(A1E1 + A2E2)
(tensile) (1.4)

and σ1 =
(α1 − α2)E1E2A2T

(A1E1 + A2E2)
(compressive)

(1.5)

Problem 20. If the solid bar of Problem 19
did not suffer temperature change, but instead
was subjected to a tensile axial force P , as
shown in Figure 1.14, determine σ1 and σ2.

L

P P

Bar 2 Bar 1

Figure 1.14 Compound bar under axial tension

There are two unknown forces in this bar, namely,
F1 and F2; therefore, two simultaneous equations
will be required.

The first of these simultaneous equations can be
obtained by considering compatibility, i.e.

deflection of bar (1) = deflection of bar (2)

or δ1 = δ2

But δ1 = ε1L and δ2 = ε2L

Therefore, ε1L = ε2L

or ε1 = ε2

Now, ε1 = σ1

E1

and ε2 = σ2

E2

Hence,
σ1

E1

= σ2

E2

or σ1 = σ2E1

E2

(1.6)

The second simultaneous equation can be obtained
by considering the equilibrium of the compound bar.

Let F1 = tensile force in bar (1)

and F2 = tensile force in bar (2)

Now, from equilibrium conditions

P = F1 + F2

i.e. P = σ1A1 + σ2A2 (1.7)

Substituting equation (1.6) into equation (1.7) gives:

P = σ2E1

E2

A1 + σ2A2 = σ2

(

E1A1

E2

+ A2

)

= σ2

(

A1E1 +A2E2

E2

)
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Rearranging gives: σ2 =
PE2

(A1E1 + A2E2)
(1.8)

and σ1 =
PE1

(A1E1 + A2E2)
(1.9)

N.B. If P is a compressive force, then both σ1 and
σ2 will be compressive stresses (i.e. negative), and
vice-versa if P were tensile.

Problem 21. A concrete pillar, which is
reinforced with steel rods, supports a
compressive axial load of 2 MN.

(a) Determine stresses σ1 and σ2 given the
following:

For the steel, A1 = 4 × 10−3 m2 and
E1 = 2 × 1011 N/m2

For the concrete, A2 = 0.2 m2 and
E2 = 2 × 1010 N/m2

(b) What percentage of the total load does
the steel reinforcement take?

(a) From equation (1.9),

σ1 = − PE1

(A1E1 + A2E2)

= − 2 × 106 × 2 × 1011

(

4 × 10−3 × 2 × 1011 + 0.2 × 2 × 1010
)

= − 4 × 1017

(

8 × 108 + 40 × 108
) = 4 × 1017

48 × 108

= 109

12
= −83.3 × 106

i.e. the stress in the steel,

σ1 = −83.3 MPa (1.10)

From equation (1.8),

σ2 = − PE2

(A1E1 +A2E2)

= − 2 × 106 × 2 × 1010

(4 × 10−3 × 2 × 1011 + 0.2 × 2 × 1010)

= − 4 × 1016

(8 × 108 + 40 × 108)

= 4 × 1016

48 × 108
= 108

12

= −8.3 × 106

i.e. the stress in the concrete,

σ2 = −8.3 MPa (1.11)

(b) Force in the steel,

F1 = σ1A1

= −83.3 × 106 × 4 × 10−3

= 3.33 × 105 N

Therefore, the percentage total load taken by
the steel reinforcement

= F1

total axial load
× 100%

= 3.33 × 105

2 × 106
× 100% = 16.65%

Problem 22. If the pillar of problem 21
were subjected to a temperature rise of
25 °C, what would be the values of stresses
σ1 and σ2?
Assume the coefficients of linear expansion

are, for steel, α1 = 14 × 10−6/°C, and for

concrete, α2 = 12 × 10−6/°C.

As α1 is larger than α2, the effect of a temperature
rise will cause the ‘thermal stresses’ in the steel to be
compressive and those in the concrete to be tensile.

From equation (1.5), the thermal stress in the steel,

σ1 = − (α1 − α2)E1E2A2T

(A1E1 + A2E2)

= −

(14 × 10−6 − 12 × 10−6)× 2 × 1011

×2 × 1010 × 0.2 × 25

48 × 108

= −40 × 1015

48 × 108
= 0.833 × 107

= −8.33 MPa (1.12)

From equation (1.3), the thermal stress in the
concrete,

σ2 = σ1A1

A2

= − (−8.33 × 106)× 4 × 10−3

0.2

= 0.167 MPa (1.13)

From equations (1.10) to (1.13):

σ1 = −83.3 − 8.33 = −91.63 MPa

and σ2 = −8.3 + 0.167 = −8.13 MPa
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Now try the following exercise

Exercise 5 Further problems on
compound bars

1. Two layers of carbon fibre are stuck to
each other, so that their fibres lie at 90°

to each other, as shown in Figure 1.15.
If a tensile force of 1 kN were applied to
this two-layer compound bar, determine
the stresses in each. For layer 1, E1 =
300 GPa and A1 = 10 mm2; for layer 2,

E2 = 50 GPa and A2 = A1 = 10 mm2.

[σ1 = 85.71 MPa, σ2 = 14.28 MPa]

Layer 1

Layer 2

P P

Figure 1.15 Carbon fibre layers

2. If the compound bar of Problem 1 were
subjected to a temperature rise of 25 °C,
what would the resulting stresses be?
Assume the coefficients of linear expan-

sion are, for layer 1, α1 = 5 × 10−6/°C,

and for layer 2, α2 = 0.5 × 10−6/°C.

[σ1 = 80.89 MPa, σ2 = 19.10 MPa]

Exercise 6 Short answer questions on the
effects of forces on materials

1. Name three types of mechanical force
that can act on a body.

2. What is a tensile force? Name two prac-
tical examples of such a force.

3. What is a compressive force? Name two
practical examples of such a force.

4. Define a shear force and name two prac-
tical examples of such a force.

5. Define elasticity and state two examples
of elastic materials.

7. Define plasticity and state two examples
of plastic materials.

8. Define the limit of proportionality.

9. State Hooke’s law.

10. What is the difference between a ductile
and a brittle material?

11. Define stress. What is the symbol used
for (a) a tensile stress (b) a shear stress?

12. Strain is the ratio
. . . . . .

. . . . . .

13. The ratio
stress

strain
is called . . . . . .

14. State the units of (a) stress (b) strain
(c) Young’s modulus of elasticity

15. Stiffness is the ratio
. . . . . .

. . . . . .

16. Sketch on the same axes a typical
load/extension graph for a ductile and a
brittle material.

17. Define (a) ductility (b) brittleness
(c) malleability

18. Define rigidity modulus.

19. The new length L2 of a bar of length
L1, of coefficient of linear expansion α,
when subjected to a temperature rise T
is: L2 = . . . . . .

20. The thermal strain ε due to a temperature
rise T in material of coefficient of linear
expansion α is given by: ε = . . . . . .

Exercise 7 Multi-choice questions on the
effects of forces on materials
(Answers on page 284)

1. The unit of strain is:

(a) pascals (b) metres

(c) dimension-less (d) newtons

2. The unit of stiffness is:

(a) newtons

(b) pascals

(c) newtons per metre

(d) dimension-less

3. The unit of Young’s modulus of elastic-
ity is:

(a) Pascals (b) metres

(c) dimension-less (d) newtons

4. A wire is stretched 3 mm by a force of
150 N. Assuming the elastic limit is not
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exceeded, the force that will stretch the
wire 5 mm is:

(a) 150 N (b) 250 N

(c) 90 N (d) 450 N

5. For the wire in question 4, the extension
when the applied force is 450 N is:

(a) 1 mm (b) 3 mm

(c) 9 mm (d) 12 mm

6. Due to the forces acting, a horizontal
beam is in:

(a) tension (b) compression

(c) shear

7. Due to forces acting, a pillar supporting
a bridge is in:

(a) tension (b) compression

(c) shear

8. Which of the following statements is
false?

(a) Elasticity is the ability of a material
to return to its original dimensions
after deformation by a load.

(b) Plasticity is the ability of a material
to retain any deformation produced
in it by a load.

(c) Ductility is the ability to be perma-
nently stretched without fracturing.

(d) Brittleness is the lack of ductility
and a brittle material has a long
plastic stage.

9. A circular rod of cross-sectional area
100 mm2 has a tensile force of 100 kN

applied to it. The stress in the rod is:

(a) 1 MPa (b) 1 GPa

(c) 1 kPa (d) 100 MPa

10. A metal bar 5.0 m long extends by
0.05 mm when a tensile load is applied
to it. The percentage strain is:

(a) 0.1 (b) 0.01

(c) 0.001 (d) 0.0001

An aluminium rod of length 1.0 m and

cross-sectional area 500 mm2 is used to
support a load of 5 kN which causes the
rod to contract by 100 μm. For questions
11 to 13, select the correct answer from
the following list:

(a) 100 MPa (b) 0.001 (c) 10 kPa

(d) 100 GPa (e) 0.01 (f) 10 MPa

(g) 10 GPa (h) 0.0001 (i) 10 Pa

11. The stress in the rod

12. The strain in the rod

13. Young’s modulus of elasticity

14. A compound bar of length L is subjected
to a temperature rise of T . If α1 > α2,
the strain in bar 1 will be:

(a) tensile (b) compressive

(c) zero (d) αT

15. For Problem 14, the stress in bar 2
will be:

(a) tensile (b) compressive

(c) zero (d) αT
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Tensile testing

At the end of this chapter you should be
able to:

• describe a tensile test

• recognise from a tensile test the limit of
proportionality, the elastic limit and the
yield point

• plot a load/extension graph from given data

• calculate from a load/extension graph, the
modulus of elasticity, the yield stress,
the ultimate tensile strength, percentage
elongation and the percentage reduction
in area

2.1 The tensile test

A tensile test is one in which a force is applied
to a specimen of a material in increments and
the corresponding extension of the specimen noted.
The process may be continued until the specimen
breaks into two parts and this is called testing
to destruction. The testing is usually carried out
using a universal testing machine that can apply
either tensile or compressive forces to a specimen in
small, accurately measured steps. British Standard
18 gives the standard procedure for such a test. Test
specimens of a material are made to standard shapes
and sizes and two typical test pieces are shown
in Figure 2.1. The results of a tensile test may be
plotted on a load/extension graph and a typical graph
for a mild steel specimen is shown in Figure 2.2.

(i) Between A and B is the region in which
Hooke’s law applies and stress is directly
proportional to strain. The gradient of AB is
used when determining Young’s modulus of
elasticity (see Chapter 1).

(ii) Point B is the limit of proportionality and
is the point at which stress is no longer
proportional to strain when a further load is
applied.

Gauge length

Thickness

Width

(b)

(a)

Diameter

Figure 2.1

A

G

B

J

E

F

H

C K
D

L
o
a
d

Permanent elongation

Extension0

Figure 2.2

(iii) Point C is the elastic limit and a specimen
loaded to this point will effectively return to
its original length when the load is removed,
i.e. there is negligible permanent extension.

(iv) Point D is called the yield point and at this
point there is a sudden extension to J , with
no increase in load. The yield stress of the
material is given by:

yield stress =

load where yield begins
to take place

original cross-sectional area
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The yield stress gives an indication of the
ductility of the material (see Chapter 1).

(v) For mild steel, the extension up to the point
J is some 40 times larger than the extension
up to the point B.

(vi) Shortly after point J , the material strain hard-
ens, where the slope of the load-extension

curve is about 1/50th the slope of the curve
from A to B, for materials such as mild
steel.

(vii) Between points D and E extension takes
place over the whole gauge length of the
specimen.

(viii) Point E gives the maximum load which
can be applied to the specimen and is used
to determine the ultimate tensile strength
(UTS) of the specimen (often just called the
tensile strength)

UTS =
maximum load

original cross-sectional area

(ix) Between points E and F the cross-sectional
area of the specimen decreases, usually about
half way between the ends, and a waist or
neck is formed before fracture.

Percentage reduction in area

=

(original cross-sectional area)
−(final cross-sectional area)

original cross-sectional area
× 100%

The percentage reduction in area provides
information about the malleability of the
material (see Chapter 1). The value of stress
at point F is greater than at point E since
although the load on the specimen is decreas-
ing as the extension increases, the cross-
sectional area is also reducing.

(x) At point F the specimen fractures.

(xi) Distance GH is called the permanent elon-
gation and

permanent elongation

=

increase in length during
test to destruction

original length
× 100%

(xii) The point K is known as the upper yield
point. It occurs for constant load experi-
ments, such as when a hydraulic tensile test-
ing machine is used. It does not occur for

constant stain experiments, such as when a
Hounsfield tensometer is used.

2.2 Worked problems on tensile testing

Problem 1. A tensile test is carried out on a
mild steel specimen. The results are shown
in the following table of values:

Load (kN) 0 10 23 32
Extension (mm) 0 0.023 0.053 0.074

Plot a graph of load against extension, and
from the graph determine (a) the load at an
extension of 0.04 mm, and (b) the extension
corresponding to a load of 28 kN.

The load/extension graph is shown in Figure 2.3.
From the graph:

0.010
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17.2

20

24

28

32

0.02 0.03 0.04 0.05 0.06 0.07 0.08

L
o

a
d

/k
N

Extension/mm

Figure 2.3

(a) when the extension is 0.04 mm, the load is
17.2 kN

(b) when the load is 28 kN, the extension is
0.065 mm.

Problem 2. A tensile test is carried out on a
mild steel specimen of gauge length 40 mm

and cross-sectional area 100 mm2. The
results obtained for the specimen up to its
yield point are given below:
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Load (kN) 0 8 19 29 36
Extension (mm) 0 0.015 0.038 0.060 0.072

The maximum load carried by the specimen
is 50 kN and its length after fracture is
52 mm. Determine (a) the modulus of
elasticity, (b) the ultimate tensile strength,
(c) the percentage elongation of the mild
steel.

The load/extension graph is shown in Figure 2.4.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.080
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20
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A

L
o
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d

/k
N

Extension/mm

B

C

Figure 2.4

(a) Gradient of straight line is given by:

BC

AC
= 25000

0.05 × 10−3
= 500 × 106 N/m

Young’s modulus of elasticity

= (gradient of graph)

(

L

A

)

, where

L = 40 mm (gauge length)

= 0.040 m and area,

A = 100 mm2 = 100 × 10−6 m2.

Young’s modulus of elasticity

= (500 × 106)

(

0.040

100 × 10−6

)

= 200 × 109 Pa = 200 GPa

(b) Ultimate tensile strength

= maximum load

original cross-sectional area

= 50000 N

100 × 10−6 m2
= 500 × 106 Pa

= 500 MPa

(c) Percentage elongation

= increase in length

original length
× 100

= 52 − 40

40
× 100 = 12

40
× 100 = 30%

Problem 3. The results of a tensile test are:
Diameter of specimen 15 mm; gauge length
40 mm; load at limit of proportionality
85 kN; extension at limit of proportionality
0.075 mm; maximum load 120 kN; final
length at point of fracture 55 mm.
Determine (a) Young’s modulus of elasticity,
(b) the ultimate tensile strength, (c) the stress
at the limit of proportionality, (d) the
percentage elongation.

(a) Young’s modulus of elasticity is given by:

E = stress

strain
=

F

A
x

L

= FL

Ax

where the load at the limit of proportionality,

F = 85 kN = 85000 N,

L = gauge length = 40 mm = 0.040 m,

A = cross-sectional area = πd2

4

= π(0.015)2

4
= 0.0001767 m2, and

x = extension = 0.075 mm = 0.000075 m.

Hence, Young’s modulus of elasticity

E = FL

Ax
= (85000)(0.040)

(0.0001767)(0.000075)

= 256.6 × 109 Pa = 256.6 GPa
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(b) Ultimate tensile strength

= maximum load

original cross-sectional area

= 120000

0.0001767

= 679 × 106 Pa = 679 MPa

(c) Stress at limit of proportionality

= load at limit of proportionality

cross-sectional area

= 85000

0.0001767
= 481 × 106 Pa = 481 MPa

(d) Percentage elongation

= increase in length

original length
× 100

= (55 − 40) mm

40 mm
× 100 = 37.5%

Now try the following exercise

Exercise 8 Further problems on tensile
testing

1. What is a tensile test? Make a sketch of
a typical load/extension graph for a mild
steel specimen to the point of fracture
and mark on the sketch the following:
(a) the limit of proportionality, (b) the
elastic limit, (c) the yield point.

2. In a tensile test on a zinc specimen
of gauge length 100 mm and diameter
15 mm, a load of 100 kN produced an
extension of 0.666 mm. Determine (a) the
stress induced, (b) the strain, (c) Young’s
modulus of elasticity.

[(a) 566 MPa (b) 0.00666 (c) 85 GPa]

3. The results of a tensile test are:
Diameter of specimen 20 mm, gauge
length 50 mm, load at limit of propor-
tionality 80 kN, extension at limit of pro-
portionality 0.075 mm, maximum load
100 kN, and final length at point of frac-
ture 60 mm.

Determine (a) Young’s modulus of elas-
ticity, (b) the ultimate tensile strength,
(c) the stress at the limit of proportion-
ality, (d) the percentage elongation.

[

(a) 169.8 GPa (b) 318.3 MPa

(c) 254.6 MPa (d) 20%

]

2.3 Further worked problems on
tensile testing

Problem 4. A rectangular zinc specimen is
subjected to a tensile test and the data from
the test is shown below. Width of specimen
40 mm; breadth of specimen 2.5 mm; gauge
length 120 mm.

Load (kN)

10 17 25 30 35 37.5 38.5 37 34 32

Extension (mm)

0.15 0.25 0.35 0.55 1.00 1.50 2.50 3.50 4.50 5.00

Fracture occurs when the extension is
5.0 mm and the maximum load recorded is
38.5 kN.

Plot the load/extension graph and hence
determine (a) the stress at the limit of
proportionality, (b) Young’s modulus of
elasticity, (c) the ultimate tensile strength,
(d) the percentage elongation, (e) the stress
at a strain of 0.01, (f) the extension at a
stress of 200 MPa.

A load/extension graph is shown in Figure 2.5.

(a) The limit of proportionality occurs at point P
on the graph, where the initial gradient of the
graph starts to change. This point has a load
value of 26.5 kN.

Cross-sectional area of specimen

= 40 mm × 2.5 mm = 100 mm2

= 100 × 10−6 m2.

Stress at the limit of proportionality is given by:

σ = force

area
= 26.5 × 103 N

100 × 10−6 m2

= 265 × 106 Pa = 265 MPa
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(b) Gradient of straight line portion of graph is
given by:

BC

AC
= 25000 N

0.35 × 10−3 m
= 71.43 × 106 N/m

Young’s modulus of elasticity

= (gradient of graph)

(

L

A

)

= (71.43 × 106)

(

120 × 10−3

100 × 10−6

)

= 85.72 × 109 Pa = 85.72 GPa

(c) Ultimate tensile strength

= maximum load

original cross-sectional area

= 38.5 × 103 N

100 × 10−6 m2

= 385 × 106 Pa = 385 MPa

(d) Percentage elongation

= extension at fracture point

original length
× 100

= 5.0 mm

120 mm
× 100 = 4.17%

(e) Strain ε = extension x

original length l
from which,

extension x = εl = 0.01 × 120

= 1.20 mm.

From the graph, the load corresponding to an
extension of 1.20 mm is 36 kN.

Stress at a strain of 0.01 is given by:

σ = force

area
= 36000 N

100 × 10−6 m2

= 360 × 106 Pa = 360 MPa

(f) When the stress is 200 MPa, then

force = area × stress

= (100 × 10−6)(200 × 106)

= 20 kN

From the graph, the corresponding extension is
0.30 mm.

Problem 5. A mild steel specimen of

cross-sectional area 250 mm2 and gauge
length 100 mm is subjected to a tensile test
and the following data is obtained:
within the limit of proportionality, a load of
75 kN produced an extension of 0.143 mm,
load at yield point = 80 kN, maximum load
on specimen = 120 kN, final cross-sectional

area of waist at fracture = 90 mm2, and the
gauge length had increased to 135 mm at
fracture.

Determine for the specimen: (a) Young’s
modulus of elasticity, (b) the yield stress,
(c) the tensile strength, (d) the percentage
elongation, and (e) the percentage reduction
in area.

(a) Force F = 75 kN = 75000 N, gauge length
L = 100 mm = 0.1 m, cross-sectional area
A = 250 mm2 = 250×10−6 m2, and extension
x = 0.143 mm = 0.143 × 10−3 m.

Young’s modulus of elasticity,

E = stress

strain
= F/A

x/L
= FL

Ax

= (75000)(0.1)

(250 × 10−6)(0.143 × 10−3)

= 210 × 109 Pa = 210 GPa



TENSILE TESTING 23

(b) Yield stress

= load when yield begins to take place

original cross-sectional area

= 80000 N

250 × 10−6 m2

= 320 × 106 Pa = 320 MPa

(c) Tensile strength

= maximum load

original cross-sectional area

= 120000 N

250 × 10−6 m2

= 480 × 106 Pa = 480 MPa

(d) Percentage elongation

=
increase in length during

test to destruction

original length

=
(

135 − 100

100

)

× 100 = 35%

(e) Percentage reduction in area

=
(original cross-sectional area)
−(final cross-sectional area)

original cross-sectional area
× 100

=
(

250 − 90

250

)

× 100

=
(

160

250

)

× 100 = 64%

Now try the following exercise

Exercise 9 Further questions on tensile
testing

1. A tensile test is carried out on a specimen
of mild steel of gauge length 40 mm and
diameter 7.42 mm. The results are:

Load (kN)

0 10 17 25 30 34 37.5 38.5 36

Extension (mm)

0 0.05 0.08 0.11 0.14 0.20 0.40 0.60 0.90

At fracture the final length of the speci-
men is 40.90 mm. Plot the load/extension
graph and determine (a) the modulus of
elasticity for mild steel, (b) the stress at
the limit of proportionality, (c) the ulti-
mate tensile strength, (d) the percentage
elongation.

[

(a) 210 GPa (b) 650 MPa

(c) 890 MPa (d) 2.25%

]

2. An aluminium alloy specimen of gauge
length 75 mm and of diameter 11.28 mm
was subjected to a tensile test, with these
results:

Load (kN) 0 2.0 6.5 11.5 13.6

Extension (mm) 0 0.012 0.039 0.069 0.080

Load (kN) 16.0 18.0 19.0 20.5 19.0

Extension (mm) 0.107 0.133 0.158 0.225 0.310

The specimen fractured at a load of
19.0 kN.

Determine (a) the modulus of elasticity
of the alloy, (b) the percentage elongation.

[(a) 125 GPa (b) 0.413%]

3. An aluminium test piece 10 mm in
diameter and gauge length 50 mm gave
the following results when tested to
destruction:
Load at yield point 4.0 kN, maxi-
mum load 6.3 kN, extension at yield
point 0.036 mm, diameter at fracture
7.7 mm.

Determine (a) the yield stress, (b) Yo-
ung’s modulus of elasticity, (c) the ulti-
mate tensile strength, (d) the percentage
reduction in area.

[

(a) 50.93 MPa (b) 70.7 GPa

(c) 80.2 MPa (d) 40.7%

]

Exercise 10 Short answer questions on
tensile testing

1. What is a tensile test?

2. Which British Standard gives the standard
procedure for a tensile test?

3. With reference to a load/extension graph
for mild steel state the meaning of
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(a) the limit of proportionality

(b) the elastic limit

(c) the yield point

(d) the percentage elongation.

4. Define ultimate tensile strength

5. Yield stress is the ratio
· · · · · ·
· · · · · ·

6. Define ‘percentage reduction in area’

Exercise 11 Multi-choice questions on
tensile testing (Answers
on page 284)

A brass specimen having a cross-sectional

area of 100 mm2 and gauge length 100 mm
is subjected to a tensile test from which

the following information is obtained: Load
at yield point = 45 kN, maximum load =
52.5 kN, final cross-sectional area of waist
at fracture = 75 mm2, and gauge length at
fracture = 110 mm.

For questions 1 to 4, select the correct
answer from the following list:

(a) 600 MPa (b) 525 MPa (c) 33.33%

(d) 10% (e) 9.09% (f) 450 MPa

(g) 25% (h) 700 MPa

1. The yield stress

2. The percentage elongation

3. The percentage reduction in area

4. The ultimate tensile strength
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Forces acting at a point

At the end of this chapter you should be
able to:

• distinguish between scalar and vector qu-
antities

• define ‘centre of gravity’ of an object

• define ‘equilibrium’ of an object

• understand the terms ‘coplanar’ and ‘con-
current’

• determine the resultant of two coplanar
forces using

(a) the triangle of forces method

(b) the parallelogram of forces method

• calculate the resultant of two coplanar
forces using

(a) the cosine and sine rules

(b) resolution of forces

• determine the resultant of more than two
coplanar forces using

(a) the polygon of forces method

(b) calculation by resolution of forces

• determine unknown forces when three or
more coplanar forces are in equilibrium

3.1 Scalar and vector quantities

Quantities used in engineering and science can be
divided into two groups:

(a) Scalar quantities have a size (or magnitude)
only and need no other information to spec-
ify them. Thus, 10 centimetres, 50 seconds,
7 litres and 3 kilograms are all examples of
scalar quantities.

(b) Vector quantities have both a size or
magnitude and a direction, called the line of

action of the quantity. Thus, a velocity of
50 kilometres per hour due east, an acceler-
ation of 9.81 metres per second squared ver-
tically downwards and a force of 15 Newtons
at an angle of 30 degrees are all examples of
vector quantities.

3.2 Centre of gravity and equilibrium

The centre of gravity of an object is a point where
the resultant gravitational force acting on the body
may be taken to act. For objects of uniform thickness
lying in a horizontal plane, the centre of gravity is
vertically in line with the point of balance of the
object. For a thin uniform rod the point of balance
and hence the centre of gravity is halfway along the
rod as shown in Figure 3.1(a).

G

L

(a)

G

(b)

G

(c)

L
2

Figure 3.1

A thin flat sheet of a material of uniform thickness
is called a lamina and the centre of gravity of a
rectangular lamina lies at the point of intersection of
its diagonals, as shown in Figure 3.1(b). The centre
of gravity of a circular lamina is at the centre of the
circle, as shown in Figure 3.1(c).

An object is in equilibrium when the forces act-
ing on the object are such that there is no tendency
for the object to move. The state of equilibrium of
an object can be divided into three groups.

(i) If an object is in stable equilibrium and it
is slightly disturbed by pushing or pulling
(i.e. a disturbing force is applied), the centre
of gravity is raised and when the disturbing
force is removed, the object returns to its
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original position. Thus a ball bearing in a
hemispherical cup is in stable equilibrium, as
shown in Figure 3.2(a).

(a)
Stable

equilibrium

(c)
Neutral

equilibrium

(b)
Unstable

equilibrium

Figure 3.2

(ii) An object is in unstable equilibrium if,
when a disturbing force is applied, the cen-
tre of gravity is lowered and the object moves
away from its original position. Thus, a ball
bearing balanced on top of a hemispherical
cup is in unstable equilibrium, as shown in
Figure 3.2(b).

(iii) When an object in neutral equilibrium has
a disturbing force applied, the centre of grav-
ity remains at the same height and the object
does not move when the disturbing force is
removed. Thus, a ball bearing on a flat hor-
izontal surface is in neutral equilibrium, as
shown in Figure 3.2(c).

3.3 Forces

When forces are all acting in the same plane, they
are called coplanar. When forces act at the same
time and at the same point, they are called concur-
rent forces.

Force is a vector quantity and thus has both a
magnitude and a direction. A vector can be repre-
sented graphically by a line drawn to scale in the
direction of the line of action of the force.

To distinguish between vector and scalar quanti-
ties, various ways are used.

These include:

(i) bold print,

(ii) two capital letters with an arrow above them

to denote the sense of direction, e.g.
−→
AB,

where A is the starting point and B the end
point of the vector,

(iii) a line over the top of letters, e.g. AB or a

(iv) letters with an arrow above, e.g. −→a ,
−→
A

(v) underlined letters, e.g. a

(vi) xi+yj , where i and j are axes at right-angles
to each other; for example, 3i + 4j means 3
units in the i direction and 4 units in the j
direction, as shown in Figure 3.3

0 1 2 3 i

1

2

3

4

j

A(3,4)

Figure 3.3

(vii) a column matrix

(

a
b

)

; for example, the vec-

tor OA shown in Figure 3.3 could be repre-

sented by

(

3
4

)

Thus, in Figure 3.3,OA ≡ −→
OA ≡ OA

≡ 3i + 4j ≡
(

3
4

)

The method adopted in this text is to denote vector
quantities in bold print. Thus, ab in Figure 3.4 rep-
resents a force of 5 Newton’s acting in a direction
due east.

0

a b
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S

E5 N
Scale

Tail Nose

Figure 3.4
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3.4 The resultant of two coplanar
forces

For two forces acting at a point, there are three
possibilities.

(a) For forces acting in the same direction and
having the same line of action, the single force
having the same effect as both of the forces,
called the resultant force or just the resultant,
is the arithmetic sum of the separate forces.
Forces of F1 and F2 acting at point P , as shown
in Figure 3.5(a), have exactly the same effect
on point P as force F shown in Figure 3.5(b),
where F = F1 + F2 and acts in the same
direction as F1 and F2. Thus F is the resultant
of F1 and F2

P

P

F2

F

F1

(F1 + F2)

(a)

(b)

Figure 3.5

(b) For forces acting in opposite directions along
the same line of action, the resultant force is the
arithmetic difference between the two forces.
Forces of F1 and F2 acting at point P as shown
in Figure 3.6(a) have exactly the same effect
on point P as force F shown in Figure 3.6(b),
where F = F2 − F1 and acts in the direction
of F2, since F2 is greater than F1 .

Thus F is the resultant of F1 and F2

P

P

F1

F

F2

(F2 – F1)

(a)

(b)

Figure 3.6

(c) When two forces do not have the same line
of action, the magnitude and direction of the

resultant force may be found by a procedure
called vector addition of forces. There are two
graphical methods of performing vector addi-
tion, known as the triangle of forces method
(see Section 3.5) and the parallelogram of
forces method (see Section 3.6)

Problem 1. Determine the resultant force of
two forces of 5 kN and 8 kN,

(a) acting in the same direction and having
the same line of action,

(b) acting in opposite directions but having
the same line of action.

P

P

8 kN

8 kN

5 kN

0
Scale

5 10 kN (force)

(a)

(b)

5 kN

Figure 3.7

(a) The vector diagram of the two forces acting in
the same direction is shown in Figure 3.7(a),
which assumes that the line of action is hori-
zontal, although since it is not specified, could
be in any direction. From above, the resultant
force F is given by:

F = F1 + F2,

i.e. F = (5 + 8) kN = 13 kN

in the direction of the original forces.
(b) The vector diagram of the two forces acting in

opposite directions is shown in Figure 3.7(b),
again assuming that the line of action is in a
horizontal direction. From above, the resultant
force F is given by:

F = F2 − F1, i.e. F = (8 − 5) kN

= 3 kN

in the direction of the 8 kN force.
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3.5 Triangle of forces method

A simple procedure for the triangle of forces method
of vector addition is as follows:

(i) Draw a vector representing one of the forces,
using an appropriate scale and in the direction
of its line of action.

(ii) From the nose of this vector and using the
same scale, draw a vector representing the
second force in the direction of its line of
action.

(iii) The resultant vector is represented in both
magnitude and direction by the vector drawn
from the tail of the first vector to the nose of
the second vector.

Problem 2. Determine the magnitude and
direction of the resultant of a force of 15 N
acting horizontally to the right and a force of
20 N, inclined at an angle of 60° to the 15 N
force. Use the triangle of forces method.

Using the procedure given above and with reference
to Figure 3.8:

(i) ab is drawn 15 units long horizontally

0

35° 60°

c

a b

30.5 N

15 N

20 N

Scale

5 10 15 20 N  (force)

Figure 3.8

(ii) From b, bc is drawn 20 units long, inclined
at an angle of 60° to ab. (Note, in angular
measure, an angle of 60° from ab means 60°

in an anticlockwise direction)

(iii) By measurement, the resultant ac is 30.5 units
long inclined at an angle of 35° to ab. That
is, the resultant force is 30.5 N, inclined at an
angle of 35° to the 15 N force.

Problem 3. Find the magnitude and
direction of the two forces given, using the
triangle of forces method.

First force: 1.5 kN acting at an angle of 30°

Second force: 3.7 kN acting at an angle
of −45°

Scale

0

3.7 kN

4.3 kN

1 2 3 4 kN (force)

1.5 kN

a

b

c

45°
30°
25°

Figure 3.9

From the above procedure and with reference to
Figure 3.9:

(i) ab is drawn at an angle of 30° and 1.5 units
in length.

(ii) From b, bc is drawn at an angle of −45° and
3.7 units in length. (Note, an angle of −45°

means a clockwise rotation of 45° from a line
drawn horizontally to the right)

(iii) By measurement, the resultant ac is 4.3 units
long at an angle of −25°. That is, the resultant
force is 4.3 kN at an angle of −25°

Now try the following exercise

Exercise 12 Further problems on the tri-
angle of forces method

In questions 1 to 5, use the triangle of forces
method to determine the magnitude and direc-
tion of the resultant of the forces given.

1. 1.3 kN and 2.7 kN, having the same line
of action and acting in the same direction.

[4.0 kN in the direction of the forces]

2. 470 N and 538 N having the same line of
action but acting in opposite directions.

[68 N in the direction of the 538 N force]
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3. 13 N at 0° and 25 N at 30°

[36.8 N at 20°]

4. 5 N at 60° and 8 N at 90°

[12.6 N at 79°]

5. 1.3 kN at 45° and 2.8 kN at −30°

[3.4 kN at −8°]

3.6 The parallelogram of forces
method

A simple procedure for the parallelogram of forces
method of vector addition is as follows:

(i) Draw a vector representing one of the forces,
using an appropriate scale and in the direction
of its line of action.

(ii) From the tail of this vector and using the same
scale draw a vector representing the second
force in the direction of its line of action.

(iii) Complete the parallelogram using the two
vectors drawn in (i) and (ii) as two sides of
the parallelogram.

(iv) The resultant force is represented in both mag-
nitude and direction by the vector correspond-
ing to the diagonal of the parallelogram drawn
from the tail of the vectors in (i) and (ii).

Problem 4. Use the parallelogram of forces
method to find the magnitude and direction
of the resultant of a force of 250 N acting at
an angle of 135° and a force of 400 N acting
at an angle of −120°.

From the procedure given above and with reference
to Figure 3.10:

(i) ab is drawn at an angle of 135° and 250 units
in length

(ii) ac is drawn at an angle of −120° and 400
units in length

(iii) bd and cd are drawn to complete the parallel-
ogram

(iv) ad is drawn. By measurement, ad is 413 units
long at an angle of −156°.

That is, the resultant force is 413 N at an angle of
−156°

Scale

0 100 200 300 400 500 N (force)

a

b

d

c 400 N

250 N

413 N

156°
120°

135°

Figure 3.10

Now try the following exercise

Exercise 13 Further problems on the par-
allelogram of forces method

In questions 1 to 5, use the parallelogram of
forces method to determine the magnitude and
direction of the resultant of the forces given.

1. 1.7 N at 45° and 2.4 N at −60°

[2.6 N at −20°]

2. 9 N at 126° and 14 N at 223°

[15.7 N at −172°]

3. 23.8 N at −50° and 14.4 N at 215°

[26.7 N at −82°]

4. 0.7 kN at 147° and 1.3 kN at −71°

[0.86 kN at −101°]

5. 47 N at 79° and 58 N at 247°

[15.5 N at −152°]

3.7 Resultant of coplanar forces by
calculation

An alternative to the graphical methods of deter-
mining the resultant of two coplanar forces is by
calculation. This can be achieved by trigonometry
using the cosine rule and the sine rule, as shown
in Problem 5 following, or by resolution of forces
(see Section 3.10).
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Problem 5. Use the cosine and sine rules to
determine the magnitude and direction of the
resultant of a force of 8 kN acting at an angle
of 50° to the horizontal and a force of 5 kN
acting at an angle of −30° to the horizontal.

50°

30°
50°

50° 30°

8 kN

5 kN

8 kN
5 kN

b

a

0
φ

(a) space diagram (b) vector diagram

Figure 3.11

The space diagram is shown in Figure 3.11(a). A
sketch is made of the vector diagram, oa represent-
ing the 8 kN force in magnitude and direction and
ab representing the 5 kN force in magnitude and
direction. The resultant is given by length ob. By
the cosine rule,

ob2 = oa2 + ab2 − 2(oa)(ab) cos � oab

= 82 + 52 − 2(8)(5) cos 100°

(since � oab = 180° − 50° − 30° = 100°)

= 64 + 25 − (−13.892) = 102.892

Hence ob =
√

102.892 = 10.14 kN

By the sine rule,
5

sin � aob
= 10.14

sin 100°

from which, sin � aob = 5 sin 100°

10.14
= 0.4856

Hence � aob = sin−1(0.4856) = 29.05°. Thus angle
φ in Figure 3.11(b) is 50° − 29.05° = 20.95°

Hence the resultant of the two forces is 10.14 kN
acting at an angle of 20.95° to the horizontal

Now try the following exercise

Exercise 14 Further problems on the re-
sultant of coplanar forces by
calculation

1. Forces of 7.6 kN at 32° and 11.8 kN at
143° act at a point. Use the cosine and

sine rules to calculate the magnitude and
direction of their resultant.

[11.52 kN at 105°]

In questions 2 to 5, calculate the resultant
of the given forces by using the cosine
and sine rules

2. 13 N at 0° and 25 N at 30°

[36.8 N at 20°]

3. 1.3 kN at 45° and 2.8 kN at −30°

[3.4 kN at −8°]

4. 9 N at 126° and 14 N at 223°

[15.7 N at −172°]

5. 0.7 kN at 147° and 1.3 kN at −71°

[0.86 kN at −101°]

3.8 Resultant of more than two
coplanar forces

For the three coplanar forces F1, F2 and F3 act-
ing at a point as shown in Figure 3.12, the vector
diagram is drawn using the nose-to-tail method of
Section 3.5. The procedure is:

F2

F3

F1

Figure 3.12

(i) Draw oa to scale to represent force F1 in both
magnitude and direction (see Figure 3.13)

F2

b

a

0

c

F3

F1

Resultant

Figure 3.13

(ii) From the nose of oa , draw ab to represent
force F2
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(iii) From the nose of ab, draw bc to represent
force F3

(iv) The resultant vector is given by length oc in
Figure 3.13. The direction of resultant oc is
from where we started, i.e. point o, to where
we finished, i.e. point c. When acting by
itself, the resultant force, given by oc, has the
same effect on the point as forces F1, F2 and
F3 have when acting together. The resulting
vector diagram of Figure 3.13 is called the
polygon of forces.

Problem 6. Determine graphically the
magnitude and direction of the resultant of
these three coplanar forces, which may be
considered as acting at a point:
Force A, 12 N acting horizontally to the
right; force B, 7 N inclined at 60° to force
A; force C, 15 N inclined at 150° to force A

FC = 15 N

FB = 7 N

FA = 12 N

150°
60°

Figure 3.14

FC = 15 N

FB = 7 N

FA = 12 N

150°

60°

a

b

c

0

12840

R
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lt
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n
t

Scale Newtons

φ

Figure 3.15

The space diagram is shown in Figure 3.14. The
vector diagram shown in Figure 3.15, is produced
as follows:

(i) oa represents the 12 N force in magnitude and
direction

(ii) From the nose of oa , ab is drawn inclined at
60° to oa and 7 units long

(iii) From the nose of ab, bc is drawn 15 units
long inclined at 150° to oa (i.e. 150° to the
horizontal)

(iv) oc represents the resultant; by measurement,
the resultant is 13.8 N inclined at φ = 80° to
the horizontal.

Thus the resultant of the three forces, FA, FB and
FC is a force of 13.8 N at 80° to the horizontal.

Problem 7. The following coplanar forces
are acting at a point, the given angles being
measured from the horizontal: 100 N at 30°,
200 N at 80°, 40 N at −150°, 120 N at
−100° and 70 N at −60°. Determine
graphically the magnitude and direction of
the resultant of the five forces.

The five forces are shown in the space diagram
of Figure 3.16. Since the 200 N and 120 N forces
have the same line of action but are in opposite
sense, they can be represented by a single force of
200 − 120, i.e. 80 N acting at 80° to the horizontal.
Similarly, the 100 N and 40 N forces can be repre-
sented by a force of 100 − 40, i.e. 60 N acting at
30° to the horizontal. Hence the space diagram of
Figure 3.16 may be represented by the space dia-
gram of Figure 3.17. Such a simplification of the
vectors is not essential but it is easier to construct
the vector diagram from a space diagram having
three forces, than one with five.

100 N

70 N

120 N

200 N

40 N
150°

80°

30°

60°
100°

Figure 3.16
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70 N

60 N

80 N

80°

30°

60°

Figure 3.17

60 N

80 N

70 N

30°

a

b

c

0

6040200Scale N

φ

Figure 3.18

The vector diagram is shown in Figure 3.18, oa
representing the 60 N force, ab representing the
80 N force and bc the 70 N force. The resultant,
oc, is found by measurement to represent a force of
112 N and angle φ is 25°.

Thus, the five forces shown in Figure 3.16 may
be represented by a single force of 112 N at 25°

to the horizontal.

Now try the following exercise

Exercise 15 Further problems on the re-
sultant of more than two cop-
lanar forces

In questions 1 to 3, determine graphically the
magnitude and direction of the resultant of the
coplanar forces given which are acting at a
point.

1. Force A, 12 N acting horizontally to the
right, force B, 20 N acting at 140° to
force A, force C, 16 N acting 290° to
force A. [3.06 N at −45° to force A]

2. Force 1, 23 kN acting at 80° to the hor-
izontal, force 2, 30 kN acting at 37° to
force 1, force 3, 15 kN acting at 70° to
force 2.

[53.5 kN at 37° to force 1
(i.e. 117° to the horizontal)]

3. Force P , 50 kN acting horizontally to the
right, force Q, 20 kN at 70° to force P ,
force R, 40 kN at 170° to force P , force
S, 80 kN at 300° to force P .

[72 kN at −37° to force P ]

4. Four horizontal wires are attached to a
telephone pole and exert tensions of 30 N
to the south, 20 N to the east, 50 N to
the north-east and 40 N to the north-west.
Determine the resultant force on the pole
and its direction.

[43.18 N at 38.82° east of north]

3.9 Coplanar forces in equilibrium

When three or more coplanar forces are acting at
a point and the vector diagram closes, there is
no resultant. The forces acting at the point are in
equilibrium.

Problem 8. A load of 200 N is lifted by
two ropes connected to the same point on the
load, making angles of 40° and 35° with the
vertical. Determine graphically the tensions
in each rope when the system is in
equilibrium.

F2 F1

35° 40°

200 N

Figure 3.19
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The space diagram is shown in Figure 3.19.
Since the system is in equilibrium, the vector
diagram must close. The vector diagram, shown in
Figure 3.20, is drawn as follows:

(i) The load of 200 N is drawn vertically as
shown by oa

0

35°

200 N

40°

a
Scale 0 40 80 120 N

b

c

d

Figure 3.20

(ii) The direction only of force F1 is known, so
from point a, ad is drawn at 40° to the vertical

(iii) The direction only of force F2 is known, so
from point o, oc is drawn at 35° to the vertical

(iv) Lines ad and oc cross at point b; hence the
vector diagram is given by triangle oab. By
measurement, ab is 119 N and ob is 133 N.

Thus the tensions in the ropes are F1 = 119 N and
F2 = 133 N.

Problem 9. Five coplanar forces are acting
on a body and the body is in equilibrium.
The forces are: 12 kN acting horizontally
to the right, 18 kN acting at an angle of
75°, 7 kN acting at an angle of 165°,
16 kN acting from the nose of the 7 kN
force, and 15 kN acting from the nose of
the 16 kN force. Determine the directions
of the 16 kN and 15 kN forces relative to
the 12 kN force.

With reference to Figure 3.21, oa is drawn 12 units
long horizontally to the right. From point a, ab
is drawn 18 units long at an angle of 75°. From
b, bc is drawn 7 units long at an angle of 165°.

The direction of the 16 kN force is not known, thus
arc pq is drawn with a compass, with centre at c,
radius 16 units. Since the forces are at equilibrium,
the polygon of forces must close. Using a compass
with centre at 0, arc rs is drawn having a radius
15 units. The point where the arcs intersect is
at d .

By measurement, angle φ = 198° and α = 291°

Scale 0 4 8 12 kN

12 kN
a

75°

p

16 kN

s

q

d

c

b
7 kN

18 kN

165°

15 kN

0

r

φ

α

Figure 3.21

Thus the 16 kN force acts at an angle of 198° (or
−162°) to the 12 kN force, and the 15 kN force
acts at an angle of 291° (or −69°) to the 12 kN
force.

Now try the following exercise

Exercise 16 Further problems on copla-
nar forces in equilibrium

1. A load of 12.5 N is lifted by two strings
connected to the same point on the load,
making angles of 22° and 31° on oppo-
site sides of the vertical. Determine the
tensions in the strings. [5.86 N, 8.06 N]

2. A two-legged sling and hoist chain used
for lifting machine parts is shown in
Figure 3.22. Determine the forces in each
leg of the sling if parts exerting a down-
ward force of 15 kN are lifted.

[9.96 kN, 7.77 kN]
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15 kN

37°
28°

Figure 3.22

3. Four coplanar forces acting on a body
are such that it is in equilibrium. The
vector diagram for the forces is such that
the 60 N force acts vertically upwards,
the 40 N force acts at 65° to the 60 N
force, the 100 N force acts from the nose
of the 60 N force and the 90 N force
acts from the nose of the 100 N force.
Determine the direction of the 100 N and
90 N forces relative to the 60 N force.

[100 N force at 263° to the 60 N force,

90 N force at 132° to the 60 N force]

3.10 Resolution of forces

A vector quantity may be expressed in terms of its
horizontal and vertical components. For example,
a vector representing a force of 10 N at an angle
of 60° to the horizontal is shown in Figure 3.23.
If the horizontal line oa and the vertical line ab
are constructed as shown, then oa is called the
horizontal component of the 10 N force, and ab the
vertical component of the 10 N force.
By trigonometry,

cos 60° = oa

ob
,

hence the horizontal component,

oa = 10 cos 60°

Also, sin 60° = ab

ob
,

hence the vertical component, ab = 10 sin 60°

10 N
b

60°

0
a

Figure 3.23

This process is called finding the horizontal and
vertical components of a vector or the resolution
of a vector, and can be used as an alternative to
graphical methods for calculating the resultant of
two or more coplanar forces acting at a point.

10 N b

60°

30° a0
d

20 N

c

Figure 3.24

For example, to calculate the resultant of a 10 N
force acting at 60° to the horizontal and a 20 N force
acting at −30° to the horizontal (see Figure 3.24) the
procedure is as follows:

(i) Determine the horizontal and vertical compo-
nents of the 10 N force, i.e.

horizontal component, oa = 10 cos 60°

= 5.0 N, and

vertical component, ab = 10 sin 60°

= 8.66 N
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(ii) Determine the horizontal and vertical compo-
nents of the 20 N force, i.e.

horizontal component, od = 20 cos(−30°)

= 17.32 N, and

vertical component, cd = 20 sin(−30°)

= −10.0 N

(iii) Determine the total horizontal component, i.e.

oa + od = 5.0 + 17.32 = 22.32 N

(iv) Determine the total vertical component, i.e.

ab + cd = 8.66 + (−10.0) = −1.34 N

Total horizontal component = 22.32
Total vertical
component = –1.34Resultant

0

r

f

Figure 3.25

(v) Sketch the total horizontal and vertical com-
ponents as shown in Figure 3.25. The resultant
of the two components is given by length or
and, by Pythagoras’ theorem,

or =
√

22.322 + 1.342

= 22.36 N

and using trigonometry, angle

φ = tan−1 1.34

22.32

= 3.44°

Hence the resultant of the 10 N and 20 N forces
shown in Figure 3.24 is 22.36 N at an angle of
−3.44° to the horizontal.

Problem 10. Forces of 5.0 N at 25° and
8.0 N at 112° act at a point. By resolving
these forces into horizontal and vertical
components, determine their resultant.

The space diagram is shown in Figure 3.26.

(i) The horizontal component of the 5.0 N force,

oa = 5.0 cos 25° = 4.532,

and the vertical component of the 5.0 N force,

ab = 5.0 sin 25° = 2.113

x x

c 0 a

b
5.0 N

112°

25°

d 8.0 N
y

y

Figure 3.26

(ii) The horizontal component of the 8.0 N force,

oc = 8.0 cos 112° = −2.997

The vertical component of the 8.0 N force,

cd = 8.0 sin 112° = 7.417

(iii) Total horizontal component

= oa + oc = 4.532 + (−2.997)

= +1.535

(iv) Total vertical component

= ab + cd = 2.113 + 7.417

= +9.530

9.530

1.535

φ

r

Figure 3.27

(v) The components are shown sketched in
Figure 3.27.
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By Pythagoras’ theorem,

r =
√

1.5352 + 9.5302

= 9.653,

and by trigonometry, angle

φ = tan−1 9.530

1.535
= 80.85°

Hence the resultant of the two forces shown in
Figure 3.26 is a force of 9.653 N acting at 80.85°

to the horizontal.

Problems 9 and 10 demonstrate the use of resolution
of forces for calculating the resultant of two coplanar
forces acting at a point. However the method may
be used for more than two forces acting at a point,
as shown in Problem 11.

Problem 11. Determine by resolution of
forces the resultant of the following three
coplanar forces acting at a point: 200 N
acting at 20° to the horizontal; 400 N acting
at 165° to the horizontal; 500 N acting at
250° to the horizontal.

A tabular approach using a calculator may be made
as shown below:

Horizontal component

Force 1 200 cos 20° = 187.94
Force 2 400 cos 165° = −386.37
Force 3 500 cos 250° = −171.01

Total horizontal component = −369.44

Vertical component

Force 1 200 sin 20° = 68.40
Force 2 400 sin 165° = 103.53
Force 3 500 sin 250° = −469.85

Total vertical component = −297.92

The total horizontal and vertical components are
shown in Figure 3.28.

Resultant r =
√

369.442 + 297.922

= 474.60,

and angle φ = tan−1 297.92

369.44
= 38.88°,

from which, α = 180° − 38.88° = 141.12°

–369.44

–297.92

φ

r

α

Figure 3.28

Thus the resultant of the three forces given
is 474.6 N acting at an angle of −141.12° (or
+218.88°) to the horizontal.

Now try the following exercise

Exercise 17 Further problems on resolu-
tion of forces

1. Resolve a force of 23.0 N at an angle
of 64° into its horizontal and vertical
components. [10.08 N, 20.67 N]

2. Forces of 5 N at 21° and 9 N at 126°

act at a point. By resolving these forces
into horizontal and vertical components,
determine their resultant.

[9.09 N at 93.92°]

In questions 3 and 4, determine the mag-
nitude and direction of the resultant of the
coplanar forces given, which are acting at
a point, by resolution of forces.

3. Force A, 12 N acting horizontally to the
right, force B, 20 N acting at 140° to
force A, force C, 16 N acting 290° to
force A. [3.1 N at −45° to force A]

4. Force 1, 23 kN acting at 80° to the hor-
izontal, force 2, 30 kN acting at 37° to
force 1, force 3, 15 kN acting at 70° to
force 2.

[53.5 kN at 37° to force 1
(i.e. 117°to the horizontal)]

5. Determine, by resolution of forces, the
resultant of the following three coplanar
forces acting at a point: 10 kN acting at
32° to the horizontal, 15 kN acting at 170°

to the horizontal; 20 kN acting at 240° to
the horizontal.

[18.82 kN at 210.03° to the horizontal]
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6. The following coplanar forces act at a
point: force A, 15 N acting horizontally
to the right, force B, 23 N at 81° to
the horizontal, force C, 7 N at 210° to
the horizontal, force D, 9 N at 265° to the
horizontal, and force E, 28 N at 324° to
the horizontal. Determine the resultant of
the five forces by resolution of the forces.

[34.96 N at −10.23° to the horizontal]

3.11 Summary

(a) To determine the resultant of two coplanar
forces acting at a point, four methods are
commonly used. They are:

by drawing:

(1) triangle of forces method, and

(2) parallelogram of forces method, and

by calculation:

(3) use of cosine and sine rules, and

(4) resolution of forces

(b) To determine the resultant of more than
two coplanar forces acting at a point, two
methods are commonly used. They are:

by drawing:

(1) polygon of forces method, and

by calculation:

(2) resolution of forces

Now try the following exercise

Exercise 18 Short answer questions on
forces acting at a point

1. Give one example of a scalar quantity
and one example of a vector quantity

2. Explain the difference between a scalar
and a vector quantity

3. What is meant by the centre of gravity
of an object?

4. Where is the centre of gravity of a rect-
angular lamina?

5. What is meant by neutral equilibrium?

6. State the meaning of the term ‘coplanar’

7. What is a concurrent force?

8. State what is meant by a triangle of
forces

9. State what is meant by a parallelogram
of forces

10. State what is meant by a polygon of
forces

11. When a vector diagram is drawn repre-
senting coplanar forces acting at a point,
and there is no resultant, the forces are
in . . . . . . . . . .

12. Two forces of 6 N and 9 N act horizon-
tally to the right. The resultant is . . . . . N
acting . . . . . . .

13. A force of 10 N acts at an angle of 50°

and another force of 20 N acts at an
angle of 230°. The resultant is a force
. . . . . . N acting at an angle of . . . . °

14. What is meant by ‘resolution of forces’?

15. A coplanar force system comprises a
20 kN force acting horizontally to the
right, 30 kN at 45°, 20 kN at 180° and
25 kN at 225°. The resultant is a force
of . . . . . . N acting at an angle of . . . .°

to the horizontal

Exercise 19 Multi-choice questions on
forces acting at a point
(Answers on page 284)

1. A physical quantity which has direction
as well as magnitude is known as a:

(a) force (b) vector (c) scalar

(d) weight

2. Which of the following is not a scalar
quantity?

(a) velocity (b) potential energy

(c) work (d) kinetic energy
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3. Which of the following is not a vector
quantity?

(a) displacement (b) density

(c) velocity (d) acceleration

4. Which of the following statements is
false?

(a) Scalar quantities have size or mag-
nitude only

(b) Vector quantities have both magni-
tude and direction

(c) Mass, length and time are all scalar
quantities

(d) Distance, velocity and acceleration
are all vector quantities

5. If the centre of gravity of an object
which is slightly disturbed is raised and
the object returns to its original position
when the disturbing force is removed,
the object is said to be in

(a) neutral equilibrium

(b) stable equilibrium

(c) static equilibrium

(d) unstable equilibrium

6. Which of the following statements is
false?

(a) The centre of gravity of a lamina is
at its point of balance.

(b) The centre of gravity of a circular
lamina is at its centre.

(c) The centre of gravity of a rectangu-
lar lamina is at the point of inter-
section of its two sides.

(d) The centre of gravity of a thin uni-
form rod is halfway along the rod.

7. The magnitude of the resultant of the
vectors shown in Figure 3.29 is:

5 N

7 N

Figure 3.29

(a) 2 N (b) 12 N

(c) 35 N (d) −2 N

8. The magnitude of the resultant of the
vectors shown in Figure 3.30 is:

(a) 7 N (b) 5 N (c) 1 N (d) 12 N

4 N

3 N

Figure 3.30

9. Which of the following statements is
false?

(a) There is always a resultant vector
required to close a vector diagram
representing a system of coplanar
forces acting at a point, which are
not in equilibrium.

(b) A vector quantity has both magni-
tude and direction.

(c) A vector diagram representing a
system of coplanar forces acting at
a point when in equilibrium does
not close.

(d) Concurrent forces are those which
act at the same time at the same
point.

10. Which of the following statements is
false?

(a) The resultant of coplanar forces of
1 N, 2 N and 3 N acting at a point
can be 4 N.

(b) The resultant of forces of 6 N and
3 N acting in the same line of
action but opposite in sense is 3 N.

(c) The resultant of forces of 6 N and
3 N acting in the same sense and
having the same line of action is
9 N.

(d) The resultant of coplanar forces of
4 N at 0°, 3 N at 90° and 8 N at
180° is 15 N.



FORCES ACTING AT A POINT 39

11. A space diagram of a force system is
shown in Figure 3.31. Which of the vec-
tor diagrams in Figure 3.32 does not rep-
resent this force system?

10 N

20 N

30 N

Figure 3.31

20 N

20 N

20 N
20 N

30 N

30 N

30 N 30 N

10 N

Not to scale

10 N

10 N

10 N

R
esultant

= 17.32 N

Resultant

= 17.32 N

Resultant

= 17.32 N

Resultant

= 17.32 N

(d)

(c)

(a) (b)

Figure 3.32

12. With reference to Figure 3.33, which of
the following statements is false?

F
B

= 20 N

F
D

= 8 N
F

C
= 5 N

F
A

= 10 N

150°

60°

30°

Figure 3.33

(a) The horizontal component of FA is
8.66 N

(b) The vertical component of FB is
10 N

(c) The horizontal component of FC
is 0

(d) The vertical component of FD is
4 N

13. The resultant of two forces of 3 N and
4 N can never be equal to:

(a) 2.5 N (b) 4.5 N (c) 6.5 N (d) 7.5 N

14. The magnitude of the resultant of the
vectors shown in Figure 3.34 is:

(a) 5 N (b) 13 N (c) 1 N (d) 63 N

3 N

3 N 7 N

Figure 3.34
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Forces in structures

At the end of this chapter you should be
able to:

• recognise a pin-jointed truss

• recognise a mechanism

• define a tie bar

• define a strut

• understand Bow’s notation

• calculate the internal forces in a truss by
a graphical method

• calculate the internal forces in a truss by
the ‘method of joints’

• calculate the internal forces in a truss by
the ‘method of sections’

4.1 Introduction

In this chapter it will be shown how the principles
described in Chapter 3 can be used to determine the
internal forces in the members of a truss, due to
externally applied loads. The definition of a truss is
that it is a frame where the joints are assumed to
be frictionless and pin-jointed, and that all external
loads are applied to the pin joints. In countries where
there is a lot of rain, such structures are used to
support the sloping roofs of the building, as shown
in Figure 4.1.

Loads

Pin-joints

Figure 4.1 Pin-jointed truss

The externally applied loads acting on the pin-
jointed trusses are usually due to snow and self-
weight, and also due to wind, as shown in Figure 4.1.
In Figure 4.1, the snow and self-weight loads act
vertically downwards and the wind loads are usually
assumed to act horizontally. Thus, for structures
such as that shown in Figure 4.1, where the exter-
nally applied loads are assumed to act at the
pin-joints, the internal members of the framework
resist the externally applied loads in tension or in
compression.

Members of the framework that resist the exter-
nally applied loads in tension are called ties and
members of the framework which resist the exter-
nally applied loads in compression are called struts,
as shown in Figure 4.2.

(a) Tie (b) Strut

Figure 4.2 Ties and struts

The internal resisting forces in the ties and struts
will act in the opposite direction to the externally
applied loads, as shown in Figure 4.3.

(a) Tie in tension (b) Strut in compresion

Figure 4.3 Internal resisting forces in ties and struts

The methods of analysis used in this chapter
breakdown if the joints are rigid (welded), or if
the loads are applied between the joints. In these
cases, flexure occurs in the members of the frame-
work, and other methods of analysis have to be
used, as described in Chapters 5 and 6. It must
be remembered, however, that even if the joints of
the framework are smooth and pin-jointed and also
if externally applied loads are placed at the pin-
joints, members of the truss in compression can fail
through structural failure (see references [1] and [2]
on page 54).

It must also be remembered that the methods used
here cannot be used to determine forces in statically
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indeterminate pin-jointed trusses, nor can they be
used to determine forces in mechanisms. Statically
indeterminate structures are so called because they
cannot be analysed by the principles of statics alone.
Typical mechanisms are shown in Figure 4.4; these
are not classified as structures because they are not
firm and can be moved easily under external loads.

(a) (b)

Pin-
joints

Figure 4.4 Mechanisms

To make the mechanism of Figure 4.4(a) into a
simple statically determinate structure, it is neces-
sary to add one diagonal member joined to a top
joint and an ‘opposite’ bottom joint. To make the
mechanism of Figure 4.4(b) into a statically deter-
minate structure, it is necessary to add two members
from the top joint to each of the two bottom joints
near the mid-length of the bottom horizontal.

Three methods of analysis will be used in this
chapter — one graphical and two analytical methods.

4.2 Worked problems on mechanisms
and pin-jointed trusses

Problem 1. Show how the mechanism of
Figure 4.4(a) can be made into a statically
determinate structure.

The two solutions are shown by the broken lines of
Figures 4.5(a) and (b), which represent the place-
ment of additional members.

(b)(a)

Figure 4.5

Problem 2. Show how the mechanism of
Figure 4.4(b) can be made into a statically
determinate truss.

The solution is shown in Figures 4.6, where the bro-
ken lines represent the placement of two additional
members.

Figure 4.6

Problem 3. Show how the mechanism of
Figure 4.4(a) can be made into a statically
indeterminate truss.

The solution is shown in Figure 4.7, where the
broken lines represent the addition of two members,
which are not joined where they cross.

A B

Figure 4.7

Problem 4. Why is the structure of
Figure 4.7 said to be statically indeterminate?

As you can only resolve vertically and horizontally
at the joints A and B, you can only obtain four
simultaneous equations. However, as there are five
members, each with an unknown force, you have
one unknown force too many. Thus, using the prin-
ciples of statics alone, the structure cannot be satis-
factorily analysed; such structures are therefore said
to be statically indeterminate.
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4.3 Graphical method

In this case, the method described in Chapter 3 will
be used to analyse statically determinate plane
pin-jointed trusses. The method will be described
with the aid of worked examples.

Problem 5. Determine the internal forces
that occur in the plane pin-jointed truss of
Figure 4.8, due to the externally applied
vertical load of 3 kN.

A B

C

R1 R2

D

3 kN

30° 60°

Figure 4.8

Firstly, we will fill the spaces between the forces
with upper case letters of the alphabet, as shown in
Figure 4.8. It should be noted that the only reactions
are the vertical reactions R1 and R2; this is because
the only externally applied load is the vertical load
of 3 kN, and there is no external horizontal load.
The capital letters A, B, C and D can be used to
represent the forces between them, providing they
are taken in a clockwise direction about each joint.
Thus the letters AB represent the vertical load of
3 kN. Now as this load acts vertically downwards,
it can be represented by a vector ab, where the
magnitude of ab is 3 kN and it points in the direction
from a to b. As ab is a vector, it will have a
direction as well as a magnitude. Thus ab will
point downwards from a to b as the 3 kN load acts
downwards.

This method of representing forces is known as
Bow’s notation.

To analyse the truss, we must first consider the
joint ABD; this is because this joint has only two
unknown forces, namely the internal forces in the
two members that meet at the joint ABD. Neither
joints BCD and CAD can be considered first,
because each of these joints has more than two
unknown forces.

Now the 3 kN load is between the spaces A and
B, so that it can be represented by the lower case
letters ab, point from a to b and of magnitude 3 kN,
as shown in Figure 4.9.

a

b

d

30°

3 kN

60°

Figure 4.9

Similarly, the force in the truss between the spaces
B and D, namely the vector bd, lies at 60° to the
horizontal and the force in the truss between the
spaces D and A, namely the vector da, lies at 30°

to the horizontal. Thus, in Figure 4.9, if the vectors
bd and ad are drawn, they will cross at the point d ,
where the point d will obviously lie to the left of
the vector ab, as shown. Hence, if the vector ab is
drawn to scale, the magnitudes of the vectors bd and
da can be measured from the scaled drawing. The
direction of the force in the member between the
spaces B and D at the joint ABD point upwards
because the vector from b to d points upwards.
Similarly, the direction of the force in the member
between the spaces D and A at the joint ABD is
also upwards because the vector from d to a points
upwards. These directions at the joint ABD are
shown in Figure 4.10. Now as the framework is in
equilibrium, the internal forces in the members BD
and DA at the joints (2) and (1) respectively, will
be equal and opposite to the internal forces at the
joint ABD; these are shown in Figure 4.10.

A B

C

R1 R2

Joint

D

Joint 1 2

3 kN

−2.6 kN−1.55 kN

Figure 4.10

Comparing the directions of the arrows in
Figure 4.10 with those of Figure 4.3, it can be seen
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that the members BD and DA are in compression
and are defined as struts. It should also be noted
from Figure 4.10, that when a member of the
framework, say, BD, is so defined, we are referring
to the top joint, because we must always work
around a joint in a clockwise manner; thus the
arrow at the top of BD points upwards, because in
Figure 4.9, the vector bd points upwards from b to
d . Similarly, if the same member is referred to as
DB, then we are referring to the bottom of this
member at the joint (2), because we must always
work clockwise around a joint. Hence, at joint (2),
the arrow points downwards, because the vector db
points downwards from d to b in Figure 4.9.

To determine the unknown forces in the horizontal
member between joints (1) and (2), either of these
joints can be considered, as both joints now only
have two unknown forces. Let us consider joint (1),
i.e. joint ADC. Now the vector ad can be measured
from Figure 4.9 and drawn to scale in Figure 4.11.

30°
a

cd

Figure 4.11

Now the unknown force between the spaces D
and C, namely the vector dc is horizontal and the
unknown force between the spaces C and A, namely
the vector ca is vertical, hence, by drawing to scale
and direction, the point c can be found. This is
because the point c in Figure 4.11 lies below the
point a and to the right of d .

In Figure 4.11, the vector ca represents the mag-
nitude and direction of the unknown reaction R1

and the vector dc represents the magnitude and
direction of the force in the horizontal member at
joint (1); these forces are shown in Figure 4.12,
where R1 = 0.82 kN and dc = 1.25 kN.

A B

C

R1 = ca = 0.82 kN R2 = ?

D

3 kN

−2.6 kN−1.55 kN

+1.25 kN

Figure 4.12

Comparing the directions of the internal forces in
the bottom of the horizontal member with Figure 4.3,

it can be seen that this member is in tension and
therefore, it is a tie.

The reaction R2 can be determined by considering
joint (2), i.e. joint BCD, as shown in Figure 4.13,
where the vector bc represents the unknown reaction
R2 which is measured as 2.18 kN.

b

cd

Figure 4.13

The complete vector diagram for the whole frame-
work is shown in Figure 4.14, where it can be seen
that R1 + R2 = 3 kN, as required by the laws of
equilibrium. It can also be seen that Figure 4.14 is a
combination of the vector diagrams of Figures 4.9,
4.11 and 4.13. Experience will enable this problem
to be solved more quickly by producing the vector
diagram of Figure 4.14 directly.

a

b

cd

Figure 4.14

The table below contains a summary of all the
measured forces.

Member Force (kN)

bd −2.6
da −1.55
cd 1.25
R1 0.82
R2 2.18

Problem 6. Determine the internal forces in
the members of the truss of Figure 4.15. due
to the externally applied horizontal force of
4 kN at the joint ABE.



44 MECHANICAL ENGINEERING PRINCIPLES

A B
E

D C

R1 R2

H2

Joint
Joint 1

2

4 kN

30° 60°

Figure 4.15

In this case, the spaces between the unknown forces
are A, B, C, D and E. It should be noted that the
reaction at joint (1) is vertical because the joint is on
rollers, and that there are two reactions at joint (2)
because it is firmly anchored to the ground and there
is also a horizontal force of 4 kN which must be
balanced by the unknown horizontal reaction H2.
If this unknown horizontal reaction did not exist,
the structure would ‘float’ into space due to the
4 kN load.

Consider joint ABE, as there are only two
unknown forces here, namely the forces in the mem-
bers BE and EA. Working clockwise around this
joint, the vector diagram for this joint is shown
in Figure 4.16. By measurement, ae = 3.5 kN and
be = 2.1 kN.

30° 60°
a

e

b4 kN

Figure 4.16

Joint (2) cannot be considered next, as it has three
unknown forces, namely H2, R2 and the unknown
member force DE. Hence, joint (1) must be consid-
ered next; it has two unknown forces, namely R1 and
the force in member ED. As the member AE and
its direction can be obtained from Figure 4.16, it can
be drawn to scale in Figure 4.17. By measurement,
de = 3 kN.

As R1 is vertical, then the vector da is vertical,
hence, the position d can be found in the vector
diagram of Figure 4.17, where R1 = da (pointing
downwards). By measurement, R1 = 1.8 kN.

To determine R2 and H2, joint (2) can now be
considered, as shown by the vector diagram for the
joint in Figure 4.18.

The complete diagram for the whole framework
is shown in Figure 4.19, where it can be seen that

3.5 kN

a

ed
30°

Figure 4.17

bc

ed 3 kN

2.1 kN

Figure 4.18

ba,c

d e

Figure 4.19

this diagram is the sum of the vector diagrams of
Figures 4.16 to 4.18.
The table below contains a summary of all the
measured forces

Member Force (kN)

be −2.1
ae 3.5
de −3.0
R1 −1.8
R2 1.8
H2 4.0

Couple and moment

Prior to solving Problem 7, it will be necessary for
the reader to understand the nature of a couple; this
is described in Chapter 9, page 109.

The magnitude of a couple is called its moment;
this is described in Chapter 5, page 57.
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Problem 7. Determine the internal forces in
the pin-jointed truss of Figure 4.20.

2 m

4 kN

3 kN

5 kN

Joint 2Joint 1

R1 R2

2 m 2 m 2 m

30°30°30° 30°

Figure 4.20

In this case, there are more than two unknowns
at every joint; hence it will first be necessary to
calculate the unknown reactions R1 and R2.

To determine R1, take moments about joint (2):

Clockwise moments about joint (2)=counter-clock-
wise (or anti-clockwise) moments about joint (2)

i.e. R1 × 8 m = 4 kN × 6 m + 3 kN × 4 m

+ 5 kN × 2 m

= 24 + 12 + 10 = 46 kN m

Therefore, R1 = 46 kN m

8 m
= 5.75 kN

Resolving forces vertically:

Upward forces = downward forces

i.e. R1 + R2 = 4 + 3 + 5 = 12 kN

However, R1 = 5.75 kN, from above,

hence, 5.75 kN + R2 = 12 kN

from which, R2 = 12 − 5.75

= 6.25 kN

Placing these reactions on Figure 4.21, together with
the spaces between the lines of action of the forces,
we can now begin to analyse the structure.

R1 = 5.75 kN R2 = 6.25 kN

5 kN4 kN

3 kN

B

A

C

D

E

F

G H

J

Figure 4.21

Starting at either joint AFE or joint DEJ , where
there are two or less unknowns, the drawing to
scale of the vector diagram can commence. It must
be remembered to work around each joint in turn,
in a clockwise manner, and only to tackle a joint
when it has two or less unknowns. The complete
vector diagram for the entire structure is shown in
Figure 4.22.

a

b

c

d

e
f

g

h

j

R1 = 5.75 kN

R2 = 6.25 kN

Figure 4.22

The table below contains a summary of all the
measured forces.

Member Force (kN)

af −11.5
f e 10.0
jd −12.5
ej 10.9
bg −7.5
gf −4.0
ch −7.6
hg 4.6
jh −5.0
R1 5.75
R2 6.25
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Now try the following exercise

Exercise 20 Further problems on a graph-
ical method

Determine the internal forces in the following
pin-jointed trusses using a graphical method:

1.

1 2

3

30°60°

R1 R2

4 kN

Figure 4.23

⎡

⎢

⎢

⎣

R1 = 3.0 kN, R2 = 1.0 kN,

1–2, 1.7 kN, 1–3, −3.5 kN,

2–3, −2.0 kN

⎤

⎥

⎥

⎦

2.

R1 R2

H230°60°

3

2

6 kN

1

Figure 4.24

⎡

⎢

⎢

⎣

R1 = −2.6 kN, R2 = 2.6 kN,

H2 = 6.0 kN, 1–2, −1.5 kN,

1–3, 3.0 kN, 2–3, −5.2 kN

⎤

⎥

⎥

⎦

3.

R1 R2

H1 45°1

3

2

4 kN

6 kN

45°

Figure 4.25

⎡

⎢

⎢

⎣

R1 = 5.0 kN, R2 = 1.0 kN,

H1 = 4.0 kN 1–2, 1.0 kN,

1–3, −7.1 kN, 2–3, −1.4 kN

⎤

⎥

⎥

⎦

4.

2 kN

4 kN

6 kN

53

2

4

1 30° 30° 30°30°
6

12 m

R1 R2

Figure 4.26

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

R1 = 5.0 kN, R2 = 7.0 kN,

1–3, −10.0 kN, 1–6, −8.7 kN,

3–4, −8.0 kN, 3–6, −2.0 kN,

4–6, 4.0 kN, 4–5, 8.0 kN,

5–6, −6.0 kN, 5–2, −14.0 kN,

6–2, 12.1 kN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

4.4 Method of joints (a mathematical
method)

In this method, all unknown internal member forces
are initially assumed to be in tension. Next, an
imaginary cut is made around a joint that has two
or less unknown forces, so that a free body diagram
is obtained for this joint. Next, by resolving forces
in respective vertical and horizontal directions at
this joint, the unknown forces can be calculated.
To continue the analysis, another joint is selected
with two or less unknowns and the process repeated,
remembering that this may only be possible because
some of the unknown member forces have been
previously calculated. By selecting, in turn, other
joints where there are two or less unknown forces,
the entire framework can be analysed.

It must be remembered that if the calculated force
in a member is negative, then that member is in
compression. Vice-versa is true for a member in
tension.

To demonstrate the method, some pin-jointed
trusses will now be analysed in Problems 8 to 10.
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Problem 8. Solve Problem 5, Figure 4.8 on
page 42, by the method of joints.

Firstly, assume all unknowns are in tension, as
shown in Figure 4.27.

Joint  1

F3

F2

F1

3 kN

Joint  3
Joint  2

30° 60°

Figure 4.27

Next, make imaginary cuts around the joints, as
shown by the circles in Figure 4.27. This action
will give us three free body diagrams. The first we
consider is around joint (1), because this joint has
only two unknown forces; see Figure 4.28.

F1 F2

30°

3 kN

60°

Figure 4.28

Resolving forces horizontally at joint (1):

Forces to the left = forces to the right

i.e. F1 cos 30° = F2 cos 60°

i.e. 0.866 F1 = 0.5 F2

from which, F1 = 0.5 F2

0.866

i.e. F1 = 0.577 F2 (4.1)

Resolving forces vertically at joint (1):

Upward forces = downward forces

i.e. 0 = 3 kN + F1 sin 30° + F2 sin 60°

i.e. 0 = 3 + 0.5 F1 + 0.866 F2 (4.2)

Substituting equation (4.1) into equation (4.2) gives:

0 = 3 + 0.5 × 0.577 F2 + 0.866 F2

i.e. −3 = 1.1545 F2

from which, F2 = − 3

1.1545

i.e. F2 = −2.6 kN (compressive) (4.3)

Substituting equation (4.3) into equation (4.1) gives:

F1 = 0.577 × (−2.6)

i.e. F1 = −1.5 kN (compressive)

Consider next joint (2), as it now has two or less
unknown forces; see Figure 4.29.

R1

F3

F1 = −1.5 kN

30°

Figure 4.29

Resolving horizontally:

Forces to the left = forces to the right

i.e. 0 = F1 cos 30° + F3

However, F1 = −1.5 kN,

hence, 0 = −1.5 × 0.866 + F3

from which, F3 = 1.30 kN(tensile)

These results are similar to those obtained by the
graphical method used in Problem 5; see Figure 4.12
on page 43, and the table below.

Member Force (kN)

F1 −1.5
F2 −2.6
F3 1.3

Problem 9. Solve Problem 6, Figure 4.15
on page 44, by the method of joints.

Firstly, we will assume that all unknown internal
forces are in tension, as shown by Figure 4.30.
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4 kN

30° 60°

Joint  1

Joint  3

Joint  2

R1

R2

H2

Figure 4.30

Next, we will isolate each joint by making imagi-
nary cuts around each joint, as shown by the circles
in Figure 4.30; this will result in three free body
diagrams. The first free body diagram will be for
joint (1), as this joint has two or less unknown
forces; see Figure 4.31.

60°

4 kN

30°

F2

F1

Figure 4.31

Resolving forces horizontally:

F1 cos 30° = 4 kN + F2 cos 60°

i.e. 0.866 F1 = 4 + 0.5 F2

from which, F1 = 4 + 0.5 F2

0.866

or F1 = 4.619 kN + 0.577 F2 (4.4)

Resolving forces vertically:

0 = F1 sin 30° + F2 sin 60°

i.e. 0 = 0.5 F1 + 0.866 F2

or −F1 = 0.866 F2

0.5

or F1 = −1.732 F2 (4.5)

Equating equations (4.4) and (4.5) gives:

4.619 kN + 0.577 F2 = −1.732 F2

i.e. 4.619 = −1.732 F2 − 0.577 F2

= −2.309 F2

Hence F2 = −4.619

2.309

i.e. F2 = −2 kN (compressive) (4.6)

Substituting equation (4.6) into equation (4.5) gives:

F1 = −1.732 × (−2)

i.e. F1 = 3.465 kN (4.7)

Consider next joint (2), as this joint now has two
or less unknown forces; see Figure 4.32.

F3

R1

30°

F1 = 3.465 kN

Figure 4.32

Resolving forces vertically:

R1 + F1 sin 30° = 0

or R1 = −F1 sin 30° (4.8)

Substituting equation (4.7) into equation (4.8) gives:

R1 = −3.465 × 0.5

i.e. R1 = −1.733 kN (acting downwards)

Resolving forces horizontally:

0 = F1 cos 30° + F3

or F3 = −F1 cos 30° (4.9)

Substituting equation (4.7) into equation (4.9) gives:

F3 = −3.465 × 0.866

i.e. F3 = −3 kN (compressive) (4.10)

Consider next joint 3; see Figure 4.33.

F2 = −2 kN

R2

H2
F3 = −3 kN

60˚

Figure 4.33
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Resolving forces vertically:

F2 sin 60° + R2 = 0

i.e. R2 = −F2 sin 60° (4.11)

Substituting equation (4.6) into equation (4.11) gives:

R2 = −(−2)× 0.866

i.e. R2 = 1.732 kN (acting upwards)

Resolving forces horizontally:

F3 + F2 cos 60° +H2 = 0

i.e. H2 = −F3 − F2 × 0.5 (4.12)

Substituting equations (4.6) and (4.10) into equa-
tion (4.12) gives:

H2 = −(−3)–(−2)× 0.5

i.e. H2 = 4 kN

These calculated forces are of similar value to those
obtained by the graphical solution for Problem 6, as
shown in the table below.

Member Force (kN)

F1 3.47
F2 −2.0
F3 −3.0
R1 −1.73
R2 1.73
H2 4.0

Problem 10. Solve Problem 7, Figure 4.20
on page 45, by the method of joints.

Firstly, assume all unknown member forces are in
tension, as shown in Figure 4.34.

30°30° 30°30°
60°

60°

3 kN

5 kN4 kN

R1 = 5.75 kN R2 = 6.25 kN

Joint 1

Joint 3

Joint 4

Joint 5

Joint 2

Figure 4.34

Next, we will isolate the forces acting at each
joint by making imaginary cuts around each of the
five joints as shown in Figure 4.34.

As there are no joints with two or less unknown
forces, it will be necessary to calculate the unknown
reactions R1 and R2 prior to using the method of
joints.

Using the same method as that described for the
solution of Problem 7, we have

R1 = 5.75 kN and R2 = 6.25 kN

Now either joint (1) or joint (2) can be considered,
as each of these joints has two or less unknown
forces.
Consider joint (1); see Figure 4.35.

R1 = 5.75 kN

F2

F1

30°

Figure 4.35

Resolving forces vertically:

5.75 + F1 sin 30° = 0

i.e. F1 sin 30° = −5.75

or 0.5 F1 = −5.75

i.e. F1 = −5.75

0.5

i.e. F1 = −11.5 kN (compressive)
(4.13)

Resolving forces horizontally:

0 = F2 + F1 cos 30°

i.e. F2 = −F1 cos 30° (4.14)

Substituting equation (4.13) into equation (4.14)
gives:

F2 = −F1 cos 30° = −(−11.5)× 0.866

i.e. F2 = 9.96 kN (tensile)

Consider joint (2); see Figure 4.36.
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F3

F4

R2 = 6.25 kN

30°

Figure 4.36

Resolving forces vertically:

R2 + F4 sin 30° = 0

i.e. R2 + 0.5 F4 = 0

or F4 = −R2

0.5
(4.15)

Since R2 = 6.25, F4 = −6.25

0.5

i.e. F4 = −12.5 kN (compressive)
(4.16)

Resolving forces horizontally:

F3 + F4 cos 30° = 0

i.e. F3 = −F4 cos 30° (4.17)

Substituting equation (4.16) into equation (4.17)
gives:

F3 = −(−12.5)× 0.866

i.e. F3 = 10.83 kN (tensile)

Consider joint (3); see Figure 4.37.

F5

F64 kN

30°

30°

30°

F1 = −11.5 kN

Figure 4.37

Resolving forces vertically:

F6 sin 30° = F1 sin 30° + F5 sin 30° + 4

i.e. F6 = F1 + F5 + 4

sin 30°
(4.18)

Substituting equation (4.13) into equation (4.18)
gives:

F6 = −11.5 + F5 + 8 (4.19)

Resolving forces horizontally:

F1 cos 30° = F5 cos 30° + F6 cos 30°

i.e. F1 = F5 + F6 (4.20)

Substituting equation (4.13) into equation (4.20)
gives:

−11.5 = F5 + F6

or F6 = −11.5 − F5 (4.21)

Equating equations (4.19) and (4.21) gives:

−11.5 + F5 + 8 = −11.5 − F5

or F5 + F5 = −11.5 + 11.5 − 8

i.e. 2 F5 = −8

from which, F5 = −4 kN (compressive)
(4.22)

Substituting equation (4.22) into equation (4.21)
gives:

F6 = −11.5 − (−4)

i.e. F6 = −7.5 kN (compressive) (4.23)

Consider joint (4); see Figure 4.38.

3 kN

30° 30°

F7F6 = −7.5 kN F8

Figure 4.38

Resolving forces horizontally:

F6 cos 30° = F8 cos 30°

i.e. F6 = F8

but from equation (4.23),

F6 = −7.5 kN

Hence, F8 = −7.5 kN (compressive) (4.24)
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Resolving forces vertically:

0 = 3 + F6 sin 30° + F7 + F8 sin 30°

i.e. 0 = 3 + 0.5 F6 + F7 + 0.5 F8 (4.25)

Substituting equations (4.23) and (4.24) into equa-
tion (4.25) gives:

0 = 3 + 0.5 × −7.5 + F7

+ 0.5 × −7.5

or F7 = −3 + 0.5 × 7.5 + 0.5 × 7.5

= −3 + 7.5

from which, F7 = 4.5 kN (tensile) (4.26)

Consider joint (5); see Figure 4.39.

F4 = −12.5 kN

F8 = −7.5 kN

F9

5 kN

30°30°

30°

Figure 4.39

Resolving forces horizontally:

F8 cos 30° + F9 cos 30° = F4 cos 30°

i.e. F8 + F9 = F4 (4.27)

Substituting equations (4.24) and (4.16) into equa-
tion (4.27) gives:

−7.5 + F9 = −12.5

i.e. F9 = −12.5 + 7.5

i.e. F9 = −5 kN (compressive)

The results compare favourably with those obtained
by the graphical method used in Problem 7; see the

table below.

Member Force (kN)

F1 −11.5
F2 9.96
F3 10.83
F4 −12.5
F5 −4.0
F6 −7.5
F7 4.5
F8 −7.5
F9 −5.0

Now try the following exercise

Exercise 21 Further problems on the
method of joints

Using the method of joints, determine the
unknown forces for the following pin-jointed
trusses:

1. Figure 4.23 (page 46)
⎡

⎢

⎢

⎣

R1 = 3.0 kN, R2 = 1.0 kN,

1–2, 1.73 kN, 1–3, −3.46 kN,

2–3, −2.0 kN

⎤

⎥

⎥

⎦

2. Figure 4.24 (page 46)
⎡

⎢

⎢

⎣

R1 = −2.61 kN, R2 = 2.61 kN,

H2 = 6.0 kN, 1–2, −1.5 kN,

1–3, 3.0 kN, 2–3, −5.2 kN

⎤

⎥

⎥

⎦

3. Figure 4.25 (page 46)
⎡

⎢

⎢

⎣

R1 = 5.0 kN, R2 = 1.0 kN,

H1 = 4.0 kN, 1–2, 1.0 kN,

1–3, −7.07 kN, 2–3, −1.41 kN

⎤

⎥

⎥

⎦

4. Figure 4.26 (page 46)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

R1 = 5.0 kN, R2 = 7.0 kN,

1–3, −10.0 kN, 1–6, −8.7 kN,

3–4, −8.0 kN, 3–6, −2.0 kN,

4–6, 4.0 kN 4–5, 8.0 kN,

5–6, −6 kN, 5–2, −14 kN,

6–2, 12.1 kN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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4.5 The method of sections
(a mathematical method)

In this method, an imaginary cut is made through
the framework and the equilibrium of this part of
the structure is considered through a free body
diagram. No more than three unknown forces can
be determined through any cut section, as only three
equilibrium considerations can be made, namely

(a) resolve forces horizontally

(b) resolve forces vertically

(c) take moments about a convenient point.

Worked Problem 11 demonstrates the method of
sections.

Problem 11. Determine the unknown
member forces F2, F5 and F6 of the truss of
Figure 4.34, Problem 10, by the method of
sections (where F2, F5 and F6 are defined in
the solution on pages 49 to 51).

Firstly, all members will be assumed to be in tension
and an imaginary cut will be made through the
framework, as shown by Figure 4.40.

B

A 30°30°30° 30°

60° 60°

4 kN

3 kN

5 kN

R1 = 5.75 kN R2 = 6.25 kN
Imaginary

cut

Figure 4.40

Taking moments about B; see Figure 4.41.

Clockwise moments = anti-clockwise moments

Hence, 5.75 kN × 2 m = F2 × 1.155 m

where 2 tan 30° = 1.155 m (from Figure 4.41)

i.e. F2 = 5.75 × 2

1.155
= 9.96 kN (tensile) (4.28)

1.155 m

4 kN

B

F6

F5

F2

R1 = 5.75 kN

A

2 m

30°

30°

30°

Figure 4.41

Resolving forces vertically:

5.75 kN + F6 sin 30° = F5 sin 30° + 4 kN

i.e. F5 = F6 + 5.75

0.5
− 4

0.5

i.e. F5 = F6 + 3.5 (4.29)

Resolving forces horizontally:

0 = F2 + F5 cos 30° + F6 cos 30°

from which, F5 cos 30° = −F2 − F6 cos 30°

and F5 = − F2

cos 30°
− F6 (4.30)

Substituting equation (4.28) into equation (4.30)
gives:

F5 = − 9.96

0.866
− F6

or F5 = −11.5 − F6 (4.31)

Equating equation (4.29) to equation (4.31) gives:

F6 + 3.5 = −11.5 − F6

from which, 2 F6 = −11.5 − 3.5 = −15

and F6 = −15

2

= −7.5 kN (compressive)
(4.32)

Substituting equation (4.32) into equation (4.31)
gives:

F5 = −11.5 − (−7.5)

= −4 kN(compressive) (4.33)
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i.e. F2 = 9.96 kN,

F5 = −4 kN

and F6 = −7.5 kN

The above answers can be seen to be the same as
those obtained in Problem 10.

Now try the following exercise

Exercise 22 Further problems on the
method of sections

Determine the internal member forces of the
following trusses, by the method of sections:

1. Figure 4.23 (page 46)

[R1 = 3.0 kN, R2 = 1.0 kN,

1–2, 1.73 kN, 1–3, −3.46 kN,

2–3, −2.0 kN]

2. Figure 4.24 (page 46)
⎡

⎢

⎢

⎣

R1 = −2.61 kN, R2 = 2.61 kN,

H2 = 6 kN, 1–2, −1.5 kN,

1–3, 3.0 kN, 2–3, −5.2 kN

⎤

⎥

⎥

⎦

3. Figure 4.25 (page 46)
⎡

⎢

⎢

⎣

R1 = 5.0 kN, R2 = 1.0 kN,

H1 = 4.0 kN 1–2, 1.0 kN,

1–3, −7.07 kN, 2–3, −1.41 kN

⎤

⎥

⎥

⎦

4. Figure 4.26 (page 46)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

R1 = 5.0 kN, R2 = 7.0 kN,

1–3, −10.0 kN, 1–6, −8.7 kN,

3–4, −8.0 kN, 3–6, −2.0 kN,

4–6, 4.0 kN, 4–5, 8.0 kN,

5–6, −6.0 kN, 5–2, −14.0 kN,

6–2, 12.1 kN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Exercise 23 Short answer questions on
forces in structures

1. Where must the loads be applied on a pin-
jointed truss?

2. If there are three unknown forces in a
truss, how many simultaneous equations
are required to determine these unknown
forces?

3. When is a truss said to be statically
indeterminate?

4. For a plane pin-jointed truss, what are the
maximum number of unknowns that can
exist at a joint to analyse that joint without
analysing another joint before it?

Exercise 24 Multi-choice questions on
forces in frameworks (Ans-
wers on page 284)

1. Is the truss of Figure 4.42:

F1

F2

Figure 4.42

(a) a mechanism

(b) statically determinate

(c) statically indeterminate

2. The value of F1 in Figure 4.43 is:

(a) 1 kN (b) 0.5 kN (c) 0.707 kN

1 kN

30° F1

F2

Figure 4.43

3. The value of F2 in Figure 4.43 is:

(a) 0.707 kN (b) 0.5 kN (c) 0
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4. If the Young’s modulus is doubled in
the members of a pin-jointed truss, and
the external loads remain the same, the
internal forces in the truss will:

(a) double (b) halve

(c) stay the same

5. If the Young’s modulus is doubled in the
members of a pin-jointed truss, and the
loads remain the same, the deflection of
the truss will:

(a) double (b) halve

(c) stay the same

6. If the external loads in a certain truss are
doubled, the internal forces will:

(a) double (b) halve

(c) stay the same
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Assignment 1

This assignment covers the material
contained in Chapters 1 to 4.
The marks for each question are shown
in brackets at the end of each question.

1. A metal bar having a cross-sectional area

of 80 mm2 has a tensile force of 20 kN
applied to it. Determine the stress in
the bar. (4)

2. (a) A rectangular metal bar has a
width of 16 mm and can support
a maximum compressive stress of
15 MPa; determine the minimum
breadth of the bar when loaded
with a force of 6 kN

(b) If the bar in (a) is 1.5 m long and
decreases in length by 0.18 mm
when the force is applied, deter-
mine the strain and the percentage
strain. (7)

3. A wire is stretched 2.50 mm by a
force of 400 N. Determine the force
that would stretch the wire 3.50 mm,
assuming that the elastic limit is not
exceeded. (5)

4. A copper tube has an internal diame-
ter of 140 mm and an outside diame-
ter of 180 mm and is used to support a
load of 4 kN. The tube is 600 mm long
before the load is applied. Determine, in
micrometres, by how much the tube con-
tracts when loaded, taking the modulus
of elasticity for copper as 96 GPa. (8)

5. The results of a tensile test are: diame-
ter of specimen 21.7 mm; gauge length
60 mm; load at limit of proportion-
ality 50 kN; extension at limit of
proportionality 0.090 mm; maximum

load 100 kN; final length at point of
fracture 75 mm.

Determine (a) Young’s modulus of elas-
ticity, (b) the ultimate tensile strength,
(c) the stress at the limit of proportion-
ality, (d) the percentage elongation.

(10)

6. A force of 25 N acts horizontally to the
right and a force of 15 N is inclined at
an angle of 30° to the 25 N force. Deter-
mine the magnitude and direction of the
resultant of the two forces using (a) the
triangle of forces method, (b) the paral-
lelogram of forces method, and (c) by
calculation (12)

7. Determine graphically the magnitude
and direction of the resultant of the
following three coplanar forces, which
may be considered as acting at a point.
Force P , 15 N acting horizontally to the
right, force Q, 8 N inclined at 45° to
force P , and force R, 20 N inclined at
120° to force P (7)

8. Determine by resolution of forces the
resultant of the following three coplanar
forces acting at a point: 120 N acting at
40° to the horizontal; 250 N acting at
145° to the horizontal; 300 N acting at
260° to the horizontal. (8)

9. Determine the unknown internal forces
in the pin-jointed truss of Figure A1.1.

(7)

R2

H1

H2

1

30°

2

3

2 kN

Figure A1.1
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10. Determine the unknown internal forces
in the pin-jointed truss of Figure A1.2.

(12)

R1

R2

H1

H2

45° 45°

30°

2

4

31

2 kN

Figure A1.2
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Simply supported beams

At the end of this chapter you should be
able to:

• define a ‘moment’ of a force and state
its unit

• calculate the moment of a force from
M = F × d

• understand the conditions for equilibrium
of a beam

• state the principle of moments

• perform calculations involving the princi-
ple of moments

• recognise typical practical applications of
simply supported beams with point load-
ings

• perform calculations on simply supported
beams having point loads

• perform calculations on simply supported
beams with couples

5.1 The moment of a force

When using a spanner to tighten a nut, a force tends
to turn the nut in a clockwise direction. This turning
effect of a force is called the moment of a force or
more briefly, just a moment. The size of the moment
acting on the nut depends on two factors:

(a) the size of the force acting at right angles to
the shank of the spanner, and

(b) the perpendicular distance between the point
of application of the force and the centre of
the nut.

In general, with reference to Figure 5.1, the moment
M of a force acting about a point P is force ×
perpendicular distance between the line of action
of the force and P , i.e.

M = F × d

P

Moment, M

Turning radius,d

Force, F

Figure 5.1

The unit of a moment is the newton metre (N m).
Thus, if force F in Figure 5.1 is 7 N and distance
d is 3 m, then the moment M is 7 N × 3 m, i.e.
21 N m.

Problem 1. A force of 15 N is applied to a
spanner at an effective length of 140 mm
from the centre of a nut. Calculate (a) the
moment of the force applied to the nut,
(b) the magnitude of the force required to
produce the same moment if the effective
length is reduced to 100 mm.

M

P

140 mm

15 N

(a)

F

P

100 mm

(b)

M = 2100 N mm

Figure 5.2

From above, M = F × d , where M is the turning
moment, F is the force applied at right angles to the
spanner and d is the effective length between the
force and the centre of the nut. Thus, with reference
to Figure 5.2(a):

(a) Turning moment,

M = 15 N × 140 mm = 2100 N mm

= 2100 N mm × 1 m

1000 mm

= 2.1 N m
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(b) Turning moment, M is 2100 N mm and the
effective length d becomes 100 mm (see
Figure 5.2(b)).

Applying M = F × d

gives: 2100 N mm = F × 100 mm

from which, force, F = 2100 N mm

100 mm

= 21 N

Problem 2. A moment of 25 N m is
required to operate a lifting jack. Determine
the effective length of the handle of the jack
if the force applied to it is:

(a) 125 N (b) 0.4 kN

From above, moment M = F × d , where F is the
force applied at right angles to the handle and d is
the effective length of the handle. Thus:

(a) 25 N m = 125 N × d , from which
effective length,

d = 25 N m

125 N
= 1

5
m

= 1

5
× 1000 mm = 200 mm

(b) Turning moment M is 25 N m and the force F
becomes 0.4 kN, i.e. 400 N. Since M = F×d ,
then 25 N m = 400 N × d . Thus, effective
length,

d = 25 N m

400 N
= 1

16
m

= 1

16
× 1000 mm

= 62.5 mm

Now try the following exercise

Exercise 25 Further problems on the
moment of a force

1. Determine the moment of a force of 25 N
applied to a spanner at an effective length
of 180 mm from the centre of a nut.

[4.5 N m]

2. A moment of 7.5 N m is required to turn a
wheel. If a force of 37.5 N applied to the

rim of the wheel can just turn the wheel,
calculate the effective distance from the
rim to the hub of the wheel. [200 mm]

3. Calculate the force required to produce
a moment of 27 N m on a shaft, when
the effective distance from the centre of
the shaft to the point of application of the
force is 180 mm. [150 N]

5.2 Equilibrium and the principle of
moments

If more than one force is acting on an object and the
forces do not act at a single point, then the turning
effect of the forces, that is, the moment of the forces,
must be considered.

Figure 5.3 shows a beam with its support (known
as its pivot or fulcrum) at P , acting vertically
upwards, and forces F1 and F2 acting vertically
downwards at distances a and b, respectively, from
the fulcrum.

F
1

F
2

Rp

a b

P

Figure 5.3

A beam is said to be in equilibrium when there is
no tendency for it to move. There are two conditions
for equilibrium:

(i) The sum of the forces acting vertically down-
wards must be equal to the sum of the forces
acting vertically upwards, i.e. for Figure 5.3,
Rp = F1 + F2

(ii) The total moment of the forces acting on a
beam must be zero; for the total moment to
be zero:

the sum of the clockwise moments about any
point must be equal to the sum of the anticlock-
wise, or counter-clockwise, moments about that
point

This statement is known as the principle of
moments.
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Hence, taking moments about P in Figure 5.3,

F2 × b = the clockwise moment, and

F1 × a = the anticlockwise, or

counter-clockwise, moment

Thus for equilibrium: F1a = F2b

Problem 3. A system of forces is as shown
in Figure 5.4

F

P

d

5 N 7 N
140 mm

200 mm

Figure 5.4

(a) If the system is in equilibrium find the
distance d .

(b) If the point of application of the 5 N
force is moved to point P , distance
200 mm from the support, and the 5 N
force is replaced by an unknown force
F , find the value of F for the system to
be in equilibrium.

(a) From above, the clockwise moment M1 is due
to a force of 7 N acting at a distance d from
the support; the support is called the fulcrum,
i.e.

M1 = 7 N × d

The anticlockwise moment M2 is due to a force
of 5 N acting at a distance of 140 mm from the
fulcrum, i.e.

M2 = 5 N × 140 mm

Applying the principle of moments, for the
system to be in equilibrium about the fulcrum:

clockwise moment = anticlockwise moment

i.e. 7 N × d = 5 × 140 N mm

Hence, distance, d = 5 × 140 N mm

7 N

= 100 mm

(b) When the 5 N force is replaced by force F
at a distance of 200 mm from the fulcrum,
the new value of the anticlockwise moment is
F × 200. For the system to be in equilibrium:
clockwise moment = anticlockwise moment
i.e.

(7 × 100) N mm = F × 200 mm

Hence, new value of force,

F = 700 N mm

200 mm
= 3.5 N

Problem 4. A beam is supported on its
fulcrum at the point A, which is at mid-span,
and forces act as shown in Figure 5.5.
Calculate (a) force F for the beam to be in
equilibrium, (b) the new position of the 23 N
force when F is decreased to 21 N, if
equilibrium is to be maintained.

12 N F 23 N

20 mm

80 mm
100 mm

d

A

Figure 5.5

(a) The clockwise moment, M1, is due to the 23 N
force acting at a distance of 100 mm from the
fulcrum, i.e.

M1 = 23 × 100 = 2300 N mm

There are two forces giving the anticlockwise
moment M2. One is the force F acting at a
distance of 20 mm from the fulcrum and the
other a force of 12 N acting at a distance of
80 mm. Thus

M2 = (F × 20)+ (12 × 80) N mm

Applying the principle of moments about the
fulcrum:

clockwise moment = anticlockwise moments

i.e. 2300 = (F × 20)+ (12 × 80)

Hence F × 20 = 2300 − 960
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i.e. force, F = 1340

20
= 67 N

(b) The clockwise moment is now due to a force
of 23 N acting at a distance of, say, d from the
fulcrum. Since the value of F is decreased to
21 N, the anticlockwise moment is (21×20)+
(12 × 80) N mm.

Applying the principle of moments,

23 × d = (21 × 20)+ (12 × 80)

i.e. distance, d = 420 + 960

23
= 1380

23

= 60 mm

Problem 5. For the centrally supported
uniform beam shown in Figure 5.6,
determine the values of forces F1 and F2

when the beam is in equilibrium.

F
1

F
2

R = 5 kN

3 m 7 m

Figure 5.6

At equilibrium:

(i) R = F1 + F2 i.e. 5 = F1 + F2 (1)

and

(ii) F1 × 3 = F2 × 7 (2)

From equation (1), F2 = 5−F1. Substituting for F2

in equation (2) gives:

F1 × 3 = (5 − F1)× 7

i.e. 3F1 = 35 − 7F1

10F1 = 35

from which, F1 = 3.5 kN

Since F2 = 5 − F1, F2 = 1.5 kN

Thus at equilibrium, force F1 = 3.5 kN and force
F2 = 1.5 kN

Now try the following exercise

Exercise 26 Further problems on equilib-
rium and the principle of
moments

1. Determine distance d and the force acting
at the support A for the force system
shown in Figure 5.7, when the system is
in equilibrium. [50 mm, 3.8 kN]

1 kN 2.8 kN

140 mm d

A

R
A

Figure 5.7

2. If the 1 kN force shown in Figure 5.7 is
replaced by a force F at a distance of
250 mm to the left of RA, find the value
of F for the system to be in equilibrium.

[560 N]

3. Determine the values of the forces acting
at A and B for the force system shown in
Figure 5.8. [RA = RB = 25 N]

20 mm

76 mm

50 mm

20 N 30 N
A B

R
A

R
B

Figure 5.8

4. The forces acting on a beam are as shown
in Figure 5.9. Neglecting the mass of the
beam, find the value of RA and distance
d when the beam is in equilibrium.

[5 N, 25 mm]
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40 N

15 mm

35 mm

25 N

60 N

d

R
A

Figure 5.9

5.3 Simply supported beams having
point loads

A simply supported beam is said to be one that
rests on two knife-edge supports and is free to move
horizontally.

Two typical simply supported beams having loads
acting at given points on the beam, called point
loading, are shown in Figure 5.10.

a b c
F

1
F

2

A
B

C

R
A

R
B

(a)

(b)

R
A

R
B

A B
C

a b
F

Figure 5.10

A man whose mass exerts a force F vertically
downwards, standing on a wooden plank which is
simply supported at its ends, may, for example, be
represented by the beam diagram of Figure 5.10(a)
if the mass of the plank is neglected. The forces
exerted by the supports on the plank, RA and RB ,
act vertically upwards, and are called reactions.

When the forces acting are all in one plane, the
algebraic sum of the moments can be taken about
any point.

For the beam in Figure 5.10(a) at equilibrium:

(i) RA + RB = F , and

(ii) taking moments about A, F × a = RB(a + b)

(Alternatively, taking moments about C,
RAa = RBb)

For the beam in Figure 5.10(b), at equilibrium

(i) RA + RB = F1 + F2, and

(ii) taking moments about B,
RA(a + b)+ F2c = F1b

Typical practical applications of simply supported
beams with point loadings include bridges, beams
in buildings, and beds of machine tools.

Problem 6. A beam is loaded as shown in
Figure 5.11. Determine (a) the force acting
on the beam support at B, (b) the force
acting on the beam support at A, neglecting
the mass of the beam.

2 kN 7 kN 3 kN

3 kN7 kN

0.5 m

1.0 m

0.8 m

0.2 m

2 kN

A B

R
A

R
B

(a)

(b)

Figure 5.11

A beam supported as shown in Figure 5.11 is called
a simply supported beam.

(a) Taking moments about point A and applying
the principle of moments gives:

clockwise moments = anticlockwise moments

(2 × 0.2)+ (7 × 0.5)+ (3 × 0.8) kN m

= RB × 1.0 m,

where RB is the force supporting the beam at
B, as shown in Figure 5.11(b).

Thus (0.4 + 3.5 + 2.4) kN m=RB × 1.0 m

i.e. RB = 6.3 kN m

1.0 m

= 6.3 kN
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(b) For the beam to be in equilibrium, the forces
acting upwards must be equal to the forces
acting downwards, thus

RA + RB = (2 + 7 + 3) kN

= 12 kN

RB = 6.3 kN,

thus RA = 12 − 6.3 = 5.7 kN

Problem 7. For the beam shown in
Figure 5.12 calculate (a) the force acting on
support A, (b) distance d , neglecting any
forces arising from the mass of the beam.

10 N 15 N 30 N

40 N
0.5 m

1.0 m

2.0 m

2.5 m

d

A
BR

A

Figure 5.12

(a) From Section 5.2, (the forces acting in an up-
ward direction) = (the forces acting in a
downward direction)

Hence (RA + 40) N = (10 + 15 + 30) N

RA = 10 + 15 + 30 − 40

= 15 N

(b) Taking moments about the left-hand end of the
beam and applying the principle of moments
gives:

clockwise moments = anticlockwise moments

(10 × 0.5)+ (15 × 2.0) N m + 30 N × d

= (15 × 1.0)+ (40 × 2.5) N m

i.e. 35 N m + 30 N × d = 115 N m

from which, distance,

d = (115 − 35) N m

30 N
= 2.67 m

Problem 8. A metal bar AB is 4.0 m long
and is supported at each end in a horizontal
position. It carries loads of 2.5 kN and
5.5 kN at distances of 2.0 m and 3.0 m,
respectively, from A. Neglecting the mass of
the beam, determine the reactions of the
supports when the beam is in equilibrium.

The beam and its loads are shown in Figure 5.13.
At equilibrium,

RA + RB = 2.5 + 5.5 = 8.0 kN (1)

A B

R
A

R
B

2.0 m

2.5 kN 5.5 kN

1.0 m

Figure 5.13

Taking moments about A,
clockwise moments = anticlockwise moment,

i.e. (2.5 × 2.0)+ (5.5 × 3.0) = 4.0 RB

or 5.0 + 16.5 = 4.0 RB

from which, RB = 21.5

4.0
= 5.375 kN

From equation (1), RA = 8.0 − 5.375 = 2.625 kN

Thus the reactions at the supports at equilibrium
are 2.625 kN at A and 5.375 kN at B

Problem 9. A beam PQ is 5.0 m long and
is supported at its ends in a horizontal
position as shown in Figure 5.14. Its mass is
equivalent to a force of 400 N acting at its
centre as shown. Point loads of 12 kN and
20 kN act on the beam in the positions
shown. When the beam is in equilibrium,
determine (a) the reactions of the supports,
RP and RQ, and (b) the position to which
the 12 kN load must be moved for the force
on the supports to be equal.
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1.2 m

12 kN 400 N 20 kN

1.3 m 1.5 m

P Q

RQRP

Figure 5.14

(a) At equilibrium,

RP + RQ = 12 + 0.4 + 20

= 32.4 kN (1)

Taking moments about P : clockwise mo-
ments = anticlockwise moments i.e.

(12 × 1.2) + (0.4 × 2.5)
+ (20 × 3.5)

}

= (RQ × 5.0)

14.4 + 1.0 + 70.0 = 5.0RQ

from which,

RQ = 85.4

5.0
= 17.08 kN

From equation (1),

RP = 32.4 − RQ = 32.4 − 17.08

= 15.32 kN

(b) For the reactions of the supports to be equal,

RP = RQ = 32.4

2
= 16.2 kN

Let the 12 kN load be at a distance d metres
from P (instead of at 1.2 m from P ). Taking
moments about point P gives:

(12 × d)+ (0.4 × 2.5)+ (20 × 3.5) = 5.0 RQ

i.e. 12d + 1.0 + 70.0 = 5.0 × 16.2

and 12d = 81.0 − 71.0

from which, d = 10.0

12
= 0.833 m

Hence the 12 kN load needs to be moved to a
position 833 mm from P for the reactions of the
supports to be equal (i.e. 367 mm to the left of its
original position).

Problem 10. A uniform steel girder AB is
6.0 m long and has a mass equivalent to
4.0 kN acting at its centre. The girder rests
on two supports at C and B as shown in
Figure 5.15. A point load of 20.0 kN is
attached to the beam as shown. Determine
the value of the force F that causes the beam
to just lift off the support B.

F

1.0 m3.0 m
4.0 kN 20.0 kN

2.5 m

A C B

RC RB

Figure 5.15

At equilibrium, RC + RB = F + 4.0 + 20.0.
When the beam is just lifting off of the support B,
then RB = 0, hence RC = (F + 24.0) kN.

Taking moments about A:

Clockwise moments = anticlockwise moments

i.e. (4.0 × 3.0)+ (5.0 × 20.0) = (RC × 2.5)

+ (RB × 6.0)

i.e. 12.0 + 100.0 = (F + 24.0)× 2.5

+ (0)

i.e.
112.0

2.5
= (F + 24.0)

from which, F = 44.8 − 24.0

= 20.8 kN

i.e. the value of force F which causes the beam
to just lift off the support B is 20.8 kN.

Now try the following exercise

Exercise 27 Further problems on simply
supported beams having
point loads

1. Calculate the force RA and distance d
for the beam shown in Figure 5.16. The
mass of the beam should be neglected and
equilibrium conditions assumed.

[2 kN, 24 mm]
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12 mm

0.2 kN

RA

d

2.7 kN 0.4 kN

1.3 kN

15 mm10 mm

Figure 5.16

2. For the force system shown in Figure 5.17,
find the values of F and d for the system
to be in equilibrium. [1.0 kN, 64 mm]

1.4 kN

12 mm

d

F

14 mm
5 mm

0.8 kN
2.3 kN

0.7 kN

Figure 5.17

3. For the force system shown in Figure 5.18,
determine distance d for the forces RA

and RB to be equal, assuming equilibrium
conditions. [80 m]

10 N

RA RB

20 m20 md 20 m

15 N 25 N

Figure 5.18

4. A simply supported beam AB is loaded as
shown in Figure 5.19. Determine the load
F in order that the reaction at A is zero.

[36 kN]

10 kN

R1 R2

2 m2 m 2 m2 m

16 kN F

BA

Figure 5.19

5. A uniform wooden beam, 4.8 m long, is
supported at its left-hand end and also at

3.2 m from the left-hand end. The mass
of the beam is equivalent to 200 N acting
vertically downwards at its centre. Deter-
mine the reactions at the supports.

[50 N, 150 N]

6. For the simply supported beam PQ shown
in Figure 5.20, determine (a) the reaction
at each support, (b) the maximum force
which can be applied at Q without losing
equilibrium.

[(a) R1 = 3 kN, R2 = 12 kN (b) 15.5 kN]

4 kN

R1 R2

4.0 m1.5 m 2.0 m1.5 m

6 kN 5 kN

QP

Figure 5.20

7. A uniform beam AB is 12 m long and is
supported at distances of 2.0 m and 9.0 m
from A. Loads of 60 kN, 104 kN, 50 kN
and 40 kN act vertically downwards at
A, 5.0 m from A, 7.0 m from A and
at B. Neglecting the mass of the beam,
determine the reactions at the supports.

[133.7 kN, 120.3 kN]
8. A uniform girder carrying point loads

is shown in Figure 5.21. Determine the
value of load F which causes the beam
to just lift off the support B. [3.25 kN]

4 kN 5 kN10 kNF

2 m 4 m 3 m 2 m

4 m
RA RB

Figure 5.21

5.4 Simply supported beams with
couples

The procedure adopted here is a simple extension to
Section 5.3, but it must be remembered that the units
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of a couple are in: N m, N mm, kN m, etc, unlike
that of a force. The method of calculating reactions
on beams due to couples will now be explained with
the aid of worked problems.

Problem 11. Determine the end reactions
for the simply supported beam of
Figure 5.22, which is subjected to an
anti-clockwise couple of 5 N m applied at
mid-span.

5 kN m

1.5 m 1.5 mRA RB

B
C

A

Figure 5.22

Taking moments about B:
Now the reaction RA exerts a clockwise moment
about B given by: RA × 3 m. Additionally, the
couple of 5 kN m is anti-clockwise and its moment
is 5 kN m regardless of where it is placed.

Clockwise moments
about B

}

= anti-clockwise
moments about B

}

i.e. RA × 3 m = 5 kN m (5.1)

from which, RA = 5

3
kN

or RA = 1.667 kN (5.2)

Resolving forces vertically gives:

Upward forces = downward forces

i.e. RA + RB = 0 (5.3)

It should be noted that in equation (5.3) the 5 kN m
couple does not appear; this is because it is a couple
and not a force. From equations (5.2) and (5.3),

RB = −RA = −1.667 kN

i.e. RB acts in the opposite direction to RA, so
that RB and RA also form a couple that resists the
5 kN m couple.

Problem 12. Determine the end reactions
for the simply supported beam of
Figure 5.23, which is subjected to an

anti-clockwise couple of 5 kN m at the
point C

5 kN m

2 m 1 m

RA

A B

C

RB

Figure 5.23

Taking moments about B gives:

RA × 3 m = 5 kN m (5.4)

from which, RA = 5

3
kN

or RA = 1.667 kN

Resolving forces vertically gives:

i.e. RA + RB = 0

from which, RB = −RA = −1.667 kN

It should be noted that the answers for the reactions
are the same for Problems 11 and 12, thereby
proving by induction that the position of a couple
on a beam, simply supported at its ends, does not
affect the values of the reactions.

Problem 13. Determine the reactions for
the simply supported beam of Figure 5.24.

10 kN m 8 kN m 6 kN m

1 m 1 m 1 m 1 m

A B

C D E
R

A
R

B

Figure 5.24

Taking moments about B gives:

RA × 4 m + 8 kN m = 10 kN m + 6 kN m

i.e. 4RA = 10 + 6 − 8 = 8

from which, RA =
8

4
= 2 kN
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Resolving forces vertically gives:

RA + RB = 0

from which, RB = −RA = −2 kN

Problem 14. Determine the reactions for
the simply supported beam of Figure 5.25.

1 m 1 m 1 m 1 m

10 kN m 8 kN m 6 kN

RA RB

D

A

C E
B

Figure 5.25

Taking moments about B gives:

RA × 4 m + 8 kN m + 6 kN × 1 m = 10 kN m

i.e. 4RA = 10 − 8 − 6 = −4

from which, RA = −
4

4
= −1 kN

(acting downwards)

Resolving forces vertically gives:

RA + RB + 6 = 0

from which, RB = −RA − 6 = −(−1)− 6

i.e. RB = 1 − 6 = −5 kN

(acting downwards)

Now try the following exercise

Exercise 28 Further problems on simply
supported beams with cou-
ples

For each of the following problems, determine
the reactions acting on the simply supported
beams:

1. Figure 5.26

[RA = −1 kN, RB = 1 kN]

5 kN m

RA RB

BA

(a)

3 m 2 m

Figure 5.26

2. Figure 5.27

[RA = −1 kN, RB = 1 kN]

5 kN m

2.5 m 2.5 m
RA RB

BA

(b)

Figure 5.27

3. Figure 5.28

[RA = 1 kN, RB = −1 kN]

(c)

10 kN m 6 kN m 12 kN m

2 m 2 m 2 m 2 mR
A R

B

Figure 5.28

4. Figure 5.29 [RA = 0, RB = 0]

(d)

10 kN m
10 kN m

1 m 5 m 2 m

R
A

R
B

Figure 5.29
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5. Figure 5.30 [RA = 0, RB = 0]

(e)

10 kN m
10 kN m

1 m 3 m 4 m

R
A

R
B

Figure 5.30

6. Figure 5.31

[RA = 7 kN, RB = 1 kN]

(f)

10 kN m

2 m 2 m 2 mRA RB

8 kN

Figure 5.31

7. Figure 5.32

[RA = −333 N, RB = 333 N]

(g)

12 kN m10 kN m

2 m

2 m

2 m 2 m

1 m

R
A

R
B

Figure 5.32

Exercise 29 Short answer questions on
simply supported beams

1. The moment of a force is the product of
. . . and . . . .

2. When a beam has no tendency to move it
is in . . . .

3. State the two conditions for equilibrium
of a beam.

4. State the principle of moments.

5. What is meant by a simply supported
beam?

6. State two practical applications of simply
supported beams.

7. Why does a couple not have a vertical
component of force?

Exercise 30 Multi-choice questions on
simply supported beams
(Answers on page 284)

1. A force of 10 N is applied at right angles
to the handle of a spanner, 0.5 m from
the centre of a nut. The moment on the
nut is:

(a) 5 N m (b) 2 N/m

(c) 0.5 m/N (d) 15 N m

2. The distance d in Figure 5.33 when the
beam is in equilibrium is:

(a) 0.5 m (b) 1.0 m

(c) 4.0 m (d) 15 m

20 N

2.0 m d

10 N

Figure 5.33

3. With reference to Figure 5.34, the clock-
wise moment about A is:

(a) 70 N m (b) 10 N m

(c) 60 N m (d) 5 × RB N m
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10 N

1 m

3 m

5 m

B

RBRA

A
20 N

Figure 5.34

4. The force acting at B (i.e. RB ) in
Figure 5.34 is:

(a) 16 N (b) 20 N

(c) 5 N (d) 14 N

5. The force acting at A (i.e. RA) in
Figure 5.34 is:

(a) 16 N (b) 10 N

(c) 15 N (d) 14 N

6. Which of the following statements is
false for the beam shown in Figure 5.35
if the beam is in equilibrium?

6 N

3.0 m

1
.0

 m

3.0 m

R

3 N F

Figure 5.35

(a) The anticlockwise moment is 27 N

(b) The force F is 9 N

(c) The reaction at the support R is
18 N

(d) The beam cannot be in equilibrium
for the given conditions

7. With reference to Figure 5.36, the reac-
tion RA is:

(a) 10 N (b) 30 N

(c) 20 N (d) 40 N

10 N 10 N

0.5 m0.5 m 0.5 m0.5 m

RA RB

20 N

Figure 5.36

8. With reference to Figure 5.36, when
moments are taken about RA, the sum
of the anticlockwise moments is:

(a) 25 N m (b) 20 N m

(c) 35 N m (d) 30 N m

9. With reference to Figure 5.36, when
moments are taken about the right-
hand end, the sum of the clockwise
moments is:

(a) 10 N m (b) 20 N m

(c) 30 N m (d) 40 N m

10. With reference to Figure 5.36, which of
the following statements is false?

(a) (5 + RB) = 25 N m

(b) RA = RB

(c) (10 × 0.5) = (10 × 1)+ (10 × 1.5)
+RA

(d) RA + RB = 40 N

11. A beam simply supported at its ends
is subjected to two intermediate couples
of 4 kN m clockwise and 4 kN m anti-
clockwise. The values of the end reac-
tions are:

(a) 4 kN (b) 8 kN

(c) zero (d) unknown
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Bending moment and shear force
diagrams

At the end of this chapter you should be
able to:

• define a rigid-jointed framework

• define bending moment

• define sagging and hogging

• define shearing force

• calculate bending moments

• calculate shearing forces

• plot bending moment diagrams

• plot shearing force diagrams

• define the point of contraflexure

6.1 Introduction

The members of the structures in Chapter 4 with-
stood the externally applied loads in either tension
or compression; this was because they were not sub-
jected to bending.

In practise many structures are subjected to bend-
ing action; such structures include beams and rigid-
jointed frameworks. A rigid-jointed framework is
one which has its joints welded or riveted or bolted
together; such structures are beyond the scope of
this text (see reference [1], on page 54). Prior to
calculating bending moments and shearing forces,
we will first need to define bending moment and
shearing force.

6.2 Bending moment (M)

The units of bending moment are N mm, N m,
kN m, etc. When a beam is subjected to the couples

(a) Sagging moment (+) (b) Hogging moment (−)

M M M M

Figure 6.1 Bending moments

shown in Figure 6.1, the beam will suffer flexure
due to the bending moment of magnitude M .

If the beam is in equilibrium and it is subjected to
a clockwise couple of magnitude M on the left of
the section, then from equilibrium considerations,
the couple on the right of the section will be of
exactly equal magnitude and of opposite direction
to the couple on the left of the section. Thus, when
calculating the bending moment at a particular point
on a beam in equilibrium, we need only calculate
the magnitude of the resultant of all the couples on
one side of the beam under consideration. This is
because as the beam is in equilibrium, the magnitude
of the resultant of all the couples on the other side
of the beam is exactly equal and opposite. The beam
in Figure 6.1(a) is said to be sagging and the beam
in Figure 6.1(b) is said to be hogging.

The sign convention adopted in this text is:

(a) sagging moments are said to be positive

(b) hogging moments are said to be negative

6.3 Shearing force (F)

Whereas a beam can fail due to its bending moments
being excessive, it can also fail due to other forces
being too large, namely the shearing forces; these
are shown in Figure 6.2. The units of shearing force
are N, kN, MN, etc.
It can be seen from Figures 6.2(a) and (b) that the
shearing forces F act in a manner similar to that
exerted by a pair of garden shears when they are
used to cut a branch of a shrub or a plant through
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(a) Positive shearing force (b) Negative shearing force

F F F F

Figure 6.2 Shearing forces

shearing action. This mode of failure is different to
that caused by bending action.

In the case of the garden shears, it is necessary
for the blades to be close together and sharp, so
that they do not bend the branch at this point. If the
garden shears are old and worn the branch can bend
and may lie between the blades. Additionally, if the
garden shears are not sharp, it may be more difficult
to cut the branch because the shearing stress exerted
by the blades will be smaller as the contact area
between the blades and the branch will be larger.

The shearing action is illustrated by the sketch of
Figure 6.3.

F

Figure 6.3 Shearing action

Once again, if the beam is in equilibrium, then the
shearing forces either side of the point being consid-
ered will be exactly equal and opposite, as shown
in Figures 6.2(a) and (b). The sign convention for
shearing force is that it is said to be positive if the
right hand is going down; see Figure 6.2(a).

Thus, when calculating the shearing force at a
particular point on a horizontal beam, we need to
calculate the resultant of all the vertical forces on
one side of the beam, as the resultant of all the
vertical forces on the other side of the beam will

be exactly equal and opposite. The calculation of
bending moments and shearing forces and the plot-
ting of their respective diagrams are demonstrated
in the following worked problems.

6.4 Worked problems on bending
moment and shearing force
diagrams

Problem 1. Calculate and sketch the
bending moment and shearing force diagrams
for the horizontal beam shown in Figure 6.4,
which is simply supported at its ends.

A B

C

RA RB

3 m

6 kN

2 m

Figure 6.4

Firstly, it will be necessary to calculate the magni-
tude of reactions RA and RB .
Taking moments about B gives:
Clockwise moments about B = anti-clockwise
moments about B

i.e. RA × 5 m = 6 kN × 2 m = 12 kN m

from which, RA = 12

5
= 2.4 kN

Resolving forces vertically gives:

Upward forces = downward forces

i.e. RA + RB = 6 kN

i.e. 2.4 + RB = 6

from which, RB = 6 − 2.4 = 3.6 kN

As there is a discontinuity at point C in Figure 6.4,
due to the concentrated load of 6 kN, it will be
necessary to consider the length of the beam AC
separately from the length of the beam CB. The
reason for this is that the equations for bending
moment and shearing force for span AC are different
to the equations for the span CB; this is caused by
the concentrated load of 6 kN.
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For the present problem, to demonstrate the nature
of bending moment and shearing force, these values
will be calculated on both sides of the point of the
beam under consideration. It should be noted that
normally, the bending moment and shearing force
at any point on the beam, are calculated only due to
the resultant couples or forces, respectively, on one
side of the beam.

Consider span AC

Bending moment

Consider a section of the beam at a distance x from
the left end A, where the value of x lies between A
and C, as shown in Figure 6.5.

6 kN

2.4 kN

M = 2.4x

M = 3.6 (5 − x)

− 6 (3 − x)

= 2.4x

3.6 kN

x

A B
C

3 m 2 m

Figure 6.5

From Figure 6.5, it can be seen that the reaction RA

causes a clockwise moment of magnitude RA×x =
2.4x on the left of this section and as shown in
the lower diagram of Figure 6.5. It can also be seen
from the upper diagram of Figure 6.5, that the forces
on the right of this section on the beam causes an
anti-clockwise moment equal to RB × (5 − x) or
3.6(5 − x) and a clockwise moment of 6 × (3 − x),
resulting in an anti-clockwise moment of:

3.6(5 − x)− 6(3 − x) = 3.6 × 5 − 3.6x

− 6 × 3 + 6x

= 18 − 3.6x − 18 + 6x

= 2.4x

Thus, the left side of the beam at this section is
subjected to a clockwise moment of magnitude 2.4x
and the right side of this section is subjected to an
anti-clockwise moment of 2.4x, as shown by the
lower diagram of Figure 6.5. As the two moments
are of equal magnitude but of opposite direction,
they cause the beam to be subjected to a bending
moment M = 2.4x. As this bending moment causes

the beam to sag between A and C, the bending
moment is assumed to be positive, or at any distance
x between A and C:

Bending moment = M = +2.4x (6.1)

Shearing force

Here again, because there is a discontinuity at C,
due to the concentrated load of 6 kN at C, we must
consider a section of the beam at a distance x from
the left end A, where x varies between A and C, as
shown in Figure 6.6.

6 kN

2.4 kN 3.6 kN

F = 2.4 kN

F = 6 − 3.6

= 2.4 kN

C
A B

x

3 m 2 m

Figure 6.6

From Figure 6.6, it can be seen that the resultant
of the vertical forces on the left of the section at
x are 2.4 kN acting upwards. This force causes the
left of the section at x to slide upwards, as shown
in the lower diagram of Figure 6.6. Similarly, if
the vertical forces on the right of the section at x
are considered, it can be seen that the 6 kN acts
downwards and that RB = 3.6 kN acts upwards,
giving a resultant of 2.4 kN acting downwards. The
effect of the two shearing forces acting on the left
and the right of the section at x, causes the shearing
action shown in the lower diagram of Figure 6.6.
As this shearing action causes the right side of the
section to glide downwards, it is said to be a positive
shearing force.

Summarising, at any distance x between A and C:

F = shearing force = +2.4 kN (6.2)

Consider span CB:

Bending moment

At any distance x between C and B, the resultant
moment caused by the forces on the left of x is
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given by:

M = RA × x − 6(x − 3) = 2.4x − 6(x − 3)

= 2.4x − 6x + 18

i.e. M = 18 − 3.6x (clockwise) (6.3)

The effect of this resultant moment on the left of x
is shown in the lower diagram of Figure 6.7.

A BC
3 m 2 m

6 kN

3.6 kN2.4 kN
x

M = 2.4x
−6 (x − 3)
=18 − 3.6x

M = 3.6 (5 − x)
=18 − 3.6x

Figure 6.7

Now from Figure 6.7, it can be seen that on the
right side of x, there is an anti-clockwise moment
of: M = RB × (5 − x) = 3.6(5 − x) = 18 − 3.6x

i.e. M = 18 − 3.6x (anti-clockwise) (6.4)

The effect of the moment of equation (6.3) and that
of the moment of equation (6.4), is to cause the
beam to sag at this point as shown by the lower
diagram of Figure 6.7, i.e. M is positive between C
and B, and

M = +18 − 3.6x (6.5)

Shearing force

Consider a distance x between C and B, as shown
in Figure 6.8.

3 m 2 m

6 kN

F = 6 − 2.4

F = 3.6 kN

= 3.6 kN

2.4 kN 3.6 kN
x

C
A B

Figure 6.8

From Figure 6.8, it can be seen that at x, there are
two vertical forces to the left of this section, namely
the 6 kN load acting downwards and the 2.4 kN load
acting upwards, resulting in a net value of 3.6 kN
acting downwards, as shown by the lower diagram
of Figure 6.8. Similarly, by considering the vertical
forces acting on the beam to the right of x, it can
be seen that there is one vertical force, namely the
3.6 kN load acting upwards, as shown by the lower
diagram of Figure 6.8. Thus, as the right hand of
the section is tending to slide upwards, the shearing
force is said to be negative, i.e. between C and B,

F = −3.6 kN (6.6)

It should be noted that at C, there is a discontinuity
in the value of the shearing force, where over an
infinitesimal length the shearing force changes from
+2.4 kN to −3.6 kN, from left to right.

Bending moment and shearing force diagrams

The bending moment and shearing force diagrams
are simply diagrams representing the variation of
bending moment and shearing force, respectively,
along the length of the beam. In the bending moment
and shearing force diagrams, the values of the bend-
ing moments and shearing forces are plotted ver-
tically and the value of x is plotted horizontally,
where x = 0 at the left end of the beam and x = the
whole length of the beam at its right end.

In the case of the beam of Figure 6.4, bending
moment distribution between A and C is given by
equation (6.1), i.e. M = 2.4x, where the value of x
varies between A and C.
At A, x = 0, therefore MA = 2.4 × 0 = 0
and at C, x = 3 m, therefore MC = 2.4 × 3 =
7.2 kN.

Additionally, as the equation M = 2.4x is
a straight line, the bending moment distribution
between A and C will be as shown by the left side
of Figure 6.9(a).

Similarly, the expression for the variation of
bending moment between C and B is given by equa-
tion (6.3), i.e. M = 18 − 3.6x, where the value of x
varies between C and B. The equation can be seen
to be a straight line between C and B.
At C, x = 3 m, therefore MC = 18 − 3.6 × 3 =
18 − 10.8 = 7.2 kN m
At B, x = 5 m, therefore MB = 18 − 3.6 × 5 =
18 − 18 = 0
Therefore, plotting of the equation M = 18 − 3.6x
between C and B results in the straight line on
the right of Figure 6.9(a), i.e. the bending moment
diagram for this beam has now been drawn.



BENDING MOMENT AND SHEAR FORCE DIAGRAMS 73

M

M = 2.4x
M = 18 − 3.6x

0 0

0

x
A

x = 0 x = 5 m

F

x

F = 2.4 kN

F = −3.6 kN

6 kN
+

−

BC

(a) Bending moment diagram

(b) Shearing force diagram

M = 7.2 kN m

0

Figure 6.9 Bending moment and shearing force
diagrams

In the case of the beam of Figure 6.4, the shearing
force distribution along its length from A to C is
given by equation (6.2), i.e. F = 2.4 kN, i.e. F is
constant between A and C. Thus the shearing force
diagram between A and C is given by the horizontal
line shown on the left of C in Figure 6.9(b).

Similarly, the shearing force distribution to the
right of C is given by equation (6.6), i.e.
F = −3.6 kN, i.e. F is a constant between C and
B, as shown by the horizontal line to the right of
C in Figure 6.9(b). At the point C, the shearing
force is indeterminate and changes from +2.4 kN
to −3.6 kN over an infinitesimal length.

Problem 2. Determine expressions for the
distributions of bending moment and
shearing force for the horizontal beam of
Figure 6.10. Hence, sketch the bending and
shearing force diagrams.

5 kN

2 m 2 m
RA RB

3 m 1 m

6 kN

A D B E

C

10 kN

Figure 6.10

Firstly, it will be necessary to calculate the unknown
reactions RA and RB .

Taking moments about B gives:

RA × 5 m + 10 kN × 1 m = 5 kN × 7 m

+ 6 kN × 3 m

i.e. 5RA + 10 = 35 + 18

5RA = 35 + 18 − 10 = 43

from which, RA = 43

5
= 8.6 kN

Resolving forces vertically gives:

RA + RB = 5 kN + 6 kN + 10 kN

i.e. 8.6 + RB = 21

from which, RB = 21 − 8.6 = 12.4 kN

For the range C to A, see Figure 6.11.

5 kN

C

x

Figure 6.11

To calculate the bending moment distribution (M),
only the resultant of the moments to the left of the
section at x will be considered, as the resultant of
the moments on the right of the section of x will be
exactly equal and opposite.

Bending moment (BM)

From Figure 6.11, at any distance x,

M = −5 × x (hogging) = −5x (6.7)

Equation (6.7) is a straight line between C and A.
At C, x = 0, therefore MC = −5 × 0 = 0 kN m
At A, x = 2 m, therefore MA = −5 × 2

= −10 kN m

Shearing force (SF)

To calculate the shearing force distribution (F ) at
any distance x, only the resultant of the vertical
forces to the left of x will be considered, as the
resultant of the vertical forces to the right of x will
be exactly equal and opposite.

From Figure 6.11, at any distance x,

F = −5 kN (6.8)
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It is negative, because as the left of the section tends
to slide downwards the right of the section tends
to slide upwards. (Remember, right hand down is
positive).
For the range A to D, see Figure 6.12.

5 kN

A

RA = 8.6 kN

C

2 m

x

Figure 6.12

Bending moment (BM)

At any distance x between A and D

M = −5 × x + RA × (x − 2)

= −5x + 8.6(x − 2)

= −5x + 8.6x − 17.2

i.e. M = 3.6x − 17.2 (6.9)

(a straight line between A and D)

At A, x = 2 m,MA = 3.6 × 2 − 17.2

= 7.2 − 17.2 = −10 kN m

At D, x = 4 m,MD = 3.6 × 4 − 17.2

= 14.4 − 17.2 = −2.8 kN m

Shearing force (SF)

At any distance x between A and D,

F = −5 kN + 8.6 kN = 3.6 kN (constant)
(6.10)

For the range D to B , see Figure 6.13.

5 kN

RA = 8.6 kN
A D

6 kN

2 m 2 m

x

Figure 6.13

Bending moment (BM)

At x, M = −5 × x + 8.6 × (x − 2)− 6 × (x − 4)

= −5x + 8.6x − 17.2 − 6x + 24

i.e. M = −2.4x + 6.8 (6.11)

(a straight line between D and B)

At D, x = 4 m, therefore MD = −2.4 × 4 + 6.8

= −9.6 + 6.8

i.e. MD = −2.8 kN m

At B, x = 7 m, therefore MB = −2.4 × 7 + 6.8

= −16.8 + 6.8

i.e. MB = −10 kN m

Shearing force (SF)

At x, F = −5 + 8.6 − 6

= −2.4 kN (constant) (6.12)

For the range B to E, see Figure 6.14.

C
E

5 kN 10 kN

x

8 m

Figure 6.14

Bending moment (BM)

In this case it will be convenient to consider only
the resultant of the couples to the right of x (−
remember that only one side need be considered,
and in this case, there is only one load to the right
of x).

At x, M = −10 × (8 − x) = −80 + 10x (6.13)

Equation (6.13) can be seen to be a straight line
between B and E.
At B, x = 7 m, therefore MB = −80 + 10 × 7

= −10 kN m
At E, x = 8 m, therefore ME = −80 + 10 × 8

= 0 kN m

Shearing force (SF)

At x, F = +10 kN (constant) (6.14)
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0

0

(a) BM diagram (kN m)

(b) SF diagram (kN)

0 x

x

M

F

A

A D B

B

0 E

E

D
−10

−10

+10 +10

+3.6+3.6

−5 −2.4 −2.4

−2.8

C

Figure 6.15

Equation (6.14) is positive because the shearing
force is causing the right side to slide downwards.
The bending moment and shearing force diagrams
are plotted in Figure 6.15 with the aid of equa-
tions (6.7) to (6.14) and the associated calculations
at C, A, D, B and E.

Problem 3. Determine expressions for the
bending moment and shearing force
distributions for the beam of Figure 6.16.
Hence, sketch the bending moment and
shearing force diagrams.

15 kN m

2 m 2 m 3 m 1 m

30 kN m

A BD
C E

10 kN

RA RB

Figure 6.16

Firstly, it will be necessary to calculate the reactions
RA and RB .
Taking moments about B gives:

15 kN m + RA × 5 m + 10 kN × 1 m = 30 kN m

i.e. 5RA = 30 − 10 − 15 = 5

from which, RA = 5

5
= 1 kN

Resolving forces vertically gives:

RA + RB = 10 kN

i.e. 1 + RB = 10

from which, RB = 10 − 1 = 9 kN

15 kN m

C

x

Figure 6.17

For the span C to A, see Figure 6.17.

Bending moment (BM)

At x, M = 15 kN m (constant) (6.15)

Shearing force (SF)

At x = 0, F= 0 kN (6.16)

For the span A to D, see Figure 6.18.

2 m

15 kN m

RA = 1 kN

A

C

x

Figure 6.18

Bending moment (BM)

At x, M = 15 kN m + RA × (x − 2)

= 15 + 1(x − 2)

= 15 + x − 2

i.e. M = 13 + x (a straight line) (6.17)

At A, x = 2 m, therefore MA = 13 + 2 = 15 kN m

At D, x = 4 m, therefore MD(−) = 13 + 4
= 17 kN m

Note that MD(−) means that M is calculated to the
left of D

Shearing force (SF)

At x, F = 1 kN (constant) (6.18)

For the span D to B , see Figure 6.19.

C

15 kN m 30 kN m

A D

1 kN
2 m 2 m

x

Figure 6.19
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Bending moment (BM)

At x, M = 15 kN m + 1 kN m × (x − 2)

− 30 kN m

= 15 + x − 2 − 30

i.e. M = x − 17 (a straight line) (6.19)

At D, x = 4 m, therefore MD(+) = 4 − 17
= −13 kN m

Note that MD(+) means that M is calculated just to
the right of D.

At B, x = 7 m, therefore MB(−) = 7 − 17
= −10 kN m

Shearing force (SF)

At x, F= −1 kN (constant) (6.20)

For the span B to E, see Figure 6.20.

15 kN m 10 kN

C
E

x

8 m

Figure 6.20

In this case we will consider the right of the beam
as there is only one force to the right of the section
at x.

M = −10×(8 − x)= −80 + 10x (a straight line)

M

F

C

15

0

(b) SF diagram (kN)

0

0

0
A D B E

x

x = 0

x = 0

x = 8 m

x = 8 m

−13

+10+10

+1 +1

−10

(a) BM diagram (kN m)

+17

x

Figure 6.21

At x, F = 10 kN (positive as the right hand is
going down, and constant)
Plotting the above equations for the various spans,
results in the bending moment and shearing force
diagrams of Figure 6.21.

Problem 4. Calculate and plot the bending
moment and shearing force distributions for
the cantilever of Figure 6.22.

5 kN

A

B

x

2 m

Figure 6.22

In the cantilever of Figure 6.22, the left hand end is
free and the right hand end is firmly fixed; the right
hand end is called the constrained end.

Bending moment (BM)

At x in Figure 6.22 , M = −5 kN × x

i.e. M = −5x (6.21)

(a straight line)

Shearing force (SF)

At x in Figure 6.22, F= −5 kN (a constant)
(6.22)

For equations (6.21) and (6.22), it can be seen that
the bending moment and shearing force diagrams
are as shown in Figure 6.23.

M = −5x

x

x

−5 kN −5 kN

−10 kN m

(a) BM diagram

(b) SF diagram

F

M

0

00

0

Figure 6.23
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Problem 5. Determine the bending moment
and shearing force diagram for the cantilever
shown in Figure 6.24, which is rigidly
constrained at the end B.

A

5 kN 10 kN

B

C
2 m 1 m

Figure 6.24

For the span A to C, see Figure 6.25.

5 kN

x

A

Figure 6.25

Bending moment (BM)

At x, M = −5 kN × x

i.e. M = −5x (a straight line) (6.23)

Shearing force (SF)

At x, F= −5 kN (constant) (6.24)

For the span C to B, see Figure 6.26.

5 kN 10 kN

C

A

2m

x

Figure 6.26

Bending moment (BM)

At x, M = −5 kN × x − 10 kN × (x − 2)

= −5x − 10x + 20

i.e. M = 20 − 15x (a straight line) (6.25)

At C, x = 2 m, therefore MC = 20 − 15 × 2

= 20 − 30

i.e. MC = −10 kN m

(b) SF diagram (kN)

A

F

−5 −5

−15−15

C B
00 x

(a) BM diagram (kN m)

A

M

B

C
0 x

M = −5x −10

−25

M = 20−15x

x = 0

Figure 6.27

At B, x = 3 m, therefore MB = 20 − 15 × 3

= 20 − 45

i.e. MB = −25 kNm

Shearing force (SF)

At x in Figure 6.26,

F = −5 kN − 10 kN

i.e. F = −15 kN (constant) (6.26)

From equations (6.23) to (6.26) and the associated
calculations, the bending moment and shearing force
diagrams can be plotted, as shown in Figure 6.27.

Now try the following exercise

Exercise 31 Further problems on bending
moment and shearing force
diagrams

Determine expressions for the bending mo-
ment and shearing force distributions for each
of the following simply supported beams;
hence, or otherwise, plot the bending moment
and shearing force diagrams.

1. Figure 6.28

[see Figure 6.43(a) on page 82)]
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1 m 1 m

3 kN

C
A B

Figure 6.28

2. Figure 6.29

[see Figure 6.43(b) on page 82)]

2 m 1 m

4 kN

C
A B

Figure 6.29

3. Figure 6.30

[see Figure 6.43(c) on page 82)]

1 m 1 m 1 m

1 kN 4 kN

C D
A B

Figure 6.30

4. Figure 6.31

[see Figure 6.43(d) on page 82)]

2 m 2 m 2 m

1 kN 4 kN

A D
C B

Figure 6.31

5. Figure 6.32

[see Figure 6.43(e) on page 82)]

1 m 1 m 1 m

4 kN 6 kN m

C D
A B

Figure 6.32

6. Figure 6.33

[see Figure 6.43(f) on page 82)]

2 m 2 m

4 kN 6 kN

C
A B

Figure 6.33

7. Figure 6.34

[see Figure 6.43(g) on page 82)]

1.5 m 1.5 m

2 kN 6 kN m

C
A B

Figure 6.34

6.5 Uniformly distributed loads

Uniformly distributed loads (UDL) appear as
snow loads, self-weight of the beam, uniform pres-
sure loads, and so on. In all cases they are assumed
to be spread uniformly over the length of the beam
in which they apply. The units for a uniformly dis-
tributed load are N/m, kN/m, MN/m, and so on.
Worked problems 6 and 7 involve uniformly dis-
tributed loads.

Problem 6. Determine expressions for the
bending moment and shearing force
distributions for the cantilever shown in
Figure 6.35, which is subjected to a
uniformly distributed load, acting
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downwards, and spread over the entire length
of the cantilever.

w = 10 kN/m

A B

x

5 m

Figure 6.35

Bending moment (BM)

At any distance x in Figure 6.36,

M = −10 kN × x × x

2
(6.27)

i.e. M = −5x2 (a parabola) (6.28)

w = 10 kN/m

A

x

Figure 6.36

In equation (6.27), the weight of the uniformly dis-
tributed beam up to the point x is (10 × x). As the

centre of gravity of the UDL is at a distance of
x

2
from the right end of Figure 6.36,

M = −10x × x

2

The equation is negative because the beam is
hogging.

At x = 0,M = 0

At x = 5 m,M = −10 × 5 × 5

2
= −125 kN m

Shearing force (SF)

At any distance x in Figure 6.36, the weight of the
UDL is (10×x) and this causes the left side to slide
down, or alternatively the right side to slide up.

Hence, F = −10x (a straight line) (6.29)

At x = 0, F = 0

At x = 5 m, F = −10 × 5 = −50 kN

Plotting of equations (6.28) and (6.29) results in the
distributions for the bending moment and shearing
force diagrams shown in Figure 6.37.

(b) SF diagram

A B
0

F

0

−

−50 kN

(a) BM diagram

A B

M

0

−

−125 kN m
M = −5x 2

x = 5 m

x = 0

F = −10x

0

Figure 6.37

Problem 7. Determine expressions for the
bending moment and shearing force diagrams
for the simply supported beam of
Figure 6.38. The beam is subjected to a
uniformly distributed load (UDL) of 5 kN/m,
which acts downwards, and it is spread over
the entire length of the beam.

w = 5 kN/m

A

RA RB

B

6 m

Figure 6.38

Firstly, it will be necessary to calculate the reactions
RA and RB . As the beam is symmetrically loaded,
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it is evident that:

RA = RB (6.30)

Taking moments about B gives:
Clockwise moments about B = anti-clockwise
moments about B

i.e. RA × 6 m = 5
kN

m
× 6 m × 3 m (6.31)

= 90 kN m

from which, RA = 90

6
= 15 kN = RB

On the right hand side of equation (6.31), the term
5 kN/m × 6 m is the weight of the UDL, and the
length of 3 m is the distance of the centre of gravity
of the UDL from B.

Bending moment (BM)

At any distance x in Figure 6.39,

M = RA × x − 5
kN

m
× x × x

2
(6.32)

i.e. M = 15x − 2.5x2 (a parabola) (6.33)

w = 5 kN/m

A

RA = 15 kN

x

Figure 6.39

On the right hand side of equation (6.32), the term
(RA × x) is the bending moment (sagging) caused

by the reaction, and the term

(

5
kN

m
× x × x

2

)

,

which is hogging, is caused by the UDL,

where

(

5
kN

m
× x

)

is the weight of the UDL up

to the point x, and
x

2
is the distance of the centre

of gravity of the UDL from the right side of
Figure 6.39.

At x = 0, M = 0

A x = 3 m, M = 15 × 3 − 2.5 × 32 = 22.5 kN m

At x = 6 m, M = 15 × 6 − 2.5 × 62 = 0

Shearing force (SF)

At any distance x in Figure 6.39,

F = RA − 5
kN

m
× x (6.34)

i.e. F = 15 − 5x (a straight line) (6.35)

On the right hand side of equation (6.34), the

term

(

5
kN

m
× x

)

is the weight of the UDL up to the

point x; this causes a negative configuration to the
shearing force as it is causing the left side to slide
downwards.

At x = 0, F = 15 kN

At x = 3 m, F = 15 − 5 × 3 = 0

At x = 6 m, F = 15 − 5 × 6 = −15 kN

Plotting of equations (6.33) and (6.35) results in the
bending moment and shearing force diagrams of
Figure 6.40.

M = 22.5 kN m

M
M = 15x − 2.5x 2

00

x = 0

x

x = 3 m x = 6 m

(a) BM diagram

0 0

F +15 kN

−15 kN

F =15−5x

(b) SF diagram

Figure 6.40

Now try the following exercise

Exercise 32 Further problems on bending
moment and shearing force
diagrams

Determine expressions for the bending mo-
ment and shearing force distributions for each
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of the following simply supported beams;
hence, plot the bending moment and shearing
force diagrams.

1. Figure 6.41(a)
[see Figure 6.44(a) on page 83)]

7 m

(a)

6 kN/m

A B

12 m

(b)

5 kN/m

A B

Figure 6.41 Simply supported beams

2. Figure 6.41(b)

[see Figure 6.44(b) on page 83)]

Determine expressions for the bending mo-
ment and shearing force distributions for each
of the following cantilevers; hence, or other-
wise, plot the bending moment and shearing
force diagrams.

3. Figure 6.42(a)

[see Figure 6.45(a) on page 83)]

5 m

(a)

6 kN/m

A B

9 m

(b)

5 kN/m

A B

Figure 6.42 Centilevers

4. Figure 6.42(b)

[see Figure 6.45(b) on page 83)]

Exercise 33 Short answer questions on
bending moment and shear-
ing force diagrams

1. Define a rigid-jointed framework

2. Define bending moment

3. Define sagging and hogging

4. State two practical examples of uniformly
distributed loads

5. Show that the value of the maximum
shearing force for a beam simply sup-
ported at its ends, with a centrally placed
load of 3 kN, is 1.5 kN.

6. If the beam in question 5 were of span
4 m, show that its maximum bending
moment is 3 kN m.

7. Show that the values of maximum bend-
ing moment and shearing force for a can-
tilever of length 4 m, loaded at its free
end with a concentrated load of 3 kN, are
12 kN m and 3 kN.

Exercise 34 Multiple-choice questions on
bending moment and shear-
ing force diagrams (Answers
on page 284)

1. A beam simply supported at its end, car-
ries a centrally placed load of 4 kN. Its
maximum shearing force is:

(a) 4 kN (b) 2 kN (c) 8 kN (d) 0

2. Instead of the centrally placed load, the
beam of question 1 has a uniformly dis-
tributed load of 1 kN/m spread over its
span of length 4 m. Its maximum shearing
force is now:

(a) 4 kN (b) 1 kN

(c) 2 kN (d) 4 kN/n

3. A cantilever of length 3 m has a load
of 4 kN placed on its free end. The mag-
nitude of its maximum bending moment is:

(a) 3 kN m (b) 4 kN m

(c) 12 kN m (d) 4/3 kN/m

Exercise 34 continued on page 83
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Answers to Exercise 31 (page 77)

A
0 0

0 0

C D

2 kN

2 kN

−3 kN −3 kN

1 kN

3 kN

B

BMD

SFD

(c)

C
0 0

0 0

A D

−2 kN m

+2.5 kN

−1.5 kN −1.5 kN

−1 kN

+3 kN m

B

BMD

SFD

(d)

SFD

(f)

A

0 0

0 0

C B

−4 kN −4 kN

−10 kN −10 kN

−8 kN m

−28 kN m

BMD

A C

BMD

B
1 m

1.5 kN

0 0

1.5 kN

1.5 kN m

−1.5 kN −1.5 kN

1 m

0 0

SFD

(a)

A C

BMD

B
2 m

1.33 kN

0 0

1.33 kN

2.67 kN m

−2.67 kN −2.67 kN

1 m

SFD

(b)

SFD

(g)

A
0 0

0 0

C B

−2 kN −2 kN

−3 kN m

3 kN m

BMD

A C D B
0 0

0 0

0.667 kN m

−3.333 kN −3.333 kN

3.333 kN m

BMD

SFD

(e)

0.667 kN

−2.667 kN m

Figure 6.43



BENDING MOMENT AND SHEAR FORCE DIAGRAMS 83

Answers to Exercise 32 (pages 81)

(a)

A
0

BMD

SFD

21 kN

−21 kN

3.5 m 3.5 m

36.75 kN m

0

0 0

B

(b)

A
0

BMD

SFD

30 kN

−30 kN

6 m 6 m

90 kN m

0

0 0

B

Figure 6.44

(a)

0 0

0
A B

0

BMD

−75 kN m

−30 kN
(b)

0 0

0
A B

0

BMD

−202.5 kN m

−45 kN

SFD SFD

Figure 6.45

4. The maximum shearing force for the can-
tilever of question 3 is:

(a) 4 kN (b) 12 kN

(c) 3 kN (d) zero

5. A cantilever of 3 m length carries a UDL
of 2 kN/m. Its maximum shearing force
is:

(a) 3 kN (b) 2 kN

(c) 6 kN (d) zero

6. In the cantilever of question 5, the maxi-
mum bending moment is:

(a) 6 kN m (b) 9 kN m

(c) 2 kN m (d) 3 kN m



7

First and second moment of areas

At the end of this chapter you should be
able to:

• define a centroid

• define first moment of area

• calculate centroids using integration

• define second moment of area

• define radius of gyration

• state the parallel axis and perpendicular
axis theorems

• calculate the second moment of area and
radius of gyration of regular sections using
a table of standard results

• calculate the second moment of area for I ,
T and channel bar beam sections

7.1 Centroids

A lamina is a thin flat sheet having uniform thick-
ness. The centre of gravity of a lamina is the point
where it balances perfectly, i.e. the lamina’s centre
of moment of mass. When dealing with an area (i.e.
a lamina of negligible thickness and mass) the term
centre of moment of area or centroid is used for
the point where the centre of gravity of a lamina of
that shape would lie.

7.2 The first moment of area

The first moment of area is defined as the product
of the area and the perpendicular distance of its
centroid from a given axis in the plane of the area.
In Figure 7.1, the first moment of area A about axis
XX is given by (Ay) cubic units.

X

C

X

y

Area A

Figure 7.1

7.3 Centroid of area between a curve
and the x -axis

(i) Figure 7.2 shows an area PQRS bounded
by the curve y = f (x), the x-axis and
ordinates x = a and x = b. Let this area
be divided into a large number of strips,
each of width δx. A typical strip is shown
shaded drawn at point (x, y) on f (x). The
area of the strip is approximately rectangular
and is given by yδx. The centroid, C, has

coordinates
(

x,
y

2

)

.

y

y

xx = bx = a

dx

0

x

S

P

C (x, )

R

Q

y = f (x)

 y
−
2

Figure 7.2
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(ii) First moment of area of shaded strip about
axis OY = (yδx)(x) = xyδx

Total first moment of area PQRS about
axis Oy

= limit
δx→0

x=b
∑

x=a
xyδx =

∫ b

a

xy dx

(iii) First moment of area of shaded strip about
axis Ox

= (yδx)
(y

2

)

= 1

2
y2x

Total first moment of area PQRS about
axis Ox

= limit
δx→0

x=b
∑

x=a

1

2
y2δx = 1

2

∫ b

a

y2 dx

(iv) Area of PQRS, A =
∫ b

a

y dx

(see ‘Engineering Mathematics, 3 RD Edition’,
page 448 )

(v) Let x and y be the distances of the centroid
of area A about Oy and Ox respectively then:

(x)(A) = total first moment of area A

about axis Oy

=
∫ b

a

xy dx

from which, x =

∫ b

a

xy dx

∫ b

a

y dx

and (y)(A) = total moment of area A

about axis Ox = 1

2

∫ b

a

y2 dx

from which, y =

1

2

∫ b

a

y2 dx

∫ b

a

y dx

7.4 Centroid of area between a curve
and the y-axis

If x and y are the distances of the centroid of area
EFGH in Figure 7.3 from Oy and Ox respectively,
then, by similar reasoning as above:

(x)( total area ) = limit
δy→0

y=d
∑

y=c
xδy

(x

2

)

= 1

2

∫ d

c

x2 dy

0

H G

C (
x
−
2
,y )

E
F

x = f (y )

y

x

x

y

y = c

y = d

dy

Figure 7.3

from which, x =

1

2

∫ d

c

x2 dy

∫ d

c

x dy

and (y)( total area ) = limit
δy→0

y=d
∑

y=c
(xδy)y

=
∫ d

c

xy dy

from which, y =

∫ d

c

xy dy

∫ d

c

x dy
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7.5 Worked problems on centroids of
simple shapes

Problem 1. Show, by integration, that the
centroid of a rectangle lies at the intersection
of the diagonal.

Let a rectangle be formed by the line y = b, the
x-axis and ordinates x = 0 and x = L as shown in
Figure 7.4. Let the coordinates of the centroid C of
this area be (x, y).

y
y = b

b

C

0 L x

x

y

Figure 7.4

By integration,

x =

∫ L

0

xy dx

∫ L

0

y dx

=

∫ L

0

(x)(b) dx

∫ L

0

b dx

=

[

b
x2

2

]L

0

[bx]L0
=

bL2

2
bL

= L

2

and y =

1

2

∫ L

0

y2 dx

∫ L

0

y dx

=

1

2

∫ L

0

b2 dx

bL

=
1

2

[

b2x
]L

0

bL
=

b2L

2
bL

= b

2

i.e. the centroid lies at

(

L

2
,

b

2

)

which is at the

intersection of the diagonals.

Problem 2. Find the position of the centroid

of the area bounded by the curve y = 3x2,
the x-axis and the ordinates x = 0 and x = 2.

If (x, y) are the co-ordinates of the centroid of the
given area then:

x =

∫ 2

0

xy dx

∫ 2

0

y dx

=

∫ 2

0

x(3x2) dx

∫ 2

0

3x2 dx

=

∫ 2

0

3x3 dx

∫ 2

0

3x2 dx

=

[

3x4

4

]2

0
[

x3
]2

0

= 12

8
= 1.5

y =

1

2

∫ 2

0

y2 dx

∫ 2

0

y dx

=

1

2

∫ 2

0

(3x2)2 dx

8

=

1

2

∫ 2

0

9x4 dx

8
=

9

2

[

x5

5

]2

0

8

=

9

2

(

32

5

)

8
= 18

5
= 3.6

Hence the centroid lies at (1.5, 3.6)

Problem 3. Determine by integration the
position of the centroid of the area enclosed
by the line y = 4x, the x-axis and ordinates
x = 0 and x = 3.

Let the coordinates of the area be (x, y) as shown
in Figure 7.5.

Then x =

∫ 3

0

xy dx

∫ 3

0

y dx

=

∫ 3

0

(x)(4x) dx

∫ 3

0

4x dx

=

∫ 3

0

4x2 dx

∫ 3

0

4x dx

=

[

4x3

3

]3

0
[

2x2
]3

0

= 36

18
= 2

y =

1

2

∫ 3

0

y2 dx

∫ 3

0

y dx

=

1

2

∫ 3

0

(4x)2 dx

18
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=

1

2

∫ 3

0

16x2 dx

18
=

1

2

[

16x3

3

]3

0

18

= 72

18
= 4

Hence the centroid lies at (2, 4).

C

A

B

D

y = 4x

3 x

x

y

y

12

0

Figure 7.5

In Figure 7.5, ABD is a right-angled triangle. The
centroid lies 4 units from AB and 1 unit from BD
showing that the centroid of a triangle lies at one-
third of the perpendicular height above any side
as base.

Now try the following exercise

Exercise 35 Further problems on cent-
roids of simple shapes

In Problems 1 to 5, find the position of the
centroids of the areas bounded by the given
curves, the x-axis and the given ordinates.

1. y = 2x; x = 0, x = 3 [(2, 2)]

2. y = 3x + 2; x = 0, x = 4 [(2.50, 4.75)]

3. y = 5x2; x = 1, x = 4 [(3.036, 24.36)]

4. y = 2x3; x = 0, x = 2 [(1.60, 4.57)]

5. y = x(3x + 1); x = −1, x = 0

[(−0.833, 0.633)]

7.6 Further worked problems on
centroids of simple shapes

Problem 4. Determine the co-ordinates of
the centroid of the area lying between the

curve y = 5x − x2 and the x-axis.

Figure 7.6

y = 5x − x2 = x(5 − x). When y = 0, x = 0 or
x = 5. Hence the curve cuts the x-axis at 0 and 5
as shown in Figure 7.6. Let the co-ordinates of the
centroid be (x, y) then, by integration,

x =

∫ 5

0

xy dx

∫ 5

0

y dx

=

∫ 5

0

x(5x − x2) dx

∫ 5

0

(5x − x2) dx

=

∫ 5

0

(5x2 − x3) dx

∫ 5

0

(5x − x2) dx

=

[

5x3

3
− x4

4

]5

0
[

5x2

2
− x3

3

]5

0

=
625

3
− 625

4
125

2
− 125

3

=
625

12
125

6

=
(

625

12

)(

6

125

)

= 5

2
= 2.5

y =

1

2

∫ 5

0

y2 dx

∫ 5

0

y dx

=

1

2

∫ 5

0

(5x − x2)2 dx

∫ 5

0

(5x − x2) dx

=

1

2

∫ 5

0

(25x2 − 10x3 + x4) dx

125

6
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=

1

2

[

25x3

3
− 10x4

4
+ x5

5

]5

0

125

6

=

1

2

(

25(125)

3
− 6250

4
+ 625

)

125

6

= 2.5

Hence the centroid of the area lies at (2.5, 2.5)
(Note from Figure 7.6 that the curve is symmet-

rical about x = 2.5 and thus x could have been
determined ‘on sight’).

Problem 5. Locate the centroid of the area
enclosed by the curve y = 2x2, the y-axis
and ordinates y = 1 and y = 4, correct to 3
decimal places.

From Section 7.4,

x =

1

2

∫ 4

1

x2 dy

∫ 4

1

x dy

=

1

2

∫ 4

1

y

2
dy

∫ 4

1

√

y

2
dy

=

1

2

[

y2

4

]4

1
[

2y3/2

3
√

2

]4

1

=
15

8
14

3
√

2

= 0.568

and y =

∫ 4

1

xy dy

∫ 4

1

x dy

=

∫ 4

1

√

y

2
(y) dy

14

3
√

2

=

∫ 4

1

y3/2

√
2

dy

14

3
√

2

=

1√
2

⎡

⎢

⎣

y5/2

5

2

⎤

⎥

⎦

4

1

14

3
√

2

=

2

5
√

2
(31)

14

3
√

2

= 2.657

Hence the position of the centroid is at
(0.568, 2.657).

Now try the following exercise

Exercise 36 Further problems on cent-
roids of simple shapes

1. Determine the position of the centroid of
a sheet of metal formed by the curve

y = 4x − x2 which lies above the x-axis.

[(2, 1.6)]

2. Find the coordinates of the centroid of the
area that lies between the curve

y
x = x−2

and the x-axis. [(1, −0.4)]

3. Determine the coordinates of the centroid
of the area formed between the curve
y = 9 − x2 and the x-axis. [(0, 3.6)]

4. Determine the centroid of the area lying

between y = 4x2, the y-axis and the
ordinates y = 0 and y = 4.

[(0.375, 2.40]

5. Find the position of the centroid of the

area enclosed by the curve y =
√

5x, the
x-axis and the ordinate x = 5.

[(3.0, 1.875)]

6. Sketch the curve y2 = 9x between the
limits x = 0 and x = 4. Determine the
position of the centroid of this area.

[(2.4, 0)]

7.7 Second moments of area of regular
sections

The first moment of area about a fixed axis of a
lamina of area A, perpendicular distance y from the
centroid of the lamina is defined as Ay cubic units.
The second moment of area of the same lamina
as above is given by Ay2, i.e. the perpendicular
distance from the centroid of the area to the fixed
axis is squared.
Second moments of areas are usually denoted by I

and have units of mm4, cm4, and so on.
Several areas, a1, a2, a3, . . . at distances y1, y2, y3,
. . . from a fixed axis, may be replaced by a single
area A, where A = a1 + a2 + a3 + · · · at distance k
from the axis, such that Ak2 =

∑

ay2. k is called
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the radius of gyration of area A about the given

axis. Since Ak2 = ∑

ay2 = I then the radius of
gyration,

k =

√

I

A
.

The second moment of area is a quantity much used
in the theory of bending of beams (see Chapter 8),
in the torsion of shafts (see Chapter 10), and in
calculations involving water planes and centres of
pressure (see Chapter 21).
The procedure to determine the second moment
of area of regular sections about a given axis
is (i) to find the second moment of area of a
typical element and (ii) to sum all such second
moments of area by integrating between appropriate
limits.
For example, the second moment of area of the
rectangle shown in Figure 7.7 about axis PP is
found by initially considering an elemental strip of
width δx, parallel to and distance x from axis PP.
Area of shaded strip = bδx. Second moment of

area of the shaded strip about PP = (x2)(bδx).
The second moment of area of the whole rectangle

about PP is obtained by summing all such strips
between x = 0 and x = d ,

i.e.

x=d
∑

x=0

x2bδx

d

Figure 7.7

It is a fundamental theorem of integration that

limit
δx→x

x=d
∑

x=0

x2bδx =
∫ d

0

x2b dx

Thus the second moment of area of the rectangle
about PP

= b

∫ d

0

x2 dx = b

[

x3

3

]d

0

= bd3

3

Since the total area of the rectangle, A = db, then

Ipp = (db)

(

d2

3

)

= Ad2

3

Ipp = Ak2
pp thus k2

pp = d2

3

i.e. the radius of gyration about axis PP,

kpp =

√

d2

3
= d√

3

H

Area

Figure 7.8

Parallel axis theorem

In Figure 7.8, axis GG passes through the centroid
C of area A. Axes DD and GG are in the same
plane, are parallel to each other and distance H
apart. The parallel axis theorem states:

IDD = IGG + AH 2

Using the parallel axis theorem the second moment
of area of a rectangle about an axis through the
centroid may be determined. In the rectangle shown
in Figure 7.9,

IPP = bd3

3
(from above)
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P G

C

x

b

GP
d
2

d
2

dx

Figure 7.9

From the parallel axis theorem

IPP = IGG + (bd)

(

d

2

)2

i.e.
bd3

3
= IGG + bd3

4
from which,

IGG = bd3

3
− bd3

4
= bd3

12

Perpendicular axis theorem

In Figure 7.10, axes OX, OY and OZ are mutually
perpendicular. If OX and OY lie in the plane of area
A then the perpendicular axis theorem states:

IOZ = IOX + IOY

A summary of derived standard results for the sec-
ond moment of area and radius of gyration of regular
sections are listed in Table 7.1, on page 91.

Area

Figure 7.10

The second moment of area of a hollow cross-
section, such as that of a tube, can be obtained by
subtracting the second moment of area of the hole
about its centroid from the second moment of area
of the outer circumference about its centroid. This
is demonstrated in worked problems 10, 12 and 13
following.

Problem 6. Determine the second moment
of area and the radius of gyration about axes
AA, BB and CC for the rectangle shown in
Figure 7.11.

A
B

C

b = 4.0 cm

A
d = 12.0 cm

B

C

Figure 7.11

From Table 7.1, the second moment of area about
axis AA,

IAA = bd3

3
= (4.0)(12.0)3

3
= 2304 cm4

Radius of gyration, kAA = d√
3

= 12.0√
3

= 6.93 cm

Similarly, IBB = db3

3
= (12.0)(4.0)3

3
= 256 cm4

and kBB = b√
3

= 4.0√
3

= 2.31 cm

The second moment of area about the centroid of a

rectangle is bd3

12
when the axis through the centroid

is parallel with the breadth b. In this case, the axis
CC is parallel with the length d

Hence ICC = db3

12
= (12.0)(4.0)3

12
= 64 cm4

and kCC = b√
12

= 4.0√
12

= 1.15 cm

Problem 7. Find the second moment of
area and the radius of gyration about axis PP
for the rectangle shown in Figure 7.12.

40.0 mm

15.0 mm

G

25.0 mm

G

P P

Figure 7.12
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Table 7.1 Summary of standard results of the second moments of areas of regular sections

Shape Position of axis Second moment
of area, I

Radius of
gyration, k

Rectangle
length d
breadth b

(1) Coinciding with b

(2) Coinciding with d

(3) Through centroid, parallel to b

(4) Through centroid, parallel to d

bd3

3

db3

3

bd3

12

db3

12

d√
3

b√
3

d√
12

b√
12

Triangle
Perpendicular
height h
base b

(1) Coinciding with b

(2) Through centroid, parallel
to base

(3) Through vertex, parallel to base

bh3

12

dh3

36

bh3

4

h√
6

h√
18

h√
2

Circle
radius r
diameter d

(1) Through centre perpendicular
to plane (i.e. polar axis)

(2) Coinciding with diameter

(3) About a tangent

πr4

2
or

πd4

32

πr4

4
or

πd4

64

5πr4

4
or

5πd4

64

r√
2

r

2

√
5

2
r

Semicircle
radius r

Coinciding with diameter
πr4

8

r

2

IGG = dh3

12
where d = 40.0 mm and h = 15.0 mm

Hence IGG = (40.0)(15.0)3

12

= 11250 mm4

From the parallel axis theorem,

IPP = IGG +AH 2,

where A = 40.0 × 15.0 = 600 mm2

and H = 25.0 + 7.5 = 32.5 mm,

the perpendicular distance between GG and PP.

Hence IPP = 11250 + (600)(32.5)2

= 645000 mm4

IPP = Ak2
PP , from which,

kPP =
√

IPP

area
=
√

(

645000

600

)

= 32.79 mm
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Problem 8. Determine the second moment
of area and radius of gyration about axis QQ
of the triangle BCD shown in Figure 7.13.

B

GG

C D

Q Q

12.0 cm

8.0 cm 6.0 cm

Figure 7.13

Using the parallel axis theorem: IQQ = IGG+AH 2,
where IGG is the second moment of area about the
centroid of the triangle,

i.e.
bh3

36
= (8.0)(12.0)3

36
= 384 cm4,

A is the area of the triangle

= 1
2
bh = 1

2
(8.0)(12.0)

= 48 cm2

and H is the distance between axes GG and QQ

= 6.0 + 1

3
(12.0) = 10 cm

Hence the second moment of area about axis QQ,

IQQ = 384 + (48)(10)2

= 5184 cm4

Radius of gyration,

kQQ =
√

IQQ

area
=
√

(

5184

48

)

= 10.4 cm

Problem 9. Determine the second moment
of area and radius of gyration of the circle

shown in Figure 7.14 about axis YY .

Y Y

3.0 cm

G G

r = 2.0 cm

Figure 7.14

In Figure 7.14,

IGG = πr4

4
= π

4
(2.0)4

= 4π cm4

Using the parallel axis theorem,

IYY = IGG + AH 2,

where H = 3.0 + 2.0 = 5.0 cm

Hence IYY = 4π + [π(2.0)2](5.0)2

= 4π + l00π = 104π = 327 cm4

Radius of gyration,

kYY =
√

IYY

area
=
√

(

104π

π (2.0)2

)

=
√

26

= 5.10 cm

Problem 10. Determine the second moment
of area of an annular section, about its
centroidal axis. The outer diameter of the
annulus is D2 and its inner diameter is D1

Second moment of area of annulus about its
centroid, IXX = (IXX of outer circle about its
diameter)− (IXX of inner circle about its diameter)

= πD4
2

64
− πD4

1

64
from Table 7.1

i.e. IXX =
π

64
(D4

2 − D4
1 )
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Problem 11. Determine the second moment
of area and radius of gyration for the
semicircle shown in Figure 7.15 about
axis XX.

G G

B B

X X

15.0 mm

10.0 mm

Figure 7.15

The centroid of a semicircle lies at 4r
3π

from its

diameter (see ‘Engineering Mathematics 3 RD Edi-
tion’, page 471).

Using the parallel axis theorem:

IBB = IGG + AH 2,

where IBB = πr4

8
(from Table 7.1)

= π(10.0)4

8
= 3927 mm4,

A = πr2

2
= π(10.0)2

2
= 157.1 mm2

and H = 4r

3π
= 4(10.0)

3π
= 4.244 mm

Hence 3927 = IGG + (157.1)(4.244)2

i.e. 3927 = IGG + 2830, from which,

IGG = 3927 − 2830 = 1097 mm4

Using the parallel axis theorem again:

IXX = IGG + A(15.0 + 4.244)2

i.e. IXX = 1097 + (157.1)(19.244)2

= 1097 + 58179 = 59276 mm4

or 59280 mm4, correct to 4 significant figures.

Radius of gyration,

kXX =
√

IXX

area
=
√

(

59276

157.1

)

= 19.42 mm

Problem 12. Determine the polar second
moment of area of an annulus about its
centre. The outer diameter of the annulus is
D2 and its inner diameter is D1

The polar second moment of area is denoted by J .
Hence, for the annulus,

J = J of outer circle about its centre

− J of inner circle about its centre

= πD4
2

32
− πD4

1

32
from Table 7.1

i.e. J =
π

32
(D4

2 − D4
1 )

Problem 13. Determine the polar second
moment of area of the propeller shaft
cross-section shown in Figure 7.16.

7
.0

 c
m

6
.0

 c
m

Figure 7.16

The polar second moment of area of a circle,

J = πd4

32

The polar second moment of area of the shaded area
is given by the polar second moment of area of
the 7.0 cm diameter circle minus the polar second
moment of area of the 6.0 cm diameter circle.
Hence, from Problem 12, the polar second moment
of area of the cross-section shown

= π

32
(74 − 64) = π

32
(1105)

= 108.5 cm4

Problem 14. Determine the second moment
of area and radius of gyration of a
rectangular lamina of length 40 mm and
width 15 mm about an axis through one
corner, perpendicular to the plane of the
lamina.
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d

Figure 7.17

The lamina is shown in Figure 7.17.

From the perpendicular axis theorem:

IZZ = IXX + IYY

IXX = db3

3
= (40)(15)3

3
= 45000 mm4

and IYY = bd3

3
= (15)(40)3

3
= 320000 mm4

Hence IZZ = 45000 + 320000

= 365000 mm4 or 36.5 cm4

Radius of gyration,

kZZ =
√

IZZ

area
=
√

(

365000

(40)(15)

)

= 24.7 mm or 2.47 cm

Problem 15. Determine correct to 3
significant figures, the second moment of
area about axis XX for the composite area
shown in Figure 7.18.

X X
1.0 cm

8.0 cm

6.0 cm
TT

2.0 cm

C
T

4.
0 

cm

1.0 cm

2.0 cm

Figure 7.18

For the semicircle,

IXX = πr4

8
= π (4.0)4

8
= 100.5 cm4

For the rectangle,

IXX = bd3

3
= (6.0)(8.0)3

3
= 1024 cm4

For the triangle, about axis TT through centroid CT ,

IT T = bh3

36
= (10)(6.0)3

36

= 60 cm4

By the parallel axis theorem, the second moment of
area of the triangle about axis XX

= 60 + [ 1
2
(10)(6.0)][8.0 + 1

3
(6.0)]2

= 3060 cm4

Total second moment of area about XX

= 100.5 + 1024 + 3060 = 4184.5

= 4180 cm4,

correct to 3 significant figures.

Now try the following exercise

Exercise 37 Further problems on second
moment of areas of regular
sections

1. Determine the second moment of area
and radius of gyration for the rectangle
shown in Figure 7.19 about (a) axis AA
(b) axis BB and (c) axis CC

⎡

⎢

⎢

⎣

(a) 72 cm4, 1.73 cm

(b) 128 cm4, 2.31 cm

(c) 512 cm4, 4.62 cm

⎤

⎥

⎥

⎦

Figure 7.19
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2. Determine the second moment of area
and radius of gyration for the trian-
gle shown in Figure 7.20 about (a) axis
DD (b) axis EE and (c) an axis through
the centroid of the triangle parallel to
axis DD

⎡

⎢

⎢

⎣

(a) 729 mm4, 3.67 mm

(b) 2187 mm4, 6.36 mm

(c) 243 mm4, 2.l2 mm

⎤

⎥

⎥

⎦

E E

D D
12.0 cm

9.0 cm

Figure 7.20

3. For the circle shown in Figure 7.21,
find the second moment of area and
radius of gyration about (a) axis FF and
(b) axis HH

[

(a) 201 cm4, 2.0 cm

(b) 1005 cm4, 4.47 cm

]

Figure 7.21

4. For the semicircle shown in Figure 7.22,
find the second moment of area and
radius of gyration about axis JJ

[3927 mm4, 5.0 mm]

Figure 7.22

5. For each of the areas shown in
Figure 7.23 determine the second mo-
ment of area and radius of gyration
about axis LL, by using the parallel axis
theorem.

⎡

⎢

⎢

⎣

(a) 335 cm4, 4.73 cm

(b) 22030 cm4, 14.3 cm

(c) 628 cm4, 7.07 cm

⎤

⎥

⎥

⎦

L L

5.0 cm

3.0 cm

2.0 cm 10 cm

(a) (b) (c)

15 cm 15 cm

5.0 cm18 cm

Dia = 4.0 cm

Figure 7.23

6. Calculate the radius of gyration of a
rectangular door 2.0 m high by 1.5 m
wide about a vertical axis through its
hinge. [0.866 m]

7. A circular door of a boiler is hinged
so that it turns about a tangent. If its
diameter is 1.0 m, determine its second
moment of area and radius of gyration

about the hinge. [0.245 m4, 0.559 m]

8. A circular cover, centre 0, has a radius
of 12.0 cm. A hole of radius 4.0 cm and
centre X, where OX = 6.0 cm, is cut in
the cover. Determine the second moment
of area and the radius of gyration of the
remainder about a diameter through 0
perpendicular to OX.

[14280 cm4, 5.96 cm]

9. For the sections shown in Figure 7.24,
find the second moment of area and the
radius of gyration about axis XX

[

(a) 12190 mm4, 10.9 mm

(b) 549.5 cm4, 4.18 cm

]

18.0 mm

3.0 mm

12.0 mm

4.0 mm XX

(a)

6.0 cm

2.5 cm
3.0 cm

2.0 cm

2.0 cm

X X
(b)

Figure 7.24
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10. Determine the second moments of areas
about the given axes for the shapes
shown in Figure 7.25 (In Figure 7.25(b),
the circular area is removed.)

⎡

⎢

⎢

⎣

IAA = 4224 cm4,

IBB = 6718 cm4,

ICC = 37300 cm4

⎤

⎥

⎥

⎦

3.0 cm

4.0 cm

9.0 cm

16.0 cm

(a)

4.5 cm

9.0 cm

15.0 cm

10.0 cm

Dia = 7.0 cm

(b)

A A C

B

B

C

Figure 7.25

7.8 Second moment of area for
‘built-up’ sections

The cross-sections of many beams and members of
a framework are in the forms of rolled steel joists
(RSJ ’s or I beams), tees, and channel bars, as
shown in Figure 7.26. These shapes usually afford
better bending resistances than solid rectangular or
circular sections.

(a) RSJ (b) Tee beam (c) Channel bar

Figure 7.26 Built-up Sections

Calculation of the second moments of area and the
position of the centroidal, or neutral axes for such
sections are demonstrated in the following worked
problems.

Problem 16. Determine the second moment
of area about a horizontal axis passing
through the centroid, for the I beam shown
in Figure 7.27.

0.1 m

0.2 m

Thickness = 0.02 m

Figure 7.27

The centroid of this beam will lie on the horizontal
axis NA, as shown in Figure 7.28.

a

N A

b

c

k

d

e f

h

j

l m

0.1 m

g0.1 m

Figure 7.28

The second moment of area of the I beam is
given by:

INA = (I of rectangle abdc)− (I of rectangle efhg)

−(I of rectangle jkml)

Hence, from Table 7.1,

INA = 0.1 × 0.23

12
− 0.04 × 0.163

12

−0.04 × 0.163

12

= 6.667 × 10−5 − 1.365 × 10−5

−1.365 × 10−5

i.e. INA = 3.937 × 10−5 m4

Problem 17. Determine the second moment
of area about a horizontal axis passing
through the centroid, for the channel section
shown in Figure 7.29.

0.2 m

0.1 m

Thickness = 0.02 m

Figure 7.29
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0.1 m

0.1 m

0.1 m

a b

dc

e f

hg

N A

Figure 7.30

The centroid of this beam will be on the horizontal
axis NA, as shown in Figure 7.30.
The second moment of area of the channel section
is given by:

INA = (I of rectangle abdc about NA)

− (I of rectangle efhg about NA)

= 0.1 × 0.23

12
− 0.08 × 0.163

12

= 6.667 × 10−5 − 2.731 × 10−5

i.e. INA = 3.936 × 10−5 m4

Problem 18. Determine the second moment
of area about a horizontal axis passing
through the centroid, for the tee beam shown
in Figure 7.31.

0.2 m

2

1

N A

XX

y Thickness = 0.02 m

0.1 m

Figure 7.31 Tee beam

In this case, we will first need to find the position
of the centroid, i.e. we need to calculate y in
Figure 7.31. There are several methods of achieving
this; the tabular method is as good as any since it
can lead to the use of a spreadsheet. The method
is explained below with the aid of Table 7.2 on
page 98.
First, we divide the tee beam into two rectangles, as
shown in Figure 7.31.
In the first column we refer to each of the two rectan-
gles, namely rectangle (1) and rectangle (2). Thus,
the second row in Table 7.2 refers to rectangle (1)
and the third row to rectangle (2). The fourth row

refers to the summation of each column as appropri-
ate. The second column refers to the areas of each
individual rectangular element, a.

Thus, area of rectangle (1),

a1 = 0.1 × 0.02 = 0.002 m2

and area of rectangle (2),

a2 = 0.18 × 0.02 = 0.0036 m2

Hence,
∑

a = 0.002 + 0.0036 = 0.0056 m2

The third column refers to the vertical distance of
the centroid of each individual rectangular element
from the base, namely XX.

Thus, y1 = 0.2 − 0.01 = 0.19 m

and y2 = 0.18

2
= 0.09 m

In the fourth column, the product ay is obtained by
multiplying the cells of column 2 with the cells of
column 3,

i.e. a1y1 = 0.002 × 0.19 = 3.8 × 10−4 m3

a2y2 = 0.0036 × 0.09 = 3.24 × 10−4 m3

and
∑

ay = 3.8 × 10−4 + 3.24 × 10−4

= 7.04 × 10−4 m3

In the fifth column, the product ay2 is obtained by
multiplying the cells of column 3 by the cells of

column 4, i.e.
∑

ay2 is part of the second moment
of area of the tee beam about XX,

i.e. a1y
2
1 = 0.19 × 3.8 × 10−4

= 7.22 × 10−5 m4

a2y
2
2 = 0.09 × 3.24 × 10−4

= 2.916 × 10−5 m4

and
∑

ay2 = 7.22 × 10−5 + 2.916 × 10−5

= 1.014 × 10−4 m4

In the sixth column, the symbol i refers to the second
moment of area of each individual rectangle about
its own local centroid.

Now i = bd3

12
from Table 7.1
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Hence, i1 = 0.1 × 0.023

12
= 6.6 × 10−8 m4

i2 = 0.02 × 0.183

12
= 9.72 × 10−6 m4

and
∑

i = 6.6 × 10−8 + 9.72 × 10−6

= 9.786 × 10−6 m4

From the parallel axis theorem:

IXX =
∑

i +
∑

ay2 (7.1)

The cross-sectional area of the tee beam

=
∑

a = 0.0056 m2 from Table 7.2.

Now the centroidal position, namely y, is given by:

y =

∑

ay
∑

a
= 7.04 × 10−4

0.0056
= 0.1257 m

From equation (7.1),

IXX =
∑

i +
∑

ay2

= 9.786 × 10−6 + 1.014 × 10−4

i.e. IXX = 1.112 × 10−4 m4

From the parallel axis theorem:

INA = IXX − (y)2
∑

a

= 1.112 × 10−4 − (0.1257)2 × 0.0056

INA = 2.27 × 10−5 m4

It should be noted that the least second moment of
area of a section is always about an axis through its
centroid.

Problem 19. (a) Determine the second
moment of area and the radius of gyration
about axis XX for the I -section shown in
Figure 7.32.

Figure 7.32

(b) Determine the position of the centroid of
the I -section.

(c) Calculate the second moment of area and
radius of gyration about an axis CC through
the centroid of the section, parallel to
axis XX.

The I -section is divided into three rectangles, D, F
and F and their centroids denoted by CD, CE and
CF respectively.

(a) For rectangle D:

The second moment of area about CD (an axis
through CD parallel to XX)

= bd3

12
= (8.0)(3.0)3

12
= 18 cm4

Using the parallel axis theorem:

IXX = 18 +AH 2

Table 7.2

Column 1 2 3 4 5 6

Row 1 Section a y ay ay2 i

Row 2 (1) 0.002 0.19 3.8 × 10−4 7.22 × 10−5 6.6 × 10−8

Row 3 (2) 0.0036 0.09 3.24 × 10−4 2.916 × 10−5 9.72 × 10−6

Row 4
∑

0.0056 − 7.04 × 10−4 1.014 × 10−4 9.786 × 10−6
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where A = (8.0)(3.0) = 24 cm2

and H = 12.5 cm

Hence IXX = 18 + 24(12.5)2 = 3768 cm4

For rectangle E:

The second moment of area about CE (an axis
through CE parallel to XX)

= bd3

12
= (3.0)(7.0)3

12
= 85.75 cm4

Using the parallel axis theorem:

IXX = 85.75 + (7.0)(3.0)(7.5)2

= 1267 cm4

For rectangle F:

IXX = bd3

3
= (15.0)(4.0)3

3
= 320 cm4

Total second moment of area for the I -
section about axis XX,

IXX = 3768 + 1267 + 320 = 5355 cm4

Total area of I -section = (8.0)(3.0) +
(3.0)(7.0) + (15.0)(4.0) = 105 cm2

Radius of gyration,

kXX =
√

IXX

area
=
√

(

5355

105

)

= 7.14 cm

(b) The centroid of the I -section will lie on the
axis of symmetry, shown as SS in Figure 7.32.
Using a tabular approach:

Part Area Distance of centroid Moment

(a cm2) from XX about XX
(i.e. y cm) (i.e. ay cm3)

D 24 12.5 300
E 21 7.5 157.5
F 60 2.0 120

∑

a = A = 105
∑

ay = 577.5

Ay =
∑

ay, from which,

y =

∑

ay

A
= 577.5

105
= 5.5 cm

Thus the centroid is positioned on the axis
of symmetry 5.5 cm from axis XX.

(c) From the parallel axis theorem:

IXX = ICC +AH 2

i.e. 5355 = ICC + (105)(5.5)2

= ICC + 3176

from which, second moment of area about
axis CC,

ICC = 5355 − 3176 = 2179 cm4

Radius of gyration,

kCC =
√

ICC

area
=
√

2179

105

= 4.56 cm

Now try the following exercise

Exercise 38 Further problems on second
moment of area of ‘built-up’
sections

Determine the second moments of area about a
horizontal axis, passing through the centroids,
for the ‘built-up’ sections shown below. All
dimensions are in mm and all the thicknesses
are 2 mm.

1. Figure 7.33 [17329 mm4]

r

30

Figure 7.33

2. Figure 7.34 [37272 mm4]

40

30

Figure 7.34
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3. Figure 7.35 [18636 mm4]

20

30

Figure 7.35

4. Figure 7.36 [10443 mm4]

20

30

Figure 7.36

5. Figure 7.37 [43909 mm4]

40

25

Figure 7.37

6. Figure 7.38 [8922 mm4]

20

30

Figure 7.38

7. Figure 7.39 [2342 mm4]

20

30

Figure 7.39

8. Figure 7.40 [24683 mm4]

20

30

40

Figure 7.40

Exercise 39 Short answer questions on
first and second moment
of areas

1. Define a centroid

2. Define the first moment of area

3. Define second moment of area

4. Define radius of gyration

5. State the parallel axis theorem

6. State the perpendicular axis theorem

Exercise 40 Multiple-choice questions on
first and second moment of
areas (Answers on page 284)

1. The centroid of the area bounded by the
curve y = 3x, the x-axis and ordinates
x = 0 and x = 3, lies at:

(a) (3, 2) (b) (2, 6)

(c) (2, 3) (d) (6, 2)

2. The second moment of area about
axis GG of the rectangle shown in
Figure 7.41 is:
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(a) 16 cm4 (b) 4 cm4

(c) 36 cm4 (d) 144 cm4

G

60 mm

15 mm

20 mm G

XX

Figure 7.41

3. The second moment of area about
axis XX of the rectangle shown in
Figure 7.41 is:

(a) 111 cm4 (b) 31 cm4

(c) 63 cm4 (d) 79 cm4

4. The radius of gyration about axis
GG of the rectangle shown in
Figure 7.41 is:

(a) 5.77 mm (b) 17.3 mm

(c) 11.55 mm (d) 34.64 mm

5. The radius of gyration about axis XX of
the rectangle shown in Figure 7.41 is:

(a) 30.41 mm (b) 25.66 mm

(c) 16.07 mm (d) 22.91 mm

The circumference of a circle is 15.71 mm.
Use this fact in questions 6 to 8.

6. The second moment of area of the cir-
cle about an axis coinciding with its
diameter is:

(a) 490.9 mm4 (b) 61.36 mm4

(c) 30.69 mm4 (d) 981.7 mm4

7. The second moment of area of the circle
about a tangent is:

(a) 153.4 mm4 (b) 9.59 mm4

(c) 2454 mm4 (d) 19.17 mm4

8. The polar second moment of area of the
circle is:

(a) 3.84 mm4 (b) 981.7 mm4

(c) 61.36 mm4 (d) 30.68 mm4

9. The second moment of area about axis
XX of the triangle ABC shown in
Figure 7.42 is:

(a) 24 cm4 (b) 10.67 cm4

(c) 310.67 cm4 (d) 324 cm4

B
C

GG

X X

A

6.0 cm

3.0 cm
4.0 cm

Figure 7.42

10. The radius of gyration about axis GG of
the triangle shown in Figure 7.42 is:

(a) 1.41 cm (b) 2 cm

(c) 2.45 cm (d) 4.24 cm
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Assignment 2

This assignment covers the material
contained in Chapters 5 to 7.
The marks for each question are shown
in brackets at the end of each question.

1. A moment of 18 N m is required to oper-
ate a lifting jack. Determine the effec-
tive length of the handle of the jack (in
millimetres) if the force applied to it is
(a) 90 N (b) 0.36 kN (6)

2. For the centrally supported uniform beam
shown in Figure A2.1, determine the val-
ues of forces F1 and F2 when the beam
is in equilibrium. (7)

5 m2 m

R = 5.6 kN

F2F1

Figure A2.1

3. For the beam shown in Figure A2.2 cal-
culate (a) the force acting on support Q,
(b) distance d , neglecting any forces aris-
ing from the mass of the beam. (7)

5 N 20 N 10 N

 = 15 N

1 m

3 m

6 m

9 m

d

QP

R
P R

Q

Figure A2.2

4. A beam of length 3 m is simply sup-
ported at its ends. If a clockwise couple
of 4 kN m is placed at a distance of 1 m
from the left hand support, determine the
end reactions. (4)

5. If the beam in question 4 carries an addi-
tional downward load of 12 kN at a dis-
tance of 1 m from the right hand support,
sketch the bending moment and shearing
force diagrams. (5)

6. A beam of length 4 m is simply supported
at its right extremity and at 1 m from the
left extremity. If the beam is loaded with a
downward load of 2 kN at its left extrem-
ity and with another downward load of
10 kN at a distance of 1 m from its right
extremity, sketch its bending moment and
shearing force diagrams. (6)

7. (a) Find the second moment of area and
radius of gyration about the axis
XX for the beam section shown in
Figure A2.3.

6.0 cm

2.0 cm

2.0 cm

8.0 cm

10.0 cm

1.0 cm

X X

Figure A2.3

(b) Determine the position of the cen-
troid of the section.

(c) Calculate the second moment of area
and radius of gyration about an axis
through the centroid parallel to axis
XX. (25)
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Bending of beams

At the end of this chapter you should be
able to:

• define neutral layer

• define the neutral axis of a beam’s cross-
section

• prove that
σ

y
= M

I
= E

R

• calculate the stresses in a beam due to
bending

• calculate the radius of curvature of the
neutral layer due to a pure bending
moment M

8.1 Introduction

If a beam of symmetrical cross-section is subjected
to a bending moment M , then stresses due to bend-
ing action will occur. This can be illustrated by
the horizontal beam of Figure 8.1, which is of uni-
form cross-section. In pure or simple bending, the
beam will bend into an arc of a circle as shown in
Figure 8.2.

dx

M M

Figure 8.1

Now in Figure 8.2, it can be seen that due to
these couples M , the upper layers of the beam
will be in tension, because their lengths have been
increased, and the lower layers of the beam will
be in compression, because their lengths have been
decreased. Somewhere in between these two layers
lies a layer whose length has not changed, so that
its stress due to bending is zero. This layer is

(a) Beam (b) Cross-section

q

Neutral layer

D
BA

C MM

R

y

N A

Figure 8.2

called the neutral layer and its intersection with
the beam’s cross-section is called the neutral axis
(NA). Later on in this chapter it will be shown that
the neutral axis is also the centroidal axis described
in Chapter 7.

8.2 To prove that
σ

y
=

M

I
=

E

R

In the formula
σ

y
= M

I
= E

R
,

σ = the stress due to bending moment M,
occurring at a distance y from the
neutral axis NA,

I = the second moment of area of the
beam’s cross-section about NA,

E = Young’s modulus of elasticity of the
beam’s material,

and R = radius of curvature of the neutral layer
of the beam due to the bending

moment M.
Now the original length of the beam element,

dx = Rθ (8.1)

At any distance y from NA, the length AB increases
its length to:

CD = (R + y)θ (8.2)
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Hence, extension of AB

= δ = (R + y)θ − Rθ = yθ

Now, strain ε = extension/original length,

i.e. ε = yθ

Rθ
= y

R
(8.3)

However,
stress (σ )

strain (ε)
= E

or σ = Eε (8.4)

Substituting equation (8.3) into equation (8.4) gives:

σ = E
y

R
(8.5)

or
σ

y
= E

R
(8.6)

Consider now the stresses in the beam’s cross-
section, as shown in Figure 8.3.

Tensile

Compressive

(a) Beam's cross-section (b) Stress distribution

A

y

N

b

s

dy

Figure 8.3

From Figure 8.3, it can be seen that the stress σ
causes an elemental couple δM about NA, where:

δM = σ × (b × dy)× y

and the total value of the couple caused by all such
stresses

= M =
∑

δM =
∫

σby dy (8.7)

but from equation (8.5), σ = Ey

R

Therefore , M =
∫

Ey

R
by dy

=
∫

E

R
y2b dy

Now, E and R are constants, that is, they do not
vary with y, hence they can be removed from under
the integral sign. Therefore,

M = E

R

∫

y2b dy

However,
∫

y2b dy = I = the second moment of
area of the beam’s cross-section about NA (from
Table 7.1, page 91).

Therefore, M = E

R
I

or
M

I
= E

R
(8.8)

Combining equations (8.6) and (8.8) gives:

σ

y
= M

I
= E

R
(8.9)

Position of NA

From equilibrium considerations, the horizontal
force perpendicular to the beam’s cross-section, due
to the tensile stresses, must equal the horizontal
force perpendicular to the beam’s cross-section, due
to the compressive stresses, as shown in Figure 8.4.

Hence ,

∫ y1

0

σb dy =
∫ y2

0

σb dy

or

∫ y1

0

σb dy −
∫ y2

0

σb dy = 0

or

∫ y1

−y2

σb dy = 0

y1

y2

Tensile stress

Compressive stress

Figure 8.4
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But from equation (8.5), σ = E
y

R

Therefore,

∫ y1

−y2

Ey

R
b dy = 0

Now, E and R are constants, hence

E

R

∫ y1

−y2

yb dy = 0

However,
∫

yb dy = the first moment of area about
the centroid, and where this is zero, coincides with
the centroidal axis, i.e. the neutral axis lies on the
same axis as the centroidal axis.

Moment of resistance (M )

From Figure 8.4, it can be seen that the system of
tensile and compressive stresses perpendicular to the
beam’s cross-section, cause a couple, which resists

the applied moment M , where M =
∫ y1

−y2
σ(b dy)y

But from equation (8.5), σ = E
y

R

Hence, M = E

R

∫

y2b dy

or M =
EI

R
(as required)

8.3 Worked problems on the bending
of beams

Problem 1. A solid circular section bar of
diameter 20 mm, is subjected to a pure
bending moment of 0.3 kN m. If

E = 2 × 1011 N/m2, determine the resulting
radius of curvature of the neutral layer of
this beam and the maximum bending stress.

From Table 7.1, page 91,

I = πd4

64
= π × 204

64
= 7854 mm4

Now, M = 0.3 kN m × N

kN
1000 × 1000

mm

m

= 3 × 105 N mm

and E = 2 × 1011 N

m2
× 1

m

1000 mm
× 1

m

1000 mm

= 2 × 105N/mm2

From equation (8.8),
M

I
= E

R

hence, radius of curvature,

R = EI

M
= 2 × 105 N

mm2
× 7854 mm4

3 × 105 N mm

i.e. R = 5236 mm = 5.24 m

From equation (8.9),
σ

y
= M

I

and σ̂ = Mŷ

I

where σ̂ = maximum stress due to bending

and ŷ = outermost fibre from NA

= d

2
= 20

2
= 10 mm.

Hence, maximum bending stress,

σ̂ = Mŷ

I
= 3 × 105 N mm × 10 mm

7854 mm4

= 382 N/mm
2

= 382 × 106 N/m
2

= 382 MPa

Problem 2. A beam of length 3 m is simply
supported at its ends and has a cross-section,
as shown in Figure 8.5. If the beam is
subjected to a uniformly distributed load of
2 tonnes/m, determine the maximum stress
due to bending and the corresponding value
of the radius of curvature of the neutral layer.

0.1 m

0.2 m
Thickness = 0.02 m

Figure 8.5
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The total weight on the beam = wL, and as the
beam is symmetrically loaded, the values of the end

reactions, R = wL
2

, as shown in Figure 8.6.

L

w

R =
wL

2
R =

wL

2

Figure 8.6

Now the maximum bending moment, M̂ , occurs at
the mid-span, where

M̂ = R × L

2
− wL

2
× L

4

but R = wL

2
,

hence M̂ = wL

2
× L

2
− wL

2
× L

4

= wL2

4
− wL2

8
= wL2

(

2 − 1

8

)

= wL2

8
=

2
tonnes

m
× (3 m)2

8

= 2.25 tonnes m

= 2.25 tonnes m × 1000 kg

tonne
× 9.81 N

kg

i.e. maximum bending moment, M̂ = 22073 N m

Second moment of area,

I = 0.1 × 0.23

12
− 0.06 × 0.163

12

= 6.667 × 10−5 − 2.048 × 10−5

i.e. I = 4.619 × 10−5 m4

The maximum stress σ̂ occurs in the fibre of the
beam’s cross-section, which is the furthest distance
from NA, namely ŷ.

By inspection, ŷ =
0.2

2
= 0.1 m.

From
σ̂

ŷ
= M

I

σ̂ = Mŷ

I

= 22073 N m × 0.1 m

4.619 × 10−5 m4

i.e. maximum stress, σ̂ = 47.79 × 106 N/m2

= 47.79 MPa

Problem 3. A cantilever beam, whose
cross-section is a tube of external diameter
0.2 m and wall thickness of 0.02 m, is
subjected to a point load, at its free end, of
3 kN, as shown in Figure 8.7. Determine the
maximum bending stress in this cantilever.

1.5 m

3 kN

Figure 8.7

From problem 10, page 92, I =
π
(

D4
2 −D4

1

)

64

where D2 = the external diameter of the tube,

and D1 = the internal diameter of the tube.

Hence I = π(0.24 − 0.164)

64

i.e. I = 4.637 × 10−5 m4

The maximum bending moment, namely M̂ , will
occur at the built-in end of the beam, i.e. on the
extreme right of the beam of Figure 8.7.
Maximum bending moment,

M̂ = W × L

= 3 kN × 1.5 m × 1000
N

kN
= 4500 N m
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The maximum stress occurs at the outermost fibre
of the beam’s cross-section from NA, namely at ŷ.

By inspection, ŷ = 0.2

2
= 0.1 m

Hence σ̂ = M̂ŷ

I
= 4500 N m × 0.1 m

4.637 × 10−5 m4

i.e. the maximum bending stress,

σ̂ = 9.70 × 106 N/m2
= 9.70 MPa

Now try the following exercise

Exercise 41 Further problems on the
bending of beams

1. A cantilever of solid circular cross-
section is subjected to a concentrated
load of 30 N at its free end, as
shown in Figure 8.8. If the diameter of
the cantilever is 10 mm, determine the
maximum stress in the cantilever.

[367 MPa]

2. If the cantilever of Figure 8.8 were
replaced with a tube of the same external
diameter, but of wall thickness 2 mm,
what would be the maximum stress due
to the load shown in Figure 8.8.

[421 MPa]

1.2 m

30 N

Figure 8.8

3. A uniform section beam, simply sup-
ported at its ends, is subjected to a cen-
trally placed concentrated load of 5 kN.
The beam’s length is 1 m and its cross-
section is a solid circular one. If the
maximum stress in the beam is limited
to 30 MPa, determine the minimum per-
missible diameter of the beam’s cross-
section. [75 mm]

4. If the cross-section of the beam of
Problem 3 were of rectangular shape,
as shown in Figure 8.9, determine its

dimensions. Bending can be assumed to
take place about the xx axis.

[0.172 m × 0.086 m]

xD

D /2

x

D /2

Figure 8.9

5. If the cross-section of the beam of
Problem 3 is a circular tube of external
diameter d and internal diameter d/2,
determine the value of d . [0.166 m]

6. A cantilever of length 2 m, carries a
uniformly distributed load of 30 N/m,
as shown in Figure 8.10. Determine the
maximum stress in the cantilever.

[39.1 MPa]

30 N/m

(b) Cross-section
(solid)

(a) Contilever

2 m

25 mm

Figure 8.10

7. If the cantilever of Problem 6 were
replaced by a uniform section beam,
simply supported at its ends and carrying
the same uniformly distributed load,
determine the maximum stress in the
beam. The cross-section of the beam may
be assumed to be the same as that of
Problem 6. [9.78 MPa]

8. If the load in Problem 7 were replaced
by a single concentrated load of 120 N,
placed at a distance of 0.75 m from the
left support, what would be the maximum
stress in the beam due to this concen-
trated load. [36.7 MPa]

9. If the beam of Figure 8.10 were replaced
by another beam of the same length, but
which had a cross-section of tee form,
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as shown in Figure 8.11, determine the
maximum stress in the beam. [34 MPa]

40 mm

Thickness = 5 mm

15 mm

Figure 8.11

Exercise 42 Short answer questions on
the bending of beams

1. Define neutral layer.

2. Define the neutral axis of a beam’s cross-
section.

3. Give another name for the neutral axis.

4. Write down the relationship between
stress σ and bending moment M .

5. Write down the relationship between
stress σ and radius of curvature R.

Exercise 43 Multi-choice questions on the
bending of beams (Answers
on page 284)

1. The maximum stress due to bending
occurs:

(a) at the neutral axis

(b) at the outermost fibre

(c) between the neutral axis and the
outermost fibre

2. If the bending moment is increased in a
beam, the radius of curvature will:

(a) increase

(b) decrease

(c) stay the same

3. If the Young’s modulus is increased in a
beam in bending, due to a constant value
of M , the resulting bending stress will:

(a) increase

(b) decrease

(c) stay the same
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Torque

At the end of this chapter you should be
able to:

• define a couple

• define a torque and state its unit

• calculate torque given force and radius

• calculate work done given torque and
angle turned through

• calculate power, given torque and angle
turned through

• appreciate kinetic energy = Iω2

2
where I

is the moment of inertia

• appreciate that torque T = Iα where α is
the angular acceleration

• calculate torque given I and α

• calculate kinetic energy given I and ω

• understand power transmission by means
of belt and pulley

• perform calculations involving torque,
power and efficiency of belt drives

9.1 Couple and torque

When two equal forces act on a body as shown in
Figure 9.1, they cause the body to rotate, and the
system of forces is called a couple.

F

F d

Figure 9.1

The turning moment of a couple is called a
torque, T . In Figure 9.1, torque = magnitude of
either force × perpendicular distance between the
forces

i.e. T = Fd

The unit of torque is the newton metre, N m
When a force F newtons is applied at a radius r
metres from the axis of, say, a nut to be turned
by a spanner, as shown in Figure 9.2, the torque T
applied to the nut is given by: T = Fr N m

Turning radius, r

Force, F

Moment, M

P

Figure 9.2

Problem 1. Determine the torque when a
pulley wheel of diameter 300 mm has a
force of 80 N applied at the rim.

Torque T = Fr , where force F = 80 N and radius

r = 300

2
= 150 mm = 0.15 m.

Hence, torque, T = (80)(0.15) = 12 N m

Problem 2. Determine the force applied
tangentially to a bar of a screw jack at a
radius of 800 mm, if the torque required is
600 N m

Torque, T = force × radius, from which

force = torque

radius
= 600 N m

800 × 10−3 m

= 750 N
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Problem 3. The circular hand-wheel of a
valve of diameter 500 mm has a couple
applied to it composed of two forces, each of
250 N. Calculate the torque produced by the
couple.

Torque produced by couple, T = Fd, where force
F = 250 N and distance between the forces,
d = 500 mm = 0.5 m.
Hence, torque, T = (250)(0.5) = 125 N m

Now try the following exercise

Exercise 44 Further problems on torque

1. Determine the torque developed when a
force of 200 N is applied tangentially to
a spanner at a distance of 350 mm from
the centre of the nut. [70 N m]

2. During a machining test on a lathe, the
tangential force on the tool is 150 N. If
the torque on the lathe spindle is 12 N m,
determine the diameter of the work-piece.

[160 mm]

9.2 Work done and power transmitted
by a constant torque

Figure 9.3(a) shows a pulley wheel of radius r
metres attached to a shaft and a force F Newton’s
applied to the rim at point P .

r

s
r

P

P

F

F(a) (b)

θ

Figure 9.3

Figure 9.3(b) shows the pulley wheel having turned
through an angle θ radians as a result of the force F

being applied. The force moves through a distance
s, where arc length s = rθ

Work done = force × distance moved by the force

= F × rθ = Frθ N m = FrθJ

However, Fr is the torque T , hence,

work done = T θ joules

Average power = work done

time taken
= T θ

time taken

for a constant torque T

However, (angle θ)/(time taken) = angular veloc-
ity, ω rad/s

Hence, power, P = Tω watts (9.1)

Angular velocity, ω = 2πn rad/s where n is the
speed in rev/s

Hence, power, P = 2πnT watts (9.2)

Sometimes power is in units of horsepower (hp),
where

1 horsepower = 745.7 watts

i.e. 1 hp = 745.7 watts

Problem 4. A constant force of 150 N is
applied tangentially to a wheel of diameter
140 mm. Determine the work done, in joules,
in 12 revolutions of the wheel.

Torque T = Fr,where F = 150 N and radius

r = 140

2
= 70 mm = 0.070 m.

Hence, torque T = (150)(0.070) = 10.5 N m.
Work done = T θ joules, where torque,
T = 10.5 N m and angular displacement, θ = 12
revolutions = 12 × 2π rad = 24π rad.
Hence, work done = (10.5)(24π) = 792 J

Problem 5. Calculate the torque developed
by a motor whose spindle is rotating at 1000
rev/min and developing a power of 2.50 kW.
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Power P = 2πnT (from above), from which,

torque, T = P

2πn
N m

where power, P = 2.50 kW = 2500 W and speed,
n = 1000/60 rev/s Thus,

torque, T = P

2πn
= 2500

2π

(

1000

60

)

= 2500 × 60

2π × 1000
= 23.87 N m

Problem 6. An electric motor develops a
power of 5 hp and a torque of 12.5 N m.
Determine the speed of rotation of the motor
in rev/min.

Power, P = 2πnT , from which,

speed n = P

2πT
rev/s

where power, P = 5 hp = 5 × 745.7

= 3728.5 W

and torque T = 12.5 N m.

Hence, speed n = 3728.5

2π(12.5)
= 47.47 rev/s

The speed of rotation of the motor
= 47.47 × 60 = 2848 rev/min.

Problem 7. In a turning-tool test, the
tangential cutting force is 50 N. If the mean
diameter of the work-piece is 40 mm,
calculate (a) the work done per revolution of
the spindle, (b) the power required when the
spindle speed is 300 rev/min.

(a) Work done = T θ , where T = Fr

Force F = 50 N, radius r = 40

2
= 20 mm =

0.02 m and angular displacement, θ = 1 rev =
2π rad.

Hence, work done per revolution of
spindle = Frθ = (50)(0.02)(2π) = 6.28 J

(b) Power, P = 2πnT , where torque, T = Fr =
(50)(0.02) = 1 N m and speed, n = 300

60
=

5 rev/s.

Hence, power required, P = 2π(5)(1)
= 31.42 W.

Problem 8. A pulley is 600 mm in diameter
and the difference in tensions on the two
sides of the driving belt is 1.5 kN. If the
speed of the pulley is 500 rev/min, determine
(a) the torque developed, and (b) the work
done in 3 minutes.

(a) Torque T = Fr , where force F = 1.5 kN =
1500 N, and

radius r = 600

2
= 300 mm = 0.3 m.

Hence, torque developed = (1500)(0.3)
= 450 N m

(b) Work done = T θ , where torque T = 450 N m
and angular displacement in 3 minutes
= (3 × 500) rev = (3 × 500 × 2π) rad.

Hence, work done = (450)(3 × 500 × 2π) =
4.24 × 106 J = 4.24 MJ

Problem 9. A motor connected to a shaft
develops a torque of 5 kN m. Determine the
number of revolutions made by the shaft if
the work done is 9 MJ.

Work done = T θ , from which, angular displace-
ment,

θ = work done

torque

Work done = 9 MJ = 9 × 106 J

and torque = 5 kN m = 5000 N m.

Hence, angular displacement,

θ = 9 × 106

5000
= 1800 rad.

2π rad = 1 rev, hence,

the number of revolutions made by the shaft

= 1800

2π
= 286.5 revs
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Now try the following exercise

Exercise 45 Further problems on work
done and power transmitted
by a constant torque

1. A constant force of 4 kN is applied tan-
gentially to the rim of a pulley wheel of
diameter 1.8 m attached to a shaft. Deter-
mine the work done, in joules, in 15 rev-
olutions of the pulley wheel. [339.3 kJ]

2. A motor connected to a shaft develops a
torque of 3.5 kN m. Determine the num-
ber of revolutions made by the shaft if the
work done is 11.52 MJ. [523.8 rev]

3. A wheel is turning with an angular veloc-
ity of 18 rad/s and develops a power of
810 W at this speed. Determine the torque
developed by the wheel. [45 N m]

4. Calculate the torque provided at the shaft
of an electric motor that develops an out-
put power of 3.2 hp at 1800 rev/min.

[12.66 N m]

5. Determine the angular velocity of a shaft
when the power available is 2.75 kW and
the torque is 200 N m. [13.75 rad/s]

6. The drive shaft of a ship supplies a torque
of 400 kN m to its propeller at 400
rev/min. Determine the power delivered
by the shaft. [16.76 MW]

7. A motor is running at 1460 rev/min and
produces a torque of 180 N m. Deter-
mine the average power developed by the
motor. [27.52 kW]

8. A wheel is rotating at 1720 rev/min and
develops a power of 600 W at this speed.
Calculate (a) the torque, (b) the work done,
in joules, in a quarter of an hour.

[(a) 3.33 N m (b) 540 kJ]

9. A force of 60 N is applied to a lever of
a screw-jack at a radius of 220 mm. If
the lever makes 25 revolutions, determine
(a) the work done on the jack, (b) the
power, if the time taken to complete 25
revolutions is 40 s.

[(a) 2.073 kJ (b) 51.84 W]

9.3 Kinetic energy and moment of
inertia

The tangential velocity v of a particle of mass m
moving at an angular velocity ω rad/s at a radius r
metres (see Figure 9.4) is given by:

v = ωr m/s

r

ω

m

v

Figure 9.4

The kinetic energy of a particle of mass m is
given by:

Kinetic energy = 1
2
mv2 (from Chapter 14)

= 1
2
m(ωr)2 = 1

2
m ω2r2 joules

The total kinetic energy of a system of masses
rotating at different radii about a fixed axis but with
the same angular velocity, as shown in Figure 9.5,
is given by:

Total kinetic energy = 1

2
m1ω

2r2
1 + 1

2
m2ω

2r2
2

+ 1

2
m3ω

2r2
3

= (m1r
2
1 +m2r

2
2 +m3r

2
3 )
ω2

2

r2

r1

r3 m3

m2

m1

ω

Figure 9.5
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In general, this may be written as:

Total kinetic energy =
(

∑

mr2
) ω2

2
= I

ω2

2

where I (= �mr2) is called the moment of inertia
of the system about the axis of rotation and has units

of kg m2.
The moment of inertia of a system is a measure
of the amount of work done to give the system an
angular velocity of ω rad/s, or the amount of work
that can be done by a system turning at ω rad/s.
From Section 9.2, work done = T θ , and if this
work is available to increase the kinetic energy of a
rotating body of moment of inertia I , then:

T θ = I

(

ω2
2 − ω2

1

2

)

where ω1 and ω2 are the initial and final angular
velocities, i.e.

T θ = I

(

ω2 + ω1

2

)

(ω2 − ω1)

However,

(

ω2 + ω1

2

)

is the mean angular velocity, i.e.
θ

t
, where t is the

time, and (ω2−ω1) is the change in angular velocity,
i.e. αt , where α is the angular acceleration. Hence,

T θ = I

(

θ

t

)

(αt)

from which, torque T = I α

where I is the moment of inertia in kg m2, α is the

angular acceleration in rad/s2 and T is the torque
in N m.

Problem 10. A shaft system has a moment

of inertia of 37.5 kg m2. Determine the
torque required to give it an angular

acceleration of 5.0 rad/s2.

Torque, T = Iα, where moment of inertia I =
37.5 kg m2 and angular acceleration, α = 5.0 rad/s2.
Hence, torque, T = (37.5)(5.0) = 187.5 N m

Problem 11. A shaft has a moment of
inertia of 31.4 kg m2. What angular
acceleration of the shaft would be produced
by an accelerating torque of 495 N m?

Torque, T = Iα, from which, angular acceleration,

α = T

I
, where torque, T = 495 N m and moment

of inertia I = 31.4 kg m2.
Hence, angular acceleration,

α = 495

31.4
= 15.76 rad/s2

Problem 12. A body of mass 100 g is
fastened to a wheel and rotates in a circular
path of 500 mm in diameter. Determine the
increase in kinetic energy of the body when
the speed of the wheel increases from 450
rev/min to 750 rev/min.

From above, kinetic energy = I
ω2

2

Thus, increase in kinetic energy = I

(

ω2
2 − ω2

1

2

)

where moment of inertia, I = mr2,
mass, m = 100 g = 0.1 kg
and radius,

r = 500

2
= 250 mm = 0.25 m.

Initial angular velocity,

ω1 = 450 rev/min = 450 × 2π

60
rad/s

= 47.12 rad/s,

and final angular velocity,

ω2 = 750 rev/min = 750 × 2π

60
rad/s

= 78.54 rad/s.

Thus, increase in kinetic energy

= I

(

ω2
2 − ω2

1

2

)

= (mr2)

(

ω2
2 − ω2

1

2

)

= (0.1)(0.252)

(

78.542 − 47.122

2

)

= 12.34 J
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Problem 13. A system consists of three
small masses rotating at the same speed
about the same fixed axis. The masses and
their radii of rotation are: 15 g at 250 mm,
20 g at 180 mm and 30 g at 200 mm.
Determine (a) the moment of inertia of the
system about the given axis, and (b) the
kinetic energy in the system if the speed of
rotation is 1200 rev/min.

(a) Moment of inertia of the system, I = �mr2

i.e. I = [(15 × 10−3 kg)(0.25 m)2]

+ [(20 × 10−3 kg)(0.18 m)2]

+ [(30 × 10−3 kg)(0.20 m)2]

= (9.375 × 10−4)+ (6.48 × 10−4)

+ (12 × 10−4)

= 27.855 × 10−4 kg m2

= 2.7855 × 10−3kg m2

(b) Kinetic energy = I
ω2

2
, where moment of

inertia, I = 2.7855 × 10−3 kg m2 and angular
velocity,

ω = 2πn = 2π

(

1200

60

)

rad/s = 40π rad/s

Hence, kinetic energy in the system

= (2.7855 × 10−3)
(40π)2

2
= 21.99 J

Problem 14. A shaft with its rotating parts

has a moment of inertia of 20 kg m2. It is
accelerated from rest by an accelerating
torque of 45 N m. Determine the speed of
the shaft in rev/min (a) after 15 s, and
(b) after the first 5 revolutions.

(a) Since torque T = Iα, then angular accelera-

tion, α = T

I
= 45

20
= 2.25 rad/s2.

The angular velocity of the shaft is initially
zero, i.e. ω1 = 0.

From chapter 11, page 129, the angular veloc-
ity after 15 s,

ω2 = ω1 + αt = 0 + (2.25)(15)

= 33.75 rad/s,

i.e. speed of shaft after 15 s

= (33.75)

(

60

2π

)

rev/min = 322.3 rev/min

(b) Work done = T θ , where torque T = 45 N m
and angular displacement θ = 5 revolutions =
5 × 2π = 10π rad.
Hence work done = (45)(10π) = 1414 J.

This work done results in an increase in kinetic

energy, given by I
ω2

2
, where moment of inertia

I = 20 kg m2 and ω = angular velocity.

Hence, 1414 = (20)

(

ω2

2

)

from which,

ω =
√

(

1414 × 2

20

)

= 11.89 rad/s

i.e. speed of shaft after the first 5 revolutions

= 11.89 × 60

2π

= 113.5 rev/min

Problem 15. The accelerating torque on a
turbine rotor is 250 N m.

(a) Determine the gain in kinetic energy of
the rotor while it turns through 100
revolutions (neglecting any frictional
and other resisting torques).

(b) If the moment of inertia of the rotor is
25 kg m2 and the speed at the beginning
of the 100 revolutions is 450 rev/min,
determine its speed at the end.

(a) The kinetic energy gained is equal to the work
done by the accelerating torque of 250 N m
over 100 revolutions,

i.e. gain in kinetic energy = work done =
T θ = (250)(100 × 2π) = 157.08 kJ
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(b) Initial kinetic energy is given by:

I
ω2

1

2
=
(25)

(

450 × 2π

60

)2

2
= 27.76 kJ

The final kinetic energy is the sum of the initial
kinetic energy and the kinetic energy gained,

i.e. I
ω2

2

2
= 27.76 kJ + 157.08 kJ

= 184.84 kJ.

Hence,
(25)ω2

2

2
= 184840

from which, ω2 =
√

(

184840 × 2

25

)

= 121.6 rad/s.

Thus, speed at end of 100 revolutions

= 121.6 × 60

2π
rev/min = 1161 rev/min

Problem 16. A shaft with its associated
rotating parts has a moment of inertia of

55.4 kg m2. Determine the uniform torque
required to accelerate the shaft from rest to a
speed of 1650 rev/min while it turns through
12 revolutions.

From above, T θ = I

(

ω2
2 − ω2

1

2

)

where angular displacement θ = 12 rev = 12 ×
2π = 24π rad, final speed, ω2 = 1650 rev/min =
1650

60
× 2π = 172.79 rad/s, initial speed, ω1 = 0,

and moment of inertia, I = 55.4 kg m2.
Hence, torque required,

T =
(

I

θ

)

(

ω2
2 − ω2

1

2

)

=
(

55.4

24π

)

(

172.792 − 02

2

)

= 10.97 kN m

Now try the following exercise

Exercise 46 Further problems on kinetic
energy and moment of inertia

1. A shaft system has a moment of iner-

tia of 51.4 kg m2. Determine the torque

required to give it an angular acceleration

of 5.3 rad/s2. [272.4 N m]

2. A shaft has an angular acceleration of 20

rad/s2and produces an accelerating torque
of 600 N m. Determine the moment of
inertia of the shaft. [30 kg m2]

3. A uniform torque of 3.2 kN m is applied
to a shaft while it turns through 25
revolutions. Assuming no frictional or
other resistance’s, calculate the increase
in kinetic energy of the shaft (i.e. the work
done). If the shaft is initially at rest and

its moment of inertia is 24.5 kg m2, deter-
mine its rotational speed, in rev/min, at
the end of the 25 revolutions.

[502.65 kJ, 1934 rev/min]

4. An accelerating torque of 30 N m is app-
lied to a motor, while it turns through
10 revolutions. Determine the increase in
kinetic energy. If the moment of inertia

of the rotor is 15 kg m2 and its speed
at the beginning of the 10 revolutions
is 1200 rev/min, determine its speed at
the end. [1.885 kJ, 1209.5 rev/min]

5. A shaft with its associated rotating parts

has a moment of inertia of 48 kg m2.
Determine the uniform torque required to
accelerate the shaft from rest to a speed
of 1500 rev/min while it turns through 15
revolutions. [6.283 kN m]

6. A small body, of mass 82 g, is fastened
to a wheel and rotates in a circular path of
456 mm diameter. Calculate the increase
in kinetic energy of the body when the
speed of the wheel increases from 450
rev/min to 950 rev/min. [16.36 J]

7. A system consists of three small masses
rotating at the same speed about the same
fixed axis. The masses and their radii
of rotation are: 16 g at 256 mm, 23 g at
192 mm and 31 g at 176 mm. Determine
(a) the moment of inertia of the system
about the given axis, and (b) the kinetic
energy in the system if the speed of rota-
tion is 1250 rev/min.

[(a) 2.857 × 10−3 kg m2 (b) 24.48 J]

8. A shaft with its rotating parts has a

moment of inertia of 16.42 kg m2. It is
accelerated from rest by an accelerating
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torque of 43.6 N m. Find the speed of the
shaft (a) after 15 s, and (b) after the first
four revolutions.

[(a) 380.3 rev/min (b) 110.3 rev/min]

9. The driving torque on a turbine rotor is
203 N m, neglecting frictional and other
resisting torques. (a) What is the gain in
kinetic energy of the rotor while it turns
through 100 revolutions? (b) If the moment

of inertia of the rotor is 23.2 kg m2 and the
speed at the beginning of the 100 revolu-
tions is 600 rev/min, what will be its speed
at the end?

[(a) 127.55 kJ (b) 1167 rev/min]

9.4 Power transmission and efficiency

A common and simple method of transmitting power
from one shaft to another is by means of a belt
passing over pulley wheels which are keyed to the
shafts, as shown in Figure 9.6. Typical applications
include an electric motor driving a lathe or a drill,
and an engine driving a pump or generator.

ry
rx

xω
F1

F1

F2
F2

Driven
pulley wheel

Driver
pulley wheel Belt

Figure 9.6

For a belt to transmit power between two pulleys
there must be a difference in tensions in the belt on
either side of the driving and driven pulleys. For the
direction of rotation shown in Figure 9.6, F2 > F1

The torque T available at the driving wheel to do
work is given by:

T = (F2 − F1)rx N m

and the available power P is given by:

P = Tω = (F2 − F1)rxωx watts

From Section 9.3, the linear velocity of a point on
the driver wheel, vx = rxωx
Similarly, the linear velocity of a point on the driven
wheel, vy = ryωy .
Assuming no slipping, vx = vy i.e. rxωx = ryωy
Hence rx(2πnx) = ry(2πny)

from which,
rx

ry

=
ny

nx

Percentage efficiency = useful work output

energy output
× 100

or efficiency =
power output
power input

× 100%

Problem 17. An electric motor has an
efficiency of 75% when running at 1450
rev/min. Determine the output torque when
the power input is 3.0 kW.

Efficiency = power output

power input
× 100% hence

75 = power output

3000
× 100

from which, power output = 75

100
× 3000

= 2250 W.
From Section 9.2, power output, P = 2πnT ,

from which torque,

T = P

2πn

where n = (1450/60) rev/s

Hence, output torque = 2250

2π

(

1450

60

)

= 14.82 N m

Problem 18. A 15 kW motor is driving a
shaft at 1150 rev/min by means of pulley
wheels and a belt. The tensions in the belt on
each side of the driver pulley wheel are
400 N and 50 N. The diameters of the driver
and driven pulley wheels are 500 mm and
750 mm respectively. Determine (a) the
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efficiency of the motor, (b) the speed of the
driven pulley wheel.

(a) From above, power output from motor
= (F2 − F1)rxωx
Force F2 = 400 N and F1 = 50 N, hence
(F2 − F1) = 350 N,

radius rx = 500

2
= 250 mm = 0.25 m

and angular velocity,

ωx = 1150 × 2π

60
rad/s

Hence power output from motor
= (F2 − F1)rxωx

= (350)(0.25)

(

1150 × 2π

60

)

= 10.54 kW

Power input = 15 kW
Hence, efficiency of the motor

= power output

power input

= 10.54

15
× 100 = 70.27%

(b) From above,
rx

ry
= ny

nx
from which, speed of driven pulley wheels,

ny = nxrx

ry
= 1150 × 0.25

0.750

2

= 767 rev/min

Problem 19. A crane lifts a load of mass 5
tonne to a height of 25 m. If the overall
efficiency of the crane is 65% and the input
power to the hauling motor is 100 kW,
determine how long the lifting operation
takes.

The increase in potential energy is the work done
and is given by mgh (see Chapter 14), where mass,

m = 5 t = 5000 kg, g = 9.81 m/s2 and height
h = 25 m.

Hence, work done = mgh = (5000)(9.81)(25)
= 1.226 MJ.

Input power = 100 kW = 100000 W

Efficiency = output power

input power
× 100

hence 65 = output power

100000
× 100

from which, output power

= 65

100
× 100000 = 65000 W = work done

time taken

Thus, time taken for lifting operation

= work done

output power
= 1.226 × 106 J

65000 W
= 18.86 s

Problem 20. The tool of a shaping machine
has a mean cutting speed of 250 mm/s and
the average cutting force on the tool in a
certain shaping operation is 1.2 kN. If the
power input to the motor driving the
machine is 0.75 kW, determine the overall
efficiency of the machine.

Velocity, v = 250 mm/s = 0.25 m/s and force
F = 1.2 kN = 1200 N
From Chapter 14, power output required at the cut-
ting tool (i.e. power output),
P = force × velocity = 1200 N × 0.25 m/s.

= 300 W
Power input = 0.75 kW = 750 W
Hence, efficiency of the machine

= output power

input power
× 100

= 300

750
× 100 = 40%

Problem 21. Calculate the input power of
the motor driving a train at a constant speed
of 72 km/h on a level track, if the efficiency
of the motor is 80% and the resistance due to
friction is 20 kN.

Force resisting motion = 20 kN = 20000 N and

velocity = 72 km/h = 72

3.6
= 20 m/s
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Output power from motor

= resistive force × velocity of train

(from Chapter 14)

= 20000 × 20 = 400 kW

Efficiency = power output

power input
× 100

hence 80 = 400

power input
× 100

from which, power input = 400 × 100

80

= 500 kW

Now try the following exercise

Exercise 47 Further problems on power
transmission and efficiency

1. A motor has an efficiency of 72% when
running at 2600 rev/min. If the output
torque is 16 N m at this speed, determine
the power supplied to the motor.

[6.05 kW]

2. The difference in tensions between the
two sides of a belt round a driver pul-
ley of radius 240 mm is 200 N. If the
driver pulley wheel is on the shaft of
an electric motor running at 700 rev/min
and the power input to the motor is
5 kW, determine the efficiency of the
motor. Determine also the diameter of the
driven pulley wheel if its speed is to be
1200 rev/min. [70.37%, 280 mm]

3. A winch is driven by a 4 kW electric
motor and is lifting a load of 400 kg to
a height of 5.0 m. If the lifting operation
takes 8.6 s, calculate the overall efficiency
of the winch and motor [57.03%]

4. A belt and pulley system transmits a
power of 5 kW from a driver to a driven
shaft. The driver pulley wheel has a
diameter of 200 mm and rotates at 600
rev/min. The diameter of the driven wheel
is 400 mm. Determine the tension in the
slack side of the belt and the speed of the
driven pulley when the tension in the tight
side of the belt is 1.2 kN.

[404.2 N, 300 rev/min]

5. The average force on the cutting tool of
a lathe is 750 N and the cutting speed is
400 mm/s. Determine the power input to
the motor driving the lathe if the overall
efficiency is 55%. [545.5 W]

6. A ship’s anchor has a mass of 5 tonne.
Determine the work done in raising the
anchor from a depth of 100 m. If the
hauling gear is driven by a motor whose
output is 80 kW and the efficiency of the
haulage is 75%, determine how long the
lifting operation takes

[4.905 MJ, 1 min 22s]

Exercise 48 Short answer questions on
torque

1. In engineering, what is meant by a cou-
ple?

2. Define torque.

3. State the unit of torque.

4. State the relationship between work,
torque T and angular displacement θ .

5. State the relationship between power P ,
torque T and angular velocity ω.

6. Complete the following: 1 horsepower =
. . . . . . watts.

7. Define moment of inertia and state the
symbol used.

8. State the unit of moment of inertia.

9. State the relationship between torque,
moment of inertia and angular acceler-
ation.

10. State one method of power transmission
commonly used.

11. Define efficiency.

Exercise 49 Multi-choice questions on tor-
que (Answers on page 284)

1. The unit of torque is:

(a) N (b) Pa (c) N/m (d) N m

2. The unit of work is:

(a) N (b) J (c) W (d) N/m
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3. The unit of power is:

(a) N (b) J (c) W (d) N/m

4. The unit of the moment of inertia is:

(a) kg m2 (b) kg

(c) kg/m2 (d) N m

5. A force of 100 N is applied to the rim
of a pulley wheel of diameter 200 mm.
The torque is:

(a) 2 N m (b) 20 kN m

(c) 10 N m (d) 20 N m

6. The work done on a shaft to turn it
through 5π radians is 25π J. The torque
applied to the shaft is:

(a) 0.2 N m (b) 125π2 N m

(c) 30π N m (d) 5 N m

7. A 5 kW electric motor is turning at
50 rad/s. The torque developed at this
speed is:

(a) 100 N m (b) 250 N m

(c) 0.01 N m (d) 0.1 N m

8. The force applied tangentially to a bar
of a screw-jack at a radius of 500 mm if
the torque required is 1 kN m is:

(a) 2 N (b) 2 kN

(c) 500 N (d) 0.5 N

9. A 10 kW motor developing a torque
of (200/π) N m is running at a speed
of:

(a) (π/20) rev/s (b) 50π rev/s

(c) 25 rev/s (d) (20/π) rev/s

10. A shaft and its associated rotating parts

has a moment of inertia of 50 kg m2.
The angular acceleration of the shaft
to produce an accelerating torque of
5 kN m is:

(a) 10 rad/s2 (b) 250 rad/s2

(c) 0.01 rad/s2 (d) 100 rad/s2

11. A motor has an efficiency of 25%
when running at 3000 rev/min. If the
output torque is 10 N m, the power
input is:

(a) 4π kW (b) 0.25π kW

(c) 15π kW (d) 75π kW

12. In a belt-pulley wheel system, the
effective tension in the belt is 500 N
and the diameter of the driver wheel is
200 mm. If the power output from the
driving motor is 5 kW, the driver pulley
wheel turns at:

(a) 50 rad/s (b) 2500 rad/s

(c) 100 rad/s (d) 0.1 rad/s
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Twisting of shafts

At the end of this chapter you should be
able to:

• appreciate practical applications where
torsion of shafts occur

• prove that
τ

r
= T

J
= Gθ

L

• calculate the shearing stress τ due to a
torque, T

• calculate the resulting angle of twist, θ ,
due to torque, T

• calculate the power that can be transmitted
by a shaft

10.1 Introduction

The torsion of shafts appears in a number of differ-
ent branches of engineering including the following:

(a) propeller shafts for ships and aircraft

(b) shafts driving the blades of a helicopter

(c) shafts driving the rear wheels of an automobile

(d) shafts driving food mixers, washing machines,
tumble dryers, dishwashers, etc.

If the shaft is overstressed due to a torque, so that
the maximum shear stress in the shaft exceeds the
yield shear stress of the shaft’s material, the shaft
can fracture. This is an undesirable phenomenon and
normally, it should be designed out; hence the need
for the theory contained in this chapter.

10.2 To prove that
τ

r
=

T

J
=

Gθ

L

In the formula

τ

r
= T

J
= Gθ

L
:

τ = the shear stress at radius r

T = the applied torque

J = polar second moment of area of the shaft

(note that for non-circular sections, J is the

torsional constant and not the polar second

moment of area)

G = rigidity or shear modulus

θ = angle of twist, in radians, over its length L

Prior to proving the above formula, the following
assumptions are made for circular section shafts:

(a) the shaft is of circular cross-section

(b) the cross-section of the shaft is uniform along
its entire length

(c) the shaft is straight and not bent

(d) the shaft’s material is homogeneous (i.e. uni-
form) and isotropic (i.e. exhibits properties
with the same values when measured along dif-
ferent axes) and obeys Hooke’s law

(e) the limit of proportionality is not exceeded and
the angles of twist due to the torque are small

(f) plane cross-sections remain plane and normal
during twisting

(g) radial lines across the shaft’s cross-section
remain straight and radial during twisting.

Consider a circular section shaft, built-in at one end,
namely A, and subjected to a torque T at the other
end, namely B, as shown in Figure 10.1.

Let θ be the angle of twist due to this torque T ,
where the direction of T is according to the right
hand screw rule. N.B. The direction of a couple,
according to the right hand screw rule, is obtained
by pointing the right hand in the direction of the
double-tailed arrow and rotating the right hand in a
clockwise direction.

From Figure 10.1, it can be seen that: γ = shear
strain, and that

γL = Rθ (10.1)

provided θ is small.
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Rigid

A
2R

B

T

L

q

g

Figure 10.1

However, from equation (1.1, page 12), γ = τ

G

Hence,
( τ

G

)

L = Rθ

or
τ

R
= Gθ

L
(10.2)

From equation (10.2), it can be seen that the shear
stress τ is dependent on the value of R and it will
be a maximum on the outer surface of the shaft. On
the outer surface of the shaft τ will act as shown in
Figure 10.2.

A B

t

t

Figure 10.2

For any radius r ,

τ

r
= Gθ

L
(10.3)

The shaft in Figure 10.2 is said to be in a state of
pure shear on these planes, as these shear stresses
will not be accompanied by direct or normal stress.
Consider an annular element of the shaft, as shown
in Figure 10.3.
The torque T causes constant value shearing stresses
on the thin walled annular element shown in
Figure 10.4.

L

R

dr

r

Figure 10.3

t

t

t

t
t

t

t

t

dr

r

Figure 10.4 Annular element

The elemental torque δT due to these shearing
stresses τ at the radius r is given

by: δT = τ × (2πrdr)r

and the total torque T =
∑

δ T

or T =
∫ R

0

τ (2πr2) dr (10.4)

However, from equation (10.3),

τ = Gθ

L
r

Therefore, T =
∫ R

0

Gθ

L
r(2πr2) dr

But G, θ , L and 2π do not vary with r ,

hence, T = Gθ

L
(2π)

∫ R

0

r3 dr

= Gθ

L
(2π)

[

r4

4

]R

0

= Gθ

L

πR4

2
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However, from Table 7.1, page 91, the polar second
moment of area of a circle,

J = πR4

2
,

hence, T = Gθ

L
J

or
T

J
= Gθ

L
(10.5)

Combining equations (10.3) and (10.5) gives:

τ

r
=

T

J
=

Gθ

L
(10.6)

For a solid section of radius R or diameter D,

J = πR4

2
or

πD4

32
(10.7)

For a hollow tube of circular section and of internal
radius R1 and external radius R2

J = π

2

(

R4
2 − R4

1

)

(10.8)

or, in terms of external and internal diameters of D2

and D1 respectively, (see Problem 12, Chapter 7,
pages 93),

J = π

32

(

D4
2 −D4

1

)

(10.9)

The torsional stiffness of the shaft, k, is defined by:

k = GJ

L
(10.10)

The next section of worked problems will demon-
strate the use of equation (10.6).

10.3 Worked problems on the twisting
of shafts

Problem 1. An internal combustion engine
of 60 horsepower (hp) transmits power to the
car wheels of an automobile at 300 rev/min
(rpm). Neglecting any transmission losses,
determine the minimum permissible diameter
of the solid circular section steel shaft, if the
maximum shear stress in the shaft is limited
to 50 MPa. What will be the resulting angle

of twist of the shaft, due to the applied
torque, over a length of 2 m, given that the
rigidity modulus, G = 70 GPa ? (Note that
1 hp = 745.7 W).

Power = 60 hp = 60 hp × 745.7
W

hp

= 44742 W

From equations (9.1) and (9.2), page 110,
power = T ω = 2πnT watts, where n is the speed
in rev/s

or 44742 = 2π
rad

rev
× 300

60

rev

s
× T

= 31.42 T rad/s

from which, T = 44742 W

31.42 rad/s

i.e. torque T = 1424 N m
(since 1 W s = 1 N m)

From equation (10.6),

τ

r
= T

J

i.e.
50 × 106

r

N

m2
= 1424 N m

πr4

2

and
r4

r
= 1424 × 2

π × 50 × 106
m3

from which, r3 = 1424 × 2

π × 50 × 106

or shaft radius, r = 3

√

(

1424 × 2

π × 50 × 106

)

= 0.0263 m

Hence, shaft diameter, d = 2 × r = 2 × 0.0263

= 0.0526 m
From equation (10.6),

τ

r
= Gθ

L

from which, θ = τL

Gr
=

50 × 106 N

m2
× 2 m

70 × 109 N

m2
× 0.0263 m
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and θ = 0.0543 rad

= 0.0543 rad × 360°

2πrad

i.e. angle of twist, θ = 3.11°

Problem 2. If the shaft in Problem 1 were
replaced by a hollow tube of the same
external diameter, but of wall thickness
0.005 m, what would be the maximum shear
stress in the shaft due to the same applied
torque, and the resulting twist of the shaft.
The material properties of the shaft may be
assumed to be the same as that of Problem 1.

Internal shaft diameter,

D1 = D2 − 2 × wall thickness

= 0.0525 − 2 × 0.005

i.e. D1 = 0.0425 m

The polar second moment of area for a hollow tube,

J = π
32

(

D4
2 −D4

1

)

from Problem 12, page 93.

Hence, J = π

32

(

0.05254 − 0.04254
)

= 4.255 × 10−7m4

From equation (10.6),

τ

r
= T

J

Hence, maximum shear stress,

τ̂ = T r

J
=

1424 N m × 0.0525

2
m

4.255 × 10−7 m4

= 87.85 MPa

From equation (10.6),

τ

r
= Gθ

L

from which, θ = τL

Gr
=

87.85 × 106 N

m2
× 2 m

70 × 109 N

m2
× 0.02625 m

i.e. θ = 0.0956 rad

= 0.0956 rad × 360°

2π rad

i.e. angle of twist, θ = 5.48°

Problem 3. What would be the maximum
shear stress and resulting angle of twist on
the shaft of Problem 2, if the wall thickness
were 10 mm, instead of 5 mm?

Internal shaft diameter,

D1 = D2 − 2 × wall thickness

= 0.0525 − 2 × 10 × 10−3

i.e. D1 = 0.0325 m

The polar second moment of area for a hollow tube,

J = π

32

(

D4
2 −D4

1

)

Hence, J = π

32

(

0.05254 − 0.03254
)

= 6.36 × 10−7m4

From equation (10.6),

τ

r
= T

J

Hence, maximum shear stress,

τ̂ = T r

J
=

1424 N m × 0.0525

2
m

6.36 × 10−7 m4

= 58.75 MPa

From equation (10.6),

τ

r
= Gθ

L

from which, θ = τL

Gr
=

58.75 × 106 N

m2
× 2 m

70 × 109 N

m2
× 0.02625 m

i.e. θ = 0.06395 rad

= 0.06395 rad × 360°

2π rad

i.e. angle of twist, θ = 3.66°

N.B. From the calculations in Problems 1 to 3, it
can be seen that a hollow shaft is structurally more
efficient than a solid section shaft.

Problem 4. A shaft of uniform circular
section is fixed at its ends and it is subjected
to an intermediate torque T , as shown in
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Figure 10.5, where a > b. Determine the
maximum resulting torque acting on the shaft
and then draw the torque diagram.

a

A

T1 T2

T
b

c

B

x

Figure 10.5

From equilibrium considerations, (see Figure 10.5),

clockwise torque = the sum of the
anticlockwise torques

T = T1 + T2 (10.11)

Let θC = the angle of twist at the point C.

From equation (10.6),
T

J
= Gθ

L

from which, T = GθJ

L

Therefore T1 = GθCJ

a
(10.12)

and T2 = GθCJ

b
(10.13)

Dividing equation (10.12) by equation (10.13) gives:

T1

T2

= b

a

or T1 = bT2

a
(10.14)

Substituting equation (10.14) into equation (10.11)
gives:

T = bT2

a
+ T2 =

(

1 + b

a

)

T2

orT2 = T
(

1 + b

a

) = T
(

a + b

a

) = T a

(a + b)
(10.15)

However, a + b = L

Therefore T2 =
T a

L
(10.16)

Substituting equation (10.16) into equation (10.14)
gives:

T1 =
b

(

T a

L

)

a
= b T

L
(10.17)

As a > b, T2 > T1; therefore, maximum

torque = T2 =
Ta

L

The torque diagram is shown in Figure 10.6.

T

−Ta /L
−Ta /L

Tb /L
Tb /L

0 0

Figure 10.6 Torque diagram

Now try the following exercise

Exercise 50 Further problems on the
twisting of shafts

1. A shaft of uniform solid circular section
is subjected to a torque of 1500 N m.
Determine the maximum shear stress in
the shaft and its resulting angle of twist, if
the shaft’s diameter is 0.06 m, the shaft’s
length is 1.2 m, and the rigidity modulus,

G = 77 × 109 N/m2. What power can
this shaft transmit if it is rotated at 400
rev/min? [35.4 MPa, 1.05°, 62.83 kW]

2. If the shaft in Problem 1 were replaced
by a similar hollow one of wall thickness
10 mm, but of the same outer diameter,
what would be the maximum shearing
stress in the shaft and the resulting angle
of twist? What power can this shaft
transmit if it rotated at 500 rev/min.

[44.1 MPa, 1.31°, 78.5 kW]

3. A boat’s propeller shaft transmits 50 hp
at 100 rev/min. Neglecting transmission
losses, determine the minimum diame-
ter of a solid circular section phosphor
bronze shaft, when the maximum permis-
sible shear stress in the shaft is limited to
40 MPa. What will be the resulting angle
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of twist of this shaft, due to this torque,
over a length of 1 m, given that the rigid-
ity modulus, G = 40 GPa.

[76.8 mm, 1.49°]

4. A shaft to the blades of a helicopter trans-
mits 1000 hp at 200 rev/min. Neglecting
transmission losses, determine the mini-
mum external and internal diameters of
the hollow circular section aluminium
alloy shaft, when the maximum permis-
sible shear stress in the shaft is limited
to 30 MPa. It may be assumed that the
external diameter of this shaft is twice its
internal diameter. What will be the result-
ing angle of twist of this shaft over a
length of 2 m, given that the modulus of
rigidity, G = 26.9 GPa.?

[186 mm, 93 mm, 1.374°]

5. A solid circular section shaft of diameter
d is subjected to a torque of 1000 N m. If
the maximum permissible shear stress in
this shaft is limited to 30 MPa, determine
the minimum value of d . [55.4 mm]

6. If the shaft in Problem 5 were to be
replaced by a hollow shaft of external
diameter d2 and internal diameter 0.5d2,
determine the minimum value for d2, the
design condition being the same for both
shafts. What percentage saving in weight
will result by replacing the solid shaft by
the hollow one.

[56.6 mm, 28.3 mm, 21.7%]

Exercise 51 Short answer questions on
the twisting of shafts

1. State three practical examples where the
torsion of shafts appears

2. State the relationship between shear stress
τ and torque T for a shaft.

3. State the relationship between torque T
and angle of twist θ for a shaft.

4. State whether a solid shaft or a hollow
shaft is structurally more efficient.

Exercise 52 Multi-choice questions on the
twisting of shafts (Answers on
page 284)

1. The maximum shear stress for a solid
shaft occurs:

(a) at the outer surface

(b) at the centre

(c) in between the outer surface and the
centre

2. For a given shaft, if the values of torque
T , length L and radius r are kept con-
stant, but rigidity G is increased, the value
of shear stress τ :

(a) increases

(b) stays the same

(c) decreases

3. If for a certain shaft, its length is doubled,
the angle of twist:

(a) doubles

(b) halves

(c) remains the same

4. If a solid shaft is replaced by a hollow
shaft of the same external diameter, its
angle of twist:

(a) decreases

(b) stays the same

(c) increases

5. If a shaft is fixed at its two ends and
subjected to an intermediate torque T at
mid-length, the maximum resulting torque
is equal to:

(a) T (b)
T

2
(c) zero

6. If a hollow shaft is subjected to a torque
T , the shear stress on the inside surface is:

(a) a minimum

(b) a maximum

(c) zero



126 MECHANICAL ENGINEERING PRINCIPLES

Assignment 3

This assignment covers the material
contained in Chapters 8 to 10.
The marks for each question are shown
in brackets at the end of each question.

1. A beam, simply supported at its ends, is
of length 1.4 m. If the beam carries a
centrally-placed downward concentrated
load of 50 kN, determine the minimum
permissible diameter of the beam’s cross-
section, given that the maximum permis-
sible stress is 40 MPa, and the beam has
a solid circular cross-section.

(6)

2. Determine the force applied tangentially
to a bar of a screw-jack at a radius of
60 cm, if the torque required is 750 N m.

(3)

3. Calculate the torque developed by a
motor whose spindle is rotating at 900

rev/min and developing a power of
4.20 KW. (5)

4. A motor connected to a shaft develops a
torque of 8 kN m. Determine the number
of revolutions made by the shaft if the
work done is 7.2 MJ. (6)

5. Determine the angular acceleration of a
shaft that has a moment of inertia of
32 kg m2 produced by an accelerating
torque of 600 N m. (5)

6. An electric motor has an efficiency of
72% when running at 1400 rev/min.
Determine the output torque when the
power input is 2.50 kW. (5)

7. A solid circular section shaft is required to
transmit 60 hp at 1000 rpm. If the maxi-
mum permissible shear stress in the shaft
is 35 MPa, determine the minimum per-
missible diameter of the shaft. What is
the resulting angle of twist of the shaft per
metre, assuming that the modulus of rigid-
ity G = 70 GPa and 1 hp = 745.7 W?

(10)



Part 2 Dynamics

11

Linear and angular motion

At the end of this chapter you should be
able to:

• appreciate that 2π radians corresponds to
360°

• define linear and angular velocity

• perform calculations on linear and angular
velocity using ω = 2πn and v = ωr

• define linear and angular acceleration

• perform calculations on linear and angular
acceleration using ω2 = ω1 + αt and
a = rα

• select appropriate equations of motion
when performing simple calculations

• appreciate the difference between scalar
and vector quantities

• use vectors to determine relative veloci-
ties, by drawing and by calculation

11.1 The radian

The unit of angular displacement is the radian,
where one radian is the angle subtended at the centre
of a circle by an arc equal in length to the radius,
as shown in Figure 11.1.

The relationship between angle in radians (θ ), arc
length (s) and radius of a circle (r) is:

s = rθ (11.1)

1 rad

r

r
r

Figure 11.1

Since the arc length of a complete circle is 2πr and
the angle subtended at the centre is 360°, then from
equation (11.1), for a complete circle,

2πr = rθ or θ = 2π radians

Thus, 2π radians corresponds to 360° (11.2)

11.2 Linear and angular velocity

Linear velocity v is defined as the rate of change
of linear displacement s with respect to time t , and
for motion in a straight line:

Linear velocity = change of displacement

change of time

i.e. v =
s

t
(11.3)

The unit of linear velocity is metres per second
(m/s).
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Angular velocity

The speed of revolution of a wheel or a shaft
is usually measured in revolutions per minute or
revolutions per second but these units do not form
part of a coherent system of units. The basis used
in SI units is the angle turned through (in radians)
in one second.

Angular velocity is defined as the rate of change
of angular displacement θ , with respect to time t ,
and for an object rotating about a fixed axis at a
constant speed:

angular velocity = angle turned through

time taken

i.e ω =
θ

t
(11.4)

The unit of angular velocity is radians per second
(rad/s).

An object rotating at a constant speed of n revo-
lutions per second subtends an angle of 2πn radians
in one second, that is, its angular velocity,

ω = 2πn rad/s (11.5)

From equation (11.1), s = rθ , and from equa-
tion (4), θ = ωt , hence

s = rωt or
s

t
= ωr

However, from equation (11.3), v = s
t ,

hence v = ωr (11.6)

Equation (11.6) gives the relationship between lin-
ear velocity, v, and angular velocity, ω.

Problem 1. A wheel of diameter 540 mm is
rotating at (1500/π) rev/min. Calculate the
angular velocity of the wheel and the linear
velocity of a point on the rim of the wheel.

From equation (11.5), angular velocity ω = 2πn,
where n is the speed of revolution in revolutions
per second, i.e.

n = 1500

60π
revolutions per second.

Thus, angular velocity,

ω = 2π

(

1500

60π

)

= 50 rad/s

The linear velocity of a point on the rim, v = ωr ,
where r is the radius of the wheel, i.e. r = 0.54/2
or 0.27 m. Thus, linear velocity,

v = ωr = 50 × 0.27 = 13.5 m/s

Problem 2. A car is travelling at 64.8 km/h
and has wheels of diameter 600 mm.

(a) Find the angular velocity of the wheels
in both rad/s and rev/min.

(b) If the speed remains constant for
1.44 km, determine the number of
revolutions made by a wheel, assuming
no slipping occurs.

(a) 64.8 km/h = 64.8
km

h
× 1000

m

km
× 1

3600

h

s

= 64.8

3.6
m/s = 18 m/s

i.e. the linear velocity, v, is 18 m/s

The radius of a wheel is (600/2) mm = 0.3 m.
From equation (11.6), v = ωr , hence ω = v/r
i.e. the angular velocity,

ω = 18

0.3
= 60 rad/s

From equation (11.5), angular velocity,
ω = 2πn, where n is in revolutions per second.
Hence n = ω/2π and angular speed of a
wheel in revolutions per minute is 60ω/2π ; but
ω = 60 rad/s, hence

angular speed = 60 × 60

2π

= 573 revolutions

per minute (rpm)

(b) From equation (11.3), time taken to travel
1.44 km at a constant speed of 18 m/s is

1440 m

18 m/s
= 80 s.
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Since a wheel is rotating at 573 revolutions per
minute, then in 80/60 minutes it makes

573 × 80

60
= 764 revolutions.

Now try the following exercise

Exercise 53 Further problems on linear
and angular velocity

1. A pulley driving a belt has a diameter of
360 mm and is turning at 2700/π revolu-
tions per minute. Find the angular velocity
of the pulley and the linear velocity of the
belt assuming that no slip occurs.

[ω = 90 rad/s, v = 16.2 m/s]

2. A bicycle is travelling at 36 km/h and the
diameter of the wheels of the bicycle is
500 mm. Determine the angular velocity
of the wheels of the bicycle and the linear
velocity of a point on the rim of one of
the wheels. [ω = 40 rad/s, v = 10 m/s]

11.3 Linear and angular acceleration

Linear acceleration, a, is defined as the rate of
change of linear velocity with respect to time. For an
object whose linear velocity is increasing uniformly:

linear acceleration = change of linear velocity

time taken

i.e a =
v2 − v1

t
(11.7)

The unit of linear acceleration is metres per second

squared (m/s2). Rewriting equation (11.7) with v2 as
the subject of the formula gives:

v2 = v1 + at (11.8)

where v2 = final velocity and v1 = initial velocity.
Angular acceleration, α, is defined as the rate

of change of angular velocity with respect to time.
For an object whose angular velocity is increasing

uniformly:

Angular acceleration = change of angular velocity

time taken

i.e. α =
ω2 − ω1

t
(11.9)

The unit of angular acceleration is radians per sec-

ond squared (rad/s2). Rewriting equation (11.9) with
ω2 as the subject of the formula gives:

ω2 = ω1 + αt (11.10)

where ω2 = final angular velocity and ω1 = initial
angular velocity. From equation (11.6), v = ωr .
For motion in a circle having a constant radius r ,
v2 = ω2r and v1 = ω1r , hence equation (11.7) can
be rewritten as:

a = ω2r − ω1r

t
= r(ω2 − ω1)

t

But from equation (11.9),

ω2 − ω1

t
= α

Hence a = rα (11.11)

Problem 3. The speed of a shaft increases
uniformly from 300 revolutions per minute
to 800 revolutions per minute in 10s. Find
the angular acceleration, correct to 3
significant figures.

From equation (11.9),

α = ω2 − ω1

t

Initial angular velocity,

ω1 = 300 rev/min = 300/60 rev/s

= 300 × 2π

60
rad/s,

final angular velocity,

ω2 = 800 × 2π

60
rad/s
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and time, t = 10 s. Hence, angular acceleration,

α =
800 × 2π

60
− 300 × 2π

60
10

rad/s2

= 500 × 2π

60 × 10
= 5.24 rad/s2

Problem 4. If the diameter of the shaft in
problem 3 is 50 mm, determine the linear
acceleration of the shaft on its external
surface, correct to 3 significant figures.

From equation (11.11),

a = rα

The shaft radius is

50

2
mm = 25 mm = 0.025 m,

and the angular acceleration,

α = 5.24 rad/s2,

thus the linear acceleration,

a = rα = 0.025 × 5.24 = 0.131 m/s2

Now try the following exercise

Exercise 54 Further problems on linear
and angular acceleration

1. A flywheel rotating with an angular veloc-
ity of 200 rad/s is uniformly accelerated

at a rate of 5 rad/s2 for 15 s. Find the final
angular velocity of the flywheel both in
rad/s and revolutions per minute.

[275 rad/s, 8250/π rev/min]

2. A disc accelerates uniformly from 300
revolutions per minute to 600 revolutions
per minute in 25 s. Determine its angular
acceleration and the linear acceleration of
a point on the rim of the disc, if the radius
of the disc is 250 mm.

[0.4π rad/s2, 0.1π m/s2]

11.4 Further equations of motion

From equation (11.3), s = vt , and if the linear
velocity is changing uniformly from v1 to v2, then
s = mean linear velocity × time

i.e s =

(

v1 + v2

2

)

t (11.12)

From equation (11.4), θ = ωt , and if the angular
velocity is changing uniformly from ω1 to ω2, then
θ = mean angular velocity × time

i.e θ =

(

ω1 + ω2

2

)

t (11.13)

Two further equations of linear motion may be
derived from equations (11.8) and (11.12):

s = v1t +
1
2
at2

(11.14)

and

v2
2 = v2

1 + 2as (11.15)

Two further equations of angular motion may be
derived from equations (11.10) and (11.13):

θ = ω1t +
1
2
αt2

(11.16)

and ω2
2 = ω2

1 + 2αθ (11.17)

Table 11.1 summarises the principal equations of
linear and angular motion for uniform changes
in velocities and constant accelerations and also
gives the relationships between linear and angular
quantities.

Problem 5. The speed of a shaft increases
uniformly from 300 rev/min to 800 rev/min
in 10 s. Find the number of revolutions made
by the shaft during the 10 s it is accelerating.
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Table 11.1

s = arc length (m) r = radius of circle (m)
t = time (s) θ = angle (rad)
v = linear velocity (m/s) ω = angular velocity (rad/s)
v1 = initial linear velocity (m/s) ω1 = initial angular velocity (rad/s)
v2 = final linear velocity (m/s) ω2 = final angular velocity (rad/s)

a = linear acceleration (m/s2) α = angular acceleration (rad/s2)
n = speed of revolution (rev/s)

Equation number Linear motion Angular motion

(11.1) s = rθm

(11.2) 2π rad = 360°

(11.3) and (11.4) v = s

t
ω = θ

t
rad/s

(11.5) ω = 2πn rad/s

(11.6) v = ωr m/s2

(11.8) and (11.10) v2 = (v1 + at) m/s ω2 = (ω1 + αt) rad/s

(11.11) a = rα m/s2

(11.12) and (11.13) s =
(

v1 + v2

2

)

t θ =
(

ω1 + ω2

2

)

t

(11.14) and (11.16) s = v1t + 1
2
at2 θ = ω1t + 1

2
αt2

(11.15) and (11.17) v2
2 = v2

1 + 2as ω2
2 = ω2

1 + 2αθ

From equation (11.13), angle turned through,

θ =
(

ω1 + ω2

2

)

t

=

⎛

⎜

⎝

300 × 2π

60
+ 800 × 2π

60
2

⎞

⎟

⎠
(10) rad

However, there are 2π radians in 1 revolution,
hence, number of revolutions

=

⎛

⎜

⎝

300 × 2π

60
+ 800 × 2π

60
2

⎞

⎟

⎠

(

10

2π

)

= 1

2

(

1100

60

)

(10) = 1100

12

= 91.67 revolutions

Problem 6. The shaft of an electric motor,
initially at rest, accelerates uniformly for

0.4 s at 15 rad/s2. Determine the angle (in
radians) turned through by the shaft in this
time.

From equation (11.16),

θ = ω1t + 1
2
αt2

Since the shaft is initially at rest, ω1 = 0 and

θ = 1
2
αt2;

the angular acceleration, α = 15 rad/s2 and time
t = 0.4 s. Hence, angle turned through,

θ = 1
2

× 15 × 0.42

= 1.2 rad

Problem 7. A flywheel accelerates

uniformly at 2.05 rad/s2 until it is rotating at
1500 rev/min. If it completes 5 revolutions
during the time it is accelerating, determine
its initial angular velocity in rad/s, correct to
4 significant figures.

Since the final angular velocity is 1500 rev/min,

ω2 = 1500
rev

min
× 1 min

60 s
× 2πrad

1 rev

= 50π rad/s
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5 revolutions = 5 rev × 2π rad
1 rev

= 10π rad

From equation (11.17), ω2
2 = ω2

1 + 2αθ

i.e. (50π)2 = ω2
1 + (2 × 2.05 × 10π)

from which, ω2
1 = (50π)2 − (2 × 2.05 × 10π)

= (50π)2 − 41π = 24 545

i.e. ω1 =
√

24 545 = 156.7 rad/s

Thus the initial angular velocity is 156.7 rad/s,
correct to 4 significant figures.

Now try the following exercise

Exercise 55 Further problems on equa-
tions of motion

1. A grinding wheel makes 300 revolutions
when slowing down uniformly from
1000 rad/s to 400 rad/s. Find the time for
this reduction in speed. [2.693 s]

2. Find the angular retardation for the grind-

ing wheel in question 1. [222.8 rad/s2]

3. A disc accelerates uniformly from
300 revolutions per minute to 600 revo-
lutions per minute in 25 s. Calculate the
number of revolutions the disc makes dur-
ing this accelerating period.

[187.5 revolutions]

4. A pulley is accelerated uniformly from

rest at a rate of 8 rad/s2. After 20 s the
acceleration stops and the pulley runs at
constant speed for 2 min, and then the
pulley comes uniformly to rest after a
further 40 s. Calculate:

(a) the angular velocity after the period
of acceleration,

(b) the deceleration,

(c) the total number of revolutions made
by the pulley.
[

(a) 160 rad/s (b) 4 rad/s2

(c) 12000/π rev

]

11.5 Relative velocity

Quantities used in engineering and science can be
divided into two groups as stated on page 25:

(a) Scalar quantities have a size or magnitude
only and need no other information to specify
them. Thus 20 centimetres, 5 seconds, 3 litres
and 4 kilograms are all examples of scalar
quantities.

(b) Vector quantities have both a size (or mag-
nitude), and a direction, called the line of
action of the quantity. Thus, a velocity of
30 km/h due west, and an acceleration of
7 m/s2 acting vertically downwards, are both
vector quantities.

A vector quantity is represented by a straight line
lying along the line of action of the quantity, and
having a length that is proportional to the size of
the quantity, as shown in Chapter 3. Thus ab in
Figure 11.2 represents a velocity of 20 m/s, whose
line of action is due west. The bold letters, ab,
indicate a vector quantity and the order of the letters
indicate that the lime of action is from a to b.

b a

S

N

EW

0 5 10 15 20 25

Scale : velocity in m/s

Figure 11.2

Consider two aircraft A and B flying at a constant
altitude, A travelling due north at 200 m/s and B
travelling 30° east of north, written N 30° E, at
300 m/s, as shown in Figure 11.3.

Relative to a fixed point o, oa represents the
velocity of A and ob the velocity of B. The velocity
of B relative to A, that is the velocity at which
B seems to be travelling to an observer on A, is
given by ab, and by measurement is 160 m/s in
a direction E 22° N . The velocity of A relative
to B, that is, the velocity at which A seems to
be travelling to an observer on B, is given by ba
and by measurement is 160 m/s in a direction W
22° S.
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S

0

N

EW

0 100 200 300

300 m/s

200 m/s

Scale : velocity in m/s

22°

22°

30°

ab

b

ba

a

Figure 11.3

Problem 8. Two cars are travelling on
horizontal roads in straight lines, car A at
70 km/h at N 10° E and car B at 50 km/h at
W 60° N . Determine, by drawing a vector
diagram to scale, the velocity of car A
relative to car B.

With reference to Figure 11.4(a), oa represents the
velocity of car A relative to a fixed point o, and ob
represents the velocity of car B relative to a fixed
point o. The velocity of car A relative to car B is
given by ba and by measurement is 45 km/h in a
direction of E 35° N .

Problem 9. Verify the result obtained in
Problem 8 by calculation.

The triangle shown in Figure 11.4(b) is similar to
the vector diagram shown in Figure 11.4(a). Angle
BOA is 40°. Using the cosine rule:

BA2 = 502 + 702 − 2 × 50 × 70 × cos 40°

from which, BA = 45.14

Using the sine rule:

50

sin � BAO
= 45.14

sin 40°

from which, sin � BAO = 50 sin 40°

45.14
= 0.7120

S

N

EW

0 20 40 60

Scale : velocity in km/h

a

70 km/h

50 km/h

45 km/h

(a)

o

 60°

b

A

50

70

45.14

(b)

O

q

60°

40°

60°

B

35°

10°

Figure 11.4

Hence, angle BA0 = 45.40°; thus, angle
ABO = 180° − (40° + 45.40°) = 94.60°, and
angle θ = 94.60° − 60° = 34.60°.
Thus ba is 45.14 km/h in a direction E 34.60° N
by calculation.

Problem 10. A crane is moving in a
straight line with a constant horizontal
velocity of 2 m/s. At the same time it is
lifting a load at a vertical velocity of 5 m/s.
Calculate the velocity of the load relative to
a fixed point on the earth’s surface.

5 m/s

2 m/s

5.385 m/s

o

b

a

q

Figure 11.5
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A vector diagram depicting the motion of the crane
and load is shown in Figure 11.5. oa represents the
velocity of the crane relative to a fixed point on the
Earth’s surface and ab represents the velocity of the
load relative to the crane. The velocity of the load
relative to the fixed point on the Earth’s surface is
ob. By Pythagoras’ theorem:

ob2 = oa2 + ab2

= 4 + 25 = 29

Hence ob =
√

29 = 5.385 m/s

Tan θ = 5
2

= 2.5 hence θ = tan−1 2.5 = 68.20°

i.e. the velocity of the load relative to a fixed point
on the Earth’s surface is 5.385 m/s in a direction
68.20° to the motion of the crane.

Now try the following exercise

Exercise 56 Further problems on relative
velocity

1. A ship is sailing due east with a uniform
speed of 7.5 m/s relative to the sea. If
the tide has a velocity 2 m/s in a north-
westerly direction, find the velocity of the
ship relative to the sea bed.

[6.248 m/s at E 13.08° N ]

2. A lorry is moving along a straight road
at a constant speed of 54 km/h. The tip
of its windscreen wiper blade has a linear
velocity, when in a vertical position, of
4 m/s. Find the velocity of the tip of the
wiper blade relative to the road when in
this vertical position.

[15.52 m/s at 14.93°]

3. A fork-lift truck is moving in a straight
line at a constant speed of 5 m/s and at
the same time a pallet is being lowered at
a constant speed of 2 m/s. Determine the
velocity of the pallet relative to the earth.

[5.385 m/s at −21.80°]

Exercise 57 Short answer questions on
linear and angular motion

1. State and define the unit of angular dis-
placement

2. Write down the formula connecting an
angle, arc length and the radius of a
circle

3. Define linear velocity and state its unit

4. Define angular velocity and state its unit

5. Write down a formula connecting angu-
lar velocity and revolutions per second
in coherent units

6. State the formula connecting linear and
angular velocity

7. Define linear acceleration and state
its unit

8. Define angular acceleration and state
its unit

9. Write down the formula connecting lin-
ear and angular acceleration

10. Define a scalar quantity and give two
examples

11. Define a vector quantity and give two
examples

Exercise 58 Multi-choice questions on lin-
ear and angular motion
(Answers on page 284)

1. Angular displacement is measured in:

(a) degrees (b) radians

(c) rev/s (d) metres

2. An angle of
3π

4
radians is equivalent to:

(a) 270° (b) 67.5°

(c) 135° (d) 2.356°

3. An angle of 120° is equivalent to:

(a)
2π

3
rad (b)

π

3
rad

(c)
3π

4
rad (d)

1

3
rad

4. An angle of 2 rad at the centre of a circle
subtends an arc length of 40 mm at the
circumference of the circle. The radius
of the circle is:

(a) 40π mm (b) 80 mm

(c) 20 mm (d) (40/π ) mm
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5. A point on a wheel has a constant angu-
lar velocity of 3 rad/s. The angle turned
through in 15 seconds is:

(a) 45 rad (b) 10π rad

(c) 5 rad (d) 90π rad

6. An angular velocity of 60 revolutions
per minute is the same as:

(a) (1/2π) rad/s (b) 120π rad/s

(c) (30/π) rad/s (d) 2π rad/s

7. A wheel of radius 15 mm has an angular
velocity of 10 rad/s. A point on the rim
of the wheel has a linear velocity of:

(a) 300π mm/s (b) 2/3 mm/s

(c) 150 mm/s (d) 1.5 mm/s

8. The shaft of an electric motor is rotating
at 20 rad/s and its speed is increased
uniformly to 40 rad/s in 5 s. The angular
acceleration of the shaft is:

(a) 4000 rad/s2 (b) 4 rad/s2

(c) 160 rad/s2 (d) 12 rad/s2

9. A point on a flywheel of radius 0.5 m
has a uniform linear acceleration of
2 m/s2. Its angular acceleration is:

(a) 2.5 rad/s2 (b) 0.25 rad/s2

(c) 1 rad/s2 (d) 4 rad/s2

Questions 10 to 13 refer to the following data.

A car accelerates uniformly from 10 m/s
to 20 m/s over a distance of 150 m. The
wheels of the car each have a radius of
250 mm.

10. The time the car is accelerating is:

(a) 0.2 s (b) 15 s (c) 10 s (d) 5 s

11. The initial angular velocity of each of
the wheels is:

(a) 20 rad/s (b) 40 rad/s

(c) 2.5 rad/s (d) 0.04 rad/s

12. The angular acceleration of each of the
wheels is:

(a) 1 rad/s2 (b) 0.25 rad/s2

(c) 400 rad/s2 (d) 4 rad/s2

13. The linear acceleration of a point on each
of the wheels is:

(a) 1 m/s2 (b) 4 m/s2

(c) 3 m/s2 (d) 100 m/s2
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Linear momentum and impulse

At the end of this chapter you should be
able to:

• define momentum and state its unit

• state Newton’s first law of motion

• calculate momentum given mass and
velocity

• state Newton’s second law of motion

• define impulse and appreciate when impul-
sive forces occur

• state Newton’s third law of motion

• calculate impulse and impulsive force

• use the equation of motion v2 = u2 + 2as
in calculations

12.1 Linear momentum

The momentum of a body is defined as the product
of its mass and its velocity, i.e. momentum = mu,
where m = mass (in kg) and u = velocity (in m/s).
The unit of momentum is kg m/s

Since velocity is a vector quantity, momentum
is a vector quantity, i.e. it has both magnitude and
direction.
Newton’s first law of motion states:

a body continues in a state of rest or in a state of
uniform motion in a straight line unless acted on by
some external force

Hence the momentum of a body remains the same
provided no external forces act on it.
The principle of conservation of momentum for a
closed system (i.e. one on which no external forces
act) may be stated as:

the total linear momentum of a system is a constant

The total momentum of a system before collision
in a given direction is equal to the total momentum

m2

m1

u1 u2

Mass

Mass

Figure 12.1

of the system after collision in the same direction.
In Figure 12.1, masses m1 and m2 are travelling
in the same direction with velocity u1 > u2. A
collision will occur, and applying the principle of
conservation of momentum:

total momentum before impact

= total momentum after impact

i.e. m1u1 +m2u2 = m1v1 +m2v2

where v1 and v2 are the velocities of m1 and m2

after impact.

Problem 1. Determine the momentum of a
pile driver of mass 400 kg when it is moving
downwards with a speed of 12 m/s.

Momentum = mass × velocity

= 400 kg × 12 m/s

= 4800 kg m/s downwards

Problem 2. A cricket ball of mass 150 g
has a momentum of 4.5 kg m/s. Determine
the velocity of the ball in km/h.

Momentum = mass × velocity,

hence velocity = momentum

mass

= 4.5 kg m/s

150 × 10−3 kg
= 30 m/s
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30 m/s = 30 × 3.6 km/h

= 108 km/h = velocity of cricket ball.

Problem 3. Determine the momentum of a
railway wagon of mass 50 tonnes moving at
a velocity of 72 km/h.

Momentum = mass × velocity

Mass=50 t=50000 kg (since 1 t=1000 kg) and

velocity = 72 km/h = 72

3.6
m/s = 20 m/s.

Hence, momentum = 50000 kg × 20 m/s

= 1000000 kg m/s

= 106 kg m/s

Problem 4. A wagon of mass 10 t is
moving at a speed of 6 m/s and collides with
another wagon of mass 15 t, which is
stationary. After impact, the wagons are
coupled together. Determine the common
velocity of the wagons after impact

Mass m1 = 10 t = 10000 kg, m2 = 15000 kg and
velocity u1 = 6 m/s, u2 = 0.

Total momentum before impact

= m1u1 +m2u2

= (10000 × 6)+ (15000 × 0) = 60000 kg m/s

Let the common velocity of the wagons after impact
be v m/s

Since total momentum before impact = total
momentum after impact:

60000 = m1v +m2v

= v(m1 +m2) = v(25000)

Hence v = 60000

25000
= 2.4 m/s

i.e. the common velocity after impact is 2.4 m/s in
the direction in which the 10 t wagon is initially
travelling.

Problem 5. A body has a mass of 30 g and
is moving with a velocity of 20 m/s. It
collides with a second body which has a
mass of 20 g and which is moving with a
velocity of 15 m/s. Assuming that the bodies
both have the same velocity after impact,
determine this common velocity, (a) when
the initial velocities have the same line of
action and the same sense, and (b) when the
initial velocities have the same line of action
but are opposite in sense.

Mass m1 = 30 g = 0.030 kg,
m2 = 20 g = 0.020 kg, velocity u1 = 20 m/s and
u1 = 15 m/s.

(a) When the velocities have the same line of
action and the same sense, both u1 and u2 are
considered as positive values
Total momentum before impact

= m1u1 +m2u2

= (0.030 × 20)+ (0.020 × 15)

= 0.60 + 0.30 = 0.90 kg m/s

Let the common velocity after impact be v m/s

Total momentum before impact = total
momentum after impact

i.e. 0.90 = m1v +m2v = v(m1 +m2)

0.90 = v(0.030 + 0.020)

from which, common velocity, v =
0.90

0.050
=

18 m/s in the direction in which the bodies
are initially travelling

(b) When the velocities have the same line of
action but are opposite in sense, one is consid-
ered as positive and the other negative. Taking
the direction of mass m1 as positive gives:
velocity u1 = +20 m/s and u2 = −15 m/s
Total momentum before impact

= m1u1 +m2u2

= (0.030 × 20)+ (0.020 × −15)

= 0.60 − 0.30 = +0.30 kg m/s

and since it is positive this indicates a momen-
tum in the same direction as that of mass m1. If
the common velocity after impact is v m/s then

0.30 = v(m1 +m2) = v(0.050)
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from which, common velocity, v = 0.30

0.050
=

6 m/s in the direction that the 30 g mass is
initially travelling.

Problem 6. A ball of mass 50 g is moving
with a velocity of 4 m/s when it strikes a
stationary ball of mass 25 g. The velocity of
the 50 g ball after impact is 2.5 m/s in the
same direction as before impact. Determine
the velocity of the 25 g ball after impact.

Mass m1 = 50 g = 0.050 kg,
m2 = 25 g = 0.025 kg. Initial velocity u1 = 4 m/s,
u2 = 0; final velocity v1 = 2.5 m/s, v2 is unknown.

Total momentum before impact

= m1u1 +m2u2

= (0.050 × 4)+ (0.025 × 0)

= 0.20 kg m/s

Total momentum after impact

= m1v1 +m2v2

= (0.050 × 2.5)+ (0.025v2)

= 0.125 + 0.025v2

Total momentum before impact = total momentum
after impact, hence

0.20 = 0.125 + 0.025v2

from which, velocity of 25 g ball after impact,

v2 = 0.20 − 0.125

0.025
= 3 m/s

Problem 7. Three masses, P , Q and R lie
in a straight line. P has a mass of 5 kg and
is moving towards Q at 8 m/s. Q has a mass
of 7 kg and a velocity of 4 m/s, and is
moving towards R. Mass R is stationary. P
collides with Q, and P and Q then collide
with R. Determine the mass of R assuming
all three masses have a common velocity of
2 m/s after the collision of P and Q with R.

Mass mP = 5 kg, mQ = 7 kg, velocity uP = 8 m/s
and uQ = 4 m/s.

Total momentum before P collides with

Q = mPuP +mQuQ

= (5 × 8)+ (7 × 4) = 68 kg m/s

Let P and Q have a common velocity of v1 m/s
after impact.

Total momentum after P and Q collide

= mP v1 +mQv1

= v1(mP +mQ) = 12v1

Total momentum before impact = total momentum
after impact, i.e. 68 = 12v1, from which, common
velocity of P and Q,

v1 = 68

12
= 5

2

3
m/s.

Total momentum after P and Q collide with R
= (mP+Q × 2)+ (mR × 2) (since the common

velocity after impact = 2 m/s)
= (12 × 2)+ (2 mR)

Total momentum before P and Q collide with R =
total momentum after P and Q collide with R,

i.e.
(

mP+Q × 5 2
3

)

= (12 × 2)+ 2 mR

i.e. 12 × 5 2
3

= 24 + 2 mR

68 − 24 = 2 mR

from which, mass of R, mR = 44
2

= 22 kg.

Now try the following exercise

Exercise 59 Further problems on linear
momentum

(Where necessary, take g as 9.81 m/s2)

1. Determine the momentum in a mass of
50 kg having a velocity of 5 m/s.

[250 kg m/s]

2. A milling machine and its component
have a combined mass of 400 kg.
Determine the momentum of the table
and component when the feed rate is
360 mm/min. [2.4 kg m/s]

3. The momentum of a body is 160 kg m/s
when the velocity is 2.5 m/s. Determine
the mass of the body. [64 kg]
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4. Calculate the momentum of a car of
mass 750 kg moving at a constant veloc-
ity of 108 km/h. [22500 kg m/s]

5. A football of mass 200 g has a momen-
tum of 5 kg m/s. What is the velocity of
the ball in km/h. [90 km/h]

6. A wagon of mass 8 t is moving at a
speed of 5 m/s and collides with another
wagon of mass 12 t, which is stationary.
After impact, the wagons are coupled
together. Determine the common veloc-
ity of the wagons after impact.

[2 m/s]

7. A car of mass 800 kg was stationary
when hit head-on by a lorry of mass
2000 kg travelling at 15 m/s. Assuming
no brakes are applied and the car and
lorry move as one, determine the speed
of the wreckage immediately after colli-
sion. [10.71 m/s]

8. A body has a mass of 25 g and is moving
with a velocity of 30 m/s. It collides with
a second body which has a mass of 15 g
and which is moving with a velocity of
20 m/s. Assuming that the bodies both
have the same speed after impact, deter-
mine their common velocity (a) when
the speeds have the same line of action
and the same sense, and (b) when the
speeds have the same line of action but
are opposite in sense.

[(a) 26.25 m/s (b) 11.25 m/s]

9. A ball of mass 40 g is moving with a
velocity of 5 m/s when it strikes a sta-
tionary ball of mass 30 g. The velocity
of the 40 g ball after impact is 4 m/s
in the same direction as before impact.
Determine the velocity of the 30 g ball
after impact. [1.33 m/s]

10. Three masses, X, Y and Z, lie in a
straight line. X has a mass of 15 kg and
is moving towards Y at 20 m/s. Y has
a mass of 10 kg and a velocity of 5 m/s
and is moving towards Z. Mass Z is sta-
tionary. X collides with Y , and X and Y
then collide with Z. Determine the mass
of Z assuming all three masses have a
common velocity of 4 m/s after the col-
lision of X and Y with Z. [62.5 kg]

12.2 Impulse and impulsive forces

Newton’s second law of motion states:

the rate of change of momentum is directly proportional
to the applied force producing the change, and takes
place in the direction of this force

In the SI system, the units are such that:

the applied force

= rate of change of momentum

= change of momentum

time taken
(12.1)

When a force is suddenly applied to a body due
to either a collision with another body or being hit
by an object such as a hammer, the time taken
in equation (12.1) is very small and difficult to
measure. In such cases, the total effect of the force is
measured by the change of momentum it produces.

Forces that act for very short periods of time
are called impulsive forces. The product of the
impulsive force and the time during which it acts
is called the impulse of the force and is equal to the
change of momentum produced by the impulsive
force, i.e.

impulse = applied force × time

= change in linear momentum

Examples where impulsive forces occur include
when a gun recoils and when a free-falling mass hits
the ground. Solving problems associated with such
occurrences often requires the use of the equation

of motion: v2 = u2 + 2as, from Chapter 11.
When a pile is being hammered into the ground,

the ground resists the movement of the pile and this
resistance is called a resistive force.

Newton’s third law of motion may be stated as:

for every action there is an equal and opposite reaction

The force applied to the pile is the resistive force;
the pile exerts an equal and opposite force on the
ground.

In practice, when impulsive forces occur, energy
is not entirely conserved and some energy is changed
into heat, noise, and so on.
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Problem 8. The average force exerted on
the workpiece of a press-tool operation is
150 kN, and the tool is in contact with the
workpiece for 50 ms. Determine the change
in momentum.

From above, change of linear momentum

= applied force × time (= impulse)

Hence, change in momentum of workpiece

= 150 × 103 N × 50 × 10−3 s

= 7500 kg m/s (since 1 N = 1 kg m/s2)

Problem 9. A force of 15 N acts on a body
of mass 4 kg for 0.2 s. Determine the change
in velocity.

Impulse = applied force × time = change in linear
momentum

i.e. 15 N × 0.2 s = mass × change in velocity

= 4 kg × change in velocity

from which, change in velocity

= 15 N × 0.2 s

4 kg
= 0.75 m/s

(since 1 N = 1 kg m/s2)

Problem 10. A mass of 8 kg is dropped
vertically on to a fixed horizontal plane and
has an impact velocity of 10 m/s. The mass
rebounds with a velocity of 6 m/s. If the
mass-plane contact time is 40 ms, calculate
(a) the impulse, and (b) the average value of
the impulsive force on the plane.

(a) Impulse = change in momentum = m(u1−v1)

where u1 = impact velocity = 10 m/s and
v1 = rebound velocity = −6 m/s

(v1 is negative since it acts in the opposite
direction to u1 )

Thus, impulse = m(u1 − v1)

= (8 kg)(10 − −6) m/s

= 8 × 16 = 128 kg m/s

(b) Impulsive force = impulse

time
= 128 kg m/s

40 × 10−3s

= 3200 N or 3.2 kN

Problem 11. The hammer of a pile-driver
of mass 1 t falls a distance of 1.5 m on to a
pile. The blow takes place in 25 ms and the
hammer does not rebound.
Determine the average applied force exerted
on the pile by the hammer.

Initial velocity, u = 0, acceleration due to gravity,

g = 9.81 m/s2 and distance, s = 1.5 m.
Using the equation of motion:

v2 = u2 + 2gs

Gives: v2 = 02 + 2(9.81)(1.5)

from which, impact velocity,

v =
√

(2)(9.81)(1.5) = 5.425 m/s

Neglecting the small distance moved by the pile and
hammer after impact,

momentum lost by hammer

= the change of momentum

= mv = 1000 kg × 5.425 m/s

Rate of change of momentum

= change of momentum

change of time

= 1000 × 5.425

25 × 10−3

= 217000 N

Since the impulsive force is the rate of change of
momentum, the average force exerted on the pile
is 217 kN.

Problem 12. A mass of 40 g having a
velocity of 15 m/s collides with a rigid
surface and rebounds with a velocity of
5 m/s. The duration of the impact is 0.20 ms.
Determine (a) the impulse, and (b) the
impulsive force at the surface.
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Mass m = 40 g = 0.040 kg, initial velocity,
u = 15 m/s and final velocity, v = −5 m/s (nega-
tive since the rebound is in the opposite direction to
velocity u)

(a) Momentum before impact

= mu = 0.040 × 15 = 0.6 kg m/s

Momentum after impact

= mv = 0.040 × −5 = −0.2 kg m/s

Impulse = change of momentum

= 0.6 − (−0.2) = 0.8 kg m/s

(b) Impulsive force = change of momentum

change of time

= 0.8 kg m/s

0.20 × 10−3 s

= 4000 N or 4 kN

Problem 13. A gun of mass 1.5 t fires a
shell of mass 15 kg horizontally with a
velocity of 500 m/s. Determine (a) the initial
velocity of recoil, and (b) the uniform force
necessary to stop the recoil of the gun in
200 mm.

Mass of gun, mg = 1.5 t = 1500 kg, mass of shell,
ms = 15 kg, initial velocity of shell, us = 500 m/s.

(a) Momentum of shell = msus = 15 × 500
= 7500 kg m/s.

Momentum of gun = mgv = 1500 v

where v = initial velocity of recoil of the gun.

By the principle of conservation of momentum,
initial momentum = final momentum, i.e.
0 = 7500 + 1500 v, from which,

velocity v = −7500

1500
= −5 m/s

(the negative sign indicating recoil velocity)

i.e. the initial velocity of recoil = 5 m/s.

(b) The retardation of the recoil, a, may be deter-

mined using v2 = u2 + 2as, where v, the final

velocity, is zero, u, the initial velocity, is 5 m/s
and s, the distance, is 200 mm, i.e. 0.2 m.

Rearranging v2 = u2 + 2as for a gives:

a = v2 − u2

2s
= 02 − 52

2(0.2)

= −25

0.4
= −62.5 m/s2

Force necessary to stop recoil in 200 mm

= mass × acceleration

= 1500 kg × 62.5 m/s2

= 93750 N or 93.75 kN

Problem 14. A vertical pile of mass 100 kg
is driven 200 mm into the ground by the
blow of a 1 t hammer which falls through
750 mm. Determine (a) the velocity of the
hammer just before impact, (b) the velocity
immediately after impact (assuming the
hammer does not bounce), and (c) the
resistive force of the ground assuming it to
be uniform.

(a) For the hammer, v2 = u2 + 2gs, where
v = final velocity, u = initial velocity = 0,

g = 9.81 m/s2 and s = distance = 750 mm =
0.75 m.

Hence v2 = 02 + 2(9.81)(0.75), from which,
velocity of hammer, just before impact,

v =
√

2(9.81)(0.75) = 3.84 m/s

(b) Momentum of hammer just before impact

= mass × velocity

= 1000 kg × 3.84 m/s = 3840 kg m/s

Momentum of hammer and pile after impact =
momentum of hammer before impact.
Hence, 3840 kg m/s = (mass of hammer and
pile)× (velocity immediately after impact)

i.e. 3840 = (1000 + 100)(v), from which,

velocity immediately after impact ,

v = 3840

1100
= 3.49 m/s.
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(c) Resistive force of ground = mass × accelera-
tion. The acceleration is determined using

v2 = u2 + 2as where v = final velocity = 0,
u = initial velocity = 3.49 m/s and s =
distance driven in ground = 200 mm = 0.2 m.

Hence, 02 = (3.49)2 + 2(a)(0.2),

from which,

acceleration, a = −(3.49)2

2(0.2)
= −30.45 m/s2

(the minus sign indicates retardation)

Thus, resistive force of ground

= mass × acceleration

= 1100 kg × 30.45 m/s2

= 33.5 kN

Now try the following exercise

Exercise 60 Further problems on impulse
and impulsive forces

(Where necessary, take g as 9.81 m/s2)

1. The sliding member of a machine tool
has a mass of 200 kg. Determine the
change in momentum when the slid-
ing speed is increased from 10 mm/s to
50 mm/s. [8 kg m/s]

2. A force of 48 N acts on a body of mass
8 kg for 0.25 s. Determine the change in
velocity. [1.5 m/s]

3. The speed of a car of mass 800 kg
is increased from 54 km/h to 63 km/h
in 2 s. Determine the average force in
the direction of motion necessary to pro-
duce the change in speed. [1000 N]

4. A 10 kg mass is dropped vertically on
to a fixed horizontal plane and has an
impact velocity of 15 m/s. The mass
rebounds with a velocity of 5 m/s. If
the contact time of mass and plane is
0.025 s, calculate (a) the impulse, and
(b) the average value of the impulsive
force on the plane.

[(a) 200 kg m/s (b) 8 kN]

5. The hammer of a pile driver of mass
1.2 t falls 1.4 m on to a pile. The blow
takes place in 20 ms and the hammer
does not rebound. Determine the average
applied force exerted on the pile by the
hammer. [314.5 kN]

6. A tennis ball of mass 60 g is struck
from rest with a racket. The contact
time of ball on racket is 10 ms and the
ball leaves the racket with a velocity of
25 m/s. Calculate (a) the impulse, and
(b) the average force exerted by a racket
on the ball.

[(a) 1.5 kg m/s (b) 150 N]

7. In a press-tool operation, the tool is in
contact with the workpiece for 40 ms. If
the average force exerted on the work-
piece is 90 kN, determine the change in
momentum. [3600 kg m/s]

8. A gun of mass 1.2 t fires a shell of mass
12 kg with a velocity of 400 m/s.

Determine (a) the initial velocity of
recoil, and (b) the uniform force nec-
essary to stop the recoil of the gun in
150 mm.

[(a) 4 m/s (b) 64 kN]

9. In making a steel stamping, a mass of
100 kg falls on to the steel through a
distance of 1.5 m and is brought to rest
after moving through a further distance
of 15 mm. Determine the magnitude
of the resisting force, assuming a
uniform resistive force is exerted by the
steel.

[98.1 kN]

10. A vertical pile of mass 150 kg is driven
120 mm into the ground by the blow
of a 1.1 t hammer which falls through
800 mm. Assuming the hammer and
pile remain in contact, determine (a) the
velocity of the hammer just before
impact, (b) the velocity immediately
after impact, and (c) the resistive force
of the ground, assuming it to be
uniform.

[(a) 3.96 m/s (b) 3.48 m/s

(c) 63.08 kN]
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Exercise 61 Short answer questions on lin-
ear momentum and impulse

1. Define momentum.

2. State Newton’s first law of motion.

3. State the principle of the conservation of
momentum.

4. State Newton’s second law of motion.

5. Define impulse.

6. What is meant by an impulsive force?

7. State Newton’s third law of motion.

Exercise 62 Multi-choice questions on lin-
ear momentum and impulse
(Answers on page 284)

1. A mass of 100 g has a momentum of
100 kg m/s. The velocity of the mass is:

(a) 10 m/s (b) 102 m/s

(c) 10−3 m/s (d) 103 m/s

2. A rifle bullet has a mass of 50 g. The
momentum when the muzzle velocity is
108 km/h is:

(a) 54 kg m/s (b) 1.5 kg m/s

(c) 15000 kg m/s (d) 21.6 kg m/s

A body P of mass 10 kg has a velocity
of 5 m/s and the same line of action as
a body Q of mass 2 kg and having a
velocity of 25 m/s. The bodies collide,
and their velocities are the same after
impact. In questions 3 to 6, select the
correct answer from the following:

(a) 25/3 m/s (b) 360 kg m/s (c) 0

(d) 30 m/s (e) 160 kg m/s

(f) 100 kg m/s (g) 20 m/s

3. Determine the total momentum of the
system before impact when P and Q
have the same sense.

4. Determine the total momentum of the
system before impact when P and Q
have the opposite sense.

5. Determine the velocity of P and Q after
impact if their sense is the same before
impact.

6. Determine the velocity of P and Q after
impact if their sense is opposite before
impact.

7. A force of 100 N acts on a body of mass
10 kg for 0.1 s. The change in velocity
of the body is:

(a) 1 m/s (b) 100 m/s

(c) 0.1 m/s (d) 0.01 m/s

A vertical pile of mass 200 kg is driven
100 mm into the ground by the blow of a
1 t hammer which falls through 1.25 m.

In questions 8 to 12, take g as 10 m/s2

and select the correct answer from the
following:

(a) 25 m/s (b) 25/6 m/s

(c) 5 kg m/s (d) 0

(e) 625/6 kN (f) 5000 kg m/s

(g) 5 m/s (h) 12 kN

8. Calculate the velocity of the hammer
immediately before impact.

9. Calculate the momentum of the hammer
just before impact.

10. Calculate the momentum of the ham-
mer and pile immediately after impact
assuming they have the same velo-
city.

11. Calculate the velocity of the hammer and
pile immediately after impact assuming
they have the same velocity.

12. Calculate the resistive force of the
ground, assuming it to be uniform.
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Force, mass and acceleration

At the end of this chapter you should be
able to:

• define force and state its unit

• appreciate ‘gravitational force’

• state Newton’s three laws of motion

• perform calculations involving force
F = ma

• define ‘centripetal acceleration’

• perform calculations involving centripetal

force = mv2

r

• define ‘mass moment of inertia’

13.1 Introduction

When an object is pushed or pulled, a force is
applied to the object. This force is measured in
newtons (N). The effects of pushing or pulling an
object are:

(i) to cause a change in the motion of the object,
and

(ii) to cause a change in the shape of the object.

If a change occurs in the motion of the object,
that is, its velocity changes from u to v, then the
object accelerates. Thus, it follows that acceleration
results from a force being applied to an object. If a
force is applied to an object and it does not move,
then the object changes shape, that is, deformation
of the object takes place. Usually the change in
shape is so small that it cannot be detected by just
watching the object. However, when very sensitive
measuring instruments are used, very small changes
in dimensions can be detected.

A force of attraction exists between all objects.
The factors governing the size of this force F are

the masses of the objects and the distances between
their centres:

F ∝ m1m2

d2

Thus, if a person is taken as one object and the
Earth as a second object, a force of attraction exists
between the person and the Earth. This force is
called the gravitational force and is the force that
gives a person a certain weight when standing on
the Earth’s surface. It is also this force that gives
freely falling objects a constant acceleration in the
absence of other forces.

13.2 Newton’s laws of motion

To make a stationary object move or to change the
direction in which the object is moving requires a
force to be applied externally to the object. This
concept is known as Newton’s first law of motion
and may be stated as:

An object remains in a state of rest, or continues in a
state of uniform motion in a straight line, unless it is
acted on by an externally applied force

Since a force is necessary to produce a change of
motion, an object must have some resistance to a
change in its motion. The force necessary to give a
stationary pram a given acceleration is far less than
the force necessary to give a stationary car the same
acceleration on the same surface. The resistance to
a change in motion is called the inertia of an object
and the amount of inertia depends on the mass of
the object. Since a car has a much larger mass than
a pram, the inertia of a car is much larger than that
of a pram.

Newton’s second law of motion may be stated as:

The acceleration of an object acted upon by an external
force is proportional to the force and is in the same
direction as the force



FORCE, MASS AND ACCELERATION 145

Thus, force α acceleration, or force = a constant ×
acceleration, this constant of proportionality being
the mass of the object, i.e.

force = mass × acceleration

The unit of force is the newton (N) and is defined
in terms of mass and acceleration. One newton is
the force required to give a mass of 1 kilogram an
acceleration of 1 metre per second squared. Thus

F = ma

where F is the force in newtons (N), m is the mass
in kilograms (kg) and a is the acceleration in metres

per second squared (m/s2), i.e. 1 N = 1 kg m

s2

It follows that 1 m/s2 = 1 N/kg. Hence a gravi-

tational acceleration of 9.8 m/s2 is the same as a
gravitational field of 9.8 N/kg.

Newton’s third law of motion may be stated as:

For every force, there is an equal and opposite reacting
force

Thus, an object on, say, a table, exerts a downward
force on the table and the table exerts an equal
upward force on the object, known as a reaction
force or just a reaction.

Problem 1. Calculate the force needed to
accelerate a boat of mass 20 tonne uniformly
from rest to a speed of 21.6 km/h in
10 minutes.

The mass of the boat, m, is 20 t, that is 20000 kg.

The law of motion, v = u + at can be used to
determine the acceleration a.
The initial velocity, u, is zero,

the final velocity, v = 21.6 km/h = 21.6

3.6
= 6 m/s,

and the time, t = 10 min = 600 s.
Thus v = u+ at, i.e. 6 = 0 + a × 600, from which,

a = 6

600
= 0.01 m/s2

From Newton’s second law, F = ma

i.e. force = 20000 × 0.01 N = 200 N

Problem 2. The moving head of a machine
tool requires a force of 1.2 N to bring it to

rest in 0.8 s from a cutting speed of
30 m/min. Find the mass of the moving head.

From Newton’s second law, F = ma, thus m = F

a
,

where force is given as 1.2 N. The law of motion
v = u+ at can be used to find acceleration a, where

v = 0, u = 30 m/min = 30

60
m/s = 0.5 m/s, and

t = 0.8 s.

Thus, 0 = 0.5 + a × 0.8

from which, a = −0.5

0.8
= −0.625 m/s2 or

a retardation of 0.625 m/s2.

Thus the mass, m = F

a
= 1.2

0.625
= 1.92 kg

Problem 3. A lorry of mass 1350 kg
accelerates uniformly from 9 km/h to reach a
velocity of 45 km/h in 18 s. Determine
(a) the acceleration of the lorry, (b) the
uniform force needed to accelerate the lorry.

(a) The law of motion v = u + at can be used to
determine the acceleration, where final velocity

v = 45

3.6
m/s, initial velocity u = 9

3.6
m/s and

time t = 18 s.

Thus
45

3.6
= 9

3.6
+ a × 18

from which,

a = 1

18

(

45

3.6
− 9

3.6

)

= 1

18

(

36

3.6

)

= 10

18
= 5

9
m/s2 or 0.556 m/s2

(b) From Newton’s second law of motion,

force, F = ma = 1350 × 5

9
= 750 N

Problem 4. Find the weight of an object of
mass 1.6 kg at a point on the earth’s surface
where the gravitational field is 9.81 N/kg (or

9.81 m/s2).
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The weight of an object is the force acting vertically
downwards due to the force of gravity acting on the
object. Thus:

weight = force acting vertically downwards

= mass × gravitational field

= 1.6 × 9.81 = 15.696 N

Problem 5. A bucket of cement of mass
40 kg is tied to the end of a rope connected
to a hoist. Calculate the tension in the rope
when the bucket is suspended but stationary.
Take the gravitational field, g, as 9.81 N/kg

(or 9.81 m/s2).

The tension in the rope is the same as the force
acting in the rope. The force acting vertically down-
wards due to the weight of the bucket must be equal
to the force acting upwards in the rope, i.e. the
tension
Weight of bucket of cement,

F = mg = 40 × 9.81 = 392.4 N

Thus, the tension in the rope = 392.4 N

Problem 6. The bucket of cement in
Problem 5 is now hoisted vertically upwards

with a uniform acceleration of 0.4 m/s2.
Calculate the tension in the rope during the
period of acceleration.

With reference to Figure 13.1, the forces acting on
the bucket are:

(i) a tension (or force) of T acting in the rope

(ii) a force of mg acting vertically downwards, i.e.
the weight of the bucket and cement

Acceleration

Force due
to acceleration
F = ma

Weight,
mg

T

Figure 13.1

The resultant force F = T −mg;

hence, ma = T −mg

i.e. 40 × 0.4 = T − 40 × 9.81

from which, tension,T = 408.4 N

By comparing this result with that of Problem 5,
it can be seen that there is an increase in the
tension in the rope when an object is accelerating
upwards.

Problem 7. The bucket of cement in
Problem 5 is now lowered vertically
downwards with a uniform acceleration of
1.4 m/s2. Calculate the tension in the rope
during the period of acceleration.

With reference to Figure 13.2, the forces acting on
the bucket are:

(i) a tension (or force) of T acting vertically
upwards

(ii) a force of mg acting vertically downwards, i.e.
the weight of the bucket and cement

Acceleration

Weight,
mg

T F = ma

Figure 13.2

The resultant force, F = mg − T

Hence, ma = mg − T

from which, tension, T = m(g − a)

= 40(9.81 − 1.4)

= 336.4 N

By comparing this result with that of Problem 5, it
can be seen that there is a decrease in the tension
in the rope when an object is accelerating down-
wards.
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Now try the following exercise

Exercise 63 Further problems on New-
ton’s laws of motion

(Take g as 9.81 m/s2, and express answers to
three significant figure accuracy)

1. A car initially at rest accelerates uni-
formly to a speed of 55 km/h in 14 s.
Determine the accelerating force required
if the mass of the car is 800 kg.

[873 N]

2. The brakes are applied on the car in ques-
tion 1 when travelling at 55 km/h and it
comes to rest uniformly in a distance of
50 m. Calculate the braking force and the
time for the car to come to rest

[1.87 kN, 6.55 s]

3. The tension in a rope lifting a crate ver-
tically upwards is 2.8 kN. Determine its
acceleration if the mass of the crate is
270 kg. [0.560 m/s2]

4. A ship is travelling at 18 km/h when it
stops its engines. It drifts for a distance
of 0.6 km and its speed is then 14 km/h.
Determine the value of the forces oppos-
ing the motion of the ship, assuming the
reduction in speed is uniform and the
mass of the ship is 2000 t. [16.5 kN]

5. A cage having a mass of 2 t is being
lowered down a mineshaft. It moves from
rest with an acceleration of 4 m/s2, until
it is travelling at 15 m/s. It then travels
at constant speed for 700 m and finally
comes to rest in 6 s. Calculate the ten-
sion in the cable supporting the cage dur-
ing (a) the initial period of acceleration,
(b) the period of constant speed travel,
(c) the final retardation period.

[(a) 11.6 kN (b) 19.6 kN (c) 24.kN]

6. A miner having a mass of 80 kg is stand-
ing in the cage of problem 5. Determine
the reaction force between the man and
the floor of the cage during (a) the initial
period of acceleration, (b) the period of
constant speed travel, and (c) the final
retardation period.

[(a) 464.8 N (b) 784.8 N (c) 984.8 N]

7. During an experiment, masses of 4 kg
and 5 kg are attached to a thread and the
thread is passed over a pulley so that both
masses hang vertically downwards and
are at the same height. When the system
is released, find (a) the acceleration of
the system, and (b) the tension in the
thread, assuming no losses in the system.

[(a) 1.09 m/s2 (b) 43.6 N]

13.3 Centripetal acceleration

When an object moves in a circular path at con-
stant speed, its direction of motion is continually
changing and hence its velocity (which depends on
both magnitude and direction) is also continually
changing. Since acceleration is the (change in veloc-
ity)/(time taken) the object has an acceleration.

Let the object be moving with a constant angular
velocity of ω and a tangential velocity of magnitude
v and let the change of velocity for a small change of
angle of θ(= ωt) be V (see Figure 13.3(a)). Then,
v2 − v1 = V .

v
2

V

v2–v1

(b)

q
2

v2

v1

q = ωt

r

r

(a)

Figure 13.3

The vector diagram is shown in Figure 13.3(b) and
since the magnitudes of v1 and v2 are the same, i.e.
v, the vector diagram is also an isosceles triangle.
Bisecting the angle between v2 and v1 gives:

sin
θ

2
= V/2

v2

= V

2v

i.e. V = 2v sin
θ

2
(13.1)
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Since θ = ωt, then t = θ

ω
(13.2)

Dividing (13.1) by (13.2) gives:

V

t
=

2v sin
θ

2
θ

ω

=
vω sin

θ

2
θ

2

For small angles,

sin
θ

2
θ

2

is very nearly equal to unity,

hence,

V

t
= change of velocity

change of time

= acceleration, a = vω

But, ω = v/r , thus vω = v × v

r
= v2

r

That is, the acceleration a is
v2

r
and is towards

the centre of the circle of motion (along V ). It is
called the centripetal acceleration. If the mass of
the rotating object is m, then by Newton’s second

law, the centripetal force is
mv2

r
, and its direction

is towards the centre of the circle of motion.

Problem 8. A vehicle of mass 750 kg
travels round a bend of radius 150 m, at
50.4 km/h. Determine the centripetal force
acting on the vehicle.

The centripetal force is given by
mv2

r
and its direc-

tion is towards the centre of the circle.

m = 750 kg, v = 50.4 km/h = 50.4
3.6

m/s = 14 m/s

and r = 150 m

Thus, centripetal force = 750 × 142

150
= 980 N.

Problem 9. An object is suspended by a
thread 250 mm long and both object and
thread move in a horizontal circle with a
constant angular velocity of 2.0 rad/s. If the

tension in the thread is 12.5 N, determine the
mass of the object.

Centripetal force (i.e. tension in thread)

= mv2

r
= 12.5 N.

The angular velocity, ω = 2.0 rad/s and radius,
r = 250 mm = 0.25 m.

Since linear velocity v = ωr ,

v = 2.0×0.25 = 0.5 m/s, and since F = mv2

r
, then

m = Fr

v2
, i.e. mass of object, m = 12.5 × 0.25

0.52

= 12.5 kg.

Problem 10. An aircraft is turning at
constant altitude, the turn following the arc
of a circle of radius 1.5 km. If the maximum
allowable acceleration of the aircraft is 2.5 g,
determine the maximum speed of the turn in
km/h. Take g as 9.8 m/s.

The acceleration of an object turning in a circle is

v2

r
. Thus, to determine the maximum speed of turn

v2

r
= 2.5 g. Hence,

speed of turn, v =
√

2.5 gr =
√

2.5 × 9.8 × 1500

=
√

36750 = 191.7 m/s

= 191.7 × 3.6 km/h = 690 km/h

Now try the following exercise

Exercise 64 Further problems on
centripetal acceleration

1. Calculate the centripetal force acting on a
vehicle of mass 1 tonne when travelling
round a bend of radius 125 m at 40 km/h.
If this force should not exceed 750 N,
determine the reduction in speed of the
vehicle to meet this requirement.

[988 N, 34.86 km/h]

2. A speed-boat negotiates an S-bend con-
sisting of two circular arcs of radii 100 m
and 150 m. If the speed of the boat is
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constant at 34 km/h, determine the change
in acceleration when leaving one arc and

entering the other. [1.49 m/s2]

3. An object is suspended by a thread
400 mm long and both object and thread
move in a horizontal circle with a constant
angular velocity of 3.0 rad/s. If the tension
in the thread is 36 N, determine the mass
of the object. [10 kg]

13.4 Rotation of a rigid body about a
fixed axis

A rigid body is said to be a body that does not
change its shape or size during motion. Thus, any
two particles on a rigid body will remain the same
distance apart during motion.

Consider the rigidity of Figure 13.4, which is
rotating about the fixed axis O.

O

y

x

at

r

ΔFt = Δm .ar

Δm

a

Figure 13.4

In Figure 13.4,

α = the constant angular acceleration

�m = the mass of a particle

r = the radius of rotation of �m

at = the tangential acceleration of �m

�Ft = the elemental force on the particle

Now, force F = ma

or �Ft = �mat

= �m(αr)

Multiplying both sides of the above equation by r ,
gives:

�Ftr = �mαr2

Since α is a constant

∑

�Ftr = α
∑

�mr2

or T = Ioα (13.3)

where T = the total turning moment

exerted on the rigid body

=
∑

�Ftr

and Io = the mass moment of inertia (or second
moment) about O (in kg m2).
Equation (13.3) can be seen to be the rotational
equivalent of F = ma (Newton’s second law of
motion).

Problem 11. Determine the angular
acceleration that occurs when a circular disc
of mass moment of inertia of 0.5 kg m2 is
subjected to a torque of 6 N m. Neglect
friction and other losses.

From equation (13.3), torque T = Iα,

from which, angular acceleration,

α = T

I
= 6 N m

0.5 kg m2
= 12 rad/s2

13.5 Moment of inertia (I)

The moment of inertia is required for analysing
problems involving the rotation of rigid bodies. It
is defined as:

I = mk2 = mass moment of inertia (kg/m2)

where m = the mass of the rigid body

k = its radius of gyration about the point

of rotation (see Chapter 7).

In general, I = ∑

�mr2 where the definitions of
Figure 13.1 apply.
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Some typical values of mass and the radius of
gyration are given in Table 13.1, where

A = cross-sectional area

L = length

t = disc thickness

R = radius of the solid disc

R1 = internal radius

R2 = external radius

ρ = density

Table 13.1

Component mass k2

Rod, about mid-point ρAL
L2

12

Rod, about an end ρAL
L2

3

Flat disc ρπR2t
R2

2

Annulus ρπ(R2
2 − R2

1)t
(R2

1 + R2
2)

2

Parallel axis theorem

This is of similar form to the parallel axis theorem
of Chapter 7, where

Ixx = IG +mh2

Ixx = the mass moment of inertia about the xx

axis which is parallel to an axis passing

through the centre of gravity of the rigid

body, namely at G

IG = the mass moment of inertia of the rigid body

about an axis passing through G and

parallel to the xx axis

h = the perpendicular distance between the

above two parallel axes.

Problem 12. Determine the mass moment
of inertia about its centroid for a solid
uniform thickness disc. For the disc, its
radius is 0.2 m, its thickness is 0.05 m, and
its density is 7860 kg/m3.

From Table 13.1, for a disc, mass,

m = ρπR2t

= 7860
kg

m3
× π × (0.2 m)2 × 0.05 m

= 49.386 kg

Mass moment of inertia about its centroid,

Io = mR2

2
= 49.386 × 0.22

2
kg m2

= 0.988 kg m2

Now try the following exercises

Exercise 65 Further problems on rotation
and moment of inertia

1. Calculate the mass moment of inertia of a
thin rod, of length 0.5 m and mass 0.2 kg,

about its centroid. [0.004167 kg m2]

2. Calculate the mass moment of inertia of
the thin rod of Problem 1, about an end.

[0.01667 kg m2]

3. Calculate the mass moment of inertia of
a solid disc of uniform thickness about its
centroid. The diameter of the disc is 0.3 m
and its thickness is 0.08 m. The density of

its material of construction is 7860 kg/m3.

[0.50 kg m2]

4. If a hole of diameter 0.2 m is drilled
through the centre of the disc of Problem
3, what will be its mass moment of inertia
about its centroid? [0.401 kg m2]

Exercise 66 Short answer questions on
force, mass and acceleration

1. Force is measured in . . . . . . .

2. The two effects of pushing or pulling an
object are . . . . . . or . . . . . . .

3. A gravitational force gives free-falling
objects a . . . . . . in the absence of all
other forces.

4. State Newton’s first law of motion.

5. Describe what is meant by the inertia of
an object.
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6. State Newton’s second law of motion.

7. Define the Newton.

8. State Newton’s third law of motion.

9. Explain why an object moving round a
circle at a constant angular velocity has
an acceleration.

10. Define centripetal acceleration in sym-
bols.

11. Define centripetal force in symbols.

12. Define mass moment of inertia.

13. A rigid body has a constant angular
acceleration α when subjected to a
torque T . The mass moment of inertia,
Io = . . . . . . .

Exercise 67 Multi-choice questions on
force, mass and acceleration
(Answers on page 284)

1. The unit of force is the:

(a) watt (b) kelvin

(c) newton (d) joule

2. If a = acceleration and F = force, then
mass m is given by:

(a) m = a − F (b) m = F

a

(c) m = F − a (d) m = a

F

3. The weight of an object of mass 2 kg at
a point on the earth’s surface when the
gravitational field is 10 N/kg is:

(a) 20 N (b) 0.2 N

(c) 20 kg (d) 5 N

4. The force required to accelerate a loaded

barrow of 80 kg mass up to 0.2 m/s2 on
friction-less bearings is:

(a) 400 N (b) 3.2 N

(c) 0.0025 N (d) 16 N

5. A bucket of cement of mass 30 kg is tied
to the end of a rope connected to a hoist.
If the gravitational field g = 10 N/kg,

the tension in the rope when the bucket
is suspended but stationary is:

(a) 300 N (b) 3 N

(c) 300 kg (d) 0.67 N

A man of mass 75 kg is standing in a
lift of mass 500 kg. Use this data to
determine the answers to questions 6 to

9. Take g as 10 m/s2

6. The tension in a cable when the lift is
moving at a constant speed vertically
upward is:

(a) 4250 N (b) 5750 N

(c) 4600 N (d) 6900 N

7. The tension in the cable supporting the
lift when the lift is moving at a constant
speed vertically downwards is:

(a) 4250 N (b) 5750 N

(c) 4600 N (d) 6900 N

8. The reaction force between the man and
the floor of the lift when the lift is
travelling at a constant speed vertically
upwards is:

(a) 750 N (b) 900 N

(c) 600 N (d) 475 N

9. The reaction force between the man and
the floor of the lift when the lift is
travelling at a constant speed vertically
downwards is:

(a) 750 N (b) 900 N

(c) 600 N (d) 475 N

A ball of mass 0.5 kg is tied to a thread
and rotated at a constant angular velocity of
10 rad/s in a circle of radius 1 m. Use this
data to determine the answers to questions 10
and 11

10. The centripetal acceleration is:

(a) 50 m/s2 (b)
100

2π
m/s2

(c)
50

2π
m/s2 (d) 100 m/s2

11. The tension in the thread is:

(a) 25 N (b)
50

2π
N

(c)
25

2π
N (d) 50 N
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12. Which of the following statements is
false?

(a) An externally applied force is
needed to change the direction of
a moving object.

(b) For every force, there is an equal
and opposite reaction force.

(c) A body travelling at a constant
velocity in a circle has no accel-
eration.

(d) Centripetal acceleration acts to-
wards the centre of the circle of
motion.

13. An angular acceleration of 10 rad/s2

occurs when a circular disc of mass
moment of inertia of 0.5 kg m2 is
subjected to a torque. The value of the
torque is:

(a) 25 N m (b) 5 N m

(c) 20 N m (d) 0.05 N m
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Work, energy and power

At the end of this chapter you should be
able to:

• define work and state its unit

• perform simple calculations on work done

• appreciate that the area under a force/
distance graph gives work done

• perform calculations on a force/distance
graph to determine work done

• define energy and state its unit

• state several forms of energy

• state the principle of conservation of
energy and give examples of conversions

• define and calculate efficiency of systems

• define power and state its unit

• understand that power = force × velocity

• perform calculations involving power,
work done, energy and efficiency

• define potential energy

• perform calculations involving potential
energy = mgh

• define kinetic energy

• perform calculations involving kinetic

energy = 1
2
mv2

• distinguish between elastic and inelastic
collisions

• perform calculations involving kinetic

energy in rotation = 1
2
Iω2

14.1 Work

If a body moves as a result of a force being applied
to it, the force is said to do work on the body. The
amount of work done is the product of the applied

force and the distance, i.e.

work done = force × distance moved in

the direction of the force

The unit of work is the joule, J, which is defined as
the amount of work done when a force of 1 Newton
acts for a distance of 1 m in the direction of the
force. Thus,

1 J = 1 N m

If a graph is plotted of experimental values of force
(on the vertical axis) against distance moved (on
the horizontal axis) a force/distance graph or work
diagram is produced. The area under the graph
represents the work done.

For example, a constant force of 20 N used to
raise a load a height of 8 m may be represented on
a force/distance graph as shown in Figure 14.1. The
area under the graph shown shaded represents the
work done. Hence

work done = 20 N × 8 m = 160 J

20

10

0 4

Distance / m

8

F
o
rc

e
 /
 N

Figure 14.1

Similarly, a spring extended by 20 mm by a force
of 500 N may be represented by the work diagram
shown in Figure 14.2, where

work done = shaded area

= 1
2

× base × height
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500

F
o

rc
e

 /
 N

0 20

Extension / mm

Figure 14.2

= 1
2

× (20 × 10−3) m × 500 N

= 5 J

It is shown in Chapter 13 that force = mass ×
acceleration, and that if an object is dropped from
a height it has a constant acceleration of around

9.81 m/s2. Thus if a mass of 8 kg is lifted vertically
4 m, the work done is given by:

work done = force × distance

= (mass × acceleration)× distance

= (8 × 9.81)× 4 = 313.92 J

The work done by a variable force may be found by
determining the area enclosed by the force/distance
graph using an approximate method such as the mid-
ordinate rule.

To determine the area ABCD of Figure 14.3
using the mid-ordinate rule:

(i) Divide base AD into any number of equal
intervals, each of width d (the greater the
number of intervals, the greater the accuracy)

(ii) Erect ordinates in the middle of each interval
(shown by broken lines in Figure 14.3)

(iii) Accurately measure ordinates y1, y2, y3, etc.

(iv) Area ABCD = d(y1 +y2 +y3 +y4 +y5 +y6)

A

d d d d d d

B
C

D

y1 y2 y3 y4 y5 y6

Figure 14.3

In general, the mid-ordinate rule states:

Area =

(

width of
interval

) (

sum of
mid-ordinates

)

Problem 1. Calculate the work done when
a force of 40 N pushes an object a distance
of 500 m in the same direction as the force.

Work done = force × distance moved in the

direction of the force

= 40 N × 500 m

= 20000 J (since 1 J = 1 Nm)

i.e. work done = 20 kJ

Problem 2. Calculate the work done when
a mass is lifted vertically by a crane to a
height of 5 m, the force required to lift the
mass being 98 N.

When work is done in lifting then:

work done = (weight of the body)

× (vertical distance moved)

Weight is the downward force due to the mass of an
object. Hence

workdone = 98 N × 5 m = 490 J

Problem 3. A motor supplies a constant
force of 1 kN which is used to move a load
a distance of 5 m. The force is then changed
to a constant 500 N and the load is moved a
further 15 m. Draw the force/distance graph
for the operation and from the graph
determine the work done by the motor.

The force/distance graph or work diagram is shown
in Figure 14.4. Between points A and B a con-
stant force of 1000 N moves the load 5 m; between
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Figure 14.4

points C and D a constant force of 500 N moves
the load from 5 m to 20 m

Total work done = area under the force/distance

graph

= area ABFE + area CDGF

= (1000 N × 5 m)

+ (500 N × 15 m)

= 5000 J + 7500 J

= 12500 J = 12.5 kJ

Problem 4. A spring, initially in a relaxed
state, is extended by 100 mm. Determine the
work done by using a work diagram if the
spring requires a force of 0.6 N per mm of
stretch.

Force required for a 100 mm extension
= 100 mm × 0.6 N/mm = 60 N.
Figure 14.5 shows the force/extension graph or
work diagram representing the increase in extension
in proportion to the force, as the force is increased

60

F
o
rc

e
 /
 N

30

0 50

Extension / mm

100

Figure 14.5

from 0 to 60 N The work done is the area under the
graph, hence

work done = 1
2

× base × height

= 1
2

× 100 mm × 60 N

= 1
2

× 100 × 10−3 m × 60 N

= 3 J

(Alternatively, average force during

extension = (60 − 0)

2
= 30 N

and total

extension = 100 mm = 0.1 m,

hence

work done = average force × extension

= 30 N × 0.1 m = 3 J)

Problem 5. A spring requires a force of
10 N to cause an extension of 50 mm.
Determine the work done in extending the
spring (a) from zero to 30 mm, and (b) from
30 mm to 50 mm.

Figure 14.6 shows the force/extension graph for the
spring.

(a) Work done in extending the spring from zero to
30 mm is given by area ABO of Figure 14.6,
i.e.
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Figure 14.6
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work done = 1
2

× base × height

= 1
2

× 30 × 10−3 m × 6 N

= 90 × 10−3 J = 0.09 J

(b) Work done in extending the spring from
30 mm to 50 mm is given by area ABCE of
Figure 14.6, i.e.

work done = area ABCD + area ADE

= (20 × 10−3 m × 6 N)

+ 1
2
(20 × 10−3 m)(4 N)

= 0.12 J + 0.04 J = 0.16 J

Problem 6. Calculate the work done when
a mass of 20 kg is lifted vertically through a
distance of 5.0 m. Assume that the
acceleration due to gravity is 9.81 m/s2.

The force to be overcome when lifting a mass of
20 kg vertically upwards is mg,
i.e. 20 × 9.81 = 196.2 N (see Chapter 13).

work done = force × distance

= 196.2 × 5.0 = 981 J

Problem 7. Water is pumped vertically
upwards through a distance of 50.0 m and
the work done is 294.3 kJ. Determine the
number of litres of water pumped. (1 litre of
water has a mass of 1 kg).

Work done = force × distance,

i.e. 2 94 300 = force × 50.0,

from which force = 2 94 300

50.0
= 5886 N

The force to be overcome when lifting a mass
m kg vertically upwards is mg, i.e. (m × 9.81) N
(see Chapter 13).
Thus 5886 = m × 9.81, from which mass,

m = 5886

9.81
= 600 kg.

Since 1 litre of water has a mass of 1 kg, 600 litres
of water are pumped.

Problem 8. The force on a cutting tool of a
shaping machine varies over the length of
cut as follows:

Distance (mm) 0 20 40 60 80 100
Force (kN) 60 72 65 53 44 50

Determine the work done as the tool moves
through a distance of 100 mm.

The force/distance graph for the given data is shown
in Figure 14.7. The work done is given by the area
under the graph; the area may be determined by an
approximate method. Using the mid-ordinate rule,
with each strip of width 20 mm, mid-ordinates y1,
y2, y3, y4 and y5 are erected as shown, and each is
measured.

Area under curve =
(

width of
interval

) (

sum of
mid-ordinate

)

= (20)(69 + 69.5 + 59 + 48

+ 45.5)

= (20)(291)
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= 5820 kN mm = 5820 N m

= 5820 J

Hence the work done as the tool moves through
100 mm is 5.82 kJ

Now try the following exercise

Exercise 68 Further problems on work

1. Determine the work done when a force of
50 N pushes an object 1.5 km in the same
direction as the force. [75 kJ]

2. Calculate the work done when a mass
of weight 200 N is lifted vertically by a
crane to a height of 100 m. [20 kJ]

3. A motor supplies a constant force of
2 kN to move a load 10 m. The force is
then changed to a constant 1.5 kN and
the load is moved a further 20 m. Draw
the force/distance graph for the complete
operation, and, from the graph, determine
the total work done by the motor.

[50 kJ]

4. A spring, initially relaxed, is extended
80 mm. Draw a work diagram and hence
determine the work done if the spring
requires a force of 0.5 N/mm of stretch.

[1.6 J]

5. A spring requires a force of 50 N to cause
an extension of 100 mm.
Determine the work done in extending
the spring (a) from 0 to 100 mm, and
(b) from 40 mm to 100 mm.

[

(a) 2.5 J (b) 2.1 J

]

6. The resistance to a cutting tool varies
during the cutting stroke of 800 mm
as follows: (i) the resistance increases
uniformly from an initial 5000 N to
10000 N as the tool moves 500 mm,
and (ii) the resistance falls uniformly
from 10000 N to 6000 N as the tool
moves 300 mm.

Draw the work diagram and calculate the
work done in one cutting stroke.

[6.15 kJ]

14.2 Energy

Energy is the capacity, or ability, to do work. The
unit of energy is the joule, the same as for work.
Energy is expended when work is done. There are
several forms of energy and these include:

(i) Mechanical energy

(ii) Heat or thermal energy

(iii) Electrical energy

(iv) Chemical energy

(v) Nuclear energy

(vi) Light energy

(vii) Sound energy

Energy may be converted from one form to another.
The principle of conservation of energy states that
the total amount of energy remains the same in
such conversions, i.e. energy cannot be created or
destroyed.

Some examples of energy conversions include:

(i) Mechanical energy is converted to electrical
energy by a generator

(ii) Electrical energy is converted to mechanical
energy by a motor

(iii) Heat energy is converted to mechanical
energy by a steam engine

(iv) Mechanical energy is converted to heat
energy by friction

(v) Heat energy is converted to electrical energy
by a solar cell

(vi) Electrical energy is converted to heat energy
by an electric fire

(vii) Heat energy is converted to chemical energy
by living plants

(viii) Chemical energy is converted to heat energy
by burning fuels

(ix) Heat energy is converted to electrical energy
by a thermocouple

(x) Chemical energy is converted to electrical
energy by batteries

(xi) Electrical energy is converted to light energy
by a light bulb



158 MECHANICAL ENGINEERING PRINCIPLES

(xii) Sound energy is converted to electrical
energy by a microphone.

(xiii) Electrical energy is converted to chemical
energy by electrolysis.

Efficiency is defined as the ratio of the useful
output energy to the input energy. The symbol for
efficiency is η (Greek letter eta). Hence

efficiency, η =
useful output energy

input energy

Efficiency has no units and is often stated as a per-
centage. A perfect machine would have an efficiency
of 100%. However, all machines have an efficiency
lower than this due to friction and other losses. Thus,
if the input energy to a motor is 1000 J and the
output energy is 800 J then the efficiency is

800

1000
× 100% = 80%

Problem 9. A machine exerts a force of
200 N in lifting a mass through a height of
6 m. If 2 kJ of energy are supplied to it,
what is the efficiency of the machine?

Work done in lifting mass

= force × distance moved

= weight body × distance moved

= 200 N × 6 m = 1200 J

= useful energy output

Energy input = 2 kJ = 2000 J

Efficiency, η = useful output energy

input energy

= 1200

2000
= 0.6 or 60%

Problem 10. Calculate the useful output
energy of an electric motor which is 70%
efficient if it uses 600 J of electrical energy.

Efficiency, η = useful output energy

input energy

thus
70

100
= output energy

600 J

from which, output energy = 70

100
× 600 = 420 J

Problem 11. 4 kJ of energy are supplied to
a machine used for lifting a mass. The force
required is 800 N. If the machine has an
efficiency of 50%, to what height will it lift
the mass?

Efficiency, η = useful output energy

input energy

i.e.
50

100
= output energy

4000 J

from which, output energy = 50

100
× 4000

= 2000 J

Work done = force × distance
moved,

}

hence 2000 J = 800 N × height,

from which, height = 2000 J

800 N
= 2.5 m.

Problem 12. A hoist exerts a force of
500 N in raising a load through a height of
20 m. The efficiency of the hoist gears is
75% and the efficiency of the motor is 80%.
Calculate the input energy to the hoist.

The hoist system is shown diagrammatically in
Figure 14.8.

Output energy = work done

= force × distance

= 500 N × 20 m = 10000 J

Input
energy

Output
energyMotor

80% efficient
Gearing
75% efficient

Figure 14.8
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For the gearing,

efficiency = output energy

input energy

i.e.
75

100
= 10000

input energy

from which, the input energy to the gears

= 10000 × 100

75
= 13333 J.

The input energy to the gears is the same as the
output energy of the motor. Thus, for the motor,

efficiency = output energy

input energy

i.e.
80

100
= 13333

input energy

Hence input energy to the hoist

= 13333 × 100

80
= 16667 J = 16.67 kJ

Now try the following exercise

Exercise 69 Further problems on energy

1. A machine lifts a mass of weight 490.5 N
through a height of 12 m when 7.85 kJ
of energy is supplied to it. Determine the
efficiency of the machine. [75%]

2. Determine the output energy of an electric
motor which is 60% efficient if it uses
2 kJ of electrical energy. [1.2 kJ]

3. A machine that is used for lifting a partic-
ular mass is supplied with 5 kJ of energy.
If the machine has an efficiency of 65%
and exerts a force of 812.5 N to what
height will it lift the mass? [4 m]

4. A load is hoisted 42 m and requires a
force of 100 N. The efficiency of the hoist
gear is 60% and that of the motor is 70%.
Determine the input energy to the hoist.

[10 kJ]

14.3 Power

Power is a measure of the rate at which work is
done or at which energy is converted from one form

to another.

Power P =
energy used

time taken

or P =
work done

time taken

The unit of power is the watt, W, where 1 watt
is equal to 1 joule per second. The watt is a small
unit for many purposes and a larger unit called the
kilowatt, kW, is used, where 1 kW = 1000 W.
The power output of a motor, which does 120 kJ of
work in 30 s, is thus given by

P = 120 kJ

30 s
= 4 kW

Since work done = force × distance,

then power = work done

time taken

= force × distance

time taken

= force × distance

time taken

However,
distance

time taken
= velocity

Hence power = force × velocity

Problem 13. The output power of a motor
is 8 kW. How much work does it do in 30 s?

Power = work done

time taken
,

from which, work done = power × time

= 8000 W × 30 s

= 2 40 000 J = 240 kJ

Problem 14. Calculate the power required
to lift a mass through a height of 10 m in
20 s if the force required is 3924 N.

Work done = force × distance moved

= 3924 N × 10 m = 39 240 J
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Power = work done

time taken
= 39 240 J

20 s

= 1962 W or 1.962 kW

Problem 15. 10 kJ of work is done by a
force in moving a body uniformly through
125 m in 50 s. Determine (a) the value of
the force, and (b) the power.

(a) Work done = force × distance,

hence 10 000 J = force × 125 m,

from which, force = 10 000 J

125 m

= 80 N

(b) Power = work done

time taken
= 10 000 J

50 s
= 200 W

Problem 16. A car hauls a trailer at
90 km/h when exerting a steady pull of
600 N. Calculate (a) the work done in 30
minutes and (b) the power required.

(a) Work done = force × distance moved. The

distance moved in 30 min, i.e. 1
2
h, at

90 km/h = 45 km.
Hence, work done = 600 N × 45 000 m =
27 000 kJ or 27 MJ

(b) Power required

= work done

time taken
= 27 × 106 J

30 × 60 s

= 15 000 W or 15 kW

Problem 17. To what height will a mass of
weight 981 N be raised in 40 s by a machine
using a power of 2 kW?

Work done = force × distance.

Hence, work done = 981 N × height.

Power = work done

time taken
,

from which, work done = power × time taken

= 2000 W × 40 s

= 80 000 J

Hence 80 000 = 981 N × height,

from which, height = 80 000 J

981 N
= 81.55 m

Problem 18. A planing machine has a
cutting stroke of 2 m and the stroke takes
4 seconds. If the constant resistance to the
cutting tool is 900 N, calculate for each
cutting stroke (a) the power consumed at the
tool point, and (b) the power input to the
system if the efficiency of the system is 75%.

(a) Work done in each cutting

stroke = force × distance

= 900 N × 2 m = 1800 J

Power consumed at tool point

= work done

time taken
= 1800 J

4 s
= 450 W

(b) Efficiency = output energy
input energy

= output power
input power

Hence
75

100
= 450

input power

from which, input power = 450 × 100

75

= 600 W

Problem 19. An electric motor provides
power to a winding machine. The input
power to the motor is 2.5 kW and the overall
efficiency is 60%. Calculate (a) the output
power of the machine, (b) the rate at which
it can raise a 300 kg load vertically upwards.

(a) Efficiency,

η = power output

power input

i.e.
60

100
= power output

2500

from which,

power output = 60

100
× 2500

= 1500 W or 1.5 kW.
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(b) Power output = force × velocity,

from which, velocity = power output

force
.

Force acting on the 300 kg load due to

gravity = 300 kg × 9.81 m/s2

= 2943 N

Hence,

velocity = 1500

2943

= 0.510 m/s or 510 mm/s.

Problem 20. A lorry is travelling at a
constant velocity of 72 km/h. The force
resisting motion is 800 N. Calculate the
tractive power necessary to keep the lorry
moving at this speed.

Power = force × velocity.

The force necessary to keep the lorry moving at
constant speed is equal and opposite to the force
resisting motion, i.e. 800 N.

Velocity = 72 km/h = 72 × 1000

60 × 60
m/s

= 20 m/s.

Hence, power = 800 N × 20 m/s

= 16 000 N m/s = 16 000 J/s

= 16 000 W or 16 kW.

Thus the tractive power needed to keep the lorry
moving at a constant speed of 72 km/h is 16 kW.

Problem 21. The variation of tractive force
with distance for a vehicle which is
accelerating from rest is:

force (kN) 8.0 7.4 5.8 4.5 3.7 3.0
distance (m) 0 10 20 30 40 50

Determine the average power necessary if
the time taken to travel the 50 m from rest is
25 s.

8.0

6.0

4.0

F
o
rc

e
 (

k
N

)

2.0

0 10 20

Distance (m)

30 40 50

y1 y2 y3 y4 y5

Figure 14.9

The force/distance diagram is shown in Figure 14.9.
The work done is determined from the area under
the curve. Using the mid-ordinate rule with five
intervals gives:

area =
(

width of
interval

) (

sum of
mid-ordinate

)

= (10)[y1 + y2 + y3 + y4 + y5]

= (10)[7.8 + 6.6 + 5.1

+ 4.0 + 3.3]

= (10)[26.8] = 268 kN m,

i.e. work done = 268 kJ

Average power = work done

time taken
= 268000 J

25 s

= 10720 W or 10.72 kW.

Now try the following exercise

Exercise 70 Further problems on power

1. The output power of a motor is 10 kW.
How much work does it do in 1 minute?

[600 kJ]

2. Determine the power required to lift a
load through a height of 20 m in 12.5 s
if the force required is 2.5 kN. [4 kW]

3. 25 kJ of work is done by a force in mov-
ing an object uniformly through 50 m in
40 s. Calculate (a) the value of the force,
and (b) the power.

[(a) 500 N (b) 625 W]
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4. A car towing another at 54 km/h exerts a
steady pull of 800 N. Determine (a) the

work done in 1
4

hr, and (b) the power

required.

[(a) 10.8 MJ (b) 12 kW]

5. To what height will a mass of weight
500 N be raised in 20 s by a motor using
4 kW of power? [160 m]

6. The output power of a motor is 10 kW.
Determine (a) the work done by the
motor in 2 hours, and (b) the energy
used by the motor if it is 72% efficient.

[(a) 72 MJ (b) 100 MJ]

7. A car is travelling at a constant speed
of 81 km/h. The frictional resistance to
motion is 0.60 kN. Determine the power
required to keep the car moving at this
speed. [13.5 kW]

8. A constant force of 2.0 kN is required
to move the table of a shaping machine
when a cut is being made. Determine the
power required if the stroke of 1.2 m is
completed in 5.0 s. [480 W]

9. A body of mass 15 kg has its speed
reduced from 30 km/h to 18 km/h in
4.0 s. Calculate the power required to
effect this change of speed. [83.33 W]

10. The variation of force with distance for a
vehicle that is decelerating is as follows:

Distance (m) 600 500 400 300 200 100 0
Force (kN) 24 20 16 12 8 4 0

If the vehicle covers the 600 m in 1.2
minutes, find the power needed to bring
the vehicle to rest. [100 kW]

11. A cylindrical bar of steel is turned in
a lathe. The tangential cutting force
on the tool is 0.5 kN and the cutting
speed is 180 mm/s. Determine the power
absorbed in cutting the steel. [90 W]

14.4 Potential and kinetic energy

Mechanical engineering is concerned principally
with two kinds of energy, potential energy and
kinetic energy.

Potential energy is energy due to the position of
the body. The force exerted on a mass of m kg is

mg N (where g = 9.81 m/s2, the acceleration due to
gravity). When the mass is lifted vertically through
a height h m above some datum level, the work
done is given by: force×distance = (mg (h) J. This
work done is stored as potential energy in the mass.
Hence,

potential energy = mgh joules

(the potential energy at the datum level being taken
as zero).

Kinetic energy is the energy due to the motion
of a body. Suppose a force F acts on an object of
mass m originally at rest (i.e. u = 0) and accelerates
it to a velocity v in a distance s:

work done = force × distance = Fs

= (ma) (s) (if no energy is lost)

where a is the acceleration
Since v2 = u2 + 2as (see Chapter 11) and u = 0,

v2 = 2as, from which

a = v2

2s
,

hence,

work done = (ma)(s)

= (m)

(

v2

2s

)

(s) = 1

2
mv2

This energy is called the kinetic energy of the mass
m, i.e.

kinetic energy =
1
2
mv2 joules

As stated in Section 14.2, energy may be converted
from one form to another. The principle of con-
servation of energy states that the total amount of
energy remains the same in such conversions, i.e.
energy cannot be created or destroyed.

In mechanics, the potential energy possessed by
a body is frequently converted into kinetic energy,
and vice versa. When a mass is falling freely, its
potential energy decreases as it loses height, and
its kinetic energy increases as its velocity increases.
Ignoring air frictional losses, at all times:

Potential energy + kinetic energy = a constant
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If friction is present, then work is done overcoming
the resistance due to friction and this is dissipated
as heat. Then,

Initial energy = final energy

+ work done overcoming

frictional resistance

Kinetic energy is not always conserved in collisions.
Collisions in which kinetic energy is conserved
(i.e. stays the same) are called elastic collisions,
and those in which it is not conserved are termed
inelastic collisions.

Problem 22. A car of mass 800 kg is
climbing an incline at 10° to the horizontal.
Determine the increase in potential energy of
the car as it moves a distance of 50 m up the
incline.

With reference to Figure 14.10,

sin 10° = opposite

hypotenuse

= h

50
,

from which, h = 50 sin 10° = 8.682 m.

h

50 m

10°

Figure 14.10

Hence, increase in

potential energy = mgh

= 800 kg × 9.81 m/s2

× 8.682 m

= 68140 J or 68.14 kJ

Problem 23. At the instant of striking, a
hammer of mass 30 kg has a velocity of
15 m/s. Determine the kinetic energy in the
hammer.

Kinetic energy = 1
2
mv2 = 1

2
(30 kg)(15 m/s)2

i.e.

kinetic energy in hammer = 3375 J or 3.375 kJ

Problem 24. A lorry having a mass of 1.5 t
is travelling along a level road at 72 km/h.
When the brakes are applied, the speed
decreases to 18 km/h. Determine how much
the kinetic energy of the lorry is reduced.

Initial velocity of lorry,

v1 = 72 km/h

= 72
km

h
× 1000

m

km
× 1 h

3600 s

= 72

3.6
= 20 m/s,

final velocity of lorry,

v2 = 18

3.6
= 5 m/s and mass of lorry,

m = 1.5 t = 1500 kg

Initial kinetic energy of the lorry

= 1
2
mv2

1 = 1
2
(1500)(20)2 = 300 kJ

Final kinetic energy of the lorry

= 1
2
mv2

2 = 1
2
(1500)(5)2 = 18.75 kJ

Hence, the change in

kinetic energy = 300 − 18.75 = 281.25 kJ

(Part of this reduction in kinetic energy is converted
into heat energy in the brakes of the lorry and is
hence dissipated in overcoming frictional forces and
air friction).

Problem 25. A canister containing a
meteorology balloon of mass 4 kg is fired
vertically upwards from a gun with an initial
velocity of 400 m/s. Neglecting the air
resistance, calculate (a) its initial kinetic
energy, (b) its velocity at a height of 1 km,
(c) the maximum height reached.
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(a) Initial kinetic energy = 1
2
mv2

= 1
2
(4)(400)2 = 320 kJ

(b) At a height of 1 km, potential energy =
mgh = 4 × 9.81 × 1000 = 39.24 kJ. By the
principle of conservation of energy: potential
energy + kinetic energy at 1 km = initial
kinetic energy.

Hence 39 240 + 1
2
mv2 = 320 000

from which, 1
2
(4)v2 = 320 000 − 39 240

= 2 80 760

Hence v =
√

(

2 × 2 80 760

4

)

= 374.7 m/s

i.e. the velocity of the canister at a height of
1 km is 374.7 m/s

(c) At the maximum height, the velocity of the
canister is zero and all the kinetic energy has
been converted into potential energy. Hence,
potential energy = initial kinetic energy =
3 20 000 J (from part (a)) Then,

320000 = mgh = (4) (9.81) (h),

from which, height h = 3 20 000

(4)(9.81)
= 8155 m

i.e. the maximum height reached is 8155 m.

Problem 26. A piledriver of mass 500 kg
falls freely through a height of 1.5 m on to a
pile of mass 200 kg. Determine the velocity
with which the driver hits the pile. If, at
impact, 3 kJ of energy are lost due to heat
and sound, the remaining energy being
possessed by the pile and driver as they are
driven together into the ground a distance of
200 mm, determine (a) the common velocity
immediately after impact, (b) the average
resistance of the ground.

The potential energy of the piledriver is converted
into kinetic energy.

Thus potential energy = kinetic energy,

i.e. mgh = 1
2
mv2,

from which, velocity v =
√

2gh

=
√

(2)(9.81)(1.5)

= 5.42 m/s.

Hence, the piledriver hits the pile at a velocity of
5.42 m/s.

(a) Before impact, kinetic energy of

pile driver = 1
2
mv2 = 1

2
(500)(5.42)2

= 7.34 kJ

Kinetic energy after impact = 7.34 − 3 =
4.34 kJ. Thus the piledriver and pile together
have a mass of 500 + 200 = 700 kg and possess
kinetic energy of 4.34 kJ.

Hence 4.34 × 103 = 1
2
mv2 = 1

2
(700)v2

from which, velocity v =

√

√

√

√

(

2 × 4.34 × 103

700

)

= 3.52 m/s

Thus, the common velocity after impact is
3.52 m/s.

(b) The kinetic energy after impact is absorbed in
overcoming the resistance of the ground, in a
distance of 200 mm.

Kinetic energy = work done

= resistance × distance

i.e. 4.34 × 103 = resistance × 0.200,

from which,

resistance = 4.34 × 103

0.200
= 21700 N

Hence, the average resistance of the ground
is 21.7 kN.

Problem 27. A car of mass 600 kg reduces
speed from 90 km/h to 54 km/h in 15 s.
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Determine the braking power required to
give this change of speed.

Change in kinetic energy of car

= 1
2
mv2

1 − 1
2
mv2

2,

where m = mass of car = 600 kg,

v1 = initial velocity = 90 km/h

= 90

3.6
m/s = 25 m/s,

and v2 = final velocity = 54 km/h

= 54

3.6
m/s = 15 m/s.

Hence, change in

kinetic energy = 1
2
m(v2

1 − v2
2)

= 1
2
(600)(252 − 152)

= 120 000 J.

Braking power = change in energy

time taken

= 120 000 J

15 s

= 8000 W or 8 kW

Now try the following exercises

Exercise 71 Further problems on poten-
tial and kinetic energy

(Assume the acceleration due to gravity,

g = 9.81 m/s2)

1. An object of mass 400 g is thrown verti-
cally upwards and its maximum increase
in potential energy is 32.6 J. Determine
the maximum height reached, neglecting
air resistance. [8.31 m]

2. A ball bearing of mass 100 g rolls down
from the top of a chute of length 400 m
inclined at an angle of 30° to the horizon-
tal. Determine the decrease in potential
energy of the ball bearing as it reaches
the bottom of the chute. [196.2 J]

3. A vehicle of mass 800 kg is travelling at
54 km/h when its brakes are applied. Find
the kinetic energy lost when the car comes
to rest. [90 kJ]

4. Supplies of mass 300 kg are dropped
from a helicopter flying at an altitude of
60 m. Determine the potential energy of
the supplies relative to the ground at the
instant of release, and its kinetic energy
as it strikes the ground.

[176.6 kJ, 176.6 kJ]

5. A shell of mass 10 kg is fired verti-
cally upwards with an initial velocity
of 200 m/s. Determine its initial kinetic
energy and the maximum height reached,
correct to the nearest metre, neglecting air
resistance. [200 kJ, 2039 m]

6. The potential energy of a mass is
increased by 20.0 kJ when it is lifted
vertically through a height of 25.0 m. It
is now released and allowed to fall freely.
Neglecting air resistance, find its kinetic
energy and its velocity after it has fallen
10.0 m. [8 kJ, 14.0 m/s]

7. A piledriver of mass 400 kg falls freely
through a height of 1.2 m on to a pile
of mass 150 kg. Determine the velocity
with which the driver hits the pile. If,
at impact, 2.5 kJ of energy are lost due
to heat and sound, the remaining energy
being possessed by the pile and driver as
they are driven together into the ground
a distance of 150 mm, determine (a) the
common velocity after impact, (b) the
average resistance of the ground.

[4.85 m/s (a) 2.83 m/s (b) 14.68 kN]

14.5 Kinetic energy of rotation

When linear motion takes place,

kinetic energy =
∑ �m

2
v2,

but when rotational motion takes place,

kinetic energy = 1

2

∑

�m(ωr)2

Since ω is a constant,

kinetic energy = ω2 1

2

∑

�mr2
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But

∑

�mr2 = I

Therefore,

kinetic energy (in rotation) =
1
2
I ω2 (J)

where I = the mass moment of inertia about the

point of rotation

and ω = angular velocity.

Problem 28. Calculate the kinetic energy of
a solid flat disc of diameter 0.5 m and of a
uniform thickness of 0.1 m, rotating about its
centre at 40 rpm. Take the density of the

material as 7860 kg/m3.

Angular velocity,

ω = 2π
rad

rev
× 40

rev

min
× 1 min

60 s

= 4.189 rad/s

From Table 13.1, page 150,

I = ρ × πR2 × t × R2

2

= 7860
kg

m3
× π × 0.252 m2

× 0.1 m × 0.252 m2

2

i.e. I = 4.823 kg m2

Hence, kinetic energy

= 1

2
Iω2 = 1

2
× 4.823 kg m2 × (4.189)2 1

s2

= 42.32 J.

Now try the following exercises

Exercise 72 Further problems on kinetic
energy in rotation

1. Calculate the kinetic energy of a solid flat
disc of diameter 0.6 m and of uniform
thickness of 0.1 m rotating about its cen-
tre at 50 rpm. Take the density of the disc

material as 7860 kg/m3. [137.1 J]

2. If the disc of Problem 1 had a hole in its
centre of 0.2 m diameter, what would be
its kinetic energy? [135.4 J]

3. If an annulus of external diameter 0.4 m
and internal diameter 0.2 m were rotated
about its centre at 100 rpm, what would
be its kinetic energy? Assume the uniform
thickness of the annulus is 0.08 m and the
density of the material is 7860 kg/m3.

[81.2 J]

Exercise 73 Short answer questions on
work, energy and power

1. Define work in terms of force applied
and distance moved.

2. Define energy, and state its unit.

3. Define the joule.

4. The area under a force/distance graph
represents . . . . . .

5. Name five forms of energy.

6. State the principle of conservation of
energy.

7. Give two examples of conversion of heat
energy to other forms of energy.

8. Give two examples of conversion of
electrical energy to other forms of
energy.

9. Give two examples of conversion of
chemical energy to other forms of
energy.

10. Give two examples of conversion of
mechanical energy to other forms of
energy.

11. (a) Define efficiency in terms of energy
input and energy output.

(b) State the symbol used for
efficiency.

12. Define power and state its unit.

13. Define potential energy.

14. The change in potential energy of a
body of mass m kg when lifted verti-
cally upwards to a height h m is given
by . . . . . .

15. What is kinetic energy?



WORK, ENERGY AND POWER 167

16. The kinetic energy of a body of mass m
kg and moving at a velocity of v m/s is
given by . . . . . .

17. State the principle of conservation of
energy.

18. Distinguish between elastic and inelastic
collisions.

19. The kinetic energy of rotation of a body

of moment of inertia I kg m2 and mov-
ing at an angular velocity of ω rad/s is
given by . . . . . .

Exercise 74 Multi-choice questions on
work, energy and power
(Answers on page 284)

1. State which of the following is incorrect:

(a) 1 W = 1 J/s

(b) 1 J = 1 N/m

(c) η = output energy

input energy

(d) energy = power × time

2. An object is lifted 2000 mm by a crane.
If the force required is 100 N, the work
done is:

(a)
1

20
N m (b) 200 kN m

(c) 200 N m (d) 20 J

3. A motor having an efficiency of 0.8 uses
800 J of electrical energy. The output
energy of the motor is:

(a) 800 J (b) 1000 J

(c) 640 J (d) 6.4 J

4. 6 kJ of work is done by a force in mov-
ing an object uniformly through 120 m
in 1 minute. The force applied is:

(a) 50 N (b) 20 N

(c) 720 N (d) 12 N

5. For the object in question 4, the power
developed is:

(a) 6 kW (b) 12 kW

(c) 5/6 W (d) 0.1 kW

6. Which of the following statements is
false ?

(a) The unit of energy and work is
the same.

(b) The area under a force/distance
graph gives the work done.

(c) Electrical energy is converted to
mechanical energy by a generator.

(d) Efficiency is the ratio of the useful
output energy to the input energy.

7. A machine using a power of 1 kW
requires a force of 100 N to raise a mass
in 10 s. The height the mass is raised in
this time is:

(a) 100 m (b) 1 km

(c) 10 m (d) 1 m

8. A force/extension graph for a spring is
shown in Figure 14.11

100

F
o
rc

e
 /
 N

0 100

Extension / mm

Figure 14.11

Which of the following statements is
false?

The work done in extending the spring:

(a) from 0 to 100 mm is 5 J

(b) from 0 to 50 mm is 1.25 J

(c) from 20 mm to 60 mm is 1.6 J

(d) from 60 mm to 100 mm is 3.75 J

9. A vehicle of mass 1 tonne climbs an
incline of 30° to the horizontal. Tak-
ing the acceleration due to gravity as

10 m/s2, the increase in potential energy
of the vehicle as it moves a distance of
200 m up the incline is:

(a) 1 kJ (b) 2 MJ

(c) 1 MJ (d) 2 kJ

10. A bullet of mass 100 g is fired from a
gun with an initial velocity of 360 km/h.
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Neglecting air resistance, the initial
kinetic energy possessed by the bullet is:

(a) 6.48 kJ (b) 500 J

(c) 500 kJ (d) 6.48 MJ

11. A small motor requires 50 W of elec-
trical power in order to produce 40 W
of mechanical energy output. The effi-
ciency of the motor is:

(a) 10% (b) 80%

(c) 40% (d) 90%

12. A load is lifted 4000 mm by a crane.
If the force required to lift the mass is
100 N, the work done is:

(a) 400 J (b) 40 N m

(c) 25 J (d) 400 kJ

13. A machine exerts a force of 100 N in
lifting a mass through a height of 5 m. If
1 kJ of energy is supplied, the efficiency
of the machine is:

(a) 10% (b) 20%

(c) 100% (d) 50%

14. At the instant of striking an object, a
hammer of mass 40 kg has a velocity of
10 m/s. The kinetic energy in the ham-
mer is:

(a) 2 kJ (b) 1 kJ

(c) 400 J (d) 8 kJ

15. A machine which has an efficiency of
80% raises a load of 50 N through a
vertical height of 10 m. The work input
to the machine is:

(a) 400 J (b) 500 J

(c) 800 J (d) 625 J

16. The formula for kinetic energy due to
rotation is:

(a) mv2 (b) mgh

(c) I
ω2

2
(d) ω2r
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Assignment 4

This assignment covers the material con-
tained in chapters 11 to 14.

The marks for each question are shown
in brackets at the end of each question.

1. A train is travelling at 90 km/h and has
wheels of diameter 1600 mm.

(a) Find the angular velocity of the
wheels in both rad/s and rev/min.

(b) If the speed remains constant for
2 km, determine the number of rev-
olutions made by a wheel, assum-
ing no slipping occurs. (7)

2. The speed of a shaft increases uniformly
from 200 revolutions per minute to 700
revolutions per minute in 12 s. Find the
angular acceleration, correct to 3 signif-
icant figures. (5)

3. The shaft of an electric motor, initially
at rest, accelerates uniformly for 0.3 s

at 20 rad/s2. Determine the angle (in
radians) turned through by the shaft in
this time. (4)

4. Determine the momentum of a lorry of
mass 10 tonnes moving at a velocity of
81 km/h. (4)

5. A ball of mass 50 g is moving with a
velocity of 4 m/s when it strikes a sta-
tionary ball of mass 25 g. The velocity
of the 50 g ball after impact is 2.5 m/s
in the same direction as before impact.
Determine the velocity of the 25 g ball
after impact. (7)

6. A force of 24 N acts on a body of mass
6 kg for 150 ms. Determine the change
in velocity. (4)

7. The hammer of a piledriver of mass
800 kg falls a distance of 1.0 m on to a
pile. The blow takes place in 20 ms and
the hammer does not rebound. Deter-
mine (a) the velocity of impact (b) the
momentum lost by the hammer (c) the
average applied force exerted on the pile
by the hammer. (8)

8. Determine the mass of the moving head
of a machine tool if it requires a force of
1.5 N to bring it to rest in 0.75 s from a
cutting speed of 25 m/min. (5)

9. Find the weight of an object of mass
2.5 kg at a point on the earth’s surface
where the gravitational field is 9.8 N/kg.

(4)

10. A van of mass 1200 kg travels round
a bend of radius 120 m, at 54 km/h.
Determine the centripetal force acting on
the vehicle. (4)

11. A spring, initially in a relaxed state, is
extended by 80 mm. Determine the work
done by using a work diagram if the
spring requires a force of 0.7 N per mm
of stretch. (4)

12. Water is pumped vertically upwards
through a distance of 40.0 m and the
work done is 176.58 kJ. Determine the
number of litres of water pumped.
(1 litre of water has a mass of 1 kg).

(4)

13. 3 kJ of energy are supplied to a machine
used for lifting a mass. The force
required is 1 kN. If the machine has an
efficiency of 60%, to what height will it
lift the mass? (4)

14. When exerting a steady pull of 450 N, a
lorry travels at 80 km/h. Calculate

(a) the work done in 15 minutes and

(b) the power required. (4)

15. An electric motor provides power to a
winding machine. The input power to
the motor is 4.0 kW and the overall effi-
ciency is 75%. Calculate (a) the output
power of the machine, (b) the rate at
which it can raise a 509.7 kg load verti-
cally upwards (4)

16. A tank of mass 4800 kg is climbing an
incline at 12° to the horizontal. Deter-
mine the increase in potential energy of
the tank as it moves a distance of 40 m
up the incline. (4)

17. A car of mass 500 kg reduces speed
from 108 km/h to 36 km/h in 20 s.
Determine the braking power required to
give this change of speed. (4)
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Friction

At the end of this chapter you should be
able to:

• understand dynamic or sliding friction

• appreciate factors which affect the size and
direction of frictional forces

• define coefficient of friction, μ

• perform calculations involving F = μN

• state practical applications of friction

• state advantages and disadvantages of fric-
tional forces

• understand friction on an inclined plane

• perform calculations on friction on an
inclined plane

• calculate the efficiency of a screw jack

15.1 Introduction to friction

When an object, such as a block of wood, is placed
on a floor and sufficient force is applied to the
block, the force being parallel to the floor, the block
slides across the floor. When the force is removed,
motion of the block stops; thus there is a force
which resists sliding. This force is called dynamic
or sliding friction. A force may be applied to the
block, which is insufficient to move it. In this case,
the force resisting motion is called the static friction
or stiction. Thus there are two categories into which
a frictional force may be split:

(i) dynamic or sliding friction force which occurs
when motion is taking place, and

(ii) static friction force which occurs before
motion takes place.

There are three factors that affect the size and
direction of frictional forces.

(i) The size of the frictional force depends on the
type of surface (a block of wood slides more
easily on a polished metal surface than on a
rough concrete surface).

(ii) The size of the frictional force depends on
the size of the force acting at right angles
to the surfaces in contact, called the normal
force; thus, if the weight of a block of wood is
doubled, the frictional force is doubled when
it is sliding on the same surface

(iii) The direction of the frictional force is always
opposite to the direction of motion. Thus the
frictional force opposes motion, as shown in
Figure 15.1.

Frictional
force

Motion

Pulling
forceBlock

Surface

Frictional
force

Motion

Pushing
force

Block

Surface

Figure 15.1

15.2 Coefficient of friction

The coefficient of friction, μ, is a measure of the
amount of friction existing between two surfaces.
A low value of coefficient of friction indicates that
the force required for sliding to occur is less than
the force required when the coefficient of friction
is high. The value of the coefficient of friction is
given by:

μ = frictional force (F )

normal force (N)
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Transposing gives:

frictional force = μ× normal force,

i.e. F = μN

The direction of the forces given in this equation is
as shown in Figure 15.2.

Frictional
force, F = mN

Normal
force, N

Applied
Force, P

Figure 15.2

The coefficient of friction is the ratio of a force to
a force, and hence has no units. Typical values for
the coefficient of friction when sliding is occurring,
i.e. the dynamic coefficient of friction, are:

For polished oiled metal surfaces less than 0.1

For glass on glass 0.4

For rubber on tarmac close to 1.0

The coefficient of friction (μ) for dynamic friction
is, in general, a little less than that for static friction.
However, for dynamic friction, μ increases with
speed; additionally, it is dependent on the area of
the surface in contact.

Problem 1. A block of steel requires a
force of 10.4 N applied parallel to a steel
plate to keep it moving with constant
velocity across the plate. If the normal force
between the block and the plate is 40 N,
determine the dynamic coefficient of friction.

As the block is moving at constant velocity, the
force applied must be that required to overcome
frictional forces, i.e. frictional force, F = 10.4 N;
the normal force is 40 N, and since F = μN ,

μ = F

N
= 10.4

40
= 0.26

i.e. the dynamic coefficient of friction is 0.26

Problem 2. The surface between the steel
block and plate of Problem 1 is now
lubricated and the dynamic coefficient of
friction falls to 0.12. Find the new value of
force required to push the block at a constant
speed.

The normal force depends on the weight of the block
and remains unaltered at 40 N. The new value of the
dynamic coefficient of friction is 0.12 and since the
frictional force F = μN , F = 0.12 × 40 = 4.8 N.

The block is sliding at constant speed, thus the
force required to overcome the frictional force is
also 4.8 N, i.e. the required applied force is 4.8 N.

Problem 3. The material of a brake is being
tested and it is found that the dynamic
coefficient of friction between the material
and steel is 0.91. Calculate the normal force
when the frictional force is 0.728 kN.

The dynamic coefficient of friction, μ = 0.91 and
the frictional force, F = 0.728 kN = 728 N
Since F = μN , then normal force,

N = F

μ
= 728

0.91
= 800 N

i.e. the normal force is 800 N.

Now try the following exercise

Exercise 75 Further problems on the coef-
ficient of friction

1. The coefficient of friction of a brake pad
and a steel disc is 0.82. Determine the
normal force between the pad and the disc
if the frictional force required is 1025 N.

[1250 N]

2. A force of 0.12 kN is needed to push a
bale of cloth along a chute at a constant
speed. If the normal force between the
bale and the chute is 500 N, determine
the dynamic coefficient of friction.

[0.24]

3. The normal force between a belt and
its driver wheel is 750 N. If the static
coefficient of friction is 0.9 and the
dynamic coefficient of friction is 0.87,
calculate (a) the maximum force which
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can be transmitted, and (b) maximum
force which can be transmitted when the
belt is running at a constant speed.

[(a) 675 N (b) 652.5 N]

15.3 Applications of friction

In some applications, a low coefficient of friction is
desirable, for example, in bearings, pistons moving
within cylinders, on ski runs, and so on. However,
for such applications as force being transmitted by
belt drives and braking systems, a high value of
coefficient is necessary.

Problem 4. State three advantages, and
three disadvantages of frictional forces.

Instances where frictional forces are an advantage
include:

(i) Almost all fastening devices rely on frictional
forces to keep them in place once secured,
examples being screws, nails, nuts, clips and
clamps.

(ii) Satisfactory operation of brakes and clutches
rely on frictional forces being present.

(iii) In the absence of frictional forces, most accel-
erations along a horizontal surface are impos-
sible; for example, a person’s shoes just slip
when walking is attempted and the tyres of a
car just rotate with no forward motion of the
car being experienced.

Disadvantages of frictional forces include:

(i) Energy is wasted in the bearings associated
with shafts, axles and gears due to heat being
generated.

(ii) Wear is caused by friction, for example, in
shoes, brake lining materials and bearings.

(iii) Energy is wasted when motion through air
occurs (it is much easier to cycle with the
wind rather than against it).

Problem 5. Discuss briefly two design
implications that arise due to frictional forces
and how lubrication may or may not help.

(i) Bearings are made of an alloy called white
metal, which has a relatively low melting point.
When the rotating shaft rubs on the white metal
bearing, heat is generated by friction, often in
one spot and the white metal may melt in this
area, rendering the bearing useless. Adequate lubri-
cation (oil or grease) separates the shaft from
the white metal, keeps the coefficient of friction
small and prevents damage to the bearing. For
very large bearings, oil is pumped under pressure
into the bearing and the oil is used to remove
the heat generated, often passing through oil cool-
ers before being re-circulated. Designers should
ensure that the heat generated by friction can be
dissipated.

(ii) Wheels driving belts, to transmit force from
one place to another, are used in many workshops.
The coefficient of friction between the wheel and
the belt must be high, and it may be increased by
dressing the belt with a tar-like substance. Since
frictional force is proportional to the normal force,
a slipping belt is made more efficient by tighten-
ing it, thus increasing the normal and hence the
frictional force. Designers should incorporate some
belt tension mechanism into the design of such a
system.

Problem 6. Explain what is meant by the
terms (a) the limiting or static coefficient of
friction, and (b) the sliding or dynamic
coefficient of friction.

(a) When an object is placed on a surface and
a force is applied to it in a direction parallel to
the surface, if no movement takes place, then the
applied force is balanced exactly by the frictional
force. As the size of the applied force is increased,
a value is reached such that the object is just on
the point of moving. The limiting or static coeffi-
cient of friction is given by the ratio of this applied
force to the normal force, where the normal force
is the force acting at right angles to the surfaces in
contact.

(b) Once the applied force is sufficient to over-
come the stiction its value can be reduced slightly
and the object moves across the surface. A partic-
ular value of the applied force is then sufficient to
keep the object moving at a constant velocity. The
sliding or dynamic coefficient of friction is the ratio
of the applied force, to maintain constant velocity,
to the normal force.
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15.4 Friction on an inclined plane

Angle of repose

Consider a mass m lying on an inclined plane, as
shown in Figure 15.3. If the direction of motion of
this mass is down the plane, then the frictional force
F will act up the plane, as shown in Figure 15.3,
where F = μmg.

q

q

F

mg

N

Dire
ctio

n of m
otio

n

Figure 15.3

Now the weight of the mass is mg and this will
cause two other forces to act on the mass, namely
N , and the component of the weight down the plane,
namely mg sin θ , as shown by the vector diagram of
Figure 15.4.

q

q

W = mg

mg cos q

mg sin q

Plane

Figure 15.4 Components of mg

It should be noted that N acts normal to the surface.
Resolving forces parallel to the plane gives:

Forces up the plane = forces down the plane

i.e. F = mg sin θ (15.1)

Resolving force perpendicular to the plane gives:

Forces ‘up’ = forces ‘down’

i.e. N = mg cos θ (15.2)

Dividing equation (15.1) by (15.2) gives:

F

N
= mg sin θ

mg cos θ
= sin θ

cos θ
= tan θ

But
F

N
= μ, hence, tan θ = μ

where μ = the coefficient of friction, and θ = the
angle of repose.

If θ is gradually increased until the body starts
motion down the plane, then this value of θ is
called the limiting angle of repose. A laboratory
experiment based on the theory is a useful method of
obtaining the maximum value of μ for static friction.

15.5 Motion up a plane with the
pulling force P parallel to the
plane

In this case the frictional force F acts down the
plane, opposite to the direction of motion of the
body, as shown in Figure 15.5.

Motio
n

P

F

q

q

N
mg

Figure 15.5

The components of the weight mg will be the same
as that shown in Figure 15.4.
Resolving forces parallel to the plane gives:

P = mg sin θ + F (15.3)

Resolving forces perpendicular to the plane gives:

N = mg cos θ (15.4)
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For limiting friction,

F = μN (15.5)

From equations (15.3) to (15.5), solutions of
problems in this category that involve limiting
friction can be solved.

Problem 7. Determine the value of the
force P , which will just move the body of
mass of 25 kg up the plane shown in
Figure 15.6. It may be assumed that the
coefficient of limiting friction, μ = 0.3 and

g = 9.81 m/s2.

Motion

P

F q
N

mg15°

Figure 15.6

From equation (15.4),

N = 25 × 9.81 × cos 15°

= 245.3 × 0.966 = 236.9 N

From equation (15.5),

F = 0.3 × 236.9 = 71.1 N

From equation (15.3),

P = 25 × 9.81 × sin 15° + 71.1

= 63.48 + 71.1

i.e. force, P = 134.6 N (15.6)

15.6 Motion down a plane with the
pulling force P parallel to the
plane

In this case, the frictional force F acts up the plane,
opposite to the direction of motion of the plane, as
shown in Figure 15.7.
The components of the weight mg are shown in
Figure 15.4, where it can be seen that the normal
reaction, N = mg cos θ , and the component of
weight parallel to and down the plane = mg sin θ .

q

q
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Figure 15.7

Resolving forces perpendicular to the plane gives:

N = mg cos θ (15.7)

Resolving forces parallel to the plane gives:

P +mg sin θ = F (15.8)

When the friction is limiting,

F = μN (15.9)

From equations (15.7) to (15.9), problems arising in
this category can be solved.

Problem 8. If the mass of Problem 7 were
subjected to the force P , which acts parallel
to and down the plane, as shown in
Figure 15.7, determine the value of P to just
move the body.

From equation (15.7),

N = 25 × 9.81 cos 15° = 236.9 N

From equation (15.9),

F = 0.3 × 236.9 = 71.1 N

From equation (15.8),

P + 25 × 9.81 sin 15° = 71.1

i.e. P + 63.5 = 71.1

from which,

force, P = 71.1 − 63.5 = 7.6 N (15.10)

From equations (15.6) and (15.10), it can be seen
that the force required to move a body down the
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plane is so much smaller than to move the body up
the plane.

15.7 Motion up a plane due to a
horizontal force P

This motion, together with the primary forces, is
shown in Figure 15.8.
In this, the components of mg are as shown in
Figure 15.4, and the components of the horizon-
tal force P are shown by the vector diagram of
Figure 15.9.
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Resolving perpendicular to the plane gives:

Forces ‘up’ = forces ‘down’

i.e. N = mg cos θ + P sin θ (15.11)

Resolving parallel to the plane gives:

P cos θ = F +mg sin θ (15.12)

and F = μN (15.13)

From equations (15.11) to (15.13), problems arising
in this category can be solved.

Problem 9. If the mass of Problem 7 were
subjected to a horizontal force P , as shown

in Figure 15.8, determine the value of P that
will just cause motion up the plane.

Substituting equation (15.13) into equation (12)
gives:

P cos θ = μN +mg sin θ

or μN = P cos θ −mg sin θ

i.e. N = P cos θ

μ
− mg sin θ

μ
(15.14)

Equating equation (15.11) and equation (15.14)
gives:

mg cos θ + P sin θ = P cos θ

μ
− mg sin θ

μ

i.e. 25 × 9.81 cos 15° + P sin 15°

= P cos 15°

0.3
− 25 × 9.81 sin 15°

0.3

245.3 × 0.966 + P × 0.259

= P × 0.966

0.3
− 245.3 × 0.259

0.3

i.e. 237 + 0.259P = 3.22P − 211.8

237 + 211.8 = 3.22P − 0.259P

from which, 448.8 = 2.961P

and force P = 448.8

2.961
= 151.6 N

Problem 10. If the mass of Problem 9 were
subjected to a horizontal force P , acting
down the plane, as shown in Figure 15.10,
determine the value of P which will just
cause motion down the plane.

q

q

N

P F

mg

Motio
n

Figure 15.10
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q

q

P

P sin q
P cos q

Figure 15.11

The components for mg are shown by the phasor
diagram of Figure 15.4, and the components for P
are shown by the vector diagram of Figure 15.11.

Resolving forces down the plane gives:

P cos θ +mg sin θ = F (15.15)

Resolving forces perpendicular to the plane gives:

Forces up = forces down

N + P sin θ = mg cos θ (15.16)

and F = μN (15.17)

Substituting equation (15.17) into equation (15.15)
gives:

P cos θ +mg sin θ = μN

from which, N = P cos θ

μ
+ mg sin θ

μ
(15.18)

From equation (15.16),

N = mg cos θ − P sin θ (15.19)

Equating equations (15.18) and (15.19) gives

P cos θ
μ + mg sin θ

μ = mg cos θ − P sin θ

i.e. P cos 15°

0.3
+ 25 × 9.81 sin 15°

0.3

= 25 × 9.81 cos 15° − P sin 15°

3.22P + 211.6 = 236.9 − 0.259P

P(3.22 + 0.259) = 236.9 − 211.6

3.479P = 25.3

from which, force P = 25.3

3.479
= 7.27 N

Problem 11. If in Problem 9, the contact
surfaces were greased, so that the value of μ
decreased and P = 50 N, determine the
value of μ which will just cause motion
down the plane.

The primary forces for this problem are shown in
Figure 15.12, where it can be seen that F is opposite
to the direction of motion.

F

N
mg

P = 50N

Motio
n

q

q

Figure 15.12

Resolving forces perpendicular to the plane gives:

Forces ‘up’ = forces ‘down’

N = mg cos θ + P sin θ (15.20)

Resolving forces parallel to the plane gives:

mg sin θ = F + P cos θ (15.21)

and F = μN (15.22)

Substituting equation (15.22) into equation (15.21)
gives:

mg sin θ = μN + P cos θ (15.23)

Substituting equation (15.20) into equation (15.23)
gives:

mg sin θ = μ(mg cos θ + P sin θ)+ P cos θ

i.e. 25 × 9.81 sin 15° = μ(25 × 9.81 cos 15°

+ 50 sin 15°)+ 50 cos 15°

Hence 63.48 = μ(236.89 + 12.94)+ 48.3

63.48 − 48.3 = μ× 249.83

from which, μ = 15.18

249.83
= 0.061
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Now try the following exercise

Exercise 76 Further problems on friction
on an inclined plane

Where necessary, take g = 9.81 m/s2

1. A mass of 40 kg rests on a flat horizon-
tal surface as shown in Figure 15.13. If
the coefficient of friction μ = 0.2, deter-
mine the minimum value of a horizontal
force P which will just cause it to move.

[78.48 N]

Motion

mg

P

Figure 15.13

2. If the mass of Problem 1 were equal to
50 kg, what will be the value of P ?

[98.1 N]

3. An experiment is required to obtain the
static value of μ; this is achieved by
increasing the value of θ until the mass
just moves down the plane, as shown
in Figure 15.14. If the experimentally
obtained value for θ were 22.5°, what
is the value of μ? [μ = 0.414]

q
mg

N

F
Motio

n

Figure 15.14

4. If in Problem 3, μ were 0.6, what would
be the experimental value of θ?

[θ = 30.96°]

5. For a mass of 50 kg just moving up an
inclined plane, as shown in Figure 15.5,
what would be the value of P , given that
θ = 20° and μ = 0.4? [P = 352.1 N]

6. For a mass of 50 kg, just moving
down an inclined plane, as shown in
Figure 15.7, what would be the value of
P , given that θ = 20° and μ = 0.4?

[P = 16.6 N]

7. If in Problem 5, θ = 10° and μ = 0.5,
what would be the value of P ?

[P = 326.7 N]

8. If in Problem 6, θ = 10° and μ = 0.5,
what would be the value of P ?

[P = 156.3 N]

9. Determine P for Problem 5, if it
were acting in the direction shown in
Figure 15.8. [P = 438.6 N]

10. Determine P for Problem 6, if it
were acting in the direction shown in
Figure 15.10. [P = 20.69 N]

11. Determine the value for θ which will just
cause motion down the plane, when P =
250 N and acts in the direction shown in
Figure 15.12. It should be noted that in
this problem, motion is down the plane.

[θ = 19.85°]

12. If in Problem 11, θ = 30°, determine the
value of μ. [μ = 0.052]

15.8 The efficiency of a screw jack

Screw jacks (see Section 18.4, page 202) are often
used to lift weights; one of their most common uses
are to raise cars, so that their wheels can be changed.
The theory described in Section 15.7 can be used to
analyse screw jacks.

Consider the thread of the square-threaded screw
jack shown in Figure 15.15.

Let p be the pitch of the thread, i.e. the axial
distance that the weight W is lifted or lowered when
the screw is turned through one complete revolution.
From Figure 15.15, the motion of the screw in lifting
the weight can be regarded as pulling the weight by
a horizontal force P , up an incline θ , where

tan θ = p

πd
,



178 MECHANICAL ENGINEERING PRINCIPLES

pd

D1

D2

p

q

Figure 15.15

as shown in Figure 15.15, and

d = (D1 +D2)

2

If μ is the coefficient of friction up the slope, then
let tanλ = μ.
Referring now to Figure 15.16, the screw jack can
be analysed.

P

N
W

F q

q

Motio
n

Figure 15.16

Resolving normal to the plane gives:

N = W cos θ + P sin θ (15.24)

Resolving parallel to the plane gives:

P cos θ = F +W sin θ (15.25)

and F = μN (15.26)

Substituting equation (15.26) into equation (15.25)
gives:

P cos θ = μN +W sin θ (15.27)

Substituting equation (15.24) into equation (15.27)
gives:

P cos θ = μ(W cos θ + P sin θ)+W sin θ

Dividing each term by cos θ and remembering that
sin θ

cos θ
= tan θ gives:

P = μ(W + P tan θ)+W tan θ

Rearranging gives:

P(1 − μ tan θ) = W(μ+ tan θ)

from which, P = W(μ+ tan θ)

(1 − μ tan θ)

= W(tanλ+ tan θ)

(1 − tanλ tan θ)

since μ = tanλ
However, from compound angle formulae,

tan(λ+ θ) = (tan λ+ tan θ)

(1 − tan λ tan θ)

Hence, P = W tan(θ + λ) (15.28)

However, from Figure 15.15,

tan θ = p

πd

hence P =
W
(

μ+ p

πd

)

(

1 − μp

πd

) (15.29)

Multiplying top and bottom of equation (15.29) by
πd gives:

P = W(μπd + p)

(πd − μp)
(15.30)

The useful work done in lifting the weight W a
distance of p

= Wp (15.31)

From Figure 15.15, the actual work done

= P × πd

= W(μπd + p)

(πd − μp)
× πd (15.32)
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Efficiency η = useful work done

actual work done

which is usually expressed as a percentage

i.e. η = Wp

W(μπd + p)× πd

(πd − μp)

= p(πd − μp)

(μπd + p)× πd

Dividing throughout by πd gives:

η =
p
(

1 − μp

πd

)

(μπd + p)

= p(1 − tanλ tan θ)

πd
(

μ+ p

πd

)

= p(1 − tanλ tan θ)

πd(tan λ+ tan θ)

However,

tan(λ+ θ) = tanλ+ tan θ

(1 − tanλ tan θ)

from compound angle formulae

Hence, η = p

πd

1

tan(λ+ θ)

but
p

πd
= tan θ

hence, efficiency,

η =
tan θ

tan(λ + θ)
(15.33)

From equations (15.31) and (15.32),

the work lost in friction

= W(μπd + p)

(πd − μp)
× πd –Wp (15.34)

Problem 12. The coefficient of friction on
the sliding surface of a screw jack is 0.2. If
the pitch equals 1 cm, and D1 = 4 cm and
D2 = 5 cm, calculate the efficiency of the
screw jack.

Working in millimetres,

d = (D1 +D2)

2
= (40 + 50)

2
= 45 mm,

p = 1 cm = 10 mm,

tan θ = p

πd
= 10

π × 45
= 0.0707,

from which, θ = tan−1(0.0707) = 4.05°,

and tanλ = μ = 0.2,

from which, λ = tan−1(0.2) = 11.31°

From equation (15.33),

efficiency η = tan θ

tan(λ+ θ)

= 0.0707

tan(11.31 + 4.05)°

= 0.0707

0.2747
= 0.257

i.e. η = 25.7%

Now try the following exercises

Exercise 77 Further problem on the effi-
ciency of a screw jack

1. The coefficient of friction on the sliding
surface of a screw jack whose thread is
similar to Figure 15.15, is 0.24. If the
pitch equals 12 mm, and D1 = 42 mm
and D2 = 56 mm, calculate the efficiency
of the screw jack. [24.06%]

Exercise 78 Short answer questions on
friction

1. The . . . . . . . . . of frictional force depends
on the . . . . . . . . . of surfaces in contact.

2. The . . . . . . . . . of frictional force depends
on the size of the . . . . . . . . . to the sur-
faces in contact.

3. The . . . . . . . . . of frictional force is
always . . . . . . . . . to the direction of
motion.

4. The coefficient of friction between sur-
faces should be a . . . . . . . . . value for
materials concerned with bearings.
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5. The coefficient of friction should have a
. . . . . . . . . value for materials concerned
with braking systems.

6. The coefficient of dynamic or sliding

friction is given by · · · · · ·
· · · · · ·

7. The coefficient of static or limiting fric-

tion is given by · · · · · ·
· · · · · · when . . . . . . . . .

is just about to take place.

8. Lubricating surfaces in contact result in
a . . . . . . . . . of the coefficient of friction.

9. Briefly discuss the factors affecting the
size and direction of frictional forces.

10. Name three practical applications where
a low value of coefficient of friction is
desirable and state briefly how this is
achieved in each case.

11. Name three practical applications where
a high value of coefficient of friction
is required when transmitting forces and
discuss how this is achieved.

12. For an object on a surface, two different
values of coefficient of friction are pos-
sible. Give the names of these two coef-
ficients of friction and state how their
values may be obtained.

13. State the formula for the angle of repose.

14. What theory can be used for calculating
the efficiency of a screw jack.

Exercise 79 Multi-choice questions on fric-
tion (Answers on page 285)

1. A block of metal requires a frictional
force F to keep it moving with constant
velocity across a surface. If the coeffi-
cient of friction is μ, then the normal
force N is given by:

(a)
μ

F
(b) μF

(c)
F

μ
(d) F

2. The unit of the linear coefficient of fric-
tion is:

(a) newtons (b) radians

(c) dimensionless (d) newtons/metre

Questions 3 to 7 refer to the state-
ments given below. Select the statement
required from each group given.

(a) The coefficient of friction depends
on the type of surfaces in contact.

(b) The coefficient of friction depends
on the force acting at right angles
to the surfaces in contact.

(c) The coefficient of friction depends
on the area of the surfaces in con-
tact.

(d) Frictional force acts in the opposite
direction to the direction of motion.

(e) Frictional force acts in the direction
of motion.

(f) A low value of coefficient of fric-
tion is required between the belt and
the wheel in a belt drive system.

(g) A low value of coefficient of fric-
tion is required for the materials of
a bearing.

(h) The dynamic coefficient of friction
is given by (normal force)/(frictional
force) at constant speed.

(i) The coefficient of static friction is
given by (applied force) ÷ (fric-
tional force) as sliding is just about
to start.

(j) Lubrication results in a reduction in
the coefficient of friction.

3. Which statement is false from (a), (b),
(f) and (i)?

4. Which statement is false from (b), (e),
(g) and (j)?

5. Which statement is true from (c), (f), (h)
and (i)?

6. Which statement is false from (b), (c),
(e) and (j)?

7. Which statement is false from (a), (d),
(g) and (h)?

8. The normal force between two surfaces
is 100 N and the dynamic coefficient
of friction is 0.4. The force required
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to maintain a constant speed of sliding
is:

(a) 100.4 N (b) 40 N

(c) 99.6 N (d) 250 N

9. The normal force between two surfaces
is 50 N and the force required to main-
tain a constant speed of sliding is 25 N.
The dynamic coefficient of friction is:

(a) 25 (b) 2 (c) 75 (d) 0.5

10. The maximum force, which can be
applied to an object without sliding

occurring, is 60 N, and the static coeffi-
cient of friction is 0.3. The normal force
between the two surfaces is:

(a) 200 N (b) 18 N

(c) 60.3 N (d) 59.7 N

11. The formula for the angle of repose is:

(a) F = μN (b) tan θ = μ

(c) μ = F

N
(d) tan θ = sin θ

cos θ



16

Motion in a circle

At the end of this chapter you should be
able to:

• understand centripetal force

• understand D’Alembert’s principle

• understand centrifugal force

• solve problems involving locomotives and
cars travelling around bends

• solve problems involving a conical
pendulum

• solve problems involving the motion in a
vertical circle

• understand the centrifugal clutch

16.1 Introduction

In this chapter we will restrict ourselves to the uni-
form circular motion of particles. We will assume
that objects such as railway trains and motor-
cars behave as particles, i.e. rigid body motion is
neglected. When a railway train goes round a bend,
its wheels will have to produce a centripetal accel-
eration towards the centre of the turning circle. This
in turn will cause the railway tracks to experience
a centrifugal thrust, which will tend to cause the
track to move outwards. To avoid this unwanted out-
ward thrust on the outer rail, it will be necessary to
incline the railway tracks in the manner shown in
Figure 16.1.
From Section 13.3, it can be seen that when a
particle moves in a circular path at a constant speed
v, its centripetal acceleration,

a = 2v sin
θ

2
× 1

t

When θ is small, θ ≈ sin θ ,

hence a = 2v
θ

2
× 1

t
= v

θ

t

However, ω = uniform angular velocity = θ

t
Therefore a = vω

q

q

Railway tracks

Figure 16.1

If r = the radius of the turning circle, then

v = ωr

and a = ω2r = v2

r

Now force = mass × acceleration

Hence,

centripetal force = mω2r =
mv2

r
(16.1)

D’Alembert’s principle

Although problems involving the motion in a cir-
cle are dynamic ones, they can be reduced to static
problems through D’Alembert’s principle. In this
principle, the centripetal force is replaced by an
imaginary centrifugal force which acts equal and
opposite to the centripetal force. By using this
principle, the dynamic problem is reduced to a
static one.

If a motorcar travels around a bend, its tyres will
have to exert centripetal forces to achieve this. This
is achieved by the transverse frictional forces acting
on the tyres, as shown in Figure 16.2.

In Figure 16.2, the following notation is used:
CG = centre of gravity of the car,

CF = centrifugal force = mv2

r
,

m = mass of car,

g = acceleration due to gravity,

R1 = vertical reaction of ‘inner’ wheel,

R2 = vertical reaction of ‘outer’ wheel,

F1 = frictional force on ‘inner’ wheel,

F2 = frictional force on ‘outer’ wheel,
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h = vertical distance of the centre of gravity

of the car from the ground,

L = distance between the centre of the tyres,

r = radius of the turning circle, and

μ = coefficient of friction.

o

mg

h

L

CGr

R2R1

F1 F2

CF

Figure 16.2

Problem 1. Determine expressions for the
frictional forces F1 and F2 of Figure 16.2.
Hence determine the thrust on each tyre.

Resolving forces horizontally gives:

F1 + F2 = CF = mv2

r
(16.2)

Resolving forces vertically gives:

R1 + R2 = mg (16.3)

Taking moments about the ‘outer’ wheel gives:

CF × h+ R1 × L = mg
L

2

i.e.
mv2

r
h+ R1L = mg

L

2

or R1L = mg
L

2
− mv2

r
h

Hence, R1L = m

(

gL

2
− v2h

r

)

from which, R1 = m

L

(

gL

2
− v2h

r

)

(16.4)

Also, F1 = μR1 and F2 = μR2 (16.5)

Substituting equation (16.4) into equation (16.3)
gives:

m

L

(

gL

2
− v2h

r

)

+ R2 = mg

Therefore,

R2 = mg − m

L

(

gL

2
− v2h

r

)

= mg − mg

2
+ m

L

v2h

r

i.e. R2 = m

L

(

gL

2
+ v2h

r

)

(16.6)

From equations (16.4) to (16.6):

F1 = μ
m

L

(

gL

2
− v2h

r

)

(16.7)

and F2 = μ
m

L

(

gL

2
+ v2h

r

)

(16.8)

To calculate the thrust on each tyre:
From Pythagoras’ theorem,

T1 =
√

F 2
1 + R2

1 =
√

μ2R2
1 + R2

1

i.e. T1 = R1 ×

√

1 + μ2 (see Figure 16.3(a))

Let α1 = angle of thrust,

i.e. α1 = tan−1

(

F1

R1

)

= tan−1 μ

From Figure 16.3(b), T2 = R2 ×

√

1 + μ2

α2 = tan−1

(

F2

R2

)

= tan−1 μ
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a2

a2

a1

T2

T1

F2F1

R2

R1

(a) (b)

Figure 16.3

16.2 Motion on a curved banked track

Problem 2. A railway train is required to
travel around a bend of radius r at a uniform
speed of v. Determine the amount that the
‘outer’ rail is to be elevated to avoid an
outward centrifugal thrust in these rails, as
shown in Figure 16.4.

L

q

R1

R2

Outer
rail

mg
O

h

CFCGr

Figure 16.4

To balance the centrifugal force:

(R1 + R2) sin θ = CF = mv2

r

from which, sin θ = mv2

r(R1 + R2)

Let R = R1 + R2

Then sin θ = mv2

rR
(16.9)

Resolving forces vertically gives:

R cos θ = mg

from which, R = mg

cos θ
(16.10)

Substituting equation (16.10) into equation (16.9)
gives:

sin θ = mv2

rmg
cos θ

Hence tan θ = v2

rg

(

since
sin θ

cos θ
= tan θ

)

Thus, the amount that the outer rail has to be
elevated to avoid an outward centrifugal thrust on
these rails,

θ = tan−1

(

v2

rg

)

(16.11)

Problem 3. A locomotive travels around a
curve of 700 m radius. If the horizontal
thrust on the outer rail is 1/40th of the
locomotive’s weight, determine the speed of
the locomotive (in km/h). The surface that
the rails are on may be assumed to be
horizontal and the horizontal force on the
inner rail may be assumed to be zero. Take g

as 9.81 m/s2.

Centrifugal force on outer rail

= mg

40

Hence,
mv2

r
= mg

40

from which, v2 = gr

40
= 9.81 × 700

40

= 171.675 m2/s2

i.e. v =
√

171.675 = 13.10 m/s

= (13.10 × 3.6) km/h

i.e. the speed of the locomotive, v = 47.17 km/h
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Problem 4. What angle of banking of the
rails is required for Problem 3 above, for the
outer rail to have a zero value of thrust?
Assume the speed of the locomotive is
40 km/h.

From Problem 2, angle of banking,

θ = tan−1

(

v2

rg

)

v = 40 km/h = 40

3.6
= 11.11 m/s

Hence, θ = tan−1

(

11.112 m2/s2

700 m × 9.81 m/s2

)

= tan−1(0.01798)

i.e. angle of banking, θ = 1.03°

Exercise 80 Further problems on motion
in a circle

Where needed, take g = 9.81 m/s2

1. A locomotive travels around a curve of
500 m radius. If the horizontal thrust on
the outer rail is 1

50
of the locomotive

weight, determine the speed of the loco-
motive. The surface that the rails are on
may be assumed to be horizontal and the
horizontal force on the inner rail may be
assumed to be zero. [35.64 km/h]

2. If the horizontal thrust on the outer rail
of Problem 1 is 1

100
of the locomotive’s

weight, determine its speed. [25.2 km/h]

3. What angle of banking of the rails of
Problem 1 is required for the outer rail
to have a zero value of outward thrust?
Assume the speed of the locomotive is
15 km/h. [0.203°]

4. What angle of banking of the rails is
required for Problem 3, if the speed of
the locomotive is 30 km/h? [0.811°]

16.3 Conical pendulum

If a mass m were rotated at a constant angular
velocity ω, in a horizontal circle of radius r , by

a mass-less taut string of length L, its motion will
be in the form of a cone, as shown in Figure 16.5.

r
C

O

CF
P

T

T

mg
w

q

h

L

Figure 16.5 Conical pendulum

Let r = radius of horizontal turning circle,

L = length of string,

h = OC,

ω = constant angular velocity about C,

m = mass of particle P,

T = tension in string, and

θ = cone angle

Problem 5. Determine an expression for the
cone angle θ and the tension in the string T ,
for the conical pendulum of Figure 16.5.
Determine also an expression for ω.

Resolving forces horizontally gives:

CF = T sin θ

i.e. mω2r = T sin θ

from which, T = mω2r

sin θ
(16.12)

Resolving forces vertically gives:

T cos θ = mg

from which, T = mg

cos θ
(16.13)
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Equating equations (16.12) and (16.13) gives:

mω2r

sin θ
= mg

cos θ

Rearranging gives:
mω2r

mg
= sin θ

cos θ

i.e. tan θ = ω2r

g

Hence, the cone angle,

θ = tan−1

(

ω2r

g

)

(16.14)

From Figure 16.5,

sin θ = r

L
(16.15)

Hence, from equation (16.12),

T = mω2r
r

L

i.e. the tension in the string,

T = mω2L (16.16)

From equation (16.14),
ω2r

g
= tan θ

But, from Figure 16.5, tan θ = r

h

Hence,
ω2r

g
= r

h

and ω2 = g

h

Thus, angular velocity about C,

ω =
√

g

h
(16.17)

Problem 6. A conical pendulum rotates
about a horizontal circle at 90 rpm. If the
speed of rotation of the mass increases by
10%, how much does the mass of the
pendulum rise (in mm)? Take g as 9.81 m/s2.

Angular velocity,

ω = 2πn

60
= 2π × 90

60
= 9.425 rad/s

From equation (16.17),

ω =
√

g

h
or ω2 = g

h

from which, height,

h = g

ω2
= 9.81

9.4252

= 0.11044 m (see Figure 16.5)

When the speed of rotation rises by 10%,
n2 = 90 × 1.1 = 99 rpm. Hence,

ω2 = 2πn2

60
= 2π × 99

60
= 10.367 rad/s

From equation (16.17),

ω2 =
√

g

h2

or ω2
2 = g

h2

Hence,

h2 = g

ω2
2

= 9.81

10.3672

i.e. the new value of height, h2 = 0.09127 m.
Rise in height of the pendulum mass

= ‘old’ h− ‘new’ h

= h− h2 = 0.11044 − 0.09127

= 0.01917 m = 19.17 mm

Problem 7. A conical pendulum rotates at a
horizontal angular velocity of 5 rad/s. If the
length of the string is 2 m and the pendulum
mass is 0.3 kg, determine the tension in the
string. Determine also the radius of the

turning circle. Take g as 9.81 m/s2.

Angular velocity, ω = 5 rad/s
From equation (16.16), tension in the string,

T = mω2L

= 0.3 kg × (5 rad/s)2 × 2 m

i.e. T = 15 kg m/s2
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However, 1 kg m/s2 = 1 N, hence, tension in the
string, T = 15 N
From equation (16.13),

T = mg

cos θ

from which,

cos θ = mg

T
= 0.3 kg × 9.81 m/s2

15 N
= 0.1962

Hence, the cone angle, θ = cos−1(0.1962)

= 78.685°

From equation (16.15),

sin θ = r

L
,

from which, radius of turning circle,

r = L sin θ = 2 m × sin 78.685° = 1.961 m

Exercise 81 Further problems on the con-
ical pendulum

1. A conical pendulum rotates about a hor-
izontal circle at 100 rpm. If the speed of
rotation of the mass increases by 5%, how
much does the mass of the pendulum rise?

[8.36 mm]

2. If the speed of rotation of the mass of
Problem 1 decreases by 5%, how much
does the mass fall? [9.66 mm]

3. A conical pendulum rotates at a horizontal
angular velocity of 2 rad/s. If the length of
the string is 3 m and the pendulum mass
is 0.25 kg, determine the tension in the
string. Determine also the radius of the
turning circle. [3 N, 1.728 m]

16.4 Motion in a vertical circle

This Problem is best solved by energy considerations.
Consider a particle P rotating in a vertical circle of
radius r about a point O, as shown in Figure 16.6.
Neglect losses due to friction.
Let T = tension in a mass-less string,

r = radius of turning circle,

m = mass of particle.

q

q

T

mg

CP

A

O

r

B

T

Figure 16.6 Motion in a vertical circle

Problem 8. Determine the minimum
tangential velocity at A, namely, vA, which
will just keep the string taut at the point B
for the particle moving in the vertical circle
of Figure 16.6.

At the point B the

potential energy = mg × 2r (16.18)

and the kinetic energy = mv2
B

2
(16.19)

At the point A, the kinetic energy

KE = mv2
A

2
(16.20)

and the potential energy

PE = 0

As there are no energy losses,
KE at A = (KE + PE) at B
Hence, from equations (16.18) to (16.20):

mv2
A

2
= mg × 2r + mv2

B

2

or
v2
A

2
= v2

B

2
+ 2gr

from which, v2
A = v2

B + 4gr (16.21)
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At B, T = 0
Thus, weight = centrifugal force at B,

or mg = mv2
B

r

from which, v2
B = gr (16.22)

Substituting equation (16.22) into equation (16.21)
gives:

v2
A = gr + 4gr = 5gr

Hence, the minimum tangential velocity at A,

vA =

√

5gr (16.23)

Problem 9. A mass of 0.1 kg is being
rotated in a vertical circle of radius 0.6 m. If
the mass is attached to a mass-less string and
the motion is such that the string is just taut
when the mass is at the top of the circle,
what is the tension in the string when it is
horizontal? Neglect losses and take g as

9.81 m/s2.

At the top of the circle,

potential energy = PE = 2mgr and KE = mv2
T

2
,

where vT = velocity of mass at the top.
When the string is horizontal, PE = mgr
and kinetic energy,

KE = mv2
1

2
,

where v1 = velocity of mass at this point.
From the conservation of energy, (PE+KE) at the
top = (PE + KE ) when the string is horizontal

i.e. 2mgr = mgr + mv2
1

2
− mv2

T

2

but CF at top = mv2
T

r
= mg or v2

T = gr

or
v2

1

2
= 2gr − gr + gr

2
= 3gr

2

i.e. v2
1 = 3gr

and v1 =
√

3gr =
√

3 × 9.81 × 0.6

= 4.202 m/s

Resolving forces horizontally,

Centrifugal force = T = tension in the string

Therefore,

T = mv2
1

r
= 0.1 kg × (4.202)2m2/s2

0.6 m

i.e. the tension in the string, T = 2.943 N

Problem 10. What is the tension in the
string for Problem 9 when the mass is at the
bottom of the circle?

From equation (16.23), the velocity at the bottom of

the circle = v =
√

5gr

i.e. v =
√

5 × 9.81 × 0.6 = 5.4249 m/s.
Resolving forces vertically, T = tension in the
string = centrifugal force + the weight of the mass

i.e. T = mv2

r
+mg = m

(

v2

r
+ g

)

= 0.1 ×
(

5.42492

0.6
+ 9.81

)

= 0.1 × (49.05 + 9.81) = 0.1 × 58.86 N

i.e. tension in the string, T = 5.886 N

Problem 11. If the mass of Problem 9 were
to rise, so that the string is at 45° to the
vertical axis and below the halfway mark,
what would be the tension in the string?

At 45°, PE = mgr

2
and KE = mv2

2

2

where v2 = velocity of the mass at this stage.
From the conservation of energy,
PE + KE (at top) = (PE + KE ) at this stage

Therefore, 2mgr = mgr

2
+ mv2

2

2
− mv2

T

2

From problem 9, v2
T = gr

hence
v2

2

2
=
(

2r − r

2
+ r

2

)

g = 2gr

from which, v2
2 = 2gr
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and v2 =
√

4gr =
√

4 × 9.81 × 0.6

= 4.852 m/s

Resolving forces in a direction along the string,
T = tension in the string = centrifugal force +
component of weight at 45° to the vertical

i.e. T = mv2
2

r
+mg cos 45°

= 0.1 × (4.852)2

0.6
+ 0.1 × 9.81 × 0.7071

= 3.924 N + 0.6937 N

i.e. the tension in the string, T = 4.618 N

Now try the following exercise

Exercise 82 Further problems on motion
in a vertical circle

1. A uniform disc of diameter 0.1 m rotates
about a vertical plane at 200 rpm. The
disc has a mass of 1.5 kg attached at
a point on its rim and another mass of
2.5 kg at another point on its rim, where
the angle between the two masses is 90°.
Determine the magnitude of the resultant
centrifugal force that acts on the axis of
the disc, and its position with respect to
the 1.5 kg mass.

[63.94 N at 59° anticlockwise]

2. If a mass of 4 kg is placed on some
position on the disc in Problem 1, deter-
mine the position where this mass must
be placed to nullify the unbalanced cen-
trifugal force. [At a radius of 36.46 mm,

121° clockwise to 1.5 kg mass]

3. A stone of mass 0.1 kg is whirled in a ver-
tical circle of 1 m radius by a mass-less
string, so that the string just remains taut.
Determine the velocity and tension in the
string at (a) the top of the circle,(b) the
bottom of the circle, (c) midway between
(a) and (b).

[(a) 3.132 m/s, 0 N

(b) 7 m/s, 5.88 N

(c) 5.42 m/s, 2.94 N]

16.5 Centrifugal clutch

A clutch is an engineering device used for transfer-
ring motion from an engine to a gearbox or other
machinery. The main purpose of the clutch is to
transfer the motion in a smooth and orderly man-
ner, so that the gears and wheels (in the case of
the motor car) will accelerate smoothly and not in a
jerky manner.

Driven
shaft

Restraining
springs

Clutch
material

Centrifugal
weight

Driving
shaft

Axis

Gap

Figure 16.7

The centrifugal clutch works on the principle that
the rotating driving shaft will cause the centrifugal
weights, shown in Figure 16.7, to move radially
outwards with increasing speed of rotation of the
driving shaft. These centrifugal weights will be
restrained by the restraining springs shown, but
when the speed of the driving shaft reaches the
required value, the clutch material will engage with
the driven shaft, through friction, and cause the
driven shaft to rotate. The driven shaft will thus
reach a high speed of rotation quite smoothly in the
required time.

Centrifugal clutches are popular when it is re-
quired to exert a high starting torque quickly and
smoothly.

A suitable clutch material is asbestos, but it is
likely that asbestos will be replaced by more modern
materials for health and safety reasons.

Now try the following exercise

Exercise 83 Short answer problems on
motion in a circle

1. The centrifugal force of a mass m moving
at velocity v at a radius r is given by:
. . . . . . .
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2. What is the potential energy at the top of
a circle for the motion in a vertical circle?

3. What is the potential energy at the bottom
of a circle for the motion in a vertical
circle?

4. What is the potential energy at the ‘mid-
dle’ of a circle for the motion in a vertical
circle?

Exercise 84 Multi-choice problems on
motion in a circle (Answers
on page 285)

1. To decrease the horizontal thrust on the
outer rail of a train going round a bend,
the outer rail should be:

(a) lowered

(b) raised

(c) kept at the same level as the inner rail

(d) made bigger

2. If the speed of rotation of a conical
pendulum is increased, the height of the
pendulum mass will:

(a) fall (b) become zero

(c) stay the same (d) rise

3. The minimum tension on the top of a
vertical circle, for satisfactory motion in
a circle is:

(a) zero (b) mg

(c) mv
2

r (d) negative

4. If v is the velocity at the ‘middle’ for the
motion in a circle, the tension is:

(a) zero (b) mv
2

r

(c) mg (d) negative

5. If the tension in the string is zero at the
top of a circle for the motion in a vertical
circle, the velocity at the bottom of the
circle is:

(a) zero (b)
√

5gr

(c)
√
gr (d)

√
3gr
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Simple harmonic motion

At the end of this chapter you should be
able to:

• understand simple harmonic motion

• determine natural frequencies for simple
spring-mass systems

• calculate periodic times

• understand the motion of a simple
pendulum

• understand the motion of a compound
pendulum

17.1 Introduction

Simple harmonic motion is of importance in a num-
ber of branches of engineering and physics, includ-
ing structural and machine vibrations, alternating
electrical currents, sound waves, light waves, tidal
motion, and so on.

17.2 Simple harmonic motion (SHM)

A particle is said to be under SHM if its accel-
eration along a line is directly proportional to its
displacement along that line, from a fixed point on
that line.

Consider the motion of a particle A, rotating in a
circle with a constant angular velocity ω, as shown
in Figure 17.1.

Consider now the vertical displacement of A from
xx, as shown by the distance yc. If P is rotating at
a constant angular velocity ω then the periodic time
T to travel an angular distance of 2π , is given by:

T = 2π

ω
(17.1)

Let f = frequency of motion C (in Hertz), where

f = 1

T
= ω

2π
(17.2)

0

yc

c

y

−y

A

B

vA

vA sin q

vA cos q

w
−x x

r

r

q

Displacement (yc)

Accelration (−ac)

Velocity (vc)

time't '

(a) (b)

Figure 17.1

To determine whether or not SHM is taking place,
we will consider motion of A in the direction yy.
Now yC = OA sinωt ,

i.e., yc = r sinωt (17.3)

where t = time in seconds.
Plotting of equation (17.3) against t results in the

sinusoidal variation for displacement, as shown in
Figure 17.1(b).

From Chapter 11, vA = ωr , which is the tan-
gential velocity of the particle A. From the veloc-
ity vector diagram, at the point A on the circle of
Figure 17.1(a),

vC = vA cos θ = vA cosωt (17.4)

Plotting of equation (17.4) against t results in the
sinusoidal variation for the velocity vC , as shown in
Figure 17.1(b).
The centripetal acceleration of A

= aA = ω2r

Now aC = −aA sin θ

Therefore, aC = −ω2r sinωt (17.5)

Plotting of equation (17.5) against t results in the
sinusoidal variation for the acceleration at C, aC , as
shown in Figure 17.1(b).
Substituting equation (17.3) into equation (17.5)
gives:

aC = −ω2yC (17.6)
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Equation (17.6) shows that the acceleration along
the line yy is directly proportional to the displace-
ment along this line, therefore the point C is moving
with SHM. Now

T = 2π

ω
,

but from equation (17.6), aC = ω2y

i.e. ω2 = a

y

Therefore,

T = 2π
√

a

y

or T = 2π

√

y

a

i.e. T = 2π

√

dispacement

acceleration

In general, from equation (17.6),

a + ω2y = 0 (17.7)

17.3 The spring-mass system

(a) Vibrating horizontally

Consider a mass m resting on a smooth surface
and attached to a spring of stiffness k, as shown
in Figure 17.2.

x

kx

Figure 17.2

If the mass is given a small displacement x, the
spring will exert a resisting force of kx,

i.e. F = −kx
But, F = ma,

hence, ma = −kx
or ma + kx = 0

or a + k

m
x = 0 (17.8)

Equation (17.8) shows that this mass is oscil-
lating (or vibrating) in SHM, or according to
equation (17.7). Comparing equation (17.7) with
equation (17.8) we see that

ω2 = k

m

from which, ω =
√

k

m

Now T = 2π

ω
= 2π

√

m

k

and f = frequency of oscillation or vibration

i.e. f = ω

2π
= 1

2π

√

k

m
(17.9)

(b) Vibrating vertically

Consider a mass m, supported by a vertical spring
of stiffness k, as shown in Figure 17.3. In this
equilibrium position, the mass has an initial down-
ward static deflection of yo. If the mass is given
an additional downward displacement of y and then
released, it will vibrate vertically.

y0

y

Figure 17.3

The force exerted by the spring = −k(yo + y)

Therefore, F = mg − k(yo + y) = ma

i.e. F = mg − kyo − ky = ma
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But, kyo = mg, hence F = mg −mg − ky = ma

Thus, ma + ky = 0

or a + k

m
y = 0

i.e. SHM takes place and periodic time,

T = 2π

√

m

k
(17.10)

and frequency, f = ω

2π
= 1

2π

√

k

m
(17.11)

as before (from equation (17.9)).
Comparing equations (17.9) and (17.11), it can be
seen that there is no difference in whether the spring
is horizontal or vertical.

Problem 1. A mass of 1.5 kg is attached to
a vertical spring, as shown in Figure 17.4.
When the mass is displaced downwards a
distance of 55 mm from its position of rest,
it is observed to oscillate 60 times in
72 seconds. Determine (a) periodic time,
(b) the stiffness of the spring, (b) the time
taken to travel upwards a distance of 25 mm
for the first time, (c) the velocity at this
point.

q

q

30 mm

25 mm C
r = 55 m

vc ,ac vA sin q

vA

vA cos q

oStatic

Figure 17.4

(a) Periodic time,

T = 72 seconds

60 oscillations

= 1.2 seconds

(b) From equation (17.10),

T = 2π

√

m

k

i.e. 1.2 = 2π

√

1.5

k

Hence, 1.22 = (2π)2 × 1.5

k

from which, k = (2π)2 × 1.5

1.22

i.e. stiffness of spring, k = 41.1 N/m

(c) From Figure 17.4,

cos θ = (55 − 25)

55
= 0.545

from which, θ = cos−1 0.545 = 56.94°

Now, ω = 2π

T
= 2π

1.2

= 5.236 rad/s

But θ = ωt,

hence, time t taken to travel upwards a distance
of 25 mm, is given by:

t = θ

ω
= 56.94°

5.236
rad

s

× 2π rad

360°

= 0.19 s

(d) Velocity at C in Figure 17.4,

vC = vA sin θ

= ωr sin θ

= 5.236
rad

s
× 55

1000
m × sin 56.94°

= 0.288 × 0.838 m/s

i.e. vC = 0.241 m/s after 25 mm of travel

Now try the following exercise

Exercise 85 Further problems on simple
harmonic motion

1. A particle oscillates 50 times in 22 s.
Determine the periodic time and
frequency.

[T = 0.44 s, f = 2.27 Hz]

2. A yacht floats at a depth of 2.2 m. On
a particular day, at a time of 09.30 h, the
depth at low tide is 1.8 m and at a time of
17.30 h, the depth of water at high tide is
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3.4 m. Determine the earliest time of day
that the yacht is refloated.

[11 h, 11 min, 52 s]

3. A mass of 2 kg is attached to a vertical
spring. The initial state displacement of
this mass is 74 mm. The mass is displaced
downwards and then released. Determine
(a) the stiffness of the spring, and (b) the
frequency of oscillation of the mass.

[(a) 265.1 N/m (b) 1.83 Hz]

4. A particle of mass 4 kg rests on a smooth
horizontal surface and is attached to a hor-
izontal spring. The mass is then displaced
horizontally outwards from the spring a
distance of 26 mm and then released to
vibrate. If the periodic time is 0.75 s,
determine (a) the frequency f , (b) the
force required to give the mass the dis-
placement of 26 mm, (c) the time taken
to move horizontally inwards for the first
12 mm.

[(a) 1.33 Hz (b) 7.30 N (c) 0.12 s]

5. A mass of 3 kg rests on a smooth hori-
zontal surface, as shown in Figure 17.5.
If the stiffness of each spring is 1 kN/m,
determine the frequency of vibration of
the mass. It may be assumed that initially,
the springs are un-stretched. [4.11 Hz]

Figure 17.5

6. A helical spring, which has a mass of
10 kg attached to its top. If the mass
vibrates vertically with a frequency of
1.5 Hz, determine the stiffness of the
spring. [94.25 N/m]

17.4 The simple pendulum

A simple pendulum consists of a particle of mass m
attached to a mass-less string of length L, as shown
in Figure 17.6.

x

L

mg

P
q

P

Figure 17.6

From Section 13.4, page 148,

T = Ioα = −restoring couple

= −mg(L sin θ)

But, Io = mL2

hence, mL2α +mgL sin θ = 0

For small deflections, sin θ = θ

Hence, L2α + gLθ = 0

or α + gθ

L
= 0

But α + ω2θ = 0 (see Section 17.6)

Therefore, ω2 = g

L

and ω =
√

g

L
(17.12)

Now T = 2π

ω
= 2π

√

L

g
(17.13)

and f = 1

T
=

√

g

L

2π
(17.14)

Problem 2. If the simple pendulum of
Figure 17.6 were of length 2 m, determine its

frequency of vibration. Take g = 9.81 m/s2.
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From equation (17.14), frequency,

f =

√

g

L

2π
=

√

9.81

2

2π
= 0.352 Hz

Problem 3. In order to determine the value
of g at a certain point on the Earth’s surface,
a simple pendulum is used. If the pendulum
is of length 3 m and its frequency of
oscillation is 0.2875 Hz, determine the value
of g.

From equation (17.14), frequency,

f =

√

g

L

2π

i.e. 0.2875 =

√

g

3

2π

and (0.2875)2 × (2π)2 = g

3

3.263 = g

3

from which, acceleration due to gravity,

g = 3 × 3.263 = 9.789 m/s

17.5 The compound pendulum

Consider the compound pendulum of Figure 17.7,
which oscillates about the point O. The point G in
Figure 17.7 is the position of the pendulum’s centre
of gravity.
Let Io = mass moment of inertia about O

Now T = Ioα = −restoring couple

= −mgh sin θ

From the parallel axis theorem,

IG = Io −mh2 = mk2
G

or Io = mk2
G +mh2

where IG = mass moment of inertia about G,

k2
G = radius of gyration about G

O

h

x

y

y mg

h sin q

x

G

q

Figure 17.7

Hence
(

mk2
G +mh2

)

α = −mgh sin θ

but for small displacements,

sin θ = θ

Hence, m
(

k2
G + h2

)

α = −mghθ

i.e.
(

k2
G + h2

)

α + ghθ = 0

or α + gh

(k2
G + h2)

θ = 0

However, α + ω2θ = 0

Therefore, ω2 = gh

(k2
G + h2)

and ω =
√

gh

(k2
G + h2)

(17.15)

T = 2π

ω
= 2π

√

(k2
G + h2)

gh
(17.16)

and f = 1

T
= 1

2π

√

gh

(k2
G + h2)

(17.17)

Problem 4. It is required to determine the
mass moment of inertia about G of a metal
ring, which has a complex cross-sectional
area. To achieve this, the metal ring is
oscillated about a knife edge, as shown in
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Figure 17.8, where the frequency of
oscillation was found to be 1.26 Hz. If the
mass of the ring is 10.5 kg, determine the
mass moment of inertia about the centre of
gravity, IG. Take g = 9.81 m/s2.

150 m
m

x x

y

y

Figure 17.8

By inspection of Figure 17.8,

h = 75 mm = 0.075 m.

Now frequency, f = 1

2π

√

gh

(k2
G + h2)

i.e. 1.26 = 1

2π

√

9.81 × 0.075

(k2
G + 0.0752)

i.e. (1.26)2 = 1

(2π)2
× 9.81 × 0.075

(k2
G + 0.0752)

from which,

(k2
G + 0.005625) = 0.73575

1.5876 × (2π)2

= 0.011739

k2
G = 0.011739 − 0.005625

= 0.006114

from which, kG =
√

0.006114 = 0.0782

The mass moment of inertia about the centre of
gravity,

IG = mk2
G = 10.5 kg × 0.006114 m2

i.e. IG = 0.0642 kg m2

17.6 Torsional vibrations

From equation (17.7), it can be seen that for SHM
in a linear direction,

a + ω2y = 0

For SHM in a rotational direction,

αr + ω2y = 0

or α + ω2
(y

r

)

= 0

or α + ω2θ = 0

i.e θ̈ + ω2θ = 0 (17.18)

where θ = y
r = angular displacement, and

θ̈ = α = angular acceleration

Now try the following exercises

Exercise 86 Further problems on pendu-
lums

1. Determine the period of oscillation of a

pendulum of length 2 m if g = 9.81 m/s2.
[0.3525 Hz]

2. What will be the period of oscillation

if g = 9.78 m/s2 for the pendulum of
Problem 1? [0.3519 Hz]

3. What will be the period of oscillation

if g = 9.832 m/s2 for the pendulum of
Problem 1? [0.3529 Hz]

4. What will be the value of the mass
moment of inertia through the centre of
gravity, IG, for the compound pendulum
of worked problem 4, if the inner
diameter of the disc of Figure 17.8 were

100 mm? [0.0559 kg m2]

Exercise 87 Short answer questions on
simple harmonic motion

1. State the relationship between the dis-
placement (y) of a mass and its accelera-
tion (a) for SHM to take place.
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2. State the relationship between frequency
f and periodic time T when SHM takes
place.

3. State the formula for the frequency of
oscillation for a simple pendulum.

4. State a simple method of increasing the
period of oscillation of the pendulum of a
‘grandfather’ clock.

Exercise 88 Multi-choice questions on
simple harmonic motion
(Answers on page 285)

1. Tidal motion is normally related to which
mathematical function?

(a) tangent (b) sine

(c) square root (d) straight line

2. If the mass of a simple pendulum is dou-
bled, its period of oscillation:

(a) increases (b) decreases

(c) stays the same (d) doubles

3. A pendulum has a certain frequency of
oscillation in London. Assuming that tem-
perature remains the same, the frequency
of oscillation of the pendulum if it is mea-
sured on the equator:

(a) increases (b) decreases

(c) remains the same (d) doubles

4. The period of oscillation of a simple pen-
dulum of length 9.81 m, given

g = 9.81 m/s2 is:

(a) 6.28 Hz (b) 0.455 Hz

(c) 17.96 Hz (d) 0.056 Hz
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Simple machines

At the end of this chapter you should be
able to:

• define a simple machine

• define force ratio, movement ratio, effi-
ciency and limiting efficiency

• understand and perform calculations with
pulley systems

• understand and perform calculations with
a simple screw-jack

• understand and perform calculations with
gear trains

• understand and perform calculations with
levers

18.1 Machines

A machine is a device that can change the magni-
tude or line of action, or both magnitude and line of
action of a force. A simple machine usually ampli-
fies an input force, called the effort, to give a larger
output force, called the load. Some typical examples
of simple machines include pulley systems, screw-
jacks, gear systems and lever systems.

18.2 Force ratio, movement ratio and
efficiency

The force ratio or mechanical advantage is defined
as the ratio of load to effort, i.e.

Force ratio =
load

effort
(18.1)

Since both load and effort are measured in newtons,
force ratio is a ratio of the same units and thus is a
dimension-less quantity.

The movement ratio or velocity ratio is defined
as the ratio of the distance moved by the effort to
the distance moved by the load, i.e.

Movement ratio =

distance moved
by the effort

distance moved
by the load

(18.2)

Since the numerator and denominator are both mea-
sured in metres, movement ratio is a ratio of the
same units and thus is a dimension-less quantity.

The efficiency of a simple machine is defined as
the ratio of the force ratio to the movement ratio,
i.e.

Efficiency = force ratio

movement ratio

= mechanical advantage

velocity ratio

Since the numerator and denominator are both
dimension-less quantities, efficiency is a dimension-
less quantity. It is usually expressed as a percent-
age, thus:

Efficiency =
force ratio

movement ratio
× 100% (18.3)

Due to the effects of friction and inertia associated
with the movement of any object, some of the input
energy to a machine is converted into heat and
losses occur. Since losses occur, the energy output
of a machine is less than the energy input, thus the
mechanical efficiency of any machine cannot reach
100%

For simple machines, the relationship between
effort and load is of the form: Fe = aFl + b, where
Fe is the effort, Fl is the load and a and b are
constants.
From equation (18.1),

force ratio = load

effort
= Fl

Fe
= Fl

aFl + b
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Dividing both numerator and denominator by Fl
gives:

Fl

aFl + b
= 1

a + b

Fl

When the load is large, Fl is large and
b

Fl
is small

compared with a. The force ratio then becomes

approximately equal to
1

a
and is called the limiting

force ratio, i.e

limiting ratio =
1

a

The limiting efficiency of a simple machine is
defined as the ratio of the limiting force ratio to the
movement ratio, i.e.

Limiting efficiency

=
1

a × movement ratio
× 100%

where a is the constant for the law of the machine:

Fe = aFl + b

Due to friction and inertia, the limiting efficiency of
simple machines is usually well below 100%.

Problem 1. A simple machine raises a load
of 160 kg through a distance of 1.6 m. The
effort applied to the machine is 200 N and
moves through a distance of 16 m. Taking g

as 9.8 m/s2, determine the force ratio,
movement ratio and efficiency of the
machine.

From equation (18.1),

force ratio = load

effort
= 160 kg

200 N

= 160 × 9.8 N

200 N
= 7.84

From equation (18.2),

movement ratio = distance moved by the effort

distance moved by the load

= 16 m

1.6 m
= 10

From equation (18.3),

efficiency = force ratio

movement ratio
× 100%

= 7.84

10
× 100 = 78.4%

Problem 2. For the simple machine of
Problem 1, determine: (a) the distance
moved by the effort to move the load
through a distance of 0.9 m, (b) the effort
which would be required to raise a load of
200 kg, assuming the same efficiency, (c) the
efficiency if, due to lubrication, the effort to
raise the 160 kg load is reduced to 180 N.

(a) Since the movement ratio is 10, then from
equation (18.2),

distance moved by the effort

= 10 × distance moved by the load

= 10 × 0.9 = 9 m

(b) Since the force ratio is 7.84, then from equa-
tion (18.1),

effort = load

7.84
= 200 × 9.8

7.84
= 250 N

(c) The new force ratio is given by

load

effort
= 160 × 9.8

180
= 8.711

Hence the new efficiency after lubrication

= 8.711

10
× 100 = 87.11%

Problem 3. In a test on a simple machine,
the effort/load graph was a straight line of
the form Fe = aFl + b. Two values lying on
the graph were at Fe = 10 N, Fl = 30 N,
and at Fe = 74 N, Fl = 350 N. The
movement ratio of the machine was 17.
Determine: (a) the limiting force ratio,
(b) the limiting efficiency of the machine.

(a) The equation Fe = aFl + b is of the form
y = mx + c, where m is the gradient of the
graph. The slope of the line passing through
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points (x1, y1) and (x2, y2) of the graph
y = mx + c is given by:

m = y2 − y1

x2 − x1

Thus for Fe = aFl+b, the slope a is given by:

a = 74 − 10

350 − 30
= 64

320
= 0.2

The limiting force ratio is
1

a
, that is

1

0.2
= 5

(b) The limiting efficiency

= 1

a × movement ratio
× 100

= 1

0.2 × 17
× 100 = 29.4%

Now try the following exercise

Exercise 89 Further problems on force
ratio, movement ratio and
efficiency

1. A simple machine raises a load of 825 N
through a distance of 0.3 m. The effort
is 250 N and moves through a distance
of 3.3 m. Determine: (a) the force ratio,
(b) the movement ratio, (c) the efficiency
of the machine at this load.

[(a) 3.3 (b) 11 (c) 30%]

2. The efficiency of a simple machine is
50%. If a load of 1.2 kN is raised by an
effort of 300 N, determine the movement
ratio. [8]

3. An effort of 10 N applied to a simple
machine moves a load of 40 N through
a distance of 100 mm, the efficiency at
this load being 80%. Calculate: (a) the
movement ratio, (b) the distance moved
by the effort. [(a) 5 (b) 500 mm]

4. The effort required to raise a load using
a simple machine, for various values of
load is as shown:

Load Fl (N) 2050 4120 7410 8240 10300
Effort Fe (N) 252 340 465 505 580

If the movement ratio for the machine is
30, determine (a) the law of the machine,

(b) the limiting force ratio, (c) the limit-
ing efficiency.

[(a) Fe = 0.04 Fl + 170 (b) 25

(c) 83.3%]

5. For the data given in question 4, deter-
mine the values of force ratio and effi-
ciency for each value of the load. Hence
plot graphs of effort, force ratio and
efficiency to a base of load. From the
graphs, determine the effort required to
raise a load of 6 kN and the efficiency at
this load. [410 N, 49%]

18.3 Pulleys

A pulley system is a simple machine. A single-
pulley system, shown in Figure 18.1(a), changes the
line of action of the effort, but does not change the
magnitude of the force. A two-pulley system, shown
in Figure 18.1(b), changes both the line of action
and the magnitude of the force.

Effort

Load

(a)

Figure 18.1(a)

Theoretically, each of the ropes marked (i) and
(ii) share the load equally, thus the theoretical effort
is only half of the load, i.e. the theoretical force
ratio is 2. In practice the actual force ratio is less
than 2 due to losses. A three-pulley system is shown
in Figure 18.1(c). Each of the ropes marked (i),
(ii) and (iii) carry one-third of the load, thus the
theoretical force ratio is 3. In general, for a mul-
tiple pulley system having a total of n pulleys, the
theoretical force ratio is n. Since the theoretical effi-
ciency of a pulley system (neglecting losses) is 100
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Effort

(i) (ii)

Load

(b)

Figure 18.1(b)

Effort

(iii) (ii)

(i)

Load

(c)

Figure 18.1(c)

and since from equation (18.3),

efficiency = force ratio

movement ratio
× 100%

it follows that when the force ratio is n,

100 = n

movement ratio
× 100

that is, the movement ratio is also n.

Problem 4. A load of 80 kg is lifted by a
three-pulley system similar to that shown in
Figure 18.1(c) and the applied effort is
392 N. Calculate (a) the force ratio, (b) the
movement ratio, (c) the efficiency of the

system. Take g to be 9.8 m/s2.

(a) From equation (18.1), the force ratio is given

by
load

effort
The load is 80 kg, i.e. (80 × 9.8) N, hence

force ratio = 80 × 9.8

392
= 2

(b) From above, for a system having n pulleys, the
movement ratio is n. Thus for a three-pulley
system, the movement ratio is 3

(c) From equation (18.3),

efficiency = force ratio

movement ratio
× 100

= 2

3
× 100 = 66.67%

Problem 5. A pulley system consists of two
blocks, each containing three pulleys and
connected as shown in Figure 18.2. An effort
of 400 N is required to raise a load of
1500 N. Determine (a) the force ratio, (b) the
movement ratio, (c) the efficiency of the
pulley system.

Figure 18.2

(a) From equation (18.1),

force ratio = load

effort
= 1500

400
= 3.75
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(b) An n-pulley system has a movement ratio of
n, hence this 6-pulley system has a movement
ratio of 6

(c) From equation (18.3),

efficiency = force ratio

movement ratio
× 100

= 3.75

6
× 100 = 62.5%

Now try the following exercise

Exercise 90 Further problems on pulleys

1. A pulley system consists of four pulleys
in an upper block and three pulleys in
a lower block. Make a sketch of this
arrangement showing how a movement
ratio of 7 may be obtained. If the force
ratio is 4.2, what is the efficiency of the
pulley. [60%]

2. A three-pulley lifting system is used to
raise a load of 4.5 kN. Determine the
effort required to raise this load when
losses are neglected. If the actual effort
required is 1.6 kN, determine the effi-
ciency of the pulley system at this load.

[1.5 kN, 93.75%]

18.4 The screw-jack

A simple screw-jack is shown in Figure 18.3 and
is a simple machine since it changes both the mag-
nitude and the line of action of a force.

Load

Effective radius

r

Bar

Screw
 lead

L

Body

Table

Figure 18.3

The screw of the table of the jack is located in
a fixed nut in the body of the jack. As the table
is rotated by means of a bar, it raises or lowers a
load placed on the table. For a single-start thread, as
shown, for one complete revolution of the table, the
effort moves through a distance 2πr , and the load
moves through a distance equal to the lead of the
screw, say, L.

Movement ratio =
2πr

L
(18.4)

Problem 6. A screw-jack is being used to
support the axle of a car, the load on it being
2.4 kN. The screw jack has an effort of
effective radius 200 mm and a single-start
square thread, having a lead of 5 mm.
Determine the efficiency of the jack if an
effort of 60 N is required to raise the car
axle.

From equation (18.3),

efficiency = force ratio

movement ratio
× 100%

where force ratio = load

effort
= 2400 N

60 N
= 40

From equation (18.4),

movement ratio = 2πr

L
= 2π(200) mm

5 mm

= 251.3

Hence, efficiency = force ratio

movement ratio
× 100

= 40

251.3
× 100 = 15.9%

Now try the following exercise

Exercise 91 Further problems on the
screw-jack

1. Sketch a simple screw-jack. The single-
start screw of such a jack has a lead
of 6 mm and the effective length of the
operating bar from the centre of the screw
is 300 mm. Calculate the load which can
be raised by an effort of 150 N if the
efficiency at this load is 20%.

[9.425 kN]
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2. A load of 1.7 kN is lifted by a screw-jack
having a single-start screw of lead 5 mm.
The effort is applied at the end of an
arm of effective length 320 mm from the
centre of the screw. Calculate the effort
required if the efficiency at this load is
25%. [16.91 N]

18.5 Gear trains

A simple gear train is used to transmit rotary
motion and can change both the magnitude and the
line of action of a force, hence is a simple machine.
The gear train shown in Figure 18.4 consists of spur
gears and has an effort applied to one gear, called
the driver, and a load applied to the other gear, called
the follower.

Driver Follower

Figure 18.4

In such a system, the teeth on the wheels are so
spaced that they exactly fill the circumference with
a whole number of identical teeth, and the teeth on
the driver and follower mesh without interference.
Under these conditions, the number of teeth on the
driver and follower are in direct proportion to the
circumference of these wheels, i.e.

number of teeth
on driver

number of teeth
on follower

=

circumference
of driver

circumference
of follower

(18.5)

If there are, say, 40 teeth on the driver and 20
teeth on the follower then the follower makes two
revolutions for each revolution of the driver. In
general:

number of revolutions
made by driver

number of revolutions
made by the follower

=
number of teeth

on follower

number of teeth
on driver

(18.6)
It follows from equation (18.6) that the speeds of
the wheels in a gear train are inversely proportional
to the number of teeth. The ratio of the speed of the
driver wheel to that of the follower is the movement
ratio, i.e.

Movement ratio =
speed of driver

speed of follower

=
teeth on follower

teeth on driver
(18.7)

When the same direction of rotation is required on
both the driver and the follower an idler wheel is
used as shown in Figure 18.5.

Driver (A) Idler (B) Follower (C)

Figure 18.5

Let the driver, idler, and follower be A, B and
C, respectively, and let N be the speed of rotation
and T be the number of teeth. Then from equation
(18.7),

NB

NA

= TA

TB
or NA = NB

TB

TA

and
NC

NB

= TB

TC
or NC = NB

TB

TC

Thus
speed of A

speed of C
= NA

NC

=
NB

TB

TA

NB

TB

TC

= TB

TA
× TC

TB
= TC

TA
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This shows that the movement ratio is independent
of the idler, only the direction of the follower being
altered.

A compound gear train is shown in Figure 18.6,
in which gear wheels B and C are fixed to the same
shaft and hence NB = NC .
From equation (18.7),

NA

NB

= TB

TA
i.e. NB = NA × TA

TB

A

B

C D

Figure 18.6

Also,

ND

NC

= TC

TD
i.e. ND = NC × TC

TD

But NB = NC , and

ND = NB × TC

TD

therefore

ND = NA × TA

TB
× TC

TD
(18.8)

For compound gear trains having, say, P gear
wheels,

NP = NA × TA

TB
× TC

TD
× TE

TF
. . . . . .× TO

TP

from which,

movement ratio =
NA

NP

=
TB

TA

×
TD

TC

. . . . . .×
TP

TO

Problem 7. A driver gear on a shaft of a
motor has 35 teeth and meshes with a
follower having 98 teeth. If the speed of the

motor is 1400 revolutions per minute, find
the speed of rotation of the follower.

From equation (18.7),

speed of driver

speed of follower
= teeth on follower

teeth on driver

i.e.
1400

speed of follower
= 98

35

Hence, speed of follower = 1400 × 35

98

= 500 rev/min

Problem 8. A compound gear train similar
to that shown in Figure 18.6 consists of a
driver gear A, having 40 teeth, engaging
with gear B, having 160 teeth. Attached to
the same shaft as B, gear C has 48 teeth and
meshes with gear D on the output shaft,
having 96 teeth. Determine (a) the movement
ratio of this gear system and (b) the
efficiency when the force ratio is 6.

(a) From equation (18.8), the speed of D

= speed of A× TA

TB
× TC

TD

From equation (18.7), movement ratio

= speed of A

speed of D
= TB

TA
× TD

TC

= 160

40
× 96

48
= 8

(b) The efficiency of any simple machine is

force ratio

movement ratio
× 100%

Thus, efficiency = 6

8
× 100 = 75%

Now try the following exercise

Exercise 92 Further problems on gear
trains

1. The driver gear of a gear system has 28
teeth and meshes with a follower gear hav-
ing 168 teeth. Determine the movement
ratio and the speed of the follower when
the driver gear rotates at 60 revolutions per
second. [6, 10 rev/s]
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2. A compound gear train has a 30-tooth
driver gear A, meshing with a 90-tooth
follower gear B. Mounted on the same
shaft as B and attached to it is a gear
C with 60 teeth, meshing with a gear
D on the output shaft having 120 teeth.
Calculate the movement and force ratios if
the overall efficiency of the gears is 72%.

[6, 4.32]

3. A compound gear train is as shown in
Figure 18.6. The movement ratio is 6 and
the numbers of teeth on gears A, C and
D are 25, 100 and 60, respectively. Deter-
mine the number of teeth on gear B and
the force ratio when the efficiency is 60%.

[250, 3.6]

18.6 Levers

A lever can alter both the magnitude and the line
of action of a force and is thus classed as a simple
machine. There are three types or orders of levers,
as shown in Figure 18.7.

Fulcrum

a b

Load
F

l

Effort
Fe

(a)

Fulcrum

Effort
F

eLoad
F

l

(b)

Fulcrum

Effort
F

e Load
F

l

(c)

Figure 18.7

A lever of the first order has the fulcrum
placed between the effort and the load, as shown
in Figure 18.7(a).

A lever of the second order has the load placed
between the effort and the fulcrum, as shown in
Figure 18.7(b).

A lever of the third order has the effort applied
between the load and the fulcrum, as shown in
Figure 18.7(c).

Problems on levers can largely be solved by
applying the principle of moments (see Chapter 5).
Thus for the lever shown in Figure 18.7(a), when
the lever is in equilibrium,

anticlockwise moment = clockwise moment

i.e. a × Fl = b × Fe

Thus, force ratio

=
Fl

Fe

=
b

a
=

distance of effort from fulcrum

distance of load from fulcrum

Problem 9. The load on a first-order lever,
similar to that shown in Figure 18.7(a), is
1.2 kN. Determine the effort, the force ratio
and the movement ratio when the distance
between the fulcrum and the load is 0.5 m
and the distance between the fulcrum and
effort is 1.5 m. Assume the lever is 100%
efficient.

Applying the principle of moments, for equilibrium:

anticlockwise moment = clockwise moment

i.e. 1200 N × 0.5 m = effort × 1.5 m

Hence, effort = 1200 × 0.5

1.5

= 400 N

force ratio = Fl

Fe
= 1200

400
= 3

Alternatively, force ratio = b

a
= 1.5

0.5
= 3

This result shows that to lift a load of, say, 300 N,
an effort of 100 N is required.

Since, from equation (3),

efficiency = force ratio

movement ratio
× 100%
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then,

movement ratio = force ratio

efficiency
× 100

= 3

100
× 100 = 3

This result shows that to raise the load by, say,
100 mm, the effort has to move 300 mm.

Problem 10. A second-order lever, AB, is
in a horizontal position. The fulcrum is at
point C. An effort of 60 N applied at B just
moves a load at point D, when BD is 0.5 m
and BC is 1.25 m. Calculate the load and the
force ratio of the lever.

A second-order lever system is shown in
Figure 18.7(b). Taking moments about the fulcrum
as the load is just moving, gives:

anticlockwise moment = clockwise moment

i.e. 60 N × 1.25 m = load × 0.75 m

Thus, load = 60 × 1.25

0.75

= 100 N

From equation (1),

force ratio = load

effort
= 100

60
= 1.67

Alternatively,

force ratio = distance of effort from fulcrum

distance of load from fulcrum

= 1.25

0.75
= 1.67

Now try the following exercises

Exercise 93 Further problems on levers

1. In a second-order lever system, the force
ratio is 2.5. If the load is at a distance of
0.5 m from the fulcrum, find the distance
that the effort acts from the fulcrum if
losses are negligible. [1.25 m]

2. A lever AB is 2 m long and the fulcrum is
at a point 0.5 m from B. Find the effort to

be applied at A to raise a load of 0.75 kN
at B when losses are negligible. [250 N]

3. The load on a third-order lever system is
at a distance of 750 mm from the fulcrum
and the effort required to just move the
load is 1 kN when applied at a distance
of 250 mm from the fulcrum. Determine
the value of the load and the force ratio
if losses are negligible. [333.3 N, 1/3]

Exercise 94 Short answer questions on
simple machines

1. State what is meant by a simple machine.

2. Define force ratio.

3. Define movement ratio.

4. Define the efficiency of a simple
machine in terms of the force and
movement ratios.

5. State briefly why the efficiency of a
simple machine cannot reach 100%.

6. With reference to the law of a simple
machine, state briefly what is meant by
the term ‘limiting force ratio’.

7. Define limiting efficiency.

8. Explain why a four-pulley system has a
force ratio of 4 when losses are ignored.

9. Give the movement ratio for a screw-
jack in terms of the effective radius of
the effort and the screw lead.

10. Explain the action of an idler gear.

11. Define the movement ratio for a two-
gear system in terms of the teeth on the
wheels.

12. Show that the action of an idler wheel
does not affect the movement ratio of a
gear system.

13. State the relationship between the speed
of the first gear and the speed of the last
gear in a compound train of four gears,
in terms of the teeth on the wheels.

14. Define the force ratio of a first-order
lever system in terms of the distances
of the load and effort from the fulcrum.
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15. Use sketches to show what is meant
by: (a) a first-order, (b) a second- order,
(c) a third-order lever system. Give one
practical use for each type of lever.

Exercise 95 Multi-choice questions on
simple machines (Answers on
page 285)

A simple machine requires an effort of 250 N
moving through 10 m to raise a load of
1000 N through 2 m. Use this data to find the
correct answers to questions 1 to 3, selecting
these answers from:

(a) 0.25 (b) 4 (c) 80% (d) 20%

(e) 100 (f) 5 (g) 100% (h) 0.2

(i) 25%

1. Find the force ratio.

2. Find the movement ratio.

3. Find the efficiency.

The law of a machine is of the form Fe =
aFl +b. An effort of 12 N is required to raise
a load of 40 N and an effort of 6 N is required
to raise a load of 16 N. The movement ratio
of the machine is 5. Use this data to find the
correct answers to questions 4 to 6, selecting
these answers from:

(a) 80% (b) 4 (c) 2.8

(d) 0.25 (e)
1

2.8
(f) 25%

(g) 100% (h) 2 (i) 25%

4. Determine the constant ‘a’.

5. Find the limiting force ratio.

6. Find the limiting efficiency.

7. Which of the following statements is
false ?

(a) A single-pulley system changes the
line of action of the force but does
not change the magnitude of the
force, when losses are neglected.

(b) In a two-pulley system, the force

ratio is 1
2

when losses are neg-

lected.

(c) In a two-pulley system, the move-
ment ratio is 2.

(d) The efficiency of a two-pulley
system is 100% when losses are
neglected.

8. Which of the following statements con-
cerning a screw-jack is false ?

(a) A screw-jack changes both the line
of action and the magnitude of the
force.

(b) For a single-start thread, the dis-
tance moved in 5 revolutions of the
table is 5l, where l is the lead of the
screw.

(c) The distance moved by the effort is
2πr , where r is the effective radius
of the effort.

(d) The movement ratio is given by
2πr

5l

9. In a simple gear train, a follower has 50
teeth and the driver has 30 teeth. The
movement ratio is:

(a) 0.6 (b) 20 (c) 1.67 (d) 80

10. Which of the following statements is
true ?

(a) An idler wheel between a driver
and a follower is used to make the
direction of the follower opposite
to that of the driver.

(b) An idler wheel is used to change
the movement ratio.

(c) An idler wheel is used to change
the force ratio.

(d) An idler wheel is used to make the
direction of the follower the same
as that of the driver.

11. Which of the following statements is
false ?

(a) In a first-order lever, the fulcrum is
between the load and the effort.

(b) In a second-order lever, the load is
between the effort and the fulcrum.
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(c) In a third-order lever, the effort is
applied between the load and the
fulcrum.

(d) The force ratio for a first-order lever
system is given by:

distance of load from fulcrum

distance of effort from fulcrum

12. In a second-order lever system, the load
is 200 mm from the fulcrum and the

effort is 500 mm from the fulcrum. If
losses are neglected, an effort of 100 N
will raise a load of:

(a) 100 N (b) 250 N (c) 400 N

(d) 40 N
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Assignment 5

This assignment covers the material
contained in chapters 15 to 18.
The marks for each question are shown
in brackets at the end of each question.

1. The material of a brake is being tested
and it is found that the dynamic coeffi-
cient of friction between the material and
steel is 0.90. Calculate the normal force
when the frictional force is 0.630 kN.

(5)

2. A mass of 10 kg rests on a plane, which
is inclined at 30° to the horizontal. The
coefficient of friction between the mass
and the plane is 0.6. Determine the mag-
nitude of a force, applied parallel to and
up the plane, which will just move the
mass up the plane. (10)

3. If in Problem 2, the force required to just
move the mass up the plane, is applied
horizontally, what will be the minimum
value of this force? (10)

4. A train travels around a curve of radius
400 m. If the horizontal thrust on the
outer rail is to be 1/30th the weight of the
train, what is the velocity of the train (in
km/h)? It may be assumed that the inner
and outer rails are on the same level and
that the inner rail takes no horizontal
thrust. (6)

5. A conical pendulum of length 2.5 m
rotates in a horizontal circle of diameter
0.6 m. Determine its angular velocity,

given that g = 9.81m/s2. (6)

6. Determine the time of oscillation for a
simple pendulum of length 1.5 m. Take

g as 9.81m/s2. (6)

7. A simple machine raises a load of
120 kg through a distance of 1.2 m. The
effort applied to the machine is 150 N
and moves through a distance of 12 m.

Taking g as 10m/s2, determine the force
ratio, movement ratio and efficiency of
the machine. (6)

8. A load of 30 kg is lifted by a three-
pulley system and the applied effort is

140 N. Calculate, taking g to be 9.8m/s2,
(a) the force ratio, (b) the movement
ratio, (c) the efficiency of the system.

(5)

9. A screw-jack is being used to support
the axle of a lorry, the load on it being
5.6 kN. The screw jack has an effort of
effective radius 318.3 mm and a single-
start square thread, having a lead of
5 mm. Determine the efficiency of the
jack if an effort of 70 N is required to
raise the car axle. (6)

10. A driver gear on a shaft of a motor
has 32 teeth and meshes with a follower
having 96 teeth. If the speed of the motor
is 1410 revolutions per minute, find the
speed of rotation of the follower.

(4)

11. The load on a first-order lever is 1.5 kN.
Determine the effort, the force ratio and
the movement ratio when the distance
between the fulcrum and the load is
0.4 m and the distance between the ful-
crum and effort is 1.6 m. Assume the
lever is 100% efficient. (6)
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Part 3 Heat transfer and fluid
mechanics
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Heat energy and transfer

At the end of this chapter you should be
able to:

• distinguish between heat and temperature

• appreciate that temperature is measured on
the Celsius or the thermodynamic scale

• convert temperatures from Celsius into
Kelvin and vice versa

• recognise several temperature measuring
devices

• define specific heat capacity, c and recog-
nise typical values

• calculate the quantity of heat energy Q
using Q = mc(t2 − t1)

• understand change of state from solid to
liquid to gas, and vice versa

• distinguish between sensible and latent
heat

• define specific latent heat of fusion

• define specific latent heat of vaporisation

• recognise typical values of latent heats of
fusion and vaporisation

• calculate quantity of heat Q using
Q = mL

• describe the principle of operation of a
simple refrigerator

• understand conduction, convection and
radiation

• understand the construction of a vacuum
flask

• appreciate the use of insulation in conserv-
ing fuel in the home

19.1 Introduction

Heat is a form of energy and is measured in joules.
Temperature is the degree of hotness or coldness
of a substance. Heat and temperature are thus not
the same thing. For example, twice the heat energy
is needed to boil a full container of water than half a
container — that is, different amounts of heat energy
are needed to cause an equal rise in the temperature
of different amounts of the same substance.

Temperature is measured either (i) on the Celsius
(°C) scale (formerly Centigrade), where the temper-
ature at which ice melts, i.e. the freezing point of
water, is taken as 0 °C and the point at which water
boils under normal atmospheric pressure is taken
as 100 °C, or (ii) on the thermodynamic scale, in
which the unit of temperature is the kelvin (K). The
kelvin scale uses the same temperature interval as
the Celsius scale but as its zero takes the ‘abso-
lute zero of temperature’ which is at about −273 °C.
Hence,

kelvin temperature = degree Celsius + 273

i.e. K = (°C) + 273
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Thus, for example, 0 °C = 273 K, 25 °C = 298 K
and 100 °C = 373 K

Problem 1. Convert the following
temperatures into the kelvin scale:

(a) 37 °C (b) −28 °C

From above,

kelvin temperature = degree Celsius + 273

(a) 37 °C corresponds to a kelvin temperature of
37 + 273, i.e. 310 K

(b) −28 °C corresponds to a kelvin temperature of
−28 + 273, i.e. 245 K

Problem 2. Convert the following
temperatures into the Celsius scale:

(a) 365 K (b) 213 K

From above, K = (°C)+ 273

Hence, degree Celsius = kelvin temperature − 273

(a) 365 K corresponds to 365 − 273, i.e. 92 °C

(b) 213 K corresponds to 213 − 273, i.e. −60 °C

Now try the following exercise

Exercise 96 Further problems on temper-
ature scales

1. Convert the following temperatures into
the Kelvin scale:

(a) 51 °C (b) −78 °C (c) 183 °C

[(a) 324 K (b) 195 K (c) 456 K]

2. Convert the following temperatures into
the Celsius scale:

(a) 307 K (b) 237 K (c) 415 K

[(a) 34 °C (b) −36 °C (c) 142 °C]

19.2 The measurement of temperature

A thermometer is an instrument that measures tem-
perature. Any substance that possesses one or more

properties that vary with temperature can be used
to measure temperature. These properties include
changes in length, area or volume, electrical resis-
tance or in colour. Examples of temperature mea-
suring devices include:

(i) liquid-in-glass thermometer, which uses the
expansion of a liquid with increase in temper-
ature as its principle of operation,

(ii) thermocouples, which use the e.m.f. set up
when the junction of two dissimilar metals is
heated,

(iii) resistance thermometer, which uses the
change in electrical resistance caused by
temperature change, and

(iv) pyrometers, which are devices for measuring
very high temperatures, using the principle
that all substances emit radiant energy when
hot, the rate of emission depending on their
temperature.

Each of these temperature measuring devices,
together with others, are described in Chapter 24,
page 267.

19.3 Specific heat capacity

The specific heat capacity of a substance is the
quantity of heat energy required to raise the temper-
ature of 1 kg of the substance by 1 °C. The symbol
used for specific heat capacity is c and the units are
J/(kg °C) or J/(kg K). (Note that these units may also

be written as J kg−1 °C−1 or J kg−1 K−1).
Some typical values of specific heat capacity for

the range of temperature 0 °C to 100 °C include:

Water 4190 J/(kg °C), Ice 2100 J/(kg °C)
Aluminium 950 J/(kg °C), Copper 390 J/(kg °C)
Iron 500 J/(kg °C), Lead 130 J/(kg °C)

Hence to raise the temperature of 1 kg of iron by
1 °C requires 500 J of energy, to raise the tempera-
ture of 5 kg of iron by 1 °C requires (500 × 5) J of
energy, and to raise the temperature of 5 kg of iron
by 40 °C requires (500 × 5 × 40) J of energy, i.e.
100 kJ.

In general, the quantity of heat energy, Q, re-
quired to raise a mass m kg of a substance with a
specific heat capacity c J/(kg °C) from temperature
t1 °C to t2 °C is given by:

Q = mc(t2 − t1) joules
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Problem 3. Calculate the quantity of heat
required to raise the temperature of 5 kg of
water from 0 °C to 100 °C. Assume the
specific heat capacity of water is
4200 J/(kg °C).

Quantity of heat energy,

Q = mc(t2 − t1)

= 5 kg × 4200 J/(kg°C)× (100 − 0)°C

= 5 × 4200 × 100

= 2100000 J or 2100 kJ or 2.1 MJ

Problem 4. A block of cast iron having a
mass of 10 kg cools from a temperature of
150 °C to 50 °C. How much energy is lost by
the cast iron? Assume the specific heat
capacity of iron is 500 J/(kg °C).

Quantity of heat energy,

Q = mc(t2 − t1)

= 10 kg × 500 J/(kg °C)× (50 − 150)°C

= 10 × 500 × (−100)

= −500000 J or−500 kJ or −0.5 MJ

(Note that the minus sign indicates that heat is given
out or lost).

Problem 5. Some lead having a specific
heat capacity of 130 J/(kg °C) is heated from
27 °C to its melting point at 327 °C. If the
quantity of heat required is 780 kJ, determine
the mass of the lead.

Quantity of heat, Q = mc(t2 − t1), hence,

780 × 103 J = m× 130 J/(kg °C)

× (327 − 27)°C

i.e. 780000 = m× 130 × 300

from which, mass, m = 780000

130 × 300
kg = 20 kg

Problem 6. 273 kJ of heat energy are
required to raise the temperature of 10 kg of

copper from 15 °C to 85 °C. Determine the
specific heat capacity of copper.

Quantity of heat, Q = mc(t2 − t1), hence:

273 × 103 J = 10 kg × c × (85 − 15)°C

where c is the specific heat capacity, i.e.

273000 = 10 × c × 70

from which, specific heat capacity,

c = 273000

10 × 70
= 390 J/(kg°C)

Problem 7. 5.7 MJ of heat energy are
supplied to 30 kg of aluminium that is
initially at a temperature of 20 °C. If the
specific heat capacity of aluminium is
950 J/(kg °C), determine its final
temperature.

Quantity of heat, Q = mc(t2 − t1), hence,

5.7 × 106 J = 30 kg × 950 J/(kg°C)

× (t2 − 20)°C

from which, (t2 − 20) = 5.7 × 106

30 × 950
= 200

Hence the final temperature,
t2 = 200 + 20 = 220 °C

Problem 8. A copper container of mass
500 g contains 1 litre of water at 293 K.
Calculate the quantity of heat required to
raise the temperature of the water and
container to boiling point assuming there are
no heat losses. Assume that the specific heat
capacity of copper is 390 J/(kg K), the
specific heat capacity of water is
4.2 kJ/(kg K) and 1 litre of water has a mass
of 1 kg.

Heat is required to raise the temperature of the
water, and also to raise the temperature of the copper
container.

For the water: m = 1 kg, t1 = 293 K,

t2 = 373 K (i.e. boiling point)

and c = 4.2 kJ/(kg K)
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Quantity of heat required for the water is given by:

QW = mc(t2 − t1)

= (1 kg)

(

4.2
kg

kg K

)

(373 − 293) K

= 4.2 × 80 kJ

i.e. QW = 336 kJ

For the copper container:

m = 500 g = 0.5 kg, t1 = 293 K,

t2 = 373 K and

c = 390 J/(kg K) = 0.39 kJ/(kg K)

Quantity of heat required for the copper container is
given by:

QC = mc(t2 − t1)

= (0.5 kg)(0.39 kJ/(kg K)(80 K)

i.e. QC = 15.6 kJ

Total quantity of heat required,

Q = QW +QC = 336 + 15.6 = 351.6 kJ

Now try the following exercise

Exercise 97 Further problems on specific
heat capacity

1. Determine the quantity of heat energy (in
megajoules) required to raise the tem-
perature of 10 kg of water from 0 °C to
50 °C. Assume the specific heat capacity
of water is 4200 J/(kg °C). [2.1 MJ]

2. Some copper, having a mass of 20 kg,
cools from a temperature of 120 °C to
70 °C. If the specific heat capacity of
copper is 390 J/(kg°C), how much heat
energy is lost by the copper? [390 kJ]

3. A block of aluminium having a specific
heat capacity of 950 J/(kg°C) is heated
from 60 °C to its melting point at 660 °C.
If the quantity of heat required is 2.85 MJ,
determine the mass of the aluminium
block. [5 kg]

4. 20.8 kJ of heat energy is required to raise
the temperature of 2 kg of lead from
16 °C to 96 °C. Determine the specific
heat capacity of lead. [130 J/kg °C]

5. 250 kJ of heat energy is supplied to 10 kg
of iron which is initially at a temperature
of 15 °C. If the specific heat capacity of
iron is 500 J/(kg °C) determine its final
temperature. [65 °C]

19.4 Change of state

A material may exist in any one of three
states — solid, liquid or gas. If heat is supplied at a
constant rate to some ice initially at, say, −30 °C, its
temperature rises as shown in Figure 19.1. Initially
the temperature increases from −30 °C to 0 °C as
shown by the line AB. It then remains constant at
0 °C for the time BC required for the ice to melt
into water.
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When melting commences the energy gained by
continual heating is offset by the energy required
for the change of state and the temperature remains
constant even though heating is continued. When
the ice is completely melted to water, continual
heating raises the temperature to 100 °C, as shown
by CD in Figure 19.1. The water then begins to
boil and the temperature again remains constant
at 100 °C, shown as DE, until all the water has
vaporised.

Continual heating raises the temperature of the
steam as shown by EF in the region where the
steam is termed superheated.

Changes of state from solid to liquid or liquid to
gas occur without change of temperature and such
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changes are reversible processes. When heat energy
flows to or from a substance and causes a change
of temperature, such as between A and B, between
C and D and between E and F in Figure 19.1, it is
called sensible heat (since it can be ‘sensed’ by a
thermometer).

Heat energy which flows to or from a sub-
stance while the temperature remains constant, such
as between B and C and between D and E in
Figure 19.1, is called latent heat (latent means con-
cealed or hidden).

Problem 9. Steam initially at a temperature
of 130 °C is cooled to a temperature of 20 °C
below the freezing point of water, the loss of
heat energy being at a constant rate. Make a
sketch, and briefly explain, the expected
temperature/ time graph representing this
change.
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A temperature/time graph representing the change
is shown in Figure 19.2. Initially steam cools until
it reaches the boiling point of water at 100 °C. Tem-
perature then remains constant, i.e. between A and
B, even though it is still giving off heat (i.e. latent
heat). When all the steam at 100 °C has changed to
water at 100 °C it starts to cool again until it reaches
the freezing point of water at 0 °C. From C to D
the temperature again remains constant until all the
water is converted to ice. The temperature of the ice
then decreases as shown.

Now try the following exercise

Exercise 98 A further problem on change
of state

1. Some ice, initially at −40 °C, has heat
supplied to it at a constant rate until
it becomes superheated steam at 150 °C.
Sketch a typical temperature/time graph
expected and use it to explain the differ-
ence between sensible and latent heat.

[Similar to Figure 19.1, page 214]

19.5 Latent heats of fusion and
vaporisation

The specific latent heat of fusion is the heat
required to change 1 kg of a substance from the solid
state to the liquid state (or vice versa) at constant
temperature.

The specific latent heat of vaporisation is the
heat required to change 1 kg of a substance from a
liquid to a gaseous state (or vice versa) at constant
temperature.

The units of the specific latent heats of fusion and
vaporisation are J/kg, or more often kJ/kg, and some
typical values are shown in Table 19.1

The quantity of heat Q supplied or given out
during a change of state is given by:

Q = mL

where m is the mass in kilograms and L is the
specific latent heat.

Thus, for example, the heat required to convert
10 kg of ice at 0 °C to water at 0 °C is given by
10 kg × 335 kJ/kg = 3350 kJ or 3.35 MJ

Besides changing temperature, the effects of sup-
plying heat to a material can involve changes in
dimensions, as well as in colour, state and electri-
cal resistance. Most substances expand when heated
and contract when cooled, and there are many prac-
tical applications and design implications of thermal
movement (see Chapter 20).

Problem 10. How much heat is needed to
melt completely 12 kg of ice at 0 °C?
Assume the latent heat of fusion of ice is
335 kJ/kg.
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Table 19.1

Latent heat of Melting
fusion (kJ/kg) point (°C)

Mercury 11.8 −39
Lead 22 327
Silver 100 957
Ice 335 0
Aluminium 387 660

Latent heat of Boiling
vaporisation (kJ/kg) point (°C)

Oxygen 214 −183
Mercury 286 357
Ethyl alcohol 857 79
Water 2257 100

Quantity of heat required,

Q = mL = 12 kg × 335 kJ/kg

= 4020 kJ or 4.02 MJ

Problem 11. Calculate the heat required to
convert 5 kg of water at 100 °C to
superheated steam at 100 °C. Assume the
latent heat of vaporisation of water is
2260 kJ/kg.

Quantity of heat required,

Q = mL = 5 kg × 2260 kJ/kg

= 11300 kJ or 11.3 MJ

Problem 12. Determine the heat energy
needed to convert 5 kg of ice initially at
−20 °C completely to water at 0 °C. Assume
the specific heat capacity of ice is
2100 J/(kg °C) and the specific latent heat of
fusion of ice is 335 kJ/kg.

Quantity of heat energy needed,

Q = sensible heat + latent heat.

The quantity of heat needed to raise the tempera-
ture of ice from −20 °C to 0 °C, i.e. sensible heat,

Q1 = mc(t2 − t1)

= 5 kg × 2100 J/(kg°C)× (0 − −20)°C

= (5 × 2100 × 20) J = 210 kJ

The quantity of heat needed to melt 5 kg of ice at
0 °C,
i.e. the latent heat,

Q2 = mL = 5 kg × 335 kJ/kg = 1675 kJ

Total heat energy needed,

Q = Q1 +Q2 = 210 + 1675 = 1885 kJ

Problem 13. Calculate the heat energy
required to convert completely 10 kg of
water at 50 °C into steam at 100 °C, given
that the specific heat capacity of water is
4200 J/(kg °C) and the specific latent heat of
vaporisation of water is 2260 kJ/kg.

Quantity of heat required = sensible heat + latent
heat.

Sensible heat, Q1 = mc(t2 − t1)

= 10 kg × 4200 J/(kg°C)

× (100 − 50) °C = 2100 kJ

Latent heat, Q2 = mL = 10 kg × 2260 kJ/kg

= 22600 kJ

Total heat energy required,

Q = Q1 +Q2 = (2100 + 22600) kJ

= 24700 kJ or 24.70 MJ

Problem 14. Determine the amount of heat
energy needed to change 400 g of ice,
initially at −20 °C, into steam at 120 °C.
Assume the following:
latent heat of fusion of ice = 335 kJ/kg,
latent heat of vaporisation of
water = 2260 kJ/kg, specific heat capacity of
ice = 2.14 kJ/(kg °C), specific heat capacity
of water = 4.2 kJ/(kg °C) and specific heat
capacity of steam = 2.01 kJ/(kg °C).

The energy needed is determined in five stages:

(i) Heat energy needed to change the temperature
of ice from −20 °C to 0 °C is given by:

Q1 = mc(t2 − t1)

= 0.4 kg × 2.14 kJ/(kg °C)× (0–−20) °C

= 17.12 kJ
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(ii) Latent heat needed to change ice at 0 °C into
water at 0 °C is given by:

Q2 = mLf = 0.4 kg × 335 kJ/kg

= 134 kJ

(iii) Heat energy needed to change the temperature
of water from 0 °C (i.e. melting point) to
100 °C (i.e. boiling point) is given by:

Q3 = mc(t2 − t1)

= 0.4 kg × 4.2 kJ/(kg °C)× 100 °C

= 168 kJ

(iv) Latent heat needed to change water at 100 °C
into steam at 100 °C is given by:

Q4 = mLv = 0.4 kg × 2260 kJ/kg

= 904 kJ

(v) Heat energy needed to change steam at 100 °C
into steam at 120 °C is given by:

Q5 = mc(t1 − t2)

= 0.4 kg × 2.01 kJ/(kg °C)× 20 °C

= 16.08 kJ

Total heat energy needed,

Q = Q1 +Q2 +Q3 +Q4 +Q5

= 17.12 + 134 + 168 + 904 + 16.08

= 1239.2 kJ

Now try the following exercise

Exercise 99 Further problems on the
latent heats of fusion and
vaporisation

1. How much heat is needed to melt com-
pletely 25 kg of ice at 0 °C. Assume the
specific latent heat of fusion of ice is
335 kJ/kg. [8.375 MJ]

2. Determine the heat energy required to
change 8 kg of water at 100 °C to super-
heated steam at 100 °C. Assume the spe-
cific latent heat of vaporisation of water
is 2260 kJ/kg. [18.08 MJ]

3. Calculate the heat energy required to con-
vert 10 kg of ice initially at −30 °C com-
pletely into water at 0 °C. Assume the spe-
cific heat capacity of ice is 2.1 kJ/(kg °C)
and the specific latent heat of fusion of
ice is 335 kJ/kg. [3.98 MJ]

4. Determine the heat energy needed to con-
vert completely 5 kg of water at 60 °C to
steam at 100 °C, given that the specific
heat capacity of water is 4.2 kJ/(kg °C)
and the specific latent heat of vaporisation
of water is 2260 kJ/kg. [12.14 MJ]

19.6 A simple refrigerator

The boiling point of most liquids may be lowered
if the pressure is lowered. In a simple refrigerator
a working fluid, such as ammonia or freon, has the
pressure acting on it reduced. The resulting lowering
of the boiling point causes the liquid to vaporise. In
vaporising, the liquid takes in the necessary latent
heat from its surroundings, i.e. the freezer, which
thus becomes cooled. The vapour is immediately
removed by a pump to a condenser that is outside
of the cabinet, where it is compressed and changed
back into a liquid, giving out latent heat. The cycle
is repeated when the liquid is pumped back to the
freezer to be vaporised.

19.7 Conduction, convection and
radiation

Heat may be transferred from a hot body to a
cooler body by one or more of three methods,
these being: (a) by conduction, (b) by convection,
or (c) by radiation.

Conduction

Conduction is the transfer of heat energy from one
part of a body to another (or from one body to
another) without the particles of the body moving.

Conduction is associated with solids. For exam-
ple, if one end of a metal bar is heated, the other end
will become hot by conduction. Metals and metal-
lic alloys are good conductors of heat, whereas air,
wood, plastic, cork, glass and gases are examples of
poor conductors (i.e. they are heat insulators).

Practical applications of conduction include:

(i) A domestic saucepan or dish conducts heat
from the source to the contents. Also, since
wood and plastic are poor conductors of heat
they are used for saucepan handles.
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(ii) The metal of a radiator of a central heating
system conducts heat from the hot water inside
to the air outside.

Convection

Convection is the transfer of heat energy through a
substance by the actual movement of the substance
itself. Convection occurs in liquids and gases, but
not in solids. When heated, a liquid or gas becomes
less dense. It then rises and is replaced by a colder
liquid or gas and the process repeats. For example,
electric kettles and central heating radiators always
heat up at the top first.
Examples of convection are:

(i) Natural circulation hot water heating systems
depend on the hot water rising by convection
to the top of the house and then falling back
to the bottom of the house as it cools, releas-
ing the heat energy to warm the house as it
does so.

(ii) Convection currents cause air to move and
therefore affect climate.

(iii) When a radiator heats the air around it, the hot
air rises by convection and cold air moves in
to take its place.

(iv) A cooling system in a car radiator relies on
convection.

(iv) Large electrical transformers dissipate waste
heat to an oil tank. The heated oil rises by con-
vection to the top, then sinks through cooling
fins, losing heat as it does so.

(v) In a refrigerator, the cooling unit is situated
near the top. The air surrounding the cold
pipes become heavier as it contracts and sinks
towards the bottom. Warmer, less dense air is
pushed upwards and in turn is cooled. A cold
convection current is thus created.

Radiation

Radiation is the transfer of heat energy from a hot
body to a cooler one by electromagnetic waves. Heat
radiation is similar in character to light waves — it
travels at the same speed and can pass through a
vacuum — except that the frequency of the waves
are different. Waves are emitted by a hot body, are
transmitted through space (even a vacuum) and are
not detected until they fall on to another body. Radi-
ation is reflected from shining, polished surfaces but
absorbed by dull, black surfaces.

Practical applications of radiation include:

(i) heat from the sun reaching earth

(ii) heat felt by a flame

(iii) cooker grills

(iv) industrial furnaces

(v) infra-red space heaters

Vacuum

Inner silvered 
surface of 
thin glass walls

Cork stopper

Liquid

Outer case

Figure 19.3

19.8 Vacuum flask

A cross-section of a typical vacuum flask is shown
in Figure 19.3 and is seen to be a double-walled
bottle with a vacuum space between them, the whole
supported in a protective outer case.

Very little heat can be transferred by conduction
because of the vacuum space and the cork stopper
(cork is a bad conductor of heat). Also, because
of the vacuum space, no convection is possible.
Radiation is minimised by silvering the two glass
surfaces (radiation is reflected off shining surfaces).

Thus a vacuum flask is an example of prevention
of all three types of heat transfer and is therefore
able to keep hot liquids hot and cold liquids cold.

19.9 Use of insulation in conserving
fuel

Fuel used for heating a building is becoming increas-
ingly expensive. By the careful use of insulation,
heat can be retained in a building for longer periods
and the cost of heating thus minimised.
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(i) Since convection causes hot air to rise it is
important to insulate the roof space, which is
probably the greatest source of heat loss in the
home. This can be achieved by laying fibre-
glass between the wooden joists in the roof
space.

(ii) Glass is a poor conductor of heat. However,
large losses can occur through thin panes
of glass and such losses can be reduced by
using double-glazing. Two sheets of glass,
separated by air, are used. Air is a very good
insulator but the air space must not be too
large otherwise convection currents can occur
which would carry heat across the space.

(iii) Hot water tanks should be lagged to prevent
conduction and convection of heat to the sur-
rounding air.

(iv) Brick, concrete, plaster and wood are all poor
conductors of heat. A house is made from two
walls with an air gap between them. Air is
a poor conductor and trapped air minimises
losses through the wall. Heat losses through
the walls can be prevented almost completely
by using cavity wall insulation, i.e. plastic-
foam.

Besides changing temperature, the effects of sup-
plying heat to a material can involve changes in
dimensions, as well as in colour, state and electrical
resistance.

Most substances expand when heated and contract
when cooled, and there are many practical applica-
tions and design implications of thermal movement
as explained in Chapter 20 following.

Now try the following exercise

Exercise 100 Short answer questions on
heat energy

1. Differentiate between temperature and
heat.

2. Name two scales on which temperature
is measured.

3. Name any four temperature measuring
devices.

4. Define specific heat capacity and name
its unit.

5. Differentiate between sensible and latent
heat.

6. The quantity of heat, Q, required to raise
a mass m kg from temperature t1 °C to

t2 °C, the specific heat capacity being c,
is given by Q = . . . . . .

7. What is meant by the specific latent heat
of fusion?

8. Define the specific latent heat of vapor-
isation.

9. Explain briefly the principle of operation
of a simple refrigerator.

10. State three methods of heat transfer.

11. Define conduction and state two prac-
tical examples of heat transfer by this
method.

12. Define convection and give three exam-
ples of heat transfer by this method.

13. What is meant by radiation? Give three
uses.

14. How can insulation conserve fuel in a
typical house?

Exercise 101 Multi-choice questions on
heat energy (Answers on
page 285)

1. Heat energy is measured in:

(a) kelvin (b) watts

(c) kilograms (d) joules

2. A change of temperature of 20 °C is
equivalent to a change in thermody-
namic temperature of:

(a) 293 K (b) 20 K

(c) 80 K (d) 120 K

3. A temperature of 20 °C is equivalent to:

(a) 293 K (b) 20 K

(c) 80 K (d) 120 K

4. The unit of specific heat capacity is:

(a) joules per kilogram

(b) joules

(c) joules per kilogram kelvin

(d) cubic metres

5. The quantity of heat required to raise the
temperature of 500 g of iron by 2 °C,
given that the specific heat capacity is
500 J/(kg °C), is:
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(a) 500 kJ (b) 0.5 kJ

(c) 2 J (d) 250 kJ

6. The heat energy required to change 1 kg
of a substance from a liquid to a gaseous
state at the same temperature is called:

(a) specific heat capacity

(b) specific latent heat of vaporisation

(c) sensible heat

(d) specific latent heat of fusion

7. The temperature of pure melting ice is:

(a) 373 K (b) 273 K

(c) 100 K (d) 0 K

8. 1.95 kJ of heat is required to raise
the temperature of 500 g of lead from
15 °C to its final temperature. Taking
the specific heat capacity of lead to be
130 J/(kg °C), the final temperature is:

(a) 45 °C (b) 37.5 °C

(c) 30 °C (d) 22.5 °C

9. Which of the following temperatures is
absolute zero?

(a) 0 °C (b) −173 °C

(c) −273 °C (d) −373 °C

10. When two wire of different metals are
twisted together and heat applied to the
junction, an e.m.f. is produced. This
effect is used in a thermocouple to
measure:

(a) e.m.f. (b) temperature

(c) expansion (d) heat

11. Which of the following statements is
false?

(a) −30 °C is equivalent to 243 K

(b) Convection only occurs in liquids
and gases

(c) Conduction and convection cannot
occur in a vacuum

(d) Radiation is absorbed by a silver
surface

12. The transfer of heat through a substance
by the actual movement of the particles
of the substance is called:

(a) conduction (b) radiation

(c) convection (d) specific heat capacity

13. Which of the following statements is
true?

(a) Heat is the degree of hotness or
coldness of a body.

(b) Heat energy that flows to or from
a substance while the temperature
remains constant is called sensi-
ble heat.

(c) The unit of specific latent heat of
fusion is J/(kg K).

(d) A cooker-grill is a practical appli-
cation of radiation.
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Thermal expansion

At the end of this chapter you should be
able to:

• appreciate that expansion and contraction
occurs with change of temperature

• describe practical applications where
expansion and contraction must be allowed
for

• understand the expansion and contraction
of water

• define the coefficient of linear expansion α

• recognise typical values for the coefficient
of linear expansion

• calculate the new length L2, after expan-
sion or contraction, using

L2 = L1[1 + α(t2 − t1)]

• define the coefficient of superficial expan-
sion β

• calculate the new surface area A2, after
expansion or contraction, using

A2 = A1[1 + β(t2 − t1)]

• appreciate that β ≈ 2α

• define the coefficient of cubic expansion γ

• recognise typical values for the coefficient
of cubic expansion

• appreciate that γ ≈ 3α

• calculate the new volume V2, after expan-
sion or contraction, using

V2 = V1[1 + γ (t2 − t1)]

20.1 Introduction

When heat is applied to most materials, expansion
occurs in all directions. Conversely, if heat energy is
removed from a material (i.e. the material is cooled)
contraction occurs in all directions. The effects
of expansion and contraction each depend on the
change of temperature of the material.

20.2 Practical applications of thermal
expansion

Some practical applications where expansion and
contraction of solid materials must be allowed for
include:

(i) Overhead electrical transmission lines are
hung so that they are slack in summer, other-
wise their contraction in winter may snap the
conductors or bring down pylons

(ii) Gaps need to be left in lengths of rail-
way lines to prevent buckling in hot weather
(except where these are continuously welded)

(iii) Ends of large bridges are often supported on
rollers to allow them to expand and contract
freely

(iv) Fitting a metal collar to a shaft or a steel
tyre to a wheel is often achieved by first
heating the collar or tyre so that they expand,
fitting them in position, and then cooling
them so that the contraction holds them firmly
in place; this is known as a ‘shrink-fit’. By a
similar method hot rivets are used for joining
metal sheets.

(v) The amount of expansion varies with differ-
ent materials. Figure 20.1(a) shows a bimetal-
lic strip at room temperature (i.e. two
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different strips of metal riveted together).
When heated, brass expands more than steel,
and since the two metals are riveted together
the bimetallic strip is forced into an arc
as shown in Figure 20.1(b). Such a move-
ment can be arranged to make or break
an electric circuit and bimetallic strips are
used, in particular, in thermostats (which are
temperature-operated switches) used to con-
trol central heating systems, cookers, refrig-
erators, toasters, irons, hot-water and alarm
systems.

Brass Steel

(a) (b)

Figure 20.1

(vi) Motor engines use the rapid expansion of
heated gases to force a piston to move.

(vii) Designers must predict, and allow for, the
expansion of steel pipes in a steam-raising
plant so as to avoid damage and consequent
danger to health.

20.3 Expansion and contraction of
water

Water is a liquid that at low temperature displays an
unusual effect. If cooled, contraction occurs until,
at about 4 °C, the volume is at a minimum. As the
temperature is further decreased from 4 °C to 0 °C
expansion occurs, i.e. the volume increases. When
ice is formed, considerable expansion occurs and it
is this expansion that often causes frozen water pipes
to burst.

A practical application of the expansion of a
liquid is with thermometers, where the expansion
of a liquid, such as mercury or alcohol, is used to
measure temperature.

20.4 Coefficient of linear expansion

The amount by which unit length of a material
expands when the temperature is raised one degree

is called the coefficient of linear expansion of the
material and is represented by α (Greek alpha).

The units of the coefficient of linear expansion
are m/(mK), although it is usually quoted as just

/K or K−1. For example, copper has a coefficient

of linear expansion value of 17 × 10−6 K−1, which
means that a 1 m long bar of copper expands by
0.000017 m if its temperature is increased by 1 K
(or 1 °C). If a 6 m long bar of copper is subjected
to a temperature rise of 25 K then the bar will
expand by (6 × 0.000017 × 25) m, i.e. 0.00255 m
or 2.55 mm. (Since the kelvin scale uses the same
temperature interval as the Celsius scale, a change
of temperature of, say, 50 °C, is the same as a change
of temperature of 50 K).

If a material, initially of length L1 and at a
temperature of t1 and having a coefficient of linear
expansion α, has its temperature increased to t2, then
the new length L2 of the material is given by:

New length = original length + expansion

i.e. L2 = L1 + L1α(t2 − t1)

i.e. L2 = L1[1 + α(t2 − t1)] (20.1)

Some typical values for the coefficient of linear
expansion include:

Aluminium 23 × 10−6 K−1 Brass 18 × 10−6 K−1

Concrete 12 × 10−6 K−1 Copper 17 × 10−6 K−1

Gold 14 × 10−6 K−1 Invar (nickel-

Iron 11–12 × 10−6 K−1 steel alloy) 0.9 × 10−6 K−1

Steel 15–16 × 10−6 K−1 Nylon 100 × 10−6 K−1

Zinc 31 × 10−6 K−1 Tungsten 4.5 × 10−6 K−1

Problem 1. The length of an iron steam
pipe is 20.0 m at a temperature of 18 °C.
Determine the length of the pipe under
working conditions when the temperature is
300 °C. Assume the coefficient of linear
expansion of iron is 12 ×10−6 K−1.

Length L1 = 20.0 m, temperature t1 = 18 °C,

t2 = 300 °C and α = 12 × 10−6 K−1

Length of pipe at 300 °C is given by:

L2 = L1[1 + α(t2 − t1)]

= 20.0[1 + (12 × 10−6)(300 − 18)]

= 20.0[1 + 0.003384] = 20.0[1.003384]

= 20.06768 m

i.e. an increase in length of 0.06768 m or 67.68 mm
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In practice, allowances are made for such expan-
sions. U -shaped expansion joints are connected into
pipelines carrying hot fluids to allow some ‘give’ to
take up the expansion.

Problem 2. An electrical overhead
transmission line has a length of 80.0 m
between its supports at 15 °C. Its length
increases by 92 mm at 65 °C. Determine the
coefficient of linear expansion of the material
of the line.

Length L1 = 80.0 m, L2 = 80.0 m + 92 mm =
80.092 m, temperature t1 = 15 °C and temperature
t2 = 65°

LengthL2 = L1[1 + α(t2 − t1)]

i.e. 80.092 = 80.0[1 + α(65 − 15)]

80.092 = 80.0 + (80.0)(α)(50)

i.e. 80.092 − 80.0 = (80.0)(α)(50)

Hence, the coefficient of linear expansion,

α = 0.092

(80.0)(50)
= 0.000023

i.e. α = 23 × 10−6 K−1 (which is aluminium- see
above)

Problem 3. A measuring tape made of
copper measures 5.0 m at a temperature of
288 K. Calculate the percentage error in
measurement when the temperature has
increased to 313 K. Take the coefficient of
linear expansion of copper as 17 × 10−6 K−1.

Length L1 = 5.0 m, temperature t1 = 288 K, t2 =
313 K and α = 17 × 10−6 K−1

Length at 313 K is given by:

Length L2 = L1[1 + α(t2 − t1)]

= 5.0[1 + (17 × 10−6)(313 − 288)

= 5.0[1 + (17 × 10−6)(25)]

= 5.0[1 + 0.000425]

= 5.0[1.000425] = 5.002125 m

i.e. the length of the tape has increased by
0.002125 m

Percentage error in measurement at 313 K

= increase in length

original length
× 100%

= 0.002125

5.0
× 100 = 0.0425%

Problem 4. The copper tubes in a boiler are
4.20 m long at a temperature of 20 °C.
Determine the length of the tubes (a) when
surrounded only by feed water at 10 °C,
(b) when the boiler is operating and the
mean temperature of the tubes is 320 °C.
Assume the coefficient of linear expansion of

copper to be 17 × 10−6 K−1.

(a) Initial length, L1 = 4.20 m, initial tempera-
ture, t1 = 20 °C, final temperature, t2 = 10 °C

and α = 17 × 10−6 K−1

Final length at 10 °C is given by:

L2 = L1[1 + α(t2 − t1)]

= 4.20[1 + (17 × 10−6)(10 − 20)]

= 4.20[1 − 0.00017] = 4.1993 m

i.e. the tube contracts by 0.7 mm when the
temperature decreases from 20 °C to 10 °C.

(b) Length, L1 = 4.20 m, t1 = 20 °C, t2 = 320 °C

and α = 17 × 10−6 K−1

Final length at 320 °C is given by:

L2 = L1[1 + α(t2 − t1)]

= 4.20[1 + (17 × 10−6)(320 − 20)]

= 4.20[1 + 0.0051] = 4.2214 m

i.e. the tubes extend by 21.4 mm when the
temperature rises from 20 °C to 320 °C

Now try the following exercise

Exercise 102 Further problems on the co-
efficient of linear expansion

1. A length of lead piping is 50.0 m long at
a temperature of 16 °C. When hot water
flows through it the temperature of the
pipe rises to 80 °C. Determine the length
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of the hot pipe if the coefficient of linear

expansion of lead is 29 × 10−6 K−1.

[50.0928 m]

2. A rod of metal is measured at 285 K
and is 3.521 m long. At 373 K the rod
is 3.523 m long. Determine the value of
the coefficient of linear expansion for the

metal. [6.45 × 10−6 K−1]

3. A copper overhead transmission line has
a length of 40.0 m between its supports at
20 °C. Determine the increase in length at
50 °C if the coefficient of linear expansion

of copper is 17 × 10−6 K−1. [20.4 mm]

4. A brass measuring tape measures 2.10 m
at a temperature of 15 °C. Determine

(a) the increase in length when the tem-
perature has increased to 40 °C

(b) the percentage error in measurement
at 40 °C. Assume the coefficient of
linear expansion of brass to be

18 × 10−6 K−1.

[(a) 0.945 mm (b) 0.045%]

5. A pendulum of a ‘grandfather’ clock is
2.0 m long and made of steel. Determine
the change in length of the pendulum if
the temperature rises by 15 K. Assume the
coefficient of linear expansion of steel to

be 15 × 10−6 K−1. [0.45 mm]

6. A temperature control system is operated
by the expansion of a zinc rod which is
200 mm long at 15 °C. If the system is
set so that the source of heat supply is
cut off when the rod has expanded by
0.20 mm, determine the temperature to
which the system is limited. Assume the
coefficient of linear expansion of zinc to

be 31 × 10−6 K−1. [47.26 °C]

7. A length of steel railway line is 30.0 m
long when the temperature is 288 K. Det-
ermine the increase in length of the line
when the temperature is raised to 303 K.
Assume the coefficient of linear expansion

of steel to be 15 × 10−6 K−1.

[6.75 mm]

8. A brass shaft is 15.02 mm in diameter
and has to be inserted in a hole of diam-
eter 15.0 mm. Determine by how much
the shaft must be cooled to make this

possible, without using force. Take the
coefficient of linear expansion of brass as

18 × 10−6 K−1. [74 K]

20.5 Coefficient of superficial
expansion

The amount by which unit area of a material
increases when the temperature is raised by one
degree is called the coefficient of superficial (i.e.
area) expansion and is represented by β (Greek
beta).

If a material having an initial surface area A1 at
temperature t1 and having a coefficient of superficial
expansion β, has its temperature increased to t2, then
the new surface area A2 of the material is given by:
New surface area

= original surface area + increase in area

i.e. A2 = A1 + A1β(t2 − t1)

i.e. A2 = A1[1 + β(t2 − t1)] (20.2)

It is shown in Problem 5 below that the coefficient
of superficial expansion is twice the coefficient of
linear expansion, i.e. β = 2α, to a very close
approximation.

Problem 5. Show that for a rectangular area
of material having dimensions L by b the
coefficient of superficial expansion β ≈ 2α,
where α is the coefficient of linear expansion.

Initial area, A1 = Lb. For a temperature rise of
1 K, side L will expand to (L + Lα) and side b
will expand to (b+ bα). Hence the new area of the
rectangle, A2, is given by:

A2 = (L+ Lα)(b + bα)

= L(1 + α)b(1 + α) = Lb(1 + α)2

= Lb(1 + 2α + α2) ≈ Lb(1 + 2α)

since α2 is very small (see typical values in
Section 20.4)
Hence A2 ≈ A1(1 + 2α)
For a temperature rise of (t2 − t1) K

A2 ≈ A1[1 + 2α(t2 − t1)]

Thus from equation (20.2), β ≈ 2α
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20.6 Coefficient of cubic expansion

The amount by which unit volume of a mate-
rial increases for a one degree rise of temperature
is called the coefficient of cubic (or volumetric)
expansion and is represented by γ (Greek gamma).

If a material having an initial volume V1 at
temperature t1 and having a coefficient of cubic
expansion γ , has its temperature raised to t2, then
the new volume V2 of the material is given by:

New volume = initial volume

+ increase in volume

i.e. V2 = V1 + V1γ (t2 − t1)

i.e. V2 = V1[1 + γ (t2 − t1)] (20.3)

It is shown in Problem 6 below that the coeffi-
cient of cubic expansion is three times the coeffi-
cient of linear expansion, i.e. γ = 3α, to a very
close approximation. A liquid has no definite shape
and only its cubic or volumetric expansion need be
considered. Thus with expansions in liquids, equa-
tion (3) is used.

Problem 6. Show that for a rectangular
block of material having dimensions L, b
and h, the coefficient of cubic expansion
γ ≈ 3α, where α is the coefficient of linear
expansion.

Initial volume, V1 = Lbh. For a temperature rise of
1 K, side L expands to (L+Lα), side b expands to
(b + bα) and side h expands to (h+ hα)
Hence the new volume of the block V2 is given by:

V2 = (L+ Lα)(b + bα)(h+ hα)

= L(1 + α)b(1 + α)h(1 + α)

= Lbh(1 + α)3 = Lbh(1 + 3α + 3α2 + α3)

≈ Lbh(1 + 3α)

since terms in α2 and α3 are very small
Hence V2 ≈ V1(1 + 3α)
For a temperature rise of (t2 − t1) K,

V2 ≈ V1[1 + 3α(t2 − t1)]

Thus from equation (20.3), γ ≈ 3α

Some typical values for the coefficient of cubic
expansion measured at 20 °C (i.e. 293 K) include:

Ethyl alcohol 1.1 × 10−3 K−1 Mercury 1.82 × 10−4 K−1

Paraffin oil 9 × 10−2 K−1 Water 2.1 × 10−4 K−1

The coefficient of cubic expansion γ is only constant
over a limited range of temperature.

Problem 7. A brass sphere has a diameter
of 50 mm at a temperature of 289 K. If the
temperature of the sphere is raised to 789 K,
determine the increase in (a) the diameter
(b) the surface area (c) the volume of the
sphere. Assume the coefficient of linear

expansion for brass is 18 × 10−6 K−1.

(a) Initial diameter, L1 = 50 mm, initial tempera-
ture, t1 = 289 K, final temperature, t2 = 789 K

and α = 18 × 10−6 K−1.

New diameter at 789 K is given by:

L2 = L1[1 + α(t2 − t1)]

from equation (20.1)

i.e. L2 = 50[1 + (18 × 10−6)(789 − 289)]

= 50[1 + 0.009] = 50.45 mm

Hence the increase in the diameter is
0.45 mm.

(b) Initial surface area of sphere,

A1 = 4πr2 = 4π

(

50

2

)2

= 2500π mm2

New surface area at 789 K is given by:

A2 = A1[1 + β(t2 − t1)]

from equation (20.2)

i.e. A2 = A1[1 + 2α(t2 − t1)]

since β = 2α,

to a very close approximation

Thus A2 = 2500π[1 + 2(18 × 10−6)(500)]

= 2500π[1 + 0.018]

= 2500π + 2500π(0.018)
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Hence increase in surface area

= 2500π(0.018) = 141.4 mm2

(c) Initial volume of sphere,

V1 = 4

3
πr3 = 4

3
π

(

50

2

)3

mm3

New volume at 789 K is given by:

V2 = V1[1 + γ (t2 − t1)]

from equation (20.3)

i.e. V2 = V1[1 + 3α(t2 − t1)]

since γ = 3α, to a very close
approximation

Thus V2 = 4

3
π(25)3

× [1 + 3(18 × 10−6)(500)]

= 4

3
π(25)3[1 + 0.027]

= 4

3
π(25)3 + 4

3
π(25)3(0.027)

Hence the increase in volume

= 4

3
π(25)3(0.027) = 1767 mm3

Problem 8. Mercury contained in a

thermometer has a volume of 476 mm3 at
15 °C. Determine the temperature at which

the volume of mercury is 478 mm3,
assuming the coefficient of cubic expansion

for mercury to be 1.8 × 10−4 K−1.

Initial volume, V1 = 476 mm3, final volume,
V2 = 478 mm3, initial temperature, t1 = 15 °C and

γ = 1.8 × 10−4 K−1

Final volume,

V2 = V1[1 + γ (t2 − t1)],

from equation (20.3)

i.e.V2 = V1 + V1γ (t2 − t1),

from which

(t2 − t1) = V2 − V1

V1γ

= 478 − 476

(476)(1.8 × 10−4)

= 23.34 °C

Hence t2 = 23.34 + 15 = 38.34 °C
Hence the temperature at which the volume of

mercury is 478 mm3 is 38.34 °C

Problem 9. A rectangular glass block has a
length of 100 mm, width 50 mm and depth
20 mm at 293 K. When heated to 353 K its
length increases by 0.054 mm. What is the
coefficient of linear expansion of the glass ?
Find also (a) the increase in surface area
(b) the change in volume resulting from the
change of length.

Final length, L2 = L1[1 + α(t2 − t1)], from equa-
tion (20.1), hence increase in length is given by:

L2 − L1 = L1α(t2 − t1)

Hence 0.054 = (100)(α)(353 − 293)

from which, the coefficient of linear expansion is
given by:

α = 0.054

(100)(60)
= 9 × 10−6K−1

(a) Initial surface area of glass,

A1 = (2 × 100 × 50)+ (2 × 50 × 20)

+ (2 × 100 × 20)

= 10000 + 2000 + 4000

= 16 000 mm2

Final surface area of glass,

A2 = A1[1 + β(t2 − t1)]

= A1[1 + 2α(t2 − t1)],

since β = 2α to a very close approximation

Hence, increase in surface area

= A1(2α)(t2 − t1)

= (16 000)(2 × 9 × 10−6)(60)

= 17.28 mm2



THERMAL EXPANSION 227

(b) Initial volume of glass,

V1 = 100 × 50 × 20 = 100 000 mm3

Final volume of glass,

V2 = V1[1 + γ (t2 − t1)]

= V1[1 + 3α(t2 − t1)],

since γ = 3α to a very close approximation

Hence, increase in volume of glass

= V1(3α)(t2 − t1)

= (100 000)(3 × 9 × 10−6)(60)

= 162 mm3

Now try the following exercise

Exercise 103 Further questions on the co-
efficients of superficial and
cubic expansion

1. A silver plate has an area of 800 mm2 at
15 °C. Determine the increase in the area
of the plate when the temperature is raised
to 100 °C. Assume the coefficient of linear
expansion of silver to be 19 ×10−6 K−1.

[2.584 mm2]

2. At 283 K a thermometer contains 440 mm3

of alcohol. Determine the temperature at

which the volume is 480 mm3 assuming
that the coefficient of cubic expansion of

the alcohol is 12 ×10−4 K−1. [358.8 K]

3. A zinc sphere has a radius of 30.0 mm
at a temperature of 20 °C. If the temper-
ature of the sphere is raised to 420 °C,
determine the increase in: (a) the radius,
(b) the surface area, (c) the volume of the
sphere. Assume the coefficient of linear

expansion for zinc to be 31 × 10−6 K−1.

[(a) 0.372 mm (b) 280.5 mm2

(c) 4207 mm3]

4. A block of cast iron has dimensions
of 50 mm by 30 mm by 10 mm at
15 °C. Determine the increase in volume
when the temperature of the block is
raised to 75 °C. Assume the coefficient

of linear expansion of cast iron to be

11 × 10−6 K−1. [29.7 mm3]

5. Two litres of water, initially at 20 °C, is
heated to 40 °C. Determine the volume
of water at 40 °C if the coefficient of
volumetric expansion of water within this

range is 30 × 10−5 K−1. [2.012 litres]

6. Determine the increase in volume, in
litres, of 3 m3 of water when heated from
293 K to boiling point if the coefficient

of cubic expansion is 2.1 ×10−4 K−1.

(1 litre ≈ 10−3 m3). [50.4 litres]

7. Determine the reduction in volume when
the temperature of 0.5 litre of ethyl alco-
hol is reduced from 40 °C to −15 °C.
Take the coefficient of cubic expansion

for ethyl alcohol as 1.1 × 10−3 K−1.

[0.03025 litres]

Exercise 104 Short answer questions on
thermal expansion

1. When heat is applied to most solids and
liquids . . . . . ... occurs.

2. When solids and liquids are cooled they
usually . . . . . ...

3. State three practical applications where
the expansion of metals must be allowed
for.

4. State a practical disadvantage where the
expansion of metals occurs.

5. State one practical advantage of the
expansion of liquids.

6. What is meant by the ‘coefficient of
expansion’.

7. State the symbol and the unit used for
the coefficient of linear expansion.

8. Define the ‘coefficient of superficial ex-
pansion’ and state its symbol.

9. Describe how water displays an unex-
pected effect between 0 °C and 4 °C.

10. Define the ‘coefficient of cubic expan-
sion’ and state its symbol.
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Exercise 105 Multi-choice questions on
thermal expansion (Answers
on page 285)

1. When the temperature of a rod of copper
is increased, its length:

(a) stays the same (b) increases

(c) decreases

2. The amount by which unit length of a
material increases when the temperature
is raised one degree is called the coeffi-
cient of:

(a) cubic expansion

(b) superficial expansion

(c) linear expansion

3. The symbol used for volumetric expan-
sion is:

(a) γ (b) β (c) L (d) α

4. A material of length L1, at temperature
θ1 K is subjected to a temperature rise of
θ K. The coefficient of linear expansion

of the material is α K−1.

The material expands by:

(a) L2(1 + αθ) (b) L1α(θ − θ1)

(c) L1[1 + α(θ − θ1)] (d) L1αθ

5. Some iron has a coefficient of linear
expansion of 12 × 10−6 K−1. A 100 mm
length of iron piping is heated through
20 K. The pipe extends by:

(a) 0.24 mm (b) 0.024 mm

(c) 2.4 mm (d) 0.0024 mm

6. If the coefficient of linear expansion is
A, the coefficient of superficial expan-
sion is B and the coefficient of cubic
expansion is C, which of the following
is false ?

(a) C = 3A (b) A = B/2

(c) B = 3

2
C (d) A = C/3

7. The length of a 100 mm bar of metal
increases by 0.3 mm when subjected to
a temperature rise of 100 K. The coef-
ficient of linear expansion of the metal
is:

(a) 3 × 10−3 K−1 (b) 3 × 10−4 K−1

(c) 3 × 10−5 K−1 (d) 3 × 10−6 K−1

8. A liquid has a volume V1 at temperature
θ1. The temperature is increased to θ2. If
γ is the coefficient of cubic expansion,
the increase in volume is given by:

(a) V1γ (θ2 − θ1) (b) V1γ θ2

(c) V1 + V1γ θ2 (d) V1[1 + γ (θ2 − θ1)]

9. Which of the following statements is
false?

(a) Gaps need to be left in lengths of
railway lines to prevent buckling in
hot weather.

(b) Bimetallic strips are used in ther-
mostats, a thermostat being a tem-
perature-operated switch.

(c) As the temperature of water is
decreased from 4 °C to 0 °C con-
traction occurs.

(d) A change of temperature of 15 °C
is equivalent to a change of tem-
perature of 15 K.

10. The volume of a rectangular block of
iron at a temperature t1 is V1. The tem-
perature is raised to t2 and the volume
increases to V2. If the coefficient of lin-
ear expansion of iron is α, then volume
V1 is given by:

(a) V2[1 + α(t2 − t1)]

(b)
V2

1 + 3α(t2 − t1)

(c) 3V2α(t2 − t1)

(d)
1 + α(t2 − t1)

V2
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Assignment 6

This assignment covers the material con-
tained in chapters 19 and 20.

The marks for each question are shown
in brackets at the end of each question.

1. A block of aluminium having a mass of
20 kg cools from a temperature of 250°C
to 80°C. How much energy is lost by
the aluminium? Assume the specific heat
capacity of aluminium is 950 J/(kg°C).

(5)

2. Calculate the heat energy required to
convert completely 12 kg of water at
30°C to superheated steam at 100°C.
Assume that the specific heat capacity of

water is 4200 J/(kg°C), and the specific
latent heat of vaporisation of water is
2260 kJ/(kg°C). (7)

3. A copper overhead transmission line has
a length of 60 m between its supports at
15°C. Calculate its length at 40°C, if the
coefficient of linear expansion of copper

is 17 × 10−6 K−1. (6)

4. A gold sphere has a diameter of 40 mm at
a temperature of 285 K. If the temperature
of the sphere is raised to 785 K, determine
the increase in

(a) the diameter

(b) the surface area

(c) the volume of the sphere.

Assume the coefficient of linear expan-

sion for gold is 14 × 10−6 K−1. (12)
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Hydrostatics

21.1 Pressure

The pressure acting on a surface is defined as the
perpendicular force per unit area of surface. The unit
of pressure is the Pascal, Pa, where 1 Pascal is equal
to 1 Newton per square metre. Thus pressure,

p =
F
A

Pascal’s

where F is the force in Newton’s acting at right
angles to a surface of area A square metres.
When a force of 20 N acts uniformly over, and

perpendicular to, an area of 4 m2, then the pressure
on the area, p, is given by

p = 20 N

4 m2
= 5 Pa

Problem 1. A table loaded with books has a
force of 250 N acting in each of its legs. If
the contact area between each leg and the

floor is 50 mm2, find the pressure each leg
exerts on the floor.

From above, pressure p = force

area

Hence,

p = 250 N

50 mm2
= 250 N

50 × 10−6m2

= 5 × 106 N/m2 = 5 MPa

That is, the pressure exerted by each leg on the
floor is 5 MPa.

Problem 2. Calculate the force exerted by
the atmosphere on a pool of water that is
30 m long by 10 m wide, when the
atmospheric pressure is 100 kPa.

From above, pressure = force

area
, hence,

force = pressure × area.

The area of the pool is 30 m × 10 m, i.e. 300 m2.

Thus, force on pool, F = 100 kPa × 300 m2 and

since 1 Pa = 1 N/m2,

F = (100 × 103)
N

m2
× 300 m2 = 3 × 107 N

= 30 × 106 N = 30 MN

That is, the force on the pool of water is 30 MN.

Problem 3. A circular piston exerts a
pressure of 80 kPa on a fluid, when the force
applied to the piston is 0.2 kN. Find the
diameter of the piston.

From above, pressure = force

area

hence, area = force

pressure

Force in Newton’s
= 0.2 kN = 0.2 × 103 N = 200 N, and
pressure in Pascal’s is 80 kPa = 80 000 Pa

= 80 000 N/m2.
Hence,

area = 200 N

80 000 N/m2
= 0.0025 m2

Since the piston is circular, its area is given by

πd2/4, where d is the diameter of the piston. Hence,

area = πd2

4
= 0.0025

from which, d2 = 0.0025 × 4

π
= 0.003183

i.e. d =
√

0.003183

= 0.0564 m, i.e. 56.4 mm

Hence, the diameter of the piston is 56.4 mm.
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Now try the following exercise

Exercise 106 Further problems on pres-
sure

1. A force of 280 N is applied to a piston
of a hydraulic system of cross-sectional

area 0.010 m2. Determine the pressure
produced by the piston in the hydraulic
fluid. [28 kPa]

2. Find the force on the piston of question 1
to produce a pressure of 450 kPa.

[4.5 kN]

3. If the area of the piston in question
1 is halved and the force applied is
280 N, determine the new pressure in the
hydraulic fluid. [56 kPa]

21.2 Fluid pressure

A fluid is either a liquid or a gas and there are
four basic factors governing the pressure within
fluids.

(a) The pressure at a given depth in a fluid is equal
in all directions, see Figure 21.1(a).

(b) The pressure at a given depth in a fluid is
independent of the shape of the container in
which the fluid is held. In Figure 21.1(b), the
pressure at X is the same as the pressure
at Y .

F

P

P P
P

X
Y

A

B

C
D

E

F

D

B
A C

(a) (b) (c) (d)

Figure 21.1

(c) Pressure acts at right angles to the surface con-
taining the fluid. In Figure 21.1(c), the pres-
sures at points A to F all act at right angles to
the container.

(d) When a pressure is applied to a fluid, this
pressure is transmitted equally in all directions.
In Figure 21.1(d), if the mass of the fluid is
neglected, the pressures at points A to D are
all the same.

The pressure, p, at any point in a fluid depends on
three factors:

(a) the density of the fluid, ρ, in kg/m3,

(b) the gravitational acceleration, g, taken as

approximately 9.8 m/s2 (or the gravitational
field force in N/kg), and

(c) the height of fluid vertically above the point, h
metres.

The relationship connecting these quantities is:

p = ρgh Pascal’s

When the container shown in Figure 21.2 is filled

with water of density 1000 kg/m3, the pressure due
to the water at a depth of 0.03 m below the surface
is given by:

p = ρgh = (1000 × 9.8 × 0.03) Pa = 294 Pa

0.03 m

Figure 21.2

Problem 4. A tank contains water to a
depth of 600 mm. Calculate the water
pressure (a) at a depth of 350 mm, and (b) at
the base of the tank. Take the density of

water as 1000 kg/m3 and the gravitational

acceleration as 9.8 m/s2.

From above, pressure p at any point in a fluid is
given by p = ρgh pascals, where ρ is the density

in kg/m3, g is the gravitational acceleration in m/s2

and h is the height of fluid vertically above the point.

(a) At a depth of 350 mm, i.e. 0.35 m,

p = 1000×9.8×0.35 = 3430 Pa = 3.43 kPa

(b) At the base of the tank, the vertical height of
the water is 600 mm, i.e. 0.6 m. Hence,

p = 1000 × 9.8 × 0.6 = 5880 Pa = 5.88 kPa

Problem 5. A storage tank contains petrol
to a height of 4.7 m. If the pressure at the



232 MECHANICAL ENGINEERING PRINCIPLES

base of the tank is 32.3 kPa, determine the
density of the petrol. Take the gravitational

field force as 9.8 m/s2.

From above, pressure p = ρgh Pascal’s, where

ρ is the density in kg/m3, g is the gravitational

acceleration in m/s2 and h is the vertical height of
the petrol.

Transposing gives: ρ = p

gh

The pressure p is 32.2 kPa = 32200 Pa, hence,

density, ρ = 32200

9.8 × 4.7
= 699 kg/m3

That is, the density of the petrol is 699 kg/m3.

Problem 6. A vertical tube is partly filled

with mercury of density 13600 kg/m3. Find
the height, in millimetres, of the column of
mercury, when the pressure at the base of the
tube is 101 kPa. Take the gravitational field

force as 9.8 m/s2.

From above, pressure p = ρgh, hence vertical
height h is given by:

h = p

ρg

Pressure p = 101 kPa = 101000 Pa, thus,

h = 101000

13600 × 9.8
= 0.758 m

That is, the height of the column of mercury is
758 mm.

Now try the following exercise

Exercise 107 Further problems on fluid
pressure

Take the gravitational acceleration as 9.8 m/s2

1. Determine the pressure acting at the base
of a dam, when the surface of the water is
35 m above base level. Take the density

of water as 1000 kg/m3. [343 kPa]

2. An uncorked bottle is full of sea water
of density 1030 kg/m3. Calculate, correct
to 3 significant figures, the pressures on

the side wall of the bottle at depths of
(a) 30 mm, and (b) 70 mm below the
top of the bottle.

[(a) 303 Pa (b) 707 Pa]

3. A U-tube manometer is used to determine
the pressure at a depth of 500 mm below
the free surface of a fluid. If the pressure
at this depth is 6.86 kPa, calculate the
density of the liquid used in the manome-

ter. [1400 kg/m3]

21.3 Atmospheric pressure

The air above the Earth’s surface is a fluid, hav-
ing a density, ρ, which varies from approximately

1.225 kg/m3 at sea level to zero in outer space.
Since p = ρgh, where height h is several thou-
sands of metres, the air exerts a pressure on all
points on the earth’s surface. This pressure, called
atmospheric pressure, has a value of approxi-
mately 100 kilopascals. Two terms are commonly
used when measuring pressures:

(a) absolute pressure, meaning the pressure above
that of an absolute vacuum (i.e. zero pres-
sure), and

(b) gauge pressure, meaning the pressure above
that normally present due to the atmosphere.

Thus, absolute pressure = atmospheric pressure+
gauge pressure
Thus, a gauge pressure of 50 kPa is equivalent to an
absolute pressure of (100 + 50) kPa, i.e. 150 kPa,
since the atmospheric pressure is approximately
100 kPa.

Problem 7. Calculate the absolute pressure
at a point on a submarine, at a depth of 30 m
below the surface of the sea, when the
atmospheric pressure is 101 kPa. Take the

density of sea water as 1030 kg/m3 and the

gravitational acceleration as 9.8 m/s2.

From Section 21.2, the pressure due to the sea, that
is, the gauge pressure (pg) is given by:

pg = ρgh Pascal’s, i.e.

pg = 1030 × 9.8 × 30 = 302820 Pa=302.82 kPa
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From above, absolute pressure

= atmospheric pressure + gauge pressure

= (101 + 302.82) kPa = 403.82 kPa

That is, the absolute pressure at a depth of 30 m
is 403.82 kPa.

Now try the following exercise

Exercise 108 Further problems on atmo-
spheric pressure

Take the gravitational acceleration as 9.8 m/s2,

the density of water as 1000 kg/m3, and the

density of mercury as 13600 kg/m3.

1. The height of a column of mercury in
a barometer is 750 mm. Determine the
atmospheric pressure, correct to 3 signif-
icant figures. [100 kPa]

2. A U-tube manometer containing mercury
gives a height reading of 250 mm of mer-
cury when connected to a gas cylinder. If
the barometer reading at the same time is
756 mm of mercury, calculate the abso-
lute pressure of the gas in the cylinder,
correct to 3 significant figures.

[134 kPa]

3. A water manometer connected to a
condenser shows that the pressure in the
condenser is 350 mm below atmospheric
pressure. If the barometer is reading
760 mm of mercury, determine the
absolute pressure in the condenser, correct
to 3 significant figures. [97.9 kPa]

4. A Bourdon pressure gauge shows a pres-
sure of 1.151 MPa. If the absolute pres-
sure is 1.25 MPa, find the atmospheric
pressure in millimetres of mercury.

[743 mm]

21.4 Archimedes’ principle

Archimedes’ principle states that:

If a solid body floats, or is submerged, in a liquid,
the liquid exerts an upthrust on the body equal to the
gravitational force on the liquid displaced by the body.

In other words, if a solid body is immersed in a
liquid, the apparent loss of weight is equal to the
weight of liquid displaced.

If V is the volume of the body below the surface
of the liquid, then the apparent loss of weight W is
given by:

W = V ω = V ρg

where ω is the specific weight (i.e. weight per unit
volume) and ρ is the density.

If a body floats on the surface of a liquid all of
its weight appears to have been lost. The weight
of liquid displaced is equal to the weight of the
floating body.

Problem 8. A body weighs 2.760 N in air
and 1.925 N when completely immersed in

water of density 1000 kg/m3. Calculate
(a) the volume of the body, (b) the density of
the body and (c) the relative density of the
body. Take the gravitational acceleration as

9.81 m/s2.

(a) The apparent loss of weight is 2.760 N −
1.925 N = 0.835 N. This is the weight of
water displaced, i.e. Vρg, where V is the
volume of the body and ρ is the density of
water, i.e.

0.835 N = V × 1000 kg/m3 × 9.81 m/s2

= V × 9.81 kN/m3

Hence, V = 0.835

9.81 × 103
m3

= 8.512 × 10−5 m3

= 8.512 × 104 mm3

(b) The density of the body

= mass

volume
= weight

g × V

= 2.760 N

9.81 m/s2 × 8.512 × 10−5 m3

=
2.760

9.81
kg × 105

8.512 m3
= 3305 kg/m3

= 3.305 tonne/m3

(c) Relative density = density

density of water
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Hence, the relative density of the body

= 3305 kg/m3

1000 kg/m3
= 3.305

Problem 9. A rectangular watertight box is
560 mm long, 420 mm wide and 210 mm
deep. It weighs 223 N.

(a) If it floats with its sides and ends
vertical in water of density 1030 kg/m3,
what depth of the box will be
submerged?

(b) If the box is held completely
submerged in water of density

1030 kg/m3, by a vertical chain
attached to the underside of the box,
what is the force in the chain?

(a) The apparent weight of a floating body is zero.
That is, the weight of the body is equal to
the weight of liquid displaced. This is given
by: Vρg where V is the volume of liquid
displaced, and ρ is the density of the liquid.

Here,

223 N = V × 1030 kg/m3 × 9.81 m/s2

= V × 10.104 kN/m3

Hence,

V = 223 N

10.104 kN/m3
= 22.07 × 10−3 m3

This volume is also given by Lbd, where
L = length of box, b = breadth of box, and
d = depth of box submerged, i.e.

22.07 × 10−3 m3 = 0.56 m × 0.42 m × d

Hence, depth submerged,

d = 22.07 × 10−3

0.56 × 0.42
= 0.09384 m = 93.84 mm

(b) The volume of water displaced is the total
volume of the box. The upthrust or buoyancy
of the water, i.e. the ‘apparent loss of weight’,
is greater than the weight of the box. The force
in the chain accounts for the difference.

Volume of water displaced,

V = 0.56 m × 0.42 m × 0.21 m

= 4.9392 × 10−2 m3

Weight of water displaced

= Vρg = 4.9392 × 10−2 m3 × 1030 kg/m3

× 9.81 m/s2

= 499.1 N

The force in the chain

= weight of water displaced−weight of box

= 499.1 N − 223 N = 276.1 N

Now try the following exercise

Exercise 109 Further problems on
Archimedes’ principle

Take the gravitational acceleration as 9.8 m/s2,

the density of water as 1000 kg/m3 and the

density of mercury as 13600 kg/m3.

1. A body of volume 0.124 m3 is completely

immersed in water of density 1000 kg/m3.
What is the apparent loss of weight of the
body? [1.215 kN]

2. A body of weight 27.4 N and volume

1240 cm3 is completely immersed in

water of specific weight 9.81 kN/m3.
What is its apparent weight?

[15.24 N]

3. A body weighs 512.6 N in air and
256.8 N when completely immersed in oil

of density 810 kg/m3. What is the volume
of the body?

[32.22 dm3 = 0.03222 m3]

4. A body weighs 243 N in air and 125 N
when completely immersed in water.
What will it weigh when completely
immersed in oil of relative density 0.8?

[148.6 N]

5. A watertight rectangular box, 1.2 m long
and 0.75 m wide, floats with its sides
and ends vertical in water of density
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1000 kg/m3. If the depth of the box in
the water is 280 mm, what is its weight?

[2.47 kN]

6. A body weighs 18 N in air and 13.7 N
when completely immersed in water of

density 1000 kg/m3. What is the density
and relative density of the body?

[4.186 tonne/m3, 4.186]

7. A watertight rectangular box is 660 mm
long and 320 mm wide. Its weight is
336 N. If it floats with its sides and ends
vertical in water of density 1020 kg/m3,
what will be its depth in the water?

[159 mm]

8. A watertight drum has a volume of

0.165 m3 and a weight of 115 N. It is
completely submerged in water of density

1030 kg/m3, held in position by a single
vertical chain attached to the underside of
the drum. What is the force in the chain?

[1.551 kN]

21.5 Measurement of pressure

As stated earlier, pressure is the force exerted by
a fluid per unit area. A fluid (i.e. liquid, vapour or
gas) has a negligible resistance to a shear force, so
that the force it exerts always acts at right angles to
its containing surface.

The SI unit of pressure is the Pascal, Pa, which

is unit force per unit area, i.e. 1 Pa = 1 N/m2. The
Pascal is a very small unit and a commonly used
larger unit is the bar, where

1 bar = 105 Pa

Atmospheric pressure is due to the mass of the
air above the Earth’s surface. Atmospheric pressure
changes continuously. A standard value of atmo-
spheric pressure, called ‘standard atmospheric pres-
sure’, is often used, having a value of 101325 Pa
or 1.01325 bars or 1013.25 millibars. This latter
unit, the millibar, is usually used in the measure-
ment of meteorological pressures. (Note that when
atmospheric pressure varies from 101325 Pa it is no
longer standard.)

Pressure indicating instruments are made in a
wide variety of forms because of their many dif-
ferent applications. Apart from the obvious criteria

such as pressure range, accuracy and response, many
measurements also require special attention to mate-
rial, sealing and temperature effects. The fluid whose
pressure is being measured may be corrosive or may
be at high temperatures. Pressure indicating devices
used in science and industry include:

(i) barometers (see Section 21.6),

(ii) manometers (see Section 21.8),

(iii) Bourdon pressure gauge (see Section 21.9),
and

(iv) McLeod and Pirani gauges (see Sec-
tion 21.10).

21.6 Barometers

Introduction

A barometer is an instrument for measuring atmo-
spheric pressure. It is affected by seasonal changes
of temperature. Barometers are therefore also used
for the measurement of altitude and also as one
of the aids in weather forecasting. The value of
atmospheric pressure will thus vary with climatic
conditions, although not usually by more than about
10% of standard atmospheric pressure.

Construction and principle of operation

A simple barometer consists of a glass tube, just less
than 1 m in length, sealed at one end, filled with
mercury and then inverted into a trough containing
more mercury. Care must be taken to ensure that
no air enters the tube during this latter process.
Such a barometer is shown in Figure 21.3(a) and
it is seen that the level of the mercury column
falls, leaving an empty space, called a vacuum.
Atmospheric pressure acts on the surface of the
mercury in the trough as shown and this pressure
is equal to the pressure at the base of the column of
mercury in the inverted tube, i.e. the pressure of the
atmosphere is supporting the column of mercury. If
the atmospheric pressure falls the barometer height
h decreases. Similarly, if the atmospheric pressure
rises then h increases. Thus atmospheric pressure
can be measured in terms of the height of the
mercury column. It may be shown that for mercury
the height h is 760 mm at standard atmospheric
pressure, i.e. a vertical column of mercury 760 mm
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high exerts a pressure equal to the standard value of
atmospheric pressure.
There are thus several ways in which atmospheric
pressure can be expressed:
Standard atmospheric pressure

= 101325 Pa or 101.325 kPa

= 101325 N/m2 or 101.325 kN/m2

= 1.01325 bars or 1013.25 mbars

= 760 mm of mercury

Another arrangement of a typical barometer is
shown in Figure 21.3(b) where a U-tube is used
instead of an inverted tube and trough, the principle
being similar.

If, instead of mercury, water was used as the
liquid in a barometer, then the barometric height
h at standard atmospheric pressure would be 13.6
times more than for mercury, i.e. about 10.4 m high,

which is not very practicable. This is because the
relative density of mercury is 13.6.

Types of barometer

The Fortin barometer is an example of a mercury
barometer that enables barometric heights to be mea-
sured to a high degree of accuracy (in the order of
one-tenth of a millimetre or less). Its construction
is merely a more sophisticated arrangement of the
inverted tube and trough shown in Figure 21.3(a),
with the addition of a vernier scale to measure
the barometric height with great accuracy. A dis-
advantage of this type of barometer is that it is not
portable.

A Fortin barometer is shown in Figure 21.4. Mer-
cury is contained in a leather bag at the base of the
mercury reservoir, and height, H , of the mercury
in the reservoir can be adjusted using the screw at
the base of the barometer to depress or release the
leather bag. To measure the atmospheric pressure
the screw is adjusted until the pointer at H is just
touching the surface of the mercury and the height
of the mercury column is then read using the main
and vernier scales. The measurement of atmospheric
pressure using a Fortin barometer is achieved much
more accurately than by using a simple barometer.

Main
scaleVernier

scale

Barometric
height in
millimetres
of mercury

H

Mercury
reservoir

Figure 21.4
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A portable type often used is the aneroid barom-
eter. Such a barometer consists basically of a cir-
cular, hollow, sealed vessel, S, usually made from
thin flexible metal. The air pressure in the vessel
is reduced to nearly zero before sealing, so that
a change in atmospheric pressure will cause the
shape of the vessel to expand or contract. These
small changes can be magnified by means of a lever
and be made to move a pointer over a calibrated
scale. Figure 21.5 shows a typical arrangement of
an aneroid barometer. The scale is usually circu-
lar and calibrated in millimetres of mercury. These
instruments require frequent calibration.

21.7 Absolute and gauge pressure

A barometer measures the true or absolute pres-
sure of the atmosphere. The term absolute pressure
means the pressure above that of an absolute vac-
uum (which is zero pressure), as stated earlier. In
Figure 21.6 a pressure scale is shown with the line
AB representing absolute zero pressure (i.e. a vac-
uum) and line CD representing atmospheric pres-
sure. With most practical pressure-measuring instru-
ments the part of the instrument that is subjected
to the pressure being measured is also subjected
to atmospheric pressure. Thus practical instruments
actually determine the difference between the pres-
sure being measured and atmospheric pressure. The
pressure that the instrument is measuring is then
termed the gauge pressure. In Figure 21.6, the line
EF represents an absolute pressure which has a value
greater than atmospheric pressure, i.e. the ‘gauge’
pressure is positive.

Pressure
scale

E

C

A B

D

FPositive gauge
pressure

Atmospheric pressure

Negative gauge
pressure

Absolute
pressure

Absolute
pressure

G H

Absolute zero pressure
(complete vacuum)

Figure 21.6

Thus, absolute pressure
= gauge pressure + atmospheric pressure.

Hence a gauge pressure of, say, 60 kPa recorded
on an indicating instrument when the atmospheric
pressure is 101 kPa is equivalent to an absolute
pressure of 60 kPa + 101 kPa, or 161 kPa.

Pressure-measuring indicating instruments are ref-
erred to generally as pressure gauges (which acts
as a reminder that they measure ‘gauge’ pressure).

It is possible, of course, for the pressure indi-
cated on a pressure gauge to be below atmospheric
pressure, i.e. the gauge pressure is negative. Such a
gauge pressure is often referred to as a vacuum, even
though it does not necessarily represent a complete
vacuum at absolute zero pressure. Such a pressure
is shown by the line GH in Figure 21.6. An indicat-
ing instrument used for measuring such pressures is
called a vacuum gauge.

A vacuum gauge indication of, say, 0.4 bar means
that the pressure is 0.4 bar less than atmospheric
pressure. If atmospheric pressure is 1 bar, then the
absolute pressure is 1 − 0.4 or 0.6 bar.

21.8 The manometer

A manometer is a device for measuring or compar-
ing fluid pressures, and is the simplest method of
indicating such pressures.

U-tube manometer

A U-tube manometer consists of a glass tube
bent into a U shape and containing a liquid such
as mercury. A U-tube manometer is shown in
Figure 21.7(a). If limb A is connected to a container
of gas whose pressure is above atmospheric, then the
pressure of the gas will cause the levels of mercury
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to move as shown in Figure 21.7(b), such that the
difference in height is h1. The measuring scale can
be calibrated to give the gauge pressure of the gas
as h1 mm of mercury.

If limb A is connected to a container of gas whose
pressure is below atmospheric then the levels of
mercury will move as shown in Figure 21.7(c), such
that their pressure difference is h2 mm of mercury.

It is also possible merely to compare two pres-
sures, say, PA and PB , using a U-tube manome-
ter. Figure 21.7(d) shows such an arrangement with
(PB − PA) equivalent to h mm of mercury. One
application of this differential pressure-measuring
device is in determining the velocity of fluid flow
in pipes (see Chapter 22).

For the measurement of lower pressures, water
or paraffin may be used instead of mercury in the
U-tube to give larger values of h and thus greater
sensitivity.

Inclined manometers

For the measurement of very low pressures,
greater sensitivity is achieved by using an inclined

manometer, a typical arrangement of which is shown
in Figure 21.8. With the inclined manometer the
liquid used is water and the scale attached to the
inclined tube is calibrated in terms of the vertical
height h. Thus when a vessel containing gas under
pressure is connected to the reservoir, movement
of the liquid levels of the manometer occurs. Since
small-bore tubing is used the movement of the liquid
in the reservoir is very small compared with the
movement in the inclined tube and is thus neglected.
Hence the scale on the manometer is usually used
in the range 0.2 mbar to 2 mbar.

Gas under pressure 

h

Reservoir

Water

Scale

Inclined manometer

Figure 21.8

The pressure of a gas that a manometer is capable
of measuring is naturally limited by the length of
tube used. Most manometer tubes are less than
2 m in length and this restricts measurement to a
maximum pressure of about 2.5 bar (or 250 kPa)
when mercury is used.

21.9 The Bourdon pressure gauge

Pressures many times greater than atmospheric
can be measured by the Bourdon pressure gauge,
which is the most extensively used of all pressure-
indicating instruments. It is a robust instrument. Its
main component is a piece of metal tube (called the
Bourdon tube), usually made of phosphor bronze or
alloy steel, of oval or elliptical cross-section, sealed
at one end and bent into an arc. In some forms the
tube is bent into a spiral for greater sensitivity. A
typical arrangement is shown in Figure 21.9(a). One
end, E, of the Bourdon tube is fixed and the fluid
whose pressure is to be measured is connected to this
end. The pressure acts at right angles to the metal
tube wall as shown in the cross-section of the tube
in Figure 21.9(b). Because of its elliptical shape it
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is clear that the sum of the pressure components,
i.e. the total force acting on the sides A and C,
exceeds the sum of the pressure components acting
on ends B and D. The result is that sides A and
C tend to move outwards and B and D inwards
tending to form a circular cross-section. As the
pressure in the tube is increased the tube tends to
uncurl, or if the pressure is reduced the tube curls
up further. The movement of the free end of the
tube is, for practical purposes, proportional to the
pressure applied to the tube, this pressure, of course,
being the gauge pressure (i.e. the difference between
atmospheric pressure acting on the outside of the
tube and the applied pressure acting on the inside
of the tube). By using a link, a pivot and a toothed
segment as shown in Figure 21.9(a), the movement
can be converted into the rotation of a pointer over
a graduated calibrated scale.

Graduated
scale

Toothed
segment

Pointer

Link

Pivot
E

Bourdon
tube

Fluid pressure
to be measured

(a)

A

C

(b)

PressureD B

Figure 21.9

The Bourdon tube pressure gauge is capable of

measuring high pressures up to 104 bar (i.e. 7600 m

of mercury) with the addition of special safety
features.

Weights

Test
gauge

Oil in cylinder Piston

A dead weight tester

Figure 21.10

A pressure gauge must be calibrated, and this
is done either by a manometer, for low pressures,
or by a piece of equipment called a ‘dead weight
tester’. This tester consists of a piston operating in
an oil-filled cylinder of known bore, and carrying
accurately known weights as shown in Figure 21.10.
The gauge under test is attached to the tester and a
screwed piston or ram applies the required pressure,
until the weights are just lifted. While the gauge is
being read, the weights are turned to reduce friction
effects.

21.10 Vacuum gauges

Vacuum gauges are instruments for giving a visual
indication, by means of a pointer, of the amount
by which the pressure of a fluid applied to the
gauge is less than the pressure of the surrounding
atmosphere. Two examples of vacuum gauges are
the McLeod gauge and the Pirani gauge.

McLeod gauge

The McLeod gauge is normally regarded as a stan-
dard and is used to calibrate other forms of vacuum
gauges. The basic principle of this gauge is that it
takes a known volume of gas at a pressure so low
that it cannot be measured, then compresses the gas
in a known ratio until the pressure becomes large
enough to be measured by an ordinary manometer.
This device is used to measure low pressures, often

in the range 10−6 to 1.0 mm of mercury. A disad-
vantage of the McLeod gauge is that it does not give
a continuous reading of pressure and is not suitable
for registering rapid variations in pressure.
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Pirani gauge

The Pirani gauge measures the resistance and thus
the temperature of a wire through which current is
flowing. The thermal conductivity decreases with

the pressure in the range 10−1 to 10−4 mm of
mercury so that the increase in resistance can be
used to measure pressure in this region. The Pirani
gauge is calibrated by comparison with a McLeod
gauge.

21.11 Hydrostatic pressure on
submerged surfaces

From Section 21.2, it can be seen that hydro-
static pressure increases with depth according to the
formula:

p = ρgh

Problem 10. The deepest part of the oceans
is the Mariana’s trench, where its depth is
approximately 11.52 km (7.16 miles). What
is the gauge pressure at this depth, assuming

that ρ = 1020 kg/m3 and g = 9.81 m/s2

Gauge pressure,

p = ρgh

= 1020
kg

m3
× 9.81

m

s2
× 11.52 × 103 m

= 11.527 × 107 N/m2 × 1 bar

105 N/m2

i.e. pressure,

p= 1152.7 bar

Note that from the above calculation, it can be
seen that a gauge pressure of 1 bar is approximately
equivalent to a depth of 10 m.

Problem 11. Determine an expression for
the thrust acting on a submerged plane
surface, which is inclined to the horizontal
by an angle θ , as shown in Figure 21.11.

q

y

Normal
view of
plane

Edge view
of plane

F

y

h

h

P(x′, y′)

C(x, y)

dA

Free surface (atmosphere)0

Figure 21.11

From Figure 21.11,

δF = elemental thrust on dA

= ρgh× dA

but h = y sin θ

Hence, δF = ρgy sin θ dA

Total thrust on plane surface

= F =
∫

dF =
∫

ρgy sin θ dA

or F = ρg sin θ

∫

y dA

However,
∫

y dA = Ah

where A = area of the surface,

and h = distance of the centroid of the plane

from the free surface.

Problem 12. Determine an expression for
the position of the centre of pressure of the
plane surface P(x ′, y ′) of Figure 21.11; this
is also the position of the centre of thrust.

Taking moments about O gives:

Fy ′ =
∫

ρgy sin θ dA× y

However, F = ρg sin θ

∫

y dA
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Hence, y ′ =

∫

ρgy2 sin θ dA

ρg sin θ

∫

y dA

=
ρg sin θ

∫

y2 dA

ρg sin θ

∫

y dA

= (Ak2)Ox

Ay

where (Ak2)Ox = the second moment of area

about Ox

k = the radius of gyration from O.

Now try the following exercise

Exercise 110 Further problems on hydro-
static pressure on sub-
merged surfaces

(Take g = 9.81 m/s2)

1. Determine the gauge pressure acting on
the surface of a submarine that dives to
a depth of 500 m. Take water density as

1020 kg/m3. [50.03 bar]

2. Solve Problem 1, when the submarine
dives to a depth of 780 m. [78.05 bar]

3. If the gauge pressure measured on the sur-
face of the submarine of Problem 1 were
92 bar, at what depth has the submarine
dived to? [919.4 m]

4. A tank has a flat rectangular end, which
is of size 4 m depth by 3 m width. If
the tank filled with water to its brim
and the flat end is vertical, determine the
thrust on this end and the position of its
centre of pressure. Take water density as

1000 kg/m3. [0.235 MN; 2.668 m]

5. If another vertical flat rectangular end of
the tank of Problem 4 is of size 6 m depth
by 4 m width, determine the thrust on this
end and position of the centre of pressure.
The depth of water at this end may be
assumed to be 6 m. [0.706 MN; 4 m]

6. A tank has a flat rectangular end, which
is inclined to the horizontal surface, so
that θ = 30°, where θ is as defined in
Figure 21.11, page 240. If this end is of
size 6 m height and 4 m width, determine
the thrust on this end and the position of

the centre of pressure from the top. The
tank may be assumed to be just full.

[0.353 MN; 2 m]

21.12 Hydrostatic thrust on curved
surfaces

As hydrostatic pressure acts perpendicularly to a
surface, the integration of δF over the surface can be
complicated. One method of determining the thrust
on a curved surface is to project its area on flat
vertical and horizontal surfaces, as shown by AB
and DE, respectively, in Figure 21.12.

DFree surface E

G

A

B

F Fx

−Fy

W

Figure 21.12

From equilibrium considerations, F = Fx and
W = Fy and these thrusts must act through the
centre of pressures of the respective vertical and hor-
izontal planes. The resultant thrust can be obtained
by adding Fx and Fy vectorially, where

W = weight of the fluid enclosed by the curved

surface and the vertical projection lines

to the free surface, and

G = centre of gravity of W

21.13 Buoyancy

The upward force exerted by the fluid on a body
that is wholly or partially immersed in it is called
the buoyancy of the body.



242 MECHANICAL ENGINEERING PRINCIPLES

21.14 The stability of floating bodies

For most ships and boats the centre of buoyancy (B)
of the vessel is usually below the vessels’ centre of
gravity (G), as shown in Figure 21.13(a). When this
vessel is subjected to a small angle of keel (θ ), as
shown in Figure 21.13(b), the centre of buoyancy
moves to the position B ′, where

W

W

G

B

W

W

M

G

B B ′

(a) (b)

q

Figure 21.13

BM = the centre of curvature of the centre of

buoyancy = I

V
, (given without proof)

GM = the metacentric height,

M = the position of the metacentre,

I = the second moment of area of the water

plane about its centreline, and

V = displaced volume of the vessel.

The metacentric height GM can be found by
a simple inclining experiment, where a weight P
is moved transversely a distance x, as shown in
Figure 21.14.

G

P

B
G G ′
B B ′ P

M

x

(a) (b)

Figure 21.14

From rotational equilibrium considerations,

W(GM) tan θ = Px

Therefore, GM = Px

W
cot θ (21.1)

where W = the weight of the vessel, and

cot θ = 1

tan θ

Problem 13. A naval architect has carried
out hydrostatic calculations on a yacht,
where he has found the following:

M = mass of yacht = 100 tonnes,

KB = vertical distance of the centre of

buoyancy (B) above the keel (K)

= 1.2 m (see Figure 21.15),

BM = distance of the metacentre (M) above

the centre of buoyancy = 2.4 m.

M

G

B

K

Figure 21.15

He then carries out an inclining experiment,
where he moves a mass of 50 kg through a
transverse distance of 10 m across the
yacht’s deck. In doing this, he finds that the
resulting angle of keel θ = 1°. What is the
metacentric height (GM) and the position of
the centre of gravity of the yacht above the

keel, namely KG? Assume g = 9.81 m/s2.

P = 50 kg × 9.81 = 490.5 N,

W = 100 tonnes × 1000
kg

tonne
× 9.81

m

s2

= 981 kN,

x = 10 m,

θ = 1° from which, tan θ = 0.017455 and

cot θ = 1

tan θ
= 57.29
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From equation (21.1),

GM = Px

W
cot θ

= 490.5 N × 10 m × 57.29

981 × 103 N

i.e. metacentric height, GM = 0.286 m

Now KM = KB + BM

= 1.2 m + 2.4 m = 3.6 m

KG = KM − GM

= 3.6 − 0.286 = 3.314 m

i.e. centre of gravity above the keel, KG= 3.314 m,
(where ‘K’ is a point on the keel).

Problem 14. A barge of length 30 m and
width 8 m floats on an even keel at a depth
of 3 m. What is the value of its buoyancy?

Take density of water, ρ, as 1000 kg/m3 and

g as 9.81 m/s2.

The displaced volume of the barge,

V = 30 m × 8 m × 3 m = 720 m3.

From Section 21.4,

buoyancy = Vρg

= 720 m3 × 1000
kg

m3
× 9.81

m

s2

= 7.063 MN

Problem 15. If the vertical centre of gravity
of the barge in Problem 14 is 2 m above the
keel, (i.e. KG = 2 m), what is the
metacentric height of the barge?

Now KB = the distance of the centre of buoyancy

of the barge from the keel = 3 m

2
i.e. KB = 1.5 m.

From page 242, BM = I

V
and for a rectangle,

I = Lb3

12
from Table 7.1, page 91, where

L = length of the waterplane = 30 m, and

b = width of the waterplane = 8 m.

Hence, moment of inertia,

I = 30 × 83

12
= 1280 m4

From Problem 14, volume,

V = 720 m3,

hence,

BM = I

V
= 1280

720
= 1.778 m

Now,

KM = KB + BM = 1.5 m + 1.778 m = 3.278 m

i.e. the centre of gravity above the keel,

KM = 3.278 m.

Since KG = 2 m (given), then

GM = KM −KG = 3.278 − 2 = 1.278 m,

i.e. the metacentric height of the barge,
GM = 1.278 m.

Now try the following exercise

Exercise 111 Further problems on hydro-
statics

In the following problems, where necessary,

take g = 9.81 m/s2 and density of water

ρ = 1020 kg/m3.

1. A ship is of mass 10000 kg. If the ship
floats in the water, what is the value of
its buoyancy? [98.1 kN]

2. A submarine may be assumed to be in
the form of a circular cylinder of 10 m
external diameter and of length 100 m.
If the submarine floats just below the
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surface of the water, what is the value of
its buoyancy? [78.59 MN]

3. A barge of length 20 m and of width 5 m
floats on an even keel at a depth of 2 m.
What is the value of its buoyancy?

[2 MN]

4. An inclining experiment is carried out on
the barge of Problem 3 where a mass
of 20 kg is moved transversely across
the deck by a distance of 2.2 m. The
resulting angle of keel is 0.8°. Determine
the metacentric height, GM.

[0.155 m]

5. Determine the value of the radius of cur-
vature of the centre of buoyancy, namely,
BM, for the barge of Problems 3 and 4,
and hence the position of the centre of
gravity above the keel, KG.

[2.026 m]

6. If the submarine of Problem 2 floats so
that its top is 2 m above the water, deter-
mine the radius of curvature of the centre
of buoyancy, BM. [0.633 m]

Exercise 112 Short answer questions on
hydrostatics

1. Define pressure.

2. State the unit of pressure.

3. Define a fluid.

4. State the four basic factors governing the
pressure in fluids.

5. Write down a formula for determining
the pressure at any point in a fluid in
symbols, defining each of the symbols
and giving their units.

6. What is meant by atmospheric pressure?

7. State the approximate value of atmo-
spheric pressure.

8. State what is meant by gauge pressure.

9. State what is meant by absolute pressure.

10. State the relationship between absolute,
gauge and atmospheric pressures.

11. State Archimedes’ principle.

12. Name four pressure measuring devices.

13. Standard atmospheric pressure is
101325 Pa. State this pressure in mil-
libars.

14. Briefly describe how a barometer oper-
ates.

15. State the advantage of a Fortin barome-
ter over a simple barometer.

16. What is the main disadvantage of a
Fortin barometer?

17. Briefly describe an aneroid barometer.

18. What is a vacuum gauge?

19. Briefly describe the principle of opera-
tion of a U-tube manometer.

20. When would an inclined manometer be
used in preference to a U-tube manome-
ter?

21. Briefly describe the principle of opera-
tion of a Bourdon pressure gauge.

22. What is a ‘dead weight tester’?

23. What is a Pirani gauge?

24. What is a McLeod gauge used for?

25. What is buoyancy?

26. What does the abbreviation BM mean?

27. What does the abbreviation GM mean?

28. Define BM in terms of the second
moment of area I of the water plane,
and the displaced volume V of a vessel.

29. What is the primary purpose of a ship’s
inclining experiment?

Exercise 113 Multi-choice questions on
hydrostatics (Answers on
page 285)

1. A force of 50 N acts uniformly over and
at right angles to a surface. When the
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area of the surface is 5 m2, the pressure
on the area is:

(a) 250 Pa (b) 10 Pa

(c) 45 Pa (d) 55 Pa

2. Which of the following statements is
false? The pressure at a given depth in a
fluid

(a) is equal in all directions

(b) is independent of the shape of the
container

(c) acts at right angles to the surface
containing the fluid

(d) depends on the area of the surface

3. A container holds water of density

1000 kg/m3. Taking the gravitational

acceleration as 10 m/s2, the pressure at
a depth of 100 mm is:

(a) 1 kPa (b) 1 MPa

(c) 100 Pa (d) 1 Pa

4. If the water in question 3 is now
replaced by a fluid having a density of

2000 kg/m3, the pressure at a depth of
100 mm is:

(a) 2 kPa (b) 500 kPa

(c) 200 Pa (d) 0.5 Pa

5. The gauge pressure of fluid in a pipe
is 70 kPa and the atmospheric pressure
is 100 kPa. The absolute pressure of the
fluid in the pipe is:

(a) 7 MPa (b) 30 kPa

(c) 170 kPa (d) 10/7 kPa

6. A U-tube manometer contains mercury

of density 13600 kg/m3. When the dif-
ference in the height of the mercury lev-
els is 100 mm and taking the gravita-

tional acceleration as 10 m/s2, the gauge
pressure is:

(a) 13.6 Pa (b) 13.6 MPa

(c) 13710 Pa (d) 13.6 kPa

7. The mercury in the U-tube of question
6 is to be replaced by water of density

1000 kg/m3. The height of the tube to

contain the water for the same gauge
pressure is:

(a) (1/13.6) of the original height

(b) 13.6 times the original height

(c) 13.6 m more than the original height

(d) 13.6 m less than the original height

8. Which of the following devices does not
measure pressure?

(a) barometer (b) McLeod gauge

(c) thermocouple (d) manometer

9. A pressure of 10 kPa is equivalent to:

(a) 10 millibars (b) 1 bar

(c) 0.1 bar (d) 0.1 millibars

10. A pressure of 1000 mbars is equiva-
lent to:

(a) 0.1 kN/m2 (b) 10 kPa

(c) 1000 Pa (d) 100 kN/m2

11. Which of the following statements is
false?

(a) Barometers may be used for the
measurement of altitude.

(b) Standard atmospheric pressure is
the pressure due to the mass of the
air above the ground.

(c) The maximum pressure that a mer-
cury manometer, using a 1 m length
of glass tubing, is capable of mea-
suring is in the order of 130 kPa.

(d) An inclined manometer is designed
to measure higher values of pres-
sure than the U-tube manometer.

In questions 12 and 13 assume that
atmospheric pressure is 1 bar.

12. A Bourdon pressure gauge indicates a
pressure of 3 bars. The absolute pressure
of the system being measured is:

(a) 1 bar (b) 2 bars

(c) 3 bars (d) 4 bars

13. In question 12, the gauge pressure is:

(a) 1 bar (b) 2 bars

(c) 3 bars (d) 4 bars
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In questions 14 to 18 select the most
suitable pressure-indicating device from
the following list:

(a) Mercury filled U-tube manometer

(b) Bourdon gauge

(c) McLeod gauge

(d) aneroid barometer

(e) Pirani gauge

(f) Fortin barometer

(g) water-filled inclined barometer

14. A robust device to measure high pres-
sures in the range 0–30 MPa.

15. Calibration of a Pirani gauge.

16. Measurement of gas pressures compara-
ble with atmospheric pressure.

17. To measure pressures of the order of
1 MPa.

18. Measurement of atmospheric pressure to
a high degree of accuracy.

19. Figure 21.7(b), on page 238, shows a
U-tube manometer connected to a gas
under pressure. If atmospheric pressure
is 76 cm of mercury and h1 is measured
in centimetres then the gauge pressure
(in cm of mercury) of the gas is:

(a) h1 (b) h1 + 76

(c) h1 − 76 (d) 76 − h1

20. In question 19 the absolute pressure of
the gas (in cm of mercury) is:

(a) h1 (b) h1 + 76

(c) h1 − 76 (d) 76 − h1

21. Which of the following statements is
true?

(a) Atmospheric pressure of 101.325

kN/m2 is equivalent to 101.325
millibars.

(b) An aneroid barometer is used as a
standard for calibration purposes.

(c) In engineering, ‘pressure’ is the
force per unit area exerted by
fluids.

(d) Water is normally used in a barom-
eter to measure atmospheric pres-
sure.

22. Which of the following statements is
true for a ship floating in equilibrium?

(a) The weight is larger than the buoy-
ancy.

(b) The weight is smaller than the
buoyancy.

(c) The weight is equal to the buoy-
ancy.

(d) The weight is independent of the
buoyancy.

23. For a ship to be initially stable, the
metacentric height must be:

(a) positive (b) negative

(c) zero (d) equal to the buoyancy

24. For a ship to be stable, it is helpful if
KG is:

(a) negative (b) large

(c) small (d) equal to KM
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Fluid flow

22.1 Introduction

The measurement of fluid flow is of great impor-
tance in many industrial processes, some examples
including air flow in the ventilating ducts of a coal
mine, the flow rate of water in a condenser at a
power station, the flow rate of liquids in chemical
processes, the control and monitoring of the fuel,
lubricating and cooling fluids of ships and aircraft
engines, and so on. Fluid flow is one of the most dif-
ficult of industrial measurements to carry out, since
flow behaviour depends on a great many variables
concerning the physical properties of a fluid.

There are available a large number of fluid flow
measuring instruments generally called flowmeters,

which can measure the flow rate of liquids (in m3/s)
or the mass flow rate of gaseous fluids (in kg/s). The
two main categories of flowmeters are differential
pressure flowmeters and mechanical flowmeters.

22.2 Differential pressure flowmeters

When certain flowmeters are installed in pipelines
they often cause an obstruction to the fluid flowing
in the pipe by reducing the cross-sectional area of
the pipeline. This causes a change in the velocity
of the fluid, with a related change in pressure.
Figure 22.1 shows a section through a pipeline into
which a flowmeter has been inserted. The flow rate
of the fluid may be determined from a measurement
of the difference between the pressures on the walls
of the pipe at specified distances upstream and
downstream of the flowmeter. Such devices are
known as differential pressure flowmeters.

The pressure difference in Figure 22.1 is mea-
sured using a manometer connected to appropriate
pressure tapping points. The pressure is seen to be
greater upstream of the flowmeter than downstream,
the pressure difference being shown as h. Calibra-
tion of the manometer depends on the shape of the
obstruction, the positions of the pressure tapping
points and the physical properties of the fluid.

In industrial applications the pressure difference
is detected by a differential pressure cell, the output

h

Downstream

Flow meter causing obstruction in fluid flow

UpstreamDirection of
fluid flow

Manometer

Figure 22.1

from which is either an amplified pressure signal or
an electrical signal.
Examples of differential pressure flowmeters
commonly used include:

(a) Orifice plate (see Section 22.3)

(b) Venturi tube (see Section 22.4)

(c) Flow nozzles (see Section 22.5)

(d) Pitot-static tube (see Section 22.6)

British Standard reference BS 1042: Part 1: 1964
and Part 2A: 1973 ‘Methods for the measurement
of fluid flow in pipes’ gives specifications for mea-
surement, manufacture, tolerances, accuracy, sizes,
choice, and so on, of differential flowmeters.

22.3 Orifice plate

Construction

An orifice plate consists of a circular, thin, flat plate
with a hole (or orifice) machined through its centre
to fine limits of accuracy. The orifice has a diameter
less than the pipeline into which the plate is installed
and a typical section of an installation is shown in
Figure 22.2(a). Orifice plates are manufactured in
stainless steel, monel metal, polyester glass fibre,
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(a)

(b)

A B

Orifice
plate

Direction of flow

Pressure
due to orifice
plate

Figure 22.2

and for large pipes, such as sewers or hot gas mains,
in brick and concrete.

Principles of operation

When a fluid moves through a restriction in a pipe,
the fluid accelerates and a reduction in pressure
occurs, the magnitude of which is related to the flow
rate of the fluid. The variation of pressure near an
orifice plate is shown in Figure 22.2(b). The position
of minimum pressure is located downstream from
the orifice plate where the flow stream is narrowest.
This point of minimum cross-sectional area of the
jet is called the ‘vena contracta’. Beyond this point
the pressure rises but does not return to the original
upstream value and there is a permanent pressure
loss. This loss depends on the size and type of orifice
plate, the positions of the upstream and downstream
pressure tappings and the change in fluid velocity
between the pressure tappings that depends on the
flow rate and the dimensions of the orifice plate.
In Figure 22.2(a) corner pressure tappings are shown
at A and B. Alternatively, with an orifice plate
inserted into a pipeline of diameter d , pressure tap-
pings are often located at distances of d and d/2
from the plate respectively upstream and down-
stream. At distance d upstream the flow pattern is
not influenced by the presence of the orifice plate,
and distance d/2 coincides with the vena contracta.

Advantages of orifice plates

(i) They are relatively inexpensive.

(ii) They are usually thin enough to fit between an
existing pair of pipe flanges.

Disadvantages of orifice plates

(i) The sharpness of the edge of the orifice can
become worn with use, causing calibration
errors.

(ii) The possible build-up of matter against the
plate.

(iii) A considerable loss in the pumping efficiency
due to the pressure loss downstream of the
plate.

Applications

Orifice plates are usually used in medium and large
pipes and are best suited to the indication and control
of essentially constant flow rates. Several applica-
tions are found in the general process industries.

22.4 Venturi tube

Construction

The Venturi tube or venturimeter is an instrument
for measuring with accuracy the flow rate of fluids
in pipes. A typical arrangement of a section through
such a device is shown in Figure 22.3, and consists
of a short converging conical tube called the inlet
or upstream cone, leading to a cylindrical portion
called the throat. A diverging section called the out-
let or recovery cone follows this. The entrance and
exit diameter is the same as that of the pipeline into
which it is installed. Angle β is usually a maximum
of 21°, giving a taper of β/2 of 10.5°. The length
of the throat is made equal to the diameter of the
throat. Angle α is about 5° to 7° to ensure a min-
imum loss of energy but where this is unimportant
α can be as large as 14° to 15°.

b

A

a

B

Entry Throat ExitRecovery cone
Upstream

cone

h
Pressure
chambers

Manometer

Direction of
fluid flow

Figure 22.3
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Pressure tappings are made at the entry (at A)
and at the throat (at B) and the pressure difference h
which is measured using a manometer, a differential
pressure cell or similar gauge, is dependent on
the flow rate through the meter. Usually pressure
chambers are fitted around the entrance pipe and
the throat circumference with a series of tapping
holes made in the chamber to which the manometer
is connected. This ensures that an average pressure
is recorded. The loss of energy due to turbulence
that occurs just downstream with an orifice plate
is largely avoided in the venturimeter due to the
gradual divergence beyond the throat.

Venturimeters are usually made a permanent in-
stallation in a pipeline and are manufactured usu-
ally from stainless steel, cast iron, monel metal or
polyester glass fibre.

Advantages of venturimeters

(i) High accuracy results are possible.

(ii) There is a low pressure loss in the tube (typ-
ically only 2% to 3% in a well proportioned
tube).

(iii) Venturimeters are unlikely to trap any matter
from the fluid being metered.

Disadvantages of venturimeters

(i) High manufacturing costs.

(ii) The installation tends to be rather long (typi-
cally 120 mm for a pipe of internal diameter
50 mm).

22.5 Flow nozzle

The flow nozzle lies between an orifice plate and
the venturimeter both in performance and cost. A

Flow nozzle

Direction of
fluid flow

A B

Figure 22.4

typical section through a flow nozzle is shown
in Figure 22.4 where pressure tappings are located
immediately adjacent to the upstream and down-
stream faces of the nozzle (i.e. at points A and B).
The fluid flow does not contract any further as it
leaves the nozzle and the pressure loss created is
considerably less than that occurring with orifice
plates. Flow nozzles are suitable for use with high
velocity flows for they do not suffer the wear that
occurs in orifice plate edges during such flows.

22.6 Pitot-static tube

A Pitot-static tube is a device for measuring the
velocity of moving fluids or of the velocity of bodies
moving through fluids. It consists of one tube, called
the Pitot tube, with an open end facing the direction
of the fluid motion, shown as pipe R in Figure 22.5,
and a second tube, called the piezometer tube, with
the opening at 90° to the fluid flow, shown as
T in Figure 22.5. Pressure recorded by a pressure
gauge moving with the flow, i.e. static or stationary
relative to the fluid, is called free stream pressure
and connecting a pressure gauge to a small hole in
the wall of a pipe, such as point T in Figure 22.5,
is the easiest method of recording this pressure. The
difference in pressure (pR −pT ), shown as h in the
manometer of Figure 22.5, is an indication of the
speed of the fluid in the pipe.

h

T

RDirection of

fluid flow

Figure 22.5

Figure 22.6 shows a practical Pitot-static tube con-
sisting of a pair of concentric tubes. The centre tube
is the impact probe that has an open end which
faces ‘head-on’ into the flow. The outer tube has
a series of holes around its circumference located
at right angles to the flow, as shown by A and B
in Figure 22.6. The manometer, showing a pressure
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h

B

A
Direction of

fluid flow

Figure 22.6

difference of h, may be calibrated to indicate the
velocity of flow directly.

Applications

A Pitot-static tube may be used for both turbulent
and non-turbulent flow. The tubes can be made very
small compared with the size of the pipeline and the
monitoring of flow velocity at particular points in the
cross-section of a duct can be achieved. The device
is generally unsuitable for routine measurements and
in industry is often used for making preliminary
tests of flow rate in order to specify permanent flow
measuring equipment for a pipeline. The main use
of Pitot tubes is to measure the velocity of solid
bodies moving through fluids, such as the velocity
of ships. In these cases, the tube is connected to
a Bourdon pressure gauge that can be calibrated to
read velocity directly. A development of the Pitot
tube, a pitometer, tests the flow of water in water
mains and detects leakages.

Advantages of Pitot-static tubes

(i) They are inexpensive devices.

(ii) They are easy to install.

(iii) They produce only a small pressure loss in
the tube.

(iv) They do not interrupt the flow.

Disadvantages of Pitot-static tubes

(i) Due to the small pressure difference, they are
only suitable for high velocity fluids.

(ii) They can measure the flow rate only at
a particular position in the cross-section of
the pipe.

(iii) They easily become blocked when used with
fluids carrying particles.

22.7 Mechanical flowmeters

With mechanical flowmeters, a sensing element sit-
uated in a pipeline is displaced by the fluid flowing
past it.

Examples of mechanical flowmeters commonly
used include:

(a) Deflecting vane flowmeter (see Section 22.8)

(b) Turbine type meters (see Section 22.9)

22.8 Deflecting vane flowmeter

The deflecting vane flowmeter consists basically of
a pivoted vane suspended in the fluid flow stream
as shown in Figure 22.7.

Scale Pointer

Pivoted vane

Direction of
fluid flow

Figure 22.7

When a jet of fluid impinges on the vane it
deflects from its normal position by an amount
proportional to the flow rate. The movement of the
vane is indicated on a scale that may be calibrated in
flow units. This type of meter is normally used for
measuring liquid flow rates in open channels or for
measuring the velocity of air in ventilation ducts.
The main disadvantages of this device are that it
restricts the flow rate and it needs to be recalibrated
for fluids of differing densities.

22.9 Turbine type meters

Turbine type flowmeters are those that use some
form of multi-vane rotor and are driven by the fluid
being investigated. Three such devices are the cup
anemometer, the rotary vane positive displacement
meter and the turbine flowmeter.
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(a) Cup anemometer. An anemometer is an ins-
trument that measures the velocity of moving
gases and is most often used for the mea-
surement of wind speed. The cup anemometer
has three or four cups of hemispherical shape
mounted at the end of arms radiating horizon-
tally from a fixed point. The cup system spins
round the vertical axis with a speed approxi-
mately proportional to the velocity of the wind.
With the aid of a mechanical and/or electri-
cal counter the wind speed can be determined
and the device is easily adapted for automatic
recording.

(b) Rotary vane positive displacement meters
measure the flow rate by indicating the quan-
tity of liquid flowing through the meter in a
given time. A typical such device is shown in
section in Figure 22.8 and consists of a cylin-
drical chamber into which is placed a rotor
containing a number of vanes (six in this case).
Liquid entering the chamber turns the rotor and
a known amount of liquid is trapped and car-
ried round to the outlet. If x is the volume
displaced by one blade then for each revolution
of the rotor in Figure 22.8 the total volume dis-
placed is 6x. The rotor shaft may be coupled
to a mechanical counter and electrical devices
which may be calibrated to give flow volume.
This type of meter in its various forms is used
widely for the measurement of domestic and
industrial water consumption, for the accurate
measurement of petrol in petrol pumps and for
the consumption and batch control measure-
ments in the general process and food indus-
tries for measuring flows as varied as solvents,
tar and molasses (i.e. thickish treacle).

Fluid flow

Rotation

Figure 22.8

(c) A turbine flowmeter contains in its construc-
tion a rotor to which blades are attached which
spin at a velocity proportional to the velocity of
the fluid which flows through the meter. A typ-
ical section through such a meter is shown in
Figure 22.9. The number of revolutions made
by the turbine blades may be determined by

a mechanical or electrical device enabling the
flow rate or total flow to be determined. Advan-
tages of turbine flowmeters include a compact
durable form, high accuracy, wide tempera-
ture and pressure capability and good response
characteristics. Applications include the volu-
metric measurement of both crude and refined
petroleum products in pipelines up to 600 mm
bore, and in the water, power, aerospace, pro-
cess and food industries, and with modification
may be used for natural, industrial and liquid
gas measurements. Turbine flowmeters require
periodic inspection and cleaning of the working
parts.

Rotor

Direction of

fluid flow

Figure 22.9

22.10 Float and tapered-tube meter

Principle of operation

With orifice plates and venturimeters the area of the
opening in the obstruction is fixed and any change
in the flow rate produces a corresponding change
in pressure. With the float and tapered-tube meter
the area of the restriction may be varied so as to
maintain a steady pressure differential. A typical
meter of this type is shown diagrammatically in
Figure 22.10 where a vertical tapered tube contains
a ‘float’ that has a density greater than the fluid.

The float in the tapered tube produces a restriction
to the fluid flow. The fluid can only pass in the
annular area between the float and the walls of the
tube. This reduction in area produces an increase
in velocity and hence a pressure difference, which
causes the float to rise. The greater the flow rate,
the greater is the rise in the float position, and vice
versa. The position of the float is a measure of the
flow rate of the fluid and this is shown on a vertical
scale engraved on a transparent tube of plastic or
glass. For air, a small sphere is used for the float
but for liquids there is a tendency to instability and
the float is then designed with vanes that cause it
to spin and thus stabilize itself as the liquid flows
past. Such meters are often called ‘rotameters’.
Calibration of float and tapered tube flowmeters can
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be achieved using a Pitot-static tube or, more often,
by using a weighing meter in an instrument repair
workshop.

Advantages of float and tapered-tube flowmeters

(i) They have a very simple design.

(ii) They can be made direct reading.

(iii) They can measure very low flow rates.

Disadvantages of float and tapered-tube flowmeters

(i) They are prone to errors, such as those caused
by temperature fluctuations.

(ii) They can only be installed vertically in a
pipeline.

(iii) They cannot be used with liquids containing
large amounts of solids in suspension.

(iv) They need to be recalibrated for fluids of
different densities.

Practical applications of float and tapered-tube
meters are found in the medical field, in instrument
purging, in mechanical engineering test rigs and in
simple process applications, in particular for very

low flow rates. Many corrosive fluids can be handled
with this device without complications.

22.11 Electromagnetic flowmeter

The flow rate of fluids that conduct electricity, such
as water or molten metal, can be measured using
an electromagnetic flowmeter whose principle of
operation is based on the laws of electromagnetic
induction. When a conductor of length L moves at
right angles to a magnetic field of density B at a
velocity v, an induced e.m.f. e is generated, given
by: e = BLv.

Velocity
, v

L

S
e = BLv

N

Dire
ctio

n of

flu
id flo

w

Magnetic field
of flux density, B

Non magnetic
tube

Figure 22.11

With the electromagnetic flowmeter arrangement
shown in Figure 22.11, the fluid is the conductor
and the e.m.f. is detected by two electrodes placed
across the diameter of the non-magnetic tube.
Rearranging e = BLv gives:

velocity, v =
e

BL

Thus with B and L known, when e is measured, the
velocity of the fluid can be calculated.

Main advantages of electromagnetic flowmeters

(i) Unlike other methods, there is nothing directly
to impede the fluid flow.

(ii) There is a linear relationship between the fluid
flow and the induced e.m.f.

(iii) Flow can be metered in either direction by
using a centre-zero measuring instrument.
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Applications of electromagnetic flowmeters are
found in the measurement of speeds of slurries,
pastes and viscous liquids, and they are also widely
used in the water production, supply and treatment
industry.

22.12 Hot-wire anemometer

A simple hot-wire anemometer consists of a small
piece of wire which is heated by an electric current
and positioned in the air or gas stream whose veloc-
ity is to be measured. The stream passing the wire
cools it, the rate of cooling being dependent on the
flow velocity. In practice there are various ways in
which this is achieved:

(i) If a constant current is passed through the
wire, variation in flow results in a change of
temperature of the wire and hence a change
in resistance which may be measured by a
Wheatstone bridge arrangement. The change
in resistance may be related to fluid flow.

(ii) If the wire’s resistance, and hence tempera-
ture, is kept constant, a change in fluid flow
results in a corresponding change in current
which can be calibrated as an indication of
the flow rate.

(iii) A thermocouple may be incorporated in the
assembly, monitoring the hot wire and record-
ing the temperature which is an indication of
the air or gas velocity.

Advantages of the hot-wire anemometer

(a) Its size is small

(b) It has great sensitivity

22.13 Choice of flowmeter

Problem 1. Choose the most appropriate
fluid flow measuring device for the following
circumstances:

(a) The most accurate, permanent
installation for measuring liquid
flow rate.

(b) To determine the velocity of low-speed
aircraft and ships.

(c) Accurate continuous volumetric
measurement of crude petroleum
products in a duct of 500 mm bore.

(d) To give a reasonable indication of the
mean flow velocity, while maintaining a
steady pressure difference on a
hydraulic test rig.

(e) For an essentially constant flow rate
with reasonable accuracy in a large pipe
bore, with a cheap and simple
installation.

(a) Venturimeter

(b) Pitot-static tube

(c) Turbine flowmeter

(d) Float and tapered-tube flowmeter

(e) Orifice plate

Now try the following exercise

Exercise 114 Further problems on the
measurement of fluid flow

For the flow measurement devices listed 1
to 5, (a) describe briefly their construction,
(b) state their principle of operation, (c) state
their characteristics and limitations, (d) state
typical practical applications, (e) discuss their
advantages and disadvantages.

1. Orifice plate

2. Venturimeter

3. Pitot-static tube

4. Float and tapered-tube meter

5. Turbine flowmeter

22.14 Equation of continuity

The calibrations of many of the flowmeters des-
cribed earlier are based on the equation of continuity
and Bernoulli’s equation.

The equation of continuity states that for the
steady flow of a fluid through a pipe of varying
cross-section the rate of mass entering the pipe must
be equal to the rate of mass leaving the pipe; this is
really a statement of the principle of conservation
of mass. Thus, for an incompressible fluid:

a1v1 = a2v2
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where a1 = cross-sectional area at section 1,

a2 = cross-sectional area at section 2,

v1 = velocity of fluid at section 1, and

v2 = velocity of fluid at section 2

22.15 Bernoulli’s Equation

Bernoulli’s equation states that for a fluid flowing
through a pipe from section 1 to section 2:

P1

ρ
+

v2
1

2
+ gz1 =

P2

ρ
+

v2
2

2
+ g(z2 + hf )

where ρ = density of the fluid,

P1 = pressure at section 1,

P2 = pressure at section 2,

v1 = velocity at section 1,

v2 = velocity at section 2,

z1 = ‘height’ of pipe at section 1,

z2 = ‘height’ of pipe at section 2,

hf = friction losses (in m) due to the fluid

flowing from section 1 to section 2,

and g = 9.81 m/s2 (assumed)

Problem 2. A storage tank contains oil
whose free surface is 5 m above an outlet
pipe, as shown in Figure 22.12. Determine
the mass rate of flow at the exit of the outlet
pipe, assuming that (a) losses at the

pipe entry = 0.4 v2, and (b) losses at the

valve = 0.25 v2.

Free surface

Valve
z1 = 5 m

v2

Figure 22.12

Pipe diameter = 0.04 m, density of oil,

ρ = 770 kg/m3.

Let v2 = velocity of oil through the outlet pipe.

From Bernoulli’s equation:

P1

ρ
+ v2

1

2
+ gz1 = P2

ρ
+ v2

2

2
+ gz2

+ 0.4 v2
2 + 0.25 v2

2

i.e. 0 + 0 + g(5 m) = 0 + v2
2

2
+ 0 + 0.65 v2

2

(where in the above, the following assumptions have
been made: P1 = P2 = atmospheric pressure, and
v1 is negligible)

Hence, 5 m × 9.81
m

s2
= (0.5 + 0.65)v2

2

Rearranging gives: 1.15 v2
2 = 49.05

m2

s2

Hence, v2
2 = 49.05

1.15

from which, v2 =
√

49.05

1.15

= 6.531 m/s

Cross-sectional area of pipe

= a2 = πd2
2

4
= π × 0.042

4

= 0.001257 m2

Mass rate of flow through the outlet pipe

= ρa2v2

= 770
kg

m3
× 1.257 × 10−3 m2 × 6.531

m

s

= 6.321 kg/s

Flow through an orifice

Consider the flow of a liquid through a small orifice,
as shown in Figures 22.13(a) and (b), where it can
be seen that the vena contracta (VC) lies just to the
right of the orifice. The cross-sectional area of the
fluid is the smallest here and its decrease in area
from the orifice is measured by the coefficient of
contraction (Cc).
Due to friction losses there will be a loss in velocity
at the orifice; this is measured by the coefficient of
velocity, namely Cv , so that:

Cd = Cv × Cc = the coefficient of discharge
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(a)

Free surface

h

(b)

Vena contracta

n2

2

Figure 22.13

Let a = area of orifice.
Due to the vena contracta the equivalent cross-
sectional area = Cca
Now the theoretical velocity at section 2 = v2 =√

2gh, but due to friction losses,

v2 = Cv

√

2gh

Hence discharge = Cca × Cv

√

2gh

But Cd = CvCc

Therefore, discharge = Cd × a
√

2gh

Now try the following exercise

Exercise 115 Further problems on fluid
flow

1. If in the storage tank of worked problem 2
on page 254, Figure 22.12, z1 = 8 m,
determine the mass rate of flow from the
outlet pipe. [7.995 kg/s]

2. If in the storage tank of worked problem 2,
page 254, Figure 22.12, z1 = 10 m, deter-
mine the mass rate of flow from the outlet
pipe. [8.939 kg/s]

3. If in Figure 22.13, h = 6 m, Cc = 0.8,
Cv = 0.7, determine the values of Cd and
v2. [Cd = 0.56, v2 = 6.08 m/s]

4. If in Figure 22.13, h = 10 m, Cc = 0.75,
Cv = 0.65, and the cross-sectional area
is 1.5×10−3 m2, determine the discharge
and the velocity v2.

[Cd = 0.488, 9.10 m/s]

22.16 Impact of a jet on a stationary
plate

The impact of a jet on a plate is of importance in
a number of engineering problems, including the
determination of pressures on buildings subjected
to gusts of wind.
Consider the jet of fluid acting on the flat plate of
Figure 22.14, where it can be seen that the velocity
of the fluid is turned through 90°, or change of
velocity = v.
Now, momentum = mv and as v is constant,

the change of momentum = dm

d t
× v

v

v

v

F

Figure 22.14

However,

dm

d t
= mass rate of flow = ρav

Therefore, change of momentum = ρav × v

= ρav2 but from Newton’s second law of motion
(see pages 139 and 144),

F = rate of change of momentum

i.e. F = ρav2

where F = resulting normal force on the flat plate.

Pressure = force

area
= ρav2

a
= ρv2

For wide surfaces, such as garden fences, the pres-
sure can be calculated by the above formula, but for
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tall buildings and trees, civil engineers normally
assume that:

Pressure p = 0.5 ρv2

This is because the flow of fluid is similar to the
plan view shown in Figure 22.15, where the change
of momentum is much less.

v2v1

Figure 22.15

Problem 3. Determine the wind pressure on
a slim, tall building due to a gale of
100 km/h. Take density of air,

ρ = 1.2 kg/m3.

For a tall building, pressure

p = 0.5 ρv2

Velocity, v = 100
km

h
× 1000 m

km
× 1 h

3600 s

= 27.78 m/s

Hence, wind pressure,

p = 0.5 × 1.2
kg

m3
×
(

27.78
m

s

)2

= 462.96 N/m2
= 0.00463 bar

Problem 4. What would be the wind
pressure of Problem 3, if the gale were
acting on a very wide and flat surface?

For a very wide surface, pressure,

p = ρv2

= 1.2
kg

m3
×
(

27.78
m

s

)2

= 926.1 N/m2
= 0.00926 bar

(or less than 1/100th of atmospheric pressure!)

Now try the following exercise

Exercise 116 Further problems on the
impact of jets on flat
surfaces

1. A hurricane of velocity 220 km/h blows
perpendicularly on to a very wide flat
surface. Determine the wind pressure that
acts on this surface due to this hurricane,
when the density of air, ρ = 1.2 kg/m3.

[0.0448 bar]

2. What is the wind pressure for Problem 1
on a slim, tall building? [0.0224 bar]

3. A tornado with a velocity of 320 km/h
blows perpendicularly on to a very wide
surface. Determine the wind pressure that
acts on this surface due to this tornado,
when the density of air, ρ = 1.23 kg/m3.

[0.0972 bar]

4. What is the wind pressure for Problem 3
on a slim, tall building? [0.0486 bar]

5. If atmospheric pressure were 1.014 bar,
what fraction of atmospheric pressure
would be the wind pressure calculated in
Problem 4? [0.0479]

Exercise 117 Short answer questions on
the measurement of fluid
flow

In the flowmeters listed 1 to 10, state typical
practical applications of each.

1. Orifice plate

2. Venturimeter

3. Float and tapered-tube meter

4. Electromagnetic flowmeter

5. Pitot-static tube

6. Hot-wire anemometer

7. Turbine flowmeter

8. Deflecting vane flowmeter

9. Flow nozzles

10. Rotary vane positive displacement meter

11. Write down the relationship between the
coefficients Cc, Cv and Cd
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12. Write down the formula for the pressure
due to a wind acting perpendicularly on
a tall slender building.

Exercise 118 Multi-choice questions on
the measurement of fluid
flow (Answers on page 285)

1. The term’flow rate’ usually refers to:

(a) mass flow rate

(b) velocity of flow

(c) volumetric flow rate

2. The most suitable method for measuring
the velocity of high-speed gas flow in a
duct is:

(a) venturimeter

(b) orifice plate

(c) Pitot-static tube

(d) float and tapered-tube meter

3. Which of the following statements is
false?

When a fluid moves through a restriction
in a pipe, the fluid

(a) accelerates and the pressure
increases

(b) decelerates and the pressure
decreases

(c) decelerates and the pressure
increases

(d) accelerates and the pressure
decreases

4. With an orifice plate in a pipeline the
vena contracta is situated:

(a) downstream at the position of min-
imum cross-sectional area of flow

(b) upstream at the position of mini-
mum cross-sectional area of flow

(c) downstream at the position of max-
imum cross-sectional area of flow

(d) upstream at the position of maxi-
mum cross-sectional area of flow

In questions 5 to 14, select the most
appropriate device for the particular re-
quirements from the following list:

(a) orifice plate

(b) turbine flowmeter

(c) flow nozzle

(d) pitometer

(e) venturimeter

(f) cup anemometer

(g) electromagnetic flowmeter

(h) pitot-static tube

(i) float and tapered-tube meter

(j) hot-wire anemometer

(k) deflecting vane flowmeter

5. Easy to install, reasonably inexpensive,
for high-velocity flows.

6. To measure the flow rate of gas, incor-
porating a Wheatstone bridge circuit.

7. Very low flow rate of corrosive liquid in
a chemical process.

8. To detect leakages from water mains.

9. To determine the flow rate of liquid
metals without impeding its flow.

10. To measure the velocity of wind.

11. Constant flow rate, large bore pipe, in
the general process industry.

12. To make a preliminary test of flow rate
in order to specify permanent flow mea-
suring equipment.

13. To determine the flow rate of fluid very
accurately with low pressure loss.

14. To measure the flow rate of air in a
ventilating duct.

15. For a certain wind velocity, what frac-
tion of the pressure would act on a tall
slender building in comparison with a
very wide surface?

(a) 0.01 (b) 0 (c) 0.5 (d) 0.99

16. For a wind speed of 190 km/h, what
fraction (approximate) of atmospheric
pressure will this be, when blowing per-
pendicularly to a very wide surface?

(a) 2.5 (b) 0.5 (c) 1/30 (d) 0
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Ideal gas laws

23.1 Introduction

The relationships that exist between pressure, vol-
ume and temperature in a gas are given in a set of
laws called the gas laws.

23.2 Boyle’s law

Boyle’s law states:

the volume V of a fixed mass of gas is inversely pro-
portional to its absolute pressure p at constant temper-
ature.

i.e. p ∝ 1

V
or p = k

V
or pV = k at constant

temperature, where p = absolute pressure in Pas-

cal’s (Pa), V = volume in m3, and k = a constant.
Changes that occur at constant temperature are

called isothermal changes. When a fixed mass of
gas at constant temperature changes from pressure
p1 and volume V1 to pressure p2 and volume V2

then:

p1V1 = p2V2

Problem 1. A gas occupies a volume of

0.10 m3 at a pressure of 1.8 MPa. Determine
(a) the pressure if the volume is changed to

0.06 m3 at constant temperature, and (b) the
volume if the pressure is changed to 2.4 MPa
at constant temperature.

(a) Since the change occurs at constant tempera-
ture (i.e. an isothermal change), Boyle’s law
applies, i.e. p1V1 = p2V2, where p1 =
1.8 MPa, V1 = 0.10 m3 and V2 = 0.06 m3.
Hence (1.8)(0.10) = p2(0.06) from which,

pressure p2 = 1.8 × 0.10

0.06
= 3 MPa

(b) p1V1 = p2V2 where p1 = 1.8 MPa,

V1 = 0.10 m3 and p2 = 2.4 MPa.

Hence (1.8)(0.10) = (2.4)V2 from which

volume V2 = 1.8 × 0.10

2.4

= 0.075 m3

Problem 2. In an isothermal process, a
mass of gas has its volume reduced from

3200 mm3 to 2000 mm3. If the initial
pressure of the gas is 110 kPa, determine the
final pressure.

Since the process is isothermal, it takes place at
constant temperature and hence Boyle’s law applies,
i.e. p1V1 = p2V2, where p1 = 110 kPa,

V1 = 3200 mm3 and V2 = 2000 mm3.

Hence (110)(3200) = p2(2000), from which,

final pressure, p2 = 110 × 3200

2000

= 176 kPa

Problem 3. Some gas occupies a volume of

1.5 m3 in a cylinder at a pressure of
250 kPa. A piston, sliding in the cylinder,
compresses the gas isothermally until the

volume is 0.5 m3. If the area of the piston is

300 cm2, calculate the force on the piston
when the gas is compressed.

An isothermal process means constant temperature
and thus Boyle’s law applies, i.e. p1V1 = p2V2,

where V1 = 1.5 m3, V2 = 0.5 m3 and p1 = 250 kPa.

Hence, (250)(1.5) = p2(0.5), from which,

pressure, p2 = 250 × 1.5

0.5
= 750 kPa

Pressure = force

area
, from which,

force = pressure × area.
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Hence, force on the piston

= (750 × 103 Pa)(300 × 10−4 m2) = 22.5 kN

Now try the following exercise

Exercise 119 Further problems on Boyle’s
law

1. The pressure of a mass of gas is increased
from 150 kPa to 750 kPa at constant tem-
perature. Determine the final volume of

the gas, if its initial volume is 1.5 m3.

[0.3 m3]

2. In an isothermal process, a mass of gas

has its volume reduced from 50 cm3 to
32 cm3. If the initial pressure of the gas
is 80 kPa, determine its final pressure.

[125 kPa]

3. The piston of an air compressor com-

presses air to 1
4

of its original volume

during its stroke. Determine the final pres-
sure of the air if the original pressure is
100 kPa, assuming an isothermal change.

[400 kPa]

4. A quantity of gas in a cylinder occupies a

volume of 2 m3 at a pressure of 300 kPa.
A piston slides in the cylinder and com-
presses the gas, according to Boyle’s law,

until the volume is 0.5 m3. If the area of
the piston is 0.02 m2, calculate the force
on the piston when the gas is compressed.

[24 kN]

23.3 Charles’ law

Charles’ law states:

for a given mass of gas at constant pressure, the vol-
ume V is directly proportional to its thermodynamic
temperature T,

i.e. V ∝ T or V = kT or
V

T
= k

at constant pressure, where

T = thermodynamic temperature in Kelvin (K).

A process that takes place at constant pressure is
called an isobaric process. The relationship between
the Celsius scale of temperature and the thermody-
namic or absolute scale is given by:

kelvin = degrees Celsius + 273

i.e. K = °C + 273 or °C = K − 273

(as stated in Chapter 19).
If a given mass of gas at a constant pressure

occupies a volume V1 at a temperature T1 and a
volume V2 at temperature T2, then

V1

T1

=
V2

T2

Problem 4. A gas occupies a volume of
1.2 litres at 20°C. Determine the volume it
occupies at 130°C if the pressure is kept
constant.

Since the change occurs at constant pressure (i.e. an
isobaric process), Charles’ law applies,

i.e.
V1

T1

= V2

T2

where V1 = 1.2 l, T1 = 20°C = (20 + 273) K =
293 K and T2 = (130 + 273) K = 403 K.

Hence,
1.2

293
= V2

403

from which, volume at 130°C,V2 = (1.2)(403)

293

= 1.65 litres

Problem 5. Gas at a temperature of 150°C
has its volume reduced by one-third in an
isobaric process. Calculate the final
temperature of the gas.

Since the process is isobaric it takes place at constant
pressure and hence Charles’ law applies,

i.e.
V1

T1

= V2

T2

where T1 = (150+273) K = 423 K and V2 = 2
3
V1.
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Hence

V1

423
=

2

3
V1

T2

from which, final temperature,

T2 = 2
3
(423) = 282 K or (282 − 273)°C i.e. 9°C

Now try the following exercise

Exercise 120 Further problems on Char-
les’ law

1. Some gas initially at 16°C is heated to
96°C at constant pressure. If the initial

volume of the gas is 0.8 m3, determine

the final volume of the gas. [1.02 m3]

2. A gas is contained in a vessel of volume

0.02 m3 at a pressure of 300 kPa and a
temperature of 15° C. The gas is passed

into a vessel of volume 0.015 m3. Deter-
mine to what temperature the gas must
be cooled for the pressure to remain the
same. [−57°C]

3. In an isobaric process gas at a temperature
of 120°C has its volume reduced by a
sixth. Determine the final temperature of
the gas. [54.5°C]

23.4 The pressure law

The pressure law states:

the pressure p of a fixed mass of gas is directly propor-
tional to its thermodynamic temperature T at constant
volume.

i.e. p ∝ T or p = kT or
p

T
= k

When a fixed mass of gas at constant volume
changes from pressure p1 and temperature T1, to
pressure p2 and temperature T2 then:

p1

T1

=
p2

T2

Problem 6. Gas initially at a temperature of
17°C and pressure 150 kPa is heated at

constant volume until its temperature is
124°C. Determine the final pressure of the
gas, assuming no loss of gas.

Since the gas is at constant volume, the pressure law

applies, i.e.
p1

T1

= p2

T2

where T1 = (17 + 273) K =
290 K, T2 = (124 + 273) K = 397 K and
p1 = 150 kPa.

Hence,
150

290
= p2

397
from which,final pressure,

p2 = (150)(397)

290
= 205.3 kPa

Now try the following exercise

Exercise 121 A further problem on the
pressure law

1. Gas, initially at a temperature of 27°C and
pressure 100 kPa, is heated at constant
volume until its temperature is 150°C.
Assuming no loss of gas, determine the
final pressure of the gas. [141 kPa]

23.5 Dalton’s law of partial pressure

Dalton’s law of partial pressure states:

the total pressure of a mixture of gases occupying a
given volume is equal to the sum of the pressures of
each gas, considered separately, at constant tempera-
ture.

The pressure of each constituent gas when occupy-
ing a fixed volume alone is known as the partial
pressure of that gas.

An ideal gas is one that completely obeys the
gas laws given in Sections 23.2 to 23.5. In practice
no gas is an ideal gas, although air is very close to
being one. For calculation purposes the difference
between an ideal and an actual gas is very small.

Problem 7. A gas R in a container exerts a
pressure of 200 kPa at a temperature of
18°C. Gas Q is added to the container and
the pressure increases to 320 kPa at the same
temperature. Determine the pressure that gas
Q alone exerts at the same temperature.
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Initial pressure pR = 200 kPa, and the pressure of
gases R and Q together, p = pR + pQ = 320 kPa.

By Dalton’s law of partial pressure, the pressure of
gas Q alone is pQ = p−pR = 320−200 = 120 kPa

Now try the following exercise

Exercise 122 A further problem on Dal-
ton’s law of partial pressure

1. A gas A in a container exerts a pressure of
120 kPa at a temperature of 20°C. Gas B
is added to the container and the pressure
increases to 300 kPa at the same temper-
ature. Determine the pressure that gas B
alone exerts at the same temperature.

[180 kPa]

23.6 Characteristic gas equation

Frequently, when a gas is undergoing some change,
the pressure, temperature and volume all vary simul-
taneously. Provided there is no change in the mass
of a gas, the above gas laws can be combined, giving

p1V1

T1

=
p2V2

T2

= k where k is a constant.

For an ideal gas, constant k = mR, where m is the
mass of the gas in kg, and R is the characteristic
gas constant,

i.e.
pV

T
= mR

or pV = mRT

This is called the characteristic gas equation. In
this equation, p = absolute pressure in Pascal’s,

V = volume in m3, m = mass in kg,
R = characteristic gas constant in J/(kg K), and
T = thermodynamic temperature in Kelvin.

Some typical values of the characteristic gas
constant R include: air, 287 J/(kg K), hydrogen
4160 J/(kg K), oxygen 260 J/(kg K) and carbon
dioxide 184 J/(kg K).

Standard temperature and pressure (i.e. STP)
refers to a temperature of 0°C, i.e. 273 K, and
normal atmospheric pressure of 101.325 kPa.

23.7 Worked problems on the
characteristic gas equation

Problem 8. A gas occupies a volume of

2.0 m3 when at a pressure of 100 kPa and a
temperature of 120°C. Determine the volume
of the gas at 15°C if the pressure is increased
to 250 kPa.

Using the combined gas law:

p1V1

T1

= p2V2

T2

where V1 = 2.0 m3, p1 = 100 kPa, p2 = 250 kPa,
T1 = (120 + 273) K = 393 K and
T2 = (15 + 273) K = 288 K, gives:

(100)(2.0)

393
= (250)V2

288

from which, volume at 15°C,

V2 = (100)(2.0)(288)

(393)(250)
= 0.586 m3

Problem 9. 20 000 mm3 of air initially at a
pressure of 600 kPa and temperature 180°C

is expanded to a volume of 70 000 mm3 at a
pressure of 120 kPa. Determine the final
temperature of the air, assuming no losses
during the process.

Using the combined gas law:

p1V1

T1

= p2V2

T2

where V1 = 20 000 mm3, V2 = 70 000 mm3,
p1 = 600 kPa, p2 = 120 kPa, and
T1 = (180 + 273) K = 453 K, gives:

(600)(20 000)

453
= (120)(70 000)

T2

from which, final temperature,

T2 = (120)(70 000)(453)

(600)(20 000)
= 317 K or 44°C
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Problem 10. Some air at a temperature of
40°C and pressure 4 bar occupies a volume

of 0.05 m3. Determine the mass of the air
assuming the characteristic gas constant for
air to be 287 J/(kg K).

From above, pV = mRT , where p = 4 bar =
4×105 Pa (since 1 bar = 105 Pa — see Chapter 21),

V = 0.05 m3, T = (40 + 273) K = 313 K, and
R = 287 J/(kg K).

Hence (4 × 105)(0.05) = m(287)(313)

from which, mass of air,

m = (4 × 105)(0.05)

(287)(313)
= 0.223 kg or 223 g

Problem 11. A cylinder of helium has a

volume of 600 cm3. The cylinder contains
200 g of helium at a temperature of 25°C.
Determine the pressure of the helium if the
characteristic gas constant for helium is
2080 J/(kg K).

From the characteristic gas equation, pV = mRT ,

where V = 600 cm3 = 600 × 10−6 m3,
m = 200 g = 0.2 kg, T = (25 + 273) K = 298 K
and R = 2080 J/(kg K).

Hence (p)(600 × 10−6) = (0.2)(2080)(298)

from which, pressure, p = (0.2)(2080)(298)

(600 × 10−6)

= 206 613 333 Pa

= 206.6 MPa

Problem 12. A spherical vessel has a
diameter of 1.2 m and contains oxygen at a
pressure of 2 bar and a temperature of
−20°C. Determine the mass of oxygen in the
vessel. Take the characteristic gas constant
for oxygen to be 0.260 kJ/(kg K).

From the characteristic gas equation, pV = mRT

where V = volume of spherical vessel

= 4

3
πr3 = 4

3
π

(

1.2

2

)3

= 0.905 m3,

p = 2 bar = 2 × 105 Pa,

T = (−20 + 273) K = 253 K

and R = 0.260 kJ/(kg K) = 260 J/(kg K).

Hence (2 × 105)(0.905) = m(260)(253)

from which, mass of oxygen,

m = (2 × 105)(0.905)

(260)(253)

= 2.75 kg

Problem 13. Determine the characteristic
gas constant of a gas which has a specific

volume of 0.5 m3/kg at a temperature of
20°C and pressure 150 kPa.

From the characteristic gas equation, pV = mRT

from which, R = pV

mT

where p = 150 × 103 Pa,

T = (20 + 273) K

= 293 K

and specific volume, V/m = 0.5 m3/kg.

Hence the characteristic gas constant,

R =
(p

T

)

(

V

m

)

=
(

150 × 103

293

)

(0.5)

= 256 J/(kgK)

Now try the following exercise

Exercise 123 Further problems on the
characteristic gas equation

1. A gas occupies a volume of 1.20 m3

when at a pressure of 120 kPa and
a temperature of 90°C. Determine the
volume of the gas at 20°C if the pressure

is increased to 320 kPa. [0.363 m3]

2. A given mass of air occupies a volume

of 0.5 m3 at a pressure of 500 kPa and
a temperature of 20°C. Find the volume

of the air at STP. [2.30 m3]
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3. A spherical vessel has a diameter of
2.0 m and contains hydrogen at a pres-
sure of 300 kPa and a temperature of
−30°C. Determine the mass of hydro-
gen in the vessel. Assume the charac-
teristic gas constant R for hydrogen is
4160 J/(kg K). [1.24 kg]

4. A cylinder 200 mm in diameter and
1.5 m long contains oxygen at a pressure
of 2 MPa and a temperature of 20°C.
Determine the mass of oxygen in the
cylinder. Assume the characteristic gas
constant for oxygen is 260 J/(kg K).

[1.24 kg]

5. A gas is pumped into an empty cylinder

of volume 0.1 m3 until the pressure is
5 MPa. The temperature of the gas is
40°C. If the cylinder mass increases by
5.32 kg when the gas has been added,
determine the value of the characteristic
gas constant. [300 J/(kg K)]

6. The mass of a gas is 1.2 kg and it

occupies a volume of 13.45 m3 at STP.
Determine its characteristic gas constant.

[4160 J/(kg K)]

7. 30 cm3 of air initially at a pressure
of 500 kPa and temperature 150°C is

expanded to a volume of 100 cm3 at
a pressure of 200 kPa. Determine the
final temperature of the air, assuming no
losses during the process. [291°C]

8. A quantity of gas in a cylinder occupies

a volume of 0.05 m3 at a pressure of
400 kPa and a temperature of 27°C. It
is compressed according to Boyle’s law
until its pressure is 1 MPa, and then
expanded according to Charles’ law until

its volume is 0.03 m3. Determine the
final temperature of the gas. [177°C]

9. Some air at a temperature of 35°C and
pressure 2 bar occupies a volume of

0.08 m3. Determine the mass of the air
assuming the characteristic gas constant
for air to be 287 J/(kg K). (1 bar =
105 Pa) [0.181 kg]

10. Determine the characteristic gas constant
R of a gas that has a specific volume

of 0.267 m3/kg at a temperature of 17°C
and pressure 200 kPa. [184 J/(kg K)]

23.8 Further worked problems on the
characteristic gas equation

Problem 14. A vessel has a volume of
0.80 m3 and contains a mixture of helium
and hydrogen at a pressure of 450 kPa and a
temperature of 17°C. If the mass of helium
present is 0.40 kg determine (a) the partial
pressure of each gas, and (b) the mass of
hydrogen present. Assume the characteristic
gas constant for helium to be 2080 J/(kg K)
and for hydrogen 4160 J/(kg K).

(a) V = 0.80 m3, p = 450 kPa,
T = (17 + 273) K = 290 K, mHe = 0.40 kg,
RHe = 2080 J/(kg K).

If pHe is the partial pressure of the helium, then
using the characteristic gas equation,
pHeV = mHeRHe T gives:

(pHe)(0.80) = (0.40)(2080)(290)

from which, the partial pressure of the
helium,

pHe = (0.40)(2080)(290)

(0.80)

= 301.6 kPa

By Dalton’s law of partial pressure the total
pressure p is given by the sum of the partial
pressures, i.e. p = pH + pHe, from which, the
partial pressure of the hydrogen,

pH = p − pHe = 450 − 301.6

= 148.4 kPa

(b) From the characteristic gas equation,

pHV = mHRHT .

Hence (148.4 × 103)(0.8) = mH(4160)(290)

from which, mass of hydrogen,

mH = (148.4 × 103)(0.8)

(4160)(290)

= 0.098 kg or 98 g

Problem 15. A compressed air cylinder has

a volume of 1.2 m3 and contains air at a
pressure of 1 MPa and a temperature of
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25°C. Air is released from the cylinder until
the pressure falls to 300 kPa and the
temperature is 15°C. Determine (a) the mass
of air released from the container, and
(b) the volume it would occupy at STP.
Assume the characteristic gas constant for air
to be 287 J/(kg K).

V1 = 1.2 m3 (= V2), p1 = 1 MPa = 106 Pa,

T1 = (25 + 273) K = 298 K,

T2 = (15 + 273) K = 288 K,

p2 = 300 kPa = 300 × 103 Pa

and R = 287 J/(kg K).

(a) Using the characteristic gas equation,
p1V1 = m1RT1, to find the initial mass of air
in the cylinder gives:

(106)(1.2) = m1(287)(298)

from which, mass m1 = (106)(1.2)

(287)(298)

= 14.03 kg

Similarly, using p2V2 = m2RT2 to find the
final mass of air in the cylinder gives:

(300 × 103)(1.2) = m2(287)(288)

from which, mass m2 = (300 × 103)(1.2)

(287)(288)

= 4.36 kg

Mass of air released from cylinder
= m1 −m2 = 14.03 − 4.36 = 9.67 kg

(b) At STP, T = 273 K and p = 101.325 kPa.
Using the characteristic gas equation

pV = mRT

volume,V = mRT

p
= (9.67)(287)(273)

101325

= 7.48 m3

Problem 16. A vessel X contains gas at a
pressure of 750 kPa at a temperature of
27°C. It is connected via a valve to vessel Y
that is filled with a similar gas at a pressure
of 1.2 MPa and a temperature of 27°C. The

volume of vessel X is 2.0 m3 and that of
vessel Y is 3.0 m3. Determine the final
pressure at 27°C when the valve is opened
and the gases are allowed to mix. Assume R
for the gas to be 300 J/(kg K).

For vessel X:

pX = 750 × 103 Pa, TX = (27 + 273)K = 300 K,

VX = 2.0 m3 and R = 300 J/(kg K)

From the characteristic gas equation,

pXVX = mXRTX.

Hence (750 × 103)(2.0) = mX(300)(300)

from which, mass of gas in vessel X,

mX = (750 × 103)(2.0)

(300)(300)
= 16.67 kg

For vessel Y:

pY = 1.2 × 106 Pa, TY = (27 + 273) K = 300 K,

VY = 3.0 m3 and R = 300 J/(kg K)

From the characteristic gas equation,

pYVY = mYRTY .

Hence (1.2 × 106)(3.0) = mY (300)(300)

from which, mass of gas in vessel Y ,

mY = (1.2 × 106)(3.0)

(300)(300)
= 40 kg

When the valve is opened, mass of mixture,

m = mX +mY

= 16.67 + 40 = 56.67 kg.

Total volume, V = VX + VY = 2.0 + 3.0 = 5.0 m3,

R = 300 J/(kg K), T = 300 K.

From the characteristic gas equation,

pV = mRT

p(5.0) = (56.67)(300)(300)

from which, final pressure,

p = (56.67)(300)(300)

5.0
= 1.02 MPa
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Now try the following exercise

Exercise 124 Further questions on ideal
gas laws

1. A vessel P contains gas at a pressure of
800 kPa at a temperature of 25°C. It is
connected via a valve to vessel Q that
is filled with similar gas at a pressure of
1.5 MPa and a temperature of 25°C. The

volume of vessel P is 1.5 m3 and that
of vessel R is 2.5 m3. Determine the final
pressure at 25°C when the valve is opened
and the gases are allowed to mix. Assume
R for the gas to be 297 J/(kg K).

[1.24 MPa]

2. A vessel contains 4 kg of air at a pressure
of 600 kPa and a temperature of 40°C.
The vessel is connected to another by a
short pipe and the air exhausts into it. The
final pressure in both vessels is 250 kPa
and the temperature in both is 15°C. If
the pressure in the second vessel before
the air entered was zero, determine the
volume of each vessel. Assume R for air
is 287 J/(kg K). [0.60 m3, 0.72 m3]

3. A vessel has a volume of 0.75 m3 and
contains a mixture of air and carbon diox-
ide at a pressure of 200 kPa and a temper-
ature of 27°C. If the mass of air present
is 0.5 kg determine (a) the partial pres-
sure of each gas, and (b) the mass of
carbon dioxide. Assume the characteris-
tic gas constant for air to be 287 J/(kg K)
and for carbon dioxide 184 J/(kg K).

[(a) 57.4 kPa, 142.6 kPa (b) 1.94 kg]

4. A mass of gas occupies a volume of

0.02 m3 when its pressure is 150 kPa and
its temperature is 17°C. If the gas is
compressed until its pressure is 500 kPa
and its temperature is 57°C, determine
(a) the volume it will occupy and (b) its
mass, if the characteristic gas constant for
the gas is 205 J/(kg K).

[(a) 0.0068 m3 (b) 0.050 kg]

5. A compressed air cylinder has a volume

of 0.6 m3 and contains air at a pressure
of 1.2 MPa absolute and a temperature of
37°C. After use the pressure is 800 kPa
absolute and the temperature is 17°C.

Calculate (a) the mass of air removed
from the cylinder, and (b) the volume the
mass of air removed would occupy at STP
conditions. Take R for air as 287 J/(kg K)
and atmospheric pressure as 100 kPa.

[(a) 2.33 kg (b) 1.82 m3]

Exercise 125 Short answer questions on
ideal gas laws

1. State Boyle’s law.

2. State Charles’ law.

3. State the Pressure law.

4. State Dalton’s law of partial pressures.

5. State the relationship between the Celsius
and the thermodynamic scale of tempera-
ture.

6. What is (a) an isothermal change, and
(b) an isobaric change?

7. Define an ideal gas.

8. State the characteristic gas equation.

9. What is meant by STP?

Exercise 126 Multi-choice questions on
ideal gas laws (Answers on
page 285)

1. Which of the following statements is
false?

(a) At constant temperature, Charles’
law applies.

(b) The pressure of a given mass of
gas decreases as the volume is
increased at constant temperature.

(c) Isobaric changes are those which
occur at constant pressure.

(d) Boyle’s law applies at constant
temperature.

2. A gas occupies a volume of 4 m3 at a
pressure of 400 kPa. At constant tem-
perature, the pressure is increased to
500 kPa. The new volume occupied by
the gas is:

(a) 5 m3 (b) 0.3 m3

(c) 0.2 m3 (d) 3.2 m3
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3. A gas at a temperature of 27°C occupies

a volume of 5 m3. The volume of the
same mass of gas at the same pressure
but at a temperature of 57°C is:

(a) 10.56 m3 (b) 5.50 m3

(c) 4.55 m3 (d) 2.37 m3

4. Which of the following statements is
false?

(a) An ideal gas is one that completely
obeys the gas laws.

(b) Isothermal changes are those that
occur at constant volume.

(c) The volume of a gas increases
when the temperature increases at
constant pressure.

(d) Changes that occur at constant pre-
ssure are called isobaric changes.

A gas has a volume of 0.4 m3 when its pres-
sure is 250 kPa and its temperature is 400 K.
Use this data in questions 5 and 6.

5. The temperature when the pressure is
increased to 400 kPa and the volume is
increased to 0.8 m3 is:

(a) 400 K (b) 80 K

(c) 1280 K (d) 320 K

6. The pressure when the temperature is
raised to 600 K and the volume is
reduced to 0.2 m3 is:

(a) 187.5 kPa (b) 250 kPa

(c) 333.3 kPa (d) 750 kPa

7. A gas has a volume of 3 m3 at a tem-
perature of 546 K and a pressure of
101.325 kPa. The volume it occupies at
STP is:

(a) 3 m3 (b) 1.5 m3 (c) 6 m3

8. Which of the following statements is
false?

(a) A characteristic gas constant has
units of J/(kg K).

(b) STP conditions are 273 K and
101.325 kPa.

(c) All gases are ideal gases.

(d) An ideal gas is one that obeys the
gas laws.

A mass of 5 kg of air is pumped into a con-

tainer of volume 2.87 m3. The characteristic
gas constant for air is 287 J/(kg K). Use this
data in questions 9 and 10.

9. The pressure when the temperature is
27°C is:

(a) 1.6 kPa (b) 6 kPa

(c) 150 kPa (d) 15 kPa

10. The temperature when the pressure is
200 kPa is:

(a) 400°C (b) 127°C

(c) 127 K (d) 283 K
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The measurement of temperature

At the end of this chapter you should be
able to:

• describe the construction, principle of
operation and practical applications of the
following temperature measuring devices:

(a) liquid-in-glass thermometer (includ-
ing advantages of mercury, and
sources of error)

(b) thermocouples (including advantages
and sources of error)

(c) resistance thermometer (including
limitations and advantages of plat-
inum coil)

(d) thermistors

(e) pyrometers (total radiation and opti-
cal types, including advantages and
disadvantages

• describe the principle of operation of

(a) temperature indicating paints and
crayons

(b) bimetallic thermometers

(c) mercury-in-steel thermometer

(d) gas thermometer

• select the appropriate temperature measur-
ing device for a particular application

24.1 Introduction

A change in temperature of a substance can often
result in a change in one or more of its physical
properties. Thus, although temperature cannot be

measured directly, its effects can be measured. Some
properties of substances used to determine changes
in temperature include changes in dimensions, elec-
trical resistance, state, type and volume of radiation
and colour.
Temperature measuring devices available are many
and varied. Those described in sections 24.2 to
24.10 are those most often used in science and
industry.

24.2 Liquid-in-glass thermometer

A liquid-in-glass thermometer uses the expansion
of a liquid with increase in temperature as its prin-
ciple of operation.

Construction

A typical liquid-in-glass thermometer is shown in
Figure 24.1 and consists of a sealed stem of uniform
small-bore tubing, called a capillary tube, made of
glass, with a cylindrical glass bulb formed at one
end. The bulb and part of the stem are filled with a
liquid such as mercury or alcohol and the remaining
part of the tube is evacuated. A temperature scale
is formed by etching graduations on the stem. A
safety reservoir is usually provided, into which the
liquid can expand without bursting the glass if the
temperature is raised beyond the upper limit of the
scale.

0 10 20 30 40 50 60 70 80 90 100

Liquid

Bulb

Scale

Capillary tube

Safety
reservoir

Figure 24.1

Principle of operation

The operation of a liquid-in-glass thermometer
depends on the liquid expanding with increase
in temperature and contracting with decrease in
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temperature. The position of the end of the column
of liquid in the tube is a measure of the tempera-
ture of the liquid in the bulb — shown as 15 °C in
Figure 24.1, which is about room temperature. Two
fixed points are needed to calibrate the thermometer,
with the interval between these points being divided
into ‘degrees’. In the first thermometer, made by
Celsius, the fixed points chosen were the tempera-
ture of melting ice (0 °C) and that of boiling water at
standard atmospheric pressure (100 °C), in each case
the blank stem being marked at the liquid level. The
distance between these two points, called the funda-
mental interval, was divided into 100 equal parts,
each equivalent to 1 °C, thus forming the scale.

The clinical thermometer, with a limited scale
around body temperature, the maximum and/or
minimum thermometer, recording the maximum
day temperature and minimum night temperature,
and the Beckman thermometer, which is used only
in accurate measurement of temperature change and
has no fixed points, are particular types of liquid-
in-glass thermometer which all operate on the same
principle.

Advantages

The liquid-in-glass thermometer is simple in con-
struction, relatively inexpensive, easy to use and
portable, and is the most widely used method of
temperature measurement having industrial, chemi-
cal, clinical and meteorological applications.

Disadvantages

Liquid-in-glass thermometers tend to be fragile and
hence easily broken, can only be used where the
liquid column is visible, cannot be used for surface
temperature measurements, cannot be read from a
distance and are unsuitable for high temperature
measurements.

Advantages of mercury

The use of mercury in a thermometer has many
advantages, for mercury:

(i) is clearly visible,

(ii) has a fairly uniform rate of expansion,

(iii) is readily obtainable in the pure state,

(iv) does not ‘wet’ the glass,

(v) is a good conductor of heat.

Mercury has a freezing point of −39 °C and cannot
be used in a thermometer below this temperature. Its
boiling point is 357 °C but before this temperature
is reached some distillation of the mercury occurs
if the space above the mercury is a vacuum. To
prevent this, and to extend the upper temperature
limits to over 500 °C, an inert gas such as nitrogen
under pressure is used to fill the remainder of the
capillary tube. Alcohol, often dyed red to be seen
in the capillary tube, is considerably cheaper than
mercury and has a freezing point of −113 °C, which
is considerably lower than for mercury. However it
has a low boiling point at about 79 °C.

Errors

Typical errors in liquid-in-glass thermometers may
occur due to:

(i) the slow cooling rate of glass,

(ii) incorrect positioning of the thermometer,

(iii) a delay in the thermometer becoming steady
(i.e. slow response time),

(iv) non-uniformity of the bore of the capillary
tube, which means that equal intervals marked
on the stem do not correspond to equal tem-
perature intervals.

24.3 Thermocouples

Thermocouples use the e.m.f. set up when the junc-
tion of two dissimilar metals is heated.

Principle of operation

At the junction between two different metals, say,
copper and constantan, there exists a difference in
electrical potential, which varies with the tempera-
ture of the junction. This is known as the ‘thermo-
electric effect’. If the circuit is completed with a
second junction at a different temperature, a current
will flow round the circuit. This principle is used
in the thermocouple. Two different metal conduc-
tors having their ends twisted together are shown
in Figure 24.2. If the two junctions are at dif-
ferent temperatures, a current I flows round the
circuit.
The deflection on the galvanometer G depends on
the difference in temperature between junctions X
and Y and is caused by the difference between
voltages Vx and Vy . The higher temperature junction
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Metal A Metal B
X

Y
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I

Vx

Vy

G

Figure 24.2

is usually called the ‘hot junction’ and the lower
temperature junction the ‘cold junction’. If the cold
junction is kept at a constant known temperature,
the galvanometer can be calibrated to indicate the
temperature of the hot junction directly. The cold
junction is then known as the reference junction.
In many instrumentation situations, the measuring
instrument needs to be located far from the point at
which the measurements are to be made. Extension
leads are then used, usually made of the same
material as the thermocouple but of smaller gauge.
The reference junction is then effectively moved to
their ends. The thermocouple is used by positioning
the hot junction where the temperature is required.
The meter will indicate the temperature of the hot
junction only if the reference junction is at 0 °C for:

(temperature of hot junction)

= (temperature of the cold junction)

+ (temperature difference)

In a laboratory the reference junction is often placed
in melting ice, but in industry it is often positioned in
a thermostatically controlled oven or buried under-
ground where the temperature is constant.

Construction

Thermocouple junctions are made by twisting
together the ends of two wires of dissimilar metals
before welding them. The construction of a typical
copper-constantan thermocouple for industrial use
is shown in Figure 24.3. Apart from the actual
junction the two conductors used must be insulated
electrically from each other with appropriate
insulation and is shown in Figure 24.3 as twin-holed
tubing. The wires and insulation are usually inserted
into a sheath for protection from environments in
which they might be damaged or corroded.

Applications

A copper-constantan thermocouple can measure
temperature from −250 °C up to about 400 °C, and
is used typically with boiler flue gases, food pro-
cessing and with sub-zero temperature measure-
ment. An iron-constantan thermocouple can mea-
sure temperature from −200 °C to about 850 °C, and
is used typically in paper and pulp mills, re-heat
and annealing furnaces and in chemical reactors. A
chromel-alumel thermocouple can measure temper-
atures from −200 °C to about 1100 °C and is used
typically with blast furnace gases, brick kilns and in
glass manufacture.
For the measurement of temperatures above 1100 °C
radiation pyrometers are normally used. However,
thermocouples are available made of platinum-
platinum/rhodium, capable of measuring tempera-
tures up to 1400 °C, or tungsten-molybdenum which
can measure up to 2600 °C.

Advantages

A thermocouple:

(i) has a very simple, relatively inexpensive con-
struction,

Hot junction

Copper

Protective
sheath
(such as silica,
porcelain or mild
steel)

Insulation
(such as p.v.c.,
glass fibre, asbestos,
or ceramic tubing)

Constantan

Cold
junction

Extension leads

G

Figure 24.3
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(ii) can be made very small and compact,

(iii) is robust,

(iv) is easily replaced if damaged,

(v) has a small response time,

(vi) can be used at a distance from the actual
measuring instrument and is thus ideal for use
with automatic and remote-control systems.

Sources of error

Sources of error in the thermocouple, which are
difficult to overcome, include:

(i) voltage drops in leads and junctions,

(ii) possible variations in the temperature of the
cold junction,

(iii) stray thermoelectric effects, which are caused
by the addition of further metals into the’ideal’
two-metal thermocouple circuit.

Additional leads are frequently necessary for
extension leads or voltmeter terminal connec-
tions.

A thermocouple may be used with a battery- or
mains-operated electronic thermometer instead of
a millivoltmeter. These devices amplify the small
e.m.f.’s from the thermocouple before feeding them
to a multi-range voltmeter calibrated directly with
temperature scales. These devices have great accu-
racy and are almost unaffected by voltage drops in
the leads and junctions.

Problem 1. A chromel-alumel
thermocouple generates an e.m.f. of 5 mV.
Determine the temperature of the hot
junction if the cold junction is at a
temperature of 15 °C and the sensitivity of
the thermocouple is 0.04 mV/°C.

Temperature difference for 5 mV

= 5 mV

0.04 mV/°C
= 125 °C

Temperature at hot junction

= temperature of cold junction

+ temperature difference

= 15 °C + 125 °C = 140 °C

Now try the following exercise

Exercise 127 Further problem on the
thermocouple

1. A platinum-platinum/rhodium thermocou-
ple generates an e.m.f. of 7.5 mV. If the
cold junction is at a temperature of 20 °C,
determine the temperature of the hot junc-
tion. Assume the sensitivity of the ther-
mocouple to be 6 μV/°C [1270 °C]

24.4 Resistance thermometers

Resistance thermometers use the change in elec-
trical resistance caused by temperature change.

Construction

Resistance thermometers are made in a variety of
sizes, shapes and forms depending on the applica-
tion for which they are designed. A typical resis-
tance thermometer is shown diagrammatically in
Figure 24.4. The most common metal used for the
coil in such thermometers is platinum even though
its sensitivity is not as high as other metals such
as copper and nickel. However, platinum is a very
stable metal and provides reproducible results in a
resistance thermometer. A platinum resistance ther-
mometer is often used as a calibrating device. Since
platinum is expensive, connecting leads of another
metal, usually copper, are used with the thermometer
to connect it to a measuring circuit.
The platinum and the connecting leads are shown
joined at A and B in Figure 24.4, although some-
times this junction may be made outside of the
sheath. However, these leads often come into close
contact with the heat source which can introduce
errors into the measurements. These may be elimi-
nated by including a pair of identical leads, called
dummy leads, which experience the same tempera-
ture change as the extension leads.

Principle of operation

With most metals a rise in temperature causes an
increase in electrical resistance, and since resistance
can be measured accurately this property can be
used to measure temperature. If the resistance of
a length of wire at 0 °C is R0, and its resistance at



THE MEASUREMENT OF TEMPERATURE 271

Protective sheath
(made of glass, quartz, porcelain
or metal)

Coil (of platinum, or nickel,
or copper)

Former
(made of
mica or
ceramic)

Insulation spacers
(such as mica or
ceramic tubing)

A

B

Copper
dummy leads

Copper
extension
leads

Figure 24.4

θ °C is Rθ , then Rθ = R0(1 + αθ), where α is the
temperature coefficient of resistance of the material
(see Chapter 20).
Rearranging gives:

temperature, θ =
Rθ − R0

αR0

Values of R0 and α may be determined experimen-
tally or obtained from existing data. Thus, if Rθ

can be measured, temperature θ can be calculated.
This is the principle of operation of a resistance
thermometer. Although a sensitive ohmmeter can be
used to measure Rθ , for more accurate determina-
tions a Wheatstone bridge circuit is used as shown
in Figure 24.5. This circuit compares an unknown
resistance Rθ with others of known values, R1 and
R2 being fixed values and R3 being variable. Gal-
vanometer G is a sensitive centre-zero microamme-
ter. R3 is varied until zero deflection is obtained on
the galvanometer, i.e. no current flows through G
and the bridge is said to be ‘balanced’.
At balance:

R2Rθ = R1R3

from which,

Rθ =
R1R3

R2

and if R1 and R2 are of equal value, then Rθ = R3

A resistance thermometer may be connected between
points A and B in Figure 24.5 and its resistance Rθ

at any temperature θ accurately measured. Dummy
leads included in arm BC help to eliminate errors
caused by the extension leads which are normally
necessary in such a thermometer.

R1 R2

R3

GA C

Rq

B

Dummy
leads

Figure 24.5

Limitations

Resistance thermometers using a nickel coil are used
mainly in the range −100 °C to 300 °C, whereas
platinum resistance thermometers are capable of
measuring with greater accuracy temperatures in the
range −200 °C to about 800 °C. This upper range
may be extended to about 1500 °C if high melting
point materials are used for the sheath and coil con-
struction.

Advantages and disadvantages of a platinum coil

Platinum is commonly used in resistance thermome-
ters since it is chemically inert, i.e. un-reactive,
resists corrosion and oxidation and has a high melt-
ing point of 1769 °C. A disadvantage of platinum is
its slow response to temperature variation.
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Applications

Platinum resistance thermometers may be used as
calibrating devices or in applications such as heat-
treating and annealing processes and can be adapted
easily for use with automatic recording or control
systems. Resistance thermometers tend to be fragile
and easily damaged especially when subjected to
excessive vibration or shock.

Problem 2. A platinum resistance
thermometer has a resistance of 25 � at
0 °C. When measuring the temperature of an
annealing process a resistance value of 60 �
is recorded. To what temperature does this
correspond? Take the temperature coefficient
of resistance of platinum as 0.0038/°C

Rθ = R0(1 + αθ), where R0 = 25 �, Rθ = 60 �
and α = 0.0038/°C. Rearranging gives:

temperature, θ = Rθ − R0

αR0

= 60 − 25

(0.0038)(25)
= 368.4 °C

Now try the following exercise

Exercise 128 Further problem on the
resistance thermometer

1. A platinum resistance thermometer has a
resistance of 100 � at 0 °C. When mea-
suring the temperature of a heat process
a resistance value of 177 � is measured
using a Wheatstone bridge. Given that
the temperature coefficient of resistance
of platinum is 0.0038/°C, determine the
temperature of the heat process, correct
to the nearest degree. [203 °C]

24.5 Thermistors

A thermistor is a semi-conducting material — such
as mixtures of oxides of copper, manganese, cobalt,
etc. — in the form of a fused bead connected to two
leads. As its temperature is increased its resistance
rapidly decreases. Typical resistance/temperature
curves for a thermistor and common metals are
shown in Figure 24.6. The resistance of a typical

Semiconductor

Temperature

Nickel

Platinum

Copper

R
e
s
is

ta
n
c
e

Figure 24.6

thermistor can vary from 400 � at 0 °C to 100 �
at 140 °C.

Advantages

The main advantages of a thermistor are its high
sensitivity and small size. It provides an inexpensive
method of measuring and detecting small changes in
temperature.

24.6 Pyrometers

A pyrometer is a device for measuring very high
temperatures and uses the principle that all sub-
stances emit radiant energy when hot, the rate of
emission depending on their temperature. The mea-
surement of thermal radiation is therefore a con-
venient method of determining the temperature of
hot sources and is particularly useful in industrial
processes. There are two main types of pyrometer,
namely the total radiation pyrometer and the optical
pyrometer.
Pyrometers are very convenient instruments since
they can be used at a safe and comfortable distance
from the hot source. Thus applications of pyrometers
are found in measuring the temperature of molten
metals, the interiors of furnaces or the interiors of
volcanoes. Total radiation pyrometers can also be
used in conjunction with devices which record and
control temperature continuously.

Total radiation pyrometer

A typical arrangement of a total radiation pyrome-
ter is shown in Figure 24.7. Radiant energy from a
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hot source, such as a furnace, is focused on to the
hot junction of a thermocouple after reflection from
a concave mirror. The temperature rise recorded by
the thermocouple depends on the amount of radi-
ant energy received, which in turn depends on the
temperature of the hot source. The galvanometer G
shown connected to the thermocouple records the
current which results from the e.m.f. developed and
may be calibrated to give a direct reading of the
temperature of the hot source. The thermocouple
is protected from direct radiation by a shield as
shown and the hot source may be viewed through
the sighting telescope. For greater sensitivity, a ther-
mopile may be used, a thermopile being a number
of thermocouples connected in series. Total radia-
tion pyrometers are used to measure temperature in
the range 700 °C to 2000 °C.

Optical pyrometers

When the temperature of an object is raised suffi-
ciently two visual effects occur; the object appears

brighter and there is a change in colour of the
light emitted. These effects are used in the optical
pyrometer where a comparison or matching is made
between the brightness of the glowing hot source
and the light from a filament of known temperature.
The most frequently used optical pyrometer is
the disappearing filament pyrometer and a typical
arrangement is shown in Figure 24.8. A filament
lamp is built into a telescope arrangement which
receives radiation from a hot source, an image of
which is seen through an eyepiece. A red filter is
incorporated as a protection to the eye.
The current flowing through the lamp is controlled
by a variable resistor. As the current is increased the
temperature of the filament increases and its colour
changes. When viewed through the eyepiece the fil-
ament of the lamp appears superimposed on the
image of the radiant energy from the hot source. The
current is varied until the filament glows as brightly
as the background. It will then merge into the back-
ground and seem to disappear. The current required
to achieve this is a measure of the temperature of

Hot
source

Radiation from
hot source
(such as a furnace)

Telescope
arrangement

Variable
resistor

Filament lamp Red filter

Eyepiece

A

Figure 24.8
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the hot source and the ammeter can be calibrated
to read the temperature directly. Optical pyrometers
may be used to measure temperatures up to, and
even in excess of, 3000 °C.

Advantages of pyrometers

(i) There is no practical limit to the temperature
that a pyrometer can measure.

(ii) A pyrometer need not be brought directly into
the hot zone and so is free from the effects of
heat and chemical attack that can often cause
other measuring devices to deteriorate in use.

(iii) Very fast rates of change of temperature can
be followed by a pyrometer.

(iv) The temperature of moving bodies can be
measured.

(v) The lens system makes the pyrometer virtually
independent of its distance from the source.

Disadvantages of pyrometers

(i) A pyrometer is often more expensive than
other temperature measuring devices.

(ii) A direct view of the heat process is necessary.

(iii) Manual adjustment is necessary.

(iv) A reasonable amount of skill and care is
required in calibrating and using a pyrometer.
For each new measuring situation the pyrom-
eter must be re-calibrated.

(v) The temperature of the surroundings may
affect the reading of the pyrometer and such
errors are difficult to eliminate.

24.7 Temperature indicating paints
and crayons

Temperature indicating paints contain substances
which change their colour when heated to certain
temperatures. This change is usually due to chemical
decomposition, such as loss of water, in which the
change in colour of the paint after having reached
the particular temperature will be a permanent one.
However, in some types the original colour returns
after cooling. Temperature indicating paints are used
where the temperature of inaccessible parts of appa-
ratus and machines is required. They are particularly

useful in heat-treatment processes where the temper-
ature of the component needs to be known before a
quenching operation. There are several such paints
available and most have only a small temperature
range so that different paints have to be used for
different temperatures. The usual range of temper-
atures covered by these paints is from about 30 °C
to 700 °C.
Temperature sensitive crayons consist of fusible
solids compressed into the form of a stick. The melt-
ing point of such crayons is used to determine when
a given temperature has been reached. The crayons
are simple to use but indicate a single temperature
only, i.e. its melting point temperature. There are
over 100 different crayons available, each cover-
ing a particular range of temperature. Crayons are
available for temperatures within the range of 50 °C
to 1400 °C. Such crayons are used in metallurgi-
cal applications such as preheating before welding,
hardening, annealing or tempering, or in monitor-
ing the temperature of critical parts of machines or
for checking mould temperatures in the rubber and
plastics industries.

24.8 Bimetallic thermometers

Bimetallic thermometers depend on the expansion
of metal strips which operate an indicating pointer.
Two thin metal strips of differing thermal expansion
are welded or riveted together and the curvature
of the bimetallic strip changes with temperature
change. For greater sensitivity the strips may be
coiled into a flat spiral or helix, one end being
fixed and the other being made to rotate a pointer
over a scale. Bimetallic thermometers are useful
for alarm and over-temperature applications where
extreme accuracy is not essential. If the whole
is placed in a sheath, protection from corrosive
environments is achieved but with a reduction in
response characteristics. The normal upper limit of
temperature measurement by this thermometer is
about 200 °C, although with special metals the range
can be extended to about 400 °C.

24.9 Mercury-in-steel thermometer

The mercury-in-steel thermometer is an extension
of the principle of the mercury-in-glass thermome-
ter. Mercury in a steel bulb expands via a small bore
capillary tube into a pressure indicating device, say a
Bourdon gauge, the position of the pointer indicating
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the amount of expansion and thus the temperature.
The advantages of this instrument are that it is robust
and, by increasing the length of the capillary tube,
the gauge can be placed some distance from the
bulb and can thus be used to monitor temperatures
in positions which are inaccessible to the liquid-in-
glass thermometer. Such thermometers may be used
to measure temperatures up to 600 °C.

24.10 Gas thermometers

The gas thermometer consists of a flexible U-tube
of mercury connected by a capillary tube to a ves-
sel containing gas. The change in the volume of
a fixed mass of gas at constant pressure, or the
change in pressure of a fixed mass of gas at con-
stant volume, may be used to measure temperature.
This thermometer is cumbersome and rarely used
to measure temperature directly, but it is often used
as a standard with which to calibrate other types of
thermometer. With pure hydrogen the range of the
instrument extends from −240 °C to 1500 °C and
measurements can be made with extreme accuracy.

24.11 Choice of measuring device

Problem 3. State which device would be
most suitable to measure the following:

(a) metal in a furnace, in the range 50 °C to
1600 °C

(b) the air in an office in the range 0 °C to
40 °C

(c) boiler flue gas in the range 15 °C to
300 °C

(d) a metal surface, where a visual
indication is required when it
reaches 425 °C

(e) materials in a high-temperature furnace
in the range 2000 °C to 2800 °C

(f) to calibrate a thermocouple in the range
−100 °C to 500 °C

(g) brick in a kiln up to 900 °C

(h) an inexpensive method for food
processing applications in the range
−25 °C to −75 °C

(a) Radiation pyrometer

(b) Mercury-in-glass thermometer

(c) Copper-constantan thermocouple

(d) Temperature sensitive crayon

(e) Optical pyrometer

(f) Platinum resistance thermometer or gas ther-
mometer

(g) Chromel-alumel thermocouple

(h) Alcohol-in-glass thermometer

Now try the following exercise

Exercise 129 Short answer questions on
the measurement of temper-
ature

For each of the temperature measuring devices
listed in 1 to 10, state very briefly its principle
of operation and the range of temperatures that
it is capable of measuring.

1. Mercury-in-glass thermometer

2. Alcohol-in-glass thermometer

3. Thermocouple

4. Platinum resistance thermometer

5. Total radiation pyrometer

6. Optical pyrometer

7. Temperature sensitive crayons

8. Bimetallic thermometer

9. Mercury-in-steel thermometer

10. Gas thermometer

Now try the following exercise

Exercise 130 Multi-choice questions on
the measurement of temper-
ature (Answers on page 285)

1. The most suitable device for measuring
very small temperature changes is a

(a) thermopile (b) thermocouple

(c) thermistor

2. When two wires of different metals are
twisted together and heat applied to the
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junction, an e.m.f. is produced. This
effect is used in a thermocouple to mea-
sure:

(a) e.m.f. (b) temperature

(c) expansion (d) heat

3. A cold junction of a thermocouple is at
room temperature of 15 °C. A voltmeter
connected to the thermocouple circuit
indicates 10 mV. If the voltmeter is cal-
ibrated as 20 °C/mV, the temperature of
the hot source is:

(a) 185 °C (b) 200 °C

(c) 35 °C (d) 215 °C

4. The e.m.f. generated by a copper-
constantan thermometer is 15 mV. If
the cold junction is at a temperature
of 20 °C, the temperature of the hot
junction when the sensitivity of the
thermocouple is 0.03 mV/°C is:

(a) 480 °C (b) 520 °C

(c) 20.45 °C (d) 500 °C

In questions 5 to 12, select the most appro-
priate temperature measuring device from this
list.

(a) copper-constantan thermocouple

(b) thermistor

(c) mercury-in-glass thermometer

(d) total radiation pyrometer

(e) platinum resistance thermometer

(f) gas thermometer

(g) temperature sensitive crayon

(h) alcohol-in-glass thermometer

(i) bimetallic thermometer

(j) mercury-in-steel thermometer

(k) optical pyrometer

5. Over-temperature alarm at about 180 °C

6. Food processing plant in the range
−250 °C to +250 °C

7. Automatic recording system for a heat
treating process in the range 90 °C to
250 °C

8. Surface of molten metals in the range
1000 °C to 1800 °C

9. To calibrate accurately a mercury-in-
glass thermometer

10. Furnace up to 3000 °C

11. Inexpensive method of measuring very
small changes in temperature

12. Metal surface where a visual indication
is required when the temperature reaches
520 °C
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Assignment 7

This assignment covers the material
contained in chapters 21 and 24.
The marks for each question are shown
in brackets at the end of each question.

When required take the density of water to be

1000 kg/m3 and gravitational acceleration as

9.81 m/s2.

1. A circular piston exerts a pressure of
150 kPa on a fluid when the force
applied to the piston is 0.5 kN. Calculate
the diameter of the piston, correct to the
nearest millimetre. (6)

2. A tank contains water to a depth of
500 mm. Determine the water pressure

(a) at a depth of 300 mm, and

(b) at the base of the tank. (6)

3. When the atmospheric pressure is
101 kPa, calculate the absolute pressure,
to the nearest kilopascal, at a point
on a submarine which is 50 m below
the seawater surface. Assume that the
density of seawater is 1030 kg/m3. (5)

4. A body weighs 2.85 N in air and 2.35 N
when completely immersed in water.
Determine

(a) the volume of the body,

(b) the density of the body, and

(c) the relative density of the body.
(9)

5. A submarine dives to a depth of 700 m.
What is the gauge pressure on its surface

if the density of seawater is 1020 kg/m3.
(5)

6. State the most appropriate fluid flow
measuring device for the following app-
lications:

(a) A high accuracy, permanent instal-
lation, in an oil pipeline.

(b) For high velocity chemical flow,
without suffering wear.

(c) To detect leakage in water mains.

(d) To measure petrol in petrol pumps.

(e) To measure the speed of a viscous
liquid. (5)

7. A storage tank contains water to a depth
of 7 m above an outlet pipe, as shown
in Figure 22.12 on page 254. The sys-
tem is in equilibrium until a valve in
the outlet pipe is opened. Determine the
initial mass rate of flow at the exit of
the outlet pipe, assuming that losses at

the pipe entry = 0.3 v2, and losses at

the valve = 0.2 v2. The pipe diameter
is 0.05 m and the water density, ρ, is

1000 kg/m3. (15)

8. Determine the wind pressure acting on
a slender building due to a gale of
150 km/h that acts perpendicularly to
the building. Take the density of air as

1.23 kg/m3. (5)

9. Some gas occupies a volume of 2.0 m3

in a cylinder at a pressure of 200 kPa.
A piston, sliding in the cylinder, com-
presses the gas isothermally until the

volume is 0.80 m3. If the area of the pis-

ton is 240 cm2, calculate the force on the
piston when the gas is compressed.

(5)

10. Gas at a temperature of 180 °C has its
volume reduced by a quarter in an iso-
baric process. Determine the final tem-
perature of the gas. (5)

11. Some air at a pressure of 3 bar and at a
temperature of 60 °C occupies a volume

of 0.08 m3. Calculate the mass of the
air, correct to the nearest gram, assuming
the characteristic gas constant for air is
287 J/(kg K). (5)

12. A compressed air cylinder has a volume

of 1.0 m3 and contains air at a tempera-
ture of 24 °C and a pressure of 1.2 MPa.
Air is released from the cylinder until the
pressure falls to 400 kPa and the tem-
perature is 18 °C. Calculate (a) the mass
of air released from the container, and
(b) the volume it would occupy at S.T.P.
(Assume the characteristic gas constant
for air to be 287 J/(kg K)). (10)
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13. A platinum resistance thermometer has
a resistance of 24 � at 0 °C. When mea-
suring the temperature of an anneal-
ing process a resistance value of 68 �
is recorded. To what temperature does
this correspond? Take the temperature
coefficient of resistance of platinum as
0.0038/°C (5)

14. State which temperature measuring
device would be most suitable to
measure the following:

(a) materials in a high-temperature
furnace in the range 1800 °C to
3000 °C.

(b) the air in a factory in the range 0 °C
to 35 °C.

(c) an inexpensive method for food
processing applications in the range
−20 °C to −80 °C.

(d) boiler flue gas in the range 15 °C to
250 °C. (4)



A list of formulae

Formula Formula symbols Units

Stress = applied force

cross-sectional area
σ = F

A
Pa

Strain = change in length

original length
ε = x

L

Young’s modulus of elasticity = stress

strain
E = σ

ε
Pa

Stiffness = force

extension
k = F

δ
N/m

Modulus of rigidity = shear stress

shear strain
G = τ

γ
Pa

Thermal strain

= coefficient of linear expansion × temperature rise
ε = αT

Thermal stress in compound bar σ1 = (α1 − α2)E1E2A2T

(A1E1 +A2E2)
Pa

Ultimate tensile strength = maximum load

original cross-sectional area
Pa

Moment = force × perpendicular distance M = Fd N m

stress

distance from neutral axis
= bending moment

second moment of area

= Young’s modulus

radius of curvature

σ

y
= M

I
= E

R
N/m3

Torque = force × perpendicular distance T = Fd N m

Power = torque × angular velocity P = T ω = 2πnT W

Horsepower 1 hp = 745.7 W

Torque = moment of inertia × angular acceleration T = Iα N m

shear stress

radius
= torque

polar second moment of area

= (rigidity)(angle of twist)

length

τ

r
= T

J
= Gθ

L
N/m3

Average velocity = distance travelled

time taken
v = s

t
m/s

Acceleration = change in velocity

time taken
a = v − u

t
m/s2

Linear velocity v = ωr m/s

(Continued )
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Formula Formula symbols Units

Angular velocity ω = θ

t
= 2πn rad/s

Linear acceleration a = rα m/s2

Relationships between initial velocity u, final velocity
v, displacement s, time t and constant acceleration a

⎧

⎨

⎩

v2 = v1 + at

s = ut + 1
2
at2

v2 = u2 + 2as

m/s
m

(m/s)2

Relationships between initial angular
velocity ω1, final angular velocity ω2,
angle θ , time t and angular acceleration a

⎧

⎨

⎩

ω2 = ω1 + αt

θ = ω1t + 1
2
αt2

ω2
2 = ω2

1 + 2αθ

rad/s
rad

(rad/s)2

Momentum = mass × velocity kg m/s

Impulse = applied force× time = change in momentum kg m/s

Force = mass × acceleration F = ma N

Weight = mass × gravitational field W = mg N

Centripetal acceleration a = v2

r
m/s2

Centripetal force F = mv2

r
N

Density = mass

volume
ρ = m

V
kg/m3

Work done = force × distance moved W = Fs J

Efficiency = useful output energy

input energy

Power = energy used (or work done)

time taken

= force × velocity

P = E

t
= Fv W

Potential energy = weight × change in height Ep = mgh J

kinetic energy = 1
2

× mass × (speed)2 Ek = 1
2
mv2 J

kinetic energy of rotation

= 1
2

× moment of inertia × (angular velocity)2 Ek = 1
2
Iω2

J

Frictional force = coefficient of friction × normal force F = μN N

Angle of repose, θ , on an inclined plane tan θ = μ

Efficiency of screw jack η = tan θ

tan(λ+ θ)

SHM periodic time T = 2π

√

displacement

acceleration
T = 2π

√

y

a
s

T = 2π

√

mass

stiffness
T = 2π

√

m

k
s

simple pendulum T = 2π

√

L

g
s
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Formula Formula symbols Units

compound pendulum T = 2π

√

(k2
G + h2)

gh
s

Force ratio = load

effort

Movement ratio = distance moved by effort

distance moved by load

Efficiency = force ratio

movement ratio
Kelvin temperature = degrees Celsius + 273

Quantity of heat energy
= mass×specific heat capacity × change in temperature

Q = mc(t2 − t1)

New length = original length + expansion L2 = L1[1 + α(t2 − t1)] m

New surface area = original surface area + increase in A2 = A1[1 + β(t2 − t1)] m2

area

New volume = original volume + increase in volume V2 = V1[1 + γ (t2 − t1)] m3

Pressure = force

area
p = F

A
Pa

= density × gravitational acceleration × height p = ρgh Pa

1 bar = 105Pa

Absolute pressure = gauge pressure

+ atmospheric pressure

Metacentric height, GM GM = Px

W
cot θ m

Bernoulli’s equation
P1

ρ
+ v2

1

2
+ gz1 = P2

ρ
+ v2

2

2
+ g(z2 + hf )

Coefficient of discharge Cd = Cv × Cc

Characteristic gas equation
p1V1

T1

= p2V2

T2

= k

pV = mRT

Circular segment

In Figure F1, shaded area = R2

2
(α − sinα) a

R

Figure F1
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Summary of standard results of the second moments of areas of regular sections

Shape Position of axis Second
moment
of area, I

Radius
of gyra-
tion, k

Rectangle
length d
breadth b

(1) Coinciding with b

(2) Coinciding with d

(3) Through centroid,
parallel to b

(4) Through centroid,
parallel to d

bd3

3

db3

3

bd3

12

db3

12

d√
3

b√
3

d√
12

b√
12

Triangle
Perpendicular
height h
base b

(1) Coinciding with b

(2) Through centroid, parallel
to base

(3) Through vertex,
parallel to base

bh3

12

bh3

36

bh3

4

h√
6

h√
18

h√
2

Circle
radius r
diameter d

(1) Through centre,
perpendicular to
plane (i.e. polar axis)

(2) Coinciding with diameter

(3) About a tangent

πr4

2
or

πd4

32

πr4

4
or

πd4

64

5πr4

4
or

5πd4

64

r√
2

r

2
√

5

2
r

Semicircle
radius r

Coinciding with diameter
πr4

8

r

2



Greek alphabet

Letter Upper case Lower case

Alpha A α
Beta B β
Gamma Ŵ γ
Delta � δ
Epsilon E ε
Zeta Z ζ
Eta H η
Theta � θ
Iota I ι
Kappa K κ
Lambda � λ
Mu M μ
Nu N ν
Xi � ξ
Omicron O o
Pi � π
Rho P ρ
Sigma � σ
Tau T τ
Upsilon ϒ υ
Phi � φ
Chi X χ
Psi ! ψ
Omega � ω



Answers to multiple-choice questions

Chapter 1 (Exercise 7, Page 16)

1. (c) 2. (c) 3. (a) 4. (b) 5. (c)
6. (c) 7. (b) 8. (d) 9. (b) 10. (c)
11. (f) 12. (h) 13. (d) 14. (b) 15. (a)

Chapter 2 (Exercise 11, Page 24)

1. (f) 2. (d) 3. (g) 4. (b)

Chapter 3 (Exercise 19, Page 37)

1. (b) 2. (a) 3. (b) 4. (d) 5. (b)
6. (c) 7. (b) 8. (b) 9. (c) 10. (d)
11. (c) 12. (d) 13. (d) 14. (a)

Chapter 4 (Exercise 24, Page 53)

1. (b) 2. (a) 3. (c) 4. (c) 5. (b)
6. (a)

Chapter 5 (Exercise 30, Page 67)

1. (a) 2. (c) 3. (a) 4. (d) 5. (a)
6. (d) 7. (c) 8. (a) 9. (d) 10. (c)
11. (c)

Chapter 6 (Exercise 34, Page 81)

1. (b) 2. (c) 3. (c) 4. (a) 5. (c)
6. (b)

Chapter 7 (Exercise 40, Page 100)

1. (c) 2. (b) 3. (d) 4. (a) 5. (b)
6. (c) 7. (a) 8. (c) 9. (d) 10. (a)

Chapter 8 (Exercise 43, Page 108)

1. (b) 2. (b) 3. (c)

Chapter 9 (Exercise 49, Page 118)

1. (d) 2. (b) 3. (c) 4. (a) 5. (c)
6. (d) 7. (a) 8. (b) 9. (c) 10. (d)
11. (a) 12. (c)

Chapter 10 (Exercise 52, Page 125)

1. (a) 2. (b) 3. (a) 4. (c) 5. (b)
6. (a)

Chapter 11 (Exercise 58, Page 134)

1. (b) 2. (c) 3. (a) 4. (c) 5. (a)
6. (d) 7. (c) 8. (b) 9. (d) 10. (c)
11. (b) 12. (d) 13. (a)

Chapter 12 (Exercise 62, Page 143)

1. (d) 2. (b) 3. (f) 4. (c) 5. (a)
6. (c) 7. (a) 8. (g) 9. (f) 10. (f)
11. (b) 12. (e)

Chapter 13 (Exercise 67, Page 151)

1. (c) 2. (b) 3. (a) 4. (d) 5. (a)
6. (b) 7. (b) 8. (a) 9. (a) 10. (d)
11. (d) 12. (c) 13. (b)

Chapter 14 (Exercise 74, Page 167)

1. (b) 2. (c) 3. (c) 4. (a) 5. (d)
6. (c) 7. (a) 8. (d) 9. (c) 10. (b)
11. (b) 12. (a) 13. (d) 14. (a) 15. (d)
16. (c)
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Chapter 15 (Exercise 79, Page 180)

1. (c) 2. (c) 3. (f) 4. (e) 5. (i)
6. (c) 7. (h) 8. (b) 9. (d) 10. (a)
11. (b)

Chapter 16 (Exercise 84, Page 190)

1. (b) 2. (d) 3. (a) 4. (b) 5. (b)

Chapter 17 (Exercise 88, Page 197)

1. (b) 2. (c) 3. (b) 4. (a)

Chapter 18 (Exercise 95, Page 207)

1. (b) 2. (f) 3. (c) 4. (d) 5. (b)
6. (a) 7. (b) 8. (d) 9. (c) 10. (d)
11. (d) 12. (b)

Chapter 19 (Exercise 101, Page 219)

1. (d) 2. (b) 3. (a) 4. (c) 5. (b)
6. (b) 7. (b) 8. (a) 9. (c) 10. (b)
11. (d) 12. (c) 13. (d)

Chapter 20 (Exercise 105, Page 228)

1. (b) 2. (c) 3. (a) 4. (d) 5. (b)
6. (c) 7. (c) 8. (a) 9. (c) 10. (b)

Chapter 21 (Exercise 113, Page 244)

1. (b) 2. (d) 3. (a) 4. (a) 5. (c)
6. (d) 7. (b) 8. (c) 9. (c) 10. (d)
11. (d) 12. (d) 13. (c) 14. (b) 15. (c)
16. (a) 17. (b) 18. (f) 19. (a) 20. (b)
21. (c) 22. (c) 23. (a) 24. (c)

Chapter 22 (Exercise 118, Page 257)

1. (c) 2. (c) 3. (d) 4. (a) 5. (c)
6. (j) 7. (i) 8. (d) 9. (g) 10. (f)
11. (a) 12. (h) 13. (e) 14. (k) 15. (c)
16. (c)

Chapter 23 (Exercise 126, Page 265)

1. (a) 2. (d) 3. (b) 4. (b) 5. (c)
6. (d) 7. (b) 8. (c) 9. (c) 10. (b)

Chapter 24 (Exercise 130, Page 275)

1. (c) 2. (b) 3. (d) 4. (b) 5. (i)
6. (a) 7. (e) 8. (d) 9. (e) or (f) 10. (k)
11. (b) 12. (g)
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Index

Absolute pressure, 232, 237
Acceleration, centripetal, 147, 148

linear and angular, 129
Aneroid barometer, 237
Angle of repose, 173
Angular acceleration, 113

velocity, 128
Annulus, 92
Applications of friction, 172
Archimedes’ principle, 233
Atmospheric pressure, 232

Bar, 235
Barometer, 235
Beckman thermometer, 268
Belt, 116
Bending moment, 69

diagram, 70, 72
Bending of beams, 103
Bernoulli’s equation, 254
Bimetallic thermometer, 274
Bourdon pressure gauge, 238
Bow’s notation, 42
Boyle’s law, 258
Brittleness, 11
Built-up sections, 96
Buoyancy, 241

Celsius scale, 211
Centre of gravity, 25, 84
Centrifugal clutch, 189

force, 182
Centripetal acceleration, 147, 148

force, 148, 182
Centroidal axis, 105
Centroids, 84
Change of state, 214
Characteristic equation, 261

gas constant, 261
Charles’ law, 259
Clinical thermometer, 268
Clutch, 189
Coefficient of cubic expansion, 225

discharge, 254
friction, 170
linear expansion, 222
superficial expansion, 224

Compatibility, 13
Compound bars, 13

gear train, 204
pendulum, 195

Compression, 2
Compressive force, 2
Concurrent forces, 26
Conduction, 217
Conical pendulum, 185
Contraction, 221
Convection, 217
Coplanar forces, 26

in equilibrium, 32
resultant of, 27

Cosine rule, 29
Couple, 44, 109
Couples, 64
Cubic expansion, coefficient of, 225
Cup anemometers, 251

D’Alembert’s principle, 182
Dalton’s law of partial pressure, 260
Dead weight tester 239
Deflecting vane flowmeter, 250
Differential pressure flowmeters, 247
Ductility, 11
Dynamic friction, 170

coefficient of, 172

Efficiency, 116, 158
of a screw jack, 177
of a simple machine, 198

Effort, 198
Elastic collisions, 163

limit, 6, 18
Elasticity, 6
Electromagnetic flowmeter, 252
Energy, 157

kinetic, 162
potential, 162

Equation of continuity, 253
Equations of motion, 130
Equilibrium, 13, 25, 32, 58
Expansion, 221

and contraction of water, 222

First moment of area, 84, 88
Float and tapered tube meter, 251
Flowmeters, 247

electromagnetic, 252
mechanical, 250
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Flow nozzle, 249
Flow through an orifice, 254
Fluid flow, 247

pressure, 231
Follower, 203
Force, 1, 144

centrifugal, 182
centripetal, 148, 182
gravitational, 144
ratio, 198

Forces, 26
acting at a point, 25
in structures, 40

graphical method, 42
method of joints, 46
method of sections, 52

Formulae, list of, 279
Fortin barometer, 236
Friction, 170

applications of, 172
coefficient of, 170
on an inclined plane, 173

Fulcrum, 58, 59

Gas laws, 258
thermometers, 275

Gauge pressure, 232, 237
Gear trains, 203
Gravitational force, 144
Greek alphabet, 283

Heat, 211
Hogging, 69
Hooke’s law, 7
Horizontal component, 34
Horsepower, 110
Hot-wire anemometer, 253
Hydrostatic pressure, 240

thrust on curved surface, 241
Hydrostatics, 230

Ideal gas, 260
laws, 258

Idler wheel, 203
Impact of a jet, 255
Impulse, 139
Impulsive forces, 139
Inclined plane, friction on, 173

manometer, 238
Inelastic collisions, 163
Inertia, 144

moment of, 149
Insulation, use of conserving fuel, 218
Isobaric process, 259
Isothermal change, 258

Joule, 112, 153, 157, 212

Kelvin, 211
Kinetic energy, 112, 162

of rotation, 165

Lamina, 25, 84
Latent heat, 215

of fusion, 215
of vaporisation, 215

Levers, 205
Limiting angle of repose, 173

coefficient of friction, 172
efficiency, 199
force ratio, 199

Limit of proportionality, 6, 18
Linear and angular acceleration, 129

motion, 127
velocity, 127

Linear expansion, coefficient of, 222
momentum, 136

Liquid-in-glass thermometer, 212, 267
Load, 198

Machines, 198
Malleability, 11
Manometer, 237
Maximum/minimum thermometers, 268
McLeod gauge, 239
Measurement of pressure, 235

temperature, 267
Mechanical advantage, 198

flowmeters, 250
Mechanisms, 41
Mercury-in-steel thermometer, 274
Mercury thermometers, 268
Metacentric height, 242
Method of joints, 46

sections, 52
Mid-ordinate rule, 154
Modulus of elasticity, 7

rigidity, 12, 120
Moment, 44, 57

of a force, 57
inertia, 112, 113, 149
resistance, 105

Momentum, 136
Motion down a plane, 174

in a circle, 182
in a vertical circle, 187
on a curved banked track, 184
up a plane, 173, 175

Movement ratio, 198

Neck, 19
Neutral axis, 103

layer, 103
Newton, 1, 144
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Newton metre, 57, 105
Newton’s laws of motion, 136, 139, 144
Normal force, 170

Optical pyrometer, 273
Orifice plate, 247

Parallel axis theorem, 89, 150
Parallelogram of forces, 29
Partial pressure, 260
Pascal, 2, 230, 235
Pendulum, compound, 195

simple, 194
Permanent elongation, 19
Perpendicular axis theorem, 90
Pirani gauge, 240
Pitometer, 250
Pitot-static tube, 249
Pivot, 58
Plasticity, 6
Platinum coil, 271
Point loading, 61
Polar second moment of area, 120
Polygon of forces, 31
Potential energy, 162, 187
Power, 110, 159

transmission, 110, 116
Practical applications of thermal expansion, 221
Pressure, 230

absolute, 232, 237
atmospheric, 232
fluid, 231
gauge, 232, 237
gauges, 237
hydrostatic, 240
law, 259
measurement of, 235
partial, 260

Principle of conservation of energy, 157, 162
mass, 253
momentum, 136

Principle of moments, 58
Pulleys, 200
Pyrometers, 212, 272

Radian, 127
Radiation, 217
Radius of gyration, 89
Reaction, 145
Reactions, 61
Refrigerator, 217
Relative velocity, 132
Resistance thermometers, 212, 270
Resolution of forces, 29, 34
Resultant, 27, 70
Resultant of coplanar forces,

by calculation, 29
by vector addition, 27, 30

Rigidity modulus, 12, 120
Rotameters, 251
Rotary vane positive displacement meters, 251
Rotation of a rigid body, 149

Sagging, 69
Scalar quantity, 25, 132
Screw jack, 202

efficiency of, 177
Second moments of area, 88

for built-up sections, 96
table of, 91

Sensible heat, 215
Shear, 2

force, 2
modulus, 120

Shearing force, 69
diagram, 70, 72

Simple harmonic motion (SHM), 191
machines, 198
pendulum, 194

Simply supported beam, 57
having point loads, 61
practical applications, 61
with couples, 64

Sine rule, 29
Sliding friction, 170

coefficient of, 172
Specific heat capacity, 212
Spring-mass system, 192
Spur gears, 203
Stability of floating bodies, 242
Standard temperature and pressure (STP), 261
Statically indeterminate trusses, 41
Static friction, 170

coefficient of, 172
Stiction, 170
Stiffness, 7
Strain, 3

thermal, 12
Stress, 2
Strut, 40
Superficial expansion, coefficient of, 224

Temperature, 211
indicating paints, 274
measurement of, 212, 267
sensitive crayons, 274

Tensile force, 2
test, 18

Tension, 2
Testing to destruction, 18
Thermal expansion, 221

practical applications, 221
Thermal strain, 12
Thermistors, 272
Thermocouples, 212, 268
Thermodynamic scale, 211
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Thermometer, 212, 267

Tie, 40

Torsional vibrations, 196

Torsion of shafts, 120

Torque, 109, 113

Total radiation pyrometer, 272

Triangle of forces, 28

Turbine flowmeter, 251

type meters, 250

Twisting of shafts, 120

Ultimate tensile strength (UTS), 19

Uniformly distributed loads (UDL), 78

Upper yield point, 19

U-tube manometer, 237

Vacuum flask, 218

gauge, 237, 239

Vector addition, 27

quantity, 25, 26, 132

Velocity, linear and angular, 127

ratio, 198

relative, 132

Venturi tube, 248

Vertical component, 34

Waist, 19

Water, expansion and contraction, 222

Watt, 159

Wheatstone bridge circuit, 271

Work, 153

done, 110, 153

Yield point, 18

stress, 18

Young’s modulus of elasticity, 7
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