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Preface

Purpose and Background

Computer engineering is such a vast field that it is difficult and almost impossible to present everything
in a single book. This problem is also exaggerated by the fact that the field of computers and computer
design has been changing so rapidly that by the time this book is introduced some of the issues may
already be obsolete. However, we have tried to capture what is fundamental and therefore will be of
lasting value. Also, we tried to capture the trends, new directions, and new developments. This book
could easily fill thousands of pages because there are so many issues in computer design and so many
new fields that are popping out daily. We hope that in the future CRC Press will come with new editions
covering some of the more specialized topics in more details. Given that, and many other limitations, we
are aware that some areas were not given sufficient attention and some others were not covered at all.
However, we hope that the areas covered are covered very well given that they are written by specialists
that are recognized as leading experts in their fields. We are thankful for their valuable time and effort. 

Organization

This book contains a dozen sections. First, we start with the fabrication and technology that has been a
driving factor for the electronic industry. No sector of the industry has experienced such tremendous
growth. The progress has surpassed what we thought to be possible, and limits that were once thought
of as fundamental were broken several times. When the first 256 kbit DRAM chips were introduced the
“alpha particle scare” (the problem encountered with alpha particles discharging the memory cell)
predicted that radiation effects would limit further scaling in dimensions of memory chips. Twenty years
later, we have reached 256 Mbit DRAM chips—a thousand times improvement in density—and we see
no limit to further scaling. In fact, the memory capacity has been tripling every two years while the
number of transistors on the processor chip has been doubling every two years.

The next section deals with computer architecture and computer system organization, a top-level view.
Several architectural concepts and organizations of computer systems are described. The section ends
with description of performance evaluation measures, which are the bottom line from the user’s point
of view.

Important design techniques are described in two separate sections, one of which deals exclusively with
power consumed by the system. Power consumption is becoming the most important issue as computers
are starting to penetrate large consumer product markets, and in several cases low-power consumption is
more important than the performance that the system can deliver.

Penetration of computer systems into the consumer’s market is described in the sections dealing with
signal processing, embedded applications, and future directions in computing.

Finally, reliability and testability of computer systems is described in the last section. 
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Locating Your Topic

Several avenues are available to access desired information. A complete table of contents is presented at
the front of the book. Each of the sections is preceded with an individual table of contents. Finally, each
chapter begins with its own table of contents. Each contributed article contains comprehensive references.
Some of them contain a “To Probe Further” section where a general discussion of various sources such
as books, journals, magazines, and periodicals are discussed. To be in tune with the modern times, some
of the authors have also included Web pointers to valuable resources and information. We hope our
readers will find this to be appropriate and of much use.

A subject index has been compiled to provide a means of accessing information. It can also be used
to locate definitions. The page on which the definition appears for each key defining term is given in the
index.

The Computer Engineering Handbook is designed to provide answers to most inquiries and to direct
inquirers to further sources and references. We trust that it will meet the needs of our readership.

Acknowledgments

The value of this book is completely based on the work of many experts and their excellent contributions.
I am grateful to them. They spent hours of their valuable time without any compensation and with a
sole motivation to provide learning material and help enhance the profession. I would like to thank Prof.
Saburo Muroga, who provided editorial advice, reviewed the content of the book, made numerous
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and Miroslav Despotović
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1
Trends and Projections

for the Future of Scaling
and Future Integration

Trends

1.1 Introduction 
1.2 Downsizing below 0.1 µm
1.3 Gate Insulator
1.4 Gate Electrode
1.5 Source and Drain
1.6 Channel Doping
1.7 Interconnects
1.8 Memory Technology
1.9 Future Prospects

1.1 Introduction

Recently, information technology (IT)—such as Internet, i-mode, cellular phone, and car navigation—
has spread very rapidly all over of the world. IT is expected to dramatically raise the efficiency of our
society and greatly improve the quality of our life. It should be noted that the progress of IT entirely
owes to that of semiconductor technology, especially Silicon LSIs (Large Scale Integrated Circuits). Silicon
LSIs provide us high speed/frequency operation of tremendously many functions with low cost, low
power, small size, small weight, and high reliability. In these 30 years, the gate length of the metal oxide
semiconductor field effect transistors (MOSFETs) has reduced 100 times, the density of DRAM increased
500,000 times, and clock frequency of MPU increased 2,500 times, as shown in Table 1.1. Without such
a marvelous progress of LSI technologies, today’s great success in information technology would not be
realized at all.

The origin of the concept for solid-state circuit can be traced back to the beginning of last century, as
shown in Fig. 1.1. It was more than 70 years ago, when J. Lilienfeld using Al/Al2O3/Cu2S as an MOS
structure invented a concept of MOSFETs. Then, 54 years ago, first transistor (bipolar) was realized using
germanium. In 1960, 2 years after the invention of integrated circuits (IC), the first MOSFET was realized
by using the Si substrate and SiO2 gate insulator [1]. Since then Si and SiO2 became the key materials
for electronic circuits. It takes, however, more than several years until the Silicon MOSFET evolved to
Silicon ICs and further grew up to Silicon LSIs. The Silicon LSIs became popular in the market from the
beginning of 1970s as a 1 kbit DRAM and a 4 bit MPU (microprocessor). In the early 1970s, LSIs started

Hiroshi Iwai
Tokyo Institute of Technology

Shun-ichiro Ohmi
Tokyo Institute of Technology
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by using PMOS technology in which threshold voltage control was easier, but soon the PMOS was replaced
by NMOS, which was suitable for high speed operation. It was the middle of 1980s when CMOS became
the main stream of Silicon LSI technology because of its capability for low power consumption. Now
CMOS technology has realized 512 Mbit DRAMs and 1.7 GHz clock MPUs, and the gate length of
MOSFETs in such LSIs becomes as small as 100 nm.

Figure 1.2 shows the cross sections of NMOS LSIs in the early 1970s and those of present CMOS LSIs.
The old NMOS LSI technology contains only several film layers made of Si, SiO2, and Al, which are
basically composed of only five elements: Si, O, Al, B, and P. Now, the structure becomes very complicated,
and so many layers and so many elements have been involved. 

In the past 30 years, transistors have been miniaturized significantly. Thanks to the miniaturization,
the number of components and performance of LSIs have increased significantly. Figures 1.3 and 1.4
show the microphotographs of 1 kbit and 256 Mbit DRAM chips, respectively. Individual tiny rectangle
units barely recognized in the 16 large rectangle units of the 256 M DRAM correspond to 64 kbit
DRAM. It can be said that the downsizing of the components has driven the tremendous development
of LSIs.

Figure 1.5 shows the past and future trends of the downsizing of MOSFET’s parameters and LSI chip
properties mainly used for high performance MPUs. Future trend was taken from ITRS’99 (International
Technology Roadmap for Semiconductors) [2]. In order to maintain the continuous progress of LSIs for
future, every parameter has to be shrunk continuously with almost the same rate as before. However, it
was anticipated that shrinking the parameters beyond the 0.1 µm generation would face severe difficulties
due to various kinds of expected limitations. It was expected that huge effort would be required in research
and development level in order to overcome the difficulties.

In this chapter, silicon technology from past to future is reviewed for advanced CMOS LSIs.

TABLE 1.1 Past and Current Status of Advanced LSI Products

Year
Min.

Lg (µm) Ratio DRAM Ratio MPU Ratio

1970/72 10 1 1 k 1 750 k 1
2001 0.1 1/100 512 M 256,000 1.7 G 2,300

FIGURE 1.1 History of LSI in 20th century.

Year 2001 New Century for Solid-State Circuit

20th C
73 years since the concept of MOSFET 

1928, J. Lilienfeld, MOSFET patent
54 years since the 1st Transistor 

1947, J. Bardeen, W. Bratten, bipolar Tr
43-42 years since the 1st Integrated Circuits 

1958, J. Kilby, IC 
1959, R. Noice, Planar Technolgy

41 years since the 1st Si-MOSFET 
1960, D. Kahng, Si-MOSFET

38 years since the 1st CMOS 
1963, CMOS, by F. Wanlass, C. T. Sah

31 years since the 1st 1 kbit DRAM (or LSI) 
1970 Intel 1103

16 years since CMOS became the major technology
1985, Toshiba 1 Mbit CMOS DRAM
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FIGURE 1.2 Cross-sections of (a) NMOS LSI in 1974 and (b) CMOS LSI in 2001.

FIGURE 1.3 1 kbit DRAM (TOSHIBA).
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FIGURE 1.4 256 Mbit DRAM (TOSHIBA).

FIGURE 1.5 Trends of CPU and DRAM parameters.
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1.2 Downsizing below 0.1 µµµµm

In digital circuit applications, a MOSFET functions as a switch. Thus, complete cut-off of leakage current
in the “off” state, and low resistance or high current drive in the “on” state are required. In addition,
small capacitances are required for the switch to rapidly turn on and off. When making the gate length
small, even in the “off” state, the space charge region near the drain—the high potential region near the
drain—touches the source in a deeper place where the gate bias cannot control the potential, resulting
in a leakage current from source to drain via the space charge region, as shown in Fig. 1.6. This is the
well-known, short-channel effect of MOSFETs. The short-channel effect is often measured as the threshold
voltage reduction of MOSFETs when it is not severe. In order for a MOSFET to work as a component
of an LSI, the capability of switching-off or the suppression of the short-channel effects is the first priority
in the designing of the MOSFETs. In other words, the suppression of the short-channel effects limits the
downsizing of MOSFETs.

In the “on” state, reduction of the gate length is desirable because it decreases the channel resistance
of MOSFETs. However, when the channel resistance becomes as small as source and drain resistance,
further improvement in the drain current or the MOSFET performance cannot be expected. Moreover,
in the short-channel MOSFET design, the source and drain resistance often tends to even increase in
order to suppress the short-channel effects. Thus, it is important to consider ways for reducing the total
resistance of MOSFETs with keeping the suppression of the short-channel effects. The capacitances of
MOSFETs usually decreases with the downsizing, but care should be taken when the fringing portion
is dominant or when impurity concentration of the substrate is large in the short-channel transistor
design.

Thus, the suppression of the short-channel effects, with the improvement of the total resistance and
capacitances, are required for the MOSFET downsizing. In other words, without the improvements of
the MOSFET performance, the downsizing becomes almost meaningless even if the short-channel effect
is completely suppressed.

To suppress the short-channel effects and thus to secure good switching-off characteristics of MOSFETs,
the scaling method was proposed by Dennard et al. [3], where the parameters of MOSFETs are shrunk
or increased by the same factor K, as shown in Figs. 1.7 and 1.8, resulting in the reduction of the space
charge region by the same factor K and suppression of the short-channel effects. 

In the scaling method, drain current, Id (= W/L × V2/tox), is reduced to 1/K. Even the drain current is
reduced to 1/K, the propagation delay time of the circuit reduces to 1/K, because the gate charge reduces
to 1/K2. Thus, scaling is advantageous for high-speed operation of LSI circuits.

If the increase in the number of transistors is kept at K2, the power consumption of the LSI—which
is calculated as 1/2fnCV2 as shown in Fig. 1.7—stays constant and does not increase with the scaling.
Thus, in the ideal scaling, power increase will not occur.

FIGURE 1.6 Short channel effect at downsizing.
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However, the actual scaling of the parameters has been different from that originally proposed as the
ideal scaling, as shown in Table 1.2 and also shown in Fig. 1.5(a). The major difference is the supply
voltage reduction. The supply voltage was not reduced in the early phase of LSI generations in order to
keep a compatibility with the supply voltage of conventional systems and also in order to obtain higher
operation speed under higher electric field. The supply voltage started to decrease from the 0.5 µm
generation because the electric field across the gate oxide would have exceeded 4 MV/cm, which had
been regarded as the limitation in terms of TDDB (time-dependent break down)—recently the maximum
field is going to be raised to high values, and because hot carrier induced degradation for the short-
channel MOSFETs would have been above the allowable level; however, now, it is not easy to reduce the

TABLE 1.2 Real Scaling (Research Level)

Limiting
1972 2001 Ratio Factor

Gate length 6 µm 0.1 µm 1/60
Gate oxide 100 nm 2 nm 1/50 Gate leakage

TDDB
Junction depth 700 nm 35 nm 1/20 Resistance
Supply voltage 5 V 1.3 V 1/3.8 Vth

Threshold 0.8 V 0.35 V 1/2 Subthreshold
voltage leakage

Electric field 0.5 MV/cm 6.5 MV/cm 13 TDDB
(Vd/tox)

FIGURE 1.7 Parameters change by ideal scaling.

FIGURE 1.8 Ideal scaling method.
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supply voltage because of difficulties in reducing the threshold voltage of the MOSFETs. Too small
threshold voltage leads to significantly large subthreshold leakage current even at the gate voltage of 0 V,
as shown in Fig. 1.9. If it had been necessary to reduce the supply voltage of 0.1 µm MOSFETs at the
same ratio as the dimension reduction, the supply voltage would have been 0.08 V (=5 V/60) and the
threshold voltage would have been 0.0013 V (=0.8 V/60), and thus the scaling method would have been
broken down. The voltage higher than that expected from the original scaling is one of the reasons for
the increase of the power. Increase of the number of transistors in a chip by more than the factor  is
another reason for the power increase. In fact, the transistor size decreases by factor 0.7 and the transistor
area decreases by factor 0.5 (=0.7 × 0.7) for every generation, and thus the number of transistors is
expected to increase by a factor of 2. In reality, however, the increase cannot wait for the downsizing and
the actual increase is by a factor of 4. The insufficient area for obtaining another factor 2 is earned by
increasing the chip area by a factor of 1.5 and further by extending the area in the vertical direction
introducing multilayer interconnects, double polysilicon, and trench/stack DRAM capacitor cells.

In order to downsizing MOSFETs down to sub-0.1 µm, further modification of the scaling method is
required because some of the parameters have already reached their scaling limit in the 0.1 µm generation,
as shown in Fig. 1.10. In the 0.1 µm generation, the gate oxide thickness is already below the direct-
tunneling leakage limit of 3 nm. The substrate impurity concentration (or the channel impurity con-
centration) has already reached 1018cm−3. If the concentration is further increased, the source-substrate
and drain-substrate junctions become highly doped pn junctions and act as tunnel diodes. Thus, the
isolation of source and drains with substrate cannot be maintained. The threshold voltage has already

FIGURE 1.9 Subthreshold leakage current at low Vth.

FIGURE 1.10 Scaling limitation factor for Si MOSFET below 0.1 µm.
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decreased to 0.3–0.25 V and further reduction causes significant increase in subthreshold leakage current.
Further reduction of the threshold voltage and thus the further reduction of the supply voltage are difficult.

In 1990s, fortunately, those difficulties were shown to be solved somehow by invention of new techniques,
further modification of the scaling, and some new findings for short gate length MOSFET operation. In
the following, examples of the solutions for the front end of line are described. In 1993, first successful
operation of sub-50 nm n-MOSFETs was reported [4], as shown in Fig. 1.11. In the fabrication of the
MOSFETs, 40 nm length gate electrodes were realized by introducing resist-thinning technique using oxygen
plasma. In the scaling, substrate (or channel doping) concentration was not increased any more, and the
gate oxide thickness was not decreased (because it was not believed that MOSFETs with direct-tunnelling
gate leakage operates normally), but instead, decreasing the junction depth more aggressively (in this case)
than ordinary scaling was found to be somehow effective to suppress the short-channel effect and thus to
obtain good operation of sub-50 nm region. Thus, 10-nm depth S/D junction was realized by introduction
of solid-phase diffusion by RTA from PSG gate sidewall. In 1994, it was found that MOSFETs with gate
SiO2 less than 3 nm thick—for example 1.5 nm as shown in Fig. 1.12 [5]—operate quite normally when

FIGURE 1.11 Top view of 40 nm gate length MOSFETs [4].

FIGURE 1.12 Cross-sectional TEM image of 1.5 nm gate oxide [5].
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the gate length is small. This is because the gate leakage current decreases in proportion with the gate length
while the drain current increases in inverse proportion with the gate length. As a result, the gate leakage
current can be negligibly small in the normal operation of MOSFETs. The performance of 1.5 nm was
record breaking even at low supply voltage.

In 1993, it was proposed that ultrathin-epitaxial layer shown in Fig. 1.13 is very effective to realize
super retrograde channel impurity profiles for suppressing the short-channel effects. It was confirmed
that 25 nm gate length MOSFETs operate well by using simulation [6]. In 1993 and 1995, epitaxial
channel MOSFETs with buried [7] and surface [8] channels, respectively, were fabricated and high drain
current drive with excellent suppression of the short-channel effects were experimentally confirmed. In
1995, new raised (or elevated) S/D structure was proposed, as shown in Fig. 1.14 [10]. In the structure,
extension portion of the S/D is elevated with self-aligned to the gate electrode by using silicided silicon
sidewall. With minimizing the Si3N4 spacer width, the extension S/D resistance was dramatically reduced.
In 1991, NiSi salicide were presented for the first time, as shown in Fig. 1.15 [10]. NiSi has several
advantages over TiSi2 and CoSi2 salicides, especially in use for sub-50 nm regime. Because NiSi is a
monosilicide, silicon consumption during the silicidation is small. Silicidation can be accomplished at
low temperature. These features are suitable for ultra-shallow junction formation. For NiSi salicide, there

FIGURE 1.13 Epitaxial channel [9].

FIGURE 1.14 S4D MOSFETs [9].
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was no narrow line effect—increase in the sheet resistance in narrow silicide line—and bridging failure
by the formation of silicide path on the gate sidewall between the gate and S/D. NiSi-contact resistances
to both n+ and p+ Si are small. These properties are suitable for reducing the source, drain, and gate
resistance for sub-50 nm MOSFETs.

The previous discussion provides examples of possible solutions, which the authors found in the 1990s
for sub-50 nm gate length generation. Also, many solutions have been found by others. In any case, with
the possible solutions demonstrated for sub-50 nm generation as well as the keen competitions among
semiconductor chipmakers for high performance, the downsizing trend or roadmap has been significantly
accelerated since late 1990s, as shown in Fig. 1.16. The first roadmap for downsizing was published in
1994 by SIA (Semiconductor Industry Association, USA) as NTRS’94 (National Technology Roadmap for
Semiconductors) [11]—at that time, the roadmap was not an international version. On NTRS’94, the clock
frequency was expected to stay at 600 MHz in year 2001 and expected to exceed 1 GHz in 2007. However,
it has already reached 2.1 GHz for 2001 in ITRS 2000 [12]. In order to realize high clock frequencies, the

FIGURE 1.15 NiSi Salicide [10].

FIGURE 1.16 ITRS’99. (a) CPU clock frequency, (b) gate length, (c) supply voltage, and (d) gate insulator thickness.
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gate length reduction was accelerated. In fact, in the NTRS’94, gate length was expected to stay at 180 nm
in year 2001 and expected to reach 100 nm only in 2007, but the gate length is 90 nm in 2001 on ITRS
2000, as shown in Fig. 1.16(b).

The real world is much more aggressive. As shown in Fig. 1.16(a), the clock frequency of Intel’s MPU
already reached 1.7 GHz [12] in April 2001, and its roadmap for gate length reduction is unbelievably
aggressive, as shown in Fig. 1.16(b) [13,14]. In the roadmap, 30-nm gate length CMOS MPU with 70-nm
node technology is to be sold in the market in year 2005. It is even several years in advance compared
with the ITRS 2000 prediction.

With the increase in clock frequency and the decrease in gate length, together with the increase in number
of transistors in a chip, the tremendous increase in power consumption becomes the main issue. In order
to suppress the power consumption, supply voltage should be reduced aggressively, as shown in Fig. 1.16(c).
In order to maintain high performance under the low supply voltage, gate insulator thickness should be
reduced very tremendously. On NTRS’94, the gate insulator thickness was not expected to exceed 3 nm
throughout the period described in the roadmap, but it is already 1.7 nm in products in 2001 and expected
to be 1.0 nm in 2005 on ITRS’99 and 0.8 nm in Intel’s roadmap, as shown in Fig. 1.16(d). In terms of total
gate leakage current of an entire LSI chip for use for mobile cellular phone, 2 nm is already too thin, in
which standby power consumption should be minimized. Thus, high K materials, which were assumed to
be introduced after year 2010 at the earliest on NTRS’94, are now very seriously investigated in order to
replace the SiO2 and to extend the limitation of gate insulator thinning.

Introduction of new materials is considered not only for the gate insulator, but also almost for every
portion of the CMOS structures. More detailed explanations of new technology for future CMOS will
be given in the following sections.

1.3 Gate Insulator

Figure 1.17 shows gate length (Lg) versus gate oxide thickness (tox) published in recent conferences
[4,5,14–19]. The x-axis in the bottom represents corresponding year of the production to the gate length
according to ITRS 2000. The solid curve in the figure is Lg versus tox relation according to the ITRS 2000
[12]. It should be noted that most of the published MOSFETs maintain the scaling relationship between
Lg and tox predicted by ITRS 2000. Figures 1.18 and 1.19 are Vd versus Lg, and Id (or Ion) versus Lg curves,
respectively obtained from the published data at the conferences. From the data, it can be estimated that
MOSFETs will operate quite well with satisfaction of Ion value specified by the roadmap until the generation

FIGURE 1.17 Trend of Tox.
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around Lg = 30 nm. One small concern is that the Ion starts to reduce from Lg = 100 nm and could be
smaller than the value specified by the roadmap from Lg = 30 nm. This is due to the increase in the S/D
extension resistance in the small gate length MOSFETs. In order to suppress the short-channel effects,
the junction depth of S/D extension needs to be reduced aggressively, resulting in high sheet resistance.
This should be solved by the raised (or elevated) S/D structures. This effect is more significantly observed
in the operation of an 8-nm gate length EJ-MOSFET [20], as shown in Fig. 1.19. In the structure, S/D
extension consists of inversion layer created by high positive bias applied on a 2nd gate electrode, which is
placed to cover the 8-nm, 1st gate electrode and S/D extension area. Thus, reduction of S/D extension
resistance will be another limiting factor of CMOS downsizing, which will come next to the limit in thinning
the gate SiO2.

In any case, it seems at this moment that SiO2 gate insulator could be used until the sub-1 nm thickness
with sufficient MOSFET performance. There was a concern proposed in 1998 that TDDB (Time Depen-
dent Dielectric Breakdown) will limit the SiO2 gate insulator reduction at tox = 2.2 nm [21]; however,
recent results suggest that TDDB would be OK until tox = 1.5 − 1.0 nm [22–25]. Thus, SiO2 gate insu-
lator would be used until the 30 nm gate length generation for high-speed MPUs. This is a big change

FIGURE 1.18 Trend of Vdd.

FIGURE 1.19 Trend of drain current.
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of the prediction. Until only several years ago, most of the people did not believe the possibility of gate
SiO2 thinning below 3 nm because of the direct-tunnelling leakage current, and until only 2 years ago,
many people are sceptical about the use of sub-2 nm gate SiO2 because of the TDDB concern.

However, even excellent characteristics of MOSFETs with high reliability was confirmed, total gate leak-
age current in the entire LSI chip would become the limiting factor. It should be noted that 10 A/cm2 gate
leakage current flows across the gate SiO2 at tox = 1.2 nm and 100 A/cm2 leakage current flows at tox = 1.0 nm.
However, AMD has claimed that 1.2 nm gate SiO2 (actually oxynitrided) can be used for high end MPUs
[26]. Furthermore, Intel has announced that total-chip gate leakage current of even 100 A/cm2 is allowable
for their MPUs [14], and that even 0.8 nm gate SiO2 (actually oxynitrided) can be used for product in
2005 [15]. 

Total gate leakage current could be minimized by providing plural gate oxide thicknesses in a chip,
and by limiting the number of the ultra-thin transistors; however, in any case, such high gate leakage
current density is a big burden for mobile devices, in which reduction of standby power consumption
is critically important. In the cellular phone application, even the leakage current at tox = 2.5 nm would
be a concern. Thus, development of high dielectric constant (or high-k) gate insulator with small gate
leakage current is strongly demanded; however, intensive study and development of the high-k gate
dielectrics have started only a few years ago, and it is expected that we have to wait at least another few
years until the high-k insulator becomes mature for use of the production.

The necessary conditions for the dielectrics are as follows [27]: (i) the dielectrics remain in the solid-
phase at the process temperature of up to about 1000 K, (ii) the dielectrics are not radio-active, (iii) the
dielectrics are chemically stable at the Si interface at high process temperature. This means that no barrier
film is necessary between the Si and the dielectrics. Considering the conditions, white columns in the
periodic law of the elements shown in Fig. 1.20 remained as metals whose oxide could be used as the
high-k gate insulators [27]. It should be noted that Ta2O5 is now regarded as not very much suitable for
use as the gate insulator of MOSFET from this point of view.

Figure 1.21 shows the statistics of high-k dielectrics—excluding Si3N4—and its formation method
published recently [28–43]. In most of the cases, 0.8–2.0 nm capacitance equivalent thicknesses to SiO2

(CET) were tested for the gate insulator of MOS diodes and MOSFETs and leakage current of several
orders of magnitude lower value than that of SiO2 film was confirmed. Also, high TDDB reliability than
that of the SiO2 case was reported.

FIGURE 1.20 Metal oxide gate insulators reported since Dec. 1998 [27].
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Among the candidates, ZrO2 [29–31,34–37] and HfO2 [28,32,34,36,38–40] become popular because
their dielectric constant is relatively high and because ZrO2 and HfO2 were believed to be stable at the Si
interface. However, in reality, formation and growth of interfacial layer made of silicate (ZrSixOy , HfSixOy)
or SiO2 at the Si interface during the MOSFET fabrication process has been a serious problem. This
interfacial layer acts to reduce the total capacitance and is thought to be undesirable for obtaining high
performance of MOSFETs. Ultrathin nitride barrier layer seems to be effective to suppress the interfacial
layer formation [37]. There is a report that mobility of MOSFETs with ZrO2 even with these interfacial
layers were significantly degraded by several tens of percent, while with entire Zr silicate gate dielectrics
is the same as that of SiO2 gate film [31]. Thus, there is an argument that the thicker interfacial silicate
layer would help the mobility improvement as well as the gate leakage current suppression; however,
in other experiment, there is a report that HfO2 gate oxide MOSFETs mobility was not degraded [38].
For another problem, it was reported that ZrO2 and HfO2, easily form micro-crystals during the heat
process [31,33].

Comparing with the cases of ZrO2 and HfO2, La2O3 film was reported to have better characteristics at
this moment [33]. There was no interfacial silicate layer formed, and mobility was not degraded at all.
The dielectric constant was 20–30. Another merit of the La2O3 insulator is that no micro-crystal forma-
tion was found in high temperature process of MOSFET fabrication [33]. There is a strong concern for
its hygroscopic property, although it was reported that the property was not observed in the paper [33].
However, there is a different paper published [34], in which La2O3 film is reported to very easily form a
silicate during the thermal process. Thus, we have to watch the next report of the La2O3 experiments.
Crystal Pr2O3 film grown on silicon substrate with epitaxy is reported to have small leakage current [42].
However, it was shown that significant film volume expansion by absorbing the moisture of the air was
observed. La and Pr are just two of the 15 elements in lanthanoids series. There might be a possibility
that any other lanthanoid oxide has even better characteristics for the gate insulator. Fortunately, the
atomic content of the lanthanoids, Zr, and Hf in the earth’s crust is much larger than that of Ir, Bi, Sb,
In, Hg, Ag, Se, Pt, Te, Ru, Au, as shown in Fig. 1.22.

Al2O3 [41,43] is another candidate, though dielectric constant is around 10. The biggest problem for
the Al2O3 is that film thickness dependence of the flatband shift due to the fixed charge is so strong that
controllability of the flatband voltage is very difficult. This problem should be solved before it is used
for the production. There is a possibility that Zr, Hf, La, and Pr silicates are used for the next generation
gate insulator with the sacrifice of the dielectric constant to around 10 [31,35,37]. It was reported that
the silicate prevent from the formation of micro-crystals and from the degradation in mobility as
described before. Furthermore, there is a possibility that stacked Si3N4 and SiO2 layers are used for mobile
device application. Si3N4 material could be introduced soon even though its dielectric constant is not
very high [44–46], because it is relatively mature for use for silicon LSIs.

FIGURE 1.21 Recently reported (a) high-k materials and (b) deposition methods.
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1.4 Gate Electrode

Figure 1.23 shows the changes of the gate electrode of MOSFETs. Originally, Al gate was used for the
MOSFETs, but soon poly Si gate replaced it because of the adaptability to the high temperature process
and to the acid solution cleaning process of MOSFET fabrication. Especially, poly gate formation step
can be put before the S/D (source and drain) formation. This enables the easy self-alignment of S/D to
the gate electrode as shown in the figure. In the metal gate case, the gate electrode formation should
come to the final part of the process to avoid the high temperature and acid processes, and thus self-
alignment is difficult. In the case of damascene gate process, the self-alignment is possible, but process
becomes complicated as shown in the figure [47]. Refractory metal gate with conventional gate electrode
process and structure would be another solution, but RIE (Reactive Ion Etching) of such metals with
good selectivity to the gate dielectric film is very difficult at this moment.

As shown in Fig. 1.24, poly Si gate has a big problem of depletion layer formation. This effect would
not be ignored when the gate insulator becomes thin. Thus, despite the above difficulties, metal gate is
desirable and assumed to be necessary for future CMOS devices. However, there is another difficulty for
the introduction of metal gate to CMOS.  For advance CMOS, work function of gate electrode should
be selected differently for n- and p-MOSFETs to adjust the threshold voltages to the optimum values.
Channel doping could shift the threshold voltage, but cannot adjust it to the right value with good control
of the short-channel effects. Thus, n+-doped poly Si gate is used for NMOS and p+-doped poly Si gate
is used for PMOS. In the metal gate case, it is assumed that two different metals should be used for N-
and PMOS in the same manner as shown in Table 1.3. This makes the process further complicated and
makes the device engineer to hesitate to introduce the metal gate. Thus, for the short-range—probably
to 70 or 50 nm node, heavily doped poly Si or poly SiGe gate electrode will be used. But in the long
range, metal gate should be seriously considered.

FIGURE 1.22 Clarke number of elements.
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TABLE 1.3 Candidates for Metal Gate 
Electrodes (unit: eV)

Dual Gate

Midgap NMOS PMOS

W 4.52 Hf 3.9 RuO2 4.9
Zr 4.05 WN 5.0

Ru 4.71 Al 4.08 Ni 5.15
Ti 4.17 Ir 5.27

TiN 4.7 Ta 4.19 Mo2N 5.33
Mo 4.2 TaN 5.41

Pt 5.65

FIGURE 1.23 Gate electrode formation change.

FIGURE 1.24 Depletion in poly-Si gate.
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1.5 Source and Drain

Figure 1.25 shows the changes of S/D (source and drain) formation process and structure. S/D becomes
shallower for every new generation in order to suppress the short-channel effects. Before, the extension
part of the S/D was called as LDD (Lightly Doped Drain) region and low doping concentration was
required in order to suppress electric field at the drain edge and hence to suppress the hot-carrier effect.
Structure of the source side becomes symmetrical as the drain side because of process simplicity. Recently,
major concern of the S/D formation is how to realize ultra-shallow extension with low resistance. Thus,
the doping of the extension should be done as heavily as possible and the activation of the impurity
should be as high as possible. Table 1.4 shows the trends of the junction depth and sheet resistance of
the extension requested by ITRS 2000. As the generation proceeds, junction depth becomes shallower,
but at the same time, the sheet resistance should be reduced. This is extremely difficult. In order to satisfy
this request, various doping and activation methods are being investigated. As the doping method, low
energy implantation at 2–0.5 keV [48] and plasma doping with low energy [49] are thought to be the
most promising at this moment. The problem of the low energy doping is lower retain dose and lower
activation rate of the implanted species [48]. As the activation method, high temperature spike lamp
anneal [48] is the best way at this moment. In order to suppress the diffusion of the dopant, and to keep
the over-saturated activation of the dopant, the spike should be as steep as possible. Laser anneal [50]
can realize very high activation, but very high temperature above the melting point at the silicon surface
is a concern. Usually laser can anneal only the surface of the doping layer, and thus deeper portion may
be necessary to be annealed by the combination of the spike lamp anneal.

TABLE 1.4 Trend of S/D Extension by ITRS

1999 2000 2001 2002 2003 2004 2005 2008 2011 2014

Technology
node (nm)

180 130 100 70 50 35

Gate length (nm) 140 120 100 85 80 70 65 45 32 22
Extension Xj (nm) 42–70 36–60 30–50 25–43 24–40 20–35 20–33 16–26 11–19 8–13
Extension sheet

resistance (Ω/�)
350–800 310–760 280–730 250–700 240–675 220–650 200–625 150–525 120–450 100–400

FIGURE 1.25 Source and drain change.
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In order to further reduce the sheet resistance, elevated S/D structure of the extension is necessary, as
shown in Fig. 1.26 [6]. Elevated S/D will be introduced at the latest from the generation of sub-30 nm
gate length generation, because sheet resistance of S/D will be the major limiting factor of the device
performance in that generation.

Salicide is a very important technique to reduce the resistance of the extrinsic part of S/D—resis-
tance of deep S/D part and contact resistance between S/D and metal. Table 1.5 shows the changes
of the salicide/silicide materials. Now CoSi2 is the material used for the salicide. In future, NiSi is
regarded as promising because of its superior nature of smaller silicon consumption at the silicidation
reaction [10]. 

1.6 Channel Doping

Channel doping is an important technique not only for adjusting the threshold voltage of MOSFETs
but also for suppressing the short-channel effects. As described in the explanation of the scaling method,
the doping of the substrate or the doping of the channel region should be increased with the downsizing
of the device dimensions; however, too heavily doping into the entire substrate causes several problems,
such as too high threshold voltage and too low breakdown voltage of the S/D junctions. Thus, the
heavily doping portion should be limited to the place where the suppression of the depletion layer is
necessary, as shown in Fig. 1.27. Thus, retrograde doping profile in which only some deep portion is
heavily doped is requested. To realize the extremely sharp retrograde profile, undoped-epitaxial-silicon
growth on the heavily doped channel region is the most suitable method, as shown in the figure [7–9].
This is called as epitaxial channel technique. The epitaxial channel will be necessary from sub-50 nm
gate length generations.

TABLE 1.5 Physical Properties of Silicides

MoSi2 WSi2 C54–TiSi2 CoSi2 NiSi

Resistivity (µΩ cm) 100 70 10~15 18~25 30~40
Forming temperature (°C) 1000 950 750~900 550~900 400
Diffusion species Si Si Si Co∗ Ni

∗Si(CoSi), Co(Co2Si).

FIGURE 1.26 Elevated source and drain.
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1.7 Interconnects

Figure 1.28 shows the changes of interconnect structures and materials. Aluminium has been used for
many years as the interconnect metal material, but now it is being replaced by cupper with the combi-
nation of dual damascene process shown in Fig. 1.29, because of its superior characteristics on the
resistivity and electromigration [51,52].  Figure 1.30 shows some problems for the CMP process used
for the copper damascene, which is being solved. The major problem for future copper interconnects is
the necessity of diffusion barrier layer, as shown in Fig. 1.31. The thickness of the barrier layer will
consume major part of the cross-section area of copper interconnects with the reduction of the dimension,
because it is very difficult to thin the barrier films less than several nanometers. This leads to significant
increase in the resistance of the interconnects. Thus, in 10 years, diffusion-barrier-free copper intercon-
nects process should be developed.

FIGURE 1.27 Retrograde profile.

FIGURE 1.28 Interconnect change.
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Reducing the interconnect capacitance is very important for obtaining high-speed circuit operation.
Thus, development of low-k inter-deposition layer (IDL) is essential for the future interconnects shown
in Table 1.6. Various materials as shown in Table 1.7 are being developed at this moment. Unfortu-
nately, however, only the dielectric constant of 3.2–4.0 has been used for the products. Originally,
low-k material with dielectric constant of less than 3.0 was scheduled to be introduced much earlier.
However, because of the technological difficulty, the schedule was delayed in ITRS 2000, as shown in
Table 1.6.

FIGURE 1.29 Dual damascene for Cu.

FIGURE 1.30 Dual damascene for Cu.
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1.8 Memory Technology

Memory device requires some special technologies. Figure 1.32, and Tables 1.8 and 1.9 show the change
of DRAM cells. The cell structure becomes too complicated in order to secure the capacitor area in the
small dimensions. To solve this problem, new high-k dielectrics and related metal electrode as shown in
Table 1.8 have been already developed for production and new materials are also being investigated for 
future [53]. New dielectric materials are being developed not only for DRAM, but also for other memories
such as FERAMs (Ferro-electric RAM) [54].

Although, the structure becomes very complicated, embedded DRAM logic LSIs [55] are attractive
and necessary for the SOC (Silicon On a Chip) application. In the future, chip module technology will
solve the complexity problem in which different functional chips are made separately and finally assem-
bled on a chip.

TABLE 1.6 Trend of Interconnect by ITRS

1999 2000 2001 2002 2003 2004 2005 2008 2011 2014

Technology
node (nm)

180 130 100 70 50 35

Gate length (nm) 140 120 100 85 80 70 65 45 32 22
Number of metal 

levels
6–7 6–7 7 7–8 8 8 8–9 9 9–10 9–10

Local (AI or Cu) 
(nm)

500 450 405 365 330 295 265 185 130 95

Intermediate (AI 
or Cu) (nm)

640 575 520 465 420 375 340 240 165 115

Global (AI or Cu) 
(nm)

1050 945 850 765 690 620 560 390 275 190

Dielectric 
constant (κ)

3.5–4.0 3.5–4.0 2.7–3.5 2.7–3.5 2.2–2.7 2.2–2.7 1.6–2.2 1.5 <1.5 <1.5

Interlevel metal Fluorinated silicate Hydrogen Organic polymer Xerogel Porous dielectrics
insulator glass silsesqioxane-type Inorganic dielectrics Fluoropolymer and air gap

Porous SiO2

Dielectric 4.1 4.1 4.1 3.0–4.1 3.0–4.1 3.0–4.1 2.5–3.0 2.5–3.0 2.0–2.5 2.0–2.3
constant (κ) for 
DRAM

FIGURE 1.31 Interconnects.
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TABLE 1.7 Candidates of Low-k Materials for Next Generation Interconnects

Low κ Materials Chemical Formula κ Deposition Method

Silicon dioxide SiO2 3.9–4.5 PECVD
Fluorinated silicate glass (SiO2)x (SiO3F2)1 − x 3.2–4.0 PECVD
Polyimide 3.1–3.4 Spin on

HSQ SiO1.5H0.5 2.9–3.2 Spin on
Diamond-like carbon C 2.7–3.4 PECVD
Parylene-N 2.7  CVD

DVS-BCB (1) 2.6–2.7 Spin on
Fluorinated polyimide (2) 2.5–2.9 Spin on
MSQ SiO1.5(CH3)0.5 2.6–2.8 Spin on
Aromatic thermoset 2.6–2.8 Spin on

Parylene-F a-C:F 2.4–2.5 CVD
Teflon AF (CF2CF2)n 2.1 Spin on
Mesoporous silica SiO2 2.0 Spin on
Porous HSQ SiO1.5H0.5 2.0 Spin on
Porous aero gel SiO2 1.8–2.2 Spin on
Porous PTFE (CF2CF2)n 1.8–2.2 Spin on
Porous MSQ SiO1.5(CH3)0.5 1.7–2.2 Spin on
Xerogels (porous silica) SiO2 1.1–2.2 Spin on

HSQ : Hydrogen Silsesquioxane 
BCB : Benzocyclobutene
MSQ : Methyl Silsesquioxane
Teflon : (PTFE+2,2 bis-trifluromethyl-4,5 difluoro-1,3 dioxole)
PTFE : Polytetrafluoroethylene

TABLE 1.8 Trend of DRAM Cell

Generation Year Ground Vd (V) Device Tox (nm) xj (µm) Cell Dielectrics

1K 1971 10 20 PMOS 120 1.5 3 Tr

SiO2

4K 1975 8
12

NMOS

100 0.8 1 Tr
16K 1979 5 75 0.5

Planar Capacitor
64K 1982 3

5

50 0.35
256K 1985 2 35 0.3
1M 1988 1

CMOS

25 0.25

NO

4M 1991 0.8 20 0.2

3D Capacitor
(Stack or Trench)

16M 1994 0.5 15 0.15
64M 1997 0.3

3.3–2.5
12 0.12

256M 1999 0.18 6 0.1
1G 2002 0.13

1.8–1.2
5 0.08

4G 2005 0.10 4 0.05

High-κ16G 2008 0.07 0.9 3 0.03
64G 2011 0.05 0.6 2 0.02
256G 2014 0.035 0.5 1.5 0.01
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1.9 Future Prospects

Figures 1.33 and 1.34 show future trends of parameters for 2005 and 2014, respectively, according to the
ITRS 2000. Cost of next generation lithography tool is a concern, but it looks that there are solutions for
2005; however, we cannot see obvious solutions for 2014 when gate length becomes 20 nm. Despite the
unknown status 10 years from now, the near-term roadmap of high performance LSI makers is too
aggressive, as shown in Fig. 1.35. With this tremendously rapid downsizing trend, we might reach the
possible downsizing limit in 5 years, as shown in Fig. 1.36. What will happen after that? It should be noted
that not all the devices follow the aggressive trends. For example, gate oxide thickness of the mobile devices
would not reduce so aggressively. Even using high-k gate insulator, gate leakage current of 1 mA/cm2

flows through 1 nm (CET) film at Vd = 1 V at this moment, as shown in Fig. 1.37. Thus, rapid pace of
the downsizing will not become a merit. According to the device purpose, the pace of the downsizing will

TABLE 1.9a Trend of DRAM Cell: Stack

Year
Technology 
Node (nm)

Cell Size 
(µm2)

Capacitor 
Structure

Dielectric 
Material

Dielectric 
Constant

Upper 
Electrode

Bottom 
Electrode

1999 180 0.26 Cylinder MIS Ta2O5 22 poly-Si poly-Si
2002 130 0.10 Pedestal MIM Ta2O5 50 TiON

TiN
2005 100 0.044 Pedestal MIM BST 250 W, Pt, Ru,

RuO2, IrO2

W, Pt, Ru,
RuO2, IrO22008 70 0.018 Pedestal MIM epi-BST 700

2011 50 0.0075 Pedestal MIM ??? 1500 SrRuO3

2014 35 0.0031 Pedestal MIM ??? 1500

TABLE 1.9b Trend of DRAM Cell: Trench

Year
Technology 
node (nm)

Aspect Ratio (trench 
depth/trench width)

Trench Depth (µm) 
(at 35 fF) Dielectric Material

1999 180 30–40 6–7 NO
2002 130 40–45 5–6 NO
2005 100 50–60 5–6 NO
2008 70 60–70 4–5 High κ
2011 50 >70 4–5 High κ
2014 35 >70 5–6 High κ

FIGURE 1.32 DRAM cell structure change.
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become different and some of the devices will not reach the downsizing limit for a long time. Even if we reach
the downsizing limit, we have still many things to do for integration of the devices in multi-chip mode, as
shown in Figs. 1.38 and 1.39. For deep twenty-first century, still the device and hardware technology will
be important, as shown in Fig. 1.40, and in order to overcome the expected limitations, development of
technologies for ultra-small dimensions, for new structures, and for new materials will become important,
as shown in Figs. 1.40 and 1.41.

FIGURE 1.33 ITRS 2000 update.

FIGURE 1.34 ITRS 2000 update.

FIGURE 1.35 ITRS 2000 vs. Intel 2000.

Year 2001    →     2005 According to ITRS2000 update
X 2/3

Lg = 90 nm 60 nm Lithography is critical.
tox = 1.9–1.5 nm 1.5–1.0 nm
xj = 25–43 nm 20–33 nm

Others could be realized by 
conventional way.Wire 1/2 pitch = 180 nm 115 nm 

Total interconnect length = 12.6 km 31.6 km
ILD k = 3.5–2.9 2.2–1.6

f = 2.1 GHz 4.15 GHz (Local)
Vd = 1.5–1.2 V 1.1–0.8 V
Vth = 0.3 V? 0.2 V?

Year 2001    →     2014 According to ITRS2000 update
X 1/4

Lg = 90 nm 20 nm
tox = 1.9–1.5 nm 0.5–0.6 nm
xj = 25–43 nm 8–13 nm

Wire 1/2 pitch = 180 nm 40 nm 
Total interconnect length = 12.6 km 150 km
ILD k = 3.5–2.9 1.5–1

f = 2.1 GHz 15 GHz (Local)
Vd = 1.5–1.2 V 0.6–0.3 V
Vth = 0.3 V? ??

Year 2001    →     2005
ITRS 2000 Intel2000 (IEDM2000)

2001 2005 2005 Intel’s Demonstration
Lg = 90 nm 60 nm 35 nm (30 nm)
tox = 1.9–1.5 nm 1.5–1.0 nm 0.6 nm (0.8 nm)
xj = 25–43 nm 20–33 nm 17 nm
Vd = 1.5–1.2 V 1.1–0.8 V 0.8 V (0.85 V)
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FIGURE 1.36 Trend of gate length.

FIGURE 1.37 Reported leakage current density as a function of Tox equivalent.

FIGURE 1.38 Technology drivers in LSI industries.
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FIGURE 1.39 Chip embedded chip technology for SoC.

FIGURE 1.40 New technologies in 21st century.

FIGURE 1.41 Various new materials to be used for future ULSI.
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2.1 VLSI Circuits

Eugene John

Introduction

The term very large scale integration (VLSI) refers to a technology through which it is possible to
implement large circuits consisting of up to or more than a million transistors on semiconductor wafers,
primarily silicon. Without the help of VLSI technology the advances made in computers and in the
Internet would not have been possible. The VLSI technology has been successfully used to build large
digital systems such as microprocessors, digital signal processors (DSPs), systolic arrays, large capacity
memories, memory controllers, I/O controllers, and interconnection networks. The number of transistors
on a chip, depending on the application can range from tens (an op-amp) to hundreds of millions (a large
capacity DRAM). The Intel Pentium III microprocessor with 256 kbyte level two cache contains approx-
imately 28 million transistors while the Pentium III microprocessor with a 2 Mbyte level two cache
contains 140 million transistors [1]. Circuit designs, where a very large number of transistors are inte-
grated on a single semiconductor die, are termed VLSI designs.

Complementary metal oxide semiconductor (CMOS) VLSI logic circuits can be mainly classified into
two main categories: static logic circuits and dynamic logic circuits. Static logic circuits are circuits in
which the output of the logic gate is always a logical function of the inputs and always available on the
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outputs of the gate regardless of time. A static logic circuit holds its output indefinitely. On the contrary,
a dynamic logic circuit produces its output by storing charge in a capacitor. The output thus decays with
time unless it is refreshed periodically. Dynamic or clocked logic gates are used to decrease complexity,
increase speed, and lower power dissipation. The basic idea behind the dynamic logic is to use the capacitive
input of the transistors to store a charge and thus remember a logic level for use later. Logic circuits may
also be classified into combinational and sequential logic circuits. Combinational circuits produce outputs
which are dependent on inputs only. There is no memory or feedback in the circuit. Circuits with feedback
whose outputs depend on the inputs as well as the state of the circuit are called sequential circuits. 

The rest of this chapter section is organized as follows. Static CMOS circuits are described, including
combinational and sequential circuits in the following subsection. Special circuits, such as Pseudo NMOS
logic and pass transistor logic, are also described in the same subsection. Then the next subsection
describes dynamic logic circuits. The last subsection describes memory arrays including static RAMs,
dynamic RAMs, and ROMs. Section 2.1 concludes with a discussion of VLSI CMOS low power circuits
and illustrates a few low power adder circuits. Section 2.1 explains and develops the circuits at the logic
level instead of the device level. References [2–10] are excellent sources for detailed analysis. 

The Transistor as a Switch

CMOS logic circuits are made up of n-channel and p-channel metal oxide semiconductor field effect
transistors (MOSFETs). The remarkable ability of these transistors to act almost like ideal switches makes
CMOS VLSI circuit design practical and interesting. The n-channel MOSFET is often called the NMOS
transistor and the p-channel MOSFET is called the PMOS transistor. A PMOS transistor works com-
plementary to an NMOS transistor. Several symbols represent the NMOS and the PMOS transistors.
Figure 2.1 shows the simplified circuit symbols of the NMOS and the PMOS transistors. We will assume
that a logic 1 (or simply a 1) is a high voltage. In present day VLSI circuit design it could be any value
between 1.0 and 5 V. Normally this is equal to the power supply voltage, VDD, of the circuit. It is also
assumed that a logic 0 (or simply a 0) is zero volt or close to zero volt, which is the typical ground
potential and often denoted by VSS. It should be noted that unlike bipolar junction transistors, MOSFETs
are symmetrical devices, and the drain and the source terminals can be interchanged. For the NMOS
transistor, the terminal where VDD is connected is the drain, and for the PMOS transistor, the terminal
where VDD is connected is the source. Figure 2.2 illustrates the basic switching action of the NMOS and
the PMOS transistors. The NMOS transistor behaves as an open switch when the gate voltage S = 0, and
when the gate voltage S = 1, the transistor behaves as a closed switch (short circuit). For the PMOS
transistor, the complement is true. That is, when S = 0, the PMOS transistor behaves as a closed switch,
and when S = 1, the transistor behaves as an open switch. The transistor models presented in Fig. 2.2
are a very simplistic approximation, but it is an adequate model to understand the logic level behavior
of VLSI circuits. The way the PMOS and NMOS transistors pass the high and low voltages from drain
to source or source to drain for the appropriate gate signal is an interesting and peculiar property of
these transistors. It has been observed that n-channel passes “0” very well and the p-channel passes “1”
very well. Referring to Fig. 2.2, when S = 1, the NMOS acts like a closed switch, but if we connect VDD

at the node A, at the node B instead of VDD we will get a voltage slightly less than VDD, for this reason
we call this sigal a weak 1. But when VSS is connected at node A of the NMOS, at node B we get a strong

FIGURE 2.1 Simplified circuit symbols of  NMOS and
PMOS transistors.
© 2002 by CRC Press LLC



                                                                                                       
ground and we call this signal a strong 0. Again, for the PMOS transistor, the complement is true. For
the PMOS, when the gate signal S = 0, if we connect VDD at the node A, we get a strong 1 at node B, and
if we connect VSS at the node A, we get a weak 0 at node B. 

The NMOS and PMOS switches can be combined in various ways to produce desired simple and
complex logic operations. For example, by connecting n NMOS or n PMOS transistors in series, one can
realize circuits in which the functionality is true only when all the n transistors are ON. For instance, in
the circuit in Fig. 2.3(a), the nodes A and B will get connected only when S1 = S2 = 1. Similarly, in Fig. 2.3(b),
A and B will get connected only when S1 = S2 = 0. Similarly by connecting n PMOS or n NMOS transistors
in parallel between two nodes A and B, one can realize circuits in which the functionality is true when
any one of the n transistors is ON. For instance, in Fig. 2.3(c), if either S1 or S2 is equal to 1, there is a
connection between A and B. Similarly, in Fig. 2.3(d), if either S1 or S2 is equal to 0, there is a connection
between A and B.

Static CMOS Circuit Design

CMOS Combinational Circuits

Any Boolean function, whether simple or complex, depending on the input combinations can have only
two possible output values, a logic high or a logic low. Therefore, to construct a logic circuit that realizes
a given Boolean function, all that is required is to conditionally connect the output to VDD for logic
high or to VSS for logic low. Therefore, to construct a logic circuit that realizes a given Boolean function,
all that is required is to conditionally connect the output to VDD for logic high or to VSS for logic low.

FIGURE 2.2 The basic switching actions of the NMOS and PMOS transistors.

FIGURE 2.3 Series and parallel switch networks using NMOS and PMOS transistors.
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This is the basic principle behind the realization of CMOS logic circuits. A CMOS logic gate consists of
an NMOS pull-down network and a complementary PMOS pull-up network. The NMOS pull-down
network is connected between the output and the ground. The PMOS pull-up network is connected
between the output and the power supply, VDD. The inputs go to both the networks. This is schematically
illustrated in Fig. 2.4. The number of transistors in each network is equal to the number of inputs. The
NMOS pull-down network can be designed using the series and parallel switches illustrated in Fig. 2.3.
The PMOS pull-up network is designed as a dual of NMOS pull-down network. That is, parallel compo-
nents in NMOS network translate into series components in the PMOS network, and series components
in NMOS network translate into parallel components in PMOS network. This procedure is elaborated by
design examples later in this section.

For a given combination of inputs, when the output is a logic 0, the NMOS network provides a closed
path between the output and ground, thereby pulling the output down to ground (logic 0). This is the
reason for the name NMOS pull-down network. When the output is a logic 1, for a given combination
of inputs, the PMOS network provides a closed path between the output and VDD, thereby pulling the
output up to VDD (logic 1). This is the reason for the name PMOS pull-up network. For CMOS logic gates
for both the outputs (0 and 1), we get strong signals at the output. If the output is a logic high, we get a
strong 1 since the output gets connected to VDD through the PMOS pull-up network, and if the output is
a logic low, we get a strong 0 since the output gets connected to VSS through the NMOS pull-down network.
It should be clearly noticed that only one of the networks remains closed at a given time for any combi-
nation of the inputs. Therefore, at steady state no dc path exists between VDD and ground and hence no
power dissipation. This is the primary reason for the inherent low power dissipation of CMOS VLSI circuits.

We now illustrate the CMOS realization of inverters, NAND and NOR logic circuits. An inverter is
the simplest possible of all the logic gates. An inverter can be constructed by using a PMOS and an NMOS
transistor. Figure 2.5 shows the logic symbol, CMOS realization and switch level equivalent circuits of
the inverter for both a 0 input and a 1 input. When the input is 0, the NMOS transistor is open (or OFF)
and the PMOS transistor is closed (or ON). Since the P switch is closed, the output is pulled high to VDD

(logic 1). When the input is 1, the PMOS transistor is OFF and the NMOS transistor is ON, and the
output is pulled down to ground (logic 0), which is the expected result of an inverter circuit.

FIGURE 2.4 The general structure of a CMOS logic
circuit.

FIGURE 2.5 A CMOS inverter: logic symbol, CMOS realization, and the switch level equivalent circuit when the
input is equal to 0 and 1.
© 2002 by CRC Press LLC



                                                                              
A 2-input CMOS NAND gate and the switch level equivalent circuits for all the possible input combinations
are shown in Fig. 2.6. This circuit realizes the function F = (AB)′. The generation of the CMOS circuit has
the following steps. For the pull-down network, take the non-inverted expression AB (called the n-expression)
and realize using NMOS transistors. For the pull-up network, find the dual of the n-expression (called the
p-expression) and realize using PMOS transistors. In this example the dual is A + B (p-expression). For the
CMOS NAND gate shown in Fig. 2.6, if any of the inputs is a 0, one of the NMOS transistors will be OFF
and the pull-down network will be open. At the same time one of the PMOS transistors will be ON and the
pull-up network will be closed, and the output will be pulled up to VDD (logic 1). If all the inputs are high
(logic 1), the pull-down network will be closed and the pull-up network will be open and the output will be
pulled down to ground (logic 0), which is the desired functionality of a NAND gate. 

Figure 2.7 illustrates the CMOS realization of a 2-input NOR gate. In Fig. 2.7, the output value is
equal to 0 when either A or B is equal to 1 because one of the NMOS transistors will be ON. But if both
inputs are equal to 0, the series pair of PMOS transistors between VDD and the output Y will be ON,
resulting in a 1 at the output, which is the desired functionality of a NOR gate. Figure 2.8 illustrates a
2-input CMOS OR gate realized in two different fashions. In the first method, an inverter is connected
to the output of a NOR circuit to obtain an OR circuit. In the second method, we make use of DeMorgan’s
theorem, (A′B′)′  = A + B, to realize the OR logic function. It should be noted that the inputs are inverted
in the second method. To realize the CMOS AND gate, the same principles can be used.

CMOS compound gates can be realized using a combination of series and parallel switch structures.
Figure 2.9 shows the CMOS realization of the logic function Y = (ABC + D)′. The pull-down network is
realized using the n-expression: ABC + D (the noninverted expression of Y). The pull-up network is
realized using the dual of the n-expression, which is equal to (A + B + C)D. In order to further illustrate

FIGURE 2.6 A 2-input CMOS NAND gate and the switch-level equivalent circuits for all the possible input
combinations.

FIGURE 2.7 A 2-input CMOS NOR gate.
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CMOS designs, we show a full adder design in Fig. 2.10. The two 1-bit inputs are A and B, and the carry-
in is C. Two 1-bit outputs are the Sum and the Carry-Out. The outputs can be represented by the
equations: Sum = ABC + AB′C ′ + A′B′C + A′BC ′ and Carry-Out = AB + AC + BC = AB + (A + B)C [9].
The implementation of this circuit requires 14 NMOS and 14 PMOS transistors. 

Pseudo-NMOS Logic

Pseudo NMOS is a ratioed logic. That is for the correct operation of the circuit the width-to-length
ratios (W/L s) of the transistors must be carefully chosen. Instead of a combination of active pull-
down and pull-up networks, the ratioed logic consists of a pull-down network and a simple load device.

FIGURE 2.8 Two different realizations of a 2-input CMOS OR gate.

FIGURE 2.9 CMOS realization of the compound gate
Y = (ABC + D)′.

FIGURE 2.10 A CMOS 1-bit full adder.
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The pull-down network realizes the logic function and a PMOS with grounded gate presents the load
device, as shown in Fig. 2.11(a). The pseudo-NMOS logic style results in a substantial reduction in gate
complexity, by reducing the number of transistors required to realize the logic function by almost half.
The speed of the pseudo-NMOS circuit is faster than that of static CMOS realization because of smaller
parasitic capacitance. One of the main disadvantages of this design style is the increased static power
dissipation. This is due to the fact that, at steady state when the output is 0, pseudo-NMOS circuits
provide dc current path from VDD to ground. Figure 2.11(b) shows the realization of a 2-input NAND
gate using pseudo-NMOS logic. When the inputs A = 0 and B = 0, both the transistors in the pull-down
network will be OFF and the output will be a logic 1. When A = 0 and B = 1, or A = 1 and B = 0, the
pull-down network again will be OFF and the output will be logic 1. When A = 1 and B = 1, both
transistors in the pull-down network are ON and the output will be a logic 0, which is the expected
result of a NAND gate. Figure 2.11(c) illustrates the pseudo-NMOS realization of a 2-input NOR gate.
Another example for the pseudo-NMOS logic realization is given in Fig. 2.11(d). This circuit realizes
the function Y = (ABC + D)′, and the operation of this logic circuitry can also be explained in a manner
explained above.

Pass Transistor/Transmission Gate Logic

In all the circuits we have discussed so far, the outputs are obtained by closing either the pull-up network
to VDD or the pull-down network to ground. The inputs are used essentially to control the condition
of the pull-up and the pull-down networks. One may design circuits in which the input signals in addition
to VDD and VSS are steered to output, depending on the logic function being realized. Pass transistor
logic implements a logic gate as a simple switch network. The pass transistor design methodology has
the advantage of being simple and fast. Complex CMOS combinational logic functions can be imple-
mented with minimal number of transistors. This results in reduced parasitic capacitance and hence
faster circuits. As a pass transistor design example, Fig. 2.12 shows a Boolean function unit realized using

FIGURE 2.11 (a) The general structure of a Pseudo-NMOS logic; (b) Pseudo-NMOS realization of a 2-input NAND
gate; (c) Pseudo-NMOS realization of a 2-input NOR gate; (d) Pseudo-NMOS realization of the logic function Y =
(ABC + D)′.
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pass transistors [3,7]. In this circuit the output is a function of the inputs A and B and the functional
inputs P1, P2, P3, and P4. Depending on the values of P1, P2, P3, and P4, the F output is either the
NOR, XOR, NAND, AND, or OR of inputs A and B. This is summarized in the table in Fig. 2.12.

The simple pass transistor only passes one logic level well, but if we put NMOS and PMOS in parallel
we get a simple circuit that passes both logic levels well. This simple circuit is called the transmission gate
(TG). The schematic and logic symbol of the transmission gate are shown in Fig. 2.13(a,b). Figure 2.13(c)
shows the simplified logic symbol. The CMOS transmission gate operates as a bi-directional switch between
nodes A and B, which is controlled by S. The transmission gate requires two control signals. The control
signal S is applied to the NMOS and the complement of the control signal S′ to the PMOS. If the control
signal S is high, both transistors are turned ON providing a low resistance path between A and B. If the
control signal S is low, both transistors will be OFF and the path between the nodes A and B will be an
open circuit.

The transmission gate can be used to realize logic gates and functions. Consider the exclusive-OR
(XOR) gate shown in Fig. 2.14 [5]. When both inputs A and B are low, the top TG is ON (and the bottom
TG is OFF) and its output is connected to A, which is low (logic 0). If both the inputs are high, the bottom
TG is ON (and the top TG is OFF), and its output is connected to A′, which is also a low (logic 0). If A
is high and B is low, the top TG is on and the output is connected to A, which is a high (logic 1).
Similarly, if A is low and B is high, the bottom TG is on and the output gets connected to A′, which is
a high (logic 1), which is the expected result of a XOR gate. In Fig. 2.14, if we change B to B′ and B′ to
B, the circuit will realize the exclusive-NOR (XNOR) function. In the next section we will use transmission
gates to realize latches and flip-flops.

FIGURE 2.12 Multifunction circuitry using pass transistor logic and the function table.

FIGURE 2.13 The transmission gate: (a) schematic, (b) logic symbol, and (c) simplified logic symbol.

FIGURE 2.14 Transmission gate implementation of
XOR gate.
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Sequential CMOS Logic Circuits

As mentioned earlier, in combinational logic circuits, the outputs are a logic combination of the current
input signals. In sequential logic circuits the outputs depend not only on the current values of the inputs,
but also on the preceding input values. Therefore, a sequential logic circuit must remember information
about its past state. Figure 2.15 shows the schematic of a synchronous sequential logic circuit. The circuit
consists of a combinational logic circuit, which accepts inputs X and Y1 and produces outputs Z and Y2.
The output Y2 is stored in the memory element as a state variable. The number of bits in the state
variable decides the number of available states, and for this reason a sequential circuit is also called a
finite state machine. The memory element can be realized using level-triggered latches or edge triggered
flip-flops. 

For a VLSI circuit designer, a number of different latches and flip-flops are available for the design
of the memory element of a sequential circuit. Figure 2.16(a) shows the diagram of a CMOS positive
level sensitive D latch realized using transmission gates and inverters and its switch level equivalent
circuits for CLK = 0 and CLK = 1. It has a data input D and a clock input CLK. Q is the output and
the complement of the output Q′ is also available. When CLK = 0, the transmission gate in the inverter
loop will be closed and the transmission gate next to the data input will be open. This establishes a
feedback path around the inverter pair and this feedback loop is isolated from the input D as shown
in Fig. 2.16(a). This causes the current value of Q (and hence Q ′) to be stored in the inverter loop.
When the clock input CLK = 1, the transmission gate in the inverter loop will be open and the trans-
mission gate close to the input will be closed, as shown in Fig. 2.16(a). Now the output Q = D, and the
data is accepted continuously. That is, any change at the input is reflected at the output after a nominal
delay. By inverting the clocking signals to the transmission gates a negative level sensitive latch can be
realized.

A negative level sensitive latch and a positive level sensitive latch may be combined to form an edge
triggered flip-flop. Figure 2.16(b) shows the circuit diagram of a CMOS positive edge triggered D flip-
flop. The first latch, which is the negative level sensitive latch, is called the master and the second latch
(positive level sensitive latch) is called the slave. The electrical equivalent circuits for the CMOS positive
edge triggered D flip-flop for CLK = 0 and for CLK = 1 are also shown in Fig. 2.16(b). When CLK = 0,
both latches will be isolated from each other and the slave latch holds the previous value, and the master
latch (negative level sensitive latch) follows the input (Qm = D′). When CLK changes from 0 to 1, the
transmission gate closest to data D will become open and the master latch forms a closed loop and holds
the value of D at the time of clock transition from 0 to 1. The slave latch feedback loop is now open,
and it is now connected to the master latch through a transmission gate. Now the open slave latch passes
the value held by the master (Qm = D′) to the output. The output Q = , which is the value of the input
D at the time of the clock transmission from 0 to 1. Since the master is disconnected from the data input
D, the input D cannot affect the output. When the clock signal changes from 1 to 0, the slave forms a
feedback loop, saving the value of the master and the open master start to sampling and following the
input data D again. But, as is evident from the Fig. 2.16(b), this will not affect the output. Together with
RAM and ROM, which are explained in the section on Memory Circuits, these structures form the basis
of most CMOS storage elements and are also used as the memory element in the design of sequential
circuits. Figure 2.16(c) shows the CMOS realization of the positive edge triggered D flip-flop, including
the transistors required for generating the CLK′ signal—18 transistors are required for its implementation.

FIGURE 2.15 A general model of a sequential network.

Q′m
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Dynamic Logic Circuits

The basic idea behind the dynamic logic is to use the capacitive input of the MOSFET to store a charge
and thus remember a logic level for later use. The output decays with time unless it is refreshed periodically
since it is stored in a capacitor. Dynamic logic gates, which are also known as clocked logic gates, are
used to decrease complexity, increase speed, and lower power dissipation. 

Figure 2.17 shows the basic structure of a dynamic CMOS logic circuit. The dynamic logic design
eliminates one of the switch networks from a complementary logic circuit, thus reducing the number of
transistors required to realize a logic function by almost 50%. The operation of a dynamic circuit has two
phases: a precharge phase and an evaluation phase depending on the state of the clock signal. When clock
CLK = 0, the PMOS transistor in the circuit is turned ON and the NMOS transistor in the circuit is turned
OFF, and the load capacitance is charged to VDD. This is called the precharge phase. The precharge phase
should be long enough for the load capacitance to completely charge to VDD. During the precharge phase,
since the NMOS transistor is turned OFF, no conducting path exists between VDD and ground, thus
eliminating static current. The precharging phase ends and the evaluation phase begins when the clock
CLK turns 1. Now the PMOS transistor is turned OFF and the NMOS transistor is turned ON. Depending
on the values of the inputs and the composition of the pull-down network, a conditional path may exist
between the output and the ground. If such a path exists, the capacitor discharges and logic low output

(a) (b)

(c)

FIGURE 2.16 (a) CMOS positive-level sensitive D latch and the switch level equivalent circuits for CLK = 0 and
CLK = 1; (b) CMOS positive-edge triggered D flip-flop and the switch level equivalent circuits for CLK = 0 and CLK = 1;
(c) CMOS implementation of the positive-edge triggered D flip-flop.
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is obtained. If no such path exists between the output and the ground, the capacitor retains its value and
a logic high output is obtained. In the evaluate phase, since the PMOS transistor is turned OFF, no path
exists between VDD and ground, thus eliminating the static current during that phase also.

Figure 2.18(a) shows the realization of the 2-input NAND gate using dynamic logic. During the
precharge phase (CLK = 0), the NMOS transistor is OFF and the PMOS transistor is ON, and the capacitor
is precharged to logic 1. During the evaluate phase, if the inputs A and B are both equal to 0, both the

FIGURE 2.17 Basic structure of a dynamic CMOS logic circuitry.

FIGURE 2.18 Dynamic logic implementation of (a) 2-input NAND gate, (b) 2-input NOR gate, and (c) the logic
function Y = (ABC + D)′.
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transistors in the pull-down network will be OFF, and the output goes into high impedance state and
holds the precharged value of logic 1. When A = 0 and B = 1, or A = 1 and B = 0, the pull-down network
again will be OFF and the output holds the precharged value of logic 1. When A = 1 and B = 1, both
transistors in the pull-down network are ON, and the load capacitor discharges through the low resistance
path provided by the NMOS pull-down network, and the output will be a logic 0, which is the expected
result of a NAND gate. It should be noted that once the capacitor discharges, it cannot be charged until
the next precharge phase. Figure 2.18(b) illustrates the dynamic logic implementation of a 2-input NOR
gate. Another example for the dynamic logic realization is given in Fig. 2.18(c). This circuit realizes the
function Y = (ABC + D)′, and the operation of this dynamic logic circuitry can also be explained in a
manner explained earlier.

Memory Circuits

Semiconductor memory arrays are widely used in many VLSI subsystems, including microprocessors and
other digital systems.  More than half of the real estate in many state-of-the-art microprocessors is devoted
to cache memories, which are essentially memory arrays. Memory circuits belong to different categories;
some memories are volatile, i.e., they lose their information when power is switched off, whereas some
memories are nonvolatile. Similarly, some memory circuits allow modification of information, whereas
some only allow reading of prewritten information. As shown in Fig. 2.19, memories may be classified
into two main categories, Read/Write Memories (RWMs) or Read Only Memories (ROMs). Read/Write
Memories or memory circuits that allow reading (retrieving) and writing (modification) of information
are more popularly referred to as Random Access Memories or RAMs. (Historically, RAMs were referred
to by that name to contrast with non-semiconductor memories such as disks which allow only sequential
access. Actually, ROMs also allow random access in the way RAMs do; however, they should not be called
RAMs. The advent of new RAM chips such as page mode DRAMs and cached DRAMs have rendered
RAMs to be strictly not random access memories because latency for random access to any location is
not uniform any more.)

In contrast to RAMs, ROMs are nonvolatile, i.e., the data stored in them is not lost when power supply
is turned off. The contents of the simple ROM cannot be modified. Some ROMs allow erasing and rewriting
of the information (typically, the entire information in the whole chip is erased). The ROMs, which are
programmed in the factory and are not reprogrammable anymore, are called mask-programmed ROMs,
whereas programmable ROMs (PROMs) allow limited reprogramming, and erasable PROMs (EPROMs),
electrically erasable PROMs (EEPROMs), and FLASH memories allow erasing and rewriting of the infor-
mation in the chip. EPROMs allow erasure of the information using ultraviolet light, whereas EEPROMs
and FLASH memories allow erasure by electrical means. 

FIGURE 2.19 Different types of semiconductor memories.
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Memory chips are typically organized in the form of a matrix of memory cells. For instance, a 32-kbit
memory chip can be organized as 256 rows of 128 cells each. Each cell is capable of storing one bit of
binary information, a 0 or a 1. Each cell needs two connections to be selected, a row select signal and a
column select signal. All the cells in a row are connected to the same row select signal (also called word-
line) and all the cells in a column are connected to the same column select signal (also called bit-line).
Only cells that get both the row and column selects activated will get selected. Figure 2.20 shows the
structure of a typical memory cell array. A 32-kbit memory chip will have 15 address lines, and if the
chip is organized as 256 rows or 128 cells, 8 address lines will be connected to the row address decoder
and 7 address lines will be connected to the column address decoder.

Static RAM Circuits

Static RAMs are static memory circuits in the sense that information can be held indefinitely as long
as power supply is on, which is in constrast to DRAMs which need periodic refreshing. A static RAM
cell basically consists of a pair of cross-coupled inverters, as shown in Fig. 2.21(a). The cross-coupled
latch has two possible stable states, which will be interpreted as the two possible values one wants to
store in the cell, the “0” and the “1”. To read and write the data contained in the cell, some switches are
required. Because the two inverters are cross-coupled, the outputs of the two transistors are comple-
mentary to each other. Both outputs are brought out as bit line and complementary bit line. Hence, a
pair of switches are provided between the 1-bit cell and the complementary bit lines. Figure 2.21(b)
illustrates the structure of a generic MOS static RAM cell, with the two cross-coupled transistors storing
the actual data, the two transistors connected to the word line and bit-lines acting as the access switches
and two generic loads, which may be active or passive. Figure 2.21(c) illustrates a case where the loads
are resistive, whereas Fig. 2.21(d) illustrates the case where the loads are PMOS transistors. A resistive
load can be realized using undoped polysilicon. Such a resistive load yields compact cell size and is
suitable for high density memory arrays; however, one cannot obtain good noise rejection properties
and good energy dissipation properties for passive loads. Low values of the load resistor results in better
noise margins and output pull-up times; however, high values of the resistor is better to reduce the
amount of standby current drawn by each memory cell. The load can also be realized using an active
device, which is the approach in the 6-transistor cell in Fig. 2.21(d). This 6-transistor configuration,
often called the full CMOS SRAM, has desirable properties of low power dissipation, high switching
speed, and good noise margins. The only disadvantage is that it consumes more area than the cell with
the resistive load.

FIGURE 2.20 Typical memory array organization.
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In Fig. 2.21(d), the cross-coupled latch formed by transistors T1 and T2 forms the core of the SRAM
cell. This transistor pair can be in one of two stable states, with  either T1 in the ON state or T2 in the
ON state. These two stable states form the one-bit information that one can store in this transistor pair.
When T1 is ON (conducting), and T2 is OFF, a “0” is considered to be stored in the cell. When a “1” is
stored, T2 will be conducting and T1 will be OFF. The transistors T3 and T4 are used to perform the
read and write operations. These transistors are turned ON only when the word line is activated (selected).
When the word line is not selected, the two pass transistors T3 and T4 are OFF and the latch formed by
T1 and T2 simply “holds” the bit it contains. Once the memory cell is selected by using the word line,
one can perform read and write operations on the cell. In order to write a “1” into the cell, the bit line
C ′ must be forced to logic low, which will turn off transistor T1, which leads to a high voltage level at
T1’s drain, which turns T2 ON and the voltage level at T2’s drain goes low. In order to write a “0”, voltage
level at bit line C is forced low, forcing T2 to turn off and T1 to turn ON. To accomplish forcing the bit-
lines to logic low, a write circuitry  has to be used. Figure 2.22 illustrates a static RAM cell complete with
read and write circuitry [6]. The write circuitry consists of transistors WT1 and WT2 that are used to
force C or C ′ to low-voltage appropriately (Table 2.1). Typically, two NOR gates are used to generate the
appropriate gate signals for the transistors WT1 and WT2 (not shown in Fig. 2.22).

The read circuitry is also illustrated in Fig. 2.22. In order to read values contained in a cell, the cell is
selected using the word select line. Both transistors T3 and T4 are ON, and one of either T1 or T2 is
ON. If T1 is ON, as soon as the row select signal is applied, the voltage level on bit line C drops slightly
because it is pulled down by T1 and T3.  The data read circuitry detects the small voltage difference
between the C and C ′ lines (C ′ is higher) and amplifies it as a logic “0” output. If T2 is ON, as soon as

TABLE 2.1

Desired Action WB Operation

WRITE 1 0 1 WT1 OFF, WT2 ON, forcing C ′ low 
WRITE 0 1 0 WT1  ON, WT2 OFF, forcing C low 
Do not write 0 0 WT1 and WT2 OFF, forcing C and C ′ to 

be high 

FIGURE 2.21 Different configurations of the SRAM cell: (a) basic two-inverter latch, (b) generic SRAM cell topology,
(c) SRAM cell with resistive load, (d) the 6-transistor CMOS SRAM cell.

WB ′
© 2002 by CRC Press LLC



the row select signal is applied, the voltage level on complementary bit line C ′ drops slightly because it
is pulled down by T2 and T4. The data read circuitry detects the small voltage difference between C and
C ′ lines (C is higher) and amplifies it as logic “1” output. The data read circuitry can be constructed as
a simple source-coupled differential amplifier or as a differential current-mirror sense amplifier circuit
(as indicated in Fig. 2.22). The current-mirror sense amplifier achieves a faster read time than the simple
source-coupled read amplifier. The read access speed can be further improved by two- or three-stage
current mirror differential sense amplifiers [6].

Dynamic RAM Circuits

All RAMs lose their contents when power supply is turned off. However, some RAMs gradually lose the
information even if power is not turned off, because the information is held in a capacitor. Those RAMs
need periodic refreshing of information in order to retain the data. They are called dynamic RAMs or
DRAMs.

Static RAM cells require 4–6 transistors per cell and need 4–5 lines connecting to each cell including
power, ground, bit lines, and word lines. It is desirable to realize memory cells with fewer transistors and
less area, in order to construct high density RAM arrays. The early steps in this direction were to create
a 4-transistor cell as in Fig. 2.23(a) by removing the load devices of the 6-transistor SRAM cell. The data
is stored in a cross-coupled transistor pair as in the SRAM cells we discussed earlier. But it should be
noted that voltage from the storage node is continuously being lost due to parasitic capacitance, and
there is no current path from a power supply to the storage node to restore the charge lost due to leakage.
Hence, the cell must be refreshed periodically. This 4-transistor cell has some marginal area advantage
over the 6-transistor SRAM cell, but not any significant advantage. An improvement over the 4-transistor
DRAM cell is the 3-transistor DRAM cell shown in Fig. 2.23(b). Instead of using a cross-coupled transistor
pair, this cell uses a single transistor as the storage device. The transistor is turned ON or OFF depending

FIGURE 2.22 CMOS SRAM cell with read amplifier and data write circuitry [6].
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on the charge stored on its gate capacitance. Two more transistors are contained in each cell, one used as
read access switch and the other used as write access switch. This cell is faster than the 4-transistor DRAM
cell; however, every cell needs two control and two I/O (bit) lines making the area advantage insignificant.

The widely popular DRAM cell is the single transistor DRAM cell shown in Fig. 2.23(c). It stores data
as charge in an explicit capacitor. There is also one transistor which is used as the access switch. This
structure consumes significantly less area than a static RAM cell. The cell has one control line (word
line) and one data line (bit line). The cells can be selected using the word line, and the charge in the
capacitor can be modified using the bit line. 

Read Only Memories (ROMs)

ROM arrays are simple memory circuits, significantly simpler than the RAMs, which we discussed in the
preceding section. A ROM can be viewed as a simple combinational circuit, which produces a specified
output value for each input combination. Each input combination corresponds to a unique address or
location. Storing binary information at a particular address can be achieved by the presence or absence
of a connection from the selected row to the selected column. The presence or absence of the connection
can be implemented by a transistor. Figure 2.24 illustrates a 4 × 4 memory array. At any time, only one
word line among A1, A2, A3, and A4 is selected by the ROM decoder. If an active transistor exists at the
cross point of the selected row and a data line (D1, D2, D3, and D4), the data line is pulled low by that
transistor.  If no active transistor exists at the cross point, the data line stays high because of the PMOS
load device.  Thus, absence of an active transistor indicates a “1” whereas the presence of an active transistor
indicates a “0”. 

ROMs are most effectively used in devices, which need a set of fixed values for operation. The set of
values are predetermined before fabrication and a transistor is made only at those cross-points where
one is desired. If the information that is to be stored in the ROM is not known prior to fabrication, a
transistor is made at every cross-point. The resulting chip is a write-once ROM. The ROM is programmed

FIGURE 2.23 Different configurations of a DRAM cell: (a) 4-transistor DRAM cell, (b) 3-transistor DRAM cell,
(c) 1-transistor DRAM cell.
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by cutting the connection between the drain of the MOSFET and the column (bit) line. ROMs are effective
in applications where large volumes are required. 

Low-Power CMOS Circuit Design

The increasing importance and growing popularity of mobile computing and communications systems
have made power consumption a critical design parameter in VLSI circuits and systems. The design of
portable devices requires consideration of the peak power for reliability and proper circuit operation,
but more critical is the time-averaged power consumption to operate the circuits for a given amount of
time to perform a certain task [11,12]. There are four sources of power dissipation in digital CMOS
VLSI circuits, which are summarized in the following equation:

Pavg = Pswitching + Pshort-circuit + Pleakage + Pstatic

= CLVVDDf + IscVDD + IleakageVDD + IstaticVDD

= CLV
2f + IscVDD + IleakageVDD + IstaticVDD

where

Pavg = time-averaged power
Pswitching = switching component of power
Pshort-circuit = short circuit power dissipation
Pleakage = leakage power
Pstatic = static power
CL = load capacitance 
V = voltage swing (and in most cases this will be 

the same as the supply voltage VDD) 
f = clock frequency
Isc = short-circuit current
Ileakage = leakage current
Istatic = static current

FIGURE 2.24 Read only memory (ROM) circuit.
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In some literature, the authors like to group Pleakage and Pstatic together and call it as the static component
of power.

The switching component of the power occurs when energy is drawn from the power supply to charge
parasitic capacitors made up of gate, diffusion, and interconnect capacitance. For properly designed
circuits, the switching component will contribute more than 90% of the power consumption, making
it the primary target for power reduction [12]. A system level approach, which involves optimizing
algorithms, architectures, logic design, circuit design, and physical design, can be used to minimize
power. The physical capacitance can be minimized through choice of substrate, layout optimization,
device sizing, and choice of logic styles. The choice of supply voltage has the greatest impact on the
power-delay product, which is the amount of energy required to perform a given function. From the
expression for the switching component of power (Pswitching = CLV

2f ), it is clear that if the supply voltage
is reduced, the power delay-product will improve quadratically. Unfortunately, a reduction in supply
voltage is associated with a reduction in circuit speed. However, if the goal is to increase the MIPS/Watt
in general purpose computing for a fixed level, then various architectural schemes can be used for
voltage reduction. 

The short-circuit power dissipation, Pshort-circuit, is due to short-circuit current, Isc. Finite rise and fall
time of the input waveforms result in a direct current path between supply voltage VDD and ground, which
exists for a short period of time during switching. Such a path never exists in dynamic circuits, as precharge
and evaluate transistors should never be ON simultaneously, as this would lead to incorrect evaluation.
Short-circuit currents are, therefore, a problem encountered only in static designs. Through proper choices
of transistor sizes, the short-circuit component of power dissipation can be kept to less than 10%.

Leakage power, Pleakage, is due to the leakage current, Ileakage. Two types of leakage currents seen through
in CMOS VLSI circuits: reverse biased diode leakage current at the transistor drain, and the subthreshold
leakage current through the channel of an “OFF” device. The magnitude of these leakage currents is set
predominantly by the processing technology. The sub-threshold leakage occurs due to carrier diffusion
between the source and the drain when the gate-source voltage, Vgs, has exceeded the weak inversion
point, but still below the threshold voltage Vt . In this regime, the MOSFET behaves almost like a bipolar
transistor, and the subthreshold current is exponentially dependent on Vgs. At present Pleakage is a small
percentage of total power dissipation, but as the transistor size becomes smaller and smaller and the
number of transistors that can be integrated into a single silicon die increases, this component of power
dissipation is expected to become more significant.

Static power, Pstatic, is due to constant static current, Istatic, from VDD to ground when the circuit is not
switching. As we have seen earlier, complementary CMOS combines pull-up and pull-down networks
and only one of them is ON at any given time. Therefore, in true complementary CMOS design, there
is no static power dissipation. There are times when deviations from the CMOS design style are necessary.
For example in special circuits such as ROMs or register files, it may be useful to use pseudo NMOS
logic circuit due to its area efficiency. In such a circuit under certain output conditions there is a constant
static current flow, Istatic, from VDD to ground, which dissipates power.

The power reduction techniques at the circuit level are quite limited when compared with the other
techniques at higher abstraction levels. At the circuit level, percentage power reduction in the teens is
considered good [11]; however, low-power circuit techniques can have major impact because some
circuits are repeated several times to complete the design. For example, adders are one of the most
often used arithmetic circuits in digital systems. Adders are used to perform subtraction, multiplication,
and division operations. Reducing power consumption in adders will result in reduced power con-
sumption of many digital systems. Various different types of adders have different speeds, areas, power
dissipations, and configurations available for the VLSI circuit designer. Adders or subsystems consisting
of adder circuits are often in the critical path of microcomputers and digital signal processing circuit;
thus a lot of effort has been spent on optimizing them. As shown in Fig. 2.10, the straight forward
realization of a CMOS full adder will require 28 transistors. This adder is not optimized for power
dissipation. Recently, there has been tremendous research effort in the design and characterization of
low-power adders. The 14-transistor (14T) full adder proposed by Abu Shama et al. [13], dual value
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logic (DVL) full adder techniques outlined by Oklobdzija et al. [14], and the static energy recovery
full (SERF) adder proposed by Shalem et al. [15,16] are examples of power optimized full adder circuits.
More often optimization of one parameter involves the sacrificing of some other parameters. The 14T
adder shown in Fig. 2.25, DVL adder shown in Fig. 2.26, and SERF adder shown in Fig. 2.27 are power
efficient adders, which also have good delay characteristics [15,16]. Power, area, and delay character-
istics of various different low power adder topologies are compared and presented by Shalem et al.
[15,16]. 

FIGURE 2.25 14-transistor full adder.

FIGURE 2.26 Dual value logic (DVL) full adder.

FIGURE 2.27 The SERF full adder.
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Concluding Remarks

The feature size in the Intel Pentium III microprocessor is 0.18 µm. Chips with feature size 0.13 µm are
emerging as this chapter section is published. Several hundreds of millions of transistors are being
integrated into the same chip. Excellent design automation tools are required in order to handle these
large-scale designs. Although automatic synthesis of circuits has improved significantly in the past few
years, careful custom hand-designs are done in many high-performance and low-power integrated circuits.
Gallium Arsenide (GaAs) and other compound semiconductor-based circuits have been used for very
high-speed systems, but the bulk of the circuits will continue to be in silicon, until efficient and high-
yield integration techniques can be developed for such technologies.
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2.2 Pass-Transistor CMOS Circuits

Shunzo Yamashita

Introduction

Complementary metal oxide semiconductor (CMOS) logic circuits are widely used in today’s very large
scale integration (VLSI) chips. The CMOS circuit performs logic functions through complementary
switching of nMOS and pMOS transistors according to their gate voltage, which is controlled by the input
signal values “1” or “0”. Here, “1” corresponds to a high voltage, namely Vdd in the circuit, and “0” corresponds
to a low voltage, Gnd. For example, in the case of the inverter shown in Fig. 2.28(a), when input is set
to “0”, the pMOS transistor becomes conductive and the nMOS transistor becomes nonconductive, so
the capacitance Cout is charged and the output is pulled up to Vdd, resulting in a logic value of “1”. Here,
Cout is the input capacitance of the circuit in the next stage, the wiring capacitance, or the parasitic
© 2002 by CRC Press LLC
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capacitance, and so on. On the other hand, when “1” is input, the nMOS transistor becomes conductive
and the pMOS transistor becomes nonconductive in turn. Cout is then discharged, and the output is
pulled down to Gnd. Thus, “0” is output, and inverter operation is achieved. As shown here, in the CMOS
circuit nMOS and pMOS transistors complementarily perform the pull-up and pull-down operations,
respectively. This complementary operation allows the logic signal to swing fully from Vdd to Gnd, resulting
in a high noise margin. As a result, CMOS circuits are widely used in VLSI chips, such as microprocessors.

As an alternative to CMOS logic, pass-transistor logic (PTL) has recently been getting much attention.
This is because well-constructed PTL can provide a logic circuit with fewer transistors than the corre-
sponding CMOS logic circuit. In the PTL circuit, one nMOS transistor can perform both the pull-up
and pull-down operations by utilizing not only the gate but also the drain/source as signal terminals, as
shown in Fig. 2.28(b) [1]. Here, the signal connected to the gate of the transistor (B in this figure) is called
the control signal, and the signal connected to the drain/source (A in this figure) is called the pass signal.
In PTL, logic operation is performed by connecting and disconnecting the input signal to the output.
For example, in this figure, when the control signal is set to “0”, the nMOS transistor becomes non-
conductive. However, when the control signal is set to “1”, the transistor becomes conductive, pulling
the output up or down according to the input voltage, and the input signal is then transmitted to the
output. Thus, PTL is also called a transmission gate. 

PTL is often used to simplify logic functions. For example, Fig. 2.29 shows a comparison of PTL and
CMOS circuits for 2-input XOR logic, Out = A  + B. PTL provides this XOR logic circuit with only
two transistors, while the CMOS circuit requires six transistors. (To generate complementary signals
for A and B, an additional four transistors in two inverters are required for both circuits.) This simpli-
fication ability of PTL is effective not only for reducing chip size, but also for enhancing operating
speed and reducing power consumption. This is because the decrease in the number of transistors
reduces the total capacitance in the circuit, which must be charged and discharged for the logic operation,
thus wasting power and causing delay. In addition, the pMOS-free structure of the PTL is also advan-
tageous in terms of operating speed and power consumption. This is because the capacitance of a pMOS
transistor is twice as large as that of an nMOS transistor due to the wider size required by its inferior
current characteristics. The lack of a pMOS transistor thus enables lower capacitance, resulting in both
faster speed and lower power.

Because of these advantages, PTL is preferably used in arithmetic units in microprocessors, in which
complex logic functions such as XOR are needed to implement adders and multipliers with high-
performance [2–8]. PTL is also used to implement D-type latches and DRAM memory cell to reduce
chip size or the number of transistors, as shown in Fig. 2.30. 

FIGURE 2.28 Comparison of CMOS logic with PTL.

FIGURE 2.29 Comparison for 2-input XOR logic.
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Problems of PTL

In the 1990s, so-called top-down design, in which logic circuit are automatically synthesized, has been
widely applied for random logic such as the control block of a microprocessor, rather than bottom-up
design. This is mainly because the size of VLSI chip has been increasing dramatically, and manual design
can no longer be used in terms of design period and cost. In top-down design, as shown in Fig. 2.31,
logic circuits are designed using a hardware description language (HDL), such as Verilog-HDL or VHDL
(Very High Speed Integrated Circuit Hardware Description Language). These HDLs are used to describe
the register-transfer-level functionality of logic circuits. The conversion from the HDL to a circuit is
performed automatically by a logic synthesis tool, a so-called CAD tool. The logic synthesis tool generates
a netlist of the target circuit through the combinations of fundamental circuit elements called cells, which
are prepared in a cell library. The netlist represents the logic circuit in the form of connections between
cells. Finally, an automatic layout tool generates a mask pattern for fabricating the VLSI chip. Top-down
design of LSI is similar to today’s software compilation process, so it is often called silicon compilation.

Despite many advantages, however, PTL has not been adapted for such synthesized logic blocks in
top-down design. This is mainly because adequate CAD tools that can synthesize PTL have not yet been
developed. One of the main reasons for this is the great difference between CMOS and PTL circuits. For
example, PTL designed inadequately may contain a sneak path that provides an unintended short-circuit
path from Vdd to Gnd, causing the circuit not to work correctly. CMOS circuits, on the other hand, have
never such paths. For example, the PTL circuit shown in Fig. 2.32(a) seems to work correctly for the
logic function: Out = AB + CD. Here, AB represents logic AND of two variables, A and B, and this boolean
equation represents that Out is given by logic OR of AB and CD. However, when A = 1, B = 1, C = 0,
and D = 1, the output is connected to both Vdd and Gnd at the same time, resulting in a short-circuit
current from Vdd to Gnd.  

The complex electrical behavior of PTL also makes automatic synthesis of PTL difficult. The Vth drop
shown in Fig. 2.32(b) is a typical problem [1]. As described before, in PTL, the pull-up and pull-down

FIGURE 2.30 Other pass-transistor circuits used in VLSI chips.

FIGURE 2.31 Top-down design flow.
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operations are performed by the same nMOS transistor; that is, the pull-up operation is accomplished
by a source-follower nMOS transistor. Thus, the maximum pulled-up voltage is limited to Vdd − Vth,
where Vth is a threshold voltage of the nMOS transistor, and the nMOS transistor does not become
conductive when the gate-source voltage is less than Vth. Such a dropped signal may cause serious
problems, such as a short-circuit current from Vdd to Gnd, when it drives other CMOS circuits, such as
inverter. Moreover, the decreased signal swing due to the Vth drop degrades the noise margin. This
problem is effectively solved by using a structure combining nMOS and pMOS transistors, as shown in
Fig. 2.32(c). However, such a structure loses the advantages of pMOS-free structure of PTL. In addition,
in a PTL circuit, the number of serially connected pass-transistors must be carefully considered, because
a PTL circuit has quadratic delay characteristics with respect to the number of the stages of pass-transistors [1].

Top-Down Design of Pass-Transistor Logic Based on BDD

As described in the previous section, PTL has not generally been applied for random logic circuits because
of the lack of adequate synthesis techniques. However, the recent increasing demand for LSI chips with
enhanced performance, reduced power, and lower cost has been changing this situation, and now many
methods for automatically synthesizing PTL circuits for random logic have been proposed [9–20]. Most
of them use selector logic and binary decision diagrams (BDDs). This is because BDDs and selector logic
are suitable for generating pass-transistor logic circuits, and PTL synthesized from a BDD has many
advantages, as described below. BDDs are thus widely used in PTL synthesis [17]. 

The selector, also called multiplexer, has good correspondence with the pass-transistor circuit. The
function of the selector is shown in Fig. 2.33(a). Here, two inputs, I0 and I1, are called data inputs, and
input S, which selects one of the two data inputs, is called the control input. The selector is easily
implemented as a wired OR structure of two pass-transistors with one inverter, as shown in Fig. 2.33(b).
The selector is thus suitable for pass-transistor circuits. In addition, it has an advantage in that by changing
the connections of the two data inputs I0 and I1, any kind of logic function can be implemented, as
shown in Fig. 2.33(c). 

However, the selector shown in Fig. 2.33(b) requires an inverter to generate the selection signal for
input I0. Consequently, the delay of the circuit is increased by the delay of the inverter. To overcome this,
dual-rail, pass-transistor circuits such as CPL (complementary pass-transistor logic) and SRPL (swing

FIGURE 2.32 Problem of PTL.

FIGURE 2.33 Selector and pass-transistor circuit.
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restored pass-transistor logic) shown in Fig. 2.34(a,c) [2,3,6] are effective solutions. These circuits have
both positive and negative polarities for all signals complementarily, so there is no need for an inverter
to generate complementary signals. Thus, high-speed operation becomes possible. Moreover, the differ-
ential operation in these dual-rail pass-transistor circuits is also effective in improving the noise-margin
characteristics of the pass-transistor circuit. In addition, dual-rail PTL can still provide logic circuits with
fewer transistors than their CMOS counterparts [1,2], although it requires twice as many transistors as
a single-rail pass-transistor circuit. In this chapter, a method for synthesizing single-rail PTL is described
below, because same method can be applied to dual-rail PTL by just changing pass-transistor selector
from single-rail to dual-rail PTL.

BDD is one type of logic representation and expresses a logic function in a binary tree [21–23]. For
example, Fig. 2.35(a–c) shows three typical logic representations for 2-input XOR logic: (a) boolean
equation, (b) truth table, and (c) BDD. As shown in Fig. 2.35(c), the BDD consists of nodes and edges.
The nodes are categorized into two types: variable nodes and constant nodes of “0” or “1”. A variable
node represents a variable of the logic function. For example, node A in the BDD corresponds to the
variable A in the logic function shown in Fig. 2.35(a,b). A variable node has one outgoing edge and two
incoming edges, a 0-edge and a 1-edge. In this figure, a 0-edge is denoted by a dotted line and a 1-edge
by a straight line, although there are other representations used in BDDs. These two incoming edges
show the logic functions when the variable of the node is set to “0” and “1”, respectively. The logic
functions are represented by the connections of these elements. For example, when (A, B) is (0, 0), Out
becomes 0 in the truth table. This corresponds to selecting the 0-edge at the nodes A and B. The path
to node “0” can be traced from the root in the BDD in Fig. 2.35(c). Furthermore, the fact that there are
two cases, (A, B) = (0, 1) and (1, 0), for Out = 1 in the truth table corresponds to the fact that in the
BDD there are two paths from the root to “1”; that is, A = 0 → B = 1 and A = 1 → B = 0. 

A BDD can be simplified by using complementary edges. The complementary edges are used to represent
the inverted logic of a node, as shown in Fig. 2.36(a). By using complementary edges, two nodes,  B and

, can be combined as one node and the BDD can be simplified. For example, Fig. 2.36(b) shows a
simplified BDD with complementary edges for the BDD shown in Fig. 2.35(c). 

BDDs have a good correspondence with selector logic and pass-transistor circuits, as shown in Fig. 2.37,
because the BDD represents logic functions in a binary tree structure. Thus, it is possible to generate
a pass-transistor circuit for a target logic function by replacing the nodes in the BDD with pass-transistor
selectors and connecting their control inputs with the input variables related to the nodes [10]. 

A detailed example how to synthesize PTL from a BDD is shown in Fig. 2.38(a–i). BDD is first
constructed for the logic functions shown in Fig. 2.38(a). The BDD can be built by recursively applying

FIGURE 2.34 Dual-rail, pass-transistor logic circuits.

FIGURE 2.35 BDD and other logic representations for 2-input XOR logic.
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FIGURE 2.36 BDD with complementary edges for function in Fig. 2.35.

FIGURE 2.37 Correspondence among BDD, selector, and pass-transistor circuit.

FIGURE 2.38 Example of PTL synthesis using BDD.
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Shannon expansion, as shown below, to the logic function [22]: 

In this example, Shannon expansion is first applied to input variable A (Fig. 2.38(b)), then to input
variable Β (Fig. 2.38(c)). In Fig. 2.38(c), both the 1-edge of node B of Out1 and the 0-edge of node
A of Out2 are equivalent to the logic function , so these two edges are shared, as shown in
Fig. 2.38(d). Such a BDD that shares two or more isomorphic sub-graphs among different outputs is
called a shared BDD. By applying Shannon expansion to variables C and D, as shown in Fig. 2.38(e), the
final BDD shown in Fig. 2.38(f) is obtained.

Although a PTL circuit can be obtained by simply replacing all the nodes in a BDD with pass-transistor
selectors, such a PTL may not work correctly, or it may have a very long delay because of electrical
problems in the pass-transistor circuit, as described in the section on “Problems of PTL”. To overcome
these problems, buffers like that shown in Fig. 2.38(g) are inserted [1,10]. This buffer consists of an
inverter and a pull-up pMOS transistor. It can restore the signal swing with little short-circuit current,
because the gate of the pMOS transistor has feedback connection from the output, so the pull-up pMOS
transistor forcedly pulls up the inverter input to Vdd even if a Vth-dropped signal is input. The gate width
of the pull-up pMOS transistor is set small enough for pull-up operation, because a wide-gate pMOS
transistor makes it difficult for the nMOS pass-transistors to pull down the input node of the inverter
and can degrade the speed of the pull-down operation.

Level restoration buffers are inserted in the following three types of nodes in a BDD. First, for the
primary output node, buffers are inserted to prevent Vth-dropped signals of the pass-transistor selectors
from driving other CMOS circuits. Second, buffers are inserted for nodes with two or more fanouts for
current amplification. Finally, for nodes that belong to a series of long-chained nodes, buffers are needed
to prevent the relatively long delay due to the quadratic delay characteristics of the pass-transistor circuit.
However, using too many buffers adversely increases the overall delay of the circuit because of their
intrinsic delay. Thus, buffers are inserted every three stages, in general [10]. In addition, for a node in
which a buffer is inserted, inverters should also be inserted in the two incoming edges of the node to adjust
the polarity. Inverter propagation is thus performed to remove extra inverters by adjusting the polarity
between adjacent nodes. Figure 2.38(h) shows the result of buffer insertion and inverter propagation. In
this example, three buffers are inserted without additional inverters, due to inverter propagation.

Finally, by replacing the nodes in the BDD with 2-input pass-transistor selectors and mapping groups
of several selectors and a buffer into cells, the target pass-transistor circuit shown in Fig. 2.38(i) is
obtained. Here, for the leaf nodes—that is, the two nodes D in Fig. 2.38(h)—selectors whose two inputs
I0 and I1 are connected to Vdd or Gnd are generated, so these selectors can be removed or simplified into
an inverter, as shown in Fig. 2.37.

These speed-up buffers are not required for all paths. This is because in an actual circuit, a few
bottleneck paths called critical paths limit its maximum operating speed, and these buffers are not
necessary for other paths, unless their delay do not exceed those of the critical paths. Reducing the total
number of the buffers in this way is effective for power and area reduction [16].

The synthesized PTL completely corresponds to the BDD except for the inserted buffers and inverters,
as shown in Fig. 2.38. Thus, in PTL synthesis, reducing the size and depth of the BDD is important. This
is the greatest difference from CMOS logic synthesis, in which reducing the literal count of boolean
equation is essential.

PTL synthesized from a BDD has various advantages. One of the most important advantages is that
the synthesized PTL is guaranteed to be sneak-path free [9]. This is because in a BDD, all paths terminate
in “1” or “0” and only one of them is activated at a time. Therefore, the synthesized PTL includes no
paths that can be connected to both Vdd and Gnd at the same time.

Another superior characteristic of PTL synthesized from a BDD is that the synthesized result is
independent of the quality of the input HDL description. In other words, even if the input HDL contains
some redundancy, the synthesized PTL is free from any redundancy. This excellent characteristic derives

f a f a 0=( ) a f a 1=( )⋅+⋅=

CD CD+
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from the property of a BDD called canonicity [21]. Canonicity means that after reduce operation that
removes isomorphic sub-graphs, as shown in Fig. 2.39(a–c), the final BDD is always identical for the
same logic function and the same variable ordering, even if the initial BDDs are different. Here, variable
ordering means the order of the input variables in the BDD construction. A BDD for which the redundant
sub-graphs have been removed by the reduce operation is called a reduced BDD (RBDD) or reduced
ordered BDD (ROBDD). In this chapter, a BDD is assumed to be a ROBDD, unless otherwise stated.
Because of this canonicity property of BDDs, the synthesized PTL is independent of the input HDL
quality and redundancy free. This is one of the most important advantages of PTL synthesized from a
BDD, compared with CMOS logic synthesis, in which the result depends on the quality of the input HDL
description. The canonicity of BDDs also plays an important role in other fields in logic synthesis such
as formal verification of logic functions [21].

Variable Ordering of BDDs

As described in the previous section, the BDD has various superior characteristics for PTL synthesis.
However, it has a drawback in that its size strongly depends on the input variable ordering. In PTL
synthesis, the size of the BDD is directly reflected by the synthesized result. Therefore, finding the variable
ordering that generates the minimum-size BDD is important. For example, Fig. 2.40 compares the BDDs
for the logic function Out = AB + CD + EF for two different variable orders: (a) A → B → C → D →
E → F, and (b) A → C → E → B → D → F .  As shown in the figure, for case (a), the node count of the
BDD is 6. On the other hand, 14 nodes are required for the same logic function in case (b). In general,
an inefficient variable order can increase the size of a BDD by an order of magnitude.

However, the problem of finding appropriate variable ordering for arbitrary logic functions is well
known to be an NP-complete problem [23]. For a logic function with a small number of inputs, it is
possible to examine all combinations of variable ordering with a practical time. However, such a method

FIGURE 2.39 Reduce operation and reduced BDD.

FIGURE 2.40 BDD size dependency on variable ordering for Out = AB + CD + EF.
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cannot be applied to an actual logic function whose inputs exceed 100, because the number of combi-
nations becomes too huge (100! ≈ 10157). Therefore, heuristic methods for finding an approximate optimal
ordering have been developed [24–27]. These methods can be roughly categorized into two types: static
methods and the dynamic methods.

One example of a static method is to determine the variable ordering based on information obtained
from the circuit structure for the logic function. For example, in the case of the logic function in Fig. 2.40,
the corresponding circuit is as shown in Fig. 2.41. Thus, the input pairs A and B, C and D, and E and F
should be adjacent in the variable ordering as in Fig. 2.41(a), not as in Fig. 2.41(b). An adequate ordering
can be searched for under these constraints.

On the other hand, in a dynamic method, the optimal order is searched for by changing the order of
the variables in the BDD. Figure 2.42(a) shows a representative method of this type, called sifting [26].
In sifting, by applying a swap operation, in which the orders of two adjacent variables are swapped as
shown in Fig. 2.42(b), and by applying the reduce operation iteratively, an appropriate order for each
variable is determined and the size of BDD is minimized. Variations of this method have also been
proposed [27].

In practice, these methods can be combined. For example, the initial variable ordering is determined
by a static method and the BDD is constructed, then the BDD is minimized using a dynamic method.
Another approach that reduces the size of the BDD by changing the local ordering in the BDD has also
been proposed [28].

Multilevel Pass-Transistor Logic

A PTL circuit synthesized by the method described in the section on “Top-Down Design of Pass-Transistor
Logic Based on BDD” may not be acceptable in terms of delay. This is because that type of PTL has a
flat structure and the selectors are serially connected over n stages for a logic function with n inputs,
since the control input of each selector is connected only to the primary input, as shown in Fig. 2.43(a).
To solve this problem, multilevel pass-transistor circuits like that shown in Fig. 2.43(b) are expected to
be as effective as multilevel logic in CMOS logic circuits. In this section, the synthesis method for such
multilevel pass-transistor logic (MPL) is described. To distinguish it from MPL, the pass-transistor logic
described in the previous section is called monolithic PTL.

MPL has a hierarchical structure, in which the control inputs of the pass-transistor selectors are
connected not only to the primary inputs but also to the outputs of other pass-transistor selectors, as

FIGURE 2.41 Logic circuit for Out = AB + CD + EF and variable ordering.

FIGURE 2.42 Variable ordering by sifting.
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shown in Fig. 2.43(b). MPL can be synthesized from a multilevel BDD shown in Fig. 2.44(a). The
methods for building a multilevel BDD can be categorized into two types. One is based on conversion
from a monolithic BDD described in the section on “Top-Down Design of Pass-Transistor Logic Based
on BDD”. Figure 2.44(b) shows a representative method in this category [11]. In this method, sub-
graphs that cannot be shared because at least one of their edges is not equivalent are searched for. Then,
the detected sub-graphs are extracted and replaced with new nodes. For these new nodes, new introduced
variables are assigned. In Fig. 2.44(b), X and Y are the new introduced variables. These variables are
connected to the output of a new BDD, which has the same diagram as the extracted sub-graph except
that its 0-edge and 1-edge are terminated to “0” and “1” nodes, respectively. By this extraction, it is
possible to convert the monolithic BDD into two or more sub-BDDs, which are multiply connected
with one another and have the same logic function as the original. Finally, by replacing the nodes with
pass-transistor selectors, as described in the section on “Top-Down Design of Pass-Transistor Logic
Based on BDD,” the MPL is obtained. Here, in the MPL the outputs of the pass-transistor selectors can
be connected to the control inputs of other pass-transistor selectors, so level-restoration buffers are
required for these places.

FIGURE 2.43 Monolithic PTL and multilevel PTL.

FIGURE 2.44 Example of multilevel BDD and its construction method.
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MPL has superior characteristics compared to monolithic PTL, especially in terms of delay, because
the depth of sub-BDDs in a multilevel BDD is much less than that of a monolithic BDD. Empirically,
the delay can be reduced by a factor of 2 compared to the monolithic PTL [11]. In addition, MPL is
effective in simplifying the circuit, because more sub-graphs than in the monolithic BDD can be shared
by extraction.

The other method is to directly build hierarchical BDDs simultaneously, without constructing a
monolithic BDD [9]. Such a BDD is also called a decomposed BDD. Figure 2.45 shows an example. The
decomposed BDD is constructed from input to output according to the structure of the circuit corre-
sponding to the logic function. During the construction, the size and depth of the BDD is monitored
and if either value is over a limit, BDD construction is stopped and a new intermediate variable that
points to the output of the BDD is introduced. In this example, x, y, and z are the intermediate variables.
BDD construction is then restarted and the decomposed BDD is obtained by repeating this process. Here,
a point where a new intermediate variable is introduced is called a decomposed point.

The decomposed BDD has a superior characteristic in that for certain logic functions, such as a
multiplier, which cannot be constructed in a practical size from a monolithic BDD [23], it is possible to
build a decomposed BDD and synthesize a pass-transistor circuit. Therefore, the decomposed BDD is
essential for a practical PTL synthesis, and many methods based on the decomposed BDD have been
proposed [12,13,34]. Another merit of the decomposed BDD is that by changing the decomposed points,
the characteristics of the synthesized MPL can be flexibly controlled [9,12,13]. However, the decomposed
BDD has a drawback, in that canonicity is not guaranteed because of the freedom in selecting decomposed
points. This means that the synthesized result depends on the quality of the input logic description, or
in other words, it may contain some redundancy. For this reason, in a decomposed BDD, sub-BDDs are
simplified by several methods [9,12] such as elimination, shown in Fig. 2.46. Elimination removes the
redundancy by composition of two or more sub-BDDs. Moreover, as with multilevel CMOS logic
synthesis, BDD simplification based on “don’t care” conditions, such as satisfiability don’t care (SDC)
and observability don’t care (ODC), can be applied, as shown in Fig. 2.47 [12,29,30].

PTL Cell

In practical PTL synthesis several cells, each of which packs one or more selectors, inverters, and a
pull-up pMOS transistor, are used, although PTL circuits can be synthesized with only two cells,
namely a selector and an inverter. These packed cells of one or more selectors are effective not only

FIGURE 2.45 Example decomposed BDD.

FIGURE 2.46 Elimination by composition.
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for reducing the chip size but also for reducing the power and delay, because parasitic capacitance can
be reduced.

Figure 2.48 shows an example of a PTL cell-set [31]. In this example, each PTL cell contains an inverter
to generate complementary signals for the control input of the selector, although other cell configurations
without inverters can also be considered, as shown in Fig. 2.49. This seems wasteful in terms of cell area,
but in fact, external inverters adversely increase the final chip size because a large area is required for the
wire connecting the external inverters and PTL cells [32].

The structure of a PTL cell is quite different from that of a CMOS cell [31]. This is because the
symmetrical layout of pMOS and nMOS transistors as in a CMOS cell results in a large cell size in a PTL
cell, where the number of nMOS transistors is much greater than that of pMOS transistors, and at least
three sizes of transistors (small for inverters and a pull-up pMOS transistor, mid-size for the nMOS
transistors of the selectors, and large for the output buffers) are required. In addition, sharing the diffusion
area of the nMOS transistors in a selector is also important, not only to reduce the chip size but also to
reduce the parasitic capacitance in the PTL cell. For this purpose, a method based on the Eulerian path
is used, as shown in Fig. 2.50 [31]. 

PTL and CMOS Mixed Circuit

Although in many cases PTL can provide a superior circuit with fewer transistors than conventional CMOS
logic, it is not always superior. For example, as shown in Fig. 2.51 for simple 2-input NAND and 2-input
NOR logic, PTL circuits require six transistors, while CMOS circuits only require four. For these cases, a

FIGURE 2.47 BDD simplification with “don’t care” conditions.

FIGURE 2.48 Example of pass-transistor cells.

FIGURE 2.49 PTL cell configuration.
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CMOS circuit provides better performance in terms of area and delay. However, a PTL circuit still provides
lower power consumption because of its pMOS-free structure, which enables small capacitance.

Pass-transistor circuits are more suitable for implementing logic functions in which some signals are
selected by other signals. In contrast, CMOS circuits are more suitable for implementing NAND/NOR
logic (or AND/OR logic). Thus, PTL and CMOS mixed structures, in which logic corresponding to a
selector is implemented with PTL circuits and other logic is implemented with CMOS circuits, are
attractive [33,34]. In this section, such mixed-logic circuits called pass-transistor and CMOS collaborated
logic (PCCL) are described.

The key to PCCL is finding CMOS-beneficial parts and selector-beneficial parts in the logic functions.
To accomplish this, the BDD-based method shown in Fig. 2.52(a) is used, in which first an entire PTL
circuit is constructed from a multilevel BDD or decomposed BDD, and then some parts are replaced
with CMOS circuits. The key to this procedure is to find CMOS-beneficial functions based on the BDD.
This is accomplished as follows: those selectors with one of two inputs fixed to Vdd or Gnd operate as
AND or OR logic (NAND or NOR logic) rather than as a selector, so they are good candidates to be replaced
with CMOS circuits, as shown in Fig. 2.52(b). Using this method, logic functions can be categorized into
pro-selector functions and pro-AND/OR functions.

Figure 2.53 shows a detailed example of the PCCL synthesis flow. For the logic function shown in
Fig. 2.53(a), the multilevel BDD shown in Fig. 2.53(b) is constructed. The PTL shown in Fig. 2.53(c) is
then obtained from the BDD. Then, in the synthesized PTL, selectors in which one of the two data inputs
is fixed to Vdd or Gnd are searched for. As described before, however, because of the low-power charac-
teristics of the pass-transistor circuits, the power consumption will increase if all these pass-transistor

FIGURE 2.50 Diffusion-area sharing for better layout.

FIGURE 2.51 Comparison of pass-transistor circuit and CMOS circuit for 2-input NAND/NOR logic.
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FIGURE 2.52 PCCL synthesis flow.

FIGURE 2.53 Example of PCCL synthesis.
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selectors are re-mapped to CMOS circuits. Therefore, it is necessary to choose which circuits are suitable
for the purpose, rather than simply replacing selectors with CMOS circuits automatically. To accomplish
this, a cost function is used, such as this example:

 

where α, β, and γ are the weights for the area, delay, and power, respectively.
By changing the parameters of the cost function, the characteristics of the synthesized PCCL can

flexibly be controlled for the purpose. Figure 2.53(d–f) shows area-oriented, delay-oriented, and power-
oriented PCCLs derived from the PTL in Fig. 2.53(c), by changing the cost parameters. In this figure,
there are three pass-transistor selectors (1), (2), and (3) that correspond to the selectors in Fig. 2.52(b).
However, in the case of the area-oriented PCCL, only selectors (1) and (3) are converted (to CMOS 2-
input NAND and 2-input NOR circuits, respectively), because for pass-transistor selector (2), the inverter
needed to adjust the polarity in CMOS implementation resulting in a larger area. In the case of delay-
oriented PCCL, all three selectors are converted to CMOS circuits, because the delay can be reduced by
replacing selector (2), containing a slow inverter, with a CMOS circuit. On the other hand, in the case
of the power-oriented PCCL, CMOS circuits are not adopted because the pass-transistor selectors use
less power, as described before. Figure 2.53(g) shows the comparison of the results of these three PCCLs
with CMOS counterpart. PCCL is superior to CMOS for all these cases.

This flexible control of the characteristic of the synthesized circuit by changing the cost parameters is
possible for large logic function. Figure 2.54 shows an example, in which the cost parameters are continu-
ously changed from area-oriented to power-oriented. The size of the logic function is about 10 k gate in
CMOS configuration. By changing the pass-transistor ratio from 10% to 60%, the power is reduced by
over 40%, but at the expense of area by 10%. The optimum pass-transistor ratio is usually 10–60%,
although it strongly depends of the kind of the logic functions.

To Probe Further

For MOS transistors and MOS circuits, please read a textbook such as [35]. For logic synthesis, please read
a textbook such as [21]. For BDD, please read papers [22,23]. For PTL synthesis, please read papers that
are listed in [17].
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2.3 Synthesis of CMOS Pass-Transistor Logic

Dejan Markovi

Introduction

Pass-transistor logic (PTL) circuits are often superior to standard complementary metal oxide semicon-
ductor (CMOS) circuits in terms of layout density, circuit delay, and power consumption. Lack of
sophisticated design automation tools for synthesis of random logic functions limits the usage of PTL
networks to the implementation of Boolean functions, comparators, and arithmetic macros—full-adder
cells and multipliers. The research over the last 10–15 years [1] has been mainly focused on the devel-
opment of more efficient circuit techniques and the formalization of synthesis methodologies. Newly
introduced PTL circuit techniques were compared to the existing PTL and standard CMOS techniques,
but comparison results were not always consistent [2].

The basic element of pass networks is the MOS transistor, in which gate is driven by a control signal,
often termed “gate variable.” The source of this transistor is connected to a signal, called “pass variable,”
that can have constant or variable voltage potential which is passed to the output when the transistor is
“on.” In a case of NMOS, when the gate signal is “high,” input is passed to the output, and when the
gate is “low,” the output is floating (high impedance), Fig. 2.55.

Section 2.3 surveys the existing pass-transistor logic families, including their main characteristics and
associated challenges. The main focus is placed on the discussion of different methods for synthesis of PTL
circuits. Emphasis is given to a unified method for mapping logic functions into circuit realizations using
different pass-transistor logic styles. The method is based on Karnaugh map representation of a logic
function, and it is convenient for library-based synthesis, since it can easily generate optimized basic logic
gates—the main building blocks in library-based designs.

FIGURE 2.55 NMOS pass-transistor [21].
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Pass-Transistor Logic Styles

Various PTL circuits, static or dynamic, can be implemented using two fundamental design styles: the
style that uses NMOS pass-transistors only and the style that uses both NMOS and PMOS pass-
transistors. Within each of these two styles, there is a further differentiation based on realization of the
output stage.

NMOS Pass-Transistor Logic

Complementary pass-transistor logic (CPL), introduced in [3], consists of an NMOS pass-transistor
network, and CMOS output inverters. The circuit function is implemented as a tree consisting of pull-
down and pull-up branches. Since the “high” level at the pass-transistor outputs experiences degradation
by the threshold voltage drop of NMOS transistors, the outputs are restored to full-swing by CMOS
inverters, Fig. 2.56. Conventional CPL [3] uses restoration option (a). It is suitable for driving large
output loads because the output load is decoupled from the internal nodes of the PTL network. Subfamily
based on restoration option (b) is called differential cascode voltage switch with the pass-gate (DCVSPG),
and it is good in driving smaller loads. Restoration option (c) is associated with the logic family called
swing-restored pass-transistor logic (SRPL) [4]. Another variation of (b), which employs level restoring
circuit shown in Fig. 2.56(d), was introduced in [5] in a logic family called power saved pass-transistor
logic (PSPL). Compared to conventional CPL, this technique compromises circuit speed for smaller
power consumption, resulting in worse energy-delay product.

Sizing of pass-transistors is an important issue. As discussed in [5], the NMOS transistors closer
to the output have smaller size than the transistors farther away from the output because the transistors
closer to the output pass smaller swing “high” signals due to the voltage drop across the transistors
away from the output. However, this technique has to be carefully applied because small output
transistors might not be able to provide sufficient driving strength at the output if the output load
is large.

The LEAP pass-transistor library [6], uses two level restoring circuits, one for driving small loads,
Fig. 2.57(a), and another for driving very large loads, Fig. 2.58(b). This level restoring technique
decouples the true and complementary outputs in conventional CPL (dashed PMOS transistors in
Fig. 2.56(a)).

CPL has traditionally been applied to the implementation of arithmetic building blocks [3,6–9], and
it has been shown to result in high-speed operation due to its low input capacitance and reduced transistor
count. Also, this logic family has smaller noise margins compared to the conventional CMOS.

FIGURE 2.56 NMOS pass-transistor subfamilies: (a) CPL, (b) DCVSPG, (c) SRPL, (d) PSPL.

FIGURE 2.57 The output inverters in LEAP library of driving (a) large and (b) small output capacitance.
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Technology Scaling of NMOS Pass-Transistor Logic
Technology scaling rules, given by the SIA roadmap, do not work in favor of NMOS-based PTL networks
because the threshold voltage is predicted to scale at a slower rate than the supply voltage. This not only
incurs speed degradation of the pass-transistor networks, but also slows down the pull-down of the
output buffers, causing excessive leakage currents. To overcome this barrier, dynamic threshold MOS
(DTMOS) is used. Various DTMOS devices that can be used in PTL networks are analyzed in [10].
Standard DTMOS device shown in Fig. 2.58(a) is suitable for supply voltages below 0.5 V, while for
higher supplies the source-to-body junction could become forward-biased, causing excessive gate current.
The use of auxiliary minimum-sized devices allows devices shown in Fig. 2.58(b,c), to operate at higher
supplies. These two schemes are advantageous especially for driving larger loads when the area penalty
for minimum-sized auxiliary devices is smaller, because the driver transistors are large. It is therefore
expected that the supply voltage scaling does not impose barrier to the use of NMOS pass-transistor
networks.

CMOS Pass-Transistor Logic

Double Pass-Transistor Logic (DPL)
To avoid signal swing degradation along the NMOS pass-transistor network, twin PMOS transistor
branches are added to N-tree in double pass-transistor logic (DPL) for full-swing operation [9]. DPL logic
family was introduced with the idea of overcoming swing degradation problem of CPL, resulting in
improved circuit performance and improved noise margins at reduced supply voltages. Additional PMOS
transistors in DPL result in increased input capacitance, but the symmetrically arranged and balanced
input signals as well as the double-transmission characteristics compensate for the speed degradation
arising from increased input loading. As introduced in [9], basic DPL logic gates have the same overall
area as CPL gates—the widths of the PMOS transistors in DPL are two-thirds and the width of the NMOS
transistors in DPL are one-third of the width of the NMOS transistor in CPL gates, respectively.

Newly introduced DPL was compared to CPL and standard CMOS on the example of a full-adder in
0.25 µm, loaded with 0.2 pF. It has been shown in [9] that for this load both pass-transistor designs,
CPL and DPL, have higher power consumption than CMOS due to their dual-rail structure. When the
load capacitance is smaller, then PTL architectures actually dissipate less power. Speed improvement of
DPL gates has been demonstrated by AND/NAND and OR/NOR ring oscillators that have shown
performance improvement of 15–30% relative to CMOS counterparts [9].

Dual Value Logic (DVL)
Another logic family that uses both NMOS and PMOS pass-transistors is dual value logic (DVL),
introduced in [11,12]. DVL is derived from DPL with the idea to eliminate redundant branches in DPL.
This is performed in the following three steps: (1) elimination of redundant branches, (2) signal rear-
rangement, and (3) the selection of faster halves, as illustrated in Fig. 2.59. DVL preserves the full swing
operation of DPL with reduced transistor count.

Elimination of redundant branches can be performed by direct elimination (faster NAND half), or
it can be performed by merging functionality of two branches into one (faster AND half), Fig. 2.59.

FIGURE 2.58 DTMOS devices: (a) standard DTMOS, (b) with limiter device, (c) with augmenting device.
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The final step in synthesizing a DVL gate is the selection of the faster halves obtained in previous two
steps. Main benefit of DVL is reduced transistor count relative to DPL. Since DVL gates have inherent
asymmetry and imbalance of their inputs, circuit resizing is often required for balanced performance.
Original work [11] reported about 20% improvement in speed of AND/NAND gate in DVL compared
to equal area gate in DPL. The idea of DVL, extended to synthesis of random logic functions [11] will
be discussed in more detail in the section on “Synthesis of Complex Logic Networks.”

Synthesis of Pass-Transistor Networks

The PTL synthesis methodologies can be classified into two categories: (1) binary decision diagram
(BDD)-based and (2) other, which are not based on BDDs. Direct synthesis of large pass-transistor
networks is difficult because of speed degradation when the signal propagates through long pass-transistor
chains. The delay in PTL networks is a quadratic function of the number of PTL cells, while the delay
in standard CMOS logic networks is a linear function of the number of cells. Therefore, large PTL
networks need to be decomposed into smaller cells to overcome the significant delay degradation. When
new pass-transistor families were introduced, the emphasis was usually given on their suitability for block
design, and less attention was paid to the tradeoffs in the design of basic logic gates, which are essential
blocks in the design of large PTL circuits.

Binary Decision Diagram-Based Synthesis

Synthesis using pass-transistor cell library was introduced in [6]. The library consists of only seven
cells—three function cells (Y1, Y2, and Y3) shown in Fig. 2.60 and four inverters with various drive capability
shown in Fig. 2.57. The idea is to partition the BDD into smaller trees that can be mapped to the library
cells. Logic design is carried out by a logic/circuit synthesis tool called “circuit inventor,” which first converts

FIGURE 2.59 DVL: Elimination of redundant branches from DPL.

FIGURE 2.60 Pass-transistor function cells in LEAP library [6].
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the design into a BDD representation, then maps it into netlists of library cells. The netlist is then passed
to an automatic place-and-route tool which generates the layout. This synthesis method generates PTL
layouts superior to automatically generated static CMOS layouts in terms of area, delay, and power con-
sumption, but this was true only for relatively small designs. In larger designs, unnecessary cascading of
output inverters proves to be inefficient in terms of area. The reason for this, as pointed out in [13], is the
use of primitive BDD approach with static variable ordering and without decomposition, which has been
shown to result in bigger BDDs than the BDDs constructed with the approach of dynamic variable ordering
and decomposition. A summary of the different types of BDD decompositions can be found in [14].

Pass-transistor mapper (PTM) was presented in [15] as an improvement of the “circuit inventor” tool.
PTM technique was based on the same pass-transistor library cells, with the main improvement being
the use of optimized reduced-order BDDs (ROBDDs) [16] that allowed for synthesis of large logic
functions. Efficiency of PTM was verified in comparison with CMOS-based synthesis algorithms pre-
sented in [17]. Although PTM typically generated more compact layout with smaller overall active
capacitance, speed of larger blocks was in favor of CMOS implementations. For example, cordic block
synthesized by PTM had 30% smaller area, but three times longer delay than the same block in standard
CMOS. Smaller blocks averaged a factor of 1.4 reduction in delay and marginal increase in area.

BDD-based optimization of pass-transistor networks guarantees the avoidance of sneak current paths.
However, it has been shown that BDDs are not suitable for synthesizing area-efficient pass-transistor
networks [18]. As an alternative, 123 decision diagrams (123-DD)—layout driven synthesis—were pro-
posed in [18]. Main feature of this method is that the designs can be directly mapped into layout because
the synthesis is driven from layout, including the consideration of interconnect. This synthesis technique
utilizes two metal layers, with a set of rules that define geometrical placement and connectivity between
transistors. Tested on single output functions, 123-DD synthesis method resulted in about 30% area
improvement compared to standard synthesis techniques [19]. More details about these comparisons
and the method can be found in [20].

Synthesis Based on Karnaugh Maps

The method of Karnaugh maps can be effectively applied to the optimization of logic gates. Random
logic functions with up to six inputs can be efficiently synthesized from the Karnaugh maps. Synthesis
of pass-transistor networks using Karnaugh maps was presented in [21] and demonstrable area savings
have been shown for small PTL cells. Approach to synthesis of PTL circuits based on incomplete trans-
mission gates without degrading circuit performance, the idea similar to DVL, was presented in [20].
The focus of this section is on a unified approach to synthesis of basic logic gates in both NMOS and
CMOS PTL circuits, developed in [22]. The synthesis method is further enhanced to the generation of
circuits with balanced input loads, suitable for library-based designs. The versatility of these circuits is
increased by application of complementarity and duality principles.

Synthesis of NMOS PTL Networks
A general method for translation of Karnaugh maps into circuit realizations is applied to design logic
AND/NAND, OR/NOR, and XOR/XNOR gates. The use of complementarity and duality principles
simplifies the generation of the entire set of 2-input and 3-input logic gates.

The rules for synthesis of NMOS pass-transistor network in CPL are given below:

1. Cover Karnaugh map with largest possible cubes (overlapping allowed).
2. Derive the value of a function in each cube in terms of input signals.
3. Assign one branch of transistor(s) to each of the cubes and connect all branches to one common

node, which is the output of NMOS pass-transistor network.

The generation of complementary and dual functions is simple, by observing the basic properties of
these gates as given below.

Complementarity principle:  The same circuit topology with inverted pass signals produces the comple-
mentary logic function.
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Duality principle:  The same circuit topology with inverted gate signals gives the dual logic function. The
dual logic functions are: AND-OR and NAND-NOR. XOR and XNOR are self-dual.

The duality principle follows from DeMorgan’s rules, and it is illustrated by the example of AND to
OR transformation, Fig. 2.61. The procedure of a logic gate synthesis is shown using an example of 2-
input AND function, Fig. 2.62. The value covered by cube C1 is equal to B, which becomes pass signal
of the transistor branch driven with . Similarly the transistor representing cube C2 passes input signal
A when the gate signal B is “high.” The NMOS transistor branches corresponding to C1 and C2 implement
2-input AND gate. Complementarity principle applied to AND circuit results in the transistor realization
of NAND circuit shown in Fig. 2.62(b). By applying duality principle on AND, two-input OR function is
synthesized. NOR gate is then generated from OR (complementarity) or from NAND (duality), Fig. 2.62(c).

CPL Gates with Balanced Input Loads
The aforementioned synthesis procedure does not guarantee balanced loading of input signals. In
AND/NAND circuit of Fig. 2.62(b) loads on input signals A, , B, and  are not equal. The gates shown
in Fig. 2.62 are commutative with respect to their inputs, and when signals A and B are swapped in the
NAND circuit of Fig. 2.62(a), resulting AND/NAND circuit has the balanced input loading, Fig. 2.63,

FIGURE 2.61 Illustration of duality principle in NMOS pass-transistor networks [22].

FIGURE 2.62 Synthesis of 2-input functions: (a) Karnaugh map of AND function, (b) circuit diagram of AND/NAND
function, (c) circuit diagram of OR/NOR function [22].
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where each input “sees” the load given by Eq. (2.1).

(2.1)

Balanced loading does not come without cost—circuits in Fig. 2.63 would require more layout area
due to increased wiring complexity. Balancing also does not guarantee balanced propagation of true and
complementary signals because logical transitions of input signals do not experience similar paths in
true and complementary circuits. For instance, when B changes from “high” to “low,” and A is “high,”
the output of AND circuit transitions “low”-to-“high” because gate signals (B, ) have switched. Com-
plementary signal—the output of the NAND gate—on the other hand, undergoes the “high”-to-“low”
transition, affected by the switching of source signal . The two different paths, gate-to-output and source-
to-output, cause different rising/falling delays of true and complementary output signals.

Realization of 2-input XOR/XNOR circuit, with balanced input loads, is shown in Fig. 2.64. The XNOR
function is obtained from XOR by applying the complementarity principle and swapping input variables
for balanced input loading.

Input loads cannot be balanced for any circuit topology and any number of inputs. To illustrate this, a
single-stage 3-input AND/NAND circuit shown in Fig. 2.65 is analyzed. Eight input signals (including
complementary signals) are connected to the total of 14 terminals, resulting in imbalanced inputs. If the

FIGURE 2.63 Circuit diagram of 2-input functions with balanced input load [22].

FIGURE 2.64 Synthesis of 2-input XOR/XNOR function: (a) Karnaugh map of XOR function, (b) circuit diagram
of XOR/XNOR function [22].

FIGURE 2.65 Synthesis of 3-input AND/NAND function: (a) Karnaugh map of AND function, (b) circuit diagram
of AND/NAND function [22].
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3-input AND/NAND gates were implemented as cascade of 2-input gates with balanced loads, the loading
would remain balanced.

The example in Fig. 2.65 also illustrates the reduction in transistor count by overlapping cubes C1 and
C3. The consequence of the overlapping is that both of the corresponding branches are simultaneously
pulling down for those input vectors under which the cubes overlap. Direct realization of 3-input OR/NOR
circuit, Fig. 2.66, is straightforward if complementarity and duality are applied to circuit in Fig. 2.65. A
three-input XOR/XNOR circuit in CPL is typically composed of 2-input XOR/XNOR modules [3].

Synthesis of CMOS PTL Networks (DPL and DVL)
Synthesis of DPL
DPL has twice as many transistors as CPL for the same logic function. Consequently, the synthesis of
double pass-transistor logic is based on covering every input vector in the Karnaugh map twice. The idea
is to assure all logic “0”s in the map are passed to the output through at least one NMOS branch and all
logic “1”s through at least one PMOS branch.

The rules to synthesize random logic function in DPL from its Karnaugh map are:

1. Two NMOS branches cannot be overlapped on logic “1”s. Similarly, two PMOS branches cannot
be overlapped on logic “0”s.

2. Pass signals are expressed in terms of input signals or supply. Every input vector has to be covered
with exactly two branches.

Complementarity principle:  The complementary logic function in DPL is generated after the following
modifications of the true function: (1) swap PMOS and NMOS transistors, and (2) invert all pass and
gate signals. Unlike purely NMOS pass-transistor networks, in CMOS networks both pass and gate signals
need to be inverted because the PMOS and NMOS transistors are swapped in step (1).

Duality principle:  The dual logic function in DPL is generated when PMOS and NMOS transistors are
swapped, and Vdd and GND are swapped.

The procedure to synthesize DPL circuits is illustrated on the example of 2-input AND circuit shown
in Fig. 2.67. Cube C1, Fig. 2.67(a), is mapped to an NMOS transistor, with the source connected to
ground and the gate connected to . Cube C2 is mapped to a PMOS transistor, which passes A, when
gate signal  is “low.” The NMOS transistor of C3 pulls down to ground, when A is “low,” and the PMOS
transistor of C4 passes B, when A is “high.” Complementary circuit (NAND), Fig. 2.67(b), is generated
from AND, by applying the complementarity principle. Following the duality principle, OR circuit is
formed from AND circuit, Fig. 2.68.

Different 2-input XOR/XNOR circuit arrangements are possible, depending on mapping strategy.
Fig. 2.69 shows a realization with balanced load on both true and complementary input signals. Three-
input functions in DPL are implemented as cascaded combinations of 2-input DPL modules.

FIGURE 2.66 Circuit diagram of 3-input OR/NOR function [22].
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Synthesis of DVL
The rules to synthesize random logic function in DVL from Karnaugh map are outlined below:

1. Cover all input vectors that produce “0” at the output with largest possible cubes (overlapping
allowed) and represent those cubes with NMOS devices, in which sources are connected to GND.

2. Repeat step 1 for input vectors that produce “1” at the output and represent those cubes with
PMOS devices, in which sources are connected to Vdd.

3. Finish with mapping of input vectors that are not mapped in steps 1 and 2 (overlapping with
cubes from steps 1 and 2 allowed) that produce “0” or “1” at the output. Represent those cubes
with parallel NMOS (good pull-down) and PMOS (good pull-up) branches, in which sources are
connected to the corresponding input signals.

The complementarity and duality principles are identical as in DPL. Generation of 2-input
AND/NAND function is shown in Fig. 2.70. Circuit realizations with balanced loads are not possible in
this case. Signals in brackets of Fig. 2.70(b) denote alternative signal arrangement in NAND circuit. The
optimal signal arrangement depends on circuit environment and switching probabilities of input signals.

Efficient realization of 2-input OR/NOR circuits is shown in Fig. 2.71. Realization of 2-input
XOR/XNOR circuit is identical to DPL, Fig. 2.69. Direct circuit implementation of 3-input DVL gates is
shown in Fig. 2.72.

FIGURE 2.67 Synthesis of 2-input AND/NAND function: (a) Karnaugh map of AND function, (b) circuit diagram
AND/NAND function [22].

FIGURE 2.68 Circuit diagram of OR/NOR function [22].

FIGURE 2.69 Synthesis of 2-input XOR/XNOR function: (a) Karnaugh map of XOR function, (b) circuit diagram
XOR/XNOR function [22].
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Overlapping cubes C1 and C2, Fig. 2.72, saves area, which allows for wider transistors for cube C3. The
OR/NOR circuit, directly generated from the AND circuit, is shown in Fig. 2.73.

Synthesis of Complex Logic Networks

Synthesis of large pass-transistor networks is a challenging problem. The method presented in the
“Synthesis of Pass-Transistor Networks” section can be extended to synthesize larger functions, as well as
to synthesize complementary CMOS circuits. Complementary CMOS logic is essentially a special case of

FIGURE 2.70 Synthesis of 2-input AND/NAND function: (a) Karnaugh map of AND function, (b) circuit diagram
of AND/NAND function [22].

FIGURE 2.71 Circuit diagram of OR/NOR function [22].

FIGURE 2.72 Karnaugh map and circuit diagram of 3-input AND function [22].

FIGURE 2.73 Circuit diagram of 3-input OR/NOR function [22].
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pass-transistor logic, constrained that all source signals must terminate to Vdd or GND. This unnecessary
constraint is removed in PTL, but at the same time complexity of designing large PTL circuits is increased.
The most area-efficient method to synthesis of large PTL networks is decomposition into fundamental
units with small number of inputs, typically two or three. To illustrate this, the synthesis of random logic
function using three different mapping techniques is analyzed.

Consider the function

(2.2)

and its three different realizations shown in Fig. 2.74. All three circuits implement the same function,
but have different total active switching capacitance and different energy consumption. This example is
extension of the analysis provided in [11] towards generalization of random logic function synthesis.
Realization in complementary CMOS, Fig. 2.74(d), has smaller load on input signals and internal output
load than the DVL realization in Fig. 2.74(e). Two realizations of DVL show different mapping strategies:
the first strategy is to cover the map with largest possible cubes, Fig. 2.74(b), while the second strategy,
Fig. 2.74(c), is based on map decomposition and reduction to implementation of basic 2-input functions.
The DVL realization in Fig. 2.74(f) has smallest total load on input signals and similar internal output
load as complementary CMOS realization, as shown in Table 2.2.

This example illustrates the importance of strategy used to cover Karnaugh map and leads to a
conclusion that functional decomposition is the most efficient method in PTL circuit optimization.
Straightforward coverage of Karnaugh map with largest cubes, as shown in Fig. 2.74(b) results in a circuit
with lower performance, Fig. 2.74(e), while more careful coverage with decomposition of inputs, Fig. 2.74(c),
results in a circuit with both smaller transistor stack and smaller transistor count, Fig. 2.74(f).

TABLE 2.2 Comparison of Different Realizations of 3-Input Function F = B′C + ABC ′ [22]

Realization No. of Input Signals Signal Termination Transistor Count Output Load

CMOS 9 10G 10 4S
DVL (e) 9 8G + 6S 8 6S
DVL (f) 9 7G + 3S 7 4S

FIGURE 2.74 Karnaugh map coverage of 3-input function in (a) complementary CMOS, (b) DVL, (c) DVL and
corresponding circuit realizations in (d) complementary CMOS, (e) DVL, and (f) DVL [22].
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Summary

Pass-transistor logic circuits are often more efficient than conventional CMOS circuits in terms of area,
speed, and power consumption. This has been particularly the case when PTL is applied to the imple-
mentation of adders and multipliers. There are two main PTL design styles: NMOS-only pass-transistor
networks, and CMOS pass-transistor networks. The use of DTMOS pass-transistors would allow an
NMOS-based pass-transistor networks to operate at scaled supply voltages without significant speed
degradation. The CMOS-based pass-transistor networks present the generalization of complementary
CMOS where the pass variables could terminate to a variable voltage potential instead of Vdd or GND in
standard CMOS. This added flexibility of PTL circuits increases complexity of synthesis of large pass-
transistor networks. Decomposition of a complex function into its fundamental units, typically gates
with two or three inputs, seems to be optimal solution. Finding a correspondence between logic function
and these fundamental units can be performed in a systematic way using BDD-based synthesis algorithms
or other non-BDD methods. Among the other non-BDD methods, synthesis and optimization based on
Karnaugh maps presents systematic approach to synthesis of logic gates with balanced input loads. Further
optimization of PTL circuits under multiple and/or variable transistor thresholds or supply voltage is a
challenging problem for future research.
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2.4 Silicon on Insulator (SOI)

Yuichi Kado

Background for the Introduction of SOI CMOS

As the popularity of broadband access networks in the home continues to expand and multimedia data
such as video and sound are received over high-speed Internet connections, the introduction of electronic
commerce is expected to reach a serious stage. For the implementation of such services, there is an urgent
need for the development of high-performance terminals and network information processing systems.
The key devices for realizing that hardware are high-end microprocessors and digital signal processors
that have high performance and low power consumption. The predicted trend for high-performance LSI
clock frequencies taken from the 1994 NTRS (National Technology Roadmap for Semiconductors) [1]
and the 1999 ITRS (International Technology Roadmap for Semiconductors) [2] is shown in Fig. 2.75.

FIGURE 2.75 On-chip local clock frequency.
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The increases in LSI speed that we have seen so far are expected to continue at least until the year 2010,
when the clock frequency should reach 10 GHz. Power consumption, on the other hand, is increasing
along with processor speed, as we see in the trend in microprocessor power consumption reported by
the International Solid-State Circuits Conference (ISSCC) (Fig. 2.76). Recently, high-performance MPUs
that operate at gigahertz speeds and consume over 100 W of power have been reported. The calculated
power density of these devices is nearly 100 W/cm2, and with further increases in speed, the energy
densities may approach those of a nuclear reactor [3]. This situation is recognized as a power crisis for
LSI devices, and there is a need for lower power consumption and higher speed than is being obtained
through the scaling of bulk Si devices. Furthermore, the market for portable information devices has
experienced large growth, especially cell phones. To be conveniently useful, these information devices
must be small, light, and have a sufficiently long use time under battery operation. Thus, there is a strong
demand for lowering the power consumption of microprocessors, which account for nearly half of the
power consumed by these information devices. This situation paves the way for the introduction of SOI
(silicon on insulator) CMOS (complementary metal oxide semiconductor) devices, which are suited to
low parasitic capacitance and operation on low supply voltage, as well as for the introduction of copper
lines in the LSI wiring and a low-permittivity layer between wiring layers. The history of the development
of the current SOI devices that employ a thin-film SOI substrate is shown in Table 2.3. The stream of
development, which leads to the current SOI CMOS devices that employ an SOI substrate, originated with
the forming of CMOS circuits on a SIMOX substrate for the first time in 1978 and the demonstration of
the operation of those circuits [4]. 

Distinctive Features of SOI CMOS Structures

A cross-section of an SOI CMOS structure is shown in Fig. 2.77. In an SOI CMOS structure, a metal
oxide semiconductor field effect transistor (MOSFET) is formed on a thin SOI layer over a buried oxide
layer, and the entire MOSFET is enclosed in a silicon oxide layer; the n-MOSFETs and p-MOSFETs are
completely separated by an insulator. Furthermore, the process technology that is required for the fabri-
cation of the CMOS devices is similar to the conventional bulk Si-CMOS process technology, and device
structures are also simpler than for bulk CMOS. For that reason, compared to CMOS using ordinary
bulk Si substrate, the CMOS that employ an SOI substrate have various distinctive features that result
from those structures, as shown in Fig. 2.78. Here, in particular, the features of small junction capacitance,
no substrate bias effects, and reduced cross-talk are described. These are powerful features for attaining
higher LSI performance, lower power consumption, and multifunctionality. 

FIGURE 2.76 Trend in microprocessor power.
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As shown in Fig. 2.79, the MOSFET drain junction capacitance consists mainly of the capacitance
between the drain and the substrate. In SOI structures, the capacitance between the drain and the substrate
comprises a series connection of the buried oxide layer capacitance created by the silicon oxide layer,
which has a dielectric constant 1/3 smaller than Si, and the capacitance of the extended depletion layer
that is below the buried oxide layer. In SOI structures, the concentration of dopant in the substrate can
be 1014 cm3 or less, and by using the capacitance of the depletion layer that is below the buried oxide
layer, the drain contact capacitance can be reduced to about 1/10 that of a MOSFET that employs a bulk
Si substrate even if the buried oxide layer is about 100 nm thick. This is true even if we consider that the
drain voltage changes in the range between 0 V and the supply voltage in CMOS circuit operation.
Furthermore, reduction of the drain voltage Vd decreases the depletion layer width of the drain n+-p
junction in proportion to (Vbi + Vd)1/2 (where Vd is the drain voltage and Vbi is the built-in potential),
so the drain capacitance is increased. Thus, the fact that lower supply voltages in SOI structures result

TABLE 2.3 Thin-Film SOI History

Year Circuits/LSI SOI Substrates

1978 First SIMOX circuits (NTT) SIMOX
1982 1 kb SRAM SIMOX (NTT)
1990 21 ps CMOS ring oscillator (NTT)
1991 256 kb SRAM (IBM)
1992 2 GHz prescaler Low-dose SIMOX

1993 PLL (0.25 µm FD)
1 Mb SRAM (TI)
512 kb SRAM (IBM)

1994 1 M gate array (Mitsubishi) ITOX-SIMOX
ELTRAN UNIBOND

1995 16 Mb DRAM (Samsung)

1996 300 kg gate array (NTT)
0.5 V MTCMOS/SIMOX (NTT)
16 Mb DRAM (Mitsubishi)

1997 40 Gb/s ATM switch (NTT)
1 Gb DRAM (Hyundai)

1999 Power PC (IBM)
64 b ALPHA (Samsung)

2000 3.5 Gb/s optical transceiver (NTT)
2 GHz 0.5–1 V RF circuits (NTT)

2001 1 GHz PA-RISC MPU (HP)

FIGURE 2.77 SOI CMOS structure.
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in lower junction capacitance due to the SOI structure is a remarkable advantage considering the trend
of reducing the LSI supply voltage in order to reduce power consumption. 

In SOI structures, there is no MOS reverse body effect, because the body is electrically floating due to
the presence of the buried oxide layer, as shown in Fig. 2.80. In MOSFETs on a bulk Si substrate, the
body, which is to say the p-well, is connected to ground, so when the circuit is operating, the body
potential, VBS, is always negative. Thus, if threshold voltage of MOSFETs (Vth) rises, the drain current
decreases. When the supply voltage is 1 V or more in n-MOSFETs on an SOI substrate, holes generated
in the high electric field drain region accumulate in the body region and create a positive body bias. Thus
the VBS becomes positive, Vth is reduced, and the drain current increases. This feature results in better
performance than is obtained with MOSFETs on bulk Si substrate in the case of logic gates that consist
of stacked MOSFETs and pass transistor logic gates. 

For the development of multifunction LSI chips, the implementation of a mixed analog/digital (mixed-
signal LSI) chip, which is a single chip on which reside RF circuits and analog-digital conversion circuits
rather than just a digital signal processing block, is desired as a step toward realizing the system-on-a-chip.

FIGURE 2.78 Features of a fully depleted SOI transistor.

FIGURE 2.79 Small junction capacitance.
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A problem in such development is cross talk, which is the effect that the switching noise generated by
the digital circuit block has on the high precision analog circuit via the substrate. With SOI structures,
as shown in Fig. 2.81, it is possible to reduce the effect of this cross talk by using a high-resistance SOI
substrate (having a resistivity of 1000 Ω cm or more, for example) to create a high impedance in the noise
propagation path [5]. Furthermore, even with an ordinary SOI substrate, by surrounding the analog circuit
with N+ active SOI layer and applying a positive bias to it to form a depletion layer below the buried
oxide layer, it is possible to suppress the propagation of the noise [6]. Although guard ring structures and

FIGURE 2.80 No reverse body effects.

FIGURE 2.81 Cross talk suppression.
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double-well structures are employed as measures against cross-talk for CMOS circuits on bulk Si substrates,
too, SOI structures are simpler, as described previously, and inexpensive countermeasures are possible. 

Here, an example of a trial fabrication of an LSI of the SOI CMOS structures that have the features
described above on a SIMOX substrate (described later) and the performance of a multiplier on that LSI
are described. A cross-section TEM photograph of a CMOS logic LSI of 0.25 µm gates formed on a 50-
nm SOI layer is shown in Fig. 2.82. In order to reduce the parasitic resistance of the thin Si layer, a
tungsten thin-film was formed by selective CVD. A four-layer wiring structure is used. The dependence
of the performance of a 48-bit multiplier formed with that structure on the supply voltage is shown in
Fig. 2.83. For comparison, the performance of a multiplier fabricated from the same 0.25 µm gate CMOS
form on a bulk Si substrate is also shown. For a proper comparison, the standby leak current levels of
the multipliers that were compared were made the same [7]. Clearly, the lower the supply voltage, the
more striking is the superiority of the performance of the SOI CMOS multiplier. From 32% higher
performance at 1.5 V, the performance advantage increases to 46% at 1.0 V. Thus, the SOI CMOS

FIGURE 2.82 Cross section TEM image of fully depleted SOI CMOS.

FIGURE 2.83 Comparison of a 48-b multiplier performance between SOI and bulk-Si using 0.25-µm CMOS
technology.
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structures are a powerful solution in the quest for higher LSI performance, lower operating voltage, and
lower power consumption. 

Higher Quality and Lower Cost for the SOI Substrate

Against the backdrop of the recognition of SOI CMOS as a key technology for logic LSI of higher
performance and lower power consumption, the fact that SOI substrates based on Si substrates have
higher quality and lower cost are extremely important. A thin-film SOI substrate that has a surface layer
of Si that is less than 0.1 µm thick serves as the substrate for forming the fine CMOS devices of a logic
LSI chip. In addition, various factors of substrate quality, including the quality of the SOI layer, which
affects the reliability of the gate oxide layer and the standby leak current, the uniformity of thickness
of the SOI layer and the buried oxide layer and controllability in the production process, roughness of
the SOI surface, the characteristics of the boundary between the buried oxide layer and the SOI layer,
whether or not there are pinholes in the buried oxide layer, and the breakdown voltage, must be cleared
[8,9]. Furthermore, for the production of SOI CMOS with the same production line, as is used for
CMOS on bulk Si substrate, the absence of metal contamination and a metal contamination gettering
capability are needed. Also, adaptability for mass production, cost reduction, and larger wafer diameters
must be considered. From this point of view, remarkable progress has been achieved in thin-film SOI
substrates for fine CMOS over these past several years. In particular, the SOI substrates that have
attracted attention are broadly classified into SIMOX (separation by implanted oxygen) substrates and
wafer bonding (WB) substrates, as shown in Fig. 2.84. A SIMOX substrate is formed by oxygen ion
implantation and high-temperature annealing. Wafer bonding substrates, on the other hand, are made
by bonding together a Si substrate on which an oxide layer is formed, which is called a device wafer
(DW) because the devices are formed on it, and another substrate, called the handle wafer (HW), and
then thinning down the DW from the surface so as to create an SOI layer of the desired thickness. For
fine CMOS, a thin SOI layer of less than 0.1 µm must be fabricated to a layer thickness accuracy of
within ±5–10%. Because that accuracy is difficult to achieve with simple grinding or polishing technol-
ogy, various methods are being studied. Of those, two methods that are attracting attention are ELTRAN
(epitaxial layer transfer) [10] and UNIBOND [11]. ELTRAN involves the use of a porous Si layer formed
by anodizing and a Si epitaxial layer to form the separation layer of the DW and HW; the UNIBOND
substrate uses hydrogen ion implantation in the formation of the peel-off layer. It has already been
demonstrated that the application of these SOI substrates to 300 mm wafers and mass production is
technologically feasible, and because this is also considered to be important from the viewpoint of
application to logic LSI chips, which are a typical representative of MPUs, an overview of the technology
and issues is presented in the next section. 

FIGURE 2.84 SOI material technologies for production.
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SIMOX Substrates 

For SIMOX substrates, the buried oxide (BOX) layer is formed by the implantation of a large quantity
of oxygen ions at energies of about 200 keV followed by annealing at high temperatures above 1300°C,
as shown in Fig. 2.85 [4]. Because the amount of oxygen implanted and the implantation energy are
controlled electronically with high accuracy, there is excellent control of the uniformity of the thickness
of the SOI layer and the BOX layer. A substrate obtained by high-dose oxygen implantation in the order
of 1018cm2 is called a high-dose SIMOX substrate and has a BOX layer thickness of about 400–500 nm.
The presence of 108cm2 or more dislocation density in the SOI layer and the long period of time required
for the high-dose oxygen ion implantation create problems with respect to the quality of the SOI layer
and the cost and mass producibility of the substrate. On the other hand, it has been discovered that if
the oxygen ion implantation dose is lowered to about 4 × 1017cm2, there are dose regions in which the
dislocation density is reduced to below 300 cm2, resulting in high quality of the SOI layer and lower
substrate cost [12]. Such a substrate is referred to as a low-dose SIMOX substrate. However, the BOX
layer of this substrate is thin (about 90 nm), making it necessary to reduce the number of pinholes and
other defects in the BOX layer. In later studies, it was found that a further high-temperature oxidation
at over 1300°C after high-temperature annealing results in the formation of a thermal oxide layer at
the interface between the SOI layer and BOX layer at the same time as the oxidation of the SOI layer
surface [13]. Typically, the BOX layer thickness is increased by about 40 nm. A substrate produced with
this internal oxidation processing is referred to as an ITOX-SIMOX substrate. In this way, an SOI layer
can be formed over an oxide layer of high quality, even on SIMOX substrates formed by oxygen ion
implantation. 

ELTRAN Substrates 

Although thin-film SOI substrates for fine CMOS devices are categorized as either SIMOX substrates or
wafer bonded substrates, as shown in Fig. 2.84. ELTRAN substrates are classified as BESOI (Bond and
Etch-back SOI) substrates, a subdivision of the bonded substrate category. The BESOI substrate is
produced by the growth of a two-layer structure that consists of the final layer that remains on the DW
as the SOI layer and a layer that has a high etching speed by epitaxial growth followed by the formation
of a thermal oxide layer on the surface and subsequent bonding to the HW. After that, most of the
substrate is removed from the backside of the DW by grinding and polishing. Finally, the difference in
etching speed is used to leave an SOI layer of good uniformity. The fabrication process for an SOI substrate
produced by the ELTRAN method is shown in Fig. 2.86 [14]. First, a porous Si layer that comprises two
layers of different porosities is formed by anodization near the surface of the Si substrate on which the
devices are formed (DW). After smoothening of the wafer surface by annealing in hydrogen to move the
surface Si atoms, the layer that is to remain as the SOI layer is formed by epitaxial growth. After forming
the layer that is to become the buried oxide layer by oxidation, the DW is bonded to the HW. Next, a
water jet is used to separate the DW and HW at the boundary of the two-layer porous Si layer structure.
Finally, the porous Si layer is removed by selective chemical etching of the Si layer, hydrogen annealing

FIGURE 2.85 Main process steps of ITOX-SIMOX.
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is performed, and then the surface of the SOI layer is flattened to the atomic level. The ELTRAN method
also uses epitaxial layer forming technology, so layer thickness controllability and uniformity of the layer
that will become the SOI layer are obtained. 

UNIBOND Substrates 

The UNIBOND method features the introduction of the high controllability of ion implantation tech-
nology to wafer-bonded substrate fabrication technology [11]. The process of UNIBOND SOI substrate
fabrication is shown in Fig. 2.87. Hydrogen ions are implanted to a concentration of about 1016 cm2 in
a DW on which a thermal oxide layer has previously been formed and then the DW is bonded to the
HW. Then, after an additional annealing at low temperatures of about 400–600°C, separation from the
hydrogen ion implanted layer occurs. The surface of the SOI layer is smoothened by light polishing to
obtain the SOI substrate. By using ion implantation to determine the thickness of the SOI layer, control-
lability and uniformity are improved. 

Here, three types of SOI substrates that have attracted particular attention have been introduced, but
it is highly possible that in future, the SOI substrates will undergo further selection on the basis of
productivity, cost, LSI yield, adaptability to large wafer diameters, and other such factors. 

SOI MOSFET Operating Modes

SOI MOSFETs have two operating modes: the fully depleted (FD) mode and the partially depleted (PD)
mode. The differences between those modes are explained using Fig. 2.88. For each operating mode, the
cross-sectional structure of the device and the energy band diagram for the region near the bottom of
the body in the source–body–drain direction are shown. For the FD device, the entire body region is
depleted, regardless of the gate voltage. Accordingly, FD devices generally have a thinner body region

FIGURE 2.86 Main process steps of ELTRAN.

FIGURE 2.87 Main process steps of UNIBOND.
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than PD devices. For example, the thickness of the body region of a PD device is about 100 nm, but that
of an FD device is about 50 nm. In the PD device, on the other hand, the body region is only partly
depleted and electrically neutral region exists. The presence of the region, focusing attention on the
change in potential in the depth direction of the body region from the gate oxide layer, limits the gate
field effect to within the body region, and the neutral region in which there is no potential gradient exists
in the lower part of the body. Accordingly, the difference in potential between the surface of the body
region and the bottom of the region is greater in a PD device than in an FD device, and the potential
barrier corresponding to the holes between the source and body near the bottom of the body region is
higher in the PD structure than in the FD structure. This difference in potential barrier height corre-
sponding to the holes creates a difference in the number of holes that can exist within the body region,
as shown in Fig. 2.88. These holes are created by impact ionization when the channel electrons pass
through the high electric field region near the drain during n-MOSFET operation. The holes flow to the
source via the body region. At that time, more holes accumulate in the body region of the PD structure,
which has a higher potential barrier than the FD structure. This fact brings about a large difference in
the floating body effect of the FD device and the PD device, determines whether or not a kink appears
in the drain current-voltage characteristic and creates a difference in the subthreshold characteristic, as
shown in Fig. 2.89. 

FIGURE 2.88 SOI device operation modes.

FIGURE 2.89 Id-Vd characteristics in FD and PD modes.
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PD-SOI Application to High-Performance MPU

An example of a prototype LSI that employs PD-SOI technology and which was presented at the latest
ISSCC is shown in Table 2.4. The year 1999 will be remembered as far as application of SOI to a high-
performance MPUs is concerned. In an independently organized session at ISSCC that focused on SOI
technology, IBM reported a 32-bit Power PC (chip size of 49 mm2) that employs 0.25 µm PD-SOI
technology [15] and a 64-bit Power PC (chip size of 139 mm2) that employs 0.2 µm PD-SOI technology
[16]. Samsung reported a 64-bit ALPHA microprocessor (chip size of 209 mm2) that employs 0.25 µm
FD-SOI technology [17]. According to IBM, the SOI-MPU attained performance that was 20–35% higher
than an MPU fabricated using an ordinary bulk Si substrate. Furthermore, in the year 2000, IBM reported
the performance of a 64-bit Power PC microprocessor that was scaled down from 0.22 µm to 0.18 µm,
confirming a 20% increase in performance [18]. In this way, the scenario that increased performance
could be attained for SOI technology through finer design scales in the same way it can be done for bulk
Si devices was first established. IBM is attracting attention by applying these high-performance SOI-
MPUs to middle-range commercial products, such as servers for e-business etc. and shipping them to
market as examples of the commercialization of SOI technology [19]. Also, many manufacturers that are
developing high-performance MPUs have recently begun programs for developing SOI-MPU. Currently,
PD-SOI technology is becoming the mainstream in the high-performance MPU. The characteristics of
PD-SOI and FD-SOI are compared in Table 2.5. In the high-performance MPU, improvement of tran-
sistor performance through aggressive increase in integration scale is an essential requirement, and PD-
SOI devices have the merit that the extremely fine device design scenario and process technology that
have been developed for bulk Si devices can be used without modification. Also, as described previously,
because the PD-SOI can have a thicker body region than the FD-SOI (about 100 nm), those devices have
the advantage of a greater fabrication margin in the contact forming process and the process for lowering
the parasitic resistance of the SOI layer. On the other hand, the PD-SOI devices exhibit a striking floating

TABLE 2.4 PD-SOI Activities in ISSCC

LSIs Gate Length Performance VDD Company Year

Logic 0.3 µm 200 MHz 0.5 V Toshiba ’96
16 b Multiplier 0.18 µm 380 ns 1.5 V Intel ’01
ALU 0.08 µm 1 ns 1.3 V Fujitsu ’01
32 b Adder

DRAM
16 Mb 0.5 µm 46 ns  1 V Mitsubishi ’97

Microprocessor
32 b Power PC 0.25 µm 580 MHz  2 V IBM ’99
64 b Power PC 0.2 µm 550 MHz 1.8 V IBM ’99
64 b Power PC 0.18 µm 660 MHz 1.5 V IBM ’00
64 b PA-RISC 0.18 µm 1 GHz 1.5 V HP ’01

TABLE 2.5 FD vs. PD

FD PD

Manufacturability +
Kink effect +
Body contact +
Vth control +
SCE (scaling ability) +
Parasitic resistivity +
Breakdown voltage +
Subthreshold slope +
Pass gate leakage +
History dependence +
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body effect, so it is necessary to take that characteristic into consideration in the circuit design of a
practical MPU. 

Floating Body Effect 

PD-SOI structures exhibit the kinking phenomenon, as shown in Fig. 2.89, but IBM has reported that
the most important factor in the improvement of MPU performance, in addition to reduction of the
junction capacitance and reduction of the back gate effect, is increasing the drain current due to impact
ionization. This makes use of the phenomenon in which, if the drain voltage exceeds 1.1 V, the holes
that are created by impact ionization (in the case of an n-MOSFET) accumulate in the body region,
giving the body a positive potential and thus lowering the Vth of the n-MOSFET, and thus increasing the
drain current. The increase in drain current due to this effect is taken to be 10–15%. On the other hand,
from the viewpoint of devices for application to large-scale LSI, it is necessary to consider the relation
between the MOSFET Vth and standby leak current. According to IBM, even if there is a drop in Vth due
to the floating body effect, there is no need to preset the device Vth setting for the operating voltage to
a higher value than is set for bulk Si devices in the worst case for the increase in the standby leak current,
which is to say, transistors that have the shortest gate lengths at high temperatures [15]. 

Next, consider the pass gate leak problem [15,20], which is shown in Fig. 2.90. In the case of an n-
MOSFET on SOI, consider the state in which the source and drain terminals are at the high level and
the gate terminal is at the low level. If this state continues longer than 1 µs, for example, the body potential
becomes roughly Vs − Vbi (where Vs is the source terminal voltage and Vbi is the built-in potential). In
this kind of state, the gate voltage is negative in relation to the n-MOSFET source and drain, and holes
accumulate on the MOS surface. If, in this state, the source is put into the low level, the holes that have
accumulated on the MOS surface become surplus holes, and the body region–source pn junction is biased
in the forward direction so that a pulsed current flows, even if the gate is off. Because this phenomenon
affects the normal operation of the access transistors of DRAM and SRAM and the dynamic circuits in
logic LSIs, circuit design measures such as providing a margin for maintenance of the signal level in SRAM
and dynamic logic circuits are required. For DRAM, it is necessary to consider shorter refresh frequencies
than are used for bulk Si devices. 

Finally, we will describe the dependence of the gate delay time on the operating frequency, which is
called the history effect [15,21]. As previously described, the body potential is determined by the balance
between charging due to impact ionization and discharging through the body–source pn junction
diode, and a change in that produces a change in the MOSFET Vth as well. For example, consider the
pulse width relationship of the period of a pulse that is input to an inverter chain and the pulse width
after passing through the chain, which is shown in Fig. 2.91. The n-MOSFETs of the odd-numbered

FIGURE 2.90 Pass gate leakage.
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stages have lower Vth than do the n-MOSFETs of the even-numbered stages. The reason for this charac-
teristic is that the odd-stage n-MOSFETs have a high body potential due to impact ionization. This
imbalance in Vth in the inverter chain results in the longer pulse width after passing through the chain.
The time constant for the charging and discharging is relatively long (1 ms or longer, for example), so
the shorter the pulse period becomes, the smaller the extension of the pulse width becomes. IBM
investigated the effect of changes in the dynamic body potential during the operation of this kind of
circuit on various logic gate circuit delay times and found that the maximum change in the delay time
was about 8%. Although this variation in delay times is increased by the use of PD-SOI devices, various
factors also produce variation when bulk Si devices are used. For example, there is a variation in delay
time of 15–20% due to changes in line width within the chip that result from the fabrication process, a
variation of 10–20% due to a 10% fluctuation in the on-chip supply voltage, and a variation of between
15% and 20% from the effect of temperature changes (25–85°C). Compared with these, the 8% change
due to the floating body is small and permissible in the design [15]. 

FD-SOI Application to Low-Power, Mixed-Signal LSI

Features of FD-SOI Device

As we have already seen in the comparisons of Fig. 2.78 and Table 2.5, in addition to the SOI device
features, the special features of the FD-SOI device include a steep subthreshold characteristic and small
dynamic instabilities such as changes in Vth during circuit operation due to the floating body effect. In
particular, the former is an important characteristic with respect to low-voltage applications. The sub-
threshold characteristics of FD-SOI devices and bulk Si devices are compared in Fig. 2.92. Taking the
subthreshold characteristic to be the drain current–gate voltage characteristic in the region of gate voltages
below the Vth, the drain current increases exponentially with respect to the gate voltage (Vg). The steeper
this characteristic is, the smaller can be made the drain leak current when Vg = 0, which is to say the
standby leak at the time the LSI was made even if Vth is set to a small value. An effective way to realize
low-power LSI chips is to lower the voltage. In order to obtain circuit speed performance at low-voltages,
it is necessary to set Vth to a low value. On the other hand, because there is a trade-off between reduction
of the Vth and the standby leak current, we can see that the characteristic described above is important
[7,22]. As a criterion for steepness, the subthreshold coefficient (S) is defined as the change in the gate
voltage that is required to change the drain current in the subthreshold region by a factor of 10. This
coefficient corresponds to the proportion of the change in channel surface potential with respect to the
change in gate voltage. For the FD type structure, the body region is fully depleted, so the channel

FIGURE 2.91 History effects.
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depletion layer capacitance in the bulk Si device, Cdep, is a series connection of the body depletion layer
capacitance, CSi, and the buried oxide layer capacitance, CBOX, and the controllability of the gate voltage
with respect to the channel surface potential is improved.

Furthermore, from the viewpoint of circuit design, the superiority of the FD-SOI device relative to
the PD-SOI device is that the kink phenomenon does not appear in the drain voltage current characteristic
(Fig. 2.89), and, further, that dynamic instabilities such as changes in Vth caused by the floating body
effect during circuit operation are small [23]. As a result, there is an advantage in terms of the layout
area, because there is no need for body contacts including for analog circuits, and it is also possible for
the layoutss and other such design assets that have been used for bulk Si to be used as they are (Fig. 2.93).
An example of a prototype FD-SOI device LSI that takes advantage of the features described above that
was newly announced at the ISSCC is shown in Table 2.6. 

Low-Power, Mixed-Signal LSI Application

Further advancement of portable systems in the form of wearable information equipment with a wireless
interface will enable us to enjoy various multimedia applications anywhere and anytime. The realization
of wearable communication devices requires lower power consumption, ultra-compactness, reduced

FIGURE 2.92 Steep subthreshold slope in FD device.

FIGURE 2.93 No need for body contacts in FD device.
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weight, lower cost, a wireless interface function, and a barrier-free human interface function. The key to
satisfying those requirements is an analog-digital, mixed-signal LSI that integrates analog-digital conver-
sion circuits, RF circuits, etc., and digital signal processing circuits on a single chip and also operates on
ultra-low power supplies of 1 V or less (Fig. 2.94).

However, in the development of mixed-signal system LSI chips, problems arise that need not be
considered in efforts to achieve finer design rules and increased integration scales for conventional digital
LSIs. Examples include the improvement of analog circuit performance under low supply voltages and
the reduction of the effects of cross talk noise from digital circuits on analog circuits. A promising solution
for those problems is the use of FD-SOI device technology, which offers the promise of low-voltage, low-
power operation. 

Considering the digital circuit first, a method of reducing energy consumption by lowering the voltage
and employing adiabatic charging is described. The problems associated with lower voltage operation
for analog circuits and circuit technology for overcoming those problems is then discussed.

Digital Circuits
The low-voltage, low-power trend for digital circuits is shown in Fig. 2.95. That figure is based on the
supply voltage trend described in the 1999 SIA International Technology Roadmap for Semiconductors [2]

TABLE 2.6 FD-SOI Activities in ISSCC

LSIs Gate Length Performance VDD Company Year

Communications
4:1 MUX 0.25 µm 2.98 GHz 2.2 V NTT ’96
8 × 8 ATM switch 0.25 µm 40 Gb/s 2 V NTT ’97
Optical transceiver 0.25 µm 3.5 Gb/s 2 V NTT ’00
RF front-end circuits 0.25 µm 2 GHz 0.5 V NTT ’00
Receiver front-end 0.20 µm 2 GHz 1 V NTT ’01

Logic
300 kg gate array 0.25 µm 70 MHz 2 V NTT ’96
Adder 0.25 µm 50 MHz 0.5 V NTT ’98

Microprocessor
64 b ALPHA 0.25 µm 600 MHz 1.5 V Samsung ’99

FIGURE 2.94 Analog-digital, mixed-signal LSI.
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and shows the trend in power consumption per basic gate, normalized to the power consumption for
5 V operation. The supply voltage for 0.05 µm generation LSI circuits is predicted to be 0.5 V in the year
2011, a reduction of two orders of magnitude from the 5 V operation of the 0.5 µm generation. However,
it is possible to realize wearable information equipment that requires ultra-low-power-consumption
ahead of that low-voltage, low-power consumption time trend, even without waiting for the finer pro-
cesses of 2011, by using a combination of FD-SOI devices and MTCMOS circuits [24] or adiabatic
charging circuits [25]. NTT is proceeding along a low-voltage research roadmap that shows 1 V operation
in the year 2000 and 0.5 V operation sometime between 2003 and 2005.

MTCMOS (Multi-Threshold CMOS) circuits [24] are an effective means to achieve lower operating
voltages in digital circuits (Fig. 2.96). These circuits are constructed of MOSFETs that have two different

FIGURE 2.95 Low-voltage trends in digital circuits.

FIGURE 2.96 MTCMOS circuit scheme.
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threshold voltages—some have a high Vth and others a low one. High-speed operation at low supply
voltages can be achieved by using low Vth MOSFETs to construct the logic circuits and blocking the
standby leak current that arises in these logic circuits because of the low Vth with power switch transistors
constructed of high Vth MOSFETs, making it possible to apply these circuits to battery-driven devices
such as wearable information equipment. A DSP (1.2 V, 20 MHz operation) that employs this technology
has already been introduced in a wristwatch personal handy-phone system terminal, contributing to
lower power consumption in audio signal processing [26].

Using FD SOI devices to construct the MTCMOS circuits even further improves the operation speed
under low-voltage conditions [27]. By combining 0.25–0.18 µm gate FD SOI devices and MTCMOS
circuit technology, it is fully possible to implement a digital signal processing chip for a wearable terminal
that operates at high speeds (100 MHz or higher) at 1 V. The performance levels of various prototype
MTCMOS/SIMOX chips are listed in Table 2.7. 

Analog Circuits
Problems associated with low-voltage operations
We will begin with the problems concerning the low-voltage driving of amplifiers and analog switches,
which are the basic circuits of analog circuits. The trends in supply voltage (Vdd), cut-off frequency (fT),
and analog signal frequency (fsig) that accompany the increasingly finer scale of bulk-Si CMOS devices
are shown in Fig. 2.97. These parameters are drawn from the trends related to mixed-signal LSI circuits
predicted in the 1999 SIA Roadmap [2]. The supply voltage exhibits a trend toward portable devices.
The reduction in signal amplitude that comes with a lower supply voltage is a critical concern for analog
circuits. The lower signal amplitude causes a degradation of the signal-to-noise (S/N) ratio. Because the
linear output range of the basic amplifier used in analog circuits extends from ground to Vdd minus about
twice the Vth of the transistor. So, lowering of the Vth is essential to realizing a 1-V, operation-mixed signal
LSI circuit. 

On the other hand, lowering the Vth increases the leak current of the analog switch, reduces the
accuracy of the A/D converter, generates an offset voltage in the sample-hold circuit, creates high-
frequency distortion in switch-type mixer circuits, etc. The relation between the transistor Vth and the
voltage variation caused by the analog switch leak current and the relation between the transistor Vth

and the analog signal amplitude, when Vdd is 1 V, are shown in Fig. 2.98. The voltage variation values
in that figure are the values calculated for an SC integrator (10 MHz sampling frequency and 1 pF
integral capacitance) that uses analog switches. For a Vth of 200 mV, the voltage variation in the
subthreshold characteristics (S = 85–90 mV/dec) of bulk Si devices and PD SOI devices is 3 mV or
more, and 8-bit accuracy in an A/D converter cannot be guaranteed with a 1-V amplitude input signal.
FD SOI devices, on the other hand, have a steep subthreshold characteristic and the leak current can
be suppressed, so the voltage variation is 1 mV or less. This feature can improve the relations among
the S/N ratio, signal band, voltage variation due to leak current, etc., which are trade-offs in analog
circuit design.

TABLE 2.7 Performance of sub-1 V MTCMOS/SIMOX-LSI

LSIs Gate Length Source Voltage
Vth 

Configuration
Operating 
Frequency

Power 
Consumption

16-bit ALU 8 K 0.5 V Dual 40 MHz 0.35 mW
Communication 8 K 0.5 V Dual 100 MHz 1.45 mW
Coding LSI 30 K 0.5 V Dual 18 MHz 2 mW
8-bit CPU 53 K 0.5 V Dual 30 MHz 5 mW
Communication LSI 200 K 1 V Dual 60 MHz 150 mW
16-bit adder 2 K 0.5 V Triple 50 MHz 0.16 mW
Communication LSI 8 K 0.5 V Triple 100 MHz 1.65 mW
54-bit adder 26 K 0.5 V Triple 30 MHz 3 mW
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1V A/D-D/A conversion circuit
To solve the analog switch leak current problem described earlier, NTT has developed a 1-V operation
noise shaping A/D-D/A converter with an RC integrator that does not employ analog switches. We have
also proposed a configuration in which the integrator output is either the input signal only or the
quantization noise only (swing-suppression circuit Fig. 2.99) as opposed to the conventional secondary
∆Σ circuit, in which the output of the two-stage integrator is the large-amplitude sum of the input signal
and quantization noise [28]. In that way, it is possible to compensate the reduced dynamic range of the

FIGURE 2.97 Trends in A-D, mixed signal LSI technology.

FIGURE 2.98 Relation between analog signal amplitude, accuracy, and Vth.
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amplifier used in the integrator that results from the reduced voltage. Using a prototype that employs
0.5–0.35 µm gate bulk Si devices, we have already confirmed 16-bit precision conversion operation in
the voice band (20 kHz) on a 1-V supply voltage with a power consumption of 3 mW or less. 

To handle multimedia data such as audio, still pictures and video, it is necessary to increase the conversion
speed and increase the bandwidth of the signal that can be handled. The performance of the A/D converter
and an application example are shown in Fig. 2.100, along with the actual performance range for a circuit
configured with 0.25–0.18 µm gate FD-SOI devices. We expect that a broadband A/D converter, which
operates on a 1-V supply voltage and can be applied to wireless communication, can be realized. 

FIGURE 2.99 1 V A/D converter using the swing-suppression circuit.

FIGURE 2.100 Performance of an SOI-A/D conversion circuit.
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RF circuit
Concerning the wireless interface, standardization for the next-generation mobile communications is
proceeding, beginning with IMT-2000, which aims for commercial implementation in 2001 (Fig. 2.101).
Among those standards, what is attracting attention with respect to the application of CMOS circuits
are the wireless communication technology standards for short-range communication in the 2.4 GHz
ISM band (Bluetooth and HomeRF). 

A prototype 2 GHz band, 1 V, low-noise amplifier that employs 0.25 µm FD CMOS/SIMOX devices
has already been reported [29]. Moreover, RF circuit technology that allows reduction of the voltage to
the limit of the elemental transistor by using tank current sourcing (TCS) technology to reduce the
number of vertical stages of the transistor to 1 has recently been developed. That has made it possible
to realize a 2 GHz band RF front-end circuit that operates on a mere 0.5 V [30] (Fig. 2.102). 

FIGURE 2.101 Applications for SOI-CMOS RF circuits.

FIGURE 2.102 RF circuit using TCS technology.
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When the communication range is 10 m or less and the transmission output is several milliwatts or
less, as in the Bluetooth Class 3 standard, the entire 2.4 GHz band RF circuit that is required for the
wireless interface can be configured with 0.25–0.18 µm gate FD-SOI devices. Doing so makes it possible
to implement a low-voltage, low-power conssumption wireless interface circuit that operates on from 1 V
to 0.5 V, thus providing a powerful wireless interface for implementing future fingertip-size communi-
cation devices.

Cross Talk Immunity
In a mixed-signal LSI circuit (see Fig. 2.94), it is necessary to protect the analog circuit from the effects
of the noise generated by the high-speed switching of the digital circuit in order to prevent degradation
of the S/N and accuracy of the analog circuit that is formed on the same chip as the digital circuit. This
is a particularly important point in the implementation of the RF amplifier and high-precision A/D
converter. When SOI structures are used, the insulation separation is effective for suppressing substrate
cross talk noise. Furthermore, if a high-resistance SOI substrate is used, the performance of the on-chip
inductor that is used in the RF circuit an be improved [31].

The effect of cross talk was evaluated experimentally by designing a circuit in which a TEG is placed
near an RF low-noise amplifier and inverter chain [5]. The circuit was test-fabricated by a 0.25 µm FD
CMOS/SIMOX process with an ordinary SIMOX substrate (30–40 Ω cm) and with a high-resistance
SIMOX substrate (1 kΩ cm or more). The placement of the TEG is shown in Fig. 2.103. The circuit was
operated by inputting a 5 MHz rectangular wave to the input pad of the inverter chain (Vdd = 2 V) and
the noise level was measured at the output pad of the low-noise amplifier. The noise level for the ordinary
SIMOX substrate was −75 dBm, which cannot be ignored for a highly-sensitive RF circuit. For the high-
resistance SIMOX substrate, on the other hand, the noise was clearly reduced to below the measurable
level (−85 dBm). 

It has also been confirmed that substrate noise from the digital circuit can be sufficiently reduced,
even with an ordinary SIMOX substrate, by surrounding the analog circuit with an SOI guard ring
and applying a positive bias to it to form a depletion layer below the buried oxide layer (Fig. 2.81).
Using this guard ring technique, NTT have made a single-chip 3.5 Gb/s optical transceiver chip on a
CMOS/SIMOX process [6].

FIGURE 2.103 Cross talk evaluation circuit.
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Conclusion

An application example of an LSI chip that employs SOI devices has been described here. Against the
backdrop that the SOI CMOS process has been recognized as a key technology for increasing the
performance and reducing the power consumption of logic LSI circuits, there is a strong need by
information distribution services for LSI chips of higher performance and lower power consumption,
improvement of the quality of thin-film SOI substrates based on Si substrates, lower cost, and develop-
ment of suitability for mass production. Furthermore, progress in explaining the physical phenomena
of SOI devices is progressing, and another major factor is the establishment of control technology in
both device design and circuit design for the characteristics that bulk Si devices do not have, especially
the floating body effect. On the other hand, it is said that future LSI chips will be oriented to the system-
on-a-chip era, in which memory circuits, RF circuits, analog circuits, etc., will reside on the same chip,
rather than digital logic circuits alone. Although SOI structures are effective in reducing cross talk, as
has already been described, problems exist concerning the establishment of a precise circuit model of
the devices, which is necessary for application of SOI devices to analog circuits as well as ascertaining
the influence of the floating body effect on circuit precision. It is also necessary to continue with studies
on countermeasures for memory pass gate leakage in DRAM, SRAM, etc. 

In the future, if progress in finer designs leads to the 0.1 µm era, in which the standard LSI supply
voltage will be reduced to about 1 V, we believe that the superiority of SOI CMOS over Si CMOS will
become even more remarkable. 
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3
High-Speed, Low-Power

Emitter Coupled
Logic Circuits

3.1 Active Pull-Down ECL Circuits
3.2 Low-Voltage ECL Circuits

Emitter-coupled logic (ECL) circuits have often been employed in very high-speed VLSI circuits. However,
a passive pull-down scheme in an output stage results in high power dissipation as well as slow pull-
down transition. Gate stacking in a current switch logic stage keeps ECL circuits from operating at low
power supply voltages. In this section, a high-speed active pull-down scheme in the output stage, as well
as a low-voltage series-gating scheme in the logic stage will be presented. The two circuit techniques can
be employed together to obtain multiple effects in terms of speed and power.

3.1 Active Pull-Down ECL Circuits

An ECL inverter circuit is depicted in Fig. 3.1, together with the simulated output voltage and pull-down
current waveforms. As shown in the figure, the pull-down transition time increases much more rapidly
than the pull-up transition time as the load capacitance increases. This slow pull-down transition time,
and consequently unbalanced pull-up and pull-down switching speed, can cause an erroneous operation
of the circuit due to signal skew or because of a racing condition. 

The figure also demonstrates the disadvantageous power consumption of the circuit. The circuit
requires a constant pull-down current IEF. This power is consumed even when the gate output is not being
switched. To reduce this power loss, the current IEF must be reduced. However, reducing the current IEF

causes the pull-down transition time to increase to an unacceptable level. This high power dissipation
and slow pull-down transition of ECL circuits has long been known to limit their VLSI applications. The
power-speed limitation comes primarily from the passive pull-down scheme in the emitter-follower stage. 

Various active pull-down schemes have been proposed [1–5] where a capacitor is utilized to couple a
transient voltage pulse to the base of a pull-down npn transistor. An ac-coupled active-pull-down ECL
(AC-APD-ECL) circuit [3] is depicted in Fig. 3.2. The steady-state dc current can be kept an order of
magnitude lower than in the conventional ECL gate. As for the transient action, CX and RB determine the
magnitude of the transient collector current of transistor QD. CE and RE determine the time while
transistor QD turns on. These capacitors and resistors should be optimized for a specific loading condition,
since they determine the dynamic pull-down current. The dynamic pull-down current is predetermined
for a given design. In other words, there is a finite range of loading, outside of which proper operation of
the circuit cannot be ensured. 

Tadahiro Kuroda
Keio University
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Simulated output voltage and pull-down current waveforms of the AC-APD-ECL circuit are also shown
in Fig. 3.2. The circuit is optimized for a 0.5-pF loading. The simulation is performed under the 0.5-pF
loading, as well as under much lighter loading, 0.04 pF, and much heavier loading, 1.0 pF. The dynamic
pull-down current does not change according to the loadings. With the smaller loading, the excess pull-
down current is consumed as crossover current at the end of the pull-down transition, resulting in waste
of power. The excess pull-down current also causes unfavorable undershoot in the output. With the larger
loading, a slowly discharging tail results, because the dynamic pull-down current is insufficient for the
loading. The slowly discharging tail is dictated by the steady-state current.

FIGURE 3.1 Conventional ECL circuit.

FIGURE 3.2 AC-APD-ECL circuit that is optimized to drive a 0.5-pF loading (CX = 0.2 pF, CE = 1.0 pF, RB = 170 kΩ,
RE = 50 kΩ).
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Because the circuit loading condition is uncertain with cell library design methodology, large dynamic
and steady-state, pull-down current are used in a macrocell to cover wide range of loadings, thus
diminishing the overall power savings. The need of additional devices, such as capacitors (typically several
hundreds of fF) and large resistors (typically several tens of kilohm), also causes significant area penalty
and added process complexity. The increase of the cell size implies increased interconnection delay, thus
degrading the chip performance.

Another example of the active pull-down scheme is a level-sensitive active pull-down ECL (LS-APD-
ECL) circuit [6], as shown in the circuit schematic depicted in Fig 3.3. No additional device, such as a
capacitor or a large resistor, is required. On the contrary, the circuit is a rearrangement of the conventional
ECL circuit, using exactly the same devices. Therefore, the circuit can be implemented directly on existing
ECL gate arrays with no area penalty. The only addition is a regulated bias voltage VREG that should be
biased to one VBE below the “low” level. 

Circuit operation is illustrated in Fig. 3.4 when the input signal is switched from “high” to “low” so
that the output rises to “high.” When “low” input signal is applied, transistor Q1 is turned off and transistor
Q2 is turned on, so that the current ICS switches from the left side branch to the right side branch of the
current switch logic stage. Consequently, the potential at node A goes up, which turns transistor QU on
strongly. This allows a large charging current to flow and causes OUT to rise from “low” to “high”. Before
QU switches on, the potential at node B is “low,” because ICS does not flow on the right side branch initially
so the potential at node B is the same as that at OUT. After QU switches on, the portion of the QU charging
current corresponding to ICS flows into Q2 . As a result, the potential at node B drops, causing transistor
QD to turn off. Once QD switches off, the major part of the charging current, IPULL-UP, flows into OUT,
so that the potential at OUT rises quickly. When the potential at OUT reaches the “high” level, QU turns
off gradually. At the same time, the potential at node B reaches the “low” level again, gradually turning
QD on. Accordingly, when the potential at OUT reaches the “high” level, VOH, both QU and QD turn on
slightly, and a small steady-state current, ISS(H), flows.

Pull-down action is illustrated in Fig. 3.5. In response to the input “high” signal, transistor Q1 is turned
on and transistor Q2 is turned off, so that the current ICS flows on the left side branch of the current
switch logic stage. As a result, the potential at node A drops, causing QU to turn off initially. As Q2 turns
off, the potential at node B goes up to turn QD on strongly. Consequently, a large discharge current,

FIGURE 3.3 LS-APD-ECL circuit.
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IPULL-DOWN, flows through QD into VREG, resulting in fast pull-down of the output. As the potential at
OUT approaches the “low” level, the potential at node B approaches the “low” level, causing QD to
gradually turn off again. At the same time, QU turns on gradually. When OUT reaches the “low” level,
VOL, both QU and QD turn on slightly, and a small steady-state current, ISS(L), flows. 

In this way, the circuit self-terminates the dynamic pull-down action by sensing the output level. By
comparing the output voltage and the pull-down current waveforms in Fig. 3.3 with those in Fig. 3.2, it
is clear that the LS-APD-ECL circuit consumes less dc current than the AC-APD-ECL circuit and that
the LS-APD-ECL circuit offers larger dynamic pull-down current whose level is self-adjusted in accor-
dance with loading conditions. Therefore, proper and balanced output waveforms can be observed in
the LS-APD-ECL circuit under a wide range of loading conditions.

FIGURE 3.4 Pull-up action of LS-APD-ECL circuit.

FIGURE 3.5 Pull-down action of LS-APD-ECL circuit.
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The collector-emitter voltage of transistor Q2, VCE.Q2, is given by

VCE.Q2 = (VOL − αVsig) − (VBB − VBE)

= VBE − (0.5 + α) − Vsig (3.1)

where Vsig is the logic voltage swing and α is a constant between −1 and 1. As shown in Fig. 3.4, α is 0
when the output stays and increases when the output is rising. The maximum α is dependent on the
output rise time; the slower, the larger. SPICE simulation predicts the maximum α is between 0.2 and
0.4 when ICS = 70 µA and CL ranged from 0.1 to 1.25 pF and temperature ranges from 0°C to 80°C. When
Vsig is 0.6 V, VCE.Q2 may become as low as 0.36 V for an instance in switching, but never stays in the
saturation region. 

Only inverting structures are possible in the LS-APD-ECL circuit. If the input is fed to the base of Q2
to construct noninverting structures, VCE.Q2 is given by

VCE.Q2 = (VOL − αVsig) − (VOH − VBE)

= VBE − (1 + α) − Vsig (3.2)

In order to keep Q2 out of the saturation region, Vsig should be lower than 0.45 V, which is impractical. 
Because transistor QD self-terminates at the point where the output reaches VBE above VREG, VOL becomes

a direct function of VREG. On the other hand, as VREG goes lower, both QU and QD turn on more deeply,
resulting in larger steady-state current. Simulated VOH, VOL, ISS(H), and ISS(L) dependence on VREG are shown
in Fig. 3.6. In order to keep enough noise margins between VOL and the circuit threshold, VBB, VREG

should be lower than about −2.2 V. At the same time, in order to restrict ISS(L) to an acceptably low level,
VREG should be higher than about −2.4 V. Accordingly, VREG needs to be controlled very tightly around
−2.3 V within the small error indicated in the figure. 

A VREG voltage regulator circuit for the LS-APD-ECL circuit is presented in Fig. 3.7. An automated
bias control (ABC) circuit [7] is employed to automatically adjust ISS(L) constantly even under process
deviation, power supply voltage change, and temperature change. A replica circuit of the LS-APD-ECL
circuit generates a reference VREG level, VR, when ISS(L) is one-eighth of the current ICS. A monitored VREG

FIGURE 3.6 Output voltage and crossover current vs. VREG in LS-APD-ECL circuit.
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level and VR are compared by an operational amplifier whose output controls VREG. When the monitored
VREG level is lower than the target level VR, the output potential of the op-amp rises, which increases the
current in the VREG voltage regulator and pushes the potential of VREG up. On the contrary, when the
monitored VREG level is higher than the target level VR, the potential of VREG is controlled to go down.
This way, the op-amp adjusts the VREG level such that the LS-APD-ECL circuits which are hooked up to
the VREG lines have the same ISS(L) as that in the replica circuit. The stability of the negative feedback loop
in the VREG regulator can be secured by a common method of compensation, narrow banding. A phase
margin of 90 degrees is preserved when an external capacitor of 0.1 µF is put on the VREG lines.

The voltage regulator can be implemented in an I/O slot of a chip from which VREG lines are provided
to internal cells. Parasitic resistance along the VREG lines, however, produces a significant voltage drop
when large dynamic pull-down current from all the LS-APD-ECL cells is concentrated in one regulator.
Therefore, a local current-source is provided in each LS-APD-ECL gate to distribute the pull-down current.
Parasitic capacitance between the two lines, VREGC and VREGB, helps improve the transient response of the
local current-source.

In Fig. 3.8 are depicted simulated dependence of the output voltages, VOH and VOL; the steady-state
currents, ISS(H) and ISS(L); and the circuit delays, TpLH and TpHL, on power supply voltage, temperature,
and the number of the LS-APD-ECL gates. It is assumed in the simulation study that 8 mm by 8 mm
chip area is covered by 16 by 16 mesh layout for VREGC lines of 2 µm width. The equivalent resistance
between two far ends of the meshed VREG lines is estimated to be 20 Ω. Even at the tip of the meshed
VREG lines, the tracking error can be controlled within a range of 30 mV, which is small enough to be
within the allowed error range. Since the VREG voltage regulator circuit controls the output voltage swing
and the bias current of QU and QD constant, variation of the circuit delay can be kept very small even
under the large changes in circuit conditions. 

Simulated transient response of the LS-APD-ECL circuit with the VREG voltage regulator circuit is
depicted in Fig. 3.9 when 1100 LS-APD-ECL gates are hooked up to the VREG voltage regulator, and 100
gates are switching simultaneously. Small bounce noise is observed at the VREG lines, which, however,
does not affect VOL nor VOH of staying gates, nor does it degrade the switching speed. The broken line
in the figure is the output waveform of a gate placed near the VREG voltage regulator, while the solid line
is for a gate placed in the far end of the VREG lines. Very little difference can be observed between them. 

Layout of inverter gates with the conventional ECL and the LS-APD-ECL circuits are depicted in
Fig. 3.10. They both are implemented on an ECL gate array [8]. The VREG voltage regulator is implemented
in an I/O slot from which VREG lines are provided to internal cells. In a 9.6-mm by 9.5-mm chip, 24 types
of gate chains are implemented for three loading conditions (fanout one plus metal interconnection of

FIGURE 3.7 VREG voltage regulator circuit.
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0.02, 2.5, and 6.4 mm length) and three power options, for both the conventional ECL and the LS-APD-
ECL circuits. The 2.5-mm metal interconnection has about 0.55 pF capacitance. The test sites are fabri-
cated using a 1.2-µm, 17-GHz, double-poly, self-aligned bipolar technology. Twelve wafers are fabricated
in every process corner. Totally around 60,000 measurement points are obtained from 200 working
samples. The logic voltage swing is 650 mV, and the power supply voltage is −5.2 V. 

Measured and simulated power-delay characteristics for the conventional ECL and the LS-APD-ECL
circuits are shown in Fig. 3.11. The circles represent measurement data from several process splits. The
solid lines represent the SPICE simulation results under a nominal condition. Good agreement is seen
between the measurements and simulations.

FIGURE 3.8 Dependence of the output voltage, VOH and VOL, the steady-state current, ISS(H) and ISS(L), the circuit
delay, and TpLH and TpHL on power supply voltage, temperature, and the number of the LS-APD-ECL gates. 

FIGURE 3.9 Transient response of LS-APD-ECL circuits when 100 out of 1100 gates are switching simultaneously.
VREG is provided by VREG voltage regulator through meshed VREG lines whose parasitic resistance is 20 Ω. As a reference,
output waveform when VREG = −2.3 V is ideally supplied in broken lines (Vout ′). 
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The circuit under FO = 1 plus CL = 0.55 pF (2.5 mm metal interconnection) loading condition, which
is often seen in a typical chip design, offers 300 ps delay at a power consumption of 1 mW/gate. This is
a 4.4 times speed improvement over the conventional ECL circuit. Furthermore, the circuit consumes
only 0.25 mW for a gate speed of 700 ps/gate, which is a 1/7.8 power reduction compared with the
conventional ECL circuit. A better speed improvement and power reduction can be achieved under
heavier loading conditions. For example, under FO = 1 plus CL = 1.41 pF (6.4 mm metal interconnection)
loading condition, the speed improvement over the conventional ECL circuit is about 5.5 times at
1 mW/gate, and the power reduction is about 1/11 times at 1.2 ns/gate. Even with the lightest loading of
FO = 1 plus CL = 0.01 pF (0.02 mm metal interconnection), the LS-APD-ECL circuit outperforms the
conventional ECL circuit. The speed improvement is about 2.2 times at 1 mW/gate, and the power
reduction is about 1/2.8 times at 120 ps/gate. 

In Fig. 3.12, measured and simulated delay versus capacitive loading for the conventional ECL, the
AC-APD-ECL, and the LS-APD-ECL circuits are depicted. The AC-APD-ECL circuit is optimized for
0.5 pF loading, and therefore, for loadings heavier than 1.5 pF, the pull-down transition time degrades

FIGURE 3.10 Layout of inverter gate with ECL and LS-APD-ECL circuits.

FIGURE 3.11 Power-delay characteristics for conventional ECL and LS-APD-ECL circuits.
© 2002 by CRC Press LLC



rapidly. On the contrary, the LS-APD-ECL circuit offers superior load driving capability under a wide
range of loading conditions. The LS-APD-ECL circuit also provides balanced pull-up and pull-down
switching speed to minimize signal skews.

The measurements of ISS(L) versus ICS, as plotted in Fig. 3.13, demonstrate that even under process
deviation and parasitic resistance along the VREG lines, the VREG voltage generator keeps the steady-state
current of the LS-APD-ECL circuits below one-fourth of ICS.

The LS-APD-ECL circuit brings the minimum operating frequency at which ECL consumes less power
than CMOS to within a range of frequencies commonly encountered in leading edge designs. Simulated
power consumption versus operating frequency of sub-micron CMOS, the conventional ECL, and the
LS-APD-ECL circuits are shown in Fig. 3.14. The probability of gate switching used in the simulation is
0.3, which is typically observed in VLSI circuits. The 1.2-µm LS-APD-ECL under 5 V consumes less power

FIGURE 3.12 Delay vs. capacitive loading for ECL (1.35 mW/gate), AC-APD-ECL (1.56 mW/gate), and LS-APD-
ECL (1.25 mW/gate) circuits. AC-APD-ECL circuit is optimized for a 0.5-pF loading. Error bar indicates three times
standard deviation.

FIGURE 3.13 Crossover current vs. ICS in LS-APD-ECL circuit.
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than 0.5 µm CMOS under 3.3 V at an operating frequency higher than 780 MHz. In case of applications
with higher probability of gate switching or with an advanced bipolar technology, the crossing frequency
can further be reduced.

3.2 Low-Voltage ECL Circuits

Demand for low-power dissipation has motivated scaling of a supply voltage of digital circuits in many
electronic systems. Reducing the supply voltage of ECL circuits is becoming important not only to reduce
the power dissipation but also to have ECL and CMOS circuits work and interface together, under a
single power supply on a board or on a chip. 

Gate stacking in ECL is effective in reducing the power dissipation because complex logic can be
implemented in a single gate with fewer current sources. This, however, brings difficulty in reducing the
supply voltage. Various design techniques for low-voltage ECL have been reported before [9,10], but
none of them allows a use of stacked differential pairs in three levels. 

In conventional ECL circuits, input signals to the stacked differential pairs are shifted down by the
emitter-follower circuit to keep all the bipolar transistors out of the saturation region. VIH of the differ-
ential pairs in the nth level from the top is −n · VBE, where VBE is the base-emitter voltage of a bipolar
transistor in the forward-active region. As illustrated in Fig. 3.15, the minimum operating power supply
voltage (minimum |VEE|) of a three-level series gating ECL circuit is 4VBE + VCS, where VCS is the voltage
drop across a tail current source. This implies that scaling VBE is the most effective means of reducing
the minimum |VEE|, but, in practice, VBE does not scale linearly with technology and has remained
constant. For VBE = 0.9 V and VCS = 0.4 V, the minimum |VEE| is 4.0 V. On the other hand, the collector-
emitter voltage (VCE) of the bipolar transistors is 2VBE − VS ( =1.5 V) in the top level and VBE ( = 0.9 V)
in the second and the third levels, where VS is the signal voltage swing. VCE can be reduced to 0.4 V
without having a transistor enter the saturation region. This VCE voltage headroom comes from the
emitter follower circuit, shifting the signal levels down by VBE. 

Figure 3.16 illustrates a voltage level of signals in three-level series gating in a low-voltage ECL (LV-ECL)
circuit [11]. In the LV-ECL circuit, the input signals to the top and the second levels are shifted up by
current mode logic (CML) gates, and the input signals to the third level are directly provided. By adjusting
the amount of the level shifting for the second level by a resistor RS, VCE of the bipolar transistors is set to

FIGURE 3.14 Power consumption versus operating frequency of CMOS, ECL, and LS-APD-ECL circuits. The
broken lines represent range of toggle frequencies of flip-flop that cannot be reached by the technology.
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VBE − VS (=0.6 V) in the top level and 0.5 VBE (=0.45 V) in the second and the third levels. The minimum
|VEE| is 2VBE + VCS , the same as that for a single-level ECL gate. By setting VCS = 0.2 V, the minimum |VEE|
of 2 V is achieved. In reality, VCE may be as low as 0.3 V in switching, but never stays in heavy saturation
region.

A schematic of a 4:1 MUX gate and a toggle flip-flop implemented in the LV-ECL circuit is shown in
Figs. 3.17 and 3.18, respectively. Since the logic stage in the LV-ECL remains the same as that in the
conventional ECL, all ECL circuits can be modified as the LV-ECL circuits. 

Table 3.1 compares simulated power dissipation, circuit delay, and element count of the 4:1 MUX gate
in LV-ECL with those in conventional ECL. Compared to the conventional ECL, speed and area penalties
are very small in the LV-ECL, because level shifting is not required for the third-level inputs, the critical
path in the conventional ECL. This compensates for the delay increase in the CML level-shifter. 

A number of test circuits, such as a 4:1 multiplexer, a 1:4 demultiplexer, and a 16-bit ripple carry
adder, are fabricated in a 1.2 µm, 15 GHz bipolar technology to demonstrate the feasibility of the LV-ECL.
As illustrated in Figs. 3.19 and 3.20, widely used architecture is used in the multiplexer and the demul-
tiplexer. The test circuits are implemented on an existing ECL gate array to demonstrate that the LV-ECL
circuit improves performance without design optimization of circuit or layout. Power dissipation, including

FIGURE 3.15 Three-level series gating in conventional ECL circuit.

FIGURE 3.16 Three-level series gating in low-voltage ECL (LV-ECL) circuit.
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I/O Pads, is 60 mW for the multiplexer and 80 mW for the demultiplexer, both from −2 V power supply.
The multiplexer occupies 0.132 mm2, and the demultiplexer occupies 0.163 mm2, both without I/O Pads.

Measured eye diagrams at the outputs are also presented in Figs. 3.19 and 3.20. Figure 3.21 shows the
error-free maximum operating speed of 1.65 Gb/s for the multiplexer and 1.80 Gb/s for the demultiplexer.
The LV-ECL circuit tolerates ±5% variations in supply voltage with no significant degradation in speed.
In these tests, a pseudo-random bit sequence of length 223 − 1 is applied at the input. VOH shows 1.4 mV/°C
temperature dependence, the same as that in the conventional ECL. VOL exhibits −0.7 mV/°C over a range
of 0–75°C, and 3 mV/°C for the range of 75–125°C. As a consequence, the output voltage swing is 0.17 V

TABLE 3.1 4:1 MUX Gate Performance Comparison

Min. VEE
(V)

Power 
(mW)

Delay 
(ps)

PD 
(pJ)

Element 
Tran.

Count 
Res.

Conventional ECL
3-level series gating −4.0 5.6 440 2.46 29 9
2-level series gating −3.1 9.3 440 4.14 45 21

LV-ECL −2.0 3.2 460 1.47 26 21

FIGURE 3.17 4:1 MUX gate in LV-ECL.

FIGURE 3.18 Toggle flip-flop in LV-ECL.
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at 0°C, 0.28 V at 50°C, and 0.24 V at 125°C. Bipolar transistors in the third level enter the soft saturation
region above 75°C. 

If minimum |VEE| is 2.2 V, VCS can be 0.4 V and a bipolar current source circuit can be used instead
of the resistor to provide much higher immunity to variations in supply voltage and temperature. SPICE
simulation indicates tolerance to a ±10% variations in supply voltage can be obtained and the output
voltage swing is 0.3 V over the range of 0–125°C.

FIGURE 3.19 4:1 multiplexer block diagram and output eye diagram.

FIGURE 3.20 1:4 demultiplexer block diagram and output eye diagram.
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A 8:1 multiplexer and a 1:8 demultiplexer are designed in the same manner. In SPICE simulation, the
power dissipation of the 8:1 multiplexer is 84 mW and that of the 1:8 demultiplexer is 136 mW, both
from −2 V power supply at the same maximum operating speed. Figure 3.22 shows that the LV-ECL circuit
exhibits the lowest reported power-delay products in both 4-bit and 8-bit multiplexers and demultiplexers.
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4.1 Introduction

When you buy a computer, you normally decide what to buy based on what the computer will do
(performance) and on the cost of the computer (price). Price-performance is the normal trade-off in
buying any computer.

Performance of a computer system is primarily determined by the speed of the processor. But, it may
also depend on other features, such as the size of the memory, the size of the disk drives, speed of the
graphics adapter, etc. You normally have a limited choice of speeds, sizes, and features that are available
within an approximate price budget.

A personal computer (PC) of today is much more powerful than supercomputers of several years ago.
The $5 million CRAY-1 supercomputer of 1976 [1,2] was rated at about 100–250 million floating-point
operations per second (MFLOPS) in performance. A $1,400 PC in 2001 [3] has a performance of about
200–1000 MFLOPS. The price-performance improvements have been due to better computer manufac-
turing technologies and the large volume production of PCs, in the order of 100 million PCs compared
with only 85 CRAY-1 computers produced.

The incredible improvement in performance of computers over time has meant that the price-
performance trade-off normally improves dramatically even in a short period. The improvement trends
have been predicted since 1965 by Moore’s Law, which originally applied to the number of transistors
on an integrated circuit doubling every 18 months [4]. The ability to predict the future price-performance
of a computer system is often more important than knowing the current price of a computer, unless you
need to buy your computer today. Therefore, the main thrust of this chapter is looking at historical price
and performance trends to help predict the future.

Technologies other than processor speed have also been involved in the improving price-performance
of computer systems. The capacity and cost of memory (currently using dynamic random access memory,
i.e., DRAM), and the capacity and cost of magnetic disk drives are also critical. This chapter will concentrate
on the price and performance of processors, memory, and storage.

John C. McCallum
National University of Singapore
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The changing price-performance is seen in different ways: improved performance at the same price;
same performance at a lower price; or, both improved performance and improved price. A ten-fold
improvement in price-performance often gives a qualitative change that results in a different product
category. For example, computers can be categorized in different ways, such as those given in Table 4.1.

The price-performance of software is not discussed in this chapter. Software creation is mainly a labor-
intensive activity. Therefore, the cost of creating software has been related to the cost of manpower, which
is related to the rate of inflation. Some companies have outsourced software development to countries
with lower labor rates, such as India. The second main factor in the cost of software is the number of
people who buy a package. More sales result in lower costs for PC versions of software compared to
software used on less common (bigger) computers. 

Price

The price and performance of a computer system appear to be easily definable items. But, neither price
nor performance is well defined. Price is often adjusted historically for inflation. Price is often quoted in
a specific currency. In global markets, changing currencies can affect pricing of components and products.
In this chapter, the prices are given in United States dollars ($) and are not adjusted for inflation.

Pricing is dependant on sales factors, such as discounts, marketing agreements, customer categories,
etc. The size of the market for a product is also important for costs. Quantities affect the price based on
writing off of development costs over the number of units, cost of setting up production lines, setting
up maintenance and training operations, etc. Generally, computers or general technologies that are
produced in large quantities are cheaper at the same performance level than less popular items.

A separate but important pricing issue is the difference between the entry price and unit pricing. For
example, consider big disk drives versus floppy disk drives. The low entry price of a floppy disk drive opened
a new market for low performance, high unit price (dollars per megabyte, or $/MB) floppy drives. Big high-
speed hard disk drives were more expensive to purchase, but were much lower in unit costs of $/MB.

Computer systems are a collection of component parts, such as the CPU, memory, storage, power supply,
etc. The cost of a computer system depends on the choice of the components, which change with time [5].

Performance

The performance of computer technology depends on what you want the computer to do. Computers
that are used for text processing do not need floating-point operations. Scientific computing needs heavy
floating-point computation and typically high memory bandwidth. 

Standard benchmark programs often exhibit a 2:1 performance range on a single computer. One
comparison of the execution times of different benchmarks run on two specific computers gave perfor-
mance ratios ranging from 0.54 to 17295 [6]. Performance is also dependent on the quality of the compiler
or interpreter, the algorithms used, and the actual source language programs. The sieve of Erasothenes

TABLE 4.1 Selected Categories of Computers

Start Year Price Level $ Computer Category Typical Usage

1990 1.0E+00 Disposable computer Smart cards, greeting card music generator, telephone SIMs
1975 1.0E+01 Embedded processor Disk drive controller, automobile engine controller
1990 1.0E+02 PDA Contact list, schedule, notes, calculator
1980 1.0E+03 Personal computer Word processing, spreadsheets, email, web browsing, games
1975 1.0E+03 Workstation Computer aided design and engineering, animation rendering
1965 1.0E+03 Minicomputer Dedicated, or general computing for one user
1985 1.0E+04 Workgroup server General computing support for a small group of people
1955 1.0E+05 Departmental server Computing support for a large group (about 50–500 people)
1970 1.0E+06 Enterprise server General computing support, interactive and network services
1960 1.0E+06 Mainframe Corporate databases, transaction processing
1970 1.0E+07 Supercomputer Nuclear weapons simulation, global challenge problems
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benchmark took between 15.7 and 5115 s to run on various Z80 microprocessor systems [7]. Performance
is usually based on processor performance. But, performance may be based on other features: graphics
performance, sound quality, physical size, power consumption, main memory size, disk drive speed, or
system configuration capability. 

Speed of execution on a standard benchmark application is important for a CPU. The size in megabytes
is the main measure for disk drives, although access time and data throughput are often important factors
for disk drives as well. Also, nonfunctional features are often important performance features for practical
computer systems. Typical nonfunctional features are: reliability, compatibility, scalability, and flexibility.
These features are not as easy to measure as speed or size. 

Generally, there is an upper limit to performance of a technology at any point in time: the fastest
processor available, the biggest disk drive, etc. Exceeding this limit requires either the development of
new technology, or parallel operation (multiple CPUs, multiple disk drives, etc.). Other constraints, such
as physical size or operating power, may place an absolute upper threshold on performance. In practice,
the main constraint is usually the price.

The performance of systems may be determined by marketing decisions of vendors. Rather than
produce a variety of systems, a vendor may make one fast system, and slow the clock speed to produce
a range of slower systems. Recently a computer vendor shipped a computer system with performance on
demand—you pay to enable existing processors to be used. Thus, it may not always be possible to use
the performance that is possible without paying an additional price.

Applications

Computers in themselves are of little interest to most people. The importance is what the computer can
do—the applications. A “killer app” is a computer program that causes a computer to become popular.
VisiCalc, the first electronic spreadsheet program, was a killer app for the Apple II computer. Over the
years there have been a number of important applications that have driven the sales of computers. Selected
applications are listed in Table 4.2 [8–22]. 

TABLE 4.2 Selected Applications Driving Computer Usage and Sales

Year Application Category Typical Computer Program Ref.

1889 Census tabulation Hollerith E. T. S. — [8]
1943 Scientific calculations Harvard Mark 1 — [9]
1943 Cryptography Collosus — [10]
1945 Ballistic calculations ENIAC — [11]
1950 Census analysis UNIVAC 1 — [12]
1951 Real time control Whirlwind — [13]
1955 Payroll IBM 650 — [14]
1960 Data processing UNIVAC II COBOL [15]
1961 Mass billing IBM 1401 — [16]
1964 Large scale scientific computing CDC 6600 — [17]
1965 Laboratory equipment control PDP-8 — [18]
1968 Timeshared interactive computing PDP-10 TOPS-10 [19]
1970 Email PDP-10 mail —
1971 Text editing PDP-11 UNIX ed, roff [20]
1974 Data base management systems IBM 360 IMS [21]
1975 Video games Commodore PET — —
1980 Word processing Z-80 with CP/M WordStar —
1980 Spreadsheet Apple-II VisiCalc —
1985 CAD/CAM Apollo workstation — —
1986 Desktop publishing Macintosh PageMaker —
1994 WWW browser PC plus servers Mosaic [22]
1997 E-commerce PC plus servers Netscape —
1999 Realistic rendered 3D games PC  Quake —
2000 Video capture and editing iMAC iMovie —
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Applications normally change with time, as customers demand new features. Adding new features
expands the size and usually slows the speed of the application. But, since hardware performance normally
improves much more than the loss of speed due to new features, the overall application performance
generally improves with time.

The characteristics of the main applications determine the important performance features for the
supporting hardware technology. General-purpose computers must be capable of performing well on a
variety of applications. Embedded systems may run only a single application. Business systems may require
fast storage devices for transaction processing. Generally, however, fast speed, low cost, big memory and
storage, and small physical size tend to be important for most applications.

4.2 Computer and Integrated Circuit Technology

Computers have used a variety of technologies: mechanics, electrical relays, vacuum tubes, electrostatics,
transistors, integrated circuits, magnetic recording, and lasers. Changing technologies have allowed
improved price-performance, resulting in faster speed, larger memories, smaller physical size, and lower
cost. The main technologies where price-performance has increased dramatically are in processor per-
formance, memory, and storage size.

The driver of current price-performance improvements is complementary metal oxide semiconductor
(CMOS) integrated circuit production technology [23]. An integrated circuit starts as a $300 slice of
poly-silicon crystal. After processing, a 300 mm wafer is worth about $5000, but may contain several
hundred circuits, depending on the size of the circuit. The price of a specific circuit is dependant mainly
on the size of the circuit. The size and complexity of the circuit are the main factors determining the
yield of the circuit. Many circuits do not function properly due to impurities in the wafer or due to
defects in the manufacturing process.

CMOS circuits make up the majority of all circuits for processors. Some special processes are required
for producing specific types of circuits, such as memory chips, analog circuits, opto-electronic components,
and ultra-high speed circuits. However, CMOS has become the main production technology over the last
20 years [24]. CMOS technology has improved significantly with time and will continue to improve over
the next several years with some effort [25,26]. Wafer sizes have grown, and the sizes of features (line widths)
on the circuit have been reduced. The speed and cost of CMOS circuits improve with smaller line sizes.
As the feature size decreases by the scaling factor α, the gate area and chip size decrease by α 2, the speed
increases (the gate delay decreases) by a factor of α, and the power decreases by a factor of α [23]. These scaling
rules have been used for some time. However, with the small features sizes used now, other effects also limit
the speed. Table 4.3 shows selected features about the improvement of integrated circuits over time [25–36].

TABLE 4.3 Integrated Circuit Process Improvement with Time

Year Process Chip Size (mm) Features (microns) Wafer (mm) Sample IC Clock Metal Layers

1958 Planar — 100 — First IC — —
1961 — 1.5 × 1.5 25 25 First silicon IC — —
1966 — 1.5 × 1.5 12 25 SSI — —
1971 pMOS 2.5 × 2.5 10 50 i4004 .74 MHz 1
1975 pMOS 5 × 5 8 75 i8080 2 MHz 1
1978 nMOS 5 × 5 5 75 Z-80 4 MHz 1
1982 HMOS 9 × 9 3 100 i8088 8 MHz 1
1985 HMOS 12 × 12 1.50 125 i286 10 MHz 2
1990 HCMOS 12 × 12 0.80 150 MC68040 25 MHz 3
1995 CMOS 12 × 12 0.50 150 Pentium 100 MHz 4
2000 CMOS 15 × 15 0.25 200 Pentium-III 1 GHz 6
2001 CMOS 15 × 15 0.18 300 Pentium-4 1.5 GHz 7
2005 CMOS 22 × 22 0.10 300 — 4 GHz 8
2010 CMOS 25 × 25 0.06 300 — 10 GHz 9
2015 CMOS 28 × 28 0.03 450 — 25 GHz 10
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The improvements in line widths, chip sizes, and speed should continue for several years. The Inter-
national Roadmap for Semiconductors [36] outlines the expected improvements in technology. Samsung
has already demonstrated a 4-GB DRAM chip [37]. Current fast production CMOS integrated circuit
processes use line widths of 0.18 µm and are moving to 0.13 µm [38].

4.3 Processors

Early processors were based on mechanical devices. Later electro-mechanical relays were used to build
computing devices [9]. Electronic digital computers were developed using vacuum tubes in the mid 1940s
[10,11]. Transistors took over in early 1960s because of higher reliability, smaller size, and lower power
consumption [17]. In the late 1960s, standard integrated circuits started to become available and were
used in place of discrete transistors [19]. Integrated circuits allowed a high density of transistors, resulting
in faster computers with lower price, lower power consumption, and higher reliability due to improved
interconnections. The increasing complexity of integrated circuits, as outlined by Moore’s Law, allowed
building ever increasingly complex microprocessors since the early 1970s [29].

Processors have become categorized by application and particularly by cost and speed. In the 1970s,
the main categories were: microcomputers, minicomputers, mainframes, and supercomputers. About
1990, the fastest microprocessors started to overtake the fastest processors in speed. This has meant that
new categories are often used, as almost all computer systems are now microprocessors or collections of
microprocessors. 

The performance of processors is based mainly on the clock speed and the internal architecture. The
clock speed depends primarily on the integrated circuit process technology. Internal pipelining [39],
superscalar operation [40], and multiprocessor operation [41] are the main architectural improvements.
RISC processors simplified the internal processor structure to allow faster clock operation [42,43].
Internal code translation has allowed complex instruction sets to execute as sets of micro-operations with
RISC characteristics. The goal of architectural improvements has been to improve performance, measured
by the execution time of specific programs. The execution time equals the instruction count times the
number of clock cycles per instruction (CPI) divided by the clock speed. RISC processors increased the
instruction count, but improved the CPI, and allowed building simpler processors with faster clock
speeds. Fast processors became much faster than the memory speed. Cache memory is used to help
match the slower main memory with the faster CPU speed. Increased processor performance comes with
increased complexity, which is seen as increased number of transistors on the processor chip. In current
processor chips, the on-chip cache memory is sometimes larger than the processor core. Future processor
chips are likely to have multiple processor cores and share large on-chip caches.

Processors have been designed to operate on various word sizes. Some early computers worked with
decimal numbers or variable-sized operands. Most computers used different numbers of binary digits;
4, 8, 12, 18, and 36 bits were used in some computers. Most current computers use either 32 bits or 64 bits
word-lengths. The trend is toward 64 bits, to allow a larger addressing range. Comparing the performance
of different word-length computers may be difficult. Smaller word-lengths allow faster operation in a
cheap processor with a small number of transistors and minimal internal wiring. But, processors with
more address bits allow building larger and more complex programs, and allow easy access to large
amounts of data. A common pitfall of designing general purpose computers has been to provide too
small an address space [43]. Generally, word size and addressing space of processors have been increasing
with time, driven roughly by the increasing complexity of integrated circuits.

Early microprocessors had small 4 or 8 bit word-lengths (see Table 4.4). The size of the early integrated
circuits limited the number of transistors and thus word-length. The very cheapest current micropro-
cessors use small word-lengths to minimize costs. The most powerful current general purpose micro-
processors have 64 bit word-lengths, although the mass market PCs still use 32 bit processors. Table 4.4
shows some of the features of selected Intel microprocessors [32,34,35,44,45].

The fastest processors are now microprocessors. The latest Pentium 4 processor (in March 2001) has a
clock speed of 1.5 GHz. The distance that light travels in one clock cycle at 1.5 GHz (667 ps) is about 20 cm.
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Electric signals are slower than light. This means that the dimensions that a signal must travel within a clock
cycle are very small, and almost certainly must be within a single integrated circuit package to achieve results
within a single cycle.

Computer systems, which exceed the processing performance of the fastest microprocessor, must use
multiple processors in parallel. Multiple processors on a single chip are starting to appear [46]. PCs with
multiple processors are becoming more frequent, and many operating systems support multiprocessor
operation. The largest computers [47] are collections, or clusters of processors.

Measuring Processor Performance

No single number can accurately represent the performance of a processor. But, there is a need to have
such a number for general comparisons [48]. 

Processor performance was originally measured by the time required to add two numbers [49,50]. In
1966, Knight [51] built a more complex model to compare 225 computers starting with the Harvard
Mark I. He generated performance measures for scientific applications and for commercial applications
and calculated price-performance information. His plots showed the improving price-performance with
time. Other early approaches to measuring performance included benchmarks, synthetic programs,
simulation, and the use of hardware monitors [52].

Standard benchmark programs started to become popular for estimating performance with the cre-
ation of the Whetstone benchmark in 1976 [53,54]. Other benchmark programs were widely used, such
as Dhrystone for integer performance [55] and the sieve of Eratosthenes [7] for simple microprocessor
performance.

Computerworld reported computer system performance and prices for many years [56–69]. The com-
pany’s tables reported performances compared systems with standard computers, such as the IBM 360/50
[56,57] or IBM 370/158-3 [58–66]. The IBM 370/158-3 was roughly a 1 million instructions per second
(MIPS) machine. MIPS and MFLOPS were widely used as performance measures. But, MIPS and MFLOPS
are not well regarded due to the differences in what one instruction can perform on different systems.
Even the conversion between thousands of operations per second (KOPS) and MIPS is fuzzy [70]. 

The Standard Performance Evaluation Corporation was set up as a nonprofit consortium to develop good
benchmarks for computing applications [71]. The initial CPU performance benchmark, the SPECmark89,
used the VAX 11/780 performance as the base rating of 1 SPECmark. The benchmark consisted of several
integer and floating point oriented application program sections, selected to represent typical CPU usage.
The SPECmark was a geometric mean of the ratios of execution time taken on the target machine compared
with the base machine (VAX 11/780). This was an excellent quality benchmark for measuring CPU

TABLE 4.4 Features of Selected Intel Microprocessors

Year Processor Transistors
Die Size 

(sq. mm) Cache on Chip Bits
Line Width 
(microns)

Clock 
(MHz)

Perf. 
(MIPS)

1971 i4004 2.30E+03 12 0 4 10 0.108 1.5E−03
1972 i8008 3.50E+03 — 0 8 10 0.2 3.0E−03
1975 i8080A 6.00E+03 14 0 8 6 2 2.8E−02
1978 i8086 2.90E+04 — 0 16 3 10 5.7E−01
1982 i286 1.34E+05 — 0 16 1.50 12 1.3E+00
1985 i386DX 2.75E+05 — 0 32 1.00 16 2.2E+00
1989 i486DX 1.20E+06 — 8K 32 1.00 25 8.7E+00
1993 Pentium 3.10E+06 296 8KI/8KD 32 0.80 66 6.4E+01
1995 Pentium Pro 5.50E+06 197 8KI/8KD 32 0.35 200 3.2E+02
1997 Pentium II 7.50E+06 203 16KI/16KD 32 0.35 300 4.5E+02
1999 Pentium III 9.50E+06 125 16KI/16KD 32 0.25 500 7.1E+02
2000 Pentium IIIE 2.80E+07 106 16KI/16KD+256K 32 0.18 933 1.7E+03
2000 Pentium 4 4.20E+07 217 12KI/8KD+256K 32 0.18 1500 2.5E+03
2001 Itanium 2.50E+07 — 16KI/16KD+96K+4M 64 0.18 800 2.6E+03
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performance. Extensive lists of SPECmark89 results were reported [72]. Over time, people optimized their
compilers to get uncharacteristically good performance from some parts of the benchmark. The SPEC
consortium then created a new pair of benchmarks, SPECint92 and SPECfp92, using new application
program code. The cpu92 benchmarks measured typical integer performance, typical of system program-
ming and office uses of computers, and floating point performance typical of scientific computing. These
benchmarks also used the VAX 11/780 = 1 as the base machine. As well, base and rate versions of the
cpu92 benchmarks were defined. The base measures required using a single setting for the compilers for
running the benchmarks, rather than optimizing the compiler for each component program. The rate
benchmarks measured the throughput of the computer by running multiple copies of the programs and
measuring the completion time. SPECrate is a good measure of performance for a multiprocessor system.
Extensive results are available for SPECint92, SPECfp92, SPECint_base92, SPECfp_base92,
SPECint_rate92, SPECfp_rate92, SPECint_rate_base92, and SPECfp_rate_base92 [73].

SPEC released new versions of the CPU benchmarks in 1995 and in 2000 [71]. The new benchmark
versions were created for two main reasons: to ensure that compiler optimizations for the older versions
did not mask machine performance and to use larger programs that would exercise the cache memory
hierarchy better. SPECint95 and SPECfp95 use the Sun SPARCstation 10/40 as the base machine instead of
the VAX 11/780. Extensive results have been collected for the SPECcpu95 benchmarks [74]. The SPECcpu2000
benchmarks are relative to a 300-MHz Sun Ultra5_10, which is rated as 100 [71]. SPECcpu2000 results,
which include base and peak versions of cint and cfp with the rate results, are listed at the SPEC Web site
[75]. The difference in base machines among the SPECcpu benchmarks makes direct comparisons of
performance difficult. However, the SPECcpu benchmarks are the best measures available for general
processor performance.

Many other benchmarks exist and are used for comparing performance: SPEC has many other
benchmarks [76]; LINPAC [77] is used for comparing very large computers; STREAM [79] compares
memory hierarchy performance; the Transaction Processing Council [80] has created several bench-
marks for commercial applications; etc. The main advice to people buying computers is to use the
actual application programs that they will be running to evaluate the performance of computer
systems. But, some standard number to describe system performance is always a good starting point.
Table 4.5 lists the performance and price for several selected computer systems over time. Note that
the performance ratings should only be used as a rough indicator, and should not be used to directly
compare specific machines. Similarly, the prices may correspond to very different configurations of
machines.

The performance estimates have been normalized to a single comparison number for each computer.
The number is a rough MIPS estimate, where a VAX 11/780 is considered to be a 1-MIPS processor.
Estimates of prices were available for over 300 systems. Price-performance ratios were calculated in MIPS
per dollar. These are plotted against the year and are shown in Fig. 4.1. The data in Fig. 4.1 and Table 4.5
were calculated from many sources [1,12,13,16,17,19,47,49,51,56–75,81–97]. 

4.4 Memory and Storage—The Memory Hierarchy

The memory hierarchy includes the registers internal to the processor, various levels of cache memory,
the main memory, virtual memory, disk drives (secondary storage), and tape (tertiary storage). Memory
devices are used for a variety of functions. Basically, any computer system needs a place from which a
program with its data is executed. There is a need for storing program files and data files. Files need to
be backed up, with the ability to move the backup files to another location for safety. A mechanism is
needed to support the distribution of programs and data files. Not all devices are suitable for all functions.
Some devices are used mainly to get an increase in performance. The remaining functions are generally
necessary for general-purpose computer systems, and some device must be selected to implement each
function. Table 4.6 lists the storage functions, and several categories of memory and storage device used
over time to implement the functions. For example, nonvolatile memory cartridges could be used for all
of the storage functions necessary for a computer system, if speed, capacity, and price were satisfactory.
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The price-performance characteristics of different memory and storage technologies help determine
their roles in computer systems. The main trade-off is between access time and cost (measured in $/MB).
Figure 4.2 shows a rough 2001 pricing (in $/MB) of various memory and storage media versus access
time. Both the media cost and access times of devices generally improve with time. But, the main improve-
ments are in the cost of storage capacity with time.

TABLE 4.5 Price and Performance of Selected Processors 1945–2001

Year Processor Price $
Performance 

(MIPS)
Clock 

(MHz) Microprocessor Bits Ref.

1945 ENIAC 487,000 1.8E−05 — — [81]
1951 UNIVAC I 900,000 1.9E−04 2.3 — [12,13]
1954 IBM 650 145,000 1.8E−04 — — [49]
1956 UNIVAC 1103A 1,260,000 1.8E−03 — — 36 [49]
1960 IBM 7090 2,300,000 6.7E−02 — — 36 [49]
1961 IBM 1401 270,000 9.0E−04 — — — [49]
1964 CDC 6600 2,700,000 5.4E+00 10.0 10 PPU 12 bit 60 [17,83]
1965 IBM 360/50 270,000 1.4E−01 2.0 — 32 [16,97]
1965 PDP-8 18,000 1.3E−03 0.6 — 12 [19,82]
1968 PDP-10 (KA10) 500,000 2.0E−01 1.0 — 36 [19]
1971 PDP-11/20 5,200 5.7E−02 3.6 — 16 [19]
1972 IBM 370/145 700,000 4.5E−01 4.9 — 32 [56,97]
1975 Altair 8800 395 2.8E−02 2.0 i8080 8 —
1977 IBM 370/158-3 2,000,000 7.3E−01 8.7 — 32 [56,97]
1978 Apple II 1,445 2.3E−02 1.0 MOS 6502 8 [84]
1978 CRAY-1 8,000,000 8.6E+01 80.0 — 64 [1,83]
1978 VAX 11/780 500,000 1.0E+00 5.0 — 32 [82]
1980 IBM 3031 1,455,000 7.3E−01 8.7 — 32 [56]
1981 OsbornE-1 1,795 5.7E−02 4.0 Z-80 8 [85]
1981 IBM 4341 288,650 6.0E−01 33.0 — 32 [60,97]
1983 IBM PC/XT 4,995 2.5E−01 4.8 i8088 16 [86]
1984 Apple Macintosh 2,500 5.0E−01 8.0 MC68000 16 [87]
1985 IBM PC/AT 4,950 6.4E−01 6.0 i286 16 [88]
1985 VAX 8600 350,000 4.2E+00 12.5 — 32 [82]
1987 Dell PC Limited 386-16 4,499 2.2E+00 16.0 i386DX 32 [89]
1989 Sun Sparcstation 1 8,995 1.0E+01 20.0 SPARC 32 —
1990 DEC VAX 6000-410 175,300 6.8E+00 36.0 NVAX 32 [69]
1990 DEC VAX 6000-460 960,000 3.9E+01 36.0 NVAX 32 [69]
1990 Dell System 425E 7,899 8.7E+00 25.0 i486DX 32 [90]
1991 HP 9000/730 — 7.8E+01 66.0 HP-PA7000 32 —
1991 Dell 433P 2,999 1.1E+01 33.0 i486DX 32 [91]
1993 Dell XPS-P60 2,999 6.2E+01 60.0 Pentium 32 [92]
1993 Digital 7000-610 500,000 1.6E+02 200.0 Alpha 21064 64 —
1995 Sun SPARCserver 1000 × 8 200,000 4.7E+02 50.0 SuperSPARC 32 —
1995 Dell Dimension XPS-P133c 2,699 1.4E+02 133.0 Pentium 32 [93]
1995 Dell Latitude XPi P75D 2,499 1.2E+02 100.0 Pentium 32 [93]
1996 Intel ASCI Red 46,000,000 1.9E+06 333.0 P-II Xeon core 32 [47]
1997 Digital 8400-5/350 × 6 600,000 2.3E+03 350.0 Alpha 21164 64 —
1997 Dell Dimension XPS D266 2,499 3.5E+02 266.0 Pentium-II 32 [94]
1998 Sun Ultra Enterprise 450 × 4 50,000 2.2E+03 300.0 UltraSPARC-II 64 —
1999 Sun Ultra Enterprise 10000 2,000,000 4.8E+04 400.0 UltraSPARC-II 64 —
1999 Dell Dimension XPS T 1,599 1.2E+03 600.0 Pentium-IIIE 32 [95]
1999 Compaq DS20 × 1 20,000 1.7E+03 500.0 Alpha 21264 64 —
2001 Dell Dimension 8100 1,699 2.3E+03 1,300.0 Pentium-4 32 [96]
2001 Dell Dimension 4100 1,299 1.7E+03 933.0 Pentium-IIIE 32 [96]
2001 Dell Inspiron 3800 1,299 1.2E+03 700.0 Pentium-IIIE 32 [96]
2001 Sun Blade 1000 × 2 10,000 4.2E+03 900.0 UltraSPARC-III 64 —
2001 Compaq GS320 × 32 1,000,000 5.8E+04 733.0 Alpha 21264 64 —
2001 Itanium — 2.6E+03 800.0 Itanium 64 est.
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Primary Memory

Primary memory is made up of the main memory and cache hierarchy. The role of cache memory is to match
the fast speed of the processor to the slower main memory. In earlier processors, there was little speed
mismatch. Recent microprocessors are much faster than main memory, and the speed mismatch is growing
[79].  Cache memory is much more expensive per byte than main memory, but is much faster. In the memory
hierarchy, the important speed factor for cache memory is the latency or access time. The cache needs to keep
the CPU’s instruction queue and data registers filled at the speed of the CPU. For bulk main memory, the
important speed factor is bandwidth, to be able to keep the cache memory filled. To accomplish this, the
slower main memory normally uses a wide data path to transfer data to the cache. Most recent microprocessors

TABLE 4.6 Functions of Memory and Storage Devices

Device Speedup
Program 

Data
Program 

Code
Temporary 

File 
File 

Storage
Program 
Storage

Off-Site 
Backup Distribution

CPU registers yes yes maybe no no no no no
Cache memory yes yes yes no no no no no
Main memory no yes yes yes no no no no
Nonvolatile RAM no yes yes yes maybe maybe no no
Disk cache yes no no maybe no no no no
Hard disk no no no yes yes yes no no
Solid-state disk yes no no yes no no no no
RAM disk yes no no yes no no no no
ROM cartridge maybe no no no no yes no yes
NVRAM cartridge no yes yes yes yes yes yes yes
Floppy disk no no no yes yes yes yes yes
Disk cartridge no no no yes yes yes yes yes
Tape cartridge no no no maybe yes yes yes yes
Tape library yes no no maybe yes yes yes yes
Punch cards no no no maybe maybe maybe yes maybe
Paper tape no no no maybe maybe maybe yes yes
Audio cassette no no no maybe yes yes yes yes
CD-ROM no no no no no no no yes
CD-R no no no no maybe maybe yes yes
Optical disk (MO) no no no yes yes yes yes yes

FIGURE 4.1 Increasing price-performance with time.
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use multiple levels of cache to smooth the speed mismatch. Memory system design for multiprocessor systems
is complicated by needs of coherent cache and memory consistency [43]. Current fast processors can lose in
the order of one half of their performance due to the imperfect behavior of the memory system.

Main memory in electronic digital computers began as flip-flops implemented using vacuum tubes.
Other early memory devices were mercury ripple tank, electrostatic tube storage, and magnetic drum
storage (IBM 650). Magnetic core memory was developed in the Whirlwind project and was cost effective
for a long period, until integrated circuit RAM devices replaced core memory in the late 1970s.

Static RAM, which is used for cache memories, normally uses 4–8 transistors to store 1 bit of infor-
mation. Dynamic RAM, which is used for bulk main memory, normally uses a single transistor and a
capacitor for each bit. This results in DRAM being much cheaper than SRAM. SRAM was used in some
early microcomputers because the design of small memories was much easier than using DRAM. 

The speed of memory has been improving with time. But, the improvements have been much slower.
Table 4.7 shows the cost and access times (speed) of selected memory devices over time. New versions

TABLE 4.7 Cost of Selected Memory Devices

Year Device Size (bits) Cost ($) Cost ($/MB) Speed (ns)

1943 Relay 1 — — 100,000,000
1958 Magnetic drum (IBM650) 80,000 157,400 1.7E+07 4,800,000
1959 Vacuum tube flip-flop 1 8.10 6.8E+07 10,000
1960 Core 8 5.00 5.2E+06 11,500
1964 Transistor flip-flop 1 59.00 4.9E+08 200
1966 I.C. flip-flop 1 6.80 5.7E+07 200
1970 Core 8 0.70 7.3E+05 770
1972 I.C. flip-flop 1 3.30 2.8E+07 170
1975 256 bit static RAM 256 — — 1000
1977 1 Kbit static RAM 1,024 1.62 1.3E+04 500
1977 4 Kbit DRAM 4,096 16.40 3.4E+04 270
1979 16 Kbit DRAM 16,384 9.95 5.1E+03 350
1982 64 Kbit DRAM 65,536 6.85 8.8E+02 200
1985 256 Kbit DRAM 262,144 6.00 1.9E+02 200
1989 1 Mbit DRAM 1,048,576 20.00 1.6E+02 120
1991 4 M x 9 DRAM SIMM 37,748,736 165.00 3.7E+01 80
1995 16 MB ECC DRAM DIMM 150,994,944 489.00 2.7E+01 70
1999 64 MB PC-100 DIMM 536,870,912 55.00 8.6E−01 60/10
2001 256 MB PC-133 DIMM 2,147,483,648 88.00 3.4E−01 45/7
2002 1 Gbit chip 1,073,741,824 — — —
2005 4 Gbit chip 4,294,967,296 — — —

FIGURE 4.2 Memory device characteristics.
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of DRAM memory devices have been developed to improve on both bandwidth and latency. Standard
DRAM has progressed through fast-page mode (FPM) DRAM, to extended-data out (EDO) DRAM, to
synchronous SDRAM, RAMBUS, dual-data rate (DDR), DDR2, and quad data rate (QDR). The newer
synchronous designs attempt to maximize the bandwidth per pin so that fast high bandwidth transfers
of data are possible from main memory to the cache memory.

The price of memory has dropped dramatically with time. At the same time, the size of memory in
computer systems has grown. The cost of the memory used in a typical 2001 PC (64 MB) would have
cost about $10 million in 1975. Figure 4.3 shows the decreasing cost of memory (in $/MB) over time.

The data for Fig. 4.3 and Table 4.7 come from several sources. Phister [14] gives data for early computers
up to the mid 1970s. Memory prices were collected from advertisements in various magazines through
different periods: Radio-Electronics (1975–78), Interface Age (1979–1983), BYTE (1984–1997), and PC
Magazine (1997–2001). The magazines were scanned to find the lowest price per bit for memory mounted
on boards, or SIMMs, or DIMMs for easy installation in a computer system. Summaries of recent data
are harder to collect because advertisements with price information have mainly moved to the Internet,
where historical information is not retained.

Note the small increases in memory prices in 1988, 1994, and again in 2000 in Fig. 4.3. The short-
term rises in the price of memory were unexpected, because in the long term the improvement in
integrated circuit technology keeps forcing the price down. Thus, short term memory pricing can be
difficult to predict. But, longer term pricing is fairly predictable. It takes several years for new memory
chip generations to move from the laboratory to mass production. Currently, 256 Mbit memory chips
are production devices. But, a prototype 4 Gbit DRAM memory chip was constructed by Samsung [37],
using a 0.10-µm process with an overall size of 643 mm2. Production 4 Gbit memory chips are likely
after 2005.

Secondary Memory

The size of secondary memory has also increased dramatically, as the price of disk storage dropped. The
first hard disk drive was the IBM 305 RAMAC developed in 1956. It held a total of 5 MB on fifty 24-in.
disk platters. Fixed disk drives allowed fast access to data and were much cheaper per byte than using
fixed head magnetic drum memories. Next, removable pack disk drives were developed. Removable disk
packs had low cost per byte based on media cost. But, the high cost of the drive meant that cost of the
online files were higher. The relative advantages and disadvantages of removable pack drives versus fixed

FIGURE 4.3 Cost of memory with time.
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disk drives meant that removable packs were widely used in the 1960s and 1970s. Fixed disk drives became
more common after the mid 1970s, mainly due to their lower cost of storage.

The main performance factor for disk drives is the cost of storage in dollars per megabyte. Data is
stored in circular tracks on disk surfaces. The more bits per inch along the track and the more tracks
per inch across the surface, the higher the storage capacity of the disk surface [98]. Adding more disk
platters, with two surfaces per platter, increases the storage capacity of the drive. 

The main measures of speed are: seek time, rotation speed, and data transfer rate. The seek time is
the time to move the read/write head to the track. The rotation speed determines the time for the disk
to rotate to the start of the data. The maximum media transfer rate is the speed at which the data is read
from the disk, which depends on the rotational speed and the density of bits along the track. Several
other factors affect the operational speed of a disk drive. These include: head settling time; head switching
time; disk controller performance; internal disk cache size, organization, and management; disk controller
interface; and data access patterns (random versus sequential access).

Disk drive development currently concentrates on improving the density of information on the disk
drive, increasing the rotational speed of the disk platters, speeding up the motion of the read/write heads,
improving the disk cache performance, and speeding up the disk transfer rate with faster controllers.

Early large computer disk drive technology improved by a factor of 10 in price per megabyte about
every 11 years [5] compared with about five years for main memory. But, the cost of disk drive units
was high [99]. Floppy disk drives dramatically reduced the entry level cost for magnetic storage, although
the unit cost ($/MB) was high. The development of small hard disk drives for the PC accelerated the rate
of improvement in price-performance.

Early disk drives were about 1000 times cheaper per megabyte than main memory. Recent disk drives
are about 20–50 times cheaper than main memory. Figure 4.4 shows the improving in the cost of disk
capacity with time. Table 4.8 gives characteristics for selected hard disk drives. The data for Fig. 4.4 and
Table 4.8 are taken from several sources. Phister [14] provides disk price and performance data for early
disk drives. Pricing data for floppy disk drives and more recent hard disk drives were collected from adver-
tisements in Interface Age magazine (1979–1984), BYTE (1983–1997), and PC Magazine (1997–2001).
The advertisements were scanned periodically to find the lowest cost capacity. Technical specification for
many drives were taken from the Tech Page Web site [100] and Web sites for Maxtor [101] and IBM [102].

RAID technology improved the number of random input–output operations that could be performed
per second (IOPS) [43]. RAID also improved the reliability for collections of small standard disk drives
compared with large system disk drives. Large system disk drives have generally been replaced with
standard small, high capacity, high performance 3.5 in. disk drives. These are used singly in desktop

FIGURE 4.4 Disk drive cost with time.
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personal computers and in multiple drive configurations with RAID controllers in large computer systems.
Smaller drives were developed for portable laptop computers, mainly 2.5-in. drives and 1-in. drives for
smaller PDA and portable devices. However, solid-state flash memory cartridges are starting to replace
small capacity disk drives. Although they are more expensive per megabyte, they have a lower entry price,
are physically smaller than disk drives, and are more rugged for portable operation. Currently, 3.5-in.
hard disk drives are the main production drives with the best price and performance characteristics.

Tertiary Memory

Tertiary storage is used mainly for backing up files and for transportation and distribution of programs
and data. The major concern here is for storage for file backup and restore. Magnetic tape is the main
storage medium used for tertiary storage. However, punched cards, paper tape, removable disk packs,
and optical disks have been used. Packaged magnetic tape cartridges are the most popular format of tape
for backup.

Backup includes frequently incremental and full backup copies created in a backup pattern [103].
Often there may be 20–40 tapes retained in a backup cycle for a single file system. Media cost is therefore
very important. It can take a few hours to read or write one tape cartridge. Therefore, transfer speed of
data from the computer to the tape is also important. After creating a backup tape, it is useful to verify
that the tape was written correctly. It is necessary to remember that the reason for making a backup is
to be able to restore the data at some future time. 

IBM created the IBM 701 tape drive in 1952. Reel-to-reel tapes were popular until about 1990. Helical
scan cartridges and linear scan tape cartridges became popular about that time. Early QIC tapes had
similar storage cost to magnetic tape drives. Later, Exabyte 8-mm tape drives and 4-mm digital audio

TABLE 4.8 Disk Drive Characteristics over Time

Year Device
Interface Type or 

Feature
Size 

(MB)

Disk 
Size 
(in.)

Heads/
Platters

Rotation 
Speed 
(rpm)

Avg. 
Seek 
Time 
(ms)

Max. 
Transfer 

Rate 
(MB/s)

Cost 
($)

1956 IBM 350 RAMAC Vacuum tube control 5 24.00 1/50 1,200 475.0 0.010 57,000
1960 IBM 1405-2 — 20 24.00 1/50 1,790 600.0 0.020 48,500
1963 IBM 1311-2 Removable 2 14.00 -/5 1,500 250.0 0.050 16,510
1964 IBM 2311-1 Removable 7 14.00 -/5 2,400 85.0 0.145 25,510
1966 IBM 2314 Removable 29 14.00 20/10 2,400 75.0 0.292 30,555
1970 IBM 3330-1 Removable 100 — 20/10 3,600 30.0 0.782 25,970
1974 IBM 3330-11 Removable 200 — 20/10 3,600 30.0 0.782 37,000
1981 Seagate ST-412 5 in. full height MFM 10 5.25 4/2 3,600 85.0 0.625 369
1981 Seagate ST-506 5 in. full height MFM 5 5.25 4/2 3,600 85.0 0.625 1,350
1982 Digital RM05 Removeable 256 14.00 19/10 3,600 30.0 1.200 —
1985 Seagate ST-225 5 in. half height MFM 20 5.25 4/2 3,600 65.0 0.625 695
1985 Digital RA81 UDA fixed, dual path 464 14.00 7/4 3,600 28.0 2.200 —
1987 Digital RA82 UDA fixed, dual path 622 14.00 — 3,600 20.0 2.400 —
1988 Seagate ST138 3.5 in. MFM 32 3.50 6/3 3,600 40.0 0.625 429
1989 Seagate ST-277 5 in. half height RLL 66 5.25 6/3 3,600 40.0 0.938 449
1990 Miniscribe 9380E 5 in. full height ESDI 338 5.25 15/8 3,600 16.0 1.250 1,795
1990 Digital RA92 UDA fixed, dual path 1,500 9.00 — 3,400 16.0 2.800 —
1991 Maxtor 9380E 5 in. full height ESDI 338 5.25 15/8 3,600 16.0 1.250 695
1993 Maxtor Panther P117S 5 in. full height SCSI 1,503 5.25 19/10 3,600 13.0 3.613 1,459
1994 Seagate ST12550 Barracuda 7200 rpm 2,139 3.50 19/10 7,200 8.5 7.063 1,999
1995 Seagate ST410800N 5 in. full height SCSI 9,090 5.25 27/14 5,400 11.5 8.125 2,399
1999 Seagate ST317242A 3.5 in. ATA-4 17,245 3.50 8/4 5,400 9.8 23.500 175
2000 Maxtor M94098U8 3.5 in. Ultra DMA 66 39,082 3.50 16/8 5,400 9.0 36.900 279
2000 IBM DSCM-11000 1 in. 1 GB microdrive 1,000 1.00 -/1 3,600 12.0 7.488 499
2001 Maxtor 98196H8 3.5 in. Ultra DMA 100 81,964 3.50 16/8 5,400 9.0 46.700 295
2001 IBM Ultrastart 73LZX Ultra160 SCSI 73,400 3.50 12/6 10,000 4.9 87.125 —
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tape (DAT) cartridges were used for low-cost storage. The digital linear tape (DLT) cartridge became the
most popular backup tape format. Similar to 8 mm, DAT, and other tape formats, DLT has undergone
a number of revisions to increase the tape capacity and to improve the data throughput rate. The latest
SuperDLT has a capacity of 113 GB on one cartridge and a throughput rate of 11 MB/s (about three hours
to write one tape). The main consideration is that a backup tape system must keep pace with the increase
in storage capacity of disk drives. The other device types listed in Table 4.6 for backup have generally not
met the low cost of media required for large-scale backup.

4.5 Computer Systems—Small to Large

A typical general-purpose computer system consists of a processor, main memory, disk storage, a backup
device, and possibly interface devices such as a keyboard and mouse, graphics adapter and monitor,
sound card with microphone and speakers, communications interface, and a printer. The processor speed
is normally used to characterize the system—a 1.5 GHz Pentium-4 system, etc. But, the processor is only
a portion of the cost of the system [5]. Using a slightly faster processor will likely cause little change in
the performance seen by the owner of a personal computer, but is important for a multiuser server.

General-purpose desktop PCs for single users are common. PCs are cheap because millions are
produced per year by many competing vendors. Millions of portable laptops, notebooks, and PDA devices
are also sold every year. Currently, the laptops and notebooks are more expensive than desktop computers
because of a more expensive screen and power management requirements. Workstations are similar to
personal computers, but are produced in smaller quantities, with better reliability and packaging. Work-
stations are more expensive than PCs primarily due to the smaller quantities produced. 

Servers have special features for supporting multiple simultaneous users, such as more rugged com-
ponents, ECC memory, swappable disk and power supplies, and a good backup device. They normally
have some method of adding extra processors, memory, storage, and I/O devices. This means more
components and more expensive components than in a typical PC. There is extra design work required
for the extra features even if not used, and there are fewer servers sold than PCs. Thus, servers of similar
capability will be more expensive.

In large servers, reliability and expandability are very important, because several hundred people may
be using them at any time. Designing very high-speed interconnect busses to support cache coherence
across many processors sharing common memory is expensive. Special bus interconnect circuitry is
required for each board connecting to the system. Large servers are sold in small quantities, and the
design costs form a large percentage of the selling price. Extensive reliability testing means that the large
servers are slower to use the latest, fastest CPUs, which may be the same as are used in PCs and
workstations. Additional processors or upgraded processors may directly increase the number of users
that can be supported, making the entire system more valuable. Often, chip manufacturers charge double
the price for the fastest CPU they produce, compared with a 10% lower speed CPU. People pay the
premium for the overall system performance upgrade, particularly in the server market.

Another approach to improving computer system performance is to cluster a few computers [104].
Cooperative sharing and fail-over is one type of cluster that provides enhanced reliability and perfor-
mance. Other clusters are collections of nodes with fast interconnections to share computations. The
TOP500 list [47] ranks the fastest computer systems in the world based on LINPACK benchmarks. The
top entries contain many thousand processors. 

Beowulf clusters [105] use fairly standard home PCs to form affordable supercomputers. These clusters
scale in peak performance roughly with price. But, like most cluster computers, they are difficult to
program for obtaining usable performance on real problems.

An interesting approach to low-cost computational power is to use the unused cycles from under-
utilized PCs. The SETI@home program distributed client programs to PCs connected to the Internet to
allow over 2 million computers to be used for computations that were distributed and collected by the
SETI program [106]. SETI@home is likely the largest distributed computation problem in existence and
forms the largest computational system. 
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4.6 Summary

The performance of computer systems has increased dramatically over time, and it is likely to continue
for many years. The price of computers has dropped in the same period, both generally and for entry-
level systems. These price-performance improvements have created new opportunities for low-cost appli-
cations of computers, and created a market for millions of PCs per year.

Price and performance are not easy to define except in specific applications. We can generally predict
approximate price and performance levels of general-purpose computers and their main components.
But, the predictions based on historical trends and current estimates are subject to large variations. The
actual performance of a computer depends on what the user wants the computer system to do, and how
well, or how fast the computer does that task. The price depends on the circumstances of the purchase.

It is usually possible to trade-off price for performance and vice-versa within ranges. You can buy a
faster processor up to a point. Beyond the maximum speed, it is necessary to use multiple processors to
obtain more performance. The optimal price-performance for a computer system is likely to be what the
majority of people are buying (an entry-level PC), bought only when it is necessary to use it. For bigger
systems, use collections of shared memory or distributed microprocessors. Alternatively, for SETI@home,
use other people’s computers.
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Introduction

Jean-Luc Gaudiot

It is a truism that computers have become ubiquitous and portable in the modern world: Personal Digital
Assistants, as well as many various kinds of mobile computing devices are easily available at low cost.
This is also true because of the ever increasing presence of the Wide World Web connectivity. One should
not forget, however, that these life changing applications have only been made possible by the phenomenal
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advances that have been made in device fabrication and more importantly in the architecting of these
individual components into powerful systems.

In the 1980s, advances in computer architecture research were most pronounced on two fronts: on
the one hand, new architectural techniques such as RISC made their appearance and revolutionized single
processor design and allowed high performance for the single chip microprocessors which first came out
as system components in the 1970s. At the same time, large-scale parallel processors became mature and
could be used by researchers in many high-end, computationally intensive, scientific applications.

In recent times, the appetite of Internet surfers has been fueling the design of architectures for powerful
servers: in Section 5.1 “Server Computer Architecture,” Siamack Haghighi emphasizes the unique require-
ments of server design and identifies the characteristics of their applications.

In Section 5.2, Binnl Matthews describes the VLIW (Very Long Instruction Word) processor model,
compares it to more traditional approaches of Instruction Level Parallelism extraction, and demonstrates
the future of VLIW processors, particularly in the context of multimedia applications.

Similarly, multimedia applications have promoted a dual architectural approach. In Section 5.3 “Vector
Processing,” Krste Asanovic traces the ancestry of vector processors to the supercomputers of the 1980s
(Crays, Fujitsu, etc.) and describes the modern applications of this architecture model.

Architectures cannot be evaluated independently of the underlying technology. Indeed, nowadays,
while deep-submicron design rules for VLSI circuit are allowing increasing numbers of devices on the
same chip, techniques of multiprocessing are seeing additional applications in different forms which
range from Networks Of Workstations. Portability, all the way to multiprocessing on a chip, is the topic
of Section 5.4 “Multiprocessing, Multiprocessing,” by Manoj Franklin.

Taking concurrent processing to the next level, Donna Quammen surveys parallel systems in Section
5.5 “Survey of Parallel Systems,” including large-scale tightly coupled parallel processors.

Finally, in Section 5.6 “Virtual Memory Systems,” Bruce Jacob surveys the concepts underlying virtual
memory systems and describes the tremendous advances this approach has undergone since first being
proposed in the late 1960s.

5.1 Server Computer Architecture

Siamack Haghighi

Introduction

Widespread availability of inexpensive Internet access and powerful computers has resulted in consider-
able business productivity improvement. Electronic automation of business operations and Internet
communication has resulted in many profitable electronic or “e” business models such as e-commerce.
The cost-saving potential has required many modern companies to automate their traditional manual
customer interface operations and processing through Web technologies. Businesses rely on enterprise
information technology (IT) computing and communication infrastructure as a backbone for their
operations. It is estimated that the current e-commerce revenues exceed hundreds of billions of dollars
in the U.S. alone. 

Availability of robust, reliable, secure, and cost-effective IT infrastructure is one of the key drivers of the
new Internet-based businesses. Customer usage models and applications also affect IT infrastructure per-
formance, operation, and cost. IT infrastructure hardware and software requirements can be met cost
effectively with client–server computing paradigm. Although not a new idea, availability of inexpensive high
performance microprocessors, scalable computing and storage systems, and high bandwidth networks make
client–server computing model an ideal fit. Shared data storage and backup, infrastructure cost, reliability,
serviceability, and availability are some of the other reasons for adoption of client–server computing.
Powerful central processing units (CPU), reliable and available memory system, scalable input/output (I/O),
advanced software, and services and packaging are some of the elements of servers. This chapter will
highlight some of the architecture, design, deployment, usage model, and application of servers.
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Client–Server Computing

Client–server computing was developed to address cost-effective computing and communication capa-
bility. Clients use low cost terminals to make service requests from servers. In this manner, server costs
and services are shared between all users and minimized. Figure 5.1 depicts client–server information
processing model. 

In late 1970s and early 1980s, business computing and communication infrastructure needs were met
via one or more centralized mainframes connected to user terminals via networks. Figure 5.2 illustrates
this model. In most cases, client low-computing-need program processes are executed on the terminals
while mainframe servers execute the more expensive request-handling programs. The mainframe servers
provided a centralized resource for most computing needs as well as other tasks such as data storage,
external network interfaces, and task management. In late 1980s and early 1990s, the enterprise IT evolved
due to advent of personal computers (PCs) fueled by the availability of inexpensive powerful micropro-
cessors. In the new IT infrastructure, many of the tasks previously provided by the servers were processed
locally by the PCs.

In late 1990s and now, explosive growth of Internet as the common communication medium has
resulted in yet another change to the IT infrastructure. Due to advent of World Wide Web (WWW) and
other related technologies, many e-commerce businesses electronically automate customer request pro-
cessing. Some of the characteristics of the new environment are: 

• Simple and robust user interfaces (typically Web-based services) for customer entry request entry
and response display

• High-speed networks for data transmission

• Powerful centralized systems to handle data storage, transaction processing, and inventory
management

FIGURE 5.1 Client and server model.

FIGURE 5.2 Computing and communication infrastructure.
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Server Types

Servers are optimized for cost, performance, support, and the usage model. An e-commerce transaction-
processing server will require fast network interface for quick user response, powerful central processing
unit (CPU) to handle database management, and scalable architecture for possible future enhancements.
An e-commerce server needs to be reliable and secure, without securing issues such as fraud, to ensure good
customer experience. A variety of servers such as proxy, Web cache, data processing, communication,
video, file, and compute are used.

A server needs to be optimized for most frequently used applications and the usage model. Typical
server configurations have several high performance CPUs, large system memory size, and support for
high-speed I/O for storage systems and network interfaces. As an example, a file server is cost-optimized
by using several CPUs, high-speed network interface and extensive storage subsystems. Using more powerful
CPUs than a file server and large amount of system memory are the optimizations used for a compute
server. A compute server may be further optimized to run specific applications such as transaction pro-
cessing. Configuration of the hardware elements and software tuning are used to ensure peak performance
and lowest-cost infrastructure.

Server Deployment Considerations

Optimal server deployment requires many requirements. For example, Internet service providers’ (ISP)
servers have extensive communication network capabilities. In this section, some of these issues will be
detailed.

Server Features

A term commonly used to address many of the physical issues in server design is reliability, availability,
and serviceability (RAS). RAS and other elements are:

1. Reliability: Customers expect reliable and robust services continually. Providing Internet services
to customers such as banking and brokerage services requires special consideration. During busi-
ness hours, if server goes offline, the revenue loss and potential liability may be significant. The
majority of servers include various forms of reliability detecting and enhancing features. Alterna-
tively, multiply redundant server configurations can be used to improve reliability of the infra-
structure. Many application and operating system software providers include reliability features
for their server products. Failure prevention solutions include:

• Reducing probability of a failure through additional hardware and software features (some of
the techniques used are independent operating system images on each server node and error
correcting code (ECC) hardware features)

• Minimizing the effect of failures by designing hardware and software robustness features such
as fault isolation and provisioning

• ECC memory scrubbing to detect and correct single bit errors that cause system crash due to
accumulation of soft memory errors

• System management interrupts handlers that allow special software to interface with hardware
error detection and fault isolation independent of the underlying operating system

• High performance and fault tolerant storage architectures such as redundant array of indepen-
dent disks (RAID) are used to ensure data and operational integrity.

2. Availability: With the rapid growth of electronic businesses, companies need to ensure that their
systems are running 24 h everyday. Some business server’s downtime costs are in the order of
millions of dollars. Traffic capacities beyond the system capability and component failures are two
of the many sources of system failure. Modern servers are designed to accommodate ever-increasing
traffic and system capacity by using more extensive I/O capability, powerful CPUs, and large system
memory. Online management systems are also used to ensure system resources are not exhausted
or overdriven. Using duplicate resources such as power supplies, CPU, and even multiply redundant
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servers can mitigate component failures. Capability to quickly detect and remedy failures need to
be included in various server hardware and software elements. Scheduled maintenance and upgrade
of hardware and software elements can also ensure availability of servers.

3. Serviceability: Uninterrupted operation of business servers requires frequent and routine services
before a fault occurs. Built-in failure prevention mechanisms include real-time diagnostic tools and
alerting services to quickly and easily identify and resolve faults. New features such as hot plug and
play also improves ease of service. Hot add allows installation of new hardware without interrupting
server power. Hot replace allows changing faulty subsystems without needing to power down a
server. Other services such as scheduled down time to do off-line enhancement are also used.

4. Scalability: High performance IT infrastructure can be scaled in two ways. One way is to deploy
systems with more CPUs and more powerful I/O capability. The second way is to connect multiple
servers using clustering technology. A combination of both approaches is also used. 

5. Manageability: Issues that need to be addressed are:

• Monitoring performance and tuning key applications and systems

• Planning for capacity expansion for new users or services

• Automatic or manual load balancing, distribution, and task scheduling for efficient operation
of the enterprise resources and applications

• Handling situations requiring increased alerting and management capabilities

• Installation and configuration of system and services are rapid and easy to do (this is especially
important for tasks such as system management, recommendation, and application of software
and hardware upgrades)

• Using notification and preventive action to keep system up and performing optimally

• Recovering rapidly from service outages

• Remote or local server management, even when part of the system may not be functioning.

6. Security: In routine and emergency cases, user access to system resources and facilities such as
user authentication, intrusion detection, and privileged access needs to be provided. Cryptographic
technologies such as encryption and decryption are frequently used to enhance overall system
security. In many cases, cooperation with local and government officials may be required as part
of intrusion prevention and detection.

Operation

Additional operational issues also need consideration. Some of these factors are: Space: Many servers are
modularly built. A typical server board contains several CPUs, system interconnect chipset, and other
peripherals. Data centers, for example, may house several hundred server modules housed in cabinets
or racks. Physical sizing of racks as well as maintenance and management of wiring to a server is a major
challenge. The proximity of data center to major customer sites also needs to be considered. The overall
cost of operating a data service center housing server needs to comprehend all these overheads as part
of the economy of the provided service. Other considerations may include packaging of servers based
on space requirements such as provision for high-density servers (large number of CPUs and I/O).

1. Power: A typical server board requires several hundred watts of power. Providing power to a server
rack containing modular servers is a challenge. Power provisioning includes inclusion of services
for proper handling of outage, uninterrupted power supply, or backup battery operation. 

2. Thermal: Server modules generate large amounts of heat. Large server installations need to prop-
erly plan and accommodate heat generation and dissipation issues. In many cases, thermal con-
straints are the limiter for server capacity expansion. Other infrastructure costs such as air
conditioning services to handle heat dissipation may also be prohibitive. Since thermal issues are
rapidly expanding, most new servers have specialized technologies to lower power consumption.
Development of low-power CPUs and chipsets that do not require active cooling are examples of
technologies that aim to address thermal issues. 
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Total Cost of Ownership

Another consideration, in the selection of enterprise servers, is the total cost of ownership or TCO. This
metric is used to capture the cost of the IT infrastructure including operation, hardware and software
purchases, services and downtimes. It is quite possible that for some enterprise application one or more of
these factors becomes dominant. For example, in business critical online brokerage services, downtimes
may be in the order of millions of dollars per hour. Evaluation of downtime costs versus other costs may
easily justify the cost of additional and backup servers. In such a case, server clustering is used to improve TCO.

Server Clustering

Many business applications such as manufacturing, financial, healthcare, and telecommunication require
mission or business critical servers for their operation. An example is telecommunication billing and
record keeping. Mission critical servers are designed with two or more servers physically connected to
provide automated fail over. If one server crashes, the other servers can take over, keeping key applications
running. Server clustering can be used to mitigate hardware (servers, storage arrays, networking hard-
ware), operating system and cluster software, database, other application and human error failures. A variety
of hardware and software automatic fault detection, isolation, and fail-over mechanisms are needed and
used by various server manufacturers in the development of mission critical servers.

Server Architecture

In this section, some of the more generic hardware, software server architecture design issues will be
detailed. The hardware and software interaction and usage model issues will also be discussed.

Hardware Architecture 

Even though it is possible to build servers from full custom very large scale integrated (VLSI) devices or
chips, economic issues govern use of commodity hardware whenever possible. Figure 5.3 illustrates
common server hardware architecture. The main building block components in a server are the CPU,
system memory, system bus, system interconnection or bridging devices, and peripheral subsystems. 

CPU
Most servers contain several CPUs. For economy reasons, many servers choose to use CPUs readily
available such as those used in desktop PCs or workstations. A high performance server CPU contains
very fast execution capability. Multiple processors can be built using variety of mechanisms. The most
popular multiprocessor (MP) architecture is symmetric multiprocessor (SMP). Figure 5.4 illustrates this
architecture. SMP systems use several CPUs interconnected through a common system bus to access
shared system resources such as system memory and the peripherals. 

Depending on the application of the server, CPUs with different addressing capability can be used.
Cost-effective servers can be developed using 32-bit processors. Servers built with 64-bit processors are

FIGURE 5.3 Server hardware architecture.
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also available and are used for applications requiring large data sets. Each CPU processing core consists
of several arithmetic and logic units (ALU), multi-ported register files, floating point multipliers, and
branch execution units. Most widely used CPU architecture can execute instructions out of order (OOO)
and several operations at a time (super scalar). 

Server applications operate on many instruction and data sets. During program execution, the same
instruction and data elements may be repeatedly used. High-performance CPU execution rate requires
high instruction and data bandwidth. Caches are used to store and operate on the most frequently used
instruction and data as well as provide high bandwidth for fast execution. A high-performance server
CPU contains several levels of hardware caches. Each cache may consist of separate instruction and data
caches or an integrated instruction and data cache. Caches are numbered in increasing order, starting
from one from the processing core toward system memory. The size of each cache in the order of increasing
number is several times that of a lower level cache. Current server microprocessors use L3 or L4 caches
to achieve highest level of performance. Cache size, associativity, line size, and replacement policy are
determined by the characteristics of the desired applications running on the server using performance
simulation models. Caches costs are determined by the state-of-the-art VLSI processing technology,
implementation, and power dissipation considerations.

The number of CPUs used in a server is determined by the server performance requirement and design
limitations. Most server designs contain several sockets for optional future CPU enhancement. Multiple
CPUs provide more computing performance. Architecture and design of high performance MP archi-
tectures is still an active area of research.

Cost considerations also demand sharing of expensive resources such as system memory or peripheral
storage devices. High-performance arbitrated access to common system resources by all CPUs is another
topic of current research in server design.

System Memory
One of the critical subsystems in a server is the system memory. System memory consists of several banks
of dynamic random access memory (DRAM) modules. The larger the number of independent memory
banks, the larger is the total bandwidth available to system devices requesting memory access (such as
CPUs and peripheral devices). There are a variety of DRAM memory configurations such as single in-line
memory module (SIMM) or dual in-line memory module (DIMM). Current servers can have several
gigabytes of system memory.

Due to need for improved reliability and robustness, server system memory use fault tolerance features
such as ECC. Errors can happen for a variety of reasons such as DRAM memory soft error rate (SER)
or errors in transmission signaling among various chips. Another robustness measure is the number of
error bits than can be detected and corrected. Low-end servers use single error correct double error detect
(SECDED). Another robustness feature is chipkill. Chipkill enables isolation and correction of multi-bit
faults such as failure of a single memory chip. 

Finally, because server system memory may be large, auto-initialization of memory values to known
values such as during power up may be required. Other robustness features include memory mirroring,

FIGURE 5.4 Symmetric multiprocessor architecture.
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redundant memory-bit steering, and soft-error scrubbing. Depending on the desired level of robustness,
a design may include one or several error detection and correction features.

Peripheral Subsystem
Due to extensive computational capability, servers peripheral subsystem is much more elaborate than
their desktop counterparts. Server peripherals include hard disk storage, fast network interface controllers
(NIC) and other archival storage devices. Traditional computer interfaces such as boot Flash memory,
keyboard, mouse, and graphics interfaces are also available. Example peripheral features are:

• Data storage and retrieval: Server storage and archival systems can be centralized or distributed.
High performance and fault tolerant disk storage access is available using redundant array of
independent disks (RAID) technology. There are also networked storage systems available. 

• Network Interface: High-performance server communication links use gigabit or higher-speed
Ethernet technology.

• Clustering interfaces: These interfaces are provided to support server clustering. One type of interface
uses switching fabric technologies to enable connection of several server nodes.

• Direct attach interfaces: Proprietary interfaces for connection of servers is also another available
technology. This interface is optimized for larger data transfer sizes compared to switched fabric
approaches.

• Other peripherals interfaces such as keyboard, mouse, and graphics display device are also provided.

• Interconnection of peripheral subsystems with system memory and CPUs can be accomplished
in a variety of ways. Depending on cost considerations, some systems use specialized chips to
provide open standard solutions such as peripheral component interface (PCI) bus. PCI bus can
be used to accommodate several peripheral devices such as network card and small computer
serial interface (SCSI) solutions for hard disk and archival storage. More modern solutions provide
open or proprietary switching fabrics that can be used to connect to peripheral devices. One
advantage of the use of switching fabrics is the ability to scale servers to larger sizes by expanding
switch fabric for additional devices such as storage devices. Figure 5.5 depicts a server configuration
using switching fabric components.

• Whatever the solution, the overall solution has to satisfy high throughput, support for large or
small data transfer, and low latency access operation. PCI solutions need to account for various

FIGURE 5.5 Switching fabric usage.
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peripheral packet transfer size differences and shared bandwidth issues. Switching fabric solutions
that use technologies, such as virtual connection or circuit switching, need to carefully architect
solutions that meet connection channel setup, tear down, and blocking rates as well as quality of
service (QOS) for real-time, multimedia data.

• Additional peripheral or system hardware solutions for specialized functions such as encryption
and decryption may also be available.

System Interconnect
Design and implementation of system interconnect to support communication between multiple CPUs,
system memory, and the peripheral subsystem is a challenging task. The solution has to satisfy several
requirements. 

System interconnect has to provide high bandwidth, low latency access between CPUs (or system bus)
and the system memory. If there is insufficient bandwidth or large memory latency, the overall server
performance will degrade. Some of the design choices are multiple fast and wide memory channels,
memory interleave, and high-speed pipelined CPU-to-system interconnect bus.

System interconnect has to provide efficient and high bandwidth access between the system memory
and the peripheral subsystem. If there is insufficient bandwidth for memory to peripheral subsystems,
high performance transfer of pre- or post-processed data to network interface will not be possible. The
same issue may plague the storage subsystems. The access latency for peripheral subsystems may not be
as critical as that required by CPUs. The main reason for this is that peripheral accesses such as disk
storage are typically pre-fetched or scheduled before they are needed.

Because system memory is a shared resource, memory traffic balancing is critical. If the CPU is favored
in system memory access, there may not be sufficient bandwidth available from the peripheral subsystem
to fill or empty required data. As a result, the CPU will ultimately be data starved. Favoring peripheral
access to the main memory may be detrimental to nonstalled CPU operation. To make matters worse,
the balancing of the traffic from CPU and the peripheral subsystem to system memory is application
dependent and even varying within an application. For example, at boot time large amount of data
transfer from peripheral such as hard disk may be needed. On the other hand, high throughput trans-
action processing may require favoring CPU to memory bandwidth demands. Optimized arbitration
policy for access to main memory is determined through extensive computer simulations that include
dynamic models of the application, operating system (OS) services and hardware components.

Other issues such as high speed signaling and dissipated power in VLSI components may also be
factors. Careful balance of all these factors is critical for optimized system interconnect. 

Software Architecture

High performance server operation is also affected by the server software architecture. Two software com-
ponents that need optimization are peripheral device drivers and the operating system. Peripheral device
drivers need to be optimized for efficient and high performance data transfer to and from system memory.
Operating system software may need to be optimized to better utilize the capability of CPUs (such as cache
sizes), system memory capacity, and interprocess communication between multiple CPUs. The operating
system may also be optimized to efficiently handle scheduling of tasks among multiple CPUs.

Clustered servers use independent OS for each server node. Clustered solutions may also use different
OS. Internetworking issues in such heterogeneous environment is another software architecture issue.
Many OS and software programs also use advanced caching techniques for high performance data
access.

Applications and Usage Models

A variety of applications are available for servers such as database management, transaction processing,
inventory management, and decision support. Many users also use an application differently. For example,
a user may be updating the database with recent entries while others are trying to access and use the
database. Each usage model and application has a specific system demand characteristics. Robust IT
infrastructure ensures that the servers, network, and client architecture are tuned and optimized for the
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majority of the users. Hardware optimizations include selection of CPU, system memory type and size,
VLSI interconnection chips, peripheral storage size, speed and features, and network interface speed and
features. Software tuning mechanisms include optimizing compilers supporting multithreading and
optimized libraries.

Server applications can be characterized in several ways. Some applications require large communi-
cation bandwidth between CPUs, system memory, and storage devices. Other applications require more
execution processing capability by the CPUs. Finally, some servers, such as Web cache, may require high-
performance network interfaces. Hardware and software tuning mechanism satisfies most of these and
other requirements.

Challenges in Server Design

Many challenges exist in the advancement of server designs. Some of the major issues such as physical
and architectural considerations have already been mentioned. Below are several additional challenges
that also need to be addressed:

1. Developing scalable solutions that meet the needs of a variety of users cost effectively is an active
areas of research and development. Scalable architecture elements, such as CPU and system inter-
connection, memory, peripheral subsystem, and CPUs, are needed. 

2. Development of applications that can benefit more users and take advantage of multiprocessor or
clustered systems is another area of active research and development.

3. Development of additional high performance hardware and software technologies to enable large
number of users sharing the IT infrastructure for new usage models is another active area. New
usage model examples include support for variety of clients such as handheld devices and other
information appliances.

4. Development of scalable and high performance networking technology to interconnect server
components and clusters is also actively being pursued. 

5. Research and development of security solutions that do not affect overall system performance,
stop intrusion, and enhance user needs is another area of increasing importance.

Summary

We reviewed many aspects of server infrastructure planning, selection, system design, and development.
Critical requirements such as RAS were described. Server element architecture such as CPU, memory,
and peripherals were discussed. Scalable solutions, software architecture, and applications were discussed,
and avenues of current and future research and development are also described. 

5.2 Very Large Instruction Word Architectures

Binu Matthew

What Is a VLIW Processor?

Recent high performance processors have depended on instruction level parallelism (ILP) to achieve high
execution speed. ILP processors achieve their high performance by causing multiple operations to execute
in parallel, using a combination of compiler and hardware techniques. Very long instruction word (VLIW)
is one particular style of processor design that tries to achieve high levels of ILP by executing long
instruction words composed of multiple operations. The long instruction word called a “MultiOp,” consists
of multiple arithmetic, logic, and control operations each of which would probably be an individual
operation on a simple RISC processor. The VLIW processor concurrently executes the set of operations
within a MultiOp, thereby achieving ILP. The remainder of this article discusses the technology, history,
uses, and the future of such processors.
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Different Flavors of Parallelism

Improvements in processor performance come from two main sources: faster semiconductor technology
and parallel processing. Parallel processing on multiprocessors, multicomputers, and processor clusters
has traditionally involved a high degree of programming effort in mapping an algorithm to a form that
can better exploit multiple processors and threads of execution. Such reorganization has often been
productively applied, especially for scientific programs. The general-purpose microprocessor industry
on the other hand has pursued methods of automatically speeding up existing programs without major
restructuring effort. This lead to the development of ILP processors that try to speed up program
execution by overlapping the execution of multiple instructions from an otherwise sequential program.

We will call a simple processor that fetches and executes one instruction at a time a simple scalar
processor. A processor with multiple functional units has the potential to execute several operations in
parallel. If the decision about which operations to execute in an overlapped manner is made at run time
by the hardware, it is called a super scalar processor. To a simple scalar processor, a binary program
represents a plan of execution. The processor acts as an interpreter that executes the instructions in the
program one at a time. From the point of view of a modern super scalar processor, an input program is
more like a representation of an algorithm for which several different plans of execution are possible.
Each plan of execution specifies when and on which function unit each instruction from instruction
stream is to be executed.

The ILP processors differ in the manner in which the plan of execution is derived, but it typically
involves both the compiler and the hardware. In the current breed of high performance processors like
the Intel Pentium and the Ultra Sparc, the compiler tries to expose parallelism to the processor by means
of several optimizations, the net result of which is to place as many independent operations as possible
close to each other in the instruction stream. At run time, the processor examines several instructions
at a time, analyzes the dependences between instructions, and keeps track of the availability of data and
hardware resources for each instruction. It tries to schedule each instruction as soon as the data and
functional units it needs are available. The processor’s decisions are often further complicated by the fact
that operations like memory accesses often have variable latencies that depend on whether a memory
access hits in the cache or not. Because such processors decide which functional unit should be allocated
to which instruction as execution progresses, they are said to be dynamically scheduled. Often, as a further
performance improvement, such processors allow later instructions that are independent to execute ahead
of an earlier instruction, which is waiting for data or resources. In that case the processor is said to be
out of order.

Branches are common operations in general-purpose code. On encountering a branch, a processor
must decide whether or not to take the branch. If the branch is to be taken, the processor must start
fetching instructions from the branch target. To avoid delays due to branches, modern processors try to
predict the outcome of branches and execute instructions from beyond the branch. If the processor
predicted the branch incorrectly, it may need to undo the effects of any instructions it has already executed
beyond the branch. If a super scalar processor uses resources that may otherwise go idle to execute
operations the result of which may or may not be used, it is said to be speculative.

Out of order speculative execution comes at a significant hardware expense. The complexity and
nonscalability of the hardware structures used to implement these features could significantly hinder the
performance of future processors. An alternative solution to this problem is to simplify processor hard-
ware and transfer some of the complexity of extracting ILP to the compiler and run time system—the
solution explored by VLIW processors.

Joseph Fisher, who coined the acronym VLIW, characterized such machines as architectures that issue
one long instruction per cycle, where each long instruction called a MultiOp consists of many tightly
coupled independent operations each of which executes in a small and statically predictable number of
cycles. In such a system the task of grouping independent operations into a MultiOp is done by a compiler
or binary translator. The processor freed from the cumbersome task of dependence analysis has to
merely execute in parallel the operations contained within a MultiOp. This leads to simpler and faster
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processor implementations. In later sections, we will see how VLIW processors try to deal with the problems
of branch and memory latencies and implement their own kind of speculation. But, first, we present a
brief history of VLIW processors.

A Brief History of VLIW Processors

For various reasons which were appropriate at that time, early computers were designed to have extremely
complicated instructions. These instructions made designing the control circuits for such computers
difficult. A solution to this problem was microprogramming, a technique proposed by Maurice Wilkes
in 1951. In a microprogrammed CPU, each program instruction is considered a macroinstruction to be
executed by a simpler processor inside the CPU. Corresponding to each macroinstruction, there will be
a sequence of microinstructions stored in a micro code ROM in the CPU. One particular style of micro-
programming where bits in a typically very wide microinstruction are directly used as control signals
within the processor is called horizontal microprogramming.

In contrast, vertical microprogramming uses a shorter microinstruction or series of microinstructions
in combination with some decoding logic to generate control signals. Microprogramming became pop-
ular as a way of implementing the control for a CPU after IBM adopted it for its system/360 series.

Even before the days of the first VLIW machines, several processors and custom computing devices
used a single wide instruction word to control several functional units working in parallel. However,
these machines were typically hand-coded and the code for such machines could not be generalized to
other architectures. The basic problem was that compilers at that time looked only within basic blocks
to extract ILP. Basic blocks are often short and contain many dependences and therefore the amount of
ILP that can be obtained inside a basic block is quite limited.

Joseph Fisher, a pioneer of VLIW, while working on PUMA, a CDC-6600 emulator, was frustrated by
the difficulty of writing and maintaining 64 bit horizontal micro code for that processor. He started
investigating a technique for global micro code compaction—a method to generate long horizontal micro
code instructions from short sequential ones. Fisher soon realized that the technique he developed in
1979, called trace scheduling, could be used in a compiler to generate code for VLIW like architectures from
a sequential source since the style of parallelism available in VLIW is very similar to that of horizontal micro
code. His discovery lead to the design of the ELI-512 processor and the Bulldog trace-scheduling compiler. 

Two companies were founded in 1984 to build VLIW-based mini supercomputers. One was Multiflow
started by Fisher and his colleagues from Yale University. The other was Cydrome founded by Bob Rau,
who was another VLIW pioneer, and his colleagues. In 1987, Cydrome delivered its first machine, the
256 bit Cydra 5, which included hardware support for software pipelining. This feature based on Bob
Rau’s research can be found in Intel Itanium processors today. In the same year, Multiflow delivered the
Trace/200 machine, which was followed by the Trace/300 in 1988 and Trace/500 in 1990. The 200 and
300 series used a 256-bit instruction for 7 wide issue, 512 bits for 14 wide issue, and 1024 bits for 28
wide issue. The 500 series only supported 14 and 28 wide issue. Unfortunately, the early VLIW machines
failed commercially. Cydrome closed in 1998 and Multiflow closed in 1990.

Since then, VLIW processors have seen a revival and some degree of commercial success. Some of the
notable VLIW processors of recent years are IA-64 or Itanium from Intel, the Crusoe processor from
Transmeta, the Trimedia media processor from Philips and TMS320C62x DSPs from Texas Instruments.
Some important research machines designed during this time include the Playdoh from HP labs, Tinker
from North Carolina State University, and the imagine stream and image processor currently being
developed at Stanford University.

Defoe: An Example VLIW Architecture

Rather than describe the properties of a VLIW architecture, we now introduce the Defoe. The Defoe is
an example processor used in this section to give the reader a feel for VLIW architecture and program-
ming. Though it does not exist in reality, its features are derived from those of several existing VLIW
processors. Later sections that describe IA-64 and Crusoe will contrast those architectures with Defoe.
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Functional Units

Defoe is a 64-bit architecture with the following functional units.

• Two load/store units

• Two simple ALUs that perform add, subtract, shift, and logical operations on 64-bit numbers and
packed 32-, 16-, and 8-bit numbers; in addition, these units also support multiplication of packed
16 and 8 bit numbers.

• One complex ALU that can perform multiply and divide on 64 bit integers and packed 32-, 16-,
and 8-bit integers

• One branch unit that performs branch, call, and comparison operations

There is no support for floating point. Figure 5.6 shows a simplified diagram of the Defoe architecture.

Registers

Defoe has a set of 64 programmer visible general purpose registers which are 64 bits wide. Register R0
always contains 0. There is no support for register renaming like in a super scalar architecture.

Predication

Predicate registers are special 1 bit registers that specify a true or false value. There are 16 programmer visible
predicate registers in the Defoe named PR0 to PR15. All operations in Defoe are predicated, i.e., each operation
specifies a predicate register in the PR field. The instruction is always executed. Logically, if the predicate is
false, the results are discarded or the side effects of the instruction do not happen. In practice, for reasons
of efficiency, this may be implemented by computing a result, but writing back the old value of the target
register. Predicate register 0 always contains the value 1 and cannot be altered. Specifying PR0 as the predicate
performs unconditional operations. Comparison operations use predicate registers as their target register.

Instruction Encoding

Defoe is a 64-bit compressed VLIW architecture. By compressed, we mean that rather than use a fixed
size MultiOp and waste slots by filling in NOPs when no suitable operation can be scheduled in a slot
within a MultiOp we use variable length MultiOps. Individual operations are encoded as 32-bit words.
A special stop bit in the 32-bit word indicates the end of an instruction word (Fig. 5.7). Common arithmetic
operations also have an immediate mode, where a sign or zero extended 8 bit constant may be used as

FIGURE 5.6 Defoe architecture.
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an operand. For larger constants of say 16, 32, or 64 bits, a special Nop pattern may be written into
opcode field of the next operation and the low order bits may be used to store the constant. In that case,
the predecoder concatenates the bits from two or more different words to assemble a constant.

Instruction Dispersal and Issue

A traditional VLIW, with a fixed encoding for MultiOps, has no need to disperse operations. However,
when using a compressed format like that of the Defoe, there is a need to expand the operations and
insert Nops for functional units to which no operation is to be issued. To make the dispersal task easy
we make the following assumptions:

• A few bits in the opcode specify the type of functional unit (i.e. load/store, simple arithmetic,
complex arithmetic or branch) the operation needs.

• The compiler ensures that the instructions that comprise a MultiOp are sorted in the same order
as the functional units in the processor. 

• For example, if a MultiOp consists of a load, a 32-bit divide, and a branch, then the ordering (load,
multiply, branch) is legal, but the ordering (load, branch, multiply) is not.

• The compiler ensures that all the operations in the same MultiOp are independent.

• The compiler ensures that the functional units are not over subscribed. For example, two loads
in a MultiOp are legal, but three is not.

• It is illegal to not have a stop bit in a sequence of more than six instructions.

• Basic blocks are aligned at 32-byte boundaries.

Apart from reducing wastage of memory, another reason to prefer a compressed format VLIW over
an uncompressed one is that the former provides better I-cache utilization. To improve performance, we
use a predecode buffer that can hold up to eight uncompressed MultiOps. The dispersal network can
use a wide interface (say 512 bits) to the I-cache to uncompress up to 2 MultiOps every cycle and save
them in the predecode buffer. Small loops of up to 8 MultiOps (maximum 48 operations) may repeatedly
hit in the predecode buffer. It may also help lower the power consumption of a low power VLIW processor.
Defoe supports in order issue and out of order completion. Further, all the operations in a MultiOp are
issued simultaneously. If even one operation cannot be issued, issue of the whole MultiOp stalls.

Branch Prediction

Following the VLIW philosophy of enabling the software to communicate its needs to the hardware,
branch instructions in Defoe can advise the processor about their expected behavior. A 2-bit hint
associated with every branch may be interpreted as follows.

Implementations of the Defoe architecture may provide branch prediction hardware, but are not
required to. If branch prediction h/w is provided, static branches need not be entered in the branch
history table, thereby freeing up resources for dynamically predicted branches.

FIGURE 5.7 Instruction encoding.
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Score Board

To accommodate branch prediction and variable latency of memory because of cache hits and misses,
some amount of score boarding is required. Though we will not describe the details of the scoreboard
here, it should be emphasized that the scoreboard and control logic for a VLIW processor such as the
Defoe are much simpler than that of a modern super scalar processor because of the lack of out of order
execution and speculation.

Assembly Language Syntax

The examples that follow use the following syntax for assembly language instructions.

(predicate_reg) opcode.modifier Rdest = Rsource1, Rsource2  

If the predicate register is omitted, PR0 will be assumed. In addition, a semicolon following an instruction
indicates that the stop bit is set for that operation, i.e., that operation is the last one in its MultiOp. The
prefix “!” for a predicate implies that the opcode actually depends on the logical not on the value of the
predicate register.

Example 1

This example demonstrates the execution model of the Defoe by computing the following set of expressions:

a = x + y - z
b = x + y - 2 ∗ z
c = x + y - 3 ∗ z

Register assignments: r1 = x, r2 = y, r3 = z, r32 = a, r33 = b, r34 = c

The first three lines are followed by a stop bit to indicate that those three operations constitute a MultiOp
and that they should be executed in parallel. Unlike a super scalar processor where independent operations
are detected by the processor, the programmer/compiler has indicated to the processor by means of the
stop bit that these three operations are independent. In a real processor, the multiplication will have a
greater latency, perhaps four cycles. In that case we have two different ways of scheduling this code. Because
Defoe already uses score boarding to deal with variable load latencies, it is only natural for the scoreboard
to stall issue for three cycles after issuing the first MultiOp. In a more traditional VLIW, the compiler
will insert three MultiOps consisting of just NOP after the first MultiOp. Lines 4–6 illustrate the way
scheduling in the presence of structural hazards work on a VLIW. The compiler is aware that Defoe has
only two simple integer ALUs. So, even though line 6 is independent of lines 4 and 5, it needs to wait
for another cycle and be issued as a separate MultiOp. In a super scalar processor, these actions will be
done by the hardware at run time.

Line # Code  Comments 
1. add r4 = r1, r2 // r4 = x + y
2. shl r5 = r3, 1 // r5 = z << 1, i.e. z ∗ 2
3. mul r6 = r3, 3 ; // r6 = z ∗ 3.  Stop bit.

4. sub r32 = r4, r3 // r5 = a = gets x + y - z
5. sub r33 = r4, r5 ; // r33 = b = x + y - 2 ∗ z.
 // Stop bit.

6. sub r34 = r4, r6 ; // r34 = c = x + y - 3 ∗ z. 
 // Stop bit.
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Example 2

This example contrasts the execution of an algorithm on Defoe and a super scalar processor (Intel
Pentium). The C language function absdiff computes the sum of absolute difference of two arrays A and
B which contain 256 elements each.

int absdiff(int ∗A, int ∗B)
{
int sum, diff, i;
sum = 0;
for(i = 0; i<256; i++)
{
diff = A[i] - B[i];
if(A[i] >= B[i])
sum = sum + diff;
else
sum = sum - diff;

}
return sum;

}

A hand-assembled version of absdiff in Defoe assembly language is shown below. For clarity, it has been
left unoptimized. An optimizing compiler will unroll this loop and software schedule it.

Register assignment: On entry, r1 = a, r2 = b. On exit, sum is in r4.

Line #   Code Comment
1.  add r3 = r1, 2040 // r3 = End of array A
2.  add r4 = r0, r0  ; // sum = r4 = 0

.L1:
3.  ld r5 = [r1] // load A[i]
4.  ld r6 = [r2] // load B[i]
5.  add r1 = r1, 8 // Increment A address
6.  add r2 = r2, 8 // Increment B address
7.  cmp.neq pr1 = r1, r3 ; // pr1 = (i != 255)

8.  sub r7, r5, r6 // diff = A[i] - B[i]
9.  cmp.gte pr2 = r5, r6 ; // pr2  = (A[i] >= B[i])
10. (pr2) add r4 = r4, r7 // if A[i] >= B[i] 

// sum = sum + diff
11. (!pr2) sub r4 = r4, r7 // else sum = sum - diff
12. (pr1) br.sptk .L1    ; 

The corresponding code for an Intel processor is shown below. This is a snippet of actual code generated
by the GCC compiler.

Stack assignment: On entry, 12(%ebp) = B, 8(%ebp) = A. On exit, sum is in eax.

Line # Code Comment
1. movl    12(%ebp), %edi // edi = B
2. xorl    %esi, %esi // esi sum = 0 
3. xorl    %ebx, %ebx // ebx = 0
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.p2align 2

.L6:
4.        movl    8(%ebp), %eax // eax = A
5.        movl    (%eax,%ebx,4), %edx // edx = A[i]
6.        movl    %edx, %ecx // ecx = A[i]
7.        movl    (%edi,%ebx,4), %eax // eax = B[i]
8.        subl    %eax, %ecx // ecx = diff = A[i] - B[i]
9.        cmpl    %eax, %edx // A[i] < B[i] 
10.       jl      .L7 // goto .L7 is A[i] < B[i]
11.       addl    %ecx, %esi // sum = sum + diff
12.       jmp     .L5                 
.p2align 2
.L7:
13.       subl    %ecx, %esi // sum = sum - diff
.L5:
14.        incl    %ebx // i++
15.        cmpl    $255, %ebx // i <= 255 ?
16.        jle     .L6               
17.        popl    %ebx
18.        movl    %esi, %eax

The level of parallelism available in the Defoe listing lines 3–7  (5 issue) can be achieved on a super scalar
processor only if the processor can successfully isolate the five independent operations fast enough to
issue them all during the same cycle. Dependency checking in h/w is extremely complex and adds to the
delay of super scalar processors. The x86, which is a register deficient CISC architecture, also incurs additional
penalties because of register renaming and CISC to internal RISC format translation.

Another important point is that the Defoe listing contains only one branch on line 12, whereas the
x86 listing contains three branches. On a VLIW processor, in some cases, using predicated instructions
may eliminate jumps. In both listings, line 9 corresponds to the comparison of A[i] and B[i]. The
super scalar had to do a conditional jump  based on the result of the comparison. The VLIW on the
other hand used the result of the comparison to set a predicate, which selectively executed either an add
or a subtract and nullified the other. This technique of converting a control dependence to data depen-
dence is called “if conversion.” The benefits go beyond the single cycle saved by not doing a jump like in
the case of the super scalar processor. The jumps on lines 10 and 12 in the second listing depend on the
condition code which, in turn, depends on the data. Such data dependent branches are difficult to predict.
Assuming that  A[i] < B[i]  and  A[i] ≥ B[i] are equally likely, the super scalar processor is likely
to experience a branch misprediction and the resulting branch penalty half of the time.

Further, going by the VLIW philosophy of communicating performance critical information from the
software to the hardware, the final branch on line 12 uses the opcode modifier “sptk” to inform the
processor that the branch is statically predicted to be taken. For that particular loop, a VLIW processor
can therefore predict the loop accurately 255 times out of 256 loop iterations without any hardware branch
predictor. Even when a hardware branch predictor is available, the instruction advises the processor not
to waste a branch history table entry on that branch since its behavior is already known at compile time. 

The Intel Itanium Processor

The Itanium processor is Intel’s first implementation of the IA-64 ISA. IA-64 is an ISA for the EPIC
(Explicitly Parallel Instruction Computing) style of VLIW developed jointly by Intel and HP. It is a 64-bit,
6 issue VLIW processor with 4 integer units, 4 multimedia units, 2 load/store units, 2 extended precision
floating point units, and 2 single precision floating point units. This processor running at 800 MHz on
a 0.18-µm process has a 10-stage deep pipeline.
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Unlike the Defoe, the IA-64 architecture uses a fixed bundled instruction format. Each MultiOp
consists of one or more 128 bit bundles. Each 128 bit bundle consists of three operations and a template.
Unlike the Defoe where the opcode in each operation specifies a type field, the template encodes com-
monly used combinations of operation types. Allowed operation types are shown in Table x. Since the
template field is only 5 bits wide, bundles do not support all possible combinations of instruction types.
Much like the Defoe’s stop bit, in the IA-64, some template codes specify where in the bundle a MultiOp
ends. In IA-64 terminology, MultiOps are called instruction groups. Like Defoe, the IA-64 uses a decou-
pling buffer to improve its issue rate. Though the IA-64 registers are nominally 64 bits wide, there is a
hidden 65th bit called NaT (Not a Thing). This is used to support speculation. There are 128 general
purpose registers and another set of 128, 82 bit wide floating point registers. Similar to the Defoe, all
operations on the IA-64 are predicated. However, the IA-64 has 64 predicate registers. 

The IA-64 register mechanism is more complex than the Defoe’s because it implements support for
software pipelining using a method similar to the overlapped loop execution support pioneered by Bob
Rau and implemented in the Cydra 5. On the IA-64, general-purpose registers GPR0 to GPR31 are fixed.
Registers 32–127 can be renamed under program control to support a register stack or to do modulo
scheduling for loops. When used to support software pipelining, this feature is called register rotation.
Predicate registers 0–15 are fixed, while predicate registers 16–63 can be made to rotate in unison with
the general purpose registers. The floating point registers also support rotation.

A modulo scheduled loop is similar to a pipelined functional unit. In a pipelined functional unit, each
stage can hold a computation and successive items of data may be applied to the functional unit before
previous data is completely processed. In a similar manner, in a modulo scheduled loop, the loop body
may be logically split into several stages. The compiler can schedule multiple iterations of a loop in a
pipelined manner as long as data outputs of one stage flow into the inputs of the next stage in a pipeline.
Traditionally, this required unrolling the loop and renaming the registers used in successive iterations.
The IA-64 reduces the overhead of such a loop and avoids the need for register renaming by rotating
registers forward. After one rotation, the value that was in register X will be found in register X + 1.
When used in conjunction with predication, this allows a natural expression of software pipelines similar
to their hardware counterparts.

The IA-64 supports software directed control and data speculation. To do control speculation, the
compiler moves loads before its controlling branch. The load is then flagged as a speculative load. The
processor does not signal exceptions on a speculative load. If the controlling branch is later taken, the compiler
uses a special check operation to see if an exception occurred. If an exception occurred, the check operation
transfers control to exception handling code.

To support data speculation, the processor supports a special kind of load called an advance load. If
the compiler cannot disambiguate between the addresses of a store and a later load, it can issue an advance
load ahead of the store. The processor uses a special hardware structure called the ALAT to keep track
of whether a later store wrote to the same location as the advance load. Later, in the original location of
the load, the compiler uses a special check operation to see if a store invalidated the result of an advance
load. If so, the check operation transfers control to special recovery code.

Similar to the Defoe, the IA-64 also supports both static and dynamic hints for branches. It also makes
use of hardware branch prediction. There are also hints in load and store instructions that inform the
processor about the cache behavior of a particular memory operation.

The IA-64 also includes SIMD instructions suitable for media processing. Special multimedia instruc-
tions similar to the MMX and SSE extensions of 80x86 processors treat the contents of a general purpose
register as two 32-bit, four 16-bit, or eight 8-bit operands and operate on them in parallel.

To improve performance, the IA-64 architecture includes several features that are not found in a
traditional VLIW architecture. The Intel Itanium processor is probably the most complex VLIW ever
designed. It is a matter of debate whether some of the control complexity of the IA-64 is justifiable in a
VLIW architecture and whether the enhancements actually improve performance enough to justify their
complexity. Next, we will look at a simpler VLIW processor that has been designed with a totally different
goal—that of reducing power consumption.
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The Transmeta Crusoe Processor

Even though very little information is publicly available at the time of this writing about the architecture
of the Crusoe series of processors from Transmeta Corp., it represents a very interesting point in the history
of VLIW processors. Traditionally, VLIW processors have been designed with the goal of maximizing ILP
and performance. The designers of the Crusoe on the other hand needed to build a processor with moderate
performance compared to current desktop processors, but with the additional restriction that their CPU
consume very little power since it is intended for mobile applications and that it should be able to efficiently
emulate the ISA of other processors, particularly the 80x86 and the Java virtual machine.

The designers came to the conclusion that features like out of order issue and dynamic scheduling
consumed more power than could justify the performance benefits they provided. They set out replace
such complex ways of gaining ILP with simpler and more power efficient alternatives. The end result
was a simple VLIW architecture. Long instructions on the Crusoe are either 64 or 128 bits. A 128-bit
instruction word called a molecule in Transmeta parlance encodes four operations called atoms. The
molecule format directly determines how operations get routed to functional units. The Crusoe has two
integer units, a floating point unit, a load/store unit, and a branch unit. Similar to the Defoe, the Crusoe
has 64 general-purpose registers and supports strictly in order issue. Unlike the Defoe, which uses
predication, the Crusoe uses condition flags, which are identical to those of the x86 for ease of emulation.

Binary x86 programs, firmware, and operating systems are emulated with the help of a run time binary
translator called code morphing software. This makes VLIW software compatibility a non issue. Only
the native code morphing software needs to be changed when the Crusoe architecture or ISA changes.
As a power and performance optimization, the hardware and software together maintain a cache of
translated code. The translations are instrumented to collect execution frequencies and branch history,
and this information is fed back to the code morphing software to guide its optimizations. 

To correctly model the precise exception semantics of the x86 processor, the part of the register file
that holds x86 register state is duplicated. The duplicate is called a shadow copy. Normal operations only
affect the original registers. At the end of a translated section of code, a special commit operation is
used to copy the working register values to the shadow registers. If an exception happens while executing
a translated unit, the run time software uses the shadow copy to recreate the precise exception state. Store
operations are implemented in a similar manner using a store buffer. The Crusoe provides alias detection
hardware and data speculation primitives, which are quite similar to those of the IA-64.

Scheduling Algorithms for VLIW

The difficulty of programming VLIW processors by hand should be evident even from the simple Defoe
programming examples. One reason programming VLIWs is more difficult than writing code for a super
scalar processor is that the program for a super scalar processor is inherently sequential and it is left to
the hardware to extract parallelism from the sequential program. On the other hand, when generating
code for a VLIW processor the assembly language programmer or the compiler is faced with the task of
extracting parallelism from a sequential algorithm and scheduling independent operations concurrently.
For this reason, instruction scheduling algorithms are critical to the performance of a VLIW processor.
So, we describe three important scheduling algorithms next starting with the trace scheduling algorithm
which started off the VLIW style of architectures.

Trace Scheduling 

Compilers for the first ILP processors used a 3-phase method to generate code. The passes were:

• Generate a sequential program. Analyze each basic block in the sequential program for indepen-
dent operations. 

• Schedule independent operations within the same block in parallel if sufficient hardware resources
are available.

• Move operations between blocks when possible.
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This 3-phase approach fails to exploit much of the ILP available in the program for two reasons.

• Oftentimes, operations in a basic block are dependent on each other. Therefore, sufficient ILP
may not be available within a basic block.

• Arbitrary choices made while scheduling basic blocks make it difficult to move operations between
blocks.

Trace scheduling is a profile driven method developed by Joseph Fisher to circumvent this problem.
In trace scheduling, a set of commonly executed sequence of blocks is gathered together into a trace and
the whole trace is scheduled together.

The trace scheduling algorithm works as follows:

1. Generate a possibly unoptimized version of the program, run it on sample input and collect
statistics. Estimate the probability of each conditional branch.

2. From the basic block level data precedence graph of the program (also commonly called DAG for
Directed Acylic Graph), select a loop-free linear sequence of basic blocks, which have a high
probability of execution. Such a sequence is called a trace. The compiler may use other optimiza-
tions like loop unrolling or procedure inlining to generate DAGS from which suitable traces can
be selected.

3. Consider the trace as if it were a basic block. Build a DAG for it, considering branches like all
other operations. If an operation controlled by a conditional jump could over write a value that
is live on the off-trace edge, add an edge that makes the operation dependent on the branch so
that the operation cannot be moved ahead of the branch. Also, add edges to preserve the relative
order of conditional branches.

4. Schedule the resulting DAG as if it were a basic block doing register allocation and functional unit
selection, as each operation is scheduled.

5. Generate compensation codes for mistakes made by considering the trace as a basic block. In
particular:
a. If an operation that used to precede a conditional branch in the sequential code is moved after

that branch, then add a copy of that operation preceding the off-trace target of the conditional
jump.

b. If an operation that succeeded a point of entry into the trace from outside the trace is moved
ahead of that point of entry, then copy of that operation must be placed outside the trace on
the path that leads to that point of entry.

c. Ensure that rejoins that used to enter the trace enter at the new trace only at a point after
which no operation is found in the new trace that were not below the rejoin point in the old
trace.

6. Link the new trace back into the old DAG.
7. After scheduling the very first trace, new operations would have been added to the original DAG.

Pick a different frequent trace and schedule it. Repeat till the DAG has been covered using disjoint
traces, and no unscheduled operations remain.

Trace Scheduling-2

Trace scheduling-2 goes beyond trace scheduling in that it allows nonlinear code motion, i.e., it allows
operations from both sides of a conditional branch to be moved above the branch. Trace scheduling
usually misses code motions that are speculative or moves operations from one trace to another. Trace
scheduling-2 on the other hand uses an expected value function called speculative yield, to consider the
cost of speculative execution and decide whether or not to move operations from one block to another.
Unlike trace scheduling, which operates on a linear sequence of blocks, the newer algorithm works by
picking clusters of operations where each cluster is a maximal set of operations that are connected without
back edges in the flow graph of the program. The actual details of the algorithm are beyond the scope
of this section.
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Super Block Scheduling

Super block scheduling is a region-scheduling algorithm developed in conjunction with the Impact
compiler at the University of Illinois. Similar to trace scheduling, super block scheduling is based on the
premise that to extract ILP from a sequential program, the compiler should perform code motion across
multiple basic blocks. Unlike trace scheduling, super block scheduling is driven by static branch analysis,
not profile data. A super block is a set of basic blocks in which control may enter only at the top, but
may exit at more than one point. Super blocks are identified by first identifying traces and then eliminating
side entries into a trace by a process called tail duplication. Tail duplication works by creating a separate
off-trace copy of the basic blocks in between a side entrance and the trace exit and redirecting the edge
corresponding to the side entry to the copy. Traces are identified using static branch analysis based on
loop detection, heuristic hazard avoidance, and heuristics for path selection. Loop detection identifies
loops and marks loop back edges as taken and loop exits as not taken. Hazard avoidance uses a set of
heuristics to detect situations, such as ambiguous stores and procedure calls, that could cause a compiler
to use conservative optimization strategies and then predicts the branches so as to avoid having to
optimize hazards. Path-selection heuristics use the opcode of a branch, its operands and the contents of
its successor blocks to predict its direction if no other method already predicted the direction of the branch.
These are based on common programming patterns like the fact that pointers are unlikely to be NULL,
floating point comparisons are unlikely to be equal, etc. Once branch information is available, traces are
grown and super blocks created by tail duplication followed by scheduling of the super block. Studies
have shown that static analysis based super block scheduling can achieve results that are comparable to
profile-based methods.

The Future of VLIW Processors

VLIW processors have enjoyed moderate commercial success in recent times as exemplified by the Philips
Trimedia, TI TMS320C62x DSPs, Intel Itanium, and to a lesser extend the Transmeta Crusoe. The role
of VLIW processors, however, has changed since the days of Cydrome and Multiflow. Even though early
VLIW processors were developed to be scientific super computers, newer processors have been used
mainly for stream, image and digital signal processing, multimedia codec hardware, low-power mobile
computers, and for running commercial servers. VLIW compiler technology has made major advances
during the last decade; however, most of the compiler techniques developed for VLIW are equally
applicable to super scalar processors as well. Stream and media processing applications are typically very
regular with predictable branch behavior and large amounts of ILP. They lend themselves easily to VLIW
style execution. The ever increasing demand for multimedia applications will continue to fuel develop-
ment of VLIW technology; however, in the short term, super scalar processors will probably dominate
in the role of general-purpose processors. Increasing wire delays in deep sub-micron processes will
ultimately force super scalar processors to use simpler and more scalable control structures and seek
more help from software. It is reasonable to assume that in the long run, much of the VLIW technology
and design philosophy will make its way into main stream processors.
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5.3 Vector Processing

Krste Asanovic

Introduction

For nearly 30 years, vector processing has been used in the world’s fastest supercomputers to accelerate
applications in scientific and technical computing. More recently vector-like extensions have become
popular on desktop and embedded microprocessors to accelerate multimedia applications. In both cases,
architects are motivated to include data parallel instructions because they enable large increases in
performance at much lower cost than alternative approaches to exploiting application parallelism. This
chapter reviews the development of data parallel instruction sets from the early SIMD (single instruction,
multiple data) machines, through the vector supercomputers, to the new multimedia instruction sets.

Data Parallelism

An application is said to contain data parallelism when the same operation can be carried out across
arrays of operands, for example, when two vectors are added element by element to produce a result
vector. Data parallel operations are usually expressed as loops in sequential programming languages. If
each loop iteration is independent of the others, data parallel instructions can be used to execute the
code. The following vector add code written in C is a simple example of a data parallel loop:

for (i=0; i<N; i++)
C[i] = A[i] + B[i];

Provided that the result array C does not overlap the source arrays A and B, the individual loop iterations
can be run in parallel. Many compute-intensive applications are built around such data parallel loop
kernels. One of the most important factors in determining the performance of data parallel programs is
the range of vector lengths observed for typical data sets. Vector lengths vary depending on the application,
how the application is coded, and also on the input data for each run. In general, the longer the vectors,
the greater the performance achieved by a data parallel architecture, as any loop startup overheads will
be amortized over a larger number of elements.
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The performance of a piece of vector code running on a data parallel machine can be summarized with
a few key parameters. Rn is the rate of execution (for example, in MFLOPS) for a vector of length n. R∞

is the maximum rate of execution achieved assuming infinite length vectors. N_ is the number of elements
at which vector performance reaches one half of R∞. N_ indirectly measures startup overhead, as it gives
the vector length at which the time lost to overheads is equal to the time taken to execute the vector
operation at peak speed ignoring overheads. The larger the N_ for a code kernel running on a particular
machine, the longer the vectors must be to achieve close to peak performance.

History of Data Parallel Machines

Data parallel architectures were first developed to provide high throughput for supercomputing appli-
cations. There are two main classes of data parallel architectures: distributed memory SIMD (single
instruction, multiple data [1]) architecture and shared memory vector architecture. An early example
of a distributed memory SIMD (DM-SIMD) architecture is the Illiac-IV [2]. A typical DM-SIMD
architecture has a general-purpose scalar processor acting as the central controller and an array of
processing elements (PEs) each with its own private memory, as shown in Fig. 5.8. The central processor
executes arbitrary scalar code and also fetches instructions, and broadcasts them across the array of PEs,
which execute the operations in parallel and in lockstep. Usually the local memories of the PE array are
mapped into the central processor’s address space so that it can read and write any word in the entire
machine. PEs can communicate with each other, using a separate parallel inter-PE data network. Many
DM-SIMD machines, including the ICL DAP [3] and the Goodyear MPP [4], used single-bit processors
connected in a 2-D mesh, providing communication well-matched to image processing or scientific
simulations that could be mapped to a regular grid. The later connection machine design [5] added a
more flexible router to allow arbitrary communication between single-bit PEs, although at much slower
rates than the 2-D mesh connect. One advantage of single-bit PEs is that the number of cycles taken to
perform a primitive operation, such as an add can scale with the precision of the operands, making them
well suited to tasks such as image processing where low-precision operands are common. An alternative
approach was taken in the Illiac-IV where wide 64-bit PEs could be subdivided into multiple 32-bit or
8-bit PEs to give higher performance on reduced precision operands. This approach reduces N_ for
calculations on vectors with wider operands but requires more complex PEs. This same technique of
subdividing wide datapaths has been carried over into the new generation of multimedia extensions
(referred to as MX in the rest of this chapter) for microprocessors. The main attraction of DM-SIMD
machines is that the PEs can be much simpler than the central processor because they do not need to
fetch and decode instructions. This allows large arrays of simple PEs to be constructed, for example, up
to 65,536 single-bit PEs in the original connection machine design.

FIGURE 5.8 Structure of a distributed memory SIMD (DM-SIMD) processor.
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Shared-memory vector architectures (henceforth abbreviated to just “vector architectures”) also belong
to the class of SIMD machines, as they apply a single instruction to multiple data items. The primary
difference in the programming model of vector machines versus DM-SIMD machines is that vector
machines allow any PE to access any word in the system’s main memory. Because it is difficult to construct
machines that allow a large number of simple processors to share a large central memory, vector machines
typically have a smaller number of highly pipelined PEs.

The two earliest commercial vector architectures were CDC STAR-100 [6] and TI ASC [7]. Both of
these machines were vector memory–memory architectures where the vector operands to a vector instruc-
tion were streamed in and out of memory. For example, a vector add instruction would specify the start
addresses of both source vectors and the destination vector, and during execution elements were fetched
from memory before being operated on by the arithmetic unit which produced a set of results to write
back to main memory.

The Cray-1 [8] was the first commercially successful vector architecture and introduced the idea of
vector registers. A vector register architecture provides vector arithmetic operations that can only take
operands from vector registers, with vector load and store instructions that only move data between the
vector registers and memory. Vector registers hold short vectors close to the vector functional units,
shortening instruction latencies and allowing vector operands to be reused from registers thereby reducing
memory bandwidth requirements. These advantages have led to the dominance of vector register archi-
tectures and vector memory–memory machines are ignored for the rest of this section.

DM-SIMD machines have two primary disadvantages compared to vector supercomputers when writing
applications. The first is that the programmer has to be extremely careful in selecting algorithms and mapping
data arrays across the machine to ensure that each PE can satisfy almost all of its data accesses from its local
memory, while ensuring the local data set still fits into the limited local memory of each PE. In contrast,
the PEs in a vector machine have equal access to all of main memory, and the programmer only has to
ensure that data accesses are spread across all the interleaved memory banks in the memory subsystem.

The second disadvantage is that DM-SIMD machines typically have a large number of simple PEs and
so to avoid having many PEs sit idle, applications must have long vectors. For the large-scale DM-SIMD
machines, N_ can be in the range of tens of thousands of elements. In contrast, the vector supercomputers
contain a few highly pipelined PEs and have N_ in the range of tens to hundreds of elements.

To make effective use of a DM-SIMD machine, the programmer has to find a way to restructure code
to contain very long vector lengths, while simultaneously mapping data structures to distributed small
local memories in each PE. Achieving high performance under these constraints has proven difficult
except for a few specialized applications. In contrast, the vector supercomputers do not require data
partitioning and provide reasonable performance on much shorter vectors and so require much less
effort to port and tune applications. Although DM-SIMD machines can provide much higher peak
performances than vector supercomputers, sustained performance was often similar or lower and pro-
gramming effort was much higher. As a result, although they achieved some popularity in the 1980s,
DM-SIMD machines have disappeared from the high-end, general-purpose computing market with no
current commercial manufacturers, while there are still several manufacturers of high-end vector super-
computers with sufficient revenue to fund continued development of new implementations. DM-SIMD
architectures remain popular in a few niche special-purpose areas, particularly in image processing and
in graphics rendering, where the natural application parallelism maps well onto the DM-SIMD array,
providing extremely high throughput at low cost.

Although data parallel instructions were originally introduced for high-end supercomputers, they can
be applied to many applications outside of scientific and technical supercomputing. Beginning with the
Intel i860 released in 1989, microprocessor manufacturers have introduced data parallel instruction set
extensions that allow a small number of parallel SIMD operations to be specified in single instruction. These
microprocessor SIMD ISA (instruction set architecture) extensions were originally targeted at multimedia
applications and supported only limited-precision, fixed-point arithmetic, but now support single and
double precision floating-point and hence a much wider range of applications. In this chapter, SIMD ISA
extensions are viewed as a form of short vector instruction to allow a unified discussion of design trade-offs.
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Basic Vector Register Architecture

Vector processors contain a conventional scalar processor that executes general-purpose code together
with a vector processing unit that handles data parallel code. Figure 5.9 shows the general architecture
of a typical vector machine. The vector processing unit includes a set of vector registers and a set of vector
functional units that operate on the vector registers. Each vector register contains a set of two or more
data elements. A typical vector arithmetic instruction reads source operand vectors from two vector
registers, performs an operation pair-wise on all elements in each vector register and writes a result vector
to a destination vector register, as shown in Fig. 5.10. Often, versions of vector instructions are provided
that replace one vector operand with a scalar value; these are termed vector–scalar instructions. The
scalar value is used as one of the operand inputs at each element position.

FIGURE 5.9 Structure of a vector machine. This example has a central vector register file, two vector arithmetic
units (VAU), one vector load/store unit (VMU), and one vector mask unit (VFU) that operates on the mask registers.
(Adapted from Asanovic, K., Vector Microprocessors, 1998. With permission.)

FIGURE 5.10 Operation of a vector add instruction. Here, the instruction is adding vector registers 1 and 2 to give
a result in vector register 3.
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The vector ISA usually fixes the maximum number of elements in each vector register, although some
machines such as the IBM vector extension for the 3090 mainframe support implementations with
differing numbers of elements per vector register. If the number of elements required by the application
is less than the number of elements in a vector register, a separate vector length register (VLR) is set with
the desired number of operations to perform. Subsequent vector instructions only perform this number
of operations on the first elements of each vector register. If the application requires vectors longer than
will fit into a vector register, a process called strip mining is used to construct a vector loop that executes
the application code loop in segments that each fit into the machine’s vector registers. The MX ISAs have
very short vector registers and do not provide any vector length control. Various types of vector load and
store instruction can be provided to move vectors between the vector register file and memory. The
simplest form of vector load and store transfers a set of elements that are contiguous in memory to
successive elements of a vector register. The base address is usually specified by the contents of a register
in the scalar processor. This is termed a unit-stride load or store, and is the only type of vector load and
store provided in existing MX instruction sets.

Vector supercomputers also include more complex vector load and store instructions. A strided load
or store instruction transfers memory elements that are separated by a constant stride, where the stride
is specified by the contents of a second scalar register. Upon completion of a strided load, vector elements
that were widely scattered in memory are compacted into a dense form in a vector register suitable for
subsequent vector arithmetic instructions. After processing, elements can be unpacked from a vector
register back to memory using a strided store.

Vector supercomputers also include indexed load and store instructions to allow elements to be collected
into a vector register from arbitrary locations in memory. An indexed load or store uses a vector register
to supply a set of element indices. For an indexed load or gather, the vector of indices is added to a scalar
base register to give a vector of effective addresses from which individual elements are gathered and placed
into a densely packed vector register. An indexed store, or scatter, inverts the process and scatters elements
from a densely packed vector register into memory locations specified by the vector of effective addresses.

Many applications contain conditionally executed code, for example, the following loop clears values
of A[i] smaller than some threshold value: 

for (i=0; i<N; i++)
if (A[i] < threshold)

A[i] = 0;

Data parallel instruction sets usually provide some form of conditionally executed instruction to support
parallelization of such loops. In vector machines, one approach is to provide a mask register that has a
single bit per element position. Vector comparison operations test a predicate at each element and set
bits in the mask register at element positions where the condition is true. A subsequent vector instruction
takes the mask register as an argument, and at element positions where the mask bit is set, the destination
register is updated with the result of the vector operation, otherwise the destination element is left
unchanged. The vector loop body for the previous vector loop is shown below (with all stripmining loop
code removed).

   lv va, (ra) # Load slice of vector A from memory
   cmp.lt.vs va, rt # Set mask where A[i] < threshold
   move.vs.m va, r0 # Clear elements of A[i] under mask
   sv va, (ra) # Store updated slice of A to memory

Vector Instruction Set Advantages

Vector instruction set extensions provide a number of advantages over alternative mechanisms for
encoding parallel operations. Vector instructions are compact, encoding many parallel operations in a
single short instruction, as compared to superscalar or VLIW instruction sets which encode each indi-
vidual operation using a separate collection of bits.
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They are also expressive, relaying much useful information from software to hardware. When a compiler
or programmer specifies a vector instruction, they indicate that all of the elemental operations within the
instruction are independent, allowing hardware to execute the operations using pipelined execution units,
or parallel execution units, or any combination of pipelined and parallel execution units, without requiring
dependency checking or operand bypassing for elements within the same vector instruction. Vector ISAs
also reduce the dependency checking required between two different vector instructions. Hardware only
has to check dependencies once per vector register, not once per elemental operation. This dramatically
reduces the complexity of building high throughput execution engines compared with RISC or VLIW
scalar cores, which have to perform dependency and interlock checking for every elemental result. Vector
memory instructions can also relay much useful information to the memory subsystem by passing a whole
stream of memory requests together with the stride between elements in the stream.

Another considerable advantage of a vector ISA is that it simplifies scaling of implementation paral-
lelism. As described in the next section, the degree of parallelism in the vector unit can be increased
while maintaining object–code compatibility.

Lanes: Parallel Execution Units

Figure 5.11(a) shows the execution of a vector add instruction on a single pipelined adder. Results are
computed at the rate of one element per cycle. Figure 5.11(b) shows the execution of a vector add
instruction using four parallel pipelined adders. Elements are interleaved across the parallel pipelines
allowing up to four element results to be computed per cycle. This increase in parallelism is invisible to
software except for the increased performance.

Figure 5.12 shows how a typical vector unit can be constructed as a set of replicated lanes, where each
lane is a cluster containing a portion of the vector register file and one pipeline from each vector

FIGURE 5.11 Execution of vector add instruction using different numbers of execution units. The machine in (a) has
a single adder and completes one result per cycle, while the machine in (b) has four adders and completes four results
every cycle. An element group is the set of elements that proceed down the parallel pipelines together. (From Asanovic,
K., Vector Microprocessors, 1998. With permission.)
© 2002 by CRC Press LLC



functional unit. Because of the way the vector ISA is designed, there is no need for communication
between the lanes except via the memory system. The vector registers are striped over the lanes, with
lane 0 holding all elements 0, N, 2N, etc., lane 1 holding elements 1, N + 1, 2N + 1, etc. In this way, each
elemental vector arithmetic operation will find its source and destination operands located within the
same lane, which dramatically reduces interconnect costs.

The fastest current vector supercomputers, NEC SX-5 and Fujitsu VPP5000, employ 16 parallel 64-bit
lanes in each CPU. The NEC SX-5 can complete 16 loads, 16 64-bit floating-point multiplies, and 16 floating-
point adds each clock cycle.

Many data parallel systems, ranging from vector supercomputers, such as the early CDC STAR-100,
to the MX ISAs, such as AltiVec, provide variable precision lanes, where a wide 64-bit lane can be subdivided
into a larger number of lower precision lanes to give greater performance on reduced precision operands.

Vector Register File Organization

Vector machines differ widely in the organization of the vector register file. The important software-
visible parameters for a vector register file are the number of vector registers, the number of elements in
each vector register, and the width of each element. The Cray-1 had eight vector registers each holding
sixty-four 64-bit elements (4096 bits total). The AltiVec MX for the PowerPC has 32 vector registers each
holding 128-bits that can be divided into four 32-bit elements, eight 16-bit elements, or sixteen 8-bit
elements. Some vector supercomputers have extremely large vector register files organized in a vector
register hierarchy, e.g., the NEC SX-5 has 72 vector registers (8 foreground plus 64 background) that can
each hold five hundred twelve 64-bit elements.

For a fixed vector register storage capacity (measured in elements), an architecture has to choose
between few longer vector registers or more shorter vector registers. The primary advantage of lengthening
a vector register is that it reduces the instruction bandwidth required to attain a given level of performance
because a single instruction can specify a greater number of parallel operations. Increases in vector register
length give rapidly diminishing returns, as amortized startup overheads become small and as fewer
applications can take advantage of the increased vector register length.

The primary advantage of providing more vector registers is that it allows more temporary values to
be held in registers, reducing data memory bandwidth requirements. For machines with only eight vector
registers, vector register spills have been shown to consume up to 70% of all vector memory traffic, while
increasing the number of vector registers to 32 removes most register spill traffic [9,10]. Adding more

FIGURE 5.12 A vector unit constructed from replicated lanes. Each lane holds one adder and one multiplier as
well as one portion of the vector register file and a connection to the memory system. The adder functional unit
(adder FU) executes add instructions using all four adders in all four lanes.
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vector registers also gives compilers more flexibility in scheduling vector instructions to boost vector
instruction-level parallelism.

Some vector machines provide a configurable vector register file to allow software to dynamically
choose the optimal configuration. For example, the Fujitsu VPP 5000 allows software to select vector
register configurations ranging from 256 vector registers each holding 128 elements to eight vector
registers holding 4096 elements each. For loops where few temporary values exist, longer vector registers
can be used to reduce instruction bandwidth and stripmining overhead, while for loops where many
temporary values exist, the number of shorter vector registers can be increased to reduce the number of
vector register spills and, hence, the data memory bandwidth required. The main disadvantage of a
configurable vector register file is the increase in control logic complexity and the increase in machine
state to hold the configuration information.

Traditional Vector Computers versus Microprocessor 
Multimedia Extensions

Traditional vector supercomputers were developed to provide high performance on data parallel code
developed in a compiled high level language (almost always a dialect of FORTRAN) while requiring only
simple control units. Vector registers were designed with a large number of elements (64 for the Cray-1).
This allowed a single vector instruction to occupy each deeply pipelined functional unit for many
cycles. Even though only a single instruction could be issued per cycle, by starting separate vector
instructions on different vector functional units, multiple vector instructions could overlap in execution
at one time. In addition, adding more lanes allows each vector instruction to complete more elements
per cycle.

MX ISAs for microprocessors evolved at a time where the base microprocessors were already issuing
multiple scalar instructions per cycle. Another distinction is that the MX ISAs were not originally
developed as compiler targets, but were intended to be used to write a few key library routines. This
helps explain why MX ISAs, although sharing many attributes with earlier vector instructions, have
evolved differently. The very short vectors in MX ISAs allow each instruction to only specify one or two
cycle’s worth of work for the functional units. To keep multiple functional units busy, the superscalar
dispatch capability of the base scalar processor is used. To hide functional unit latencies, the multimedia
code must be loop unrolled and software pipelined. In effect, the multimedia engine is being programmed
in a microcoded style with the base scalar processor providing the microcode sequencer and each MX
instruction representing one microcode primitive for the vector engine.

This approach of providing only primitive microcode level operations in the multimedia extensions
also explains the lack of other facilities standard in a vector ISA. One example is vector length control.
Rather than use long vectors and a VLR register, the MX ISAs provide short vector instructions that are
placed in unrolled loops to operate on longer vectors. These unrolled loops can only be used with long
vectors that are a multiple of the intrinsic vector length multiplied by the unrolling factor. Extra code is
required to check for shorter vectors and to jump to separate code segments to handle short vectors and
the remnants of any longer vector that were not handled by the unrolled loop. This overhead is greater
than for the stripmining code in traditional vector ISAs, which simply set the VLR appropriately in the
last iteration of the stripmined loop.

Vector loads and stores are another place where functionality has been moved into software for the
MX ISAs. Most MX ISAs only provide unit-stride loads and stores that have to be aligned on boundaries
corresponding to the vector length, not just aligned at element boundaries as in regular scalar code. For
example, a unit-stride load of four 16-bit quantities has to be aligned at 64-bit boundaries in most MX
instruction sets, although in some cases hardware will handle misaligned loads and stores at a slower
rate. To help handle misaligned application vectors, various shift and align instructions have been added
to MX ISAs to allow misalignment to be handled as part of the software microcoded loop. This approach
simplifies the hardware design, but unfortunately these misaligned vectors are common in application
code, and significant slowdown occurs when performing alignment in software. This encourages the
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use of loops optimized for certain operand alignments, which leads to an increase in code size and also
in loop startup time to select the appropriate routine. In certain cases, the application can constrain the
layout of the data elements to ensure alignment at the necessary boundaries, but typically this is only
possible when the entire application has been optimized for these MX instructions, for example, in a
dedicated media player. Strided and indexed operations are also usually coded as scalar loads and stores
with a corresponding slowdown over full vector mode.

Memory System Design

Perhaps the biggest difference between microprocessors and vector supercomputers is in the capabil-
ities of the vector memory system. Vector supercomputers usually forgo data caches and rely on
many banks of interleaved main memory to provide high memory bandwidth, while microprocessors
rely on multilevel cache hierarchies to isolate the CPU from memory latencies and limited main
memory bandwidth. A modern high-end vector supercomputer provides over 50 GB/s of main memory
bandwidth per CPU, while high-end microprocessor systems provide only around 1 GB/s per CPU.
For applications that require non-unit stride accesses to large data sets, the bandwidth discrepancy is
even larger, because microprocessors access memory using long cache lines that waste bandwidth when
there is little spatial locality. A modern vector CPU might sustain 16 or 32 non-unit stride memory
operations every cycle pipelined out to main memory, with hundreds of outstanding memory accesses,
while a microprocessor usually can only have a total of four to eight cache line misses outstanding at
any time. This large difference in non-unit stride memory bandwidth is the main reason that vector
supercomputers remain popular for certain applications, including car crash simulation and weather
forecasting.

Traditional vector ISAs use long vector registers to help hide memory latency. MX ISAs have only very
short vector registers and so require a different mechanism to hide memory latency and make better use
of available main memory bandwidth. Various forms of hardware and software prefetching schemes have
become popular with microprocessor designers to hide memory latency. Hardware prefetching schemes
dynamically inspect memory references and attempt to predict which data will be needed next, fetching
these into the cache before requested by the application. This approach has the advantage of not requiring
changes to software, but can be inaccurate and can consume excessive memory bandwidth on mis-
speculated prefetches. 

Software prefetching can be very accurate as the compiler knows the reference patterns of each piece
of code, but the software prefetch instructions have to be carefully scheduled so that data are not brought
in too early, perhaps evicting useful data, or too late, which will leave some memory latency exposed.
The optimal schedule depends on the CPU and memory system implementations, which implies that
code optimized for one generation of CPU or one particular memory system.

For either hardware or software prefetching schemes, it is essential that the memory controller can
support many outstanding requests, otherwise high memory bandwidths cannot be sustained from a
typical high latency memory system. 

Future Directions

Microprocessor architects are continually searching for techniques that can take advantage of ever increas-
ing transistor counts to improve application performance. Data parallel ISA extensions have proven
effective on a wide range of applications, and hardware designs scale well to more parallel lanes. Existing
supercomputers have sixteen 64-bit lanes while microprocessor MX implementations have expanded to
two 64-bit lanes. It is likely that there will be further expansion of MX units to four or more 64-bit lanes.
At higher lane counts, efficiencies drop, partly because of limited application vector lengths and partly
because additional lanes do not help non-data parallel portions of each application. 

An alternative approach to attaining high throughput on data parallel applications is to add more
CPUs each with vector units and to parallelize loops at the thread level. This technique also allows
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independent CPUs to run different tasks to improve system throughput. The main disadvantages of this
multiprocessor approach compared to simply increasing the number of lanes are the hardware costs of
additional scalar processor logic and the additional inter-CPU synchronization costs. The relative cost
of adding more CPUs is reduced as lane counts grow, particularly when the cost of providing sufficient
main memory bandwidth is considered. The inter-CPU synchronization cost is a more serious issue as
it adds to vector startup latencies and can increase N_ dramatically, reducing the effectiveness of multi-
processors on shorter vectors. For this reason, vector supercomputers have added fast inter-CPU syn-
chronization through dedicated shared semaphore registers. The Cray SV1 design makes use of these
registers to gang together four 2-lane processors in software to appear as a single 8-lane processor to the
user. It should be expected that some form of fast inter-CPU synchronization primitive will be added to
ISAs as design move to chip-scale multiprocessors, as these primitives can also be applied to many types
of thread-level parallel code.

Increased CPU clock frequencies and increased lane counts combine to dramatically increase the memory
bandwidth required by a vector CPU. The cost of a traditional vector style memory system will become
prohibitive even for high-end vector supercomputers. Even if the cost could be justified, the high memory
latency of a flat memory system will hamper performance for applications that have lower degrees of
parallelism and that can fit in caches, and a continued move towards cached memory hierarchies for vector
machines is to be expected leading to a merging of vector supercomputer and microprocessor design points.

MX extensions for microprocessors have undergone considerable changes since first introduced. The
current designs provide low-level arithmetic and memory system primitives that are intended to be used
in hand-microcoded loops. These result in high startup overheads and large code size relative to tradi-
tional vector extensions as discussed above. A possible future direction that could merge the benefit of
vector ISAs and out-of-order superscalar microprocessors would be to add vector-style ISA extensions,
but have these interpreted by microcode sequencers that would produce internal elemental microoper-
ations that would be passed through the regular register renaming and out-of-order dispatch stages of a
modern superscalar execution engine. This is similar to the way that legacy CISC string operations are
handled by modern implementations.

Conclusions

Data parallel instructions have appeared in many forms in high-performance computer architectures
over the last 30 years. They remain popular because many applications are amenable to data parallel
execution, and because data parallel hardware is the simplest and cheapest way to exploit this type of
application parallelism. As multimedia extensions evolve, they are likely to adopt more of the character-
istics of traditional shared-memory vector ISAs to reduce loop startup overhead and decrease code size.
However, these new multimedia vector ISAs will be shaped by the need to coexist with the speculative
out-of-order execution engines used by the superscalar processors. 
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5.4 Multithreading, Multiprocessing

Manoj Franklin

Introduction

A defining challenge for research in computer science and engineering has been the ongoing quest for
faster execution of programs. There is broad consensus that barring the use of novel technologies such
as quantum computing and biological computing, the key to further progress in this quest is to do parallel
processing of some kind. 

The commodity microprocessor industry has been traditionally looking to fine-grained or instruction
level parallelism (ILP) for improving performance, with sophisticated microarchitectural techniques (such
as pipelining, branch prediction, out-of-order execution, and superscalar execution) and sophisticated
compiler optimizations. Such hardware-centered techniques appear to have scalability problems in the
sub-micron technology era and are already appearing to run out of steam. According to a recent position
paper by Dally and Lacy [4], “Over the past 20 years, the increased density of VLSI chips was applied to
close the gap between microprocessors and high-end CPUs. Today this gap is fully closed and adding
devices to uniprocessors is well beyond the point of diminishing returns.” We view ILP as the main success
story form of parallelism thus far, as it was adopted in a big way in the commercial world for reducing
the completion time of general purpose applications. The future promises to expand the “parallelism
bridgehead” established by ILP with the “ground forces” of thread-level parallelism (TLP), by using
multiple processing elements to exploit both fine-grained and coarse-grained parallelism in a natural way.

Current hardware trends are playing a driving role in the development of multiprocessing techniques.
Two important hardware trends in this regard are single chip transistor count and clock speed, both of
which have been steadily increasing due to advances in sub-micron technology. The Semiconductor
Industry Association (SIA) has predicted that by 2012, industry will be manufacturing processors con-
taining 1.4 billion transistors and running at 10 GHz [39]. DRAMs will grow to 4 Gbits in 2003. This
increasing transistor budget has opened up new opportunities and challenges for the development of
on-chip multiprocessing. 

One of the challenges introduced by sub-micron technology is that wire delays become more important
than gate delays [39]. This effect is predominant in global wires because their length depends on the die
size, which is steadily increasing. An important implication of the physical limits of wire scaling is that,
the area that is reachable in a single clock cycle of future processors will be confined to a small portion
of the die [39].

A natural way to make use of the additional transistor budget and to deal with the wire delay problem
is to use the concept of multithreading or multiprocessing1 in the processor microarchitecture. That is,
build the processor as a collection of independent processing elements (PEs), each of which executes a
separate thread or flow of control. By designing the processor as a collection of PEs, (a) the number of
global wires reduces, and (b) very little communication occurs through global wires. Thus, much of the
communication occurring in the multi-PE processor is local in nature and occurs through short wires.

In the recent past, several multithreading proposals have appeared in the literature. A few commercial
processors have already started implementing some of these multithreading concepts in a single chip
[24,34]. Although the underlying theme behind the different proposals is quite similar, the exact manner
in which they perform multithreading is quite different. Each of the methodologies has different hardware

1In this section, we use the terms multithreading, multiprocessing, and parallel processing interchangeably. Similarly,
we use the generic term threads whenever the context is applicable to processes, light-weight processes, and light-
weight threads.
© 2002 by CRC Press LLC



and software requirements and trade-offs. The objective of this chapter is to present a common framework
for studying different multiprocessing and multithreading techniques, and to discuss existing multi-
threaded processors and futuristic proposals in the light of this framework. The following are some of
the questions that are specifically addressed in the common framework:

• Parallel programming model

• Nature of threads

• PE Interconnects

• Role of the compiler

The introduction section has highlighted the importance of multithreading and multiprocessing. The
rest of this chapter is organized as follows. The section on “Parallel Processing Software Framework”
presents a common framework for studying different multithreading and multiprocessing approaches,
and highlights software issues that are important to consider while examining them. The section on
“Parallel Processing Hardware Framework” presents a common framework for studying parallel processor
hardware configurations. The “Concluding Remarks” section provides a survey of existing multithreaded
processors and proposals. In particular, it describes how multithreading is employed in the multiscalar
processor, the superthreaded processor, the trace processor, the M-machine, and some of the other
multithreaded microarchitectures. Finally, “Concluding Remarks” presents a qualitative comparison and
discusses future trends.

Parallel Processing Software Framework

In this section we discuss our framework for studying multithreading and multiprocessing. We also
identify three key issues related to multithreading: thread granularity, parallel programming model, and
program partitioning into threads. We shall discuss each of these issues in detail. Not all of these issues
are entirely orthogonal to each other, and it is our objective to highlight how each issue bears on other
related issues.

We define a thread as a flow of control through a program and that flow’s current state (represented
by a current program counter, a call/return stack and, occasionally, some thread-private data). The central
idea behind multithreading and multiprocessing is to have multiple flows of control within a process,
allowing parts of the process to be executed in parallel. A process can have one or more threads doing
its work. Threads that execute in parallel are invariably control-independent, in which case the decision
to execute a thread does not depend on the other active threads. Thus, instructions that are control-
dependent on a conditional branch invariably belong to the thread to which that branch belongs.

Parallel Programming Model

An important attribute of any multiprocessing/multithreading system is its parallel programming model,
embodied in a parallel language or programming environment. This model specifies the names (such as
registers and memory addresses) the thread can access, the operations it can perform on the named data,
and the ordering semantics among these operations, particularly those done by distinct threads. (In the
simplest case, the model assumes multiprogramming, which has no inter-thread communication and
synchronization.) First, we will discuss thread sequencing model, which specifies ordering constraints
(if any) on multiple threads. Then, we discuss inter-thread communication, which deals with passing
data values among two or more threads. Finally, we discuss synchronization aspects of the programming
model, which cause running threads to wait for one another, and waiting threads to resume execution
at the proper time. Orchestrating the inter-thread ordering often requires explicit synchronization oper-
ations when the ordering implicit in the basic operations is not sufficient.

Thread Granularity and Management
Thread-level parallelism (TLP) is more coarse-grained than ILP, and has wide variance in granularity.
We categorize the TLP granularities into three levels as described below. Depending on the granularity,
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thread management (including run-time thread scheduling) is done by the operating system or the run-
time hardware. 

• Processes: In this case, a thread is a process itself. Parallel processing then involves executing
multiple processes in parallel, which is traditionally known as multitasking or multiprogramming.
This is perhaps the most common form of parallel processing, as even most of the uniprocessor
operating systems implement this (by time sharing). Multiple processes can be created using the
fork system call. Processes can be thought of as heavy-weight threads, as their creation entails
duplicating the memory address space, and can take hundreds of thousands of CPU clock cycles.
Management and scheduling of processes is done by the operating system. In a multiprogramming
environment, parallelly executing processes either do not communicate, or communicate through
operating system features such as pipes. 

• Light-weight processes or threads: A light-weight process (also called thread) has a granularity
somewhat finer than a process. The concept of light-weighted processes has been implemented in
a number of operating systems (SUN Solaris, IBM AIX, and Microsoft Windows NT), thread
libraries, and parallel programming languages. Such threads are used in today’s symmetric mul-
tiprocessor workstations and servers. An important characteristic is that these threads share a
common memory address space, and are nonspeculative from the control point of view. 

• Fine-grain threads: These threads are much smaller (of the order a few hundred instructions, at
most) and are not generally known to the operating system. Thread management and scheduling
are typically done by the run-time hardware. In many cases, such threads share a common register
space, besides sharing a common memory address space. Furthermore, the threads are often
speculative from the control point of view.

For a particular TLP granularity, the system performance will depend to a large extent on the nature
of the application and the level of the memory hierarchy at which the PEs are interconnected. 

Thread Sequencing Model
The commonly used model for control flow among threads is the parallel threads model (also called the
control operators based parallel control flow model). In this model, a fork instruction or a variant specifies
the creation of new threads and their starting addresses. The parent thread as well as the forked threads
are allowed to execute in parallel until they reach a join instruction, after which only one of them can
continue. Thus, the join operation serves as a synchronizing point. Apart from the join, other explicit
synchronization operations can be introduced using locks and barriers. Computation inside each thread
is based on sequential control flow. This thread sequencing model is illustrated in Fig. 5.13. 

Compilers and programmers have made significant progress in parallelizing regular numeric applica-
tions for the parallel threads model; however, they have had little or no success in doing the same for
highly irregular numeric or especially nonnumeric applications [18]. In such applications memory addresses

FIGURE 5.13 Parallelism profile for a parallel threads model.
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are difficult (if not impossible) to statically predict—in part because they often depend on run-time inputs
and behavior—that makes it extremely difficult for the compiler to statically prove whether or not
potential threads are independent. Given the size and complexity of real non-numeric programs, paral-
lelization appears to be an unrealistic goal if we stick to the parallel threads model. For such applications,
we can use a different thread control flow model called sequential threads model. This model is closer
to sequential control flow, and envisions a strict sequential ordering among the threads. That is, threads
are extracted from sequential code and run in parallel, without violating the sequential program seman-
tics. The control flow of the sequential code imposes an order on the threads and, therefore, we can use
the terms predecessor and successor to qualify the relation between any given pair of threads. This means
that inter-thread communication between any two threads (if any) is strictly in one direction, as dictated
by the sequential thread ordering. Thus, no explicit synchronization operations are necessary, as the
sequential semantics of the threads guarantee proper synchronization. This relaxation allows us to
“parallelize” nonnumeric applications into threads without explicit synchronization, even if there is a
potential inter-thread data dependence. Program correctness will not be violated if at run time there is a
true data dependence between two threads. The purpose of identifying threads in such a model is to
indicate that those threads are good candidates for parallel execution.

Examples for multithreading proposals using sequential threads are the multiscalar model [8,9,30],
the superthreading model [35], the trace processing model [28,36], and the dynamic multithreading
model [1]. When using the sequential threads model, we can have threads that are nonspeculative from
the control point of view, as well as threads that are speculative from the control point of view. The
latter model is often called speculative multithreading (SpMT). This model is particularly important
to deal with the complex control flow present in typical non-numeric programs. The multiscalar
architecture [8,9,30] provided a complete design and evaluation of an SpMT architecture. Since
then, many other proposals have extended the basic idea of SpMT [5,19,22,28,31,35,36]. One such
extension is threaded multipath execution (TME) [38], in which the speculative threads are the
alternate paths of hard-to-predict branches. A simple form of the SpMT model uses loop-based threads
only [15,22].

Inter-Thread Communication
Inter-thread communication refers to passing data values between two or more threads. One of the key
issues in a parallel programming model is the name levels at which sharing takes place between threads.
Communication can take place at the level of register space, memory address space, and I/O space, with
the registers being the level closest to the processor. If sharing can happen at a particular level, it can
also happen at a more distant level. Parallel programming models can be classified into three categories,
based on the sharing level that is closest to the processor: 

• Shared register model

• Shared memory model

• Message passing model

In the shared register model, multiple threads share the same register space (or a portion of it). Inter-
thread communication happens implicitly due to reads and writes to the shared registers (and to shared
memory locations). This model typically uses fine-grain threads, because it is difficult to have long threads
that communicate at the low level of registers, granularity is small. This class of parallel processors is
fairly new and has evolved as an extension of single-threaded ILP processors. Examples are the multiscalar
execution model [8,9,30], the trace execution model [28,36], and the dynamic multithreading model
(DMT) [1].

In the shared memory model, multiple threads share a common memory address space (or a portion
of it). Inter-thread communication occurs implicitly as a result of conventional memory access instruc-
tions to shared memory locations. That is, writes to a logically shared address by one thread are visible
to reads of the other threads, provided there are no other prior writes to that address as per the memory
consistency/synchronization model.
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In the message passing model, inter-thread communication occurs only through explicit I/O operations
called messages. That is, the inter-thread communication is integrated at the I/O level rather than at the
memory level. The messages are of two kinds—send and receive—and their variants. The combination
of a send and a matching receive accomplishes a pairwise synchronization event. Several variants of the
above synchronization event are possible. Message passing has long been used as a means of communi-
cation and synchronization among cooperating processes. Operating system functions such as sockets
serve precisely this function.

Inter-Thread Synchronization
Synchronization involves coordinating the results of a set of parallel threads into some merged result.
An example is waiting for one thread to finish filling a buffer before another begins using the data.
Synchronization is achieved in different ways:

• Control Synchronization: Control synchronization depends only on the threads’ control state and
is not affected by the threads’ data state. This synchronization method requires a thread to wait
until other thread(s) reach a particular control point. Examples for control synchronization
operations are barriers and critical sections. With barrier synchronization, all parallel threads have
a common barrier point. Each thread is allowed to proceed after the barrier only after all of the
spawned threads have reached the barrier point. This type of synchronization is typically used
when the results generated by the spawned threads need to be merged. With critical section type
synchronization, only one thread is allowed to enter into the critical section code at a time. Thus,
when a thread reaches a critical section, it will wait if another thread is currently executing the
same critical section code.

• Data Synchronization: Data synchronization depends on the threads’ data values. This synchro-
nization method requires a thread to wait at a point until a shared name is updated with a particular
value (by another thread). For instance, a thread executing a wait (x == 0) statement will be
delayed until x becomes zero. Data synchronization operations are typically used to implement
locks, monitors, and events, which, in turn, can be used to implement atomic operations and critical
sections. When a thread executes a sequence of operations as an atomic operation, other threads
cannot access any of the (shared) names updated during the atomic operation until the atomic
operation has been completed. 

Coherence and Consistency

The last aspect that we will consider about the parallel programming model is coherence and consistency
when threads share a name space. Coherence specifies that the value obtained by a read to a shared
location should be the latest value written to that location. Notice that when a read and a write are present
in two parallel threads, coherence does not specify any ordering between them. It merely states that if
one thread sees an updated value at a particular time, all other threads must also see the updated value
from that time onward (until another update happens to the same location). 

The consistency model determines the time at which a written value will be made visible to other threads.
It specifies constraints on the order in which operations to the shared space must appear to be performed
(i.e., become visible to other threads) with respect to one another. This includes operations to the same
locations or to different locations, and by the same thread or different threads. Thus, every transaction (or
parallel transactions) transfers a collection of threads from one consistent state to another. Exactly what is
consistent depends on the consistency model. Several consistency models have been proposed: 

• Sequential Consistency: This is the most intuitive consistency model. As per sequential consistency,
the reads and writes to a shared address space from all threads must appear to execute serially in
such a manner as to conform to the program orders in individual threads. This implies that the
overall order of memory accesses must preserve the order in each thread, regardless of how instruc-
tions from different threads are interleaved. A multiprocessor system is sequentially consistent if it
always produces results that are same as what could be obtained when the operations of all threads
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are executed in some sequential order [20]. Sequential consistency is very restrictive and prevents
the multiprocessor hardware from performing many optimizations to improve performance.

• Weak Consistency: This consistency model [6] relaxes the constraints imposed by sequential
consistency by relating memory access order to synchronization points in the program. That is,
sequential consistency is maintained among the synchronization accesses. In addition, a synchro-
nization access serves as a barrier by enforcing that all previous memory accesses must be com-
pleted before performing a synchronization access, and no subsequent memory accesses can be
performed before completing a synchronization access.

In addition to weak consistency, several other relaxed consistency models have been proposed—release
consistency [12], processor consistency [13], etc.

Partitioning a Program into Threads

Thread selection involves partitioning a control flow graph (CFG) into threads. Given a particular parallel
programming model (inter-thread communication model as well as thread sequencing model), how
should the parallelizer go about deciding where the thread boundaries should be? Perhaps the most
important issue in multiprocessing/multithreading is the basis used for partitioning a program into
threads. The criterion used for partitioning is very important, because an improper partitioning could
in fact result in high inter-thread communication and synchronization, thereby degrading performance!
True multithreading should not only aim to distribute instructions evenly among the threads, but also
aim to minimize inter-thread communication by localizing a major share of the inter-instruction com-
munication occurring in the processor to within each PE. In order to achieve this, mutually data dependent
instructions are most likely allocated to the same thread. This is somewhat hard, because programs are
currently written in control-driven form, which often causes individual strands of data-dependent instruc-
tions to be spread over a large segment of code. Thus, the partitioning software has to first construct the
data flow graph (DFG), and then do the program partitioning. Notice that if programs were specified in
data-driven form as in the dataflow computation model [17], taking data dependences into account would
have been simpler. 

Thread selection is a difficult problem, because we need to consider many issues such as PE utilization,
load balancing, control independence of threads (thread prediction accuracy for SpMT models), and
inter-thread data dependences. Often, trying to make optimizations for one area will have a negative
effect on another.

Who Does the Program Partitioning?
Program partitioning can be done by the programmer, compiler, or run-time hardware. Depending on
who does the partitioning, the type of analysis that can be done will be different. 

• Programmer: In this approach, the programmer explicitly represents the threads in the high-level
language program. In order to do this, three types of extensions are provided at the high-level
language level: (i) multithreading library, (ii) language extensions, and (iii) compiler directives.
Examples for this approach are EARTH [21] and XMT [37]. All of these use the parallel threads
model. Notice that the compiler has to be modified to handle these extensions. The compiler does
not, however, make decisions on where to do the partitioning. It is interesting to note that although
conventional multiprocessors have been commercially available for quite some time, only a small
fraction of the software has been written so far to exploit parallelism.

• Compiler: In this case, the compiler takes a sequential program and partitions it into threads. The
main advantage of deferring program partitioning to the compiler is that it frees the programmer
from reasoning about parallel threads. Its main advantages with respect to hardware-based par-
titioning are that it does not add to the complexity of the processor, and that it has the ability to
perform complex pre-partitioning and post-partitioning optimizations that are difficult to per-
form at run-time. Compiler-directed partitioning algorithms are generally insensitive to the num-
ber of PEs in the processor, however, its partitioning decisions need to be conveyed to the
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multithreaded hardware, possibly by making it part of the ISA (at the expense of incompatibility
for existing binaries). Parallelizing compilers have been successful in parallelizing many numeric
applications for the parallel threads model. As pointed out earlier, their success has not been
spectacular when it comes to non-numeric applications and the parallel threads model. Several
researchers are currently working on parallelizing compilers that parallelize such applications for
the sequential threads model.

• Hardware: It is also possible to let the run-time hardware do the program partitioning. If parti-
tioning decisions are taken by the hardware, the multithreaded processor provides object code
compatibility to existing sequential code. Furthermore, it has the ability to adapt to run-time
behavior. Hardware-based partitioning is typically done only if the thread granularity is small,
and if sequential control flow is used. The main limitation is the significant impact it may have
on clock cycle time. In order to simplify the dynamic partitioning hardware and to reduce the
impact on clock cycle time, the partitioning job is often split into two parts—a static part (which
is done by pre-processing hardware) and a dynamic part. The static part collects information that
is static in nature (such as register dependences in a straightline piece of code) and stores it in a
special i-cache structure, often after performing some additional processing. The dynamic part
uses this information while deciding the final partitioning at run-time. Examples of multithreaded
processors that use hardware-based partitioning are trace processor [28,36], speculative multi-
threading processor [22], and dynamic multithreading processor [1].

Compiling for Multithreading 
Most of the multithreading approaches perform partitioning at compile time, possibly with some help
from the programmer; it is somewhat unrealistic at this time to expect programmers to write only parallel
programs. The hardware is also limited in its program partitioning capability. Therefore, the compiler
has the potential to play a significant role in multithreading. Besides program partitioning, it can schedule
threads as well as the instructions within threads.

The task of the compiler is to identify sufficient parallelism to keep the processors busy, while mini-
mizing the effects of synchronization and communication latencies on the execution time of the program.
To accomplish this objective, a parallelizing compiler typically performs the following functions: 

1. Identify the parallelism inherent in the program. This phase has received the most attention in
parallel compiler research to date [25,26]. Many varied program transformations have been devel-
oped to unearth parallelism buried in the semantics of sequential programs. 

2. Partition the program into multiple threads for parallel execution. This is perhaps the most crucial
phase. Many factors must be considered, such as inter-thread dependences, intra-thread locality,
thread size, critical path, and deadlock avoidance. 

3. Schedule the concurrent execution of threads; the final scheduling is often determined by the run-
time environment. The compiler must assign threads to processors in a way that maximizes
processor utilization without severely restricting the amount of parallelism to be exploited. 

4. After program partitioning, the compiler can schedule the instructions in a thread so as to reduce
inter-thread wait times. For instance, if a shared value is produced very late in one thread, but is
needed very early in another thread, very little parallelism will be exploited by the hardware. This
problem is likely to surface frequently, if the compiler assumed a single-threaded processor in the
code generation phase. In such situations, post-partitioning scheduling can help minimize the
waiting time of instructions by ensuring that shared values required in other threads are produced
as early as possible. Post-partitioning scheduling is especially beneficial if PEs execute their instruc-
tions in strict serial order. 

Object Code Compatibility
Another important issue, especially from the commercial point of view, is the level of compatibility that
the multithreaded processor provides. We can think of three levels of compatibility in the context of
multithreaded processors: full compatibility, family-wide compatibility, and no compatibility. 
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• Full Compatibility: In some multithreaded processors, the multithreading aspect is strictly a
microarchitectural phenemenon and is invisible at the ISA level. Such processors provide full
compatibility, i.e., both backward compatibility and forward compatibility. Existing executable
binaries can be run on them, and their executable binaries can be run on existing processors.
Furthermore, these processors also provide compatibility across all multithreading models (of the
same ISA) that provide full compatibility. In these processors, the thread partitioning is done by
offline hardware or run-time hardware. Fully compatible multithreaded processors have a higher
chance for commercial success. 

• Family-Wide Compatibility: Although full compatibility is desirable, some multithreaded pro-
cessors opt for ISA-level changes so as to benefit from compiler techniques to extract additional
performance. Processors in the family-wide compatibility category provide compatibility within
its multithreading family. Thus, they do not require recompilation to be performed when the
number of PEs is changed. Generally, these processors also provide limited backward compatibility
(albeit at reduced performance). For example, if an existing binary executable is given to the
multiscalar processor, it can execute the entire program as a single task. This will not give good
performance, but it can run the old binaries. 

• No Compatibility: In spite of the benefits of object code compatibility, some multithreaded pro-
cessors, such as the M-machine, go in for significant changes at the ISA-level, which preclude any
possibility of backward compatibility or family-wide compatibility. The motivation is to tap into
sophisticated compiler techniques to extract performance. 

Several techniques for binary translation have been proposed recently to address the object code
compatibility problem. These include static approach as in the FX!32 [16], dynamic approach as in the
DAISY [7] and hardware-based schemes such as DIF [23]. Object code compatibility may become a less
important issue in the future when these techniques become more mature and efficient. This will also
open up more opportunities to tap architecture specific optimizations for multithreading in the future. 

Parallel Processing Hardware Framework

The previous section discussed a common framework for parallel programming and compilation. This
section discusses a common framework for parallel processing hardware. In our hardware framework,
regardless of the specific implementation, a multithreaded processor consists of multiple PEs, possibly
along with a few centralized resources such as the thread allocation mechanism and parts of the memory
subsystem, as shown in Fig. 5.14. The PEs work independently of each other (subject only to inter-PE

FIGURE 5.14 A generic 4-PE multiprocessor.
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synchronization) and usually contain multiple execution units (EUs). The PEs are interconnected by some
network or through centralized resources such as register file and memory, for inter-PE communication.

Our definition of a PE is somewhat loose. On one extreme, the PEs in some multithreaded processors
are separate processor-memory systems with their own instruction cache, decode unit, register file, and
execution units; on the other extreme, the PEs in some multithreaded processors even share the execution
units, as in the dynamic multithreading processor [1]. Such a loose definition allows us to discuss a wide
spectrum of multithreaded processors under a common framework. 

Number of PEs and PE Organization

The number of PEs in a multiprocessor is an important hardware parameter. This number is strongly
tied to the perceived parallelism in the targeted application domain, and also the nature of the threads.
On one extreme, we have single-PE multithreaded processors that perform time sharing. On the other
extreme, we have massively parallel processors (MPPs) consisting of thousands of PEs, which are the
most powerful machines available today for many time-critical applications [4]. Because of the sharp
increase in the number of transistors integrated in a single chip, there is significant interest in integrating
multiple PEs in the same chip. This has been the motivation behind many of the SpMT processing
models. 

Processor Context Interleaving
When the number of parallel threads exceeds the number of PEs, it is possible to time-share a single PE
among multiple threads in a way that minimizes the time required to switch threads. This is accomplished
by sharing as much as possible of the program execution environment between the different threads so
that very little state needs to be saved and restored when changing threads. This type of low-overhead
interleaving is given the name multithreading in many circles [2,3,17]. Interleaving-based multithreading
differs from conventional multitasking (or multiprogramming) in that the concurrent threads share more
of their environment with each other than do concurrent tasks under multitasking. Threads may be
distinguished only by the value of their program counters and stack pointers while sharing a single address
space and set of global variables. As a result, there is very little protection of one thread from another,
in contrast to multitasking. Interleaving-based multithreading can thus be used for very fine-grain
multitasking, at the level of a few instructions, and so can hide latency by keeping the processor busy
after one thread issues a long-latency instruction on which subsequent instructions in that thread depend.

• Cycle-level interleaving: In this scheme, a PE switches to a different thread after each instruction
fetch; i.e., an instruction of another thread is fetched and fed into the execution pipeline in the
next clock cycle. Cycle-level interleaving is typically used for coarse-grain threads—processes or
light-weight processes. The motivation for this is that it eliminates control and data dependences
between the instructions that are simultaneously active in the pipeline. Thus, there is no need to
build complex forwarding paths, permitting a simple and potentially fast pipeline. Furthermore,
the context switch latency is zero cycles. Memory latency is tolerated by not scheduling a thread
until the memory access has been completed. For this interleaving to work well, there must be as
many threads as the worst-case latencies experienced by the instructions. Interleaving the instructions
from many threads limits the processing speed of a single thread, thereby degrading single-thread
performance. The most well-known examples of cycle-level interleaving processors are HEP [29],
Horizon [33], and Tera MTA [2].

• Block interleaving: In this scheme, the instructions of a thread are executed successively until a
long-latency event occurs, which causes a context switch. A typical long-latency operation is a
remote memory access. Compared to the cycle-level interleaving technique, a smaller number of
threads is sufficient, and a single thread can execute at full speed until the next context switch.
The events that cause a context switch can be determined statically or dynamically. 

When hardware technology allows more PEs to be integrated in a processor, PE interleaving becomes
less attractive, because computational throughput will clearly improve when multiple threads execute in
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parallel on multiple PEs instead of time-sharing a single PE. As we look into the future, and the prospect
of a billion transistors on a single chip, it seems inevitable that microprocessors will have multiple PEs. 

PE Organization
The next issue of importance in a multithreaded processor is the organization of the PEs. This issue is
strongly tied to the PE interconnect used. Most of the sequential threads model based processors organize
the PEs as a circular queue, as shown in Fig. 5.15. The circular queue imposes a sequential order among
the PEs, with the head pointer indicating the oldest active PE. When the tail PE is idle, a thread allocation
unit (TAU) invokes the next thread (as per the sequential thread ordering) on the tail PE and advances
the tail pointer. Completed threads are retired from the head of the PE queue, enforcing the required
sequential ordering. Although this PE organization is tailored for sequential threads (from a sequential
program), this multithreaded hardware can also execute multiple threads from different processes, if
required. 

An important issue that needs to be considered when organizing the PEs as a circular queue is load
balancing. If some PEs have long threads assigned to them, and the rest have short ones, only modest
performance will be obtained. If threads are not close to the same size, a short thread may complete soon
and perform no useful computation while it waits for longer predecessor threads to retire. To get good
performance, threads should be of uniform length.1 One option to deal with load balancing, albeit with
additional hardware complexity, is to let each physical PE have multiple virtual PEs and assign a thread
to each of the virtual PEs. 

Inter-PE Register Communication and Synchronization

As discussed earlier, a few multithreading approaches have a shared register space for all threads, and the
rest do not. When threads share a common register space, the thread sequencing model has always been
the sequential threads model. Because the semantics of this model are in line with sequential control
flow, synchronization happens automatically, once inter-PE register communication is handled properly.

Register File Implementation
When threads do not share a common register space, it is straightforward to implement the register file
(RF)—each PE can have its own register file, thereby providing fast register access. When threads share

FIGURE 5.15 Organizing the PEs of a multithreaded processor as a circular queue.
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is a more difficult problem, because it depends on intra- and inter-PE data dependences as well.
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a common register space, it is important that we still provide a separate register file in each PE to support
fast register access, as it is difficult for a centralized register file to provide a 1-cycle multi-port access
time with today’s high clock rates. This decentralization can be achieved in two ways, both of which
provide faster register access times due to physical proximity and fewer access ports per physical register
file.

• RF Partitioning: In this approach, each physical register file implements (or maps) an independent
set of ISA-visible registers. Notice that a PE may occasionally need a register value stored in a
nonlocal register file, in which case the value is fetched through an interconnection network that
interconnects the PEs. 

• RF Replication: With the replication scheme, a physical copy of the register file is kept in each PE,
so that each PE has a local copy of the shared set register space. These register file replica maintain
different versions of the register space, i.e., the multiple copies of the register file store register
values that correspond to the processor state at different points in a sequential execution of the
program. In general, replication avoids unnecessary communication; however, if not done care-
fully, it might increase communication by replicating data that is not used in the future. A
multithreaded processor that uses the replication scheme is the multiscalar processor [9].

PE Interconnect for Register Values
When threads share a common register space, and a distributed RF structure is used, an important
hardware attribute is the type of interconnect used to send register values from one PE to another. The
interconnects that have been proposed in the context of multithreaded processors are bus, ring (uni-
directional and bi-directional), crossbar, mesh, and hypercube; of course, it is possible to use other types
of interconnects as well. 

Bus: The bus is a simple, fully connected network. However, it permits only one data transmission at
any time, providing a bandwidth of only O(1). In fact, the bandwidth scaling is worse than O(1) because
of reduction in bus operating speed with the number of ports, due to increase in capacitance. Therefore,
it may be a poor choice as an interconnect for inter-PE register communication, which may be nontrivial,
especially when using a large number of PEs. 

Crossbar: A crossbar interconnect also provides full connectivity from every PE to every other PE. It
provides O(N) bandwidth, but the cost of the interconnect is proportional to the number of cross-points,
or O(N2). When using a crossbar, all PEs are of same proximity to each other; hence the thread allocation
algorithm becomes straightforward; however, a crossbar may not scale as easily as a ring or mesh. It is
important to note that fast crossbars can be built on a single chip. With a crossbar-type interconnect,
there is no notion of neighboring PEs, so all PEs become equally far away. Therefore, the cross-chip wire
delays begin to dominate the inter-PE communication latency. 

Ring: With a ring-type interconnect, the PEs are connected as a circular loop, and there is a notion of
neighboring PEs and distant PEs. Routing in a ring is trivial because there is exactly one route between
any pair of nodes (two routes if it is a bi-directional ring). The ring can be easily laid out with O(N)
space using short wires (as depicted in Fig. 5.15), which can be easily widened. A ring is ideal if most of
the inter-PE register communication can be localized to neighboring PEs (which is typically the case in
a sequential threads processor that uses the circular queue PE organization [36]), but is a poor choice if
a lot of communication happens across distant PEs. An advantage of the ring is that it easily supports
the scaling up of the number of PEs, as allowed by technological advances.

Mesh: Rings generalize naturally to higher dimensions, including 2D grids and 3D cubes (with end-
around connections). The main advantages of mesh are its regular structure and its ability to provide
full connectivity between four neighboring PEs (as opposed to two PEs with the ring). Similar to a ring, a
mesh can easily support the scaling up of the number of PEs. The mesh suffers from the same disadvan-
tages of a ring in communicating with distant PEs. Moreover, thread allocation for a mesh topology is
more complex than that for ring and crossbar.
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Inter-PE Memory Communication and Synchronization

When threads do not share a common memory address space (as in the message passing model), it is
straightforward to provide a memory system for each PE, as we do not need to worry about inter-thread
memory communication and synchronization. 

Memory System Implementation
When threads do share a common memory address space, the multithreaded processor needs to provide
appropriate mechanisms for inter-thread memory communication as well as synchronization. One option
is to provide a central memory system, in which all memory accesses roughly take the same amount of
time. Such a system is called uniform memory access (UMA) system. An important class of UMA systems
is the symmetric multiprocessor (SMP).

A UMA system may provide uniformly slow access time for every memory access. Instead of slowing
down every access, we can provide fast access time for most of the accesses by distributing the memory
system (or at least the top portions of the memory hierarchy system). Shared memory multiprocessors
that use partitioning are called distributed shared memory (DSM) systems. As with the register file
structure, we can use two techniques—partitioning and replication—to distribute the memory.

• Memory Partitioning: Partitioning is useful if it is possible to confine most of the memory accesses
made in one PE to its partition. Partitioning the top portion of the memory hierarchy may not
be attractive, at least for irregular, non-numeric applications, because it may be difficult to do this
confinement due to not knowing the addresses of most of the loads and stores at compile time.
Partitioning of the lower portion of the memory hierarchy is often done, however, as this portion
needs to handle only those accesses that missed in the PEs’ local caches. 

• Memory Replication: It is impractical to replicate the entire memory system. Therefore, only the
top part of the memory hierarchy is replicated. The basic motivation behind replicating the top
portion of the memory hierarchy among local caches is to satisfy most of the memory accesses
made in a PE with its local cache. Notice that a replicated cache structure must maintain proper
coherency among all the duplicate copies of data. 

DSMs often use a combination of partitioning and replication, i.e., portions of the memory hierarchy
are replicated and the rest are partitioned. One type uses replicated cache memories and partitioned
main memories. One interesting variation is the cache only memory architecture (COMA) system. A
COMA multiprocessor partitions the entire memory system across the PEs; however, there is no fixed
partition assigned for a particular memory location. Rather, the partition associated with a memory
location is dynamically changed based on the PEs that access that location. Several other shared memory
organizations are also possible [3,17].

Inter-PE Data Dependence Speculation
In the parallel threads model, synchronization of threads is carried out with the use of special mechanisms
such as locks and barriers. In the sequential threads model, ensuring sequential semantics ensures proper
memory synchronization. However, this means that when a load instruction is encountered in a PE, it
has to ensure that its producer store has been already executed. This is difficult to determine if the producer
store belongs to another thread, as memory addresses are calculated at run-time, and it is possible that
the producer store instruction may not have even been fetched. In order to overcome this problem,
sequential threads based processors incorporate some form of thread-level data speculation [11]. The idea
is to speculate if a memory operation has to wait for inter-thread synchronization. This speculation can
be as simple as predicting that the producer store has been already executed, or it can be more complex,
based on past behavior of the load instruction. Below we discuss some of the hardware schemes proposed
for carrying out thread-level data speculation.

• Address Resolution Buffer (ARB): The ARB [11] is a hardware buffer for storing different versions
of several memory locations as well as information regarding the loads and stores executed from
the currently active threads. Each entry in the ARB buffers all versions of the same memory location.
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When a load request is issued for a particular memory address, the corresponding ARB entry is
checked to see if a prior store has been done to the same address; if so, the value written by the
latest store is returned by the ARB; if not, the request is sent to the next lower level of the memory
hierarchy. In either case, the state information for that location is updated to reflect the fact that
a load has been made by the current thread. When a store operation is performed, the ARB checks
if any sequentially successor loads have been prematurely performed. If so, that is an incorrect
data dependence speculation, and the ARB hardware initiates a recovery action such as partially
re-executing the thread containing the incorrect load (and subsequent threads). A centralized
hardware approach such as the ARB has the danger of increasing the load latency due to long
latency incurred because of long wires.

• Multi-Version Cache (MVC): The MVC uses a decentralized approach by using a local data cache
(LDC) for each PE [10]. Each LDC thus stores a different version for each mapped memory
location. The local data caches are interconnected by a unidirectional ring, as shown in Fig. 5.16.
The loads and stores generated in a PE are serviced directly from its local data cache. When a load
request is issued to a local data cache, it provides a value if it has a copy; otherwise, the request
is sent to the next lower level of the memory hierarchy. In either case, the state information for
that location in the data cache is updated to reflect the fact that a load has been made by the
current thread. When a store operation is performed, the value is written in its local data cache.
The last updates to each memory location (in a thread) are forwarded to the subsequent LDCs
through the ring-type interconnect. When a forwarded value reaches an LDC, it checks for
incorrect speculations and takes appropriate recovery actions. 

• Speculative Versioning Cache (SVC): The speculative versioning cache is similar to the multi-version
cache in many respects [14]. It also keeps a separate private cache for each PE. The differences are
mainly in the way the caches are connected and in the methodology by which the caches are kept
coherent. SVC uses a bus interconnect for the caches a snooping bus based cache coherence
protocol. 

Concluding Remarks

Multithreaded processors are the future of computer design. The ease of hardware replication has proven
to be an ever-increasing impetus toward parallel processor implementations. The goal is to maintain
high levels of parallelism (without increasing hardware complexity and the clock rate) by distributing
the dynamic instruction stream among several processing elements. The combined issue rates of several
processing elements allow large amounts of parallelism to be exploited. 

Multithreading and multiprocessing, as with other complex engineering problems, undergo an ongoing
process of reinventing, borrowing, and adapting. 

FIGURE 5.16 Block diagram of a multi-version cache in a sequential threads based multithreaded processor.
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Looking forward to the future of multithreaded processors, the pace of change makes for rich oppor-
tunities and also for great challenges. Although it is difficult to precisely predict where this field will go,
this final section seeks to outline some of the key areas of development in multithreaded processors.
Whatever technological breakthroughs occur and whatever directions the market takes, the fundamental
issues addressed in the “Parallel Processing Software Framework” section will still apply. The realization
of multithreaded processors will still rest upon good techniques to perform thread selection, inter-PE
communication, and synchronization. The core techniques for addressing these issues will remain valid;
however, the way that they are employed will surely change as the critical parameters of clock speeds and
wire delays continue to change.

It is difficult to obtain good performance without having complexity somewhere in the hardware-
software multithreaded system! In a high-performance multithreaded processor, the complexity could be
at the static partitioning side (programming or compiler), at the dynamic partitioning hardware side, or at
the PE interconnect side. Figure 5.17 illustrates this concept. To support hardware scalability, complexity
at the dynamic partitioning hardware and the PE interconnect act as hurdles. In the long run, as more
transistors are integrated into a processor chip, it can be expected that the number of PEs would be scaled up.
However, the trend towards higher clock rates will make it more difficult to support complexity in the
dynamic partitioning hardware and in the PE interconnect.2 Thus, the end result of the trends in high
transistor count and high clock rates (which encourage multithreading/multiprocessing) is a shift towards
doing more and more things statically, as opposed to dynamically. This means that program partitioning
will eventually be done only at compilation time, and perhaps more and more at programming time.

To Probe Further

Multiprocessing has been around for a long time, and so naturally the computer literature has an
overabundance of articles and textbooks on this subject. The multiprocessing community consists of
different camps, which often use different terminology for the same concepts. This lack of consensus
makes it somewhat difficult to merge the ideas presented in different papers or books. Nevertheless, we

FIGURE 5.17 Complexity in multithreading/multiprocessing.

2Although it is possible to pipeline a crossbar interconnect so that it can accept new requests every cycle, the long
inter-PE latency that it causes would increase the number of clock cycles required to execute a program, compared
with what is obtained with scalable interconnects [27].
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list a few helpful references to which interested readers can refer. Two recent good textbooks on this subject
are Parallel Computer Architecture: A Hardware/Software Approach [3] and Scalable Parallel Computing
[17]. Two important journals dealing with parallel processing are Journal of Parallel and Distributed
Computing and IEEE Transactions on Parallel and Distributed Systems. In addition, readers can keep abreast
of the latest research developments by reading the yearly proceedings of International Conference on
Parallel Processing, International Conference on Supercomputing, and Supercomputing.
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5.5 Survey of Parallel Systems

Donna Quammen

Introduction

Computers have long been considered “a solution looking for a problem,” but because of limits found
by complexity theory and limits on computing power some problems that were presented could not be
solved. Multimedia problems, image processing and recognition, AI application, and weather prediction
may not be accomplished unless processing power is increased. There are many varieties of parallel
machines, each has the same goal, to complete a task quickly and inexpensively. Modern physics has
continually increased the speed and capacity of the media on which modern computer chips are housed,
usually VLSI, and at the same time decreased the price. The challenge of the computer engineers is to
use the media effectively. Different components may be addressed to accomplish this, such as, but not
limited to: 

• Functionality of the processors—floating point, integer, or high level function, etc. 

• Topology of the network which interconnects the processors 

• Instruction scheduling

• Position and capability of any master control units that direct the processors 

• Memory address space

• Input/output features

• Compilers and operating systems support to make the parallel system accessible

• Application’s suitability to a particular parallel system

• Algorithms to implement the applications

As can be imagined there is an assortment of chooses for each of these components. This provides for
the possibility of a large variety of parallel systems. Plus more chooses and variations are continually
being developed to utilize the increased capacity of the underlining media. 

Mike Flynn, in 1972 [Flynn72], developed a classification for various parallel systems, which has remained
authoritative. It is based on the number of instruction streams and the number of data streams active in
one cycle. A sequential machine is considered to have single instruction stream executing on a single data
stream; this is called SISD. An SIMD machine has a single instruction stream executing on multiple data
streams in the same cycle. MIMD has multiple instruction streams executing on multiple data streams simul-
taneously. All are shown in Fig. 5.18. An MISD is not shown but is considered to be a systolic array. 

Four categories of MIMD systems, dataflow, multithreaded, out of order execution, and very long instruc-
tion words (VLIW), are of particular interest, and seem to be the tendency for the future. These categories
can be applied to a single CPU, providing parallelism by having multiple functional units. All four attempt
to use fine-grain parallelism to maximize the number of instructions that may be executing in the same
cycle. They also use fine-grain parallelism to assist in utilizing cycles, which possibly could be lost due to
large latency in the execution of an instruction. Latency increases when the execution of one instruction
is temporarily staled while waiting for some resource currently not available, such as the results of a cache
miss, or even a cache fetch, the results of a floating point instruction (which takes longer than a simpler
instruction), or the availability of a needed functional unit. This could cause delays in the execution of
other instructions. If there is very fine grain parallelism, other instructions can use available resources
while the staled instruction is waiting. This is one area where much computing power has been reclaimed.
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Two other compelling issues exist in parallel systems. Portability, once a program has been developed
it should not need to be recoded to run efficiently on a parallel system, and scalability, the performance
of a system should increase proportional to the size of the system. This is problematic since unexpected
bottlenecks occur when more processors are added to many parallel systems.

Single Instruction Multiple Processors (SIMD)

Perhaps the simplest parallel system to describe is an SIMD machine. As the name implies all processors
execute the same instruction at the same time. There is one master control unit, which issues instructions,
and typically each processor also has its own local memory unit. SIMD processors are fun to envision as
a school of fish that travel closely together, always in the same direction. Once one turns, they all turn. In
most systems, processors communicate only with a set of nearest neighbors; grids, hypercubes, or torus are
popular. In the most generic system, shown in Fig. 5.18(b), no set communication pattern is dictated.
Because different algorithms do better on different physical topologies (algorithms for sorting do well on
tree structures, but array arithmetic does well on grids), reconfigureable networks are ideal but hard to
actually implement. A variety of structures can be built on top of grids if the programmer is resourceful,
but some processing power would be lost. It is difficult for a compiler to decide which substructure would
be optimal to use. A mixture of a close connections supplemented with longer connections seems to be
most advantageous. MasPar [MasPar91] has SIMD capability and uses a grid structure supplemented with
longer connections. The Thinking Machines CM-5 has SIMD capability using a fat-tree network, also a
mix of closer and longer connections. The PEC network also has this quality [Kirkman91, Quammen96].

FIGURE 5.18 (a) SISD uniprocessor architecture. (b) General SIMD with distributed memory. (c) Shared memory
MIMD.
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Of course, SIMD machines have limits. Logical arrays may not meet the physical topology of the
processors but require folding or skewing. If statements may cause different paths to be followed on
different processors, and since it is necessary to always have synchronization, some processing power will
be lost. Masks are used to inhibit issued instructions on processors on which they should not be executed.
A single control unit becomes a bottleneck as an SIMD system expands. If an SIMD system were very
large, it would be desirable to be able to use it as a multiprogrammed machine where different programs
would be allocated different “farms” of processors for their use as a dedicated array. A large SIMD system
should be sub-dividable for disjoint multiuser applications. The operating system would have to handle
this allocation. 

On an SIMD computer a loop such as the one below can be translated to one SIMD instruction as is
shown. The form A(1:N) means array A indexes 1 to N:

The code below would take four steps: 

Compilers can identify loops such as the ones presented above [Wolfe91]. However, many loops are not
capable of executing in an SIMD fashion because of reverse dependencies. Languages have been developed
for SIMD programming, which allows the programmer to specify data locations and communication
patterns. 

Multiple Instruction Multiple Data (MIMD)

Perhaps the easiest MIMD processor to envision is a shared memory multiprocessor such as shown in
Fig. 5.18(c). With this machine, all processors access the same memory bank with the addition of local
caches. This allows the processors to communicate by placing data in the shared memory. However,
sharing data causes problems. Data and cache coherence are of major concern. If one processor is altering
data that another processor wishes to use, and the first processor is also holding the current updated
value for this data in its cache, there is a need to guard access to the stale value which is being held in
the shared memory. This creates a need for locks and protocols to protect communal data. Inefficient
algorithms to handle cache coherence can cause delays, or invalidate results. In addition, if more than
one processor wishes to access the same locked memory location, a fairness issue occurs as to which
processor should be allowed first access after the location becomes unlocked [Hwang93]. Further delays
in accessing the shared memory occur due to the use of a single bus. This arrangement is described as
a uniform memory access (UMA) time approach and avoids worst-case communication scenarios pos-
sible in other memory arrangements. 

To reduce contention on the bus as a MIMD memory system scales, a distributed memory organization
can be used. Here, clusters of processors share common memories, and the clusters are connected to allow
communications between clusters. This is called an NUMA (nonuniform memory access) organization
[Gupta91]. If a MIMD machine is to be scalable, this approach must be used. Machines within the same
cluster will be able to share data with less latency than machines housed on different memory banks. It
will be possible to access all data. This creates questions as to which sets of data should be placed on
which processor cluster. Compilers can help with this by locating a code that uses common data. If data
is poorly placed, the worst-case execution time could be devastating.

for I = 1 to N do
A(I) = B(I) + C(I); A(1:N) = B (I:N) + C(1:N);

endfor;

F(0) = 0;
for I = 1 to N do F(0) = 0;

A(I) = B(I)/C(I); A(1:N) = B (I:N)/C(1:N);
D(I) = A(I) ∗ E(I); D(1:N) = A(1:N) ∗ E(1:N);
F(I) = D(I) + F(I − 1); F(1:N) = D(1:N) + F(0:N − 1);

endfor;
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Message passing systems, such as the Transputer [May87], have no shared memory but handle com-
munications using message passing. This can cause high latency while waiting for requested data; however,
each processor can hold multiple threads, and may be able to occupy itself while waiting for remote data.
Deadlocks are a problem.

Another variation of memory management is cache only memory access (COMA). Memory is dis-
tributed, but only held in cache [Saulsbury95]. The Kendall Square machine [KSR91] has this organiza-
tion. On the KSM distributed memory is held in the cache of each processor, which is connected by a
ring. The caches of remote processors are accessed using this ring.

Vector Machines

A vector machine creates a series of functional units and pumps a stream of data through the series. Each
stage of the pipe will store its resulting data in a vector register, which will be read by the next stage. In
this way the parallelism is equal to the number of stages in the pipeline. This is very efficient if the same
functions are to be preformed on a long stream of data. The Cray series computer [Cray92] is famous
for this technique. It is becoming popular to make an individual processor of a MIMD system a vector
processor.

Dataflow Machine

The von Neumann approach to computing has one control state in existence at one time. A program
counter is used to point to the single next instruction. This approach is used in traditional machines,
and is also used in most of the single processors of the multiple processor systems described earlier. A
completely different approach was developed at the Massachusetts Institute of Technology [Dennis91,
Arvind90, Polychronopoulos89]. They realized that the maximum amount of parallelism could be real-
ized if at any one point all instructions that are ready to execute were executed. An instruction is ready
to execute if the data that is required for its complete execution is available. Therefore, execution of an
instruction is not governed by the sequential order, but by its readiness to execute, that is, when both
operands are available. A table is kept of the instructions that are about ready to execute, that is, one of
the two operands needed for the assembly language level instruction is available. When the second operand
is found, this instruction is executed. The result of the execution is passed to a control unit, which will
select a set of new instructions to be about ready to execute, or mark an instruction as ready (because
the second operand needed has arrived).

This approach yields the maximum amount of parallelism. However, it runs into problems with “run
away execution.” Too many instructions may be about ready, and clog the system. It is a fascinating
approach, and machines have been developed. It has the advantage that no, or very little, changes need
to be made to old dusty decks to extract parallelism. Steps can be made to avoid “run away execution.”

Out of Order Execution Concept

An approach similar to the dataflow concept is called out of order execution [Cintra00]. Here again,
program elements that are ready to execute may be executed. It has a big advantage when multiple
functional units are available on the same CPU, but the functional units have different latency values.
The technique is not completely new but similar to issuing a load instruction, which has high latency,
well before the result of the load is required. By the time the load is completed the code has reached the
location where it is used. Also a floating point instruction, again a class of instructions with high latency,
is frequently started before integer instructions coded to execute first are executed. By the time the floating
point is complete, its results are ready to be used. The compiler can make this decision statically. In out
of order execution the hardware has more of a role in the decision of what to execute. This may include
both the then and the else parts of an if statement. They can both be executed, but not be committed to
until the correct path is determined. This technique is also called speculative execution. Any changes that
have been made by a wrong path must be capable of being rolled back. Although this may seem to be extra
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computation, it will decrease execution time if done well. Other areas of the program may also be executed,
if it is determined that their execution will not affect the final result or can be rolled back. The temporary
results may be kept in registers. The Alpha Computer [Kessler99] as well as the Intel Pentium Pro [Intel97]
use this technique. This method is becoming popular to fully utilize increasingly powerful computers.

Compiler techniques can be used to try to determine which streams should be chosen for advance
execution. If the wrong choice is made, there is a risk of extremely poor performance due to continual
rollbacks. Branch prediction, either statically by the compiler, or dynamically by means of architecture
prediction flags, is a useful technique for increasing the number of instructions, which may be beneficial
to execute prematurely. 

Since assembler instructions contain precise register addresses, set by the compiler, and it is unknown
which assembler instructions will be caught in partial execution at the same time, a method called register
renaming is used. A logical register address is mapped to a physical register chosen from a free list. The
mapping is then used throughout the execution of the instruction, and released again to the free list.

Multithreading 

Multithreading [Tullsen95] is another method to hide the latency endured by various instructions. More
than one chain, or thread, of execution is active at any one point. The states of different chains are saved
simultaneously [Lo97, Miller90] in their own state space. Modern programs are being written as a collection
of modules, either threads or objects. Because one of the main advantages of this form of programming
is data modulization, many of these modules could be ready to execute concurrently. While the processor
is waiting for one thread’s data (for example, a cache miss or even a cache access), other threads, which
have a full state in their dedicated space, can be executed. The compiler cannot determine which modules
will be active at the same time, that will have to be done dynamically. The method is somewhat similar
to the multiprogramming technique of changing context while waiting for I/O; however, it is at a finer
grain. Multiple access lines to memory are beneficial since many threads may be waiting for I/O. The
Tera machine [Smith90] is the prime example of this technique. This approach should help lead to
Teraflops performance. 

Very Long Instruction Word (VLIW)

A VLIW will issue an instruction to multiple functional units in parallel. Therefore, if the compiler can
find one operation for each of the functional unit internal to a processor (these instructions are usually
RISC-like), which will be able to execute at the same time (that is, the data for their execution are statically
determined to be available in registers), and none of the instructions depend on an instruction being
issued in the same cycle, then you can execute them in parallel. All the sub-instructions will be issued
by one long instruction. The name VLSI comes from the need that the instruction be long enough to
hold multiple operation codes, one for each functional unit, which will be used, and the register identi-
fiers, which they need. Unlike the three methods described previously, the compiler is responsible for
finding instructions that do not interfere with each other and assigning the registers for these instructions
[Rau93, Park97]. The compiler packs these instructions statically into the VLIW. The Intel iWarp can
control a floating point multiplier, floating point adder, integer adder, memory loader, increment unit, and
condition tester on each cycle [Cohn89]. The instruction is 96 bits long and can, with compiler support,
execute nine instructions at once. The code for the following loop can be turned into a loop of just one
VLSI instruction as opposed to a loop of at least nine RISC size instructions.

It is difficult for a compiler to find instructions that can fill all the fields statically, so frequently some of
the functional units go unoccupied. There are many techniques to find qualified instructions, and
frequently the long instruction can be filled. One technique is to mine separate threads [Lam87, Bakewell91],
another successful technique tries together several basic 0blocks into a hyperblock. The hyperblock has

for I := 0 to N − 1 do
A(2∗I) := C + B(I)∗D;
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one entrance but may have several exits. This creates a long stream of code, which would normally be
executed sequentially, and allows the compiler to choose instructions over this larger range. Roll-back
code must be added to the hyperblock’s exit to undo the affects of superfluous code that was executed,
but would not execute sequentially. Loops are frequently unrolled, several iterations considered as straight
code, to form hyperblocks. Branch prediction can also help create beneficial hyperblocks.

A newer approach is to dynamically pack the VLIW, using a preprocessor that accesses multiple queues,
one for each functional unit. Realize that using queues is similar to out of order execution.

Interconnection Network

An interconnection network is a necessary component of all parallel processing systems. Several features
govern the choice of a network. A scalable interconnection network for parallel processor would be ideal
if it meets the following requirements for a large range of system sizes. For instance, it may be scalable
by reasonably small increments from 24 to perhaps 220 processors.

• Have a low average and maximum diameter (the distance between the furthest two nodes) to
avoid communication latency.

• Minimize routing constraints (have many routes from A to B).

• Have a constant number of I/O port (channels) per node to allow for expansion without retrofit.

• Have a simple wire layout to allow for expansion and to avoid wasting VLSI space.

• Be inherently fault tolerant.

• Be sub-dividable for disjoint multiuser applications.

• Be able to handle a large range of algorithms without undo overhead.

The most popular parallel networks—hypercube, quad tree, fat-tree, binary tree, mesh, and torus—fail
in one or more of these items.

Meshes have a major disadvantage: they lack support for long distance connections. Hypercubes have
excellent connectivity by guaranteeing a maximum distance between any two nodes of log N where N is
the number of nodes. Also, many paths exist between any two nodes making it fault tolerant and amenable
to low contention. However, the number of I/O ports per node is log N. As a system scales, each node
would need to be retrofit to add additional ports. In addition, the wire layout is complex, making this
network expensive in space. Tree structures are popular and have a maximum long distance connection of
O(2 log N). Communications on a tree, however, can be complicated by the fact that although many
neighbors are close, many can only communicate through the root. This causes contention at the root. Fat-
trees reduce this contention by increasing the bandwidth, as the network approaches the root [Leiserson85]. 

The extreme ideal network would allow all nodes to connect to all others. This is not practical for
large system. However, one class of networks, the multistage network, uses an internal switching system
and allows constant access time between any two nodes. Several arrangements are available for multistage
networks. All are similar. One such network, the baseline network, is shown in Fig. 5.19. It can be proved
that a N-by-N network can be totally connected with log N switches steps [Seigel89]. Each step is through
a row of switches, with N/2 switches in each row. This requires quite a bit of hardware and does allow
for a connection in log N steps. This is not very scalable.

Optical technology [Yuan97] has shown to be promising for the implementation of all networks.
Instead of a wire, an optical “beam” is used to make the connection. This is fast and has several advantages.
One, a broadcast can be made from one node to many nodes at once (although, one node cannot receive
many inputs at once), and two, the transmission can be sent through clear space.

Conclusion

Parallel systems are going to become almost universal in computer systems. Desktop computers are now
frequently being delivered with more than one CPU and definitely with more than one functional unit.
The new models of SUN, MIPS, Intel, and Macintosh desktop computers currently are providing parallel
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computing capabilities. This feature is no longer limited to just super computers. In order to use these
systems efficiently, the consumer should be aware of how their programs are going to utilize the systems.
Compilers, operating systems, and program design are all things that should be examined. 

Most parallel processing is being aimed at hiding latency; however, embedded systems and super
computing implementations also need the ability to execute separate lines of control running indepen-
dently, which must communicate with each other. Embedded systems need this to assure the strict adherence
to real-time deadlines. Super computer applications need the additional processing power.

This chapter section only briefly discussed this field. A full addressing of the field is covered in large
volumes of books and journals. Topics, such as compiler techniques, dedicated languages, communication
techniques, multi-user facilities, algorithms, memory hierarchies, I/O facilities, programming tools, fault
tolerant, power consumption, and debugging technique, are only an abbreviated list of topics which need
to be examined. Plus, each of these subtopics has many aspects. All computer users should certainly be
aware of this field.
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5.6 Virtual Memory Systems and TLB Structures

Bruce Jacob

Virtual Memory, a Third of a Century Later

Virtual memory was designed in the late 1960s to provide automated storage allocation. It is a technique
for managing the resource of physical memory that provides to the application an illusion of a very large
amount of memory—typically, much larger than is actually available. In a virtual memory system, only
the most often used portions of a process’s address space actually occupy physical memory; the rest of
the address space is stored on disk until needed. When the mechanism was invented, computer memories
were physically large (one kilobyte of memory occupied a space the size of a refrigerator), they had access
times comparable to the processor’s speed (both were extremely slow), and they came with astronomical
price tags. Due to space and monetary constraints, installed computer systems typically had very little
memory—usually less than the size of today’s on-chip caches, and far less than the users of the systems
would have liked. The virtual memory mechanism was designed to solve this problem, by using a system’s
disk space as if it were memory and placing into main memory only the data used most often.
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Since then, we have seen constant evolution (and revolution) in the computer industry. Typical micro-
processors today have more on-chip cache than the core memory found in multimillion-dollar systems
of yesterday and cost orders of magnitude less. Today, memory takes up very little space: you can easily
hold a gigabyte of DRAM in your hand. In recent decades, processor designers have focused on improving
speed while memory-chip designers have focused on improving storage size, and, as a result, memory is
now extremely slow compared to processor speeds. Due to rapidly decreasing memory prices, it is usually
possible to have enough memory in one’s machine to avoid using the disk as a backup memory space.
Many of today’s machines generate 64-bit addresses, some even larger; most modern machines therefore
reference 16 exabytes (16 giga-gigabytes) or more of data in their address space directly. The list goes on.
In fact, one of the few things that has not changed since the development of virtual memory is the basic
design of the virtual memory mechanism itself, and the one problem it was invented to solve—too little
memory—is no longer a factor in most systems. However, the virtual memory mechanism has proven
itself valuable in other areas besides extending the memory space. Today it is used in nearly every modern
operating system because of the convenience offered by its features: It simplifies memory allocation and
memory protection, and it provides an intuitive programming interface to the application—the “virtual
machine” interface—that simplifies program design and provides a natural path to multitasking.

Caching the Process Address Space

A process operates in its own little world; this is the virtual machine paradigm, illustrated in Fig. 5.20.
Each running process generates addresses for loads and stores as if it has the entire machine to itself—as
if the computer offers an extremely large amount of memory and no other processes are executing or
consuming resources. This makes the job of the programmer and compiler much easier, because no
details of the hardware or memory organization are necessary to build a program. 

The operating system divides the process address space into equal-sized portions for ease of management;
these divisions are called virtual pages. A page is usually a multiple of the unit of transfer that hard disks
use, and in most operating systems ranges from several kilobytes to several dozen kilobytes. A page is
never fragmented; if any data in a virtual page are in physical memory then all the data in that page are,
and if any of the data in a virtual page are nonexistent or being held on disk then all the data are. When
the word page is used in a verb form, it means to allow a section of memory to be virtual—to allow it

FIGURE 5.20 The virtual machine paradigm. A process operates in its own virtual environment, unaware that
other processes are executing and contending for the same limited resources. The operating system views each process
address space as a collection of pages that can be cached in physical memory, or left in backing store.
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to move freely between physical memory and disk. This allows the physical memory to be used more
efficiently: When a region of memory has not been used recently, the space can be freed up for more
active pages, and pages that have been migrated to disk are brought back in as soon as they are needed
again.

How is this done? The ultimate home for the process’s address space is backing store, usually a disk
drive; this is where the process’s instructions and data come from and where all of its permanent changes
go to. Every hardware memory structure between the CPU and the backing store is a cache for the
instructions and data in the process’s address space. This includes main memory—main memory is really
nothing more than a cache for a process’s virtual address space. A cache operates on the principle that
a small, fast storage device can hold the most important data found on a larger, slower storage device,
effectively making the slower device look fast. The large storage area in this case is the process address
space, which can be many gigabytes in size. Everything in the address space initially comes from the
program file stored on disk or is created on demand and defined to be zero. Figure 5.21 illustrates: There
really is no linear array of data that houses the process address space. Its illusion is actually manufactured
by the operating system through the virtual memory mechanism. 

When a program first begins executing, the operating system copies a small portion of the process
address space from the program file stored on disk into main memory. This typically includes the first
page of instructions in the program and possibly a small amount of data that the program needs at
startup. Then, as more instructions or data are needed, the operating system brings in pages from the
process’s address on demand. This process, called demand paging, is depicted in Fig. 5.22.

In step 1 of the figure, the operating system initializes a process address space and loads the first page
of instructions into physical memory. The operating system then sets the hardware program counter to
the first instruction in the program, which sets the process running. Assuming that one of the first few
instructions references the initialized data area, the uninitialized data area, or the (so far nonexistent)
stack, the operating system will have to bring in a page of data from the program file or create an

FIGURE 5.21 Caching the process address space. In the first view, a process is shown referencing locations in its
address space. Note that all loads, stores, and fetches use virtual names for objects, and many of the requests can be
satisfied by a cache hierarchy. The second view shows that the address space is not a linear object stored on some
device, but is instead scattered across hard drives and dynamically allocated when necessary.
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uninitialized-data page or stack page and link it into the process address space. This is shown in steps 2
and 3 of the figure. When a process references an item in its address space that is not currently in physical
memory, the reference causes a page fault, and the operating system loads the necessary pages from
backing store into main memory. Clearly, the term demand paging refers to the fact that pages are allocated
or brought into physical memory on demand. Step N of the figure shows a process that has been executing
for some time, as it has several pages of data in its stack area and several pages in its data area that were
not there when the process began executing. All of these pages were dynamically allocated by the operating
system as the process needed or asked for them.

As has been pointed out before, the process is unaware of the operating system activity that moves
pages in and out of main memory on its behalf. It typically does not know whether or not any given
page is memory-resident or where it is located if it is memory-resident. Figure 5.20 at beginning of the
section illustrates this by showing a process address space from two points of view. The first point of
view is from the process itself; in most operating systems a process sees its address space as a contiguous
span of memory locations from minimum to maximum. Somewhere in the address space is the program’s
instructions, or text; somewhere else is the program’s data. Most operating systems also create a stack
area, a heap area, and possibly one or more dynamically loaded libraries containing system-supplied
utilities such as input/output routines or networking functions. The advantage of the virtual machine
paradigm is that these can be arranged in physical memory, which is most convenient, rather than having
to fit things together like the pieces of a puzzle, as would be the case without address translation. 

The second point of view in the figure is from the operating system. In reality, the process address
space is not a large contiguous segment in physical memory but is partially cached by physical memory.
Portions of the process address space are scattered about physical memory and are likely to be not
contiguous at all. The process is unaware of where in the system any particular portion of its address
space is being held; some portions can be on disk (for example, the portions of the program that have
not been used yet), some can be in main memory, and some can be in hardware caches. The operating
system maintains a map for each address space so that, for every virtual page in the address space, it can
tell where in memory or on disk the page can be found. As the figure suggests, the virtual machine

FIGURE 5.22 Demand paging at process start-up. In step 1, the operating system loads the first page of the process’s
instructions into physical memory, and sets the program counter to the first instruction in the program. This first
instruction references a location in the process’s data area, so in step 2 the operating system brings the corresponding
data page into physical memory. The next instruction references a location on the process’s stack, so in step 3 the
operating system has allocated a stack page for the process and placed it into the process address space and main
memory. Succeeding instructions reference more locations in the stack area, jump to instructions that lie outside of
the initial page of instructions, and allocate extra data storage area on the heap. In step N (many steps later), these
pages have been brought into main memory.
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paradigm allows each process to behave as if it owns the entire machine; each process is protected from
all others and does not even know that other processes exist—for example, a process cannot spoof the
identity of another process, and the resource-management mechanisms implemented by the operating
system to support the illusion that each process own all physical resources means that no process may
dominate system resources. One of the many benefits of this organization is that it makes facilities such
as multitasking very easy to implement, because process protection, resource sharing, and a clean division
of process identity are provided as side effects of the virtual machine paradigm by definition.

The mapping information that tells the location of pages in memory or on disk is organized into page
tables, which are collections of page table entries (PTEs). Virtual addresses (shown in Fig. 5.23) are mapped
at the granularity of pages; at its simplest, virtual memory is then a mapping of virtual page numbers
(VPNs) to page frame numbers (PFNs), shown in Fig. 5.24. “Frame” in this context means “slot”—physical
memory is divided into frames that hold pages. The page table holds one PTE for every mapped virtual
page; an individual PTE indicates whether its virtual page is in memory, on disk, or not allocated yet.
The logical PTE therefore contains the VPN and either the page’s location in memory (a PFN), or its
location on disk (a disk block number). Depending on the organization, some of this information is
redundant; actual implementations do not necessarily require both the VPN and the PFN. Later devel-
opments in virtual memory added such things as page-level protections; a modern PTE usually contains
protection information as well, such as whether the page contains executable code, whether it can be
modified, and if so by whom. 

The mapping is a function; any virtual page can have only one location. However, the inverse map is
not necessarily a function; it is possible and sometimes advantageous to have several virtual pages mapped

FIGURE 5.23 Virtual addresses. A Virtual address is divided into two components: the virtual page number and
the page offset. The virtual page number identifies the page’s location within the address space. The page offset
identifies a byte’s location within the page. Bit widths are shown for a 32-bit address and a 4 kbyte page size.

FIGURE 5.24 Page numbers (for 32-bit virtual addresses). Every page in an address space is given a virtual page
number (VPN). Every page in physical memory is given a physical page number, called a page frame number (PFN).
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to the same page frame (to share memory between processes or threads, or to allow different views of
data with different protections, for example). Shared memory is one of the more commonly used features
of page tables. It is a mechanism whereby two address spaces that are protected from each other are
allowed to intersect at points, still retaining protection over the nonintersecting regions. Several processes
sharing portions of their address spaces are pictured in Fig. 5.25. The shared memory mechanism only
opens up a pre-defined portion of a process’s address space; the rest of the address space is still protected,
and even the shared portion is only unprotected for those processes sharing the memory. For instance,
in the figure, the region of A’s address space that is shared with process B is unprotected from whatever
actions B might want to take, but it is safe from the actions of any other processes. Shared memory is
therefore useful as a simple, secure means for inter-process communication. Shared memory also reduces
requirements for physical memory; for example, in most operating systems, the text regions of processes are
shared whenever multiple instances of a single program are run, or when multiple instances of a common
library are used in different programs.

The mechanism works by ensuring that shared pages map to the same physical page; this is done by
simply placing the same page frame number in the page tables of two processes sharing a page. A simple
example is shown in Fig. 5.26. Here, two very small address spaces are shown overlapping at several
places, and one address space overlaps with itself; two of its virtual pages map to the same physical page.

FIGURE 5.25 Shared memory. Shared memory allows processes to overlap portions of their address space while
retaining protection for the nonintersecting regions; this is a simple and effective method for inter-process commu-
nication. Pictured are four process address spaces that have overlapped. The darker regions are shared by more than
one process, while the lightest regions are still protected from other processes.

FIGURE 5.26 How page tables support shared memory. Two process address spaces are shown sharing several
pages. Their page tables maintain information on where virtual pages are located in physical memory. The darkened
pages are mapped to several locations; note that the darkest page is mapped at two locations in the same address space.
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This is not just a contrived example; many operating systems allow this, and it is useful, for example, in
the implementation of user-level threads.

An Example Page Table Organization

So now the question is: How do page tables work? If we think of main memory as the data array of a
cache, then the page table is the cache’s corresponding tags array—it is a lookup table that tells one what
is currently stored in the data array. The traditional design of virtual memory uses a fully associative
organization for main memory: Any virtual object can be placed at (more or less) any location in main
memory, which reduces contention for main memory and increases performance. An idealized fully
associative cache is pictured in Fig. 5.27. A data tag is fed into the cache; the first stage compares the
input tag to the tag of every piece of data in the cache. The matching tag points to the data’s location in
the cache. The goal of the page table organization is to support this lookup function as efficiently as possible.

To access a page in physical memory, it is necessary to look up the appropriate PTE to find where the
page resides. This lookup can be simplified if PTEs are organized contiguously so that a page number
can be used as an offset to find the appropriate PTE. This leads to two primary types of page table
organization: the forward-mapped or hierarchical page table, indexed by the virtual page number, and the
inverse-mapped or inverted page table, indexed by the physical page number (page frame number). Each
design has its strengths and weaknesses. The hierarchical table supports a simple lookup algorithm and
simple sharing mechanisms and can require a significant fraction of physical memory. The inverted table
supports efficient hardware table-walking mechanisms and requires less physical memory than a hierar-
chical table but inhibits sharing by not allowing the mappings for multiple virtual pages to exist in the
table simultaneously, if those pages map to the same page frame. Detailed descriptions of these can be
found elsewhere [Jacob & Mudge 1998a].

Instead of describing all possible page table organizations, we will look in some detail at a concrete
example: the virtual memory implementation of one of the oldest and simplest virtual memory systems,
4.3BSD Unix [Leffler et al. 1989]. The intent is to show how mapping information is used by the operating
system and how the physical memory layout is organized. Version 4.3 of Berkeley Unix provides support
for shared text regions, address space protection, and page-level protection. There is a separate page table
for every process, and the page tables cannot be paged to disk. As we will see, address spaces are organized
to minimize memory requirements.

BSD defines segments to be contiguous regions of virtual space. A process address space is composed
of five primary segments: the text segment, holding the executable code; the initialized data segment,
containing those data that are initialized to specific nonzero values at process start-up; the bss segment,

FIGURE 5.27 An idealized fully associative cache lookup. A cache is comprised of two parts: the tags array and
the data array. The tags act as a database; they accept as input a key (a virtual address) and output either the location
of the item in the data array, or an indication that the item is not in the data array. A fully associative cache allows an
item to be located at any slot in the data array, thus the input key is compared against every key in the tags array.
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containing data initialized as zero at process start-up; the heap segment, containing uninitialized data
and the process’s heap; and the stack. Beyond the stack is a region holding the kernel’s stack (used when
executing system calls on behalf of this process, for example) and the user struct, a kernel data structure
holding a large quantity of process-specific information. Figure 5.28 illustrates the layout of these seg-
ments in a process’s address space: The initialized data segment begins immediately after the text segment,
the bss segment begins immediately after the initialized data segment, and the heap segment begins
immediately after the bss segment. This is possible because the text, initialized data, and bss regions by
definition cannot change size during the execution of a process. The heap segment can grow larger, as
can the stack. Therefore, these two begin at opposite ends of the address space and grow towards each
other. Beyond the 2 GB point, the address space belongs to the kernel; a user reference causes an exception.

This design makes sense for a number of reasons. When the operating system was designed, memory
was at a premium. The choice was made to wire down the page tables. Given this, it makes most sense
to restrict an address space to be composed of a minimal number of contiguous regions; this would
ensure a compact page table (contiguous pages imply densely packed PTEs). The process model includes
a single thread of execution per address space; 4.3BSD did not have multiple threads within an address
space, nor did it use dynamically loaded libraries. Therefore, there was no need to support sparsely
populated address spaces.

Figure 5.29 depicts the layout of process address spaces and the associated process page tables. The
page tables are kept in the kernel’s virtual address space and are relocatable even if wired down. As shown
in the figure, each user-process page table mirrors the process’s address space; the PTEs that map the
text, data, bss, and heap segments are at the bottom end of a contiguous range of PTEs (which are held
in the kernel’s virtual pages), and the PTEs that map the user’s stack are near the top of the range of
PTEs. A user page table is therefore as compact as it can be, with no more than a page of wasted space;
the empty space between the ranges of PTEs allows for expansion of the heap and stack segments.

When a process needs to expand its address space beyond the confines of its user page table, the operating
system adds an additional page to the page table and shifts all following process page tables up by one
virtual page. This is the advantage of placing the user page tables in virtual space; the displaced data need

FIGURE 5.28 The 4.3BSD per-process virtual address space.

FIGURE 5.29 User-process page tables in 4.3BSD Unix.
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not be recopied. The disadvantage is that there needs to be another level of mapping to determine where
in the physical memory the pages that comprise a process’s user page table are located. The Usrptmap is
a structure that mirrors the entire set of user page tables, and for every page in a process’s user page
table, there is one PTE in the Usrptmap.

When a user reference requires a lookup in the page table, the operating system first determines which
process caused the fault; this identifies the appropriate page table within the region of user page tables.
The operating system then determines whether the access was to the user’s stack or one of the text, bss,
or data segments. If the access is to the user’s stack, the operating system indexes backward from the top
of the appropriate user page table to find the PTE; if the access is to the text, data, bss, or heap segment,
the operating system indexes forward from the bottom of the user page table.

The usrptmap begins at a known location in physical memory; therefore, any process address space
can be mapped. The appropriate root PTE within the usrptmap can always be found, given a process ID,
and each root PTE points to a page of PTEs in physical memory, each of which then points to a page in
the user address space. 

Translation Lookaside Buffers: Caching the Page Table

There is an obvious question of performance to consider: If every memory access by a user program
requires a lookup to the page table, how does anything ever get done? The answer is a familiar one: we
cache things. Rather than perform a page-table lookup on every memory reference (which returns a PTE
that gives us mapping information), we cache the most frequently used PTEs in hardware. The hardware
structure is called a translation lookaside buffer (TLB), and because it holds mapping information, the
hardware can perform the address translations of those PTEs that are currently cached in the TLB without
having to access the page table (see Fig. 5.30). If the appropriate PTEs are stored in hardware, a memory
reference completes at the speed of hardware, rather than being limited by the speed of looking up PTEs
in the page table. 

Most architectures provide a TLB to support memory management; the TLB is a special-purpose cache
that holds only virtual-physical mappings. When a process attempts to load from or store to a virtual
address, the hardware searches the TLB for the virtual address’s mapping. If the mapping exists in the
TLB, the hardware can translate the reference to a physical address without the aid of the page table. If
the mapping does not exist in the TLB (an event called a TLB miss), the process cannot continue until
the correct mapping information is loaded into the TLB. 

Translation lookaside buffers are fairly large; they usually have in the order of 100 entries, making
them several times larger than a register file. They are typically fully associative, and they are often accessed
every clock cycle. In that clock cycle they must translate both the I-stream and the D-stream. Thus, they
are often split into two halves, each devoted to translating either instruction or data references. They can
constrain the chip’s clock cycle as they tend to be fairly slow, and they are also power hungry (both are
a function of the TLB’s high degree of associativity). 

FIGURE 5.30 Address translation with and without a TLB. Address translation without a TLB is shown on the
left; translation with a TLB is shown on the right. The only difference is that the TLB caches the most recently used
entries in the page table, and the page table is only referenced when a lookup misses the TLB.
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In general, if the necessary translation information is on-chip in the TLB, the system can translate a virtual
address to a physical address without requiring an access to the page table. In the event that the translation
information is not found in the TLB, one must search the page table for the translation and insert it into the
TLB before processing can continue. This activity can be performed by the operating system or by the
hardware directly; a system is said to have a software-managed TLB if the OS is responsible, or a hardware-
managed TLB if the hardware is responsible. The classic hardware-managed design, as seen in the DEC VAX,
GE 645, PowerPC, and Intel x86 architectures [Clark & Emer 1985, Organick 1972, IBM & Motorola 1993,
Intel 1993], provides a hardware state machine to perform this activity; in the event of a TLB miss, the state
machine would walk the page table, locate the translation information, insert it into the TLB, and restart the
computation. Software-managed designs are seen in the Compaq Alpha, the SGI MIPS processors, and
the Sun SPARC architecture [Digital 1994, Kane & Heinrich 1992, Weaver & Germand 1994].

The performance difference between the two is due to the page table lookup and the method of operation.
In a hardware-managed TLB a hardware state machine walks the page table; there is no interaction with
the instruction cache. By contrast, the software-managed design uses the general interrupt mechanism to
invoke a software TLB miss-handler—a primitive in the operating system usually 10–100 instructions
long. If this miss-handler is not in the instruction cache at the time of the TLB miss-exception, the time
to handle the miss can be much longer than in the hardware-walked scheme. In addition, the use of the
general-purpose interrupt mechanism adds a number of cycles to the cost by draining the pipeline and
flushing a possibly large number of instructions from the reorder buffer; this can add up to something
on the order of 100 cycles. This is an overhead that the hardware-managed TLB does not incur; when
hardware walks the page table, the pipeline is not flushed, and in some designs (notably the Pentium Pro
[Upton 1997]), the pipeline keeps processing, in parallel with the TLB miss-handler, those instructions
that are not dependent on the one that caused the TLB miss. The benefit of the software-managed TLB
design is that it allows the operating system to choose any organization for the page table, while the
hardware-managed scheme defines an organization for the operating system. If TLB misses are infrequent,
the flexibility afforded by the software-managed scheme can outweigh the potentially higher per-miss cost
of the design. For the interested reader, a survey of hardware mechanisms is provided in [Jacob & Mudge
1998b], and a performance comparison of different hardware/operating system combinations is provided
in [Jacob & Mudge 1998c]. 

Lastly, to put modern implementations in perspective, note that TLBs are not a necessary component
for virtual memory, though they are used in every contemporary general-purpose processor. Virtually
addressed caches would suffice because they are indexed by the virtual address directly, requiring address
translation only on the (hopefully) infrequent cache miss. Such a scheme is detailed and evaluated in
[Jacob & Mudge 2001].
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6.1 Superscalar Processors

Mark Smotherman

Introduction

A superscalar processor is a computer designed to fetch, decode, and execute multiple instructions each
clock cycle. The rationale for such a design can be illustrated by considering the basic computer performance
equation, that is, execution time is a function of the path length (measured in number of instructions)
multiplied by the cycles per instruction (CPI) multiplied by the clock cycle time. The goal of a pipelined
processor is to strive towards a minimum CPI of 1.0, while simultaneously reducing or at least limiting any
expansion of the path length or clock cycle time, and thus reduce the execution time. The goal of a superscalar
design is to attain a fractional CPI, or, stated as the reciprocal, the goal is to attain instructions per cycle
(IPC) greater than 1.0. With similar reductions or at least limits over the expansion of the path length and
clock cycle time, the result is an even larger reduction in the execution time than for pipelining alone.

A VLIW (Very Long Instruction Word) processor is also designed for fetching, decoding, and executing
multiple operations each clock cycle. The difference between a superscalar processor and a VLIW pro-
cessor is one of implementation and architecture. Superscalar design can be applied as an implementation
technique to an existing sequential instruction set, while VLIW design requires that the instruction set
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architecture, the implementation, and the compilers be specifically designed to support the packaging
of multiple independent operations into long instruction words. 

Proponents of the VLIW approach rightly contend that VLIW design reduces the control complexity
within a processor; however, the corresponding drawbacks are a loss of program portability at the binary
level and a lack of flexibility. With regard to portability, the control logic added by a superscalar processor
is used to dynamically determine opportunities for parallel execution within a conventional instruction
stream. Thus, superscalar processors dynamically schedule parallel execution of the instructions of existing
executable program files, whereas recompilation into a static representation of parallel execution is a
requirement for programs to run on VLIW processors. With regard to flexibility, superscalar processors
can easily respond to dynamic events, such as cache misses. Dynamic events present a difficulty for VLIW
designs. For example, early VLIW designs avoided data caches so that memory access time would be a
known quantity for use in compiler scheduling.

The recent introduction of EPIC (Explicitly Parallel Instruction Computing) architectures, such as the
IA-64 architecture of Intel and Hewlett-Packard, is an attempt to gain the best of both approaches. Explicit
dependence information is incorporated into the instruction formats to reduce the control logic com-
plexity, and some scheduling of dynamic behavior is incorporated to provide flexibility.

Instruction-Level Parallelism

Superscalar processors attempt to identify and exploit parallelism in the instruction stream. That is,
instructions that are independent should be executed in parallel. We briefly review the concept of depen-
dencies. More details can be found in Mike Johnson’s text on superscalar microprocessor design [1].

Dependencies

Dependencies limit the parallelism between instructions because they must be enforced so that the results
of program execution will be correct. Indeed, much of the control logic in a superscalar processor is
devoted to identifying dependencies, so that execution will produce the same results as if the instruction
stream was being executed on a purely sequential computer. Dependencies can be categorized in three ways.

Data Dependencies
Data dependencies exist between two instructions when the order between the two instructions must be
maintained for execution to be correct. The most obvious data dependency is the true data dependency (or
RAW: read-after-write dependency) in which the result of one instruction is used as an input operand for
the second instruction. To preserve correctness, the first instruction must be executed prior to the second.
The storage that is used first as a result and then as a source can be either a memory location or a CPU register.

Two other cases arise when the second instruction writes to a storage location. An output dependency
(or WAW: write-after-write dependency) occurs when both instructions write to the same storage. To
preserve correctness, the result of the second instruction must be the final value of the storage. An anti-
dependency (or WAR: write-after-read dependency) occurs when the first instruction reads an input
operand from the storage location that will be written with the result of the second instruction. To preserve
correctness, the first instruction must obtain its input operand before that value is overwritten by a new
value from the second instruction. Both of these cases are called false data dependencies because they arise
from the reuse of storage locations.

Control Dependencies
A control dependency occurs when an instruction depends on a conditional branch instruction. It is not
known whether the instruction is to be executed or not until the branch is resolved. Thus, the branch
must be executed prior to the instruction.

Structural Dependencies
A structural dependency occurs when two instructions need the same resource. If the resource is not
duplicated, the instructions must execute sequentially, one after the other, rather than in parallel. The resource
for which the instructions contend might be an adder, a bus, a register file port, or some other component.
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Studies of Instruction-Level Parallelism

In the early 1970s, two studies on decoding and executing multiple instructions per cycle were published—
one by Gary Tjaden and Mike Flynn on a design of a multiple-issue IBM 7094 [2] and the other by
Ed Riseman and Caxton Foster on the effect of branches in CDC 3600 programs [3]. The conclusion in both
papers was that only a small amount of instruction-level parallelism existed in sequential programs—1.86
and 1.72 instructions per cycle determined by the respective studies. Thus, these studies clearly demonstrated
the limiting effect of data and control dependencies on instruction-level parallelism, and the result was to
encourage researchers to look for parallelism in other arenas, such as vector processors and multiprocessors.
However, the Riseman and Foster study did examine the effect of relaxing the control dependencies and
found increasing levels of parallelism, up to 51 instructions per cycle, as the number of branches were
eliminated (albeit in an impractical way). Later studies, in which false data dependencies were eliminated
as well as control dependencies, found much more available parallelism, with the highest published estimate
being 90 instructions per cycle by Alexandru Nicolau and Josh Fisher as part of their VLIW research [4].

Techniques to Increase Instruction-Level Parallelism

Just as the limit studies indicated, performance can be increased if dependencies can be eliminated or
reduced. Let us address the dependencies in the reverse order from their enumeration above. First, many
structural dependencies can be avoided by providing duplicate copies of necessary resources. Even scalar
pipelines provide two paths for memory access (i.e., separate instruction and data caches) and multiple
adders (i.e., branch target adder and main ALU). Superscalar processors have even more resource require-
ments, and it is not unusual to find duplicated function units and even multiple ports to the data
cache (e.g., true multiporting, multiple banks, or accessing a single-ported cache multiple times per cycle).

Control dependencies are eliminated by compiler techniques of unrolling loops and performing
optimizations such as “if conversion” (i.e., using conditional or predicated execution of instructions so
that a control-dependent instruction is transformed into a data-dependent instruction). However, the
main approach to reducing the impact of control dependencies is the use of sophisticated branch
prediction. For example, the Pentium 4 keeps the history of over 4000 branches [5]. Branch prediction
techniques allow instructions from the predicted path to begin before the branch is resolved and execute
in a speculative manner. Of course, if a prediction is incorrect, there must be a way to recover and restart
execution along the correct path.

False data dependencies can be eliminated or reduced by better compiler techniques (e.g., register and
memory allocation algorithms that avoid reuse) or by the use of register and memory renaming hardware
on the processor. Register renaming can be accomplished in the hardware by incorporating a larger set
of physical registers than are available in the instruction set architecture. Thus, as each instruction is
decoded, that instruction’s architectural destination register is mapped to a new physical register, and
future uses of that architectural register will be mapped to the assigned physical register. Hardware
renaming is especially important for older instruction sets that have few architectural registers and for
legacy codes that for one reason or another will not be recompiled.

True data dependencies have been viewed as the fundamental limit for program execution; however,
value prediction has been proposed in the past few years as somewhat of an analog of branch prediction,
in which paths within the instruction stream, which depend on easily predicted source values, can be
started earlier. As with branch prediction, there must be a way to recover from mispredictions. Another
method that is currently being proposed to reduce the impact of true data dependencies is the use of
simultaneous multithreading in which instructions from multiple threads are interleaved on a single
processor; of course, instructions from different threads are independent by definition.

Out-of-Order Completion

All processors that attempt to execute instructions in parallel must deal with variations in instruction
execution times. That is, some instructions, such as those involving simple integer arithmetic or logic
operations, will need only one cycle for execution, while others, such as floating-point instructions, will
need multiple cycles for execution. If these different instructions are started at the same time, as in a
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superscalar processor, or even in adjacent cycles, as in a scalar pipelined processor, a simple instruction
can complete earlier than a longer running instruction that appears earlier in the instruction stream. If
we allow the simple instruction to write its result to storage before the longer running instruction
completes, we may violate a data dependency. Dependency checking hardware can eliminate this problem;
however, dependency checking will not solve the problem of an inconsistent state of storage (registers
or memory) if the longer running instruction causes an exception. To handle this exception and to be
able to resume the program we must know the precise state of the storage, that is, we must know which
instructions, prior to the one causing the exception, have not completed and which instructions, after
the one causing the exception, have completed. To resume the processor must restore the state and any
uncompleted instructions. Two specific methods can accomplish this. The first is to not allow out-of-
order completion and force all instructions to complete in-order. The second is to provide a form of
buffering, usually called a reorder buffer, in which the instructions completing out-of-order can place
their results and then retire the results out of this buffer in program order. If an exception (or for that
matter, a branch or value misprediction) occurs, instructions prior to the one causing the exception (or
misprediction) are allowed to complete and then the contents of the reorder buffer beyond that instruc-
tion are flushed. Execution can then be resumed with a consistent state of storage. See Johnson for more
details [1].

In-Order vs. Out-of-Order Issue

A superscalar processor can fetch multiple instructions and then issue (i.e., assign and route) as many
instructions as are independent to the various function units, up to the width of the decoding logic and
the issue pathways. If the decoding logic stops processing at the first dependent instruction, the instruction
issue is said to be done in program order (or in-order). An alternative is to provide a buffer for decoded
instructions and dynamically issue (or schedule) any of the buffered instructions that are ready to execute.
The selected instructions may not be in program order (thus, out-of-order). The buffer for the instruc-
tions can take the form of a centralized “instruction window” or a decentralized set of “reservation
stations,” in which a subset of buffers are located at each function unit.

Example Machines

Historical Designs

The idea of a superscalar computer originated with John Cocke at IBM in the 1960s. Gene Amdahl,
architect of the IBM 704 and one of the architects of the IBM S/360, postulated a bound on computer
performance that included an assumption of a maximum decoding rate of one instruction per cycle on
a single processor. John Cocke felt that this was not an inherent limit for a single processor. His ideas
about multiple decoding became an important part of the IBM ACS-1 supercomputer design, which was
started in 1965 but ultimately cancelled in 1969. In this design, up to 16 instructions would be decoded
and checked for dependencies each cycle and up to seven instructions would be issued to function units [6].

After the ACS cancellation and the publication of [2] and [3], the idea of superscalar processing lay
dormant until the early 1980s when further research at IBM revived the notion of multiple decoding and
multiple issue. John Cocke teamed with Tilak Agerwala at IBM and worked on a series of designs that
finally led to the IBM POWER (Performance Optimized With Enhanced RISC) instruction set architec-
ture and the IBM RS/6000 workstation, which was announced in late 1989 and delivered in 1990. Agerwala
is credited with coining the term superscalar during a series of talks in 1983–1984 in an effort to compare
the performance available in these designs as compared to vector processors. These talks and the related
IBM technical report [7] were influential in kindling interest in the approach. In 1989, Intel introduced
the first single-chip superscalar microprocessor, the i960CA. Also around this time, LIW efforts, such as
the Intel i860, the Apollo DN10000, and the National Semiconductor Swordfish, and VLIW efforts, such
as those by Multiflow and Cydrome, were underway.
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Modern Designs

Most high-performance processors now incorporate some form of superscalar processing. Even many
simple processors can decode and execute one integer instruction along with one floating-point instruc-
tion per cycle. We briefly survey three representative processors in the following subsections. Other notable
superscalar designs include the Compaq Alpha 21264, HP 8000, and MIPS R10000. It should be noted
that designers of IBM mainframes developed a superscalar implementation, the IBM ES/9000 Model
520, in 1992, but more recent implementations have reverted to scalar pipelines.

UltraSPARC, 1995, [8]
The UltraSPARC is an example of an in-order superscalar processor. It provides four-way instruction
issue to nine functional units. The design team extensively simulated many alternatives and concluded
that an out-of-order approach would have required a 20% penalty in clock cycle time and increased the
time to market by up to half a year. The final design involves a nine-stage pipeline. This includes a decoupled
front-end pipeline (fetch and decode stages) that performs branch prediction and places decoded instruc-
tions in a 12-entry buffer. A grouping stage then selects up to four instructions in-order from the buffer
to be issued in the next cycle. Precise exceptions are provided by padding out most function unit pipe-
lines to four stages each (i.e., the required length for the floating-point pipelines) so that most four-
instruction groups complete in-order. The final two stages resolve any exceptions in the groups and write
back the results.

PowerPC 750, 1997, [9]
The PowerPC 750 is an example of an out-of-order processor with distributed reservation stations and
a reorder buffer (called the completion buffer in the 750). The 750 has six function units, including two
integer units. Each unit has one reservation station, except the load/store unit, which has two. Instructions
can issue, when ready, from these reservation stations. (This limited form of out-of-order execution is
sometimes called “function unit slip.”) The 750 also includes six rename registers for renaming the 32
integer registers and six rename registers for renaming the 32 floating-point registers.

The overall pipeline works as follows. A decoding stage is not needed since instructions are predecoded
into a wider representation as they are filled into the instruction cache. Up to four instructions are fetched
per cycle into a six-entry instruction buffer. Logic associated with the instruction buffer removes any
nops or predict-untaken branches and overwrites predict-taken branches with target-path instructions
so that no instruction buffer entries are required for nops or branches. (However, predicted branches are
kept in the branch unit until resolution to provide for misprediction recovery.) Up to two instructions
can be dispatched per cycle to the reservation stations and can be allocated entries in the six-entry
completion buffer. The integer units require a single cycle for execution, while the load/store unit and
the floating-point unit require two and three cycles, respectively. After execution, results are placed into
the assigned entries in the completion buffer. Up to two entries per cycle can be written back from the
completion buffer to the register files.

Pentium 4, 2000, [5]
The Pentium 4 is the most recent 32-bit processor from Intel and is an example of a very aggressive out-
of-order processor with a centralized instruction window and a reorder buffer. The original Pentium
combines two integer pipelines, each similar in design to the pipeline of the 486, and can thus decode
and execute up to two instructions in-order per cycle. Intel then developed the P6 core microarchitecture,
which serves as the basis for the Pentium Pro, Pentium II, and Pentium III. After branch prediction and
instruction fetch, the P6 core decodes up to three variable-length Intel IA-32 instructions each cycle and
translates them into up to six fixed-length uops (microoperations). Up to three uops are processed by
register renaming logic each cycle, and these are placed into the 20-entry centralized instruction window
along with being allocated entries in the 40-entry reorder buffer. The window is scanned each cycle in a
pseudo-FIFO manner in an attempt to issue up to four uops. Preference is given to back-to-back uops
to reduce the amount of operand forwarding among the execution units. The actual scanning and issue
requires two cycles, while most instructions require single-cycle execution. At maximum, the reorder
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buffer can receive up to three results per cycle and can start retirement of up to three uops per cycle.
Retirement requires three cycles. Thus the overall pipeline has some 14 stages; but, because some of these
stages can overlap, the effect is a minimum latency of 12 cycles per instruction.

The Pentium 4 is a redesign of the core microarchitecture. The translation of IA-32 instructions into
uops is retained, but instead of repeatedly fetching, decoding, and translating recurring IA-32 instruction
sequences, the uops are stored in a trace cache for repeated access. The trace cache can hold up to 12 K
uops, and in a manner somewhat similar to the PowerPC 750 branch elimination logic, the trace cache
stores frequently-traversed sequences (i.e., “traces”) of uops with any predict-taken branches followed by
instructions from the predicted path. The trace cache can provide up to three uops per cycle, which are
then routed through reorder-buffer allocation logic, register-renaming logic, and then into uop queues for
scheduling. Up to six uops can be issued per cycle, and up to three uops can be retired per cycle. Part of
the aggressiveness of the design can be seen by the increase in the reorder buffer size from 40 entries in the
P6 core to 126 entries for the Pentium 4. The clock rate can also be aggressively increased on the Pentium 4,
since there are approximately double the number of pipeline stages in it as compared to the P6 core. By
cascading ALUs, two dependent addition or subtraction operations can be performed in each cycle.
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6.2 Register Renaming Techniques1

Dezsö Sima

Introduction

Register renaming (or “renaming” for short) is a widely used technique in instruction level processors
(ILP) to remove false data dependencies between register operands of subsequent instructions in a straight
line code sequence.1–3 As false data dependencies we designate read-after-write (RAW) and write-after-
write (WAW) dependencies. If false data dependencies are removed, no related precedence requirements
constrain the execution sequence of the instructions involved. Thus, on an average, more instructions
are available for parallel execution per cycle, which increases processor performance. 

1Portions of this chapter reprinted with permission from Sima, D., The design space of register renaming tech-
niques, IEEE Micro, 20 Sept./Oct., 70, 2000. © 2000 IEEE
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The principle of register renaming is straightforward. The processor removes false data dependencies
by writing the results of the instructions first into dynamically allocated rename buffers, rather than into
the specified destination registers. For instance, in the case of the following WAR dependency

i1: add …, r2, …; [… ← (r2) + (…)]

i2: mul r2, …, …; [r2 ← (…) ∗ (…)]

the processor renames the destination register of i2 (r2), say to r33. Then after the renaming of r2, instruction
i2 becomes

: mul r33, …, …; [33 ← (…) ∗ (…)]

and the processor writes the result of  into r33 instead of into r2. This resolves the previous WAR
dependency between i1 and i2. In subsequent instructions, however, references to the source register r2

must be redirected to the rename buffer r33 as long as the renaming remains valid. In the next section
we give a detailed description of the whole rename process.

A precursor to register renaming was introduced in 1967 by Tomasulo in the IBM 360/91,4 a scalar
supercomputer of that time, which pioneered both pipelining and shelving. The 360/91 renamed floating
point registers in order to preserve the logical consistency of the program execution, rather than to
increase processor performance by removing false data dependencies. 

Tjaden and Flynn5 were the first to suggest the use of register renaming for removing false data depen-
dencies. They proposed the renaming of load type instructions, but they did not yet use the term “register
renaming.” This specific term was introduced a few years later, in 1975, by Keller6 who extended renaming
to cover all instructions including a destination register. He also described a possible hardware implemen-
tation of this technique. Because of the complexity of its implementation, however, about two decades
passed until register renaming came into widespread use in superscalars in the beginning of the 1990s. 

Early superscalar models of significant processor lines, such as the PA 7100, SuperSparc, Alpha 21064,
R8000, and the Pentium, typically did not yet use renaming as indicated in Fig. 6.1. Renaming appeared
gradually, first in a restricted form, called partial renaming, in the beginning of the 1990s, in the IBM
RS/6000 (Power1), Power2, PowerPC 601, and in NextGen’s Nx586 processors, as depicted in Fig. 6.1.
Partial renaming restricts renaming to one or to a few data types, such as floating point loads or floating
point instructions, as detailed in the section “Scope of Register Renaming.” Full renaming emerged later,
beginning in 1992, first in the high-end models of the IBM mainframe family ES/9000, then in the
PowerPC 603. Subsequently, renaming spread into virtually all superscalar processors with the notable
exception of Sun’s UltraSparc line. At present register renaming is considered to be a standard feature of
performance oriented superscalar processors.

Overview of the Rename Process

The rename process itself is considerably complex. It consists of a number of rename specific tasks—such
as renaming the destination and the source registers, fetching renamed source operands, updating the
rename buffers, releasing allocated rename buffers, recovery of the rename process from faultily executed
speculative execution, etc. In addition, each of the rename specific tasks may be implemented in a number
of different ways. Furthermore, the kind of the underlying microarchitecture affects how the rename
process is carried out. Therefore, each concrete description of the rename process is related to a particular
kind of the renaming technique employed and the underlying microarchitecture. Thus, before describing
the rename process we need to be specific about both the renaming technique and the microarchitecture
assumed.

As far as the renaming technique is concerned, in a subsequent section, we will show that eight basic
alternatives for renaming are available. In our description of the rename process, we need to presume one

i2′

i2′
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of them. Our choice is the one where (i) renaming is implemented by using rename register files (RRF),
and (ii) architectural registers are mapped to rename registers by means of mapping tables. Although
both terms are explained later in the subsequent section, beforehand we note that rename register files,
split to separate fixed-point (FX) and floating-point (FP) RRFs, store the instruction results produced by
the execution units temporarily, while the FX- and FP-mapping tables hold the actual mappings of the
FX- and FP-architectural registers to the associated rename registers, as indicated in the section on
“Methods of Register Mapping.” 

Concerning the underlying microarchitecture there are two design aspects, which affect the implemen-
tation of the rename process: (i) whether or not the processor uses shelving (dynamic instruction issue,
queued issue; see related box) and (ii) assuming the use of shelving, what kind of operand fetch policy
is employed (see related box). As recent superscalars predominantly make use of shelving, we take this
design option for granted throughout this chapter section. Regarding the operand fetch policy, which is
one design aspect of shelving, we take into account both alternatives, since superscalar processors make
use of both policies. Thus, while we describe the rename process in the subsequent two sections, we do
it in two scenarios, first assuming the issue bound fetch policy and then the dispatch bound fetch policy.
In both the scenarios mentioned, we describe the rename process by focusing only on a small part of
the microarchitecture, which is just enough to highlight the implementation of specific tasks of the
rename process.

The Process of Renaming, Assuming Issue-Bound Operand Fetching 

The considered part of the microarchitecture executes FX-instructions and consists of an architectural
register file (ARF) and of an execution unit (EU), as shown in Fig. 6.2.

We take for granted that shelving is implemented by providing dedicated buffers, called reservation
stations (RS), in front of the EU, and we assume that instructions are forwarded (dispatched ) from the
RS to the EU in an in-order manner. 

Our subsequent description of the rename process is embedded into the general framework of instruc-
tion processing. Here, we distinguish the following four processing phases: (i) decoded instructions are

FIGURE 6.1 Chronology of the introduction of renaming in commercial superscalar processors. As date of intro-
duction, we indicate the first year of volume production. Following the model designation, we also show the issue
rate of the processors (in brackets). Concerning the issue rate of CISC processors we note that one x86 instruction
can be considered to be equivalent of 1.3–1.9 RISC instructions.38 In this figure, we give references to the processors
that make use of renaming. 
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issued into the RS, (ii) executable instructions are dispatched from the RS to the EU, (iii) the EU performs
the prescribed operation and generates its result. At this time the instruction is said to be finished, and
finally, (iv) the processor completes (commits, retires) instructions in an in-order fashion, irreversibly
updating the program state with the results of the EU. 

Assuming the processor core as shown in Fig. 6.2 and issue bound operand fetching, the rename
process is carried out as follows:

(i) During instruction issue, three rename-related tasks must be performed: (1) the destination registers
of issued instructions (Rd) need to be renamed, (2) the source registers (Rs1 and Rs2) should be renamed
in order to redirect the source references to the associated rename registers, and (3) the required source
operands need to be fetched. 

(a) In order to rename the destination register of an issued instruction, first a free rename register needs
to be allocated to the issued instruction. This task is accomplished by means of the mapping table. The
mapping table keeps track of the actual mappings of the architectural registers to the rename registers.
Renaming of the destination register results in writing the identifier of the allocated rename register (Rd′)
into the corresponding mapping table entry and forwarding this identifier also into the corresponding
field of the RS. Typically, the processor uses the index of the allocated rename register as Rd′. 

(b) Source registers, for which a valid renaming exists, also need to be renamed. This is carried out by
accessing the mapping table with the source register identifiers (Rs1, Rs2) as indices, and fetching the
identifiers of the allocated rename registers (designated as , ). If for a particular source identifier
there is no valid renaming, the required source operand will be accessed from the ARF by using the
original source register identifier (Rs1 or Rs2).

(c) Finally, the referenced source operands need to be fetched. However, with renaming, requested source
operands may be in one of two possible locations. If there is a valid renaming, the requested operand
needs to be fetched from the RRF, else from the ARF. To fetch a requested operand, usually the processor
accesses both the RRF and the ARF simultaneously. If only the ARF hits, the referenced source register
is actually not renamed and the accessed value is the required one. If, however, for a particular source
register a valid renaming exists, both register files hit and the processor will give preference to the response
of the RRF. In this case, the RRF may deliver either a valid operand value (Op1/Op2), if it has already
been produced by a preceding instruction, or the index of that rename register, which will hold the
requested value after its generation ( / ), if the required result has not yet been calculated. Thus,
for each referenced source register either the requested operand value (Op1/Op2) or the appropriate
rename register identifier ( / ) will be written into the RS. The valid bits associated with the source

FIGURE 6.2 The processor core providing shelving with issue bound operand fetching and renaming.
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operand fields (V1/V2) indicate whether the related operand field holds a valid source operand value
(Op1/Op2) or a rename register identifier ( / ).

 (ii) Dispatching is not at all rename specific. Assuming in-order dispatching, the processor inspects
the valid bits of the source operands (V1 and V2) of the oldest instruction kept in the RS. If both valid
bits of this instruction are set and the EU is also free, the instruction is forwarded to the EU for execution.

(iii) After the EU has finished the execution of an instruction, both the RS and the RRF need to be
updated with the generated result. To update the RS, the generated results and their identifiers (Rd′) are
broadcasted to all the source register entries held in the RS. Through an associative search, all source register
identifiers ( , ) are located, which are waiting for the new result. The processor substitutes matching
identifiers with the result value and sets the associated valid bits (V1 or V2) to indicate availability. We
note that this task is performed basically in the same way with and without renaming. There is, however,
a slight difference, with renaming the search key is the renamed destination register identifier (Rd′) rather
than the original destination register identifier (Rd) that is used without renaming. The second task is
to update the rename register file. This is done simply by writing the new result value into the RRF using
the identifier accompanying the result produced (Rd′) and setting the associated valid bit (V) to signal
availability.

(iv) While an instruction completes, the processor permanently updates the ARF, and thus the program state,
with the content of the associated rename register. This is done by writing the result of the completed
instruction from the associated rename register to the addressed destination register. At this stage of the
instruction execution the established renaming becomes obsolete. Therefore, the related entry in the map-
ping table needs to be deleted and the rename register involved can be reclaimed for further use. This is so
since (1) after completion, the result of the instruction, that is, the content of the rename register, has already
been written into the addressed destination register, and (2) after finishing the instruction, the generated
result has already been transferred to all instructions waiting for this operand in the RS. 

During renaming, rename registers take on a sequence of states, as indicated in Fig. 6.3. 
During initialization the processor sets all rename registers into the “available” state. When the pro-

cessor allocates a rename register to an issued instruction, the state of the allocated register will be changed
to “allocated, not valid” and its valid bit will be reset. When this instruction becomes finished, the newly
produced result is written into the associated rename register, and its state is set to “allocated, valid.”
Finally, while the instruction completes, the result held temporarily in the rename register is written into
the specified architectural register. Thus, the allocated rename register can be reclaimed. Its state is then
changed to “available.” Nevertheless, it can happen that an exception or faulty speculative execution gives
rise to flush not yet completed instructions. In this case, a recovery procedure is needed, and the state of

FIGURE 6.3 State transition diagram of the rename registers, assuming the use of a rename register file (RRF).
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the concerned rename registers will be changed from the “allocated, not valid” or “allocated, valid” state
to the “available” state and the corresponding mappings between architectural and rename registers will
be deleted.

The Process of Renaming, Assuming Dispatch-Bound Operand Fetching

Assuming basically the same processor core as before, but using the dispatch-bound operand fetching, the
rename process is carried out as follows (see Fig. 6.4).

(i) During instruction issue, both the destination register (Rd) and the source registers (Rs1 and Rs2)
are renamed in the same way as described for issue bound operand fetching. But now, beyond the
operation code (OC) and the renamed destination register identifier (Rd′), the renamed source register
identifiers (  and ) are written into the RS rather than the operand values (Op1, Op2, if available)
as with issue bound operand fetching.

(ii) During dispatching two tasks need to be performed: (a) the instruction held in the last entry of
the RS needs to be checked to see whether it is executable. If so and if the EU is also free, this instruction
needs to be forwarded for execution to the EU. (b) During forwarding of the instruction, its operands
need to be fetched either from the RRF or from the ARF in the same way as described in connection
with the issue-bound operation.

(iii) When the EU finishes its operation, the generated result is used to update the RRF. Updating is
performed by writing the result into the allocated rename register using the supplemented register
identifier (Rd′) as an index into the RRF and setting the associated valid bit (V-bit).

FIGURE 6.4 The processor core providing shelving with dispatch-bound operand fetching and renaming.
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(iv) Finally, while the processor completes an instruction, the temporary result held in the associated
rename register is written into the architectural register, which is specified in the destination field of the
instruction. The only tasks remaining are to delete the corresponding entry in the mapping table and to
reclaim the rename register associated with the completed instruction. Reclaiming of the rename register
is, however, a far more complex task than with issue bound operand fetching. Notice that if operands
are fetched issue bound, (a) issued instructions immediately access their operands and (b) missing
operands are, after their generation, immediately forwarded from the EU to the instructions waiting for
these operands in the RS. In this case, after completion of an instruction, the allocated rename register
can immediately be reclaimed. However, if operands are fetched during dispatching, the RS is not auto-
matically updated with the produced results. As a consequence, after an instruction completes, the RS may
still contain instructions, which will require the contents of the rename register, which is allocated to the
just completed instruction. Thus, while instructions complete, their allocated rename registers cannot be
reclaimed immediately as in the case of the issue bound operand fetching. To resolve this problem one
possible solution is to maintain a counter for each rename register, which keeps track of the number of
references made to this register. The counter will be incremented each time if one of the source operands
of an issued instruction addresses this particular rename register, and will be decremented during
dispatching of the instructions each time when a source operand is fetched from this register. After all
outstanding fetch requests for a particular rename register are satisfied, as indicated by the counter score
of zero, and the associated instruction has been completed, the related register becomes eligible for
reclaiming. At the first sight it may seem that this intricate reclaim process can be avoided if during
completion the RS would have been searched for all renamed source operand identifiers ( , ),
which refer to the rename buffer, allocated to the completing instruction (Rd′), and matching renamed
source register identifiers would have been remapped to the associated architectural register (Rd). Unfor-
tunately, this idea is not applicable, since there is no guarantee that the addressed architectural register
would not be rewritten until instructions needing its content are dispatched.

During the rename process rename registers will take the same states and the same state transitions
will also occur as described earlier in connection with Fig. 6.3. The only difference is that now rename
registers are reclaimed according to modified conditions, as discussed previously.

We emphasize that other basic alternatives of register renaming differ mainly in two aspects: (1) the
processor can hold renamed values in other structures than rename register files and (2) the processor
can use a different scheme for mapping the architectural registers to rename registers as assumed above.
In addition, the processor should be able to rename not just one instruction per cycle but all issued
instructions. Nevertheless, despite these differences, the previous descriptions in the two characteristic
scenarios give a good background about how the rename process is carried out in any of the possible
implementation schemes.

The Design Space of Register Renaming Techniques

Overview

The design space of register renaming has four main dimensions: the scope of register renaming, the layout
of the rename registers, the implementation technique of register mapping, and the rename rate, as
indicated in Fig. 6.5. These aspects are discussed in the subsequent sections. For the presentation of the
design space we make use of DS trees.3,36

FIGURE 6.5 Design space of register renaming.
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Scope of Register Renaming

The scope of register renaming indicates how extensively the processor makes use of renaming. In this
respect we distinguish between partial and full renaming. Partial renaming is restricted to one or to only
a few instruction types, for instance only to FP-instructions. This incomplete form of implementation
was typical for the introductory phase of renaming, at the beginning of the 1990s (see Fig. 6.1). Examples
of processors using partial renaming are the Power1 (RS/6000), Power2, PowerPC 601, and the Nx586,
as shown in Fig. 6.6. Of these, the Power1 (RS/6000) renames only FP-loads. As the Power1 has only a single
FP-unit, it executes FP-instructions in sequence, so there is no need for renaming floating point register
instructions. Power2 introduces multiple FP-units, consequently it extends renaming to all FP-instructions,
whereas the PowerPC 601 renames only the Link and count register. In the Nx586, which includes an
integer core, renaming is restricted obviously only to FX-instructions.

Full renaming covers all instructions including a destination register. As Fig. 6.6 demonstrates, virtually
all recent superscalar processors employ full renaming. Noteworthy exceptions are Sun’s UltraSparc line
and Alpha processors preceding the Alpha 21264.

Layout of the Rename Buffers

Overview
Rename buffers establish the actual framework for renaming. From their layout we point out three
essential design aspects—the type and the number of the rename buffers provided as well as the number
of the read and write ports, as shown in Fig. 6.7.

Types of Rename Buffers
The choice of which type of rename buffers to use in a processor has far reaching impact on the
implementation of the rename process. Given its importance, we will outline the various design options.
To simplify our presentation, we initially assume a common architectural register file for all data types
processed. We later extend our discussion to the split register scenario that is commonly employed.

FIGURE 6.6 Scope of register renaming.
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As Fig. 6.8 illustrates, there are four fundamentally different ways to implement rename buffers. The
range of choices include: (i) using a merged architectural and rename register file, (ii) employing a stand
alone rename register file, (iii) keeping renamed values either in the reorder buffer (ROB), or (iv) in the
shelving buffers. 

(i) In the first approach, rename buffers are implemented along with the architectural registers in the
same physical register file, called the merged architectural and rename register file or the merged register
file for short. Here, both architectural and rename registers are dynamically allocated to particular registers
of the same physical file. 

Each physical register of the merged architectural and rename register file is at any time in one of four
possible states.28 These states reflect the actual use of a physical register as follows:

(a) not committed (“available” state),
(b) used as an architectural register (“architectural register” state), 
(c) used as a rename buffer, but this register does not yet contain the result of the associated instruction

(“rename buffer, not valid” state), and finally
(d) used as a rename buffer, and this register already contains the result of the associated instruction

(“rename buffer, valid” state).

As part of the instruction processing, the states of the physical registers are changed as described below
and indicated in the state transition diagram in Fig. 6.9.

FIGURE 6.7 Layout of the rename buffers.

FIGURE 6.8 Generic types of rename buffers (rename buffers are indicated by shaded boxes).
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 During initialization the first n physical registers are assigned to the architectural registers, where n
is the number of the registers declared by the instruction set architecture. These registers are set to be in
the “architectural register (AR)” state while the remaining physical registers take on the “available” state.
When an issued instruction needs a new rename buffer, one physical register is selected from the pool
of the available registers and is allocated to the destination register concerned. Accordingly, its state is
set to the “rename buffer, not valid” state and its valid bit is reset. After the associated instruction finishes
its execution, the produced result is written into the allocated rename buffer. Its valid bit is then set and
its state is changed to “rename buffer, valid.” Later, when the associated instruction completes, the rename
buffer, which is allocated to it will be declared to be the architectural register, which implements the
destination register specified in the just completed instruction. Its state then changes to the “architectural
register” state to reflect this. Finally, when an “old” architectural register is reclaimed, its state becomes
again “available.” Possible schemes for reclaiming “old” architectural registers are described for both issue
bound and dispatch bound operand fetching in a previous section (“Overview of the Rename Process”).
It can also happen that not yet completed instructions should be canceled due to exceptions or faultily
executed speculative instructions. In this case allocated rename buffers in the states “rename buffer, not
valid” or “rename buffer, valid,” are deallocated and their state are changed to “available.” In addition, the
corresponding mappings, kept either in the mapping table or in the rename buffer (as discussed later),
need to be canceled.

Note that merged architectural and rename register files do not require a physical data transfer to
update architectural registers. All that is needed for updating is to change the status of the related registers.
By contrast, separate rename register implementations need, for updating the architectural registers, a
physical data transfer from the rename buffer file to the architectural register file. This requires addi-
tional read and write ports on the rename register file and on the architectural register file, respectively,
as well as a dedicated data path. For this reason recent processors make increasing use of merged archi-
tectural and rename register files, e.g., the Alpha 21264, Pentium 4, or the K7 (for renaming floating
point instructions). 

Merged architectural and rename register files are employed furthermore, in the high end models
(520-based models) of the IBM ES/9000 mainframe family, the Power and R1x000 lines of processors. 

All other alternatives separate rename buffers from architectural registers. Their respective state tran-
sition diagram is depicted in Fig. 6.3 and has already been discussed in connection with the overview of
the rename process. 

(ii) In the first “separated” variant, a stand alone rename register file (or rename register file for short)
is used exclusively to implement rename buffers. The PowerPC 603–PowerPC 620 and the PA8x00 line
of processors are examples for using rename register files.

FIGURE 6.9 State transition diagram of a particular register of the merged architectural and rename register file28

(AR: architectural register, RB: rename buffer).
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(iii) Alternatively, renaming can also be based on the reorder buffer (ROB); see related box. The ROB
has recently been widely used to preserve the sequential consistency of the instruction execution. When
using a ROB, an entry is assigned to each issued instruction for the duration of its execution. Therefore,
it is quite natural to use this entry for renaming as well, basically by extending it with a new field, which
will hold the result of that instruction. Examples of processors, which use the ROB for renaming, are the
Am 29000 superscalar, the K5, K6, the PentiumPro, PentiumII, and PentiumIII.

The ROB can even be extended further to serve as a central shelving buffer. In this case, the ROB is
also occasionally designated as the DRIS (Deferred Scheduling Register Renaming Instruction Shelve).
The Lightning processor proposal37 and the K6 made use of this solution. As the Lightning proposal,
which dates back to the beginning of the 1990s, was too ambitious in the light of the technology available
at that time, it could not be economically implemented and never reached the market. 

(iv) The last conceivable implementation alternative of rename buffers is to use the shelving buffers
for renaming. In this case, each shelving buffer needs to be extended functionally to perform the task of
a rename buffer as well. But this alternative has a drawback resulting from the different deallocation
mechanisms of the shelving and rename buffers. While shelving buffers can be reclaimed as soon as the
instruction has been dispatched, rename buffers can be deallocated only at a later time, not earlier than
the instruction has been completed. Thus, a deeper analysis is needed to reveal the appropriateness of
the use of shelving buffers for renaming. To date, no processor has chosen this alternative.

For simplicity’s sake, we have so far assumed that all data types are stored in a common architectural
register file. But usually, processors provide distinct architectural register files for FX- and FP-data, con-
sequently they typically employ distinct rename register files, as shown in Fig. 6.10. 

As depicted in this figure, when the processor employs the split register principle, distinct FX- and
FP-register files are needed for both the merged files and the stand alone rename register files. In these
cases separate data paths are also needed to access the FX- and the FP-registers. Recent processors typically
incorporate split rename registers with one exception. When renaming takes place within the ROB, usually
a single mechanism is maintained for the preservation of the sequential consistency of instruction execu-
tion. Then all renamed instructions are kept in the same ROB queue, despite using split architectural
register files for FX- and FP-data. In this case, clearly, each ROB entry is expected to be long enough to
hold either FX- or FP-data.

Number of Rename Buffers 
Rename buffers keep register results temporarily until instructions complete. As not every instruction
produces a register result, in a processor up to as many rename buffers are needed as the maximum
number of instructions that have been issued but not yet completed. Issued but not yet completed
instructions are either (i) held in shelving buffers waiting for execution (if shelving is employed), or
(ii) are just in processing in any of the execution units, or (iii) are in the load queue waiting for cash access
(if there is a load queue), or finally (iv) are in the store queue waiting for completion and afterwards
for forwarding them into the cache to execute the required store operation (if there is a store queue).

FIGURE 6.10 Using split registers in the case of (a) merged register files, and (b) stand alone rename register files.
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Thus, the maximal number of instructions that may have been issued but have not yet completed in
the processor (npmax) is

npmax = wdw + nEU + nLq + nSq (6.1)

where wdw is the width of the dispatch window (total number of shelving buffers), nEU is the number of
the execution units, which may operate in parallel, nLq is the number of the entries in the load queue,
and finally nSq is the number of the entries in the store queue.

Assuming a worst case design approach, from Eq. (6.1) we can determine that the total number of
rename buffers required (nrmax) is 

nrmax = wdw + nEU + nLq   (6.2)

as instructions held in the store queue do not require rename buffers.
Furthermore, if the processor includes an ROB, the ROB needs to maintain an entry for every issued

but not yet completed instruction. So, based on Eq. (6.1) the total number of ROB entries required
(nROBmax) is

nROBmax = npmax (6.3)

Nevertheless, if the processor has fewer rename buffers or fewer ROB entries than expected to have
according to the worst case approach (as given by Eqs. (6.2) and (6.3), respectively), missing free rename
buffers or ROB entries can cause issue blockages. With a decreasing number of entries provided we expect
a smooth and a slight performance degradation. Hence, a stochastic design approach is also feasible,
where the required number of entries is derived from the tolerated level of performance degradation. 

Based on Eqs. (6.1)–(6.3), the following relations are typically valid concerning the width of the
processor’s dispatch window (wdw), the total number of the rename buffers (nr), and the reorder width
(nROB), which equals the total number of ROB entries available: 

wdw < nr ≤ nROB (6.4)

In Table 6.1, we summarize the type and the number of rename buffers provided in recent RISC and
x86 superscalar processors. In addition, we give four key parameters of the enlisted processors, (i) the
issue rate, (ii) the width of the dispatch window (wdw), (iii) the total number of rename buffers provided
(nr), and (iv) the reorder width (nROB). 

As the data in Table 6.1 shows, the interrelations Eq. (6.4) have been taken into account in the design
of most processors; however, two obvious exceptions arise. First, the PowerPC 604 provides 20 rename
buffers, four more buffers than the reorder width of the processor, which is 16. In the subsequent PowerPC
620, Intel corrected this by decreasing the number of rename buffers to 16. Second, the R10000 provides
only 32 ROB entries. This number is far too low compared to the dispatch width (48) and to the number
of available rename buffers (64). MIPS addressed this disproportion in its following model, the R12000,
by increasing the reorder width of the processor to 48. 

Number of Read and Write Ports
By taking into account current practice, in our subsequent discussion we assume split register files. 

First, let us focus on the required number of read ports (output ports). Clearly, as many read ports are
required in the rename buffers as there are data items that the rename buffers may need to supply in any
one cycle. In this respect, we should take into account that rename buffers supply required operands for
the instructions to be executed and also forward the results of the completed instructions to the addressed
architectural registers. 

The number of operands, which need to be delivered in the same cycle, depends first of all on whether
the processor fetches operands during instruction issue or during instruction dispatch. 
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If operands are fetched issue bound, the rename buffers need to supply the operands for all instructions,
which are issued in the same cycle into the shelving buffers. If there are no issue restrictions, both the
FX- and the FP-rename buffers are expected to deliver in each cycle all required operands for up to as
many instructions as the issue rate. This means that in a recent four way superscalar processor the FX-
and the FP-rename buffers typically need to supply eight and twelve operands respectively, assuming up
to two FX- and three FP-operands in each FX- and FP-instruction, respectively. If, however, there are
some issue restrictions, the required number of read ports is decreased accordingly.

By contrast, if the processor employs the dispatch bound fetch policy, the rename buffers should provide
the operands for all instructions, which are forwarded from the dispatch window (instruction window)
for execution in the same cycle. In this case, the FX-rename buffers need to supply the required
FX-operands for the integer units and for the loadstore units (including register operands for the specified
address calculations and FX-data for the FX-store instructions). As far as the FP-rename buffers are
concerned, they need to deliver operands for the FP-units (FP-register data) and also for the load store
units (FP-operands for the FP-store instructions). In the Power3, for instance, this implies the following
read port requirements. The FX-rename buffers need to have 12 read ports (up to 3 × 2 operands for
the three integer units as well as 2 × 2 address operands and 2 × 1 data operands for the two load store
units). On the other hand, the FP-rename registers need to have eight read ports (up to 2 × 3 operands
for the two FP-units and 2 × 1 operands for the two load store units).

TABLE 6.1 Type and Available Number of Rename Buffers in Recent Superscalars

Processor Type/Year of 
Volume Shipment

Type of
Rename Buffer

Number 
of  Rename 

Buffers

FX FP
Issue 
Rate

Width of the 
Dispatch 
Window

(wdw)

Total Number 
of Rename 

Buffers
(nr)

Reorder 
Width
(nROB)

RISC Processors

PowerPC 603 (1993) ren. reg. file na. 4 3 3 na. 5
PowerPC 604 (1995) ren. reg. file 12 8 4 12 20 16
PowerPC 620 (1996) ren. reg. file 8 8 4 15 16 16
Power3 (1998) ren. reg. file 16 24 4 20(?) 40 32
R10000 (1996) merged 32 32 4 48 64 32
R12000 (1998) merged 32 32 4 48 64 48
Alpha 21264 (1998) merged 48 41 4 35 89 80
PA 8000 (1986) ren. reg. file 56 56 4 56 112 56
PA 8200 (1987) ren. reg. file 56 56 4 56 112 56
PA 8500 (1989) ren. reg. file 56 56 4 56 112 56
PM1 (1996) merged 38 24 4 36 62 62

x86 (CISC) Processors

Pentium Pro (1995) in the ROB 40 32 201 40 401

Pentium II (1997) in the ROB 40 32 201 40 401

Pentium III (1999) in the ROB 40 32 201 40 401

Pentium 4 (2000) merged 120? 32 n.a. 120? 1261

K5 (1995) in the ROB 16 42 111(?) 16 161

K6 (1996) in the ROB 24 32 241 24 241

K7 (1999) in the ROB 
/merged3

72 n.a. 32 54 n.a. 72

M3 (2000exp.) merged 32 n.a. 32 561 na. 322

Note: In this table we also indicate four related parameters of the enlisted processors.
1 RISC operations.
2 x86 instructions (On average x86 instructions produce 1.3–1.9 RISC operations).38

3 The K7 renames FX operands in the ROB but FP operands in a merged architectural and rename register
file, respectively.

? Designates questionable data.
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In addition, if rename buffers are implemented separately from the architectural registers, the rename
buffers need to be able to forward in each cycle as many result values to the architectural registers as the
completion rate (retire rate) of the processor. As recent processors usually complete up to four instructions
per cycle, this task increases the required number of read ports in the rename buffers typically by four.

We note here that too many read ports in a register file may unduly increase the physical size of the
datapath and as a result the cycle time. To avoid this problem, a few high performance processors (such
as the Power2, Power3, and the Alpha 21264) implement two copies of particular register files. The Power2
duplicates the FX-architectural register file, the Power3 doubles both the FX-rename and the FX-
architectural files, and the Alpha 21264 has two copies of the FX-merged architectural and rename
register file. As a result fewer read ports are needed in each of the copies. For example, with two copies
of the FX-merged register file, the Power3 needs only ten read ports in each file, instead of 16 read ports
in one FX-register file. A drawback of this approach is, however, that a scheme is also required to keep
both copies coherent.

Now let us turn to the required number of write ports (input ports). Since rename buffers need to accept
in each cycle all results produced by the execution units, they need to provide as many write ports as
many results the execution units may produce per cycle. The FX-rename buffers receive results from the
available integer-execution units and from the load/store units (fetched FX-data), whereas the FP-rename
buffers hold the results of the FP-execution units and of the load/store units (fetched FP-data). Most
results are single data items requiring one write port. However, there are a few exceptions. When execution
units generate two data items they require two write ports as well; like the load/store units of PowerPC
processors. After execution of the LOAD-WITH-UPDATE instruction, these units return both the fetched
data value and the updated address value. 

Layout of the Register Mapping

Overview
Register mapping includes three tasks, as depicted in Fig. 6.11: (1) The processor needs to allocate rename
buffers to the destination registers of the issued instructions; (2) it also must keep track of the actually
valid mappings; and (3) it needs to deallocate no longer used rename buffers. 

Allocation Scheme of Rename Buffers
As far as the allocation scheme of rename buffers is considered, processors usually allocate rename buffers
to every issued instruction rather than only to those including a destination register in order to simplify
logic. Although rename buffers are not needed until the results become available in the last execution
cycle, rename buffers are typically allocated to the instructions as early as during instruction issue. This
kind of register allocation leads to wasted rename register space. Delaying the allocation of rename buffers
to the instructions until instructions finish

39 saves rename register space. Various schemes have been
proposed for this, such as virtual renaming39–42 and others.43 In fact, a virtual allocation scheme has
already been introduced into the Power3.39 

Method of Keeping Track of Actual Mapping
Two possibilities are available for keeping track of the actual mapping of particular architectural registers
to allocated rename buffers. The processor can use a mapping table for this or can track the actual register

FIGURE 6.11 Layout of the register mapping.
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mapping within the rename buffers themselves. In the following section we outline these methods,
illustrated in Fig. 6.12.

A mapping table has as many entries as there are architectural registers in the instruction set architecture
(ISA), usually 32. Each entry holds a status bit (called the entry valid bit in the figure), which indicates
whether the associated architectural register is renamed. Each valid entry supplies the index of the rename
buffer, which is allocated to the architectural register belonging to that entry (called the RB-index). For
instance, the left side of Fig. 6.12 shows that the mapping table holds a valid entry for architectural
register r7, which contains the RB-index of 12, indicating that the architectural register r7 is actually
renamed to rename buffer number 12. As already indicated, usually each entry is set up during instruction
issue while new rename buffers are allocated to the issued instructions. A valid mapping is updated when
the architectural register belonging to that entry is renamed again, and it will be invalidated when the
instruction associated with the actual renaming completes. In this way, the mapping table continuously
holds the latest allocations. Source registers of issued instructions are renamed by accessing the mapping
table with the register numbers as indices and fetching the associated rename buffer identifiers (RB-indices),
as shown in Fig. 6.12.

We note that for split architectural register files obviously separate FX- and FP-mapping tables are
needed.

Mapping tables should provide one read port for each source operand that may be fetched in any one
cycle, and one write port for each rename buffer that may be allocated in any one cycle (as discussed
earlier in the section on “Number of Read and Write Ports”).

The other fundamentally different alternative for keeping track of the actual register mappings relies
on an associative mechanism (see the right side of Fig. 6.12). In this case no mapping table exists but
each rename buffer holds the identifier of the associated architectural register (usually the register number
of the renamed destination register) and additional status bits as well. These entries are set up usually
during instruction issue when a particular rename buffer is allocated to a specified destination register.
As Fig. 6.12 shows, in this case each rename buffer holds five pieces of information: (1) a status bit, which
indicates that this rename buffer is actually allocated (called the entry valid bit in the figure), (2) the
identifier of the associated architectural register (Dest. reg. no.), (3) a further status bit, called the latest

FIGURE 6.12 Methods for keeping track of the actual mapping of architectural registers to rename buffers. (RB
designates rename buffer.)
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bit, whose role will be explained subsequently, (4) another status bit, called the value valid bit, which
shows whether the actual value of the associated architectural register has already been generated, and
finally (5) the value itself (value), provided that the “value valid” bit signifies an already produced result.
The latest bit is needed to mark the last allocation of a given architectural register if it has more than
one valid allocation due to repeated renaming. For instance, in our example, architectural register r7 has
two subsequent allocations. From these, entry number 12 is the latest one as its latest bit has been set.
Thus, in our figure, renaming of the source register r7 would yield the RB-index of 12. We point out that
in this method source registers are renamed by an associative lookup for the latest allocation of the given
source register.

If operands are fetched issue bound, source registers are both renamed and accessed during the issue
process. Then processors usually integrate renaming and operand accessing, and therefore maintain
register mapping within the rename buffers. For dispatch bound operand fetching, however, these tasks
are separated. Source registers are usually renamed during instruction issue, whereas the source operands
are accessed while the processor dispatches the instructions to the execution units. Therefore, in this case,
processors typically use mapping tables. 

Deallocation Scheme of Rename Buffers
If rename buffers are no longer needed, they should be reclaimed (deallocated). The actual scheme of
reclaiming depends on key aspects of the overall rename process. In particular, it depends on the allocation
scheme of the rename buffers, the type of rename buffers used, the method of keeping track of actual
allocations, and even whether operands are fetched issue bound or dispatch bound. Here, we do not go
into details, but refer to the section on “Implementation of the Rename Process” for a few examples on
how processors reclaim rename registers. 

Rename Rate

As its name suggests, the rename rate stands for the maximum number of renames that a processor is
able to perform in a cycle. Basically, the processor should be able to rename all instructions issued in the
same cycle in order to avoid performance degradation. Thus, the rename rate should equal the issue rate.
This is easier said than done because it is not at all an easy task to implement a high rename rate (four
or higher). This is true for two reasons. First, for higher rename rates the detection and handling of inter-
instruction dependencies during renaming (as discussed later in the section on “Implementation of the
Rename Process”) becomes a more complex task. Second, higher rename rates require a larger number
of read and write ports on register files and on mapping tables. For instance, the 4-way superscalar
R10000 can issue any combination of 4 FX- and FP-instructions. Accordingly, its FX-mapping table needs
12 read ports and 4 write ports, and its FP-table requires 16 read and 4 write ports. This number of ports
are needed since FX-instructions can refer up to three and FP-instructions up to four source operands
in this processor.

Another example worth looking at is the PM1, also called Sparc64. This 4-way superscalar processor
can issue any combination of 4 FX- and 2 FP-instructions, up to a maximum of 4 instructions. In this
case, both the FX-mapping table and the merged register file have 10 read and 4 write ports while its
FP-counterpart has 6 read and 3 write ports. According to Asato et al.,

44 this 14-port 116 word 64-bit
merged register file needs 371 K transistors, far more than the entire Intel 8086 processor (about 30 K
transistors) or slightly more than the i386 (about 275 K transistors).45

Basic Alternatives and Possible Implementation Schemes 
of Register Renaming

In the design space of register renaming, theoretically each possible combination of the available design
choices yields one possible implementation alternative. Instead of considering all possible implementation
alternatives, it makes sense to focus only on those, which differ in relevant qualitative aspects from each
other. We designate these alternatives the basic alternatives. Possible basic alternatives can be derived from
the design space in two steps—first by identifying the relevant qualitative design aspects and then by
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composing their possible combinations. Concerning the selection of the relevant qualitative design aspects,
we recall the design space of renaming, shown in Fig. 6.5. First, we can ignore two main aspects, the scope
of register renaming, as recent processors typically implement full renaming, and the rename rate, because
of its quantitative character. Thus, two main design aspects remain, the layout of the rename buffers and
the implementation of register mapping. Furthermore, as Fig. 6.7 indicates, the layout of the rename
buffers itself covers three design aspects: the type and the number of rename buffers, and the number
of the read and write ports. Of these only the type of the rename buffers is of qualitative character. From
the design aspect layout of the register mapping (Fig. 6.11) we consider the method of keeping track of
actual mappings the only relevant aspect. It follows that the design space of register renaming includes
only two relevant qualitative aspects: the type of the rename buffers and the method of keeping track of
actual mappings.

The design choices available for these two relevant design aspects result in eight possible combinations,
called the basic alternatives for register renaming, as shown in Fig. 6.13. In addition, as the operand fetch
policy of the processor, which is a design aspect of shelving, significantly affects how the rename process
is carried out, in this figure we also take into account this aspect. This splits the eight basic renaming
alternatives into 16 feasible implementation schemes. In this figure we also indicate which implementation
schemes are used in relevant superscalar processors, as well as give some hints about their origins.

As Fig. 6.13 indicates, out of the eight possible basic alternatives of renaming, relevant superscalar
processors make use only of four. Moreover, we can recognize that the latest processors employ mostly
the following three basic alternatives of renaming:

1. Use of merged architectural and rename register files and of mapping tables (R10000, R12000, M3)
2. Use of separate rename register files and mapping registers within the rename registers (PA8x00

line, Power3)
3. Renaming within the ROB and using mapping tables (Pentium Pro, Pentium II, Pentium III)

We note furthermore that it is also conceivable to use different basic alternatives for renaming FX- and
FP-instructions, as is done in the K7. This processor uses the ROB for renaming FX-instructions and a
merged architectural and rename register file for renaming floating point ones; however, as AMD did
not disclose the method of register mapping, we have not included this processor into Fig. 6.13.

FIGURE 6.13 Basic implementation alternatives of register renaming.
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As Fig. 6.13 shows, the latest processors fetch operands predominantly dispatch bound due to the
comparative advantage of this fetch policy.49 The move away from the issue bound to the dispatch bound
fetch policy is manifested in AMD’s subsequent K5 and K6, in Intel’s line of P6-based models (Pentium Pro,
Pentium II, and Pentium III) compared to the Pentium 4, and by the fact that the PowerPC 620-based
Power3 also made this transition.

Implementation of the Rename Process

With reference to the section “Overview of the Rename Process” we emphasize that the rename process
can be broken down into the following subtasks:

(a) renaming the destination registers
(b) renaming the source registers
(c) fetching the renamed source operands
(d) updating the rename buffers
(e) updating the architectural registers with the content of the rename buffers
(f) reclaiming of the rename buffers
(g) recovery from wrongly performed speculative execution and handling of exceptions

These subtasks are carried out more or less differently in the 16 distinct implementation schemes of
renaming.

Of these, in the section on “Overview of the Rename Process,” we described the rename process presuming
one particular basic alternative (assuming the use of rename register files and mapping tables) in both
operand fetch scenarios, that is in two implementation schemes. Below, instead of pointing out all differ-
ences in all further implementation schemes of register renaming, we focus only on three particular tasks
of renaming and point out significant differences encountered in different implementation schemes. In
addition, we briefly discuss how inter-instruction dependencies are dealt with during renaming, how the
processor recovers from misspeculation, and how it handles exceptions.

Remarks on Renaming Destination Registers

The way how the processor allocates new rename buffers depends on the type of rename buffers used.
If rename buffers are realized in the ROB, a new ROB entry, and thereby a new rename buffer will
automatically be allocated to each issued instruction. Else rename buffers need to be allocated only to
those issued instructions, which include a destination register.

Remarks on Updating the Architectural Registers

As discussed previously, when instructions complete, their results need to be forwarded from the associated
rename buffers into the originally addressed architectural registers. In cases where rename buffers are
implemented separately from the architectural register file (as a stand alone rename register file, or they
are in the ROB or in the shelving buffer file), this task instructs the processor to physically transfer the
contents of the related rename buffers into the referenced architectural registers. By contrast, if the
processor uses a merged architectural and rename file, no physical data transfer is required, instead only
the status of the related registers needs to be changed, as indicated before and shown in Fig. 6.10. 

Remarks on Reclaiming Rename Buffers

The conditions for reclaiming no longer used rename buffers vary with the rename scheme employed.
Thus, when operands are fetched issue bound, associated rename buffers may immediately be reclaimed
after an instruction has been completed. On the other hand, if the processor fetches operands dispatch
bound, associated rename buffers may only be reclaimed after the related instruction has been completed
and, in addition, if it is also sure that no outstanding operand fetch requests are available to that rename
buffer. The latter condition can be checked in different ways. One possibility is to use a counter for each
rename buffer for checking outstanding fetch requests, as described in the section on “Overview of the
Rename Process.” Another option is applicable with merged architectural and rename register files.
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In this case, however, during instruction execution a rename buffer becomes an architectural register
and reclaiming is related to no longer used architectural registers, as discussed in the section on “Types
of Rename Buffers.” This method relies on keeping track of the most recent prior instance of the same
architectural register, and on reclaiming it when the instruction giving rise to the new instance completes.28

Renaming of Destination and Source Registers if Inter-Instruction Dependencies Exist 
between the Instructions Issued in the Same Cycle

As we know, shelving relieves the processor of the need to check for data- and control dependencies as
well as for busy EUs during instruction issue. Nevertheless, despite shelving, instructions issued in the
same cycle must still be checked for inter-instruction dependencies, and, in the case of dependencies,
the rename logic must be modified accordingly. Let us assume, for instance, that there are RAW depen-
dencies between two subsequent instructions issued in the same cycle, as in the following example:

i1: mul r2, …, …

i2: add …, r2, …

Here, i2 needs the result of i1 as r2 is one of its source operands. We will also assume that the destination
register of i1 (r2) will be renamed to r33 as follows:

: mul r33, …, …

In this case the RAW-dependent source operand of i2 (r2) has to be renamed to r33 rather than to the
rename buffer allocated before renaming of i1 to r2.

Similarly, if WAW dependencies exist among the instructions issued in the same cycle, as for instance,
between the instructions

i1: mul r2, …, …

i2: add r2, …, …

obviously, different rename buffers need to be allocated to the destination registers of i1 and i2, as shown
below:

: mul r34, …, …

: add r35, …, …

Recovery of the Rename Process from Wrongly Executed Speculation 
and Handling of Exceptions

If the processor performs speculative execution, for instance due to branch prediction, it may happen
that the speculation turns out to be wrong. In this case the processor needs to recover from the misspec-
ulation. This involves essentially two tasks: (i) to undo all register mappings set up, and (ii) to reclaim
rename buffers allocated, as already discussed. To invalidate established mappings there are two basic
methods to choose from, independently of the actual implementation of renaming. The first option is
to roll back all register mappings made during speculative execution, by using the identifiers of the faulty
instructions, supplied by the ROB. While using this alternative, the recovery process lasts several cycles,
since the processor can cancel only a small number of instructions (two to four) per cycle. A second
alternative is based on checkpointing. In this method, before the processor begins with speculative
execution, it saves the relevant machine state, including also the actual mapping, in shadow registers. If
the speculative execution turns out to be wrong, the processor restores the machine state in a single cycle
by reloading the saved state. For instance, both the PM1 (Sparc64) and the R10000 use checkpointing

i1′

i1′

i2′
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for recovery. Both processors incorporate mapping tables for register mapping, while the R10000 provides
four sets of shadow registers and the PM1 16 for subsequent speculations.

We note that beyond the two basic methods discussed above, there is also a third option in the case
when the processor uses mapping tables and dispatch bound operand fetching. This method relies upon
shadow mapping tables, which keep track of the actual mappings of the completed instructions. The
entries of the shadow tables are set up when instructions complete and are deleted when allocated rename
buffers are reclaimed. In the case of misspeculation, the correct state of the mapping table can be restored
by loading the content of the shadow table. For example, Cyrix’s M3 makes use of this recovery mechanism.

The second task to be done during misspeculation is to reclaim rename buffers, which are allocated to
the faulty instructions. This task can easily be performed by changing the state of the rename buffers
involved to “available,” as indicated in Figs. 6.3 and 6.9.

A similar situation to the above described misspeculation arises when exceptions occur. In this case the
exception request must wait until the associated instruction comes to completion to provide precise
exceptions.46 At this time, the processor accepts the exception and cancels all instructions, which have been
issued after the failing one. For cancellation of the rename process the same methods can be used as
discussed above. For example, in the event of an exception the R10000 rolls back all younger register
mappings made, whereas the PM1 first restores the mapping state to the first checkpoint after the failing
instruction in one cycle, and then rolls back the remaining mappings until the failing instruction is reached.

Appendix A: Types of Data Dependencies1–3

Data dependencies are precedence requirements between operands of subsequent instructions. Data
dependencies may occur in two different situations: either in straight line code segments, called inter
instruction dependencies, or between operands of instructions occurring in subsequent loop iterations,
designated as recurrences (see Fig. A). In both situations either register operands or memory operands may
be involved.

Inter-instruction dependencies may be broken down into read-after-write (RAW), write-after-read
(WAR), and write-after-write (WAW) dependencies, as depicted in Fig. B. In the following overview of
these types of dependencies we confine ourselves to register operands, but the given interpretation can
be applied to memory operands as well. 

RAW dependencies, designated also as flow dependencies, are producer-consumer relations between oper-
ands, which can be bisected into load-use and define-use dependencies (see Fig. B). Load-use dependencies

FIGURE A. Main aspects of data dependencies. (In this and in subsequent figures, relevant aspects and possible
alternatives are illustrated by using DS-trees.3,36)

Data dependency

Type Data involved

Inter-instruction
dependencies

Recurrences Register
operands

Memory
operands

They exist in a straight-line
code segment

between subsequent
instructions

 

They exist in a loop between
instructions belonging to

subsequent iterations

e.g. x (I) = A (I) * X (I-1) + B (I)
is a first-order linear recurrence
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arise in scenarios when an instruction uses a register operand, which needs to have been loaded by a
preceding load instruction from the memory, as shown in the example in Fig. B. If, however, the requested
operand is produced by a preceding operational instruction, the arising dependency is called define-use
dependency, as illustrated in Fig. B.

WAR dependencies or anti-dependencies arise between instructions if a given instruction reads an
operand from a particular register and a subsequent instruction writes the same register, as depicted in
Fig. B. If, for any reason, the subsequent instruction (i2) would have written this register before it is read
by the previous one (i1), then the subsequent instruction would pick up an erroneous operand value. 

Finally, two instructions are said to be WAW dependent, or output dependent, if they both write the
same destination. 

WAR and WAW dependencies are designated as false dependencies, since they can be removed by
appropriate techniques (that is register renaming in the case of register operands). By contrast, RAW
dependencies are true dependencies, since they cannot be eliminated.

Data dependencies may also occur in loops. This is the case if an instruction of the loop body is
dependent on an instruction belonging to a previous loop iteration, as exemplified in Fig. A. This type
of dependency is called recurrence, designated also as inter-iteration data dependency or loop carried
dependency. In the above example the value of X(I) depends on the value that is computed in the previous
iteration. The recurrence shown is a first-order linear one.

Appendix B: The Principle of Instruction Shelving

Instruction shelving (also known as indirect issue or dynamic instruction scheduling)1–3,49 removes the
issue bottleneck caused by control and data dependencies and by busy execution units. Its main idea is
to “shelve” issued instructions and defer dependency checking until a subsequent processing step, des-
ignated as dispatching.

Without shelving (see Fig. C) the processor issues instructions from the so called issue window (instruc-
tion window), to the execution units (EU). Actually, the issue window comprises the last n entries of the
instruction buffer (I-buffer), where n is the issue rate. The processor decodes the instructions kept in the
window and checks for dependencies between the instructions in the window and those in execution,
and also among the instructions held in the window. Dependent instructions are not issued, moreover,
depending on the issue policy of the processor,36 they can even block the issue of subsequent not
dependent instructions. Occurring blockages heavily restrict the average number of instructions issued
per cycle and thus also processor performance.

FIGURE B. Terms relating to data dependencies occurring in straight line code (Instruction semantics is r1 ← r2∗r3

etc.).
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Shelving removes the issue bottleneck by decoupling instruction issue and dependency checking
through buffering issued instructions, as indicated in Fig. D. There are various possibilities as to how
shelving buffers can be implemented.49 Of these in Fig. D we show shelving buffers provided in front of
each execution unit (EU), also called individual reservation stations or simply reservation stations. With
shelving, instructions are issued first to the shelving buffers, with no checks for data dependencies or
busy execution units. In the second step, instructions held in the shelving buffers are dispatched for
execution. During dispatching instructions are checked for dependencies and not dependent instructions
are forwarded to free execution units. Concerning terminology we note that at the time being there is
no consensus on the use of the terms instruction issue and instruction dispatch. Both terms are used in
both possible interpretations.

Shelving not only removes the issue bottleneck but substitutes the issue window with the much wider
dispatch window (instruction window), which is made up of all shelving buffers. Because the total number
of the shelving buffers is usually an order of magnitude higher than the issue rate, with shelving the pro-
cessor will find in each clock cycle on the average far more executable instructions than without shelving.

FIGURE C. The principle of direct issue.

FIGURE D. The principle of shelving (indirect issue).
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Thus, shelving substantially raises the sustained instruction throughput rate of the processor. Although
conceived as early as in the middle of the 1960s for the first instruction level parallel (ILP) processors
(the CDC660050 and the IBM 360/91),4 because of the complexity of its implementation, shelving only
came into widespread use more than two decades later in superscalars. 

Appendix C: Operand Fetch Policies3

If the processor uses the issue bound fetch policy it fetches referenced register operands during instruction
issue, that is while it forwards decoded instructions into the shelving buffers.3,36 In contrast, the dispatch
bound fetch policy defers operand fetching until executable instructions are forwarded from the shelving
buffers to the execution units. When the processor fetches operands issue bound, shelving buffers hold
the source operand values. In contrast, in the case of dispatch bound operand fetching, shelving buffers
have much shorter entries, as they contain only the register identifiers.

Appendix D: The Principle of the Reorder Buffer (ROB)

It is implemented basically as a circular buffer whose entries are allocated and deallocated by means of
two revolving pointers.46 The ROB operates as follows. When instructions are issued, an ROB entry is
allocated to each instruction strictly in program order. Each ROB entry keeps track of the execution
status of the associated instruction. The ROB allows instructions to complete (commit, retire) only in
program order by permitting an instruction to complete only if it has finished its execution and all
preceding instructions are already completed. In this way, instructions update the program state in exactly
the same way as a sequential processor would have done. After an instruction has completed, the
associated ROB entry is deallocated and becomes eligible for reuse.
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6.3 Predicting Branches in Computer Programs

Kevin Skadron

What Is Branch Prediction and Why Is it Needed?

What Is Branch Prediction?

Branch instructions permit a program to control the flow of instruction execution within a program.
Examples of high-level program constructs that translate into branches are “if-then” statements and
“for” loops. They test some condition, and depending on the outcome, execution proceeds down one
of two possible paths. In almost all instruction sets, branch instructions have exactly two possible
outcomes: not-taken, the sequential or fall-through case, in which the condition is false and the program
continues executing the instructions that immediately follow the branch; and taken, the nonsequential
case, in which the condition is true and execution jumps to a target specified in the branch instruction.
In the case of an “if ” statement, the two outcomes are the “then” clause and the fall-through case,
which may correspond to an “else” clause. In the case of a “for” loop, the two outcomes are an iteration
of the loop body or the fall-through case, which corresponds to exiting the loop. For example, a typical
loop structure in assembly code might look like this (“bnez” means “branch if the condition is not
equal to zero”):

Note that in all the assembly-language examples in this chapter, destination registers are listed last.
Branches create a problem because the identity of the proper path can only be known after the branch

has finished testing its condition, a process that takes time. Due to the pipelined nature of almost all
modern processors, this resolution latency necessitates branch prediction. Figure 6.14 shows the flow of
a branch through a generic pipeline. Resolving the branch requires waiting until it proceeds through
several stages and finally executes. If the fetching of subsequent instructions must wait until the proper
path is known with confidence, stall time or a “bubble” results [1].

If branch outcomes are instead predicted and subsequent instructions are speculatively fetched and
executed, this bubble is eliminated whenever the prediction is correct. This is shown in Fig. 6.15. If the
prediction is incorrect, these speculative instructions must be squashed—removed from the pipe-
line—and no time has been wasted compared to the alternative of no prediction. Squashing can be
accomplished simply by preventing the mis-speculated instructions from modifying any processor state.
These squashed instructions, however, represent an opportunity cost: had the branch been correctly
predicted, those instructions would have been correct, and would have performed useful work. This
wasted time is called the misprediction penalty and is equal to the branch resolution time.

Other control-flow instructions exist that transfer execution to some other program location but are
not conditional and do not branch. These jump instructions either jump to the target specified in the
instruction (direct jumps), or jump to a target that has been computed and whose address is found in a
register (indirect jumps). A procedure call is an example of the former, and a procedure return is an

L: (loop body)
…
sub r1, #1, r1 ; rl is the loop counter
bnez r1, L ; if the loop count is not yet zero, branch back

; to the top of the loop (label “L”) and iterate
(fall-through code) ; this code gets executed after the loop exits
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example of the latter. Jumps are also frequently used to jump around the else clause of an if-then-else
construct. For example, the following C code on the left would be translated into the pseudo-assembly
code on the right (bz: “branch if zero”):

As with branches, some time is required to determine jump targets. Direct jumps can be resolved early
with proper hardware in the fetch stage to extract the jump target from the instruction, or the targets
can be predicted (e.g., using a branch target address cache—see section on “Branch Target Address Caches”).
Indirect jumps generally cannot be resolved early, and instead must proceed through the pipeline in
order to read their target from the register file, just like any other instruction. Fortunately, their targets
can also be predicted. Prediction of indirect jumps is an active research topic [2–5], but is beyond the
scope of this treatment of branch prediction. Return instructions are a special case of indirect jumps,
and are easily predicted using a simple structure known as a return-address stack [6,7].

The term “branch” is often used to refer to any type of control-flow instruction, giving us not only
conditional branches but also direct and indirect (unconditional) branches instead of jumps. But the term
branch is best reserved for conditional branches, because control truly “branches” at such instructions,
and unconditional control-flow instructions are best called jumps.

FIGURE 6.14 A branch flowing through a generic pipeline with no prediction. The branch, the first gray box, flows
from left to right. After being fetched, one or more cycles elapse (one cycle in this diagram) while the instruction is
decoded and perhaps other manipulation takes place. Once the branch finally completes executing (i.e., testing
its condition), the next instruction (the next gray box) can be identified and fetched. This figure shows that the
resolution time introduces a delay during which the pipeline stalls. The corresponding “bubble” here is two cycles
long. (From Skadron, K., “Characterizing and removing branch mispredictions.” PhD thesis, Princeton Univ., June
1999. With permission.)

; r1 holds cond
if (cond) bz r1, L1 ; if cond == 0, do else clause

procedure1(); call procedure 1 ; cond != 0
else /∗ cond ==0 ∗/ jump L2 ; skip else clause

procedure2(); L1: call procedure2 ; cond == 0
x = x +1; L2: add r20, #1, r20 ; r20 holds x
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Why Is It Needed?

Branch prediction is necessary because branches are frequent, 15–25% of instructions in a typical program.
Without prediction, the pipeline would stall for each branch’s resolution (refer again to Fig. 6.14) and
impose a substantial performance penalty. Even if the processor could issue only one instruction per
cycle, and branch resolution stalled the pipeline for only one cycle, this would impose a performance
penalty of 15–25%. But today’s pipelines are substantially longer (to permit faster clock speeds) and wider
(to exploit instruction-level parallelism or ILP), making the penalties much more severe in terms of wasted
instruction-issue opportunities. Every additional stage in the pipeline between fetch and execute adds a
cycle to the branch resolution delay. In addition, in today’s wide-issue “superscalar” pipelines, the penalty
is equal to the resolution delay times the issue width. The minimum resolution delay in the Compaq®1

Alpha 21264—a four-wide superscalar processor—is seven cycles [8], and the minimum resolution delay
in the Intel Pentium®2 Pro—a three-wide superscalar organization—and its successors is eleven cycles [9].
The corresponding penalties are 28 and 33 instruction-issue slots. Of course, programs often do not
exhibit enough ILP to use the full issue width all the time, so the actual penalties are not quite so severe.
On the other hand, the resolution delays just specified are only the minimum delays. The out-of-order
nature of many high-performance processors’ execution engines means that instructions may spend an
arbitrary amount of time in decoupling buffers, and this makes the pipeline seem longer and exacerbates
the branch resolution delays. A correct branch prediction eliminates these stall cycles. A further problem

FIGURE 6.15 Pipeline behavior with branch prediction. In this diagram, the branch’s outcome is predicted. Imme-
diately in the next cycle, subsequent instructions are fetched and executed speculatively (black boxes). If the prediction
is correct, the speculative instructions do useful work and the bubble has been eliminated. If the prediction is incorrect,
the speculative instructions are squashed. (From Skadron, K., “Characterizing and removing branch mispredictions.”
PhD thesis, Princeton Univ., June 1999. With permission.)

1Compaq Computer Corp., Houston, Texas.
2Intel Corp., Santa Clara, California.
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is that mispredictions limit the processor’s ability to build up a large window of instructions over which
to expose ILP.

With the misprediction penalty so high in terms of wasted instruction-issue opportunities, not only
is branch prediction necessary, but the highest possible prediction accuracy is necessary in order to
minimize stall cycles and maximize the processor’s ability to exploit ILP.

Software Techniques

Branches can be predicted or otherwise managed by both software and hardware techniques. This section
focuses on software techniques, and the section on “Hardware Techniques” focuses on hardware techniques.

Branch Delay Slots

One early software technique that was able to eliminate the need for prediction in early processors is the
branch delay slot. Instead of predicting the branch’s outcome, the instruction-set architecture can be
defined so that some number of instructions following a branch execute regardless of the branch’s
outcome. These instruction positions are called delay slot(s) and must be filled with instructions that
are safe to execute regardless of the outcome of the branch, or with nops (but nops do no useful work).
Instructions to fill the delay slot might come from positions that preceded the branch in the original
code schedule but can safely be reordered, for example. Consider the sequence of code:

1. add r1, r2, r3
2. add r4, r5, r6
3. bnez r6
4. (delay slot)

Instruction 1 can safely be moved into the delay slot, because doing so violates no data dependencies.
Instruction 2, of course, cannot be moved into the delay slot, because it computes the value of r6 that
the branch then examines. More aggressive techniques can analyze instructions from after the branch,
identify a safe instruction, and hoist it into the delay slot. A more thorough treatment of branch delay
slots and associated techniques can be found in [10].

Unfortunately, delay slots have drawbacks. Even the most aggressive techniques still leave some delay
slots unfilled, wasting instruction-issue opportunities. Delay slots also have the problem that they expose
processor implementation details that might change. Current instruction sets that use delay slots were
defined when processors issued instructions in order, one at a time, and pipelines were short. The branch
resolution delay was hence just one cycle and the corresponding penalty was only one instruction issue slot,
so these instruction sets defined branches to have a single delay slot. Examples include the MIPS®3 [11]
and SPARC®4 [12] instruction sets. Yet, later implementations made the pipeline longer and issued
multiple instructions per cycle. This meant that the resolution delay corresponded to many issue slots,
even though the number of delay slots was still fixed by the instruction set at one instruction. In addition,
with multiple issue, a bundle of instructions being considered for issue in any particular cycle might
consist of several instructions following a branch. Exactly one of these—the delay slot—must be issued
unconditionally, while the others are control-dependent on the branch and their execution depends on
the branch outcome. For these reasons, later instruction sets like Alpha AXP [13] do not include delay
slots.

Profiling and Compiler Annotation

An alternative software technique is to profile the program’s behavior by gathering data about how
individual branches behave. This involves gathering data while the program is running about its branches’
behavior. This data can then be fed to a second compilation pass, which annotates the branches to indicate

3MIPS Technologies, Mountainview, California.
4SPARC International, Inc., Santa Clara, California.
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the predominant direction. The hardware then predicts each branch according to the annotation. So for
example, a branch that is taken 80% of the time and not taken 20% of the time would be annotated
predict-taken. More sophisticated profiling and compiler analysis can even make multiple copies of
segments of code so that the branches therein have more consistent behavior, or uncover branches whose
behavior is correlated and thus capture some of the same behavior as global-history prediction. This is
described by Young and Smith in [14].

Predication

A third technique is predication or if-conversion, in which the branch is removed and instructions from
both the taken and not-taken paths can be executed simultaneously. This eliminates the need to predict
the branch, and converts code that was control-dependent into code that is data-dependent on the branch
condition. This defers the dependence to the execution core and permits fetching to continue without
risk of rollback due to mispredictions. If done judiciously and execution from the two paths is properly
balanced, if-conversion can be done without any performance penalties. Correctness is ensured by
modifying the instructions that were once controlled or “guarded” by the if-converted branch so that
they can only commit if the branch condition would have permitted it.

If-conversion is accomplished in one of two ways. In full predication, each individual instruction is
guarded by a condition. This predicate value is specified as a third operand register, usually from a
dedicated register file. Clearly, this requires instruction-set support in every instruction. In partial pred-
ication, on the other hand, there is no support for guarding predicates. Instead, predication is accom-
plished using conditional move instructions (CMOVs), which can simply be added to retrofit to existing
instruction sets. One branch path is executed unconditionally. The results for the other path are computed
into temporary registers and then moved into their final destination with CMOVs. The CMOV only
completes if the specified condition (the branch condition) holds true. The following code sequence gives
an example:

The “pdef” instruction defines a predicate; the condition is evaluated and the result placed in p. In all
cases, “y = x ∗ x” gets the correct value of x because y is data-dependent on x and can only use x once
its final value is assigned. The final value of x, in turn, is either control-dependent (original code) or
data-dependent (predicated code) on cond. Although in this example, the partially-predicated sequence
is shorter, partial predication has two drawbacks. It requires a CMOV instruction for each destination
register on the path being predicated, and each destination register requires a temporary register [15]. 

Research by Mahlke et al. [16] has shown that predication substantially reduces both the number of
branches executed as well as the branch misprediction rate. Nevertheless, resource constraints mean that
not all branches can be predicated, and so predication still requires the presence of branch prediction.
This brings us to the hardware techniques, which can be used alone or in conjunction with the software
techniques just described.

Hardware Techniques

Static Techniques

The simplest hardware technique is to simply stall after every branch until its outcome is known. As
described above, the consequent delays lead to untenable performance penalties. A better yet still simple
technique is to statically predict all branches to be either taken or not taken. A static not-taken policy is
the easier of the two, because it corresponds to sequential execution. This eliminates the need for the

Original code Full predication Partial predication
if (cond) pdef cond, p add a, b, x

x = a + b; add a, b, x(p) cmov a, x (cond)
else mov a, x (!p) mul x, x, y

x = a; mul x, x, y
y = x ∗ x;
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fetch engine to identify which instructions are branches or to compute branch targets. Unfortunately, in
most programs more than half of branches are taken [17], making the performance of static-not-taken
usually quite poor. On the other hand, a static taken policy either requires the fetch engine to identify
which instructions are branches and immediately identify their taken targets, or requires some delay
while instructions are decoded and the target is computed. 

A third policy takes advantage of the fact that backward conditional branches almost always correspond
to loops, which tend to iterate multiple times, so these branches are likely to be taken. Non-backward branches,
on the other hand, are less biased. Hennessy and Patterson [10] found that 85% of backward branches are
taken while only 60% of forward branches are taken. This suggests a static policy of backwards-taken,
forwards-not-taken, or BTFNT. The problem of computing branch targets remains.

These policies were described by Smith [17] along with the core, bimodal dynamic prediction technique
described in the section on “Bimodal Prediction.” Another seminal paper from this era is the exploration
of branch predictor and branch target address cache design choices by Lee and Smith [18]. Both papers
also survey the earliest literature on branch handling.

Branch Target Address Caches

Not only static techniques, but in fact all branch-prediction techniques have the problem that on a
predicted-taken branch, the branch’s target must be computed. This requires extracting the offset field
from the branch instruction and adding it to the PC; tasks which typically cannot be performed until
the instruction-decode stage. If this is the case, some stall cycles result, called a “branch-taken bubble.”
A second type of predictor—a branch target predictor—can eliminate this problem. In its simplest form,
this is simply a small on-chip memory in the fetch stage that serves as a table of recently seen branches,
a branch target address cache or BTAC [19,20]. (The BTAC is also often referred to as a branch target
buffer or BTB, but this latter term is too heavily overloaded.) The BTAC is indexed with the branch’s
address (in other words, the PC—program counter—used to fetch the branch). It may be direct-mapped
or associative, and tagged or not tagged. Omitting tags reduces cost, but then a BTAC miss cannot be
identified, the predicted-taken branch will use the wrong target, and this will not be discovered until the
branch resolves. For this reason, BTACs are best tagged.

The dynamic hardware schemes described later in this section maintain tables in which they track
state about conditional branch directions. These direction-prediction tables are often indexed using the
branch address. Because the BTAC table is also indexed by branch address, it may be convenient with
these dynamic schemes to store the direction-prediction information in the BTAC along with each
branch’s target. Aside from the convenience of integrating these different sources of information into
one table, this confers the advantage that if the BTAC is tagged, any branch prediction state stored in the
BTAC is also tagged. While some processors use this organization, Calder and Grunwald [21] point out
that many branches are not taken and hence do not require the BTAC to store a target. Decoupling the
direction-prediction state from the target-prediction state therefore permits a smaller BTAC. It also
improves flexibility, as some predictors, such as global-history predictors (see the section on “Two-level
Prediction”) do not keep a one-to-one mapping between branch addresses and direction-prediction entries.

Instead of a BTAC, the processor might employ a branch target instruction cache, which stores some
actual instructions from the branch target rather than merely the target address. This replicates quite a
bit of state from the instruction cache, so this organization is rarely seen, although it does appear in the
Motorola®

5 PowerPC®6 G4 [22], for example.
The BTAC can also be integrated with the instruction cache. Each cache line can simply store the target

address of one or more of its branches in case that branch is predicted taken. Alternatively, the I-cache
can implement a next-line predictor [23]. Each cache line now stores the index of the next cache line to
be fetched (and also the set if the cache is associative) [24]. If no branches are taken in the current line,
the next-line address will be the next sequential address. If there is a taken branch, the next-line address

5Motorola, Inc., Schaumburg, Illinois.
6International Business Machines Corp., Armonk, New York.
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will be the appropriate target address. As branches change their taken/not-taken behavior, this next-line
address is updated accordingly. The next-line predictor is, therefore, a combination of the functionality
of a BTB and a bimodal predictor (see the section on “Bimodal Prediction”). If a more sophisticated
direction predictor is present, it overrides the next-line predictor. One motivation for using such an
organization is to permit a larger, slower, but more accurate direction predictor that may not be able to
be accessed in a single cycle. The Alpha 21264 takes such an approach [25], using as its slower but more
accurate direction predictor the hybrid predictor described in the section on “Hybrid Prediction.”

Pipeline Issues

In the most efficient organization, both the BTAC and the branch direction predictor are consulted during
the fetch stage as shown in Fig. 6.16. In this way, the PC can be updated immediately and the processor
can fetch from the appropriate location (taken or not-taken) in the next cycle. This avoids introducing
pipeline bubbles unless there is a BTAC miss or a branch misprediction.

Unfortunately, some problems occur with probing the branch-prediction hardware in the fetch stage.
One concern is the branch-predictor and BTAC lookup times. These tables must be fast enough, and
hence small enough, to permit the lookup to complete and the PC to be updated within a single cycle.
Otherwise the fetch stage falls behind. Current processors use predictors as big as 32 kbits, but Jiménez
et al. [26] argue that the feasible predictor size for single-cycle access will shrink in the coming years.
The reason for this is that even though the feature size on a processor die continues to shrink with
Moore’s law [27], electrical RC delays are not shrinking accordingly, and hence wire delays are not
shrinking as fast as logic delays. As feature size shrinks, large structures therefore seem to be getting
relatively slower.

Another problem is that in a typical organization, the fetch stage cannot determine whether the
instructions being fetched from the instruction cache contain any branches; that information must wait
until the instructions are decoded. Several solutions are available. The first technique is for the instruc-
tions to be “pre-decoded” before they are installed into the instruction cache to indicate which instruc-
tions are branches. The predictor structures can then be indexed using the actual addresses of the
branches. Note that this means either that the predictor must be multi-ported to cope with fetch blocks
that contain more than one branch, or the predictor can only predict one branch at a time. This is not
necessarily a major restriction, since if the predicted result is not-taken, the remaining instructions in

FIGURE 6.16 The placement of the branch prediction components in the pipeline.
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the fetch block after the branch are still valid and can still be passed on to decode. The second solution
is for the branch predictor to just predict fetch-block successors instead of specific branches. In this case,
the predictor simply predicts whether the next fetch block will be sequential (not-taken) or non-sequential
(taken, in which case the target supplied by the BTAC is used). This is slightly better than the first choice,
because it eliminates the need for pre-decode bits and can fetch past more than one not-taken branch
in a fetch block. It does require the decode stage to identify how each branch in a fetch block was implicitly
predicted. The third solution is for the BTAC and branch predictor to be indexed with the address of
every instruction in the fetch block. Hits in the BTAC indicate which instructions are branches, and only
the corresponding direction predictions are then used. The problem with this approach is that it requires
as many ports into the BTAC and branch-prediction structures as there are instructions in the fetch
block. These are the basic choices, although many variations and improvements have been proposed,
e.g., [24,28–30].

Bimodal Prediction

The simplest dynamic technique, introduced by Smith [17], is to maintain a small, on-chip memory
with a table of saturating counters that is indexed by branch address. The saturating counters—typically
two bits each—simply remember the predominant direction of previous outcomes for that branch. A
schematic for a bimodal predictor appears in Fig. 6.17. As mentioned, the table—usually called the pattern
history table or PHT—although logically a distinct entity, might actually be implemented as a unified
structure with the BTAC. This prediction scheme goes by different names, often simply “two-bit predic-
tion,” but recent literature has often referred to it as “bimodal” prediction to distinguish it from other
more sophisticated schemes that also use two-bit saturating counters.

Each time a branch resolves, its corresponding counter is incremented if the branch was taken, and
decremented if not. Incrementing or decrementing has no effect if the counter is already at its maximum
or minimum value, hence the term “saturating” counter and the name “bimodal.” In the simplest case of
a one-bit counter, the only possibilities are values of 0 and 1 and the predictor simply remembers the last
outcome for each branch. In the case of two-bit counters, values of 00 and 01 correspond to strongly not-
taken and weakly not-taken, and values of 10 and 11 corresponding to weakly taken and strongly taken.
Two-bit counters give better performance because they exhibit some hysteresis that makes them less
sensitive to infrequent occurrences of outcomes in the non-dominant direction. A state-transition diagram
for the most common two-bit counter configuration appears in Fig. 6.18. Other configurations [18,31]
are possible, however, for example, regardless of its current state, the counter might reset to 00 on a not-
taken branch.

As an example of how two-bit counters improve over one-bit counters, recall that a loop branch will
normally be taken. When the loop exits, a one-bit counter will only remember that most recent direction
(not taken), even though the predominant direction is “taken.” When this same loop is encountered
again, and the loop branch will once again be taken until the loop exits, the first prediction with a one-
bit counter will be “not taken.” A two-bit counter, on the other hand, only changes its state from 11 to
10 upon loop exit, and still predicts taken when it returns to the loop, thus eliminating a misprediction
compared to the one-bit counter.

FIGURE 6.17 A schematic for a bimodal predictor.
“Baddr” is the branch address or PC, which is used to index
the PHT (pattern history table), select the corresponding
two-bit counter, and make a prediction of taken or not-
taken.
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Wider counters have been considered [17] but confer little benefit and take longer to adjust to a change
in a branch’s behavior.

The size of the PHT is of course not infinite, so the ideal of one entry per branch may not be realized.
The table is indexed by the branch address modulo the table size, so some branches may collide. If these
branches are biased in the same direction this is harmless, but if not, they will interfere with each others’
attempts to update the counter, and these destructive PHT conflicts will lead to mispredictions. Sources
of mispredictions are discussed in the section on “Sources of Misprediction.”

Two-Level Prediction

Bimodal prediction can be improved in two ways, both of which explicitly track prior branch outcomes
and were introduced by Yeh and Patt. Local-history prediction [32] maintains a table of per-branch
histories. Instead of tracking each branch’s predominant direction, this branch history table or BHT tracks
explicit history in order to detect patterns. For example, a local history can detect patterns like TNTN…
that confound simple saturating counters. The predictor still keeps a PHT of two-bit counters, but these
are now indexed using the local history pattern, and the counters now learn outcomes for each history
pattern. A schematic of a local history predictor appears in Fig. 6.19. One apparent problem with local-
history prediction is that it would seem to require two serial lookups: first the BHT to obtain the history
pattern, then the PHT to obtain the actual prediction. This problem is solved by caching the most recent
PHT value for a given BHT entry as an extra field in the BHT. The next time that BHT entry is indexed,
it provides both the current history and the cached prediction. Fetching proceeds with that cached
prediction while the PHT is probed with the history pattern. The PHT result overrides the cached result,
so if the PHT disagrees with the cached prediction, the pipeline is flushed from the point of the
“mispredicted” branch.

Global-history prediction [33] on the other hand, keeps a single history register—the global branch
history register or GBHR—into which all branch outcomes are shifted, as seen in Fig. 6.20. It might seem
that intermingling outcomes from different branches simply produces noise, but instead global-history

FIGURE 6.18 The state-transition diagram for a saturating two-bit counter.

FIGURE 6.19 A schematic for a PAg local-history predictor. The branch address is used to index the table of per-
branch histories (the BHT), select the appropriate history, and then this history is used to index the PHT.
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prediction is extremely effective. The reason is that global history exposes correlation among branches
(and hence these predictors are also called correlating predictors). Consider the following sequence of
code.

Even if B1 and B2 are entirely unpredictable because x and y have very random behavior, B3 can be
predicted with 100% accuracy if the outcomes of B1 and B2 are known, because the outcome of B3 is
entirely correlated with the outcomes of B1 and B2. Global history is an admittedly crude way to expose
this sort of correlation, because the GBHR also contains outcomes from other branches that provide no
useful information. Yet as the section on “Comparison of Hardware Prediction Strategies” shows, global
history is quite effective, and Evers et al. [34] have shown that many programs contain substantial degrees
of correlated branch behavior. Unfortunately, no one has come up with a practical hardware technique
for exposing correlation while avoiding the noise that unrelated branches introduce into the GBHR.

Both the local-history and global-history predictors described above have the problem that different
branches may see the same prior history. All branches that see the same history will map to the same
PHT entry. Especially with global prediction, equivalent history does not always mean the branches will
behave the same way. To reduce the consequent destructive PHT conflicts, Pan, So, and Rahmeh [35]
point out that bits from the branch address can be combined with the history bits in order to provide
some degree of anti-aliasing—see Fig. 6.21, for example. The simplest technique is to concatenate the two
bit sources. For N bits of history and M bits of branch address, this creates a configuration where each
M-bit address pattern has its own 2N-entry PHT. 

For a fixed table size and hence a fixed number of bits in the index, this necessitates a reduction in
the number of history bits, so a balance must be found between the added prediction capability provided
by history bits and the anti-aliasing capability provided by address bits. This balance is sensitive to the
table size. In a study of the SPECint95 benchmarks [36], Skadron, Martonosi, and Clark [37] find that
as a general rule of thumb, both global- and local-history predictors should use at least 6–7 bits of branch
address, regardless of predictor size. Predictors with more aggressive anti-aliasing techniques, e.g., the
bi-mode predictor of Lee, Chen, and Mudge [38], will need fewer address bits.

To classify the different possible two-level predictor organizations, Yeh and Patt [33,39] developed a
naming scheme that uses three letters to characterize the different organizational choices. The first letter,
G, P, or S, indicates the type of history, global, per branch (i.e., local), or per branch set. The last choice

FIGURE 6.20 A schematic for a GAg global-history predictor. The global history of recent branch outcomes,
contained in the global branch history register (GBHR) is used to index the PHT.

B1: if (x)
…

B2: if (y)
…

z = x && y;
B3: if (z)

…

T/NT

GBHR

PHT
© 2002 by CRC Press LLC



refers to a predictor that explicitly allocates groups of branches to particular BHT entries, and is only feasible
with extensive profiling or compiler support and hence has received little study. Skadron, Martonosi, and
Clark [37] added a fourth type, M, to this naming scheme to describe predictors that track a combination
of global and local history. The second letter, A or S, indicates whether the PHT is adaptive, using a finite
state machine based on saturating counters, or fixed, using statically assigned directions (a profiling pass
might determine the best PHT value for each entry); almost all predictors proposed or under study,
however, are A—adaptive. The third letter, g, s, or p, indicates the PHT organization. The PHT might
be indexed purely by history (g); or indexed using some concatenated branch address bits, making it set-
associative (s); or the predictor might have a separate PHT for each branch (p, for per-branch). This last
choice eliminates aliasing among branches but is prohibitively large for all but small history sizes, and
is therefore mainly of theoretical interest. A pure global-history predictor like that in Fig. 6.20 is, therefore,
a GAg predictor and a pure local-history predictor like that in Fig. 6.19 is a PAg predictor. If either of
these concatenate some address bits into the index, like the global-history predictor in Fig. 6.21, they
become GAs or PAs predictors. Note that the GAs predictor has also sometimes been referred to as gselect
[40]. Finally, a predictor that uses both global and per-branch history, such as the bi-mode predictor,
would be an MAg or MAs predictor [37]. As for specifying the specific configuration of a predictor—how
many bits, how many entries, etc.—so many notations are involved that it is better to just be explicit.

An alternative anti-aliasing approach is to XOR the history string and address string together; this
approach, introduced by McFarling [40], is called gshare. This avoids the need to use a shorter history
string—both strings can be as long as the index. Recent data by Sechrest, Lee, and Mudge [41], however,
suggest that gshare confers little benefit over GAs.

Two-level prediction can seem like magic, especially global-history prediction. But it operates on the
same principle as compression; a predictable sequence is also compressible. Indeed, two-level prediction
is a simplified version of a Markov model, the same principle that underlies the prediction by partial
matching (PPM) compression scheme [42].

Hybrid Prediction

Because some branches do benefit from global history and others do not, McFarling [40] proposed hybrid
branch prediction. Several different organizations have been proposed [43–45], but the common idea is
to operate two different predictors in parallel, and for each branch select which predictor’s output to
actually use in making the prediction. The selector is itself a predictor and can be any of the structures
described above, but the selector tracks predictor successes rather than branch outcomes. For each branch,
the selector attempts to learn which predictor component is more effective. Figure 6.22 shows a high-
level schematic of a hybrid predictor’s organization. Note that both predictor components and the selector
can all be accessed in parallel to minimize lookup time.

The Compaq Alpha 21264 [25] uses a hybrid predictor comprised of 12-bit GAg and 10-bit PAg
predictors. The PAg component has a 1 K-entry BHT and, because it uses only history bits in indexing

FIGURE 6.21 A schematic for a GAs global-history predictor. N global history bits are concatenated with M bits
from the branch address to form the PHT index.
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the PHT, the PHT is also 1 K entries. An unusual aspect of the PAg component is that it uses three-bit
instead of two-bit saturating counters in order to achieve a stronger bias once the predictor has trained.
The selector is also a 12-bit GAg predictor, but its PHT tracks which component has been more successful
for each branch, rather than which direction the branch should take. 

Hybrid prediction has also been called “tournament,” “competitive,” and “combining” branch prediction.

Other Issues in Predictor Organization

The preceding sections have described the basic predictor organizations. Because prediction accuracy so
strongly underpins processor performance, branch prediction remains an active area of research and a
wealth of additional organizations have been proposed, primarily focusing on reducing mispredictions
due to destructive aliasing. Interested readers should consult recent proceedings of the symposia and
conferences in the list of works cited.

It is worth noting, however, that researchers have also considered how to adapt branch prediction to
wider-issue machines. Such a machine must fetch past multiple, possibly-taken branches in order to
exploit the wider fetch width. Otherwise the processor becomes fetch-bottlenecked and its effective width
is restricted by the average basic block size.

Yeh, Marr, and Patt [29] describe a different branch address cache that learns segments of the control-
flow graph and, in conjunction with a banked instruction cache, can fetch several blocks from non-
contiguous cache lines in a single cycle. Conte et al. [28] describe a collapsing buffer that can also fetch
past branches that are taken but whose target is in the same fetch block. Reinman, Austin, and Calder [46]
decouple branch prediction from fetch, allowing the branch predictor to run ahead of fetch when possible,
and they predict the length of fetch blocks so that not-taken branches do not unnecessarily limit fetching.
The most aggressive proposal is the trace cache [30] of Rotenberg, Bennett, and Smith, which dynamically
collapses noncontiguous fetch streams into contiguous traces that are stored in the trace cache and, which
appears in the Intel Pentium® 4 [47] and the HAL Sparc64 V [48].

Sources of Mispredictions

To better understand the behavior of branch predictors, it is helpful to examine some of the reasons a
misprediction might occur. These reasons can be broken down into two broad categories: behavioral and
structural. Behavioral mispredictions stem from the intrinsic behavior of a branch and are independent
of the predictor’s organization. Any irregular or random behavior by a branch will inhibit its predictability.

FIGURE 6.22 A schematic for a hybrid predictor. “Pred1” and “pred2” are configured as regular, standalone branch
predictors (they might be a global-history and a local-history component, for example), but both components make
a prediction and the selector then chooses one component prediction (via the multiplexor or “mux”) to use as its final
prediction. The selector is a predictor too, but tracks component outcomes rather than branch direction outcomes.
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Structural mispredictions, on the other hand, stem from properties of the predictor’s hardware organi-
zation. The major structural sources of mispredictions are described below and come from [37]. 

Destructive PHT and BHT Conflicts

All predictors that track state can suffer when unrelated branches map to the same predictor entry and
interfere with each others’ state. In the predictor’s PHT or in a hybrid predictor’s selector PHT, destructive
conflicts arise when branches map to the same 2-bit PHT counter and these branches go in opposite
directions. In the BHT of a local-history predictor, destructive conflicts arise when branches map to
the same history entry and hence the history of one branch displaces that of another branch. Note that
constructive conflicts can also occur in all these structures when—for reasons of either luck or correlated
behavior—the state of one branch causes a correct prediction by other branches. This means the expected
gain from eliminating conflicts would eliminate both destructive and constructive conflicts, but the
destructive behavior usually outweighs the constructive behavior.

Training Time

Because dynamic predictors work by recognizing patterns of branch behavior, they take time to train.
The training time comes from two sources. First, the predictor must see enough branches to observe any
patterns that exist. Second, the predictor must reach steady state. Consider the simple pattern TN,TN…
in a 6-bit history. After this branch has been seen twice, the history will contain xxxxTN, where “x”
signifies that these history bits contain a random value. Unless by sheer luck the bits in the “xxxx” portion
happen to be TNTN, this pattern is a transient that will not be seen again. This branch must therefore
be seen four more times before the history is fully initialized. In addition, for both types of training, a
pattern must be seen often enough not only to initialize the branch history, but also to put the corre-
sponding counters in the PHT into the proper state. In the TN,TN…example and assuming two-bit
counters in the PHT, this means that the history TNTNTN must be seen twice in order to ensure that
the two-bit counter has crossed the threshold. (The counter’s initial value might have been 00, but the
correct prediction is T.) The larger the saturating counters, the longer this component of the training time.

The predictor must train not only when a program first starts executing, but must also retrain after
every context switch and also when the program’s behavior changes, either because it enters a new phase,
or the nature of its input changes, etc.

“Wrong” Type of History

Mispredictions can also occur because the predictor does not track the most useful type of history—global
or local—for the branch in question. This has been called wrong history, even though it does not imply
that the actual history bits contain any invalid information. Unfortunately, most programs have some
branches that do well with global history and some branches that do well with local history. A predictor
that only tracks one or the other type of history therefore penalizes some branches in each program.
Evers et al. showed this to be important in [34]. Skadron, Martonosi, and Clark [37] found wrong-history
mispredictions are especially severe in global-history predictors, comprising 35–50% of the total mispre-
diction rate.

History Length

Mispredictions might also arise even if the predictor tracks the correct type of history but it uses too
short a history. For example, a history length of only two bits may not capture the full behavior of a
pattern longer than 2 bits. Consider the pattern TNNN,TNNN.... A two-bit local history will learn that
TN → N and this is always correct. But the problem arises for the pattern NN. The predictor will first
learn NN → N, but on the fifth occurrence of the branch, this will cause a misprediction. On the other
hand, there exist longer patterns for which short history is still sufficient. Consider two bits of history
and the pattern TNNTT,TNNTT…. Although the overall pattern is longer than 2 bits, none of the distinct
sub-patterns (TN, NT, and TT) are longer than two bits.

Alternatively, the history can also be too long. The problem here is that the history may contain many
bits that are entirely uncorrelated with the behavior of the branch to be predicted. This means that every
© 2002 by CRC Press LLC



time this branch is seen, those bits may have a different value, and the predictor may potentially have to
train on all possible combinations of those unrelated bits. This has the effect of smearing a particular
branch’s predictor state across a large portion of the PHT. In the absence of conflicts, this should, however,
only be a problem for global history. This problem might also be called a training-time misprediction
and was discussed by Evers et al. in [34].

Update Timing

Depending on how the predictor is updated, mispredictions can also arise because the predictor contains
stale state. If the predictor is not updated until a branch exits the pipeline, information about that branch’s
behavior does not appear in the predictor while the branch is in flight. Yet later branches that are fetched
and predicted before the first branch retires may depend on that first branch’s outcome [49]. Consider
again the sequence of correlated branches:

In a global-history predictor, if B1 or B2 has not yet resolved, the predictor will use state and hence
possibly incorrect global history when looking up the prediction for B3. A similar problem arises in a
local-history predictor for branches with repeating patterns.

The solution is to speculatively update the branch history immediately after the branch has been pre-
dicted, using the just-predicted value. If the prediction is correct, all subsequent branches see the correct
history. If not, the history must be repaired, or the predictor will accumulate bogus history. Fortunately,
because all instructions after a misprediction are squashed and re-fetched, subsequent branches still see
the correct history. This speculative-update-with-repair scheme therefore gives the illusion of omniscient
history update. These mechanisms were first described by Jourdan et al. [50], who also found that in two-
level predictors, it is only early update of the branch history that matters. Barring destructive conflicts,
the prediction for a particular PHT index is fairly stable over time, so the two-bit saturating counters can
be updated after the branch resolves.

Comparison of Hardware Prediction Strategies

Figures 6.23 and 6.24 present the prediction accuracies of conditional-branch directions for static-not-
taken, static-taken, BTFNT, bimodal, GAs, PAs, and hybrid predictors for the SPECint95 benchmarks
[36] and for two different sizes: a small predictor configuration of 8 kbits, and a large configuration of
64 kbits. The specific configurations are presented in Table 6.2 and 6.3. Of course, static predictors have
no size, so the data for these is simply replicated in both graphs. The configurations for GAs, PAs, and
the hybrid predictor are taken from Skadron, Martonosi, and Clark [37], which explored the different
possible combinations of history bits, address bits, and, for the hybrid predictor, different possible sizes
of the three structures. 

The data was gathered using a modified version of the simple, instruction-level branch-predictor
simulator from SimpleScalar version 2.0 [51]. All the benchmarks were compiled using gcc version 2.6.3
for the SimpleScalar research instruction set (PISA), and with optimization set at −O3—funroll-loops
(note that −O3 includes inlining). Simulation captures all user-level behavior, including libraries, but
cannot capture any behavior in the kernel due to system calls. Data was gathered using the SPEC reference
inputs. Some benchmarks come with multiple inputs, in which case one has been chosen. Go uses a
playing level of 50 and a 21 × 21 board with the 9 stone 21 input. M88ksim uses the dhrystone input,
gcc the cccp.i input, xlisp the 9-queens problem, ijpeg the vigo.ppm input, and perl the scrabble game.

B1: if (x)
…

B2: if (y)
…

z = x && y;
B3: if (z)

…
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The reference inputs produce very long simulation times—on the order of days even for simpler
instruction-level simulations—so the results here are taken for only a representative, 1-billion-instruction
segment of each program’s execution. A representative segment is reached by fast-forwarding past unrep-
resentative initial program behavior using a fast-simulation mode that updates the branch predictor
state (so that the predictor state is accurate when the full-detail simulation starts) but does not gather
branch-prediction statistics [52]. The fast-forward intervals are taken from [37] and are presented in
Table 6.4, along with the observed number of static branch sites and the number of dynamic branches
executed for each benchmark.

As can be seen from the data in Figs. 6.23 and 6.24, the static schemes all perform terribly, and different
schemes are better for different benchmarks, usually by a significant margin. BTFNT is the best static scheme

TABLE 6.2 Predictor Configurations for an 8-kbit Hardware Budget

Predictor
Index Bits

(h = hist., a = addr.) BHT Entries PHT Entries

Static not-taken — — —
Static taken — — —
BTFNT — — —
Bimodal 12a — 4 K
GAs 5h, 7a — 4 K
PAs 4h, 7a 1 K 2 K
Hybrid (selector) 3h, 7a — 1 K

(global) 4h, 7a — 2 K
(local) 2h, 7a 512 512

TABLE 6.3 Predictor Configurations for a 64-kbit Hardware Budget

Predictor
Index Bits

BHT Entries PHT Entries(h = hist., a = addr.)

Static not-taken — — —
Static taken — — —
BTFNT — — —
Bimodal 15a — 32 K
GAs 8h, 7a — 32 K
PAs 8h, 6a 4 K 16 K
Hybrid (selector) 6h, 7a — 8 K

(global) 7h, 7a — 16 K
 (local) 8h, 4a 1 K 4 K

TABLE 6.4 Branch and Fast-Forward Statistics for the SPECint95 Benchmarks

Fast-Forward
Distance (million)

Static Conditional 
Branch Sites

Dynamic Conditional 
Branches Executed 

(million)

go 925 5331 112 
m88ksim (m88) 0 968 162 
gcc 0 20,783 190 
compress 1648 203 151 
xlisp 0 676 154 
ijpeg 823 1,415 58 
perl 600 614 129 
vortex 2450 3,203 124 

Note: All benchmarks are run for one billion instructions in statistics-gathering mode after
the fast-forward interval.
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for five of the eight benchmarks, but performs terribly for m88ksim. (But keep in mind that BTFNT would
look better for floating-point codes, which are heavily loop-oriented.) Always-taken is the best static scheme
for m88ksim and ijpeg, but is the worst for three other benchmarks. This variability of the best scheme
among different benchmarks makes it difficult to choose one static scheme to implement.

Among dynamic schemes, bimodal is worse than the more sophisticated dynamic schemes for all
except go and vortex. Unlike the other schemes, however, bimodal is less sensitive to predictor size, with
a mean difference between the 8-kbit and 64-kbit bimodal predictors of only 0.55%. The reason for this
is that the bimodal predictor allocates only one entry to each branch site (i.e., a static branch location
in the program), no matter how often that branch executes or how varied its behavior. Most of the
programs have a fairly small number of branch sites, and of course the property of locality means that
only a subset of these are active at any one time. A 4 K-entry (8 kbit) table is, therefore, sufficient to
capture most of the static branch locations, and making the table larger has little effect.

Among two-level predictors, GAs is better than PAs about as often as PAs is better than GAs. As with
the static schemes, this variability of the best scheme among benchmarks makes it difficult to choose
which scheme to implement. This is strong motivation for use of the hybrid predictor, especially given
the observation [34,37] that many programs have some branches that are much better predicted using
global history, while other branches are much better predicted using local history. GAs, PAs, and hybrid,
however, are all the more sensitive to predictor size than bimodal is. Go and gcc are particularly sensitive

FIGURE 6.23 Branch prediction accuracies for 8-kbit predictors for the SPECint95 benchmarks. “Bim” is the
bimodal predictor, and “Hyb” is the hybrid predictor. Specific configurations appear in Table 6.3.

FIGURE 6.24 Branch prediction accuracies for 64-kbit predictors for the SPECint95 benchmarks. Specific config-
urations appear in Table 6.4.
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to predictor size, and so are xlisp and perl to some extent. The hybrid predictor is the most sensitive to
size, because it must allocate the available hardware budget across four tables: the selector’s PHT, the
global-history component’s PHT, and the local-history component’s BHT and PHT. Each of these tables
is therefore substantially smaller than in a single two-level predictor and therefore suffers more destructive
interference. This especially affects the programs with large static branch footprints, like go and gcc. Yet
a hybrid predictor also has an important advantage: in order to better control destructive conflicts, it
can dynamically shift which component it uses to make a prediction for each branch. 

Note that these results do not include the effects of predication, context switching, operating system
behavior, or any profile-guided feedback. All of these effects might change the results.

Summary

Branch prediction is important because otherwise every branch stalls the fetch engine. Some alternatives
exist, like delay slots and predication, but delay slots are not compatible with modern, wide-issue super-
scalar processors, and predication cannot remove all branches. Static prediction techniques that require
no hardware support are also possible, but they are either very simple, or in the case of compiler directives,
require instruction-set support. Static techniques also have the drawback that they cannot adapt to changing
run-time conditions. 

Dynamic branch-prediction techniques have evolved from the simple bimodal predictor to more
sophisticated two-level and hybrid predictors that exploit patterns in branch behavior and correlation
among branches. Refinements to these techniques, as well as new fetch organizations that permit fetching
past multiple branches, continue to be active areas of research.

The massive effort to find better branch-handling techniques is motivated by the severe penalty
imposed by mispredictions. Especially with the long and wide pipelines of modern processors, a very
small misprediction rate can severely harm performance. Indeed, the fetch bottleneck remains one of
the most severe limitations on faster processing, and Jouppi and Ranganathan [53] argue that it may
become the most severe bottleneck in future processors, even more severe than memory latency or
memory bandwidth.
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6.4 Network Processor Architecture 

Tzi-cker Chiueh

Introduction

The explosive traffic growth on the Internet comes with an ever more demanding requirement on the
available bandwidth and thus on the performance of the network devices that move network packets
from sources to destinations. In the most general sense, network processors are those that are specifically
designed to transport, order, and manipulate network packets as they move through the network. As
network protocols are typically structured as a stack of layers, network processors can be classified into
physical-layer, link-layer, and network-layer processors, depending on the protocol layer at which they operate.
Physical-layer processors are responsible for electrical or optical signal generation and interpretation for
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transporting digital bits, whereas link-layer network processors deal with framing, bit error detection/cor-
rection and arbitration of concurrent accesses to shared media. Network-layer processors operate on
individual packets and determine how to route packets from their senders to receivers in a particular
order, and modify their headers or even payloads along the way if necessary. Because the Internet is
largely based on the IP protocol, almost all state-of-the-art network-layer processors are designed to
process IP packets only. The conspicuous exception is network-layer processors designed for ATM net-
works. The focus of this paper, however, is exclusively on network-layer processors, which can operate
at from Layer 3 to Layer 7 in the ISO/OSI protocol stack model. 

In general, three approaches are used for network processor design, which correspond to different
design points in the programmability/performance spectrum. The ASIC approach takes a full customi-
zation route by dedicating specially-made hardware logic to specific network packet processing function-
alities. Although this approach gives the highest performance, it is typically not programmable and therefore
not sufficiently flexible to support a wide variety of network devices. Consequently, such processors are
more expensive and tend to be outdated sooner because they cannot exploit economies of scale to keep
up with technology advances. The general-purpose CPU approach either takes an existing processor for
PCs or embedded systems as it is, or augments it with a small set of instructions specifically included to
improve network packet processing. While this approach admits the most programming flexibility, the
throughput of these processors is substantially lower than what modern network devices require. The
main reason for this lackluster performance is that network device workloads are data movement-
intensive, whereas traditional processors are designed to support computation-intensive tasks. The last
approach to network processor design, programmable network processor, attempts to strike a balance
between programmability and performance and achieves the best of both worlds. Instead of using general-
purpose instruction set, a programmable network processor defines the set of instruction set primitives
for network packet processing from scratch, and exposes these primitives to system designers so that they
can tailor the processor to the requirement of different network devices. In the rest of this paper, we will
concentrate only on programmable network processors, as they represent the most promising and com-
mercially popular approach to network processor design.   

In addition to the basic network processing function such as packet routing and forwarding, modern
network processors are tasked with additional capabilities that support advanced network functionalities,
such as differentiated quality of service (QoS), encryption/decryption, etc. For network processors that
are to be used in edge network devices, they may need to perform even higher-level tasks such as
firewalling, virtual private network (VPN) support, load balancing, etc. Given an increasing variety of
features that network devices have to support, it is crucial for a network processor architecture to be
sufficiently general that system designers can build newer functionalities on these processors without
causing serious performance degradation. The challenge for network processor design is thus to identify
the set of packet processing primitives that is elastic enough to support as many different types of network
devices as possible, and at the same time is sufficiently customized so that the performance overhead
due to “impedance mismatch” is minimized.  

In the rest of this chapter section, we first discuss fundamental design issues related to network
processor architecture in the “Design Issues” section, and then describe specific network processor archi-
tectural features that have been proposed in the “Architectural Support for Network Packet Processing”
section. In the section on “Example Network Processors,” we review the design of several commercially
available network processors to contrast their underlying approaches. Finally, we outline future network
processor research directions in the “Conclusion” section.

Design Issues

To understand the network processor architecture, let us first look at what a programmable network
processor is supposed to do. After receiving an IP packet from an input interface, the network processor
first determines the output interface via which the packet should be forwarded toward its destination.
In the case that multiple input packets are destined to the same output interface, the network processor
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also decides the order in which these packets should be sent out on the associated output link, presumably
according to certain quality of service (QoS) policy. Finally, before the packet is forwarded to the next-
hop router, the network processor modifies the packet’s header or even payload according to standard
network protocols or application-specific semantics. For IP packets, at least the TTL (time-to-live) field
in the header must be decremented at each hop and as a result the IP packet header checksum needs to
be re-computed. Other IP header fields such as TOS (type-of-service) may also need to be modified for
QoS reasons. In some cases, even the packet body need to be manipulated, e.g., transcoding of a video
packet in the presence of congestion. In summary, given an input packet, the network processor needs
to identify its output interface, schedule its transmission on the associated output link, and make necessary
modifications to its header or payload to satisfy general protocol or application-specific requirements. 

Fundamentally, a network processor performs three types of tasks: packet classification, packet sched-
uling, and packet forwarding. Given an input IP packet, the packet classification module in the network
processor decides how to process this packet, based on the packet’s header and sometimes even payload
fields. In the simplest case, the result of packet classification is the output interface through which the
input packet should be forwarded. To support differentiated QoS, the result of packet classification
becomes a specific output connection queue into which the input packet should be buffered. In the most
general case, the result of packet classification points to the software routine that is to be invoked to
process the input packet; possible processing ranges from forwarding the input packet into an output
interface and a buffer queue, to arbitrarily complex packet manipulation. The design challenge of packet
classification is that the number of bits used in packet classification is increasing due to IPv6 and/or
multiple header fields, and varying because of application-level protocols such as URL in the HTTP
protocol. 

The packet forwarding module of a network processor physically moves an input packet from an
incoming interface to its corresponding outgoing interface. The key design issues on packet forwarding
are the topology of the switch fabric and the switch scheduling policy to resolve output contention, i.e.,
when multiple incoming packets need to be forwarded to the same output interface. State-of-the-art
network devices are based on crossbar fabrics, which are more expensive but greatly reduce the implemen-
tation complexity of the switch scheduler. Given a crossbar fabric, the switch scheduler finds a match
between the incoming packets and the output interfaces so that the switch fabric is utilized with
maximum efficiency and the resulting matching is consistent with the output link’s scheduling policy,
which in turn depends on the QoS requirement. Algorithmically, this is a constrained bipartite graph
matching problem, which is known to be NP-complete. The design challenge of switch scheduling is
to find a solution that approximates the optimal solution as closely as possible and that is simple enough
for efficient hardware implementation. One such algorithm is iterative random matching [1] and its
optimized variant [2].  

Traditionally, a FIFO queue is associated with each output link of a network device to buffer all outgoing
packets through that link. To support fine-grained QoS, such as per-network-connection bandwidth
guarantee, one buffer queue is required for each network connection whose QoS is to be protected from
the rest of the traffic. After classification, packets that belong to a specific connection are buffered in the
connection’s corresponding queue. A link scheduler then schedules the packets in the per-connection
queues that share the same output link in an order that is consistent with each connection’s QoS
requirement. A general framework of link scheduling is packetized fair queuing (PFQ) [3], which per-
forms the following two operations for each incoming packet, virtual finish time computation, which is
O(N) computation, and priority queue sorting, which is O(log N) computation, where N is the number
of active connections associated with an output interface. Intuitively, a packet’s virtual finish time
corresponds to the logical time at which that packet should be sent if the output link is scheduled
according to the fluid fair queuing model. After the virtual finish time for each packet is computed,
packets are sent out in an ascending order of their virtual finish time. A nice property of virtual finish
time is that an earlier packet’s virtual finish time is unaffected by the arrival of subsequent packets. With
per-connection queuing and output link scheduling, traffic shaping is automatic if packets are dropped
when they reach a queue that is full. As the complexity of both operations in link scheduling depends
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on N, they cannot readily scale to a large number of QoS-sensitive connections. Although there are various
attempts to simplify PFQ, most hardware link schedulers use a much simpler weighted round-robin
algorithm, which multiplexes connections on an output link according to weights that are proportional
to the connections’ QoS requirements.

In addition to the above three types of tasks, a network processor may need to support such higher-
level functionalities as security, multicast, congestion control, etc., because more and more intelligence
is moved from end hosts to the network. It is not clear what common primitives these high-level functions
can share, as comprehensive workload characterization along this line is almost nonexistent. The entire
active network field [4] is about the development of operating system and network procotols support for
programmable network devices so that they can perform application-specific operations on an applica-
tion’s packets as they go through the network; however, until now the research on architectural support
for active networking is almost nonexistent in the literature.

Figure 6.25 shows the generic architecture of an Internet router, which serves as an instance of a
network device that is built on network processor. The line cards are input/output interfaces and are
connected to external network links. Line cards typically include hardware for physical-layer and link-
layer protocol processing, and a network processor that performs packet classification, queuing and
output-link scheduling. The switch fabric controller determines when input packets should be forwarded
to their corresponding output interface. The control processor is typically a standard RISC processor and
is responsible for non-time-critical tasks such as routing table maintenance and traffic statistics collection
and reporting. 

Architectural Support for Network Packet Processing

Given the network device system architecture in Fig. 6.25, in this section we present architectural features
that were proposed previously to improve the performance of network processors. But first let’s consider
the performance requirements of a very high-speed router.  Assuming the worst-case scenario, i.e., each
packet is 64-byte long, an OC-768 or 40 Gbps network processor needs to handle 80 million packets per
second, or one packet every 12.5 ns. Assume further that a packet is processed in a pipeline fashion, i.e.,
packet classification, packet forwarding, and packet scheduling. Therefore, this 12.5 ns corresponds to
the pipeline cycle time, rather than the total packet latency within the network device. In packet classi-
fication, multiple memory accesses to the routing/classification table data structure are needed. For a
static RAM with 2-ns cycle time, a 12.5-ns cycle time means that the network processor cannot access
more than six memory words if the memory system is 32-bit wide.  In packet forwarding, the output buffer
queue memory should run at 1,250 MHz using a 128-bit-wide interface, because the rule of the thumb is
that packet buffers need to operate at four times as fast the line rate. In packet scheduling, even assuming
a modest number of active connections, say 1,000, the link scheduler logic needs to perform each
primitive operation in virtual finish time calculation within 12.5 ps, or about one CMOS transistor delay.

FIGURE 6.25 The system architecture of a generic network device such as an IP packet router.
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The above analysis demonstrates that in all three cases, new architecture-level and circuit-level innova-
tions are required to develop a network processor that  meets the OC-768 performance goal. 

Two basic approaches to speeding up network packet processing inside a network processor are
pipelining and parallelization. A deeper pipeline reduces the cycle time of the pipeline and, therefore,
improves the system throughput. However, because packet classification, packet forwarding, and packet
scheduling each exhibit complicated internal dependencies and sometimes iterative structures, it is
difficult to pipeline these functions effectively.  Parallelization can be applied at different granularities.
Finer granularity parallelism is more difficult to exploit but potentially leads to higher performance gain.
In the case of network packet processing, because processing of one packet is independent of processing
of another packet, packet-level parallelism appears to be the right granularity that strikes a good balance
between performance gain and implementation complexity. Typically, a thread is dedicated to the pro-
cessing of one packet, and different threads can run in parallel on distinct hardware engines. To reap
further performance improvement by exploiting instruction-level parallelism, researchers and companies
have proposed to run concurrent packet-processing threads on a simultaneous multi-threading processor
[5,11] to mask as many pipeline stalls as possible.  Such multithreading processors require the support
of multiple hardware contexts and fast context switching.

Compared with generic CPU workloads, network packet processing requires much more frequent bit-
level manipulation, such as header field extraction and header checksum computation. In a standard
RISC processor, extracting an arbitrary range of bits from a 32-bit word requires at least three instructions,
and performing a byte-wide summing of the four bytes within a word takes at least 13 instructions.
Therefore, commercial network processors [6] include special bit-level manipulation and 1’s complement
instructions to speed up header field extraction and replacement, as well as packet checksumming
computation. 

Caching is arguably the most effective and most often used technique in modern  computer system
design. One place in network processor design to which caching can be effectively applied is packet
classification. Since multiple packets travel on a network connection in its lifetime, in theory each
intermediate network device only needs to perform packet classification once for the first packet and
reuses the resulting classification decision for all subsequent packets. This corresponds to temporal locality
if one treats the set of all possible values of the header fields used in packet classification as an address
space. Empirical studies [7,8] show that network packet streams indeed exhibit substantial temporal
locality but very little spatial locality.  In addition, unlike CPU cache, the classification results for neigh-
boring points in this address space tend to be identical. Therefore, network processor cache can be designed
to cache address ranges rather than just address space points, as in standard cache. Chiueh and Pradhan [8]
showed that caching ranges of classification address space can increase the effective coverage of a network
processor cache by several orders of magnitude as compared to conventional caches that cache individual
addresses.   

Another alternative to speed up packet classification is through special content-addressable memory
(CAM) [13]. Commercial CAMs support ternary comparison logic (0, 1, and X or don’t-care). Classifi-
cation rules are pre-stored in the CAMs. Given an input packet, the selective  portion of its packet header
is compared against all the stored classification patterns in parallel, and a priority decoder picks the
highest priority among the matched rules if there are multiple of them. Although CAM can identify
relevant packet classification rules at wire speed, two problems are associated with applying CAM to the
packet classification problem. First, to support range match, e.g., source port number 130–202, one has
to break a range rule to multiple range rules, each covering a range whose size is a multiple of 2. This is
because CAMs only support don’t-care match but not arbitrary arithmetic comparison. For example,
the range 129–200 needs to be broken down into eight ranges: 130–130, 131–132, 133–136, 137–144,
145–160, 161–192, 193–200, and 201–202. For classification rules with multiple range fields, the need
for range decomposition can significantly increase the number of CAM entries required. Second, because
CAMs are hardwired memory with built-in width, it cannot easily support matching of variable-length
fields such as URL, or accommodate changing packet classification rules after network devices are put
into field use.
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Finally, because the main task of network devices is to move packets from one interface to another,
efficient data movement is of paramount importance. Because most packet buffer memory is imple-
mented in DRAM, it is essential to exploit the fast access mode in modern DRAM chips to keep up with
the line rate. In addition, it should support multiple DMA channels to allow multiple data transfer
transactions to proceed in parallel without the attention  of network processors.  

Example Network Processors

Intel’s Internet exchange architecture (IXA) [6] includes an IXE component as the switching fabric, an
IXF component for framing and formatting, an LXT component for physical-layer processing, and an
Internet exchange processor (IXP) for packet processing. The IXP consists of a StrongARM core, six
microengines and interfaces with the SRAM, SDRAM, the PCI bus, and a proprietary bus, the IX bus.
The StrongARM core performs such supervisory processing as maintaining the routing table. Each of
six microengines is a RISC core augmented with special instructions optimized for network processing
such as bit extraction, table lookup, and single-cycle shifting, and with support for hardware multithread-
ing. Each microengine has four program counters that allow four parallel threads to time-share a
microengine’s data path. There are two banks of single-ported general-purpose registers for ALU oper-
ations, and four single-ported transfer registers to read/write SRAM and SDRAM. The IX bus allows the
IXPs to interface with IXFs and IXEs, and supports 5 Gbps at 80 MHz.

Agere’s PayloadPlus architecture [9] includes a fast pattern processor (FPP), a routing switch process-
ing (RSP), an agere system interface (ASI), and a functional programming language (FPL) for program-
ming the FPP and RSP. The FPP sits between the physical interface and the RSP, and performs packet
re-assembly, protocol recognition and associated computation, and calculation of checksums and CRC.
The FPP is based on a pipelined and multithreaded architecture. It allocates a thread and a context to
process each incoming packet, and operates on one 64-byte block at a time, each in the associated packet’s
context. To program the FPP, system designers use a declarative programming language, FPL, to specify
the set of protocols to recognize and the set of actions to take for each specified protocol. Programs for
the FPP are represented as trees, where nodes correspond to pattern recognition functions and leaves as
actions. The RSP sits between the FPP and the switch fabric controller, and consists of three VLIW
engines: Traffic Management Compute engine that enforces packet discarding policies and maintains
queue statistics, Traffic Shaper Compute engine that ensures QoS and CoS for each connection queue,
and Stream Editor Compute engine that performs necessary packet modifications. These three engines
work on each packet together as a linear pipeline. The ASI interfaces with the host processor for
configuration and program download, and in addition coordinates the data movement between the FPP
and RSP.

C-Port’s digital communications processor (DCP) [10] includes 16 channel processors (CP), five spe-
cialized processors, and a 160 Gpbs internal bus. Each CP interfaces with the physical link interface, and
consists of a RISC core and two serial data processors (SDP). SDPs perform low-level bit manipulation task
whereas the RISC core performs such high-level task as packet scheduling and traffic statistics collection.
The five specialized processors perform classification table access, packet buffering, routing table look-up,
interfacing with the switch fabric, and supervisory processing. C-Port supports a special communications
programming interface called C-Ware to simplify system designers’ task of programming DCP.

Conclusion

In this chapter section, we present the set of tasks that a modern network processor needs to perform,
describe a set of architectural features specifically designed for network packet processing, and survey
several commercial network processor architectures as examples. Most of existing network processors
include special instructions to speed up packet processing, and use a parallel multithreaded architecture
to exploit multiple levels of parallelism; however, these architectures cannot scale to OC768 link rate and
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beyond, and, therefore, further research into network processor architecture is warranted. Here are several
research directions that we believe are worth exploring: 

• Scalable packet classification mechanism that supports variable-length application-level classifi-
cation patterns

• Integrated packet scheduling for both switch fabric and output links to achieve per-connection
QoS in an input queuing network device architecture

• Novel memory management scheme that exploits the abundant internal bandwidth of intelligent
RAM architecture [12] to cost-effectively satisfy the memory bandwidth requirements of terabit
links

• Architectural support for active networking and other high-level network functionalities
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7.5 Conclusions and Future Research

7.1 Introduction

Power dissipation limits have emerged as a key constraint in the design of microprocessors, even for
those targeted for the high end server product space. At the low end of the performance spectrum, power
has always dominated over performance as the primary design constraint; however, although battery life
expectancies have shown modest increases, the larger demand for increased functionality and speed has
increased the severity of the power constraint in the world of handheld and mobile systems. At the high
end, where performance was always the primary driver, we are witnessing a trend where energy and
power limits are increasingly dictating the high-level processing paradigms, as well as the lower-level
issues related to clocking and circuit design.

Figure 7.1 shows the expected maximum chip power (for high performance processors) through the
year 2014. The data plotted is based on the updated 2000 projections made by the International Tech-
nology Roadmap for Semiconductors [http://public.itrs.net ]. The projection indica tes that beyond the
linear growth period (through the year 2005) there will be a saturation in the maximum chip power. This
is ostensibly due to thermal/packaging and die size limits that are expected to kick in during that time
frame. Beyond a certain power regime, air cooling is not sufficient to dissipate the heat generated; and,
use of liquid cooling and refrigeration causes a sharp increase of the cost-performance ratio. Thus, power-
aware design techniques, methodologies, and tools are of the essence at all levels of design. 

Pradip Bose
IBM T. J. Watson Research Center
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In this chapter, we first present a survey of some of the most promising ideas in power-aware design at
the (micro)architecture level. We base this review on the currently available literature, with special emphasis
on relevant work presented at recent architecture conferences and workshops. Where useful, we also refer
to prior papers that deal with fundamental issues related to the performance, cost, and scalability of
concurrent machine architectures. We show how the fundamentals of machine performance relate to the
modern problem of architecting processors in a way that allows them to scale well (over time) in terms
of joint power-performance metrics. In this context, we comment on and compare the viability and future
promise of several microarchitectural paradigms that seem to be catching on in industry: e.g., clustered
super scalars, various flavors of multithreading (e.g., SMT), and chip multiprocessors (CMP).

In Section 7.2, we review the fundamentals of pipelined and vector/parallel computation as they relate
to performance and energy characteristics. We also touch briefly on the topic of defining a suitable set of
metrics to measure power-performance efficiency at the microarchitecture level. In Section 7.3, we provide
a survey of the most promising ideas and approaches in power-aware design at the microarchitecture level,
with references to circuit design and clocking issues that are relevant in that discussion. This review is
presented in the context of workloads and benchmarks that represent different markets. In Section 7.4,
we compare the power-performance outlook of three emerging microarchitectural paradigms in the
general purpose processor space: multicluster superscalars, multithreaded processors, and chip multipro-
cessors. We conclude, in Section 7.5, by summarizing the main issues addressed in this survey paper. We
also point to a list of future research items that the architecture community needs to pursue in collaboration
with the circuit design community in order to achieve the targets dictated by future cost and performance
pressures. In passing, we refer briefly to LPX: a research processor prototype being designed at IBM Watson,
to validate some key ideas in power-aware design.

7.2 Fundamentals of Performance and Power:
An Architect’s View

Performance Fundamentals [1,2]

The most straightforward metric for measuring performance is the execution time of a given program
mix on the target processor. The execution time can be written as: 

(7.1)

where PL is the dynamic path length of the program mix, measured as the number of machine instructions
executed; CPI is the average processor cycles per instruction incurred in executing the program mix; and
CT is the processor cycle time (measured in seconds per cycle) whose inverse determines the clock

FIGURE 7.1 Maximum chip power projection (ITRS roadmap).

T PL CPI×= CT× PL CPI 1/f( )××=
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frequency f. Since performance increases with decreasing T, one may formulate performance, Perf as:

Perfchip ∼= Kpf ⋅ f ∼= Kpv ⋅ V (7.2)

where the K ’s are constants for a given microarchitecture-compiler implementation and for a specific
workload mix. The Kpf value stands for the average number of machine instructions that are executed
per cycle on the machine being measured; this is usually referred to as IPC, the inverse of CPI. Perfor-
mance, Perfchip, in this case is measured in units such as (millions of) instructions per second, or mips.
In Eq. (7.2), V is the chip supply voltage (often written as Vdd). As stated below, and in [2,3], the operating
frequency is often assumed to be roughly proportional to the supply voltage.

Selecting a suite of publicly available benchmark programs that everybody accepts as being “represen-
tative” of real-world workloads is difficult to begin with. Adopting a noncontroversial weighted mix is
also not easy. For the commonly used SPEC benchmark suite (see http://www.specbench.org) the SPEC-
marks rating (for each class: e.g., integer or floating point) is derived as a geometric mean of execution
time ratios for the programs within that class. Each ratio is calculated as the speed up with respect to
execution time on a specified reference machine. This method has the advantage that different machines
can be ranked unambiguously from a performance viewpoint, if one believes in the particular benchmark
suite. That is, the ranking can be shown to be independent of the reference machine used in such a
formulation.

Even if one is able to fix the input workload mix to some known average characteristics, there is usually
a large variation in workload behavior across different applications in the mix and in some cases, within
even a single application. Thus, even though one can compute an average IPC (or Kpf in Eq. (7.2)), it is
possible to exploit the variations in IPC to reduce average power in architectures where the resources are
dynamically adapted to match the IPC requirements (see the subsection “Adaptive Microarchitectures”
in Section 7.3). 

Let us now discuss the basics of power dissipation in a processor chip.

Power Fundamentals [2–5]

At the elementary transistor gate (e.g., an inverter) level, total power dissipation can be formulated as
the sum of three major components: switching loss, leakage, and short-circuit loss.

(7.3) 

where C is the output capacitance, Vdd is the supply voltage, f is the chip clock frequency, and a is the
activity factor (0 < a ≤ 1), which determines the device switching frequency; Vswing is the maximum
voltage swing across the output capacitor, which in general can be less than Vdd; Ileakage is the leakage
current; and Isc is the short-circuit current. In the literature, Vswing is often approximated to be equal to
Vdd (or simply V for short), making the switching loss ∼(1/2)CV2af. Also, as discussed in [3], for today’s
range of Vdd (say 1–3 V) switching loss: (1/2)CV2af remains the dominant component, assuming the
activity factor to be above a reasonable minimum. So, as a first-order approximation, for the whole chip,
we may formulate the power dissipation to be

(7.4) 

where Ci, Vi, ai, and fi are unit- or block-specific average values in the most general case; the summation
is taken over all blocks or units i, at the microarchitecture level (e.g., icache, dcache, integer unit, floating
point unit, load-store unit, register files and buses [if not included in individual units], etc.). Also, for
the voltage range considered, the operating frequency is roughly proportional to the supply voltage; and

Powerdevice
1
2
-- C Vdd⋅ Vswinga f Ileakage V⋅ dd+⋅⋅ Isc+ Vdd⋅=

Powerchip
1
2
-- Ci Vi

2⋅ ai fi⋅ ⋅
i

∑=
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the capacitance C remains roughly the same if we keep the same design but scale the voltage. If a single
voltage and clock frequency are used for the whole chip, the above reduces to

(7.5)

If we consider the very worst-case activity factor for each unit i, i.e., if ai = 1 for all i, an upper bound
on the maximum chip power may be formulated as

(7.6)

where KV and KF are design-specific constants. Note that an estimation of peak or maximum power is
important, for the purposes of determining the packaging and cooling solution required. The larger the
maximum power, the more expensive is the net cooling solution. Note that the formulation in Eq. (7.6)
is overly conservative, as stated. In practice, it is possible to estimate the worst-case achievable maximum
for the activity factors. This allows the designers to come up with a tighter bound on maximum power
before the packaging decision is made.

The last Eq. (7.6) is what leads to the so-called “cube-root” rule [3], where redesigning a chip to operate
at 1/2 the voltage (and frequency) results in the power dissipation being lowered to (1/2)3 or 1/8 of the
original. This implies the single-most efficient method for reducing power dissipation for a processor
that has already been designed to operate at high frequency: namely, reduce the voltage (and hence the
frequency). It is believed that this is the primary mechanism of power control in the Transmeta chip (see
http://www.transmeta.com). There is a limit, however, of how low Vdd can be reduced (for a given
technology), which has to do with manufacturability and circuit reliability issues. Thus, a combination
of microarchitecture and circuit techniques to reduce power consumption, without necessarily employing
multiple or variable supply voltages, is of special relevance in the design of robust systems.

The formulation of performance and power, especially the abstractions expressed through Eqs. (7.2)
and (7.4–7.6), can actually be improved quite a bit, based on more rigorous mathematics, backed by
experimental evidence collected from real circuit-level simulations. This is reported separately for readers
who want to delve into these issue in more detail [33]. 

Power-Performance Efficiency Metrics

The most common (and perhaps obvious) metric to characterize the power-performance efficiency of a
microprocessor is a simple ratio, such as mips/watt. This attempts to quantify the efficiency by projecting
the performance achieved or gained (measured in millions of instructions per second) for every watt of
power consumed. Clearly, the higher the number, the “better” the machine is. Dimensionally, mips/watt
equates to the inverse of the average energy consumed per instruction. This seems a reasonable choice
for some domains where battery life is important; however, strong arguments are against it in many cases,
especially when it comes to characterizing higher end processors. Performance has typically been the key
driver of such server-class designs and cost or efficiency issues have been of secondary importance.
Specifically, a design team may well choose a higher frequency design point (which meets maximum
power budget constraints) even if it operates at a much lower mips/watt efficiency compared to one that
operates at better efficiency but at a lower performance level. As such, (mips)2/watt or even (mips)3/watt
may be the metric of choice at the high end. On the other hand, at the lowest end, where battery-life (or
energy consumption) is the primary driver, one may want to put an even greater weight on the power
aspect than the simplest mips/watt metric, i.e., one may just be interested in minimizing the watts for a
given workload run, irrespective of the execution time performance, provided the latter does not exceed
some specified upper limit.

Powerchip V 3 K i
v ai⋅

i
∑ 

 ⋅ f 3 K i
f ai⋅

i
∑ 

 ⋅= =

MaxPowerchip KV V 3⋅ KF f 3⋅= =
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The “mips” metric for performance and the “watts” value for power may refer to average or peak values,
derived from the chip specifications. For example, for a 1 GHz (=109 c/s) processor, which can complete
up to 4 instructions per cycle, the theoretical peak performance is 4000 mips). If the average completion
rate for a given workload mix is p instructions per cycle, the average mips would equal 1000 times p;
however, when it comes to workload-driven evaluation and characterization of processors, metrics are
often controversial. Apart from the problem of deciding on a “representative” set of benchmark appli-
cations, there are fundamental questions which persist about how to boil down “performance” into a
single (“average”) rating that is meaningful in comparing a set of machines. Since power consumption
varies, depending on the program being executed, the issue of benchmarking is also relevant in assigning
an average power rating. In measuring power and performance together for a given program execution,
one may use a fused metric like power-delay product (PDP) or energy-delay product (EDP) [5,6]. In
general, the PDP-based formulations are more appropriate for low-power, portable systems, where
battery-life is the primary index of energy efficiency. The mips/watt metric is an inverse PDP formulation,
where delay refers to average execution time per instruction. The PDP, being dimensionally equal to
energy, is the natural metric for such systems. For higher end systems (e.g., workstations) the EDP-based
formulations are deemed to be more appropriate, since the extra delay factor ensures a greater emphasis
on performance. The (mips)2/watt metric is an inverse EDP formulation. For the highest performance,
server-class machines, it may be appropriate to weight the “delay” part even more. This would point to
the use of (mips)3/watt, which is an inverse ED2P formulation. Alternatively, one may use (cpi)3.watt as
a direct ED2P metric, applicable on a “per instruction” basis (see [2]).

The energy∗(delay)2 metric, or perf 3/power formula is analogous to the cube-root rule [3], which
follows from constant voltage scaling arguments (see previous discussion, Eq. (7.6)). Clearly, to formu-
late a voltage-invariant power-performance characterization metric, we need to think in terms of
perf 3/(power). When we are dealing with the SPEC benchmarks, one may therefore evaluate efficiency
as (SPECrating)x/watt, or (SPEC)x/watt for short; where the exponent value x (=1, 2, or 3) may depend
on the class of processors being compared.

Brooks et al. [2] discuss the power-performance efficiency data [sources used are:
http://www.bwrc.eecs.berkeley.edu/CIC/, http://www.specbench.org, Microprocessor Report, August
2000, and individual vendor Web sites] for a range of commercial processors of approximately the same
generation. In each chart, the latest available processor is plotted on the left and the oldest one on the
right. We have used SPEC/watt, SPEC2/watt, and SPEC3/watt as the alternative metrics, where SPEC
stands for the processor’s SPEC95 rating (see definition principles, earlier in this section or in [1]). For each
category, such as SPEC2/watt, the best performer is normalized to 1, and the other processor values are plotted
as relative fractions of the normalized maximum. The data validates the assertion that depending on the
metric of choice, and the target market (determined by workload class and/or the power/cost) the
conclusion drawn about efficiency can be quite different. For performance-optimized, high-end proces-
sors, the SPEC3/watt metric seems to be fairest, with the very latest Intel Pentium-III and AMD Athlon
offerings (at 1 GHz) at the top for integer workloads; and, the older HP-PA 8600 (552 MHz) and IBM
Power3 (450 MHz) still dominating in the floating point class. For “power-first” processors targeted
toward integer workloads (such as Intel’s mobile Celeron-333) spec/watt seems to be the fairest.

Tables 7.1  and 7.2 below show the explicit ranking of the processors considered in [2] from a power-
performance efficiency viewpoint based on specint and specfp benchmarks. The only intent here is to
illustrate the point that we tried to make earlier: that depending on the intended market (e.g., general
purpose: server-class, workstation or low-power mobile, etc.) and application class (e.g., integer-intensive
or floating-point intensive) different efficiency metrics may be suitable. Note that we have relied on
published performance and “max power” numbers; and, because of differences in the methodologies
used in quoting the maximum power ratings, the derived rankings may not be completely accurate or
fair. As an example, the 33 W maximum power rating for the Intel PIII-1000 processor that we computed
from the maximum current and nominal voltage ratings specified for this part in the vendor’s Web page
[http://www.intel.com/design/pentiumiii/datashts/245264.htm] is higher than that reported in the
Microprocessor Report source cited previously. Actually, this points to the need of standardization of methods
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used in reporting maximum and average power ratings for future processors. It should be possible in
future for customers to compare power-performance efficiencies across competing products in a given
market segment, i.e., for a given benchmark suite.

7.3 A Review of Key Ideas in Power-Aware
Microarchitectures

In this chapter, we limit our attention to dynamic (“switching”) power governed by the CV 2af formula.
Recall that C refers to the switching capacitance, V is the supply voltage, a is the activity factor (0 < a < 1),
and f is the operating clock frequency. Power reduction ideas must, therefore, focus on one or more of
these basic parameters. In this section, we examine the key ideas that have been proposed in terms of
(micro)architectural support for power-efficiency. 

The effective (average) value of C can be reduced by using: (a) area-efficient designs for various macros;
(b) adaptive structures, that change in effective size, latency or communication bandwidth depending
on the needs of the input workload; (c) selectively “powering off” unused or idle units, based on special
“nap/doze” and “sleep” instructions generated by the compiler or detected via hardware mechanisms;
(d) reducing or eliminating “speculative waste” resulting from executing instructions in mis-speculated
branch paths or prefetching useless instructions and data into caches, based on wrong guesses. 

The average value of V can be reduced via dynamic voltage scaling, i.e., by reducing the voltage as and
when required or possible (e.g., see the description of the Transmeta chip: http://www.transmeta.com).
Microarchitectural support, in this case, is not required, unless the mechanisms to detect “idle” periods
or temperature overruns are detected using counter-based “proxies,” specially architected for this purpose.

TABLE 7.1 Rank Ordering Based on Specint95 and Alternate Performance-
Power Efficiency Metrics

Rank SPECint/watt SPECint^2/watt SPECint^3/watt

1 Moto PPC7400 (450 MHz) Intel PIII-1000 Intel PIII-1000
2 Intel Celeron (333 MHz) Moto PPC7400-450 AMD Athlon-1000
3 Intel PIII (1000 MHz) AMD Athlon-1000 HP-PA8600-552
4 MIPS R12000 (300 MHz) HP-PA8600-552 Moto PPC7400-450
5 Sun USII (450 MHz) Intel Celeron-333 Alpha 21264-700
6 AMD Athlon (1000 MHz) Alpha 21264-700 IBM Power3-450
7 IBM Power3 (450 MHz) MIPS R12000-300 MIPS R12000-300
8 HP-PA8600 (552 MHz) IBM Power3-450 Intel Celeron-333
9 Alpha 21264 (700 MHz) Sun USII-450 Sun USII-450

10 Hal Sparc64-III Hal Sparc64-III Hal Sparc64-III

TABLE 7.2 Rank Ordering Based on Specfp95 and Alternate 
Performance-Power Efficiency Metrics

Rank SPECfp/watt SPECfp^2/watt SPECfp^3/watt

1 Moto PPC7400-450 HP-PA8600-552 HP-PA8600-552
2 MIPS R12000-300 IBM Power3-450 IBM Power3-450
3 IBM Power3-450 MIPS R12000-300 Alpha 21264-700
4 Intel Celeron-333 Alpha 21264-700 MIPS R12000-300
5 Sun USII-450 Intel PIII-1000 Intel PIII-1000
6 HP-PA8600-552 Moto PPC7400-450 Sun USII-450
7 Intel PIII-1000 Sun USII-450 Moto PPC7400-450
8 Alpha 21264-700 Hal Sparc64-III AMD Athlon-1000
9 Hal Sparc64-III AMD Athlon-1000 Hal Sparc64-III

10 AMD Athlon-1000 Intel Celeron-333 Intel Celeron-333
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Hence, in this paper, we do not dwell on dynamic voltage scaling methods. (Note again, however, that
since reducing V also results in reduction of the operating frequency f net power reduction has a cubic
effect;  thus, dynamic voltage scaling , though not a microarchitectural technique per se, is the most effective
way of  power reduction).

The average val ue of the activity factor a can be reduced by: (a) the use of clock-gating, where the
normally free-running, synchronous clock is disabled in select ed units or sub-units within the system
based on information or predictions about current or future activity in those regions; (b) the use of data
representations and instruction schedules that result in reduced switching. Microarchitectural support
is provided in the form of added mechanisms to: (a) detect, predict, and control the generation of the
applied gating sig nals or (b) aid in power-efficient data and instruction encodings. Compiler support
for generating power-efficient instruction scheduling and data partitioning or special instructions for
“nap/doze/sleep” control, if  applicable, must also be considered under this category.

Lastly, the average val ue of the frequency f can be controlled or reduced by using: (a) variable, multiple,
or locally async hronous (self-timed) clocks; (b) reduced pipeline depths.

We consider power-aware microarchitectural constructs that use C, a, or f as the primary power-
reduction lever. In any such proposed processor architecture, the efficacy of the particular power reduction
method that is used must be assessed b y understanding the net performance impact. Here, depending
on the application domain (or market), a PDP, EDP, or ED 2P metric for evaluating and comparing power-
performance efficiencies must be used (see earlier discussio n in Section 7.2). 

Optimal Pipeline Depth

A fundamental question that is asked has to do with pipeline depth. Is a deeply pipelined, high frequency
(“speed demon”) design better than an IPC-centric lower frequency (“brainiac”) design? In the context
of this chapter, “better” must be judged in terms of power-performance efficiency.

Let us consider, first, a simple, hazard-free, linear pipeline flow process, with k stages. Let the time for
the total logic (without latches) to compute one answer be T. Assuming that the k stages into which the
logic is partitioned are of equal delay, the time per stage and thus the time per computation becomes
(see [7], Chapter 2)

(7.8)

where D is the delay added due to the staging latch. The inverse of t determines the clocking rate or
frequency of operation. Similarly, if the energy spent (per cycle, per second, or over the duration of the
program run) in the logic is W and the corresponding energy spent per level of staging latches is L, then
the total energy equation for the k-stage pipelined version is, roughly,

(7.9)

The energy equation assumes that the clock is free-running, i.e., on every cycle, each level of staging
latches is clocked to enable the advancement of operations along the pipeline. (Later, we shall consider
the effect of clock-gating.) Equations (7.8) and (7.9), when plotted as a function of k, are depicted in
Figs. 7.2(a,b), respectively. 

As the number of stages increases, the energy or power consumed increases linearly; while, the perfor-
mance also increases, but not as fast. In order to consider the PDP-based power-performance efficiency,
we compute the ratio:

(7.10)

t T/k D+=

E L k W+⋅=

Power
Performance
------------------------------- L k⋅ W+( ) T/k D+( ) L T W D L D⋅ k2 W T⋅+⋅( )/k+⋅+⋅= =
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Figure 7.3 shows the general shape of this curve as a function of k. Differentiating the right hand side
expression in Eq. (7.10) and setting it to zero, one can solve for the optimum value of k for which the
power-performance efficiency is maximized; i.e., the minimum of the curve in Fig. 7.2(b) can be shown
to occur when

(7.11)

Larson [8] first published the above analysis, albeit from a cost/performance perspective. This analysis
shows that, at least for the simplest, hazard-free pipeline flow, the highest frequency operating point
achievable in a given technology may not be the most energy-efficient! Rather, the optimal number of
stages (and hence operating frequency) is expected to be at a point which increases for greater W or T
and decreases for greater L or D. 

For real super scalar machines, the number of latches in a design tends to go up much more sharply
with k than the linear assumption in the above model. This tends to make k (opt.) even smaller. Also,
in real pipeline flow with hazards, e.g., in the presence of branch-related stalls and disruptions, perfor-
mance actually peaks at a certain value of k before decreasing [3,9] (instead of the asymptotically
increasing behavior shown in Fig. 7.2(b)). This effect would also lead to decreasing the effective value of
k(opt.). (However, k(opt.) increases if we use EDP or ED2P metrics instead of the PDP metric used.) 

Vector/SIMD Processing Support

Vector/SIMD modes of parallelism present in current architectures afford a power-efficient method of
extending performance for vectorizable codes. Fundamentally, this is because: for doing the work of
fetching and processing a single (vector) instruction, a large amount of data is processed in a parallel or
pipelined manner. If we consider a SIMD machine, with p k-stage functional pipelines (see Fig. 7.4) then
looking at the pipelines alone, one sees a p-fold increase of performance, with a p-fold increase in power,
assuming full utilization and hazard-free flow, as before. Thus, a SIMD pipeline unit offers the potential

FIGURE 7.2 Power and performance curves for idealized pipeline flow.

FIGURE 7.3 Power-performance ratio curve for idealized pipeline flow.
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of scalable growth in performance, with commensurate growth in power, i.e., at constant power-perfor-
mance efficiency. If, however, one includes the instruction cache and fetch/dispatch unit that are shared
across the p SIMD pipelines, then power-performance efficiency can actually grow with p. This is because,
the energy behavior of the instruction cache (memory) and the fetch/decode path remains essentially
invariant with p, while net performance grows linearly with p. 

In a super scalar machine with a vector/SIMD extension, the overall power-efficiency increase is
limited by the fraction of code that runs in SIMD-mode (Amdahl’s Law).

Clock-Gating: Power Reduction Potential 
and Microarchitectural Support

Clock-gating refers to circuit-level control (e.g., see [10,17]) for disabling the clock to a given set of
latches, a macro, a bus or an entire unit, on a particular machine cycle. Microarchitecture-level analysis
points to opportunities of power savings in a processor, since idle periods of a particular resource can
be identified and quantified. Figure 7.5 depicts the execution pipe utilization of the various functional
units (e.g., fixed point or integer unit, floating point unit, load-store unit, branch unit, condition register
unit) within a current generation, out-of-order superscalar processor. This data is based on simulation-
based data of a hypothetical processor, similar in complexity to that of current generation designs such
as the Power4™ [11]. 

FIGURE 7.4 Parallel SIMD architecture.

FIGURE 7.5 Execution pipe utilization component stack across workloads.
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We show the results for selected SPEC95 benchmarks and a large sample from a commercial TPC-C
trace.The data shows that the pipe utilization attains a maximum of slightly over 50% only for the FXU;
in many cases, the utilization is quite low, often 10% or less. 

Figures 7.6(a) and (b) show the opportunities available within several units (and in particular, the instruc-
tion fetch unit, IFU) of the same example processor in the context of the TPC-C trace segment referred to
above. Figure 7.6(a) depicts the instruction frequency mix of the trace segment used. This shows that
the floating point unit (FPU) operations are a very tiny fraction of the total number of instructions in
the trace. Therefore, with proper detection and control mechanisms architected in hardware, the FPU
unit could essentially be “gated off” in terms of the clock delivery for the most part of such an execution.
Figure 7.6(b) shows the fraction of total cycles spent in various modes within the instruction fetch unit
(IFU). I-fetch was on hold for about 48% of the cycles; and the fraction of useful fetch cycles was only
28%. Again, this points to great opportunities: either in terms of clock-gating or dynamic ifetch throttling
(see the subsection on “Dynamic Throttling of Communication Bandwidths below”). 

(Micro)architectural support for clock-gating can be provided in at least three ways: (a) dynamic
detection of idle modes in various clocked units or regions within a processor or system; (b) static or

FIGURE 7.6 (a) Instruction frequency mix for a typical commercial workload trace segment. (b) Stall profile in
the instruction fetch unit (IFU) for the commercial workload.
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dynamic prediction of such idle modes; (c) using “data valid” bits within a pipeline flow path to selectively
enable/disable the clock applied to the pipeline stage latches. If static prediction is used, the compiler
inserts special “nap/doze/sleep/wake” type instructions where appropriate, to aid the hardware in gen-
erating the necessary gating signals. Methods (a) and (b) result in coarse-grain clock-gating, where entire
units, macros or regions can be gated off to save power; while, method (c) results in fine-grain clock-
gating, where unutilized pipe segments can be gated off during normal execution within a particular
unit, such as the FPU. The detailed circuit-level implementation of gated-clocks, the potential perfor-
mance degradation, inductive noise problems, etc. are not discussed in this chapter; however, these are
very important issues that must be dealt with adequately in an actual design.

Referring back to Figs. (7.2) and (7.3), note that since (fine-grain) clock-gating effectively causes a
fraction of the latches to be “gated off,” we may model this by assuming that the effective value of L
decreases when such clock-gating is applied. This has the effect of increasing k (opt.); i.e., the operating
frequency for the most power-efficient pipeline operation can be increased in the presence of clock-
gating. This is an added benefit. 

Variable Bit-Width Operands

One of the techniques proposed for reducing dynamic power consists of exploiting the behavior of data
in programs, which is characterized by the frequent presence of small values. Such values can be repre-
sented as and operated upon as short bit-vectors. Thus, by using only a small part of the processing
datapath, power can be reduced without loss of performance. Brooks and Martonosi [12] analyzed the
potential of this approach in the context of 64-bit processor implementations (e.g., the Compaq Alpha™
architecture). Their results show that roughly 50% of the instructions executed had both operands whose
length was less than or equal to 16 bits. Brooks and Martonosi proposed an implementation that exploits
this by dynamically detecting the presence of narrow-width operands on a cycle-by-cycle basis. (Subse-
quent work by Jude Rivers et al. at IBM has documented an approach to exploit this in PowerPC
architectures, using a different implementation. This work is still not available for external publication).

Adaptive Microarchitectures

Another method of reducing power is to adjust the size of various storage resources within a processor
or system, with changing needs of the workload. Albonesi [13] proposed a dynamically reconfigurable
caching mechanism, that reduces the cache size (and hence power) when the workload is in a phase that
exhibits reduced cache footprint. Such downsizing also results in improved latency, which can be exploited
(from a performance viewpoint) by increasing the cache cycling frequency on a local clocking or self-
timed basis. Maro et al. [14] have suggested the use of adapting the functional unit configuration within
a processor in tune with changing workload requirements. Reconfiguration is limited to “shutting down”
certain functional pipes or clusters, based on utilization history or IPC performance. In that sense, the
work by Maro et al. is not too different from coarse-grain clock-gating support, as discussed earlier. In
recent work done at IBM Watson, Buyuktosunoglu et al. [15] designed an adaptive issue queue that can
result in (up to) 75% power reduction when the queue is sized down to its minimum size. This is achieved
with a very small IPC performance hit. Another example is the idea of adaptive register files (e.g., see
[16]) where the size and configuration of the active size of the storage is changed via a banked design,
or through hierarchical partitioning techniques.

Dynamic Thermal Management

Most clock-gating techniques are geared towards the goal of reducing average chip power. As such, these
methods do not guarantee that the worst-case (maximum) power consumption will not exceed safe
limits. The processor’s maximum power consumption dictates the choice of its packaging and cooling
solution. In fact, as discussed in [17], the net cooling solution cost increases in a piecewise linear manner
with respect to the maximum power; and the cost gradient increases rather sharply in the higher power
regimes. This necessitates the use of mechanisms to limit the maximum power to a controllable ceiling,
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one defined by the cost profile of the market for which the processor is targeted. Most recently, in the high
performance world, Intel’s Pentium 4 processor is reported to use an elaborate on-chip thermal management
system to ensure reliable operation [17]. At the lower end, the G3 and G4 PowerPC microprocessors [18,19]
include a Thermal Assist Unit (TAU) to provide dynamic thermal management. In a recently reported
academic work, Brooks and Martonosi [20] discuss and analyze the potential reduction in “maximum
power” ratings without significant loss of performance, by the use of specific dynamic thermal management
(DTM) schemes. The use of DTM requires the inclusion of on-chip sensors to monitor actual temperature;
or proxies of temperature [20] estimated from on-chip counters of various events and rates. 

Dynamic Throttling of Communication Bandwidths

This idea has to do with reducing the width of a communication bus dynamically, in response to reduced
needs or in response to temperature overruns. Examples of on-chip buses that can be throttled are:
instruction fetch bandwidth, instruction dispatch/issue bandwidths, register renaming bandwidth,
instruction completion bandwidths, memory address bandwidth, etc. In the G3 and G4 PowerPC micro-
processors [18,19], the TAU invokes a form of instruction cache throttling as a means to lower the
temperature when a thermal emergency is encountered. 

Speculation Control

In current generation high performance microprocessors, branch mispredictions and mis-speculative
prefetches end up wasting a lot of power. Manne et al. [21,22] have described means of detecting or
anticipating an impending mispredict and using that information to prevent mis-speculated instructions
from entering the pipeline. These methods have been shown to reduce power by up to 38% with less
than a 1% performance loss.

7.4 Power-Efficient Microarchitecture Paradigms

Now that we have examined specific microarchitectural constructs that aid power-efficient design, let us
examine the inherent power-performance scalability and efficiency of selected paradigms that are cur-
rently emerging in the high-end processor roadmap. In particular, we consider: (a) wide-issue, speculative
super scalar processors; (b) multi-cluster superscalars; (c) chip multiprocessors (CMP)—especially those
that use single program speculative multithreading (e.g., multiscalar); (d) simultaneously multithreaded
(SMT) processors. 

In illustrating the efficiency advantages or deficiencies, we use the following running example. It shows
one iteration of a loop trace that we consider in simulating the performance and power characteristics
across the above computing platforms.

Let us consider the following floating-point loop kernel, shown below (coded using the PowerPC™
instruction set architecture):

Example Loop Test Case

[P] [A] fadd fp3, fp1, fp0
[Q] [B] lfdu fp5, 8(r1)
[R] [C] lfdu fp4, 8(r3)
[S] [D] fadd fp4, fp5, fp4
[T] [E] fadd fp1, fp4, fp3
[U] [F] stfdu fp1, 8(r2)
[V] [G] bc loop_top

The loop body consists of seven instructions, the final one being a conditional branch that causes
control to loop back to the top of the loop body. The instructions are labeled A through G. (The labels
P through V are used to tag the corresponding instructions for a parallel thread—when we consider SMT
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and CMP). The lfdu/stfdu instructions are load/store instructions with update, where the base address
register (e.g., r1, r2, or r3) is updated after execution by holding the newly computed address.

Single-Core Superscalar Processor Paradigm

One school of thought anticipates a continued progression along the path of wider, aggressively super-
scalar paradigms. Researchers continue to innovate in an attempt to extract the last “ounce” of IPC-level
performance from a single-thread instruction-level parallelism (ILP) model. Value prediction advances
(pioneered by Lipasti et al. [23]) promise to break the limits imposed by true data dependencies. Trace
caches (Smith et al. [23]) ease the fetch bandwidth bottleneck, which can otherwise impede scalability;
however, increasing the superscalar width beyond a certain limit tends to yield diminishing gains in net
performance (i.e., the inverse of CPI × CT; see Eq. (7.1)). At the same time, the power-performance
efficiency metric (e.g., performance per watt or (performance)2/watt, etc.) tends to degrade beyond a
certain complexity point in the single-core superscalar design paradigm. This is illustrated below in the
context of our example loop test case.

Let us consider a base machine that is a 4-wide superscalar, with two load-store units supporting two
floating-point pipes (see Fig. 7.7). The data cache has two load ports and a separate store port. Two load-
store unit pipes (LSU0 and LSU1) are fed by a single issue queue, LSQ; similarly, the two floating-point
unit pipes (FPU0 and FPU1) are fed by a single issue queue, FPQ. In the context of the loop above, we
essentially focus on the LSU-FPU sub-engine of the whole processor.

Let us assume the following high-level parameters (latency and bandwidth) characterizing the base
super scalar machine model of width W = 4.

• Instruction fetch bandwidth, fetch_bw = 2 × W = 8 instructions/cycle.

• Dispatch/decode/rename bandwidth, disp_bw = W = 4 instructions/cycle; dispatch is assumed to
stall beyond the first branch scanned in the instruction fetch buffer.

• Issue_bandwidth from LSQ (reservation station), lsu_bw = W/2 = 2 instructions/cycle.

• Issue_bandwidth from FPQ, fpu_bw = W/2 = 2 instructions/cycle. 

• Completion bandwidth, compl_bw = W = 4 instructions/cycle.

FIGURE 7.7 High-level block-diagram of machine organization modeled in the eliot/elpaso tool.
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• Back-to-back dependent floating point operation issue delay, fp_delay = 1 cycle.

• The best-case load latency, from fetch to writeback is: 5 cycles.

• The best-case store latency, from fetch to writing in the pending store queue is: 4 cycles; (a store
is eligible to complete the cycle after the address-data pair is valid in the store queue).

• The best-case floating point operation latency, from fetch to writeback is: 7 cycles (when the issue
queue, FPQ is bypassed, because it is empty).

Loads and floating point operations are eligible for completion (retirement) the cycle after writeback
into rename buffers. For simplicity of analysis let us assume that the processor uses in-order issue from
the issue queues (LSQ and FPQ). In our simulation model, the superscalar width W is a ganged parameter,
defined as follows:

W = (fetch_bw/2) = disp_bw = compl_bw

The number of LSU units, ls_units, FPU units, fp_units, data cache load ports, l_ports and data cache
store ports are varied as follows as W is changed:

For illustrative purposes, a simple (and decidedly naive) analytical energy model is assumed, where
the power consumed is a function of the following parameters: W, ls_units, fp_units, l_ports, and s_ports.
In particular, the power PW, in watts, is computed as: PW = K × [(W)y + ls_units + fp_units + l_ports +
s_ports], where y (0 < y < 1) is an exponent that may be varied to see the effect on power-performance
efficiency; K is a constant. Figure 7.8 shows the performance and performance/power ratio variation with
superscalar width, W; for this graph, y has been set to 0.5 and the scaling constant K is 2. The BIPS
(billions of instructions per second) values are computed from the IPC (instruction per cycle) values,
assuming a clock frequency of 1 GHz.

The graph in Fig. 7.8(a) shows that a maximum issue width of W = 4 could be used to achieve the
best (idealized) BIPS performance. This idealized plot is obtained using a tool called eliot [24]. This is
a parameterized, PowerPC super scalar model, that can operate either in cycle-by-cycle simulation mode,
or, it can generate idealized bounds, based on static analysis of a loop code segment. The eliot model
has now been updated to include parameterized, analytical energy models for each unit or storage resource
within the processor. This new tool, called elpaso can be used to generate power-performance efficiency
data for loop test cases. As shown in Fig. 7.8 (b), from a power-performance efficiency viewpoint

FIGURE 7.8 Loop performance and performance/power variation with issue width.
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(measured as a performance over power ratio), the best-case design is achieved for W < 4. Depending
on the sophistication and accuracy of the energy model (i.e., how power varies with microarchitectural
complexity), and the exact choice of the power-performance efficiency metric, the inflexion point in the
curve in Fig. 7.8(b) changes; however, it should be obvious that beyond a certain superscalar width, the
power-performance efficiency diminishes continuously. Fundamentally, this is due to the single-thread
ILP limit of the loop trace being considered (as apparent from Fig. 7.8 (a)).

Note, by the way that the resource sizes are assumed to be large enough, so that they are effectively
infinite for the purposes of our running example above. Some of the actual sizes assumed for the base
case (W = 4) are: Completion (reorder) buffer size, cbuf_size = 32; load-store queue size, lsq_size = 6;
floating point queue size, fpq_size = 8; pending store queue size, psq_size = 16.

The microarchitectural trends beyond the current superscalar regime, are effectively targeted towards
the goal of extending the power-performance efficiency factors. That is, the complexity growth must
ideally scale at a slower rate than the growth in performance. Power consumption is one index of complexity;
it also determines packaging and cooling costs. (Verification cost and effort is another important index).
In that sense, a microarchitecture paradigm that ensures that the power-performance efficiency measure
of choice is a nondecreasing function of time: is the ideal, complexity-effective design paradigm for the
future. Of course, it is hard to keep scaling a given paradigm beyond a few processor generations.
Whenever we reach a maximum in the power-performance efficiency curve, it is time to invoke the next
paradigm shift.

Next, we examine some of the promising new trends in microarchitecture that can serve as the next
platform for designing power-performance scalable machines.

Multicluster Superscalar Processors

As described in our earlier article [2], Zyuban et al. [25,26] studied the class of multicluster superscalar
processors as a means of extending the power-efficient growth of the basic super scalar paradigm. One
way to address the energy growth problem at the microarchitectural level is to replace a classical super-
scalar CPU with a set of clusters, so that all key energy consumers are split among clusters. Then, instead
of accessing centralized structures in the traditional superscalar design, instructions scheduled to an
individual cluster would access local structures most of the time. The main advantage of accessing a
collection of local structures instead of a centralized one is that the number of ports and entries in each
local structure is much smaller. This reduces the latency and energy per access. If the non-accessed sub-
structures of a resource can be “gated off” (e.g., in terms of the clock), then, the net energy savings can
be substantial.

According to the results obtained in Zyuban’s work, the energy dissipated per cycle in every unit or
sub-unit within a superscalar processor can be modeled to vary (approximately) as IPCunit × (IW)g, where
IW is the issue width, IPCunit is the average IPC performance at the level of the unit or structure under
consideration; and, g is the energy growth parameter for that unit. Then, the energy-delay product (EDP)
for the particular unit would vary as:

(7.12)

Zyuban shows that for real machines, where the overall IPC always increases with issue width in a
sub-linear manner, the overall EDP of the processor can be bounded as

(7.13)

where g is the energy-growth factor of a given unit and IPC refers to the overall IPC of the processor;
and, IPC is assumed to vary as (IW)0.5. Thus, according to this formulation, superscalar implementations
that minimize g for each unit or structure will result in energy-efficient designs. The eliot/elpaso tool

EDPunit

IPCunit IW( )g×
IPCoverall
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does not model the effects of multi-clustering in detail yet; however, from Zyuban’s work, we can infer
that a carefully designed multicluster architecture has the potential of extending the power-performance
efficiency scaling beyond what is possible using the classical superscalar paradigm. Of course, such
extended scalability is achieved at the expense of reduced IPC performance for a given superscalar
machine width. This IPC degradation is caused by the added inter-cluster communication delays and
other power management overhead in a real design. Some of the IPC loss (if not all) can be offset by a
clock frequency boost, which may be possible in such a design, due to the reduced resource latencies and
bandwidths.

Current high-performance processors (for example, the Compaq Alpha 21264 and the IBM Power4)
certainly have elements of multi-clustering, especially in terms of duplicated register files and distributed
issue queues. Zyuban proposed and modeled a specific multicluster organization in his work. This
simulation-based study determined the optimal number of clusters and their configurations, for the EDP
metric. 

Simultaneous Multithreading (SMT)

Let us examine the SMT paradigm [27] to understand how this may affect our notion of power-
performance efficiency. The data in Table 7.3 shows the steady-state utilization of  some of  the resources
in our base super scalar machine in response to the input loop test case discussed earlier. Since, due to
fundamental ILP limits, the IPC will not increase beyond W = 4, it is clear why power-performance
efficiency will be on a downward trend beyond a certain width of the machine. (Of course, here we
assume maximum processor power numbers, without any clock gating or dynamic adaptation to bring
down power.)

With SMT, assume that we can fetch from two threads (simultaneously, if the icache is dual-ported,
or in alternate cycles if the icache remains single-ported). Suppose two copies of the same loop program
(see example at the beginning of this section, i.e., Section 7.4) are executing as two different threads. So,
thread-1 instructions A-B-C-D-E-F-G and thread-2 instructions P-Q-R-S-T-U-V are simultaneously
available for dispatch and subsequent execution on the machine. This facility allows the utilization factors,
and the net throughput performance to go up, without a significant increase in the maximum clocked
power. This is because, the issue width W is not increased, but the execution and resource stages or slots
can be filled up simultaneously from both threads. The added complexity in the front-end of maintaining
two program counters (fetch streams), and the global register space increase alluded to previously, adds to
the power a bit. On the other hand, the core execution complexity can be relaxed a bit without a
performance hit. For example, the fp_delay parameter can be increased, to reduce core complexity, without
any performance degradation. Figure 7.9 shows the expected performance and power-performance
variation with W for the 2-thread SMT processor. The power model assumed for the SMT machine is

TABLE 7.3 Steady-State Resource Utilization Profile for 
Base (W = 4) Superscalar Machine

Resource Name
Steady-State Utilization 

(%)

Completion (reorder) buffer, CBUF 53
Load-store issue queue, LSQ 0
Load-store unit pipe-0, LSU-0 100
Load-store unit-pipe1, LSU-1 50
Floating point issue queue, FPQ 0
Floating point unit pipe-0, FPU-0 100
Floating point unit pipe-1, FPU-1 50
Data cache read port-0, C0 50
Data cache read-port-1, C1 50
Data cache store port, C2 50
Pending store queue, PSQ 12.5
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the same as that of the underlying superscalar, except that a fixed fraction of the net power is added to
account for the SMT overhead. (The fraction added is assumed to be linear in the number of threads,
in an n-thread SMT). Figure 7.9 shows that under the assumed model, the performance-power efficiency
scales better with W, compared with the base superscalar (Fig. 7.8).

Seng and Tullsen [28] presented analysis to show that using a suitably architected SMT processor, the
per-thread speculative waste can be reduced, while increasing the utilization of the machine resources
by executing simultaneously from multiple threads. This was shown to reduce the average energy per
instruction by 22%. 

Chip Multiprocessing

In a multiscalar-like chip-multiprocessor (CMP) machine [29], different iterations of a single loop program
could be initiated as separate tasks or threads on different core processors on the same chip. Thus, the
threads A-B-C-D-E-F-G and P-Q-R-S-T-U-V, derived from the same user program would be issued in
sequence by a global task sequencer to two cores, in a 2-way multiscalar CMP. Register values set in one
task are forwarded in sequence to dependent instructions in subsequent tasks. For example, the register
value in fp1 set by instruction E in task 1 must be communicated to instruction T in task 2; so instruction
T must stall in the second processor until the value communication has occurred from task 1. Execution
on each processor proceeds speculatively, assuming the absence of load-store address conflicts between tasks;
dynamic memory address disambiguation hardware is required to detect violations and restart task
executions as needed. In this paradigm also, if the performance can be shown to scale well with the
number of tasks, and if each processor is designed as a limited-issue, limited-speculation (low complexity)
core, it is possible to achieve better overall scalability of performance-power efficiency.

Another trend in high-end microprocessors is true chip multiprocessing (CMP), where multiple
(distinct) user programs execute separately on different processors on the same chip. A commonly used
paradigm in this case is that of (shared memory) symmetric multiprocessing (SMP) on a chip (see
Hammond et al. in [23]). Larger SMP server nodes can be built from such chips. Server product groups
such as IBM’s high-end PowerPC division have relied on such CMP paradigms as the scalable paradigm
for the immediate future. The Power4 design [11] is the first example of this trend. Such CMP designs
offer the potential of convenient coarse-grain clock-gating and “power-down” modes, where one or more
processors on the chip may be “turned off” or “slowed down” to save power when needed. 

7.5 Conclusions and Future Research

In this chapter, we first discussed issues related to power-performance efficiency and metrics from an
architect’s viewpoint. We limited the discussion to dynamic power consumption. We showed that depending
on the application domain (or market), it may be necessary to adopt one metric over another in comparing
processors within that segment. Next, we described some of the promising new ideas in power-aware
microarchitecture design. This discussion included circuit-centric solutions like clock-gating, where

FIGURE 7.9 Performance and power-performance variation with W for 2-thread SMT.

1 2 3 4 5 6 7 8 9 10 1112

Superscalar width W

(a) (b)

0
1
2
3
4
5
6
7
8

S
te

ad
y-

st
at

e 
B

IP
S

fp_delay=1

fp_delay=2
2-thread SMT

BIPS^2/watt

BIPS/watt

1 2 3 4 5 6 7 8 9 10 11 12

Superscalar width W

0

0.5

1

1.5

2

B
IP

S
/w

at
t

2-thread SMT
© 2002 by CRC Press LLC



microarchitectural support is needed to make the right decisions at run time. Later, we used a simple
loop test case to illustrate the limits of power-performance scalability in some popular paradigms that
are being developed by various vendors within the high-end processor domain. In particular, we show
that scalability of current generation super scalars may be extended effectively through multi-clustering,
SMT, and CMP. Our experience in simulating these structures points to the need of keeping a single core
(or the uni-threaded core) simple enough to ensure scalability in the power, performance, and verification
cost of future systems. Detailed simulation results with benchmarks to support these conclusions were
not provided in this tutorial-style paper. Future research papers from our group will present such data
for specific microarchitectural paradigms of interest.

We limited our focus to a few key ideas and paradigms of interest in future power-aware processor
design. Also, we did not consider methods to reduce static (leakage) power: a component of net processor
power that is expected to grow significantly in future technologies. Many new ideas to address various
aspects of power reduction have been presented in recent workshops (e.g., [30–32]). All these ideas could
not be discussed in this chapter; but the interested reader should certainly refer to the cited references
for further detailed study.

At IBM T. J. Watson Research Center, a project on power-aware microprocessor design, led by the
author of this article, is currently engaged in designing a research processor prototype, called LPX (low-
power issue-execute processor). This processor has many of the elements touched upon in this paper
among other new innovations. By incorporating on-chip monitoring hardware, we shall attempt to
measure power reduction benefits and performance degradations (if any) resulting from the various ideas
that are being tried. This hardware prototype will also enable us to validate our power-performance
simulation methodologies, e.g., the PowerTimer toolkit referred to in [2]. Details of the LPX design will
be described in later publications.
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8.1 Measurement and Modeling of Disk
Subsystem Performance

Jozo J. Dujmovi  Daniel Tomasevich, and Ming Au-Yeung

Introduction

In queuing theory literature, many models describe the dynamic behavior of computer systems. Good sources
of such information (e.g. [5,7]) usually include stochastic models based on birth-death formulas, the con-
volution algorithm [2], load independent and load dependent mean value analysis (MVA) models [10], and
BCMP networks [1]. Theoretical queuing models presented in computer literature easily explain phenomena
such as bottlenecks, saturation, resource utilization, etc.; however, it is very difficult to find sources that show
a second level of modeling, which focuses on the ability of models to also achieve good numerical accuracy
when modeling real computer systems running real workloads. Although the phenomenology is important
in the classroom, it is the numerical accuracy that counts in engineering practice. The usual task of perfor-
mance analysts is to measure system performance and then derive models that can describe and predict the
behavior of analyzed systems with reasonable accuracy. Those who try to model the dynamic behavior of
real computer systems running real workloads frequently find this to be a difficult task.

ć,
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Our first goal is to develop load dependent models of disk units that have a moderate level of complexity
suitable for engineering practice. The presented disk unit models describe disk access times, head move-
ment optimization, and disk caching. These models are then used for creating MVA models of disk
subsystems. Our second goal is to investigate and exemplify the limits of numerical accuracy of presented
queuing models, and to propose indicators of predictive power of analyzed models. We present case studies
of disk subsystem modeling of a VAX under VMS and a PC under Windows NT. They provide a good
insight into the level of difficulty encountered in practical disk subsystem modeling and help establish
realistic expectations of modeling errors. The relative simplicity of MVA models makes them attractive
for practice. They can be easily combined with our disk unit models. However, our experiments with MVA
models show that only the load dependent version of MVA generates results with reasonable accuracy.

Description Errors and Prediction Errors of Disk Subsystem Models

Modeling errors are defined as differences between queuing theory results and experimental measure-
ments. Simple queuing models of disk subsystems (such as load independent MVA) frequently generate
modeling errors of 30–50% or more. In the majority of practical cases such low accuracy is not acceptable.
Modeling errors below 5% are usually acceptable, but require detailed and more sophisticated models.

The accuracy of models can only be evaluated with respect to measurements performed for a specific
system running a specific workload. Our approach to modeling and analysis of disk subsystems includes
the following main steps:

• Specification of drive workload that can be used to create various levels of disk subsystem load.

• Measurement of system performance under a strictly increasing disk subsystem load.

• Development of an analytic model with adjustable parameters that describes the dynamics of a
disk subsystem.

• Calibration of the analytic model by adjusting all model parameters to minimize the difference
between the measured values and the values computed from the analytic model.

• Assessment of the predictive power of the analytic model.

• The use of the calibrated model for performance prediction of systems with different parameters
and/or workload.

It is useful to identify two types of modeling errors: description errors and prediction errors. We define a
description error as the mean relative error between the measured performance indicators of a real system
and the performance indicators of a calibrated model. The description error is defined only within the range
of measurements. By contrast, the prediction error is the error in predicting the values of performance
indicators outside the range of measurements, or for different configurations of the analyzed system, or for
a different workload. For example, if we measure the response time for the degree of multiprogramming
from 1 to 8, then the description error is the mean error between eight measured values and eight computed
values. The prediction error is the error between the computed response time for 20 jobs and the actual
response time if it were measured. The prediction error is also the error between predicted and actual
response times for a system with a different number of disks, processors, or for a different workload.

The basic problem of modeling is that the ratio between prediction errors and description errors can
frequently be large, e.g., 2 to 10. Consequently, to provide reasonable prediction power, the description
errors of analytic models must be small, typically just a few percent.

A Simple Acceleration/Deceleration Model of Disk Access Time

The movement of the disk input/output (I/O) mechanism is usually modeled assuming that movement
is caused by applying a constant force for both acceleration and deceleration. This is a simple and usually
realistic assumption illustrated in Fig. 8.1. If the mass of the I/O mechanism is m, then force f causes the
acceleration a = f/m. After acceleration with force f we apply deceleration with force −f. The I/O heads
travel the total distance x and the corresponding time T is called the seek time. After accelerating for
time T/2 the I/O heads attain the speed v = aT/2 and travel the distance x/2 = a(T/2)2/2. Therefore, the
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seek time as a function of distance is T(x) = . If the maximum distance is xmax then the maximum
seek time is Tmax, the acceleration is a = 4xmax /  and T(x) = Tmax . The distance x can be
expressed as a physical length, or as a number of cylinders traveled (in this case the dimension of
acceleration is cylinder/s2). If the head moves from cylinder y to cylinder z, the traveled distance is x =
|y − z |. The seek time is t(y, z) = Tmax  The initial position y and the final position z can be
anywhere in the interval [0, xmax]. Assuming the uniform distribution of accesses to all cylinders the
average seek time Tseek can be computed as follows:

Consider the case where each cylinder has a fixed data capacity of b bytes. For a large contiguous file
of size F the maximum distance the I/O mechanism can travel is xmax = F/b cylinders. Consequently, the
average seek time for this file is Tseek =  where c =  = const. If we access data in the range
0 ≤ F ≤ Fmax, the average seek time is the following function of the file size:

Now the constant Tmax seek has a suitable interpretation of the maximum value of the average seek time
for the file of size Fmax.

When the I/O mechanism reaches a destination cylinder, it is necessary to wait the latency time until
the desired sector reaches the read/write head. For a disk that rotates at Nrev revolutions per minute, the
total revolution time is 60/Nrev . The latency time is uniformly distributed between 0 and 60/Nrev . There-
fore, the average latency is half of the revolution time, i.e., Tlatency  = 30/Nrev . The disk data transfer time
for one sector is Ttransfer = 60/Nrev Nsector = 2Tlatency /Nsector . Therefore, the mean time to access and transfer
disk data from a file of size F is

This is the simplest and idealized model of the mean disk access time. This model neglects phenomena
such as differences between disk acceleration and deceleration, head settle time [15] (dominating short
seeks), limited maximum velocity, nonuniformity of rotational latency for nonindependent requests,
zoning, bus interface and contention [11], disk command overhead [4], as well as effects of caching and
head movement optimization.

A Fixed Maximum Velocity Model of Seek Time

A more realistic model of seek time can be derived if we assume that the maximum velocity of the I/O
heads has a constant maximum value, as shown in Fig. 8.2. For small distances (exemplified by seek
times t1, t2 and all other seek times t ≤ T ∗) we assume that the heads first linearly accelerate for some
time and then decelerate exactly the same amount of time. For larger distances (seek times t ≥ T ∗) the

FIGURE 8.1 Movement of the disk I/O mechanism (seek). (From Dujmovic, J., Tomasevich, D., and Au-Yeung, 
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heads linearly accelerate until they achieve the maximum speed vmax, then travel at this constant speed,
and eventually decelerate linearly. 

The maximum time T ∗ that the disk mechanism can travel without being limited by the maximum
velocity is called the critical seek time . T ∗ is the time to accelerate disk heads to the maximum speed and
then to decelerate them to a standstill. In cases where disk heads travel at the constant maximum speed the
critical seek time T ∗ denotes the acceleration plus deceleration time, i.e. the total seek time minus the
time heads spend traveling at the constant maximum speed. Assuming constant acceleration/deceleration,
the critical seek time is T ∗ = 2vmax/a . During the critical seek time interval the mechanism travels the
distance x∗, called the critical distance . In the case of constant acceleration/deceleration, we have v = at,
x(t) = at2/2, and x∗ = 2x(T ∗/2) = 

Let us now investigate a general symmetrical case where the function v(t) has the property that the
acceleration time equals the deceleration time. We differentiate the small distance model (T ≤ T ∗) and
the large distance model (T ≥ T ∗) as follows:

The distance x∗ is the total distance for acceleration from 0 to vmax and deceleration from vmax to 0. In
the constant acceleration case (v(t) = at), this model yields

FIGURE 8.2 A simplified disk head velocity diagram. (From Dujmovic, J., Tomasevich, D., and Au-Yeung, M., PrProc.
CMG, 1999, Reno, NV. With permission.)
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The critical distance x∗ is 

Therefore, the acceleration and the maximum speed depend on the critical values x∗ and T ∗:

They can also be numerically determined from the linear segment of the seek time characteristic, using
arbitrary points (x1, T1) and (x2, T2):

The seek time characteristic follows from x(T):

This function satisfies the following properties:

• The initial nonlinear segment, for x ≤ x∗, is a square root function.

• The second segment, for x > x∗, is a linear function.

• At the critical point x = x∗, the first derivative of the square root function equals the first derivative
of the linear function (dT/dx = 1/vmax).

From T = T∗(1 + x/x∗)/2 we can easily see that both x∗ and T∗ can be determined from the linear
segment of the measured seek time characteristic using the following four steps, illustrated in Fig. 8.3:

1. Extend the linear segment of the measured seek time characteristic to the vertical axis. For x = 0
we get the point T∗/2 on the vertical axis.

2. Move vertically up to the point T∗ (this value is twice the distance between the origin and the
intersection of the linear segment and the vertical axis).

FIGURE 8.3 Graphical method for determining x∗ and T∗. (From Dujmovic, J., Tomasevich, D., and Au-Yeung,
M., Proc. CMG, 1999, Reno, NV. With permission.)
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3. Move horizontally to the intersection with the linear segment.
4. Move down to the horizontal axis and determine the point x∗.

Because the linear segment of the seek time characteristic determines the values of x∗ and T∗ (as well as a
and vmax), it follows that the nonlinear segment must terminate exactly in the (x∗, T∗) point. A numerical
method for computing x∗ and T∗ can be based on any two points (x1, T1) and (x2, T2) taken on the linear
segment. From the linear segment function T = T1 + (x − x1)(T2 − T1)/(x2 − x1), it follows:

The presented model is suitable for a qualitative description of the seek time behavior and for providing
insight into disk characteristics, but its flexibility is limited because it has only two parameters. In addition
to limited flexibility, this model is not appropriate for those disk units that do not satisfy the assumptions
of constant acceleration/deceleration, and for units where the seek time for short distances is significantly
affected by the head settling time. The accuracy of modeling can be improved using numerical models
that fit the measured characteristic and use more than two adjustable parameters.

Numerical Computation of the Average Seek Time

A simple numerical model can be based on three points: (x1, T1), (x∗, T∗), and (x2, T2), where x1 < x∗ < x2.
Here, (x1, T1) is the point from the initial nonlinear segment. Contrary to the approach presented in the
section on “A Fixed Maximum Velocity Model of Seek Time,” the middle point (x∗, T∗) is not computed
from the linear part of the measured characteristic, but directly selected from the seek time graph as the
beginning of the linear segment. The point (x2, T2) denotes the end of the linear segment (the maximum
distance heads can travel). The corresponding model is

From T1 =  and T ∗ = t(x∗)r it follows that T ∗/T1 = (x∗/x1)
r. Therefore, the parameters are

Using this model it is possible to numerically compute the mean seek time. Suppose that a file occupies
N cylinders. The probability that the seek distance x is less than or equal to a given value z is

This probability distribution function yields the following probability density function:
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Hence, the average seek time for the N-cylinder file can be computed as follows:

 

Using the presented seek time model for N ≤ x∗, we have

Similarly, for N ≥ x∗, we get

Therefore, the average seek time as a function of file size is given by the following function:

Advantages of the presented exponential model are: (1) parameters can be quickly computed from
three selected points of the characteristic, and (2) parameter r enables modeling of disk characteristics
that are different from the square root model. From T(1) = t it follows that t is interpreted as the single
cylinder seek time. The limitation of this model is that by determining t and r from points (x1, T1) and
(x∗, T ∗) it is not possible to have the exact value of t and optimum modeling of the curvature. To improve
this model we can introduce one more parameter as follows:

This new model has a nonlinear part (for x ≤ x∗) and a linear part (for x ≥ x∗). Since T(1) = t and T(2) =
t + c the parameter t is the single cylinder seek time and the parameter c is the difference c = T(2) − T(1).
The parameters of this model (t,c,r,A,B,x∗) are not independent. First, for x = x∗ the nonlinear part must
be connected to the linear part:
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In addition, to assure perfect continuity of this model, for x = x∗ the nonlinear and linear model must
have the same first derivatives:

(8.1)

Inserting this value of A in the connection relation, we have the expression for B:

(8.2)

The linear function can now be written as

Therefore, using formulas (8.1) and (8.2) our exponential model is now

The model has four independent parameters t, c, r, x∗ that can be determined using a calibration
procedure. The objective of calibration is to make the model as close as possible to the measured values
(x1,T1),… , (xn,Tn). Optimum values of parameters can be computed from the measured values
(x1,T1),… , (xn,Tn) by minimizing one of the following criterion functions:

E1 is a traditional mean square error, E2 is the mean absolute error and E3 is used to minimize the
maximum error (“minimax”). These criterion functions yield consistent or similar results and in this
paper we primarily used E1. For all the above criteria the most suitable minimization method is the
Nelder-Mead simplex algorithm [8]. The resulting calibrated (optimum) values of parameters t,c,r,x∗ are
those that yield the minimum value of the selected criterion function.

Experiments with modern disk units show that the four-parameter exponential model regularly
achieves high accuracy. Typical average relative errors are between 2% and 3%. The quality of this model
is illustrated in Fig. 8.4 for the Quantum Atlas III disk that has 8057 cylinders, and capacity of 9.1 GB.
The optimum parameters of the model are t = 1.55 ms, c = 0.32 ms, r = 0.387, and x∗ = 1686 cylinders.
Note that the optimum value of the exponent r is not  as expected from constant acceleration/deceler-
ation models, and frequently used in disk performance literature.
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The mean seek time for accessing a file (or database) occupying N adjacent cylinders is

The final result is:

Here A and B are defined by formulas (8.1) and (8.2).
Numerical models based on best fit do not provide a direct correspondence between disk performance

and physical attributes such as mass, force, acceleration, maximum speed, etc.; however, they are popular
with many authors because of their low numerical errors. For example, Ruemmler and Wilkes [11] use
the following simple model:

Similarly, Ng [9] uses the model

 

FIGURE 8.4 Four-parameter exponential seek time model of the Quantum Atlas III disk (based on DiskSim
measurements of G.R. Ganger available at http://www.ece.cmu.edu/~ganger.) (From Dujmovic, J. and Tomasevich,
D., Proc. CMG, 2001, Anaheim, CA. With permission.)
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where d denotes the recording areal density in tracks per inch. Lee and Katz [6] propose a model having
no linear segment:

In this model, A and B are constants and Tmin seek is the minimum seek time corresponding to the minimum
nonzero number of cylinders x = 1. Finally, Shriver [12] suggests slightly higher model granularity:

The accuracy of these models is less than the accuracy of the 4-parameter exponential model.

A Simple Model of Cached Disk Access Time

Modern operating systems use the main memory as a disk cache. In such cases disk access is illustrated
in Fig. 8.5. If data are not in the cache, it is necessary to fetch data from the disk. This causes one or
more disk accesses, taking time Tdisk. If data are already in the cache, access is very fast, Tcache << Tdisk.
The mean access time Ta of a cached disk depends on the cache hit probability p:

Probability p depends on the data access locality properties and for a large number of accesses,
assuming C < F, it satisfies the inequality p ≥ C/F. The lowest hit ratio, p = C/F, is obtained in the case
of minimum locality, i.e., in the case of uniform distribution of disk accesses. If Tdisk = Taccess, the upper
bound of the cached disk access time is a function of the disk file size F, which can be modeled as follows:

This model has four adjustable parameters: Tcache, C, r, and Tmax seek. Two adjustable parameters (Tcache

and C) represent the disk cache, and two parameters (Tmax seek and r) represent the seek time model. The
simple 2-parameter seek time model T = Tmax seek(F/Fmax)

r  yields sufficiently good accuracy for the most
frequent cases of relatively small databases where the seek time is nonlinear. For example, in the case of
the Quantum Atlas III disk, the nonlinear segment corresponds to data sizes up to (1686/8057) · 9.1 GB =
1.9 GB. For larger databases (that require the linear segment of the seek time characteristic) we can apply
the 3- and 4-parameter models described in the previous section.

FIGURE 8.5 File access using a disk cache. (From Dujmovic, J., Tomasevich, D., and Au-Yeung, M., Proc. CMG,
1999, Reno, NV. With permission.)
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If we measure disk access times T1,…,Tn for a sequence of file sizes F1,…,Fn, the calibration of the
above model can be performed by selecting the optimum values of Tcache, C, r, and Tmax seek, which
minimize the criterion function

The exponent q is usually selected in the range 1 ≤ q ≤ 4, where larger values are selected in cases
where the primary goal is to minimize large errors. The minimization can be performed using the
traditional Nelder–Mead simplex method [8].

A verification of this model is shown in Figs. 8.6 and 8.7 for a 300 MHz PC with 64 MB of memory,
Windows NT 4.5, and a 4-GB SCSI disk that has Nnev = 7200 rev/min. The resulting parameters are Tcache =
96 µs, C = 48 MB, r = 0.234, and Tmax seek 7.51 ms for Fmax = 1400 MB. In the majority of 245 measured points
(only some of them shown in Fig. 8.6) the mean relative error of this model is less than 1%. 

Disk Access Optimization Model

The disk access time model described in the previous section assumes a single program that generates
disk access requests. In such a case, all requests are served strictly in the order they are submitted and
disk access optimization is not possible; however, in the case of multiprogramming, the disk queue
contains multiple requests independently generated by various programs. It is possible to use a disk access
optimization algorithm that increases the global disk throughput by minimizing the movement of I/O
head mechanism. The simplest such an algorithm is the “shortest seek time first” (SSTF) [13,14], which
can be easily analyzed.

FIGURE 8.6 Measured and computed access times. (From Dujmovic, J., Tomasevich, D., and Au-Yeung, M., Proc.
CMG, 1999, Reno, NV. With permission.)

FIGURE 8.7 Measured and computed access times showing the cache size of 48 MB (magnified detail of Fig. 8.5).
(From Dujmovic, J., Tomasevich, D., and Au-Yeung, M., Proc. CMG, 1999, Reno, NV. With permission.)
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A simulator for the SSTF technique can be easily written according to the following algorithm:

1. Create a disk queue with n random requests.
2. Select an arbitrary initial position of disk heads.
3. Find the request that yields the shortest distance x.
4. Compute the relative seek time t =  (this is a normalized time with a maximum value of 1).
5. The position of the processed request becomes the new position of the disk head mechanism.
6. Replace the processed request with a new random request.
7. Repeat steps 3–6 many times and compute the average relative (normalized) seek time.

The results of the simulation yield a decreasing relative seek time function presented in Fig. 8.8. Taking
into account this function, the optimized disk access time can be well approximated, using the following
model:

The parameter tmin is introduced to reflect the mean latency time. The value of tmax corresponds to the
maximum seek distance. The quality of this approximation is rather good, as shown in Fig. 8.8. The
exponent α has a negative value, which reflects the quality of the optimization algorithm (as the quality
of optimization increases, so does the absolute value of the exponent α). 

Disk Service Time Model

Generally, the mean disk access time is a decreasing function of the disk queue length and is an increasing
function of file size. If we want to combine the disk cache access model and the disk access optimization
model, the result can be the following formula for load dependent and cached disks:

The disk service time is different from the mean disk access time. Disk service time is affected by
caching and access optimization, but it includes only the cases of actual disk access, excluding the cases
of fetching data from the cache without disk access. Consequently, we propose the following model of
the load dependent cached disk service time:

FIGURE 8.8 Comparing simulation and analytic models of seek time. (From Dujmovic, J., Tomasevich, D., and
Au-Yeung, M., Proc. CMG, 1999, Reno, NV. With permission.)
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TABLE 8.1 Classification of Eight Basic Disk Workloads
The first term in this model reflects the optimized seek time, the second term is the latency time, and
the third term reflects the data transfer time and related cache I/O operations. This model is successfully
applied for the analysis of a cached system presented in the “MVA Models and Their Limitations” section.
The presented load dependent service time model can also be developed using other seek time models
described in the section on “Numerical Computation of the Average Seek Time.”

Disk Subsystem Benchmark Workload

Disk subsystem workloads always lie between two obvious extremes: sequential access and uniformly
distributed random access. Sequential access is more frequent, but random access is more general because
it includes seek operations. Similarly, benchmark workloads must balance write and read operations. This
balance is based on two facts: (1) read operations are generally more frequent than write operations and
(2) write operations are less desirable in benchmarking because performance results are rather sensitive
to tuning of disk formats and/or blocking factors, which frequently yields questionable results. Finally, the
benchmark workload can be symmetric (i.e., balanced load, where all disks have the same load) and
asymmetric (usually with bottleneck disks). Symmetric loads are more desirable in benchmarking because
they better expose the capabilities of disk controller(s) and central processor(s).

A simple classification of disk workloads is presented in Table 8.1. Workload type 0 or 1 can be used for
creating files that are then processed by other workloads. Workload types 2 and 3 are used for benchmarking
systems using sequential access. Similarly, workloads 6 and 7 are used for benchmarking, using random
access. We use workload type 6 as the basic workload for measurement of disk subsystem performance. It
consists of n copies of a disk random access program DRAN that uniformly accesses files that are uniformly
distributed over all disk units [3]. This is a simple balanced workload that should properly reflect disk
subsystem performance and be suitable for both performance measurement and modeling. Typical results
of running the DRAN workload type 6 are presented in Fig. 8.9.

The analyzed computer, VAX 8650, has 14 disk units (RA 81) and one or two disk controllers (HSC 50).
Each program generates 7000 visits to the central processor, and 7000 visits to disks. Since the disk load
is uniformly distributed, each program creates 500 accesses to each disk. In the case of a single program,
the measured processor time for a single disk controller is 4.99 s and the total elapsed time is 163.16 s.
The processor time can be interpreted as processor demand Dp = 4.99 s. A queuing model of this system,
in the case of two disk controllers, is shown in Fig. 8.10. The next step is to develop an analytic model
for the analysis of this system.

MVA Models and Their Limitations

Let us introduce the following variables:

N = degree of multiprogramming (number of jobs in the system)
K  = number of service centers (processors, disks, and disk controllers)
Pk(j|n) = probability that there are j jobs at the kth service center, if the total number of jobs in the

system (degree of multiprogramming) is n

Workload Type

Access Method
(S = Sequential,
R = Random)

Operation
(W = Write,
R = Read)

Load balance
(S = Symmetric,
A = Asymmetric)

0 S W S
1 S W A
2 S R S
3 S R A
4 R W S
5 R W A
6 R R S
7 R R A

From Dujmovic, J., Tomasevich, D., and Au-Yeung, M., Proc. CMG,
1999, Reno, NV. With permission.
© 2002 by CRC Press LLC



Rk(n) = response time of the kth service center in the case of n jobs in the system (n = 1,…,N)
R(n) = response time of the whole system
Uk(n) = utilization of the kth server
Qk(n) = queue length at the kth server
Sk( j) = service time of the kth server if j jobs are in the queue; if the kth server is load independent

then Sk( j) = Sk = const., k ∈ {1,…,K}
Vk = number of visits to the kth server per job
Dk = service demand for the kth server; in the case of load-independent servers Dk = VkSk

X(n) = system throughput (completed jobs per time unit)
Xk(n) = throughput of the kth service center when there are n jobs in the system: Xk(n) = Vk X(n)

FIGURE 8.9 Measured response times for VAX 8650. (From Dujmovic, J., Tomasevich, D., and Au-Yeung, M., Proc.
CMG, 1999, Reno, NV. With permission.)

FIGURE 8.10 A queuing model of VAX 8650. (From
Dujmovic, J., Tomasevich, D., and Au-Yeung, M., Proc.
CMG, 1999, Reno, NV. With permission.)
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The traditional load independent mean value analysis program (LIMVA) is based on assumption that
the service times of all servers are constant. The goal of MVA models is to compute system response
times, utilizations, and throughputs. Following is the traditional LIMVA model:

for n = 1 to N do

end_for

For perfectly balanced systems where all demands are equal (D = V1S1 = V2S2 = … = VK SK), this algorithm
yields equal distribution of jobs in service centers

This is a consequence of equal residence times:

and their use for computing Qk(n) = Vk X(n)Rk(n). Furthermore, this yields linear response times, and
other relations: 

Of course, in a general case we have different demands, and the response time is no longer linear.
Unfortunately, the nature of the LIMVA model is essentially quasi-linear. Even for different demands the
response time curves remain similar to straight lines. 

Limitations of the LIMVA model are exemplified in Fig. 8.11. In this case the processor service time
obtained from measurements is Sp = 825 µs, the number of processor visits per job is Vp = 7000, yielding
processor demand Dp = 5.775 s. The number of disks is 14 and the number of disk visits per job is Vd =
7000/14 = 500. The available resources include the central processor and 14 equally loaded disk units. A
spectrum of LIMVA models can be obtained for disk service times varying in the range 12 ms ≤ Sd ≤ 24 ms,
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and yielding disk demands in the range, 6 s ≤ Dd ≤ 12 s. The corresponding response times presented in
Fig. 8.11 are, in the whole range, practically straight lines and obviously inadequate for representing the
measured response time function. The best approximation would be obtained for Sd = 16 ms, but this
approximation is equally poor as the attempt to use a straight line to approximate a parabola. The nature of
the dynamic behavior of VAX 8650 is quite different from what can be modeled by LIMVA regardless how
well we adjust its parameters. Thus, a more flexible model is needed. Taking into account that disks are never
load-independent, because they regularly use either access optimization or access optimization and caching,
we hope that better results should be expected from load dependent MVA models.

For batch systems we apply the load dependent mean value analysis model (LDMVA) introduced in
[1] (see also [5,7]):

for n =    1 to N do

 

end_for

FIGURE 8.11 A family of LIMVA models and measured VAX 8650 response time. (From Dujmovic, J., Tomasevich,
D., and Au-Yeung, M., Proc. CMG, 1999, Reno, NV. With permission.)
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Experimental Results for LDMVA Model of a Disk Subsystem
with Access Optimization

Let us now apply the LDMVA model for the VAX 8650 disk subsystem modeling. The measured response
and processor times can be used to adjust parameters of the LDMVA model. This is called calibration
of the queuing model. The calibration process is based on measured response times Tm1(n) and Tm2(n),
which correspond to systems with one and two disk controllers. Suppose that the load dependent disk
service time is approximated by Sd(n) = tmin + (tmax − tmin)eα(n−1). The parameters of the LDMVA model
are tmin, tmax, α, Sp, Sc. Let Rc1(n, tmin, tmax, α, Sp, Sc) and Rc2(n, tmin, tmax, α, Sp, Sc) be the response times
computed from the LDMVA model, respectively using one and two controllers. The model calibration
procedure is based on the minimization of the compound criterion function 

The results of calibration performed using the Nelder-Mead simplex method [8] are the following
values of parameters: tmin = 11.5 ms, tmax = 20 ms, a = −4, Sp = 0.822 ms, and Sc = 0.89 ms. The mean
relative error for all presented points is 1% (Fig. 8.12). At this level of description error it is realistic to
expect good prediction results.

Experimental Results for LDMVA Model of a Disk Subsystem
with Caching and Access Optimization 

In this experiment, we use the same 300 MHz PC presented in the “Numerical Computation of the
Average Seek Time” section and Figs. 8.6 and 8.7. Its memory capacity is 64 MB with two disk units,
and the disk cache size under Windows NT 4.5 is C = 48 MB. The measured response times for DRAN

FIGURE 8.12 The results of LDMVA model calibration. (From Dujmovic, J., Tomasevich, D., and Au-Yeung, M.,
Proc. CMG, 1999, Reno, NV. With permission.)
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benchmarks accessing a 100 MB file and 1 GB file are presented in Fig. 8.13. The LDMVA model we used
is based on measured disk parameters reported in the “Numerical Computation of the Average Seek
Time” section and on the disk service time model Sd(F, n) proposed in the section on “Disk Access
Optimization Model.” Disk accesses to a file of size F occur with the probability (F − C)/F and cache
accesses with the probability C/F. The number of disk visits Vd now depends on the number of processor
visits Vp and the size of file. If the number of disks is k then Vd(F) = Vp(F − C)/kF. Therefore, the disk
cache causes both the disk service time and the number of visits to be functions of the file size. Processor
service time is not constant. For cache accesses it can be expressed as Sp =  and for disk accesses
as Sp =  where the three components correspond to the processor activity for the
benchmark program, cache access, and serving the file management system during the disk access. The
mean service time is Sp = (F − C)/F. The calibrated model in Fig. 8.13 has the mean
modeling error of 7.4%. 

Predictive Power of Queuing Models

All queuing models have adjustable parameters (e.g., the processor and disk service times). The default
values of these parameters, taken from manufacturers specifications, regularly yield rather large prediction
errors. These errors can be reduced by corrections of parameters in a calibration process. During the
model calibration the parameters are adjusted to minimize the difference between the measured values
and computed values from the model. In essence, this is just a standard curve fitting process, and the
resulting low description error is not necessarily a proof of the quality of the model. The only way to
assess the quality of the model is through the analysis of the prediction errors.

Let n be the number of measured response times R1,…,Rn and let us use the first m measured values,
R1,…,Rm, m ≤ n, for the model calibration. The indicator p = 100 m/n shows the percent of values used
for calibration. Let e(p) denote the average relative error between the measured vales and the values of
the calibrated model for the whole range of n data points. Generally, e(p) is expected to be a decreasing
function, and three typical such functions are presented in Figs. 8.14 and 8.15. 

In all cases, we measured the processor time and used this value in our LDMVA model. The calibration
process included three parameters of the disk subsystem (minimum service time tmin, maximum service
time tmax, and the exponent α introduced in the section on “A Simple Model of Cached Disk Access
Time”). Consequently, the e(p) function starts with m = 3 points.

FIGURE 8.13 Measured response times and the results of the LDMVA model. (From Dujmovic, J., Tomasevich,
D., and Au-Yeung, M., Proc. CMG, 1999, Reno, NV. With permission.)
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In the ideal theoretical case of a perfect model, we expect e(p) = 0 for all m ≥ 3. Good predictive power
of a model is indicated by e(p), approaching a constant low value as soon as possible. Consequently, the
predictive power is related to the smallest value of p after which e(p) remains in the δ neighborhood of
the minimum emin =  e(p). Let us denote this value as p∗(δ ). In other words

Now, we can define the following predictive power quality indicator:

where pmin denotes the minimum value of p necessary for calibration (in our examples pmin corresponds
to m = 3).

The case in Fig. 8.14 reaches the minimum error e(100%) = 2.16%. Let us take δ = 0.2. Then we have
(1 + δ )emin = 2.59%, p∗(0.2) = 0.875(87.5%), and the resulting predictive power is rather low:

FIGURE 8.14 Prediction errors e(p) for VAX 11/785.
(From Dujmovic, J., Tomasevich, D., and Au-Yeung, M.,
Proc. CMG, 1999, Reno, NV. With permission.)

FIGURE 8.15 Prediction errors e(p) for VAX 8650. (From Dujmovic, J., Tomasevich, D., and Au-Yeung, M., Proc.
CMG, 1999, Reno, NV. With permission.)
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In the case of Fig. 8.15, the model with 1 HSC50 disk controller yields emin = 1.53%, and for δ = 0.2
we have: 

Finally, the predictive power in the case with two HSC50 disk controllers is much better: we have emin =
0.64% yielding

Conclusions

Even in cases of fully controlled simple synthetic workloads, the performance modeling of disk subsystems
is not a simple task. Basic popular load independent queuing models (load independent convolution
algorithm or MVA) cannot be used for modeling modern disk subsystems, which use caching and disk
access optimization. The use of load dependent MVA models is rather efficient and we proposed models
for optimized disk access, cached disk access, and combined optimized and cached disk access. Presented
models need a careful calibration procedure. In the majority of cases based on symmetric random disk
accesses the modeling errors for optimized disk access were less than 2%. In more complex cases with
optimized disk accesses and caching, our models regularly achieve errors below 10%. Experimental
verification of our models has been successfully performed in both VAX/VMS and PC/NT environments.
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8.2 Performance Evaluation: Techniques, Tools,
and Benchmarks

Lizy Kurian John

Introduction

State-of-the-art high performance microprocessors contain tens of millions of transistors and operate at
frequencies close to 2 GHz. These processors perform several tasks in overlap, employ significant amounts
of speculation and out-of-order execution, and other microarchitectural techniques, and are true marvels
of engineering. Designing and evaluating these microprocessors is a major challenge, especially consid-
ering the fact that one second of program execution on these processors involves several billion instruc-
tions and analyzing one second of execution may involve dealing with tens of billion pieces of information.

In general, design of microprocessors and computer systems involves several steps (i) understanding
applications and workloads that the systems will be running, (ii) innovating potential designs, (iii) eval-
uating performance of the candidate designs, and (iv) selecting the best design. The large number of
potential designs and the constantly evolving nature of workloads have resulted in designs being largely
adhoc. In this article, we investigate major techniques used in the performance evaluation process.

It should be noted that performance evaluation is needed at several stages of the design. In early stages,
when the design is being conceived, performance evaluation is used to make early design tradeoffs.
Usually, this is accomplished by simulation models, because building prototypes of state-of-the-art
microprocessors is expensive and time consuming. Several design decisions are made before any proto-
typing is done. Once the design is finalized and is being implemented, simulation is used to evaluate
functionality and performance of subsystems. Later, performance measurement is done after the product
is available in order to understand the performance of the actual system to various real world workloads
and to identify modifications to incorporate in future designs.

Performance evaluation can be classified into performance modeling and performance measurement,
as illustrated in Table 8.2. Performance measurement is possible only if the system of interest is available
for measurement and only if one has access to the parameters of interest. Performance measurement
may further be classified into on-chip hardware monitoring, off-chip hardware monitoring, software
monitoring, and microcoded instrumentation. Performance modeling is typically used when actual
systems are not available for measurement or, if the actual systems do not have test points to measure
every detail of interest. Performance modeling may further be classified into simulation modeling and
analytical modeling. Simulation models may further be classified into numerous categories depending

TABLE 8.2 A Classification of Performance Evaluation Techniques

Performance measurement Microprocessor on-chip performance 
monitoring counters 

Off-chip hardware monitoring 
Software monitoring
Micro-coded instrumentation 

Performance modeling Simulation
Trace driven simulation
Execution driven simulation
Complete system simulation
Event driven simulation
Software profiling

Analytical modeling
Probabilistic models
Queuing models
Markov models
Petri net models
© 2002 by CRC Press LLC



on the mode/level of detail of simulation. Analytical models use probabilistic models, queueing theory,
Markov models or Petri nets.

Performance modeling/measurement techniques and tools should possess several desirable features

• They must be accurate. It is easy to build models that are heavily sanitized, however, such models
will not be accurate.

• They must be noninvasive. The measurement process must not alter the system or degrade the
system’s performance.

• They must not be expensive. Building the performance measurement facility should not cost
significant amount of time or money.

• They must be easy to change or extend. Microprocessors and computer systems constantly undergo
changes and it must be easy to extend the modeling/measurement facility to include the upgraded
system.

• They must not need source code of applications. If tools and techniques necessitate source code,
it will not be possible to evaluate commercial applications where source is not often available.

• They should measure all activity including kernel and user activity. Often it is easy to build tools
that measure only user activity. This was acceptable in traditional scientific and engineering work-
loads; however, in database, Web server, and Java workloads, significant operating system activity
exists, and it is important to build tools that measure operating system activity as well.

• They should be capable of measuring a wide variety of applications including those that use signals,
exceptions, and DLLs (dynamically linked libraries).

• They should be user-friendly. Hard-to-use tools often are underutilized. Hard-to-use tools also
result in more user error.

• They should be fast. If a performance model is very slow, long-running workloads, which take
hours to run, may take days or weeks to run on the model. If an instrumentation tool is slow, it
can be invasive.

• Models should provide control over aspects that are measured. It should be possible to selectively
measure what is required.

• Models and tools should handle multiprocessor systems and multithreaded applications. Dual and
quad-processor systems are very common nowadays. Applications are becoming increasingly
multithreaded especially with the advent of Java, and it is important that the tool handles these.

• It will be desirable for a performance evaluation technique to be able to evaluate the performance
of systems that are not yet built.

Many of these requirements are often conflicting. For instance, it is difficult for a mechanism to be fast
and accurate. Consider mathematical models. They are fast, although several simplifying assumptions
go into their creation, and often they are not accurate. Similarly, it is difficult for a tool to be noninvasive
and user-friendly. Many users like graphical user interfaces (GUIs), however, most instrumentation and
simulation tools with GUIs are slow and invasive.

Benchmarks and metrics to be used for performance evaluation have always been interesting and
controversial issues. There has been a lot of improvement in benchmark suites since 1988. Before that
computer performance evaluation has been largely with small benchmarks such as kernels extracted from
applications (e.g., Lawrence Livermore Loops), Dhrystone and Whetstone benchmarks, Linpack, Sorting,
Sieve of Eratosthenes, 8-queens problem, Tower of Hanoi, etc. [1]. The Standard Performance Evaluation
Cooperative (SPEC) consortium and the Transactions Processing Council (TPC) formed in 1988 have
made available several benchmark suites and benchmarking guidelines to improve the quality of bench-
marking. Several state-of-the-art benchmark suites are described in the “Workloads and Benchmarks”
section.

Another important issue in performance evaluation is the choice of performance metric. For a system
level designer, execution time and throughput are two important performance metrics. Execution time
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is generally the most important measure of performance. Execution time is the product of the number
of instructions, cycles per instruction (CPI), and the clock period. Throughput of an application is a
more important metric, especially in server systems. In servers that serve the banking industry, airline
industry, or other similar businesses, what is important is the number of transactions that could be
completed in unit time. Such servers, typically called transaction processing systems use transactions per
minute (tpm) as a performance metric. Millions of instructions per second (MIPS) and million of floating
point operations per second (MFLOPS) were very popular measures of performance in the past. Both
of these are very simple and straightforward to understand and hence have been used often, however,
they do not contain all three components of program execution time and hence are incomplete measures
of performance. Several low level metrics are of interest to microprocessor designers, in order to help
them identify performance bottlenecks and tune their designs. Cache hit ratios, branch misprediction
ratios, number of off-chip memory accesses, etc. are examples of such measures.

Another major problem is the issue of reporting performance with a single number. A single number
is easy to understand and easy to be used by the trade press. Use of several benchmarks also makes it
necessary to find some kind of a mean. Arithmetic mean, geometric mean, and harmonic mean are three
ways of finding the central tendency of a group of numbers; however, it should be noted that each of
these means should be used in appropriate conditions depending on the nature of the numbers which
need to be averaged. Simple arithmetic mean can be used to find average execution time from a set of
execution times. Geometric mean can be used to find the central tendency of metrics that are in the form
of ratios (e.g., speedup) and harmonic mean can be used to find the central tendency of measures that
are in the form of a rate (e.g., throughput). Cragon [2] and Smith [3] discuss the use of the appropriate
mean for a given set of data. Cragon [2] and Patterson and Hennessy [4] illustrate several mistakes one
could possibly make while finding a single performance number.

The rest of this chapter section is organized as follows. “Performance Measurement” describes perfor-
mance measurement techniques including hardware on-chip performance monitoring counters on micro-
processors. “Performance Modeling” describes simulation and analytical modeling of microprocessors and
computer systems. “Workloads and Benchmarks” presents several state-of-the-art benchmark suites for a
variety of workloads. Due to space limitations, we describe some typical examples of tools and techniques
and provide the reader with pointers for more information.

Performance Measurement

Performance measurement is used for understanding systems that are already built or prototyped.
Performance measurement can serve two major purposes: tune this system or systems to be built and
tune the application if source code and algorithms can still be changed. Essentially, the process involves
(i) understanding the bottlenecks in the system that has been built, (ii) understanding the applications
that are running on the system and the match between the features of the system and the characteristics
of the workload, and (iii) innovating design features that will exploit the workload features. Performance
measurement can be done via the following means:

• Microprocessor on-chip performance monitoring counters

• Off-chip hardware monitoring

• Software monitoring

• Microcoded instrumentation

On-Chip Performance Monitoring Counters 

All state-of-the-art high performance microprocessors including Intel’s Pentium III and Pentium IV, IBM’s
POWER 3 and POWER 4 processors, AMD’s Athlon, Compaq’s Alpha, and Sun’s UltraSPARC processors
incorporate on-chip performance monitoring counters, which can be used to understand performance of
these microprocessors, while they run complex, real-world workloads. This ability has overcome a
serious limitation of simulators, that they often could not execute complex workloads. Now, complex
run-time systems involving multiple software applications can be evaluated and monitored very closely.
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All microprocessor vendors nowadays release information on their performance monitoring counters,
although they are not part of the architecture. 

For illustration of on-chip performance monitoring, we use the Intel Pentium processors. The micro-
processors in the Intel Pentium contain two performance monitoring counters. These counters can be
read with special instructions (e.g., RDPMC) on the processor. The counters can be made to measure user
and kernel activity in combination or in isolation. A variety of performance events can be measured using
the counters [50]. For illustration of the nature of the events that can be measured, Table 8.3 lists a small
subset of the events that can be measured on the Pentium III. Although more than 200 distinct events can
be measured on the Pentium III, only two events can be measured simultaneously. For design simplicity,
most microprocessors limit the number of events that can be simultaneously measured to 4 or 5. At times,
certain events are restricted to be accessible only through a particular counter. These steps are necessary
to reduce the overhead associated with on-chip performance monitoring. Performance counters do con-
sume on-chip real estate. Unless carefully implemented, they can also impact the processor cycle time.

Several tools are available to measure performance using performance monitoring counters. Table 8.4
lists some of the available tools. Intel’s Vtune software may be used to perform measurements using the
Intel processor performance counters [5]. The P6Perf utility is a plug-in for Windows NT performance
monitoring [6]. The Compaq DIGITAL Continuous Profiling Infrastructure (DCPI) is a very powerful

TABLE 8.3 Examples of Events That Can Be Measured Using Performance Monitoring Counters
on an Intel Pentium III Processor

Event Description of Event
Event Number in 

Hex

DATA_MEM_REFS All loads and stores from/to memory 43H
DCU_LINES_IN Total lines allocated in the data cache unit 45H
IFU_IFETCH Number of instruction fetches (cacheable and uncacheable) 80H
IFU_IFETCH_MISS Number of instruction fetch misses 81H
ITLB_MISS Number of Instruction TLB misses 85H
IFU_MEM_STALL Number of cycles instruction fetch is stalled for any reason 86H
L2_IFETCH Number of L2 instruction fetches 28H
L2_LD Number of L2 data loads 29H
L2_ST Number of L2 data stores 2AH
L2_LINES_IN Number of lines allocated in the L2 24H
L2_RQSTS Total number of L2 requests 2EH
INST_RETIRED Number of instructions retired C0H
UOPS_RETIRED Number of micro-operations retired C2H
INST_DECODED Number of instructions decoded D0H
RESOURCE_STALLS Number of cycles in which there is a resource related stall A2H
MMX_INSTR_EXEC Number of MMX Instructions Executed B0H
BR_INST_RETIRED Number of branch instructions retired C4H
BR_MISS_PRED_RETIRED Number of mispredicted branches retired C5H
BR_TAKEN_RETIRED Number of taken branches retired C9H
BR_INST_DECODED Number of branch instructions decoded E0H
BTB_MISSES Number of branches for which BTB did not predict E2H

TABLE 8.4 Software Packages for Performance Counter Measurement

Tool Platform Reference

VTune IA-32 http://developer.intel.com/software/products/vtune/vtune_oview.htm
P6Perf IA-32 http://developer.intel.com/vtune/p6perf/index.htm
PMON IA-32 http://www.ece.utexas.edu/projects/ece/lca/pmon
DCPI Alpha http://www.research.digital.com/SRC/dcpi/

http://www.research.compaq.com/SRC/dcpi/
Perf-mon UltraSPARC http://www.sics.se/~mch/perf-monitor/index.html
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tool to profile programs on the Alpha processors [7,8]. The performance monitor perf-mon is a small
hack that uses the on-chip counters on UltraSPARC-I/II processors to gather statistics [9]. Packages like
Vtune perform extensive post-processing and present data in graphical forms; however, extensive post-
processing can sometimes result in tools that are somewhat invasive. PMON [10] is a counter reading
software written by Juan Rubio of the Laboratory for Computer Architecture at the University of Texas.
It provides a mechanism to read specified counters with minimal or no perceivable overhead. All these
tools measure user and operating system activity. Since everything on a processor is counted, effort should
be made to have minimal or no other undesired process running during experimentation. This type of
performance measurement can be done on binaries, and no source code is desired.

Off-Chip Hardware Measurement

Instrumentation using hardware means can also be done by attaching off-chip hardware, two examples
of which are described in this section. 

SpeedTracer from AMD
AMD developed this hardware tracing platform to aid in the design of its x86 microprocessors. When
an application is being traced, the tracer interrupts the processor on each instruction boundary. The
state of the CPU is captured on each interrupt and then transferred to a separate control machine where
the trace is stored. The trace contains virtually all valuable pieces of information for each instruction
that executes on the processor. Operating system activity can also be traced; however, tracing in this
manner can be invasive, and may slow down the processor. Although the processor is running slower,
external events such as disk and memory accesses still happen in real time, thus looking very fast to the
slowed-down processor. Usually, this issue is addressed by adjusting the timer interrupt frequency. Use
of this performance monitoring facility can be seen in Merten [11] and Bhargava[12].

Logic Analyzers
Poursepanj and Christie [13] use a Tektronix TLA 700 logic analyzer to analyze 3D graphics workloads on
AMD-K6-2-based systems. Detailed logic analyzer traces are limited by restrictions on sizes and are typically
used for the most important sections of the program under analysis. Preliminary coarse level analysis can
be done by performance monitoring counters and software instrumentation. Poursepanj and Christie used
logic analyzer traces for a few tens of frames, which covered a second or two of smooth motion [13].

Software Monitoring 

Software monitoring is often performed by utilizing architectural features such as a trap instruction or a
breakpoint instruction on an actual system, or on a prototype. The VAX processor from Digital (now
Compaq) had a T-bit that caused an exception after every instruction. Software monitoring used to be an
important mode of performance evaluation before the advent of on-chip performance monitoring
counters. The primary advantage of software monitoring is that it is easy to do. The primary disadvantage
is that the instrumentation can slow down the application. The overhead of servicing the exception,
switching to a data collection process, and performing the necessary tracing can slow down a program by
more than 1000 times. Another disadvantage is that software monitoring systems, typically, only handle
the user activity.

Microcoded Instrumentation

Digital used microcoded instrumentation to obtain traces of VAX and Alpha architectures. The ATUM
tool [14] used extensively by Digital in the late 1980s and early 1990s uses microcoded instrumentation.
This is a technique lying between trapping information on each instruction, using hardware interrupts
(traps) or software traps. The tracing system essentially modified the VAX microcode to record all
instruction and data references in a reserved portion of memory. Unlike software monitoring, ATUM
could trace all processes including the operating system, but this kind of tracing is invasive, and can slow
down the system by a factor of 10 without including the time to write the trace to the disk. 
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Performance Modeling

Performance measurement as described in the previous section can be done only if the actual system or
a prototype exists. It is expensive to build prototypes for early stage evaluation. Hence, one needs to
resort to some kind of modeling in order to study systems yet to be built. Performance modeling can be
done using simulation models or analytical models. 

Simulation

Simulation has become the de facto performance modeling method in the evaluation of microprocessor
architectures for several reasons. The accuracy of analytical models in the past has been insufficient for
the type of design decisions computer architects wish to make (for instance, what kind of caches or branch
predictors are needed), therefore, cycle accurate simulation has been used extensively by architects. Sim-
ulators model existing or future machines or microprocessors. They are essentially a model of the system
being simulated, written in a high-level computer language such as C or Java, and running on some existing
machine. The machine on which the simulator runs is called the host machine and the machine being
modeled is called the target machine. Such simulators can be constructed in many ways. 

Simulators can be functional simulators or timing simulators. They can be trace driven or execution
driven simulators. They can be simulators of components or that of the complete system. Functional
simulators simulate functionality of the target processor, and in essence provide a component similar to
the one being modeled. The register values of the simulated machine are available in the equivalent
registers of the simulator. In addition to the values, the simulators also provide performance information
in terms of cycles of execution, cache hit ratios, branch prediction rates, etc. Thus, the simulator is a
virtual component representing the microprocessor or subsystem being modeled plus a variety of per-
formance information.

If performance evaluation is the only objective, one does not need to model the functionality. For
instance, a cache performance simulator does not need to actually store values in the cache; it only needs
to store information related to the address of the value being cached. That information is sufficient to
determine a future hit or miss. Although it is nice to have the values as well, a simulator that models
functionality in addition to performance is bound to be slower than a pure performance simulator.
Register transfer language (RTL) models used for functional verification may also be used for performance
simulations, however, these models are very slow for performance estimation with real-world workloads
and are not discussed in this article.

Trace Driven Simulation
Trace driven simulation consists of a simulator model whose input is modeled as a trace or sequence of
information representing the instruction sequence that would have actually executed on the target
machine. A simple trace driven cache simulator needs a trace consisting of address values. Depending
on whether the simulator is modeling a unified instruction or data cache, the address trace should contain
addresses of instruction and data references.

Cachesim5 and Dinero IV are examples of cache simulators for memory reference traces. Cachesim5
comes from Sun Microsystems along with its Shade package [15]. Dinero IV [16] is available from the
University of Wisconsin, Madison. These simulators are not timing simulators. There is no notion of
simulated time or cycles, only references. They are not functional simulators. Data and instructions do
not move in and out of the caches. The primary result of simulation is hit and miss information. The
basic idea is to simulate a memory hierarchy consisting of various caches. The various parameters of
each cache can be set separately (architecture, mapping policies, replacement policies, write policy,
statistics). During initialization, the configuration to be simulated is built up, one cache at a time, starting
with each memory as a special case. After initialization, each reference is fed to the appropriate top-level
cache by a single simple function call. Lower levels of the hierarchy are handled automatically. One does
not need to store a trace while using Cachesim5, because Shade can directly feed the trace into Cachesim5.

Trace driven simulation is simple and easy to understand. The simulators are easy to debug. Experi-
ments are repeatable because the input information is not changing from run to run; however, trace
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driven simulation has two major problems:

1. Traces can be prohibitively long if entire executions of some real-world applications are considered.
The storage needed by the traces may be prohibitively large. Trace size is proportional to the
dynamic instruction count of the benchmark.

2. The traces do not represent the actual stream of processors with branch predictions. Most trace
generators generate traces of only completed or retired instructions in speculative processors.
Hence, they do not contain instructions from the mispredicted path. 

The first problem is typically solved using trace sampling and trace reduction techniques. Trace sampling
is a method to achieve reduced traces; however, the sampling should be performed in such a way that the
resulting trace is representative of the original trace. It may not be sufficient to periodically sample a program
execution. Locality properties of the resulting sequence may be widely different from that of the original
sequence. Another technique is to skip tracing for a certain interval, then collect for a fixed interval, and
then skip again. It may also be needed to leave a warm-up period after the skip interval, to let the caches
and other such structures to warm up [17]. Several trace sampling techniques are discussed by Crowley
and Baer [18]. The QPT trace collection system [19] solves the trace size issue by splitting the tracing process
into a trace record generation step and a trace regeneration process. The trace record has a size similar to
the static code size, and the trace regeneration expands it to the actual full trace upon demand. 

The second problem can be solved by reconstructing the mispredicted path [20]. An image of the
instruction memory space of the application is created by one pass through the trace, and, thereafter,
fetching from this image as opposed to the trace. Although 100% of the mispredicted branch targets may
not be in the recreated image, studies show that more than 95% of the targets can be located.

Execution Driven Simulation
Researchers and practitioners assign two meanings to this term. Some refer to simulators that take program
executables as input as execution driven simulators. These simulators utilize the actual input executable
and not a trace. Hence, the size of the input is proportional to the static instruction count and not the
dynamic instruction count. Mispredicted branches can be accurately simulated as well. Thus, these sim-
ulators solve the two major problems faced by trace driven simulators. The widely used Simplescalar
simulator [21] is an example of such an execution driven simulator. With this tool set, the user can simulate
real programs on a range of modern processors and systems, using fast execution driven simulation. There
is a fast functional simulator and a detailed, out-of-order issue processor that supports non-blocking
caches, speculative execution, and state-of-the-art branch prediction.

Some others consider execution driven simulators to be simulators that rely on actual execution of
parts of code on the host machine (hardware acceleration by the host instead of simulation) [22]. These
execution driven simulators do not simulate every individual instruction in the application. Only the
instructions that are of interest are simulated. The remaining instructions are directly executed by the host
computer. This can be done when the instruction set of the host is the same as that of the machine being
simulated. Such simulation involves two stages. In the first stage or preprocessing, the application program
is modified by inserting calls to the simulator routines at events of interest. For instance, for a memory
system simulator, only memory access instructions need to be instrumented. For other instructions, the
only important thing is to make sure that they get performed and that their execution time is properly
accounted for. The advantage of execution driven simulation is speed. By directly executing most instruc-
tions at the machine’s execution rate, the simulator can operate orders of magnitude faster than cycle by
cycle simulators that emulate each individual instruction. Tango, Proteus, and FAST are examples of such
simulators [22].

Complete System Simulation 
Many execution and trace driven simulators only simulate the processor and memory subsystem. Neither
I/O activity nor operating system activity is handled in simulators such as Simplescalar. But in many work-
loads, it is extremely important to consider I/O and operating system activity. Complete system simulators
are complete simulation environments that model hardware components with enough detail to boot and
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run a full-blown commercial operating system. The functionality of the processors, memory subsystem, disks,
buses, SCSI/IDE/FC controllers, network controllers, graphics controllers, CD-ROM, serial devices, timers,
etc. are modeled accurately in order to achieve this. Although functionality stays the same, different
microarchitectures in the processing component can lead to different performance. Most of the complete
system simulators use microarchitectural models that can be plugged in and out. For instance, SimOS [23],
a popular complete system simulator, provides a simple pipelined processor model and an aggressive
superscalar processor model. SimOS and SIMICS [24,25] can simulate uniprocessor and multiprocessor
systems. Table 8.5 lists popular complete system simulators.

Stochastic Discrete Event Driven Simulation
It is possible to simulate systems in such a way that the input is derived stochastically rather than as a
trace/executable from an actual execution. For instance, one can construct a memory system simulator in
which the inputs are assumed to arrive according to a Gaussian distribution. Such models can be written in
general purpose languages such as C, or using special simulation languages such as SIMSCRIPT. Languages
such as SIMSCRIPT have several built-in primitives to allow quick simulation of most kinds of common
systems. Built-in input profiles including resource templates, process templates, queue structures, etc.,
facilitate easy simulation of common systems. An example of the use of event driven simulators using
SIMSCRIPT may be seen in the performance evaluation of multiple-bus multiprocessor systems in Kurian
et. al [26,27].

Program Profilers
Software profiling tools is a class of tools that is similar to simulators and performance measurement
tools. These tools are used to generate traces, to obtain instruction mix, and a variety of instruction
statistics. They can be thought of as software monitoring on a simulator. They input an executable and
decode and analyze each instruction in the executable. These program profilers can be used as the front
end of simulators. A popular program profiling tool is Shade for the UltraSparc [15]. 

Shade
Shade is a fast instruction-set simulator for execution profiling. It is a simulation and tracing tool that
provides features of simulators and tracers in one tool. Shade analyzes the original program instructions
and cross-compiles them to sequences of instructions that simulate or trace the original code. Static
cross-compilation can produce fast code, but purely static translators cannot simulate and trace all details
of dynamically linked code. One can develop a variety of analyzers to process the information generated
by Shade and create the performance metrics of interest. For instance, one can use shade to generate
address traces to feed into a cache analyzer to compute hit-rates and miss rates of cache configurations.
The Shade analyzer Cachesim5 does exactly this. 

Jaba
Jaba [46] is a Java Bytecode Analyzer developed at the University of Texas for tracing Java programs.
Although Java programs can be traced using shade to obtain profiles of native execution, Jaba can yield
profiles at the bytecode level. It uses JVM specification 1.1. It allows the user to gather information about
the dynamic execution of a Java application at the Java bytecode level. It provides information on
bytecodes executed, load operations, branches executed, branch outcomes, etc. Use of this tool can be
found in [47].

TABLE 8.5 Examples of Complete System Simulators

Simulator Information Site Instruction Set Operating System

SimOS Stanford University
http://simos.stanford.edu/ 

MIPS SGI IRIX

SIMICS Virtutech
http://www.simics.com
http://www.virtutech.com

PC, SPARC, and Alpha Solaris 7 and 8, Red Hat Linux 6.2 (both x86, 
SPARC V9, and Alpha versions), Tru64 
(Digital Unix 4.0F), and Windows NT 4.0

Bochs http://bochs.sourceforge.net x86 Windows 95, Windows NT, Linux, FreeBSD
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A variety of profiling tools exist for different platforms. In addition to describing the working of Shade,
Cmelik et. al [15] also compares Shade to several other profiling tools for other platforms. A popular
one for the x86 platform is Etch [51]. Conte and Gimarc [52] is a good source of information to those
interested in creating profiling tools. 

Analytical Modeling

Analytical performance models, while not popular for microprocessors, are suitable for evaluation of large
computer systems. In large systems, where details cannot be modeled accurately for cycle accurate simu-
lation, analytical modeling is an appropriate way to obtain approximate performance metrics. Computer
systems can generally be considered as a set of hardware and software resources and a set of tasks or jobs
competing for using the resources. Multicomputer systems and multiprogrammed systems are examples. 

Analytical models rely on probabilistic methods, queuing theory, Markov models, or Petri nets to create
a model of the computer system. A large body of literature on analytical models of computer exists from the
1970s and early 1980s. Heidelberger and Lavenberg [28] published an article summarizing research on
computer performance evaluation models. This article contains 205 references, which cover all important
work on performance evaluation until 1984. Readers interested in analytical modeling should read this article. 

Analytical models are cost-effective because they are based on efficient solutions to mathematical
equations; however, in order to be able to have tractable solutions, often, simplifying assumptions are
made regarding the structure of the model. As a result, analytical models do not capture all the detail
typically built into simulation models. It is generally thought that carefully constructed analytical models
can provide estimates of average job throughputs and device utilizations to within 10% accuracy and
average response times within 30% accuracy. This level of accuracy, while insufficient for microarchitec-
tural enhancement studies, is sufficient for capacity planning in multicomputer systems, I/O subsystem
performance evaluation in large server farms, and in early design evaluations of multiprocessor systems.

Only a small amount of work has been done on analytical modeling of microprocessors. The level of
accuracy needed in trade off analysis for microprocessor structures is more than what typical analytical models
can provide; however, some effort into this arena came from Noonburg and Shen [29] and Sorin et al. [30].
Those interested in modeling superscalar processors using analytical models should read Noonburg et al.’s
work [29] and Sorin et al.’s work [30]. Noonburg et al. used a Markov model to model a pipelined processor.
Sorin et al. used probabilistic techniques to processor a multiprocessor composed of superscalar processors.
Queuing theory is also applicable to superscalar processor modeling, as modern superscalar processors contain
instruction queues in which instructions wait to be issued to one among a group of functional units. 

Workloads and Benchmarks

Benchmarks used for performance evaluation of computers should be representative of applications that
are run on actual systems. Contemporary computer applications include a variety of applications, and
different benchmarks are appropriate for systems targeted for different purposes. Table 8.6 lists several
popular benchmarks for different classes of workloads. 

CPU Benchmarks

SPEC CPU2000 is the industry-standardized CPU-intensive benchmark suite. The System Performance
Evaluation Cooperative (SPEC) was founded in 1988 by a small number of workstation vendors who
realized that the marketplace was in desperate need of realistic, standardized performance tests. The basic
SPEC methodology is to provide the benchmarker with a standardized suite of source code based upon
existing applications that has already been ported to a wide variety of platforms by its membership. The
benchmarker then takes this source code, compiles it for the system in question. The use of already accepted
and ported source code greatly reduces the problem of making apples-to-oranges comparisons. SPEC
designed CPU2000 to provide a comparative measure of compute intensive performance across the widest
practical range of hardware. The implementation resulted in source code benchmarks developed from real
user applications. These benchmarks measure the performance of the processor, memory, and compiler
on the tested system. The suite contains 14 floating point programs written in C/Fortran and 11 integer
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programs (10 written in C and 1 in C++). The SPEC CPU2000 benchmarks replace the SPEC89, SPEC92,
and SPEC95 benchmarks.

The Java Grande Forum Benchmark suite consists of three groups of benchmarks—microbenchmarks
that test individual low-level operations (e.g., arithmetic, cast, create), Kernel benchmarks which are the
heart of the algorithms of commonly used applications (e.g., heapsort, encryption/decryption, FFT, Sparse
matrix multiplication, etc.), and applications (e.g., Raytracer, Monte Carlo simulation, Euler equation
solution, molecular dynamics, etc.) [48]. These are compute intensive benchmarks available in Java.

SciMark is a composite Java benchmark measuring the performance of numerical codes occurring in
scientific and engineering applications. It consists of five computational kernels: FFT, Gauss-Seidel
relaxation, Sparse matrix-multiply, Monte Carlo integration, and dense LU factorization. These kernels
are chosen to provide an indication of how well the underlying Java Virtual Machines perform on
applications utilizing these types of algorithms. The problems sizes are purposely chosen to be small in
order to isolate the effects of memory hierarchy and focus on internal JVM/JIT and CPU issues. A larger
version of the benchmark (SciMark 2.0 LARGE) addresses performance of the memory subsystem with
out-of-cache problem sizes.

ASCI, the Accelerated Strategic Computing Initiative (ASCI) of the Lawrence Livermore laboratories
contains several numeric codes suitable for evaluation of compute intensive systems. The programs are
available from [34].

TABLE 8.6 Popular Benchmarks for Different Categories of Workloads

Workload Category Example Benchmark Suite

CPU benchmarks
Uniprocessor SPEC CPU 2000 [31]

Java Grande Forum Benchmarks [32]
SciMark [33]
ASCI [34]

Parallel processor SPLASH [35]
NASPAR [36]

Multimedia MediaBench [37]
Embedded EEMBC benchmarks [38]
Digital signal processing BDTI benchmarks [39]

Java
Client side SPECjvm98 [31]

CaffeineMark [40]
Server side SPECjBB2000 [31]

VolanoMark [41]
Scientific Java Grande Forum Benchmarks [32]

SciMark [33]

Transaction processing 
OLTP (On-line transaction 

processing)
TPC-C [42]
TPC-W [42]

DSS (Decision support systems) TPC-H [42]
TPC-R [42]

Web server SPEC web99 [31]
TPC-W [42]
VolanoMark [41]

E-commerce
With commercial database
Without commercial database

TPC-W [42]
SPECjBB2000 [31]

Mail-server SPECmail2000 [31]
Network file system SPEC SFS 2.0 [31]

Personal computer SYSMARK [43]
Ziff Davis WinBench [44]
3DMarkMAX99 [45]
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SPLASH, the SPLASH suite was created by Stanford researchers [35]. The suite contains six scientific
and engineering applications, all of which are parallel applications.

NAS Parallel Benchmarks (NPB) are a set of eight programs designed to help evaluate the performance
of parallel supercomputers. The benchmarks, which are derived from computational fluid dynamics (CFD)
applications, consist of five kernels and three pseudo-applications.

Embedded and Media Benchmarks

EEMBC Benchmarks
The EDN Embedded Microprocessor Benchmark Consortium (EEMBC—pronounced “embassy”) was
formed in April 1997 to develop meaningful performance benchmarks for processors in embedded
applications. EEMBC is backed by the majority of the processor industry and has therefore established
itself as the industry-standard embedded processor benchmarking forum. EEMBC establishes benchmark
standards and provides certified benchmarking results through the EEMBC Certification Labs (ECL) in
Texas and California. The EEMBC’s benchmarks comprise a suite of benchmarks designed to reflect
real-world applications, while it also includes some synthetic benchmarks. These benchmarks target the
automotive/industrial, consumer, networking, office automation, and telecommunications markets.
More specifically, these benchmarks target specific applications that include engine control, digital cam-
eras, printers, cellular phones, modems, and similar devices with embedded microprocessors. The
EEMBC consortium dissected these applications and derived 37 individual algorithms that constitutes
the EEMBC’s Version 1.0 suite of benchmarks.

BDTI Benchmarks
Berkeley Design Technology, Inc. (BDTI) is a technical services company that has focused exclusively on
digital signal processing (DSP) since 1991. BDTI provides the industry standard BDTI Benchmarks™, a
proprietary suite of DSP benchmarks. BDTI also develops custom benchmarks to determine performance
on specific applications The benchmarks contain DSP routines such as FIR filter, IIR filter, FFT, dot-
product, and Viterbi decoder.

MediaBench
The MediaBench benchmark suite consists of several applications belonging to the image processing,
communications and DSP applications. Examples of applications that are included are JPEG, MPEG,
GSM, G.721 Voice compression, Ghostscript, ADPCM, etc. JPEG is the compression program for images,
MPEG involves encoding/decoding for video transmission, Ghostscript is an interpreter for the Postscript
language, and ADPCM is adaptive differential pulse code modulation. The MediaBench is an academic
effort to assemble several media processing related benchmarks. An example of the use of these bench-
marks may be found in [49].

Java Benchmarks

SPECjvm98, the SPECjvm98 suite consists of a set of programs intended to evaluate performance for
the combined hardware (CPU, cache, memory, and other platform-specific performance) and software
aspects (efficiency of JVM, the JIT compiler, and OS implementations) of the JVM client platform [31].
The SPECjvm98 uses common computing features such as integer and floating point operations, library
calls and I/O, but does not include AWT (window), networking, and graphics. Each benchmark can be
run with three different input sizes referred to as S1, S10, and S100. The 7 programs are compression/
decompression (compress), expert system (jess), database (db), Java compiler (javac), mpeg3 decoder
(mpegaudio), raytracer (mtrt), and a parser (jack).

SPECjbb2000 (Java Business Benchmark) is SPEC’s first benchmark for evaluating the performance of
server-side Java. The benchmark emulates an electronic commerce workload in a 3-tier system. The
benchmark contains business logic and object manipulation, primarily representing the activities of the
middle tier in an actual business server. It models a wholesale company with warehouses serving a number
of districts. Customers initiate a set of operations such as placing new orders and checking the status of
existing orders. It is written in Java, adapting a portable business oriented benchmark called pBOB written
by IBM. Although it is a benchmark that emulates business transactions, it is very different from the
© 2002 by CRC Press LLC



TPC benchmarks. There are no actual clients, but they are replaced by driver threads. Similarly, there is
no actual database access. Data is stored as binary trees of objects.

CaffeineMark 2.5 is the latest in the series of CaffeineMark benchmarks. The benchmark suite analyses
Java system performance in eleven different areas, nine of which can be run directly over the internet. It
is almost the industry standard Java benchmark. The CaffeineMark can be used for comparing applet-
viewers, interpreters and JIT compilers from different vendors. The CaffeineMark benchmarks can also
be used as a measure of Java applet/application performance across platforms. 

VolanoMark is a pure Java server benchmark with long-lasting network connections and high thread
counts. It can be divided into two parts: server and client, although they are provided in one package.
It is based on a commercial chat server application, the VolanoChat, which is used in several countries
worldwide. The server accepts connections from the chat client. The chat client simulates many chat
rooms and many users in each chat room. The client continuously sends messages to the server and waits
for the server to broadcast the messages to the users in the same chat room. VolanoMark creates two
threads for each client connection. VolanoMark can be used to test both speed and scalability of a system.
In speed test, it is run in an iterative fashion on a single machine. In scalability test, the server and client
are run on separate machines with high-speed network connections. 

SciMark, see subsection “CPU Benchmarks.”
Java Grande Forum Benchmarks, see subsection “CPU Benchmarks.”

Transaction Processing Benchmarks (TPC)

The TPC is a nonprofit corporation founded in 1988 to define transaction processing and database
benchmarks and to disseminate objective, verifiable TPC performance data to the industry. The term
transaction is often applied to a wide variety of business and computer functions. Looked at it as a
computer function, a transaction could refer to a set of operations including disk read/writes, operating
system calls, or some form of data transfer from one subsystem to another. TPC regards a transaction
as it is commonly understood in the business world: a commercial exchange of goods, services, or money.
A typical transaction, as defined by the TPC, would include the updating to a database system for such
things as inventory control (goods), airline reservations (services), or banking (money). In these envi-
ronments, a number of customers or service representatives input and manage their transactions via a
terminal or desktop computer connected to a database. Typically, the TPC produces benchmarks that
measure transaction processing (TP) and database (DB) performance in terms of how many transactions
a given system and database can perform per unit of time, e.g., transactions per second or transactions
per minute. The TPC benchmarks can be classified into two categories, online transaction processing
(OLTP) and decision support systems (DSS). OLTP systems are used in day-to-day business operations
(airline reservations, banks), and are characterized by large number of clients who continually access and
update small portions of the database through short running transactions. Decision support systems are
primarily used for business analysis purposes, to understand business trends, and for guiding future
business directions. Information from the OLTP side of the business is periodically fed into the DSS
database and analyzed. DSS workloads are characterized by long running queries that are primarily read-
only and may span a large fraction of the database. Four benchmarks are active: TPC-C, TPC-W, TPC-R,
and TPC-H. These benchmarks can be run with different data sizes, or scale factors. In the smallest case
(or scale factor = 1), the data size is approximately 1 GB. The earlier TPC benchmarks, namely TPC-A,
TPC-B, and TPC-D have become obsolete.

TPC-C
TPC-C is an OLTP benchmark. It simulates a complete computing environment where a population of
users executes transactions against a database. The benchmark is centered around the principal activities
(transactions) of a business similar to that of a worldwide wholesale supplier. The transactions include
entering and delivering orders, recording payments, checking the status of orders, and monitoring the level
of stock at the warehouses. Although the benchmark portrays the activity of a wholesale supplier, TPC-C is
not limited to the activity of any particular business segment, but rather, represents any industry that must
manage, sell, or distribute a product or service. TPC-C involves a mix of five concurrent transactions of
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different types and complexity either executed on-line or queued for deferred execution. There are multiple
on-line terminal sessions. The benchmark can be configured to use any commercial database system such
as Oracle, DB2 (IBM), or Informix. Significant disk input and output are involved. The databases consist
of many tables with a wide variety of sizes, attributes, and relationships. The queries result in contention
on data accesses and updates. TPC-C performance is measured in new-order transactions per minute. The
primary metrics are the transaction rate (tpmC) and price per transaction ($/tpmC).

TPC-H
The TPC Benchmark™ H (TPC-H) is a decision support system (DSS) benchmark. It consists of a suite
of business oriented ad-hoc queries and concurrent data modifications. The queries and the data pop-
ulating the database have been chosen to have broad industry-wide relevance. This benchmark is modeled
after decision support systems that examine large volumes of data, execute queries with a high degree of
complexity, and give answers to critical business questions. The benchmark contains 22 queries. The
performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance
Metric (QphH@Size), and the TPC-H Price/Performance Metric, $/QphH@Size. One may not perform
optimizations based on apriori knowledge of queries in TPC-H.

TPC-R
The TPC Benchmark™R (TPC-R) is a decision support benchmark similar to TPC-H, but which allows
additional optimizations based on advance knowledge of the queries. It consists of a suite of business
oriented queries and concurrent data modifications. As in TPC-H, there are 22 queries. The performance
metric reported by TPC-R is called the TPC-R Composite Query-per-Hour Performance Metric
(QphR@Size), and the TPC-R Price/Performance Metric, $/QphR@Size.

TPC-W
TPC Benchmark™ W (TPC-W) is a transactional web benchmark. The workload simulates the activities
of a business oriented transactional Web server in an electronic commerce environment. It supports many
of the features of the TPC-C benchmark and has several additional features related to dynamic page
generation with database access and updates. Multiple on-line browser sessions and on-line transaction
processing are supported. Contention on data accesses and updates are modeled. The performance metric
reported by TPC-W is the number of Web interactions processed per second (WIPS). Multiple Web
interactions are used to simulate the activity of a retail store, and each interaction is subject to a response
time constraint. Different profiles can be simulated by varying the ratio of browsing and buying i.e.,
simulating customers who are primarily browsing and those who are primarily shopping.

Web Server Benchmarks

SPECweb99 is the SPEC benchmark for evaluating the performance of World Wide Web servers. It
measures a system’s ability to act as a Web server. The initial effort from SPEC in this direction was
SPECweb96, but it contained only static workloads, meaning that the requests were for simply downloading
web pages that do not involve any computation. But if one examines the use of the web, it is clear that
many downloads involve computation to generate the information the client is requesting. Such Web
pages are referred to as dynamic web pages. SPECweb99 includes dynamic Web pages. The file accesses
are made to closely match today’s real-world Web server access patterns. The pages also contain dynamic
ad rotation using cookies and table lookups.

VolanoMark, see the “Java Benchmarks” subsection.
TPC-W, see the “Transaction Processing Benchmarks” subsection.

E-commerce Benchmarks 

See SPECjbb2000 in the subsection on “Java Benchmarks” and TPC-W in the subsection on “Transaction
Processing Benchmarks.”

Mail Server Benchmarks

SPECmail2001 is a standardized mail server benchmark designed to measure a system’s ability to act as a mail
server servicing e-mail requests. The benchmark characterizes throughput and response time of a mail server
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system under test with realistic network connections, disk storage, and client workloads. The benchmark
focuses on the ISP as opposed to enterprise class of mail servers, with an overall user count in the range of
approximately 10,000 to 1,000,000 users. The goal is to enable objective comparisons of mail server products.

File Server Benchmarks

System File Server Version 2.0 (SFS 2.0) is SPEC’s benchmark for measuring NFS (network file system)
file server performance across different vendor platforms. It contains a workload that was developed
based on a survey of more than 1,000 file servers in different application environments. 

PC Benchmarks 

A variety of benchmarks are available, primarily from Ziff Davis and Bapco to benchmark the Windows-
based personal computer. Table 8.7 lists the most common PC benchmarks. Ziff Davis Winstone and
Bapco SYSMARK are benchmarks that measure overall performance while the other benchmarks are
intended to measure performance of one subsystem such as video or audio or one aspect such as power.

Techniques and tools for performance evaluation improve year by year. For instance, performance mon-
itoring counters were not available to the public until 1997. Benchmarks get updated almost every year.
Those interested in experimental performance evaluation should continuously monitor the state of the art.

TABLE 8.7 Popular Personal Computer Benchmarks

Benchmark Description
‘

Business Winstone [44] A system-level, application-based benchmark that measures a PC’s overall performance when 
running today’s top-selling Windows-based, 32-bit applications. It runs real 32-bit business 
applications through a series of scripted activities and uses the time a PC takes to complete 
those activities to produce its performance scores. The suite includes five Microsoft Office 
2000 applications (Access, Excel, FrontPage, PowerPoint, and Word), Microsoft Project 98, 
Lotus Notes R5, NicoMak WinZip, Norton AntiVirus, and Netscape Communicator.

WinBench99 [44] A subsystem-level benchmark that measures the performance of a PC’s graphics, disk, and 
video subsystems in a Windows environment. 

3DwinBench [44] Tests the bus used to carry information between the graphics adapter and the processor 
subsystem. Hardware graphics adapters, drivers, and enhancing technologies such as 
MMX/SSE are tested.

CD WinBench99 [44] Measures the performance of a PC’s CD-ROM subsystem, which includes the CD drive, 
controller, and driver, and the system processor.

Audio WinBench 99 [44] Measures the performance of a PC’s audio subsystem, which includes the sound card and 
its driver, the processor, the DirectSound and DirectSound 3D software, and the speakers. 

Battery Mark [44] Measures battery life on notebook computers. 
I-bench [44] A comprehensive, cross-platform benchmark that tests the performance and capability of 

Web clients. The benchmark provides a series of tests that measure both how well the client 
handles features and the degree to which network access speed affects performance.

Web Bench [44] Measures Web server software performance by running different Web server packages on the 
same server hardware or by running a given Web server package on different hardware 
platforms.

NetBench [44] A portable benchmark program that measures how well a file server handles file I/O requests 
from clients. NetBench reports throughput and client response time measurements. 

3Dmark MAX 99 [45] From Futuremark Corporation. Is a nice 3D benchmark that measures 3D gaming 
performance. Results are dependent on CPU, memory architecture, and the 3D accelerator 
employed.

SYSMARK [43] Measures a system’s real-world performance when running typical business applications. 
This benchmark suite comprises the retail versions of eight application programs and 
measures the speed with which the system under test executes predetermined scripts of 
user tasks typically performed when using these applications. The performance times of 
the individual applications are weighted and combined into both category-based 
performance scores as well as a single overall score. The application programs employed 
by SYSmark 32 are: Microsoft Word 7.0 and Lotus WordPro 96 for word processing, 
Microsoft Excel 7.0 (for spreadsheet), Borland Paradox 7.0 (for database), CorelDraw 6.0 
(for desktop graphics), Lotus Freelance Graphics 96 and Microsoft Powerpoint 7.0
(for desktop presentation), and Adobe Pagemaker 6.0 (for desktop publishing).
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Table 8.8 provides sources for the benchmarks described in this article. The references at the end can provide
new information on tools and benchmarks. Microprocessor vendors are inclined to show off their products
in the best light, to projecting results for benchmarks that run well on their system, developing special
optimizations within their compilers just for the sake of improving benchmark scores, and stretching the
benchmark’s behavior while staying within the “legal” limits of the benchmark guidelines. It is extremely
important to understand benchmarks, their features and metrics used for performance evaluation to really
understand the performance results.
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8.3 Trace Caching and Trace Processors

Eric Rotenberg

A superscalar processor executes multiple instructions in parallel each cycle. Because there are data depen-
dences among instructions, finding multiple independent instructions that can execute in parallel requires
examining an even larger group of instructions, called the instruction window. Figure 8.16 shows a high-level
view of a superscalar processor, including instruction buffers that make up the window and the decoupled
fetch and execution engines. The fetch engine predicts branches, fetches and renames instructions, and
dispatches them into the window. Meanwhile, each cycle, the execution engine identifies instructions in the
window whose operands are available, and issues them to parallel functional units (FUs).

Peak performance is increased by adding more parallel functional units. But adding more functional
units has ramifications for other parts of the processor. First, instruction fetch bandwidth must be
commensurate with peak execution bandwidth. Second, the window must be correspondingly larger. A
larger window enables the processor to probe deeper into the dynamic instruction stream, increasing the
chance of finding enough independent instructions each cycle to keep functional units operating at peak
efficiency.

Next-generation, high-performance processors will need to issue 8, 12, or even 16 instructions per
cycle. Unfortunately, at high issue rates, supporting mechanisms—instruction supply and the instruction
window—are difficult to scale. This chapter section deals with the instruction fetch bottleneck and inefficient
execution mechanisms, and surveys a next-generation microarchitecture, the trace processor [21,24,27,29,
31], that attacks these problems. A third problem, control and data dependence bottlenecks, is also covered;
however, because this aspect is more involved, it is left to the reader to investigate the trace processor
literature [24,25].
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Instruction Fetch Bottleneck

Taken branches in the dynamic instruction stream cause frequent disruptions in the flow of instructions
into the window. The best conventional instruction cache and next-program-counter logic incurs a single-
cycle disruption when a taken branch is encountered. At best, sustained fetch bandwidth is equal to the
average number of instructions between taken branches, which is typically from 6 to 8 instructions per
cycle for integer programs [2,19,32]. Moreover, conventional branch predictors predict at most one
branch per cycle, limiting fetch bandwidth to a single basic block per cycle.

It is possible to modify conventional instruction caches and the next-program-counter logic to remove
taken-branch disruptions, however, that approach is typically complex. Low latency is sacrificed for high
bandwidth. A trace cache [8,14,18,20] changes the way instructions are stored to optimize instruction
fetching for both high bandwidth and low latency.

Inefficient High-Bandwidth Execution Mechanisms

The scheduling mechanism in a superscalar processor converts an artificially sequential program into an
instruction-level parallel program. The scheduling mechanism is composed of register rename logic
(identifies true dependences among instructions and removes artificial dependences), the scheduling
window (resolves dependences near-optimally by issuing instructions out-of-order), and the register file
with result bypasses (moves data to and from the functional units as instructions issue and complete,
respectively). All of the circuits are monolithic and their speed does not scale well for 8 or more instructions
per cycle [13].

Trace processors [21,24,27,29,31] use a more efficient, hierarchical scheduling mechanism to optimize
for both high-bandwidth execution and a fast clock.

Control and Data Dependence Bottlenecks

Most control dependences are removed by branch prediction, but branch mispredictions incur large per-
formance penalties because all instructions after a mispredicted branch are flushed from the window, even
control- and data-independent instructions. Exploiting control independence preserves useful instructions

FIGURE 8.16 High-level view of a superscalar processor: instruction window and decoupled fetch and execute engines.
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and their results [9], which would otherwise be thrown away due to branch mispredictions, but control
independence mechanisms have numerous difficult implementation issues [22]. Moreover, a large instruc-
tion window does nothing to reduce the execution time of long data dependence chains, which ultimately
limit performance if branch mispredictions do not. Value prediction and other forms of data speculation
break data dependence chains [10], but difficult implementation issues must be resolved, such as providing
high-bandwidth value prediction and high-performance recovery mechanisms.

The hierarchical organization of trace processors can be leveraged to overcome implementation bar-
riers to data speculation and control independence. The interested reader may learn more about trace
processor control independence mechanisms and data speculation from other sources [21,24,25].

Trace Cache and Trace Predictor: Efficient High-Bandwidth
Instruction Fetching

Conventional instruction caches are unable to meet future fetch bandwidth requirements because of
taken branches in the dynamic instruction stream. A taken branch instruction and its target instruction
reside in different cache lines, or in the same cache line with unwanted instructions in between, as shown
in Fig. 8.17(a). Figure 8.17(a) shows a long dynamic sequence of instructions made up of four fetch
blocks separated by taken branches. Ideally, to keep a 16-issue machine well-supplied, the entire sequence
needs to be fetched in a single cycle. But, because the fetch blocks are noncontiguous, it takes at least
four cycles to fetch and assemble the desired sequence.

The fundamental problem is instruction caches store instructions in their static order. A trace cache
[8,14,18,20] stores instructions the way they appear in the dynamic instruction stream. Figure 8.17(b)
shows the same sequence of four fetch blocks stored contiguously in one trace cache line. The trace cache
allows multiple, otherwise noncontiguous fetch blocks to be fetched in a single cycle. A trace in this
context is a dynamic sequence of instructions with a hardware-defined length limit (e.g., 16 or 32
instructions), containing any number of embedded taken and not-taken branches.

A trace cache can be incorporated in the fetch mechanism in several ways. One possibility is to replace
the conventional instruction cache with a trace cache. More likely, both a trace cache and instruction
cache are used. In trace processors, described in the next section, the trace cache is accessed first and, if
it does not have the desired trace, the trace is quickly constructed from the back-up instruction cache.
Early trace cache fetch units [14,20] access the trace cache and instruction cache in parallel, as shown in
Fig. 8.18. If the trace exists in the trace cache, it supplies instructions and the instruction cache’s
instructions are discarded since they are subsumed by the trace. Otherwise, the instruction cache supplies
a smaller fetch block.

A trace is uniquely identified by the program counter of the first instruction in the trace (start PC)
and embedded branch outcomes (taken/not-taken bit for every branch; this assumes indirect branches
terminate a trace, since taken/not-taken is insufficient for indirect branches). The start PC and branch
outcomes are collectively called the trace identifier, or trace id. Looking up a trace in the trace cache is
similar to looking up instructions/data in conventional caches, except the trace id is used instead of an
address. A subset of the trace id forms an index into the trace cache and the remaining bits form a tag.

FIGURE 8.17 Example dynamic sequence stored in an instruction cache and trace cache.
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One or more traces and their identifying tags are accessed at that index (the number of traces depends
on the trace cache’s set-associativity). If one of the tags matches the tag of the supplied trace id, there is
a trace cache hit. Otherwise, there is a trace cache miss. New traces are constructed and written into the
trace cache either speculatively, as instructions are fetched from the instruction cache (as shown in
Fig. 8.18), or non-speculatively, as instructions retire from the processor.

A new predicted trace id is supplied to the trace cache each cycle. Conventional branch prediction,
with a throughput of only one branch prediction per cycle, is not designed to produce trace ids. Multiple-
branch predictor counterparts of single-branch predictors have been proposed but they tend to be
unwieldy [19]. A conceptually simpler approach is to not predict branches directly. Explicit trace prediction
[6] predicts trace ids directly and, in doing so, implicitly predicts any number of embedded branches in
a single cycle. The trace predictor shown in Fig. 8.18 supplies a predicted trace id—start PC and multiple
branch predictions—to both the trace cache and instruction cache.

The trace cache design space is extensive. In addition to typical parameters such as size, set-associativity,
and replacement policy, the design space includes: indexing methods (which PC bits and which, if any,
branch prediction bits are used), path associativity (ability to simultaneously store different traces with
the same start PC), partial matching (ability to use prefix of a trace if the trace id only partially matches),
trace selection (policies for beginning and ending traces), trace cache fill policy, parallel or sequential
accessing of the trace and instruction caches, and other aspects. The interested reader is referred to trace
cache literature to gain an appreciation for the trace cache design space [4,5,7,14–20,23].

A problem of trace caches is they necessarily use storage less efficiently than instruction caches. A
given static instruction appears exactly once in the instruction cache. In a trace cache, however, there
may be multiple copies of the same static instruction. Redundancy within a trace is caused by dynamic
unrolling of small loops. Redundancy among different traces is caused by partial overlap of different
paths through a region. For example, two traces may start at the same program counter but diverge at
a common branch, such that the two traces share a common prefix; the paths may reconverge before
both traces end, causing even more redundancy.

Trace cache redundancy is the price paid for simplicity and a direct approach to high-bandwidth
instruction fetching. There are other high-bandwidth fetch mechanisms that work solely out of the
conventional instruction cache [2,3,26,32]. They all use the same basic approach. First, the branch
predictor is modified to generate pointers to multiple noncontiguous fetch blocks. Second, the instruc-
tion cache is highly multiported so that pointers can access noncontiguous cache lines in parallel. Finally,
a sophisticated instruction alignment network re-orders the blocks fetched in the previous step to
construct the desired dynamic sequence of instructions. The approach is certainly high-bandwidth but
the number of stages in the fetch pipeline is increased, and additional fetch unit latency impacts perfor-
mance negatively [19]. The trace cache approach is less efficient in terms of storage. But other approaches
are inefficient in terms of repeatedly constructing dynamic traces on-the-fly from the static instruction
cache. The trace cache incurs the latency to construct a trace once and then efficiently reuses it many
times.

FIGURE 8.18 Instruction fetch unit with trace cache.
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Trace Processor: Efficient High-Bandwidth Instruction Execution

Instruction execution is inefficient in wide-issue superscalar processors because all data dependences are
handled uniformly. When an instruction issues, its data dependent instructions wakeup with uniform
latency, usually a single cycle, regardless of their location in the window. Resolving all dependences in a
single cycle optimizes parallelism, but cycle time is extended to accommodate the full length of the
window. Increasing processor cycle time penalizes the entire pipeline. A better alternative is to increase
the number of cycles to resolve data dependences, e.g., two cycles instead of one, so other pipeline stages
are unaffected. However, it still remains the case that all data dependences are slow to resolve.

Fortunately, there is a compromise between optimizing for parallelism and optimizing for cycle time
if data dependences are handled nonuniformly. A trace processor [21,24,27–29,31] hierarchically divides
the processor into smaller processing elements (PEs), as shown in Fig. 8.19. The approach preserves a
fast clock and resolves many data dependences in one clock cycle (data dependences within PEs), at the
expense of resolving some data dependences in two or more clock cycles (data dependences among PEs).
The microarchitecture shown in Fig. 8.19 is described in the remainder of this section.

Instruction Supply

The trace predictor and trace cache supply a single trace per cycle. The conventional branch predictor
and instruction cache shown in Fig. 8.19 are secondary, back-up mechanisms for constructing traces that
miss in the cache or that were mispredicted [21,23,24].

Register Renaming

Register renaming determines data dependences among all newly-fetched instructions, and between newly-
fetched instructions and other instructions already in the window. The first aspect—determining data
dependences among 16 or 32 fetched instructions—almost certainly takes more than a single clock cycle.

FIGURE 8.19 Trace processor.

 

Cache Ports

Global Result Buses

trace window 

 
  

 
 

FU FU FU FU 

 

 

ARB D$

local bypass 

Branch
Predictor 

Trace
Predictor 

Trace
Cache 

Instruction
Cache 

Global Rename Maps & Freelist trace dispatch bus

PE 0

Local
Register

File

Global
Register

File

global bypass

PE 3PE 2PE 1
© 2002 by CRC Press LLC



Each instruction compares its source registers to the destination registers of all logically preceding instruc-
tions. The second aspect—linking incoming instructions with previous and future instructions in the
window—requires an impractical number of read and write ports to the register rename map table and
high bandwidth to the register freelist.

The efficiency of register renaming and later execution stages is improved by hierarchically dividing
data flow into intra-trace and inter-trace values [31], as shown in Fig. 8.20. Local values are produced
and consumed solely within a trace and are not visible to other traces. Global values are communicated
among traces. Global input values to a trace are called live-ins and global output values of a trace are
called live-outs.

Local dependences in a trace are static because control flow is pre-determined. Thus, intra-trace
dependence checking is performed only once, when the trace is first constructed and written into the
trace cache. Furthermore, the local values that correspond to intra-trace dependences can be statically
bound to registers in a local register file, a process called pre-renaming [31]. Each PE has a small private
local register file, large enough to hold all local values produced by a trace. Local register files are private
because their values do not need to be communicated to other PEs. Pre-rename information is computed
once and stored along with the trace in the trace cache. Pre-renaming eliminates the first aspect of register
renaming from the rename stage—dependence checking among newly fetched instructions.

The second aspect of renaming—linking fetched instructions with other instructions in the window—is
still performed, but the hierarchical treatment of values makes this aspect efficient. The only linkages are
inter-trace dependences. Live-in and live-out values are dynamically renamed to what is logically a single
shared global register file. The global register file communicates values among traces.

Although the global register file, its map table, and its freelist are similar to a superscalar processor’s
monolithic register file and renaming structures, the trace processor’s register file is more efficient because
fewer values are processed. Reduced register file complexity is described below in the context of instruction
issue logic. Global renaming structures are simplified in three ways. First, fewer read and write ports lead
to the global rename map table because only live-ins/live-outs are renamed, and not local values. Second,
bandwidth to the global register freelist is reduced since only live-outs consume free registers, and not
local values. Third, to support trace misprediction recovery, the global rename map table is checkpointed
only at trace boundaries instead of at every branch, so fewer shadow maps are required.

Instruction Dispatch

Merging instructions into the window is also simplified. A single trace is routed to a single PE. A conven-
tional processor routes multiple instructions to as many, possibly noncontiguous instruction buffers.

Instruction Issue Logic, Register File, and Result Bypasses

The instruction issue mechanism is possibly the most complex aspect of current dynamically scheduled
superscalar processors [13]. Each cycle, the processor examines the instruction window for instructions
whose input values are available and are ready to issue (wakeup logic). Of the ready instructions, a number
of them are selected for issue based on resource constraints (select logic). The selected instructions read
values from the register file and are routed to functional units, where they execute and write results to
the register file. Each result must also be quickly bypassed to functional units to be consumed by pipelined,
data dependent instructions (result bypasses). The wakeup logic, select logic, register file, and result
bypasses all grow in complexity as the size of the instruction window and the number of parallel execution
units are increased [13].

FIGURE 8.20 Data flow hierarchy of traces.
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The large trace processor instruction window is distributed among multiple smaller processing elements
(PEs), as shown in Fig. 8.19. Each PE resembles a small superscalar processor and at any given time is
allocated a single trace to process. A PE has (1) enough instruction issue buffers to hold an entire trace,
(2) multiple dedicated functional units, and (3) a dedicated local register file for storing and communi-
cating local values.

Logically, a single global register file stores and communicates global values. Each PE contains a copy
of the global register file for private read ports. Write ports to the global register file are shared, however.
All PEs are connected to shared global result buses, which write values simultaneously into all copies of
the global register file.

A hierarchical instruction window simplifies the wakeup logic, select logic, register file, and result
bypasses. Each aspect is described below.

Waiting instructions monitor fewer “tags” to determine when to wakeup. Tags are broadcast by producer
instructions soon after issuing, to wakeup dependent instructions. Although each PE monitors both its
own local tags and all global tags, overall, fewer tags are monitored than in an equivalent, nonhierarchical
processor. The number of local tags is small, e.g., four tags for a four-issue PE. Even the number of global
tags is small due to reduced global register traffic, e.g., typically two to four tags are sufficient [24]. Also,
tags are broadcast on shorter wires—the length of a PE trace window instead of the length of the entire
window (of course, global tags and values first incur one cycle of delay on the global result buses, as
discussed below). The combination of fewer tags and a smaller wakeup window greatly reduces wakeup
circuit delay, allowing a faster clock.

Instruction select logic is fully distributed. Each PE independently selects ready instructions from its
trace and routes them to dedicated functional units. Here, fewer instruction candidates and fewer
functional units reduce select circuit delay, allowing a faster clock.

The local register file is quite fast because it contains few registers (e.g., typically eight registers [24])
and has relatively few read and write ports, comparable to today’s four-issue superscalar processors. The
complexity of the global register file is reduced because much of the register traffic is off-loaded to the
local register files. For an equivalent instruction window, the global register file requires far fewer registers
and read/write ports than the monolithic file of nonhierarchical processors.

Finally, result bypasses, which are primarily long interconnect, are receiving much attention lately due
to technology trends. In deep sub-micron technologies, interconnect delay improves less with technology
scaling than logic delay does [1,13]. This trend highlights the importance of purposeful, nonuniform
bypass latencies. Local values are bypassed quickly among functional units in a PE. Global values incur
an extra cycle (or more) on the global result buses, but at least not all values are broadcast on global
interconnect. In a conventional superscalar processor, all bypasses are effectively global.

Summary via Analogy

Prior to superscalar processors, comparatively simple out-of-order processors fetched, dispatched, issued,
and executed one instruction per cycle, as shown in the left-hand side of Fig. 8.21. The branch predictor
predicts up to one branch each cycle and a single PC fetches one instruction from a simple instruction
cache. The renaming mechanism, e.g., Tomasulo’s algorithm [30], performs simple dependence checking
by looking up a couple of source tags in the register file. And at most one instruction is steered to the
reservation station of a functional unit each cycle. After completing, instructions arbitrate for a common
data bus, and the winner writes its result and tag onto the bus and into the register file.

The superscalar paradigm “widens” each of these pipeline stages and increases complexity with each
additional instruction per cycle. This is clearly manageable up to a point: high-speed, dynamically sched-
uled 4-issue superscalar processors currently set the performance standard in microprocessors. But there
is a crossover point beyond which it becomes more efficient to manage instructions in groups, that is,
hierarchically.

A trace processor manages instructions hierarchically. In the right-hand side of Fig. 8.21, the top-most
level of the trace processor hierarchy is shown (the trace-level). The picture is virtually identical to the
© 2002 by CRC Press LLC



single-issue, out-of-order processor on the left-hand side. The unit of operation has changed from one
instruction to one trace, but the pipeline bandwidth remains 1 unit per cycle.

In essence, grouping instructions within traces is a reprieve. Complexity (cycle time) does not neces-
sarily increase with each additional instruction added to a trace. Additional branches are absorbed by
the trace cache and trace predictor, and additional source and destination operands are absorbed by
handling data flow hierarchically. Also, complexity (cycle time) does not necessarily increase with one
or two additional PEs. Hardware parallelism is allowed to expand incrementally—up to a point, at which
time perhaps another level of hierarchy, and another reprieve, is needed.

Perhaps the most important thing to remember about trace processors is that the whole processor
contributes to parallelism, but cycle time is influenced more by an individual processing element than
the whole processor.
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9.1 High-Speed Computer Arithmetic

Earl E. Swartzlander, Jr.

Introduction

The speed of a computer is determined to a first order by the speed of the arithmetic unit and the speed
of the memory. Although the speed of both units depends directly on the implementation technology,
arithmetic unit speed also depends strongly on the logic design. Even for an integer adder, speed can
easily vary by an order of magnitude while the complexity varies by less than 50%.

This chapter section begins with a brief discussion of binary fixed point number systems in the subsection
on “Fixed Point Number Systems.” The subsection on “Fixed Point Arithmetic Algorithms” provides
examples of fixed point implementations of the four basic arithmetic operations (i.e., add, subtract,
multiply, and divide). Finally, the “Floating Point Arithmetic” subsection describes algorithms for floating
point arithmetic. 

Regarding notation, capital letters represent digital numbers (i.e., n-bit words), while subscripted lower
case letters represent bits of the corresponding word. The subscripts range from 0 to n − 1  to indicate the bit
position within the word (x0 is the least significant bit of X, xn−1 is the most significant bit of X, etc.). The
logic designs presented in this chapter are based on positive logic with AND, OR, and INVERT operations.
Depending on the technology used for implementation, different logical operations (such as NAND and
NOR) or direct transistor realizations may be used, but the basic concepts do not change significantly.

Fixed-Point Number Systems

Most arithmetic is performed with fixed-point numbers, which have constant scaling (i.e., the position
of the binary point is fixed). The numbers can be interpreted as fractions, integers, or mixed numbers,
depending on the application. Pairs of fixed-point numbers are used to create floating-point numbers,
as discussed in “Floating-Point Arithmetic” subsection.

At the present time, fixed-point binary numbers are generally represented using the two’s complement
number system. This choice has prevailed over the sign magnitude and one’s complement number systems,
because the frequently performed operations of addition and subtraction are easiest to perform on two’s
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University of Texas at Austin

Gensuke Goto
Yamagata University
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complement numbers. Sign magnitude numbers are more efficient for multiplication, but the lower fre-
quency of multiplication and the development of the efficient modified Booth’s two’s complement mul-
tiplication algorithm have resulted in the nearly universal selection of the two’s complement number
system for most applications. The algorithms presented in this chapter section assume the use of two’s
complement numbers.

Fixed-point number systems represent numbers, say A, by n bits: a sign bit, and n − 1  data bits. By
convention the most significant bit, an−1, is the sign bit, which is a ONE for negative numbers and a
ZERO for positive numbers. The n − 1  data bits are an−2, an−3,…, a1, a0. In the section that follows fixed
point fractions will be described for each of the three systems.

In the two’s complement fractional number system, the value of a number is the sum of n − 1  positive
binary fractional bits and a sign bit which has a weight of −1:

(9.1)

Examples of 4-bit two’s complement fractions are shown in Table 9.1. A couple of significant points are
shown in the table: first, there is only a single representation of zero (specifically 0, which is represented
by 0000) and second, the system is not symmetric (there is a negative number, specifically −1, which is
represented by 1000, for which there is no positive equivalent). The latter property means that negating
a valid number can produce a nonrepresentable result.

Two’s complement numbers are negated by complementing all bits and adding a ONE to the least
significant bit position. For example, to form –3/8:

Truncation of two’s complement numbers is shown in Fig. 9.1. This figure shows the relationship
between an infinitely precise number A and its representation with a two’s complement fraction T(A).

TABLE 9.1 4-Bit Fractional Two’s Complement 
Numbers

Decimal Fraction Binary Representation

+7/8 0111
+3/4 0110
+5/8 0101
+1/2 0100
+3/8 0011
+1/4 0010
+1/8 0001
+0 0000
−1/8 1111
−1/4 1110
−3/8 1101
−1/2 1100
−5/8 1011
−3/4 1010
−7/8 1001
−1 1000

+3/8 = 0011
invert all bits = 1100
add 1 0001

1101 = −3/8
Check: invert all bits = 0010

add 1 0001
0011 = +3/8

A −an−1 ai2
i−n+1

i=0

n−2

∑+=
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As can be seen from the figure, truncation never increases the value of the number. The truncated numbers
have values that are either unchanged or shifted toward negative infinity. If a large number of numbers
are truncated, on the average there is a downward shift of one-half the value of a least significant bit
(LSB). Summing many truncated numbers (which may occur in scientific, matrix, and signal processing
applications) can cause a significant accumulated error.

Fixed-Point Arithmetic Algorithms

This subsection presents a reasonable assortment of typical fixed point algorithms for addition, subtrac-
tion, multiplication, and division. 

Fixed-Point Addition

Addition is performed by summing the corresponding bits of the two n-bit numbers, including the sign
bit. Subtraction is performed by summing the corresponding bits of the minuend and the two’s com-
plement of the subtrahend. Overflow is detected in a two’s complement adder by comparing the carry
signals into and out of the most significant adder stage (i.e., the stage which computes the sign bit). If
the carries differ, the arithmetic has overflowed and the result is invalid.

Full Adder
The full adder is the fundamental building block of most arithmetic circuits. Its operation is defined by
the truth table shown in Table 9.2. The sum and carry outputs are described by the following equations:

(9.2)

(9.3)

FIGURE 9.1 Relationship between an infinitely precise number, A, and its representation by a truncated four-bit
two’s complement fraction T(A).
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where ak, bk, and ck are the inputs to the kth full adder stage, and sk and ck+1 are the sum and carry outputs,
respectively. 

In evaluating the relative complexity of implementations it is often convenient to assume a nine gate
realization of the full adder, as shown in Fig. 9.2. For this implementation, the delay from either ak or bk to
sk is six gate delays and the delay from ck to ck+1 is two gate delays. Some technologies, such as CMOS, form
inverting gates (e.g., NAND and NOR gates) more efficiently than the non-inverting gates that are assumed
in this chapter. Circuits with equivalent speed and complexity can be constructed with inverting gates.

Ripple Carry Adder
A ripple carry adder for n-bit numbers is implemented by concatenating n full adders, as shown in Fig. 9.3.
At the kth bit position, bits ak and bk of operands A and B and the carry signal from the preceding adder
stage, ck, are used to generate the kth bit of the sum, sk, and the carry, ck+1, to the next adder stage. This
is called a ripple carry adder, since the carry signals “ripple” from the least significant bit position to the
most significant. If the ripple carry adder is implemented by concatenating n of the nine gate full adders,
which were shown in Fig. 9.2, an n-bit ripple carry adder requires 2n + 4 gate delays to produce the most
significant sum bit and 2n + 3 gate delays to produce the carry output. A total of 9n logic gates are
required to implement the n-bit ripple carry adder. In comparing the delay and complexity of adders,

TABLE 9.2 Full Adder Truth Table

Inputs Outputs

ak bk ck ck+1 sk

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

FIGURE 9.2 Nine gate full adder.

FIGURE 9.3 Ripple carry adder.
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the delay from data input to most significant sum output denoted by DELAY and the gate count denoted
by GATES will be used. These DELAY and GATES are subscripted by RCA to indicate ripple carry adder.
Although these simple metrics are suitable for first order comparisons, more accurate comparisons require
more exact modeling since the implementations may be effected with transistor networks (as opposed
to gates), which will have different delay and complexity characteristics.

DELAYRCA = 2n + 4 (9.4)

GATESRCA = 9n (9.5)

Carry Lookahead Adder
Another popular adder approach is the carry lookahead adder [1,2]. Here specialized logic computes the
carries in parallel. The carry lookahead adder uses modified full adders (modified in the sense that a
carry output is not formed) for each bit position and lookahead modules, which have carry outputs and
block carry generate and propagate outputs that indicate that a carry is generated within the module, or
that an incoming carry would propagate across the module. This is seen by rewriting Eq. (9.3) with
gk = akbk and pk = ak + bk.

ck+1 = gk + pkck (9.6)

This helps to explain the concept of carry generation and propagation: At a given stage a carry is
generated if gk is true (i.e., both ak and bk are ONEs), and a stage propagates an input carry to its output
if pk is true (i.e., either ak or bk is a ONE). The nine gate full adder shown in Fig. 9.2 has AND and OR
gates that produce gk and pk with no additional complexity. In fact, because the carry out is produced in
the lookahead logic, the OR gate that produces the ck+1 can be eliminated. The result is the eight gate
modified full adder shown in Fig. 9.4. 

Extending Eq. (9.6) to a second stage:

ck+2 =  gk+1 +  pk+1ck+1 

= gk+1 + pk+1

= gk+1 + pk+1gk + pk+1pkck (9.7)

Equation(9.7) results from evaluating Eq. (9.6) for the (k + 1)th stage and substituting ck+1 from Eq. (9.6).
Carry ck+2 exits from stage k + 1 if: (a) a carry is generated there or (b) a carry is generated in stage k
and propagates across stage k + 1 or (c) a carry enters stage k and propagates across both stages k and

FIGURE 9.4 Eight gate modified full adder.
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k + 1, etc. Extending to a third stage:

ck+3 = gk+2 + pk+2ck+2 

= gk+2 + pk+2

= gk+2 + pk+2 gk+1 + pk+2 pk+1 gk + pk+2 pk+1pkck (9.8)

Although it would be possible to continue this process indefinitely, each additional stage increases the
fan-in (i.e., the number of inputs) of the logic gates. Four inputs (as required to implement Eq. (9.8))
is frequently the maximum number of inputs per gate for current technologies. To continue the process,
block generate and block propagate signals are defined over four bit blocks (stages k to k + 3), gk:k+3 and
pk:k+3, respectively:

gk:k+3 = gk+3 + pk+3  gk+2 + pk+3 pk+2 gk+1 + pk+3 pk+2 pk+1 gk (9.9)

and 

pk:k+3 = pk+3 pk+2  pk+1 pk (9.10)

Equation (9.6) can be expressed in terms of the 4-bit block generate and propagate signals:

ck+4 = gk:k+3 + pk:k+3 ck (9.11)

Thus, the carry out from a 4-bit wide block can be computed in only four gate delays (the first to compute
pi and gi for i = k through k + 3, the second to evaluate pk:k+3, the second and third to evaluate gk:k+3, and
the third and fourth to evaluate ck+4 using Eq. (9.11)). 

An n-bit carry lookahead adder requires  lookahead blocks, where r is the width
of the block. A 4-bit lookahead block is a direct implementation of Eqs. (9.6)–(9.10), with 14 logic gates.
In general, an r-bit lookahead block requires (3r + r2) logic gates. The Manchester carry chain [3] is an
alternative switch-based technique for the implementation of the lookahead block.

Figure 9.5 shows the interconnection of 16 adders and five lookahead logic blocks to realize a 16-bit
carry lookahead adder. The sequence of events, which occur during an add operation, is as follows: (1)
apply A, B, and carry in signals, (2) each adder computes P and G, (3) first level lookahead logic computes
the 4-bit propagate and generate signals, (4) second level lookahead logic computes c4, c8, and c12, (5)
first level lookahead logic computes the individual carries, and (6) each adder computes the sum outputs.
This process may be extended to larger adders by subdividing the large adder into 16-bit blocks and
using additional levels of carry lookahead (a 64-bit adder requires three levels). 

The delay of carry lookahead adders is evaluated by recognizing that an adder with a single level of
carry lookahead (for 4-bit words) has six gate delays, and that each additional level of lookahead increases
the maximum word size by a factor of four and adds four gate delays. More generally [4, pp. 83–88], the
number of lookahead levels for an n-bit adder is  where r is the maximum number of inputs
per gate. Since an r-bit carry lookahead adder has six gate delays and there are four additional gate delays
per carry lookahead level after the first, 

DELAYCLA = 2 + 4 (9.12)

The complexity of an n-bit carry lookahead adder implemented with r-bit lookahead blocks is n
modified full adders (each of which requires eight gates) and  lookahead logic blocks
[each of which requires (3r + r2) gates]. 

GATESCLA = 8n + (3r + r2) (9.13)

gk+1 pk+1gk pk+1pkck+ +( )

n 1–( )/ r 1–( )
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2
---

logrn

logrn
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1
2
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--- n 1–
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------------
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If r = 4

GATESCLA ≈ 12 n – 4  (9.14)

The carry lookahead approach reduces the delay of adders from increasing linearly with the word size
(as is the case for ripple carry adders) to increasing in proportion to the logarithm of the word size. As with
ripple carry adders, the carry lookahead adder complexity grows linearly with the word size (for r = 4,
this occurs at a 40% faster rate than the ripple carry adders).

FIGURE 9.5 16-bit carry lookahead adder.
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Carry Skip Adder
The carry skip adder divides the words to be added into blocks (like the carry lookahead adder). The
basic structure of a 16-bit carry skip adder is shown on Fig. 9.6. Within each block, a ripple carry adder
produces the sum bits and the carry (which is used as a block generate). In addition, an AND gate is
used to form the block propagate signal. These signals are combined using Eq. (9.11) to produce the
carry signal for the next block.

For example, with k = 3, Eq. (9.11) yields c6 = g3:5 + p3:5c3. The carry out of the second ripple carry
adder is a block generate signal if it is evaluated when carries generated by the data inputs (i.e., a3:5 and
b3:5 on Fig. 9.6) are valid, but before the carry that results from the c3. Normally, these two types of carries
coincide in time, but in the carry skip adder, the c3 signal is produced by a 3-bit ripple carry adder, so
the carry output is a block generate from nine gate delays after application of A and B until it becomes
c6 at 15 gate delays after application of A and B.

In the carry skip adder, the first and last blocks are simple ripple carry adders while the n/k − 2
intermediate blocks are ripple carry adders augmented with three gates. The delay of a carry skip adder
is the sum of 2k + 3 gate delays to produce the carry in the first block, two gate delays through each of
the intermediate blocks, and 2k + 1 gate delays to produce the most significant sum bit in the last block.
To simplify the analysis, the ceiling function in the count of intermediate blocks is ignored. If the block
width is k:

DELAYSKIP = 2k + 3 + 2  + 2k + 1

= 4k + 2 (9.15)

where DELAYSKIP is the total delay of the carry skip adder with a single level of k-bit wide blocks. The
optimum block size is determined by taking the derivative of DELAYSKIP with respect to k, setting it to
zero and solving for k. The resulting optimum values for k and DELAYSKIP are 

k = (9.16)

DELAYSKIP = 4  (9.17)

Better results can be obtained by varying the block width so that the first and last blocks are smaller and
the intermediate blocks are larger, and by using multiple levels of carry skip [5,6]. 

The complexity of the carry skip adder is only slightly greater than that of a ripple carry adder because
the first and last blocks are ripple carry adders and the intermediate stages are ripple carry adders with
three gates added for carry skipping.

GATESSKIP = 9n + 3 (9.18)

FIGURE 9.6 16-bit carry skip adder.
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Carry Select Adder
The carry select adder divides the words to be added into blocks and forms two sums for each block in
parallel (one with a carry in of ZERO and the other with a carry in of ONE). As shown for a 16-bit carry
select adder on Fig. 9.7, the carry out from the previous block controls a multiplexer that selects the
appropriate sum. The carry out is computed using Eq. (9.11), since the block propagate signal is the
carry out of an adder with a carry input of ONE and the block generate signal is the carry out of an
adder with a carry input of ZERO. 

If a constant block width of k is used, there will be n/k blocks and the delay to generate the sum is
2k + 3 gate delays to form the carry out of the first block, two gate delays for each of the n/k − 2 inter-
mediate blocks, and three gate delays (for the multiplexer) in the final block. To simplify the analysis,
the ceiling function in the count of intermediate blocks is ignored. The total delay is thus

DELAYC–SEL = 2k + 2  + 2 (9.19)

where DELAYC–SEL is the total delay. The optimum block size is determined by taking the derivative of
DELAYC–SEL with respect to k, setting it to zero and solving for k. The result is 

k = (9.20)

DELAYC–SEL = 2 + 4 (9.21)

As for the carry skip adder, better results can be obtained by varying the width of the blocks. In this
case the optimum is to make the two least significant blocks are the same size and each successively more
significant block is one bit larger. For this configuration, the delay for each block’s most significant sum
bit will equal the delay to the multiplexer control signal [7, p. A-38].

The complexity of the carry select adder is 2n − k ripple carry adder stages, the intermediate carry
logic and (n/k  – 1) k-bit wide 2:1 multiplexers.

GATESC–SEL = 9(2n – k) + 2(n/k  – 2) + 3(n − k) + n/k  − 1

= 21n – 12k + 3n/k  − 5 (9.22)

This is somewhat more than twice the complexity of a ripple carry adder. 

FIGURE 9.7 16-bit carry select adder.
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Fixed-Point Subtraction

As noted in previous subsection, subtraction of two’s complement numbers is accomplished by adding
the minuend to the inverted bits of the subtrahend and adding a one at the least significant position.
Figure 9.8 shows a two’s complement subtracter which computes A − B. The inverters complement the
bits of B; formation of the two’s complement is completed by setting the carry into the least significant
adder stage to a ONE. 

Fixed-Point Multiplication

Multiplication is generally implemented either via a sequence of addition, subtraction, and shift opera-
tions or with direct logic implementations.

Sequential Booth Multiplier
The Booth algorithm [8] is widely used for two’s complement multiplication, since it is easy to implement.
Earlier two’s complement multipliers (e.g., [9]) required data dependent correction cycles if either oper-
and is negative. To multiply A B, the product, P, is initially set to ZERO. Then, the bits of the multiplier,
A, are examined in pairs of adjacent bits starting with the least significant bit (i.e., a0a−1) and assuming
a−1 = 0:

• If ai = ai−1, P = P/2

• If ai = 0 and ai−1 = 1, P = (P + B)/2

• If ai = 1 and ai−1 = 0, P = (P – B)/2

The division by 2 is not performed on the last stage (i.e., when i = n − 1). All of the divide-by-two
operations are simple arithmetic right shifts (i.e., the word is shifted right one position and the old sign
bit is repeated for the new sign bit), and overflows in the addition process are ignored. The algorithm is
illustrated in Fig. 9.9, which shows the formation of products for all combinations of ±5/8 times ±3/4
for 4-bit operands. The sequential Booth multiplier requires n cycles to form the product of a pair of
n-bit numbers, where each cycle consists of an n-bit addition and a shift, an n-bit subtraction and a shift,
or a shift without any other arithmetic operation.

Sequential Modified Booth Multiplier
The radix-4 modified Booth multiplier described by MacSorley [2] uses n/2 cycles where each cycle
examines three adjacent bits, adds or subtracts 0, B, or 2B and shifts two bits to the right. Table 9.3 shows
the operations as a function of the three bits ai+1, ai, and ai−1. The radix-4 modified Booth multiplier
takes half the number of cycles as the “standard” Booth multiplier, although the operations performed
during a cycle are slightly more complex (since it is necessary to select one of five possible addends instead
of one of three). Extensions to higher radices that examine more than three bits [10] are possible, but
generally not attractive because the addition/subtraction operations involve non-power of two multiples
(such as 3, 5, etc.) of B, which raises the complexity.

FIGURE 9.8 Two’s complement subtracter.
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Array Multipliers
An alternative approach to multiplication involves the combinational generation of all bit products and
their summation with an array of full adders. The block diagram of a 6 by 6 array multiplier is shown
in Fig. 9.10. It uses a 6 by 6 array of cells to form the bit products and five adders (at the bottom of the
array) to complete the evaluation of the product. Three types of cells are used in the square array: gate cells
(marked G in Fig. 9.10), which use a single gate to form the logic AND of the x and y inputs to the
cell; half adder cells (marked HA), which sum the second input to the cell with the logic AND of the x

TABLE 9.3 Radix-4 Modified Booth Multiplication

ai+1 ai ai −1 Operation

0 0 0 P = P/4
0 0 1 P = (P + B)/4
0 1 0 P = (P + B)/4
0 1 1 P = (P + 2 B)/4
1 0 0 P = (P – 2 B)/4
1 0 1 P = (P – B)/4
1 1 0 P = (P – B)/4
1 1 1 P = P/4

FIGURE 9.9 Example of sequential booth multiplication.

POSITIVE TIMES POSITIVE A = 5
8
  = 0.101 B = 

3
4  = 0.110

i ai ai-1 OPERATION RESULT

0 1 0 P = (P – B)/2 1.1010
1 0 1 P = (P + B)/2 0.00110
2 1 0 P = (P – B)/2 1.101110
3 0 1 P = P + B 0.011110

THUS: P = 0.011110 = 
15
32

NEGATIVE TIMES POSITIVE A = –
5
8 = 1.011 B = 3

4
  = 0.110

i ai ai-1 OPERATION RESULT

0 1 0 P = (P – B)/2 1.1010
1 1 1 P = P/2 1.11010
2 0 1 P = (P + B)/2 0.010010
3 1 0 P = P – B 1.100010

THUS: P = 1.100010 = –
15
32

POSITIVE TIMES NEGATIVE A = 
5
8  = 0.101 B = –

3
4 = 1.010

i ai ai-1 OPERATION RESULT

0 1 0 P = (P – B)/2 0.0110
1 0 1 P = (P + B)/2 1.1010
2 1 0 P = (P – B)/2 0.010010
3 0 1 P = P + B 1.100010

THUS: P = 1.100010 = –
15
32

NEGATIVE TIMES NEGATIVE A = –
5
8 = 1.011 B = –

3
4 = 1.010

i ai ai-1 OPERATION RESULT

0 1 0 P = (P – B)/2 0.0110
1 1 1 P = P/2 0.00110
2 0 1 P = (P + B)/2 1.101110
3 1 0 P = P – B 0.011110

THUS: P = 0.011110 = 
15
32
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and y inputs to the cell; and full adder cells (marked FA), which sum the second and third inputs to the
cell with the logic AND of the x and y inputs to the cell. Standard half adders and full adders are used
in the 5 cell strip at the bottom. An n by n array multiplier requires 2n − 1 gate cells, n half adders, and
n2 − 2n full adders. Of the half and full adder cells (n − 1)2 have an extra AND gate. 

The complexity of the array multiplier is n2 AND gates, n half adders, and n2 − 2n full adders.  If a half
adder comprises four gates and a full adder comprises nine gates, the total complexity of an n-bit by
n-bit array multiplier is

GATESARRAY MPY = 10n2 – 14n (9.23)

The delay of the array multiplier is evaluated by following the pathways from the inputs to the outputs.
The longest path starts at the upper left corner, progresses to the lower right corner, and then across the
bottom to the lower left corner. If it is assumed that the delay from any adder input (for either half or
full adders) to any adder output is k gate delays then the total delay of an n-bit by n-bit array multiplier is:

DELAYARRAY MPY = k(2n − 2) + 1 (9.24)

Array multipliers are easily laid out in a cellular fashion, making them suitable for VLSI implemen-
tation, where minimizing the design effort may be more important than maximizing the speed.

Modification of the array multiplier to multiply two’s complement numbers requires inverting the bits
of the multiplier and multiplicand in the most significant row and column while forming the bit product
matrix and adding a few correction terms [11,12]. 

Wallace Tree/Dadda Fast Multiplier
A method for fast multiplication was developed by Wallace [13] and refined by Dadda [14,15]. With this
method, a three-step process is used to multiply two numbers: (1) the bit products are formed, (2) the
bit product matrix is “reduced” to a two row matrix where the sum of the rows equals the sum of the
bit products, and (3) the two numbers are summed with a fast adder to produce the product. Although
this may seem to be a complex process, it yields multipliers with delay proportional to the logarithm of

FIGURE 9.10 Unsigned 6 by 6 array multiplier.

x5 x4 x3 x2 x1 x0

p0

p1

p2

p3

p4

p5

p6p7p8p9p10p11

y5

y4

y3

y2

y1

y0

cs

G G G G G G

G HA
cs

HA
cs

HA
cs

HA
c

HA
s

cs
G FA

cs
FA

cs
FA

cs
FA

c
FA

s

cs
G FA

cs
FA

cs
FA

cs
FA

c
FA

s

cs
G FA

cs
FA

cs
FA

cs
FA

c
FA

s

cs
G FA

cs
FA

cs
FA

cs
FA

c
FA

s

FA FA FA FA cHA
sc sc sc sc s
© 2002 by CRC Press LLC



the operand word size, which is “faster” than the Booth multiplier, the modified Booth multiplier, or
array multipliers, which all have delays proportional to the word size.

The second step in the fast multiplication process is shown for a 6 by 6 Dadda multiplier on Fig. 9.11.
An input 6 by 6 matrix of dots (each dot represents a bit product) is shown as matrix 0. Columns having
more than four dots (or that will grow to more than four dots due to carries) are reduced by the use of
half adders (each half adder takes in two dots and outputs one in the same column and one in the next
more significant column) and full adders (each full adder takes in three dots from a column and outputs
one in the same column and one in the next more significant column) so that no column in matrix 1
will have more than four dots. Half adders are shown by a “crossed” line in the succeeding matrix and
full adders are shown by a line in the succeeding matrix. In each case the right most dot of the pair that
are connected by a line is in the column from which the inputs were taken in the preceding matrix for
the adder. In the succeeding steps reduction to matrix 2, with no more than three dots per column, and
finally matrix 3, with no more than two dots per column, is performed. 

The height of the matrices is determined by working back from the final (two row) matrix and limiting
the height of each matrix to the largest integer that is no more than 1.5 times the height of its successor.
Each matrix is produced from its predecessor in one adder delay. Since the number of matrices is
logarithmically related to the number of rows in matrix 0, which is equal to the number of bits in the
words to be multiplied, the delay of the matrix reduction process is proportional to log n. Since the adder
that reduces the final two row matrix can be implemented as a carry lookahead adder (which also has
logarithmic delay), the total delay for this multiplier is proportional to the logarithm of the word size.

Fixed Point Division

Division is traditionally implemented as a recurrence, which uses a sequence of shift, subtract, and compare
operations, in contrast to the shift and add approach employed for multiplication. The comparison oper-
ation is significant. It results in a serial process, which is not amenable to parallel implementation. 

FIGURE 9.11 Unsigned 6 by 6 Dadda multiplier.
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Digit Recurrent Division
The most common division algorithms are digit recurrent algorithms [16,17] based on selecting digits
of the quotient Q (where Q = N/D ) to satisfy the following equation:

Pk+1 = rPk – qn−k−1 D for k = 1, 2,…, n − 1 (9.25)

where Pk is the partial remainder after the selection of the kth quotient digit, P0 = N (subject to the
constraint |P0| < |D|), r is the radix, qn−k−1 is the kth quotient digit to the right of the binary point, and
D is the divisor. In this section it is assumed that both N and D are positive, see [18] for details on
handling the general case. 

Restoring Divider
The restoring division algorithm is similar to paper and pencil division. The basic scheme is shown in
Fig. 9.12. Block 1 initializes the algorithm. In step 2, a trial dividend, TPk+1, is computed based on the
assumption that the quotient bit is a 1. In the third step, TPk+1 is compared to 0. If TPk+1 is negative,
step 4 restores the trial dividend to what it would be if the quotient digit had been assumed to be 0. This
restoring operation gives the algorithm its name. Step 5 is performed if TPk+1 is zero or positive. Finally,
step 6 tests whether all bits of the quotient have been formed and goes to step 2 if more need to be
computed. Each pass through steps 2–6 forms one bit of the quotient. As shown in Fig. 9.12, each pass
through steps 2–6 requires an addition in step 2, a comparison in step 3, and may require an addition
in step 4. If half of the quotient bits are 0 and half are 1, computing an n-bit quotient will involve 3n/2
additions and n comparisons. This is the performing version of the restoring division algorithm, which
means that the restoring operation is actually performed in step 4. 

FIGURE 9.12 Restoring division.
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Figure 9.13 shows an example of the restoring division algorithm where the first 4-bits of quotient of
5/8 divided by 7/8 is evaluated.

The alternative non-performing version of the algorithm places 2Pk in a temporary register in step 2
and uses that value for Pk+1 in step 4. The nonperforming version computes an n-bit quotient in n additions
and n comparisons.

Nonrestoring Divider
In nonrestoring division, the quotient digits are constrained to be either ±1 (i.e., qk is selected from
{1, }). The digit selection and resulting partial remainder are given for the kth iteration by the following
relations:

If Pk ≥ 0, qn−k−1 = 1 and Pk+1 = rPk − D (9.26)

If Pk < 0, qn−k−1 = and Pk+1 = rPk + D (9.27)

The basic scheme is shown in Fig. 9.14. Block 1 initializes the algorithm. In step 3, Pk is compared to 0.
If Pk is negative, in step 4 the quotient digit is set to  and Pk+1 = 2Pk + D. If Pk is positive, in step 5 the
quotient digit is set to 1 and Pk+1 = 2Pk − D. Finally, step 6 tests whether all bits of the quotient have
been formed and goes to step 2 if more need to be computed. Each pass through steps 2–6 forms one
bit of the quotient. As shown in Fig. 9.14, each pass through steps 2–6 requires a comparison in step 3
and an addition in either step 4 or step 5. Thus, computing an n-bit quotient will involve n additions
and n comparisons. 

Figure 9.15 shows an example of the restoring division algorithm where the first four bits of quotient
of 5/8 divided by 7/8 is evaluated.

The signed digit number (comprises ±1 digits) can be converted into a conventional binary number
by subtracting, NEG, the number formed by the  (with ZEROs where there are +ONEs and ONEs where
there are s in Q) from, POS, the number formed by the +ONEs (with ZEROs where there are s in Q).
For the example of Fig. 9.15:

Q = 0 . 1 1 ,1) 1

POS = 0 . 1 1 0 1 

NEG = 0 . 0 0 1 0

Q = 0 . 1 1 0 1 − 0 . 0 0 0 1 

Q = 0 . 1 1 0 1 + 1 . 1 1 1 0 

Q = 0 . 1 0 1 1

P0 = N = 

D = 

n = 4

k = 0, TP1 = 2 P0 − D =  Since TP1 > 0, then q3 = 1 and P1 = TP1 = 

k = 1, TP2 = 2 P1 − D =  Since TP2 < 0, then q2 = 0 and P2 = TP2 + D = 

k = 2, TP3 = 2 P2 − D =  Since TP3 > 0, then q1 = 1 and P3 = TP3 = 

k = 3, TP4 = 2 P3 − D =  Since TP4 > 0, then q0 = 1 and P4 = TP4 = 

Q = 0.1 0 1 1

FIGURE 9.13 Example of restoring division.

5
8
---

7
8
---

3
8
--- 3

8
---

1–
8

------ 3
4
---

5
8
--- 5

8
---

3
8
--- 3

8
---

1

1

1

1
1 1

1

© 2002 by CRC Press LLC



Binary SRT Divider
The binary SRT division process is similar to nonrestoring division, but the set of allowable quotient
digits is increased to {1, 0, } and the divisor is restricted to .5 ≤ D < 1. The digit selection and resulting
partial remainder are given for the kth iteration by the following relations:

If Pk ≥ .5, qn−k−1 = 1 and Pk+1 = 2Pk − D (9.28)

If −.5 < Pk < .5, qn−k−1 = 0 and Pk+1 = 2Pk (9.29)

If Pk ≥ .5, qn−k−1 = and Pk+1 = 2Pk + D (9.30)

FIGURE 9.14 Nonrestoring division.

FIGURE 9.15 Example of nonrestoring division.
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The basic scheme is shown in Fig. 9.16. Block 1 initializes the algorithm. In steps 3 and 5, Pk is compared
to ±.5. If Pk ≥ .5, in step 4 the quotient digit is set to 1 and Pk+1 = 2Pk − D. If Pk ≤ −.5, in step 6 the quotient
digit is set to  and Pk+1 = 2Pk + D. If the value of Pk is between −.5 and .5, step 7 sets Pk+1 = 2Pk. Finally,
step 8 tests whether all bits of the quotient have been formed and goes to step 2 if more need to be
computed. Each pass through steps 2–8 forms one digit of the quotient. As shown on Fig. 9.16, each pass
through steps 2–8 requires one or two comparisons in steps 3 and 5, and may require an addition (in
step 4 or step 6). Thus computing an n-bit quotient will involve up to n additions and from n to 2n
comparisons.

Higher Radix SRT Divider
The higher radix SRT division process is similar to the binary SRT algorithms. Radix 4 is the most
common higher radix SRT division algorithm with either a minimally redundant digit sets of {2, 1, 0, , }
or the maximally redundant digit sets of {3, 2, 1, 0, , , }. The operation of the algorithm is similar to
the binary SRT algorithm shown on Fig. 9.16, except that Pk and Q are applied to a look up table or a
programmable logic array (PLA) to determine the quotient digit. A research monograph provides a
detailed treatment of SRT division [18].

Newton–Raphson Divider
A second division technique uses a form of Newton–Raphson iteration to derive a quadratically conver-
gent approximation to the reciprocal of the divisor which is then multiplied by the dividend to produce
the quotient. In systems which include a fast multiplier, this process is often faster than conventional
division [19].

FIGURE 9.16 Binary SRT division.
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The Newton–Raphson division algorithm to compute Q = N/D consists of three basic steps:

(1) Calculating a starting estimate of the reciprocal of the divisor, R(0). If the divisor, D, is normalized
(i.e.,  ≤ D < 1), then R(0) = 3 – 2D exactly computes 1/D at D = .5 and D = 1 and exhibits
maximum error (of approximately 0.17) at D = . Adjusting R(0) downward to by half the
maximum error gives

R(0) = 2.915 − 2D (9.31)

This produces an initial estimate, that is, within about 0.087 of the correct value for all points in
the interval  ≤ D < 1.

(2) Computing successively more accurate estimates of the reciprocal by the following iterative
procedure:

R(i+1) = R(i) (2 − DR(i)) for i = 0, 1, …, k (9.32)

(3) Computing the quotient by multiplying the dividend times the reciprocal of the divisor.

Q = NR(k), (9.33)

where i is the iteration count and N is the numerator. Figure 9.17 illustrates the operation of the Newton–
Raphson algorithm. For this example, three iterations (one shift, four subtractions, and seven multipli-
cations) produces an answer accurate to nine decimal digits (approximately 30 bits).

With this algorithm, the error decreases quadratically, so that the number of correct bits in each
approximation is roughly twice the number of correct bits on the previous iteration. Thus, from a 3 -bit
initial approximation, two iterations produce a reciprocal estimate accurate to 14-bits, four iterations
produce a reciprocal estimate accurate to 56-bits, etc.

A = .625
B = .75

R(0) = 2.915 − 2 · B 1 Shift, 1 Subtract
= 2.915 − 2 · .75

R(0) = 1.415

R(1) = R(0) (2 − B · R(0)) 2 Multiplys, 1 Subtract
= 1.414 (2 − .75 · 1.415)
= 1.414 · .95875

R(1) = 1.32833125

R(2) = R(1) (2 − B · R(1)) 2 Multiplys, 1 Subtract
= 1.32833125 (2 − .75 · 1.32833125)
= 1.32833125 · 1.00375156

R(2) = 1.3333145677

R(3) = R(2) (2 − B · R(2)) 2 Multiplys, 1 Subtract
= 1.3333145677 (2 − .75 · 1.3333145677)
= 1.3333145677 · 1.00001407

R(1) = 1.3333333331

Q = A · R(3) 1 Multiply
Q = .83333333319

FIGURE 9.17 Example of Newton–Raphson division.
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The efficiency of this process is dependent on the availability of a fast multiplier, since each iteration
of Eq. (9.32) requires two multiplications and a subtraction. The complete process for the initial estimate,
three iterations, and the final quotient determination requires four subtraction operations and seven
multiplication operations to produce a 16-bit quotient. This is faster than a conventional non-restoring
divider if multiplication is roughly as fast as addition, a condition which may be satisfied for systems
which include hardware multipliers.

Floating-Point Arithmetic

Recent advances in VLSI have increased the feasibility of hardware implementations of floating point
arithmetic units. The main advantage of floating point arithmetic is that its wide dynamic range virtually
eliminates overflow for most applications. 

Floating-Point Number Systems

A floating point number, A, consists of a significand (or mantissa), Sa, and an exponent, Ea. The value
of a number, A, is given by the equation:

A = Sa (9.34)

where r is the radix (or base) of the number system. Use of the binary radix (i.e., r = 2) gives maximum
accuracy, but may require more frequent normalization than higher radices. 

The IEEE Std. 754 single precision (32-bit) floating point format, which is widely implemented, has
an 8-bit biased integer exponent which ranges between 1 and 254 [20]. The exponent is expressed in
excess 127 code so that its effective value is determined by subtracting 127 from the stored value. Thus,
the range of effective values of the exponent is −126 to 127, corresponding to stored values of 1 to 254,
respectively. A stored exponent value of ZERO (Emin) serves as a flag for ZERO (if the significand is ZERO)
and for denormalized numbers (if the significand is non-ZERO). A stored exponent value of 255 (Emax)
serves as a flag for infinity (if the significand is ZERO) and for “not a number” (if the significand is non-
zero). The significand is a 25-bit sign magnitude mixed number (the binary point is to the right of the most
significant bit and is always a ONE except for denormalized numbers). More detail on floating point formats
and on the various considerations that arise in the implementation of floating point arithmetic units are
given in [7,21]. The IEEE 754 standard for floating point numbers is discussed in [22,23].

Floating-Point Addition
A flow chart for floating point addition is shown in Fig. 9.18. For this flowchart, the operands are assumed
to be “unpacked” and normalized with magnitudes in the range [1/2, 1). On the flow chart, the operands
are (Ea, Sa) and (Eb, Sb), the result is (Es,Ss), and the radix is 2. In step 1 the operand exponents are
compared; if they are unequal, the significand of the number with the smaller exponent is shifted right
in step 3 or 4 by the difference in the exponents to properly align the significands. For example, to add
the decimal operands 0.867 × 105 and 0.512 × 104, the latter would be shifted right by one digit and
0.867 added to 0.0512 to give a sum of 0.9182 × 105. The addition of the significands is performed in
step 5. Steps 6–8 test for overflow and correct, if necessary, by shifting the significand one position to
the right and incrementing the exponent. Step 9 tests for a zero significand. The loop of steps 10–11
scales unnormalized (but non-ZERO) significands upward to normalize the result. Step 12 tests for
underflow.

Floating point subtraction is implemented with a similar algorithm. Many refinements are possible to
improve the speed of the addition and subtraction algorithms, but floating point addition and subtraction
will, in general, be much slower than fixed-point addition as a result of the need for operand alignment
and result normalization.

r
Ea
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Floating-Point Multiplication
The algorithm for floating-point multiplication forms the product of the operand significands and the
sum of the operand exponents. For radix 2 floating point numbers, the significand values are greater
than or equal to 1 and less than 2. The product of two such numbers will be greater than or equal to 1
and less than 4. At most a single right shift is required to normalize the product. 

Floating-Point Division
The algorithm for floating-point division forms the quotient of the operand significands and the differ-
ence of the operand exponents. The quotient of two normalized significands will be greater than or equal
to .5 and less than 2. At most a single left shift is required to normalize the quotient. 

Floating-Point Rounding
All floating-point algorithms may require rounding to produce a result in the correct format. A variety
of alternative rounding schemes have been developed for specific applications. Round to nearest, round
toward ∞, round toward −∞, and round toward ZERO are required for implementations of the IEEE
floating point standard. Selection should be based on both static and dynamic performance [24], although
round to nearest is appropriate for most applications.

Conclusions

This chapter section has presented an overview of the two’s complement number system, algorithms for the
basic integer arithmetic operations of addition, subtraction, multiplication, and division, and a brief dis-
cussion of floating point operations. When implementing arithmetic units there is often an opportunity
to optimize the performance and the complexity to the requirements of the specific application. In general,

FIGURE 9.18 Floating-point addition.
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faster algorithms require more area or more complex control; it is often useful to use the fastest algorithm
that will fit the available area.
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9.2 Fast Adders and Multipliers

Gensuke Goto

Introduction

All the logic circuits used in an electronic computer are constituted of combinations of basic logic gates
such as inverters, NAND or NOR gates. There exist many varieties of circuits that realize the basic arith-
metic logic functions for addition and multiplication due to the difference in viewpoint of circuit
optimization [1–4]. 

In this chapter section we will discuss an essence and an overview of recent high-speed digital arithmetic
logic circuits. The emphasis is on fast adders and multipliers that are the most important logic units for
high-speed data processing. Several types of these units are discussed and compared from various
viewpoints of circuit simplicity, easiness of design and power consumption, in addition to high-speed
capability. 

Adder

Principle of Addition

In the Boolean logic, numeral values are often represented as 2’s complement numbers because it is easy
to deal with negative values. Therefore, we assume that if not explicitly stated, numerals are represented
in 2’s complement numbers in this chapter section. It is to be noted, however, the previous works that
appear in this chapter do not necessarily obey to this rule.

Let us consider the addition of two binary numbers A and B with n-bit width. A is, for instance,
represented by

A = −an−1 2
n−1 + (ai 2

i) (9.35)

where an−1 is the sign bit (an−1 = 1 if A has a negative value, and an−1 = 0 if it has a positive value), and
ai {1, 0} is the bit at the ith position counted from the least significant bit (LSB) a0. The sum S(S = A + B)
is represented by an (n + 1)-bit binary number whose most significant bit (MSB) is the sign bit. An
example of binary addition is shown in the following:

00101    : A = 5 in decimal number = 0101

+ 11001    : B = −7 in decimal number = 1001 

11110    : S = −2 in decimal number = 11110

This is a case of adding A = 5 and B = −7 in decimal numbers that are represented by 4-bit binary
numbers. The third bit positions of these operands in binary numbers are the sign bits a3 = as = 0 and
b3 = bs = 1, because A is a positive number and B is a negative number. Since the sum of these operands
yields a 5-bit sum in principle, the fourth bit positions of these operands (a4, b4) have to be considered
existent as sign bits in adding procedure (sign bit extension). Thus, the output signal s4 at the sign bit
position is obtained as 1. The effective number of bits in S is 4 (s0 to s3), one-bit extension as a result of
summation. These bits are represented in 2’s complement form of a negative number.

One-Bit Full Adder

First we consider a 1-bit full adder (FA), which is a basic unit for constituting an n-bit adder. The sum
(si) and carry (ci) signals at the ith bit position in the n-bit adder are generated according to the operation
defined by Boolean equations:

si = ai ⊕ bi ⊕ ci−1 (9.36)

ci = aibi + (ai + bi) ci−1 (9.37)

i=0

n−2

∑
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where ci−1 is the output carry signal of the 1-bit adder at the (i − 1)th bit position, and ai ⊕ bi indicates
an exclusive-OR (XOR) operation of ai and bi. From the above equation, we can understand that two
XOR logic gates are necessary to yield a sum signal si in a 1-bit FA.

Many kinds of XOR gates implemented using CMOS transistors are proposed up to date. Some
examples of such gates are shown in Fig. 9.19. Figure 9.19(a) is a popular XOR gate using a NOR gate
and a 2-input AND-OR-inverter. The transistor count in this case is 10. Figure 9.19(b) is composed of
two pass transistor switches, and this is another popular gate whose number of transistors is also 10.
Figure 9.19(c) is of a six-transistor type [5]. Though this circuit is compact, driving ability of this gate

(a)

(b)

(c)

(d)

FIGURE 9.19 (a) XOR circuit-1, (b) XOR circuit-2, (c) XOR circuit-3, (d) XOR circuit-4.
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is low because the output node has serial resistor to degrade the output signal [6], so the number of
direct connection of this gate is practically limited to two. Figure 9.19(d) is of a 7-transistor type whose
p-channel transistor is introduced to the gate of the output inverter to compensate for weak drivability
to a high level when a = b = 1 (at high level) [7]. 

To control the carry propagation efficiently, the following signals are defined for long-word addition
at each bit position i:

carry-propagate signal pi = ai ⊕ bi (9.38)

carry-generate signal gi = aibi (9.39)

Using these notations, Eqs. (9.36) and (9.37) are rewritten by

si = pi ⊕ ci−1 (9.40)

ci = gi + pici−1 (9.41)

respectively. A carry is generated if gi = 1, and the stage i(ith bit position of an n-bit adder) propagates
an input carry signal ci−1 to its output if pi = 1. These signals are generated in a gate called a half adder
(HA) as shown in Fig. 9.20, and used to constitute a high-speed but complicated carry control scheme
such as a carry lookahead adder as described in the later sections. FA is often implemented according to
the Boolean equations (9.40) and (9.41). Though there exist many variations to constructing a FA, only
one example is shown in Fig. 9.21. In this construction, the transistor count is 30. By using pass transistor
switches, we can reduce it to 24.

Ripple Carry Adder

A ripple carry adder (RCA) is the simplest one as a parallel adder implemented in hardware. An n-bit
RCA is implemented by simple concatination of n 1-bit FAs. As the carry signal ripples bit by bit from
the least significant bit to the most significant bit, the worst-case delay time is in proportion to the number
n of 1-bit full adders [1]. This is roughly equal to the critical path delay of RCA, if n is large enough as
compared with 1.

FIGURE 9.20 Half-adder circuit.

FIGURE 9.21 One-bit full adder.
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Manchester carry chain (MCC) is one of the simplest schemes for RCA that utilizes MOS technology
[8,9]. The carry chain is constructed of series-connected pass transistors whose gates are controlled by
the carry-propagate signal pi at every bit position i of n 1-bit FAs. This scheme can offer simple hardware
implementation with less power as compared with other elaborate schemes. Because of distortion due
to RC time constant, the carry signal needs to be regenerated by inserting inverters or true buffers at
appropriate locations in the carry chain. Though this compensation needs additional transistors, the
total power may be reduced appreciably if buffers are equipped with efficiently.

Carry Skip Adder

If the carry-propagate signals pi that belong to the bit positions from the mth to (m + k)th are all 1, the carry
signal at the (m − 1)th bit position can bypass through (k + 1) bits to the (m + k)th bit position without
rippling through these bits. A carry skip adder (CSKA) is a scheme to utilize this principle for shortening the
longest path of the carry propagation. A fixed-group CSKA is such that the n 1-bit FAs to construct an n-bit
adder is divided equally into k groups over which the carry signal can bypass if the condition to skip is fulfilled.
The maximum delay of the carry propagation is reduced to a factor of 1/k as compared with RCA [1].

MCC is often used with several bypass circuits to speed up the carry propagation in longer word
addition [10]. Figure 9.22(a) is a case of such implementation. Though this 4-bit bypass circuit may be
considered to work well at a glance, it is not true because of the signal conflict during the transient phase
from the former state to the new state to settle to, as shown in Fig. 9.22(c) with transition of the node
voltage Vs(A) at the node A in Fig. 9.22(a) [11]. To avoid this unexpected transition delay, it is necessary
to cut off all of other signal paths than expected logically as shown in Fig. 9.22(b). Under this modified
scheme [11], the bypass circuit can function as expected like shown in Fig. 9.22(c), with change of the
node voltage Vs(B) at the node B in Fig. 9.22(b).

A variable block adder (VBA) allows the groups to be different in size [12], so that the maximum
delay is further reduced from the fixed group CSKA. The number of adders in a group is gradually
increased from LSB toward the middle bit position, and then reduced toward MSB. This scheme may
lead us to the total delay dependency on the carry propagation in the order of square root of n. Extension
of this approach to multiple levels of carry skip is possible for further speeding up on a fast adder.

Carry Lookahead Adder

A carry lookahead adder (CLA) [13] utilizes fully two types of signals pi and gi at the ith bit position of
an n-bit adder to control carry propagation. For instance, the carry signals ci, ci+1, and ci+2 can be estimated

FIGURE 9.22(a) Carry skip circuit that causes conflict during signal transient.
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according to the following Boolean equations if the carry-in signal ci−1 to the ith 1-bit full adder is
determined:

ci = gi + pici−1 (9.42)

ci+1 = gi+1 + pi gi + pi+1 pi ci−1 (9.43)

ci+2 = gi+2 + pi+2 gi+1 + pi+2 pi+1 gi + pi+2 pi+1 pi ci−1 (9.44)

FIGURE 9.22(b) Carry skip circuit that excludes conflict during signal transient.

FIGURE 9.22(c) Effect of signal conflict on circuit delay.
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These three carry signals can be determined almost simultaneously after ci−1 is input to the ith adder if
hardware to yield the above signals is equipped with as shown in Fig. 9.23 for a case of i = 0. Within this
scheme, a 1-bit full adder at each bit position (i) consists of a sum generator and a HA segment to yield
pi and gi signals, and no carry generator is required at each bit position. Instead, the carry signals ci, ci+1,
and ci+2 are generated in a lookahead block whose Boolean expressions are given above. 

Although the number k of carry signals to be determined simultaneously in a lookahead block can be
extended to more than 4, hardware to implement CLA logic becomes more and more complicated in
proportion to k. This increases the necessary number of logic gates, power consumption, and the delay
time to generate a carry signal at a higher bit position in a lookahead block. Considering this situation,
a practically available number is limited to 4, and this limitation reduces much of the attractiveness on
CLA as architecture of a high-speed adder. To overcome the inconvenience, group (or block) carry-
generate (Gj) and carry-propagate (Pj) signals are considered for dealing with longer word operation.
With these signals, the carry equation can be expressed by

cj = Gj + Pj ci−1 (9.45)

where 

Gj = gi+k + pi+k gi+k−1 + pi+k pi+k−1 gi+k−2 + ⋅⋅⋅ + pi+k pi+k−1 ⋅⋅⋅ pi+1 gi (9.46)

and

Pj = pi+k pi+k−1 ⋅⋅⋅ pi+1 pi. (9.47)

In a recursive way, a group of groups can be defined to handle wider-word operands.

FIGURE 9.23 3-bit carry lookahead adder.
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Assuming that a single level of the carry lookahead group generates k carry signals simultaneously
with two additional gate delays in the carry path, it can be shown that the total delay of an n-bit CLA is
2 logk n-gate delay units [1]. Theoretically this may be considered one of the fastest adder structures, but
the practical speed of CLA is not necessarily highest because of using complicated gates to implement a
lookahead block in the carry path.

Recurrence solver-based adders are proposed with some popularity to systematically implement CLA
blocks [14–16].

Carry Select Adder

A carry select adder (CSLA) is one of the conditional-sum adder [1,17] that is based on the idea of
selecting the most significant portion of the operands conditionally, depending on a carry-in signal to
the least significant portion. This algorithm yields the theoretically fastest adder of two numbers [18].
In CSLA implementation, two operands are divided into blocks where two sum signals at each bit position
are generated in parallel in order to be selected by the carry-in signal to the blocks. One is a provisional
sum  to be selected as a true sum signal si at the ith bit position if the carry-in signal is 0, and the
other provisional sum  is selected as a true sum signal if the carry-in signal is 1. This provisional sum
signal pair can be selected immediately after the carry-in signal is fixed.

In Fig. 9.24 where a 16-bit adder is constructed of CSLA, the provisional carry signal pair ( , ) is
generated at the highest bit position within each block, in addition to the provisional sum signal pairs
generated at all bit positions within the block. This carry signal pair is used to generate a true carry signal
in a carry-selector block (CS) along with similar signals located at the different blocks. The provisional
sum signals within the block are selected by ci−1 to yield true sum signals si+3:i. Figure 9.25 shows a
combination of RCA and CSLA to construct a 16-bit adder. By such a combination, a high-speed and
small size adder can be realized efficiently [19–21].

FIGURE 9.24 4-bit carry select adder.
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Multiplier

Algorithm of Multiplication

In the past when the scale of integration on VLSI was low, a multiplier circuit was implemented by a
shift-and-add method because of simplicity in hardware. This method is, however, very time-consuming,
so that the need of high-speed multiplication could scarcely be fulfilled in many practical applications.
Now that a system-on-a-chip (SoC) with more than 10 million transistors has emerged with a rapid
progress of the fine-pattern process technology of semiconductors, we are in a stage of using any parallel
multipliers with full acceleration mechanisms for speeding up the processing.

In binary multiplication of an n-bit multiplicand A and multiplier B, we begin to calculate partial
products pj for implementation of a parallel multiplier, which is defined by

pj = {(ai2
i) (bj2

j)}

(pi,j2
i+j), (9.48)

where pi,j is a partial product bit at the (i + j)th position. Each bit in a partial product pj is equal to 0 if
bj = 0, and ai if bj = 1 for the case of multiplication of positive numbers. For multiplication of 2’s
complement numbers, the situation is a little complicated, because correction to sign-bit extension is
necessary as described in the later section.

The product Z(=A × B) is expressed by using the partial products as follows:

Z = (zj2
j)

pj. (9.49)

FIGURE 9.25 16-bit adder with combination of RCA and CSLA.
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Array-Type Multiplier

The simplest parallel multiplier is such that pairs of an AND gate and a 1-bit full adder are laid out
repetitively and connected in sequence to construct an n2 array [1,22]. An example of a 4 × 4-bit parallel
multiplier to manipulate two positive numbers is shown in Fig. 9.26. The operation time in this multiplier
equals to sum of delays that consist of an AND gate, four FAs, and a 4-bit carry-propagate adder (CPA).
The CPA may be consisted of a 4-bit RCA. It can be easily understood that the reduction process of
partial products to two at each bit position dominates the operation time in this multiplier except for a
CPA delay. Thus, the acceleration of the compression process for the partial product bits at each bit
position is a key to obtain a fast multiplier. For the basic array-type multiplication in Fig. 9.26, this
compression process constitutes ripple carry connection. The worst-case delay of this type is composed
of 2n FA delays. For most recent high-speed data processing systems that deal with wider word than
32 bits, this delay time is too large to be acceptable. Therefore, some kinds of speeding-up mechanisms

FIGURE 9.26 4 × 4-bit array-type multiplier.
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are necessary to satisfy requirement for recent high-speed systems. A modified-array approach is an example
of such a speeding-up mechanism [23].

The carry signal generated in FA (contained in MC in Fig. 9.26) at each bit position is never propagated
to a higher bit position within the same partial product, but it is treated as if it is a part of a partial
product at one-bit higher position. This enables us to avoid the carry propagation from LSB to MSB in
the same partial product, and this structure is called a carry-save adder (CSA) [1]. For this structure,
whether the carry path or the sum path may constitute the critical path cannot be predicted beforehand.
Therefore, not only the carry generator but also the sum generator must be designed as a fast path in
order to constitute a fast multiplier.

Wallace Tree

Summing the partial product bits in parallel using a carry-save adder tree is called a Wallace tree, which
is introduced by Wallace [24] and later refined by Dadda [25,26]. In a case of using FA’s as a unique
constituent of CSA, the maximum parallelism can be reached by adding three partial product bits at a
time in the same FA. The total delay time of CSA part for an n × n-bit parallel multiplier in this case is
log3/2 n, thus the drastic reduction of the delay time is possible for large n values as compared with a
simple array-type multiplier. A multiplier with the Wallace tree is often called a tree-type one, in contrast
with an array-type one shown in Fig. 9.26.

Although the Wallace tree can contribute much to realization of a fast long-word multiplier, its layout
scheme is very complex as compared with the array-type because the wiring among FAs has little
regularity. This is one of the reasons why this tree type had not been implemented widely as a long-word
multiplier in the past. There exist many efforts that try to introduce regularity of layout on the Wallace
tree [27–32], and now it is possible to implement it with higher regularity than ever.

4-2 Compressor

Weinberger disclosed a structure called “4-2 carry-save module” in 1981 [33]. This structure is considered
to compress actually five partial product bits into three and is consisted of a combination of two FA’s.
The four of five inputs into this module come from the same bit position of the weight m(=i + j) while the
rest 1-bit, known as an carry-in signal, comes from the neighboring position of the weight m − 1. This
module creates three signals: two of which are a pair of carry and sum signals, and the rest is an intermediate
carry-out signal that is input to a module at the neighboring position of the weight m + 1. As the four
signals are compressed at a time to yield a pair of carry and sum signals except for an intermediate carry
signal, this module is called a 4-2 compressor.

The 4-2 compressor designed for speeding up the compression operation has speed of three XOR
gate delays in series [34–36], and this scheme makes it possible to shorten the compression delay to
three-fourths of the original one. Using this type of a 4-2 compressor, we can relieve the complicated
wiring design among the modules in the Wallace tree with enhanced speed of processing. Some exam-
ples of 4-2 compressors are given in Fig. 9.27. Figure 9.27(a) represents a typical circuit composed of
60 transistors [34]. Figure 9.27(b) utilizes pass transistor multiplexers to enhance speed of compression
by 18% compared with a FA-based circuit, and is composed of 58 transistors [35]. Figure 9.27(c) is an
optimized one in view of both small number of transistors (48) and keeping high-speed operation [36].
This transistor count is comparable to using a pair of series-connected FAs, yet the speed is 30% higher. 

Booth Recoding Algorithm

For multiplication of 2’s complement numbers, the modified Booth recoding algorithm is the most
frequently used method to generate partial products [37,38]. This algorithm allows for the reduction of
the number of partial products to be compressed in a carry-save adder tree, thus the compression speed
can be enhanced. This Booth–MacSorley algorithm is simply called the Booth algorithm, and the two-bit
recoding using this algorithm scans a triplet of bits to reduce the number of partial products by roughly
one half. The 2-bit recoding means that the multiplier B is divided into groups of two bits, and the
algorithm is applied to this group of divided bits.
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FIGURE 9.27(a) 4-2 compressor-1.

FIGURE 9.27(b) 4-2 compressor-2.
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In general, the multiplier B in 2’s complement representation is expressed by

B = −bn−1 2
n−1 + (bj 2

j)

= (bn−3 + bn−2 − 2bn−1) 2n−2 + (bn−5 + bn−4 − 2bn−3) 2n−4 + ⋅⋅⋅

+ (bn−k−1 + bn−k − 2 bn−k+1) 2n−k + ⋅⋅⋅ + (b−1 + b0 − 2b−1) 20

= (b2k−1 + b2k − 2 b2k+1) 22k. (9.50)

Assumption is made that n is an even number, bn−1 represents the sign bit bs, and b−1 = 0. The product
Z( =A B) is then given by

Z = (PPj A 2j)    j: even number, (9.51)

where

PPj = bj−1 ⊕ bj − 2 bj+1 (9.52)

FIGURE 9.27(c) 4-2 compressor-3.
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The partial product PPj is to be calculated in the 2-bit Booth algorithm. Therefore, n/2 partial products
and hence n2/2 partial product bits are generated according to this algorithm. The partial product
PPj has a value of one of 0, ± A, and ± 2A, depending on the values of the adjacent three bits on the
multiplier (bj−1, bj, and bj+1). The generation of 2A is easily realized by shifting each bit of A to one-
bit higher position. The negative value on the 2’s complement system is realized by negating each bit
of A( =~A) and adding 1 to the LSB position of ~A. The latter is done by placing a new partial product
bit (Mj) corresponding to 1 and adding it in a CSA. The Booth algorithm is implemented into two
steps: Booth encoding and Booth selecting. The Booth encoding step is to generate one of the five
values from the adjacent three bits bj−1, bj, and bj+1. This is realized according to the following Boolean
equations,

Aj = bj−1 ⊕ bj (9.53)

2Aj = ~(bj−1 ⊕ bj)(bj ⊕ bj+1) (9.54)

Mj = bj+1. (9.55)

The Booth selector generates a partial product bit at the (i + j)th position by utilizing the output signals
from the Booth encoder and the multiplicand bits as follows:

pi,j = (ai Aj + ai−1 2Aj) ⊕ Mj (9.56)

An example of a partial product bit generator is shown in Fig. 9.28(a). As is seen in the figure, a typical
partial product bit generator requires 18 transistors in CMOS implementation as compared with 6
transistors for a case of generating it with a simple AND gate. Thus a part of the effect of reducing the
number of partial product bits at the same bit position is compensated for because of the complexity of
the circuit to generate a partial product bit in the Booth recoding.

Goto proposed a new scheme to reduce the number of transistors for generating a partial product bit.
This scheme is called “sign-select Booth encoding” [36]. In this scheme, the Booth encoding is done so
as to generate two sign signals PL (positive) and M (negative) that are selected depending on the logic
of an input multiplicand bit in the Booth encoding step. The Boolean equations are shown in the
following,

Aj = bj −1 ⊕ bj (9.57)

2Aj = ~(bj−1 ⊕ bj) (9.58)

Mj = ~(bj−1 bj) bj+1 (9.59)

PLj = (bj−1 + bj) (~bj+1). (9.60)

FIGURE 9.28(a) Partial product bit generator-1.
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The Booth selector is constructed to select either PLj or Mj depending on the multiplicand bit (ai or ~ai)
according to the following Boolean equation:

pi,j = (ai PLj + ~ai Mj) Aj + (ai−1 PLj + ~ai−1 Mj) 2Aj (9.61)

In this modified Booth selector implemented with pass transistors, the transistor count per bit is as small
as 10 as illustrated in Fig. 9.28(b). Thus it is reduced roughly to one-half as compared with that of the
regular selector without the speed degradation. 

As can be seen from the above explanations, the sign bit, unlike other approaches [39], need not be
treated as a special case of partial product bit, but it is manipulated similarly to other bits. Thus the
correction circuit need not be equipped with for the Booth algorithm.

The Booth algorithm can be generalized to any radix with more than two bits. However, a 3-bit
recoding requires ±3A, which requires addition of ± A and ±2A, resulting in a carry propagation. The
delay with such a mechanism degrades the high-speed capability of a 3-bit recoding. A 4-bit or higher
bit recoding may be considered [40], but it requires very complex recoding circuitry. Eventually, only
the 2-bit (radix 4) recoding is actually used.

Sign Correction for Booth Algorithm

As mentioned in the former section on adders with 2’s complement numbers, the sign bits of the
operands need be extended to the MSB of the sum to correctly calculate these numbers. This sign
extension can be simplified for addition of partial products based on the 2-bit Booth algorithm in the
following way.

FIGURE 9.28(b) Partial product bit generator-2.
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The sum SGN of the whole extended bits can be expressed by

SGN = (22n−1 + 22n−2 + ⋅⋅⋅ + 2n)Ps(0) + (22n−1 + 22n−2 + ⋅⋅⋅ + 2n+2) Ps(2) 

+ ⋅⋅⋅ + (22n−1 + 22n−2 + ⋅⋅⋅ + 2n−j) Ps(j) + ⋅⋅⋅ 

+ (22n−1 + 22n−2) Ps(n−2) 

= { − (22n + 1) 20 Ps(0) − (22n + 1) 22 Ps(2) − ⋅⋅⋅ 

− (22n + 1) 2j Ps( j) − ⋅⋅⋅ − (22n + 1) 2n−2 Ps(n−2)} 2n 

= {−20 Ps(0) − 22 Ps(2) − ⋅⋅⋅ − 2j Ps( j) − ⋅⋅⋅ − 2n−2 Ps(n−2)} 2n

(Mod 22n)

= {~Ps(0) + 21 + ~Ps(2) + 23 + ⋅⋅⋅ + ∼Ps( j) + 2j+1 + ⋅⋅⋅ 

+ ~Ps(n−2) + 2n−1 + 1} 2n, (9.62)

where j is an even number and Ps( j) indicates a sign bit of the partial product at the jth position.
Considering the above result, the multiplication of n-bit 2’s complement numbers are performed as
illustrated in Fig. 9.29 for a case of 8 × 8-bit multiplication, where Mj indicates a partial product bit
introduced to add 1 at the LSB position in the jth partial product if the encoded result is a negative value.
For the 2-bit Booth recoding, the maximum number of partial product bits at the same position is n/2 + 1
as the sign correction term or Mj term has to be considered.

Overall Design of Parallel Multiplier

A high-speed but small-size parallel multiplier can be designed by devising recoding algorithm, arraying
systematically well-configured components, and adopting a high-performance CPA. Most recent-day fast
multipliers for mantissa multiplication of two double-precision numbers based on the IEEE standard
[41] are designed according to the block diagram shown in Fig. 9.30. Under this standard, the mantissa

FIGURE 9.29 8 × 8-bit multiplication with sign correction.
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multiplication requires a 54 × 54-bit hardware multiplier, because the mantissa is represented by 52 bits
internally, and a hidden bit and a sign bit must be added to manipulate 2’s complement numbers. 

A fast 54 × 54-bit parallel structured multiplier was developed by Mori, et al. in 1991 [7]. They adopted
the 2-bit Booth algorithm and the Wallace tree composed of 58 transistor 4-2 compressors. By adopting
the Wallace tree composed of the 4-2 compressors, only four addition stages suffice to compress the
maximum number of the partial product bits at the same bit position. This design adopts an XOR gate
that is a pseudo-CMOS circuit shown in Fig. 9.19(d) to increase the operation speed of 4-2 compressors
and the final CPA. They obtained a 54 × 54-bit multiplier with a delay time of 10 ns and area of 12.5 mm2

(transistor count is 81,600) in 0.5 µm CMOS technology.
Ohkubo, et al. implemented a 54 × 54-bit parallel multiplier by utilizing pass-transistor multiplexers

[35]. The delay time constructed with them can be made smaller than that implemented in the conven-
tional CMOS gates because of shorter critical path within the circuit. They constructed a CSA tree in
Fig. 9.31 only by 4-2 compressors shown in Fig. 9.27(b). By combining a 4-2 compressor tree with a
conditional carry-selection (CCS) adder [35], they obtained a fast multiplier with a delay time of 4.4 ns
and area of 12.9 mm2 (transistor count is 100,200) in 0.25 µm CMOS technology.

Goto proposed a new layout scheme named “Regularly Structured Tree (RST)” for implementing the
Wallace tree in 1992 [34]. In this scheme, partial product bits with a maximum of 28 at the same bit
position to be compressed into two for a 54 × 54-bit parallel multiplier are first divided into four 7-2
compressor blocks, as shown in Fig. 9.32. In this figure, a 4D2 block consists of two sets of four Booth
selectors and a 4-2 compressor, and a 3D2 block consists of two sets of three Booth selectors and a FA.
A 4W means a 4-2 compressor in the same figure. Thus, a 7D4 block constitutes four 7-2 compressors
at the consecutive bit positions. Arranging this 7D4 block with regularity as shown in Fig. 9.33, the Booth
selectors and the CSA part of a 54 × 54-bit parallel multiplier can be systematically laid out including
the intermediate wiring among the blocks. This scheme  simplifies drastically the complicated layout and
wiring among not only the compressors in the CSA part but also the compressors and the Booth selectors.
In a modified version of the RST multiplier, the delay time of 4.1 ns and as small size as 1.27 mm2

(transistor count is 60,797) were obtained in 0.25 µm CMOS technology [36]. By adopting a 4-2
compressor with 48 transistors (Fig. 9.27(c)) and the sign-select Booth recoding algorithm as des-
cribed earlier, the total number of transistors were reduced by 24% as compared with that of the earlier
design.

FIGURE 9.30 Block diagram of high-speed parallel multiplier.
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FIGURE 9.31 54 × 54-bit parallel multiplier composed of arrayed 4-2 compressors.

FIGURE 9.32 Layout of 7-2 compressors with Booth selectors for consecutive 4 bits.
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Conclusion

As has been mentioned in this chapter section, various attempts were tried and refined to implement
fast adders and multipliers. The basic idea, however, is consistent among these studies in that the circuit
components should be as simple as possible to shorten the critical path, and that the algorithm as a
whole should be suitably refined for CMOS implementation. The well-prepared circuit components are
in themselves valuable for easy implementation of fast and efficient arithmetic units.

The need for faster arithmetic logic units will be continually recognized for its importance among the
application engineers of the up-to-date electronics systems, so that the design efforts will be continued
to optimize the fast arithmetic algorithms in the advanced CMOS technology. With advance of the SoC
technology, evaluating the merit of the algorithm and modifying it to fit to the execution model of the
dedicated processor will increase its importance. The system-level performance optimization as a total
system will be another subject for realization of the coming high-performance systems.
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10.1 Design of High-Speed CMOS PLLs and DLLs

John George Maneatis

Introduction

Phase-locked loops (PLLs), a set of circuits that include delay-locked loops, have found many applications
within the realm of microprocessors and digital chips in the past 15 years. These applications include clock
frequency synthesis, clock de-skewing, and high-bandwidth chip interfaces. A typical chip interface appli-
cation is shown in Fig. 10.1 in which two chips synchronously send data to one another. To achieve high
bandwidth, the data rate must be maximized with minimum data latency. Achieving this objective requires
careful control over system timing in order to guarantee that setup and hold times are always satisfied. 

Let us consider the requirements for receiving data by Chip 2. Chip 1 transmits this data synchronously
along with a clock signal. Chip 2 would need to buffer this clock signal to drive all of the input latches
and use it to sample the data. Buffering the clock signal will introduce a delay that will vary with process and
environmental factors. The setup and hold time window for the input latches will then be shifted from
the input clock edge by this varying delay amount. Such a delay can make it very difficult to insure that
setup and hold times are always satisfied as the data rate is increased and this delay becomes a larger
fraction of the clock cycle.

To alleviate the situation, it is desirable to eliminate this clock distribution delay and center the setup
and hold time window on the input clock edge, which would remove any uncertainty in the window
position relative to the clock signal. Such an approach also has the added benefit of avoiding the necessity
for delay padding on the data wires to compensate for the clock distribution delay, which would increase
the latency. It is also desirable to be able to multiply the frequency of the clock signal for use in the chip
core so that the core logic can run with a higher clock frequency than available from the interface. These
objectives can all be accomplished with a PLL [1,2].
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The PLL generates an on-chip clock from the input clock to drive the clock distribution network and
ultimately all of the latches and registers on the chip. By sensing the clock at the input of the receiving latches
and adjusting its output phase until this latch clock aligns with the input clock, the PLL is able to subtract
out the clock distribution delay and make it appear as though the input clock directly connects to all of the
latches. The result is that the setup and hold time window is centered on the input clock edge with no process
or environmental dependencies. The amount of setup and hold time can also be controlled relative to the
clock cycle by centering the setup and hold time window relative to a different part of the clock cycle.

Although PLLs may seem to be the universal cure to all clock generation and interface problems, they
do not come without problems of their own. PLLs can introduce time-varying offsets in the phase of the
output clock from its ideal value as a result of internal and environmental factors. These time-varying
offsets in the output clock phase are commonly referred to as jitter. Jitter can have disastrous effects on
the timing of an interface by causing setup and hold time violations, which lead to data transmission errors.

Jitter was not a significant issue when PLLs were first introduced into digital IC interfaces. The
techniques employed were fairly effective in addressing the jitter issue. However, designers often reapply
those same PLL design techniques even though the nature of the problem has changed. IC technologies
have improved, leading to decreasing cycle times. The number of input/output (I/O) pins and I/O data
rates have increased leading to an increasing on-chip noise environment. An increasing aggressiveness
in I/O system design has lead to a decreasing tolerance for jitter. The result is that PLL output jitter has
increased while jitter tolerances have decreased, leading to significant jitter problems.

This chapter section focuses on the analysis and design of PLLs for interface applications in digital
ICs with particular emphasis on achieving low output jitter. It begins by considering two basic PLL
architectures in the section on “PLL Architectures.” The next two sections perform a stability analysis for
each architecture in order to gain insight into the various design tradeoffs and then present a compre-
hensive design strategy to establish the various loop parameters for each architecture. More advanced
PLL architectures are briefly discussed in “Advanced PLL Architectures.” “DLL/PLL Performance Issues”
shifts gears to review the causes of output jitter in PLLs and examines circuit level techniques for reducing
its magnitude. Circuits issues related to the implementation of the various PLL loop components are
presented in the section on “DLL/PLL Circuits.” “Self-Biased Techniques” briefly discusses self-biased
techniques that can be used to eliminate the process and environmental dependencies within the PLL
designs themselves. This chapter section concludes with a presentation of PLL characterization techniques
in “Characterization Techniques.”

PLL Architectures

The basic operation of the PLLs considered in this chapter is the adjustment of the phase of the output
so that no phase error is detected between the reference and feedback inputs. PLLs can be structured in
a number of ways to accomplish this objective. Their structure can be classified based on how they react
to phase errors and how they control the phase of the output. This chapter section focuses only on PLLs

FIGURE 10.1 Typical chip interface.
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that integrate the phase error in the loop filter using charge pumps [3]. Charge pump PLLs have the
property that in the locked state, the detected phase error is ideally zero.

In general, PLLs can control their output phases directly by delaying the reference signal or indirectly
by changing the output frequency. The first is commonly referred to as a delay-locked loop (DLL) since
it actually locks the delay between the reference input and the feedback input to some fraction of the
reference input period. The second is referred to as a VCO-based PLL or simply as a PLL since it controls
the frequency of a voltage-controlled oscillator (VCO) generating the output such that the feedback input
is in phase with the reference input.

Figure 10.2 shows the general structure of a DLL. It is composed of a phase detector, charge pump,
loop filter, and voltage-controlled delay line (VCDL). The negative feedback in the loop adjusts the delay
through the VCDL by integrating the phase error that results between the periodic reference and delay
line output. When in lock, the VCDL delays the reference input by a fixed amount to form the output
such that the phase detector detects no phase error between the reference and feedback inputs. The clock
distribution network, although not shown in the figure, is between the DLL output and the feedback
input. Functionally, it can be considered as part of the VCDL.

Figure 10.3 shows the general structure of a PLL. It is composed of a phase detector, charge pump,
loop filter, and VCO. Two key differences from the DLL are that the PLL contains a VCO instead of a
VCDL and, as will be discussed below, requires a resistor in the loop for stability. The negative feedback
in the loop adjusts the VCO output frequency by integrating the phase error that results between the
periodic reference input and the divided VCO output. When in lock, the VCO generates an output
frequency and phase such that the phase detector detects no phase error between the reference and feedback
inputs. With no phase error between the reference and feedback inputs, the inputs must also be at the
same frequency. If a frequency divider, which divides by N, is inserted between the PLL output and feedback
input, the PLL output will be N times higher in frequency than the reference and feedback inputs, thus
allowing the PLL to perform frequency multiplication.

The difference in loop structure between a DLL and a PLL gives rise to different properties and
operating characteristics. DLLs tend to have short locking times and relatively low tracking jitter, but
generally do not support frequency multiplication or duty cycle correction, have limited delay ranges,
and require special lock reset functions. PLLs have unlimited phase ranges, support frequency multipli-
cation and duty cycle correction, do not require special lock reset functions, but usually have longer lock
times and higher tracking jitter. DLLs are less complex than PLLs from a loop architecture perspective,
but are generally more complex from a design and system integration perspective.

FIGURE 10.2 Typical DLL block diagram (clock distribution omitted).

FIGURE 10.3 Typical PLL block diagram (clock distribution omitted).
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Loop Components

PLLs and DLLs share many common building blocks. These building blocks are the phase detector, charge
pump, loop filter, voltage-controlled delay line, and voltage-controlled oscillator.

A phase detector, also known as a phase comparator, compares two input signals and generates “UP”
and “DN” output pulses that represent the direction of the input phase error. There are many types of
phase detectors; they differ in how they sense the input signals, what target input phase difference would
cause them to detect no phase error, and how the phase error is represented in the output pulses.

For simplicity, we will initially only consider phase-frequency detectors. These detectors have the
property that they are only rising or falling edge sensitive and, for each pair of input reference and feedback
edges, produce a single pulse at either the UP or DN output, depending on which edge arrives first, with
a duration equal to the time difference between the two edges or, equivalently, the input phase difference.
When the reference and feedback edges arrive at the same time for zero input phase difference, the phase
detector will effectively generate no UP or DN pulses; however, in actual implementation, the input phase
difference may be represented by the phase detector as the difference between the pulse widths of the
UP and DN outputs, where both are always asserted for some minimum duration in order to guarantee
that no error information is lost due to incompletely rising pulses as the input phase difference approaches
zero.

A charge pump, connected to the phase detector, sources or sinks current for the duration of the UP
and DN pulses from the phase detector. The net output charge is proportional to the difference between
the pulse widths of the UP and DN outputs. The charge pump drives the loop filter, which integrates and
filters the charge current to produce the control voltage. The control voltage drives a VCDL in a DLL,
which generates a delay proportional to the control voltage, or drives a VCO in a PLL, which generates
a frequency proportional to the control voltage. 

Delay-Locked Loops

Before we consider a detailed analysis of the loop dynamics of a DLL, it is instructive to consider the
control dynamics from a qualitative perspective as the loop approaches lock. Figure 10.4 illustrates the
waveforms of signals and quantities inside a DLL during this locking process. Initially, the DLL is out of
lock as the reference and output edges are not aligned.

FIGURE 10.4 DLL locking waveforms.
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Because the first output edge arrives before the first corresponding reference edge, the phase detector
outputs a pulse at the UP output equal in duration to this phase error. A pulse at the UP output indicates
that the delay needs to be increased. The charge pump generates an output charge proportional to the
phase error, which increases the control voltage and thus the delay of the VCDL. After several cycles,
the phase error is corrected.

The error is sampled only once per cycle, so the DLL is a sampled system as represented by the phase
error impulses. However, if we limit the response time of the system to be a decade below the operating
frequency, we can make a continuous time approximation. This approximation assumes that the phase
errors are determined continuously as represented by the dashed line. Such a bandwidth limit will be
required anyway to guarantee stability.

The magnitude of the delay correction per cycle is proportional to the detected phase error, therefore,
the phase error, control voltage, and delay should change with an exponential decay toward their final
values, rather than linearly as shown, for simplicity, in the figure. Also, it should be noted that there are
different ways of configuring the charge pump in the DLL. Some DLLs, for example, output a fixed charge
independent of the size of the phase error. This type of charge pump converts the DLL into a nonlinear
system and as such will not be considered in the following DLL analysis.

DLL Frequency Response

More insight into DLL design issues can be gained by determining the frequency response of the DLL.
This frequency response can be derived with a continuous time approximation, where the sampling
behavior of the phase detector is ignored. This approximation holds for response bandwidths that are a
decade or more below the operating frequency. This bandwidth constraint is also required for stability
due to the reduced phase margin near the higher-order poles that result from the delay around the
sampled feedback loop. The mathematical symbols used in deviations for both the DLL and PLL are
defined in Table 10.1.

Because the loop filter integrates the phase error, the DLL has a first order closed-loop response. The
response could be formulated in terms of input phase and output phase. However, this set of variables
is incompatible with the continuous time analysis since the sampled nature of the system must be
considered. A better set of variables is input delay and output delay. The output delay is the delay between
the reference input and the DLL output or, equivalently, the delay established by the VCDL. The input

TABLE 10.1 PLL Loop and Device Parameter Definitions

Symbol Definition Unit

FREF Reference frequency Hz
ωREF Reference frequency rad/s
ICH Peak charge pump current A
KDL Voltage-controlled delay line gain (DLL) s/V
KV Voltage-controlled oscillator gain (PLL) Hz/V
GO Gain normalization factor (PLL) —
C Loop filter capacitor F
C2 Higher order roll-off capacitor (PLL) F
R Loop filter resistor (PLL) Ω (ohm)
N Feedback divider value (PLL) —
D(s) Delay in frequency domain (DLL) s
P(s) Phase in frequency domain (PLL) rad
H(s) Response in frequency domain —
T(s) Loop gain in frequency domain (PLL) —
ζ Loop damping factor (PLL) —
ωN Loop bandwidth rad/s
ωC Higher order cutoff frequency (PLL) rad/s
ωO Unity gain frequency rad/s
PM Phase margin rad
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delay is some fraction of the input clock period as determined by the phase detector. It is typically one,
one half, or one quarter of the input clock period.

The output delay, DO(s), is related to the input delay, DI(s), by

where FREF is the reference frequency (Hz), ICH is the charge pump current (A), C is the loop filter
capacitance (F), and KDL is the VCDL gain (s/V). The product of the delay difference and the reference
frequency is equal to the fraction of the reference period in which the charge pump is activated. The average
charge pump output current is equal to this fraction times the peak charge pump current. The output delay
is then equal to the product of the average charge pump current, the loop filter transfer function, and the
delay line gain.

The closed-loop response is then given by

DO(s)�DI(s) = 1/(1 + s/ωN)

where ωN, defined as the loop bandwidth (rad/s), is given by

ωN = ICH ⋅ KDL ⋅ FREF �C

This response is of first order with a pole at ωN. Thus, the DLL acts as a single-pole low-pass filter to
changes in the input reference period with cutoff frequency ωN. The delay between the reference and
feedback signal will be a filtered version of a set fraction of the reference period. It is unconditionally
stable as long as the continuous time approximation holds or, equivalently, as long as ω N is a decade
below ωREF. As ωN increases above ωREF/10, the delay in sampling the phase error will become more
significant and will begin to undermine the stability of the loop.

DLL Design Strategy

With an understanding of the DLL frequency response, we can consider how to structure the loop
parameters to obtain desirable loop dynamics. Using the bandwidth results from the DLL frequency
response and, limiting it to a decade below the reference frequency, we can determine the constraints on
the charge pump current, VCDL gain, and loop filter capacitance as

ωN � FREF = Ich ⋅ KDL � C ≤ π �5

The VCDL also must be structured so that it spans adequate delay range to guarantee lock for all
operating, environmental, and process conditions. The delay range needed is constrained by the lock
target delay of the phase detector, TLOCK, and the range of possible values for the clock distribution delay,
TDIST, and the reference period, TCYCLE, with the following equations: 

where TLOCK is 1 cycle for in-phase locks and 1/4 cycles for quadrature locks.
Also, special measures may be required to guarantee that the DLL reaches lock after being reset. These

measures depend on the specific structure of the DLL. Typically, the VCDL delay is set to its minimum
delay and the state of the phase detector is reset. However, for some DLLs, more complicated approaches
may be required.

Alternative DLL Structures

The complexity of designing a DLL is not so much in the control dynamics as it is in the underlying structure.
Although the DLLs discussed in this chapter are analog-based, using VCDLs with analog control, many other
approaches are possible that utilize different amounts of analog and digital control. These approaches can

DO s( ) DI s( ) DO s( )–( ) FREF ICH � s C⋅( ) KDL⋅⋅ ⋅=

VCDLMIN TLOCK TDIST__MAX–( ) modulo TCYCLE_MIN=

VCDLMAX TLOCK TDIST__MIN–( ) modulo  TCYCLE_MAX=
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circumvent the problems associated with limited delay ranges and reaching lock. One possible structure is
a rotating phase DLL that digitally selects and optionally interpolates with analog or digital control between
intermediate output phases from a VCDL or VCO phase-locked to the clock period [4]. A related structure
interpolates with analog control between quadratures phases generated directly from the clock signal [5].
Another even simpler structure with reduced jitter performance digitally selects intermediate outputs from
an inverter chain-based delay line [6]. While digital control provides more flexibility, analog control requires
less power and area.

Phase-Locked Loops

Similar to a DLL, a PLL aligns the phase of the output to match the input. The DLL accomplishes this
by appropriately delaying the input signal. The PLL accomplishes this by controlling an oscillator to
match the phases of the input signal. The control for the PLL is more indirect, which requires it to have
the resistor in the loop filter for stability.

Consider the typical PLL shown in Fig. 10.3 as it starts out from an unlocked state with a VCO
frequency that is relatively close to but slightly higher than the reference frequency. To help understand
the function of the resistor in the loop filter, let’s first assume that it is zero valued making the loop filter
equivalent to that of the DLL. Initially, the PLL is out of lock as the reference and feedback edges are not
aligned. With the first feedback edge arriving before the first corresponding reference edge, the phase
detector outputs a pulse at the DN output equal in duration to this phase error. A pulse at the DN output
indicates that the VCO frequency needs to be reduced. The charge pump generates an output charge
proportional to the phase error, which reduces the control voltage and thus the VCO frequency.

In order to reduce the phase error, the feedback edges need to arrive later and later with respect to
the reference edges or, equivalently, the VCO frequency must be reduced below the reference frequency.
After several cycles, the phase error is reduced to zero, but the VCO frequency is now lower than the
reference frequency. This frequency overshoot causes the feedback edges to begin to arrive later than
the corresponding reference edges, leading to the opposite error condition from which the loop started.
The loop then begins to increase the VCO frequency above the reference frequency to reduce the phase
error, but at the point when the phase error is zero, the VCO frequency is now higher than the reference
frequency. Thus, in the PLL with a zero-valued resistor, the phase error will oscillate freely around zero, which
represents unstable behavior.

This unstable behavior can be circumvented by adding an extra frequency adjustment that is propor-
tional to the phase error and is therefore applied only for the duration of the phase error. This proportional
control allows the loop to adjust the VCO frequency past the reference frequency in order to reduce the
phase error without the frequency difference persisting when the phase error is eliminated. When the
phase error reaches zero and the extra adjustment is reduced to zero, the VCO frequency should match
the reference frequency leading to a stable result. This proportional control can be implemented by adding
a resistor in series with the loop filter capacitor. This resistor converts the charge pump current, which
is proportional to the phase error, into an extra control voltage component, which is added to the control
voltage already integrated on the loop filter capacitor.

From another perspective, this resistor dampens out potential phase and frequency overshooting. The
amount of damping depends on the value of the resistor. Clearly, with zero resistance, there will be no
damping and the loop will be unstable as the output phase will oscillate forever around zero phase
difference. As the resistor value is increased, the loop will become increasingly less underdamped as the
oscillations will decay to zero at an increasing rate. For some resistor value, the loop will become critically
damped as the oscillations will go away entirely and the phase will approach zero without overshooting.
As the resistor value is increased further, the loop becomes overdamped as the phase initially approaches
zero rapidly, then slows down, taking a long time to reach zero.

The overdamped behavior results when the damping is so high that it creates a large frequency difference
between the VCO and reference that initially drives the phase error rapidly toward zero; however, this
added frequency difference goes away when the phase error approaches zero. The VCO frequency that
© 2002 by CRC Press LLC



                                                                                    
results from the voltage across the loop filter capacitor may still be different from the reference frequency.
Unfortunately, the phase error has been reduced substantially so that there is little charge pump current
to change the voltage on the loop filter capacitor very quickly. The phase will change rapidly to the point
where the resultant phase error generates a proportional frequency correction that makes the VCO fre-
quency match the reference frequency. As the proportionality constant, or, equivalently, the resistance, is
increased, the rate at which the phase changes will also increase and the phase error after the initial phase
change will decrease; however, as the initial phase error is reduced, the amount of time required to eliminate
the phase error will increase because the charge pump current will also decrease.

PLL Frequency Response

The different types of damping behavior can be quantified more carefully by deriving the frequency
response of the PLL. As with the DLL, the frequency response of the PLL can be analyzed with a continuous
time approximation for bandwidths a decade or more below the operating frequency. This bandwidth
constraint is also required for stability due to the reduced phase margin near the higher-order poles that
result from the delay around the sampled feedback loop. Because the loop filter integrates the charge
representing the phase error and the VCO integrates the output frequency to form the output phase, the
PLL has a second-order closed-loop response.

Considerable insight can be gained into the design of the PLL by first considering its open-loop
response. This response can be derived by breaking the loop at the feedback input of the phase detector.
The output phase, PO(s), is related to the input phase, PI(s), by 

PO(s) = PI(s) ⋅ Ich ⋅ (R + 1�(s ⋅ C)) ⋅ KV�s

where ICH is the charge pump current (A), R is the loop filter resistor (ohms), C is the loop filter
capacitance (F), and KV is the VCO gain (Hz/V). The open-loop response, H(s), is then given by

H(s) = PO(s)�PI(s) = ICH ⋅ KV ⋅ (1 + s ⋅ R ⋅ C)�(s2 ⋅ C)

The loop gain, T(s), which is the product of the gain through the forward path, H(s), and the gain
through the feedback path, 1/N, is given by

T(s) = H(s) � N

The normalized loop gain magnitude and phase plots for the PLL are shown in Fig. 10.5. At low
frequencies, the loop gain drops at 40 dB per decade where the phase is at −180°, since there are two poles
at zero frequency. The zero caused by the resistor in the loop filter is at frequency 1/(R ⋅ C) and causes the
loop gain at higher frequencies to only drop at 20 dB per decade and the loop phase to “decrease” to −90°,
which makes it possible to stabilize the loop. 

The plotted loop gain magnitude is normalized with the gain normalization factor, GO, given by

GO = R2 ⋅ C ⋅ ICH ⋅ KV �N

The value of this factor will set the frequency at which the loop gain is unity. This frequency is significant
because it determines the phase margin, which is a measure of the stability and the amount of damping
for the PLL system. The phase margin is measured as 180° or π radians plus the loop gain phase at the
unity gain frequency or, equivalently, the frequency where the loop gain magnitude is unity. The unity
gain level on the plot is the inverse of the gain normalization factor. No phase margin exists at unity gain
frequencies below 0.1/(R ⋅ C) because the loop gain phase is about −180°. The phase margin gradually
increases with increasing unity gain frequency as a result of the zero at frequency 1/(R ⋅ C).

The loop is critically damped with a phase margin of 76°, corresponding to a normalized loop gain
magnitude of 0.25, a gain normalization factor of 4, and a unity gain frequency of 4.12/(R ⋅ C) (rad/s).
The loop will be underdamped for smaller phase margins and overdamped for greater phase margins.
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The closed-loop response can be derived from the open-loop response by considering the feedback
signal. In the closed-loop system, the output phase, PO(s), is related to the input phase, PI(s), by

PO(s) = (PI(s) − PO(s)/N) ⋅ H(s)

where N is the feedback clock divider value. The closed-loop response is then given by

or, equivalently, by

where ζ, defined as the damping factor, is given by

ζ = 1 �2 ⋅ (1/ N ⋅ ICH ⋅ KV ⋅ R2 ⋅ C)0.5

and ωN, defined as the loop bandwidth (rad/s), is given by

ω N = 2 ⋅ ζ �(R ⋅ C)

The loop bandwidth and damping factor completely characterize the closed-loop response. The PLL
is critically damped with a damping factor of one and overdamped with damping factors greater than one. 

Treating the PLL as a standard second order system makes it much easier to analyze. The time domain
impulse, step, and ramp responses are easily derived from the frequency domain closed-loop response.
Equations for these responses are summarized in Table 10.2. The peak values of these responses are very
useful in estimating the amount of frequency overshoot and the amount of supply and substrate noise

FIGURE 10.5 PLL loop gain magnitude and phase (without C2).
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TABLE 10.2 Equations for Second-Order PLL Impulse, Step, and Ramp Time 
Domain Responses

Define:

c1 = −ζ ⋅ ωN + ωN ⋅ (ζ2 − 1)0.5

c2 = −ζ ⋅ ωN − ωN ⋅ (ζ2 − 1)0.5

T1 = C ⋅ R = 2 ⋅ ζ�ωN

Note: c1 ⋅ c2 = ωN
2

Impulse Response (Input is δ(t)):

ζ > 1:
h(t) = (N ⋅ ωN�(2 ⋅ (ζ2 − 1)0.5)) ⋅

((1 + T1⋅ c1) ⋅ e(c1 ⋅ t) − (1 + T1 ⋅ c2) e(c2 ⋅ t)) ⋅ u(t)
ζ = 1:

h(t) = N ⋅ ωN ⋅ e(−ωN ⋅ t) ⋅ (2 − ωN ⋅ t) ⋅ u(t)
0 < ζ < 1:

h(t) = (N ⋅ ωN�(1 − ζ2)0.5) ⋅
e(−ζ ⋅ ωN ⋅ t) ⋅ cos (ωN ⋅ (1 − ζ2)0.5 ⋅ t − φ) ⋅ u(t)

where:
φ = tan −1 ((1 − 2 ⋅ ζ2)�(2 ⋅ ζ ⋅ (1 − ζ2)0.5))

Step Response (Input is u(t)):

ζ > 1:
s(t) = N ⋅ (1 + (ωN�(2 ⋅ (ζ2 − 1)0.5)) ⋅

((1�c1 + T1) ⋅ e(c1 ⋅ t) − (1/c2 + T1) ⋅ e(c2 ⋅ t))) ⋅ u(t)
ζ = 1:

s(t) = N ⋅ (1 + e(−ωN ⋅ t) ⋅ (ωN ⋅ t − 1)) ⋅ u(t)
0 < ζ < 1:

s(t) = N ⋅ (1 − (1/(1 − ζ2)0.5) ⋅
e(−ζ ⋅ ωN ⋅ t) ⋅ cos (ωN ⋅ (1 − ζ2)0.5 ⋅ t + φ′)) ⋅ u(t)

where:
φ′ = sin −1 (ζ)

Ramp Response (input is t ⋅ u(t)):

r′(t) = r(t) − N ⋅ t ⋅ u(t) = PO(t) − N ⋅ PI(t)
ζ > 1:

r(t)  = N ⋅ (t − (1/(2 ⋅ ωN ⋅ (ζ2 − 1)0.5)) ⋅
(e(c1 ⋅ t) − e(c2 ⋅ t)) ⋅ u(t)

r′(t) = −(N/(2 ⋅ ωN ⋅ (ζ2 − 1)0.5)) ⋅
(e(c1 ⋅ t) − e(c2 ⋅ t)) ⋅ u(t)

ζ = 1:
r(t) = N ⋅ t ⋅ (1 − e(−ωN ⋅ t)) ⋅ u(t)
r′(t) = − N ⋅ t ⋅ e(−ωN ⋅ t) ⋅ u(t)

0 < ζ < 1:
r(t) = N ⋅ (t − (1/(ωN ⋅ (1 − ζ2)0.5)) ⋅ e(−ζ ⋅ ωN ⋅ t) ⋅

sin (ωN ⋅ (1 − ζ2)0.5 ⋅ t)) ⋅ u(t)
r′(t) = −(N/(ωN ⋅ (1 − ζ2)0.5)) ⋅ e(−ζ ⋅ ω N ⋅ t) ⋅

sin (ωN ⋅ (1 − ζ2)0.5 ⋅ t) ⋅ u(t)

Slow Step Response (d(t) = (r(t) − r(t − dt))�dt):

d′(t) = d(t) − N ⋅ (t ⋅ u(t) − (t − dt) ⋅ u(t − dt)))
= r′(t) − r′(t − dt)
= PO(t) − N ⋅ PI(t)

0 < ζ < 1:
d′(t) = −(N�(dt ⋅ ωN ⋅ (1 − ζ2)0.5)) ⋅ e(−ζ ⋅ ωN ⋅ t) ⋅

(sin (ωN ⋅ (1 − ζ2)0.5 ⋅ t) ⋅ u(t) − e(ζ ⋅ ωN ⋅ dt) ⋅
sin (ωN ⋅ (1 − ζ2)0.5 ⋅ (t − dt)) ⋅ u(t − dt))
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induced jitter for a set of loop parameters. The peak values and the point at which they occur are
summarized in Table 10.3. 

The closed-loop frequency response of the PLL for different values of ζ and for frequencies normalized
to ωN is shown in Fig. 10.6. This plot shows that the PLL is a low-pass filter to phase noise at frequencies
below ω N. Phase noise at frequencies below ω N passes through the PLL unattenuated. Phase noise at
frequencies above ω N is filtered with slope of −20 dB per decade. For small values of ζ, the filter cutoff
at ω N is sharper with initial slopes as high as −40 dB per decade. However, for these values of ζ, the phase
noise is amplified at frequencies near ω N. This phase noise amplification or peaking increases, along with
the initial cutoff slope, for decreasing values of ζ. This phase noise amplification can have adverse affects
on the output jitter of the PLL. It is important to notice that because of the zero in the closed-loop

TABLE 10.3 Peak Values of Second-Order PLL Magnitude, Impulse, Step,
and Ramp Responses 

Magnitude Frequency Response (for all ζ):

ω1 = (ωN/(2 ⋅ ζ)) ⋅ ((1 + 8 ⋅ ζ2)0.5 − 1)0.5

|H(jω1)| = (N ⋅ (1 + 8 ⋅ ζ2)0.25)�

(1 + (1 − 1/(2 ⋅ ζ2) − 1/(8 ⋅ ζ4)) ⋅
((1 + 8 ⋅ ζ2)0.5 − 1) + 1/(2 ⋅ ζ2))0.5

Step Response:

ζ > 1:
t1 = (1/(ωN ⋅ (ζ2 − 1)0.5)) ⋅

log (2 ⋅ ζ ⋅ (ζ + (1 − ζ2)0.5) − 1)
s(t1) = s(t = t1)

ζ = 1:
t1 = 2/ωN

s(t1) = N ⋅ (1 + 1�e2)
0 < ζ < 1:

t1 = (π − 2 ⋅ sin −1 (ζ))/(ωN ⋅ (1 − ζ2)0.5)
s(t1) = N ⋅ (1 + e((2 ⋅ sin −1  (ζ) − π) ⋅ (ζ �(1 − ζ

2
)0.5)))

Ramp Response:

ζ > 1:
t1 = (1/(2 ⋅ ωN ⋅ (ζ2 − 1)0.5)) ⋅

log (2 ⋅ ζ ⋅ (ζ + (1 − ζ2)0.5) − 1)
r′(t1) = r′(t = t1)

ζ = 1:
t1 = 1/ωN

r′(t1) = − N�(e ⋅ ωN)
0 < ζ < 1:

t1 = cos −1 (ζ)�(ωN ⋅ (1 − ζ2)0.5)
r′(t1) = − N�ωN ⋅ e(cos −1 (ζ) ⋅ (ζ �(1 − ζ 2

)0.5))

Slow Step Response:

0 < ζ < 1:
t1 = (1/x) ⋅

tan −1 ((−x + z ⋅ y ⋅ sin (x ⋅ dt) + z ⋅ x ⋅ cos (x ⋅ dt)) �
(−y + z ⋅ y ⋅ cos (x ⋅ dt) + z ⋅ x ⋅ sin (x ⋅ dt)))

for t1 > dt, otherwise given by t1 for r′(t)
where:

x = ωN ⋅ (1 − ζ2)
y = ζ ⋅ ωN

z = e(ζ ⋅ ωN ⋅ dt)

d′(t1) = d′(t = t1)

Note that ω1 or t1 is the frequency or time where the response from Table 10.2 is
maximized.
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response, there is a small amount of phase noise amplification at phase noise frequencies of ω N for all
values of ζ. However, for values of ζ less than 0.7, the amplification gain starts to become significant.

The closed-loop transient step response of the PLL for different values of ζ and for times normalized
to 1/ω N is shown in Fig. 10.7. The step response is generated by instantaneously advancing the phase of
the reference input by one radian and observing the output for different damping levels in the time domain.
For damping factors below one, the system is underdamped as the PLL output overshoots the final
phase and rings at the frequency ω N. The amplitude of the overshoot increases and the rate of decay
for the ringing decreases as the damping factor is decreased below one. The fastest settling response is
generated with a damping factor of one, where the system is critically damped. For damping factors

FIGURE 10.6 PLL closed-loop frequency response.

FIGURE 10.7 PLL closed-loop transient step response.

 0.2 
 0.4 
 0.6 
 0.8 
 1.0 
 1.2 
 1.4 
 1.6 
 1.8 
 2.0 

| | | | | | | | | | | | | | | | | | | | | | | | | | | ||-50

|-45

|-40

|-35

|-30

|-25

|-20

|-15

|-10

|-5

|0

|5

|10

10-1 100 101 102

/   N

d
b

(H
(

))
ω

ω ω

ζ

 0.2 
 0.4 
 0.6 
 0.8 
 1.0 
 1.2 
 1.4 
 1.6 
 1.8 
 2.0 

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2
|1.4

|1.6

s(
t)

  N •tω

ζ

© 2002 by CRC Press LLC



greater than one, the system is overdamped as the PLL output initially responds rapidly but then takes
a long time to reach the final phase. The rate of the initial response increases and the rate of the final
response decreases as the damping factor is increased above one.

PLL with Higher-Order Roll-Off

It is very common for an actual PLL implementation to contain an extra capacitor, C2, in shunt with the
loop filter, as shown in Fig. 10.8. This capacitor may have been introduced intentionally for filtering or
may result from parasitic capacitances within the resistor or at the input of the VCO.

Because the charge pump and phase detector are activated once every reference frequency cycle, they
can cause a periodic disturbance on the control voltage node. This disturbance is usually not an issue for
loops with N equal to one because the disturbance will occur in every VCO cycle. However, the disturbance
can cause a constant shift in the duty cycle of the VCO output. When N is greater than one, the disturbance
will occur once every N VCO cycles, which could cause the first one or two of the N cycles to be different
from the others, leading to jitter in the PLL output period. In the frequency domain, this periodic
disturbance will cause sidebands on the fundamental peak of the VCO frequency spaced at intervals of
the reference frequency.

Capacitor C2 will help filter out this reference frequency noise by introducing a pole at ωC. It will
decrease the magnitude of the reference frequency sidebands by the ratio of ω REF/ωC. However, the
introduction of C2 can also cause stability problems for the PLL since it converts the PLL into a third-
order system. In addition, C2 makes the analysis of the PLL much more difficult. 

The PLL is now characterized by the four loop parameters ωN, ωC, ζ, and N. The damping factor, ζ,
is changed by C2 as follows:

ζ = 1 �2 ⋅ (1 � N ⋅ ICH ⋅ KV ⋅ R2 ⋅ C2
�(C + C2))

0.5

The loop bandwidth, ω N, is changed by C2 through its dependency on ζ. The added pole in the open-
loop response is at frequency ωC given by

ωC = (C + C2) �(R ⋅ C ⋅ C2)

This pole can reduce the stability of the loop if it is too close to the loop bandwidth frequency. Typically,
it should be set at least a factor of ten above the loop bandwidth so as not to compromise the stability loop.

Because the stability of the loop is now established by both ζ and ωC�ω N, a figure of merit can be
defined that represents the potential stability of the loop as

ζ ⋅ ωC �ω N = (C/C2 + 1)�2

This definition is useful because it actually defines the maximum possible phase margin given an optimal
choice for the loop gain magnitude.

Consider the normalized loop gain magnitude and phase plots for the PLL with different ratios of C
to C2 shown in Fig. 10.9. From these plots, it is clear that the added pole at ωC causes the loop gain
magnitude slope to increase to −40 dB per decade and the loop gain phase to “increase” to −180° above
the frequency of the pole. Between the zero at 1/(R ⋅ C) and the pole at ωC there is a region where the

FIGURE 10.8 Typical PLL block diagram with C2 (clock distribution omitted).

C
RCharge

Pump

FREF FOPhase
Detect VCOVCTRL

U

D

ICH (A) KV (Hz/V)

N

C2
© 2002 by CRC Press LLC



loop gain magnitude slope is −20 dB per decade and the loop gain phase approaches −90°. It is in this
region where a unity gain crossing would provide the maximum possible phase margin. As the ratio of
C to C2 increases, this region becomes wider and the maximum phase becomes closer to −90°. Thus, the
ratio of C to C2, and, therefore, the figure of merit for stability, defines the maximum possible phase
margin.

Based on the frequency response results for the PLL we can make a number of observations about its
behavior. First, the continuous time analysis used assumes that the reference frequency is about a decade
above all significant frequencies in the response. Second, both the second-order and third-order response
are independent of operating frequency, as long as KV remains constant. Third, the resistor R introduces
a zero in the open-loop response, which is needed for stability. Finally, capacitor C2 can decrease the
phase margin if larger than C/20 and can reduce the reference frequency sidebands by ωREF/ωC.

PLL Design Issues

With a good understanding of the PLL frequency response, we can consider issues related to the design of
the PLL. The design of the PLL involves first establishing the loop parameters that lead to desirable control
dynamics and then establishing device parameters for the circuits that realize those loop parameters.

The loop parameters ω N, ωC, and ζ are often set by the application. The desired value for ζ is typically
near unity for the fastest overdamped response and about 76° of phase margin, or at least 0.707 for
minimal ringing and about 65° of phase margin. ω N must be about one decade below the reference
frequency for stability. For frequency synthesis or clock recovery applications, where input jitter filtering
is desirable, ω N is typically set relatively low. For input tracking applications, such as clock de-skewing,
ω N is typically set as high as possible to minimize jitter accumulation, as discussed in the sub-section on
“PLL Supply/Substrate Noise Response.” When reference sideband filtering is important, ωC is typically
set as low as possible at about a decade above ω N to maximize the amount of filtering.

The values of the loop parameters must somehow be mapped into acceptable values for the device
parameters R, C, C2, ICH, and KV. The values of these parameters are typically constrained by the imple-
mentation. The value for capacitor C2 is determined by all capacitances on the control voltage node if
the zero is implemented directly with a resistor. If capacitor C is implemented on chip, which is desirable

FIGURE 10.9 PLL loop gain magnitude and phase with C2.
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to minimize jitter, its size is constrained to less than about 1nF. The charge pump current ICH is constrained
to be greater than about 10 µA depending on the level of charge pump charge injection offsets.

The problem of selecting device parameters is made more difficult by a number of constraining factors.
First, ωN and ζ both depend on all of the device parameters. Second, the maximum limit for C and
minimum limit for ICH will impose a minimum limit on ωN, which already has a maximum limit due to
ωREF and other possible limits due to jitter and reference sideband issues. Third and most important, all
worst-case combinations of device parameters due to process, voltage, and temperature variability must
lead to acceptable loop dynamics.

Handling the interdependence between the loop parameters and device parameters is simplified by
observing some proportionality relationships and scaling rules that directly result from the equations
that relate the loop and device parameters. They are summarized in Table 10.4 and Table 10.5, respectively.
The constant frequency scaling rules can transform one set of device parameters to another without
changing any of the loop parameters. The proportional frequency scaling rules can transform one set of
device parameters, with the resistance, capacitances, or charge pump current held constant, to another
set with scaled loop frequencies and the same damping factor. These rules make it easy to make adjust-
ments to the possible device parameters with controlled changes to the loop parameters.

With the many constraints on the loop and device parameters established by both the system envi-
ronment and the circuit implementation, the design of a PLL typically turns into a compromise between
conflicting design requirements. It is the job of the designer to properly balance these conflicting require-
ments and determine the best overall solution.

PLL Design Strategy

Two general approaches can be used to determine the device parameters for a PLL design. The first
approach is based on an open-loop analysis. This approach makes it easier to visualize the stability of the
design from a frequency domain perspective. The open-loop analysis also easily accommodates more
complicated loop filters. The second approach is based on a closed-loop analysis. This approach involves

TABLE 10.4 Proportionality Relationships between PLL Loop and Device 
Parameters

ωN ω C ζ ωC�ωN

ICH ICH
0.5 indep. ICH

0.5 1/ICH
0.5

R indep. 1�R R 1�R
C 1�C0.5 indep. C0.5 C0.5 (C >> C2)
C2 indep. 1�C2 indep. 1�C2 (C >> C2)

TABLE 10.5 PLL Loop and Device Parameter Scaling Rules

Constant frequency scaling: Given x, suppose that
ICH ⋅ x → ICH

CI ⋅ x → CI

R�x → R
Then all parameters, GO, ΩI, and ζ, remain constant
Proportional frequency scaling: Given x, suppose that

ICH ⋅ x→ ICH ICH ⋅ x2→ ICH ICH→ ICH

CI/x→ CI CI→ CI CI�x
2→ CI

R→ R R�x→ R R ⋅ x→ R
Then, Then,

GO→ GO

ωI ⋅ x→ ωI

ωC/ωN→ ωC/ωN

ζ→ ζ
where CI represents all capacitors and ωΙ represents all frequencies.
s
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the loop parameters ωN and ζ, which are commonly specified by higher-level system requirements. The
complexity of these approaches depends on whether C2 exists and its level of significance.

If C2 does not need to be considered, a simplified version of the open-loop analysis or second-order
analysis can be used. For an open-loop analysis without C2, we need to consider the open-loop response
of the PLL in Fig. 10.5. The loop gain normalization constant, GO, for the normalized loop gain magnitude
plot is directly related to the damping factor ζ by

GO = R2 ⋅ C ⋅ ICH ⋅ KV �N = 4 ⋅ ζ 2

This normalization constant is also the loop gain magnitude at the asymptotic break point for the
zero at 1/(R ⋅ C). An increase in the loop gain normalization constant will lead to a higher unity gain
crossing, and therefore more phase margin. A plot of phase margin as a function of the damping factor
ζ is shown in Fig. 10.10. In order to adequately stabilize the design, the phase margin should be set to
65° or more and the unity gain bandwidth should be set no higher than ω REF /5. It is easiest to first adjust
the loop gain magnitude level to set the phase margin, then to use the frequency scaling rules to adjust
the unity gain bandwidth to the desired frequency. Without C2, the second-order analysis simply depends
on the loop parameters ωN and ζ. To adequately stabilize the design, ω N should be set no higher than
ω REF/10 and ζ should be set to 0.707 or greater.

If C2 exists but is not too large, an extension of the above approaches can be used. C should be set
greater than C2 ⋅ 20 to provide a minimum of 65° of phase margin at the unity gain bandwidth with the
maximum phase margin. For any C/C2 ratio, the maximum phase margin is given by 

With the open-loop analysis, as before, the phase margin should be set to at least 65° or its maximum
and the unity gain bandwidth should be set no higher than ω REF�5. With the second-order analysis, ΩN

should be set no higher than ω REF /10, ζ should be set to 0.707 or greater, and ωC should be at least a
decade above ω N. 

FIGURE 10.10 PLL phase margin as a function of damping factor.
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If C2 exists and is large enough to make it difficult to guarantee adequate phase margin, then a third-
order analysis must be used. This situation may have been caused by physical constraints on the capacitor
sizes, or by attempts to minimize ωC in order to maximize the amount of reference frequency sideband
filtering. In this case, it is desirable to determine the optimal values for the other device parameters that
maximize the phase margin. The phase margin, PM, and unity gain bandwidth, ωO, where the phase
margin is maximized, can be determined from the open-loop analysis as

In order to realize the optimal value for ωO, the loop gain magnitude level must be appropriately set.
This can be accomplished by determining ICH given R, or R given ICH, using the equations 

It is important to remember that all worst-case combinations of device parameters due to process,
voltage, and temperature variability must be considered since they must lead to acceptable loop dynamics
for the PLL to operate correctly under all conditions.

Advanced PLL Architectures

PLL and DLL architectures each have their own advantages and disadvantages. PLLs are easier to use in
systems than DLLs. DLLs typically cannot perform frequency multiplication and have a limited delay
range. PLLs, however, are more difficult to design due to conflicting design constraints. It is difficult to
assure stability while designing for a high bandwidth.

By using variations on the basic architectures many of these problems can be avoided. DLLs can be
designed to perform frequency multiplication by recirculating intermediate edges around the delay line [7].
DLLs can also be designed to have an unlimited phase shift range by employing a delay line that can
produce edges that completely span the clock cycle [4]. In addition, both DLLs and PLLs can be designed
to have very wide bandwidths that track the clock frequency by using self-biased techniques [8], as
discussed in “Self-Biased Techniques.”

DLL/PLL Performance Issues

To this point, this chapter section presents basic issues concerning the structure and design of DLLs and
PLLs. While these issues are important, a good understanding of the performance issues is essential to
successfully design a DLL or PLL. Many performance parameters can be specified for a DLL or PLL
design. They include frequency range, loop bandwidth, loop damping factor (PLL only), input offset,
output jitter, both cycle-to-cycle (period) jitter and tracking (input-to-output) jitter, lock time, and power
dissipation; however, the biggest performance problems all relate to input offset and output jitter.

Input offset refers to the average offset in the phase of the output clock from its ideal value. It typically
results from asymmetries between the circuits for the reference and feedback paths of the phase detector
or from charge injection or charge offsets in the charge pump. In contrast, output jitter refers to the
time-varying offsets in the phase of the output clock from its ideal value or from some reference signal
caused by disturbances from internal and external sources.

Output Jitter

Output jitter can create significant problems for an interface by causing setup and hold time violations,
which lead to data transmission errors. Consider, for example, the measured jitter histogram in Fig. 10.11.
It shows the traces of many PLL output transitions triggered from transitions on the reference input and

PM 2 tan−1 C/C2 1+( )( ) π/2–⋅=

ωO C/C2 1+( )� R C⋅( )=

ICH N/KV C2� R C⋅( )2 C/C2 1+( )3/2⋅⋅=

R N/( KV ICH⋅( ) C2 C2 C/C2 1+( )3/2⋅ ⋅ ⋅=
© 2002 by CRC Press LLC



a histogram with the number of output transitions as a function of their center voltage crossing time.
Most of the transition samples occur very close to the reference, while a few outlying transitions occur
far to either side of the peak. These outlying transitions must be within the jitter tolerance of the interface.
These few edges are typically caused by data dependent low frequency noise events with fast rise times.

Output jitter can be measured in a number of ways. It can be measured relative to absolute time, to
another signal, or to the output clock itself. The first measurement of jitter is commonly referred to as
absolute jitter or long-term jitter. The second is commonly referred to as tracking jitter or input-to-
output jitter when the other signal is the reference signal. If the reference signal is perfectly periodic such
that it has no jitter, absolute jitter and tracking jitter for the output signal are equivalent. The third is
commonly referred to as period jitter or cycle-to-cycle jitter. Cycle-to-cycle jitter can be measured as the
time-varying deviations in the period of single clock cycles or in the width of several clock cycles referred
to as cycle-to-Nth-cycle jitter.

Output jitter can also be reported as RMS or peak-to-peak jitter. RMS jitter is interesting only to
applications that can tolerate a small number of edges with large time displacements that are well beyond
the RMS specification with gracefully degrading results. Such applications can include video and audio
signal generation. Peak-to-peak jitter is interesting to applications that cannot tolerate any edges with time
displacements beyond some absolute level. The peak-to-peak jitter specification is typically the only useful
specification for jitter related to clock generation since most setup or hold time failures are catastrophic to
the operation of a chip.

The relative magnitude for each of these measurements of jitter depends on the type of loop and on
how the phase disturbances are correlated in time. For a PLL design, the tracking jitter can be ten or
more times larger than the period jitter depending on the noise frequency and the loop bandwidth. For
a DLL design, the tracking jitter can be equal to or a factor of two times larger than the period jitter.
However, in the particular case when the noise occurs at half the output frequency, the period jitter can
be twice the tracking jitter for either the PLL or DLL due to the correlation of output edges times.

Causes Of Jitter

Tracking jitter for DLLs and PLLs can be caused by both jitter in the reference signal and by noise sources.
The noise sources include thermal noise, flicker noise, and supply and substrate noise. Thermal noise is
generated by electron scattering in the devices within the DLL or PLL and can be significant at low bias
currents. Flicker noise is generated by mobile charge in the gate oxides of devices within the DLL or PLL
and can be significant for low loop bandwidths. Supply and substrate noise is generated by on-chip
sources external to the DLL or PLL, including chip output drivers and functional blocks such as adders
and multipliers, and by off-chip sources. This noise can be very significant in digital ICs.

FIGURE 10.11 Measured PLL jitter histogram.
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The supply and substrate noise generated by the on-chip and off-chip sources is highly data dependent
and can have a wide range of frequency components that include low frequencies. Substrate noise tends
not to have as large low-frequency components as possible for supply noise since no significant “DC”
drops develop between the substrate and the supply voltages. Under worst-case conditions, DLLs and
PLLs may experience as much as 500 mV of supply noise and 250 mV of substrate noise with a nominal
2.5 V supply. The actual level of substrate noise depends on the nature of the substrate used by the IC
process. To reduce the risk of latch-up, many IC processes use lightly doped epitaxy on the same type
heavily doped substrate. These substrates tend to transmit substrate noise across large distances on the
chip, which make it difficult to eliminate through guard rings and frequent substrate taps.

Supply and substrate noise affect DLLs and PLLs differently. They affect a DLL by causing delay shifts
in the delay line output, which lead to fixed phase shifts that persist until the noise pulses subside or the
DLL can correct the delay error, at a rate limited by its bandwidth (proportional to ω REF/ω N cycles). They
affect a PLL by causing frequency shifts in the oscillator output, which lead to phase shifts that accumulate
for many cycles until the noise pulses subside or the PLL can correct the frequency error, at a rate limited
by its bandwidth (proportional to ω REF /ω N cycles). Because the phase error caused by period shifts in PLLs
accumulate over many cycles, unlike the delay shifts in DLLs, the tracking jitter for PLLs that results from
supply and substrate noise can be several times larger than the tracking jitter for DLLs; however, due to
the added jitter from on-chip clock distribution networks, which typically have poor supply and substrate
noise rejection, the observable difference is typically less than a factor of 2 for well designed DLLs and
PLLs.

DLL Supply/Substrate Noise Response

More insight can be gained into the noise response of DLLs and PLLs by considering how much jitter is
produced as a function of frequency for supply and substrate noise. Figure 10.12 shows the output jitter
sensitivity to input jitter for a DLL with a log-log plot of the absolute output jitter magnitude normalized
to the absolute input jitter magnitude as a function of the input jitter frequency. Because the DLL simply
delays the input signal, the jitter at the input is simply replicated with the same magnitude at the DLL
output. For the same reason, the tracking jitter sensitivity to input jitter is very small at most frequencies;
however, when the input jitter frequency approaches one half of the inverse of the delay line delay, the
output jitter becomes 180° out-of-phase with respect to the input jitter and the observed tracking jitter
can be twice the input jitter.

Figure 10.13 shows the output jitter sensitivity to sine-wave supply or substrate noise for a DLL with
a log–log plot of the absolute output jitter magnitude as a function of the noise frequency. With the
input jitter free, this absolute output jitter is equivalent to the tracking jitter. Also, since the DLL simply
delays the input signal, the absolute output jitter is equivalent to the period jitter. This plot shows that
the normalized jitter magnitude decreases at 20 dB per decade for decreases in the noise frequency below
the loop bandwidth and is constant at one for noise frequencies above the loop bandwidth. This behavior
results since the DLL acts as a low-pass filter to changes in its input period or, equivalently, to noise
induced changes in its delay line delay. Thus, the jitter or delay error is the difference between the noise
induced delay error and a low-pass filtered version of the delay error, leading to a high-pass noise response.

FIGURE 10.12 DLL output jitter sensitivity to input jitter.
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Figure 10.14 shows the output jitter sensitivity to square-wave supply or substrate noise for a DLL
with a log-log plot of the peak absolute output jitter magnitude as a function of the noise frequency.
With fast rise and fall times, the square-wave supply noise causes the delay line delay to change instan-
taneously. The peak jitter is then observed on at least the first output transition from the delay line after
the noise signal transition, independent of the loop bandwidth. Thus, the output jitter sensitivity is
independent the square-wave noise frequency. Overall, the output jitter sensitivity to supply and substrate
noise for DLLs is independent of the loop bandwidth and the reference frequency for the worst-case of
square-wave noise.

PLL Supply/Substrate Noise Response

Figure 10.15 shows the output jitter sensitivity to input jitter for a PLL with a log-log plot of the absolute
output jitter magnitude normalized to the absolute input jitter magnitude as a function of the input jitter
frequency. This plot shows that the normalized output jitter magnitude decreases asymptotically at 20 dB
per decade for noise frequencies above the loop bandwidth and is constant at one for noise frequencies
below the loop bandwidth. It also shows that for underdamped loops where the damping factor is less
than one, the normalized jitter magnitude can be greater than one for noise frequencies near the loop
bandwidth leading to jitter amplification. This overall behavior directly results from the fact that the PLL
is a low-pass filter to input phase noise as determined by the closed-loop frequency response.

Figure 10.16 shows the tracking jitter sensitivity to input jitter for a PLL with a log-log plot of the
tracking jitter magnitude normalized to the absolute input jitter magnitude as a function of the input

FIGURE 10.13 DLL output jitter sensitivity to sine-wave supply or substrate noise.

FIGURE 10.14 DLL output jitter sensitivity to square-wave supply or substrate noise.

FIGURE 10.15 PLL output jitter sensitivity to input jitter.

N

x

ω ω
© 2002 by CRC Press LLC



jitter frequency. This plot shows that the normalized tracking jitter magnitude decreases at 40 dB per
decade for decreases in the noise frequency below the loop bandwidth and is constant at one for noise
frequencies above the loop bandwidth. Again, it shows that for underdamped loops, the normalized jitter
magnitude can be greater than one for noise frequencies near the loop bandwidth. This overall behavior
occurs because the PLL acts as a low-pass filter to input jitter and the tracking error is the difference
between the input signal and the low-pass filtered version of the input signal, leading to a high-pass noise
response. 

Figure 10.17 shows the tracking jitter sensitivity to sine-wave supply or substrate noise for a PLL with
a log-log plot of the tracking jitter magnitude as a function of the noise frequency. With the input jitter
free, this tracking jitter is equivalent to absolute output jitter as with the DLL. This plot shows that the
tracking jitter magnitude decreases at 20 dB per decade for decreases in the noise frequency below the
loop bandwidth and decreases at 20 dB per decade for increases in the noise frequency above the loop
bandwidth. It also shows that for underdamped loops, the tracking jitter magnitude can be significantly
larger for noise frequencies near the loop bandwidth. This overall behavior results indirectly from the
fact that the PLL acts as a low-pass filter to input jitter. Because a frequency disturbance is equivalent to
a phase disturbance of magnitude equal to the integral of the frequency disturbance, the tracking jitter
sensitivity response to frequency noise is the integral of the tracking jitter sensitivity response to phase
noise or, equivalently, input jitter. Therefore, the tracking jitter sensitivity response to sine-wave supply
or substrate noise should simply be the plot in Fig. 10.15 with an added 20 dB per decade decrease over
all noise frequencies, which yields the plot in Fig. 10.17.

This tracking jitter sensitivity response to sine-wave supply or substrate noise can also be explained
in less quantitative terms. Because the PLL acts as a low-pass filter to noise, it tracks the input increasingly
better in spite of the frequency noise as the noise frequency is reduced below the loop bandwidth. Noise
frequencies at the loop bandwidth are at the limits of the PLL’s ability to track the input. The PLL is not
able to track noise frequencies above the loop bandwidth. However, the impact of this frequency noise
is reduced as the noise frequency is increased above the loop bandwidth since the resultant phase
disturbance, which is the integral of the frequency disturbance, accumulates for a reduced amount of time. 

Figure 10.18 shows the tracking jitter sensitivity to square-wave supply or substrate noise for a PLL
with a log-log plot of the tracking jitter magnitude as a function of the noise frequency. This plot shows
that the tracking jitter magnitude is constant for noise frequencies below the loop bandwidth and

FIGURE 10.16 PLL tracking jitter sensitivity to input jitter.

FIGURE 10.17 PLL output jitter sensitivity to sine-wave supply or substrate noise.
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decreases at 20 dB per decade for increases in the noise frequency above the loop bandwidth. Again, it
shows that for underdamped loops, the tracking jitter magnitude can be significantly larger for noise
frequencies near the loop bandwidth. This response is similar to the response for sine waves except that
square-wave frequencies below the loop bandwidth result in the same peak jitter as the loop completely
corrects the frequency and phase error from one noise signal transition before the next transition occurs;
however, the number of output transition samples exhibiting the peak tracking jitter will decrease with
decreasing noise frequency, which can be misunderstood as a decrease in tracking jitter. Also, the jitter levels
for square waves are higher by about a factor of 1.7 compared to these for sine waves of the same amplitude.

Overall, several observations can be made about the tracking jitter sensitivity to supply and substrate
noise for PLLs. First, the jitter magnitude decreases inversely proportional to increases in the loop band-
width for the worst case of square-wave noise at frequencies near or below the loop bandwidth. However,
the loop bandwidth must be about a decade below the reference frequency, which imposes a lower limit
on the jitter magnitude. Second, the jitter magnitude decreases inversely proportional to the reference
frequency for a fixed hertz per volt frequency sensitivity, since the phase disturbance measured in radians
is constant, but the reference period decreases inversely proportional to the reference frequency. Third,
the jitter magnitude is independent of reference frequency for fixed %/V frequency sensitivity, since the
phase disturbance measured in radians changes inversely proportional to the reference period. Finally,
the jitter magnitude increases directly proportional to the square root of N, the feedback divider value,
with a constant oscillator frequency and if the loop is overdamped, since the loop bandwidth is inversely
proportional to the square root of N.

Observations on Jitter

The optimal loop bandwidth depends on the application for the PLL. For frequency synthesis or clock
recovery applications, where the goal is to filter out jitter on the input signal, the loop bandwidth should
be as low as possible. For this application, the phase relationship between the output of the PLL and
other clock domains is typically not an issue. As a result, the only jitter of significance is period jitter
and possibly jitter spanning a few clock periods. This form of jitter does not increase with reductions in
the loop bandwidth; however, if the phase relationship between the PLL output and other clock domains
is important or if the jitter of the PLL output over a large number of cycles is significant, then the loop
bandwidth should be maximized. Maximizing the loop bandwidth will minimize this form of jitter since
it decreases proportional to increases in loop bandwidth.

Because of the hostile noise environments of digital chips, the peak value of the measured tracking jitter
from DLLs and PLLs will likely be caused by square-wave supply and substrate noise. For PLLs, this noise
is particularly significant when the noise frequencies are at or below the loop bandwidth. If a PLL is
underdamped, noise frequencies near the loop bandwidth can be even more significant. In addition, a
PLL can amplify input jitter at frequencies near the loop bandwidth, especially if it is underdamped.
However, as previously discussed, jitter in a PLL or DLL can also be caused by a dead-band region in
phase detector and charge pump characteristics.

In order to minimize jitter it is necessary to minimize supply and substrate noise sensitivity of the VCDL
or VCO. The supply and substrate noise sensitivity can be separated into both static and dynamic components.

FIGURE 10.18 PLL output jitter sensitivity to square-wave supply or substrate noise.
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The static components relate to the sensitivity to the DC value of the supply or substrate voltage. The static
noise sensitivity can predict the noise response for all but the high-frequency components of the supply and
substrate noise. The dynamic components relate to the extra sensitivity to a sudden change in the supply or
substrate voltage that the static components do not predict. The effect of the dynamic components increases
with increasing noise edge rate. For PLLs, the dynamic noise sensitivity typically has a much smaller overall
impact on the supply and substrate noise response than the static noise sensitivity; however, for DLLs, the
dynamic noise sensitivity can be more significant than static noise sensitivity. Only static supply and substrate
noise sensitivity are considered in this chapter.

Minimizing Supply Noise Sensitivity

All VCDL and VCO circuits will have some inherent sensitivity to supply noise. In general, supply noise
sensitivity can be minimized by isolating the delay elements used within the VCDL or VCO from one of
the supply terminals. This goal can be accomplished by using a buffered version of the control voltage
as one of the supply terminals; however, this technique can require too much supply voltage headroom.
The preferred and most common approach is to use the control voltage to generate a supply independent
bias current so that current sources with this bias current can be used to isolate the delay elements from
the opposite supply.

Supply voltage sensitivity is directly proportional to current source output conductance. Simple current
sources provide a delay sensitivity per fraction of the total supply voltage change ((dt/t)/(dVDD/VDD)), of
about 10%, such that if the supply voltage changed by 10% the delay would change by 1%. This level of
delay sensitivity is too large for good jitter performance in PLLs. Cascode current sources provide an
equivalent delay sensitivity of about 1%, such that if the supply voltage changed by 10% the delay would
change by 0.1%, which is at the level needed for good jitter performance, but cascode current sources can
require too much supply voltage headroom. Another technique that can also offer an equivalent delay
sensitivity of about 1% is replica current source biasing [9]. In this approach, the bias voltage for simple
current sources is actively adjusted by an amplifier in a feedback configuration to keep some property of
the delay element, such as voltage swing, constant and possibly equal to the control voltage.

Once adequate measures are taken to minimize the current source output conductance, other supply
voltage dependencies may begin to dominate the overall supply voltage sensitivity of the delay elements.
These effects include the dependencies of threshold voltage and diffusion capacitance for switching
devices on the source or drain voltages, which can be modulated by the supply voltage. With any supply
terminal isolation technique, all internal switching nodes will have voltages that track the supply terminal
opposite to the one isolated. Thus, these effects can be manifested by devices with bulk terminals
connected to the isolated supply terminal. These effects are always a problem for substrate devices with
an isolated substrate-tap voltage supply terminal, such as for NMOS devices in an N-well process with
an isolated negative supply terminal. Isolating the well-tap voltage supply terminal avoids this problem
since the bulk terminals of the well devices can be connected to their source terminals, such as with
PMOS devices in an N-well process with an isolated positive supply terminal. However, such an approach
leads to more significant substrate noise problems. The only real solution is to minimize their occurrence
and to minimize their switching diffusion capacitance. Typically, these effects will establish a minimum
delay sensitivity per fraction of the total supply voltage change of about 1%.

Supply Noise Filters

Another technique to minimize supply noise is to employ supply filters. Supply filters can be both passive,
active, or a combination of the two. Passive supply filters are basically low-pass filters. Off-chip passive filters
work very well in filtering out most off-chip noise but do little to filter out on-chip noise. Unfortunately,
on-chip filters can have difficulty in filtering out low-frequency on-chip noise. Off-chip capacitors can easily
be made large enough to filter out low-frequency noise, but on-chip capacitors are much more limited in
size. In order for the filter to be effective in reducing jitter for both DLLs and PLLs, the filter cutoff frequency
must be below the loop bandwidth.
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Active supply filters employ amplifiers in a feedback configuration to buffer a desired reference supply
voltage and act as high-pass filters. The reference supply voltage is typically established by a band-gap or
control voltage reference. The resultant supply isolation will decrease with increasing supply filter band-
width due to basic amplifier feedback tradeoffs. In order for the active filter to be effective, the bandwidth
must exceed the inverse VCDL delay of a DLL or the loop bandwidth of a PLL. The DLL bandwidth limit
originates because the VCDL delay will begin to be less affected by a noise event if it subsides before a
signal transition propagates through the complete VCDL. The PLL bandwidth limit exists because, as
higher-frequency noise is filtered out above the loop bandwidth, the VCO will integrate the resultant
change in frequency for fewer cycles. Although the PLL bandwidth limit is achievable in a supply filter
with some level of isolation, the DLL bandwidth limit is not. Thus, although active supply filters can
help PLLs, they are typically ineffective for DLLs; however, the combination of passive and active filters
can be an effective supply noise-filtering solution for both PLLs and DLLs by avoiding the PLL and DLL
bandwidth constraints. When the low-pass filter cutoff frequency is below the high-pass filter cutoff
frequency, filtering can be achieved at both low and high frequencies so that tracking bandwidths and
inverse VCDL delays are not an issue.

Other common isolation approaches include using separate supply pins for a DLL or PLL. This approach
should be used whenever possible. However, the isolated supplies will still experience noise from coupling
to other supplies through off-chip paths and coupling to the substrate through well contacts and diffusion
capacitance, requiring that supply noise issues be addressed. Also, having separate supply pins at the well
tap potential can lead to increased substrate noise depending on the overall conductivity of the substrate.

Minimizing Substrate Noise Sensitivity

Substrate noise sensitivity like supply noise sensitivity can create jitter problems for a PLL or DLL.
Substrate noise can couple into the delay elements by modulating device threshold voltages. Substrate
noise can be minimized by only using well-type devices for fixed-biased current sources, only using well-
type devices for the loop filter capacitor, only connecting the control voltage to well-type devices, and
only using the well-tap voltage as the control voltage reference. These constraints will insure that substrate
noise does not modulate fixed-bias current source outputs or the conductance of devices connected to
the control voltage, both through threshold modulation. In addition, they will prevent supply noise from
directly summing into the control voltage through a control voltage reference different from the loop
filter capacitor reference. Even with these constraints, substrate noise can couple into switching devices,
as with supply noise, through the threshold voltage and diffusion capacitance dependencies on the
substrate potential.

Substrate noise can be converted to supply noise by connecting the substrate-potential supply terminals
of the delay elements only to the substrate [10]. This technique insures that the substrate and the
substrate-potential supply terminals are at the same potential, however, it only works with low operating
currents, because otherwise voltage drops will be generated in the substrate and excessive minority carriers
will be dumped into the substrate.

Other Performance Issues

High loop bandwidths in PLLs make it possible to minimize tracking jitter, but they can lead to problems
during locking. PLLs based on phase-frequency detectors cannot tolerate any missing clock pulses in
the feedback path during the locking process. If a clock pulse is lost in the feedback path because the
VCO output frequency is too high, the phase-frequency detector will detect only reference edges, causing
a continued increase in the VCO output frequency until it reaches its maximum value. At this point
the PLL will never reach lock. To avoid losing clock pulses, which results in locking failure, all circuits
in the feedback path, which might include the clock distribution network and off-chip circuits, must be
able to pass the highest frequency the PLL may generate during the locking process. As the loop bandwidth
is increased to its practical maximum limit, however, the amount that the PLL output frequency may
overshoot its final value will increase. Thus, overshoot limits may impose an additional bandwidth limit
on the PLL beyond the decade below the reference frequency required for stability.
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A more severe limit on the loop bandwidth beyond a decade below the reference frequency can result
in both PLLs and DLLs if there is considerable delay in the feedback path. The decade limit is based on
the phase detector adding one reference period delay in the feedback path since it only samples clock
edges once per reference cycle. This single reference period delay leads to an effective pole near the
reference frequency. The loop bandwidth must be at least a decade below this pole to not affect stability.
This bandwidth limit can be further reduced if extra delay is added in the feedback path, by an amount
proportional to one plus the number of reference periods additional delay.

DLL/PLL Circuits

Prior sections discussed design issues related to DLL and PLL loop architectures and low output jitter.
With these issues in mind, this section discusses the circuit level implementation issues of the loop
components. These components include the VCDL and VCO, phase detector, charge pump, and loop filter.

VCDLs and VCOs

The VDCL and VCO are the most critical parts of DLL and PLL designs for achieving low output jitter
and good overall performance. Two general types of VCDLs are used with analog control. First, a VDCL
can interpolate between two delays through an analog weighted sum circuit. This approach only leads
to linear control over delay, if the two interpolated delays are relatively close, which restricts the overall
range of the VCDL. Second, a VCDL can be based on an analog delay line composed of identical cascaded
delay elements, each with a delay that is controlled by an analog signal. This approach usually leads to
a wide delay range with nonlinear delay control. A wide delay range is often desired in order to handle
a range of operating frequencies and process and environmental variability. However, nonlinear delay
control can restrict the usable delay range due to undesirable loop dynamics.

Several types of VCOs are used. First, a VCO can be based on an LC tank circuit. This type of oscillator
has very high supply noise rejection and low phase noise output characteristics. However, it usually also
has a restricted tuning range, which makes it impractical for digital ICs. Second, a VCO can be based on
a relaxation oscillator. The frequency in this circuit is typically established by the rate a capacitor can be
charged and discharged over some established voltage range with an adjustable current. This approach
typically requires too much supply headroom to achieve good supply noise rejection and can be extra
sensitive to sudden changes in the supply voltage. Third, and most popular for digital ICs, a VCO can be
based on a phase shift oscillator, also known as a ring oscillator. A ring oscillator is a ring of identical
cascaded delay elements with inverting feedback between the two elements that close the ring. A ring
oscillator can typically generate frequencies over a wide range with linear control over frequency.

The delay elements, also known as buffer stages, used in a delay line or ring oscillator can be single-
ended, such that they have only one input and one output and invert the signal, or differential, such they
have two complementary inputs and outputs. Single-ended delay elements typically lead to reduced area
and power, but provide no complementary outputs. Complementary outputs provide twice as many output
signals with phases that span the output period compared to single-ended outputs, and allow a 50% duty
cycle signal to be cleanly generated without dividing the output frequency by two. Differential delay elements
typically have reduced dynamic noise coupling to their outputs and provide complementary outputs.

A number of factors must be considered in the design of the delay elements. The delay of the delay
elements should have a linear dependence on control voltage when used in a VCDL and an inverse linear
dependence on control voltage when used in a VCO. These control relationships will make the VCDL
and VCO control gains constant and independent of the operating frequency, which will lead to operating
frequency independent loop dynamics. The static supply and substrate noise sensitivity should be as
small as possible, ideally less than 1% delay sensitivity per fraction of the total supply voltage change. As
previously discussed, this reduced level of supply sensitivity can be established with current source
isolation.

Figure 10.19 shows a single-ended delay element circuit for an N-well CMOS process. This circuit contains
a PMOS common-source device with a PMOS diode clamp and a simple NMOS current source. The diode
clamp restricts the buffer output swing in order to keep the NMOS current source device in saturation.
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In order to achieve high static supply and substrate noise rejection, the bias voltage for the simple NMOS
current source is dynamically adjusted with changes in the supply or substrate voltage to compensate for
its finite output impedance.

Figure 10.20 shows a differential delay element circuit for an N-well CMOS process [9]. This circuit
contains a source-coupled pair with resistive load elements called symmetric loads. Symmetric loads
consist of a diode-connected PMOS device in shunt with an equally sized biased PMOS device. The
PMOS bias voltage VBP is nominally equal to VCTRL, the control input to the bias generator. VBP defines
the lower voltage swing limit of the buffer outputs. The buffer delay changes with VBP because the effective
resistance of the load elements also changes with VBP. It has been shown that these load elements lead to
good control over delay and high dynamic supply noise rejection. The simple NMOS current source is
dynamically biased with VBN to compensate for drain and substrate voltage variations, achieving the
effective static supply noise rejection performance of a cascode current source without the extra supply
voltage required by cascode current sources.

A block diagram of the bias generator for the differential delay element is shown in Fig. 10.21 and the
detailed circuit is shown in Fig. 10.22. A similar bias generator circuit is used for the single-ended delay
element. This circuit produces the bias voltages VBN and VBP from VCTRL. Its primary function is to continu-
ously adjust the buffer bias current in order to provide the correct lower swing limit of VCTRL for the buffer
stages. In so doing, it establishes a current that is held constant and independent of supply and substrate
voltage since the I-V characteristics of the load element does not depend on the supply or substrate voltage.
It accomplishes this task by using a differential amplifier and a half-buffer replica. The amplifier adjusts VBN,
so that the voltage at the output of the half-buffer replica is equal to VCTRL, the lower swing limit. If the supply
or substrate voltage changes, the amplifier will adjust to keep the swing and thus the bias current constant.

FIGURE 10.19 Single-ended delay element for an N-well CMOS process.

FIGURE 10.20 Differential delay element with symmetric loads for an N-well CMOS process.
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The bandwidth of the bias generator is typically set close to the operating frequency of the buffer stages or
as high as possible without compromising its stability, so that the bias generator can track all supply and
substrate voltage disturbances at frequencies that can affect the DLL and PLL designs. The bias generator
also provides a buffered version of VCTRL at the VBP output using an additional half-buffer replica, which is
needed in the differential buffer stage. This output isolates Vctrl from potential capacitive coupling in the
buffer stages and plays an important role in self-biased PLL designs [8].

Figure 10.23 shows the static supply noise sensitivity of a ring oscillator using the differential delay element
and bias generator in a 0.5 µm N-well CMOS process. With this bias generator, the buffer stages can achieve
static frequency sensitivity per fraction of the total supply voltage change of less than 1% while operating
over a wide delay range with low supply voltage requirements that scale with the operating delay. Buffer
stages with low supply and substrate noise sensitivity are essential for low-jitter DLL and PLL operation.

Differential Signal Conversion

PLLs are typically designed to operate at twice the chip operating frequency so that their outputs can be
divided by two in order to guarantee a 50% duty cycle [2]. This practice can be wasteful if the delay
elements already generate differential signals since the differential signal transitions equally subdivide

FIGURE 10.21 Replica-feedback current source bias circuit block diagram.

FIGURE 10.22 Replica-feedback current source bias circuit schematic.
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the clock period. Thus, the requirement for a 50% duty cycle can be satisfied without operating the PLL
at twice the chip operating frequency, if a single-ended CMOS output with 50% duty cycle can be obtained
from a differential output signal. This conversion can be accomplished using an amplifier circuit that
has a wide bandwidth and is balanced around the common-mode level expected at the inputs so that
the opposing differential input transitions have roughly equal delay to the output. Such circuits will
generate a near 50% duty cycle output without dividing by two provided that device matching is not a
problem; however, on-wafer device mismatches for nominally identical devices will tend to unbalance
the circuit and establish a minimum signal input and internal bias voltage level below which significant
duty-cycle conversion errors may result. In addition, as the device channel lengths are reduced, device
mismatches will increase. Therefore, using a balanced differential-to-single-ended converter circuit instead
of a divider can relax the design constraints on the VCO for high-frequency designs but must be used with
caution because of potential device mismatches.

Phase Detectors

The phase detector detects the phase difference between the reference input and the feedback signal of a
DLL or PLL. Several types of phase detectors can be used, each of which will allow the loop achieve a different
phase relationship once in lock. An XOR or mixer can be used as a phase detector to achieve a quadrature
lock on input signals with a 50% duty cycle. The UP and DN outputs are complementary, and, once in
lock, each will generate a 50% duty cycle signal at twice the reference frequency. The 50% duty cycle will
cause the UP and DN currents to cancel out leaving the control voltage unchanged. An edge-triggered SR
latch can be used as the phase detector for an inverted lock. The UP and DN outputs are also complementary,
and, once in lock, each will generate a 50% duty cycle signal at the reference frequency. If differential inputs
are available, an inverted lock can be easily interchanged with an in-phase lock. A sampling flip-flop can
be used to sample the reference clock as the phase detector in a digital feedback loop, where the flip-flop
is used to match the input delay for digital inputs also sampled by identical flip-flops. The output state of
the flip-flop will indicate if the feedback clock is early or late. Finally, a phase-frequency detector (PFD)
can be used as a phase detector to achieve an in-phase lock. PFDs are commonly based on two SR latches
or two D flip-flops. They have the property that only UP pulses are generated if the frequency is too low,
only DN pulses are generated if the frequency is too high, and to first order, no UP or DN pulses are
generated once in lock. Because of this property, PLLs using PFDs will slew their control voltage with, on

FIGURE 10.23 Frequency sensitivity to supply voltage for a ring oscillator with differential delay elements and a
replica-feedback current source bias circuit in a 0.5 µm N-well CMOS process.
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average, half of the charge pump current until the correct frequency is reached, and will never falsely lock
at some harmonic of the reference frequency. PFDs are the most common phase detectors used in DLLs
and PLLs.

Phase detector can have several potential problems. The phase detector can have an input offset caused
by different edge rates between the reference and feedback signals or caused by asymmetric circuits or
device layouts between the reference and feedback signal paths. In addition, the phase detector can exhibit
nonlinearity near the locking point. This nonlinearity can include a dead-band, caused by an input
delay difference where the phase detector output remains zero or unchanged, or a high-gain region,
caused by an accelerated sensitivity to transitions on both the reference and feedback inputs. In order to
properly diagnose potential phase detector problems, the phase detector must be simulated or tested in
combination with the charge pump.

A PFD based on SR latches [2], as shown in Fig. 10.24, can be implemented with NAND or NOR
gates. However, the use of NAND gates will lead to the highest speed. The input sense polarity can be
maintained as positive edge sensitive if inverters are added at both inputs. The layout for the PFD should
be constructed from two identical pieces for complete symmetry. The basic circuit structure can be
modified in several ways to improve performance.

One possible modification to the basic PFD structure is to replace the two-input NAND gates at the
inputs with three-input NAND gates. The extra inputs can serve as enable inputs to the PFD by gating
out positive pulses at the reference or feedback inputs. For the enable inputs to function properly, they
must be low for at least the entire positive pulse in order to properly ignore a falling transition at the
reference or feedback inputs.

Charge Pumps

The charge pump, which is driven by the phase detector, can be structured in a number of ways. The
key issues for the structure are input offset and linearity. An input offset can be caused by a mismatch
in charge-up or charge-down currents or by charge injection. The nonlinearity near the lock point can
be caused by edge rate dependencies and current source switching.

A push-pull charge pump is shown in Fig. 10.25. This charge pump tends to have low output ripple
because small but equal UP and DN pulses, produced by a PFD once in lock, generate equal current
pulses at exactly the same time that cancel out with an insignificant disturbance to the control voltage.

FIGURE 10.24 Phase-frequency detector based on NAND gates.
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The switches for this charge pump are best placed away from the output toward the supply rails in order
to minimize charge injection from the supply rails to the control voltage. The opposite configuration
can inject charge from the supply rails through the capacitance at the shared node between the series
devices.

A current mirror charge pump is shown in Fig. 10.26. This charge pump tends to have the lowest
input offset due to balanced charge injection. In the limit that a current mirror has infinite output
impedance, it will mirror exact charge quantities; however, because the DN current pulse is mirrored to
the output, it will occur later and have a longer tail than the UP current pulse, which is switched directly
to the output. This difference in current pulse shape will lead to some disturbance to the control voltage.

Another combined approach for the charge pump and loop filter involves using an amplifier-based
voltage integrator. This approach is difficult to implement in most IC processes because it requires
floating capacitors. Any of the above approaches can be modified to work in a “bang-bang” mode, where
the output charge magnitude is fixed independent of the phase error. This mode of operation is sometimes
used with digital feedback loops when it is necessary to cancel the aperture offset of a high-speed interface
receiver [11]; however, it makes the loop control very nonlinear and commonly produces dither jitter,
where the output phase, once in lock, alternates between positive and negative errors.

FIGURE 10.25 Push-pull charge pump.

FIGURE 10.26 Current mirror charge pump.
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Loop Filters

The loop filter directly connects to the charge pump to integrate and filter the detected phase error. The
most important detail for the loop filter is the choice of supply terminal to be used as the control voltage
reference. As discussed in the section on “Supply Noise Filters,” substrate noise can couple into delay
elements through threshold modulation of the active devices. The substrate noise sensitivity can be
minimized by using well-type devices for the loop filter capacitor and for fixed-biased devices. Also, care
must be taken to insure that the voltage reference used by the circuitry that receives the control voltage is
the same as the supply terminal to which the loop filter capacitor connects. Otherwise, any supply noise
will be directly summed with the control voltage.

Some designs employ level shifting between the loop filter voltage and the control voltage input to the
VCDL or VCO. Such level shifting is often the cause of added supply noise sensitivity and should be
avoided whenever possible. Also, some designs employ differential loop filters. A differential loop filter
is useful only if the control input to the VCDL or VCO is differential, as is often the case with a delay
interpolating VCDL. If the VCDL or VCO has a single-ended control input, a differential loop filter adds
no value because its output must be converted back to a single-ended signal. Also, the differential loop
filter needs some type of common-mode biasing to establish the common-mode voltage. The common-
mode bias circuit will add some differential mode resistance that will cause the loop filter to leak charge
and will lead to an input offset for the DLL or PLL.

For PLLs, the loop filter must implement a zero in order to provide phase margin for stability. The
zero can be implemented directly with a resistor in series with the loop filter capacitor. In this case, the
charge pump current is converted to a voltage through the resistor, which is added to the voltage across
the loop filter capacitor to form the control voltage. Alternatively, this zero can be formed by summing
an extra copy of the charge pump current directly with a bias current used to control the VCO, possibly
inside a bias generator for the VCO. This latter approach avoids using an actual resistor and lends itself
to self-biased schemes [8].

Frequency Dividers

A frequency divider can be used in the feedback path of a PLL to enable it to generate a VCO output
frequency that is a multiple of the reference frequency. Since the divider is in the feedback path to the
phase detector, care must be taken to insure that the insertion delay of the divider does not upset any
clock de-skewing to be performed by the PLL. As such, an equivalent delay may need to be added in the
reference path to the phase detector in order to cancel out the insertion delay of the divider. The best
approach for adding the divider is to use it as a feedback clock edge enable input to the phase detector.
In this scheme, the total delay of the feedback path, from the VCO to the phase detector, is not affected
by the divider. As long as the divider output satisfies the setup and hold requirements for the enable
input to the phase detector, it can have any output delay and even add jitter. As previously noted, an
enable input can be added to both the reference and feedback inputs of an SR latch PFD by replacing
the two-input NAND gates at the inputs with three-input NAND gates.

Layout Issues

The layout for a DLL or PLL can have significant impact on its overall performance. Supply independent
biasing uses many matched devices that must match when the circuit is fabricated. Typical device matching
problems originate from different device layouts, different device orientations, different device geometry
surroundings leading to device etching differences, and sensitivity to process gradients. In general, the
analog devices should be arrayed in identical common denominator units at the same orientation so that
the layers through polysilicon for and around each device appear identical. The common denominator
units should use folding at a minimum to reduce the sensitivity to process gradients. Bias voltages, especially
the control voltage, and switching nodes within the VCO or VCDL should be carefully routed to minimize
coupling to the supply terminal opposite the one referenced. In addition, connecting the control voltage
to a pad in a DLL or PLL with an on-chip loop filter should be avoided. At a minimum, it should only
be bonded for testing but not production purposes.
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Circuit Summary

In general, all DLL and PLL circuits must be designed from the outset with supply and substrate noise
rejection in mind. Obtaining low noise sensitivity requires careful orchestration among all circuits and
cannot be added as an after thought. Supply noise rejection requires isolation from one supply terminal,
typically with current source isolation. Substrate noise rejection requires all fixed-biased devices to be
well-type devices to minimize threshold modulation. However, the best circuits to use depend on both
the loop architecture and the IC technology.

Self-Biased Techniques

Achieving low tracking jitter and a wide operating frequency range in PLL and DLL designs can be
difficult due to a number of design trade-offs. To minimize the amount of tracking jitter produced by a
PLL, the loop bandwidth should be set as high as possible. However, the loop bandwidth must be set at
least a decade below the lowest desired operating frequency for stability with enough margin to account
for bandwidth changes due to the worst-case process and environmental conditions. Achieving a wide
operating frequency range in a DLL requires that the VCDL work over a wide range of delays. However,
as the delay range is increased, the control becomes increasingly nonlinear, which can undermine the
stability of the loop and lead to increased jitter. These different trade-offs can cause both PLLs and DLLs
to have narrow operating frequency ranges and poor jitter performance.

Self-biasing techniques can be applied to both PLLs and DLLs as a solution to these design trade-off
problems [8]. Self-biasing can remove virtually all of the process technology and environmental variability
that affect PLL and DLL designs, and provide a loop bandwidth that tracks the operating frequency. This
tracking bandwidth sets no limit on the operating frequency range and makes wide operating frequency
ranges spanning several decades possible. This tracking bandwidth also allows the bandwidth to be set
aggressively close to the operating frequency to minimize tracking jitter. Other benefits of self-biasing
include a fixed damping factor for PLLs and input phase offset cancellation. Both the damping factor
and the bandwidth to operating frequency ratio are determined completely by a ratio of capacitances
giving effective process technology independence. In general, self-biasing can produce very robust designs.

The key idea behind self-biasing is that it allows circuits to choose the operating bias levels in which
they function best. By referencing all bias voltages and currents to other generated bias voltages and
currents, the operating bias levels are essentially established by the operating frequency. The need for
external biasing, which can require special band-gap bias circuits, is completely avoided. Self-biasing
typically involves using the bias currents in the VCO or VCDL as the charge pump current. Special
accommodations are also added for the feed-forward resistor needed in a PLL design.

Characterization Techniques

A good DLL or PLL design is not complete without proper simulation and measurement characterization.
Careful simulation can uncover stability, locking, and jitter problems that might occur at the operating,
environment, and process corners. Alternatively, careful laboratory measurements under the various
operating conditions can help prevent problems in manufacturing.

Simulation

The loop dynamics of the DLL or PLL should be verified through simulation using one of several possible
modeling techniques. They can be modeled at the circuit level, at the behavioral level, or as a simplified
linear system. Circuit-level modeling is the most complete, but can require a lot of simulation time because
the loops contain both picosecond switching events and microsecond loop bandwidth time constants.
Behavioral models can simulate much faster, but are usually restricted to transient simulations. A simplified
linear system model can be constructed as a circuit from linear circuit elements and voltage-controlled
current sources, where phase is modeled as voltage. This simple model can be analyzed not just with
transient simulations, but also with AC simulations and other forms of analysis possible for linear circuits.
Such models can include supply and substrate noise sensitivities and actual loop filter and bias circuitry.
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Open-loop simulations at the circuit level should be performed on individual blocks within the DLL
or PLL. The VCDL and VCO should be simulated using a transient analysis as a function of control
voltage, supply voltage, and substrate voltage in order to determine the control, supply, and substrate
sensitivities. The phase detector should be simulated with the charge pump, by measuring the output
charge as a function of input phase different and possibly control voltage, to determine the static phase
offset and if any nonlinearities exist at the locking point, such as a dead-band or high-gain region. The
results of these simulations can be incorporated into the loop dynamics simulation models.

Closed-loop simulations at the circuit level should also be performed on the complete design in order
to characterize the locking characteristics, overall stability, and jitter performance. The simulations should
be performed from all possible starting conditions to insure that the correct locking result can be reliably
established. The input phase step response of the loop should be simulated to determine if there are
stability problems manifested by ringing. Also, the supply and substrate voltage step response of the loop
should be simulated to give a good indication of the overall jitter performance. All simulations should
be performed over all operating conditions, including input frequencies and divider ratios, and environ-
mental conditions including supply voltage and temperature as well as process corners.

Measurement

Once the DLL or PLL has been fabricated, a series of rigorous laboratory measurements should be
performed to insure that a problem will not develop late in manufacturing. The loop should first be
characterized under controlled conditions. Noise-free supplies should be used to insure that the loop
generally locks and operates correctly. Supply noise steps at sub-harmonic of the output frequency can
be used to allow careful measurement of the loop’s response to supply steps. If such a supply noise signal
is added synchronously to the output signal, it can be used as a trigger to obtain a complete time averaged
response to the noise steps. The step edge rates should be made as high as possible to yield the worst-
case jitter response. Supply noise steps swept over frequency, especially at low frequencies, should be
used to determine the overall jitter performance. Also, supply sine waves swept over frequency will help
determine if there are stability problems with the loop manifested by a significant increase in jitter when
the noise frequency approaches the loop bandwidth.

The loop should then be characterized under uncontrolled conditions. These conditions would include
worst-case I/O switching noise and worst-case on-chip core switching noise. These experiments will be the
ultimate judge of the PLL’s jitter performance assuming that the worst-case data patterns can be constructed.
The best jitter measurements to perform for characterizations will depend on the DLL or PLL application,
but they should include both peak cycle-to-cycle jitter and peak input-to-output jitter.

Conclusions

DLLs and PLLs can be used to relax system-timing constraints. The best loop architecture strongly
depends on the system application and the system environment. DLLs produce less jitter than PLLs due
to their inherently reduced noise sensitivity. PLLs provide more flexibility by supporting frequency
multiplication and an unlimited phase range. Independent of the chosen loop architecture, supply and
substrate noise will likely be the most significant cause of output jitter. As such, all circuits must be
designed from the outset with supply and substrate noise rejection in mind.
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10.2 Latches and Flip-Flops

Fabian Klass

Introduction

This chapter section deals with latches and flip-flops that interface to complementary static logic and are
built in CMOS technology. Two fundamental types of designs are discussed: (1) design based on trans-
parent latches and (2) designs based on edge-triggered flip-flops. Because conceptually flip-flops are built
from transparent latches, the analysis of timing requirements is focused primarily on the former. Flip-
flop-based designs are then analyzed as a special case of a latch-based design. Another type of latch, known
as a pulsed latch, is treated in a special section also. This is because while similar in nature to a transparent
latch, its usage in practice is similar to a flip-flop, which makes it a unique and distinctive type. 

The chapter section is organized as follows. The first half deals with the timing requirements of latch-
and flip-flop-based designs. It is generic and the concepts discussed therein are applicable to other technol-
ogies as well. The second half of the chapter presents specific circuit topologies and is exclusively focused
on CMOS technology. Various latches and flip-flops are described and their performance is analyzed. A
subsection on scan design is also provided. A summary and a historical perspective is finally presented.

Historical Trends

In discussing latch and flip-flop based designs, it is important to review the fundamental concept behind
them, which is pipelining. Pipelining is a technique that achieves parallelism by segmenting long sequential
logical operations into smaller ones. At any given time, each stage in the pipeline operates concurrently
on a different data set. If the number of stages in the pipeline is N, then N operations are executed in
parallel. This parallelism is reflected in the clock frequency of the system. If the clock frequency of the
unsegmented pipeline is Freq, a segmented pipeline with N stages can operate ideally at N × Freq. It is
important to understand that the increase in clock rate does not necessarily translate linearly into increased
performance. Architecturally, the existence of data dependencies, variable memory latencies, inter-
ruptions, and the type of instructions being executed, among other factors, contribute to reducing the
effective number of operations executed per clock cycle, or the effective parallelism [1]; however, as a
historical trends show, pipelines are becoming deeper, or correspondingly, the stages are becoming
shorter. For instance, the design reported in [2] has a pipeline 15-stage deep. From a physical perspective,
the theoretical speedup of segmentation is not attainable either. This is because adjacent pipeline stages
need to be isolated, so independent operations, which execute concurrently, do not intermix. Typically,
synchronous systems use latches or flip-flops to accomplish this. Unfortunately, these elements are not
ideal and add overhead to each pipeline stage. This pipeline overhead depends on the specific latching
style and the clocking scheme adopted. For instance, if the pipeline overhead in an N-stage design is 20%
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of the cycle time, the effective parallelism achieved is only N × 0.8. If the clock rate were doubled by
making the pipeline twice as deep, e.g., by inserting one additional latch or flip-flop per stage, then the
pipeline overhead would become 40% of the cycle time, or correspondingly, the achieved parallelism 2
× N × 0.6. So in such a case, a doubling of the clock rate translates into a 50% only increase in performance
(2 × 0.6/0.8 = 1.50). In practice, other architectural factors, some of them mentioned above, would reduce
the performance gain even further. 

From the above discussion, it becomes clear that in selecting a latch type and clocking scheme, the
minimization of the pipeline overhead is key to performance; however, as discussed in detail throughout
this chapter section, performance is not the only criterion that designers should follow in making such
a selection. In addition to the pipeline overhead, latch- and flip-flop-based designs are prone to races.
This term refers to fast signals propagating through contiguous pipeline stages within the same clock
cycle, resulting in data corruption. Although this problem does not reflect directly in performance, it is
the nightmare of designers because it is usually fatal. If it appears in silicon, it is extremely hard to debug,
and therefore it is generally detrimental to the design cycle. Furthermore, since most of the design time
is spent on verification, particularly timing verification, a system that is susceptible to races takes longer
to design.

Other design considerations, such as layout area, power dissipation, power-delay product, design robust-
ness, clock distribution, and timing verification, some of which are discussed in this chapter section, must
also be carefully considered in selecting a particular latching design.

Nomenclature and Symbols

The nomenclature and symbols used throughout this chapter are shown in Fig. 10.27. The polarity of the
clock is indicated with a conventional bubble. The presence of the bubble means the latch is transparent-
low or that the flip-flop samples with the negative edge of clock. Conversely, the lack of the bubble means
the latch is transparent-high, or that the flip-flop samples with the positive edge of clock. The term opaque,

FIGURE 10.27 Symbols used for latches, flip-flops, and pulsed latches.
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introduced in [3], is used to represent the opposite to transparent. It is considered unambiguous in
contrast to on/off or open/close. A color convention is also adopted to indicate the transparency of the
latch. White means transparent-high (or opaque-low), while shaded means transparent-low (or opaque-
high) (Fig. 10.27, top). Because most flip-flops are made from two transparent latches, one transparent-
high and one transparent-low, a half-white half-shaded symbol is used to represent them (Fig. 10.27,
middle). The symbol adopted for pulsed flops has a white band on a shaded latch, or vice versa, to
indicate a short transparency period (Fig. 10.27, bottom).

To make timing diagrams easy to follow, relevant timing dependencies are indicated with light arrows,
as shown in Fig. 10.28. Also, a coloring convention is adopted for the timing diagrams. Signal waveforms
that are timing dependent are shaded. This eases the identification of the timing flow of signals and helps
better visualizing the timing requirements of the different latching designs.

Definitions

The following definitions apply to a transparent-high latch; however, they are generic and can be applied
to transparent-low pulsed latches, regular latches, or flip-flops. Most flip-flops are made from back-to-
back latches, as will be discussed later on. 

Blocking Operation
A blocking operation results when the input D to the latch arrives during the opaque period of the clock
(see Fig. 10.29). The signal is “blocked,” or delayed, by the latch and does not propagate to the output
Q until clock CK rises and the latch becomes transparent. Notice the dependency between the timing
edges, in particular, the blocking time from the arrival of D until the latch opens. The delay between the
rising edge of CK and the rising/falling edge of Q is commonly called the Clock-to-Q delay (TCKQ).

Nonblocking Operation
A nonblocking operation is the opposite to a blocking one and results when the input D arrives during
the transparent period of the clock (see Fig. 10.30). The signal propagates through the latch without
being delayed by clock. The only delay between D and Q is the combinational delay of the latch, or
latency, which is denoted as TDQ. 

In general, slow signals should not be blocked by a latch. As soon as they arrive they should transfer
to the next stage with the minimum possible delay. This is equivalent to say that the latch must become

FIGURE 10.28 Timing diagram convention.

FIGURE 10.29 A blocking operation.
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transparent before the slowest signal arrives. Fast signals, on the other hand, can be blocked by a latch
since they do not affect the cycle time of the circuit. These two are the basic principles of latch-based
designs. A detailed timing of latches will be presented later on.

The Setup and Hold Time

Besides latency, setup and hold time are the other two parameters that characterize the timing of a latch.
Setup and hold can be defined using the blocking and nonblocking concepts just introduced. The time
reference for such definition can be either edge of the clock. For convenience, the falling edge is chosen
when using a transparent-high latch, while the rising edge is chosen when using a transparent-low latch.
This makes the definitions of these parameters independent of the clock period.

Setup Time
It is the latest possible arrival of signal D that guarantees nonblocking operation and optimum D-to-Q
latency through the latch.

Hold Time
It is the earliest possible arrival of signal D that guarantees a safe blocking operation by the latch.

Notice that the previous definitions are quite generic and that a proper criterion should be establish
in order to measure these parameters in a real circuit. The condition for optimum latency in the setup
definition is needed because as the transition of D approaches or exceeds a certain value, while the latch
may still be transparent, its latency begins to increase. This can lead to a metastable condition before a
complete blockage is achieved. The exact definition of optimum is implementation dependent, and is
determined by the latch type, logic style, and the required design margins. In most cases, a minimum
or near-minimum latency is a good criterion. Similarly, the definition of safe blocking operation is also
implementation dependent. If the transition of D happens too soon, while the latch is neither transparent
nor opaque, small glitches may appear at Q, which may be acceptable or not. It is up to the designer to
determine the actual criterion used in the definition. 

The timing diagrams depicted in Fig. 10.31 show cases of signal D meeting and failing setup time,
and meeting and failing hold time. The setup and hold region of the latch is indicated by the shaded
area. 

The Sampling Time

Although the setup and hold time seem to be independent parameters, in reality they are not. Every
signal in a circuit must be valid for a minimum amount of time to allow the next stage to sample it
safely. This is true for latches and for any type of sampling circuit. This leads to the following definition.

Sampling Time
It is the minimum pulse width required by a latch to sample input D and pass it safely to output Q.

The relationship between setup, hold, and sampling time is the following:

(10.1)

FIGURE 10.30 A nonblocking operation.
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For a properly designed latch, Tsetup + Thold = Tsampling.
In contrast to the setup and hold time, which can be manipulated by the choice of latch design, the

sampling time is an independent parameter, which is determined by technology. Setup and hold times
may have positive or negative values, and can increase or decrease at the expense of one another, but the
sampling time has always a positive value. Figure 10.32 illustrates the relationship between the three
parameters in a timing diagram. Notice the lack of a timing dependency between the trailing edge of 
and . This is because this transition happens during the opaque phase of the clock. This suggests that
the hold time does not define the maximum speed of a circuit. This will be discussed more in detail
later on.

Timing Constraints

Most designers tend to think of latches and flip-flops as memory elements, but few will think of traffic
lights as memory elements. However, this is the most appropriate analogy of a latch: the latch being
transparent equals to a green light, being opaque to a red light; the setup time is equivalent to the duration
of the yellow light, and the latency to the time to cross the intersection. The hold time is harder to visualize,
but if the road near the intersection is assumed to be slippery, it may be thought of as the minimum
time after the light turns red that allows a moving vehicle to come to a full stop. Slow and fast signals may
be thought of as slow and fast moving vehicles, respectively. Now, when electrical signals are stopped, i.e.,

FIGURE 10.31 Setup and hold time timing diagrams.

FIGURE 10.32 Relationship between setup, hold, and sampling time.
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blocked by a latch, their values must be preserved until the latch opens again. The preservation of the
signal value, which may be required for a fraction of a clock cycle or several clock cycles, requires a form
of storage or memory built into a latch. So in this respect a latch is both a synchronization and a memory
element. Memory structures (SRAMs, FIFOs, registers, etc.) built from latches or flip-flops, use them
primarily as memory elements. But as far as timing is concerned, the latch is a synchronization element.

The Latch as a Synchronization Element

Pipelined designs achieve parallelism by executing operations concurrently at different pipeline stages.
Long sequential operations are divided into small steps, each being executed at one stage. The shorter
the stage, the higher the clock frequency and the throughput of the system. From a timing perspective,
the key to such design approach is to prevent data from different stages from intermixing. This might
happen because different computations, depending on complexity and data dependency, produce
results at different times. So within a single stage, signals propagate at different speeds. A fast-propagating
signal can catch up with a slow-propagating signal from a contiguous stage, resulting in data corruption.
This observation leads to the following conclusion: if signals were to propagate all at the same speed
(e.g., a FIFO), there would be no race through stages and therefore no need for synchronization elements.
Designs based on this principle were actually built and the resulting ‘latch-less’ technique is called wave-
pipelining [4]. A good analogy for wave-pipelining is the rolling belt of a supermarket: groceries are the
propagating signals and sticks are the synchronization elements that separate a set of groceries belonging
to one customer from the next; however, since all groceries move at the same speed, as long as sufficient
space is left between sets, no sticks are needed. 

Single-Phase, Latch-Based Design

In viewing latches as synchronization elements, there are two types of timing constraints that define a
latch-based design. One deals with the slow-propagating signals and determines the maximum speed at
which the system can be clocked. The second deals with fast-propagating signals and determines race
conditions through the stages. These timing constraints are the subject of this section. To make the
analysis more generic, the clock is assumed to be asymmetric: the high time and the low time are not
the same. As will be explained later on in the chapter, timing constrains for all other latching designs are
derived from the generic case discussed below.

Max-Timing Constraints

The max-timing problem can be formulated in the two following ways:

1. Given the maximum propagation delay within a pipeline state, determine the maximum clock
frequency the circuit can be clocked at, or conversely,

2. Given the clock frequency, determine the maximum allowed propagation delay within a stage. 

The first formulation is used when the logic partition is predefined, while the second is preferred when
the clock frequency target is predefined. The analysis that follows uses the second formulation. 

The circuit model used to derive the timing constraints is depicted in Fig. 10.33. It consists of a sending
and receiving latch and the combinational logic between them. The logic corresponds to one pipeline stage.

FIGURE 10.33 Single-phase, latch-based design.

CK

D1 Q1

CK

D2 Q2

D1′

D2′

Q1′

Q2′

Max Path

Min Path

Sending
Latch

Receiving
LatchCombinational Logic
© 2002 by CRC Press LLC



The model shows explicitly the slowest path, or max path, and the fastest path, or min path, through the
logic. The two paths need not be independent, i.e., they can converge, diverge or intersect, although for
simplicity and without losing generality they are assumed to be independent.

As mentioned earlier, the first rule of a latch-based design is that signals propagating through max
paths must not be blocked. A timing diagram for this case is shown in Fig. 10.34. TCYC represents the
clock period, while TON represents the length of the transparent period. If max path signals D1 and 
arrive at the latch when it is transparent, the only delay introduced in the critical path is the latch latency
(TDQ). So, assuming that subsequent pipeline stages are perfectly balanced, i.e., the logic is equally
partitioned at every stage, the maximum propagation delay Tmax at any given stage is determined by

(10.2)

So the pipeline overhead of a single-phase latch design is TDQ.
Using the traffic light analogy, this would be equivalent to a car driving along a long road with synchro-

nized traffic lights, and moving at a constant speed equal to the speed of the green light wave. In such a
situation, the car would never have to stop at a red light. 

Min-Timing Constraints

Min-timing constraints, also known as race-through constraints, are not related to the cycle time, therefore
they do not affect speed performance. Min-timing has to do with correct circuit functionality. This is of
particular concern to designers because failure to meet min-timing in most cases means a nonfunctional
chip regardless of the clock frequency. The min-timing problem is formulated as outlined below. 

Assuming latch parameters are known, determine the minimum propagation delay allowed within a
stage.  

The timing diagram shown in Fig. 10.35 illustrates the problem. Signal D2 is blocked by clock, so the
transition of Q2 is determined by the CK-to-Q delay of the latch (TCKQ). The minimum propagation delay
(Tmin) is such that  arrives when the receiving latch is still transparent and before the setup time. Then,

 propagates through the latch creating a transition at  after a D-to-Q delay. Although the value of 
is logically correct, a timing problem is created because two pipeline stages get updated in the same clock
cycle (or equivalently, a signal “races through” two stages in one clock cycle). The color convention
adopted in the timing diagram helps identifying this type of failure: notice that when the latches are
opaque, Q2 and  have the same color, which is not allowed.

To condition to avoid a min-timing problem now becomes apparent. If Tmin is long enough such that
 arrives after the receiving latch has become opaque, then  will not change until the latch becomes

transparent again. This is the second rule of a latch-based design and says that a signal propagating

FIGURE 10.34 Max-timing diagrams for single-phase, latch-based design.
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through a min-path must be blocked. A timing diagram for this case is illustrated in Fig. 10.36 and is
formulated as

(10.3)

or equivalently

(10.4)

Using the traffic light analogy again, a fast moving vehicle stopping at every red light on the average
moves at the same speed as the slow moving vehicle.

Having defined max and min timing constrains, the valid timing window for a latch-based design is
obtained by combining Eqs. (10.2) and (10.4). If TD is the propagation delay of a signal, the valid timing
window for such signal is given by

(10.5)

Equation (10.5) must be used by a timing analyzer to verify that all signals in a circuit meet timing
requirements. Notice that this condition imposes a strict requirement on min paths. If TON is half clock
cycle (i.e., 50% duty cycle clock), then the minimum delay per stage must be approximately equal to that
value, depending on the value of (Thold − TCKQ). In practice, this is done by padding the short paths of
the circuit with buffers that act as delay elements. Clearly, this increases not only area and power, but

FIGURE 10.35 Min-timing diagrams for single-phase, latch-based design showing a min-timing (or race-through)
problem.

FIGURE 10.36 Min-timing diagrams for single-phase, latch-based design showing correct operation.
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also design complexity and verification effort. Because of these reasons, single latch-based designs are
rarely used in practice.

Notice that the latch setup time is not part of Eq. (10.5). Consequently, it can be concluded that the
setup time does not affect the timing of a latch-based design (although the latency of the latch does).
This is true except when time borrowing is applied. This is the subject of the next subsection.

Time Borrowing

Time borrowing is the most important aspect of a latch-based design. So far it has been said that in a
latch-based design critical signals should not be blocked, and that the max-timing constraint is given by
Eq. (10.2); however, depending on the latch placement, the nonblocking requirement can still be satisfied
even if Eq. (10.2) is not. Figure 10.37 illustrates such a case. With reference to the model in Fig. 10.33,
input D1 is assumed to be blocked. So the transition of Q1 happens a CK-to-Q delay after clock (TCKQ)
and starts propagating through the max path. As long as  arrives to the receiving latch before the setup
time, the D-to-Q transition is guaranteed to be nonblocking. In this way, the propagation of  is allowed
to “borrow” time into the next clock cycle without causing a timing failure.

The maximum time that can be borrowed is determined by the setup time of the receiving latch. The
timing requirement for such condition is formulated as follows:

(10.6)

and rearranged as:

(10.7)

By subtracting Eq. (10.2) from Eq. (10.7), the maximum amount of time borrowing, Tborrow, can be
derived and it is given by

(10.8)

Assuming that TCKQ ≈ TDQ, Eq. (10.8) reduces to

(10.9)

So the maximum time that can be borrowed from the next clock cycle is approximately equal to the
length of the transparent period minus the latch setup time. 

Because time borrowing allows signal propagation across a clock cycle boundary, timing constraints
are no longer limited to a single pipeline stage. Using the timing diagram of Fig. 10.37 as a reference,

FIGURE 10.37 Time borrowing for single-phase, latch-based design.
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and assuming that  is the maximum propagation delay from the following timing constraint,
besides Eq. (10.7), must be met across two adjacent stages:

(10.10)

which again if TCKQ ≈ TDQ, reduces to

(10.11)

For n stages, Eq. (10.11) can be generalized as follows:

(10.12)

where ∑nTmax is the sum of the maximum propagation delays across n stages. 
Equation (10.12) seems to suggest that the maximum allowed time borrowing across n stages is limited

to TON − Tsetup (see Eq. (10.9)); however, this is not the case. If the average Tmax across two or more stages
is such that Eq. (10.2) is satisfied, then maximum time borrowing can happen more than once.

Although time borrowing is conceptually simple and gives designers more relaxed max-timing con-
straints, and thus more design flexibility, in practice timing verification across clock cycle boundaries is
not trivial. Few commercial timing tools have such capabilities, forcing designers to develop their own
in order to analyze such designs. A common practice is to disallow time borrowing as a general rule and
only to allow it in exceptional cases, which are then verified individually by careful timing analysis. 

The same principle that allows time borrowing gives transparent latches another very important
property when dealing with clock skew. This is the topic of the next subsection.

The Clock Skew

Clock skew refers to the misalignment of clock edges at the end of a clock distribution network due to
manufacturing process variations, load mismatch, PLL jitter, variations in temperature and voltage, and
induced noise. The sign of the clock skew is relative to direction of the data flow, as illustrated in Fig.
10.38. For instance, if the skew between the clocks is such that CK arrives after CK′, data moving from
left to right see the clock arriving early at the destination latch. Conversely, data moving in the opposite
direction see the clock arriving late at the destination latch. The remainder of this chapter section assumes
that the data flow is not restricted to a particular direction. Thus, the worst-case scenario of clock skew
is assumed for each case: early skew for max-timing, and late skew for min-timing. How clock skew
affects the timing of a single-phase latch design is discussed next.

FIGURE 10.38 Clock skew.
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Max-timing
The max-timing of a single-phase latch-based design is, to a large extent, immune to clock skew. This is
because signals in a max-path are not blocked. The timing diagram of Fig. 10.39 illustrates this case.
Using Fig. 10.33 as a reference, the skew between clocks CK and CK′ is Tskew, with CK′ arriving earlier
than CK. The transition of signals D1 and assumed to be critical, occur when latches are transparent
or nonblocking. As observed, the receiving latch becoming transparent earlier than expected has no effect
on the propagation delay of Q1, as long as the setup time requirement of the receiving latch is satisfied.
Therefore, Eq. (10.2) still remains valid.

Other scenarios where clock skew might affect max-timing can be imagined. However, none of these
invalidates the conclusion arrived at in the previous paragraph. One of such scenarios is illustrated in the
timing diagram of Fig. 10.40. In contrast to the previous example, here the input to the sending latch (D1)
is blocked. If the maximum propagation delay is such that TCKQ + Tmax = TCYC, the earlier arrival of CK′
results in unintentional time borrowing. Although this reduces the maximum available of intentional time
borrowing from the next cycle (as defined earlier), from a timing perspective, no violation has occurred.
Another scenario is illustrated in Fig. 10.41. Similar to the previous example, D1 is blocked and TCKQ +
Tmax = TCYC, but in this case the arrival of the receiving clock CK′ is late. The result is that signal  gets
blocked for the period of length equal to Tskew. Depending on whether the next stage receives a late clock
or not, this blocking has either no effect on timing or leads to time borrowing in the next clock cycle. 

FIGURE 10.39 Max-timing for single-phase, latch-based design under the presence of early clock skew. D1 transition
is not blocking.

FIGURE 10.40 Max-timing for single-phase, latch-based design under the presence of early clock skew. D1 transition
is blocking.
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Time Borrowing
The preceding max-timing discussion has indicated that the presence of clock skew may result in unin-
tentional time borrowing. The timing diagram shown Fig. 10.42 illustrates how this could happen. Using
Fig. 10.33 as a reference, the input to the sending latch (D1) is assumed blocked. After propagating through
the max path, the input to the receiving latch ( ) must arrive before its setup time to meet the max-
timing requirement. The early arrival of clock CK′ may be interpreted as if the setup time boundary
moves forward by Tskew, thus reducing the available borrowing time by an equivalent amount.

The condition for maximum time borrowing in this case is formulated as follows:

(10.13)

Again assuming that TCKQ ≈ TDQ, in the same manner as Eq. (10.9) was derived, it can be shown that
maximum time borrowing in this case is given by

(10.14)

By comparing Eq. (10.14) against Eq. (10.9) (zero clock skew), it is concluded that the presence of
clock skew reduces the amount of time borrowing by Tskew. 

FIGURE 10.41 Max-timing for single-phase, latch-based design under the presence of late clock skew. D1 transition
is blocked.

FIGURE 10.42 Time borrowing for single-phase, latch-based design under the presence of early clock skew.
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Min-Timing
In contrast to max-timing, min-timing is not immune to clock skew. Figure 10.43 provides a timing
diagram illustrating this case. With reference to Fig. 10.33, clock CK′ is assumed to arrive late. In order
to insure that  gets blocked, it is required that:

(10.15)

After rearranging terms, the min-timing requirement is expressed as

(10.16)

Equation (10.16) shows that in addition to TON, Tskew is added now. The clock skew presence makes
the min-timing requirement even more strict than before, yielding a single-phase latch design nearly
useless in practice. 

Nonoverlapping Dual-Phase, Latch-Based Design

As pointed out in the preceding subsection, the major drawback of a single-phase, latch-based design is
in its rigorous min-timing requirement. The presence of clock skew makes matters worse. Unless the
transparent period can be made very short, i.e., a narrow pulse, a single-phase, latch-based design is not
very practical. The harsh min-timing requirement of a single-phase design is due to the sending and
receiving latch being both transparent simultaneously, allowing fast signals to race through one or more
pipeline stages. A way to eliminate this problem is to intercept the fast signal with a latch operating on
a complementary clock phase. The resulting scheme, referred to as a dual-phase, latch-based design, is
shown in Fig. 10.44. Because the middle latch operates on a complementary clock, at no point in time

FIGURE 10.43 Min-timing diagrams for single-phase, latch-based design under the presence of late clock skew.

FIGURE 10.44 Nonoverlapping dual-phase, latch-based design.
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a transparent period is created between adjacent pipeline stages, eliminating the possibility of races.
Notice that the insertion of a complementary latch, while driven by the need to slow fast signals, ends
up slowing down max paths also. Although, in principle, a dual-phase design is race free, clock skew
may still cause min-timing problems. The clock phases may be nonoverlapping or fully complementary.
The timing requirement of a nonoverlapping dual-phase, latch-based design is discussed below. A dual-
phase complementary design is treated later on as a special case.

Max-timing
Because a signal in a max path has to go through two latches in a dual-phase latch-based design the D-
to-Q latency of the latch is paid twice in the cycle. This is shown in the timing diagram of Fig. 10.45.
The max-timing constraint in a dual-phase design is therefore given by

(10.17)

The above equation remains still valid under the presence of clock skew. By comparing it against Eq.
(10.2), it is evident that as a result of the middle latch insertion the pipeline overhead (2TDQ) becomes
twice as large as in the single-latch design.

Time Borrowing
Time borrowing does not get affected either by the insertion of the complementary latch. Maximum
time borrowing is still given by Eq. (10.9), or by Eq. (10.14) in the presence of clock skew.

Min-timing
Min-timing is the most affected by the introduction of the complementary latch. As pointed out earlier, the
complementary latch insertion is a solution to relax the min-timing requirement of a latch-based design.
Figure 10.46 provides a timing diagram illustrating how a dual-latch design prevents races. Clock CKA

and CKB are nonoverlapping clock phases, with TNOV being the nonoverlapping time. With reference to
Fig. 10.44, the input D2 to the sending latch is assumed to be blocked. After a CK-to-Q and a Tmin delay,
signal  arrives at the middle latch while it is still opaque. Therefore,  gets blocked until CKB

transitions and the latch becomes transparent. A CK-to-Q delay later, signal  transitions. If the
nonoverlapping time is long enough, the  transition satisfies the hold time of the sending latch. The
same phenomenon happens in the second half of the stage.

FIGURE 10.45 Max-timing diagrams for nonoverlapping dual-phase, latch-based design.
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The presence of clock skew in this design makes min-timing worse also, as expected. The effect of late
clock skew is to increase the effective hold time of the sending latch. This is illustrated in Fig. 10.47,
where clock  is late with respect to CKA.

The min-timing condition is given by

(10.18)

which can be rearranged as

(10.19)

Comparing with Eq. 10.16, notice that the transparent period (TON) is missing from the right-hand
side of Eq. (10.19), reducing the requirement on Tmin, and that the nonoverlap time (TNOV) gets subtracted
from the clock skew (Tskew). The latter gives designers a choice to trade-off between TON and TNOV by
increasing TNOV at the expense of TON (so the clock cycle remains constant), min-timing problems can
be minimized at the cost of reducing time borrowing. For a sufficiently long TNOV, the right hand side
of Eq. 10.19 becomes negative. Under such assumption, this type of design may be considered race free.
Furthermore, by making the nonoverlap time a function of the clock frequency, a manufactured chip is

FIGURE 10.46 Min-timing diagrams for nonoverlapping dual-phase, latch-based design.

FIGURE 10.47 Min-timing diagrams for nonoverlapping dual-phase, latch-based design under the presence of late
clock skew.
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guaranteed to work correctly at some lower than nominal frequency, even in the event that unexpected
min-timing violations are discovered on silicon. This is the most important characteristic of this type of
latching design, and the main reason why such designs were so popular before automated timing veri-
fication became more sophisticated.

Although min-timing constraints are greatly reduced in a two-phase, nonoverlapping latch-based
design, designers should be aware that the introduction of an additional latch per stage results in twice
as many potential min-timing races that need to be checked in contrast to a single latch design. This
becomes a more relevant issue in a two-phase, complementary latch-based design, as discussed next.

Complementary Dual-Phase, Latch-Based Design

A two-phase, complementary latch-based design (Fig. 10.48) is a special case of the generic nonoverlapping
design, where clock CKA is a 50% duty cycle clock, and clock CKB is complementary to CKA. In such a
design, the nonoverlapping time between the clock phases is zero. The main advantage of this approach
is the simplicity of the clock generation and distribution. In most practical designs, only one clock phase
needs to be globally distributed to all sub-units, generating the complementary clock phase locally. 

Max-timing
Similar to a nonoverlapping design, the maximum propagation delay is given by Eq. (10.17), and it is
unaffected by the clock skew. The pipeline overhead is 2TDQ. 

Time Borrowing
Time borrowing is similar to a single-phase latch, except that TON is half clock cycle. Therefore, maximum
time borrowing is given by

(10.20)

So complementary clocks maximizes time borrowing.

Min-timing
The min-timing requirement is similar to the nonoverlapping scheme, except that TNOV is zero. Therefore,

(10.21)

The simplification of the clocking scheme comes at a price though. Although Eq. (10.21) is less stringent
than Eq. (10.16) (no TON in it), it is not as good as Eq. (10.19). Furthermore, a min-timing failure in
such a design cannot be fixed by slowing down the clock frequency, making silicon debugging in such a
situation more challenging. This is a clear example of a design trade-off that designers must face when
picking a latching and clocking scheme.

The next section discusses how a latch-based design using complementary clock phases can be further
transformed into a edge-triggered-based design. 

Edge-Triggered, Flip-Flop-Based Design

The major drawback of a single-phase latch based design is min-timing. The introduction of dual-phase-
latch-based designs greatly reduces the risk of min-timing failure; however, from a physical implemen-
tation perspective, the insertion of a latch in the middle of a pipeline stage is not free of cost. Each

FIGURE 10.48 Complementary dual-phase, latch-based design.
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pipeline stage has to be further partitioned in half, although time borrowing helps in this respect. Clock
distribution and clock skew minimization becomes more challenging because clocks need to be distrib-
uted to twice as many locations. Also, timing verification in a latch-based design is not trivial. First,
latches must be properly placed to allow maximum time borrowing and maximum clock skew hiding.
Second, time borrowing requires multi-cycle timing analysis and many timing analyzers lack this capa-
bility. A solution that overcomes many of these shortcomings is to use flip-flops. This is discussed in the
rest of this subsection.

Most edge-triggered flip-flops, also known as master-slave flip-flops, are built from transparent latches.
Figure 10.49 shows how this is done. By collapsing the transparent-high and transparent-low latches in
one unit, and rearranging the combinatorial logic so that it is all contained in one pipeline segment, the
two-phase, latch-based design is converted into a positive-edge, flip-flop-based design. If the collapsing
order of the latches were reverted, the result would be a negative-edge flip-flop. In a way, a flip-flop-
based design can be viewed as an unbalanced dual-phase, latch-based design where all the logic is confined
to one single stage. The timing analysis of flip-flops, therefore, follows the same steps as applied to latches. 

Max-timing
The max-timing diagram for flip-flops is shown in Fig. (10.50). Two distinctive characteristics are observed
in this diagram: (1) the transparent-high latches (L2 and L4) are blocking, and (2) the transparent-low
latches (L1 and L3) provide maximum time borrowing. The opposite is true for negative-edge flip-flops.
The first condition results from the fact that the complementary latches are never transparent simulta-
neously, so a transparent operation in the first latch leads to a blockage in the second. The second
condition is necessary to maximize the time allowed for logic in the stage. Because L2 is blocking, unless
time borrowing happens in L3, only half a cycle would be available for logic. 

FIGURE 10.49 Edge-triggered, flip-flop-based design.

FIGURE 10.50 Max-timing diagrams for edge-triggered, flip-flop-based design.
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The max-timing constraint is formulated as a maximum time borrowing constraint (see Eq. (10.13)
for comparison), but confining it to one clock cycle because the sending latch (L2) is blocking. With
reference to Fig. 10.50, the constraint is formulated as follows:

(10.22)

which after rearranging terms gives

(10.23)

To determine the pipeline overhead introduced by flip-flops and compare it against a dual latch based
design, Eq. (10.23) is compared against Eq. (10.17). To make the comparison more direct, observe that
Tsetup + TCKQ < 2TDQ. This is because as long as signal meets the setup time of latch L3, is allowed
to push into the transparent period of L4, adding one latch delay (TDQ), and then go through L4, adding
a second latch delay. Therefore, Eq. (10.23) can be rewritten as

(10.24)

By looking at Eq. (10.17), it becomes clear that the pipeline overhead is larger in flip-flops than in
latches, and it is equal to 2TDQ + Tskew. In addition to the latch delays, the clock skew is now also subtracted
from the cycle time, this being a major drawback of flip-flops. It should be noticed, however, that faster
flip-flops with less than two latch delays can be designed.

Min-timing
The min-timing requirement is essentially equal to a dual latch-based design and it is given by Eq. (10.21).
An important observation is that inside the flip-flop this condition may be satisfied by construction. Since
the clock skew is zero, it is only required that Tmin > Thold − TCKQ. If the latch parameters are such that
TCKQ > Thold then this condition is always satisfied since Tmin ≥ 0. Timing analyzers still need to verify that
min-timing requirements between flip-flops are satisfied according to Eq. (10.21), although the number
of potential races is reduced to half in comparison to the dual latch scheme.

Timing verification is easier in flip-flop-based designs because most timing paths are confined to a
single cycle boundary. Knowing with precision the departing time of signals may also be advantageous
to some design styles, or may reduce iterations in the design cycle, resulting eventually in a simpler design
(In an industrial environment, where design robustness is paramount, in contrast to the academia, nearly
90% of the design cycle is spent on verification, including logic and physical verification, timing verifi-
cation, signal integrity, etc.)

As discussed earlier, time borrowing in a flip-flop-based design is confined to the boundary of a clock
cycle. Therefore, time borrowing from adjacent pipeline stages is not possible. In this respect, when
choosing flip-flops instead of latches, designers have a more challenging task at partitioning the logic to
fit in the cycle—a disadvantage. An alternative solution to time borrowing is clock stretching. The technique
consists of the adjustment of clock edges (e.g., by using programmable clock buffers) to allocate more
timing in one stage at the expense of the other. It can be applied in cases when logic partitioning becomes
too difficult, assuming that timing slack in adjacent stages is available. When applied correctly, e.g.,
guaranteeing that no min-timing violation get created as by-product, clock stretching can be very useful.

Pulsed Latches

Pulsed latches are conceptually identical to transparent latches, except that the length of the transparent
period is designed to be very short (i.e., a pulse), usually a few gate delays. The usage of pulsed latches
is different from conventional transparent latches though. Most important of all, the short transparency
makes single pulsed latch-based design practical, see Fig. 10.51, contributing to the reduction of the
pipeline overhead yet retaining the good properties of latches. Each timing aspect of pulsed latch-based
design is discussed below.  

TCKQ Tmax+ TCYC Tsetup Tskew+( )–<
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Max-timing
Pulsed latches are meant to be used as one per pipeline stage, as mentioned earlier, so the pipeline overhead
is limited to only one latch delay (see Eq. (10.2)). This is half the overhead of a dual-phase, latch-based
design. Furthermore, logic partitioning is similar to a flip-flop-based design, simplifying clock distribution.

Time Borrowing 
Although still possible, the amount of time borrowing is greatly reduced when using pulsed latches. From
Eq. (10.14), Tborrow = TON − (Tsetup + Tskew). If TON is chosen such that TON = Tsetup + Tskew, then time borrowing
is reduced to zero; however, the clock skew can still be hidden by the latch, i.e., it is not subtracted from
the clock cycle for max-timing.

Min-timing 
This is the biggest challenge designers face when using pulsed latches. As shown by Eq. (10.16), the
minimum propagation delay in a latch-based system is given by Tmin > Thold − TCKQ + TON + Tskew. Ideally,
to minimize min-timing problems, TON should be as small as possible. However, if it becomes too small,
the borrowing time may become negative (see above), meaning that some of the clock skew gets subtracted
from the cycle time for max-timing. Again, this represent another trade-off that designer must face when
selecting a latching strategy. In general, it is good practice to minimize min-timing at the expense of
max-timing. Although max-timing failures affect the speed distribution of functional parts, min-timing
failures are in most cases fatal. 

From a timing analyzer perspective, pulsed latches can be treated as flip-flops. For instance, by rede-
fining  = Thold + TON, min-timing constraints look identical in both cases (see Eqs. (10.16) and
(10.21)). Also, time borrowing in practice is rather limited with pulsed latches, so the same timing tools
and methodology used for analyzing flip-flop based designs can be applied.

Last but not least, it is important to mention that designs need not to adhere to one latch or clocking
style only. For instance, latches and flip-flops can be intermixed in the same design. Or single and dual-
phase latches can be combined also, as depicted in Fig. 10.52. Here, pulsed latches are utilized in max
paths in order to minimize the pipeline overhead, while dual-phase latches are used in min paths to
eliminate, or minimize, min-timing problems. In this example, the combination of transparent-high and
transparent-low pulsed latches works as a dual-phase nonoverlapping design. Clearly, such combinations
require a good understanding of the timing constraints of latches and flip-flops not only by designers
but also by the adopted timing tools, to ensure that timing verification of the design is done correctly. 

FIGURE 10.51 Pulsed latch-based design.

FIGURE 10.52 Pulsed latch-based design combining single- and dual-pulsed latches.
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Summary of Latch and Flip-Flop-Based Designs

Table 10.6 summarizes the timing requirements of the various latch and flip-flop-based designs discussed
in the preceding sections. In terms of pipeline overhead, the single latch and the pulsed latch appear to
be the best. However, because of its prohibitive min-timing requirement, a single-phase design is of little
practical use. Flip-flops appear the worst, primarily because of the clock skew. Although, as mentioned
earlier, a flip-flop can be designed to have latency less than two equivalent latches. In terms of time
borrowing, all latch-based designs allow some degree of it, in contrast to flip-flop based designs. From
a min-timing perspective, nonoverlapping dual-phase is the best, although clock generation is the more
complex. It is followed by the dual-phase complementary design, which uses a simpler clocking scheme,
and by the flip-flop design with an even simpler single-phase clocking scheme. The min-timing require-
ment of the both designs is the same, so the number of potential races in the dual-phase design is twice as
large as in the flip-flop design.

Design of Latches and Flip-Flops

This sub-section covers the fundamentals of latch and flip-flop design. It starts with the most basic trans-
parent latch: the pass gate. Then, it introduces more elaborated latches and flip-flops made from latches,
and discusses their features. Next, it presents a sample of advanced designs currently used in the industry.
At the end of the sub-section, a performance analysis of the different circuits described is presented.

Because many designers tend to use the same terminology to refer to different circuit styles or properties,
to avoid confusion, this sub-section adheres to the following nomenclature. The term dynamic refers to
circuits with floating nodes only. By definition, a floating node does not see a DC path to either VDD or
GND during a portion of the clock cycle, and it is, therefore, susceptible to discharge by leakage current,
or to noise. The term precharge logic is used to describe circuits that operate in precharge and evaluation
phase, such as Domino logic[5]. The term skewed logic refers to a logic style where only the propagation
of one edge is relevant, such as Domino [5, 6], Self-Reset [7], or Skewed Static logic [8]. Such logic
families are typically monotonic.

Design of Transparent Latches

This sub-section explains the fundamentals of latch design. It covers pass and transmission gate latches,
tristate latches, and true-single-phase-clock latches. A brief discussion of feedback circuits is also given.

Transmission-Gate Latches
A variety of transparent-high latches built from pass gates and transmission gates is shown in Fig. 10.53.
Transparent-low equivalents, not shown, are created by inverting the clock. The most basic latch of all
is the pass gate (Fig. 10.53(a)). Although it is the simplest, it has several limitations. First, being an NMOS
transistor, it degrades the passage of a high signal by a threshold voltage drop, affecting not only speed
but also noise immunity, especially at low VDD. Second, it has dynamic storage: output Q is floating when
CK is low, being susceptible to leakage and output noise. Third, it has limited fanout, especially if input
D is driven through a long interconnect, or if Q drives a long interconnect. Last, it is susceptible to input

TABLE 10.6 Summary of Timing Requirements for Latch and Flip-Flop-Based Designs

Design Toverhead Tborrow Tmin

Single-phase TDQ TON − (Tsetup + Tskew) Thold − TCKQ + (Tskew + Ton)
Dual-phase Nonoverlapping 2 TDQ TON − (Tsetup + Tskew) Thold − TCKQ + (Tskew + TNOV)
Dual-phase Complementary 2 TDQ 0.5 TCYC − (Tsetup + Tskew) Thold − TCKQ + (Tskew)
Flip-flop ~2 TDQ + Tskew 0 Thold − TCKQ + (Tskew)
Pulsed-latch TDQ

1 TON − (Tsetup + Tskew)2 Thold − TCKQ + (Tskew + TON)3

Note: 1. True if TON > Tsetup + Tskew

2. Equal to 0 if TON = Tsetup + Tskew

3. Equal to Thold − TCKQ + (2 × Tskew) if TON = Tskew
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noise: a noise spike can turn momentarily the gate on, or can inject charge in the substrate by turning
the parasitic diode on, leading to a charge loss. To make this design more robust, each of the variants in
Fig. 10.53 (b-f) attempts to overcome at least one of the limitations just described. Figure 10.53(b) uses
a transmission gate to avoid the threshold voltage drop, at the expense of generating a complementary
clock signal [12,13]. Figure 10.53(c) buffers the output to protect the storage node and to improve the
output drive. Figure 10.53(d) uses a back-to-back inverter to prevent the storage node from floating.
Avoiding node Q in the feedback loop, as shown, improves robustness by completely isolating the output
from the storage node, at the expense of a small additional inverter. Figure 10.53(e) buffers the input in
order to: (1) improve noise immunity, (2) ensure the writability of the latch, and (3) bound the D-to-Q
delay (which depends on the size of input driver). Conditions 2 and 3 are important if the latch is to be
instantiated in unpredictable contexts, e.g., as a library element. Condition 2 becomes irrelevant if a
clocked feedback is used instead. It should be noted that the additional input inverter results in increased
D-to-Q delay; however, it need not be an inverter, and logic functionality may be provided instead with
the latch. Figure 10.53(f) shows such an instance, where a NAND2 gate is merged with the latch. A
transmission gate latch, where both input and output buffers can be logic gates, is reported in [11].

Feedback Circuits
A feedback circuit in latches can be built in more than one way. The most straightforward way is the back
inverter, adopted in Fig. 10.53(d–f), and shown in detail in Fig. 10.54(a). Clock CKB is the complementary
of clock CK. The back inverter is sized to be weak, in general by using minimum size transistors, or
increasing channel length. It must allow the input driver to overwrite the storage node, yet it must provide
enough charge to prevent it from floating when the latch is opaque. Although simple and compact layout-
wise, this type of feedback requires designers to check carefully writability, especially in skewed process
corners (e.g., fast PMOS, slow NMOS) and under different temperature and voltage conditions. A more
robust approach is shown in Fig. 10.54(b). The feedback loop is open when the storage node is driven,
eliminating all contention. It requires additional devices, although not necessarily more area since the
input driver may be downsized. A third approach is shown in Fig. 10.54(c) [12]. It uses a back inverter
but connecting the rails to the clock signals CK and CKB. When the latch is opaque, CK is low and CKB

FIGURE 10.53 Transparent-high latches built from pass gates and transmission gates.

FIGURE 10.54 Feedback structures for latches.
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is high, so it operates as a regular back inverter. When the storage node is being driven, the clock polarity
is reverted, resulting in a weakened back inverter. For simplicity, the rest of circuits discussed in this
section assumes a back inverter.

Tristate Gate
Transparent-high latches built from tristate gates are shown in Fig. 10.55. The dynamic variant is shown
in Fig. 10.55(a). By driving a FET gate as opposed to source/drain, this latch is more robust to input
noise than the plain transmission gate of Fig. 10.55(b). The staticized variant with the output buffer is
shown in Fig. 10.55(b). Similar to the transmission-gate case, transparent-low latches are created by
inverting the clock.

True Single-Phase Clock (TSPC) Latches

Transmission gate and tristate gate latches are externally supplied with a single clock phase, but in reality
they use two clock phases, the second being the internally generated clock CKB. The generation of this
complementary clock becomes critical when building flip-flops with these type of latches. For instance,
unexpectedly large delay in CKB might lead to min-timing problem inside the flip-flop, as explained
later on in the sub-section on “Design of Flip-Flops.” To eliminate the need for a complementary clock,
true single phase clock (TSPC) latches were invented [13, 14]. The basic idea behind TSPC is the
complementary property of CMOS devices in combination with the inverting nature of CMOS gates. 

A complementary transparent-high TSPC latch is shown in Fig. 10.56(a). The latch operates as
follows. When CK is high (latch is transparent), the circuit acts as a two-stage buffer, so output Q

FIGURE 10.55 Transparent latches built from tristate gates.

FIGURE 10.56 Complementary TSPC transparent-high and transparent-low latches.

CK

D D Q

CK

(a) (b)

QB

D Q
CK

X D QB
CK

X

(a) (b)

D QB
CK

X

(d)

D Q
CK

(c)

N1
N2

P1
© 2002 by CRC Press LLC



follows input D. When CK is low (latch is opaque), devices N1 and N2 are turned off. Since node X can
only transition monotonically high, (1) P1 is either on or off when Q is high, or (2) P1 is off when Q is
low. In addition to node Q being floating if P1 is off, also node X is floating if D is high. So the latch has
two dynamic nodes that need to be staticized with back-to-back inverters for robustness . This is shown
in Fig. 10.56(b), where the output is buffered also.

Contrary to the latches described in the previous sub-sections, a transparent-low TSPC latch cannot
be generated by just inverting the clock. Instead, the complementary circuit shown in Fig. 10.56 (c and
d) is used (Fig. 10.56(c) is dynamic, Fig. 10.56(d) is static). The operation of the latch is analogous to
the transparent-high case. A dual-phase complementary latch based design using TSPC was reported in
[15].

As Fig. 10.56 shows, the conversion of TSPC latches into static ones takes several devices. A way to
save at least one feedback device is shown in Fig. 10.57. If D is low and Q is high when the latch is opaque,
this feedback structure results in no contention. The drawback is that node X follows input D when CK
is low, resulting in additional toggling and increased power dissipation.

Another way to build TSPC latches is shown in Fig. 10.58. The number of devices remains the same
as in the previous case but the latch operates in a different mode. With reference to Fig. 10.58(a), node
X is precharged high when CK is low (opaque period), while Q retains its previous value. When CK goes
high (latch becomes transparent), node X remains either high or discharges to ground, depending on
the value of D, driving output Q to a new value. The buffered version of this latch, with staticizing back-
to-back inverters, is shown in Fig. 10.58(b). 

Because of its precharge nature, this version of the TSPC latch is faster than the static one. The clock
load is higher also (3 vs. 2 devices), contributing to higher power dissipation, although the input loading
is lower (1 vs. 2 devices). X switches only monotonically during the transparent phase, so the input to
the latch must either: (1) be monotonic, or (2) change during the opaque phase only (i.e., a blocking
latch).

FIGURE 10.57 Complementary TSPC transparent-
high latch with direct feedback from storage node Q.

FIGURE 10.58 Precharged TSPC transparent-high and transparent-low blocking latches.
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One of the advantages of the precharged TSPC latch is that, similar to Domino, relatively complex
logic can be incorporated in the precharge stage. An example of a latch with an embedded NOR2 is given
in Fig. 10.59. 

Although this latch cannot be used generically because of its special input requirement, it is the base
of a TSPC flip-flop (discussed next) and of pulsed flip-flops described later on in this chapter section.

Design of Flip-Flops

This sub-section explains the fundamentals of flip-flop design. It covers three types of flip-flops based
on the transmission gate, tristate, and TSPC latches presented earlier. The sense-amplifier based flip-flop,
with no latch equivalence, is also discussed. Design trade-offs are briefly mentioned.

Master-Slave Flip-Flop
The master-slave flip-flop, shown in Fig. 10.60, is perhaps the most commonly used flip-flop type [6].
It is made from a transparent-high and a transparent-low transmission gate latch. Its mode of operation
is quite simple: the master section writes into the first latch when CK is low, and the value is passed onto
the slave section and propagated to the output when CK is high. As pointed out earlier, a flip-flop made
this way has to satisfy the internal min-timing requirement. Specifically, the delay from CK to X has to
be greater than the hold time of the second latch. Notice that the second latch turns completely opaque
only after CKB goes low. The inverter delay between CK and CKB creates a short period of time where
both latches are transparent. Therefore, designers must pay careful attention to the timing of signals X
and CKB to make sure the design is race free. Setting the min-timing requirement aside, the master-slave
flip-flop is simple and robust; however, for applications requiring very high performance, its long D-to-
Q latency might be unacceptable.

A flip-flop made from tristate latches (see Fig. 10.55), that is, free of internal races, yet uses comple-
mentary clocks, is shown in Fig. 10.61 [16]. The circuit, also known as C2MOS flip-flop, does not require
the internal inverter at node X because: (1) node X drives transistor gates only, so there is no fight with
a feedback inverter, and (2) there is no internal race: a pull up(down) path is followed by a pull down(up)
path, and both paths see the same clock. The D-to-Q latency of the C2MOS flip-flop is about equal or
better than the master-slave flip-flop of Fig. 10.60; however, because of the stacked PMOS devices, this
circuit dissipates more clock power and is less area efficient. For the same reason, also the input load is
higher. 

FIGURE 10.59 Precharged TSPC transparent-high
blocking latch with embedded NOR2 logic.

FIGURE 10.60 A positive, edge-triggered flip-flop built from transmission gate latches.
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TSPC Flip-Flop
TSPC flip-flops are designed by combining the TSPC latches of Figs. 10.57 and 10.58. There are several
possible combinations. In an effort to reduce D-to-Q delay, which is inherently high in this type of latches,
a positive-edge flip-flop is constructed by combining a half complementary transparent-low latch (see
Fig. 10.56(d)) and a full precharged transparent-high latch (see Fig. 10.58(b)). The resulting circuit is
shown in Fig. 10.62. Choosing a precharged latch as the slave portion of the flip-flop helps reduce D-to-Q
delay, because (1) the precharged latch is faster than the complementary one, and (2) Y switches mono-
tonically low when CK is high, so the master latch can be reduced to half latch because X switches
monotonically low also when CK is high. The delay reduction comes at a cost of a hold time increase:
to insure node Y is fully discharged, node X must remain high long enough, increasing in turn the hold
time of input D.

Sense-Amplifier Flip-Flop
The design of a sense-amplifier flip-flop [10, 17] is borrowed from the SRAM world. A positive-edge
triggered version of the circuit is shown in Fig. 10.63. It consists of a dual-rail precharged stage, followed
by a static SR latch built from back-to-back NAND2 gates. The circuit operates as follows. When CK is
low, nodes X and Y are precharged high, so the SR latch holds its previous value. Transistors N1 and N2

are both on. When CK is high, depending on the value of D, either X or Y is pulled low, and the SR latch
latches the new value. The discharge of node X(Y) turns off N2(N1), preventing node Y(X) from

FIGURE 10.61 A positive, edge-triggered flip-flop built from tristate gates.

FIGURE 10.62 Positive, edge-triggered TSPC flip-flop built from complementary and precharged TSPC latches.

FIGURE 10.63 Sense-amplifier, edge-triggered flip-flop.
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discharging if, during evaluation, DB(D) transitions low-to-high. Devices P1, P2, and N3 are added to
staticize nodes X and Y. Transistor N3 is a small device that provides a DC path to ground, since either
N1|N4 or N2|N3, and the clock footer device are all on when CK is high. While the D-to-Q latency of the
flip-flop appears to comprise two stages only, in the worst-case it is four: the input inverter, the precharged
stage, and two NAND2 delays. It should be noted that the precharge stage allows the incorporation of
logic functionality. But it is limited by the dual-rail nature of the circuit, which required 2N additional
devices to implement an N-input logic function. In particular, XOR/XNOR gates allow device sharing,
minimizing the transistor count and the increase in layout area.

Design of Pulsed Latches

This subsection covers the design of pulsed latches. It first discusses how this type of latch can be easily
derived from a regular transparent latch, by clocking it with a pulse instead of regular clock signal. It
then looks at specific circuits that embed the pulse generation inside the latch itself, allowing better
control of the pulse width.

Pulse Generator and Pulsed Latch
A pulsed latch can be designed by combining a pulse generator and a regular transparent latch, as
suggested in Fig. 10.64 [18, 19]. While the pulse generator adds latency to the path of the clock, this is
not an issue from a timing perspective . As long as all clock lines see the same delay, or as long as the
timing tool includes this delay in the timing analysis, the timing verification of a pulsed latch-based
design should not be more complex than that of a latch of flip-flop-based designs.

A simple pulse generator consists of the ANDing two clock signals: the original clock and a delayed
and inverted version of it, as illustrated in Fig. 10.65. The length of the clock pulse is determined by the
delay of the inverters used to generate CKB. In practice, it is hard to generate an acceptable pulse width
less than three, although more inverters can be used. 

This pulse generator can be used with any of the transparent latches described previously to design
pulsed latches. Figure 10.66 shows two examples of such designs. The design in Fig. 10.66(a) uses
the transmission gate latch of Fig. 10.53(e) [20], while the design Fig. 10.66(b) uses the TSPC latch
of Fig. 10.56(b). As mentioned previously, designers should pay close attention to ensure that the pulse

FIGURE 10.64 A pulsed latch built from a transparent latch and a pulse generator.

FIGURE 10.65 A pulse generator.
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width is long enough under all process corners and temperature/voltage conditions, so safe operation is
guaranteed. On the other hand, a pulse that is too wide might create too many min-timing problems
(see Eq. (10.4)). This suggests that the usage of pulsed latches should be limited to the most critical
paths of the circuit.

Pulsed Latch with Embedded Pulse Generation
A different approach to building pulsed latches is to embed the pulse generation within the latch itself. A
circuit based on this idea is depicted in Fig. 10.67. It resembles the flip-flop of Fig. 10.60, with the exception
that the second transmission gate is operated with a delayed CKB. In this way, both transmission gates
are transparent simultaneously for the length of three inverter delays. The structure of Fig. 10.67 has longer
D-to-Q delay compared to the pulsed latch of Fig. 10.66(a); however, this implementation gives designers
a more precise control over the pulse width, resulting in slightly better hold time and more robustness.
Compared with the usage of the circuit as a master slave flip-flop, this latch allows partial or total clock
skew hiding, therefore, its pipeline overhead is reduced. 

The hybrid latch flip-flop (HLFF) reported in [21] is based on the idea of merging a pulse generator
with a TSPC latch (see Fig. 10.66(b)). The proposed circuit is shown in Fig. 10.68. The design converts
the first stage into a fully complementary static NAND3 gate, preventing node X from floating. The
circuit operates as follows. When CK is low, node X is precharged high. Transistors N1 and P1 are both
off, so Q holds its previous value. When CK switches low-to-high, node X remains high if D is low, or
gets discharged to ground if D is high. If X transitions high-to-low, node Q gets pulled high. Otherwise,
it gets pulled down. After three inverter delays, node X is pulled back high while N3 is turned off,
preventing Q from losing its value. The NAND3 pull-down path and the N1 − N3 pull-down path are

FIGURE 10.66 Pulsed latches.

FIGURE 10.67 A pulsed latch built from transmission gates with embedded pulse generation circuitry.

FIGURE 10.68 Hybrid latch flip-flop (HLFF).
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both transparent for three inverter delays. This must allow node X or node Q to be fully discharged. If
input D switches high-to-low after CK goes high, but before CKB goes low (during the transparent period
of the latch), node X can be still pulled back high allowing node Q to discharge. A change in D after the
transparent period has no effect on the circuit. To allow transparency and keep the D-to-Q delay balanced,
all three stages of the latch should be designed to have balanced rise and fall delays. If the circuit is used
instead as a flip-flop as opposed to a pulsed latch (i.e., not allowing D to switch during the transparent
period), then the D-to-Q latency can be reduced by skewing the logic in one direction. 

A drawback of HLFF being used as a pulsed latch is that it generates glitches. Because node X is
precharged high, a low-to-high glitch is generated on Q if D switches high-to-low during the trans-
parent period. Instead, a high-to-low glitch is generated on Q if D switches low-to-high during the
transparent period. Glitches, when allowed to propagate through the logic, create unnecessary toggling,
which results in increased dynamic power consumption.

The semi-dynamic flip-flop of Fig. 10.69 (SDFF), originally reported in [22] and used in [23], is based
on a similar concept (here the term “dynamic” refers to “precharged” as defined in this context). It merges
a pulse generator with a precharged TSPC latch instead of a static one. A similar design, but using an
external pulse generator, is reported in [24]. Although built from a pulse generator and a latch, SDFF
does not operate strictly as a pulsed latch. The first stage is precharged, so the input is not allowed to
change during the transparent period anymore. Therefore, the circuit behaves as an edge-triggered flip-
flop (it is included in this subsection because of its similar topology with other pulsed designs). The circuit
operates as follows. When CK is low, node X is precharged high, turning P1 off. Since N1 is also off, node
Q holds its previous value. Transistor N3 is on during this period. When CK switches low-to-high,
depending on the value of D, node X remains either high or discharges to ground, driving Q to a new
value. If X remains high, CKB′ switches high-to-low after three gate delays, turning off N3. Further changes
in D after this point have no effect on the circuit until the next clock cycle. If X discharges to ground instead,
the NAND2 gate forces CKB′ to remain high, so the pull-down path N3 − N5 remains on. Changes in D
cannot affect X, which has discharged already. This feature is called conditional shut-off and it is added to
reduce the effective width of the pulse without compromising the design safety. Having the characteristics
of a flip-flop, the circuit does not allow time borrowing or clock skew hiding; however, by being precharged,
transistors can be skewed resulting in a very short D-to-Q delay. Another major advantage of this design is
that complex logic functions can be embedded in the precharge stage, which is similar to a Domino gate.
Typical logic include NAND/NOR, XOR/XNOR, and AND-OR functions [25]. The merging of a complex
logic stage, at the expense of a slight increase in D-to-Q delay, contributes to reducing the pipeline overhead
of the design.

Performance Analysis

This subsection attempts to provide a performance comparison of the diverse latching and flip-flop structures
described in the previous sections. Because transistor sizing can be chosen to optimize delay, area, power,
or power-delay product, and different fanout rules can be applied in the optimization process, a fair
performance comparison based on actual transistor sizing and SPICE simulation results is not trivial.
The method adopted here is similar to counting transistors in the critical paths, but it does so by breaking
the circuit into source-drain interconnected regions. Each subcircuit is identified and a delay number is

FIGURE 10.69 Semi-dynamic flip-flop (SDFF).
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assigned, based on the subcircuit topology and the relative position of the driving transistor in the stack.
The result, which is rather a measure of the logical effort of the design, reflects to a first order the actual
speed of the circuit. Table 10.7 shows the three topologies used to match subcircuits. It corresponding to
single-, double-, and triple-transistor stack. Each transistor in the stack is assigned a propagation delay
normalized to a FO4 inverter delay, with increasing delays toward the bottom of the stack (closest to VDD

or VSS). The table provide NMOS versus PMOS delay (PMOS stack are 20% slower) and also skewed
versus complementary static logic. Details on the delay computation for each design is provided in the
“Appendix.” 

Table 10.8 provides a summary of the timing characteristics for most of the flip-flops and latches studied
in this chapter section. The clocking scheme for latches is assumed to be complementary dual-phase.
Values are normalized to a FO4 inverter delay, unless otherwise indicated. The first column is the maximum
D-to-Q delay and is the value used to compute the pipeline overhead. The second and third column contain
the minimum CK-to-Q delay and the hold time, respectively. The fourth column represents the overall
pipeline overhead, which is determined according to Table 10.6. This establishes whether the latch delay
is paid once or twice or whether the clock skew is added or not to the pipeline overhead. The overhead
is expressed as a percentage of the cycle time, assuming that the cycle is 20 FO4 inverter delay, and that
the clock skew is 10% of the cycle. The fifth column represents the minimum propagation delay between
latches, or between flip-flops, required to avoid min-timing problems. It is computed according to
Table 10.6, and assuming that the clock skew is 5% of the cycle time. A smaller clock skew is assumed

TABLE 10.7 Normalized Speed (FO4 Inverter Delay) of Complementary and Skewed 
Logic, Where Top Refers to Device Next to Output, and Bottom to Device Next to VDD 
or GND

Complementary Logic Skewed Logic

Stack Depth Input NMOS PMOS NMOS PMOS

1 Top 1.00 1.20 0.50 0.60
2 Top 1.15 1.40 0.60 0.70

Bottom 1.30 1.55 0.70 0.85

3 Top 1.30 1.55 0.70 0.85
Middle 1.50 1.80 0.80 0.95

Bottom 1.75 2.10 0.95 1.15

TABLE 10.8 Timing Characteristics, Normalized to FO4 Inverter Delay, for Various Latches and Flip-Flops 

Latch/Flip-Flop Design
Max 

D-to-Q
Min 

CK-to-Q
Hold
Time

Pipeline
Overhead (%)

Min 
Delay

Dual trans. gate latch w/o input buffer (Fig. 10.53(d)) 1.50 1.75 0.75 15 0.00
Dual trans. gate latch w/ input buffer (Fig. 10.53(e)) 2.55 1.75 −0.25 25.5 −1.00
Dual C2MOS latch (Fig. 10.55(b)) 2.55 1.75 0.75 25.5 0.00
Dual TSPC latch (Fig. 10.56(b) and Fig. 10.56(d)) 3.70 1.75 0.25 37 0.50
Master-slave flip-flop w/ input buffer (Fig. 10.60) 4.90 1.75 −0.25 34.5 −1.00
Master-slave flip-flop w/o input buffer (not shown) 3.70 1.75 0.75 28.5 0.00
C2MOS flip-flop (Fig. 10.61) 3.90 1.75 0.75 29.5 0.00
TSPC flip-flop (Fig. 10.62) 3.85 1.75 −0.05 29.2 −0.80
Sense-amplifier flip-flop (Fig. 10.63) 3.90 1.55 1.40 29.5 0.85
HLFF used as flip-flop (Fig. 10.68) 2.90 1.75 1.95 24.5 1.20
SDFF (Fig. 10.69) 2.55 1.75 2.00 22.7 1.25
Pulsed trans. gate latch (Fig. 10.66(a)) 2.55 1.75 3.70 12.7 2.95
Pulsed C2MOS latch (not shown) 2.55 1.75 3.70 12.7 2.95
Pulsed transmission-gate flip-flop (Fig. 10.67) 3.90 1.75 1.30 20.2 0.55
HLFF used as pulsed latch (Fig. 10.68) 3.90 1.75 1.95 19.5 1.20

Note: The clock cycle is 20 FO4 inverter delays. Clock skew is 10% of the clock cycle for max-timing, and 5% (1 FO4
delay) for min-timing.
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for min-timing because the PLL jitter, a significant component in max-timing, is not part of the clock
skew in this case. From a max-timing perspective, Table 10.8 shows that pulsed latches have the minimum
pipeline overhead, the winner being the pulsed transmission gate. The unbuffered transmission gate latch
is a close second. But as pointed out earlier, unbuffered transmission gates are rarely allowed in practice.
In the flip-flop group, SDFF is the best, while the buffered master-slave flip-flop is the worst. Merging a
logic gate inside the latch or flip-flop may result in additional 5% or more reduction in the pipeline
overhead, depending on the relative complexity of the logic function. Precharged designs such as SDFF
or the sense-amplifier flip-flop are best suited to incorporate logic efficiently. From a min-timing per-
spective, pulsed latches with externally generated pulses are the worst, while the buffered master-slave
flip-flop is the best. If the pulse is embedded in the circuit (like in SDFF or HLFF), min-timing require-
ments are more relaxed. It should be noticed that because of manufacturing tolerances, the minimum
delay requirement is usually larger than what Table 10.8 (fifth column) suggests. One or two additional
gate delays is in general sufficient to provide enough margin to the design.

Although pulsed latches are the best for max-timing, designers must keep in mind that max-timing
is not the only criterion used when selecting a latching style. The longer hold time of pulsed latches may
result in too many race conditions, forcing designers to spend a great deal of time in min-timing
verification and min-timing fixing, which could otherwise be devoted to max-timing optimization. Ease
of timing verification is also of great importance, especially in an industry where a simple and easily
understood methodology translates into shorter design cycles. With the advancement of design automa-
tion, min-timing fixing (i.e., buffer insertion) should not be a big obstacle to using pulsed latches. Finally,
notice that the selection of a latching technique can affect the cycle time of a design by 10–20%. It is important
that designers look into all design trade-offs discussed throughout this chapter section in making the right
selection of the latching scheme.

For a similar analysis of some of the designs included in this section but based on actual transistor
sizing and SPICE simulation, including a power-delay analysis, the reader is referred to [26].

Scan Chain Design

The previous sub-section covered the design of latches and flip-flops and presented a performance analysis
of each of the circuits. In practice, however, these circuits are rarely implemented as shown. This is
because in many cases, to improve testability, a widely accepted practice is to add scan circuitry to the
design. The addition of scan circuitry alters both the circuit topology and the performance of the design.
The design of scannable latches and flip-flops is the subject of this sub-section. 

As mentioned previously, a widely accepted industrial practice to efficiently test and debug sequential
circuits is the use of scan design techniques. In a scan-based design, some or all of the latches or flip-flops
in a circuit are linked into a single or multiple scan chains. This
allows data to be serially shifted into and out of the scan chain, greatly
enhancing controllability and observability of internal nodes in the
design. After the circuit has been tested, the scan mechanism is
disabled and the latches of flip-flops operate independently of one
another. So a scannable latch or flip-flop must operate in two modes:
a scan mode, where the circuit samples the scan input, and a data
mode, where the circuit samples the data input. Conceptually, this
may be implemented as a 2:1 multiplexor inserted in the front of the
latch, as suggested in Fig. 10.70. A control signal SE selects the scan
input if asserted (i.e., scan mode) or the data input otherwise. 

A straightforward implementation of the scan design of Fig. 10.70 consists of adding, or merging, a 2-
to-1 multiplexor to the latch. Unfortunately, this would result in higher pipelining overhead because of
the additional multiplexor delay, even when the circuit operates in data mode, or would limit the
embedding of additional logic. It becomes apparent that a scan design should affect as little as possible
the timing characteristic of the latch or flip-flop when in data mode, specifically its latency and hold
time. In addition, it is imperative that the scan design be robust. A defective scan chain will prevent data

FIGURE 10.70 A scannable latch.
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from being properly shifted through the chain and, therefore, invalidate the testing of some parts of the
circuit. Finally, at current integration levels, chips with huge number of latches or flip-flops (>100 K)
will become common in the near future. Therefore, a scan design should attempt to maintain the area
and power overhead of the basic latch design at a minimum. The remainder of this section describes
how to incorporate scan into the latches and flip-flops presented earlier.

Figure 10.71 shows a scan chain in a dual-phase, latch-based design. In such design, a common practice
is to link only the latches on one phase of the clock. In order to prevent min-timing problems, the scan
chain typically includes a complementary latch, as indicated in Fig. 10.71. The complementary latch,
although active during scan mode only, adds significant area overhead to the design. Instead, in a flip-
flop-based design, the scan chain can be directly linked, as shown in Fig. 10.72.

Similar to any regular signal in a sequential circuit, scan related signals are not exempt from races. To
ensure data is shifted properly, min-timing requirements must be satisfied in the scan chain. Max-timing
is not an issue because: (1) there is no logic between latches of flip-flops in the scan chain, and (2) the
shifting of data may be done at low frequencies during testing.

To minimize the impact on latency, a common practice in scan design is to prevent the data clock from
toggling during scan mode. The latch storage node gets written through a scan path controlled by a scan
clock. In data mode, the scan clock is disabled instead and the data clock toggles, allowing the data input
to set the value of the storage node. Figure 10.73(a) shows a possible implementation of a scannable
transmission gate latch. For clarity, a dotted box surrounds all scan related devices. Either the data clock
(DCK) and the scan clock (SCK) are driven low during scan and data mode, respectively. The scan circuit
is a master-slave flip-flop, similar to Fig. 10.60, that shares the master storage node with the latch. To
ensure scan robustness, the back-to-back inverter of the slave latch is decoupled from its output, and

FIGURE 10.71 Scan chain for dual-phase, latch-based design.

FIGURE 10.72 Scan chain for flip-flop-based design.
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both transmission gates are buffered. The circuitry that controls the DCK and SCK is not shown for
simplicity. In terms of speed, drain/source and gate loading is added to nodes X and Q. This increases
delay slightly, although less substantially than adding a full multiplexor at the latch input. A similar
approach to the one just described may be used with the TSPC latch, as suggested in Fig. 10.73(b). Since
transistor P1 is not guaranteed to be off when DCK is low, transistor P2 is added to pull-up node X during
scan mode. Control signal SEB is the complement of SE and is set low during scan operation. 

Figure 10.73(c) shows the scannable version of the master-slave flip-flop. This design uses three clocks:
CK (free running clock), DCK (data clock), and SCK (scan clock). DCK and SCK, when enabled, are
complementary to CK. Under data or scan mode, CK is always toggling. In scan mode, DCK is driven
low and SCK is enabled. In data mode, SCK is driven low and DCK is enabled. While this approach
minimizes the number of scan related devices, its drawback is the usage of three clocks. One clock may
be eliminated at the expense of increased scan complexity. If CK and DCK are made fully complementary,
and CK is set low during scan mode (DCK is set high), the same approach used in Fig. 10.73(a) may be
used. 

Figure 10.73(d) shows a possible implementation of an scannable sense amplifier flip-flop (see Fig. 10.63).
In scan mode, DCK is set low forcing nodes X and Y to pull high. The output latch formed by the cross
coupled NANDs is driven by the scan flip-flop. To ensure the latch can flip during scan, the NAND gate
driving QB must either be weak or be disabled by SCK. Also for robustness, node QB should be kept
internal to the circuit.

Figure 10.73(e) shows the scannable version of the transmission gate pulsed latch of Fig. 10.66(a). The
circuit requires the generation of two pulses, one for data (DPCK) and one for scan (SPCK). It should
be noticed that having pulsed latches in the scan chain might be deemed too risky because of min-timing
problems. To make the design more robust, a full scan flip-flop like in Fig. 10.73(a) shall be used instead.

The disabling of the data (or scan) path in a pulsed latch during scan (or data) mode does not require
the main clock to be disabled. Instead, the delayed clock phase used in the pulse generation can be
disabled. This concept is used in the implementation of scan for the pulsed latch of Fig. 10.67, and it is
shown in Fig. 10.73(f). As previously explained, this latch uses embedded pulse generation. Signals SE

FIGURE 10.73 Latches and flip-flops with scan circuitry.
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and SEB, which are complementary, control the mode of operation. In data mode, SE is set to low (SEB
high), so SCKB is driven low disabling the scan path, and DCKB is enable. In scan mode, SE is set to
high (SEB low), so DCKB is driven low, which disables the data path, and SCKB is enabled. The advantage
of this approach is in the simplified clock distribution: only one clock needs be distributed in addition
to the necessary scan control signals.

The disabling of the delayed clock is used in SDFF (see Fig. 10.69) to implement scan [27]. The
implementation is shown in Fig. 10.73(g). For simplicity, the NAND gate that feeds back from node X
is not shown. Control signal SE and SEB determines whether transistor N1 or N2 is enabled, setting the
flip-flop into data mode (when N1 is on and N2 is off) or scan mode (when N1 is off and N2 is on).
Besides using a single clock, the advantage of this approach is in the small number of scan devices required.

For HLFF (see Fig. 10.68), the same approach cannot be used because node X would be driven high
when CKB is low. Instead, an approach similar to Fig. 10.73(d) may be used.

Historical Perspective and Summary

Timing requirements of latch and flip-flop-based designs were presented. A variety of latches, pulsed
latches, flip-flops, and hybrid designs were presented, and analyzed, taking into account max- and min-
timing requirements. 

Historically, the number of gates per pipeline stage has kept decreasing. This increases the pipeline
clock frequency, but does not necessarily translate into higher performance. The pipeline overhead
becomes larger as the pipeline stages get shorter. Clock skew, which is becoming more difficult to control
as chip integration keeps increasing, is part of the overhead in flip-flop based designs. Instead, latch-
based systems can absorb some or all of the clock skew, without affecting the cycle time. If clock skew
keeps increasing, as a percentage of the cycle time, at some point in time latch based designs will perform
better than flip-flop-based designs.

Clock skew cannot increase too much without affecting the rest of the system. Other circuits such as
sense-amplifiers in SRAMs, which operate in blocking mode, get affected by clock skew also. The goal
of a design is to improve overall performance, and access to memory is usually critical in pipelined
systems. Clock skew has to be controlled also, primarily because of min-timing requirements. While some
of it can be absorbed by transparent latches for max-timing, latches are as sensitive as flip-flops to clock
skew for min-timing (with the exception of the nonoverlapping dual-phase design). While the global
clock skew is most likely to increase as chips get bigger, local skews are not as likely to do so. PLL jitter,
which is a component of clock skew for max-timing, may increase or not depending on advancements
in PLL design. Because cycle times are getting so short, on-chip signal propagation in the next generation
of complex integrated circuits (e.g., system on-chip) will take several clock cycles to traverse from one
side of the die to the other, seeing mostly local clock skews along the way. Clocking schemes in such
complex chips are becoming increasingly more sophisticated also, with active on-chip de-skewing circuits
becoming common practice [28, 29].

As for the future, flip-flops will most likely continue to be part of designs. They are easy to use, simple
to understand, and timing verification is simple also. Even in the best designs, most paths are not critical
and therefore can be tackled with flip-flops. For most critical paths, the usage of fast flip-flops, such as
SDFF/HLFF will be necessary. Pulsed latches will become more common also, as they can absorb clock
skew yet provide smaller overhead than dual-phase latches. A combination of latches and flip-flops will
become more common in the future also. In all these scenarios, the evolvement of automated timing
tools will be key to verifying such complex designs efficiently and reliably.

Appendix

A stage-by-stage D-to-Q delay analysis of the latches and flip-flops included in Table 10.8 is shown in
Fig. 10.74. The values per stage are normalized to a FO4 inverter delay. The delay per stage, which is
defined as a source-drain connected stack, is determined by the depth of the stack and the relative position
of the switching device, following Table 10.7. The delay per stage is indicated on the top of each circuit,
with the total delay on the top high right-hand side. Transmission gates are added to the stack of the
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driver to compute delay. For instance, a buffered transmission where CK is switching (Fig. 10.74(b)) is
considered as a two-stack structure switching from top. If D switches instead, it is considered as a two-
stack structure switching from bottom. For each design, the worst-case switching delay is assumed. In
cases where the high-to-low and low-to-high delays are unbalanced, further speed optimization could be
accomplished by equalizing both delays. A diamond is used to indicate the transistor in the stack that is
switching. In estimating the total delay of each design, the following assumptions are made. Precharged
stages (e.g., sense-amplifier flip-flop, TSPC flip-flop, SDFF) are skewed and therefore faster (see Table 10.7,
skewed logic). Output inverters are complementary static in all cases. The input inverter in the sense-
amplifier flip-flop (Fig. 10.74(h)) is skewed, favoring the low-to-high transition, because its speed is
critical in that direction only. The SR latch is complementary static. In the case of HLFF (Fig. 10.74(i)),

FIGURE 10.74 Normalized delay (FO4 inverter) of various latches and flip-flops: (a) unbuffered transmission gate
latch, (b) buffered transmission gate latch, (c) C2MOS latch, (d) TSPC latch, (e) master-slave flip-flop, (f) C2MOS
flip-flop, (g) TSPC flip-flop, (h) sense-amplifier flip-flop, (i) hybrid latch flip-flop, (j) semi-dynamic flip-flop, and
(k) pulsed transmission gate flip-flop.
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when used as a flip-flop, the NAND3 is skewed favoring the high-to-low transition, while the middle
stack is complementary. This is because if the middle stack were skewed, favoring the low-to-high transi-
tion, the opposite transition would become critical. When the circuit is used as a transparent latch, all
stages are static. (i.e., both transitions are balanced). The worst-case transition in this case is opposite
to that shown in Fig. 10.74: input D is switching and the total delay is equal to 1.2 + 1.5 + 1.2 = 3.9. In
the case of SDFF (Fig. 10.74(j)), since the middle stack is shorter, both the first stage (precharged) and
the middle stack are skewed.

A similar procedure to the one described above is followed to compute the minimum CK-to-Q delay.
An additional assumption is that the output buffer has FO1 as opposed to FO4 as in max-timing, which
results in shorter delay. The normalized FO1 pull-up delay of a buffer is 0.6 (PMOS), and the pull-down
is 0.5 (NMOS). 

To compute hold time the following assumptions are made. The inverters used in inverting or delaying
clock signals, with the exception of external pulse generators (see Fig. 10.65), have FO1, so their delays
are those of the previous paragraph. External pulse generators use three FO4 inverters instead (i.e., slower),
because in practical designs it is very hard to create a full-rail pulse waveforms with less delay. For
transparent-high latches, the hold time is defined as the time from CK switching high-to-low until all
shutoff devices are completely turned off. To insure the shutoff device is completely off, 50% delay is
added to the last clock driver. For instance, the hold time of the transparent-low transmission gate latch
is 0.5 (FO1 inverter delay) × 1.5 = 0.75. For a positive edge-triggered flip-flop, the hold time is defined
as the time from CK switching low-to-high until all shutoff devices are completely turned off. If there is
one or more stages before the shutoff device, the corresponding delay is subtracted from the hold time.
This is the case of the buffered master-slave flip-flop (Fig. 10.74(e)), which results in a negative hold
time. An exception to this definition is the case of HLFF or SDFF. Here, the timing of the shutoff device
must allow that the stack gets fully discharged. Therefore, the hold time is limited by the stack delay,
which is again defined as 1.5 times the stage delay. For instance, for HLFF, the middle stage pull-down
delay is 1.3, so the hold time is 1.5 × 1.3 = 1.95. SDFF, instead, has its hold time determined by the timing
of the shutoff device because the precharged stage is fast. 
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10.3 High-Performance Embedded SRAM

Cyrus (Morteza) Afghahi

Introduction

Systems on-chip (SoC) are integrating more and more functional blocks. Current trend is to integrate
as much memories as possible to reduce cost, decrease power consumption, and increase bandwidth.
Embedded memories are the most widely used functional block in SoC. A unified technology for the
memory and logic brings about new applications and new mode of operations. A significant part of
almost all applications such as networking, multimedia, consumer, and computer peripheral products is
memory. This is the second wave of memory integration. Networking application is leading this second
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wave of memory integration due to bandwidth and density requirements. Very high system contribution
by this adoption continues to slow other solutions like ASIC with separated memories.

Integrating more memories extends the SoC applications and makes total system solutions more cost
effective. Figure 10.75 shows a profile of integrated memory requirements for some networking applica-
tions. Figure 10.76 shows the same profile for some consumer product applications.

To cover memory requirements for these applications, tens of megabits memory storage cells needs
to be integrated on a chip. In 0.18 µm process technology, 1 Mbits SRAM occupies around 6 mm2. The
area taken by integrating 32 Mbits memory in 0.18 µm, for example, alone will be ∼200 mm2. Adding
logic gates to the memory results in very big chips. That is why architect of these applications are pushing
for more dense technologies (0.13 µm and beyond) and/or other memory storage cell circuits.

In pursuing higher density, three main alternatives are usually considered, dense SRAM, embedded
DRAM (eDRAM), and more logic compatible DRAM. We call this last alternative 2T-DRAM for the
reason that soon becomes clear. 

The first memory cell consists of two cross-couple inverters forming a static flip-flop equipped with
two access transistors, see Fig. 10.77(a). This cell is known as 6T static RAM (SRAM) cell. Many other
cells are derived from this cell by reducing the number of circuit elements to achieve higher density and
bits per unit area. The one transistor cell (1T)-based dynamic memory, Fig. 10.77(b), is the simplest and
also the most complex of all memories. To increase the cell density 1T-DRAM cell fabrication technology

FIGURE 10.75 Integrated memory for some networking products (Mbit).

FIGURE 10.76 Integrated memory for some consumer products (Mbit).
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has become more and more specialized. As a consequence, adaptation of 1T-DRAM technology with
mainstream logic CMOS technology is decreasing with each new generation. Logic CMOS are available
earlier than technologies with embedded 1T-DRAM. 1T-DRAM is also slow for most applications and
has a high standby current. For these and other reasons market for chips with embedded 1T-DRAM has
shrunk and is limited to those markets, which have already adopted the technology. Major foundries
have stopped their embedded 1T-DRAM developments. Another memory cell that has recently received
attention for high density embedded memory uses a real MOS transistor as the storage capacitor,
Fig. 10.77(c). This cell was also used in the first generation stand alone DRAM (up to 16 kbit). This cell
is more compatible with logic process. Thus, availability will be earlier than 1T-DRAM, it is more flexible
and can be used in many applications. This volume leverage helps in yield improvements and support
from logic technology development.

Table 10.9 compares main performance parameters for these three embedded memory solutions. 2T-
DRAM needs continuous refreshing to maintain the stored signal. This is a major contributor to the
high 2T-DRAM standby power. SRAM and 2T-DRAM also differ in the way they scale with technology.
To see this, consider again the Fig. 10.77.

The following equation summarizes the design criteria for a 2T-cell:

∆V + Vn = CsVs /2(Cs + CBL) (10.25)

where ∆V is the minimum required voltage for reliable sensing (∼100 mV); Vn is the total noise due to
different leakage, voltage drop, and charge transfer efficiency; Cs is the storage capacitance; CBL is the
total bit line capacitance; and Vs is the voltage on the Cs when a “1” is stored in the cell, Vcc − Vtn. Now
the effect of process development on each parameter will be examined. Vn includes sub-threshold current,
gate leakage, which is becoming significant in 0.13 µm and beyond, the charge transfer efficiency, and
voltage noises on the voltage supply. All these components degrade from one process generation to
another. Vs also scales down with technology improvements. We assume that Cs and CBL scale in the same
way. Then for a fixed ∆V, for each new process generation, fewer numbers of cells must be connected to
the bit line. This will decrease memory density and increase power consumption.

For SRAM the following equation may be used to study the effect of technology scaling:

∆V = (Isat /CBL)T (10.26)

TABLE 10.9 Comparison of Three Memory Cell 
Candidates for Embedded Application

1T-DRAM 2T-DRAM SRAM

Area 1 3X 5X
Active power Low Low High
Standby power High High Low
Speed Low Low High
Yield Low Moderate High

FIGURE 10.77 Cell circuits considered for embedded memory.
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New process generations are designed such that the current per unit width of transistor does not
change significantly. So, although scaling reduces the size of the driving transistor ND1, Isat remains almost
the same. CBL consists mainly of two components, metal line capacitance and diffusion contact capaci-
tance. Contact capacitance does not scale linearly with each process generation, but the metal bit lines
scale due to smaller cell. This applies to Eq. (10.25) as well. To get the same access time, the number of
cells connected to a column must be reduced. However, this trend is much more drastic for 2T-DRAM
because �V is proportional to Vs. For example, in a typical 0.18 µm technology to achieve access time
<10 ns, the number of cells in a SRAM column is 256–512, while it is only 32 for 2T-DRAM. In 0.13 µm
these numbers are reduced much slower for SRAM than for 2T-DRAM. Other factors like testing,
experience and ease of design, standby current, soft error rate, foundry support, etc. are in favor of SRAM.
For these reasons we concentrate on SRAM design.

Embedded SRAM Design

To achieve high access and cycle time, low power and better noise immunity SRAM design is normally
applied. To get the same speed and power performance, SRAM also results in more pact memory than
2T-DRAM. In this section we start with studying circuits involved in a column of memory cells. A memory
column is used to build a memory array. Then we study the peripheral circuits for a memory array. Then
techniques used to design a high-capacity memory with memory arrays will be presented. Embedded
memories have different failure and testing requirements than commodity memories. Finally, these require-
ments and some techniques to increase yield will be discussed.

A Memory Cell Column

Figure 10.78 shows the basic column of a SRAM memory array. For high-speed memory in 0.18 µm
technology, usually 128–256 cells are hooked to Bit and Bit# lines. More memory cell per column improves
the area efficiency of the memory. Area efficiency is the ratio of the cell array to the total array area. 

Memory Cell
The SRAM memory cell is a cross-coupled CMOS inverter pair. The read and write to the cell is through
N-pass transistors (NP1 and NP2). The absolute and relative sizes of the transistors in the cell must satisfy
different, mostly conflicting, requirements. The general goal is to keep the transistors as small as possible
to achieve high density. This may then conflict with high-speed requirements and radiation hardness.
To explain the design guidelines in selecting the transistor sizes, write and read operations are presented
briefly. Later these operations are presented in more details.

To write a data into the cell, Bit and Bit# are driven to the data and its complement. Then the LWL
is activated for the selected row. The access transistors NP1, NP2 and the write drivers must be able to

FIGURE 10.78 A basic column in a memory array.
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provide sufficient current to flip the cell and latch the new data. Since access transistor is a single N-pass
transistor, the bit line (Bit or Bit#), which is a logic “0”, is most effective in the write (and read) operation.
Inside the cell the logic “1” must be restore by the P-transistors. During read, Bit and Bit# are first pre-
charged to “1” then the LWL is activated again for the selected row. Depending on the data stored in the
cell, ND1 (or ND2) will pull the bit line down. The read operation must not destroy the stored data. 

The NP transistor must be sized correctly with respect to driving ND transistor and restoring P-transistor.
During the write a logic “0” on the bit line must be able to flip the cell. This means that NP transistor
must be large enough to overcome the P-transistor. This transistor must also be large enough to decay
the bit line for a fast read time; however, its size with respect to driver transistor ND1 (ND2) must be
small enough such that during a read the internal node holding a “0” does not rise sufficiently to flip
the cell. Other considerations, like sub-threshold leakage and glitches during a LWL transition, suggest
to keep this transistor small.

The ND transistor drives the bit line down during a read. Since the bit line capacitance is high, for
high-speed read this transistor must be large. Also it must be large enough to maintain the logic “0” in
the cell while pulling down the pre-charged bit line during a read. However, to have some write margin
this transistor must not be too large. When writing a “0” to one side of the memory cell (for example, S1),
the ND2 transistor is fighting to maintain the old value. A large ND size requires the bit line to be pulled
too close to Vss. This limits the write margin. A large ND size also increases the standby current of the
memory. 

The restoring P-transistor pull up the high side of the cell to a logic “1” and maintain it at that level.
Since the P-transistor only drives the internal cell nodes, it could be small. Smaller P-transistor also
reduces the sub-threshold current. However, the P-transistor must be large enough to quickly restore a
partially logic “1” written through N-pass transistor to a full level. Otherwise a read immediately following
a write may not meet the access time. The P-transistor must also be large enough to reduce soft error rate.

These conflicting requirements on the absolute and relative size of transistors in the cell are summarized
in a graphical analysis of the transfer curve of the memory latch, Fig. 10.79. To set up this graph, normalized
transfer function of the inverter in the cell is overlapped with its mirror curve. The maximum square that
fits these two characteristics defines the noise margin for read and write. This square is also an indication
of the cell stability. This graph must be analyzed across the voltage, temperature, and process variations.
In the next section some guidelines are given for these simulations. 

Memory Cell Stability and Noise Margin Analysis
Some parameters of a transistor are subject to variations during fabrication. These variations can be
lumped and modeled in the transistor length and threshold. Figure 10.80(a) shows an ideal transistor
that has a width of W and length L. In a typical process, the transistor threshold voltage is Vt. A weak
transistor is modeled by increasing the L and threshold by ∆L and ∆Vt, respectively. ∆Vt must be
represented by a correct battery polarity in the schematic. A strong transistor is modeled by decreasing
the L and threshold by ∆L and ∆Vt.

FIGURE 10.79 Static noise margin of the memory cell.
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To estimate ∆L and ∆Vt, use the 3-sigma figures for the specific process. These figures are usually
obtainable from the process foundry. For example, in a typical 0.18 µm technology, 3-sigma for L and
Vt are ±0.01 µm and ±20 mV. If 1 Mb memory is embedded in a die and you allow 1/1000 die to fail,
the failure rate is 1E-9. This corresponds to 6.1-sigma. ∆Vt will be 40.6 mV. This mismatching is between
two supposedly matched transistors in the same circuits. All N and/or P transistors on a die may shift
from their typical characteristics to slower or faster corners. When simulating a circuit, all combination
of process corners must be considered for the worst case. 

The schematic model shown in Fig. 10.81 is used to study the memory cell stability, read and write
margins. To initialize the cell, write a data into the cell and turn the word line (LWL) low. Then ramp
the Vcc from, say, Vcc – 0.25Vcc to Vcc + 0.25Vcc. If the cell changes state, it is not stable. The lower and
upper Vcc levels used in this test are application dependent. For upper level the burn-in voltage may be
used. This simulation must be carried out in all process corners. To improve stability, increase the width
of the ND or/and decrease the width of the pass transistor.

A read operation starts with pre-charging the bit lines. During this phase no word line (LWL) is
selected. Then a row will be selected for read. This will cause a charge sharing between the bit line and
the low side of the cell. The memory cell read margin determines how far the upset side of the cell is
from corrupting the stored data. To replicate a read operation, a current source is ramped up on the low
side of the cell. The voltage at which the cell is flipped is called the trip point of the cell. The read margin
is the trip point voltage minus 5–10% of Vcc. The percentage depends on the memory environment. This
simulation must be carried out in all process corners. For good noise immunity, the read margin needs
to be between 5–10% of Vcc. The same measures used to improve cell stability can also be used to improve
the read noise margin.

As in the read operation a write also starts with pre-charging the bit lines. Then a row is selected and
the bit line to write a “0” is driven low by the write circuitry. The write operation must be finished in a
pre-specified time. The write margin is an indication of the write driver strength in writing an opposite
data into a cell. For this purpose a transient simulation of the write driver, bit line, and a cell under test
is required. A weak transistor must be used for the pass transistor (NP). Then the write margin is the
trip point voltage (measured in the read operation) minus the bit line voltage at the end of the write
period. For a good noise margin the write margin must be ∼10% Vcc. Again, simulation must be carried

FIGURE 10.80 Modeling process variations in schematic.

FIGURE 10.81 Schematic model to simulate stability, read and write noise margin.
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out in all process corners. To improve the write noise margin the write driver strength or/and the width
of the pass transistor can be increased. 

Bit Line Pre-Charge Circuit
As mentioned earlier pre-charging precedes the read and write operations. If the write circuit drives
both bit lines to full “0” and “1” logical level, pre-charging the bit lines before the write is not necessary;
however, pre-charging the bit lines prior to write makes the write time more predictable and the write
circuit less complex. Figure 10.82 shows a pre-charge circuit. P transistors pre-charge the bit lines to
full Vcc. Static sense amplifiers used in some designs for read operation have very low gain at Vcc. In these
designs either N transistors is used to pre-charge the bit lines or level shifter is used to lower the voltage at
the sense amplifier circuit. Using N transistor results in unpredictable pre-charged level and variable read
time. If a column is not selected for a long time, N transistor leakage gradually raises the pre-charge level
closer to Vcc. 

The P1 and P2 transistors must be large enough to pre-charge the bit lines in the available time. But
they must not be larger than required due to excessive gate to drain capacitance coupling and charge
injection into the bit lines. P3 is used to equalize the bit lines. Equalization is particularly important after
a write as one of the bit lines is driven to “0”. Any voltage mismatch between bit lines will reduce the
read margin and slows down the read time if a static sense amplifier is used. In case of a sense amplifier
with positive feedback, bit line voltage mismatch can cause wrong result.

Column Select Circuit
The next element in the memory column to be considered is the column select circuit. In embedded
applications, the number of bits per word can vary from as low as 3 bits to 512 or even higher. Column
multiplexing gives some flexibility to handle this wide range of requirements. Multiplexing can vary from
1:1 to 1:32 or higher. Narrower multiplexing (1:1) creates difficulties in layout as the sense amplifier and
write circuits must fit in a cell pitch. When the word is short, narrow multiplexing results in low memory
area efficient. Wide multiplexing creates difficulties in matching Bit and Bit# lines. 1:4 and 1:8 are the
usual ratio used. 

In many designs read and write multiplexing are separated. This may be due to some system require-
ments. Figure 10.83 shows a 2:1 multiplexing with separated read/write column selects. In this circuit a
single N pass transistor is used for read select and a single P pass transistor is used for read. This circuit
exploit the fact that the “0” is the most active in the write operation and pre-charge circuit have already
charged the bit lines to “1”. One must make sure that the “1” is not decayed below Vcc – Vtn due to
coupling, sub-threshold currents of nonselected memory cells in the column, and the charge sharing
with the selected memory cell. During a read operation the bit line decays only a fraction of Vcc (say
∼100 mV). Thus, a single P transistor, instead of complementary gates, will be sufficient to transfer the
bit line value to the sense amplifier input. In the Fig. 10.83 a simple write circuit is also shown. In more
complex write circuit, explained later, the single multiplexing N pass transistor should be replaced with
a complementary transmission gate to pass both “0” and “1.” It is also possible to use the same column
select for both read and write. In this case the write circuit must be tri-stated during the read operation.
In some systems, it is required to write or read only a part of a word. In these cases masking or two levels
of decoding is may be used.

FIGURE 10.82 Bit-line, pre-charge circuit.
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Write Circuit
In the previous sub-section, a simple and fast circuit was presented. The write N transistor (and write select
transistor) are large enough to drive the highly capacitive bit line down and overcome the P pull-up transistor
inside the memory cell in the available write time. In that circuit the bit line is not driven to “1”. This is
because the bit line can not write a “1” to the memory cell and the bit line is already pre-charged to “1”.
To make sure that the bit line maintains the pre-charge value or if the pre-charge is not complete prior
to write, to save time, the write circuit must drive the “1” side also. Figure 10.84 is a more complex write
circuit that has only one N transistor (in series with the N column select transistor) and drives the high
side as well. During the read cycle, this circuit is in tri-state, so same column select might be used for
both read and write. Wen signal is either the write enable signal or a derivation of it. 

Sense Amplifier 
The sense amplifier is the last element considered in the column. In a read operation the bit lines are
pre-charged first. Then a word line is activated to let the ND transistor in the cell pull either Bit or Bit#,
depending on the data stored in the cell, down. The bit line is highly capacitive and the transistors in
the memory cell are small for density purpose, so it may take a long time for the cell to completely
discharge the bit line. The common practice is to let the cell develop only a limited differential voltage,
about ∼100 mV, on the bit lines and amplify it by a sense amplifier. Thus, reducing and matching the bit
line capacitance is important for a fast and correct read. Power consumption of a memory is also mainly
determined by the bit line capacitance. 

Bit line capacitance components, contributed by each memory cell, include junction capacitance, bit
line to bit line coupling, bit line to word line, and bit line to substrate capacitance. Thus, each cell connected

FIGURE 10.83 A column circuit.

FIGURE 10.84 A write circuit.
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to the bit line adds a certain amount of capacitance to the bit line. Junction capacitance is the main
source of bit line capacitance. Choosing the number of cells per column is an important design decision
as it determines the speed, power consumption, area efficiency, and hence, the architect of the memory.
In a typical 0.18 µm technology 256–512 cells per bit line is a good compromise. Bit line to bit line
coupling is a major source of mismatching. Its contribution to bit line capacitance is also significant and
is the only component that circuit designers can influence. 

Coupling capacitance between bit lines has two consequences. It increases the total capacitance and
makes the read time data dependent. Adjacent cells to a cell may have different data for two reads of the
same cell. The strategy to reduce the bit line coupling capacitance is to twist the bit line along long run
of bit lines. Figure 10.85(a) shows a simple strategy in which the coupling between bit lines is completely
cancelled; however, the coupling between Bit and Bit# of the same cell is not cancelled. But signal shifting
due to this coupling is deterministic and limited. In modern CMOS process technologies, it is possible
to use higher level of metals for bit lines to lower the line to substrate capacitance. It is also made
possible that to run, in addition to bit lines, a supply line through the cell. This supply line not only
helps to have a power mesh in the memory, it also can be used to cancel the Bit to Bit# coupling, see
Fig. 10.85(b). Twisting the bit lines degrades the area efficiency of the memory. If the supply line is
drawn outside the bit lines, the strategy in Fig. 10.85(c) may be used to increase the area efficiency and
live with the known Bit to Bit# coupling capacitance. 

Many different sense amplifiers circuits are used in memory design. Two most popular circuits are con-
sidered here. The miller current mirror sense amplifier, Fig. 10.86(a), is used in more conservative and slow
designs. The SenSel signal is asserted after enough differential signals are developed on the bit lines. The main

FIGURE 10.85 Bit line twisting to reduce coupling capacitans and read time data dependency.

FIGURE 10.86 Three popular sense amplifiers: (a) Current mirror based, (b) Latch with positive feedback, and
(c) Dual slope or/and clocked Vcc.
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advantage of this circuit, compared to a circuit with positive feedback, is that it always resolves to right
direction regardless of the initial amount of differential signals at the inputs. Thus it is not sensitive to
the minimum delay of SenSel signal to word line. However, this circuit has many disadvantages. It is
slow and consumes more power. The gain and speed of the circuit is very sensitive to the pre-charge
value of the bit line. Because of the diode connected transistor in the circuit it is not suitable for low
voltage operation and has structural offset. For these reasons the differential sense amplifier with positive
feedback circuit, Fig. 10.86(b), is used in many designs.

This circuit is fast and consumes less power. The only disadvantage of this circuit is that it may latch
in a wrong state. To avoid this, the SenSel signal must be activated after sufficient different voltage is
developed on bit lines to overcome all worst-case offsets of the circuit. To calculate the worst-case offset,
the schematic model in Fig. 10.81 can be used. ∆L and ∆Vt are smaller for sense amplifiers because bigger
devices are used here. To reduce the offset, transistors used in the circuit must have at least 10–20%
longer than the minimum length in the technology.

After sufficient differential voltage is developed between V1 and V2, the SenSel signal is activated.
Initially, only two input N transistors, N1 and N2, are in saturation and two loading P transistors are off.
This is a favorable case because N transistors normally have better matching characteristics than P
transistors. Two cross-coupled N transistors increase the differential voltages further. Both V1 and V2

drop below pre-charge Vcc voltage. When V1 or V2 are below Vcc – Vtp, the P transistors further increase
the positive feedback and restore a full Vcc on the side that is supposed to be a logic “1”. To make the
initial part of the operation longer, one may use a dual slope scheme or/and clock the Vcc connection,
Fig. 10.86(c). In the dual slope scheme first the weaker tail transistor is activated. This will cause the V1

and V2 to sink slowly. After a short delay the strong tail transistor is turned on by SenSel. In the clocked
Vcc connection the ΦL is delayed with respect to SenSel. In some design the Bit and Bit# are not
disconnected from the sense amplifier during sensing. This results in slower response and increased
power consumption. Bit and Bit# can be disconnected by a column select transistors to increase speed
and reduce power consumption.

Memory Array

Now that main circuits comprising a column are presented, we can construct an array of columns. The
goal is to organize n × n cells in such a way to meet the required access time, power budget, and high-
area efficiency. In a flat organization, Fig. 10.87(a), all the cells are included in a single array. This
architecture has many disadvantages for large memories. The main contributor to the power consumption

FIGURE 10.87 Memory organizations: (a) flat, (b) hierarchical, and (c) a hierarchical circuit solution.
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is the bit line capacitance. The effect of bit line capacitance on the read access time is significant. It is thus
desirable to have less number of cells per column. Having less number of cells per column also make the
row decoder simpler. Row decoder time performance is also crucial for a fast access time because it is in
the critical delay path; however, in a flat organization less number of rows means larger number of
columns. This will increase the word lines delay, requires big word line drivers, and high column multi-
plexing ratio. 

Partitioning of the memory array has been the subject of very creative challenges for many years. This
challenge will continue, as the metal lines are becoming more resistive and new generation CMOS
technologies offer multilayers of metals. This provides possibilities to introduce many layers of hierarchy
in the memory organization to combat parasitics reduce power, access time, and to increase area efficiency.
Figure 10.87(b) is an example of partitioning the array into sub-arrays and introducing hierarchy into
the decoding and word lines. Assume you have 256 rows per sub-array. You need eight address bits to
select each row. Out of these 8 bits, 6 bits are coded and driven across all the sub-arrays. These are global
word lines, GWL. Although global word lines are long, they are not heavily loaded, as they are strapped
only once per sub-array. The remaining 2 bits are pre-decoded in each sub-array. A sub-array is selected
through sub-array decoder (block decoder). Block decoder is normally fast, as it has a smaller number
of address bits to decode. The local decoder in each sub-array is a simple circuit that decodes GWL, pre-
decoded signal, and block select. Figure 10.87(c) is a static circuit for the row decoder chain. For faster
decoding pre-charge dynamic circuits may be used instead.

Column decoding is not as time critical as row decoder, as row decoding and bit sensing can be
completed before the column decoder is finish. However, in a write operation there may be a race between
row decoder and column decoder. 

Testing and Reliability

High-density and high-capacity memory cores are more vulnerable to physical defects than logic blocks.
The higher defect is mainly caused by SRAM denser layout. Wafer yield can be assumed to be (SRAM
yield) × (logic yield). In a logic chip with high density and capacity embedded SRAM, it is essential to
enhance the SRAM yield to achieve better overall chip yield. In commodity SRAM redundancy is used to
increase yield. This same methodology can be used to compensate for higher defect density of embedded
SRAM. Redundancy is to replace a defected element by a redundant element. A pair of row(s) and
column(s) are designed redundant to a memory block for this purpose. If any single memory block is
denser than 0.5 Mbits, it is recommended to have redundant row and column. Columns fail more often
than rows as they are more complex and include sense amplifier. At least use one redundant column per
each 0.5 Mbits. For memories denser than 2 Mbits, both row and column redundancy is recommended. 

Testing of embedded memories is more difficult than commodity memories due to the limitation in
direct access, increase in data bus width, and increase in speed and flexibility in embedded memories
configurations and specifications. It is, therefore, necessary to use a BIST for each memory block to run
all standard test patterns. Address and data signals to embedded SRAMs may go through a long run.
This can cause timing and signal integrity issues. Power supply voltage drop, flatuation and noise are
another source of embedded memory failure. A well-designed power mesh together with sufficient and
well-placed de-coupling capacitance is normally used in robust memory designs.
© 2002 by CRC Press LLC
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11.4 Summary and Conclusion

11.1 Introduction

Multiple-valued logic (MVL) is a hybrid of binary logic and analog signal processing: some of the noise
advantages of a single binary signal are retained, and some of the advantages of a single analog signal’s
ability to provide greater informational content are used. Much work has been done on many of the
theoretical aspects of MVL. The theoretical advantages of MVL in reducing the number of interconnec-
tions required to implement logical functions have been well established and widely acknowledged.
Serious pinout problems encountered in some very large scale integrated (VLSI) circuit designs could
be substantially influenced if signals were allowed to assume four or more states rather than only two.
The same argument applies to the interconnect-limited IC design: if each signal line carries twice as
much information, then only half as many lines are required. Four-valued logic signals easily interface
with the binary world; they may be decoded directly into their two-binary-digit equivalent. Many logical
and arithmetic functions have been shown to be more efficiently implemented with MVL, i.e., fewer
operations, gates, transistors, signal lines, etc., are required. Yet, with all the theoretical advantages, MVL
is not in wide use mainly because MVL circuits cannot provide these advantages without cost. The costs
are typically reduced noise margins, slower raw switching speed due to increased circuit complexity and
functionality, and the burden of proving MVL use improves overall system characteristics. As fabrication
technologies evolve, MVL circuit designers adapt to the new technology-related capabilities and limita-
tions and create new MVL circuit designs. Many MVL circuits have been proposed that use existing and
proposed silicon and III-V fabrication technologies; that signal with flux, charge, current, voltage, and
photons. A discussion of the extensive range of possible circuit-oriented MVL topics would be very
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informative, but that is beyond the scope of this document. This discussion is intended to present a view
of the state of the art in practical, realizable MVL circuits and of the trend expected in new MVL circuits.
The reader is referred to the section on “Further Reading” below for references to additional literature
and sources of information on MVL.

For most new chip designs that employ MVL to be useful and attractive, their inputs and outputs,
and power supply voltages must be compatible with the signal swings and logic levels, and power supply
voltages of the binary logic families with which they will be required to communicate. Looking at the
potential of MVL realistically, in the near future, we expect few designers to risk using quaternary or
other MVL logic signaling at the package pins (except possibly in a testing mode). The most likely
situation in which MVL would be used is one in which binary signaling is done on the chip pads to be
compatible with the rest of the system, some functions are realized with standard binary circuitry, and
certain other functions are realized more advantageously with MVL. Rather than attempt to develop a
general family of MVL circuits that is logically and computationally complete, we have examined the
realization of specific MVL functions that we believe provide advantages now and may provide advantages
in the future.

MVL has many theoretical advantages, but it is not widely used because MVL circuits do not provide
overwhelmingly advantageous characteristics, in general. However, in many designs, overall system char-
acteristics may be improved using specific MVL circuits in specific applications. For example, the most
widely used commercial application of MVL is nonvolatile memory. The MVL nonvolatile memory
provides greater memory density and decreased incremental memory cost. These circuits generate inter-
nal multiple-valued current signals that are interpreted and converted to binary voltage signals for
interface out of the memory function. As system power supply voltages continue to decrease, current
signaling can allow one to continue to use the advantages of MVL until subthreshold and leakage currents
exceed the available noise margins. Thus, current-mode CMOS logic circuits are also seen as viable in the
present and in the near future.

Several other MVL approaches may be potential candidates for MVL VLSI circuits. Current-mode,
emitter-coupled, logic style circuits can be easily adapted to use multiple valued current signals and
provide high-speed, high-packing-density MVL functions [1,2]. To take advantage of current-mode
logic’s series gating, power supply voltages must remain higher than the minimum projected for CMOS.
Although the use of resonant tunneling diodes’ and transistors’ negative incremental resistance can be
used for MVL and shows some promise [3,4], the series stacking of the multiple negative-resistance
devices requires additional voltage overhead we are predicting will not be available, in general. Although
interesting, these and other approaches to MVL circuits will not be discussed in detail here. Many MVL
circuits that require enhancement- and depletion-mode NMOS and PMOS transistors with application-
specific sets of designer-specified transistor threshold voltages have been proposed that are similar to or
extend the ideas in [5,6]. We are not discussing those ideas in this document because the fabrication
technologies required are too ambitious or because the circuit overhead required to maintain an MVL
voltage-controlled-transistor-threshold voltage is excessive, and thus not as likely to be adopted by design
engineers; however, it has been commonly observed that ideas that prove to be highly profitable can
suddenly alter the vector of change in the electronics industry. If, for example, a highly capable, and
highly profitable approach to photonic circuits were demonstrated that required a large power supply
voltage, designers would not hesitate to reverse the power supply voltage reduction trend for the purpose
of improved profit and enhanced performance. Yet, given the information now available about fabrication
technology improvements and changes projected into the near future, the trend of reduced power supply
voltages and minimized transistor dimensions will probably continue for some time. Under these con-
ditions, we project current-mode MVL signals to be the most likely to be useful and advantageous.

In the next section, we discuss the use of MVL in nonvolatile memory circuits realized in CMOS
technologies. Section 11.3 discusses current-mode CMOS circuits that can provide computational advan-
tages because current summing requires no electronic components. A summary and conclusions are pre-
sented in section 11.4.
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11.2 Nonvolatile Multiple-Valued Memory Circuits

The most widely used commercial application of MVL is in nonvolatile memory. Nonvolatile memory
retains its stored information when there is no power supplied to the chip. Read only memory (ROM) is
programmed in the manufacturing process and cannot be altered afterward. Programmable ROM (PROM)
is programmed after manufacture only once, by the electrical means of blowing out, open circuiting, a
fuse, or enabling, shorting, an “anti-fuse.” Erasable PROM (EPROM) uses a floating-gate (FG) field effect
transistor (FET) that has two separate, overlapping gates, one of which is electrically isolated or floating,
as shown in Fig. 11.1. The floating gate lies on the thin gate oxide between the FET’s channel and the top
gate, which serves as the transistor’s gate terminal that is driven to turn on or off the transistor’s drain
current. The transistor’s effective threshold voltage can be changed by changing the number of electrons,
the charge, stored on the floating gate. The difference between the applied gate voltage and the effective
threshold voltage determines the drain current. The drain current represents the information stored in
the FG transistor. The drain current is read by a column amplifier that converts the information to voltages
compatible with the interfacing circuitry. All FG transistors in the EPROM are erased simultaneously by
exposing the floating gates to ultraviolet light. Electrically Erasable PROM (EEPROM) uses floating gate
transistors that are programmed and erased by electrical means. The FG transistor’s effective threshold
voltage, and resultant drain current, is programmed by placing charge on the floating gate. The arrange-
ment of memory array transistors in nonvolatile memory can be in parallel as is done with a NOR gate,
or in series as is done with a NAND gate, thus giving nonvolatile memory architectures NOR and NAND
designations. The physical mechanism typically used in programming the floating gate is channel hot
electron injection or Fowler–Nordheim tunneling, and for erasure Fowler–Nordheim tunneling [11].
Organizations of floating-gate transistors such that they can be electrically programmed one bit at a time
and electrically erased a block, sector, or page simultaneously are called “Flash” memory. These nonvolatile
memories usually have a single power supply, and generate the larger programming and erasure voltages
on-chip. Floating gate transistors in these commercial products can typically be programmed in less than
1 ms, erased in less than 1 s, can retain data for more than 10 years, and can be erase/program cycled over
100,000 times. Binary and multiple-valued versions of flash memories can usually be realized in the same
floating-gate FET fabrication technologies, and use the same memory cells. Differences are in binary and
MVL read and write functions, and programming and erasure procedures.

MVL nonvolatile memory provides greater memory density and decreased incremental memory cost.
In the next two sections, MVL ROM and MVL EEPROM memory, respectively, are discussed. 

Multiple-Valued Read Only Memory

Standard binary ROM circuits are programmed during the manufacturing process by making each cell
transistor either operational or nonoperational. The programmed binary data is represented by either
the presence or absence of drain current when the memory cell transistor is addressed. This can be
accomplished in several ways. The memory cell transistor can be made nonoperational by having its

FIGURE 11.1 Floating-gate MOS FET.
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drain omitted, its gate polysilicon over thin oxide omitted, and its threshold voltage increased to a value
greater than the gate address voltage. For example, an additional mask and implant are used to increase
the cell transistor’s threshold voltage to a value large enough that the transistor remains “off” (ID = 0)
when the address voltage is applied to its gate. Thus, with all programming approaches, when the memory
cell is addressed, those cell transistors that are operational conduct drain current, and those that are not
operational do not conduct drain current. The binary information is in the presence or absence of drain
current. Drain current is detected by the column read amplifier, and binary output voltages are created
for communication out of the memory function. The column read amplifier can be a differential amplifier
or a fixed reference comparator. MVL ROM uses multiple valued drain currents to represent the stored
MVL data. MVL and binary ROM architectures are essentially the same except for sensing the multiple
valued currents and the creation of the equivalent binary information for output out of the memory
function. Four-valued ROM [7–10] have been successfully used in commercial products.

Four-valued ROMs can be programmed during manufacture using two approaches. One approach
uses two additional masks and implants to create four possible memory cell transistor threshold voltages
[8,10]. Drain current is nonlinearly proportional to the difference between the applied address gate
voltage and the effective threshold voltage. Cell transistors with four possible effective threshold voltage
values can be of minimum size and thus produce twice the cell bit density possible with the binary
version. This approach uses additional processing steps and masks, and thus a more expensive fabrication
technology. Another approach uses four different cell transistor channel widths or width-to-length ratios
to set the four possible drain current values [7,9]. Drain current is directly proportional to the channel
width. The spacing within the array of memory cell transistors must accommodate the largest of the four
possible transistor sizes, and thus must be greater than that of the threshold programmable version. This
geometry-variable approach requires additional silicon area and provides a bit density less than the
threshold programmable approach, but greater than the binary version; however, no additional fabrica-
tion steps or masks are necessary for this geometry-variable cell.

Detection and interpretation of the four-valued memory cell transistor’s drain current is an analog-
to-two-bit digital conversion problem that has many solutions. Traditional analog-to-digital conversion
design issues must be considered and all conversion approaches can be used. A simple approach uses as
comparator threshold references three reference currents that lie between the four logical values of the
drain current. This common “thermometer” arrangement of three comparators produces simultaneously
three comparison results that are easily decoded into arbitrary two-bit binary output combinations. This
simultaneous comparison of the data drain current to the references is the fastest approach to detecting
the stored data. These column read amplifiers are more than twice as complicated as the binary versions.
Because the number of read amplifiers is much smaller than the number of memory cells, this increase
in the read amplifier overhead circuitry reduces only slightly the overall density improvement provided
by the bit density increase of the large array of four-valued memory cells. Overall, four-valued ROM
implementations reduce chip areas 30–40%. For example, in [7], a math co-processor uses a mask-
gate-area-programmable quaternary ROM that provides an approximately 31% ROM area savings
compared to a binary ROM. No system speed penalty was incurred because the slower MVL ROM is
fast enough to respond within the time budgeted for ROM data lookup. In [9], the 256 K four-valued
ROM is said to have minimal speed loss due to careful design of the ROM architecture, the sense amp
operation, and the data decoder output circuit design. Chip area savings of this four-valued ROM is
approximately 30%.

Both programming approaches provide significantly increased bit density compared to binary ROM.
The speed of the four-valued ROM is inherently reduced because the increased complexity of the column
read amplifiers, the increased capacitance of the larger memory cell transistors, and the reduced drain
current created by the memory cell transistors with large threshold voltages. Designers have minimized
the speed penalty with thoughtful chip architecture design and careful transistor level circuit performance
optimization. The improved capabilities demonstrated in these four-valued ROM designs motivated the
use of four-valued data storage in the EEPROM and flash memories discussed next.
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Multiple-Valued EEPROM and Flash Memory

Binary and multiple-valued EEPROM [11–13] circuits are used in successful commercial products. Many
of them are organized for the simultaneous electrical erasure of large blocks of cells and are called “flash
memory.” Multiple-valued flash memory circuits provide greater memory density, at lower incremental
cost, than the binary versions. The circuitry of multiple-valued ROM and multiple-valued EEPROM
structures are very similar to each other and very similar to their binary counterparts. Development of
commercially viable binary and MVL flash memory products has required extensive research in device
physics and fabrication technology. That research continues and we see continual improvements in com-
mercial flash memory products. Summary and overview discussions of flash memory [11] and multilevel
flash memory [12] examine many of the inter-related effects and important tradeoffs that must be
considered. Here, we discuss the principles of operation and do not attempt to explain in detail any of
these evolving and complex issues.

In multiple-valued flash memory circuits, the floating gate of each EEPROM memory cell transistor
is charged to one of the multiple values that creates one of the several memory cell transistor threshold
voltages. Each memory cell transistor, when driven with the specified read gate voltage, generates one of
the multiple logical drain current values. The multiple-valued drain currents are then decoded by a
current sense amplifier column read circuit. The sense amplifier serves as an analog-to-digital converter
that translates the multiple-valued drain current into an equivalent set of binary logical output signals
with voltages compatible with the rest of the computing system. Four-valued signals are most commonly
used. A few 16-valued EEPROM memory cells have been examined [13] and a 256-valued EEPROM
“analog memory” has been used in a commercial analog audio storage product [14].

Precise control of the charge on the nonvolatile FET’s floating gate is necessary to create one of the
multiple distinct effective cell transistor threshold voltage values needed. Each nominal threshold voltage
value will have a distribution of voltages around that target value. Noise margins, separations between
adjacent threshold voltage value distributions, diminish as the number of logical values increases. It is
necessary to keep the distribution narrow and to maintain adequate distances between the adjacent
threshold voltage value distributions. Research is underway to develop a self-limiting programming
technique, but at the present time programming of the floating gate is usually done with an iterative
program and verify procedure. A programming voltage is applied for a fixed period of time, and the
resultant programmed value is read by the column sense amp. If the desired threshold voltage is reached,
then programming ends. If not, then another programming voltage pulse is applied and the programmed
verified. The iterative procedure ends when the verify step indicates the correct programmed threshold
voltage has been created.

Reading a stored multiple valued logical signal can be accomplished with any analog to digital process,
such as that described above for the four-valued ROM. This simple approach uses as comparator threshold
references three reference currents that lie between the four logical values of the drain current. This
common “thermometer” arrangement of three comparators produces simultaneously three comparison
results that are easily decoded into arbitrary two-bit binary output combinations. This simultaneous
comparison of the data drain current to the references is the fastest approach to detecting the stored
data. These column read amplifiers are more than twice as complicated as the binary versions. Another
approach is to drive the memory cell’s read signal from its minimum value to its maximum value with
a series of steps or a ramp. Times when the read signal voltage exceeds each memory cell’s possible
programmed threshold voltages are known by design. When the single read amplifier comparator senses
any current at the prescribed time, the programmed logical signal value has been detected. The column
read amplifier used with this approach requires only one comparator, one threshold, and thus fewer
devices, but requires more time than the simultaneous conversion described previously.

Compared with binary realizations, four-valued flash memory circuits have been shown to require
50% of the memory area, about 115% of the read circuit area, and have access times from about 100%
to 150%. The fabrication technology is more complicated, requiring two additional memory cell threshold
voltages. These 2 additional threshold voltages can be accomplished with only one additional implant.
© 2002 by CRC Press LLC



            
Thus, four-valued flash memory can provide significantly increased memory density at a moderate
increase in fabrication technology complexity.

For most new chip designs to be useful and attractive, they must be compatible with the signal swings
and logic levels of standard binary logic families and use compatible power supply voltages. Thus, looking
at the potential of MVL realistically, we expect few designers to risk using MVL logic signaling at the
package pins (except possibly in a testing mode). The most likely situation in which MVL would be used
is one in which binary signaling is done on the chip pads, some functions are realized with standard
binary circuitry, and certain other functional modules are realized more advantageously with MVL.
Rather than attempt to develop a family of MVL circuits that are logically and computationally complete,
we have examined the realization of specific MVL functions that we believe provide advantages now and
may provide advantages in the future. With the predominance of CMOS fabrication technologies and
the continued decline of system and chip power supply voltages, signal processing with multiple-valued
currents appears to be more naturally compatible with the evolving design environment than other
approaches to MVL. Thus, current-mode CMOS MVL circuits are the focus of the remaining part of
this presentation.

11.3 Current-Mode CMOS Multiple-Valued Logic Circuits

Current-mode CMOS circuits in general are receiving increasing attention. Current-mode CMOS MVL
circuits [15] have been studied for over two decades and may have applications in digital signal processing
and computing. Introduced in 1983 [16], current-mode CMOS MVL circuits were demonstrated that
are compatible with the requirements for the VLSI circuits [17]. Various approaches to realizing current-
mode CMOS MVL circuits have been discussed since then, and signal processing and computing appli-
cations of current-mode MVL have been evaluated. A convincing demonstration of the advantages of
current-mode CMOS MVL is the 32 × 32 multiplier presented in [18]. This 32 × 32 multiplier chip is
half the size of an equivalent all-binary realization, dissipates half the power, and has a multiply time
within 5% of the fastest reported all-binary multiply time of a comparable design of that era. These
advantages arise from the combination of two ideas. The authors use a signed-digit number system
(±2, ±1, 0) and symmetric functions [19] to streamline the multiplier algorithm and architecture, and
to limit the propagation of carrys. They then use multiple-valued bi-directional current-mode CMOS
circuits to efficiently realize the function of addition. Addition of currents requires no components.
Addition is the principal operation performed in the multiplier, so the current-mode MVL advantage in
addition helps make the multiplier realization more area efficient. Thus, advantageous use of MVL usually
requires finding its niche. For example, in the pipelined discrete cosine transform (DCT) chip designed
using current-mode CMOS MVL circuits described in [20], it is the pipelined nature of the realization
of the DCT and inverse DCT functions that makes using MVL potentially feasible. Since the maximum
system clock is set by the longest delay required for any pipeline stage, as long as the slightly slower MVL
current-mode CMOS adders and multipliers meet this timing requirement, then MVL circuits may be
used to provide major area savings in realizing adders and multipliers.

Current-mode CMOS MVL circuits are often used to realize threshold functions. The two basic
operations of a threshold function are: (1) the formation of a weighted algebraic sum-of-inputs, and (2)
comparison of this sum to the multiple thresholds that define the MVL function to be realized. Current-
mode CMOS MVL circuits use an analog current summing node to create the algebraic weighted-sum-
or difference-of-input currents using Kirchoff ’s current law. This function is “free” because it requires
no active or passive components. Uni- and bi-directional currents may be defined in each branch. The
currents are usually defined to have logical levels that are integer multiples of a reference current. Currents
may be copied, scaled, complemented, and algebraically sign changed with simple current mirror circuits
realized in any MOS technology. Use of depletion-mode devices could sometimes simplify circuit design
if they are available in the fabrication technology [18]. The weighted sum or difference of currents is
then usually decoded into the desired MVL output function by: (1) comparing it to multiple current
thresholds using some form of current comparator, and (2) using comparator-controlled switches to
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direct properly scaled and logically restored currents to the outputs. The variety of current-mode MVL
circuits reported by various authors over the past decade use various combinations of these three
operations (algebraic sum, compare to thresholds, and switch correct logical current values to the outputs)
to realize all the circuit functions reported.

Most current-mode CMOS MVL circuits have the advantage that they will operate properly at proposed
reduced CMOS power supply voltages. Critics of current-mode CMOS binary and MVL circuits worry
that static current-mode circuits dissipate DC power. Dynamic current-mode CMOS circuits use addi-
tional clocked pairs of transistors and additional clock signals to reduce or eliminate DC power dissipa-
tion. Current-mode CMOS circuits have a fanout of only one, yet, if the loading is known in advance as
is often the case in VLSI design, circuits may be designed very easily with the appropriate number of
individual outputs. Given all the possible advantages and disadvantages of current-mode CMOS circuits,
it is apparent that they warrant continued study. We do not propose that current-mode CMOS MVL
circuits be used, in general, as a replacement for binary voltage-mode CMOS circuits. We do, however,
claim that it may be advantageous in some situations to imbed current-mode CMOS MVL circuits in a
binary design. In the discussions that follow, we review several of the input/output compatible current-
mode CMOS MVL circuits that we have studied over the past decade. These current-mode CMOS circuits,
reviewed in [15], include a simple current threshold comparator [16], MVL encoders and decoders,
quaternary threshold logic full adders (QFAs), current-mode MVL latches, latched current-mode QFA
circuits, and current-mode analog-to-quaternary converter circuits. Each of these circuits is presented
and its performance described. In the next section, the simple current threshold comparator circuit is
described. 

CMOS Current Threshold Comparator

A key component in the design of current-mode MVL threshold circuits is the current comparator [16],
or current threshold detector. Performance limitations of the current comparator will determine our
MVL threshold circuits’ ability to discriminate between different input current levels. The current com-
parator’s operation is now summarized. The simplest form of the current comparator circuit, shown in
Fig. 11.2, is made up of the diode-connected input NMOS transistor M1, and NMOS transistor M2

connected to replicate this input current, a reference or threshold current generating pair of transistors
M3 and M4, and a PMOS transistor M5 that replicates the reference or threshold current. The current in
the input mirror transistor M2 limits at the threshold value as the comparator switches. The drains of
the PMOS replicating transistor M5 and NMOS replicating transistor M2 are connected to generate the
comparator circuit’s output voltage. This comparator circuit is to provide a logical HIGH output voltage
when the input current is less than the threshold current and a logical LOW output voltage when the
input current is greater than the threshold current. (To make a current comparator that gives a logical
HIGH output voltage when the input current is greater than the threshold current and a logical LOW
output voltage when the input current is less than the threshold current we can simply reverse the roles
of the NMOS and PMOS transistors.) Greatest comparator discrimination is obtained by using maximum
comparator gain. This current comparator configuration converts the input current to a voltage, VGS1,
that drives a common-source amplifier with an active load. An equivalent way to describe the operation
of this circuit is to consider it a current mirror that reproduces Iin as ID, and ID then drives a high-
impedance active load to convert the current difference to an output voltage. We can analyze the
comparator to find the transresistance amplifier gain, Ro, to be the parallel combination of the output
resistances of the NMOS driver and PMOS load devices:

where λ represents the channel length modulation effect and has units of V−1. A large gain is desired to
provide a sharp comparator transition and greater noise margin. Lower threshold current values will increase
the gain at the expense of greater comparator delay times when driving a constant load. Use of higher

Ro ID λp λN+( )( ) 1–=
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output impedance current sources improves the gain, but reduces the output voltage swing and increases
the comparator delay. Our characterization of test circuits with threshold currents between 5 and 100 µA
fabricated in 2-µm p-well CMOS shows best input-current/output-voltage propagation delays of approx-
imately 2 ns. The best reported delay performance of a similar circuit that defines the output as the
difference of the two drain currents, not the drain voltage, has been reported to be 500 ps in a ring
oscillator [21] realized in 2-µm p-well CMOS.

To improve the delay performance of the comparator, we may provide a DC bias current to the input
transistor to keep it biased in a conducting state. The change in input current then exceeds the bias-
shifted reference threshold current. Delay improvements of more than 50% have been observed.

MVL circuits often realize threshold logic functions with several thresholds. This requires the com-
parison of the input current to several different threshold currents. It is possible to simply replicate the
input current as many times as needed and compare these multiple copies of the input current to the
set of increasingly larger threshold currents. Increased threshold current reduces the comparator gain.
To keep gain higher, it is also possible to scale the input current to several different values (some of which
may be smaller than the input) and then compare these scaled input currents to a set of smaller reference
threshold currents. Design strategies that scale the input current and the threshold currents may be
developed to optimize area, speed, and total current. For ease of explanation in this presentation, our
discussions present the simplest approach: merely duplicating the input current and creating a set of
linearly spaced, increasingly larger reference threshold currents.

FIGURE 11.2 CMOS current comparator.
© 2002 by CRC Press LLC



                                                                                                           
Current comparators are a critical part of the current-mode MVL circuits presented here. This circuit
with a standard CMOS inverter can also be used for current-to-voltage conversion when going from a
current-mode MVL section back into a binary section of a chip. In the section that follows, we will
describe the operation of CMOS current-mode binary/quaternary encoder/decoder circuits. 

Current-Mode CMOS Binary/Quaternary Encoders and Decoders

Quaternary-valued logic has the potential to increase the functional density of metal-limited digital
integrated circuit layouts by reducing by almost 50% the number of signal interconnections required.
The use of MVL input and output signals could also reduce the number of chip package pins required.
It may be possible to use standard logical voltage swings at the package terminals during normal operation,
and then use four-valued signaling during off-line testing. On-chip conversion from binary voltages to
quaternary currents that would be used in a current-mode quaternary logic module can be done easily
as shown below. With both on- and off-chip interfaces in mind, we have described current-mode [15]
and voltage-mode CMOS circuits that perform the functions of encoding two binary signals into an
equivalent four-valued (quaternary) signal for transmission to another location or use in a quaternary
logic circuit like a multiplier, for example, and the decoding of this transmitted quaternary signal back into
its equivalent two binary signals. Various encodings of the two binary signals are possible and several provide
easier decoding. In this presentation of the encoder-decoder circuit combination we have assumed for sim-
plicity of discussion that any two binary signals may be represented by a binary-weighted number. That
two-bit number can then be encoded into a single-digit base-four equivalent number. The encoder-decoder
circuit combination to be described is designed to serve both on-chip and off-chip interface functions.
With proper scaling of device areas the encoder circuit can drive larger capacitive loads with reduced
propagation delays and the decoder can maintain its high degree of logical discrimination.

Current-mode CMOS binary-to-quaternary encoder and quaternary-to-binary decoder circuits oper-
ate as follows. A schematic of the encoder circuit is shown in Fig. 11.3. A reference current is established
and duplicated by transistors M1–M4. The current in M4 is twice as large as that in M3. The encoder’s
two binary CMOS logic signals that are to be encoded are input to the pass transistors M5 and M6, where
the signal assigned the most significance is applied to the gate of M6, which will pass the doubly-weighted
current. The pass transistor sources are tied together to form the analog sum of the currents, the four-
valued output current signal, Io.

The encoder’s quaternary output current is connected either on-chip or off-chip to the compatible
current comparator section of the decoder circuit shown in a schematic in Fig. 11.4. The four-valued
input current is applied to the drain of the decoder’s input transistor M7. M7 then drives three current
comparators [16] made up of transistor pairs M8–M9, M10–M11, and M12–M13. The common-drain con-
nection of each current comparator transistor pair is labeled A, B, and C, respectively. Voltages A, B, and C
will remain HIGH as long as the input current is less than one-half the logical output current increment, I.
For an input current greater than 0.5I, A will go LOW, while voltages B and C remain HIGH. For an
input current greater than 1.5I, B will also go LOW and C will remain HIGH. Input currents greater
than 2.5I will drive C to the LOW state and all three comparators will be LOW. The three CMOS-
compatible logical voltages A, B, and C then drive three standard CMOS decoding logic gates shown in
Fig. 11.5. The decoding logic recreates the two binary logical voltages in the same order of significance
that they were applied. Obviously there is a variety of possible encodings that require decoders of more
or less complexity that may be chosen to satisfy a variety of different requirements. In this presentation
we are, for simplicity, using binary- and quaternary-weighted number equivalents.

Transistors M14 and M15 in the decoder circuit schematic, Fig. 11.4, establish a reference current, 2I,
that is mirrored by factors 0.25, 0.75, and 1.25 by transistors M9, M11, and M13, respectively, to establish
the three threshold currents. For the A logical output, the threshold current  is 0.5I. For B and C
outputs, the threshold currents are  and  respectively. In the encoder-
decoder shown in the figures, we are using logical levels of 0, 10, 20, and 30 µA. Current comparator C
is to provide HIGH output voltage for input currents less than 25 µA and a logical LOW voltage for
input currents greater than 25 µA. Thus, the threshold current for current comparator C is 25 µA.

ITHA

ITHB
1.51I= ITHC

1.51I,=
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One can increase the interface driving current, IIN, by, for example, an order of magnitude to provide
increased capacitive loading drive capability independently of the threshold currents and still maintain
the same comparator current levels and gain by appropriately designing the width-to-length ratios of
transistors M7 and transistors M8, M10, and M12. The comparators and decoder performance will be
unchanged. For example, using 10IIN instead of IIN for interfacing, we will need to increase the width of
M7 by a factor of 10. This feature allows considerable design flexibility. We could apply the same technique
to each comparator to give them all the same low quantity of drain current and, thus, the same high
value of gain and still detect the same three input current levels selected previously. The trade-off here
is the reduced load driving current available in the scaled-down current comparators. If the comparator
drives only an inverter, then this is not a significant problem. These scaled-down threshold currents are
not used in the circuits discussed here. Decoders may also use an input bias current to speed-up the
circuit’s response [16]. When a bias current is used all the thresholds must also be shifted.

A variety of current-mode CMOS encoder/decoder pairs have been fabricated and characterized. One
group was fabricated in 1985 in a standard 5-µm polysilicon-gate p-well CMOS technology. Large- and
small-current current-mode, encoder–decoder circuit pairs with and without bias currents were included.
Small-current, encoder–decoder pairs using nominal 10 µA incremental currents are realized with: (1) no
bias current, and (2) a 5 µA bias current. Large-current, encoder–decoder pairs designed for driving off-chip

FIGURE 11.3 Current-mode CMOS binary-to-quaternary encoder.
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loads of 100 pF that use nominal 3 mA incremental currents are realized with: (1) no bias current, and
(2) a 50 µA bias current. The encoder and decoder circuits operated exactly as predicted. Propagation
delay of binary/quaternary encoder-decoder circuits has been defined as the 50–50% delay time from
the incidence of the simultaneous binary encoder inputs to the generation of the last binary decoder
output. Worst-case propagation delay is experienced when the encoder output changes three full incre-
ments of output current. Propagation delays of our current-mode, encoder-decoder circuit pairs have
been measured with the encoder output and decoder input package pins wired together on a breadboard.
Thus, the encoder circuit drives off-chip, through the package, to a board, back through the package,
on-chip, and lastly the decoder circuit. Typical values of CMOS-voltage-input-to-CMOS-voltage-output
propagation delay exhibited by the small-current (intended for on-chip use) encoder-decoder pairs
without and with bias current driving off-chip are about 375 and 275 ns, respectively. Because the large-
current, encoder-decoder circuits were designed to drive PC board loads of 100 pF, we have examined
the large-current, encoder-decoder circuit pairs loaded as outlined previously with an additional capac-
itance load of nominal value 100 pF connected from the I/O node to ground. Under this loading
condition, typical values of delay exhibited by the large-current encoder-decoder circuits without and
with bias current are about 48 and 30 ns, respectively. Although the use of large signaling currents may
not be attractive to many designers, the option is available and may be of value in some situations.

One might use encoder/decoder circuits to increase the information on a signal line. Current summing
at a node is a “free” computation that may be exploited in circuits that realize threshold logic functions
as we will see in the next section where we summarize the quaternary threshold logic full adder.

Current-Mode CMOS Quaternary Threshold Logic Full Adder

Some operations in digital signal processing and computing are more amenable than others to imple-
mentation with quaternary threshold logic. For example, by using the summing of logical currents, adding
and counting may be efficiently implemented. The quaternary threshold logic full adder (QFA) adds
the values of two quaternary inputs A and B, and the value of a binary carry input, Ci, and produces a

FIGURE 11.4 Current-mode CMOS quaternary-to-binary decoder.
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two-quaternary-digit output, CS, that is the base-four value of this sum of the inputs. Logical currents
have been used in QFA circuits realized with integrated injection logic (I2L) (see, for example, [22]), current-
mode logic (CML), and current-mode CMOS [15]. The well-known QFA function is summarized below.

The QFA circuit to be described implements threshold functions. The two basic operations of a
threshold function are the formation of a weighted-sum-of-inputs and the comparison of that weighted-
input-sum to the multiple thresholds. The QFA adds two quaternary inputs A and B and a binary input
carry Ci to produce a weighted-input-sum within the range 0–7. Representing this weighted sum in base-
four with the two-digit output CS requires the CARRY, C, output to assume only binary values ZERO
and ONE, while the SUM, S, output will assume values ZERO, ONE, TWO, and THREE. The DC input-
output transfer function for the ideal QFA is shown in Fig. 11.6. Several organizations of threshold
detectors can be used to generate this two-digit output from the eight-valued weighted-sum-of-inputs.
We will summarize the operation of two approaches to realizing this function with combinations of
complementary MOS transistors serving as current sources and threshold detectors, and standard CMOS
logic gates.

The first QFA discussed, shown in Fig. 11.7, is a direct implementation of the QFA definition. The
input summing-node combines logical current inputs that are integer multiples of a reference current.

FIGURE 11.5 Current-mode CMOS quaternary-to-binary decoder logic.
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The sum-of-logical-inputs must lie between ZERO and SEVEN times the reference current. This sum-
of-currents, Iin, is received and mirrored by input transistor M1 to replicate the input current seven times
by identical NMOS transistors M2–M8. These seven identical copies of the input current are the inputs
to seven current comparators [15] that compare the input weighted sum to the seven thresholds. The
other halves of these comparators are PMOS transistors M9–M15. The comparators generate seven binary
voltage swings, A–G, that are capable of driving standard CMOS logic gates. Comparator output signal

 controls the CMOS transmission gate that connects a unit value of logical current to the CARRY
output line. The seven logical comparator output signals are combinationally reduced in groups of three
variables with three standard CMOS logic gates to a set of control signals, X, Y, and Z [  = (A + )E,

 = (B + )F,  = (C + )G], that connect three current sources of unit reference value to the SUM
output line through three CMOS transmission gates. Logical currents of 10, 20, and 30 µA are used in the
QFA presented in this paper, requiring threshold currents of 5, 15, 25, 35, 45, 55, and 65 µA. Gains of

FIGURE 11.6 Current-mode CMOS quaternary threshold logic full adder I/O transfer characteristic.

FIGURE 11.7 Current-mode CMOS quaternary threshold logic full adder schematic.
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comparators realized with simple Widlar current mirrors of four-micron channel lengths and greater
have been found to be adequate to resolve the eight-valued signals used in this circuit.

One potential problem with this QFA is the possible error accumulation involved with the analog
summing of seven logical currents at a node; the higher the logical value of the weighted-sum-of-inputs,
the greater error possible in the sum of currents. For increasing threshold current the current comparator
circuits exhibit decreasing gain, and therefore reduced ability to discriminate the threshold function. The
QFA has less accuracy in discriminating the presence of the higher valued weighted sums of inputs. To
compensate for this decreasing gain with increasing threshold currents, we examine a feedback technique
which eliminates the need to use the three largest values of threshold currents.

A schematic of one version of this QFA modified with feedback is shown in Fig. 11.8. In the figure we
see that a current of four logical units in value is combined with a copy of the weighted-sum-of-inputs
to create a new input current that is Iin2 = (Iin − 4) when the weighted sum of inputs exceeds logical four.
The same three lowest threshold current comparators with greatest gain can now be used to generate the
entire range of QFA SUM outputs. The QFA circuit with feedback operates as follows. The threshold
current for the “D” comparator that controls the CARRY output is generated by PMOS transistor M3. The
input is first compared to this threshold to determine whether the input range is above or below 4. If the
input is below 4, the output D is in the HIGH state. D is inverted to drive a pair of transmission gates;
one controls the CARRY output current, the other controls the four units of logical current that are fed
into the drain of M6. At the drain of M6, this feedback current is summed with a copy of the input current
to form the total drain current of M6. If the CARRY output is ZERO, no current is fed back and the M6

drain current is equal to the input current. Let us assume for this discussion that the input current is, for
example, logical six. The input current will be mirrored by M6 to generate a total drain current of logical
six. Since the D comparator has switched to turn on the CARRY output, the feedback current transmission
gate is also conducting the logical four feedback current into the node at the drain of M6. The excess
current (logical six minus logical four = logical two) must be provided by transistor M8. M8 is a diode
connected PMOS transistor that serves as the input to the three current comparators that generate outputs
A, B, and C. These comparators operate exactly as described previously except that the roles of the PMOS
and NMOS transistors and thus the A, B, and C voltage swings have been reversed. The PMOS devices
M9–M11 serve as the input devices while the NMOS devices M12–M14 serve as the current reference devices.
This feedback technique eliminates the CMOS logic stage that encodes the comparator outputs into
controls signals for the transmission gates that then switch the logical current outputs onto the SUM
output line. The three largest current mirror transistors are also eliminated. The propagation delays

FIGURE 11.8 Current-mode CMOS quaternary threshold logic full adder with feedback schematic.
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observed with these circuits are about 20% longer than those observed with the nonfeedback version of
the QFA.

Several variations of the QFA circuits that used several different logical currents were fabricated in
1985 in a standard 5-µm polysilicon-gate p-well CMOS technology and others using 10 µA logical currents
in MOSIS 2-µm p-well technology. These simple current-mode test circuits are intended to drive each
other on-chip with small logical current increments; most examples use only 10 µA. Some individual
test circuits are connected to input and output pads and package leads. This configuration allows exami-
nation of all important comparator and current signals and is intended for DC and low-frequency
functional characterization, not for maximum operating speed evaluation. Gains of comparators realized
with simple Widlar current mirrors of 4 µm channel lengths and greater have been found to be adequate
to resolve the eight-valued signals used in this circuit. Since logical currents vary in only 10 µA increments,
the circuits have insufficient capability to drive off-chip loads. Thus, meaningful on-chip delays can not
be measured with these test circuits. Propagation delay is defined as the time between the midpoint of
the transition between two adjacent input logic levels to the midpoint of the transition between two
adjacent output logic levels. For example, if the output switches from logical ZERO to logical THREE,
then the midpoint between TWO and THREE is used in the propagation delay measurement. To obtain
realistic on-chip delays, we used a chain of N cascaded QFA circuits connected between an input pad
and an output pad. This configuration does not allow examination of internal signals. We also used a
delay test path that is a direct on-chip connection between an input pad and an output pad. The delay
through the I/O only path is subtracted from the total delay measured for the group of N QFA circuits.
This difference is approximately the total delay through N latched QFA circuits. The average delay of an
individual latched QFA circuit may then be calculated. Under these conditions, using test circuits with
4 µm channel lengths, propagation delay times for single logic level transitions (ZERO-ONE, ONE-TWO,
etc.) of about 35 ns have been measured. In simulations of circuits with the same device sizes and using
another QFA as a load, single logic level transitions were simulated to have delay times of about 10 ns,
and worst-case propagation delay times were found to be about 60 ns for full-scale (ZERO-SEVEN,
SEVEN-ZERO) input current signal transitions. To reduce delay times as much as 25%, we can include
at the input a DC bias current source of one-half the logical current value to keep the input transistors
always in the conducting mode, and shift the threshold currents by an equal amount.

Current-Mode CMOS Multiple-Valued Latch

Although the use of current signals allows easy and area efficient formation of the multiple-valued sum
of signals, storage of the information in this quantized analog signal might require storage of a set of
binary signals if it were not for multiple-valued memory circuits [15] similar to that described next. A
current-mode CMOS multiple-valued memory circuit organization is shown in a block diagram in
Fig. 11.9. When clock signal φ is at a CMOS logical HIGH, the memory is in the SETUP mode. In the
SETUP mode, the circuit accepts a multiple-valued input current Iin and, with a quantizer, regenerates
it as a feedback current, IF , and an output current, Iout. When the clock signal φ goes to a CMOS logical
LOW, the circuit goes into the HOLD mode. In the HOLD mode, the input current is disconnected from
the quantizer and the regenerated current IF is switched to the input of the quantizer. This positive
feedback circuit now holds the value of the input current that appeared during the preceding SETUP
cycle. Changes in the input current Iin during the HOLD mode do not alter the latch’s output until a
new SETUP cycle is entered. The memory circuit’s quantizer is chosen to accommodate the range defined
for the input current. We will summarize first the more easily described four-valued current-mode
memory circuit [15]. An eight-valued, current-mode memory circuit will be presented in the discussion
of the latched QFA.

A current-mode CMOS quaternary threshold logic latch circuit is shown in Fig. 11.10. Consider the
situation in which the clock signal, φ, is logically HIGH and the latch is in the SETUP mode. Transistor
M1 receives the input current, Iin, and in response generates a voltage VGS1 that is coupled through pass
transistor M11 to the input of the quantizer portion of the latch. Under these conditions the input current
© 2002 by CRC Press LLC



Iin is reproduced as  by transistors M2, M3, and M4, the three NMOS current mirror inputs to the three
current comparators in the quantizer. The current comparators’ thresholds are set to detect input currents
of logical values ONE, TWO, and THREE by the three PMOS current sources M5, M6, and M7, respectively.
As the input current exceeds the threshold of each comparator, each comparator output falls to a logical
LOW and the current in each mirror transistor M2, M3, and M4 limits at the threshold value. Each
comparator drives a standard CMOS inverter, with output labels   or  in the schematic, which,
in turn, drives a pass transistor with input labels   or  Each of these pass transistors, when activated,
passes the appropriate quantity of current to the feedback summing node to form regenerated current
IF . Regenerated current IF is mirrored by transistors M8, M9, and M10 to generate the latch output current,
Iout. The  signal turns off pass transistor M99, and the regenerated current is isolated from the comparator
input.

Clock signal φ is then set LOW to HOLD the multiple-valued current data. With φ LOW and  HIGH,
transistor M11 is off, disconnecting input transistor M1 from the quantizer, and transistor M99 is on,
connecting the regenerated current to the quantizer input. Because the quantizer and IF are in a positive
feedback loop, the regenerated current, IF, and the output current, Iout, remain stable at the value of the
previous input current.

A variety of forms of the current-mode latched QFA circuit has been designed, fabricated in a standard
2-µm polysilicon-gate, double-metal CMOS process, and tested. These simple current-mode test circuits
are intended to drive each other on-chip with small logical current increments of only 10 µA. Logical
currents of 10, 20, and 30 µA are used in the quaternary latch, requiring threshold currents of 5, 15, and
25 µA. Gains of comparators realized with simple Widlar current mirrors of 2-µm channel lengths have
been found to be adequate to resolve the four-valued signals used in the latch circuit. For purposes of
oscilloscope display, the quaternary output current is driven into nominally 10 kΩ resistors connected

FIGURE 11.9 Current-mode CMOS quaternary latch block diagram.

FIGURE 11.10 Current-mode CMOS quaternary latch schematic.
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on a standard prototyping board. The waveforms in Fig. 11.11 show a sequence of HOLD operations at
times necessary to hold each of the four possible values of the output. In each photo, the pulse in the
lower trace is , which goes HIGH to HOLD the value of the output signal at that time. SETUP and
HOLD times have been inferred from measured experimental data to be about 10 ns for single level
transitions and about 35 ns for ZERO-THREE and THREE-ZERO transitions.

Current-Mode CMOS Latched Quaternary Logic Full Adder Circuit

The current-mode CMOS latched QFA circuit is described with the aid of the block diagram in Fig. 11.12.
The single output quaternary quantizer shown in Fig. 11.9 is replaced by a modified QFA circuit that
serves as the quantizer, creating the feedback current and the quaternary full adder outputs. Again, the
latched QFA circuit is in the FOLLOW mode when φ is HIGH and  is LOW. The circuit is in the HOLD

FIGURE 11.11 Current-mode CMOS quaternary latch output waveforms: (a) Quaternary latch output and 
holding a ZERO, (b) Quaternary latch output and  holding a ONE, (c) Quaternary latch output and  holding a
TWO, and (d) Quaternary latch output and  holding a THREE.
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mode when φ is LOW and  is HIGH. In the block diagram, an eight-valued weighted sum of input
currents, Iin, enters the QFA’s diode connected NMOS input transistor MNA generating a gate-to-source
voltage VGSA. When in the FOLLOW mode φ is high, turning on NMOS pass transistor MNB, coupling
VGSA to the input of the QFA block as input voltage V1. In the FOLLOW mode, the input is converted
by the combinational QFA circuit to the quaternary SUM and CARRY output currents. A quantized
regenerated feedback current, IF, is also created by the QFA block to logically replicate the input current.
Simultaneously, the feedback current, IF , generates VGSC in the diode-connected NMOS transistor MNC.

 is LOW disconnecting VGSC from the V1 QFA input node. In the HOLD mode, with φ LOW and  HIGH,
transistor MNB, is off, disconnecting the effect of the input current from the input of the QFA. Transistor
MNC is on, connecting the VGSC created by the regenerated feedback current, IF , to the V1 QFA input.
Thus, in the HOLD mode IF regenerates itself with positive feedback through the nonlinear quantizer in
the QFA block. The QFA block in Fig. 11.12 may be realized with a slight modification of the first QFA
presented in this paper. The QFA section of the latched QFA is described next.

FIGURE 11.11 (Continued)
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A simple combinational QFA circuit [15] is shown in Fig. 11.13 that includes a sub-circuit that creates
the regenerated feedback current, IF, allowing the capability of latching the eight-valued input current.
Notice in Fig. 11.13 that only four current sources and four transmission gates are used to create the
regenerated feedback current that allows latching. The transmission gates are controlled by the same
control signals that control the SUM and CARRY outputs. At the IF summing node, signals X, Y, and Z
each control one unit of current as is done at the SUM current summing node, thus reproducing the
least significant digit of the two quaternary digit number represented by the pair of QFA output currents.
The CARRY output is weighted four times the SUM output. In Fig. 11.13, we see that  the CARRY
control signal, also controls the passage of four units of current to the IF summing node. Thus, at the IF

summing node, the input current is requantized by the threshold current comparators and its logical
value regenerated as IF by the current sources and transmission gates. The clock signal controls the input
to the threshold current comparators. In the FOLLOW mode, the input current is converted by the QFA
circuit to the quaternary SUM and CARRY output currents, and requantized to create regenerated
feedback current, IF . In the HOLD mode, IF regenerates itself and the QFA outputs with positive feedback
through the nonlinear quantizer in the QFA circuit.

Logical currents of 10, 20, and 30 µA are used in the latched QFA circuit presented here, requiring
threshold currents of 5, 15, 25, 35, 45, 55, and 65 µA. Gains of comparators realized with simple Widlar
current mirrors of 4 µm channel lengths and greater have been found to be adequate to resolve the eight-
valued signals used in this circuit.

A variety of forms of the current-mode latched QFA circuit has been designed, fabricated in a standard
2-µm polysilicon-gate, double-metal CMOS process, and tested. These simple current-mode test circuits

FIGURE 11.12 Current-mode CMOS latched QFA: block diagram.

FIGURE 11.13 Current-mode CMOS latched QFA: QFA-block schematic.

D,
© 2002 by CRC Press LLC



are intended to drive each other on-chip with small logical current increments of only 10 µA. Our
individual test circuits are connected to input and output pads and package leads. This configuration
allows examination of all important comparator and current signals and is intended for DC and low-
frequency functional characterization, not for maximum operating speed evaluation. Since logical cur-
rents vary in only 10 µA increments, the circuits have insufficient capability to drive off-chip loads. Thus,
meaningful on-chip delays must be inferred as described earlier. Test circuits with devices the same size
as those used in the QFA yield SETUP about the same as the QFA delay times, and HOLD times of
approximately zero. To reduce delay times as much as 25%, we can include at the input a DC bias current
source of one-half the logical current value to keep the input transistors always in the conducting mode,
and shift the threshold currents by an equal amount.

Maximum DC power required for the current-mode CMOS latched QFA circuit shown in Figs. 11.12
and 11.13 may be calculated as the product of the 5 V supply and the maximum DC current through
the circuit. If we consider the input current, Iin, to be supplied by the output of another QFA, the
maximum DC current occurs when Iin and thus IF are at logical SEVEN. Using nominal logical current
increments of 10 µA, the maximum DC current under these conditions is the sum of the following
currents (in µA): 70 in IF; 30 in SUM; 10 in CARRY; 5, 15, 25, 35, 45, 55, and 65 in the seven current
comparators; and 20 in the current source bias circuit for a total current of 375 µA. The minimum total
DC current occurs when Iin is logical ZERO and essentially only the 20 µA bias current is used. Input
bias currents must be added to these numbers if they are used, as well as the offset increases added to
the threshold currents. A variety of approaches to reducing current requirements are being evaluated,
including the obvious introduction of dynamic clocking of all current paths between power and ground
and the reduction of the logical current increment. Both of these approaches require speed performance
trade-offs.

Circuits nearly identical to those described above have been used for current-mode analog-to-digital
conversion [23]. In the next section, we describe the use of our current-mode MVL circuits for analog-
to-quaternary conversion.

Current-Mode CMOS Algorithmic Analog-to-Quaternary Converter

Algorithmic (or cyclic or recirculating) analog-to-digital (A/D) (binary) data converters have been shown
to be less dependent upon component matching and require less silicon area than other approaches.
These data converters follow an iterative procedure of breaking the input range of interest into two
sections and determining within which of the two sections the input signal lies. This process is repeated
on each selected range of interest until the final bit of resolution is determined. This is summarized
adequately in [23].

An algorithmic analog-to-quaternary (A/Q) data converter algorithm uses a procedure like that described
in [23] for the algorithmic analog-to-digital (A/D) (binary) data converter except that the algorithmic
A/Q procedure breaks the range-of-interest into quarters and determines within which quarter of the
range-of-interest the signal lies at each decision step. This process is repeated on each selected range-of-
interest until the final quaternary digit of resolution is determined. To accomplish this we may follow
the procedure described below. The block diagram in Fig. 11.14 mimics the block diagram in [23] used
to describe the algorithm used for binary converters. The quaternary comparator labeled CQ with four-
valued output signal Q in Fig. 11.14 is used to convey the concept of breaking the range of interest into
four sections (rather than two) and indicating the result with a four-valued “comparator” output signal
(rather than a binary signal). Figure 11.14 is useful in visualizing the algorithm. The circuit that realizes
the function is not organized exactly as shown in Fig. 11.14. The circuit schematic will be described later.
Referring to Fig. 11.14 we see that the input IN is multiplied by 4 and the signal 4IN is compared to the
full-scale reference signal REF in a quaternary comparator labeled CQ. This quaternary comparator CQ
generates a quaternary-valued output signal Q that indicates which quarter of the full-scale range the
input signal lies within. Q values ZERO, ONE, TWO, and THREE indicate that the signal lies within the
bottom, second, third, and top quarter of the full-scale signal range, respectively. If this comparison is
© 2002 by CRC Press LLC



the first done on the input, then the resultant Q is the most-significant-digit (MSD) of the quaternary-
valued output. Having identified the quarter-of-full-scale within which the input lies, we eliminate from
further consideration the other regions by subtracting the number of full quarters above which the input
lies from the input signal. Equivalently, we may subtract Q · REF from 4IN and obtain four times this
desired difference. This factor of 4 weight of the difference signal is necessary to keep the bit significance
correct as we continue to process the signal. The quaternary signal Q controls the switch, which effectively
subtracts Q · REF from 4IN. The output signal is thus

After the appropriate quarter of full-scale that is now defined as the region-of-interest is identified, this
new region-of-interest is then searched for the quarter within which the input signal lies. The signal OUT
may be used as the input to another identical stage or the value of Q may be stored and the signal OUT
fed back to the input of this circuit for continued processing. Each pass through the procedure yields
another digit of one lower level of significance until we reach the final least-significant-digit (LSD)
decision. Thus, the MSD is determined first and the LSD determined last. The procedure may be
implemented with some memory, control logic, and a single cell that performs the operations in
Fig. 11.14, feeding the output back to the input. Or the procedure can be implemented by a cascade of
N cells, each using the same REF. In the next section, we describe the current-mode CMOS circuitry that
implements this algorithmic analog-to-quaternary (A/Q) data converter function.

The schematic of the current-mode CMOS algorithmic A/Q data converter circuit is shown in Fig. 11.15.
The circuit operates as follows. For our initial discussion, assume that the bias current IBIAS is zero and
PMOS transistor M1 is not used. The analog input current IIN into diode-connected input NMOS
transistor M2 is reproduced and multiplied by a factor of 4, 2, 2, and 4 by NMOS current mirror transistors
M4, M6, M8, and M20, respectively. The full scale reference current IREF is brought into diode connected
PMOS transistor M21 and reproduced and multiplied by a factor of 1, 1, 1.5, 1, 1, and 1 by PMOS current
mirror transistors M5, M7, M9, M12, M13, and M14, respectively. Transistors M4 and M5 form a current
comparator circuit that compares 4 IIN to the full-scale reference current IREF. Transistors M6 and M7

form a current comparator circuit that compares 2IIN to the full-scale reference current IREF. Transistors

FIGURE 11.14 Current-mode CMOS analog-to-quaternary converter block diagram.
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M8 and M9 form a current comparator circuit that compares 2IIN to the one and one-half times the full
scale reference current, 1.5IREF. In each of these three current comparators, when the current in the input
NMOS transistor is greater than the reference current in the PMOS transistor, the common drain
connection of the transistors falls to a (low) voltage near VSS. In each of these three current comparators,
when the current in the input NMOS transistor is less than the reference current in the PMOS transistor,
the common drain connection of the transistors rises to a (high) voltage near VDD. These current
comparator output voltages are inverted by standard CMOS inverters to yield signals A, B, and C that
drive NMOS switch transistors M16, M17, M18, M76, M77, and M78. The sum of signals A, B, and C yield
the value of Q. PMOS transistors M12, M13, and M14 each provide one unit of IREF current to NMOS
switches M16, M17, and M18 that are controlled by signals A, B, and C, respectively. The signal Q · IREF is
created when signals A, B, and C each switch one unit of IREF current to the summing node as the three
thresholds are exceeded. This Q · IREF current, the output current Iθ , and 4IIN current are summed at the
drain of NMOS transistor M20. Thus, the output current Iθ is 4IIN − Q · IREF. Iθ is mirrored by PMOS
transistors M42 and M43 for delivery out of the cell. The full scale reference current, IREF, is set externally
based upon the particular application.

The logical output of the quaternary comparator, IQ, is created by switching zero, one, two, or three
units of logical current, controlled by comparator signals A, B, and C, to the logical output summing
node through NMOS switches M76, M77, and M78. PMOS transistors M72, M73, and M74 mirror the
reference logical current ILOGIC that is input to diode connected transistor M24. The logical current
reference, ILOGIC, is set externally to be compatible with the rest of the current-mode logic used in the
system. ILOGIC used here is 10 µA, making the logical currents 10, 20, and 30 µA.

A key component in this design, the current comparator, is described in [16]. Its gain will be greater when
implemented with higher impedance current mirror driver and load circuits, such as the cascode current
mirror. This higher impedance output node slows the circuit and the cascode mirror configuration reduces
the voltage swing of the current comparator circuit; however, in this application, the additional current mirror
accuracy provided by the cascode mirror outweighs the disadvantages as will be discussed later.

To improve the overall transfer and delay characteristics of the current mode A/Q, a bias current may
be added to the input, each of the comparator thresholds, and the Q · IREF signal. The small input bias
current keeps the input transistor biased slightly on, allowing quicker mirror response and faster switch-
ing. The comparator thresholds and Q · IREF must be offset by the same amount. The circuitry required
to maintain bias level compatibility among cells is important but not discussed here.

A/Q decision circuit cells has been designed, fabricated, and tested in a variety of forms. We have studied
circuits using simple Widlar and cascode current mirrors, with and without bias current. Experimental test

FIGURE 11.15 Current-mode CMOS analog-to-quaternary converter schematic.
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results confirm the DC transfer functions and low frequency functional operation predicted in the
simulations. Because of the replication and differencing of input currents used in these decision cells, it
is important to use current mirrors with accuracy sufficient to provide correct conversion for the number
of quaternary digits desired. It was observed that simple Widlar current mirrors were sufficient to provide
three-quaternary-digit outputs using reference currents between 10 and 50 µA. To create a four-quater-
nary-digit output word, the additional accuracy of cascode current mirrors was found to be necessary.
None of our test circuits would operate 100% correctly as a full five-quaternary-digit converter because
of the accumulated error in the current signal transferred to the fifth decision cell.

Timing characteristics were evaluated using single decision cells and A/Q converter circuits made up
of a cascade of five identical cells. We used VDD of 5 V, logical currents stated above, and reference currents,
IREF, ranging from 10 to 50 µA. The individual decision cell test circuits are in packaged parts and must
be driven at their input with an external high resistance current source and loaded at the outputs with
a 1 kΩ resistors. Thus, experimental delay measurements made on individual cells are dominated by the
RC time constants of the voltage waveforms appearing at the package terminals. Using reference current
of 10 µA, the delay between when the input crosses a threshold and the output’s single level transition
(the very best case delay) was measured to be of about 55 ns in both the Widlar and cascode realizations.
Worst-case delay, which occurs when all the decision cell’s comparators change state, was observed to be
about 800 ns in the cascode realization. Worst-case delay through two cascaded cascode cells was observed
to be about 2.44 µs and through four cascaded cascode cells to be about 5.2 µs.

11.4 Summary and Conclusion

MVL circuits that are presently used in commercial products and that have the potential to be used in
the future were discussed in this chapter. Application of MVL to the design of nonvolatile memory is
receiving a great deal of attention because the memory density of multilevel ROM and multilevel flash
memory is significantly greater than that possible using binary signals using the same fabrication tech-
nology. In multilevel flash memory, the floating-gate memory cell transistor has multiple values of charge
stored on its floating gate, which results in multiple values of the effective transistor threshold voltage
that produces multiple values of cell transistor drain current when the memory cell transistor is addressed.
This provides the potential for almost doubling the bit density of the memory when four valued signals
are stored. Advantages and disadvantages of various memory architectures, memory cell layouts, address-
ing schemes, column read amplifier designs, and potential fabrication technologies changes for multilevel
memory cell optimization are of current research interest.

Current-mode CMOS circuits can provide interesting performance characteristics, in some cases,
improved characteristics [21], and are receiving increasing attention. Current-mode CMOS MVL
circuits [15] have been reported that illustrate feasible circuit realizations of important functions. In this
presentation, we have reviewed several of the current-mode CMOS MVL circuits that we have developed.
It is widely acknowledged in the field of electronic design that multiple-valued-threshold-logic circuits
will not, in general, supplant binary-logic circuits. However, situations exist in which the characteristics
of certain multiple-valued-threshold-logic circuits will make their use advantageous; most likely when
imbedded in a binary design. One possible situation in which current-mode CMOS MVL circuits may
be advantageous involves pipelined signal processing in a DCT/IDCT chip [20]. A 32-bit multiplier [18]
realized with signed-digit arithmetic, symmetric functions, and bi-directional current-mode CMOS plus
depletion mode transistors MVL circuits has been shown to provide both speed and area advantages over
voltage-mode binary logic. Our studies and those of other MVL circuits researchers attempt to identify
and characterize circuitry that may feasibly be used advantageously in integrated systems. Similar system
improvements may be possible by combining the characteristics of MVL with the potentials of other
approaches to signal processing, such as pipelining, parallel processing, or artificial neural networks.
Characteristics of artificial neural networks, such as fault tolerance, and increased system speed due to
parallel processing, combined with the hybrid analog-digital circuitry used in many neural network
realizations make neural networks an attractive potential application for MVL.
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12.1 Programmable Logic Technology

Digital systems can be implemented using several hardware technologies. As shown in Fig. 12.1, field
programmable gate arrays (FPGAs), complex programmable logic devices (CPLDs), and application
specific integrated circuits (ASICs), are integrated circuits whose internal functional operation is defined
by the user. ASICs require a final customized manufacturing step for the user-defined function. Pro-
grammable logic devices such as CPLDs or FPGAs require user configuration or programming to imple-
ment the desired function. Full custom VLSI devices are internally hardwired and optimized to perform
a fixed function. Examples of full custom very large scale integrated (VLSI) devices include the micro-
processor and RAM chips used in computers.

PALs, PLAs, CPLDs, FPGAs, ASICs, and Full Custom VLSI Devices

The different device technologies each have a different set of design tradeoffs as seen in Fig. 12.2. The
design of a full custom VLSI device at the transistor level requires several years of engineering effort for
design, testing, and fabrication [1,2]. This expensive development effort is only economical for the highest
volume devices. Full custom VLSI devices will produce the highest performance, but they also have the
highest development cost and the longest time to market. 

ASICs are typically divided into two categories, gate arrays and standard cells. Gate arrays are built
from arrays of pre-manufactured logic cells. A single logic cell implements only a few gates or a flip-flop.
A final custom manufacturing step is required to interconnect the sea of logic cells on a gate array. This
interconnection pattern is created by the user to implement a particular design. Standard cell devices
contain no fixed internal structure. For standard cell devices, the device manufacturer creates a custom
photographic mask to build the chip based on the user’s selection of devices. These devices typically
include communications and bus controllers, ALUs, RAM, ROM, and microprocessors from the manu-
facturer’s standard cell library.

James O. Hamblen
Georgia Institute of Technology
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ASICs will require additional time and development costs due to custom manufacturing. Several
months are normally required to produce the device and substantial mask setup fees are charged.
Additional effort in testing must be performed by the user, since chips can only be tested after the final
custom-manufacturing step [3]. Any design error in the chip will lead to additional manufacturing delays
and costs. For products with long lifetimes and large volumes, this approach has a lower cost per unit
than CPLDs or FPGAs. Economic and performance trade-offs between ASICs, CPLDs, and FPGAs change
constantly with each new generation of devices and design tools.

Several factors including higher densities, higher speed, and increased pressure to reduce time to
market have enabled the use of programmable logic devices in a wider variety of designs. CPLDs and
FPGAs are the highest density and most advanced programmable logic devices. These devices are also
collectively called field programmable logic devices (FPLDs). Designs using a CPLD or FPGA typically
require several weeks of engineering effort instead of months. 

Because ASICs and full custom VLSI designs are hardwired and do not have programmable interconnect
delays they provide faster clock times than CPLDs or FPGAs. ASICs and full custom VLSI designs do
not require programmable interconnect circuitry so they also use less chip area and have a lower per
unit manufacturing cost in large volumes. Initial engineering development costs for ASICs and full custom
VLSI designs are higher. Initial prototypes of ASICs and full custom VLSI devices are often developed
using CPLDs and FPGAs. 

Applications of FPGAs

FPGAs have become more widely used in the last decade. Higher densities, improved performance, and
cost advantages have enabled the use of programmable logic devices in a wider variety of designs. A
recent market survey indicated that there are over ten times as many CPLD and FPGA-based designs as
ASIC-based designs. New generation FPGAs contain several million gates and can provide clock rates

FIGURE 12.1 Device technologies used for implementation of digital systems.

FIGURE 12.2 Comparison of device technologies used for digital systems.
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approaching 1 GHz. Example application areas include single chip replacements for old multichip tech-
nology designs, digital signal processing (DSP), image processing, multimedia applications, high-speed
networking and communications equipment, bus protocols such as peripheral component interconnect
(PCI), microprocessor glue logic, co-processors, and microperipheral controllers. RISC microprocessors
are also starting to appear inside large FPGAs that are intended for system-on-a-chip (SOC) designs. For
all but the most time critical design applications, CPLDs and FPGAs have adequate speed with maximum
system clock rates typically in the range of 50–400 MHz. Clock rates up to 1 GHz have been achieved
on new generation FPGAs. 

Several large FPGAs with an interconnection network are used to build hardware emulators. Hardware
emulators are specially designed commercial systems used to prototype and test complex hardware designs
that will later be implemented on ASIC or custom VLSI devices. Several recent microprocessors including
Intel and AMD x86 processors used in PCs were prototyped on hardware emulators. A new application
area for FPGAs is reconfigurable computing. In reconfigurable computing, FPGAs are quickly repro-
grammed or reconfigured during normal operations to enable them to perform different functions at
different times for a particular application. 

Product Term (EEPROM and Fuse-Based) Devices

Simple programmable logic devices (PLDs), consisting of programmable array logics (PALs) and pro-
grammable logic arrays (PLAs), have been in use for over two decades. Simple PLDs can replace several
older fixed function TTL-style parts in a design. Most PLDs contain a series of AND gates with fuse
programmable inputs that feed into an array of fuse programmable OR gates. In PALs, the AND array
is programmable but the OR array has a fixed input connection. In a PLA or PAL, a series of AND gates
feeding into an OR gate are programmed to directly implement a sum-of-products (SOP) Boolean
equation. An example SOP implementation using a PLA can be seen in Fig. 12.3. Note that inverters are
provided so that every input signal is also available in normal or complemented form. A shorthand
notation is used for the gate inputs in PLAs. A PLA’s AND and OR gates have inputs where each horizontal
and vertical line cross. Initially in a PLA, all fuses are intact so each AND gate ANDs every input signal and
its logical complement. By blowing unwanted fuses or programming, the unwanted AND gate inputs are
disconnected by the user and the required product term is produced. In PALs, different devices are

FIGURE 12.3 Using a PLA to implement a sum of products equation.
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selected depending on the number of product terms (i.e., inputs to OR gate) in the SOP logic equation.
Some devices have one-time programmable fuses and others have fuses that can be erased and re-
programmed. On many PLDs, the output of the OR gate is connected to a flip-flop whose output can
then be fed back as an input into the AND gate array. This provides PLDs with the capability to implement
simple state machines. A simple PLD can contain several of these AND/OR networks. The largest product
term devices contain an array of PLAs with a simple interconnection network. This type of device is
called a complex programmable logic device (CPLD). Product term devices typically range in size from
several hundred to a few thousand gates.

Lookup Table (SRAM-Based) Devices

FPGAs are the highest density and most advanced programmable logic devices. The size of CPLDs and
FPGAs is typically described in terms of useable or equivalent gates. This refers to the maximum number
of two input NAND gates available in the device. Different device manufacturers use different standards
to determine the gate count of their device. This should be viewed as a rough estimate of size only. The
gate utilization achieved in a particular design will vary considerably.

Most FPGAs use SRAM look-up tables (LUTs) to implement logic circuits with gates. An example
showing how a LUT can model a gate network is shown in Fig. 12.4. First, the gate network is converted
into a truth table. Because four inputs and one output are used, a truth table with 16 rows and one
output is needed. The truth table is then loaded into the LUT’s 16 by 1 high-speed SRAM when the
FPLD is programmed. Note that the four gate inputs, W, X, Y, and Z are used as address lines for the
RAM and that OUT, the output of the circuit and truth table, is the data that is stored in the LUT’s RAM.
Using this technique, the LUT’s SRAM implements the gate network by performing a RAM-based truth
table look-up instead of using actual logic gates. In some devices, LUTs can also be used directly to
implement RAM or shift registers.

Internally, FPGAs contain multiple copies of a basic programmable logic element (LE), also called a
logic cell (LC) or configurable logic block (CLB). A typical LE is shown in Fig. 12.5. Using one or more
LUTs, the logic element can implement a network of several logic gates that then feed into a programmable
flip-flop. The flip-flop can be bypassed when only combinational logic is needed. Some FPGA devices
contain two similar circuits in each logic element or CLB. Numerous LEs or CLBs are arranged in a two

FIGURE 12.4 Using an FPGA’s look-up table (LUT) to implement a logic gate network.
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dimensional array on the chip. Current FPGAs contain a few hundred to over a hundred thousand logic
elements. To perform complex operations, logic elements can be automatically connected to other logic
elements on the chip using a programmable interconnection network. The programmable interconnection
network is also contained in the FPGA. 

The interconnection network used to connect the logic elements contains row and column chip-wide
interconnects. In addition, the interconnection network usually contains shorter and faster programmable
interconnects limited only to neighboring logic elements. The internal interconnect delays are an impor-
tant performance factor since they are of the same order of magnitude as the logic element delay times.
Using a shorter interconnect path means less delay time. So that high-speed adders can be produced,
there is often a dedicated fast carry logic connection to neighboring logic elements.

Clock signals in large FPGAs must use special low-skew global clock buffer lines. These are dedicated
pins connected to special internal high-speed busses. These special busses are used to distribute the clock
signal to all flip-flops in the device at the same time to minimize clock skew. If the global clock buffer
lines are not used, the clock is routed through the chip just like a normal signal. The clock signals could
arrive at flip-flops at widely different times since interconnect delays will vary significantly in different
parts of the chip. This delay time or clock skew may violate flip-flop setup and hold times. This causes
metastability or unpredictable operation in flip-flops. Most large designs with clock signals that are used
throughout the FPGA will require the use of the global clock buffers. Some CAD tools will automatically
detect and assign clocks to the global clock buffers and others require designers to identify clock signals
and assign them to one of the global clock buffers.

General purpose external I/O pins on CPLDs and FPGAs contain programmable bidirectional tristate
drivers and flip-flops. Pins can be programmed for input, output, or bidirectional operation. The I/O
signal can be loaded into the I/O pin’s flip-flop or directly connected to the interconnection network
and routed from there to internal logic elements. Multiple power and ground pins are also required on
large CPLDs and FPGAs. FPGA internal core voltages range from 1.5 to 5 V. FPGAs using advanced
package types such as pin grid array (PGA) and ball grid array (BGA) are available with several hundred
pins.

When a design approaches the device size limits, it is possible to run out of either logic, interconnect,
or pin resources when using a CPLD or FPGA. CPLD and FPGA families include multiple devices in a
wide range of gates with varying numbers of pins available on different package types. To minimize cost,
part of the design problem is selecting a device with just enough logic, interconnect, and pins. Another
important device selection factor is the speed or clock rate needed for a particular design.

FIGURE 12.5 Typical FPGA logic element.
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Architecture of Newer Generation FPGAs

New generation FPGAs have continued to increase in size and are adding additional features. Several
FPGAs now include a mix of both product term and LUT-based logic gate resources. Product term logic
blocks are more efficient for the more complex control logic present in larger state machines and address
decoders. Phase-locked loops (PLLs) are available in many newer FPGAs to multiply and shift clock signals. 

Many recent generation FPGAs also contain internal or embedded RAM memory blocks. Although the
RAM can be implemented using the FPGA’s logic elements, it is more efficient to build dedicated memory
blocks for larger amounts of RAM and ROM. These memory blocks are normally distributed throughout
the chip and can be initialized when the chip is programmed. The capacity of these internal memory
blocks is limited to a few thousand bits per block. Memory intensive designs may still require additional
external memory devices. 

Some new generation FPGAs also contain internal hardware multipliers. These offer higher perfor-
mance than multipliers built using the FPGA’s logic elements and are useful for many DSP and graphics
applications that require intensive multiply operations. Several of the largest FPGAs are available with
internal commercial RISC microprocessor cores.

Most recent FPGAs support a number of I/O standards on external input and output pins. This feature
makes it easier to interface to external high-speed devices. Several different I/O standards are used on
processors, memory, and peripheral devices. The I/O standard is selected when the device is programmed.
These I/O standards have varying voltage levels to increase bandwidth, reduce emissions, and lower power
consumption. One recently announced FPGA family also features selectable impedance on output drivers.
This eliminates the need for external terminating resistors on high-speed signal lines.

The largest FPGAs have started to use redundant logic to increase chip yields. As any VLSI device gets
larger, the probability of a manufacturing defect increases. Some devices now include extra rows or
columns of logic elements. After the device is tested, bad rows of logic elements are automatically mapped
out and replaced with an extra row. This occurs when the device is initially tested and is transparent to
the user.

Presently, the two major FPGA manufacturers are Altera and Xilinx. Altera refers to their larger FPGA-
like devices as CPLDs. Other companies include Actel, Atmel, Lucent Technologies, and Quicklogic.
Extensive data on devices is available at each manufacturer’s website. Currently available FPGA devices
range in size from a few thousand to several million gates. Trade publications such as Electronic Design
News periodically have a comparison of the available devices and manufacturers [4].

12.2 CAD Tools for Rapid Prototyping Using FPGAs

Design Entry

Most FPGA CAD tools support both schematic capture and hardware description language (HDL) based
design entry. With logic capacities of an individual FPGA chip approaching 10,000,000 gates, manual
design of the entire system at the gate level is not a viable option. Rapid prototyping using an HDL with
an automatic logic synthesis tool is quickly replacing the more traditional gate-level design approach
using schematic capture entry. These new HDL-based logic synthesis tools can be used for ASIC-, CPLD-,
and FPGA-based designs. The two most widely used HDLs at the present time are VHDL and Verilog.
VHDL is based on ADA or PASCAL style syntax and Verilog is based on a C-like syntax. Historically,
most ASIC designs used Verilog and most FPGA-based designs used VHDL. This has changed in the last
decade. DoD funded design projects in the United States must use VHDL and most FPGA CAD tools
now support both VHDL and Verilog [5,6]. Currently, most FPGA synthesis projects written in VHDL
or Verilog specify the model at the register transfer level (RTL). RTL models list the exact sequence of
register transfers that will take place at each clock cycle. It is crucial to understand that HDLs model
parallel operations unlike the traditional sequential programming languages such as C or PASCAL. 
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Because synthesis tools do not support every language feature, models used for synthesis must use a
subset of the HDL’s features. In VHDL, signals should be used for synthesis models instead of variables.
HDL models intended for synthesis should not include propagation delay times. After logic synthesis,
actual delay times will be automatically calculated by the FPGA CAD tools for use in simulation. Initial
values for variables or signals are not supported in HDL synthesis tools. This means that most HDL
models originally written only for simulation use will not synthesize.

Using HDLs for Design Entry and Synthesis

To illustrate and compare the features of the two most widely used HDLs, VHDL and Verilog, two example
synthesis models will be examined. As seen in Table 12.1, VHDL and Verilog have a similar set of synthesis
operators with VHDL operators based on PASCAL and Verilog operators based on C. Some shift operators
are missing in Verilog, but they can be implemented in a single line of code with a few additional characters.
In VHDL processes, concurrent statements and entities execute in parallel. Inside a process, statements execute
in sequential order. In Verilog, modules and always blocks execute in parallel and statements inside an
always block execute sequentially just like processes in VHDL. Processes and always blocks have sensitivity
lists that specify when they should be reevaluated. Any signal that can change the output of a block must
be listed in the sensitivity list. VHDL processes and Verilog always blocks with a clock signal sensitivity
will generate flip-flops when synthesized. 

TABLE 12.1 HDL Operators Used for Synthesis

Synthesis Operation VHDL Operator Verilog Operator

Addition + +
Subtraction − −
Multiplication∗ ∗ ∗
Division∗ / /
Modulus∗ MOD %
Remainder∗ REM
Concatenation—used to 

combine bits
& { }

Logical shift left SLL∗∗ <<
Logical shift right SRL∗∗ >>
Arithmetic shift left SLA∗∗

Arithmetic shift right SRA∗∗

Rotate left ROL∗∗

Rotate right ROR∗∗

Equality = ==
Inequality /= !=
Less than < <
Less than or equal <= <=
Greater than > >
Greater than or equal >= >=
Logical NOT NOT !
Logical AND AND &&
Logical OR OR ||
Bitwise NOT NOT ~
Bitwise AND AND &
Bitwise OR OR |
Bitwise XOR XOR ^

∗ Not supported in many HDL synthesis tools. In some synthesis
tools, only multiply and divide by powers of two (shifts) are sup-
ported. Efficient implementation of multiply or divide hardware
frequently requires the user to specify the arithmetic algorithm and
design details in the HDL or call a FPGA vendor supplied function. 

∗∗ Supported only in IEEE 1076–1993 VHDL.
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An example of a simple state machine is shown in Fig. 12.6. The state diagram shows that the state
machine has three states with two inputs and one output that is active only in state B. The state machine
resets to state A. Most FPGAs offer some advantages for Moore type state machines (i.e., output a function
of state only) with one-hot encoding (i.e., one flip-flop per state) since they contain a register-rich
architecture with limited gating logic. One-hot state machines are also less prone to timing problems
and are the default encoding used in many FPGA synthesis tools. Since there are undefined states, a reset
should always be provided to force the state machine into a known state. Most FPGAs automatically clear
all flip-flops at power up. The first step in each model is to declare inputs and outputs. An internal signal,
state, is then declared and used to hold the current state. Note that the actual encoding of the three states
is not specified in VHDL, but it must be specified in the Verilog model. The first VHDL PROCESS and
Verilog ALWAYS block are sensitive to the rising clock edge; so positive edge-triggered flip-flops are
synthesized to hold the state signal. Inside the first PROCESS or ALWAYS block, if a synchronous reset
occurs the state is set to state A. If there is no reset, a CASE statement is used to assign the next value of
state based on the current value of state and the inputs. The new assignments to state will not take effect

FIGURE 12.6 VHDL and Verilog state machine model.

entity state_mach is
  port(clk, reset      : in  std_logic;
       input1, input2  : in  std_logic;
       Output1         : out std_logic);
end state_mach;
architecture A of state_mach is
  type STATE_TYPE is (state_A, state_B, state_C);
  signal state: STATE_TYPE;
begin
  process (reset, clk)
    begin
      if reset = '1' then
        state <= state_A;
      elsif clk'EVENT and clk = '1' then
        case state is
            when state_A =>
                  if input1 = '0' then
                     state <= state_B;
                 else
                     state <= state_C;
                 end if;
              when state_B =>
                     state <= state_C;
              when state_C =>
                  if input2 = '1' then
                    state <= state_A;
                  end if;
         end case;
       end if;
  end process;
  with state select
    output1 <= '0' when state_A,
                       '1' when state_B,
                       '0' when state_C,
                       '0' when others;
end a;

module state_mach (clk, reset, input1, 
                   input2 ,output1);
  input clk, reset, input1, input2;
  output output1;
  reg output1;
  reg [1:0] state;
  parameter [1:0] state_A = 0, state_B = 1, 
                    state_C = 2;
always@(posedge clk or posedge reset)
  begin
    if (reset)
       state = state_A;
    else
       case (state)
         state_A:
              if (input1==0)
                  state = state_B;
              else
                  state = state_C;
         state_B: 
              state = state_C;
         state_C:
               if (input2)
                  state = state_A;
       endcase
  end
always @(state)
    begin
       case (state)
           state_A: output1 = 0;
           state_B: output1 = 1;
           state_C: output1 = 0;
           default:  output1 = 0;
      endcase
    end
endmodule
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until the next clock. In the second block of code in each model, a VHDL WITH SELECT concurrent
statement and a Verilog ALWAYS block assigns the output signal based on the current state (i.e., a Moore
state machine). This generates gates or combinational logic only with no flip-flops since there is no sensitivity
to the clock edge.

In the second example seen in Fig. 12.7, the hardware to be synthesized consists of a 16-bit registered
ALU. The ALU supports four operations, add, subtract, bitwise AND, and bitwise OR. The operation is
selected with the high two bits of ALU_control. After the ALU operation, an optional shift left operation
is performed. The shift operation is controlled by the low-bit of ALU_control. The output from the shift
operation is then loaded in a 16-bit register on the positive edge of the clock. 

At the start of each of the VHDL and Verilog ALU models, the input and output signals are declared
specifying the number of bits in each signal. The top-level I/O signals would normally be assigned to
I/O pins on the FPGA. An internal signal, ALU_output, is declared and used for the output of the ALU.
Next, the CASE statements in both models synthesize a 4-to-1 multiplexer that selects one of the four
ALU functions. The +, −, AND (&), and OR (|) operators in each model automatically synthesize a
16-bit adder/subtractor with fast carry logic, a bitwise AND, and a bitwise OR circuit. In most synthesis

FIGURE 12.7 VDHL and Verilog ALU model.

entity ALU is
   port(ALU_control   : in std_logic_vector(2 downto 0);
        Ainput, Binput: in std_logic_vector(15 downto 0);
        Clock         : in std_logic;
        Shift_output: out std_logic_vector(15 downto 0));
end ALU;

architecture RTL of ALU is
signal ALU_output: std_logic_vector(15 downto 0);
begin
  process (ALU_Control, Ainput, Binput)
    begin
      case ALU_Control(2 downto 1) is
        when "00" => ALU_output <= Ainput + Binput;
        when "01" => ALU_output <= Ainput - Binput;
        when "10" => ALU_output <= Ainput and Binput;
        when "11" => ALU_output <= Ainput or Binput;
        when others => ALU_output <="0000000000000000";
      end case;
    end process;
  process
  begin
    wait until rising_edge(Clock);
    if ALU_control(0) = '1' then
      Shift_output <= ALU_output(14 downto 0) & "0";
    else 
      Shift_output <= ALU_output;
    end if;
  end process;
end RTL;

module ALU ( ALU_control, Ainput, Binput, 
                       Clock, Shift_output);
  input [2:0] ALU_control;
  input [15:0] Ainput;
  input [15:0] Binput;
  input Clock;
  output[15:0] Shift_output;
  reg [15:0] Shift_output;
  reg [15:0] ALU_output;
always @(ALU_control or Ainput or Binput)
  case (ALU_control[2:1])
    0: ALU_output = Ainput + Binput;
    1: ALU_output = Ainput - Binput;
    2: ALU_output = Ainput & Binput;
    3: ALU_output = Ainput | Binput;
    default: ALU_output = 0;
  endcase
always @(posedge Clock)
  if (ALU_control[0]==1)
    Shift_output = ALU_output << 1;
  else
    Shift_output = ALU_output;
endmodule
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tools, the +1 operation is a special case and it generates a smaller and faster increment circuit instead of
an adder. Following the CASE statement, the next section of code in each model generates the shift
operation and selects the shifted or non-shifted value with a 16-bit wide 2-to-1 multiplexer generated
by the IF statement. The result is then loaded into a 16-bit register. All signal assignments following the
VHDL WAIT or second Verilog ALWAYS block will be registered since they are a function of the clock
signal. In VHDL WAIT UNTIL RISING_EDGE(CLOCK) and in Verilog ALWAYS@(POSEDGE CLOCK)
instructs the synthesis tool to use positive edge-triggered D flip-flops to build the register. A few additional
Library and Use statements at the start of each VHDL model will be required in some VHDL tools to
define the IEEE standard logic type. For additional information on writing HDLs for logic synthesis
models, select an HDL reference text that includes example models intended for synthesis and not just
simulation [6–15].

Behavioral synthesis tools using VHDL and Verilog behavioral level models have also been developed.
Unlike RTL level models, behavioral level models do not specify states and the required sequence of
register transfers. Behavioral compilers automatically design the state machine, allocate and schedule the
logic and ALU operations, and register transfers subject to a set of constraints. These constraints are
typically the number of clock cycles required to obtain selected signals [16]. By modifying these con-
straints, different design architectures and alternatives are automatically generated.

Newer system-level synthesis languages based on C and Java have also been recently developed but are
not currently in widespread use in industry. These languages more closely resemble a traditional program
that describes an algorithm without specifying register transfers at the clock level. Many of these tools
output a VHDL or Verilog RTL description as an intermediate step. Some new tools are also appearing that
automatically generate FPGA designs using other popular engineering design software such as MATLAB.

CAD tools for synthesis are available from the both the device manufacturers and third party vendors.
Third party logic synthesis tools often provide higher performance and offer the advantage of supporting
devices from several manufacturers. This makes it easier to retarget a design to a device from a different
chip manufacturer. Following logic synthesis, many of the third party tools use the device manufacturer’s
standard place and route tools. Interfacing, configuring, and maintaining a design flow that uses various
CAD tools provided by different vendors can be a complex task. Several academically oriented texts
contain additional details on the logic synthesis and optimization algorithms used internally in FPGA
CAD tools [17–20].

IP Cores for FPGAs

Intellectual property (IP) cores are widely used in large designs. IP cores are commercial hardware designs
that provide frequently used operations. These previously developed designs are available as commercially
licensed products from both FPGA manufacturers and third party IP vendors. FPGA manufacturers
typically provide several basic hardware functions bundled with their devices and CAD tools. These
functions will work on their devices only. They include RAM, ROM, CAM, FIFO buffers, shift registers,
addition, multiply, and divide hardware. A few of these device specific functions may be used by an HDL
synthesis tool automatically, some must be called as library functions from an HDL, or entered using
special symbols in a schematic. Explicitly invoking these FPGA vendor specific functions in HDL function
calls or using the special symbols in a schematic may improve performance, but it also makes it more
difficult to retarget a design to a different FPGA manufacturer. 

Commercial third-party IP cores include microprocessors, communications controllers, standard bus
interfaces, and DSP functions. IP cores can reduce development time and help promote design reuse by
providing widely used hardware functions in complex hierarchical designs. For FPGAs, commercial IP
cores are typically a synthesizable HDL model or in a few cases a custom VLSI layout that is added to
the FPGA. Several large FPGA families are now available with multipliers or RISC microprocessor IP
cores [21]. FPGAs with RISC microprocessors have additional support tools such as C compilers and
design tools to configure the processor and I/O systems. In the near future, it is likely that a small operating
system kernel will also be supplied with these tools. These new devices are a hybrid that contains both
ASIC and FPGA features.
© 2002 by CRC Press LLC



         
Logic Simulation and Test

A typical FPGA CAD tool design flow is shown in Fig. 12.8. First, the design is entered, using an HDL
or schematic. Large designs are often simulated first using a faster running functional simulation tool
that uses a zero gate delay model (i.e., it does not contain any gate level timing information). Functional
simulation will detect logical errors but not synthesis related timing problems. Timing simulations are
performed later after synthesis and mapping of the design onto the FPGA.

A test bench (also called a test harness or a test fixture) is a specially written module that provides
input stimulus to a simulation and automatically monitors the output of the hardware unit under test
(UUT) [8,22]. Using a test bench isolates the test-only code portion of a design from the hardware
synthesis model. By running the same test bench code and test vectors in both a functional and timing
simulation, it is possible to check for any synthesis related problems. It is common for the test bench
code to require as much development time as the HDL synthesis model.

Following functional simulation of the design, the logic is automatically minimized, the design is syn-
thesized, and saved as a netlist. A netlist is a text-based representation of a logic circuit’s schematic diagram. 

FPGA Place and Route Tools

An automatic fitting or place and route tool then reads in the design’s netlist and fits the design into the
device. The design is mapped into the FPGA’s logic elements, first by partitioning the design into small
pieces that fit in an FPGA’s logic element, and then by placing the design in specific logic element locations
in the FPGA. After placement, the interconnection network routing paths are determined. Many logic
elements must be connected to form a design, so the interconnect delays are a function of the distance
between the logic elements selected in the place process. The place and route process can be quite involved
and can take several minutes to compute on large designs. Combinatorial explosion prevents the tools
from examining all possible place and route assignments for a design. Heuristic algorithms such as simu-
lated annealing are used for place and route, so running the place and route tool multiple times may
produce better performance. External I/O signals can be constrained to particular device pin numbers, but
allowing them to be selected automatically by the place and route tools often results in improved perfor-
mance. Many tools also allow the designer to specify timing constraints on critical signal paths to help
meet performance goals. Most tools still include a floorplan editor that allows manual placement of the
design into logic elements, but current generation tools, using automatic placement with appropriate timing
constraints, are likely to produce superior performance. Place and route errors will occur when there are
not enough logic elements, interconnect, or pin resources on the specified FPGA to support the design.

After partition, place, and route, accurate timing simulations can be performed using logic and inter-
connect time delays automatically obtained from the manufacturer’s detailed timing model of the device.
Although errors can occur at any step in the process, the most common step where errors are detected is
during tests in an exhaustive simulation. 

Device Programming and Hardware Verification

After successful simulation, the final step is device programming and hardware verification using the
actual FPGA. Smaller PLD and CPLD devices with fuses or EEPROM will only need to be programmed
once since the memory is nonvolatile. Most FPGAs use volatile RAM memory for programming, so they
need to be reprogrammed each time power is turned on. For initial prototyping, FPGA CAD tools can

FIGURE 12.8 CAD tool flow for FPGAs and CPLDs.
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download the programming data to the FPGA, using a special cable attached to the development com-
puter’s parallel or serial port. For initial testing without the need for a custom printed circuit board,
FPGA development boards are available from the device manufacturers and other vendors. The devel-
opment boards typically contain an FPGA with a download cable, a small prototyping area, and I/O
expansion connectors. In a final production system, FPGAs automatically read in their internal RAM
programming data from a small external PROM each time power is turned on. Since FPGAs read in this
programming data whenever they power up, it is possible to build systems that automatically install
design updates by downloading the new FPGA programming data into an EEPROM or FLASH memory
using a network connection.
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Successful design of high-frequency processors is predominantly the act of balancing two competing
forces: striving to exploit the most advanced technology, circuits, logic implementations, and system
organization; and the necessity to encapsulate the resulting complexity so as to make the task tractable.
This chapter addresses some of the compelling issues in high-frequency processor design, both in taking
advantage of the technology and circuits and avoiding the pitfalls.

Advances in silicon technology, circuit design techniques, physical design tools, processor organization
and architecture, and market demand are producing frequency improvement in high-performance micro-
processors. Figure 13.1 shows the anticipated global and local clock frequency of high-performance
microprocessors from the SIA International Technology Roadmap for Semiconductors.1,2 Because silicon
technology continuously advances, it is necessary to either define high frequency at each time or define
it in a technology-independent manner. For the remainder of this chapter, high frequency will be defined
in terms of the technology-independent unit of fanout-of-4 (FO4) inverter delay.3 Figure 13.2 presents
the expected global clock frequency in terms of the ITRS gate delays.1,2 From this figure, it is apparent that
the local cycle time of high-performance microprocessors is expected to shrink by about a factor of two
in number of gate delays. The ITRS gate delay is approximately a fanout-1 inverter delay, which is roughly
a fixed fraction of one FO4. This cycle time improvement must be provided by improvements in the use
of devices and interconnect, circuits, arithmetic, and organizational changes. 

 This chapter will concentrate on high-frequency designs, currently defined as less than 18 FO4 inverter
delays for a 64-bit processor and 16 FO4 for a 32-bit processor. These break-points are chosen because
(1) representative designs have been developed, which satisfy these criteria,4–7 (2) they are sufficiently
aggressive to demonstrate the difficulties in achieving high-frequency designs, and (3) they fall firmly
within the expected targets of the high-performance microprocessor roadmaps.

In the remainder of this chapter, issues related to the design of processors for these high-frequency
targets will be described. The ultimate dependence of the achievable cycle times on interconnect efficiency
on low latency circuits will be discussed, and potential problems will be described.

Kevin J. Nowka
IBM Austin Research Laboratory
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13.1 The Processor Implementation Performance Food-Chain

Performance of high-frequency processor designs is becoming increasingly centered around interconnect.
Thus, designing for high frequency is largely a matter of interconnect engineering. The importance of
optimizing designs by optimizing wiring will continue to accelerate.

Device placement determines interunit and global wiring. The electrical characteristics of this wiring
and expected loads, in turn, determine the size of macro output drivers and global buffers. The sizes of
these drivers and buffers coupled with the cycle time constraints determine the device sizes, transistor
topologies, and combinational logic gate designs. These characteristics influence the size of the macros,
which affects the placement. The combinational circuits also determine the topologies, size, and place-
ment of latches. The latches and, in some designs, the combinational logic circuits determine the clock
generation and distribution. The circuits drive the design of the power distribution. The delay, power,
and noise susceptibility characteristics of the available topologies for logic circuits determine the arith-
metic, which can be supported in a design. The same characteristics for memory circuits determine which
latches, registers, SRAM arrays, and DRAM arrays can be supported in a design. Although the design of
high-frequency processors is a complex process, one in which performance can be lost at any stage, the
basis of the process is placement and routing.

FIGURE 13.1 High-performance microprocessor frequency projection.1,2

FIGURE 13.2 Frequency projection in ITRS gate delay units.
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Placement and Routing: Distance and Wire Loads Are Performance

Custom and semi-custom design processes generally fix the dimension of one of the two wiring directions.
This fixed dimension is most often in the direction of the width of the datapath. Each bit position in the
datapath has a fixed number of available wiring tracks through the bit slice. The cross direction, or control
direction, dimension varies with the complexity of the cells, the number of counter-datapath or control
signals. In Fig. 13.3 the horizontal direction is fixed and the vertical dimension is variable. Thus, within
a datapath, one dimension is determined by the maximum number of signals, which must travel within
that bit position, and the cross dimension is determined by the sum of the individual cell dimensions,
which are, in turn, determined by either the number of control signals which must pass through the cell
or the size of the transistors and the complexity of the interconnections within the individual cells. From
this simple analysis it is clear that the length of the wires, which drive control singles into the datapath,
is determined by the datapath width, which is a function of the worst datapath-direction wiring needs.
In the most general case, control signals must span all datapath bit positions. 

Datapath signals are much more variable in length. Global datapath signals, including data span the entire
dataflow stack. Some macro output datapath signals and forwarding busses may cross a significant portion
of the dataflow stack. Other macro outputs will simply be driven back to the inputs of the macro for
dependent operations or locally to an adjacent latch. In each of these cases, the wire lengths are determined
primarily by the sum of the heights of the cells over which these signals must traverse. Important exceptions
are for wide control buses and for cross wiring dominated structures like shifters and rotators whose height
is determined by the cross, or control-direction, wiring.

Sizing the datapath bit width is performed by analyzing the interconnect needs for global buses and
forwarding buses and local datapath interconnects. Once the maximum number of signals, which must
travel through a bit position, is known and additional datapath wiring resources are allocated for power
and ground signals, this dimension can be fixed.

Wire length analysis in the datapath direction is a more complex iterative process. It involves summing
cross wiring needs for shifters and rotators and wide control buses and the lengths of spanned datapath
circuits. The size of the spanned circuits are often estimated based upon scaling of previous designs
and/or preliminary layout of representative cells. At this point, it is the length of the global and macro
crossing signals which are important. Once the length of these signals is known, estimates of the size of
global buffers and macro output drivers can be made. With repeated application of rather simple sizing
rules, an analysis of the size and topologies of the macro circuits can then be performed. The wire and
estimated sink gates form the load for the macro and global drivers, which determine the size of the
drivers. Through straightforward rules, such as those presented by Sutherland, et. al.,8 alternatives for

FIGURE 13.3 Custom or semi-custom macro cell placement and wiring.
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combinational logic circuits can be evaluated. In the end, final device sizings, placements, wire level
assignments, buffer sizing and placement, and indeed some circuit designs will be adjusted, as the design
becomes fixed. The final process is aided by device tuning, extraction, simulation, and static timing tools.

In high-frequency designs, the accurate analysis of the wiring becomes critical. Because the designer
is only able to reduce to a limited extent the amount of the cycle time, which must be allocated to clock
uncertainty, latching overhead, and the minimum required function (e.g., a 32-bit addition/subtraction
and muxing of a logical result) pressure to minimize time in signal distribution, is intense. To date, the
shortest technology-independent cycle time for a 64-bit processor, 14.5 FO4 inverter delays, has been an
IBM research prototype.5 The cycle time for this design was allocated according to the budget presented
in Table 13.1.

The time available for distribution of results limits the placement of communicating macros. For results,
which must be driven out of a macro through a wire into a remote receiving latch, an inverter was placed
at the macro output to provide gain to drive the wire and another inverter was placed at the input of the
latch to isolate the dynamic multiplexor from any noise on the wire.9 Thus, the distribution wires could
only be at most about 3.5 mm and thus the core of such a short cycle design with full forwarding must
be quite small. For full-cycle latch-to-latch transfers, the wires were limited to about 10 mm. Figure 13.4
presents the floorplan of the processor with a representative full-cycle latch-to-latch transfer path of
6.5 mm from the fixed point instruction register to the floating-point decoder latches. Figure 13.5 presents
a portion of the fixed point data-flow, FXU, with a representative maximum length forwarding wire of

TABLE 13.1 Gigahertz PowerPC Delay Allocation

Function Delay (ps) FO4 Function Delay (ps) FO4

Mux-latch Clk-Q 200 2.9 Mux-latch Clk-Q 200 2.9
Control logic 470 6.8 Datapath logic 610 8.8
Control distribution 140 2.0 Datapath distribution 140 2.0
Control latch setup 140 2.0 Datapath latch setup 0 0
Clock jitter/skew 50 0.7 Clock jitter/skew 50 0.7

FIGURE 13.4 A 1 GHz PowerPC processor floorplan with representative global signal.
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3 mm from the output of the ALU to the operand latch of the load-store unit. In this technology, with
a cycle time partitioning as presented, the scope of intracycle communication is small. As cycle times
decrease, in terms of the FO4 technology-independent metric, either a greater portion of the cycle must
be devoted to covering communication amongst units within the core, or this communication must be
completed in subsequent cycles.

Distribution of results in subsequent cycles and forwarding path elimination would eliminate the signal
distribution time from the cycle time, at the cost of increased cycles on adjacent dependent operations.
Superpipelining of the datapath macro over multiple cycles can increase the throughput of the design,
but affects the execution latency due to additional intra-macro latches. Again, the additional cycles to
complete the operation are observed on adjacent dependent operations.

Although the interconnect performance is important, it must be tempered by the demands of reliable
operation. Many of the noise mechanisms in a design are due directly or indirectly to the design of the
interconnects. These effects will be revisited in section 13.2.

The thesis of this work is that there must be a balance between the pursuit of the ultimate exploitation
of the technology and the management of the resulting explosion in design complexity. Wire engineering
is fraught with such complexity traps. While it is recognized that, for example, inductance can be a
concern for on-chip wires, not every wire needs to be modelled as a distributed RLC network. Complexity
can be reasonable managed by (1) generating metrics for the classification of wires into modeling classes
and (2) determining when individual wires (e.g., global clock nets, bias voltages, critical busses) need to
be more carefully analyzed. For the 0.22 µm technology used in the IBM design,5 Table 13.2 indicates
the classification of general modeling classes for use in the preparation of detailed schematic simulation
netlisting and schematic cross-section netlisting. For several wiring levels, the maximum wire length,
where the application of each of the models resulted in approximately a 1% delay error, is presented.
The T model placed the lumped capacitor to ground between two lumped resistors of value R/2. The
multiple-T model divided the wires into four sections of T models. Use of these classes provides reasonably

FIGURE 13.5 Expanded view of fixed-point unit with
macro distribution path.
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accurate wire modelling while limiting the complexity of the simulation and analysis. In the final design,
more detailed analysis of global wiring is warranted. Extraction, including 3D extraction, and analysis
of delays and noise are commonly included in a high-frequency design methodology.

From Fig. 13.5, several potential traps are exposed. It should be clear that signals should be produced
as locally as possible. Round trip signalling into a datapath and back out in a single cycle consumes almost
the entire cycle. In addition, multi-source (multi-sink) buses should have the sources (sinks) located such
that the wire lengths are short.

One method of limiting the complexity of the signal distribution was used in an IBM research gigahertz
microprocessor.4,10 In this design, each circuit macro was connected locally to a source operand latch
with an integrated data multiplexor and all control signals were required to meet the datapath data at
either the input of the macro or at the multiplexor select inputs of the receiving latch. In this way, it was
guaranteed that round-trip signals were avoided.

Fast Wires and Fast Devices: Gain Is Performance

From the previous section, it is clear that the circuit topologies and the device sizes used in the design of
macros are dependent upon the wires and device load, which the macro must drive. Macro output drivers
can be sized to minimize the delay of driving the networks. The problem sizing CMOS inverters to drive
a load is well established.11 In general, fanout-3 (FO3) to fanout-6 (FO6) rules-of-thumb can be used to
size arbitrary CMOS circuits.

As part of the high-frequency design process, logic is sized by stage from output to input. The macro
load is the sum of the wire and estimated gate loads attached to the output. The size of the transistors,
channel-connected to the output, is such that the current delivered is equivalent to an inverter, which
has an input capacitance of 1/3 to 1/6 of an inverter, with an input capacitance equal to the gate’s load.
This process is repeatedly applied until the primary inputs are reached. These inputs then constitute the
load on gates or latches, which drive these inputs. This sizing process can be conducted either manually
with simple guidelines8 or using sizing design automation tools.

The delay of each stage is approximately proportional to the capacitive load, which must be driven.
Physical design techniques and technology improvements, which lower capacitance such as routing on
higher and more widely spaced wires, low-k dielectrics, and the reduced junction capacitance of SOI
technologies,12–15 can improve the performance of these circuits. Technology improvements to raise the
current of the driving transistors such as low-threshold devices, strained silicon, and high-k gate oxides
will also improve the performance of these circuits. To the circuit designer, these improvements change
not just the performance of the devices and interconnect, but the wiring density, noise margins, noise
generation, and reliability characteristics of the wires and devices.

TABLE 13.2 Wire Modeling Classes

Wire Level Model Max Length (µm)

M1 Ignore 13.5
Lumped C 120
Lumped RC 200
T 450
Multi-T 2000

M2 Ignore 13.5
Lumped C 180
Lumped RC 225
T 650
Multi-T 2500

M5 Ignore 13.5
Lumped C 225
Lumped RC 450
T 900
Multi-T 4500
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Although the capacitance of the wires and the capacitance of the gates associated with the signal sinks
were summed to represent the loads on a macro output, these loads may actually be quite separable and
may be sized independently. If the delay of a circuit is modelled by the charging or discharging of a
capacitive load:

Td = (CintVdd + CgateVdd)/Ids_avg

where Cint is the interconnect capacitance,Vdd is the supply voltage, Cgate is the gate capacitance of the
load, and Ids_avg is the average driver current, and Cgate = const × W, and Ιds_avg = const × W, then the delay
is minimized as W approaches infinity. Or equivalently, as the Cgate is made to fully dominate Cint. In
practice, this relation does not hold; however, even if this were true, the energy consumed would also
go to infinity. The ratio of gate capacitance to interconnect capacitance should be maintained at between
1:1 and 2:1 for power efficiency.16 Driving interconnect significantly harder than this results in larger
energy consumption and more severe coupled noise and power supply noise.

Gate Design: Boolean Efficiency Is Performance

In the previous section, transistor topologies were abstracted as currents, which charged and discharged
load capacitances. In this section, the constraints imposed by the short cycle time and the minimum
allowable function to be completed in a cycle will be shown to determine the circuit topologies, which
can be employed for high frequency designs.

When the clock and latch overhead presented in Table 13.1 is applied to a 64-bit processor with a cycle
time target of 18 FO4, it is evident that addition and subtraction must be competed in less than 12.4 FO4.
Achieving this target requires: (1) a selection of the true or complement value of all bits of one input,
(2) the formation of the sums, of which the most significant bit is the most difficult:

S0 = p0 xor G1 … 63

where

pi = Ai xor bi βi = Bi xor subtract

G1 … 63 = g1 or p1g2 or p1p2g2 or p1p2p3g4 or … p1p2p3p4 … p62g63

where gi = AiBi, (3) the selection of the result of the add/subtract or a logical operation, and (4) the
distribution of the result.

Very fast dynamic adders have been demonstrated, which perform the addition/subtraction in less
than 10 FO4s.17–19 These adders have achieved their high frequency through9 (1) high degree of boolean
complexity per logic stage, (2) aggressive sizing of device sizes, (3) ground interrupt NMOS elimination,
and (4) high output inverter beta ratios.

Dynamic logic is well suited to complex boolean functions. The elimination of the PMOS pull-up
network associated with static CMOS limits the amount of gate input capacitance, thereby increasing
the capacitive gain of the gate. Thus, for a given input capacitance, domino logic can perform functions
of greater boolean complexity. In addition, the dotting of the pull-down net-works allows for efficient
implementation of wide OR functions. Finally, use of multiple-output domino allows for even greater
boolean complexity for a given input capacitance.20 Figure 13.6 is an example of a multiple-output,
unfooted domino gate from a floating-point multiplier. This is a dual-rail output gate, which is generally
required for domino logic as logical inversion cannot be performed within a traditional domino gate.

To illustrate the efficiency, in which complex boolean functions can be in domino logic, a series of
carry merge structures were simulated. Carry merge gates perform a form of a priority encoding. The
function implemented is:

G0 … n = g0 + p0g1 + p0p1g2 + … + p0p1p2p3 … pn−1 gn (13.1)
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An implementation of this function contains an NMOS pull-down network, which is n + 1 transistors
high and has n + 1 paths to ground. Delays for feasible, single level domino implementations for a 0.18 µm
SOI technology are shown in Fig. 13.7. From Eq. (13.1), it can be shown that the higher order merging
can be accomplished through the cascading of lower group size merge blocks and AND gates. From Fig. 13.7,
however, it is clear that for merges up to group-6, a single level merge is more efficient than two group-3
or three group-2 merges.

Table 13.3 presents FO4 inverter normalized delays for a variety of custom, unfooted dynamic circuit
units from the IBM 0.225 µm bulk-CMOS 1 GHz PowerPC.5 To achieve these delays, particularly for the
complex functions, dynamic gates with pull-down networks up to five NMOS transistors high were used.

As indicated earlier, increasing the width of the transistors in a design generally improves the propa-
gation delay through the logic. Increasing the transistor widths, however, directly increases the energy
consumed in the design. The power versus delay curve of a datapath macro is presented in Fig. 13.8. In
this figure, the widths of all nonminimum width transistors were reduced linearly. The resulting macro
power and delay including a fixed output load is presented. The nominal design was optimized for delay
where about 4% marginal power was devoted to reduce the delay by 1%.

In addition to the use of relatively large transistor widths, performance of dynamic gates can be
improved through the elimination of the ground interrupt NMOS. Figure 13.9 shows the ratio of footed
domino gate delay to unfooted domino gate delay for a range of NMOS transistor pull-down network
heights implemented in a 0.18-µm SOI process. In this graph the foot NMOS transistor is either two or
four times the width of the logic NMOS transistors in the pull-down network.

FIGURE 13.6 Dual-rail, multiple-output domino sum circuit.

FIGURE 13.7 Carry merge delay vs. group size.
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TABLE 13.3 Dynamic Unit Delays

Unit
No. of Dynamic 

Gate Levels Delay (FO4)

8:1 Mux latch N/A 2.9
Carry save adder 1 1.4
Group-4 merge 1 1.5
AND6 1 2.3
53 × 53-bit multiplier reduction array 9 16.5
161-bit aligner 5 10
160-bit adder 5 11.1
13-bit 3-operand adder 5 9.3
53-bit increment 4 7.5
130-bit shifter 3 5.4
64-bit carry lookahead adder 3 6.8
64 entry, 64-bit 6R4W register file N/A 8.3
64-kB sum addressed dual-port cache access N/A 16.4

FIGURE 13.8 Power vs. delay of device sizings of condition code generator arithmetic macro.

FIGURE 13.9 Performance potential of unfooted domino.

0 5 10 15 20

power (mW)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

de
la

y 
(n

s)

1 2 3 4

Unfooted Stack Height

1

1.05

1.1

1.15

1.2

1.25

F
oo

te
d:

U
nf

oo
te

d 
D

el
ay

4xwide foot 2xwide foot
© 2002 by CRC Press LLC



      
In a very short-pipeline, high-frequency processor design, the 5–15% performance lost to the ground
interrupt device was unacceptable. Unfooted domino also lowers the load on the clock, which, in turn,
may lower the area and power required for generating and distributing the clock.

The delay of a domino gate can also be influenced by the sizing of the output inverter. The larger the
ratio of PMOS to NMOS width, or beta ratio, the lower the delay for the output rising transition. The costs
are an increase in the delay of the output reset operation and a decrease in noise-margin at the dynamic
node.

Figure 13.10 shows the effect of the beta ratio on the output evaluate (rising) delay and output resetting
(falling) delay. Adjusting the beta ratio of the output inverter can improve the delay of domino gates by
5–15% depending on the complexity of the gate. For the carry-merge gate used to derive Fig. 13.10, beta
ratios of 3–6 provide most of the performance benefit without serious degradation of the delay of the
reset operation or noise margins.

In the design of microprocessors with millions of logic transistors, it is of dubious value to do full
analysis and optimization of the device topologies and sizings. To control the complexity of the design
generation of simple guidelines for acceptable topologies and sizing, rules based upon simple device size
ratios suffice for much of the design.

13.2 Noise, Robustness, and Reliability

The techniques described previously to improve performance cannot be applied indiscriminately. Perfor-
mance can only be realized if sufficient noise margins are maintained. Dynamic circuits are subject to several
potential noise events: Precharge-evaluation collisions, coupled noise on the input of the gates or onto
the dynamic node, AC-noise or DC-offset in theVdd or ground power supplies, subthreshold leakage in
the pull-down network or through the PMOS pre-charge device, charge sharing between the dynamic
node and the parasitic capacitances in the NMOS pull-down network, substrate charge collection at the
dynamic node, tunnelling current through the gates of the output inverter, and SER events at the dynamic
node. Dynamic circuits in partially-depleted SOI technologies have the additional challenge of bipolar
leakage currents through the pull-down network but have improved charge-sharing characteristics.

Dynamic circuits are more prone to these noise events primarily because of the undriven dynamic
node. These noise events all tend to either remove charge from a precharged and undriven dynamic node
or add charge to a discharged and undriven dynamic node. Increasing the capacitance of the dynamic
node improves this problem, but generally slows the circuit. Alternative for most of these problems is to

FIGURE 13.10 Effect of output inverter P:N size on delay.
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(1) control the adjacency of noise sources, (2) limit the allowed topologies to those which have tolerable
leakage, and (3) the introduction of additional devices onto the dynamic node, which either source or
sink current in response to these noise events.

Precharge/evaluation collisions occur when the precharge transistor has not fully turned off prior to
evaluation or when the pull-down paths have not been disconnected from the ground prior to initiation
of precharge. As the pull-down paths are usually designed to overpower the pre-charge device, the result
of these collisions is an increase in short-circuit power, a degradation of the noise margin on the dynamic
node, and an increase in the delay of the gate. Careful timing of the precharge and the input signals can
minimize the chance for these collisions.

Charge redistribution or charge sharing occurs when the charge is transferred from the dynamic node
to parasitic capacitances within the pull-down network during the evaluation phase of operation. When
the gate is not supposed to switch, the resulting transfer of charge and reduction of voltage on the dynamic
node reduces noise margin and can potentially cause false evaluation of the gate. This is particularly
problematic in dynamic gates with complex pull-down networks, with significant wiring in the pull-
down network, and/or relatively small capacitance on the dynamic node when compared to the capaci-
tance within the pull-down network. Because the voltage on the dynamic node is affected, both the noise
margin and potentially the delay of the dynamic gate are affected. These events can be minimized through
the increasing of the capacitance on the dynamic node through the increasing of the size of the output
inverter, the introduction of a keeper device which helps maintain the precharged level, the introduction
of pre-charge transistors within the pull-down network where capacitances are significant, and the
maintenance of small beta ratio in the output inverter.

Coupled noise on the input of gates results in the increase in leakage current through the pull-down
network and possibly a false evaluation. This effect can be minimized by avoiding routing hostile nets
near the inputs, protecting the inputs to dynamic nodes by introducing high-noise margin gates between
any long wires and the inputs to the dynamic gates, and/or introducing sufficiently large keeper devices
on the dynamic node.

Coupled noise to the dynamic node, like coupled noise to the inputs, may result in a false evaluation.
The coupled noise can degrade the voltage on the dynamic node, and thus, degrade the noise margin of
the gate. As this changes the voltage on the dynamic node, it also can affect the delay of the gate. This
effect can be minimized by avoiding routing hostile nets near the dynamic node, minimizing the wire
associated with the dynamic node, and/or introducing sufficiently large keeper devices on the dynamic
node. Critical signals may be required to be isolated or shielded by supply lines or power planes.

Subthreshold leakage through the pull-down network for precharged dynamic nodes and through the
precharge and keeper PMOS transistors remove or introduce charge on the dynamic node of a dynamic
gate. Use of higher threshold devices as precharge devices or integration of higher threshold devices in
the pull-down network can minimize this problem. Other techniques include using nonminimum length
devices and introducing appropriately sized keeper devices.

Power-supply and ground noise degrade the noise margins as they shift the transfer function of
the gate. Ground offset in the gate driving an input to a dynamic node can lead to increased subthreshold
leakage through the NMOS pull-down network. Supply variation also modifies the propagation delay
through the dynamic gates. Careful design of the distribution network and correctly sized and placed
decoupling to meet the DC and AC switching characteristics of the design avoids this problem. As
in other failure modes keeper devices can protect the dynamic node from power supply induced
failures.

Substrate charge collection and SER events can affect the voltage on the dynamic node of the dynamic
gate. Increased dynamic node capacitance, keepers, and minimizing the occurrence of substrate current
injection, and avoiding proximity to lead solder ball locations for critical dynamic circuits should be
considered to avoid these problems.

Tunneling currents are increasingly becoming a concern for the circuit designer as gate oxide thick-
nesses are reduced. For dynamic circuits, tunneling currents can cause a degradation of the voltage on
the dynamic node.
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Because of the reduced junction capacitance of SOI devices, the charge redistribution problem presented
earlier is significantly better in SOI than bulk technologies. Partially-depleted SOI has several other
challenges for the circuit designer: bipolar leakage, the “kink effect” in the I-V characteristic, and the
“history effect.” Each of these effects is related to the body of the SOI device. Although the body can be
terminated through a body contact,21 the capacitive and delay overhead of the contact generally prevents
them from being used for logic transistors. The voltage on the floating body of the device influences the
on-current through the dynamic raising or lowering of the device threshold and the off-current through
the flow of bipolar current and MOS leakage current due to the variation of the device threshold.

For the SOI 4-to-1 unfooted dynamic multiplexor circuit shown in Fig. 13.11 a noise event waveform
is presented in Fig. 13.12. The waveform shows the voltages and the resulting currents through a leg of
the mux which should be off. At location A in the waveform, the body of device N1 has drifted to a relatively
high steady-state voltage. At B, the device N2 is made to conduct. This has the effect of coupling the body
of device N1 down as the source of N1 is driven low; however, the body of N1 is still sufficiently high to
allow current to flow through the parasitic bipolar device. In addition, the voltage on the body of the
device lowers the threshold of the MOS device N1, making it particularly susceptible to noise at the gate
of N1. At C, a 300 mV noise pulse on the gate of N1 results in the dynamic node discharging sufficiently
low to produce an approximately 300 mV output noise pulse.

The failure mechanism is a leakage mechanism, therefore, this failure mode can be minimized through
the introduction and proper sizing of keeper devices. In the previous example, the size of the keeper device
helps determine the amplitude and duration of the noise output pulse. In addition, the predischarge
of the internal nodes in the pull-down network can limit the excursion of the body voltages, thereby
limiting the bipolar leakage current and the reduction in MOS threshold voltage due to the floating body.
Limiting the number of potential leakage paths through pull-down network topology changes can also limit
the floating body induced leakage effects.

Because both the current flow and thus the delay of the gate can be modified by the floating body, the
delay of a circuit becomes time and state dependent. This “history effect” has been shown to lead to variations
in delay of approximately 3–8% depending upon the technology, circuit, and time between activity.22,23

FIGURE 13.11 Unfooted dynamic 4:1 multiplexor.

FIGURE 13.12 SOI noise simulation.
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As is the case with sizing and topologies for performance, complexity in the analysis and optimization
for robustness and reliability can be controlled through the generation of rather simple guidelines in
sizing, wire length versus spacings, keeper size ratios, etc. In the case of reliability and robustness, however,
verification that noise criteria are met is critical.

13.3 Logic Design Implications

As the technology-independent (FO4-based) cycle time shrinks, and signal distribution and clock and
latch overhead shrink less quickly, the arithmetic and logic design must be more efficient. Linear depth
arithmetic and logic structures quickly become impractical. Linear carry ripple addition, even on small
group size, must be replaced with logarithmic carry-lookahead structures. Multiple arithmetic compu-
tations with a late selection, for example compound addition, may become necessary. In critical macros,
additional logic may need to be introduced to avoid waiting for external select signals. For example, the
carry-generation logic from a floating-point adder needed to be reproduced within the leading-zero-
anticipator of a high-frequency, floating-point unit to avoid waiting for the sign of the add to be formed
and delivered from the floating-point adder.24 

Traditionally sequential events may need to be performed in parallel. For instance, to compute con-
dition codes, rather than waiting for the result of the ALU operation and using additional levels of logic
to form the condition codes, a parallel condition code generation unit, which formed the condition codes
directly from the ALU input operands faster than the ALU result was required.25 Sum-addressed caches
have also been used to replace the sequential effective-address addition followed by cache access with a
carry-free addition as part of the cache decoder.26,27 Of more ubiquitous application, merging of logic
with the latch is important as cycle times shrink. With increased pressure on cycle time, the latches and
clocked circuits need a low skew and low jitter clock. Low jitter clock generation and low skew distribution
require significant design, wiring, and power resource.28,29

13.4 Variability and Uncertainty

The wires and devices, which are actually fabricated in a design, may differ significantly from the nominal
devices. In addition, the operating environment of the devices may vary widely in temperature, supply
voltage, and noise. Usually delay analysis and simulation are performed at multiple corner conditions in
which combinations of best and worst device and environmental conditions are used. For circuits in
which the matching of individual transistors is required for correct operation such as current and voltage
reference circuits and amplifiers, despite care being taken in the design and layout, mismatch does occur.30

For timing chains, strobes, latches, and memories as well as the analog functions previously described,
Monte Carlo analysis as well as worst-case analysis is often used to ensure correct operation and ascertain
delays.

In the design of a high-frequency processor, performance gain can be made by minimizing the variation
where possible and then taking advantage of systematic variation and only guard banding for random
variations, variations which are time variant, and those for which the cost of taking advantage of the
systematic variation exceeds the benefit. Methods of efficient models of the systematic and random
components for device and interconnect can be used by the designer to optimize the design and determine
what guard band is necessary to account for the random variations.31,32

13.5 Summary

Designing for the increasingly difficult task of high-frequency processors is largely a process of optimizing
a design to within a reasonable distance of the constraints of (1) the ability of the interconnect to commu-
nicate signals, distribute clocks, and supply power, (2) the current delivering capabilities and noise
margins of the devices, (3) the random or difficult to predict systematic variations in the processing, and
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(4) the limit of designers to manage the resulting complexity. In technology-independent metrics, several
high-frequency designs have been produced in this way.5,6 Making better use of the technology should
allow designers to meet or exceed cycle time expectations of the SIA International Technology Roadmap
for Semiconductors.
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14.4 Conclusion

14.1 Introduction

Power consumption has emerged as one of the most important design constraints in today’s systems.
This is largely due to the rapid growth of mobile systems, which run on the limited energy available in
batteries. In addition, increased power consumption implies increased heat dissipation, which leads to
higher cooling and packaging costs. Increased power consumption is also detrimental to the reliability
of integrated circuits (ICs). In addition, concerns about the environmental cost of electronic systems
motivate the need to reduce their power requirements.

The increasing speed and complexity of today’s designs implies that the power consumption is also
increasing in the future. To meet this challenge, we need to develop design techniques for low power. The
complexity of today’s ICs with over 100 million transistors, clocked at over 1 GHz, demands computer-aided
design (CAD) tools and methodologies for a successful design in time to market. Therefore, we also need
low power techniques to be part of CAD tools. In addition, the overall system design, including software
components needs to be power aware.

Figure 14.1 shows the historic power consumption for Intel CPUs. The X-axis shows the technology
generation and the Y-axis the maximum power consumption. As indicated by the dashed line in the main
part of the curve, power consumption has been increasing for each new CPU generation. The points to
the side of the main curve indicate newer versions of each processor family. These are implemented in
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newer semiconductor processes with smaller geometries than the lead processor in that family. Smaller
feature sizes in conjunction with lower supply voltages lead to lower power consumption in the newer
versions; however, moving to a new CPU generation in the same process is associated with an increase
in the power consumption (Fig. 14.2).

Table 14.1 also depicts Compaq’s Alpha∗ series in power, clock rate, die size, and supply voltage [1a].
Note the trend in increasing power though Vdd the supply voltage, is decreased.

Why is this cause for concern? The reason is that increased power consumption directly impacts IC
and system cost. This cost has two components. The first is thermal or cooling cost, which is associated
with keeping the devices below the specified operating temperature limits. Maintaining the integrity of
packaging at higher temperatures also requires expensive solutions. The second component of the cost
of power consumption is the cost of power delivery, i.e., the on-chip, on-package, and on-board decou-
pling capacitances and interconnect associated with the power distribution network. Increased power
consumption at lower voltages increases the magnitude of the current drawn by the IC. In addition,

TABLE 14.1 Compaq Alpha∗ Power Trends

Alpha Model
Peak 

Power (W) 
Frequency 

(MHz) 
Die Size 
(mm2)  Vdd

21064 30 200 234 3.3
21164 50 300 299 3.3
21264 72 667 302 2.0
21364 100 1000 350 1.5

∗ Alpha is a trademark of Campaq Inc.

FIGURE 14.1 Historic trends for Intel CPU power consumption.

FIGURE 14.2 Power breakdown in a high-performance CPU.

∗Alpha is a tradmark of Compaq Corp.
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today’s design trends are such that the variability in the amount of current drawn from cycle to cycle is
also increasing. These factors combine to make resistive and inductive noise a big problem. Dealing with
this is becoming increasingly costly.

Figure 14.3 gives an idea of the range of dollar amounts associated with the above costs for different
system components in a personal computer. As can be seen, when the CPU power is in the 35–40 W
range, the cost of each additional watt goes above $1 per watt per chip. An interesting observation is that
the power cost of the other system components (DRAM, chipsets, graphics) is on a steeper curve than
the CPU. This is because the spatial layout of today’s system chassis designs is such that these components
are harder to cool. This is likely to change with new designs, further increasing the relative importance
of the CPU power cost. Given the above trends, there is a clear need to analyze and optimize power
consumption for all components of a given system.

This chapter is organized as follows. The need for reducing power consumption in systems is motivated
in greater detail in the section on “The Need for Low Power.” The sources of power consumption are
reviewed in “Sources of Power Consumption,” where a basic power model for complementary metal
oxide semiconductor (CMOS) circuits is presented. “Reducing Power Consumption” provides a overview
of basic power reduction methods. Section 14.2 deals with power estimation, which is a prerequisite for
power aware design. Section 14.3 describes power reduction techniques at various levels of the design
process in greater detail.

The Need for Low Power

The different factors that have led to the increasing importance of the power metric are described in the
following subsections.

Heat Dissipation

The power consumed in an IC is dissipated as heat. Unless this heat is removed, the IC gets hot. The
electrical properties of the devices on the chip are rated for specific temperature ranges, and exceeding
the ranges shifts the parameters and the behavior of circuits. In addition, as an IC gets hot, catastrophic
failure mechanisms become more likely. These include silicon interconnect and junction fatigue, package
failure, thermal runaway, and gate dielectric breakdown. It has been estimated that each 10°C rise in
operating temperature roughly doubles the component failure rate.

The power consumption in today’s ICs has reached the point that expensive packaging and cooling
mechanisms are needed to keep the operating temperature in check. The peak sustained power consump-
tion in recent high-performance microprocessors is in excess of 70 W, as shown in Fig 14.1 and Table 14.1.
Packaging and cooling costs are of direct concern even in the domain of lower performance and low
power microprocessors and microcontrollers. The high volume nature of the market for these devices
means that even slight reductions in cost can translate into large revenue increases for the manufacturer.

FIGURE 14.3 Cost of delivering power and cooling in a PC system.
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The cost impact of power consumption on packaging and cooling costs can be seen from the following
data points. (The cost values are from the 1997 timeframe, but the relative trends still hold.)

If the power consumption of a chip is under 1 W, a plastic package can be used for it, at the cost of
about 1 cent per pin. If the power consumption is between 1 and 2 W, a plastic package can still be used,
but special heat conductors are required. The cost for a package of this kind is approximately 2–3 cents
per pin. Exceeding 2 W, however, requires the use of ceramic packages. These packages cost between 5
and 10 cents per pin. Exceeding 10 W requires external cooling (air or liquid cooling) and a further
increase in cost. The package cost for a 200-pin device would therefore be either $2, $4–6, or $10–20,
depending on whether its power consumption is below 1 W, between 1 and 2 W, or above 2 W. Moving
up from one power consumption range to another is therefore accompanied by significant cost increases,
which are significant if the devices are manufactured in large volumes. A specific consideration in this
regard is to keep the power consumption below 2 W. This allows the use of plastic packages, which are
much cheaper than the ceramic packages that are otherwise needed.

Portable Systems

The rising popularity of portable systems is primarily responsible for the upsurge in interest in power
consumption in recent years. Portable systems include palmtop, laptop, notebook computers, telecom-
munication devices such as pagers, cellular phones, wireless modems, and consumer products such as
audio players, video cameras, and electronic games. The defining characteristic of a portable system is that
it is not connected to a fixed power source. It runs on the limited energy stored in a rechargeable battery. In
any portable system, the length of battery driven operation (the battery life) is of prime importance. Longer
battery life can provide a competitive advantage in the marketplace. In each of these applications, size, weight,
and battery life are primary considerations. Low-power DSPs allow designers to extend battery life without
the size and weight increases associated with more powerful batteries.

The trend in portable devices is towards increased computational requirements. Portable computer
users desire performance levels that are comparable to those of desktop systems. In addition, personal
communication applications, with multimedia access supporting full-motion digital video and speech
recognition capabilities are being proposed. What this implies is that portability can no longer be
associated with limited computational rates.

Meeting the increased energy requirements through use of larger and more batteries is not really an
option. This increases the size and the weight—parameters that are also extremely important in portable
systems. Increasing the amount of energy stored in the batteries (the battery capacity) is one way to solve
the problem; however, growth in rechargeable battery capacity has been slow. Incremental improvements
in nickel-cadmium (NiCd) technology, the mainstay of portable power, have led to about the doubling
of capacity over the last 30 years. Newer battery chemistries, such as nickel-metal hydride (NiMH) are
expected to have 20–30% higher capacity. Thus, battery capacity has increased by a factor of less than 4
over the last three decades. Recently, the ever-growing market for portable systems has motivated a faster
rate of innovation in the battery industry. Lithium-ion, a newer technology, is rapidly gaining popularity
since it allows lighter batteries with higher capacities. This may change with even newer battery technol-
ogies such as lithium-polymer, and zinc-air, which are claimed to have 2 and 10 times higher capacity
than NiMH, respectively.

In any case, growth in battery capacity lags far behind the rapid growth in microprocessor power
consumption, which has gone from under 1 W to over 50 W over the last 20 years. Thus, improvements
in battery technology alone cannot be relied upon to meet the constraints of portable systems. The energy
demand on the batteries has to be reduced.

A noteworthy research project was recently completed at UC Berkeley, California. A butane-powered
Wankel internal combustion engine with a generator about as small as a chip-cooling fan was developed
to power a laptop for longer durations while enabling a very small weight increase. Although it is amusing
to note that an IC (internal combustion) engine is powering the IC (integrated circuit), it will be worth
watching to see the evolution of practicality and application of this technology, in view of its safe and
hazard-free use. The engine reportedly pollutes only as much as a human body.
© 2002 by CRC Press LLC



               
Data Center Issues

The growth of the Internet is driving increased awareness of power in the server, communication, and
networking domains. The trend is to pack more and more computational resources in smaller spaces. A
typical data center consists of racks of computation equipment, each rack with a maximum of 42 slots,
each slot  inches high. Because data center space is at a premium, the desire is to pack more compu-
tational resources per rack and more racks per square yard. This drives the need for power efficiency
mainly due to the following: First, when there are constraints on how much power a data center can
draw from the public power grid, increasing computation density of a data center can only be done if
the power efficiency of the equipment increases; second, it has been estimated that as much as 25% of the
total cost of running a data center is directly related to power consumption (the cost of cooling, power
delivery equipment, and the net consumption of electricity). Power has thus become a major design
constraint for servers and high-performance communication and networking equipment.

Reliability Issues

Certain issues related to reliable operation of ICs are directly related to the power drain of the on-chip
circuits. Electromigration is one such issue. Under high electrical currents, the atoms in the metal power
supply line may migrate, leading to electrical shorts and breakages. Reliable design of the power grid
therefore requires a careful analysis of the current flow in different parts of the power grid. Reliable operation
of ICs also requires verifiable electrical behavior. Some electrical verification problems are directly related
to power consumption.

The first of these is voltage drops due to the resistance of power supply lines (also known as the iR
problem). These drops lead to power supply DC voltage differences between the driver and receiver
circuits. Thus, portions of the chip would receive a lower supply voltage than what they are designed for.
In addition, transient currents drawn by one set of circuits causes transient noise in the supply rail of
another and this noise can be only reduced by bulky capacitors. (But one cannot eliminate the pertur-
bations.) The inductance of the power supply lines is the other problem. Rapid variation in the current
flow on these lines can also lead to voltage variations (also known as the supply bounce or L .di/dt problem)
that can affect the operation of the receiver circuits. The above problems necessitate specialized power
analysis and design tools.

They also require tools to help avoid these problems, e.g., power line sizing tools. Increasing frequencies
and device counts, coupled with shrinking feature sizes, will only exacerbate these problems [2]. Reduc-
tion in the total power consumption, on the other hand, helps to alleviate the impact of these problems.

Environmental Considerations

Concerns about the environmental impact of the electricity consumed by computers are providing
additional motivation for low power design. The U.S. Environmental Protection Agency (EPA) estimates
that computers are a leading cause of the increased electricity demands in the U.S., accounting for about
5% of commercial demand (the figure is expected to reach 10% by the end of the decade). At present,
PCs and their peripherals consume about $2 billion worth of electricity annually, and indirectly produce
as much carbon-dioxide as 5 million cars. Also, of the total office equipment electricity consumption,
80% comes from PCs, monitors, and printers [2].

A large part of this is wasteful power consumption, coming from systems that are left turned on even
when not in use. In order to encourage the development of power-saving systems, the EPA created the
“Energy Star Program.” The requirements of this program state that each of a PC’s main elements (CPU
unit, monitor, and printer) should consume less than 30 W when they are idle, i.e., not being used. In
return, PC vendors can use the “Energy Star” logo and market their systems as being “Energy Star Com-
pliant.” It is expected that being identified as an energy-wise or “Green” PC will provide a competitive
edge over otherwise comparable, but “non-Green,” systems. There is even a political angle here. The
President of the United States has declared a goal for the U.S. government to buy only PCs that qualify
for the Energy Star Program.
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In any case, the move toward “Green” desktop PCs implies that the technologies that would be
otherwise meant for just portable computers have applications in the entire PC domain. The mindset
for power efficient design is therefore starting to take hold within the industry. This provides additional
justification for the consolidation of tested techniques, and continuous development of newer techniques.

Sources of Power Consumption

The four sources of power consumption in digital CMOS circuits are [4]:

1. Capacitive switching power (Pswitching)
2. Short circuit current (Ishort-circuit)
3. Leakage current (Ileakage)
4. Static currents from specialized circuits (Istatic)

The effects of these sources on the average power consumption (Pavg) can be summarized as:

Pavg = Pswitching + (Ishort-circuit + Ileakage + Istatic) × Vdd  (14.1)

where Vdd is the supply voltage. These sources of power consumption are explained in the next section.

Switching Power

The dominant source of power consumption in a CMOS gate is the current due to the charging and
discharging of the capacitance at the gate output. This capacitance, Cout, is the parasitic capacitance that
can be lumped at the output of the gate. To understand this source of power consumption, consider the
operation of a basic CMOS gate (an inverter), as its input goes through a high(1) to low(0) and a low
to high transition (see Fig. 14.4). (In general, the bottom transistor (nMOS) can be replaced by a network
of nMOS transistors, and the top transistor (pMOS) by a complementary network of pMOS transistors.)
When the input goes low, the nMOS transistor is cut-off and the pMOS transistor conducts. This creates
a direct path between the voltage supply and Cout. Current flows from the supply to charge up to the
voltage level . The amount of charge drawn from the supply is Cout × Vdd and the energy drawn from
the supply equals Cout × . The energy actually stored in the capacitor Ec is only half of this Ec =  ×
Cout × . The other half is dissipated in the resistance represented by the pMOS transistor. During the
subsequent low to high input transition, the pMOS transistor is cut-off and the nMOS transistor conducts.
This connects Cout to the ground, leading to the flow of current In. Cout discharges and its stored energy
Ec is dissipated in the resistance represented by the nMOS transistor. Therefore an amount of energy
equal to Ec is dissipated (consumed) every time the output transitions.

If N is the average number of transitions per clock cycle, the average energy consumed per clock cycle
is Ec × N. Power is the rate at which energy is consumed. Therefore, if f is the clock frequency, the average

FIGURE 14.4 Dynamic power dissipation in a CMOS gate.
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power consumption Pswitching is given by

Pswitching =  × Cout ×  × N × f (14.2)

Cout is the sum of three components [3] Cint, Cwire, Cload. Of these, Cint represents the internal capacitance
of the gate. This basically consists of the diffusion capacitance of the drain regions connected to the output.
Cload represents the sum of gate capacitances of the transistors fed by the output. Cwire is the parasitic
capacitance of the wiring used to interconnect the gates. It is a function of the placement of gates and the
routing between them. N is a measure of the switching activity of the circuit. It is a function of the logical
behavior of the circuit and of the sequence of inputs applied to it. The three components of this
interconnect capacitance are: The parallel plate capacitance between the wire and the substrate, the
capacitance due to the (fringe effect) of electric fields, and the capacitance between neighboring wires.

Short-Circuit Current

The capacitive switching power is independent of the rise and fall times (ramp times) of the input and output
waveforms. There is, however, a transient source of power consumption that is dependent on these ramp
times. As shown by the broken lines in Fig. 14.4, during the time that the input waveform is transitioning
between its extreme values, a current flows from Vdd to ground through both the nMOS and the pMOS
transistors. This current, known as the short-circuit current, only occurs during the period of time when
both the pMOS and the nMOS transistors conduct, i.e., when the input voltage Vin is such that Vtn < Vin <
Vdd − Vtn, where Vtn and Vtp are the threshold voltages of the nMOS and the pMOS transistors, respectively.
The nMOS transistor conducts when Vin exceeds Vtn, and the pMOS transistor conducts when Vin is below
Vdd − Vtp.

It has been shown that the impact of short-circuit current is reduced if the input ramp times are faster,
relative to the output ramp times. This minimizes the time when significant short-circuit current can
flow, but it also increases the gate delay. A good trade-off is to keep the input and output ramp times
about equal. Careful design, including appropriate sizing of the transistors can keep the power contri-
bution of short circuit current Ishort-circuit × Vdd below 10% of the total power. So, while short-circuit
current should not be completely ignored, it is reasonable to consider it as only a second order effect. It
is even possible to eliminate short-circuit current altogether [5]. This happens if the chosen supply voltage
Vdd is such that Vdd < Vtn + Vtp . Under this condition, the nMOS and the pMOS transistors can never
conduct simultaneously.

Leakage Current

The previous two sources are dynamic sources of power consumption, i.e., they contribute to power only
during transitions. It would seem that CMOS circuits should not consume any power at other times,
since there are no available current paths when inputs are at stable logic levels.

There are, however, two types of leakage currents that also contribute to power consumption. These are:

• Diode leakage current: The source and drain regions of a metal oxide semiconductor field effect
transistor (MOSFET) can form reverse biased parasitic diodes with the substrate. There is leakage
current associated with these diodes. This current is very small and is usually negligible compared
to dynamic power consumption.

• Subthreshold leakage current: This current occurs due to the diffusion of carriers between the source
and drain even when the MOSFET is in the cut-off region, i.e., when the magnitude of the gate-
source voltage Vgs is below the threshold voltage Vt. In this region the MOSFET behaves like a
bipolar transistor and the subthreshold current is exponentially dependent on Vgs − Vt. The
significance of this current increases with technology scaling, as shown in Figure 14.9.

Static Current

In certain designs, the pMOS network of a CMOS gate may be replaced by a single pMOS transistor that
always conducts. This logic style, known as pseudo-nMOS, will lead to a constant current flow static at all
times so that the output is at logic 0, i.e., when there is a direct path to ground through the nMOS network.
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This static current is obviously undesirable, but it does not exist for true CMOS logic. This is one of the
main reasons for the popularity of CMOS in low power applications.

Another situation that can lead to static power dissipation in CMOS is when a degraded voltage level
(e.g., the “high” output level of a nMOS pass transistor) is applied to the inputs of a CMOS gate. A
degraded voltage level may leave both the nMOS and pMOS transistors in a conducting state, leading to
continuous flow of short-circuit current. This again is undesirable and care should be taken to avoid it
in practice.

Reducing Power Consumption

The capacitive switching power (Pswitching), as given by the formula in Eq. (14.1), is the dominant source
of power consumption in CMOS circuits today. Research and design efforts aimed at low power are
therefore largely focussed on reducing Pswitching. The parameters in its formula Vdd, f, C, N provide avenues
for power reduction. The idea is to either reduce each of the parameters individually without adversely
impacting the others, or to trade them off against each other.

It should be noted that f is also a measure of the performance (speed) of a system. Therefore, reduction
in power through simply a reduction in f is an option only if it is acceptable to trade off speed for power.
Power is proportional to the square of Vdd. This makes reduction in Vdd as the most effective way for
power reduction. This has motivated the acceptance of 3.3 V as the standard supply voltage, down from
5 V. The downward trend in Vdd continues, with processors with 1.5 V internal supply voltage and lower,
already being shipped.

The problem with reducing Vdd is that it leads to an increase in circuit delay. Circuit delay is inversely
proportional to Vdd as a first order of approximation. The increased delay can be overcome if device
dimensions are also scaled down along with Vdd. In particular, in constant-field scaling, Vdd and the
horizontal and vertical dimensions of devices are scaled down by the same factor k. This is done in order
to maintain constant electric fields in the devices. To the first order of approximation, the power consump-
tion scales down by k2, and the delays go up by k. Reducing device dimensions (or feature size reduction)
is a very costly proposition, requiring changes in fabrication technology and semiconductor processes.

The other problem is that circuit delay actually rises rapidly as Vdd approaches the threshold voltage
Vt. As a general rule, Vdd should be larger than 4Vt, if speed is not to suffer excessively Vt does not scale
easily and, therefore, reducing Vdd below Vt will be difficult.

The speed degradation (increase in delay) may be reduced by circuit technologies that allow lower Vt;
however, decrease in Vt leads to a significant increase in subthreshold leakage current—every 0.1 V
reduction in Vt raises subthreshold leakage current by a factor of 10.

A tradeoff is involved in choosing a very low Vdd. Some design options in this regard are to either
dynamically vary Vt (lower Vt when the circuit is active, higher when it is not) or using different Vt for
sub-circuits with different speed requirements. The speed degradation may also be compensated for by
increasing the amount of parallelism in the system. This works well for applications such as digital signal
processing, where throughput is used as the performance metric.

It is also worth noting that Vdd reduction only provides temporary relief in the course of technological
change. Please refer back to Fig. 14.1 and Table 14.1. These processors shown represent recent data points
for a trend that has persisted for over 25 years—increased performance through higher clock frequencies
or increased number of transistors, or both. This, however, directly increases the power consumption.
Reductions in supply voltage and feature size do help to offset the effect of increased clock frequency
and to reduce power.

For example, the original Intel Pentium processor had 0.8 µm feature size, 5 V supply voltage, 66 MHz
clock frequency, and 16 W power consumption. Reduction in the feature size to 0.5 µm and voltage to
3.3 V, led to 10 W power consumption, even at 100 MHz. But such reductions are only temporary, since
the march toward increased clock frequencies shows no signs of slowing. Thus, the power consumption
of the 200 MHz Pentium climbed back to 17 W.
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Also, the area made available from feature size reductions is immediately filled up with more transistors—
for larger caches and increased instruction-level parallelism, in case of processors. For example, the
Pentium Pro, the successor of the Pentium, has 70% more transistors and about 50% more power
consumption at 200 MHz.

The trend in special purpose ICs is also to push the limits of integration by integrating as much
functionality on a chip as possible. The goal of a host of multimedia capabilities on a single chip was
being sought in earnest. These capabilities are now real but power consumption has gone up. Integration
helps to reduce the overall power for the system. A rule of thumb stated is that four devices incorporated
into an IC consume only half as much power as would be the case if they were configured as discrete
components; however, it also implies that the power dissipation burden on the resulting single IC will
increase. Thus, the current trends indicate that the voltage and feature size reduction notwithstanding,
the power consumption problem in ICs will only get worse in the future. Therefore, it is important to
explore other avenues of power reduction as described below.

Reduction of Switched Capacitance

The parameters N and Cout in Eq. (14.2) provide the other set of avenues for power reduction. Their
product N × C can be called the average switched capacitance per cycle (referred to as switched capaci-
tance) of the circuit. Reduction in switched capacitance is in general orthogonal to the power reduction
techniques described previously. It can therefore lead to power reductions beyond what is possible by
voltage scaling alone. It may also be the only option if the large investments in time and money associated
with the migration to newer processes and lower voltages are not feasible. Reduction in switched capac-
itance has thus been the subject of intense study in recent years since the last 10 years or so. Ideas and
techniques at all levels of the design process are being developed. Figure 14.5 presents an overview of the
salient directions that are being pursued in today’s designs. Some of these are aimed specifically at
reducing N or N × Cout. Others represent well-established design/synthesis problem domains, in which
N × Cout can be considered as an additional target metric. The aim of all of these is to reduce N × Cout.
It should be kept in mind that these efforts are not isolated from one another. Thus, the impact of design
decisions at any level cuts across other levels of the hierarchy too. Overviews of the published work in
this area are available in several references [1,5,6].

FIGURE 14.5 Directions for reducing capacitance.

Levels of Abstraction

Architecture

System

Logic/RTL  Trans

Circuit

Technology

-Gate and wire sizing
-Floorplanning
-Placement
-Routing
-Improved cell libraries

-Instruction set design
-Data representation and coding
-Exploiting locality (cache hierarchy)
-Algorithmic transformations
-Sharing vs. partitioning
-Selective power down

-Low parasitic capacitance
  materials and processes. Silicon

-Low capacitance packaging

-Combinational Optimizations
  (Technology dependent/independent)
-Sequential optimizations
-Gate resizing
-Custom design for functional modules
-Wasteful activity elimination

 -Choice of Hardware vs. Software
 -System Partitioning for reduced
  communication
-Integrated vs discrete modules
-Software design
   (system software, algorithms,
    code generation)
-System power management
© 2002 by CRC Press LLC



14.2 Power Estimation

As we saw in the last section, power dissipation in VLSI circuits is a major concern in the electronics
industry. The rapid increase in the complexity and the decrease in design time have resulted in the need
for efficient power estimation tools that can help in making important design decisions early in the design
process. To accomplish this objective, the estimation tools must operate with a design description at the
higher levels of abstraction; however, trade-offs exists between accuracy and speed in power estimation
at various levels of a design hierarchy. In this section, an overview of the different power estimation tools
and techniques are covered.

Need for Power Estimation Tools

Low-power design requires good power analysis tools to evaluate the alternate choices in design. Consider
modern high-performance CPUs, large portions of which are typically custom designed. These designs
involve manual tweaking of transistors to upsize drivers in critical paths. If too many transistors are
upsized, certain designs can lie on the steep part of a circuit’s power-delay curve. The choice of logic
family used, e.g., static versus domino logic, can also greatly influence the circuit’s power consumption.
Figure 14.6 illustrates these scenarios for a 32-bit adder. Suppose a designer has the data shown in the
figure at his disposal. Knowledge of where on the power-delay curve the circuit operates can tell the
designer whether he/she can trade a little performance for larger power savings. In this example, a total
of 69% savings can be gained by transistor sizing and using domino instead of static logic. There is a
23% delay penalty. This extra delay penalty may be overcome by upsizing adjacent blocks at a much less
power penalty and ending up with an overall power benefit. Experiments with this methodology have
yielded 10% power savings with no delay increase in real designs. CAD tools that enable this kind of
logic and circuit design exploration for custom circuits can thus have a significant impact at the full-
chip level. Specifically, power analysis tools enable designers to:

1. Verify whether the power budgets are met by different parts of the design and identify the parts
that do not satisfy the power requirements

2. Evaluate the effect of various optimizations and design modifications on power

A typical design flow has four steps. It starts with very high-level description of a design, called HLM
(high-level modeling) or architectural description. Then the HLM is converted into RTL (register transfer
level), and then RTL is synthesized into a gate level design. Finally, gates are replaced by transistors/layout

FIGURE 14.6 Power-delay curves for two different 32-bit adders.
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and validated for design specs. As design flows into lower level of abstraction it becomes more complex
and design changes become more difficult. So, it is advisable to start design trade-offs at the early stage
of the design—HLM or RTL. Also, the higher level of abstraction allows greater impact on the design
with less effort. So, power estimation tools are needed at all design levels. At the early stage they are needed
to make smart decisions about power-performance trade-offs, and at lower levels to validate design changes
and to quantify impact of design changes.

Issues in Power Estimation

How do you know how much power your design will consume before plugging the chip into your board
and measuring it? To perform these calculations, knowing the circuit’s clock frequencies and the multi-
plicative constants (activity factors) provided by the vendor can help to some extent. But the more difficult
parameter to be determined is the average number of flip-flops and routing nodes that transition during
each clock edge. Determining this value is especially tough for hardware description language-based
designs, as one may have little or no insight into the logic implementation of the chosen device. Some
vendors suggest the use of a 12.5% usage estimate (refer to the section on “Switching Power,” where this
amounts to N = 0.125) corresponding to the average toggle percentage of a 16-bit counter. Others believe
that a 25% estimate for an 8-bit counter is more typical. Some circuits, such as arithmetic units, have
even higher toggle percentages. The choice can radically impact the accuracy of the estimate.

In general, the most effective design decisions can be derived from choosing and optimizing algorithms
at the highest level of the design hierarchy. This dictates the need for an effective high-level power
estimation tool. In the absence of a high-level power analysis tool, the designer has to first synthesize and
validate the functionality of a lower-level netlist, and then run a logic or transistor-level power analysis
tool to estimate power consumption. The large iteration times of lower-level power analysis tools, and
the long time required to obtain and validate a gate-level or transistor-level netlist, makes this method-
ology inefficient to estimate power. At the same time, there is a penalty associated with high-level power
estimation tools. The absolute accuracy of high-level power estimation tool tends to be lower than the
accuracy provided by using low-level estimation tools. These are some of the issues in power estimation
that need to be considered for a good design. In the following section, several power estimation tools
operating at different levels of design abstraction are discussed.

Power Estimation Techniques

Power estimation techniques can be broadly classified into statistical, probabilistic, and macromodeling
techniques. In statistical techniques, the circuit is simulated using a timing or logic simulator, while
monitoring the power being consumed. This procedure is repeated for various sets of input vectors until
a desired level of accuracy is achieved. Eventually power converges to the average value. One example of
accurate statistical analysis method is the activity-based control model. This model expresses the com-
plexity of control units and input activities making it easy to analyze the power consumption of regular
implementations, such as ROM and PLA-based structures.

In probabilistic techniques, the signals are represented with probabilities that substitute for the time
consuming simulations; however, there is a loss in accuracy. The signal probability is defined as the
probability of having a logic value of “1” on a signal and the transition probability represents the probability
of the proportion of transitions on the signal. These probabilities lead to a simple computation of
switching activity, the parameter that needs to be determined for power computation. The simplest way
to propagate probabilities is to work at the gate-level description of the circuit. When the circuit is built
from Boolean components that are not part of a predefined gate library, the signal probability can be
computed by using a binary decision diagram (BDD) to represent the Boolean functions.

Another popular approach, mostly used for high level power estimation is the macromodeling tech-
nique. In this method, a macromodel is constructed by obtaining and characterizing a lower-level
implementation. Based on the power consumption characteristics of the macroblock for various training
sequences, a macromodel or function is then constructed that describes the power consumption of the
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block as a function of various parameters like the signal statistics of the block inputs, outputs, and states.
A simplified example of macromodeling is the power factor approximation (PFA) technique. In this
technique, the power consumption of a given type of functional block, implemented using a given design
style that operates at frequency f is estimated using the following equation,

P = KGf

where K is the PFA constant and G is a measure of the hardware complexity of the functional block. The
PFA constant may be generated by characterizing one or a few implementations of the functional block.

Examples of Power Estimation Tools

This subsection discusses practical implementations of different power estimation techniques. 

RT-Level/Gate-Level Techniques 

At RT-level, power is estimated primarly in two ways: the top-down way and the bottom-up way. In the
top-down approach, at first, power density (power/unit area) is calculated from the full-chip power and
area estimates, where estimates are usually obtained from historical data. Then power values for the lower
level blocks are calculated by scaling the estimated block area with the power density. This approach is
good for a very quick power analysis. It suffers from very serious accuracy issues, it does not take into
account the block’s functionality, logic and circuit topologies, performance requirements or switching
activities.

For better accuracy the bottom-up approach is used. It uses macromodeling technique, where analytical
or table lookup models are built, using historical data or real simulation data, for each bottom level
blocks. These models are usually parameterized for output load capacitances and input/output (I/O)
switching activities for better accuracy. For power estimation, lower level blocks are first mapped to these
precharacterized models. Then, a power value for each block is calculated by evaluating corresponding
power models. The bottom-up roll-up is now done to generate power estimates for higher level blocks.
Here, power estimate accuracy depends on the accuracy of models, which is typically good if simulation
data is used for model building. This approach is advisable where design exploration is needed at the
early stage. 

Transistor Level Power Estimation Techniques

At the transistor level, power per net is first estimated and then it is rolled up to generate block or system
power. Two approaches to estimate power per net are used primerily: static and dynamic (simulation-
based). In the static approach, capacitance (C) per net is first estimated (extracted if layout is available)
then a blanket switching activity (AF) is used to calculate the switching component of power. The constant
power component is then added to take leakage and short-circuit power into account. This approach is
very quick and can be quickly automated and applied to very large designs. But its absolute accuracy is
not high. Sometimes switching activity is varied based on net types—clock, CMOS, domino, gated clock,
etc., to improve accuracy. This method is advisable for a large design and also where daily/weekly tracking
of power is required.

For more accurate power estimate the dynamic approach is used. In this approach switching activity
for each net is generated by simulating real test vectors on switch level or circuit simulation engines.
Then the capacitive power component for each net is calculated using extracted/estimated capacitance
data along with real switching activity data. For the short circuit and leakage power estimation, analytical
models are used. These models are typically parameterized for transistor widths, rise/fall times, switching
activity, etc., for better accuracy. This approach generates very accurate, test vector dependent, power
estimates, but it takes very long run-time. Usage of this approach is limited by design size, length of
test vectors, computing resources, and project timelines. This approach is typically used for transient
power analysis and where absolute power estimates are a must, such as power-specing or power savings
validation. 
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Examples of Commercial Power Estimation Tools
A few examples of power estimation tools are provided here for reference. This is not a complete list,
but only provides an example of what is available commercially. Power CAD is an active area of research.

WattWatcher is an RTL/gate-level, power-estimation tool from Sequence Design, Inc. It adopts a
sophisticated bottom-up approach that focuses on the specific analysis methodology applicable to the
major consumers of power such as memories on large ASIC, I/O pads, clock circuits, data path circuits,
control logic, etc.

PowerMill is a circuit level power estimation tool from Synopsys, Inc. Its algorithm is based on fast
circuit simulation employing table lookup of currents for a given transistor sizes (see Fig. 14.7).

14.3 Power Reduction Methodologies

The following subsections provide a brief overview of the concepts behind power reduction through
various aspects of the design (process technology, circuit, tools, and system/software).

Power Reduction through Process Technology

Power dissipation consists of a static component and a dynamic component. As described in section 14.1,
dynamic power is due to charging and discharging of the load capacitance and is, by far, the dominant
component in CMOS circuits. Static power is controlled by leakage currents of transistors and pn-
junctions. Static power also arises from circuits that have a steady DC current source between the power
supply rails (such as bias circuitry, analog circuits, pseudo-NMOS logic families).

Since dynamic power is proportional to the square of the supply voltage (Vdd), reduction of Vdd is the
most effective way for reducing power. The industry has thus steadily moved to lower Vdd. Indeed,
reducing the supply voltage is the key to low-power operation, even after taking into account the
modifications to the system architecture, which is required to maintain the computational throughput;
however, the drive toward higher performance can sometimes outstrip the benefits of voltage scaling, as
described in the section on “Reducing Power Consumption.”

Another issue with voltage scaling is that to maintain performance, threshold voltage (Vt) also needs
to be scaled down since circuit speed is roughly inversely proportional to (Vdd − Vt). Typically, Vdd should
be larger than 4Vt if speed is not to suffer excessively. As threshold voltage decreases, subthreshold leakage
current increases exponentially. At present, Vt is high enough such that subthreshold current is only a
small portion of the total active current although it dominates the total standby current. However, with
every 0.1 V reduction in Vt, subthreshold current increases by 10 times. In the future, with further Vt

reduction, subthreshold current will become a significant portion or even a dominant portion of the
overall chip current. A first order analysis, using constant electric field scaling of the process parameters,
illustrates this as shown in Fig. 14.9 [8]. At sub-0.1 µm feature sizes, the leakage power starts eating into
the benefits for lower Vdd. In addition, design of dynamic circuits, caches, sense-amps, PLAs, etc., becomes
difficult at higher subthreshold leakage currents. Lower Vdd also exacerbates noise and reliability concerns.
To combat subthreshold current increase, various techniques have been developed. Most techniques focus

FIGURE 14.7 PowerMill tool flow.
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on replacing low Vt devices with high Vt devices whenever and wherever it is possible in the design. High
Vt devices can be obtained either by an additional ion-implant with additional masks to the low Vt devices
or by back biasing the substrate of low Vt devices. In addition, subthreshold leakage current can also be
reduced by introducing special transistors called sleep control transistors. These are a pair of pass transistors,
which act like circuit breakers through which current passes from Vdd to ground. The gates of these transistors
are controlled by signals, which can turn both devices of this p and n pair off (for inactive mode) or on for
active mode. The concerned circuit operates between a virtual Vdd rail and virtual ground rail between the
pair of transistors (see Fig. 14.8).

As technology continues to scale down, oxide is becoming so thin that oxide tunneling current can
also become a significant portion of the total chip power for feature size of 0.1 µm or below. Oxide
tunneling current consists of gate leakage and decoupling capacitance leakage. Large gate leakage current
not only increases the total chip power, it also imposes additional challenges for circuit design. Without
effective solutions for subthreshold and gate leakage, CMOS LSI technology would eventually lose its
low power advantage and face the same fate as bipolar LSI circuits.

In addition to the low power techniques that are discussed in this subsection and in the next few
subsections many other novel high-speed and low-power techniques have been proposed [1]. Silicon-
on-insulator (SOI) technology has been shown to improve delay and power through a ~25% reduction
in total capacitance. SOI substrates are produced by either wafer bonding or separation by implantation
of oxygen (SIMOX). Optimized SOI MOSFETs can have lower capacitance and slightly higher drive
current because of the reduced body charge and slightly lower minimum acceptable Vt. Together with
some improvement in layout density, this potentially can result in up to 40% improvement in speed [1].
This may be traded for lower Vdd and hence a significant reduction in power.

FIGURE 14.8 Sleep transistors to control circuit activity.

FIGURE 14.9 First-order analysis for leakage power trends.
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Another way to reduce capacitance is to use the minimum possible width for metal interconnects that
carry AC signals such as clock and data buses. A study in electromigration research indicates that AC
interconnects can operate at much higher current density than design rules based on DC tests would
allow. It has been shown that electromigration lifetime is orders-of-magnitude longer under AC stress
than under DC stress. Similar behavior has also been reported for vias and other metal systems.

Yet another possible way to reduce metal capacitance would be to use insulators with lower permittivity
for inter-metal dieletrics. Relative to SiO2 which has ε of ~4.2, SiOF has an ε of ~3.3 and organic polymers
may achieve an ε of ~2.5.

There appears to be no revolutionary low power device/technology, such as quantum devices, that is
manufacturable or compatible with mainstream circuit architectures today. The intrinsic speed-power
benefit of galium arsenide technology (GaAs) is probably not sufficient to overcome the difference in
cost and technology momentum with respect to silicon except for very high-speed circuits. Devices based
on quantum tunneling or single electron effect have excellent intrinsic switching speed and energy, but
they are not capable of driving the capacitance of long interconnects. In additon to the difficulty in
manufacturing, there are no suitable circuit architectures that are compatible with the characteristic of
these devices today. Fortunately, evolutionary innovations and optimization for low power plus continued
device scaling in silicon CMOS technology have been sufficient to support the need for low power ULSI
up to today, and hopefully for a long time into the future.

Power Reduction through Circuit Design

In general, power spent in the clock network is the largest contributor to the total power on high-
performance ICs such as a modern CPU, as indicated by the Fig. 14.2. The most effective impact for
reducing the total power is accomplished by reduction of switching capacitance on the clock network.
This is achieved through clock and data enabling (or gating). Clock gating is achieved by qualifying
different clock partitions by enable signals. Figure 14.10 illustrates the mechanics of clock gating and clock
networks. This in effect allows only the partitions that are active to toggle in each given cycle (Fig. 14.11).

FIGURE 14.10 Clock gating and clock networks.

FIGURE 14.11 Clock enabling.
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In addition, this also helps the di/dt issues on the chip as sub-regions/blocks will be turned off selectively.
Although this technique offers great power saving advantages, it also carries a few design challenges.
Some of the concerns in clock gating are that the disabled block may not power up in time and also that
modified clocks may generate glitches. As a result the enable signals will have a very strict timing requirement.
In addition, at high frequencies, clock skew becomes a significant portion of cycle time and the gated
clocks will add to the clock network skews, thus becoming undesirable. Therefore, the granularity at
which clock gating can be applied becomes a tradeoff against overall clock network design time and
complexity. Some other side effects of clock gating that a designer needs to consider are the area penalty
due to generation of the enable signal, clock gating elements, and also the routing overhead to distribute
enable signals.

An alternate method for power saving is through data enabling. Data enabling implementation is
shown in Fig. 14.12. The enable signal generates a data enable signal that indicates whether the current
data is valid or not. This prevents input data updates for invalid data or an idle condition. Thus it avoids
unnecessary transitions within the design. One disadvantage of this implementation is that clock nodes
are toggling during idle conditions. Due to low level of activity in static blocks, data enabling does not
offer a large power saving advantage since clock nodes consume majority of the power. In high-frequency
design, where aggressive circuit techniques such as domino logic are employed, this technique offers a
great deal of power saving. In domino logic, data/non-clocked node activity factors are relatively high.
In these cases, the “data enable” signal can be used to avoid evaluation of the first stage of a domino
block or to set data inputs to a default state such that the domino gate does not discharge. It is also
important to note that clock enabling (gating) for a block will save both clock and data power since the
block will be turned off and there is no activity within the block unlike the data enabling.

Datapath circuits are the second highest power consuming category of circuits, after clock in modern
high-performance designs. In such designs, datapath including register files fall in critical paths and hence
they are custom designed (that is, carefully designed manually by expert designers). These designs involve
manual tweaking of transistors and can lead to over-sizing of the devices, which become excessive power
wasters. In addition, the choice of circuit family used, e.g., static versus domino can also influence the
circuit’s power consumption. To design a power-efficient circuit, the power-delay curve approach can be
of great help, as described in the “Need for Power Estimation Tools” section (Fig. 14.6). CAD tools that
enable a circuit family of this kind and design exploration for custom circuits can thus have a significant
impact at full-chip level.

In the CPU arena, a lot of circuits, which are performance critical, get implemented as domino circuits.
Wide datapaths such as adders, incrementors, and shifters are implemented in domino. In that case, specific
optimizations on individual circuits can be done to reduce power. Consider an example of a domino
mulitplexer, which usually appear in shifters, as shown in Fig. 14.13.

In this circuit, at least one of SelA, SelB, and SelC is high every cycle. The data inputs A#, B#, C# are
mostly high (A, B, C have very low signal probability). In this situation, all the capacitances associated
with the data nodes toggle almost every cycle. This total capacitance is almost three times that associated
with the clocked nodes. Consequently, when the polarity of the data inputs is changed, as shown on the
right, large power savings are seen.

FIGURE 14.12 Data enabling.
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Another example of power/performance trade-off is in the case of control logic, which can either be
implemented in PLAs or synthesized gates. Figure 14.14 shows the results for a logic block whose seven
sub-blocks can be implemented in PLAs or as synthesized random logic. Increasing the number of
synthesized blocks leads to some increase in delay but with much larger power savings.

In library-based design, power savings from the design of the cell libraries can come from device sizing
and from restructuring of the logical and physical schematics of the cell. Again, device sizing for opti-
mizing switching energy versus delay ensures better power efficiency; however, resizing of the sequential
cells requires extensive recharacterization for setup and hold times in addition to delays of clock to data
output.

The second way to optimize a cell library is to change the schematics of the most commonly used and
most power hungry cells in the design. These typically consist of latches and master slave flip-flops since
these have clock nodes which switch on at every clock edge. Figure 14.15 shows an example of latch
redesign that gets rid of clock nodes while still maintaining functionality and performance. Thus, it is
advisable to replace more dissipative sequential cells by more efficient types. A small amount of redesign
effort on some selected cells often can have a significant power impact for the full chip.

FIGURE 14.13 Domino AF reduction in a Mux.

FIGURE 14.14 Power/area/delay trade-offs for PLA vs. synthesized logic.

FIGURE 14.15 Latch redesign example.
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Power Reduction through CAD Tools

Power estimation tools allow quantification of the power consumption of a whole system and the power
contribution of its sub blocks. These help in identifying high power consuming blocks and power wasting
blocks. The next step, after identifying the troubled areas is, to reduce power consumption of those
blocks. Many techniques are discussed in this chapter, including clock gating, data gating, transistor
sizing, and many other design techniques. To reduce time-to-market, designers want to make all the
necessary modifications quickly without compromising the quality of the designs. This can be achieved
by CAD tools. These tools can identify automatically those design areas where low power techniques can
be applied and also perform feasibility of making design changes. CAD tools have limitations, especially
dealing with complex clocked designs. So, not all techniques can be automated as quite a few need to go
through very complex validation processes, which typically can only be done manually. These techniques
were discussed in the circuits section. The following subsection discusses design techniques and CAD
tools that help implement and validate many RTL, gate level, and transistor level techniques.

Low-Power Design Rule Checker

Design rule checkers are usually implemented to look for violations of electrical design rules and layout
guidelines. The design rule checking concept can also be applied to identify high impact areas for power
savings as well as power wasting components. At different design levels, design rules are different. For
example, at RTL, design rules can help us identify block level power optimization opportunities—such
as clock gating, data gating, etc.—while at gate and transistor level they can identify over-sized drivers,
wasted activity as that of glitches etc.

Two main design rules are: static and dynamic. Static design rules work on the raw design description
and collect information about high power consuming design structures. A few examples of static design
rules are:  identify wide state buses controlled by a free running clock; identify wide buses driven by
unmutexed multiple drivers, etc. Dynamic design rules need design simulation data, like toggle counts
per cycle. Dynamic rules identify wasted activity. A few example of dynamic rules are: identify multiplexor
blocks whose inputs are toggling even though they are not selected; identify nets toggling multiple times
in a single clock cycle, etc. Design rule checking can also help by generating statistical data of the design—such
as a list of clock controlled blocks, a list of gated clocks, a list of nets toggling above a specified range,
etc. The idea here is that the tool identifies problem areas that the designer can fix to reduce power.

Low-Power Synthesis

A lot of the CAD research in low power has been in the area of low power logic synthesis. Technology
dependent phases of synthesis are particularly suited for practical applications, since they have access to
low-level circuit information. It is possible to save power with these methods, even when they are
constrained not to increase the delay of the circuit. Table 14.2 shows the results of applying these
techniques on a couple of sample circuits from a high-performance CPU. Column 2 shows the power
savings when only the combinational part of the circuit is allowed to be changed. Column 3 shows the
results when the sequential elements are also allowed to be changed. The area impact is low (Column 5)
and there is no increase in delay. The results show ~10% power savings for synthesized blocks, but this

TABLE 14.2 Low-Power Logic Synthesis Results (in percent)

Circuit 
After LP Synth. 

(%)
After Seq. 

dnsizing (%) Total (%) Area (%)

1 1.4 7.39 8.52 −1.85
2 0.76 4.89 5.65 −0.69
3 8.40 1.53 9.92 1.99
4 6.13 3.31 9.44 7.12
5 11.03 1.07 12.09 1.09
Total 5.16 3.81 8.97 0.53
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translates into only 1% full-chip power savings. This is because only 10% of total power is from synthe-
sized logic for CPUs such as the one whose power breakdown was shown in Fig. 14.13.

It is pertinent to note that the system power consumption problem also encompasses chipsets, i.e.,
devices such as the memory, I/O, and graphics controllers. These operate at a fraction of the CPU clock
frequency, and large portions of these are well-suited to be implemented as ASICs. Low power synthesis
thus has a much larger impact in this domain.

Transistor Sizing

A large part of high-performance CPUs is typically custom designed. These designs typically involve
manual tweaking of transistors to upsize drivers in critical paths. If too many transistors are upsized
unnecessarily, certain designs can operate on the steep part of a circuit’s power-delay curve. In addition,
the choice of logic family used, e.g., static vs. dynamic logic, can also greatly influence the circuit’s power
consumption. Please see the “Need for Power Estimation Tools” subsection and Fig. 14.6.

Figure 14.14 shows an example of another kind of intelligent tradeoff for power/performance. It shows
the results for a logic block whose seven sub-blocks can either be implemented as PLAs or as synthesized
random logic. Increasing the number of synthesized blocks leads to some increase in delay but for much
larger power savings.

The traditional emphasis on performance often leads to over-design, that is, wasteful for power. An
emphasis on lower power, however, motivates identification of such sources of power wastage. An example
of this is the case where paths that are designed faster than they ultimately need to be. For synthesized
blocks, the synthesis tool can automatically reduce power by downsizing devices in such paths. For
manually designed blocks, on the other hand, downsizing may not always get done. Automated down-
sizing tools can thus have a big impact. Transistor width savings (with no delay increase) from the use
of one such tool are shown in Table 14.3. The benefit of such tools is power savings, as well as productivity
enhancement over manual designs.

Many custom designers are now exploring dual-Vt technique to take greater advantage of the transistor
sizing. The main idea here is to use low-Vt transistors in critical paths rather than upsizing high-Vt tran-
sistors. The main issue with this technique is the increase in subthreshold leakage due to low-Vt. So it is
very important to use low-Vt transistor selectively and to optimize their usage to achieve a good balance
between capacitive current and leakage current in order to minimize total current.

Examples of Power Reduction Tools

A few examples of power reduction tools and their features are provided here for reference. This is not
a complete list, but only provides an example of what is available commercially. Low-power CAD is thus
an active area of research.

PowerCompiler
It is a gate-level power optimization tool offered by Synopsys, Inc. It helps in achieving low power by
identifying low power opportunites for clock gating, data-gating, logic restructuring, and downsizing. It
also automatically checks feasibility of many low-power design techniques, such as low-power synthesis,
clock gating, etc. and implements it. It also quantifies power savings.

WattSmith
Wattsmith is an RTL power optimization tool offered by Sequence Design, Inc. It helps in identifying
block level power reduction opportunities. It also does automatic implementation of many design
techniques for low power, to name a few: memory banking, clock gating, etc.

TABLE 14.3 Transistor-Width Savings with a Sizing Tool

Ckt1 Ckt2 Ckt3 Ckt4

No. of elements 4853 1953 18300 19756
Width savings (%) 40.00 42.00 17.00 3.00
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AMPS
AMPS is a circuit power optimization tool from Synopsys, Inc. It optimizes existing transistor level netlist
by downsizing individual transistors in noncritical parts of a given design. It has the capability to optimize
designs for delay and area as well. It has configuration file commands to allow users more control on
the optimization. AMPS has two major features: Downsize oversized transistor devices for area and power
and upsize transistors selectively to fix critical paths. AMPs also performs power analysis, if toggle-count
information is provided.

Power Reduction Methodologies: System/Software

System Level Power Reduction

The general design principles described in the previous subsections can also be extended at the higher-
levels of design to obtain power reductions at the system level. Power should be used as a design constraint
in the overall system interaction. System Power Management is a specific class of techniques that has
been used effectively for power reduction. This is easiest to explain in the case of processor-based systems,
but the ideas are applicable in other types of designs too.

The interaction of the processor (CPU) with the rest of the system provides avenues for reducing
average power. Often the CPU is waiting for inputs from peripherals and its power is being wasted. To
reduce this waste, CPUs are now provided with a hierarchy of power states. Each state defines a certain
level of activity on the CPUs and a certain time penalty for it to get back into a fully active state. Memory
and I/O devices often also have similar power states. It is the system power management mechanism that
monitors the system activity and enforces the movement of the system components between different
power states. System power management has its roots in mobile systems; however, EPA requirements
under the Energy Star program motivated the migration of these techniques to desktop systems. A recent
development in this area is a cross-company initiative called ACPI (advanced configuration and power
interface) [1]. The recognition of the need to eliminate wasted power ensures that system power man-
agement will continue to be an area of high interest and active development.

Software-Based Power Reduction

Traditionally, the focus on low-power design has been purely hardware based. This tends to ignore the
fact that it is the software that executes on a CPU that determines its power consumption. The software
perspective on power consumption has been the subject of recent work [9]. Here a detailed instruction-
level power model of the Intel486DX2 was built. The impact of software on the CPU’s power and energy
consumption, and software optimizations to reduce these were studied. An important conclusion from
this work was that in complex CPUs such as the 486DX2, software energy and performance track each
other, i.e., for a given task, a faster program implementation will also have lower energy. This is because
the CPU power consumption is dominated by a large cost factor (clocks, caches, etc.) that for the most
part, does not vary much from one cycle to the other.

Some issues arise when this work is extended to recent CPUs. First, multiple-issue and out-of-order
execution mechanisms make it hard to model power on a “per instruction” basis, and more complex
power models are required. Also, increased use of clock gating implies that there is greater variation in
power consumption from cycle to cycle; however, it is expected that the relationship between software
energy and power that was observed before will continue to hold. In any case, it is important to realize
that software directly impacts energy/power consumption, and thus, it should be designed to be efficient
with respect to these metrics.

A classic example of inefficient software is “busy wait loops.” Consider an application such as a spread-
sheet that requires frequent user input. During the times when the spreadsheet is recalculating values,
high CPU activity is desired in order to complete the recalculation in a short time. In contrast, when
the application is waiting for the user to type in values, the CPU should be inactive and in a low-power
state. However, a busy wait loop will prevent this from happening, and will keep the CPU in a high-
power state. The power wastage is significant since the CPU is essentially fully active, even though it
really is not doing anything. The Intel Power Monitor (IPM) is a publicly available [3] software analysis
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tool that monitors system activity to provide information about software that may be wasting power in
this and other cases.

14.4 Conclusion

Power consumption has emerged as a key constraint in computing applications of almost all kinds.
Today’s design trends point to the fact that the importance of power consumption will grow in the future.
The intent of this chapter was to explain the reasons why this is so and to introduce the reader to the
basic concepts and ideas behind power reduction techniques. The interested reader can refer to the listed
references for more in-depth information. 
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15.1 Introduction

Low-power complementary metal oxide semiconductor (CMOS) circuit design is required to extend the
battery lifetime of portable electronics such as cellular phones or personal digital assistants. Table 15.1
shows a classification of various low-voltage and low-power approaches previously proposed. A system
can be in one of two states. It can be active (or dynamic) performing useful computation, or idle (or
standby) waiting for an external trigger. A processor, for instance, can transit to the idle state once a
required computation is complete. The supply voltage (Vdd), the threshold voltage (Vth) and the clock
frequency (fclk) are parameters that can be dynamically controlled to reduce power dissipation.

In low-voltage systems, the use of reduced threshold devices has caused leakage to become an important
idle state problem. There are several ways to control leakage. One approach is to use a transistor as a supply
switch to cut off leakage during the idle state. Another approach to control leakage involves threshold
voltage adaptation using substrate bias (Vbb) control. The use of multiple thresholds can be easily incor-
porated during the synthesis phase. The use of conditional (or gated) clocks is the most common approach
to reduce energy. Unused modules are turned off by suppressing the clock to the module.

Low Vdd operation is very effective for active-power reduction because the power is proportional to
. Adapting the power supply dynamically is widely employed. A less aggressive approach is the use of

multiple static supplies where noncritical path circuits are powered by lower voltages. Dynamic Vth scaling
by Vbb control compensates for transistors’ Vth fluctuations caused by fabrication process variations. As
a result, the technique suppresses the excess leakage power. When the Vth of transistors is very low, the
suppression of leakage current is useful in the total operating power savings. Conditional clocking also
reduces the dynamic-power consumption since the clock signals are only distributed to operating mod-
ules. The multiple frequency method delivers several frequencies of clock signals in accordance with
required performance in each module. The clock frequency is scheduled depending on data load, and

Vdd
2
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dynamic Vdd scaling is usually applied with the frequency scheduling. These active-power controls can
also be used as leakage reduction techniques during the idle state.

This chapter explores various circuit technologies for low-power systems grouped by the controllable
parameters mentioned above.

15.2 Basic Theories of CMOS Circuits

In this section, a general analysis of a CMOS circuit is presented. The propagation delay and the
power consumption are correlated in the circuit. The power dissipation of a CMOS circuit is described
[1] as

 (15.1)

where a is the switching probability (transition activity), CL is the load capacitance, Il0 is a constant, and
S is the subthreshold slope. Circuit operation causes dynamic charging and discharging power of load
capacitance, represented as Pcharge. Static leakage current resulting from subthreshold leakage of MOS
transistors is represented as Pleak. Until recently, power consumption in CMOS circuits was dominated
by Pcharge because of their high Vth devices. In the idle state, the switching probability equals 0, and power
is determined solely by Pleak.

The propagation delay of a CMOS circuit is approximately given in [2] by

(15.2)

where β is a constant. The mobility degradation factor α is typically 1.3. With regard to performance,
low Vdd increases the delay, whereas low Vth decreases it. Low Vdd operation reduces Pcharge, but increases
Tpd. To maintain a low Tpd, Vth must be reduced. As a result, Pleak increases because of the low Vth devices.
In recent circuits developed for low Vdd applications, Vth is reduced to improve performance. Pleak is
becoming larger than Pcharge in devices with low Vth. Vth is controllable by Vbb, and the relationship between
them is described as

 (15.3)

where Vth0 is a constant, γ is the substrate-bias coefficient and Φb is the Fermi potential. A substrate-bias
current (Ibb) must be added to Eq. (15.1) when Vbb is used to control Vth. This is necessary in the case
of forward Vbb, which causes large substrate leakage because of p/n junctions and parasitic-bipolar
transistors in the substrate.

TABLE 15.1 Classification of Low-Power Circuit Technologies

Parameter Idle State Active State

Vdd Supply switch Voltage scaling 
Multiple supply

Vth Substrate bias
Multiple threshold

Substrate bias

fclk Conditional clocking Conditional clocking 
Multiple frequency 
Frequency scheduling

Ptotal Pcharge Pleak+ afclkCLVdd
2 Il0 10

Vth/S( )–
Vdd××+= =

Tpd βCL

Vdd

Vdd Vth–( )α----------------------------=

Vth Vth0 γ 2Φb Vbb– 2Φb–( )+=
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15.3 Supply Voltage Management

Supply Switch

A supply switch is one of the most effective means to cut off power in the idle state. Actually, the subthreshold
leakage current caused by reduced Vth devices is a major problem in that state. The supply switch realizes
high-speed operation in the active state and low-leakage current in the standby state. The switch was
originally applied to a dynamic random access memory (DRAM) to reduce its data-retention current [3].
As shown in Fig. 15.1, a switching transistor Ws is inserted as the word drivers’ supply switch. The
transistor width of the switch Ws is equal to the width of the driver Wd because two or more word drivers
will not be on at the same time. Ws determines total leakage current in the data-retention mode. Without
the switch, the total driver width is n × Wd and consumes large leakage. The supply switch is adopted to
a microprocessor in [4].

A supply switch designed with high-Vth MOS devices reduces leakage current, as represented by the
multiple threshold-voltage CMOS (MT-CMOS) scheme [5]. The MT-CMOS circuit scheme is shown in
Fig. 15.2. This technique combines two types of transistors: low-Vth transistors for high-speed switching
and high-Vth transistors for low leakage. In the active state, SL is negated (low) and the high-Vth supply
switch transistors Q1 and Q2 supply Vdd and GND voltage to the virtual Vdd line (VddV) and to the virtual
GND line (GNDV) respectively. The operating circuit itself is made of low-Vth transistors to accelerate
the switching speed of the gate. In the idle state, SL is asserted (high) and Q1 and Q2 disconnect the
VddV and GNDV to reduce leakage current when the circuits are in the idle state, with the asserted (high)
SL signals. In a 0.5-µm gate-length technology, 0.6 V Vth devices are used for high-Vth switches and 0.3 V
Vth devices are used for low-Vth circuits. When the Vth difference between the two devices is 0.3 V, the
switches reduce the circuit’s idle current by three orders of magnitude.

FIGURE 15.1 Word driver with subthreshold-current reduction [3].
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The size of the power switch is an important factor in MT-CMOS design [6]. To supply enough driving
current to the circuit, the impedance of the switch must be low. To realize a reliable power supply, the
capacitance of VddV line must be large. Hence, the total gate width of the switch must be large. Here, it is
assumed that the total width of all transistors in the logic circuit is Wl , the width of the supply switch is
Wh. When Wh = Wl , the supply voltage drop across the switch becomes 15%, causing a 25% increase in
gate propagation delay. In the case of Wh = 10Wl , the drop is 2.5% and the delay increase is 3.6%. Therefore,
MT-CMOS with a large Wh switch enables, at the same time, the high-speed operation of low-Vth devices
and the low-power consumption of high-Vth devices.

When the MT-CMOS switches disconnect power, data stored in registers and memories disappears.
Therefore, additional circuits are required to hold data in the idle state. There are several approaches to
solve the problem: (a) the MT-CMOS latch [5], (b) the balloon circuit [7], (c) the intermittent power supply
(IPS) scheme [8], and (d) the virtual rail clamp (VRC) circuit [9]. The MT-CMOS latch is a simple
solution. As shown in Fig. 15.3, inverters G2 and G3 construct a latch circuit and are directly connected
to Vdd. The local power switches QL1 and QL2 are applied to G1. This latch maintains the data in the idle
state when G1 is powered down. To reduce the size of the local power switches and improve the latch
delay, the balloon circuit is proposed in Fig. 15.4. In the active state, only TG3 is on and the balloon
memory is disconnected from the logic circuit. Therefore, the balloon circuit does not degrade the low-
Vth circuit’s performance. When the system goes to sleep, TG2 and TG3 briefly turn on so that data is

FIGURE 15.2 MT-CMOS circuit scheme [5].

FIGURE 15.3 Latch circuit for the MT-CMOS flip-flop [5].
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written into the balloon latch. During the standby state, TG1 is on to keep the information. When the
system wakes up, TG1 and TG2 briefly turn on so that the held data can be written back into the low-Vth

circuit. The balloon can be made of minimum size transistors, so it can be designed to occupy a small
area. The third method is IPS. The IPS supplies power in about 20 ms intervals in the idle state to maintain
voltage on the VddV line. The IPS acts similarly to the refresh operation of DRAM. The VRC circuit, as
shown in Fig. 15.5, does not need extra circuits to maintain the data in the standby state. While the power
switches MPSW and MNSW are disconnected, VddV and GNDV voltage variations are clamped by the
built-in potential of diodes DP and DN. The voltage between VddV and GNDV keeps data in memories.

MT-CMOS has been applied to reduce the power consumed by a digital signal processor (DSP) [10].
The DSP includes a small processor named power management processor (PMP) that handles signal-
processing computations for small amounts of data. Idle power is reduced to 1/37 of its original value
by the MT-CMOS leakage reduction. Operating power is decreased by 1/2 because loads with small
amount of data are processed by the PMP instead of the DSP. Therefore, total power is reduced to 1/9
of its original value.

Dynamic Voltage Scaling

The active power is in proportion to , as shown in Eq. (15.1). The Vdd reduction substantially reduces
power. On the other hand, a low Vdd increases the CMOS circuit propagation delay, as shown in Eq. (15.2).
Fixed supply voltage reduction is applied to a DRAM [11]. The supply for the memory array is reduced

FIGURE 15.4 MT-CMOS balloon circuit [7].

FIGURE 15.5 The VRC scheme [9].
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to 3.7 V from a 5 V Vdd. It enables low-power operation and a high signal-to-noise ratio. Dynamic voltage
scaling (DVS) in accordance with demanded performance is applied to a digital circuit [12]. This scheme
can be realized with a phase-locked loop (PLL) system, as shown in Fig. 15.6. The voltage-controlled
oscillator (VCO) is made of the critical path in the controlled digital system. This scheme provides a
minimum Vdd so that the digital system operates at clock frequency fin.

fclk and Vdd are controlled depending on the workload in [13]. This system is a combination of frequency
scheduling and DVS. Depending on the workload, a frequency fclk is selected, and the DVS circuitry
selects the minimum Vdd in which a processor can operate at that frequency. The effect of DVS is shown
in Fig. 15.7. Compared with a constant Vdd case (i), DVS reduces power dissipation of a processor. The
DVS method has two variations: discrete Vdd scaling (ii) and arbitrary Vdd scaling (iii). The arbitrary Vdd

scaling technique saves the most power among the three systems. Figure 15.8 shows an example of a
complete DVS system [13]. The workload filter receives data and generates a signal to modulate the duty

FIGURE 15.6 Principle of a supply voltage reducer [12].

FIGURE 15.7 Power consumption with dynamic voltage scaling [13].

FIGURE 15.8 System diagram of variable supply-voltage processing [13].
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ratio of the reference clock. The actively damped switching supply provides the optimum Vdd according
to the duty ratio of input signal. The ring oscillator provides the clock, whose frequency depends on the
Vdd as given by a lookup table. DVS has been implemented on a DSP [14], an encryption processor [15],
microprocessors [16,17], and I/Os [18]. DVS reduces the operating power to 1/5 in the DSP, 1/2 to 1/5
in the microprocessors, and 2/3 in the I/Os.

Vdd control can also suppress process-induced performance fluctuations in CMOS circuits. The device
characteristics have a distribution because of fabrication-process variations. Vdd control reduces the range
of the fluctuations. Such a technique is described in elastic Vt CMOS (EVT-CMOS) [19], as shown in
Fig. 15.9. EVT-CMOS changes Vdd, Vth and the signal amplitude to reduce power and to raise operating
speed. In the deviation compensated loop (DCL), signals Vpin and Vnin are generated by the charge pump
(CP), so that the replica circuits operate at the given clock frequency. The voltage regulator (VR) is a Vdd

switch that cleans the power supplies for the inner circuits and ensures performance by source-biasing
the inner circuits according to Vpin and Vnin. The VR is a source-follower type to reduce the output
impedance of the switch.

Multiple Supply Voltage

If multiple supply voltages are used in a core of an LSI chip, this chip can realize both high performance
and low power. The multiple supply system provides a high-voltage supply for high-performance circuits
and a low-voltage supply for low-performance circuits. The clustered voltage scaling (CVS) [20] is another
low-power method in which several Vdds are distributed in the design phase. The CVS example shown
in Fig. 15.10 uses two Vdds. Between the data inputs and latches, there are circuits operated at high Vdd

and low Vdd. Compared to circuits that operate at only high Vdd, the power is reduced. The latch circuit
includes a level-transition (DC-DC converter) if there is a path where a signal propagates from low Vdd

logic to high Vdd logic.
For two supply voltages VddH and VddL, there is an optimum voltage difference between the two Vdds.

If the difference is small, the effect of power reduction is small. If the difference is large, there are few
logic circuits using the VddL. Two design approaches are used. One approach designs the entire device
using high-Vdd circuits at first. If the propagation delay of a circuit path is faster than the required clock
period, the circuit is given a low-Vdd. The other approach allows the circuits to be designed as low-Vdd

circuits at first. If a circuit path cannot operate at a required clock speed, the circuit is given a high-Vdd.
The dual Vdd system is applied for a media processor chip providing MPEG2 decoding and real-time
MPEG1 encoding. VddH is 3.3 V and VddL is 1.9 V. This system reduces power by 47% in the random
module and 69% in the clock distribution [21].

FIGURE 15.9 EVT-CMOS circuit design [19].
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15.4 Threshold Voltage Management

Substrate Bias Control for Leakage Reduction

When a CMOS circuit is running in low Vdd or is made of small technology devices, the Vth fluctuation
caused by the fabrication process deviations becomes large [22], and then, circuit performance is degraded.
A Vbb control scheme keeping the Vth constant is presented in [23]. As shown in Fig. 15.11, the substrate
bias is automatically produced and Vth fluctuation caused by the short-channel effect is suppressed. If Vth

is lowered to improve performance, subthreshold leakage current grows too large in the standby state.
Another Vbb control method is proposed to solve the Vth fluctuation and large-subthreshold leakage at the

FIGURE 15.10 Clustered voltage scaling structure [20].

FIGURE 15.11 Schematic block diagram of threshold voltage controlling circuit for short channel MOS ICs [23].
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same time. This method is the variable threshold-voltage CMOS (VT-CMOS) scheme [24]. The substrate
bias to the n-type well of a pMOS transistor is called Vbp and the bias to the p-type well of an nMOS
transistor is called Vbn. The voltage between Vdd and Vbp, or between GND and Vbn is defined by ∆Vbb.
∆Vbb controls Vth as described by Eq. (15.3). This Vbb control system raises CMOS circuit performance by
compressing Vth fluctuation in the active state, and reduces subthreshold leakage current by raising the
MOS device Vth in the idle state.

The system diagram of VT-CMOS is shown in Fig. 15.12. The control circuit enables the leakage
current monitor (LCM) and the self-substrate bias (SSB) circuit in the active state. The LCM measures
the leakage current of MOS devices. The SSB forces the leakage current to be constant at a given value.
For example, suppose Vth is designed at 0.1 ± 0.1 V initially. Applying a 0.4 V ∆Vbb increases the Vth to
0.2 V ± 0.05 V. Therefore, the Vth fluctuation is compensated from 0.1 to 0.05 V. In this way the Vbb

control system reduces Vth fluctuation [25].
The SSB and the substrate charge injector (SCI) operate in the idle state. The SSB applies large ∆Vbb

to reduce leakage current. The SCI enables Vbb to drive the substrate quickly and accurately. ∆Vbb becomes
about 2 V and then the Vth is 0.5 V. The usage of the SSB and SCI results in low subthreshold leakage in
the idle state. When applied to a discrete cosine transform processor, it occupies only 5% of the area.
The substrate-bias current of Vbb control is less than 0.1% of the total current, a small power penalty. 

The Switched substrate-impedance (SSI) scheme [26], as shown in Fig. 15.13, is one solution for
preventing the Vbb noise. SSI distributes switch cells throughout a die that function as Vbb supplies.

FIGURE 15.12 VT-CMOS block diagram [24].

FIGURE 15.13 Switched substrate-impedance scheme [26].
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The signals cbp and cbn turn the switch cells on during the active state. The switch cells connect Vdd and
GND lines with Vbp and Vbn lines, respectively, in the logic circuit. During the idle state, the switch cells
turn off and the VBC macro scheme provides Vbb. The switch cells in a chip occupy less than 5% of the
area. When the impedance of the switch is high, the substrate-bias lines are floating from the power-
source lines, causing circuit-performance degradation. Hence, the size and layout of the switch are
important issues. The switch cells are distributed uniformly, for instance, one per 100 gates.

When a MOS device shows a large gate-induced drain leakage (GIDL) effect, a large Vbb increases the
subthreshold leakage current, as shown in Fig. 15.14 [27]. In such a case, only a small substrate bias works
as a leakage-reduction approach. Subthreshold leakage current in a MOS device is reduced for low Vdd

because of the drain-induced barrier lowering (DIBL) effect. So, the combination of small Vbb and low
Vdd is useful for power reduction. In an experiment on a 360-MIPS RISC microprocessor, a 1.5-V Vbb

reduces the leakage current from 1.3 mA to 50 µA, and furthermore, lowering Vdd from 1.8 to 1 V
suppresses the leakage to 18 µA.

Substrate Bias Control for Suppressing Device Fluctuations

As mentioned earlier, a small-size device and low Vdd operation present device characteristic fluctuations
and thus circuit performance variations [22]. Vbb control reduces chip-to-chip leakage current variations;
however, the situation is different for performance fluctuations. When the operating temperature is
changed, the subthreshold leakage variation is not the same as the saturation current variation in a MOS
transistor. The reason is that diffusion current is dominant in the subthreshold region while drift current
is dominant in the saturation region. Therefore, when temperature rises, the subthreshold leakage current
increases and the saturation current decreases. The propagation delay of a CMOS circuit depends on the
saturation current. The operating speed and leakage current respond differently to temperature variation.
However, there is another way to use Vbb control to reduce speed fluctuations in CMOS circuits. Such a
technique is applied to an encoder/decoder circuit in [28].

Vbb is supplied to a whole LSI chip. Vbb control is useful to suppress chip-to-chip variations. However,
the reverse Vbb raises the fluctuation within a chip [29]. In low Vdd operation, performance degradation
becomes significant. Substrate forward biasing is one technique to avoid such problems. A forward-bias
Vbb can be applied to CMOS circuits without latch-up problem [30]. A threshold scaling circuit named

FIGURE 15.14 GIDL effect and DIBL effect.
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the speed-adaptive threshold-voltage CMOS (SA-VT CMOS) with forward bias for sub-1V systems is
proposed in [31].

Figure 15.15 shows the SA-VT CMOS scheme, which realizes an automatic Vth scaling depending on
a circuit speed. It is constructed from a Vth-controlled delay line, a comparator, a decoder, a digital-to-
analog (D/A) converter, and an amplifier. The comparator measures the timing difference between the
fclk signal and a delayed signal from the delay line, and then, translates the difference into a digital word.
After passing the delay information through the decoder, the D/A converter produces Vbb. The delay
line is provided Vbb to modify its delay. Therefore, this circuit realizes a feedback loop system. The loop
locks when the delay of the delay line becomes the same as the fclk cycle. Once Vbb is decided, the circuit
delivers Vbb to an LSI through the amplifier to set Vth for the LSI. The delay line is made of circuits
that imitate a critical path in the LSI. Hence, matching the delay line’s delay to the fclk cycle ensures
that the LSI’s critical path completes within the clock period. The substrate biases Vbp and Vbn change
discretely because the D/A converter in the SA-VT CMOS generates discrete voltages as substrate biases.
Vbp and Vbn change symmetrically. Each transition time depends on the clock frequency. Therefore, the
charging time of the delay line’s substrate determines an upper bound on clock frequency. For high-
speed circuits, the critical path replica must be divided to be used as the delay line to extend the maximum
frequency.

The SA-VT CMOS keeps circuit delay constant by controlling Vbb. Because of this effect, it adjusts the
optimum performance of an LSI along with the fclk and compensates the performance fluctuations caused
by fabrication process deviations, Vdd variations, and temperature variations. The performance degrada-
tions caused by fabrication process deviations are more critical in chip-to-chip distributions than within-
chip distributions. This is because the degradations of circuit performance by within-chip distributions
are statistically reduced when the circuit becomes larger. Therefore, it is sufficient to use one SA-VT
CMOS control toward a whole VLSI substrate. The forward substrate biasing in SA-VT CMOS improves
circuit delay degradation, especially at low Vdd. Although the performance variation caused by fabrication
deviations becomes large with reverse substrate bias, it becomes small with forward bias.

Multiple Threshold Voltage

Multiple Vth MOS devices are used to reduce power while maintaining speed. Low-Vth devices are delivered
to high-speed circuit paths. High-Vth devices are applied to the other circuit to reduce subthreshold-leakage
current. In case of multiple Vth, the level converter is not required, as used in the multiple Vdd technology.

FIGURE 15.15 SA-Vt CMOS scheme with forward bias [31].
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To make different Vth devices, some steps of fabrication process are added. A fabrication process and the
effects of dual Vth MOS circuits are discussed in [32].

Figure 15.16 shows an example of a dual Vth circuit with a high-Vth power switch [33]. The high-Vth

transistor is used to cut off subthreshold leakage current. In the logic circuit, low-Vth devices and
medium-Vth devices are used to make a dual-Vth circuit system. In a 16-bit ripple-carry adder, the active-
leakage current is reduced to one-third that of the all low-Vth adder. Two design approaches are used
for dual-Vth circuit. One approach designs the entire device using low-Vth transistors at first. If the delay
of a circuit path is faster than the required clock period, the circuit is replaced to a high-Vth transistor.
The other approach allows all of circuits to be designed as high-Vth transistors at first. If a circuit path
cannot operate at a required clock speed, the circuit is replaced to a low-Vth transistor. The synthesis
algorithms are examined in [34,35].

15.5 Clock Distribution Management

Conditional Clocking

A global clock network consumes 32% of the power in an Alpha 21264 processor [36]. This power is
eliminated when clock distribution is suspended by gating during the idle state.

The operating power is also reduced with the conditional clocks, which deliver clock signals only to
active modules. The Alpha 21264 uses conditional clocking in the data path as shown in Fig. 15.17. For
instance, the control logic asserts the ADD CLK ENABLE signal when a floating-point addition is executed.
The enable pulse propagates through latches to drive the AND gates. Other units are disabled while the
adder is executed. When a datapath is not needed, the enable signal is negated, and the clock to that path
is halted. The clock network reduces the power to 25% of the unconditional case when no floating-point
instruction is executed.

Multiple Frequency Clock

Multiple frequency clocks are used in the Super-H microprocessor [37]. This microprocessor has three
kinds of clocks: I-clock for the internal main modules, B-clock for the bus lines, and P-clock for the
peripheral circuits. Maximum frequencies of each clock are 200, 100, and 50 MHz, respectively. Compared
to a 200 MHz single-clock design, it reduces the distribution power by 23%.

FIGURE 15.16 Triple-Vth CMOS/SMOX circuit [33].
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16.1 Introduction

Supply voltage (Vcc) must continue to scale down at the historical rate of 30% per technology generation
in order to keep power dissipation and power delivery costs under control in future high-performance
microprocessor designs. To improve transistor and circuit performance by at least 30% per technology
generation, transistor threshold voltage (Vt) must also reduce at the same rate so that a sufficiently large
gate overdrive (Vcc/Vt) is maintained. However, reduction in Vt causes transistor subthreshold leakage
current (Ioff) to increase exponentially. Large leakage can (1) severely degrade noise immunity of dynamic
logic circuits, (2) compromise stability of 6T SRAM cells, and (3) increase leakage power consumption
of the chip to an unacceptably large value. In addition, degradation of short-channel effects, such as
Vt roll-off and drain induced barrier lowering (DIBL), in conventional bulk MOSFET’s with low Vt

can pose serious obstacles to producing high-performance, manufacturable transistors at low cost in
sub-100 nm Leff technology generations and beyond. To further compound the technology scaling prob-
lems, within-die and across-wafer device parameter variations are becoming increasingly untenable. This
nonscalability of process tolerances is also a barrier to Vcc and technology scaling.

To illustrate the barrier associated with excessive leakage power, one can estimate the subthreshold leakage
power of future chips, starting with the 0.25 µm technology described in [1], and projecting subthreshold
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leakage currents for 0.18 µm, 0.13 µm, and 0.1 µm technologies. Because subthreshold leakage is increasingly
the dominant component of transistor leakage, it can be used to illustrate the excessive leakage power barrier.
Assume that 0.25 µm technology has Vt of 450 mV, and Ioff is around 1 nA/µm at 30°C. Also assume that
subthreshold slopes are 80 and 100 mV/decade at 30°C and 100°C, respectively, Vt scales by 15% per
generation, and Ioff increases by 5 times each technology generation. Because Ioff increases exponentially
with temperature, it is important to consider leakage currents and leakage power as a function of temper-
ature. Figure 16.1 shows projected Ioff (as a function of temperature) for the four different technologies.

Next, we use these projected Ioff values to estimate the active leakage power of a 15 mm die (small
die), and compare the leakage power with the active power. The total transistor width on the die increases
by ~50% each technology generation; hence the total leakage current increases by ~7.5 times. This results
in leakage power of the chip increasing by ~5 times each technology generation. Since the active power
remains constant (per scaling theory) for constant die size, the leakage power will become a significant
portion of the total power as shown in Fig. 16.2.

This chapter explores the various components of leakage currents at the transistor level, and also
describes the effect of leakage currents at the circuit level. Finally, it concludes with a few techniques that
can be used to help control subthreshold leakage currents in both sleep and active circuit modes.

16.2 Transistor Leakage Current Components

Transistor off-state leakage current (IOFF) is the drain current when the gate-to-source voltage is zero.
IOFF is influenced by threshold voltage, channel physical and effective dimensions, channel/surface doping
profile, drain/source junction depth, gate oxide thickness, VDD, and temperature; however, IOFF as defined
above is not the only leakage mechanism of importance for a deep submicron transistor. Log(ID) versus
VG is an important transistor curve in the saturated and linear bias states (Fig. 16.3). It allows measurement

FIGURE 16.1 Projected off currents.

FIGURE 16.2 Projected leakage power in 0.1 µm technology.
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of many device parameters such as IOFF, VT, ID(SAT), ID(LIN), gm(SAT), gm(LIN), and slope (St) of VG

versus ID in the weak inversion state. IOFF is measured at the VG = 0 V intercept. Measurements will
illustrate all leakage current mechanisms and their properties in deep submicron transistors. The tran-
sistors in this study were from a 0.35 µm CMOS process technology with Leff << 0.25 µm and nominal
VDD ≈ 2.5 V [2]. 

We describe eight short-channel leakage mechanisms illustrating certain properties with measurements
(Fig. 16.4). I1 is reverse bias p-n junction leakage caused by barrier emission combined with minority
carrier diffusion and band-to-band tunneling away from the oxide-silicon interface, I2 is weak inversion,
I3 is DIBL, I4 is gate induced drain leakage (GIDL), I5 is channel punchthrough, I6 is channel surface
current due to narrow width effect, I7 is oxide leakage, and I8 is gate current due to hot carrier injection.
Currents I1−I6 are off-state leakage mechanisms, while I7 (oxide tunneling) occurs when the transistor is
on. I8 can occur in the off-state, but more typically occurs when the transistor bias states are in transition.

p-n Junction Reverse Bias Current (I1)

The reverse bias p-n junction leakage (I1) has two main components: One is minority carrier diffusion/drift
near the edge of the depletion region, and the other is due to electron-hole pair generation in the depletion
region of the reverse bias junction [3]. If both n- and p-regions are heavily doped (this will be the case

FIGURE 16.3 n-channel ID vs. VG showing DIBL, GIDL, weak inversion, and p-n junction reverse bias leakage
components in a 0.35 µm technology.

FIGURE 16.4 Summary of leakage current mechanisms of deep submicron transistors [10].
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for advanced MOSFETs using heavily doped shallow junctions and halo doping for better short-channel
effects), Zener and band-to-band tunneling may also be present. For a MOS transistor, additional leakage
can occur between the drain and well junction from gated diode device action (overlap and vicinity of
gate to the drain to well p-n junctions) or carrier generation in drain to well depletion regions with
influences of the gate on these current components [4]. p-n reverse bias leakage (IREV) is a function of
junction area and doping concentration [3,5]. IREV for pure diode structures in our technology [2] was
a minimal contributor to total transistor IOFF ⋅ p-n junction breakdown voltage was >8 V.

Weak Inversion (I2)

Weak inversion or subthreshold conduction current between source and drain in a MOS transistor occurs
when gate voltage is below VT [3,6]. The weak inversion region is seen in Fig. 16.3 as the linear portion
of the curve. The carriers move by diffusion along the surface similar to charge transport across the base
of bipolar transistors. The exponential relation between driving voltage on the gate and the drain current
is a straight line in a semi-log plot. Weak inversion typically dominates modern device off-state leakage
due to the low VT that is used.

Drain-Induced Barrier Lowering (I3)

DIBL occurs when a high voltage is applied to the drain where the depletion region of the drain interacts
with the source near the channel surface to lower the source potential barrier. The source then injects
carriers into the channel surface without the gate playing a role. DIBL is enhanced at higher drain voltage
and shorter Leff. Surface DIBL typically happens before deep bulk punchthrough. Ideally, DIBL does not
change the slope, St, but does lower VT. Higher surface and channel doping and shallow source/drain
junction depths reduce the DIBL leakage current mechanism [6,7]. Figure 16.3 illustrates the DIBL effect
as it moves the curve up and to the left as VD increases. DIBL can be measured at constant VG as the
change in ID for a change in VD. For VD between 0.1 and 2.7 V, ID changed 1.68 decades giving a DIBL
of 1.55 V/decade change of ID. DIBL may also be quantified in units of mV/V for at a constant drain
current value.

The subthreshold leakage of a MOS device including weak inversion and DIBL can be modeled
according to the following equation:

(16.1)

where 

VTH0 is the zero bias threshold voltage, vT = kT/q is the thermal voltage. The body effect for small values
of source to bulk voltages is very nearly linear and is represented by the term γ ′VS, where  is the
linearized body effect coefficient. η is the DIBL coefficient, COX is the gate oxide capacitance, µ0 is the
zero bias mobility, and n is the subthreshold swing coefficient for the transistor. ∆VTH is a term introduced
to account for transistor-to-transistor leakage variations.
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Gate-Induced Drain Leakage (I4)

GIDL current arises in the high electric field under the gate/drain overlap region causing deep depletion
[7] and effectively thins out the depletion width of drain to well p-n junction. The high electric field
between gate and drain (a negative VG and high positive VD bias for NMOS transistor) generates carriers
into the substrate and drain from direct band-to-band tunneling, trap-assisted tunneling, or a com-
bination of thermal emission and tunneling. It is localized along the channel width between the gate
and drain. GIDL is at times referred to as surface band-to-band tunneling leakage. GIDL current is
seen as the “hook” in the waveform of Fig. 16.3 that shows increasing current for negative values of
VG (gate bias dependent specially observed at high VD curves). Thinner Tox and higher VDD (higher
potential between gate and drain) enhance the electric field dependent GIDL. The impact of drain
(and well) doping on GIDL is rather complicated. At low drain doping values, we do not have high
electric field for tunneling to occur. For very high drain doping, the depletion volume for tunneling
will be limited. Hence, GIDL is worse for drain doping values in between the above extremes. Very
high and abrupt drain doping is preferred for minimizing GIDL as it provides lower series resistance
required for high transistor drive current. GIDL is a major obstacle in IOFF reduction. As it was discussed,
a junction related bulk band-to-band tunneling component in I1 may also contribute to GIDL current,
but this current will not be gate bias dependent. It will only increase baseline value of I4 current
component.

We isolated IGIDL by measuring source current log(Is) versus VG. It is seen as the dotted line extension
of the VD = 4.0 V curve in Fig. 16.3. IGIDL is removed since it uses the drain and substrate (well) terminals,
not the source terminal. The GIDL contribution to IOFF is small at 2.7 V, but as the drain voltage rises to
4.0 V (close to burn-in voltage), the off-state current on the VD = 4.0 V curve increases from 6 nA (at
the dotted line intersection with VG = 0 V) to 42 nA, for a GIDL of 36 nA. The pure weak inversion and
reverse bias p-n junction current of 99 pA is approximated from the VD = 0.1 V curve.

Punchthrough (I5)

Punchthrough occurs when the drain and source depletion regions approach each other and electrically
“touch” deep in the channel. Punchthrough is a space-charge condition that allows channel current to
exist deep in the subgate region causing the gate to lose control of the subgate channel region. Punch-
through current varies quadratically with drain voltage and St increases reflecting the increase in drain
leakage [8, p. 134]. Punchthrough is regarded as a subsurface version of DIBL.

Narrow Width Effect (I6)

Transistor VT in nontrench isolated technologies increases for geometric gate widths in the order of ≤0.5 µm.
An opposite and more complex effect is seen for trench isolated technologies that show decrease in VT

for effective channel widths on the order of W ≤ 0.5 µm [9]. No narrow width effect was observed in
our transistor sizes with W >> 0.5 µm.

Gate Oxide Tunneling (I7)

Gate oxide tunneling current Iox , which is a function of electric field (Eox), can cause direct tunneling
through the gate or Fowler–Nordheim (FN) tunneling through the oxide bands [Eq. (16.1)] [8]. FN
tunneling typically lies at a higher field strength than found at product use conditions and will probably
remain so. FN tunneling has a constant slope for Eox > 6.5 MV/cm (Fig. 16.5). Figure 16.5 shows significant
direct oxide tunneling at lower Eox for thin oxides.

 (16.2)IOX A EOX
2 e

B
Eox
--------–

⋅ ⋅=
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Oxide tunneling current is presently not an issue for devices in production, but could surpass weak
inversion and DIBL as a dominant leakage mechanism in the future as oxides get thinner.

Hot Carrier Injection (I8)

Short channel transistors are more susceptible to injection of hot carriers (holes and electrons) into the
oxide. These charges are a reliability risk and are measurable as gate and substrate currents. While past
and present transistor technologies have controlled this component, it increases in amplitude as Leff is
reduced unless VDD is scaled accordingly.

Figure 16.6 summarizes relative contributions of main components of intrinsic leakage for a typical
0.35 micron CMOS technology. We can see that for a nominal drain voltage of 2.7 V (consistent with
typical power supply voltage of the technology), DIBL is the dominant component of leakage (it elevates
the amount of weak inversion subthreshold leakage current). At elevated burn-in voltage of 3.9 V, GIDL
dominates; however, at low VD, weak inversion is the primary leakage mechanism.

16.3 Circuit Subthreshold Leakage Current

Subthreshold leakage currents for a single device can be modeled as illustrated in Eq. (16.1), but in a
CMOS circuit that contains multiple devices connected together, the net leakage effect will be highly
dependent on the applied input vectors [11,12]. The underlying mechanisms are related to (1) transistor
stack effect and (2) total effective width of NMOS and PMOS devices that are turned off. [13,14].

FIGURE 16.5 Fowler–Nordheim and direct tunneling in n-channel transistor oxide. The 60–80 Å curve shows
dominance of FN tunneling while the <50 Å curve shows FN at high Eox, but significant direct tunneling at low
electric fields.

FIGURE 16.6 Components of IOFF for a 0.35 µm technology for a transistor of 20 µm wide. Currents from various
leakage mechanisms accumulate resulting in a total measured transistor IOFF for a given drain bias.
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Transistor Stack Effect

The “stack effect” refers to the leakage reduction effect in a transistor stack when more than one transistor
is turned off. The dynamics of the stack effect can be best understood by considering a two-input NAND
gate in Fig. 16.7. When both M1 and M2 are turned off, the voltage Vm at the intermediate node is
positive due to the small drain current. Thus, the gate-to-source voltage of the upper transistor M1 is
negative, i.e., Vgs1 < 0. The exponential characteristic of the subthreshold conductance on Vgs greatly
reduces the leakage. In addition, the body effect of M1 due to VM > 0 further reduces the leakage current
as Vt increases.

The internal node voltage VM is determined by the cross point of the drain currents in M1 and M2.
Since leakage current strongly depends on the temperature and the transistor threshold voltage, we
consider two cases: (1) high Vt and room temperature at 30°C and (2) low Vt and high temperature at
110°C. Figure 16.8 shows the DC solution of nMOS subthreshold current characteristics from SPICE
simulations. The leakage current of a single nMOS transistor at Vg = 0 is determined by the drain current
of M1 at VM = 0. It is clear that the leakage current through a two-transistor stack is approximately an
order of magnitude smaller than the leakage of a single transistor. The voltage VM of the internal node
converges to ~100 mV, as shown in Fig. 16.8. The small VM (= drain-to-source voltage of M2) reduces
the DIBL, and hence increases Vt of M2, which also contributes to the leakage reduction.

The subthreshold swing is proportional to kT . The slope decreases when the temperature T increases,
which moves the cross point (Fig. 16.8) upwards. Thus, the amount of reduction will be smaller at higher
temperature. The amount of reduction is also dependent on the threshold voltage Vt, which is larger for
higher Vt . For three- or four-transistor stacks, the leakage reduction is found to be 2–3 times larger in
both nMOS and pMOS. Results are summarized in Fig. 16.9. Note that reductions are obtained at the
room temperature, as we are only interested in standby mode.

The reduced standby stack leakage current is obtained under steady-state condition. After a logic gate
has a transition, the leakage current does not immediately converge to its steady-state value. Let us again

FIGURE 16.7 Two-nMOS stack in a two-input NAND
gate.

FIGURE 16.8 DC solution of two-nMOS stack.
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consider the NAND gate in Fig. 16.7. Assume that the inputs switches from A = 0, B = 1 to A = 0, B =
0 to turn off both transistors, the voltage VM of the internal node is approximately VDD − Vt after the
transition. Due to the junction capacitance Cj, VM will “slowly” go down as it is discharged by the sub-
threshold drain current of M2. In the other case, when the inputs switches from A = 1, B = 0 to A = 0,
B = 0, VM is negative after the transition due to the coupling capacitance between the gate and drain of
M2 (as shown in Fig. 16.7). It also takes certain amount of time for VM to converge to its final value as
determined by the DC stack solution.

The time required for the leakage current in transistor stacks to converge to its final value is dictated
by the rate of charging or discharging of the capacitance at the intermediate node by the subthreshold
drain current of M1 or M2. The convergence of leakage current is shown in Fig. 16.10. We define the
time constant as the amount of time required to converge to twice of its final stack leakage value. This
time constant is, therefore, determined by (1) drain-body junction and gate-overlap capacitances per
unit width, (2) the input conditions immediately before the stack transistors are turned “off,” and
(3) transistor subthreshold leakage current, which depends strongly on temperature and Vt. Therefore,
the convergence rate of leakage current in transistor stacks increases rapidly with Vt reduction and
temperature increase. For Vt = 200 mV devices in a sub-1 V, 0.1 µm technology, this time constant in
2-nMOS stacks at 110°C ranges from 5 to 50 ns.

Steady-State Leakage Model of Transistor Stacks

To investigate the leakage behavior of a stack of transistors, consider a stack of four NMOS devices. Such
a structure would occur in the NMOS pull-down tree of a four input NAND tree as shown in Fig. 16.11.
Let us assume that all four devices are OFF with the applied gate voltage VG1 through VG4 being zero.
Additionally, the full supply voltage, 1.5 V in the figure, is impressed across the stack. After a sufficiently
long time, the voltage at each of the internal nodes will reach a steady-state value. With the assumption
that subthreshold leakage from the drain to the source of the MOS device is the dominant leakage
component and source drain junction leakage is negligible, application of Kirchoff ’s current law (KCL)

FIGURE 16.9 Leakage current reduction by two-, three-, and four-transistor stacks at room temperature T = 30°C.

FIGURE 16.10 Temporal behavior of leakage current in transistor stacks for different temperatures and initial input
conditions.
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yields the current through each transistor being the same and being identically equally to the overall
stack current.

To calculate the overall leakage of the stack we use Eq. (16.1) to determine the leakage through a
transistor as a function of the drain to source voltage. This yields the voltage across second transistor
from the top as

 

Additionally the voltage of the rest of the transistors can be expressed in a recursive fashion. The drain
to source voltage of the ith transistor can be expressed in terms of the (i − 1)th transistor.

With the drain to source transistor voltages known, the leakage current through the stack can be computed
by finding the leakage of the bottom transistor of the stack from the subthreshold equation. An identical
method applies to the solution of leakage current for PMOS stacks. An estimate of leakage in transistor
stacks was first presented by Gu and Elmasry [13]. The above analysis for transistor stack leakage was
first presented by Johnson [14]. An early implementation of this idea for actively reducing leakage in
word decoder-driver circuits for RAMs is presented by Kawhara [15]. The term “self-reverse biasing”
used in this paper, gives a clear indication of the mechanism by which leakage of a stack of transistors
is reduced.

Transient Model of Transistor Stack Leakage

When stacked devices are turned off, the time required for the leakage currents to settle to the previously
computed steady-state leakage levels can be large and can vary widely, ranging from microseconds to
milliseconds. The settling time is important for determining if the quiescent leakage current model is
applicable. The worst-case settling time for a stack occurs when all the internal nodes are charged to the
maximum possible value VDD − VT just before every transistor of the stack is turned off. We notice that a
strong reverse gate bias will now be present for all devices except for the bottom-most device. In the figure,
MN1 to MN3 will have a reverse gate bias and the leakage through them is small. Hence, we approximate
the discharge current of the drain node of MN4 as being the leakage current of MN4 alone. Once the drain
voltage of MN4 is sufficiently small, MN3 discharges its drain node with a discharge current, which is
the leakage current of the two stacked devices MN3 and MN4. The discharge time of each internal
node of the stack, tdisi, is sequential and the overall settling time is the sum of the discharge times.

FIGURE 16.11 Four-input NAND NMOS stack.

MN1

MN2

MN3

MN4 V
q3 =

 14m
V

VG1=0 V

VG2=0 V

VG3=0 V

VG4=0 V

V
q2 =

 34m
V

V
q1 =

 89m
V

V
ds4 =

 14m
V

V
ds3 =

 20m
V

V
ds2 =

 55m
V

V
ds1 =

 1.41V

VDS2

nvT

1 2η γ ′+ +( )
-------------------------------- ln

A1

A2

----- 
  e

nVDD

nvT
--------------

1+
 
 
 

=

VDSi

nvT

1 γ ′+( )
------------------- ln 1

Ai 1–

Ai

---------- 1 e

1–
vT
------

VDS i−1( )–
 
 
 

+
 
 
 

=

© 2002 by CRC Press LLC



To derive a closed form solution for the discharge time, it is assumed that the capacitance of the internal
nodes is not dependent on voltage. Additionally it is assumed that we know the internal node voltages
after the instant the devices are cut-off—this requires a determination of the voltage to which internal
nodes are bootstrapped. By using the capacitor discharge equation for the internal nodes, the discharge
time can be written as

16.4 Leakage Control Techniques

Many techniques have been reported in the literature to reduce leakage power during standby condition.
Examples of such techniques are: (1) reverse body biasing, as discussed in another chapter of this book;
(2) MTCMOS sleep transistor and variations of sleep transistor-based techniques; and (3) embedded
multiple-Vt CMOS design where low-Vt devices are used only in the critical paths for maximizing
performance, while high-Vt devices are used in noncritical paths to minimize leakage power. In this section,
we discuss two standby leakage reduction techniques: one through stack effect vector manipulation, and
the other through embedded dual-Vt design applied to domino circuits. We also discuss the applicability
of reverse body biasing for improving performance and leakage power distribution of multiple die samples
during active modes, as well as the impact of technology scaling on the effectiveness of this technique.

Standby Leakage Control by Input Vector Activation

For any static CMOS gate other than the inverter, there are stacked transistors in nMOS or pMOS tree
(e.g., pMOS stack in NOR, nMOS stack in NAND). Typically, a large circuit block contains high per-
centage of logic gates where transistor “stacks” are already present. Note that leakage reduction in a
transistor stack can be achieved only when more than one device is turned off. Thus, the leakage current
of a logic gate depends on its inputs. For a circuit block consisting of a large number of logic gates, the
leakage current in standby mode is therefore determined by the vector at its inputs, which is fed from
latches. For different vectors, the leakage is different. An input vector, which gives as small a leakage
current as possible, needs to be determined. One of the following three methods can be used to select
the input vector: (1) Examining the circuit topology makes it possible to find a “very good” input vector,
which maximizes the stack effect, and hence minimizes the leakage current. (2) An algorithm can be
developed for efficiently searching for the “best” vector. (3) Testing or simulating a large number of
randomly generated input vectors, the one with the smallest leakage can also be selected and used in the
standby mode. Method 1 is suitable for datapath circuits (e.g., adders, multipliers, comparators, etc.)
due to their regular structure. For random logic, an algorithm in method 2 is required to find a vector
with good quality. In [11], the input dependence of the leakage has been empirically observed and random
search is used to determine an input vector; however, the fact that the dependence is due to the transistor
stack effect has not been addressed. 

Figure 16.12 shows the distribution of the standby leakage current of a 32-bit static CMOS Kogg-Stone
adder generated by 1000 random input vectors, with two threshold voltages. The standby leakage power
varies by 30–40%, depending on the input vector, which determines the magnitude of the transistor stack
effect in the design. The best input vector for minimum leakage can be easily determined by examining
the circuit structure. This predetermined vector needs to be loaded into the circuit during the standby
mode. Figure 16.13 shows an implementation of the new leakage reduction technique where a “standby”
control signal, derived from the “clock gating” signal, is used to generate and store the predetermined
vector in the static input latches of the adder during “standby” mode so as to maximize the stack effect
(the number of nMOS and pMOS stacks with “more than one ‘off ’ device”). The desired input vector
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for leakage minimization is encoded by using a NAND or NOR gate in the feedback loop of the static
latch, so minimal penalty is incurred in adder performance. As shown in Fig. 16.14, up to 2 × reduction
in standby leakage can be achieved by this technique. Note that the vector found by examining the design
results in significantly smaller leakage than that obtained by any of the 1000 random vectors. In order
that the additional switching energy dissipated by the adder and latches, during entry into and exit from
“standby mode,” be less than 10% of the total leakage energy saved by this technique during standby, the
adder must remain in standby mode for at least 5 µs.

Embedded Dual-Vt Design for Domino Circuits

A promising technique to control subthreshold leakage currents during standby modes, while still main-
taining performance, is to utilize dual Vt devices. As previously described, two main dual Vt circuit styles
are common in the literature. MTCMOS, or multithreshold CMOS, involves using high Vt sleep transis-
tors to gate the power supplies for a low Vt block [22]. Leakage currents will thus be reduced during
sleep modes, but the circuit will require large areas for the sleep transistors, and active performance will
be affected. Furthermore, optimal sizing of the sleep transistors is complex for larger circuits, and will
be affected by the discharge and data patterns encountered [17,18].

The second family of dual Vt circuits is one in which individual devices are partitioned to be either high
Vt or low Vt depending on their timing requirements. For example, gates in the critical path would be

FIGURE 16.12 Distribution of standby leakage current in the 32-bit static CMOS adder for a large number of
input vectors.

FIGURE 16.13 An implementation of the standby leakage control scheme through input activation.

FIGURE 16.14 Adder leakage current reduction by the “best” input vector activation compared to average and
worst standby leakage.
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chosen to have low Vt, while noncritical gates would have high Vt’s, with correspondingly lower leakage
currents [19]. This technique in general is only effective up to a certain point (diminishes with more critical
paths in the circuit), and determining which paths can be made high Vt is a complex CAD problem [20].

An alternative application of dual Vt technology that can be very useful in microprocessor design is
dual Vt domino logic [21]. In this style, individual gates utilize both high Vt and low Vt transistors, and
the overall circuit will exhibit extremely low leakage in the standby mode, yet suffer no reduction in
performance. This is achieved by exploiting the fixed transition directions in domino logic, and assigning
a priori low-threshold voltages to only those devices in the critical charging/discharging paths. In effect,
devices that can switch during the evaluate mode should be low Vt devices, while those devices that
switch during precharge modes should be high Vt devices. Figure 16.15 shows a typical dual Vt domino
stage used in a clock-delayed domino methodology, consisting of a pull-down network, inverter (I1),
leaker device (P1), and clock drivers (I2, I3), with the low Vt devices shaded.

During normal circuit operation, critical gate transitions occur only through low Vt devices, so high-
performance operation is maintained. On the other hand, precharge transitions occur only through high
Vt devices, but since precharge times in domino circuits are not in the critical path, slower transition
times are acceptable. By having high Vt precharge transistors, it is possible to place the dual Vt domino
gate into a very low leakage standby state merely by placing the clock in the evaluate mode and asserting
the inputs. In a cascaded design with several levels of domino logic, the standby condition remains the
same, requiring only an assertion of the first-level inputs. The correct polarity signal will then propagate
throughout the logic to strongly turn off all high Vt devices and ensure low subthreshold leakage currents.
In summary, dual Vt domino logic allows one to trade-off slower precharge time for improved standby
leakage currents. As a result, using dual Vt domino logic can achieve the performance of an all low Vt

design, while maintaining the low standby leakage current of an all high Vt design.

Adaptive Body Biasing (ABB)

Another technique to control subthreshold leakage is to modulate transistor Vt’s directly through body
biasing. With application of maximum reverse body bias to transistors, threshold voltage increases,
resulting in lower subthreshold leakage currents during standby mode, but because the threshold voltage
can be set dynamically, this technique can also be used to adaptively bias a circuit block during the active
mode. Adaptive body biasing can be used to help compensate for large inter-die and within-die parameter
variations by tuning the threshold voltage so that a common target frequency is reached. By applying
reverse body bias to unnecessarily fast circuits, subthreshold leakage in the active mode can then be
reduced as well. In order to use this technique, the initial process Vt should be targeted to a lower value
than desired, and then reverse body bias can be applied to achieve a higher threshold voltage mean with
lower variation.

Adaptive body biasing can easily be applied to a die as a whole (single PMOS body and NMOS body
bias values for the whole chip), which will tighten the distribution of chip delays and leakage currents
for a collection of dies, but because die sizes and parameter variations are becoming larger with future
scaling, within-die variation becomes a problem as well. ABB can be applied aggressively at the block
level, where individual functional blocks within a chip, such as a multiplier or ALU, can be independently
modulated to meet a common performance target. The following subsection, however, focuses on the

FIGURE 16.15 Dual threshold voltage domino logic gate. 
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effectiveness of adaptive body biasing applied at the die level and further explores the limitations of tech-
nology scaling on this technique.

Impact of ABB on Die-to-Die and Within-Die Variations

As illustrated in Fig. 16.16(a) adaptive body biasing technique matches the mean Vt of all the die samples
close to the target threshold voltage, when they were all smaller than the target to begin with. Hence, to
use adaptive body bias we first need to retarget the threshold voltage of the technology to be lower than
what it would have been if adaptive body bias weren’t used. Also, short-channel effects of a MOS transistor
degrades with body bias [6]. So as technology is scaled, this adverse effect of body biasing poses an
increasingly serious challenge to controlling short-channel effects and results in (1) reduction in effec-
tiveness of adaptive body bias to control die-to-die mean Vt variation and (2) increase in within-die Vt

variation. As illustrated in Fig. 16.16(b), the die sample that requires larger body bias to match its mean
Vt to the target threshold voltage will end up with higher within-die Vt variation. This increase in within-
die Vt variation due to adaptive body bias can impact clock skew, worst case gate delay, worst-case device
leakage, and analog circuits.

Short-Channel Effects

In this subsection, we describe short-channel effects, namely, Vt-roll-off and DIBL that are affected by body
bias. In a long-channel MOS the channel charge is controlled primarily by the gate. As MOS channel
length is scaled down, the source-body and drain-body reverse-biased diode junction depletion regions
contribute a larger portion of the channel charge. This diminishes the control that gate and body terminals
have on the channel, resulting in Vt-roll-off and body effect reduction [22]. Another short-channel effect
of interest is reduction of the barrier for inversion charge to enter the channel from the source terminal
with increase in drain voltage. This dependence of MOS threshold voltage on drain voltage is DIBL. Both
Vt-roll-off and DIBL degrade further with body bias because of widening diode depletions. The threshold
voltage equation for short-channel MOS that captures the two short-channel effects is given as

FIGURE 16.16 (a) Adaptive body bias reduces die-to-die variation in mean Vt. (b) Within-die Vt variation increases
for die samples that require body bias to match their mean Vt to the target Vt. Vt-target is the target saturation
threshold voltage for a given technology. Vt-low and Vt-nom are the minimum and mean threshold voltages of the
die-to-die distribution.
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λb models the Vt-roll-off and body effect degradation with channel length reduction, and λd models
DIBL. This parameter is based on empirical fitting of device parameters and has been verified to be
accurate down to 0.1 µm channel length [23]. 

Effectiveness of ABB

We know that adaptive body bias requires (1) lower Vt devices and (2) body bias to reduce die-to-die
mean Vt variation. We also know that as technology is scaled, body terminal’s control on the channel
charge diminishes. This is further aggravated if Vt has to be reduced and/or if body bias has to be applied
since both result in increased diode depletions. Figure 16.17 illustrates the shift in threshold voltage of
two 0.25 µm MOS transistors. The two MOS transistors are identical in all aspects except in their threshold
voltage values. The linear threshold voltages of the high-Vt and the low-Vt devices are 400 and 250 mV,
respectively. It is clear from Fig. 16.17 that for 600 mV of body bias, the increase in threshold voltage
for the high-Vt device is significantly more than that of the low-Vt device. The reasons for the reduced
effectiveness of body bias for the low-Vt device are (1) reduced channel doping required for Vt reduction
means these devices will have lower body effect to begin with, (2) low-Vt devices have more diode
depletion charge degrading body effect, and (3) body bias increases diode depletion even more resulting
in added body effect degradation. It has been shown in [24] that with aggressive 30% Vt scaling it will
not be possible to match the mean Vt of all the die samples for 0.13 µm technology. 

Impact of ABB on Within-Die Vt Variation

Low-Vt devices that are required for adaptive body bias schemes have worse short channel effects, and
these effects degrade with body bias. As Fig. 16.18(a) illustrates, Vt-roll-off behavior is larger for low-Vt

device compared to high-Vt device, and Vt-roll-off increases further with body bias, as expected. Also,
body bias increases DIBL (∆Vt /∆Vds) as expected, and this is depicted in Fig. 16.18(b). 

Within-die Vt variation due to within-die variation in the critical dimension (∆L) will depend on
Vt-roll-off (λb) and DIBL (λd). So, increase in Vt-roll-off and DIBL due to adaptive body bias will result
in a larger within-die Vt variation. It has been shown in [24] that this increase in within-die Vt variation

FIGURE 16.17 Body effect reduction for low-Vt 0.25 µm
device compared to a high-Vt 0.25 µm device.

FIGURE 16.18 (a) Increase in Vt-roll-off due to Vt lowering and body bias. (b) Increase in DIBL (∆Vt/∆Vds) due
to body bias, for a 0.25 µm NMOS.
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due to adaptive body bias worsens with scaling and is more pronounced under aggressive Vt scaling. So,
for effective use of adaptive body bias one has to consider the maximum within-die Vt variation increase
that can be tolerated. It should also be noted that adaptive body bias will become less effective with
technology scaling due to increasing transistor threshold voltage variation and degrading body effect.
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17.1 Introduction

The explosive proliferation of portable electronic devices, such as notebook computers, personal digital
assistants (PDAs), and cellular phones, has compelled energy-efficient microprocessor design to provide
longer battery run-times. At the same time, this proliferation has yielded products that require ever-
increasing computational complexity. In addition, the demand for low-cost and small form-factor devices
has kept the available energy supply roughly constant by driving down battery size, despite advances in
battery technology that have increased battery energy density. Thus, microprocessors must continuously
provide more throughput per watt.

To lower energy consumption, existing low-power design techniques generally sacrifice processor
throughput [1–4]. For example, PDAs have a much longer battery life than notebook computers, but deliver
proportionally less throughput to achieve this goal. A technique often referred to as voltage scaling [3],
which reduces the supply voltage, is an effective technique to decrease energy consumption, which is a
quadratic function of voltage; however, the delay of CMOS gates scales inversely with voltage, so this
technique reduces throughput as well. 

This chapter will present a design technique that dynamically varies the supply voltage to only provide
high throughput when required, as most portable devices require peak throughput only some fraction of
the time. This technique can decrease the system’s average energy consumption by up to a factor of 10,
without sacrificing perceived throughput, by exploiting the time-varying computational load that is
commonly found in portable electronic devices.
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17.2 Processor Operation

Understanding a processor’s usage pattern is essential to its optimization. Processor utilization can be
evaluated in terms of the amount of processing required and the allowable latency for the processing to
complete. These two parameters can be merged into a single measure, which is throughput or T. It is
defined as the number of operations that can be performed in a given time:

(17.1)

Operations are defined as the basic unit of computation and can be as fine-grained as instructions or
more coarse-grained as programs. This leads to measures of throughput of MIPS (instructions/sec) and
SPECint95 (programs/sec) [5] that compare the throughput on implementations of the same instruction
set architecture (ISA), or different ISAs, respectively.

Processor Usage Model

Portable devices are single-user systems whose processor’s computational requirements vary over time
and typically occur in bursts. An example processor usage pattern is shown in Fig. 17.1, and demonstrates
that the desired throughput varies over time, and the type of computation falls into one of three categories.
These three modes of operation are found in most single-user processor systems, including PDAs, notebook
computers, and even powerful desktop machines.

Compute-intensive and minimum-latency processes desire maximum performance, which is limited
by the peak throughput of the processor, TMAX. Any increase in TMAX that the hardware can provide will
readily be used by these processes to reduce their latency. Examples of these processes include spreadsheet
updates, document spell checks, video decoding, and scientific computation.

Background and high-latency processes only require some fraction of TMAX. There is no intrinsic benefit
to exceeding the real-time latency requirements of these processes since the user will not realize any
noticeable improvement. Examples of these processes include video screen updates, data entry, audio
codecs, and low-bandwidth input/output (I/O) data transfers.

The third category of computation is system idle, which has zero desired throughput. Ideally, the
processor should have zero energy consumption in this mode and therefore be inconsequential; however,
in any practical implementation, this is not the case. The section on “Dynamically Varying Voltage” will
demonstrate how dynamic voltage scaling can minimize this mode’s energy consumption.

What Should Be Optimized?

Although compute-intensive and short-latency processes can readily exploit any increase in processor speed,
background and long-latency processes do not benefit from any increase in processor speed above and
beyond their average desired throughput since the extra throughput cannot be utilized. Thus, TMAX is

FIGURE 17.1 Processor usage model.
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the parameter to be maximized since the user and/or operating environment determines the average
throughput of the processor.

The run-time of a portable system is constrained by battery life. To maximize battery life, these systems
require minimum energy consumption. Even for wired desktop machines, the drive toward “green”
computers is making energy-efficient design a priority. Therefore, the computation per battery-life per
watt-hour should be maximized, or equivalently, the average energy consumed per operation should be
minimized. 

This is in contrast to low-power design, which attempts to minimize power dissipation, typically to
meet thermal design limits. Power relates to energy consumption as follows:

(17.2)

Thus, while reducing throughput can minimize power dissipation, the energy/operation remains
constant.

Quantifying Energy Efficiency

An energy efficiency metric must balance the desire to maximize TMAX, and minimize the average
energy/operation. A good metric to quantify processor energy efficiency is the energy-throughput ratio
(ETR) [6]:

(17.3)

A lower ETR indicates lower energy/operation for equal throughput or equivalently indicates greater
throughput for a fixed amount of energy/operation, satisfying the need to equally optimize TMAX and
energy/operation. Thus, a lower ETR represents a more energy-efficient solution. The energy-delay
product [7] is a similar metric, but does not include the effects of architectural parallelism when the
delay is taken to be the critical path delay.

Common Design Approaches

With the ETR metric, three common design approaches for processor systems can be analyzed, and their
impact on energy efficiency quantified.

Compute ASAP

In this approach, the processor always performs the desired computation at maximum throughput. This
is the simplest approach, and the benchmark to compare others against. When an interrupt comes into
the processor, it wakes up from sleep, performs the requested computation, then goes back into sleep
mode, as shown in Fig. 17.2(a). In sleep mode, the processor’s clock can be halted to significantly reduce
idle energy consumption, and restarted upon the next interrupt. This approach is always high throughput,
but unfortunately, it is also always high energy/operation.

Clock Frequency Reduction

A common low-power design technique is to reduce the clock frequency, fCLK. This in turn reduces the
throughput, and power dissipation, by a proportional amount. The energy consumption remains un-
changed, as shown in Fig. 17.2(b), because energy/operation is independent of fCLK. This approach actually
increases the ETR with respect to the previous approach, and is therefore more energy inefficient, because
the processor delivers the same amount of computation per battery life, but at a lower level of peak
throughput.

Power
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----------------------- Throughput×=
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Energy/Operation

Throughput
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------------------------------= =
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Supply Voltage Reduction

When fCLK is reduced, the processor’s circuits have a longer cycle time to complete their computation in.
In CMOS, the common fabrication technology for most processors today, the delay of the circuits
increases as the supply voltage, VDD, decreases. Thus, with voltage scaling, which reduces VDD, the circuits
can be slowed down until they just complete within the longer cycle time. This, in turn, will reduce the
energy/operation, which is a quadratic function of VDD, as shown in Fig. 17.2(c).

Figure 17.3 demonstrates that the throughput and energy/operation can vary more than tenfold over
the range of VDD. The curves are derived from analytical sub-micron CMOS device models [6]. Because
throughput and energy/operation roughly track each other, reducing VDD maintains approximately con-
stant ETR, providing equivalent energy efficiency to the Compute ASAP approach. Thus, lower energy/
operation can be achieved, but at the sacrifice of lower peak throughput. 

FIGURE 17.2 Throughput and energy/operation for three design approaches: (a) compute ASAP (b) clock fre-
quency reduction, and (c) supply voltage reduction.

FIGURE 17.3 Throughput and energy/operation vs. supply voltage.
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17.3 Dynamically Varying Voltage

If both VDD and fCLK are dynamically varied in response to computational load demands, then the
energy/operation can be reduced for the low computational periods of time, while retaining peak through-
put when required. When a majority of the computation does not require maximum throughput, as is
typically the case in portable devices, then the average energy/operation can be significantly reduced,
thereby increasing the computation per battery life, without degradation of peak processor throughput.
This strategy, which achieves the highest possible energy efficiency for time-varying computational loads,
is called dynamic voltage scaling (DVS).

Voltage Scaling Effects on Circuit Delay

A critical characteristic of digital CMOS circuits is shown in Fig. 17.4, which plots simulated maximum
fCLK versus VDD for various circuits in a 0.6 µm CMOS process [8]. Whether the circuits are simple (NAND
gate, ring oscillator) or complex (register file, SRAM), their circuit delays track extremely well over a
broad range of VDD. Thus, as the processor’s VDD varies, all of the circuit delays scale proportionally
making CMOS processor implementations very amenable to DVS, however, subtle variations of circuit
delay with voltage do exist and primarily effect circuit timing, as discussed in the section on “Design Issues.”

Energy Efficiency Improvement

With DVS, peak throughput can always be delivered on demand by the processor, and remains a fixed
value for the processor hardware. The average energy/operation, however, is a function of the computa-
tional load. When most of the processor’s computation can be operated at low throughput, and low VDD,
the average energy/operation can be reduced tenfold as compared to the Compute ASAP design approach,
which always runs the processor at maximum VDD. This, in turn, increases the ETR tenfold, significantly
improving processor energy efficiency.

Figure 17.5 plots the normalized battery run-time, which is inversely proportional to energy/operation,
as a function of the fractional amount of computation performed at low throughput. Although a moderate
run-time increase (22%) can be achieved with only 20% of the computation at low throughput, DVS
yields significant increases when more of the computation can be run at low throughput, with an upper
limit in excess of a tenfold increase in battery run-time, or equivalently, more than a tenfold reduction
in energy/operation. 

DVS can also significantly reduce a processor’s energy consumption when it is idling. If the processor is
put into its lowest performance mode before entering sleep mode, the energy consumption of all the circuits

FIGURE 17.4 Simulated maximum clock frequency for four circuits in 0.6 µm CMOS.
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that require continual operation (e.g., bus interface, VCO, interrupt controller, etc.) can be minimized. The
processor can quickly ramp up to maximum throughput upon receiving an incoming interrupt. 

Essential Components for DVS

A typical processor is powered by a voltage regulator, which outputs a fixed voltage. However, the
implementation of DVS requires a voltage converter that can dynamically adjust its output voltage when
requested by the processor to do so. Programmable voltage regulators can be used, but they are not
designed to continuously vary their output voltage and degrade the overall system energy efficiency. A
custom voltage converter optimized for DVS is described further in the section on “A Custom DVS Processor
System.”

Another essential component is a mechanism to vary fCLK with VDD. One approach is to utilize a look-
up table, which the processor can use to map VDD values to fCLK values, and set the on-chip phase-locked
loop (PLL) accordingly. A better approach, which eliminates the need for a PLL, is a ring oscillator
matched to the processor’s critical paths, such that as the critical paths vary over VDD, so too will fCLK. 

The processor itself must be designed to operate over the full range of VDD, which places restrictions
on the types of circuits that can be used and impacts processor verification. Additionally, the processor
must be able to properly operate while VDD is varying. These issues are described further in the “Design
Issues” section.

The last essential component is a DVS-aware operating system. The hardware itself cannot distinguish
whether the currently executing instruction is part of a compute-intensive task or a nonspeed critical
task. The application programs cannot set the processor speed because they are unaware of other
programs running in a multi-tasking system. Thus, the operating system must control processor speed,
as it is aware of the computational requirements of all the active tasks. Applications may provide useful
information regarding their load requirements, but should not be given direct control of the processor
speed. 

Fundamental Trade-Off

Processors generally operate at a fixed voltage and require a regulator to tightly control voltage supply
variation. The processor produces large current spikes for which the regulator’s output capacitor supplies
the charge. Hence, a large output capacitor on the regulator is desirable to minimize ripple on VDD. A
large capacitor also helps to maximize the regulator’s conversion efficiency by reducing the voltage
variation at the output of the regulator. 

FIGURE 17.5 Battery run-time vs. workload.
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The voltage converter required for DVS is fundamentally different from a standard voltage regulator
because in addition to regulating voltage for a given fCLK, it must also change the operating voltage when
a new fCLK is requested. To minimize the speed and energy consumption of this voltage transition, a small
output capacitor on the converter is desirable, in contrast to the supply ripple requirements.

Thus, the fundamental trade-off in a DVS system is between good voltage regulation and fast/efficient
dynamic voltage conversion. As will be shown in the “Voltage Converter” section, it is possible to optimize
the size of this capacitor to balance the requirements for good voltage regulation with the requirements
for a good dynamic voltage conversion. 

Scalability with Technology

Although the prototype system described next demonstrates DVS in a 3.3 V, 0.6 µm process technology,
DVS is a viable technique for improving processor system energy efficiency well into deep sub-micron
process technologies. Maximum VDD decreases with advancing process technology, seeming to reduce the
potential of DVS, but this decrease is alleviated by decreases in the device threshold voltage, VT. While the
maximum VDD may be only 1.2 V in a 0.10 µm process technology, the VT will be approximately 0.35 V
yielding an achievable energy efficiency improvement, , still in excess of a tenfold increase.

17.4 A Custom DVS Processor System

DVS has been demonstrated on a complete embedded processor system, consisting of a microprocessor,
external SRAM chips, and an I/O interface chip [9]. Running on the hardware is a preemptive, multi-
tasking, real-time operating system, which supports DVS via a modular component called the voltage
scheduler. Benchmark programs, typical of software that runs on portable devices, were then used to
quantify the improvement in energy efficiency possible with DVS on real programs. 

System Architecture

As shown in Fig. 17.6, this prototype system contains four custom chips in a 0.6 µm 3-metal VT ≈ 1 V
CMOS process: a battery-powered DC-DC voltage converter, a microprocessor, SRAM memory chips, and
an interface chip for connecting to commercial I/O devices. The entire system can operate at 1.2–3.8 V
and 5–80 MHz, while the energy/operation varies from 0.54 to 5.6 mW/MIP.

The prototype processor, which contains a custom implementation of an ARM8 processor core [10],
is a fully functional microprocessor for portable systems. The design contains a multitude of different

FIGURE 17.6 Prototype DVS processor system architecture.
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circuits, including static logic, dynamic logic, CMOS pass-gate logic, memory cells, sense-amps, bus
drivers, and I/O drivers. All these circuits have been demonstrated to continuously operate over voltage
transients well in excess of 1 V/µs. While the voltage converter was implemented as a separate chip,
integrating it onto the processor die is feasible [11].

To further improve the system’s energy efficiency, not only was DVS applied to the processor, but the
external SRAM chips and external processor bus, as well. While this system operates off of a single,
variable VDD, a future processor system could again increase energy efficiency by providing multiple,
variable voltages sources. This would allow high-speed, direct-memory accesses to main memory, so that
even when the processor core is operating at low speed, high-bandwidth I/O-memory transactions could
still occur. Additionally, this would also enable DVS peripheral devices that can adapt their throughput
to the processing requirements of the I/O data.

Voltage Scheduler

The voltage scheduler is a new operating system component for use in a DVS system. It controls the
processor speed by writing the desired clock frequency to a system control register, whose value is used
by the converter loop to adjust the processor clock frequency and regulated voltage. By optimally adjusting
the processor speed, the voltage scheduler always operates the processor at the minimum throughput
level required by the currently executing tasks, and thereby minimizes system energy consumption. 

The implemented voltage scheduler runs as part of a simple real-time operating system. Because the
job of determining the optimal frequency and the optimal task ordering are independent of each other,
the voltage scheduler can be separate from the temporal scheduler. Thus, existing operating systems can
be straightforwardly retrofitted to support DVS by adding in this new, modular component. The overhead
of the scheduler is quite small such that it requires a negligible amount of throughput and energy
consumption [12].

The basic voltage scheduler algorithm determines the optimal clock frequency by combining the
computation requirements of all the active tasks in the system, and ensuring that all latency requirements
are met given the task ordering of the temporal scheduler. Individual tasks supply either a completion
deadline (e.g., video frame rate), or a desired rate of execution in megahertz. The voltage scheduler
automatically estimates the task’s workload (e.g., processing an mpeg frame), measured in processor
cycles. The optimal clock frequency in a single-tasking system is simply workload divided by the deadline
time, but a more sophisticated voltage scheduler is necessary to determine the optimal frequency for
multiple tasks. Workload predictions are empirically calculated using an exponential moving average,
and are updated by the voltage scheduler at the end of each task. Other features of the algorithm include
the graceful degradation of performance when deadlines are missed, the reservation of cycles for future
high-priority tasks, and the filtering of tasks that cannot possibly be completed by a given deadline [13].

Figure 17.7 plots VDD for two seconds of a user-interface task, which generally has long-latency
requirements. Clock frequency increases with VDD, so processor speed can be inferred from this scope
trace. The top trace demonstrates the microprocessor running in the typical full-speed/idle operation.
A high voltage indicates the processor is actively running at full speed, and low voltage indicates system
idle. This trace shows that the user-interface task has bursts of computation, which can be exploited with
DVS. The lower trace shows the same task running with the voltage scheduler enabled. In this mode,
low voltage indicates both system idle and low-speed/low-energy operation. The voltage spikes indicate
when the voltage scheduler has to increase the processor speed in order to meet required deadlines. This
comparison demonstrates that much of the computation for this application can be done at low voltage,
greatly improving the system’s energy efficiency.

Voltage Converter

The feedback loop for converting a desired operating frequency, FDES, into VDD is shown in Fig. 17.8, and
is built around a buck converter, which is very amenable to high-efficiency, low-voltage regulation [14].
The ring oscillator converts VDD to a clock signal, fCLK, which drives a counter that outputs a digital
© 2002 by CRC Press LLC



                                                  
measured frequency value, FMEAS. This value is subtracted from FDES to find the frequency error, FERR.
The loop filter implements a hybrid pulse-width/pulse-frequency modulation algorithm [9], which
generates an MP or MN enable signal. The inductor, LDD, transfers charge to the capacitor, CDD, to generate
a VDD, which is fed back to the ring oscillator to close the loop. 

The only external components required are a 4.7 µH inductor (LDD) placed next to the converter, 5.5 µF
(CDD) of capacitance distributed near the chips’ VDD pins, and a 1 MHz reference clock. The ring oscillator
is placed on the processor chip, and is designed to track the critical paths of the microprocessor over
voltage. A beneficial side effect is that the ring oscillator will also track the critical paths over process and
temperature variations. The rest of the loop is integrated onto the converter die.

New Performance Metrics

In addition to the supply ripple and conversion efficiency performance metrics of a standard voltage
regulator, the DVS converter introduces two new performance metrics: transition time and transition
energy. For a large voltage change (from VDD1 to VDD2), the transition time is: 

 (17.4)

FIGURE 17.7 DVS improvement for UI process.

FIGURE 17.8 Voltage converter negative-feedback loop.
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where IMAX is the maximum output current of the converter, and the factor of two exists because the
current is pulsed in a triangular waveform. The energy consumed during this transition is:

(17.5)

where η is the efficiency of the DC-DC converter.
A typical capacitance of 100 µF yields a tTRAN of 520 µs and an ETRAN of 130 µJ for a 1.2–3.8 V transition

(for the prototype system: IMAX = 1 A, η = 90%). This long tTRAN precludes any real-time control or fast
interrupt response time, and only allows very coarse speed control. For voltage changes on the order of
a context switch (30–100 Hz), the 100 µF capacitor will give rise to 4–13 mW of transition power
dissipation. In the prototype system, this was unreasonably large, since the average system power dissi-
pation could be as low as 3.2 mW. To prevent the transition power dissipation from dominating the total
system power dissipation, a converter loop optimized for a much smaller CDD was designed.

Increasing CDD reduces supply ripple and increases low-voltage conversion efficiency, making the loop
a better voltage regulator, while decreasing CDD reduces transition time and energy, making the loop a
better voltage tracking system. Hence, the fundamental trade-off in DVS system design is to make the
processor more tolerant of supply ripple so that CDD can be reduced in order to minimize transition time
and energy. The hybrid modulation algorithm of the loop filter maintains good low-voltage conversion
efficiency to counter the effect of a smaller CDD [15].

Limits to Reducing CDD

Decreasing CDD reduces transition time, and by doing so increases dVDD/dt. CMOS circuits can operate
with a varying supply voltage, but only up to a point, which is process dependent. This is discussed
further in the “Design Issues” section.

Decreased capacitance increases supply ripple, which in turn increases processor energy consumption
as shown in Fig. 17.9. The increase is moderate at high VDD, but begins to increase as VDD approaches
VT because the negative ripple slows down the processor so much that most of the computation is
performed during the positive ripple, which decreases energy efficiency. Loop stability is another limi-
tation on reducing capacitance. The dominant pole in the system is set by CDD and the load resistance
(VDD/IDD). The inductor does not contribute a pole because the buck converter operates in discontinuous
mode; inductor current is pulsed to deliver discrete quantities of charge to CDD [9]. 

As CDD is reduced the pole frequency increases, particularly at high IDD. As the pole approaches the
sampling frequency, a 1 MHz pole due to a sample delay becomes significant, and will induce ringing.
Interaction with higher-order poles will eventually make the system unstable. 

Increasing the converter sampling frequency will reduce supply ripple and increase the pole frequency
due to the sample delay. Thus, these two limits are not fixed, but can be varied; however, increasing the

FIGURE 17.9 Energy loss due to supply ripple.
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sampling frequency has two negative side effects. First, low-load converter efficiency will decrease, and
fCLK quantization error will increase. These side effects may be mitigated with a variable sampling
frequency that adapts to the system power requirements (e.g., VDD and IDD). The maximum dVDD/dt at
which the circuits will still operate properly is a hard constraint, but occurs for a much smaller CDD than
the supply ripple and stability constraints.

Measured Energy Efficiency

Figure 17.10 plots the prototype system’s throughput versus its energy/operation for the Dhrystone 2.1
benchmark, which is commonly used to characterize throughput (MIPS), as well as energy consumption
(watts/MIP), for microprocessors in embedded applications [16]. To generate the curve, the system is
operated at constant fCLK and VDD to demonstrate the full operating range of the system. The throughput
ranges 6–85 Dhrystone 2.1 MIPS, and the total system energy consumption ranges 0.54–5.6 mW/MIP.
At constant VDD, the ETR is 0.065–0.09 mW/MIP2. 

With DVS, peak throughput can be delivered upon demand. Thus, the true operating point for the
system lies somewhere along the dotted line because 85 MIPS can always be delivered when required.
When only a small fraction of the computation requires peak throughput, the processor system can deliver
85 MIPS while consuming, on average, as little as 0.54 mW/MIP. This yields an ETR of 0.006 mW/MIP2,
which is more than a tenfold improvement compared to when the system is operating with a fixed
voltage.

To evaluate DVS on real programs, three benchmark programs were chosen that represented software
applications that are typically run on notebook computers or PDAs. Existing benchmarks (e.g., SPEC,
Dhrystone MIPS, etc.) are not applicable because they only measure the peak performance of the
processor. New benchmarks were selected, which combine computational requirements with realistic
latency constraints, and include video decoding (MPEG), audio decoding (AUDIO), and an address-
book user interface program (UI) [9].

As expected, the compute-intensive MPEG benchmark only has an 11% energy reduction from DVS,
but DVS demonstrates significant improvement for the less compute-intensive AUDIO and UI bench-
marks, which have a 4.5 times and 3.5 times energy reduction, respectively. The voltage scheduler’s
heuristic algorithm has a difficult time optimizing for compute-intensive code, so it performs extremely
well on nonspeed critical applications. Thus, DVS provides significant reduction in energy consumption,
with no loss of performance, for real software that is commonly run on portable electronic devices.

FIGURE 17.10 Measured throughput vs. energy/operation.
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17.5 Design Issues

By following a simple set of rules and design constraints, the design of DVS circuits moderately increases
design validation and reduces energy-efficiency when measured at a fixed voltage; however, these con-
straints are heavily outweighed by the enormous increase in energy efficiency afforded by DVS.

Design over Voltage

A typical processor targets a fixed supply voltage, and is designed for ±10% maximum voltage variation.
In contrast, a DVS processor must be designed to operate over a much wider range of supply voltages,
which impacts both design implementation and verification time. However, with a few exceptions, the
design of a DVS-compatible processor is similar to the design of any other high-performance processor.

Circuit Design Constraints

To maximize the achievable energy efficiency, only circuits that can operate down to VT should be used.
NMOS pass gates are often used in low-power design due to their small area and input capacitance [17],
but they are limited by not being able to pass a voltage greater than VDD − VT, such that a minimum VDD

of 2VT is required for proper operation. Since throughput and energy consumption vary by a factor of
4 over the voltage range VT to 2VT, using NMOS pass gates restricts the range of operation by a signifi-
cant amount, and are not worth the moderate improvement in energy efficiency. Instead, CMOS pass
gates, or an alternate logic style, should be utilized to realize the full voltage range of DVS.

The delay of CMOS circuits tracks over voltage such that functional verification is only required at
one operating voltage. The one possible exception is any self-timed circuit, which is a common technique
to reduce energy consumption in memory arrays. If the self-timed path layout exactly mimics that of
the circuit delay path as was done in the prototype processor, then the paths will scale similarly with
voltage and eliminate the need to functionally verify over the entire range of operating voltages.

Circuit Delay Variation

Although circuit delay tracks well over voltage, subtle delay variations exist and do impact circuit timing.
To demonstrate this, three chains of inverters were simulated whose loads were dominated by gate,
interconnect, and diffusion capacitance respectively. To model paths dominated by stacked devices, a
fourth chain was simulated consisting of 4 PMOS and 4 NMOS transistors in series. The relative delay
variation of these circuits is shown in Fig. 17.11 for which the baseline reference is an inverter chain with
a balanced load capacitance similar to the ring oscillator. 

The relative delay of all four circuits is a maximum at only the lowest or highest operating voltages.
This is true even including the effect of the interconnect’s RC delay. Because the gate dominant curve is

FIGURE 17.11 Relative CMOS circuit delay variation over supply voltage.
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convex, combining it with one or more of the other effects’ curves may lead to a relative delay maxima
somewhere between the two voltage extremes, but all the other curves are concave and roughly mirror
the gate dominant curve such that this maxima will be less than a few percent higher than at either the
lowest or highest voltage, and therefore insignificant. Thus, timing analysis is only required at the two
voltage extremes, and not at all the intermediate voltage values.

As demonstrated by the series dominant curve, the relative delay of four stacked devices rapidly
increases at low voltage, and larger stacks will further increase the relative delay [18]. Thus, to improve
the tracking of circuit delay over voltage, a general design guideline is to limit the number of stacked
devices, except for circuits whose alternative design would be significantly more expensive in area and/or
power (e.g., memory address decoder).

Noise Margin Variation

Figure 17.12 demonstrates the two primary ways that noise margin is degraded. The first is capacitive
coupling between an aggressor signal wire that is switching and an adjacent victim wire. When the
aggressor and victim signals have the same logic level, and the aggressor transitions between logic states,
the victim signal can also incur a voltage change. Switching current spikes on the power distribution
network, which has resistive and inductive losses, induces supply bounce. If a gate’s output signal is the
same voltage as the supply that is bouncing, the voltage spike transfers directly to the output signal. If
the voltage change on the gate output for either case is greater than the noise margin, the victim signal
will glitch and potentially lead to functional failure.

For the case of capacitive coupling, the amplitude of the voltage spike on the victim signal is proportional
to VDD to first order. As such, the important parameter to analyze is noise margin divided by VDD to norma-
lize out the dependence on VDD. Figure 17.13 plots two common measures of noise margin versus VDD,

FIGURE 17.12 Sources of noise margin degradation.

FIGURE 17.13 Noise margin vs. supply voltage.
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the noise margin of a standard CMOS inverter, and a more pessimistic measure of noise margin, VT .
The relative noise margin is a minimum at high voltage, such that signal integrity analysis to ensure there
is no glitching only needs to consider a single value of VDD. If a circuit passes signal integrity analysis at
maximum VDD, it is guaranteed to pass at all other values of VDD. 

Supply bounce occurs through resistive (IR) and inductive (dI/dt) voltage drop on the power distri-
bution network both on chip and through the package pins. Figure 17.14 plots the relative normalized
IR and dI/dt voltage drops as a function of VDD. It is interesting to note that the worst-case condition
occurs at high voltage, and not at low voltage, since the decrease in current and dI/dt more than offsets
the reduced voltage swing. Given a maximum tolerable noise margin reduction, only one operating
voltage needs to be considered, which is maximum VDD, to determine the maximum allowed resistance
and inductance for the global power grid and package parasitics.

Design over Varying Voltage

One approach to designing a processor system that switches voltage dynamically is to halt processor
operation during the switching transient. The drawback to this approach is that interrupt latency increases
and potentially useful processor cycles are discarded. Since static CMOS gates are quite tolerable of a
varying VDD, there is no fundamental need to halt operation during the transient. When the gate’s output
is low, it will remain low independent of VDD, but when the output is high, it will track VDD via the PMOS
device(s). Simulation demonstrated that for a minimum-sized PMOS device in our 0.6 µm process, the
RC time constant of the PMOS drain-source resistance and the load capacitance is a maximum of 5 ns,
which occurs at low voltage. Thus, static CMOS gates track quite well for a dVDD/dt in excess of 100 V/µs,
and because all logic high nodes will track VDD very closely, the circuit delay will instantaneously adapt
to the varying supply voltage. Since the processor clock is derived from a ring oscillator also powered by
VDD, its output frequency will dynamically adapt as well, as shown in Fig. 17.15.

Yet, constraints are necessary when using a design style other than static CMOS as well as limits on
allowable dVDD/dt. The prototype processor design contains a variety of different styles, including static CMOS
logic, as well as dynamic logic, CMOS pass-gate logic, memory cells, sense-amps, bus drivers, and I/O drivers.
The maximum dVDD /dt that the circuits in this 0.6 µm process technology can tolerate is approximately
5 V/µs, which is well above the maximum dVDD /dt (0.2 V/µs) of the prototype voltage converter. 

Dynamic Logic

Dynamic logic styles are often preferable over static CMOS as they are more efficient for implementing
complex logic functions. They can be used with a varying VDD, but require some additional design
considerations. One failure mode can occur while the circuit is in the evaluation state and the gate inputs
are low such that the output node is undriven at a value VDD. If VDD ramps down by more than a diode
drop by the end of the evaluation state, the drain-well diode will become forward biased. Current may

FIGURE 17.14 Normalized noise margin reduction due to supply bounce.
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be injected into the parasitic PNP transistor of the PMOS device and induce latch-up [19]. This condition
occurs when

 (17.6)

where tCLK | AVE is the average clock period as VDD varies by a diode voltage drop, VBE. Since the clock
period is longest at lowest voltage, this is evaluated as VDD ranges from VMIN + VBE to VMIN, where VMIN =
VT + 100 mV. For our 0.6 µm process, the limit is −20 V/µs. Another failure mode occurs if VDD ramps
up by more than VTp by the end of the evaluation state, and the output drives a PMOS device resulting
in a false logic low, giving a functional error. This condition occurs when

 (17.7)

and tCLK | AVE is evaluated as VDD varies from VMIN to VMIN + VTp, since this condition is also most severe
at low voltage. For our 0.6 µm process, the limit is 24 V/µs.

These limits assume that the circuit is in the evaluation state for no longer than half the clock period. If
the clock is gated, leaving the circuit in the evaluation state for consecutive cycles, these limits drop
proportionally. Hence, the clock should only be gated when the circuit is in the precharge state. These limits
may be increased to that of static CMOS logic using a small bleeder PMOS device to hold the output at
VDD while it remains undriven. The bleeder device also removes the constraint on gating the clock, and
since the bleeder device can be made quite small, there is insignificant degradation of circuit delay due
to the PMOS bleeder fighting the NMOS pull-down devices. A varying VDD will magnify the charge-
redistribution problem of dynamic logic such that the internal nodes of NMOS stacks should be properly
precharged [19].

Tri-State Buses

Tri-state buses that are not constantly driven for any given cycle suffer from the same two failure modes
as seen in dynamic logic circuits due to their floating capacitance. The resulting dVDD/dt can be much
lower if the number of consecutive undriven cycles is unbounded. Tri-state buses can only be used if one
of two design methods is followed. 

The first method is to ensure by design that the bus will always be driven. Although this is done easily
on a tri-state bus with only two drivers, this may become expensive to ensure by design for a large number
of drivers, N, which requires routing N, or log(N), enable signals.

FIGURE 17.15 Ring oscillator adapting to varying supply voltage (simulated).
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The second method is to use weak, cross-coupled inverters that continually drive the bus. This is
preferable to just a bleeder PMOS as it will also maintain a low voltage on the floating bus. Otherwise,
leakage current may drive the bus high while it is floating for an indefinite number of cycles. The size of
these inverters can be quite small, even for a large bus. For our 0.6 µm process, the inverters could be
designed to tolerate a dVDD/dt in excess of 75 V/µs with negligible increase in delay, while increasing the
energy consumed driving the bus by only 10%.

SRAM

SRAM is an essential component of a processor. It is found in the processor’s cache, translation look-
aside buffer (TLB), and possibly in the register file(s), prefetch buffer, branch-target buffer, and write
buffer. Because all these memories operate at the processor’s clock speed, fast response time is critical, which
demands the use of a sense-amp. The static and dynamic CMOS logic portions (e.g., address decoder,
word-line driver, etc.) of the memory respond to a changing VDD similar to the ring oscillator, as desired.

To first-order, the delay of both the six-transistor SRAM cell and the basic sense-amp topology
(Fig. 17.16), track changes in VDD much like the delay of static CMOS logic. Second-order effects
cause the SRAM cell behavior to deviate when dVDD/dt is in excess of 50 V/µs for our 0.6 µm process
[20]. However, the limiting second-order effect occurs within the sense-amp because the common-
mode voltage between Bit and nBit does not change with VDD as it varies during the sense-amp
evaluation state. 

Figure 17.17 plots the relative delay variation of the sense-amp compared against the relative delay
variation for static CMOS for different rates of change on VDD. It demonstrates that the delay does shift
to first order, but that for negative dVDD/dt, the sense-amp slows down at a faster rate than static CMOS.
For the prototype processor design, the sense-amp delay was approximately 25% of the cycle time. The
critical path containing the sense-amp was designed with a delay margin of 10%, such that the maximum
increase in relative delay of the sense-amp as compared to static CMOS that could be tolerated was 40%. 

This set the ultimate limit on how fast VDD could vary in our 0.6 µm process

(17.8)

This limit is proportional to the sense-amp delay, such that for improved process technology and faster
cycle times, this limit will improve. What must be avoided are more complex sense-amps whose aim is

FIGURE 17.16 SRAM cell and basic sense-amp topology.
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to improve response time and/or lower energy consumption for a fixed VDD, but fail for varying VDD,
such a charge-transfer sense-amp [21].

17.6 Conclusions

DVS is a powerful design technique that can provide a tenfold increase in the energy efficiency of battery-
powered processors, without sacrificing peak throughput. DVS is amenable to standard digital CMOS
processes, with a few additional circuit design constraints. Existing operating systems can be retrofitted
to support DVS, with little modification, as the voltage scheduler can be added to the operating system
in a modular fashion. The prototype system has demonstrated that when running real programs, typical
of those run on notebook computers and PDAs, DVS provides a significant reduction in measured system
energy consumption, thereby considerably extending battery life. 

Although DVS was not even considered feasible in commercial products three or four years ago, the
rapidly evolving processor industry has begun to adopt various forms of DVS

• In 1999, Intel introduced SpeedStep®*, which runs the processor at two different voltages and
frequencies, depending upon whether the notebook computer is plugged into an AC outlet, or
running off of its internal battery [22]. 

• In 2000, Transmeta introduced LongRun®*, which dynamically varies voltage and frequency over
the range of 1.2–1.6 V and 500–700 MHz, providing a 1.8 times variation in processor energy
consumption. Control of the voltage/frequency is in firmware, which monitors the amount of
time the operating system is sleeping [23].

• In 2000, AMD introduced PowerNow!®*, which dynamically varies voltage and frequency over
the range of 1.4–1.8 V and 200–500 MHz, providing a 1.7 times variation in processor energy
consumption. Control of the voltage/frequency is implemented via a software driver that monitors
the operating system’s measure of CPU utilization [24].

• In 2001, Intel Inc. introduced the XScale®* processor, which is essentially the second generation
StrongArm®* processor. It can dynamically operate over the voltage and frequency range of
0.7–1.75 V and 150–800 MHz, providing a 6.3 times variation in processor energy consumption,
the most aggressive range announced to date. By further advancing the energy-efficiency of the
original StrongArm, this device will be able to deliver 1000 MIPS with average power dissipation
as low as 50 mW at 0.7 V, yielding an ETR as low as 0.05 µW/MIP2 [25].

FIGURE 17.17 Sense-amp delay variation with varying supply voltage.

* Registered trademarks of Intel Inc., Transmetal Inc., and Advanced Micro Devices Inc.
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18.7 Low-Power Standard Cell Libraries

18.1 Introduction

For innovative portable and wireless devices, systems on chip (SoCs) containing several processors,
memories, and specialized modules are obviously required. Performance and also low power are main
issues in the design of such SoCs. In deep submicron technologies, SoCs contain several millions of
transistors and have to work at lower and lower supply voltages to avoid too high power consumption.
Consequently, digital libraries as well as ROM and SRAM memories have to be designed to work at very
low supply voltages and to be very robust while considering wire delays, signal input slopes, noise, and
crosstalk effects.

Are these low-power SoCs only constructed with low-power processors, memories, and logic blocks?
If the latter are unavoidable, many other issues are quite important for low-power SoCs, such as the way
to synchronize the communications between processors as well as test procedures, online testing, software
design and development tools. This chapter is a general framework for the design of low-power SoCs,
starting from the system level to the architecture level, assuming that the SoC is mainly based on the
reuse of low-power processors, memories, and standard cell libraries.

Christian Piguet
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et de Microtechnique SA and 
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18.2 Power Reduction from High to Low Level

Design methodologies at different abstraction levels such as systems, architectures, logic design, basic
cells as well as layout, have to take into account the power consumption. The main goals of such design
methods are the Vdd reduction, the activity reduction as well as the capacitance reduction [1–7]. One has
to ask the following question: What are the results of several years of research, applications, industrial
designs in low power?

Two ways to consider this:

• What are the new or effective design techniques to reduce power?

• What is the status of the CAD tools regarding low power, as it is well known that such tools are
required today to layout several millions of transistors on a single chip?

Design Techniques for Low Power

Future SoCs will contain several different processor cores on a single chip. It results in parallel architec-
tures, which are known to be less power hungry than fully sequential architectures based on a single
processor [8]. The design of such architectures has to start with very high-level models in languages such
as System C, SDL, or MATLAB. The very difficult task is then to translate such very high-level models
in application software in C and in RTL languages (VHDL, Verilog) to be able to implement the system
on several processors. One could think that many tasks running on many processors require a multitask
but centralized operating system (OS), but regarding low power, it would be better to have tiny OS (2 K
or 4 K instructions) for each processor [9], assuming that each processor executes several tasks. Obviously,
this solution is easier as each processor is different even if performances could be reduced due to the
inactivity of a processor that has nothing to do at a given time frame. 

One has to note that most of the power can be saved at the highest levels. At the system level, partition,
activity, number of steps, simplicity, data representation, and locality (cache or distributed memory
instead of a centralized memory) have to be chosen (Fig. 18.1). These choices are strongly application
dependent. Furthermore, these choices have to be performed by the SoC designer, and he has to be power
conscious. 

At the architecture level, many low-power techniques have been proposed (Fig. 18.1). The list could
be gated clocks, pipelining, parallelization, very low Vdd, several Vdd, variable Vdd and VT , activity esti-
mation and optimization, low-power libraries, reduced swing, asynchronous, adiabatic. Some are used
in industry, but some are not, such as adiabatic and asynchronous techniques. At the lowest levels, for
instance a low-power library, only a moderate factor (about 2) in power reduction can be reached. At
the logic and layout level, the choice of a mapping method to provide a netlist and the choice of a low-
power library are crucial. At the physical level, layout optimization and technology have to be chosen.

High level
LP systems, LP software, processor types, processors 
versus random logic, parallel machines, high-level 
power estimation

Activity 
reduction

Vdd reduction Capacitance 
reduction

Architecture LP Codes 
asynchronous

Parallelization 
adiabatic

Simplicity

Circuit layout Gated clock Low VT Low-power 
library

FIGURE 18.1 Overview of low-power techniques.
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Some Basic Rules

There are some basic rules that can be proposed to reduce power consumption at system and architecture
levels: 

• Reduction of the number N of operations to execute a given task.

• Sequencing that is too high always consumes more than the same functions executed in parallel. 

• Obviously, parallel architectures provide better clock per instruction (CPI), as well as pipelined
and RISC architectures.

• The lowest Vdd for the specific application has to be chosen. 

• The goal is to design a chip that just fits to the speed requirements [10].

The main point is to think about systems, with power consumption reduction in mind. According to
the mentioned basic rules, how to design a SoC that uses parallelism, at the right supply voltage, while
minimizing the steps to perform a given operation or task. 

The choice of a given processor or a random logic block is also very important. A processor results in
a quite high sequencing while a random logic block works more in parallel for a same specific task. The
processor type has to be chosen according to the work to be performed; if 16-bit data are to be used, it is
not a good idea to choose a less expensive 8-bit controller and to work in double precision (high sequencing).

CAD Tools

Each specialized processor embedded in a SoC will be programmed in C and will execute after compilation
its own code. Low-power software techniques have to be applied to each piece of software, including
pruning, inlining, loop unrolling, and so on. For reconfigurable processor cores, retargetable compilers
have to be available. The parallel execution of all these task have to be synchronized through communi-
cation links between processors and peripherals. It results that the co-simulation development tools have
to deal with several pieces of software running on different processors and communicating between each
other. Such a tool has to provide a high-level power estimation tool to check which are the power hungry
processors, memories or peripherals as well as the power hungry software routines or loops [11]. Such
a tool is far from being commercially available. Embedded low-power software emerges as a key design
problem. The software content of SoC will increase as well as the cost of its development.

Generally speaking, the available CAD tools for SoC chips have been designed for robust and reliable
synchronous designs. It means that even gated clocks, low Vdd, several Vdd, are not or not yet supported,
and that asynchronous and adiabatic will not be supported in the near future. It is a major problem,
because CAD tools are far behind (10 years) the 2000 year requirements. Furthermore, little money is
invested in CAD tools. It could be a stopper for some low-power methods. One can conclude that if
power can be saved at a high level (factor 10 to 100 or more!) while using conventional CAD tools, it
could be the way to go; however, power conscious SoC designers are required [12].

18.3 Large Power Reduction at High Level

As mentioned previously, a large part of the power can be saved at high level. Factors of 10 to 100 or
more are possible; however, it means that the resulting system could be quite different, with less func-
tionality or less programmability. The choice among various systems is strongly application dependent.
One has to think about systems and low power to ask good questions of the customers and to get
reasonable answers. Power estimation at high level is a very useful tool to verify the estimated total power
consumption. Before starting a design for a customer, it is mandatory to think about the system and
what is the goal about performances and power consumption. Several examples will be provided because
this way of thinking is application dependent.  
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RF Devices

An FM radio can be designed with an analog FM receiver as well as with analog and digital (random logic)
demodulations, but a software radio has also been proposed. Such a system converts the FM signal directly
into digital with very high-speed ADCs and does the demodulation work with a microprocessor. Such a
solution is interesting as the same hardware can be used for any radio, but one can be convinced that a
very high-speed ADC is a very consuming block, as well as a microprocessor that has to perform the
demodulation (16-bit ADC can consume 1–10 W at 2.2 GHz [13]). In [13], some examples are provided
for a digital baseband processor, achieving 1500 mW if implemented with a DSP processor and only
10 mW if implemented with a direct mapped ASIC. The latter case provides a factor of 150 in power
reduction. 

The transmission of data from one location to another by RF link is more and more power consuming
if the distance between the two points is increased. The power (although proportional to the distance at
square in ideal case) is practically proportional to the distance at power 3 or even power 4 due to noise,
interferences, and other problems. If three stations are inserted between the mentioned points, and
assuming a power of 4, the power can be reduced by a factor 64.

Low-Power Software

Quite a large number of low-power techniques have been proposed for hardware, but relatively fewer for
software. Hardware designers are today at least conscious that power reduction of SoCs is required for
most applications. However, it seems that it is not the case for software people. Furthermore, a large part
of the power consumption can be saved while modifying the application software. 

For embedded applications, it is quite often the case that an industrial existing C code has to be used
to design an application (for instance, MPEG, JPEG). The methodology consists in improving the industrial
C code by

1. pruning, some parts are removed.
2. clear separation of (a) the control code, (b) the loops, and (c) the arithmetic operations.

Several techniques can be used to optimize the loops. In some applications, the application is 90% of
the time running in loops. Three techniques can be used efficiently, such as loop fusion (loops executed
in sequence with the same indices can be merged), loop tiling (to avoid fetching all the operands from
the data cache for each loop iteration, so some data used by the previous iteration can be reused for the
next iteration), and loop unrolling. 

To unroll a loop is to repeat the loop body N times if there are N iterations of the loop. The code size
is increased, but the number of executed instructions is reduced, as the loop counter (initialization,
incrementation, and comparison) is removed.

A small loop executed eight times, for instance an 8  × 8 multiplication, results in at least 40 executed
instructions, while the loop counter has to be incremented and tested. If the loop is unrolled, the code size
is larger, but the number of executed instructions is reduced to about 24 (Fig. 18.2). This example illustrates
a general rule: less sequencing in the software at the price of more hardware, i.e., more instructions in
the program memory. Table 18.1 also shows that a linear routine (without loops) is executed with fewer
instructions than a looped routine at the price of more instructions in the program.

TABLE 18.1 Number of Instructions in the Code as well as the Number of Executed 
Instructions for an N × N Multiplication with a 2 × N Result

Number of Instructions 
8-bit Multiply Linear

CoolRISC 88 
in the Code 30

CoolRISC 88 
Executed 30

PIC 16C5× in 
the Code 35

PIC 16C5× 
Executed 37

8-bit multiply looped 14 56 16 71
16-bit multiply linear 127 127 240 233
16-bit multiply looped 31 170 33 333
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Processors, Instructions Sets, and Random Logic

A processor-based implementation results in very high sequencing. It is due to the processor architecture
that is based on the reuse of the same operators, registers, and memories. For instance, only one step (N = 1)
is necessary to up-date a hardware counter. For its software counterpart, the number of steps is much
higher, while executing several instructions with many clocks in sequence. This simple example shows
that the number of steps executed for the same task can be very different depending on the architecture. 

The instruction set can also contain some instructions that are very useful but expensive to implement
in hardware. An interesting comparison is provided by the multiply instruction that has been imple-
mented in the CoolRISC 816 (Table 18.2). Generally, 10% of the instructions are multiplications in a given
embedded code. Assume 4 K instructions, i.e., 400 instructions (10%) for multiply, resulting in 8 multiply
(each multiply requires about 50 instructions), so a final code of 3.6 K instructions. This is why the
CoolRISC 816 contains a hardware 8 × 8 multiplier.

Processor Types

Several points must be fulfilled in order to save power. The first point is to adapt the data width of the
processor to the required data. It results in increased sequencing to manage, for instance, 16-bit data on
a 8-bit microcontroller. For a 16-bit multiply, 30 instructions are required (add-shift algorithm) on a
16-bit processor, while 127 instructions are required on a 8-bit machine (double precision). A better
architecture is to have a 16 × 16 bit parallel-parallel multiplier with only one instruction to execute a
multiplication. 

Another point is to use the right processor for the right task. For control tasks, DSP processors are
largely inefficient. But conversely, 8-bit microcontrollers are very inefficient for DSP tasks! For instance,
to perform a JPEG compression on a 8-bit microcontroller requires about 10 millions of executed
instructions for a 256 × 256 image (CoolRISC, 10 MHz, 10 MIPS, 1 s per image). It is quite inefficient.
Factor 100 in energy reduction can be achieved with JPEG dedicated hardware. With two CSEM-designed

TABLE 18.2 Multiplication with and without Hardware Multiplier

Looped 8-bit Multiply
CoolRISC 816 without Multiplier 

54–62 Executed Instructions
CoolRISC 816 with Multiplier 

2 Executed Instructions
Speed-Up 

29

Looped 16-bit multiply 72–88 16 5
Floating-Point 32-bit multiply 226–308 41–53 5.7

FIGURE 18.2 Unrolled loop multiply.
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co-processors working in pipeline, i.e., a DCT co-processor based on an instruction set (program memory
based) and a Huffman encoder based on random logic, finite state machines, one has the following results
(Table 18.3, synthesized by Synopsys in 0.25 µm TSMC process at 2.5 V) 400 images can be compressed
per second with a 13 mA power consumption. At 1.05 V, 400 images can be compressed per second with
a 1 mA power consumption, resulting in quite a large number of 80,000 compressed images per watt
(1000 better than a programmed-based implementation). 

Figure 18.3 shows an interesting architecture to save power. For any application there is some control
that is performed by a microcontroller (the best machine to perform control). But in most applications,
there is also a main task to execute such as DSP tasks, convolutions, JPEG, or other tasks. The best
architecture is to design a specific machine (co-processor) to execute such a task. So this task is executed
by the smallest and the most energy efficient machine. Most of the time, both microcontroller and
co-processors are not running in parallel.

Low-Power Memories

Memory organization is very important in systems on a chip. Generally, memories consume most of the
power. So it comes immediately that memories have to be designed hierarchically. No memory technology
can simultaneously maximize speed and capacity at lowest cost and power. Data for immediate use is
stored in expensive registers, in cache memories, and less used data in large memories. 

For each application, the choice of the memory architecture is very important. One has to think of
hierarchical, parallel, interleaved, and cache memories (sometimes several levels of cache) to try to find
the best trade-off. The application algorithm has to be analyzed from the data point of view, the organi-
zation of the data arrays, and how to access these structured data. 

If a cache memory is used, it is possible, for instance, to minimize the number of cache miss while
using adequate programming as well as a good data organization in the data memory. For instance, in
inner loops of the program manipulating structured data, it is not equivalent to write (1) do i then doj
or (2) do j then do i depending on how the data are located in the data memory.

Proposing a memory-centric view (as opposed to the traditional CPU-centric view) to SoC design has
become quite popular. It is certainly of technological interest. It means, for instance, that the DRAM
memory is integrated on the same single chip; however, it is unclear if this integration inspires any truly

TABLE 18.3 Frequency and Power Consumption for a JPEG Compressor

DCT Co-processor No. of Cycles 3.6 per Pixel Frequency 100 MHz Power 110 µAMHz

Huffman co-processor 3.8 per pixel 130 MHz 20 µAMHz
JPEG compression 3.8 per pixel 100 MHz 130 µAMHz

FIGURE 18.3 Microcontroller and co-processor.
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new architecture paradigms. We see it as more of a technological implementation issue [14]. It is, however,
crucial to have most of the data on-chip, as fetching data off-chip at high frequency is a very high power
consumption process. 

The Energy-Flexibility Gap

Figure 18.4 shows that the flexibility [13], i.e., to use a general purpose processor or a specialized DSP
processor, has a large impact on the energy required to perform a given task compared to the execution
of the same given task on dedicated hardware. 

18.4 Low-Power and Reliability Issues in SoCs

For SoCs, very important design problems have to be solved. They are mainly the silicon complexity
(reliability, power consumption, interconnect delays), the system complexity (logic, MPU, memories, RF,
FPGA, RF, MEMS), the design procedures (300–800 people for the design of a single chip, IP reuse,
design levels), verification and test. The total number of transistors on a single chip could be over one
billion (predicted [15] to be between 4 to 19 billions in 2014 depending in the circuit type). Some partial
answers have been given to the complexity problem, such as design reuse. The SIA Roadmap [15] predicts
that in 2012 reuse of processors, logic blocks, and peripherals, would reach about 90% of the embedded
logic on the chip. 

Low-Power SoC Architectures

Low-power SoCs will be based on low-power components, such as processor cores, memories, and libraries,
that are available with good performances, i.e., 20,000–100,000 MIPS/watt [16] for some cores (using
low-power techniques such as gated clocks); however, memories are the main consumers on a SoC and
several techniques at the architecture and electrical levels have to be applied to reduce their power
consumption (generally based on caches, DWL, bitline splitting, low swing).  

The 1997 SIA Roadmap [15] recognizes that, in 2007, asynchronous design will be used in many
designs. If ∂ is the distance travelled by a signal in one clock cycle, due to higher frequencies and increasing
interconnect delays, a chip will contain several time zones of sizes ∂ × ∂. Due also to the increasing die
size, this number of time zones will grow very rapidly with the new technologies, up to 10,000 zones in
2012. To synchronize 10,000 time zones is a true asynchronous problem [15]. This is why asynchronous
design is strongly required for chip architectures in the future [17].

Asynchronous architectures are often presented as being capable of reducing significantly the power
consumption [17]. Looking at the results from many papers, it turns out that the largest power savings
are obtained with circuits or applications that present a very irregular behavior. An irregular behavior

FIGURE 18.4 Energy-flexibility gap.
© 2002 by CRC Press LLC



                                
is, for instance, a processor that presents a tricky instruction set with multi-bytes instructions executed
in a various number of cycles and phases. Or an application for which the controller has to very often
stop and restart depending on the application. A very regular behavior is a 32-bit RISC core for which
all instructions are always executed in one clock. Figure 18.5 illustrates this basic law [18]. Basically, SoCs
will present more of an irregular behavior than a regular one. 

At the architecture level, power and Vdd management with behavior prediction of the user will be used
extensively, as well as low-power communication protocols between the various processors on a single
chip. These protocols have to be kept simple and will be asynchronous due to the fact that the various
cores will be clocked (if not asynchronous cores) with many different frequencies.

Low-Power Design and Testability Issue

At the low-level, low-power libraries and logic synthesis embedded with place and route are required, as
well as estimation of interconnect delays with copper, low-k, and SOI; however, the main issue is Vdd as
low as 0.6 to 0.3 V in 2014. With very deep submicron technologies and very low Vdd, the static power
will increase significantly due to low Vt. Several techniques with double Vt , source impedance, well
polarization, dynamic regulation of Vt are today under investigation and will be necessarily used in the
future. 

SoCs testability and debug, when the first silicon has been returned from the foundry, are important
issues. Generally, the mean time to fix a bug is one week. Today, it is not possible do determine if more
bugs will be present in a one-billion transistor chip, and if a one-week fix per bug is realistic or not;
however, it has to be mentioned that it could be much more difficult to fix a bug in IP blocks that you
have not designed. It is estimated that half of the total design effort will be devoted to verification tasks,
including debugging of the embedded software [15].

18.5 Low-Power Microcontroller Cores

The most popular 8-bit microcontroller is the Intel 8051, but each instruction is executed in at least 12
clock cycles resulting in poor performances in MIPS (million of instructions per second) and MIPS/watt.
MIPS performances of microcontrollers are not required to be very high. Consequently, short pipelines
and low operating frequencies are allowed if, however, the number of CPI is low. Such a low CPI has
been used for the CoolRISC microcontroller [19,20]. The CoolRISC 88 is an 8-bit core with eight registers
and the CoolRISC 816 is an 8-bit core with 16 registers.

CoolRISC Microcontroller Architecture

The CoolRISC is a 3-stage pipelined core. The branch instruction is executed in only one clock. In that
way, no load or branch delay can occur in the CoolRISC core, resulting in a strictly CPI = 1 (Fig. 18.6).
It is not the case of other 8-bit pipelined microprocessors (PIC, Nordic µRISC, Scenix, MCS-151, and
251). It is known that the reduction of CPI is the key to high performances. For each instruction, the
first half clock is used to precharge the ROM program memory. The instruction is read and decoded in

FIGURE 18.5 Comparison of the power consumption of asynchronous vs. synchronous architectures.
© 2002 by CRC Press LLC



        
the second half of the first clock. As shown in Fig. 18.6, a branch instruction is also executed during the
second half of this first clock, which is long enough to perform all the necessary transfers. For a load/store
instruction, only the first half of the second clock is used to store data in the RAM memory. For an
arithmetic instruction, the first half of the second clock is used to read an operand in the RAM memory
or in the register set, the second half of this second clock to perform the arithmetic operation, and the
first half of the third clock to store the result in the register set. Figure 18.7 is a CoolRISc 88 test chip. 

Another very important issue in the design of 8-bit microcontrollers is the power consumption. The
gated clock technique has been extensively used in the design of the CoolRISC cores (Fig. 18.8). The
ALU, for instance, has been designed with input and control registers that are loaded only when an ALU
operation has to be executed. During the execution of another instruction (branch, load/store), these
registers are not clocked thus no transitions occur in the ALU (Fig. 18.8). This reduces the power consump-
tion. A similar mechanism is used for the instruction registers, thus in a branch, which is executed only
in the first pipeline stage, no transitions occur in the second and third stages of the pipeline. It is interesting
to see that gated clocks can be advantageously combined with the pipeline architecture; the input and
control registers implemented to obtain a gated clocked ALU are naturally used as pipelined registers.

IP “Soft” Cores

The main issue in the design of “soft” cores [21] is reliability. In deep submicron technologies, gate delays are
smaller and smaller compared to wire delays. Complex clock trees have to be designed using Synopsys
to satisfy the required timing, mainly the smallest possible clock skew, and to avoid any timing violations. 

FIGURE 18.6 No branch delay.

FIGURE 18.7 Microphotograph of CoolRISC 88.
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Furthermore, “soft” cores have to present a low power consumption to be attractive to the possible
licensees. If the clock tree is a major issue to achieve the required clock skew, its power consumption
could be larger than desired. Today, most IP cores are based on a single-phase clock and are based on
D-flip-flops. As shown in the following example, the power consumption is largely dependent on the
required clock skew. 

As an example, a DSP core synthesized with the CSEM low-power library in TSMC 0.25 µm. The test
bench A contains only a few multiplication operations, while the test bench B performs a large number
of MAC operations (Table 18.4). Results show that if the power is sensitive to the application program,
it is also quite sensitive to the required skew: 100% of power increase from 10 ns to 3 ns skew. 

The clocking scheme of IP cores is therefore a major issue. Another approach other than the conven-
tional single-phase clock with D-flip-flops (DFF) is presented in this paper. It is based on a double-latch
approach with two nonoverlapping clocks. This clocking scheme has been used for the 8-bit CoolRISC
microcontroller IP core [16] as well as for other cores, such as a DSP core and other execution units
[22]. The advantages as well as the disadvantages will be presented.  

Latch-Based Designs

Figure 18.9 shows the double-latch concept that has been chosen for such IP cores to be more robust to
the clock skew, flip-flop failures, and timing problems at very low voltage [16]. The clock skew between
various ∅1 (respectively ∅2) pulses have to be shorter than half a period of CK. However, one requires
two clock cycles of the master clock CK to execute a single instruction. It is why one needs, for instance,
in technology TSMC 0.25 µm, 120 MHz to generate 60 MIPS (CoolRISC with CPI = 1), but the two ∅i
clocks and clock trees are at 60 MHz. Only a very small logic block is clocked at 120 MHz to generate
two 60 MHz clocks.

The design methodology using latches and two nonoverlapping clocks has many advantages over the
use of DFF methodology. Due to the nonoverlapping of the clocks and the additional time barrier caused
by having two latches in a loop instead of one DFF, latch-based designs support greater clock skew, before
failing, than a similar DFF design (each targeting the same MIPS). This allows the synthesizer and router
to use smaller clock buffers and to simplify the clock tree generation, which will reduce the power
consumption of the clock tree.

TABLE 18.4 Power Consumption of the Same Core 
with Various Test Benches and Skew

Skew Test Bench A Test Bench B

10 ns 0.44 mW/MHz 0.76 mW/MHz
3 ns 0.82 mW/MHz 1.15 mW/MHz

FIGURE 18.8 Gated-clock ALU.
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With latch-based designs, the clock skew becomes relevant only when its value is close to the nonover-
lapping of the clocks. When working at lower frequency and thus increasing the nonoverlapping of clocks,
the clock skew is never a problem. It can even be safely ignored when designing circuits at low frequency,
but a shift register made with DFF can have clock skew problems at any frequency.

Furthermore, if the chip has clock skew problems at the targeted frequency after integration, one is
able, with a latch-based design, to reduce the clock frequency. It results that the clock skew problem will
disappear, allowing the designer to test the chip functionality and eventually to detect other bugs or to
validate the design functionality. This can reduce the number of test integrations needed to validate the
chip. With a DFF design, when a clock skew problem appears, you have to reroute and integrate again.
This point is very important for the design of a chip in a new process not completely or badly characterized
by the foundry, which is the general case as a new process and new chips in this process are designed
concurrently for reducing the time to market.

Using latches for pipeline structure can also reduce power consumption when using such a scheme in
conjunction with clock gating. The latch design has additional time barriers, which stop the transitions
and avoid unneeded propagation of signal and thus reduce power consumption. The clock gating of each
stage (latch register) of the pipeline with individual enable signals, can also reduce the number of
transitions in the design compared to the equivalent DFF design, where each DFF is equal to two latches
clocked and gated together.

Another advantage with a latch design is the time borrowing (Fig. 18.10). It allows a natural repartition
of computation time when using pipeline structures. With DFF, each stage of logic of the pipeline should
ideally use the same computation time, which is difficult to achieve, and in the end, the design will be
limited by the slowest of the stage (plus a margin for the clock skew). With latches, the slowest pipeline
stage can borrow time from either or both the previous and next pipeline stage. And the clock skew only
reduces the time that can be borrowed. An interesting paper [23] has presented time borrowing with
DFF, but such a scheme needs a complete new automatic clock tree generator that does not minimize
the clock skew but uses it to borrow time between pipeline stages.

Using latches can also reduce the number of MOS of a design. For example, a microcontroller has
16 × 32-bits registers, i.e., 512 DFF or 13,312 MOS (using DFF with 26 MOS). With latches, the master
part of the registers can be common for all the registers, which gives 544 latches or 6528 MOS (using
latches with 12 MOS). In this example, the register area is reduced by a factor of 2.

FIGURE 18.9 Double-latch clocking schemes.

FIGURE 18.10 Time borrowing.
© 2002 by CRC Press LLC



                   
Gated Clock with Latch-Based Designs

The latch-based design also allows a very natural and safe clock gating methodology. Figure 18.11 shows
a simple and safe way of generating enable signals for clock gating. This method gives glitch-free clock
signals without the adding of memory elements, as it is needed with DFF clock gating.

Synopsys handles the proposed latch-based design methodology very well. It performs the time bor-
rowing well and appears to analyze correctly the clocks for speed optimization. So it is possible to use
this design methodology with Synopsys, although there are a few points of discussion linked with the clock
gating.

This clock gating methodology cannot be inserted automatically by Synopsys. The designer has to
write the description of the clock gating in his VHDL code. This statement can be generalized to all
designs using the above latch-based design methodology. We believe Synopsys can do automatic clock
gating for pure double latch design (in which there is no combinatorial logic between the master and
slave latch), but such a design causes a loss of speed over similar DFF design.

The most critical problem is to prevent the synthesizer from optimizing the clock gating AND gate
with the rest of the combinatorial logic. To ensure a glitch-free clock, this AND gate has to be placed as
shown in Fig. 18.11. This can be easily done manually by the designer by placing these AND gates in a
separate level of hierarchy of his design or placing a “don’t touch” attribute on them.

Results

A synthesizable by Synopsys CoolRISC–DL 816 core with 16 registers has been designed according to
the proposed double latch (DL) scheme (clocks ∅1 and ∅2) and provides the estimated (by Synopsys)
following performances (only the core, about 20,000 transistors) in TSMC 0.25 µm:

• 2.5 V, about 60 MIPS (but 120 MHz single clock) (It is the case with the core only, if a program
memory with 2 ns of access time is chosen, as the access time is included in the first pipeline stage,
the achieved performance is reduced to 50 MIPS.)

• 1.05 V, about 10 µW/MIPS, about 100,000 MIPS/watt (Fig. 18.12)

The core “DFF+Scan” is a previous CoolRISC core designed with flip-flops [19,20]. The CoolRISC-DL
“double latch” cores [16] with or without special scan logic provide better performances.

FIGURE 18.11 Latch-based clock gating.

FIGURE 18.12 Power consumption comparison of “soft” CoolRISC cores.
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18.6 Low-Power Memories

As memories in SoCs are larger and larger, the ratio between power consumption of memories to the
power consumption of embedded processors is significantly increased. Several solutions have been pro-
posed at the memory architecture level, such as, for instance, cache memories, loop buffers, and hierar-
chical memories, i.e., to store a frequently executed piece of code in a small embedded ROM memory
and large but rare executed pieces of code in a large ROM memory [19,20]. It is also possible to read
the large ROM in two or four clock cycles as its read access time is too large for the chosen main frequency
of the microprocessor. 

Cache Memories for Microcontrollers

Cache memories are widely used for high-performance microprocessors. In SoCs, application software
is stored in embedded memories, ROM, flash or EEPROM. If a conventional N-way set-associative cache
is used, one has to compare the energy used for a ROM access and the energy for a SRAM cache access.
While reading N tags and N blocks of the selected cache line just to select one instruction (hundreds of
bits), one can see that a conventional cache consumes much more power than a ROM access.   

The only way to save power is to use unconventional cache memories such as small L0 caches or
buffers, which store only some instructions that are reused frequently from the cache. Such a scheme is
used for some DSP processors to capture loops. Furthermore, the tags are read first and in case of a hit,
only one way is accessed. So this mechanism avoids reading N blocks in parallel and saves power. Before
fetching a block in the cache, one has to check if the instruction is already in the buffer in order to stop
the access to the cache or to the ROM if there is a buffer hit (Fig. 18.13). Obviously, the hit rate of such
a cache cannot be as high as for a N-way set associative cache of the same size.

To improve the hit rate, one has a supplementary bit (flag) per instruction generated by the compiler
(or manually generated) in the main memory indicating (if activated) that this instruction has to be
stored in the L0 cache. If this bit is “0”, the instruction, when fetched from L1 cache, is not stored in the
L0 cache. It results in the fact that instructions not often used do not pollute the L0 cache (Fig. 18.13).
Furthermore, with quite small caches (32–64 instructions), one has also to choose between cacheable
instructions, which ones are the most useful to write in cache to reach the highest hit rate. Many
algorithms working on program traces have been studied to maximize the number of instruction fetches
per write in the cache. The results are strongly dependent on the applications, i.e., a scientific code is
better than a control code (Table 18.5).

FIGURE 18.13 CoolCache for the CoolRISC microcontroller.
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Another idea is to search for instructions or routines that are obviously always in the cache during
the program execution (or nearly always in the cache). So it is quite interesting to replace a part of the
SRAM cache that is not written by a ROM structure (Fig. 18.13). In so doing, the power consumption is
reduced, as a ROM access is less consuming than a RAM access. Furthermore, a ROM cell is smaller than
a RAM cell, so there is no need to write something in the memory and a ROM memory is faster than a
RAM. Another advantage is the fact that instructions stored in ROM are always in the ROM; it could be
interesting for reactivity and real-time routines for which the execution time does not need to be dependent
on the fact that this routine is already in or not in the cache. 

Electrical Design of Low-Power ROM Memories

Few papers describe very low-power ROM structures. A ROM memory is an array of transistors (a
transistor means a logical bit “0”). Each bit is connected to a bitline to read the ROM and controlled by
a wordline. 

Figure 18.14 shows an old design of a ROM memory. Precharge techniques are used for both the
decoder and bit array. After the address is provided, the decoder (NAND gates) is precharged to “1” and
the bit array is precharged to “0” through the output multiplexer (PROM = 1). When PROM = 0, the
ROM is read. If the P-MOS in the array is there, the bitline is charged to “1,” otherwise it keeps its “0”
value. Such a memory is very slow: NAND gates for the decoder, P-MOS for the array and long bitlines. 

Existing ROM memories use a similar scheme: in a first step the bitlines are precharged to “1,” and in
the next step a wordline is selected. If there is a transistor (bit is “0”) at the intersection of the selected
wordline and a bitline, this bitline is discharged. The value of the selected word can therefore be read on
the bitlines. Many techniques have been used to speed-up existing ROM memories: NOR gates, N-MOS
for the array, to split the memory in several arrays, divided word lines (DWL), to divide the bit line, to
precharge only the useful bitlines, partial swing with sense amplifiers. Two of these techniques are described
in the following text.

Because a large part of the access time is due to the discharge of the bitline, split bitlines are generally
used. Figure 18.15 presents the split bitlines principle. Each bitline is split in sub-bitlines that are

TABLE 18.5 CoolCache Results

1-way Standard
Cache 64 Instructions

CoolCache 64
Instructions

Cache Type Hit Rate Power Gain Hit Rate Power Gain

Program sinus
Watch application

89%
68%

6%
−93%

89%
82%

64%
41%

FIGURE 18.14 Old ROM memory structure.
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connected to the main bitline (only a wire) with an additional transistor. The selection of these transistors
depends on address bits. Only one of the sub-bitlines can be connected to the main bitline. Since only
a small fraction of the bit array transistor drains are connected to a given sub-bitline, the capacitance to
be discharged is significantly reduced. The problem is that the capacitance of the main bitline is discharged
through two transistors in series. Then, in order to have a speed gain, the additional transistors (which
connect the sub-bitlines to the main bitlines) must be large. The number of large transistors is the same
as the number of bitlines. So, for 1000 bitlines, one has to drive 1000 transistors. It is therefore quite
difficult to reduce the access time and the power consumption. 

Another solution is also shown in Figure 18.15. The drains of the bit array transistors are connected
directly to a sub-bitline that is a single metal line. Figure 18.15 shows three metal lines and therefore three
sub-bitlines. To access the ROM, one has to precharge to “1” the three metal lines, and when a transistor
of a bit array is selected, only one of the three metal lines switch to “0” (if a “0” is read). A NAND gate
can detect the read value. In this solution, each “read” bitline is split only “physically” in the layout, not
“logically” as in other solutions. 

The second technique aims at removing the sense amplifiers. It allows the ROM memory to be capable
of working at any supply voltage. Noise problems are therefore removed, as sense amplifiers are very
sensitive to noise. Furthermore, it is a very simple solution, as there is no need to detect when the read
operation is finished to disable the sense amplifiers; however, if sense amplifiers are removed, bitlines
switch with full swings. One could think that power consumption is largely increased, but the results
show that power consumption is reduced. Table 18.6 shows the results in power and speed in a 0.25 µm
process.

Electrical Design of Low-Power SRAM Memories

Low power and fast SRAM memories have been described in many papers [24]. Very advanced technol-
ogies have been used with double VT. RAM cells are designed with high VT and selection logic with low
VT transistors. Some techniques such as low swing and hierarchical sense amplifiers have been used. One
can also use the fact that a RAM memory is read 85% of the time and written only 15% of the time. 

Low-power RAM memories designed by CSEM also use the split bitlines described for the ROM.
However, the RAM cell is based on nonsymmetrical ways to read and to write the memory. The patented

TABLE 18.6 ROM Memories Power Consumption Comparison

Company Techno (µm) Size Supply (V) Access Time Power (µAMHz)

Ref. [24] 0.18 8K × 16 1.8 NA 110
Ref. [24] 0.18 64K × 32 1.8 NA 335
CSEM 0.25 64 Kbytes 2.5 3 ns 20

FIGURE 18.15 Split bitlines.
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idea is to write in a conventional way while using the true and inverted bitlines, but to read only through
a single bitline (Fig. 18.16). 

The advantages are the following:

• As it is the case in the conventional scheme, it is possible to write at low Vdd since both true and
inverted bitlines on both sides of the cell are used. 

• The use of only one bitline for reading (instead of two) decreases the power consumption.

• The read condition (to achieve a read and not to overwrite the cell) has only to be effective on
one side of the cell, so some transistors can be kept minimal. It decreases the capacitance on the
inverted-bitline and the power consumption when writing the RAM. Furthermore, minimal
transistors result in a better ratio between cell transistors when reading the memory, resulting in
a speed-up of the read mechanism.

• Due to a read process only on one side of the cell, one can use the split bitlines concept more
easily (Fig. 18.15).

Table 18.7 shows some results. As mentioned, the CSEM SRAM memory achieves a full swing without
any sense amplifier.

18.7 Low-Power Standard Cell Libraries

At the electrical level, digital standard cells have been designed in a robust branch-based logic style, such
as hazard-free D-flip-flops [7,25]. Such libraries with 60 functions and 220 layouts have been used for
industrial chips. The low-power techniques used were the branch-based logic style that reduces parasitic
capacitances and a clever transistor sizing. Instead, to enlarge transistors to have more speed, parasitic
capacitances were reduced by reducing the sizes of the transistors on the cell critical paths. If several years
ago, power consumption reductions achieved compared to other libraries were about a factor of 3–5, it

TABLE 18.7 Performances of SRAM Memories

Company Techno (µm) Size Supply (V) Access Time (ns) Power (µAMHz)

Mirage Logic 0.25 2 K × 16 2.75 2.5 116
CSEM 0.25 4 K × 16 2.5 3 33
ST 0.25 8 K × 16 1.5 3 125
CSEM 0.25 4 K × 16 1.2 10 14
ST 0.25 8 K × 16 1.0 5.5 85
NEC 0.25 0.5 K × 16 0.9 10 16

FIGURE 18.16 Asymmetrical SRAM cell.
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is today only about a factor of 2 due to a better understanding of power consumption problems of library
designers. 

Today, logic blocks are automatically synthesized from a VHDL description while considering a design
flow using a logic synthesizer such as Synopsys. Furthermore, deep submicron technologies with large
wire delays imply a better robustness, mainly for sequential cells sensitive to the clock input slope. Fully
static and branch-based logic style has been found as the best; however, a new approach has been
proposed that is based on a limited set of standard cells. As a result, the logic synthesizer is more efficient
because it has a limited set of cells well chosen and adapted to the considered logic synthesizer. With
significantly less cells than conventional libraries, the results show speed, area, and power consumption
improvements for synthesized logic blocks. The number of functions for the new library has been reduced
to 22 and the number of layouts to 92. Table 18.8 shows that, for a similar silicon area, delays with the
new library are reduced. Table 18.9 shows that, for a similar speed, silicon area is reduced for the new
library. Furthermore, as the number of layouts is drastically reduced, it takes less time to design a new
library for a more advanced process. 

Overall, the main issue in the design of future libraries will be the static power. For Vdd as low as
0.6–0.3 V in 2014, as predicted by the Roadmap [15], VT will be reduced accordingly in very deep sub-
micron technologies. Consequently, the static power will increase significantly due to these low VT [3]. Several
techniques with double VT, source impedance, well polarization, dynamic regulation of VT [4] are today
under investigation and will be necessarily used in the future. This problem is crucial for portable devices
that are often in standby mode in which the dynamic power is reduced to zero. It results that the static
power becomes the main part of the total power. It will be a crucial point in future libraries for which
more versions of the same function will be required while considering these static power problems. A
same function could be realized, for instance, with low or high VT for double VT technologies, or several
cells such as a generic cell with typical VT, a low-power cell with high VT, and a fast cell with low VT.
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19.1 Introduction

Recently low-power design has become a very important and critical issue to enhance the portable
multimedia market. Therefore, various approaches to explore low power design have been made. The
implementation can be categorized into system level, algorithm level, architecture level, circuit level, and
process/device level. Figure 19.1 shows the relative impact on power consumption of each phase of the
design process. Essentially higher-level categories have more effect on power reduction. This section
describes the impact of each level on low-power design. 

19.2 System Level Impact

The system level is the highest layer. Therefore, it strongly influences power consumption and distribution
by partitioning system factors.

Reference [1], InfoPad of University of California, Berkeley, demonstrated a low-power wireless multi-
media access system. Heavy computation resources (functions) and large data storage devices such as
hard disks are moved to the backbone server and InfoPad itself works as just a portable terminal device.
This system level partitioning realizes Web browser, X-terminal, voice-recognition, and other application
with low power consumption because energy hungry factors were moved from the pad to the backbone.
And reference [2] demonstrates the power consumption of the InfoPad chipset to be just 5 mW.

19.3 Algorithm Level Impact

The algorithm level is the second to the system level, which defines a detailed implementation outline
of a required original function. This level has quite a large impact on power consumption. It is because
the algorithm determines how to solve the problem and how to reduce the original complexity. Thus,
the algorithm layer is key to power consumption and efficiency. 
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A typical example of algorithm contribution is motion estimation of MPEG encoder. Motion estima-
tion is an extremely critical function of MPEG encoding. Implementing fundamental MPEG2 motion
estimation using a full search block matching algorithm requires huge computations [3,4]. It reaches 4.5
teraoperations per second (TOPS) if realizing a very wide search range (±288 pixels horizontal and ±96
pixels vertical), on the other hand the rest of the functions take about 2 GOPS. Therefore motion
estimation is the key problem to solve in designing a single chip MPEG2 encoder LSI. Reference [5]
describes a good example to dramatically reduce actual required performance for motion estimation
with a very wide search range, which was implemented as part of a 1.2 W single chip MPEG2 MP@ML
video encoder. Two adaptive algorithms are applied. One is 8:1 adaptive subsampling algorithm that
adaptively selects subsampled pixel locations using characteristics of maximum and minimum values
instead of fixed subsampled pixel locations. This algorithm effectively chooses sampled pixels and reduces
the computation requirements by seven-eighths. Another is an adaptive search area control algorithm,
which has two independent search areas with H: ±32 and V: ±16 pixels in full search block matching
algorithm for each. The center locations of these search areas are decided based on a distribution history
of the motion vectors and this algorithm substantially expands the search area up to H: ±288 and V: ±96
pixels. Therefore, the total computation requirement is reduced from 4.5 TOPS to 20 GOPS (216:1),
which is possible to implement on a single chip. The first search area can follow a focused object close
to the center of the camera finder with small motion. The second one can cope with a background object
with large motion in camera panning. This adaptive algorithm attains high picture quality with very
wide search range because it can efficiently grasp moving objects, that is, get correct motion vectors. As
shown in this example, algorithm improvement can drastically reduce computation requirement and
enable low power design.

19.4 Architecture Level Impact

The architecture level is the next to the algorithm level, also in terms of impact on power consumption.
At the architecture level there are still many options and wide freedom in implementation. The archi-
tecture level is explained as CPU (microprocessor), DSP (digital signal processor), ASIC (dedicated
hardwired logic), reconfigurable logic, and special purpose DSP. 

The CPU is the most widely used general-purpose architecture as shown in Fig. 19.2. Fundamentally
anything can be performed by software. It is the most inefficient in power, however. The main features
of the CPU are the following: (1) It is completely sequential in operation with instruction fetch and decode
in every cycle. Basically this is not essential for computation itself and is just overhead. (2) There is no
dedicated address generator for memory access. The regular ALU is used to calculate memory address.
Throughput of data feeding is not, every cycle, based on load/store architecture via registers (RISC-based
architecture). This means cycles are consumed for data movement and not just for computation itself.
(CISC allows memory access operation, but this doesn’t mean it is more effective; it is a different story, not
explained in detail here.) (3) Many temporal storage operations are included in computation procedure.

FIGURE 19.1 Each level impact for low-power design.

Algorithm
Level

Algorithm
Level

Architechtre
Level

Architecture
Level

Circuit
Level

Circuit
Level

Process/Device
Level

Process/Device
Level

higher impact
more options
© 2002 by CRC Press LLC



      
This is a completely justified overhead. (4) Usually, a fully parallel multiplier is not used, causing multi-
cycle operation. This also consumes more wasted power because clocking, memory, and extra circuits
are activated in multiple for one multiply operation. (5) Resources are limited and prefixed. This results
in overhead operations to be executed as general purpose. Figure 19.3 shows dynamic run time instruction
statistics [6]. This indicates that essential computation instructions such as arithmetic operation occupy
just 33% of the entire dynamic run time instruction stream. The data moving and control-like branches
take two-thirds, which is large overhead consuming extra power.

The DSP is an enhanced processor for multiply-accumulate computation. It is general-purpose in struc-
ture and more effective for signal processing than the CPU. But still it is not very power efficient. Figure
19.4 shows the basic structure and its features are as follows. (1) The DSP is also sequential in operation
with instruction fetch and decode in every cycle similar to the CPU. It causes overhead in the same way,
but as an exception DSP has a hardware loop, which eliminates continued instruction fetch in repeated
operations, improving power penalty. (2) Many temporal storage operations are also used. (3) Resources
are limited and prefixed for general purpose as well. This is a major reason for causing temporal storage
operations. (4) Fully parallel multiplier is used making one cycle operation possible. And also accumulator
with guardbits is applied, which is very important to accumulate continuously without accuracy degradation
and undesired temporal storing to registers. This improves power efficiency for multiply-accumulate-based

FIGURE 19.2 CPU structure.

FIGURE 19.3 Dynamic instruction statistics.
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computations. (5) It is equipped with dedicated address generators for memory access. This realizes more
complex memory addressing without using regular ALU and consuming extra cycles, and two data can
be fed in every cycle directory from memory. This is very important for DSP operation. Features (4) and
(5) are advantages of the DSP in improving power efficiency over the CPU.

We define the ASIC as dedicated hardware here. It is the most power efficient because the structure
can be designed for the specific function and optimized. Figure 19.5 shows the basic image and the
features are as follows: (1) Required functions can be directly mapped in optimal form. This is the essential
feature and source of power efficiency by minimizing any overheads. (2) Temporal storage operation can
be minimized, which is large overhead in general purpose architectures. Basically this comes from feature
(1). (3) It is not sequential in operation. Instruction fetch and decode are not required. This eliminates
fundamental overhead of general-purpose processors. (4) Function is fixed as design. There is no flexi-
bility. This is the most significant drawback of dedicated hardware solutions. 

There is another category known as reconfigurable logic. Typical architecture is field programmable
gate array (FPGA). This is gate level fine-grained programmable logic. It consists of programmable
network structure and logic blocks that have a look-up table (LUT)-based programmable unit, flip-flop,
and selectors as shown in Fig. 19.6. The features are: (1) It is quite flexible. Basically, the FPGA can be
configured to any dedicated function if integrated gate capacity is enough to map it; (2) Structure can
be optimized without being limited to prefixed data width and variation of function unit like a general
32-bit ALU of CPU. Therefore, FPGA is not used only for prototyping but also where high performance
and high throughput are targeted. (3) It is very inefficient in power. Switch network for fine-grain level
flexibility causes large power overhead. Each gate function is realized by LUT programed as truth table,
for example NAND, NOR, and so on. Power consumption of interconnect takes 65% of the chip, while
logic part consumed only 5% [7]. This means major power of FPGA is burned in unessential portion.

FIGURE 19.4 DSP structure.

FIGURE 19.5 ASIC structure.
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FPGA sacrifices power efficiency in order to attain wide range flexibility. It is a trade-off between flexibility
and power efficiency. Lately, however, there is another class of reconfigurable architecture. It is coarse-
grained or heterogeneous reconfigurable architecture. Typical work is Maia of Pleiades project, U.C.
Berkeley [8–12]. This architecture consists of heterogeneous modules that are mainly coarse-grain similar
to ALU, multiplier, memory, etc. The flexibility is limited to some computation or application domain
but power efficiency is dramatically improved. This type of architecture might gain acceptance because
of strong demand for low power and flexibility.

Figure 19.7 shows cycle comparison to execute fourth order infinite impulse response (IIR) for CPU,
DSP, ASIC, and reconfigurable logic. ASIC and reconfigurable logic are assumed as two parallel imple-
mentations. CPU takes more overhead than DSP, which is enhanced for multiply computation as men-
tioned previously. Also, dedicated hardware structures such as ASIC and reconfigurable logic can reduce
computational overhead more than others.

The last one is the special purpose DSP for MPEG2 video encoding. Figure 19.8 shows an example of
programmable DSP for MPEG2 video encoding [13]. This architecture applied 3-level parallel processing
of macro-block level, block level, and pixel level in reducing performance requirement from 1.1 GHz to

FIGURE 19.6 FPGA simplified structure.

FIGURE 19.7 IIR comparison.
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81 MHz with 13 operations in parallel on an average. The macro-blocks are processed in 3-stage pipeline
with MIMD controlled by two RISCs. The 6 blocks of macro-block are handled by 6 vector processing
engines (PEs) assigned to each block with SIMD way. The pixels of block are computed by the PE that
consists of extended ALU, multiplier, accumulator, three barrel-shifters with truncating/rounding func-
tion and 6-port register file. This specialized DSP performs MPEG2 MP@ML video encoding at 1.3 W/3
V/0.4 µm process with software programmability. The architecture improvement for dedicated applica-
tion can reduce performance requirement and overhead of general-purpose approach and plays an
important role for low-power design.

19.5 Circuit Level Impact

The circuit level is the most detailed implementation layer. This level is explained as module level such
as multiplier or memory and basement level like voltage control that affects wide range of the chip. The
circuit level is quite important for performance but usually has less impact on power consumption than
previous higher levels. One reason is that each component itself is just a part of the entire chip. Therefore,
it is needed to focus on critical and major factors (most power hungry modules, etc.) in order to contribute
to power reduction for chip level improvement. 

Module Level

The module level is each component like adder, multiplier, and memory, etc. It has relatively less impact
on power compared to algorithm and architecture level as mentioned above. Even if power consumption
of one component is reduced to half, it is difficult to improve the total chip power consumption drastically
in many cases. On the other hand, it is still important to focus on circuit level components, because the
sum of all units is the total power. Especially memory components occupy a large portion of many chips.
Two examples of module level are shown here.

Usually there occur many glitches in logic block causing extra power at average 15 to 20% of the total
power dissipation [14]. Multiplier has a large adder-based array to sum partial products, which generates
many glitches. Figure 19.9 is an example of multiplier improvement to eliminate those glitches [13].
There are time-skews between X-side input signals and Y-side Booth encoded signals (Booth select)
creating many glitches at Booth selectors. These glitches propagate in the Wallace tree and consume extra
power. The glitch preventive booth (GPB) scheme (Figure 19.9) blocks X-signals until Booth encoded
signals (Y-signals) are ready by delaying the clock in order to synchronize X-signals and Y-signals. During
this blocking period, Booth selectors keep previous data as dynamic latches. This scheme reduces Wallace
tree power consumption by 44% without extra devices in the Booth selectors.

Another example is a memory power reduction [13]. Normally in ASIC embedded SRAM, the whole
memory cell array is activated. But actually utilized memory cells whose data are read out are just part

FIGURE 19.8 Special purpose DSP for MPEG2 video encoding.
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of them. This means large extra power is dissipated in memory cell array. Figure 19.10 shows column
selective wordline (CSW) scheme. The wordline of each raw address is divided into two that are controlled
by column address LSB corresponding to odd and even column. And memory cells of each raw address
are also connected to wordline corresponding to odd or even column. Therefore, simultaneously activa-
ted memory cells are reduced to 50% and it saves SRAM power by 26% without using section division
scheme.

Basement Level

The basement level is another class. This is categorized as circuit level but affects whole or wide area of
the chip like unit activation scheme as chip level control strategy or voltage management scheme.
Therefore, it can make a much larger impact on the power than the module level. 

FIGURE 19.9 Glitch preventive booth (GPB) multiplier.

FIGURE 19.10 Column selective wordline (CSW) SRAM.
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Figure 19.11 describes the gated-clock scheme, which is very popular, and is the basic scheme to reduce
power consumption. Activation of clock for target flip-flops is controlled by enable signal that is asserted
only when needed. The latch of Fig. 19.4 prevents clock from glitch. This scheme is used to inactivate
blocks or units when they are not used. Unless clocks are controlled on demand, all clock lines and inside
of flip-flops are toggled and also unnecessary data propagate into circuit units through flip-flops, which
causes large waste in power all over the chip. The gated-clock used to be handled manually by designer;
today, however, it can be generated automatically in gate compilation and also static timing analysis can
be applied without special care at latch by EDA tool. This means the gated-clock has become a very
common and important scheme.

The operating voltage is conventionally fixed at the standard voltage like 5 V or 3.3 V. But when the
system runs at multiple performance requirements, frequency can be varied to meet each performance.
At this time, the operating voltage can be also changed to the minimum to attain that frequency. The
power consumption is a quadratic function of voltage, therefore to control voltage has a very big impact
and is quite an effective method of power reduction. Figure 19.12 shows an effect of scaling with frequency
and voltage. Scaling with only frequency reduces power consumption in just proportion to frequency.
On the other hand, scaling with frequency and voltage achieves drastic power saving because of quadratic
effect of voltage reduction. It is really important to handle the voltage as a design parameter and not as

FIGURE 19.11 Gated-clock.

FIGURE 19.12 Frequency and voltage scaling.
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a fixed given standard. References [15,16] are examples called dynamic voltage scaling (DVS), which
demonstrated actual benchmark programs running on a processor system with dynamically varied
frequency and voltage based on required performance, and indicate energy efficiency improvement by
factor of 10 among audio, user interface, and MPEG programs.

19.6 Process/Device Level Impact

The process and device are the lowest level of implementation. This layer itself does not have drastic impact
directly. But when it leads to voltage reduction, this level plays a very important role in power saving.

Process rule migration rate is about 30% (×0.7) per generation. And supply voltage is also reduced
along with process shrinking after submicron generation, therefore capacitance scaling with voltage
reduction makes good contribution on power.

Wire delay has become a problem because wire resistance and side capacitance are increasing along
with process shrinking. To relieve this situation, inter-metal dielectric using low-k material and copper
(Cu) interconnect have been utilized lately [17–19]. Still, however, dielectric constant of low-k is about
3.5–2.0 depending on materials while 4.0 for SiO2, so this capacitance reduction does not a great impact
on power because it affects just wire capacitance reduction as part of the whole chip. On the other hand,
this can improve interconnect delay and chip speed allowing lower voltage operation at the same required
speed. This accelerates power reduction with effect of quadratic function of voltage.

Silicon-on-insulator (SOI) is one of the typical process options for low power. The SOI transistor is
isolated by SiO2 insulator, so junction capacitance is drastically reduced. This lightens charge/discharge
loads and saves power consumption. Partial depletion (PD)-type SOI and full depletion (FD)-type SOI
are used. The FD type can realize a steep subthreshold slope of about 60–70 mV/dec while the bulk one
is 80–90 mV/dec. This helps reduction of threshold voltage (Vth) at the same subthreshold leakage by 0.1–
0.2 V, therefore operating voltage can be lowered while maintaining the same speed. References [20–22]
are examples of PD type approach that demonstrate 20–35% performance improvement for micropro-
cessor. Reference [23] is FD type approach also applied to microprocessor.

19.7 Summary

The impact on low-power design with each implementation classes of system level, algorithm level,
architecture level, circuit level, and process/device level was described. Basically, higher levels affect power
consumption more than lower levels because higher levels have more freedom in implementation. The
key point for lower level to improve power consumption is its relationship with voltage reduction.
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20.6 Summary and Conclusion

20.1 Introduction

Estimation of average power consumption is one of the main concerns in today’s VLSI (very large scale
integrated) circuit and system design [18,19].  This is mainly due to the recent trend towards portable
computing and wireless communication systems. Moreover, the dramatic decrease in feature size, com-
bined with the corresponding increase in the number of devices in a chip, make the power density larger.
For a portable system to be practical, it should be able to operate for an extended period of time without
the need to recharge or replace the battery. In order to achieve such an objective, power consumption
in portable systems has to be minimized.

Power consumption also translates directly into excess heat, which creates additional problems for
cost-effective and efficient cooling of ICs. Overheating may cause run-time errors and/or permanent
damage, and hence, affects the reliability and the lifetime of the system. Modern microprocessors are
indeed hot: Intel’s Pentium 4 consumes 50 W, and Digital’s Alpha 21464 (EV8) chip consumes 150 W,
Sun’s UltraSPARC III consumes 70 W [14]. In a market already sensitive to price, an increase in cost
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from issues related to power dissipation are often critical. Thus, shrinking device geometries, higher
clocking speeds, and increased heat dissipation create circuit design challenges.

The Environmental Protection Agency’s (EPA) constant encouragement for green machines and its
Energy Star program are also pushing computer designers to consider power dissipation as one of the
major design constraints. Hence, there is an increasing need for accurate estimation of power consump-
tion of a system during the design phase so that the power consumption specifications can be met early
in the design cycle and expensive redesign process can be avoided.

Intuitively, a straightforward method to estimate the average power consumption is by simulating the
circuits with all possible combinations of valid inputs. Then, by monitoring power supply current
waveforms, the power consumption under each input combination can be computed. Eventually, the
results are averaged. The advantage of this method is its generality. This method can be applied to different
technologies, design styles, and architectures; however, the method requires not only a large number of
input waveforms combination, but also complete and specific knowledge of the input waveforms. Hence,
the simulation method is prohibitively expensive and impractical for large circuits.

In order to solve the problem of input pattern dependence, probabilistic techniques [21] are used to describe
the set of all possible input combinations. Using the probabilistic measures, the signal activities can be
estimated. The calculated signal activities are then used to estimate the power consumption [1,3,6,12]. As
illustrated in Fig. 20.1 [2], probabilistic approaches average all the possible input combinations and then use
the probability values as inputs to the analysis tool to estimate power. Furthermore, the probabilistic approach
requires only one simulation run to estimate power, so it is much faster than the simulation-based approaches,
which require several simulation runs. In practice, some information about the typical input waveforms are
given by the user, which make the probabilistic approach a weakly pattern dependent approach.

Another alternative method to estimate power is the use of statistical techniques, which tries to combine
the speed of the probabilistic techniques with the accuracy of the simulation-based techniques. Similar to
other simulation-based techniques, the statistical techniques are slower compared to the probabilistic
techniques, as it needs to run a certain number of samples before simulation converges to the user-
specified accuracy parameters.

This chapter is organized as follows. Section 20.2 describes how power is consumed in CMOS circuits.
Probabilistic and statistical techniques to estimate power are presented in sections 20.3 and 20.4, respectively.
Both techniques consider the temporal and spatial correlations of signals into account. Experimental results
for both techniques are presented in section 20.5. Section 20.6 summarizes and concludes this chapter.

20.2 Power Consumption 

Power dissipation in a CMOS circuit consists of the following components: static, dynamic, and direct
path power. Static power component is due to the leakage current drawn continuously from the power
supply. The dynamic power component is dependent on the supply voltage, the load capacitances, and
the frequency of operation. The direct path power is due to the switching transient current that exists

FIGURE 20.1 Probabilistic and simulation-based power estimation.
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for a short period of time when both PMOS and NMOS transistors are conducting simultaneously when
the logic gates are switching.

Depending on the design requirements, there are different power dissipation factors that need to be
considered. For example, the peak power is an important factor to consider while designing the size of the
power supply line, whereas the average power is related to cooling or battery energy consumption require-
ments. We focus on the average power consumption in this chapter. The peak power and average power
are defined in the following equations:  

Ppeak = Ipeak · Vsupply and Paverage = 

Static Power Component

In CMOS circuit, no conducting path between the power supply rails exists when the inputs are in an
equilibrium state. This is due to the complimentary feature of this technology: if the NMOS transistors
in the pull-down network (PDN) are conducting, then the corresponding PMOS transistors in the pull-
up network (PUN) will be nonconducting, and vice-versa; however, there is a small static power con-
sumption due to the leakage current drawn continuously from the power supply. Hence, the static power
consumption is the product of the leakage current and the supply voltage (Pstatic = Ileakage · Vsupply), and
thus depends on the device process technology.

The leakage current is mainly due to the reverse-biased parasitic diodes that originate from the source-
drain diffusions, the well diffusion, and the transistor substrate, and the subthreshold current of the
transistors. Subthreshold current is the current which flows between the drain and source terminals of
the transistors when the gate voltage is smaller than the threshold voltage (Vgs < Vth). For today and
future technologies, the subthreshold current is expected to be the dominant component of leakage
current. Accurate estimation of leakage current has been considered in [13].

Static power component is usually a minor contributor to the overall power consumption. Neverthe-
less, due to the fact that static power consumption is always present even when the circuit is idle, the
minimization of the static power consumption is worth considered by completely turning off certain
sections of a system that are inactive.

Dynamic Power Component

Dynamic power consumption occurs only when the logic gate is switching. The two factors that make
up the dynamic power consumption are the charging and discharging of the output load capacitances
and the switching transient current. During the low-to-high transition at the output node of a logic gate,
the load capacitance at the output node will be charged through the PMOS transistors in PUN of the
circuit. Its voltage will rise from GND to Vsupply. An amount of energy,  is drawn from the
power supply. Half of this energy will then be stored in the output capacitor, while the other half is
dissipated in the PMOS devices. During the high-to-low transition, the stored charge is removed from
the capacitor, and the energy is dissipated in the NMOS devices in the PDN of the circuit. Figure 20.2
illustrates the charging and the discharging paths for the load capacitor. The load capacitance at the
output node is mainly due to the gate capacitances of the circuits that are being driven by the output
node (i.e., the number of fanouts of the output node), the wiring capacitances, and the diffusion
capacitances of the driving circuit.

Each switching cycle, which consists of charging and discharging paths, dissipates an amount of energy
equals to  Therefore, to calculate the power consumption, we need to know how often the
gate switches. If the number of switching in a time interval t(t → ∞) is B, then the average dynamic
power consumption is given by

1
T
--- Isupply t( ) Vsupply⋅( ) td

0

T

∫

Cload Vsupply
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2⋅ .
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where A = B/t is the number of transitions per unit time.
During the switching transient, both the PMOS and NMOS transistors conduct for a short period of

time. This results in a short-circuit current flow between the power supply rails and causes a direct path
power consumption. The direct path power component is dependent on the input rise and fall time.
Slow rising and falling edges would increase the short-circuit current duration. In an unloaded inverter,
the transient switching current spikes can be approximated as triangles, as shown in Figure 20.3 [16].
Thus, the average power consumption due to direct-path component is given by

where

The saturation current of the transistors determines the peak current, and the peak current is directly
proportional to the size of the transistors. 

FIGURE 20.2 The charging and discharging paths.

FIGURE 20.3 Switching current spikes.
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Total Average Power

Putting together all the components of power dissipation, the total average power consumption of a logic
gate can be expressed as follows: 

(20.1)

Among these components, dynamic power is by far the most dominant component and accounts for
more than 80% of the total power consumption in modern day CMOS technology. Thus, the total average
power for all logic gates in the circuits can be approximated by summing up all the dynamic component
of each of the logic gate,

where n is the number of logic gates in the circuit.

Power Due to the Internal Nodes of a Logic Gate

The power consumption due to the internal nodes of the logic gates has been ignored in the above
analysis, which causes inaccuracy in the power consumption result. The internal node capacitances are
primarily due to the source and drain diffusion capacitances of the transistors, and are not as large as
the output node capacitance. Hence, total power consumption is still dominated by the charging and
discharging of the output node capacitances. Nevertheless, depending on the applied input vectors and
the sequence in which the input vectors are applied, the power consumption due to the internal nodes
of logic gates may contribute a significant portion of the total power consumption. Experimental results
in section 20.5 show that the power consumption due to the internal nodes can be as high as 20% of the
total power consumption for some circuits.

The impact of the internal nodes in the total power consumption is most significant when the internal
nodes are switching, but the output node remains unchanged, as shown in Fig. 20.4. The internal
capacitance, Cinternal, is being charged, discharged, and recharged at time t0, t1, and t2, respectively. During
this period of time, power is dissipated solely due to charging and discharging of the internal node.

FIGURE 20.4 Charging and discharging of internal node.
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In order to obtain a more accurate power estimation result, the internal nodes have to be considered.
In taking the internal nodes of the logic gates into consideration, the overall total power consumption
equation is modified to

(20.2)

where m is the number of internal nodes in the ith logic gate. Note that output node voltages can only
have two possible values: Vsupply and GND; however, each internal node voltage can have multiple possible
values (Vj) due to charge sharing, and threshold voltage drop. In order to accurately estimate power
dissipation, we should be able to accurately estimate the switching activities of all the internal nodes of
a circuit.

20.3 Probabilistic Technique to Estimate Switching Activity

Probabilistic technique has been used to solve the strong input pattern dependence problem in estimating
the power consumption of CMOS circuits. The probabilistic technique, based on zero-delay symbolic
simulation, offers a fast solution for calculating power. The technique is based on an algorithm that takes
the switching activities of the primary inputs of a circuit specified by the users. The probabilistic analysis
relies on propagating the probabilistic measures, such as signal probability and activity, from the primary
inputs to the internal and output nodes of a circuit. 

To estimate the power consumption, probabilistic technique first calculates the signal probability
(probability of being logic high) of each node. The signal activity is then computed from the signal
probability. Once the signal activity has been calculated, the average power consumption can then be
obtained by using Eq. (20.2).

The primary inputs of a combinational circuit are modeled to be mutually independent strict-sense-
stationary (SSS) mean-ergodic 1-0 processes [3]. Under this assumption, the probability of the primary
input node x to assume logic high, P(x(t)), becomes constant and independent of time, and denoted by
P(x), the equilibrium signal probability of node x. Thus, P(x) is the average fraction of clock cycles in
which the equilibrium value of node x is of logic high. 

The activity at primary input node x is defined by

where nx is the number of time the node x switches in the time interval of (−T/2, T/2). The activity A(x)
is then the average fraction of clock cycles in which the equilibrium value of node x is different from its
previous value (A(x) is the probability that node x switches). Figure 20.5 illustrates the signal probability
and activity of two different signals.

FIGURE 20.5 Signal probability and activity.
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Signal Probability Calculation

In calculating the signal probability, we first need to determine if the input signals (random variables)
are independent. If two signals are correlated, they may never be in logic high together, or they may
never be switching at the same time. Due to the complexities of the signals flow, it is not easy to determine
if two signals are independent. The primary inputs may be correlated due to the feedback loop. The
internal nodes of the circuit may be correlated due to the reconvergent fanouts, even if the primary inputs
are assumed to be independent. The reconvergent fanouts occur when the output of a node splits into
two or more signals that eventually recombine as inputs to certain nodes downstream. The exact calcu-
lation of the signal probability has been shown to be NP-hard [3]. 

The probabilistic method in estimating power consumption uses signal probability measure to accu-
rately estimate signal activity. Therefore, it is important to accurately calculate signal probability as the
accuracy of subsequent steps in computing activity depends on how accurate the signal probability
calculation is. In implementing the probabilistic method, we adopted the general algorithm proposed
in [4] and used the data structure similar to [5].

The algorithm used to compute the signal probability is given as follows:

• Inputs: Circuit network and signal probabilities of the primary inputs.

• Output: Signal probabilities of all nodes in the circuit.

• Step1: Initialize the circuit network by assigning a unique variable, which corresponds to the signal
probability, to each node in the circuit network. 

• Step 2: Starting from the primary inputs and proceeding to the primary outputs, compute the
symbolic probability expression for each node as a function of its inputs expressions.

• Step 3: Suppress all exponents in the expression to take the spatial signal correlation into account [4].

Example
Given y = ab + ac. Find signal probability P(y). 

Activity Calculation

The formulation to determine an exact expression to calculate activity of static combinational circuits
has been proposed in [6]. The formulation considers spatio-temporal correlations into account and is
adopted in our method. If a clock cycle is selected at random, then the probability of having a transition
at the leading edge of this clock cycle at node y is A(y)/f, where A(y) is the number of transition per
second at node y, and f is the clock frequency. This normalized probability value, A(y)/f, is denoted as
a(y). The exact calculation of the activity uses the concept of Boolean difference. In the following sections,
the Boolean difference is first introduced before applying it in the exact calculation of the activity of a
node.

Boolean Difference

The Boolean difference of y with respect to x is defined as follows:

The Boolean difference can be generalized to n variables as follows:

P y( ) P ab( ) P ac( ) P abac( )+ +=
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where n is a positive integer, bn is either logic high or low, and xn are the distinct mutually independent
primary inputs of node y.

Activity Calculation Using Boolean Difference

Activity a(y) at node y in a circuit is given by [1]

(20.3)

where a(xi) represents switching activity at input xi, while P(∂y/∂xi) is the probability of sensitizing input
xi to output y.

Equation (20.3) does not take simultaneous switching of the inputs into account. To consider the
simultaneous switching, the following modifications have to be made:

• P(∂y/∂xi) is modified to  where  denotes that input xi is switching.

• a(xi) is modified to 

Example
For a Boolean expression y with three primary inputs x1, x2, x3, the activity a(y) is given by the sum of
three cases, namely, 

• when only one input is switching: 

• when two inputs are switching: 

• and when all three inputs are switching simultaneously: 

The activity calculation using Boolean difference can now be readily extended to the general case of n
inputs.

Activity Calculation Using Signal Probability

The calculation of the activity of a node using the Boolean difference is computationally intensive. The
complexity and computation time grow exponentially with the number of inputs. Hence, an alternative,
and more efficient method to compute the activity using signal probability can be used instead.

Let P(y(t)) be the signal probability at time t. The probability of a given node y is not switching at time
t is P(y(t − T)y(t)) = P(y(t)) − a(y) = P(y) − a(y). Hence, a(y) = 2(P(y) − P(y(t − T)y(t))). To calculate
the activity a(y) from the pre-computed signal probability P(y), we must first calculate P(y(t − Τ )y(t)). 
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Example
Given y = x1 + x2. Find P(y(t − T)y(t)) and a(y).

 

P(y(t − T)y(t)) is given by the product of two terms, namely  

Expanding the product of these two terms, we obtain the following four terms:

After rearranging the above equation, we obtain

Partitioning Algorithm

Accurate calculation of the symbolic probability is important to subsequent computation of the activity at
internal node of a circuit; however, not only the exact calculation of the symbolic probability is NP-hard,
but also the size of symbolic probability expression grows exponentially with the number of the inputs.
Thus, a technique to partition the circuit network by utilizing the circuit topology information is used [6].
Using this partitioning scheme, the size of the probability expression is limited as each node in the circuit
network is now only dependent upon its minimum set of topologically independent inputs (MSTII). MSTII
is a set of independent inputs (or internal nodes) that logically determines the logic function of a node.
This partition scheme can trade off accuracy with computation speed and data storage size.

Figure 20.6 shows the MSTII of a logic gate Z. The MSTII of y1, x4, w, and x7 are used instead of x1,
x2,…, x7. Hence, we only deal with four inputs instead of the original seven.

FIGURE 20.6 MSTII of a logic gate.
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Power Estimation Considering the Internal Nodes

In the previous analysis, we only considered the activity at the output of a logic gate; however, complex
CMOS logic gates have internal nodes that are associated with capacitances that may charge/discharge
based on the inputs applied to the logic gate. The power consumption due to the internal nodes in the
logic gates may play an important role in determining the total power consumption for a certain
sequence of input vectors. In order to improve the accuracy of the probabilistic, let us include the power
consumed by the internal nodes of logic gates.

The algorithm to compute the power consumption due to the internal node is given as follows [7]: 

• Inputs: Functional expression of the node in terms of its inputs, input signal probabilities, and
activities.

• Output: Normalized power estimation measure, φ (described later in the section on “Normalized
Power Measure”).

• Step 1: Factorize the functional expression.

• Step 2: Determine the position of each internal node.

• Step 3: Compute the probability of the conducting path: from the internal node i to Vsupply 
and to GND 

• Step 4: Compute the activity obtained from min .

• Step 5: Compute the normalized power measure.

Factorization of the Functional Expression

For a given functional expression of a node in term of its inputs, we need to factorize and simplify the
expression to obtain a compact and optimal expression, and thus an optimal implementation of the logic
gate. The functional expression is used to determine the position of the internal nodes of the logic gate.
The output node of the logic gate will not be affected whether the factorized expression is used or not.
However, the number of internal nodes of the logic gate depends on the functional expression used.

Example
Given  
If the expression is directly implemented as static CMOS complex gate, then a total of 13 internal nodes
exist in the logic gate. Some of these internal nodes are redundant and can be eliminated if the factorized
expression is used instead. The factorized expression is  and has only five
internal nodes. Figure 20.7 shows the implementation of both the factorized and unfactorized expressions.

The Position of the Internal Nodes

The position of the internal nodes can be determined while implementing the given functional expression
of a node in static CMOS. Internal nodes exist whenever there is an AND or an OR function exist as
both functions have at least two inputs. Inside an AND (OR) function, the internal nodes are found in
the PUN (PDN). In both functions, the number of the inputs to the logic gate determines the number
of the internal nodes. If there are n inputs to the logic gate, then (n − 1) internal nodes must exist inside
the logic gate. In implementing the functional expressions, the complemented input signals are assumed
to be available.

The Conducting Paths to the Supply Rails

After determining the position of the internal nodes inside the logic gate, the probabilities of the
conducting paths from each internal node to the supply rails (both to Vsupply and GND) are then computed.
The probability of the conducting path from an internal node to Vsupply(GND) signifies the probability
of charging (discharging) the capacitance in that internal node. The probability of charging and dis-
charging the internal node capacitances is then used to calculate the activity of the internal nodes. The
signal probability of each of the internal nodes is calculated using the algorithm outlined in the previous
section, which takes spatio-temporal correlation among signals into account. 

(PVsupply
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i ).

(PVsupply

i )(PVgnd
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Example
Given a 2-input NAND gate Y =  as shown in Fig. 20.8. The probabilities of the conducting paths
from the internal node to Vsupply and to GND are  and P(B), respectively.

Internal Nodes Activity Computation

The activities of each internal node are calculated using the probabilities of the conducting paths from
the internal nodes to the supply rails. The minimum of the two probabilities is used to compute the
activity of the internal node because no effective charging/discharging will occur once this minimum
threshold value is reached. For example, if within a period of 10 clock cycles, the probability of charging
process is 0.5 (5 out of 10 clock cycles are conducting), and the probability of discharging process is 0.3,
then the charging and discharging processes can only take place for 3 out of 10 clock cycles. The extra 2
charging cycles will have no effect on the outcome, as the internal node capacitance remains charged.
Hence, only a previously charged (discharged) capacitance can be discharged (charged). 

Normalized Power Measure

The normalized power measure is computed from the activity of each of the internal nodes. At the logic
gate output, the total normalized power measure is computed by  where fanouti is
the number of gate being driven by the output node i (Cload-i is assumed to be proportional to fanouti).
At the internal nodes, the normalized power measure is computed by . The
results for the power estimation using the probabilistic technique will be given in section 20.5.

FIGURE 20.7 Unfactorized and factorized functional expression.
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20.4 Statistical Technique

Statistical technique for estimating power consumption is a simulation-based approach. To improve the
accuracy of this method, we need to run all possible sets of input combinations exhaustively for an
indefinitely long period of time. Thus, this method is prohibitively expensive and impractical for very
large circuits. The main advantage of this technique is that the existing simulators can be used readily.
Furthermore, issues such as glitch generation and propagation, spatio-temporal correlations among
signals are all automatically taken into account. The generality of this technique still attracts much interest,
but Monte Carlo-based approaches [8,20] can be used to determine the number of simulation runs for
a given error that can be tolerated.

We adopted a statistical sampling technique using Monte Carlo approach as proposed in [8], and
included the internal node analysis to further improve the accuracy. To estimate the power consumption
in the circuit, the statistical technique first generates random input vectors that conform to the user-
specified signal probability and activity. The circuit is then simulated using the randomly generated input
vectors. For each simulation run in time period T, the cumulative power dissipation is monitored by
counting the number of transitions of each node (sample) in the circuit. The simulation run is then
repeated N times until the monitored power dissipation converges to the user-specified error and con-
fidence levels. The average number of transitions (sample mean),  at each node is then obtained. The
activity of each node is computed by 

Because the signal probability and activity of the primary inputs are only needed, this technique is
essentially weakly pattern-dependent. Monte Carlo method has an attractive property that it is dimension
independent, meaning that the number of simulation runs needed does not depend on the circuit size.
A good random input generator and an efficient stopping criterion are important for the Monte Carlo
method. These issues are presented in the following sections.

Random Input Generator

The input vector is considered to be a Markov process [9], meaning that the present input waveform
only depends on the value of the waveform in the prior immediate clock cycle, and not on the values of
the other previous clock cycles. The implementation is based on Markov process, so the length of time

FIGURE 20.8 Charging and discharging paths of the internal node.
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between successive transitions is a random variable with an exponential distribution [10]. Another
implication of Markov process is that the pulse width distribution of the input waveform is a geometric
distribution. The conditional probabilities of the input waveforms switching are then given as: P(0 |1) =
T/µ1 and P(1 |0) = T/µ0 where T is the clock pulse period, µ1 is the mean of high pulse width 
and µ0 is the mean of low pulse width  Also, P(0 |0) = 1 − P(1 |0) and P(1 |1) = 1 −
P(0 |1). The random number generator uses the above criteria to decide whether the input signals switch
or not.

Stopping Criteria

The number of simulation runs needed to converge the result determines the speed of the statistical
technique. Hence, efficient stopping criteria are needed. The decision is made based on the mean and
standard deviation of the monitored power consumption at the end of every simulation run.

For large sample N, the sample mean,  approaches η, the true average number of transitions in T,
and the sample standard deviation, s, also approaches σ, the true standard deviation [10]. According to
the Central Limit Theorem,  has the mean η with the distribution approaching normal distribution for
large N(N ≥ 30). It follows that for (1 − α) confidence level,  where zα/2 is
the point where the area to its right under the standard normal distribution curve is equal to α/2. 

Since  for large N, and with confidence (1 − α), then

(20.4)

If ε1 is a small positive number and the number of sample is

(20.5)

then ε1 sets the upper bound for Eq. (20.4):

(20.6)

Equation (20.6) can also be expressed as the deviation percentage from the population mean η:

(20.7)

where ε is the user-specified percentage error tolerance.
Equation (20.5) thus provides the stopping criterion for the percentage error tolerance in Eq. (20.7)

for  (1 − α) confidence. The problem with this stopping criterion is that for small  a large number of
samples N are required, as shown in Eq. (20.5), so it becomes too expensive to guarantee percentage
error accuracy in this case. The nodes with small  (or  where ηmin is the user-specified
minimum threshold value) are called low-activity nodes. Large value of N means that these low-activity
nodes will take a much longer time to converge. Yet, these low-density nodes have the least effect on
circuit power and reliability. To improve the convergence time without any significant effect in the overall
result, an absolute error bound, ηmin ⋅ ε1, is used instead of the percentage error bound, ε [9]. The absolute
error bounds for low-density nodes are always less than the absolute error bounds for high-activity nodes.
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Therefore, when dealing with low-activity nodes, instead of using Eq. (20.5), the following stopping
criterion is used

(20.8)

For (1 − α) confidence level, the accuracy for the low-density nodes is given by  ≤
. 

During the simulation run, after N exceeds 30, Eq. (20.5) is used as a stopping criterion as long as
 Otherwise, Eq. (20.8) is used instead.

Power Estimation due to the Internal Nodes

We included the capability of estimating internal nodes power dissipation in the Monte Carlo technique.
The algorithm to compute the internal nodes power is as follows [7]:

• Inputs: Functional expression of the node in terms of its inputs, and user-specified accuracy
parameters

• Output: Normalized power measure φ
• Step 1: Factorize the functional expression

• Step 2: Generate a graph to represent the expression

• Step 3: Simulate the circuit with random input

• Step 4: Update conducting path (event-driven process)

• Step 5: Sum all charges in the discharging path

• Step 6: Accumulate all the sum 

The given functional expression of a node is expressed in terms of its inputs. The factorization process,
the same as in the probabilistic technique, is to ensure that the expression is compact and does not
contain any redundant items. 

Graph Generation

A graph to represent the factorized expression is generated to be used as the data structure in estimating
power dissipation. The nodes of the graph represent all the nodes in the logic gate, such as supply rails,
output node, and all the internal nodes inside the logic gate. The edges of the graph represent the inputs
to the logic gate between the nodes. Information of the internal nodes capacitances and voltages are
stored in nodes structure of the graph. Once the graph is generated, the circuit is simulated with randomly
generated input vectors conforming to the user-specified input signal probability and activity.

Note that in the case of the probabilistic method, a graph is not used, as there is no need for such
data structure. In the probabilistic method, the signal probability and activity of each node are calculated
as we traverse level by level from primary inputs of the circuit network to the outputs. The calculated
values are then stored in the data structure within the node itself. In the statistical technique, however,
the graph is needed to store the simulation run results. An example of a generated graph for a given
factorized functional expression  is shown in Fig. 20.9.

Updating Conducting Paths

The path in the graph needs to be updated whenever a change in the input signals occurs. The change
in the input signals is defined as an event. To improve the computation speed, the updating process of
the path is being done only when an event occurs. Hence, the path updating process is said to be an
event-driven process.

The path in the graph that needs to be updated may change from conducting to nonconducting or
vice-versa, depending on the event which occurs. If the path becomes nonconducting, then the nodes at

N
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both ends of disjointed segments of the path become isolated and assumed to retain their voltage values.
On the other hand, if a conducting path joins the disjointed segments, then all the nodes along the
conducting paths must be updated to a new equilibrium value. If the conducting path to the Vsupply (Vgnd)
exists, then all nodes along the path will be charged (discharged).

The algorithm for path updating process is as follows. When input node i switches from OFF to ON:

1. If a conducting path from the internal node to Gnd exists:

• collect all the node charges along the path

• set all the node voltages to Vlow (Vlow for nodes in NMOS and PMOS are 0 and Vthp, respectively).

2. If a conducting path to Vsupply exists:

• set all the node voltages to Vhigh (Vhigh for nodes in NMOS and PMOS are (Vsupply − Vthn) and
Vsupply, respectively).

Vthp and Vthn are PMOS and NMOS threshold voltage, respectively. The internal nodes in PUN among
PMOS devices will be fully charged to Vsupply, but will only be discharged to Vthp. Similarly, the internal nodes
in PDN among NMOS devices will be fully discharged to Vgnd, but will only be charged to (Vsupply − Vthn).
This is because the transistors will be cut-off when the gate to source voltage is less than the threshold
voltage.

Along the discharging path (conducting path to the GND), all the charges in the internal nodes are
added together. The sum of the charges is accumulated over all simulation runs. The normalized power
measure is directly derived from this accumulated sum of charges as 

FIGURE 20.9 A logic gate and its corresponding graph.
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Charge-Sharing among the Internal Nodes

Charge-sharing among the internal nodes occurs when the conducting path that connects the nodes is
not connected to either Vsupply or GND. The nodes along the path are then isolated from the supply rails,
and will not be charged or discharged. These isolated nodes will come to a new equilibrium state, a val ue
between Vsupply and GND. In the isolated state, the capacitances of  the internal nodes are connected in
parallel,  and share the charges among themselves, thus the term charge-sharing. The new equilibrium
voltage among the internal nodes is

(20.9)

where n is the number of isolated nodes, and Vj is the initial voltage across the internal node capacitance
Cj. An example of the charge-sharing process is il lustrated in Fig. 20.10. The event occurs when inputs
A and B sw itch at time t1. The internal nodes are then isolated from Vsupply and GND. The new equilibrium
voltage between the two isolated internal capacitances is calculat ed to be 

 

20.5 Experimental Results

Both the probabilistic and the statistical techniques have been implemented in C within University of
California at Berkeley’s SIS [17] environment. SIS is an int eractive tool for synthesis and optimization
of logic circuits. The test circuits used in obtaining the results are the benchmarks presented at ISCAS
in 1985 [11]. These circuits are combinational circuits and Table 20.1 shows the number of primary
inputs, outputs, nodes, and circuit level of  each benchmark circuit.

FIGURE 20.10 Charge-sharing.
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Results Using Probabilistic Technique

The signal probability and activity for the primary inputs are both specified to be 0.5. The load capacitance
at the output nodes is specified to a unit capacitance and the internal node capacitances are specified to
one-half unit capacitance. The maximum number of inputs allowed for each partition level is 10 inputs.
The simulations are run on SPARCstation 5, and the results are shown in Table 20.2. Power dissipation
due to the internal node ranges from 9.38% to 22.4% of the overall power consumption. Hence, the
internal nodes power is a significant portion of the total power consumption. The result is given in term
of power measure φ (switching activity × fanouts).

Results Using Statistical Technique

Similar to the probabilistic technique, the signal probability and activity for the primary inputs are
specified to be 0.5. The sample period of each simulation run is specified to be 100 unit clock cycles.
The relative error is specified to be 30%, and the minimum threshold is specified to be 3%. In the
simulation, 5 V power supply is used. The threshold voltages for both PMOS and NMOS devices are
specified to be 1 V. The results are tabulated in Table 20.3.

The experiment shows that the percentage of internal nodes power consumption to overall power
consumption ranges from 7.75% to 18.59%. The result of the same simulation with the charge-sharing
option being switched off is shown in Table 20.4. 

The computation time is faster by up to 10% for certain cases when the simulation is run with the
charge-sharing option switched off. The percentage of internal power to overall power only changes by
0.1% to 0.2% when charge sharing is not taken into consideration, so neglecting the charge-sharing effect
among the internal node capacitances will not affect the overall result significantly.

TABLE 20.1  The ISCAS-85 Benchmark Circuits

Circuit No. of Inputs  No. of Outputs No. of Nodes No. of Levels

C1355 41 32 514 23
C17 5 2 6 3
C1908 33 25 880 40
C2670 233 140 1161 32
C3540 50 22 1667 47
C432 36 7 160 17
C499 41 32 202 11
C5315 178 123 2290 49
C6288 32 32 2416 124
C7552 207 108 3466 43
C880 60 26 357 23

TABLE 20.2 Results of Probabilistic Technique

Circuit
CPU Time

SPARCstation 5 (seconds)
Internal Nodes 
Power Measure

Total 
Power Measure (φ)

C1355 9.82 40.9 237.7
C17 0.03 0.51 3.77
C1908 72.92 32.3 343.97
C2670 34.36 55.4 505.7
C3540 86.14 63.1 590.3
C432 29.68 8.92 72.96
C499 12.98 26.6 118.79
C5315 398.74 118.9 1106.3
C6288 1786.44 228.9 1300.1
C7552 709.71 172.3 1516.8
C880 6.58 22.3 162.0
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TABLE 20.3 Results of Statistical Technique with Charge-Sharing

Circuit
CPU Time 

SPARCstation 5 (seconds)
Internal Nodes 
Power Measure

Total 
Power Measure (φ)

C1355 194.13 33.0 228.7
C17 3.28 0.38 3.67
C1908 339.37 26.1 337.3
C2670 453.76 49.9 497.0
C3540 599.14 66.7 601.6
C432 79.73 8.72 73.3
C499 120.24 20.9 112.5
C5315 1096.06 117.4 1113.0
C6288 1102.43 183.1 1188.0
C7552 1511.58 148.5 1497.2
C880 161.87 18.1 157.6

TABLE 20.4 Results of Statistical Technique without Charge-Sharing

Circuit
CPU Time 

SPARCstation 5 (seconds)
Internal Nodes 
Power Measure

Total 
Power Measure (φ)

C1355 190.59 32.8 228.6
C17 2.70 0.38 3.67
C1908 328.75 25.5 336.6
C2670 441.26 49.46 496.6
C3540 590.87 66.46 601.3
C432 71.64 8.64 73.3
C499 117.42 8.64 112.4
C5315 1052.83 115.65 1111.3
C6288 1068.54 183.122 1188.1
C7552 1485.76 147.18 1495.9
C880 153.89 17.98 157.5

FIGURE 20.11 Percentage of total power due to internal nodes power.
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Comparing Probabilistic with Statistical Results

Figure 20.11 illustrates the percentage total power consumption due to internal nodes as obtained from
both probabilistic and statistical techniques [15]. A dashed line and a solid line for statistical and probabilistic
techniques represent the results, respectively. On an average, the result from the statistical technique is
slightly lower than the result obtained from the probabilistic approach. The discrepancy arises from
various different sets of simplifying assumptions used in both techniques. Nevertheless, both results track
one another closely. 

Figure 20.12 illustrates the run time of the probabilistic and statistical techniques [15]. The vertical
axis is in log scale. The probabilistic technique, as expected, runs one or two magnitude order faster than
the statistical technique. The statistical technique needs a number of simulation runs before the result

FIGURE 20.12 Probabilistic and statistical run-time.

FIGURE 20.13 Probabilistic and statistical total power consumption.
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converges to the specified parameters, whereas the probabilistic technique only needs one run to obtain
the result. This accounts for the difference in the computational time.

Figure 20.13 shows the total power consumption measure of both probabilistic and statistical tech-
niques [15]. The results of both methods follow one another very closely. The vertical axis is plotted in
log scale. The dashed line represents the result for statistical technique and the solid line represents the
result for probabilistic technique.

20.6 Summary and Conclusion

In this chapter, estimation of activity and thus power consumption are presented. Probabilistic and
statistical techniques, which take spatio-temporal correlations into account, are used. The probabilistic
method uses a zero-delay model. If a nonzero model is used instead, the accuracy of the probabilistic
method improves, but the underlying method and concept outlined for simplified zero-delay model still
applies, i.e., the probability of some inputs switching simultaneously will change and thus causes a change
in the calculated switching activity. The statistical method uses the inherent gate delay during the
simulation run. Both probabilistic and statistical techniques include the effect of power consumption
due to the internal nodes, which improves the accuracy of the methods by 7.75–22.4%. The power
estimation methods allow circuit designers to analyze and optimize the designs for power consumption
early in the design cycle. This is a critical requirement for today’s demanding power-sensitive applications,
such as portable computing and communication systems.
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21.1 Introduction

Power dissipation is one of the most important design considerations for portable systems as well as
desktop and server computers. For portable systems, long battery life is a necessity. There is only a fixed
amount of energy stored in the battery; the lower the system dissipation, the longer the battery life. For
desktop and server computers, cost is of utmost importance. Heat generation is proportional to power
dissipation. Systems with high power dissipation require an expensive cooling system to remove the heat.
CMOS is the technology used for implementing the vast majority of computing systems. In CMOS
systems, dynamic power is the dominant dissipation factor, which is consumed for switching circuit
nodes between 0 V and a voltage V from a dc supply source. Dynamic power dissipation is generally
denoted by fCV2, where f is the operating frequency and C is the effective switching capacitance per cycle.
As CMOS technology advances, both the operating frequency f and the switching capacitance C increase
resulting in increasingly higher power dissipation. The typical approach to reduce power dissipation is
to lower the supply voltage V [1]. Despite the quadratic dependence of power to the voltage, the reduction
of the voltage is not sufficient to surpass the increase of the frequency and capacitance [2]. 

Adiabatic charging [3] is an alternative approach to reduce energy dissipation below the CV2 barrier.
The basic idea of adiabatic charging is to employ an ac (i.e., time-varying) source to gradually charge
and discharge circuit nodes. Examples of ac sources that can be used for adiabatic charging include a
voltage-ramp source, a sinusoidal source, or a constant-current source. In time-varying supplies, energy
dissipation is controlled by varying the charging time. For instance, if a capacitance C is charged from
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0 V to a voltage V in time T through a resistance R from a voltage-ramp source, the energy dissipated
in the resistance, Evrs, is [4,5]:

(21.1)

For T → 0, the voltage-ramp source becomes equivalent to a dc source. Indeed, for T → 0 Eq. (21.1)
reduces to:

(21.2)

which denotes the energy required to charge a capacitance C from a dc source of voltage V. For T >> RC,
Eq. (21.1) can be approximated by [6,7]:

(21.3)

Equation (21.3) gives the energy dissipated in the resistance R if a constant-current source is used to
charge the capacitance C to voltage V in time T. It can be proved [8] that constant-current charging
results in minimum energy dissipation for a given charging time T. Constant-current charging represents
the ideal case. For practical purposes, it can be approximated with a sinusoidal source. In this case,
although the energy dissipation increases by a constant shape factor [3], the inverse relationship between
energy dissipation and charging time still holds.

The implementation of viable CMOS energy-recovery systems based on adiabatic charging has not
been a trivial task. First, adiabatic charging is associated with some circuit overhead, which potentially
cancels out the energy savings from adiabatic charging. Second, a key factor to implement an energy-
recovery system is the efficiency of the time-varying voltage source. Proposals for exploiting adiabatic
charging range from extreme reversible logic systems that theoretically can achieve asymptotically zero
energy dissipation [3,9] to more practical partial adiabatic approaches [10–16]. The former requires the
most overhead, both at the logic level and at the supply source level. The latter results in energy losses
asymptotic to  or CVVth depending on the specific approach, where Vth is the FET threshold voltage.
Their overhead is mostly at the logic level. Some of them can operate from a single time-varying supply
source [15,16].

In this chapter, we focus on clock-powered logic, which is a systematic approach for designing overall
energy-efficient CMOS VLSI systems that use adiabatic charging and energy recovery. The motivation
behind clock-powered logic is that the distribution of circuit nodes, excluding Vdd and GND, for many
VLSI chips can be relatively identified as either large capacitance or small capacitance. Clock-powered
logic is a node-selective adiabatic approach, in which energy recovery through adiabatic charging is
applied to only those nodes that are deemed to be large capacitance. The circuitry overhead for energy
recovery and the adiabatic-charging process is amortized by the large capacitive load since energy savings
is proportional to the load. Nodes that are deemed small capacitance can be powered as they usually are
in CMOS circuits, e.g., precharging, pass-transistors networks, and static pull-up and pull-down networks
that draw power from a dc supply. 

This article is organized as follows: First, section 21.2 reviews clock-powered logic followed by a
presentation of ac supply sources that can be used for adiabatic charging in section 21.3. In section 21.4,
an energy-recovery (E-R) latch is presented. The E-R latch is a key circuit used to pass energy from the
ac supply source to circuit data nodes and vice versa. Section 21.5 describes in detail how adiabatically-
charged nodes interface with logic blocks powered from a dc supply voltage. In section 21.6, the drive
part of the E-R latch is compared to conventional drivers for energy versus delay performance through
HSPICE simulations. In section 21.7, two generations of clock-powered microprocessors are presented
and compared against an equivalent fully dissipative design. Finally, section 21.8 presents the conclusions.
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21.2 Overview of Clock-Powered Logic1

The overall organization for a clock-powered microsystem is shown in Fig. 21.1. Adiabatic charging
requires a time-varying voltage signal as a source of ac power. Rather than introduce a new power supply,
this power source can be naturally supplied in a synchronous digital system through the clock rails.
Depending on the implementation, the E-R clock driver may or may not be on the same chip as the
clock-powered logic. The clock phases that are generated by the clock driver synchronize the operation
of the clock-powered logic as well as power the large-capacitance nodes through special latches, called
E-R latches. E-R latches operate in synchrony with the clock phases, so their placement effects the timing
and partitioning of logic functions into logic blocks. Placement of the E-R latches is determined not only
by the location of the large capacitance nodes, but also by system-level factors such as circuit latencies
and overall timing, e.g., pipelining. 

Data representation is different between clock-powered and dc-powered signals. Nodes that are
dc-powered are logically valid when their voltage levels are sufficiently close to the voltages supplied by
the power rails, i.e., Vdd and GND. Clock-powered signals are valid only when the clock phase is valid.
The presence of a pulse that is coincident with a clock phase defines a logic value of one. The absence of a
pulse defines a logic value of zero. When the clock phase is zero, the logical value of the clock-powered
signal is undefined.

The co-existence of clock-powered and dc-powered nodes necessitates signal conversion from pulses
to levels and vice versa. Levels are converted to pulses in the E-R latches, which receive dc-powered
signals as inputs and pass clock pulses to the output. As discussed in detail later in this chapter, depending
on the style of the logic blocks, either pulses are implicitly converted to levels, or, special pulse-to-level
converters must be introduced between the E-R latches and the logic blocks.

The total average energy dissipation per cycle, Etot, of clock-powered microsystems consists of two
terms and is given by:

(21.4)

The first term models the clock-powered nodes that are adiabatically switched for Ts >> RiCi. The second
term models the dc-powered nodes that are conventionally switched. In Eq. (21.4), ai and aj denote the
switching activity for clock- and dc-powered nodes, respectively; Ci and Cj denote the capacitance of
clock- and dc-powered nodes, respectively; Ri is the effective resistance of the charge-transfer path between
the clock driver and the clock-powered nodes; Ts is the transition time of the clock signal; Vϕ is the clock
voltage swing; and Vdd the dc supply voltage. 

The benefit of applying clock-powered logic can be readily evaluated from Eq. (21.4). Capacitance
information can be extracted from layout, assuming the various parasitic and device capacitances have
been accurately characterized. Activity data for the different nodes can be determined for specified input
data sets from switch-level and circuit-level simulation. As shown later, in clock-powered microprocessors,

FIGURE 21.1 Abstract block diagram for a clock-powered microsystem.

1Portions in sections 21.2, 21.4, 21.6 and subsection “Static Logic” reprinted, with permission, from [23] © 1999
IEEE.
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a small fraction of circuit nodes that are clock powered accounts for most of the power dissipation if
they were powered from a dc supply voltage.

Equation (21.4) also defines the absolute maximum degree to which adiabatic charging can be used
to reduce dissipation. As the clock transition time approaches infinity, the first term of Eq. (21.4)
approaches zero and the dissipation is solely determined by the second term. Ri, the effective resistance
of the charge-transfer path, is the difficult parameter to quantify. It depends upon the circuit topology
of the E-R latch as shown in detail in section 21.4.

21.3 Clock Driver

Two known circuit types can be used as clock drivers in a clock-powered system: resonant [3,17] and
stepwise [8]. For the purposes of this text, only resonant drivers will be presented due to their superior
energy efficiency.

A simple resonant clock driver can be built from an LRC circuit that generates sinusoidal pulses. Such
a circuit can be formed with two nFETs (M1 and M2) and an inductor (L) (Fig. 21.2). The capacitor Cϕ

represents the clock load. The resistance of the clock line is assumed negligible compared to the on-
resistance of M1. Two nonadiabatically-switched control signals drive M1 and M2. The circuit generates
sinusoidal pulses if operated as follows. Assume that ϕ is at 0 V, i.e., Cϕ is discharged and that both M1

and M2 are off. Then M1 is turned on and M1, L, and Cϕ form an LRC circuit that produces a sinusoidal
pulse with width 2π(LCϕ)1/2 and amplitude approximately 2⋅Vdc. M1 should be turned off exactly at the
end of the pulse. Then M2 is turned on and fully discharges ϕ. Two such circuits can be synchronized to
generate two nonoverlapping phases. If Ts is the pulse switching time, it can be shown [3] that the energy
for switching ϕ scales as  instead of  solely because M1 and M2 are controlled by nonadiabatically-
switched signals. 

The LRC clock driver can be further simplified by eliminating the series nFET M1 and using a single
signal to control the pull-down nFET (Fig. 21.3). When the nFET is on, a current is built in the inductor
while ϕ is clamped at 0 V. When the nFET is turned off, the current flows to the load Cϕ, generating a
sinusoidal pulse. The energy dissipation for switching Cϕ still scales as  because the nFET is driven
by a nonadiabatically-switched signal; however, two such circuits can combine as shown in Fig. 21.4
to form an all-resonant configuration [18] that generates two almost nonoverlapping clock phases
(Fig. 21.5). The energy for switching the clock loads in the all-resonant configuration scales as  since
the control signals are adiabatically switched. 

FIGURE 21.2 A simple LRC resonant clock driver ([18] © 1996 IEEE).

FIGURE 21.3 A single-phase resonant clock driver ([28] © 1997 IEEE).
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The main advantage of resonant clock drivers is their high energy efficiency since, for all-resonant
configurations, the energy dissipation for driving the clock loads can scale as the inverse of the switching
time. Nevertheless, these all-resonant configurations pose design challenges when frequency stability is
important. Their frequency and, therefore, the system frequency depends on their loads. For the all-resonant
two-phase clock driver, two types of potential load imbalances occur: between the two phases and between
different cycles for the same phase. First, loads should be approximately evenly distributed between the
two phases. Otherwise, inductors with different inductance and/or two different supply voltages should
be used so that ϕ1 and ϕ2 have the same width and amplitude. Second, for clock-powered microsystems,
clock loads are data dependent. Therefore, the load may vary from cycle to cycle for the same phase, resulting
in a data-dependent clock frequency. A simple solution for this problem is to use dual-rail clock-powered
signaling, which ensures that half of clock-powered nodes switch per cycle. The drawback of such a clock-
powered system is its high switching capacitance. For the purposes of this research, the all-resonant clock
driver (Fig. 21.4) has been sufficient and highly energy efficient. Resonant clock drivers can also be
designed with transmission lines [17] instead of inductors.

21.4 Energy-Recovery Latch

The E-R latch serves two purposes: to latch the input data, and, conditionally on the latched datum, to
transfer charge from a clock line to a load capacitance CL and back again. Consequently, the E-R latch
consists of two stages: the latch and the driver (Fig. 21.6(a)). The latch-stage design is not important for
clock-powered logic and can be chosen to meet other system requirements. Suitable latch designs are the
3-transistor dynamic latch consisting of a pass transistor and an inverter, and the doubled N-C2-MOS
latch [19]. The driver stage is based on the bootstrapped clocked buffer (CB) [20] implemented in CMOS.
The driver choice is discussed later in this section. The E-R latch operates from a two-phase, nonover-
lapping clocking scheme (Fig. 21.6(b)): the input is latched on ϕL and the output is driven during ϕD.
The two clock phases swing from 0 to voltage Vϕ . A symbol used to denote the clocked buffer part of
the E-R latch is shown in Fig. 21.6(c).

FIGURE 21.4 An all-resonant, dual-rail LC oscillator used as a clock driver ([18] © 1996 IEEE).

FIGURE 21.5 A scope trace of the almost nonoverlapping, two-phase clock waveforms ([28] © 1997 IEEE).
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Without loss of generality, the latch-stage output  is assumed in negative polarity. The latch stage
and the inverter I1 are powered from a dc supply with voltage Vdd. The gate of transistor M1 connects to
a dc supply with voltage Viso. This dc supply dissipates no power since it is connected only to pass-
transistor gates. Viso is equal to Vdd + VtE, where VtE is the nFET effective threshold voltage, so that the
boot node bn can be charged close to the maximum possible voltage Vdd. During ϕL, Din is stored on the
gate capacitance of M2 (the boot node). If Din is low, then the clamp transistor M3 holds the output to
ground. If Din is high (Fig. 21.6b), then bn charges to Vdd through the isolation transistor M1. When the
positive edge of ϕD occurs, the voltage of bn bootstraps to well above Vϕ due to the gate-to-channel
capacitance of M2. Then the output charges to Vϕ from the clock line ϕD through the bootstrap transistor
M2. Charge returns to the clock line through the same path at the end of ϕD. The timing sketch of
Fig. 21.6(b) indicates Vdd (i.e., the voltage that Vbn is charged to) as being less than Vϕ . Although this is
possible and happens in certain cases, it is not necessary. Voltages Vdd and Vϕ can be decided based on the
logic style and the system requirements. 

The dc supply Viso is introduced so that the transistor M2 is always actively driven. Phase ϕL could be
used instead of Viso to drive the transistor M1 [21]. If this were the case, when ϕD occurred and bn was
at 0 V, the voltage of bn would bootstrap to above 0 V and short-circuit current would flow from ϕD to
ground through the transistors M2 and M3. 

The E-R latch is small in area. The size of M1 is made small to minimize the parasitic capacitance of
node bn. M3 can also be small since it only clamps the output to ground to avoid coupling to the output
when bn is 0 V. It does not discharge the load capacitance. On the other hand, the size of the device M2

is critical. Two criteria are used for sizing M2. First, the ratio of the gate capacitance of M2 to the parasitic
capacitance of the node bn should be large enough to allow the voltage of bn to bootstrap to at least
Vϕ + VtE. This criterion applies for small capacitance loads and/or slow systems. Second, the transistor M2

should be large enough to meet the system frequency and energy savings specifications. A detailed
analytical model for obtaining the on-resistance Rb of the bootstrap transistor has been derived elsewhere
[22,23]. This model can be used for sizing these transistors based on the load capacitance CL and the
desired RbCL/Ts ratio for a given switching time Ts.

The key feature of E-R latches for low power is that they pass clock power. Therefore, an energy-
efficient charge-steering device is essential. In addition to a bootstrap transistor, other charge-steering
topologies are a nonbootstrapped pass transistor and a transmission gate (T-gate). The pass transistor
would require its gate to be overdriven, which would impose constraints on the allowable voltage levels.
The pass-transistor gate would be powered from the dc supply Vdd, and Vdd would need to be at least
Vϕ + VtE. Otherwise the output would not be fully charged to Vϕ . The T-gate would fully charge the
output, but it would require a pFET connected in parallel to the nFET; however, since pFETs carry less
current per unit gate area than nFETs, the combined nFET and pFET width of the T-gate would be larger

FIGURE 21.6 (a) E-R latch, (b) timing diagram when Din is high, and (c) symbol that denotes a clocked buffer
pulsed on ϕD .
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than the width of an equal-resistance bootstrapped transistor. The larger gate capacitance of the charge-
steering device translates directly into a higher, nonadiabatic, energy dissipated to control it.

The criterion for the charge-steering device is to minimize the dissipation by maximizing the energy
that is recovered. The total dissipation required to operate the charge-steering device has two terms: one
for the control charge and one for the controlled charge. For all the above CMOS charge-steering
topologies, there exists an inverse dependency between the control energy and the loss in the switch. To
reduce the total E-R latch dissipation, the charge-steering topology that experiences the smallest loss for
a specified control energy should be selected. It was found [24] that bootstrapping is the most suitable
charge-steering implementation in the CMOS technology. Effective bootstrapping makes the switch-
transistor gate voltage rise high enough above the highest applied clock voltage to keep the channel
conductance high, and consequently the instantaneous loss low, even for the maximum clock voltage.
The output swing is thus fully restored to the clock amplitude. 

21.5 Interfacing Clock-Powered Signals with CMOS Logic

This section shows how the E-R latch can be used in conjunction with the major CMOS logic styles
(precharged, pass-transistor, and static logic) for the implementation of complete clock-powered
microsystems. All three logic styles need to be modified so that they comply with the clock-powered
approach requirements. First, logic should be operated from two nonoverlapping clock phases that
are available only in positive polarity. To switch clock-powered nodes adiabatically, the two clock
phases must have a switching time longer than the minimum obtainable from the process technology.
Clock complements are not available, due to problems related to the efficiency of the clock driver.
Second, clock-powered signals are pulses that need to be converted to levels. As we see next, this
conversion happens inherently for precharged and pass-transistor logic, while pulse-to-level converters
are required for static logic. 

Precharged Logic

Precharged logic works straightforwardly with clock-powered signals. These signals are valid during one
clock phase and low during the other phase. Therefore, they can drive gates that are precharged during
the other phase; however, precharging with pFETs is problematic for two reasons. First, the clock com-
plements are not available. Second, the clock phases may have slow edges. Assume that the same clock
phase ϕ1 is used to precharge the gate through a pFET and power its inputs (Fig. 21.7a). The symbol “ ∧”
indicates clock-pulsed signals in conjunction with the driving clock phase. Precharged gates driven by
clock-pulsed signals do not need protection nFETs in their pull-down stacks since the input signals are
low during precharge. Without loss of generality, assume that both pFETs and nFETs have the same
threshold voltage magnitude Vth. Then, when ain is high, there will be a short-circuit current drawn while
the clock phase transits from Vdd − Vth to Vth. This current may be significant due to the slow clock edges,
since it scales linearly to the input switching time [25]. The short-circuit current interval is marked in

FIGURE 21.7 Precharging with (a) a pFET and (b) an nFET.
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the timing diagram of Fig. 21.7(a). Also note that the point Vdd −−−− Vth is chosen assuming that Vdd is higher
than Vϕ , which may not be the case. 

One solution to this problem is to set Vdd to 2Vth, which would impose restrictions on the system’s
operating voltage, and hence on its maximum frequency. Another solution is to precharge with an nFET
driven by the other phase (Fig. 21.7(b)). This would require Vϕ to swing between 0 V and Vdd + Vth;
otherwise, the inverter would experience a short-circuit current. A keeper pFET driven by aout (shown
with dashed lines in Fig. 21.7(b) can restore the voltage level of the precharged gate if necessary. The
latter solution is more attractive because, despite the restrictions between the supply voltage Vdd and the
clock voltage swing Vϕ , it provides a wider range of operating points. Moreover, it dictates that the clock-
powered nodes be in higher energy levels than the dc-powered nodes, but the effect is mitigated when
dissipation is considered because energy is recovered from the high-energy, clock-powered nodes. 

If Vϕ swings from 0 V to Vdd + Vth, then a latch-stage that can be used for the E-R latch is the 3-transistor
dynamic latch (Fig. 21.8). If necessary, the dynamic node DinL can be staticized with an inverter. Alter-
natively, a keeper pFET driven by  can restore the voltage at node DinL. 

Figure 21.9 shows how an E-R latch drives a precharged gate and how the output of the gate is stored in
an E-R latch. The gate precharges on ϕ1 and evaluates on ϕ2. Although for simplicity Fig. 21.9 shows a single
gate, precharged gates can be arranged in domino style; the outputs of the final stage are stored in E-R latches.
The precharged gates and the E-R latch inverters are powered from the same dc supply with voltage Vdd. 

Pass-Transistor Logic

The E-R latch design used with precharged logic (Fig. 21.8) can operate with pass-transistor logic as well
(Fig. 21.10). As in precharged logic, the magnitude of clock voltage swing  is equal to Vdd + Vth. Pass-
transistor gates are driven by clock-powered signals. Transistor chains can be driven either by clock-
powered signals (i.e., signal wo in Fig. 21.10) or by dc-powered signals. When transistor chains are driven
by clock-powered signals, the output of the first transistor (signal ui in Fig. 21.10) is a dc-level signal,
due to the threshold voltage drop of the pass transistor. Therefore, dc-level signals are steered through
transistor chains. The higher voltage swing of the clock-powered signals allows the dc-level signals to be
passed at their full swing. Furthermore, some energy along the transistor-chain path can be recovered if
the path is driven by a clock-powered signal; however, for typical pass-transistor gate configurations,
HSPICE simulations indicate that most of the injected energy would be trapped in the path. 

FIGURE 21.8 Potential E-R latch for precharged logic.

FIGURE 21.9 E-R latches used with precharged logic ([28] © 1997 IEEE).

DinL DinLDin

Latch Stage Clocked-Buffer Stage

Viso

Dout

ϕL
ϕD

M1
M2

M3

I2

the 
boot 
node 
(bn)I1

M4

yo∧ϕ1xo∧ϕ2
yixi

Precharged
Gate

1

Vdd Viso ϕϕ
ϕ 12

E-R Latch

Viso ϕ2ϕ1

E-R Latch

DinL

Vϕ
© 2002 by CRC Press LLC



Static Logic

As was previously discussed, clock-powered signals can be used directly with precharged and pass-
transistor logic. First, no pulse-to-level conversion is required; second, the latch-stage of the E-R latch
consists of a 3-transistor dynamic latch. The limitation for these logic styles is that the clock voltage
swing Vϕ should be equal to Vdd + Vth. This subsection investigates how clock-powered signals can operate
with static logic. The main problem with static logic is that clock-powered signals may have long transition
times. Therefore, they cannot drive static gates directly, because these gates would experience short-circuit
current even if Vϕ were larger than Vdd. To solve this problem, pulse-to-level converters (P2LC) must be
introduced between the E-R latches and the static logic blocks. A similar static-dissipation problem arises
for conventional static-logic systems with multiple supply voltages; the outputs of low-supply-voltage
gates cannot drive high-supply-voltage gates directly, because short-circuit current would be drawn in
the high-supply-voltage gates. To solve this problem, low-to-high voltage converter designs have been
proposed [26]. These low-to-high voltage converters can be slightly modified to operate as pulse-to-level
converters (Fig. 21.11). 

The first design (Fig. 21.11(a)) is a dual-rail-input, dynamic P2LC (DD P2LC). On every ϕ1, exactly
one of xp or  is pulsed, setting the outputs xl or  accordingly. Assume that  is high and xl is low.
If  is pulsed, then xl and  remain unchanged. If xp is pulsed, then transistor M3 turns on, discharging

. This turns on M2, which charges xl to Vdd, cutting off M1. At the end of the operation, the outputs
xl and  have been flipped. The second design (Fig. 21.11(b)) is a dual-rail-input, static P2LC (DS P2LC).

FIGURE 21.10 E-R latches used with pass-transistor logic ([28] © 1997 IEEE).

FIGURE 21.11 Various pulse-to-level converter designs.
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The only difference between the two designs is that the nodes xl and  of the DS P2LC are staticized.
This converter can be used in cases where its inputs xp and  are not pulsed on every cycle. The third
design (Fig. 21.11(c)) is a single-rail-input, dynamic P2LC (SD P2LC). In this case, ϕ2 acts similar to a
precharge phase, resetting the SD P2LC to low state (i.e., xl is low and  is high). On ϕ1, if xp is high,
the SD P2LC is set to high. Otherwise, it remains low. The SD P2LC converter does not need to be
staticized because it is refreshed on every ϕ2. If the output of the SD P2LC is required to be stable on
ϕ2 , it should be latched on ϕ1. This is not necessary for DD and DS P2LC since their outputs would not
change until after the next ϕ1. 

Table 21.1 summarizes the characteristics of all three P2LC types. All three circuits inherently operate
as level-to-level converters as well, which allows Vϕ and Vdd to be independent from each other. Conse-
quently, these voltages can be selected based solely on system and process specifications. 

The 3-transistor dynamic latch, which is suitable for use with precharged and pass-transistor logic,
requires that Vϕ depend on Vdd (i.e., Vϕ must be at least equal to Vdd + Vth). This dependency is not
important with precharged and pass-transistor logic because it is primarily imposed by these logic styles;
however, static logic allows Vϕ and Vdd to be independent from each other. Using the 3-transistor dynamic
latch with static logic would impose unnecessary restrictions on the voltage levels of the clock phases
and the dc supply. 

Figure 21.12 shows a potential E-R latch design that is better suited to static logic. The latch stage
consists of a 6-transistor dynamic latch [19]. During ϕL , the input Din gets propagated through the two
latch gates. When ϕL is low, propagation is blocked on either the first or the second latch gate, depending
on the transition of Din. The 6-transistor dynamic latch does not impose any voltage restrictions, although
it is larger and slower than its 3-transistor counterpart. The clocked-buffer stage is slightly different from
that of the E-R latch presented in Fig. 21.8 to accommodate the polarity change of its input. 

Clock-Powered Microsystems

This subsection shows how clock-powered microsystems can be built, investigates timing implications
for the various styles of clock-powered logic, and discusses the energy dissipation of clock-powered
microsystems.

TABLE 21.1 Characteristics of Pulse-to-Level Converters

Converter Input Form Output Timing Description

DD P2LC Dual rail Valid on driving phase, stable on 
other phase

Nonrefreshed dynamic

DS P2LC Dual rail Valid on driving phase, stable on 
other phase

Nonrefreshed static

SD P2LC Single rail Valid on driving phase, reset on 
other phase

Refreshed dynamic

FIGURE 21.12 Potential E-R latch for static logic.
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Precharged and pass-transistor clock-powered logic microsystems are built in similar ways. Each logic
block evaluates within a phase (Fig. 21.13(a)). Logic block outputs are latched at the same phase. Logic
blocks start computing when the input clock-powered signals are charged to Vth. In order for the output
to be latched in time, computation should finish before the falling edge of the clock phase crosses the Vth

voltage level (Fig. 21.13(b)). Therefore, precharged and pass-transistor logic blocks perform useful com-
putations for less than half of the cycle time. However, precharged logic blocks are not totally idle the rest
of the time, since these blocks are precharged during the phase in which they do not evaluate. Furthermore,
clock-powered signals drive only the first gate level of precharged logic blocks. Precharged gates inside the
logic blocks are arranged in domino form. During the evaluate phase, either the clock-powered block
inputs are pulsed or they remain at 0 V, depending on their values. Therefore, once the computation is
fired, these inputs are no longer needed. Thus, the energy return time of the pulsed inputs is totally hidden
because of the nature of domino precharged logic. On the other hand, clock-powered signals that drive
pass-transistor gates are required to remain valid throughout the entire computation time.

The way that static clock-powered logic is arranged into pipeline stages depends on the converters
that are used. Both static and dynamic dual-rail-input converters (i.e., DD and DS P2LC) can drive static
logic blocks directly. The inputs of these converters change once every cycle. Therefore, almost a full
cycle is allotted for the static logic blocks to compute (Fig. 21.14(a)), disregarding the converter latency.
Assuming that the inputs of the DS or DD converters are pulsed on ϕ1, then the output of the static logic
block is latched at the end of ϕ2 (Fig. 21.14(b)). 

As illustrated earlier, single-rail-input dynamic P2LCs operate like precharged gates because they are
reset during the phase that their input is not valid. Therefore, the outputs of SD P2LCs are valid only
for one phase, i.e., the phase in which their inputs are valid. One way to arrange them in pipeline stages
is to latch their outputs, and then use the latch outputs to drive static logic blocks (Fig. 21.15(a)).
Essentially, the SD P2LC output is transmitted through the latch at the beginning of the phase and
remains stable when the phase goes away. The net computation time is as shown in Fig. 21.14(b).
Alternatively, SD P2LC outputs can drive static logic blocks directly and the outputs of the static logic
blocks can be latched at the end of the phase (Fig. 21.15(b)). This requires logic blocks to be split into
smaller pieces with half latency. Operation is similar to the precharged clock-powered logic, and the net
computation time is as shown in Fig. 21.13(b). The energy return time is totally hidden for static clock-
powered logic, since clock-powered signals are not needed when they have been converted to levels. 

For low-power operation, the rise and fall times of the clock phases must be longer than the practically
obtainable minimum transition times. The consequence of stretching the rise time is that, within a clock
cycle, the logic will activate later than it would from a minimal-transition-time input signal. A consequence

FIGURE 21.13 (a) Clock-powered precharged and pass-transistor logic arranged in pipeline stages and (b) net
computation time within a cycle.
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of stretching the fall time is that the input cutoff voltage for the E-R latch will occur earlier in the clock
phase. The net result is that for a fixed cycle time, the amount of computation that can be done during
a cycle is decreased to reduce energy dissipation. For phase-granularity computations (i.e., mostly pre-
charged and pass-transistor logic—Fig. 21.13(b)), the slow clock phase edges reduce the computation
time four times within a cycle as opposed to twice per cycle for cycle-granularity computations (i.e., static
logic—Fig. 21.14(b)). The benefit of phase-granularity computations is that more opportunities for
energy recovery are available, since nodes can be clock-pulsed on both phases. This also results in balanced
capacitance for both clock phases, which may be required for high-efficiency clock drivers; however,
phase capacitance can be balanced for cycle-granularity computations if a phase-granularity computation
is introduced in a sequence of pipeline stages. For example, assume a system with N pipeline stages. Also
assume that a phase-granularity computation is introduced after the N/2 pipeline stage while the rest of
the stages are cycle-granularity computations. Then the clock-powered nodes of the first N/2 stages would
be driven by one phase, whereas the clock-powered nodes of the final N/2 stages would be driven by the
other phase.

FIGURE 21.14 (a) Clock-powered static logic arranged in pipeline stages with DD/DS P2LC and (b) net compu-
tation time within a cycle.

FIGURE 21.15 Clock-powered static logic arranged on pipeline stages with SD P2LC (a) for cycle- and (b) for
phase-granularity computations.
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21.6 Driver Comparison

In clock-powered logic, combinational logic blocks begin to switch as soon as clock-powered nodes are
charged to Vth. For example, assume that a clock-powered signal drives a pulse-to-level converter. The
converter starts operating as soon as the clock-powered signal voltage passes the threshold voltage Vth.
Therefore, the switching time for charging the loads of clock-powered nodes to Vϕ is not as important
as the delay for converting pulses to levels. With clock-powered logic, it is possible to overlap the time
required for charge (and energy) recovery time with the computation time of the logic block. It is also
possible, to a lesser degree, to overlap some of the charging time. The latter depends on many factors
including clock and dc voltage levels, logic styles, and the CMOS technology.

In other E-R approaches (e.g., reversible logic [3,9], retractile cascade logic [27], and partially adiabatic
logic families [10–16]), the signal switching time is important because the inputs of a logic block must
be fully charged before the block starts operating. Furthermore, as in conventional CMOS circuits, voltage
scaling is possible for clock-powered nodes at the expense of increased circuit latencies. 

To investigate the effectiveness and the scalability of clock-powered logic, a simulation experiment was
conducted to compare the driver stage of the E-R latch, i.e., the clocked buffer to a conventional driver.
The two circuits were evaluated for energy versus delay and energy-delay product (EDP) versus voltage
scaling.

Experimental Setup

The goal of the experiment was to compare the clock-powered approach for driving high-capacitance
nodes with a conventional, low-power approach. Because it is impractical to compare clock-powered logic
against all low-power conventional techniques, a dual-supply-voltage approach in which high-capacitance
nodes are charged to a lower voltage VddL than the rest of the nodes was chosen. The dual-supply-voltage
approach is similar to the clock-powered approach in that it attempts to reduce power dissipation in
the high-capacitance nodes. Furthermore, like the clock-powered approach, the dual-supply-voltage
approach requires that low-supply-voltage signals be converted to high-supply-voltage signals before they
are fed to high-supply-voltage gates. Otherwise, these gates would suffer from short-circuit current, or
may not work at all, depending on the two supply voltage levels, the logic style, and the technology process.

The dual-rail-input, static pulse-to-level converter (DS P2LC—Fig. 21.11(b)) is a converter circuit that
operates simply with both approaches (Fig. 21.16). Two 150 fF capacitive loads were added to the converter

FIGURE 21.16 Clocked buffer (a) and conventional drivers (b) connected to 150 fF capacitance loads and a DD
P2LC.
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inputs xp and  to model the capacitance of the interconnect. Two inverters were added to the converter
outputs xl and  to model the driving load of the converter. 

A single-rail-input, dual-rail-output clocked buffer (Fig. 21.17(a)) was used for the clock-powered
approach. This clocked buffer was derived from the single-rail-output buffer by duplicating the bootstrap,
the isolation, and the clamp transistors. The two inverters of the clocked buffer, as well as the converter
and its output inverters, were powered from the same supply voltage Vdd. The clock phase ϕD swung to
a voltage Vϕ (Fig. 21.17(a)). The input Din of the clocked buffer swung from 0 to Vdd.

For the dual-supply-voltage approach, two drivers, powered from the low-supply-voltage VddL, drove
the converter (Fig. 21.16(b)). The converter and its output inverters were powered from the same supply
voltage Vdd. The inputs Din and  of the two drivers swung from 0 to Vdd. Two different driver designs
were used in the experiment. One was a regular inverter (Fig. 21.17(b)). The nFET of the inverter had
the same width with the bootstrap transistors of the CB (Fig. 21.17(a)) and the pFET was set by the
mobility ratio in the CMOS technology. The regular inverter becomes very slow as VddL is scaled down.
This is because the gate-to-source voltage of the pull-up transistor is equal to VddL when the input is at 0 V.
The operation of the pull-down nFET is not affected by VddL scaling because when it is on, its gate-to-
source voltage is equal to Vdd, i.e., the voltage that Din swings to. To mitigate this effect, a second driver
design with both an nFET and a pFET as pull-ups was used (Fig. 21.17(c)). As VddL decreases, the nFET
pull-up can fully charge the output, given the significant voltage difference between VddL and Vdd. 

Simulation Results

All circuits were laid out in Magic using the 0.5-µm Hewlett-Packard CMOS14B process parameters.
The netlists extracted from the layout were simulated with HSPICE using the level-39 MOSFET models.
The 150 fF load capacitances were added in the netlist as shown in Fig. 21.16. The delay to switch the
DS P2LC output xl from zero to one and the required energy for switching the DS P2LC inputs (i.e.,
nodes xp and ) were simulated for the clock-powered and dual-supply-voltage cases. For the clock-
powered case, it was assumed that all return energy was recovered.

The supply voltage Vdd was held constant at 3.3 V for all the simulations. The isolation voltage Viso of
the clocked buffer was set to 4.5 V. This was found to be a near-optimum point through HSPICE
simulations. If the isolation voltage is too low, the boot node will not charge to the maximum possible
voltage. If the isolation voltage is too high, then during bootstrapping, the boot node voltage will reach
a point at which the isolation transistor turns on and charge flows backward from the boot node, thus
diminishing the bootstrapping effect.

FIGURE 21.17 The three drivers used for the experiment: (a) clocked buffer, (b) inverter, and (c) inverter with
pFET and nFET as pull-ups.
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The clock voltage swing, Vϕ, of the clock-powered logic, was varied from 1.1 to 3.3 V. Specifically,
simulations were performed for the following clock voltage swings: 1.1, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.0,
and 3.3 V. Switching time Ts was varied from nearly 0 to 1 ns (0.001, 0.25, 0.50, and 1.0 ns). For all
simulations the phase width Tw was set to 2.5 ns, whereas the phase high time Th was equal to Tw − 2Ts

(see Fig. 21.16(a)). The delay was recorded from the point where the phase started switching until the
output xl reached the 50% point (e.g., 1.65 V in Fig. 21.18). If the delays were evaluated from when the
phase reached its 50% point, the clock-powered approach would be allowed a longer start time than
the conventional case. To eliminate this advantage, the delay was evaluated as described previously (see
Fig. 21.18). VddL was varied identically to Vϕ for the conventional case. The switching time of the inputs
Din and  was 1 ps. Delay was measured from the Din 50% point to the xl 50% point (i.e., 1.65 V).

The energy versus delay results (Fig. 21.19) show that the delay of the inverter increases significantly
as VddL is reduced. At 3.3 V, the delay is approximately 0.7 ns, whereas at 1.1 V, the delay is nearly 3.6 ns
(not shown in Fig. 21.19). The conventional driver with the two pull-ups (Fig. 21.17(c)) has a performance

FIGURE 21.18 HSPICE waveforms for clock-powered approach when Vϕ is 2.4 V.

FIGURE 21.19 Energy vs. delay for the driver experiment. For comparison purposes, it should be noted that the
delay of a minimum size inverter (nFET width 0.7 µm, pFET width 2.2 µm) was recorded at 150 ps by simulating a
15-stage ring oscillator in HSPICE (supply voltage 3.3 V).
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similar to that of the clocked buffer when the clock transition time Ts is 1 ps. The nearly zero transition
time is equivalent to nonadiabatically switching nodes xp and . The performance of the clocked buffer
indicates better scalability than conventional drivers. For a given transition time, delay can be traded
efficiently for energy by reducing the clock voltage swing. When the point is reached where voltage scaling
is no longer efficient, i.e., delay increases faster than energy decreases, then it is better to increase the
transition time. For instance, when Ts is 0.25 ns and Vϕ is 1.2 V, the energy dissipated is 91 fJ and the delay
is 1.08 ns. If energy dissipation were to be reduced, it would be more energy efficient to increase the
switching time to 0.50 ns rather than to scale the clock voltage swing to 1.1 V. The former would result
in 54 fJ dissipation and 1.28 ns delay, whereas the latter would result in 76 fJ dissipation and 1.26 ns delay. 

The pulse-to-level converter reaches its limits as the voltage swing of its inputs xp and  approaches
Vth. For all cases, the converter would not switch during the allotted 5 ns cycle time when the driver
operating voltage (Vϕ for the CB and VddL for the conventional drivers) was 1.0 V. This is a limiting factor
for conventional approaches. Energy cannot be reduced any further because the circuit would not work
at lower voltages; however, energy can be reduced for the clocked-power approach simply by stretching
out the switching time. The better scalability is a result of its energy dependency on both clock voltage
swing and clock switching time.

The energy-delay product (EDP) versus driver operating voltage graph (Fig. 21.20) also indicates the
scalability of the clock-powered approach. Moreover, the clocked buffer exhibits better EDP than the
conventional drivers for all switching times. The point where energy is not efficiently traded for perfor-
mance is clearly shown for the inverter to be around 1.5 V. 

Some other important issues related to the nature of the two approaches should be pointed out. First,
for the clock-powered approach, both xp and  are at 0 V before the CB passes a clock pulse to one of
them. On the other hand, for the conventional approach, both xp and  switch simultaneously. This
could potentially slow down the converter, since for a short time both pull-down devices would be on.

Second, in the clock-powered approach, the dual-rail-output CB used for this experiment has a switch-
ing activity of 1, meaning that one of its outputs is pulsed every cycle even if its input remains the same.
CB designs with reduced output switching activity can be designed at the expense of increasing their
complexity [22]. Nevertheless, conventional driver outputs switch only if their inputs change. Therefore,
at a system level, energy dissipation would depend on the input switching activity factor. For instance, if
inputs switch every other cycle, the conventional driver’s average energy dissipation would be halved.

Third, although the internal dissipation of the clocked buffer and the conventional drivers was not
presented, the conventional drivers have higher internal dissipation due to the wide pFETs [22]. Further-
more, the short switching time of the conventional driver inputs excluded short-circuit current. Typically,
the conventional drivers would have some dissipation due to short-circuit current [25] for supply voltage
VddL higher than 2Vth (assuming that nFETs and pFETs have the same threshold voltage Vth). 

FIGURE 21.20 Energy-delay product (EDP) vs. driver operating voltage for the driver experiment.
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21.7 Clock-Powered Microprocessor Design

General-purpose microprocessors represent a good application target for clock-powered logic for two
reasons: First, they contain a mixture of different circuit types (i.e., function units, random logic, and
register file). Second, high-capacitance nodes are a small percentage of the total node count and are
easily identifiable (e.g., control signals, register file address, word, and bit lines, buses between function
units, etc.). An example of a simple processor microarchitecture that shows potential clock-powered
nodes is shown in Fig. 21.21. After identifying the high-capacitance nodes, it is decided on a case-by-
case basis, which ones could be clock-powered. Factors to consider for this decision are system-level and
timing implications, and associated overhead [22].

Two clock-powered microprocessors were successfully implemented: AC-1 [28] and MD1 [29]. In this
section, first both these microprocessors are described followed by a presentation of their lab results.
Finally, their performance is compared with an equivalent conventional implementation of the same
processor architecture through circuit simulations.

AC-1 Versus MD1

AC-1 and MD1 are extensively described in [28] and [29], respectively. The purpose of this section is to
provide a brief description of each one and a summary of their comparison. As we see next, although
both processors are based on similar instruction set architectures (ISAs), their implementations are
radically different in terms of circuit style and physical design. 

Both processors implement a RISC-type, 16-bit, 2-operand, 40-instruction architecture [30]. These
instructions include arithmetic and logic operations that require an adder, a shifter, a logic unit, and a
compare unit. In addition to the general-purpose instructions, MD1 supports another 20 microdisplay
extension (MDX) instructions. These latter instructions operate on bytes that are packed in 16-bit words.
The available function units were modified to support them along with general-purpose instructions.
AC-1 and MD1 have similar five-stage pipelines.

Despite the fact that both AC-1 and MD1 are clock-powered CMOS microprocessors, they are based
on two different design approaches. AC-1 is implemented with dynamic logic, i.e., precharged (Fig. 21.9)
and pass-transistor logic (Fig. 21.10). As a result, clock phases were running a threshold voltage above the
core supply voltage Vdd. Logic blocks were arranged in pipeline stages as shown in Fig. 21.13. Consequently,
the available computation time was shortened by all four slow edges within a cycle. AC-1 was a full-
custom layout implemented in the Hewlett-Packard CMOS14B process, which is a 0.5-µm, 3-metal-layer,

FIGURE 21.21 A simple processor microarchitecture that indicates high-capacitance nodes.

Bypass from EXE Stage / A-Bus

Bypass from MEM Stage / Write Back

I-Bus / Instruction Register Bus

Control Signals Constant

Din-Bus

RF Decoder Address

RF Word Lines

Return Address

Indexed Address

High-
Capacitance 

Nets

Control
Unit

PC
Unit

Register

File

Read
Dec. 1

Read
Dec. 0

Write
Dec.

Comp.
Unit

ALU

Shifter

Dout-Bus

FU Res.Source Op.

PC-Bus
© 2002 by CRC Press LLC



3.3-V, n-well CMOS process. The core size is 2.63 mm by 2.63 mm. It contains 12.7 k transistors. The chip
was packaged in a 108-pin PGA package.

Significant design effort was dedicated to implementing the clock driver and clock distribution network.
AC-1 contains two clock drivers integrated together—a resonant clock driver like the one described
previously (Fig. 21.4) and a conventional NOR-based, two-phase generator. The AC-1 clock circuitry
(Fig. 21.22) was mostly integrated on-chip. Only the inductors for the resonant driver were externally
attached. It is possible to enable either clock driver with an external control input. The conventional
clock driver is powered from a separate dc supply (Vclk) for measurement purposes. Also, the voltage
swing of the clock phases must be higher than the core dc supply. The clock phases are distributed inside
the chip through a clock grid. The calculated resistance of the clock grid is less than 4Ω. Each of the two
large transistors of the resonant clock driver was partitioned in 306 small transistors that were connected
in parallel throughout the clock grid. To minimize clock skew, the conventional clock driver was placed
in the center of the grid. The extracted clock capacitance is 61 pF evenly distributed between the two
phases. Approximately 20% of the clock capacitance is attributed to the clock grid.

The power measurements are plotted in Figs. 21.23 and 21.24. In resonant mode, the frequency was
varied from 35.5 to 58.8 MHz by connecting external inductors that ranged from 290 nH down to 99 nH.
The voltages for increasing frequencies ranged from 1.8 to 2.5 V for Vdd (the core supply) and 1.0 to
1.4 V for Vdc (the resonant clock driver supply), which corresponded to a resonant-clock voltage swing
(Vϕ) from 2.9 to 4.0 V. The combined power dissipation ranged from 5.7 to 26.2 mW. Under conventional
drive, the external clock frequency was adjusted from 35 to 54 MHz and the power measurement

FIGURE 21.22 AC-1 clock-driver schematics ([28] © 1997 IEEE).

FIGURE 21.23 Lab measurements of AC-1 combined clock and core energy dissipation (mW/MHz) per clock cycle
as function of frequency ([28] © 1997 IEEE).
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procedure was repeated. The voltages for increasing frequencies ranged from 2.5 to 3.3 V for the supply
voltage of the conventional clock driver (Vclk) and from 1.9 to 2.6 V for Vdd. The combined power
dissipation ranged from 26.7 to 85.3 mW. The results show that in resonant mode, the dissipation is a
factor of four to five less than in conventional mode. The clock power is approximately 90% of the total
power under conventional drive and 60–70% under resonant drive. The core supply (Vdd) dissipation is
about the same for both resonant and conventional modes.

The AC-1 results indicated two drawbacks on the dynamic-logic approach that was employed. First,
the clock voltage swing was dependent on the core dc supply. Specifically, the clock voltage swing was a
threshold voltage higher than the supply voltage Vdd. This made AC-1 a low-energy processor only when
operated on energy-recovery mode, i.e., the energy savings were attributed mostly to the high-efficiency
resonant clock driver. Second, the computation time was penalized for all slow clock edges within a cycle.
These issues were addressed with MD1, the second generation clock-powered microprocessor. The key
difference compared to AC-1 is that static logic was used instead of dynamic. As was discussed previously,
with static logic and explicit pulse-to-level conversion, the clock voltage swing and core dc supply are
independent from each other. Furthermore, it is possible to build pipeline stages that are slowed down
by the slow clock edges twice per cycle instead of four times. Two options were available: (i) to use dual-
rail pulse-to-level converters and arrange pipeline stages as shown in Fig. 21.14, or (ii) to use single-rail
pulse-to-level convertors and arrange pipeline stages as shown in Fig. 21.15a. The latter was preferred
because it considerably reduces bus wiring and switching activity of clock-powered nodes. In dual-rail
signaling of clock-powered nodes, one node is pulsed every cycle regardless if the datum is a zero or a
one. To further reduce the switching activity of clock-powered nodes, two other versions of clock buffers
with a conditional enable signal were also used (Fig. 21.25). The output can either be clamped to ground
or left floating.

The physical design approach for MD1 was different than AC-1. Individual cells were custom-made
layouts. For larger blocks, a place-and-route CAD tool was used. The control unit was synthesized with
standard cells from a Verilog description. MD1 was implemented in the same 0.5-µm, 3-metal-layer, 3.3-V,
n-well CMOS process, but only two metal layers were available for routing. The top-level metal was
reserved to be used as a ground shield to improve noise immunity. This was imposed by the MD1
application as a graphic processor closely placed to a microdisplay. The core size is 2.4 mm by 2.3 mm.
It contains 28 k transistors. The chip was packaged in a 108-pin PGA package. 

MD1 was tested with an external resonant clock driver for 8.5 and 15.8 MHz. The core dc supply
voltage was set to 1.5 V. At 8.5 MHz, the dissipation of the core dc supply was 480 µW and the dissipation
of the resonance clock driver was 300 µW. At 15.8 MHz, the dissipation of the core dc supply was 900 µW
and the dissipation of the resonant clock driver was 2.0 mW. PowerMill simulations indicated that the

FIGURE 21.24 Lab measurements of AC-1 clock and core energy dissipation (mW/MHz) per clock cycle as function
of frequency.
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clock-powered nodes accounted for 80% of the total dissipation when energy-recovery was disabled.
Table 21.2 summarizes the characteristics for both AC-1 and MD1. 

Comparison Study

To compare the effectiveness of clock-powered logic against conventional CMOS, an equivalent fully
dissipative microprocessor, DC1, was implemented. DC1 shares the same instruction set with AC-1,
i.e., it does not include the MDX instructions. DC1 was implemented following the MD1 design flow
for the same 0.5 µm CMOS process. All the three metal layers were available for routing. DC1 uses the
same pipeline timing with MD1. Circuit-wise, DC1 is based on static CMOS as is MD1. The main
difference compared to MD1 is that clocked buffers were replaced with regular drivers and latches were
replaced with sense-amp, edge-triggered flip-flops [31]. DC1 uses a single-phase clock, which was dis-
tributed automatically by the place and route CAD tool following an H-tree. Clock is gated away from
unused blocks. The DC1 core size is 1.8 mm × 1.9 mm. The core contains 21 k transistors.

The three processor cores were compared through PowerMill simulations since DC1 was not fabricated.
All three SPICE netlists were extracted from physical layout using the same CAD tool and extraction
rules. It was not possible to simulate the clock-powered processors operating in energy-recovery (i.e.,
resonant) mode due to limitations of the simulation software. Instead both of them were simulated
operating in conventional mode. For AC-1, the conventional clock driver was used to generate the two

TABLE 21.2 AC-1 versus MD1 Summary

AC-1 MD1

ISA 16-bit RISC 16-bit RISC plus MDX instr.
Word width 16 bits 16 bits
Pipeline structure 5 Stages 5 Stages
Logic style Dynamic Static
Pipeline style As shown in Fig. 21.13(a) As shown Fig. 21.15(a)
Transistor count 12,700 28,000
Cell design Custom Custom
Layout method Custom Synthesized
Clock-power nodes 10% 5%
Power accounted to clock-powered 

nodes at no energy recovery
90% 80%

Resonant clock driver FETs position On-chip Off-chip
Conventional clock driver Yes No

FIGURE 21.25 Clocked buffers with conditionally enabled outputs; when disabled, output is either clamped to
ground (a) or is at high impedance (b) ([29] © 2000 IEEE).
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clock phases. For MD1, conventional buffers were used to drive the two clock phases. These buffers were
powered from a separate dc supply, so that clock power was recorded separately than the core power.
For both AC-1 and MD1, the operating power under resonant mode was projected by dividing the clock
power under conventional mode by 6.5. This factor indicates the efficiency of the all-resonant clock driver
and was derived from laboratory measurements. 

The simulation results are shown in Fig. 21.26. For DC1, the operating frequency ranged from 20 MHz
at 1.5 V to 143 MHz at 3.3 V. Power dissipation ranged from 2.7 mW (at 20 MHz) to 100 mW (at
143 MHz). For AC-1, the top operating frequency was 74 MHz. For increasing frequency, clock voltage
ranged from 2.4 to 3.3 V and core voltage ranged from 1.8 to 2.6 V. As discussed earlier, the AC-1 logic
style requires that the clock voltage swing be a threshold voltage higher than the core voltage. Power
dissipation under conventional mode was 22.3 mW at 33.3 MHz and 95.1 mW at 74 MHz. The projected
power dissipation under resonant mode is 4.7 and 21.5 mW, respectively. For MD1, the top frequency
was 110 MHz. For all operating points, clock and core voltages were maintained at the same level ranging
from 1.4 V at 10 MHz to 2.7 V at 110 MHz. Power dissipation was 2.1 mW at 10 MHz and 108 mW at
110 MHz. The power dissipation in resonant mode would be 850 µW and 34 mW, respectively.

Simulation results show that MD1 is a more efficient design than AC-1 in terms of power dissipation
and operating frequency especially under conventional mode. The significantly higher power dissipation
of AC-1 under conventional mode is attributed to the higher clock voltage swing. Therefore, applying
energy recovery has a greater effect on AC-1 than on MD1 since clock power is a larger portion of the
total power for AC-1 when both processors operate in conventional mode. For MD1 under conventional
mode, the clock-powered nodes (including the two clock phases) account for 80% of the total power
dissipation. Clock-powered nodes are about 5% of the total nodes. Both AC-1 and MD1 would dissipate
less power than DC1 when they operate under resonant mode. Specifically, the projected MD1 dissipation
under resonant mode would be about 40% less than the dissipation of DC1.

21.8 Conclusions

In this chapter, clock-powered logic was discussed as a low-overhead, node-selective adiabatic style for
low-power CMOS computing. The merit of clock-powered logic is that it combines the low-overhead
of standard CMOS for driving low-capacitance nodes and the superior energy versus delay scalability
of adiabatic charging for high-capacitance nodes. All the components of a clock-powered microsystem
were presented in detail. Clock-powered logic is more effective for applications in which a small
percentage of nodes accounts for most of the dynamic power dissipation (e.g., processors, memory
structures [32], etc.). 

FIGURE 21.26 Energy per cycle vs. frequency simulation results for all three processors (data combined from [28]
© 1997 IEEE and [29] © 2000 IEEE).
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Two generations of clock-powered microprocessors were presented in this article and compared against
an equivalent standard CMOS design. For both processors, the results indicated that a small percentage
of nodes (i.e., 5–10%) contributed most of the dynamic power dissipation (i.e., 80–90%) when operated
in conventional mode. Compared to the standard CMOS design, the improved second-generation clock-
powered microprocessor would dissipate approximately 40% less energy per cycle, assuming 85% effi-
ciency of the clock driver. 

DC1 is powered from a single supply voltage. Typically, microprocessors contain a few circuit critical
paths. If such a system is powered from a single supply voltage, voltage scaling cannot provide a near-
optimum dissipation versus speed trade-off, because the voltage level is determined by the few critical
paths. The noncritical paths would switch faster than they absolutely need to. If a second dc supply
voltage was used to power the high-capacitance nodes in conjunction with low-voltage-swing drivers
[33], the DC1 dissipation would be decreased at the expense of reducing its clock frequency; however,
clock-powered logic is inherently a multiple-supply-voltage system. As the driver experiment showed in
section 21.6, energy dissipation for clock-powered nodes scales better than a dual-supply-voltage
approach, since both the clock voltage swing and the switching time can be scaled. Another low-power
approach is to dynamically adjust the system dc supply voltage and clock frequency based on performance
demands [34]. Such a system resembles clock-powered logic. Voltage is dynamically varied to different
constant dc levels, whereas in clock-powered logic, the supply voltage itself is statically time-varying, i.e.,
every cycle, it switches between 0 and Vϕ .

Clock-powered logic is a low-power approach that does not rely solely on low-voltage operation.
Therefore, it can be applied in CMOS processes without the need of low-threshold transistors that result
in excessive leakage dissipation. Furthermore, the availability of high-energy signaling in clock-powered
logic offers better noise immunity compared to low-voltage approaches. 

To summarize, three conditions must be satisfied for applying clock-powered logic to a low-power
system. First, the system should contain a small percentage of high-capacitance nodes with moderate to
high switching activity. Second, the system should contain a few critical and many time-relaxed circuit
paths. Third, the switching time of clock-powered nodes should be longer than the minimum obtainable
switching time from the technology process. Controlling the speed of the energy transport to clock-
powered nodes results in less energy dissipation. If the longer switching time of clock-powered nodes is
made to be an explicit system-design consideration, conventional switching techniques can be used for
nodes in critical paths while the other high-capacitance nodes are clock-powered. 
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22.1 Introduction

Advances in VLSI technology now allow us to build systems-on-chips (SoCs), also known as systems-
on-silicon (SoS). SoCs are complex at all levels of abstraction; they contain hundreds of millions of
transistors; they also provide sophisticated functionality, unlike earlier generations of commodity mem-
ory parts. As a result, SoCs present a major productivity challenge.

One solution to the SoC productivity problem is to use embedded computers.1 An embedded computer
is a programmable processor that is a component in a larger system that is not a general-purpose
computer. Embedded computers help tame design complexity by separating (at least to some degree)
hardware and software design concerns. A processor can be used as a pre-designed component—known
as intellectual property (IP)—that operates at a known speed and power consumption. The software
required to implement the desired functionality can be designed somewhat separately.

In exchange for separating hardware and software design, some elements traditionally found in hard-
ware design must be transferred to software design. Software designers have traditionally concentrated on
functionality while hardware designers have worried about critical delay paths, power consumption, and
area. Embedded software designers must worry about real-time deadlines, power consumption, and pro-
gram and data size. As a result, embedded SoC design disciplines require a blending of hardware and
software skills.

This chapter considers the characteristics of SoCs built from embedded processors. The next section
surveys the types of requirements that are generally demanded from embedded SoCs. Section 22.3
surveys the characteristics of components used to build embedded systems. Section 22.4 introduces the
types of architectures used in embedded systems. Section 22.5 reviews design methodologies for embed-
ded SoCs.

Wayne Wolf
Princeton University
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22.2 Requirements on Embedded SoCs

A digital system typically uses embedded processors to meet a combination of performance, complexity,
and possibly design time goals. If the system’s behavior is very regular and easy to specify as hardware,
it may not be necessary to use embedded software. An embedded processor becomes more attractive
when the behavior is too complex to be easily captured in hardwired logic.

Using embedded processors may reduce design time by allowing the design to be separated into distinct
software and hardware units. In many cases, the CPU will be predesigned; even if the CPU and associated
hardware is being designed for the project, many aspects of the hardware design can be performed
separately from the software design. (Experience with embedded system designs does show, however,
that the hardware and software designs are intertwined and that embedded software is prone to some of
the same scheduling problems as mainframe software projects.)

But even if embedded processors seem attractive by reducing much of the design to “just program-
ming,” it must be remembered that embedded software design is much more challenging than typical
applications programming for workstations or PCs. Embedded software must be designed to meet not
just functional requirements—the software’s input and output behavior—but also stringent nonfunc-
tional requirements. Those nonfunctional requirements include:

• Performance—Although all programmers are interested in speed of execution, performance is
measured much more precisely in the typical embedded system. Many embedded systems must
meet real-time deadlines. The deadline is measured between two points in the software: if the
program completely executes from the starting point to the end point by the deadline, the system
malfunctions.

• Energy/power—Traditional programmers don’t worry about power or energy consumption. How-
ever, energy and power are important to most embedded systems. Energy consumption is of course
important in battery-operated systems, but the heat generated as a result of power consumption
is increasingly important to wall-powered systems.

• Size—The amount of memory required by the embedded software determines the amount of
memory required by the embedded system. Memory is often one of the major cost components
of an embedded system.

Embedded software design resembles hardware design in its emphasis on nonfunctional requirements
such as performance and power. The challenge in embedded SoC design is to take advantage of the best
aspects of both hardware and software components to quickly build a cost-effective system.

22.3 Embedded SoC Components

CPUs

As shown in Fig. 22.1, a CPU is a programmable instruction set processor. Instructions are kept in a
separate memory—a program counter (PC) that points to the current instruction. This definition does
not consider reconfigurable logic to be a programmable computer, because it does not have a separate
instruction memory and a PC. Reconfigurable logic can be used to implement sequential machines, and

FIGURE 22.1 A CPU and memory.
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so a CPU could be built in reconfigurable logic. But the separation of CPU logic and memory is an
important abstraction for program design.

An embedded processor is judged by several characteristics:

• Performance—The overall speed of execution may be important in some systems, but in many
cases we particularly care about the CPU’s performance on critical sections of code.

• Energy and power—Processors provide different mechanisms to manage power consumption.

• Area—The area of the processor contributes to the total implementation cost of the SoC. The area
of the memory required to store the program also contributes to implementation cost.

These characteristics are judged relative to the embedded software they are expected to run. A processor
may exhibit very different performance or energy consumption on different applications.

RISC processors are commonly used in embedded computing. ARM2 and MIPS3 processors are
examples of RISC processors that are widely used in embedded systems. A RISC CPU uses a pipeline to
increase CPU performance. Many RISC instructions take the same amount of time to execute, simplifying
performance analysis. However, many RISC architectures do have exceptions to this rule. An example is
the multiple-register feature of the ARM processor: an instruction can load or store a set of registers, for
which the instruction takes one cycle per instruction.

Most CPUs used in PCs and workstations today are superscalar processors. A superscalar processor
builds on RISC techniques by adding logic that examines the instruction stream and determines, based
on what CPU resources are needed, when several instructions can be executed in parallel. Superscalar
scheduling logic adds quite a bit of area to the CPU in order to check all the possible conflicts between
combinations of instructions; the size of a superscalar scheduler grows as n2, where n is the number of
instructions that are under consideration for scheduling. Many embedded systems, and in particular
SoCs, do not use superscalar processors and instead stick with RISC processors. Embedded system design-
ers tend to use other techniques, such as instruction-set optimization caches, to improve performance.
Because SoC designers are concerned with overall system performance, not just CPU performance, and
because they have a better idea of the types of software run on their hardware, they can tackle performance
problems in a variety of ways that may use the available silicon area more cost-effectively.

Some embedded processors are known as digital signal processors (DSPs). The term DSP was orig-
inally used to mean one of two things: either a CPU with a Harvard architecture that provided separate
memories for programs and data; or a CPU with a multiply-accumulate unit to efficiently implement
digital filtering operations. Today, the meaning of the term has blurred somewhat. For instance, version
9 of the ARM architecture is a Harvard architecture to better support digital signal processing. Modern
usage applies the term DSP to almost any processor that can be used to efficiently implement signal
processing algorithms.

The application-specific integrated processor (ASIP)4 is one approach to improving the performance
of RISC processors for embedded application. An ASIP’s instruction set is designed to match the require-
ments of the application software it will run. On the one hand, special-purpose function units and
instructions to control them may be added to speed up certain operations. On the other hand, function
units, registers, and busses may be eliminated to reduce the CPU’s cost if they do not provide enough
benefit for the application at hand. The ASIP may be designed manually or automatically based on
profiling information. One advantage of generating the ASIP automatically is that the same information
can be used to generate the processor’s programming environment: a compiler, assembler, and debugger
are necessary to make the ASIP useful building blocks.

Another increasingly popular architecture for embedded computing is very long instruction word
(VLIW). A VLIW machine can execute several instructions simultaneously but, unlike a superscalar
processor, relies on the compiler to schedule parallel instructions at compilation time. A pure VLIW
machine uses slots in the long, fixed-length instruction word to control the CPU’s function units, with
NOPs used to indicate slots that cannot be used for useful work by the compiler. Modern VLIW machines,
such as the TI C60005 and the Motorola/Agere StarCore,6 group single-operation instructions into
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execution packets; the packet’s length can vary depending on the number of instructions that the compiler
was able to schedule for simultaneous operation. VLIW machines provide instruction-level parallelism
with a much smaller CPU than is possible in a superscalar system; however, the compiler must be able
to extract parallelism at compilation time to be able to use the CPU’s resources. Signal processing
applications often have parallel operations that can be exploited at compilation time. For example, a
parallel set of filter banks runs the same code on different data; the operations for each channel can be
scheduled together in the VLIW instruction group. 

Interconnect

Embedded SoCs may connect several CPUs, on-chip memories, and devices on a single chip. High-
performance interconnect systems are required to meet the system’s performance demands. The inter-
connection systems must also comply with standards so that existing components may be connected to
them.

Busses are still the dominant interconnection scheme for embedded SoCs. Although richer intercon-
nection schemes could be used on-chip, where they are not limited by pinout as in board-level systems,
many existing architectures are still memory-limited and not interconnect-limited. However, future
generations of embedded SoCs may need more sophisticated interconnection schemes.

A bus provides a protocol for communication between components. It also defines a memory space
and the uses of various addresses in that memory space, for example, the address range assigned to a
device connected to the bus. Busses for SoCs may be designed for high-performance or low-cost oper-
ation. A high-performance bus uses a combination of techniques—advanced circuits, additional bus
lines, efficient protocols—to maximize transaction performance. One common protocol used for efficient
transfers is the block transfer, in which a range of locations is transferred based on a single address,
eliminating the need to transfer all the addresses on the bus. Some recent busses allow split transac-
tions—the data request and data transfer are performed on separate bus cycles, allowing other bus
operations to be performed while the original request is serviced. A low-cost bus design provides modest
performance that may not be acceptable for instruction fetching or other time-critical operations. A low-
cost bus is designed to require little hardware in the bus itself and to impose a small hardware and
software overhead on the devices connecting to the bus. A system may contain more than one bus; a
bridge can be used to connect one bus to another.

The ARM AMBA bus specification7 is an example of a bus specification for SoCs. The AMBA spec
actually includes two busses: the high-performance AMBA high-performance bus (AHB) and the low-
cost AMBA peripherals bus (APB). The Virtual Sockets Interface committee has defined another stan-
dard for interconnecting components on SoCs.

Memory

One of the great advantages of SoC technology is that memory can be placed on the same chip as the
system components that use the memory. On-chip memory both increases performance and reduces
power consumption because on-chip connections present less reactive load than do pins and traces
between chips; however, an SoC may still need to use separate chips for off-chip memory.

Although on-chip embedded memory has many advantages, it still is not as good as commodity
memory. A commodity SRAM or DRAM’s manufacturing process has been carefully tuned to the
requirements of that component. In contrast, an on-chip memory’s manufacturing needs must be
balanced against the requirements of the logic circuits on the chip. The transistors, interconnections, and
storage nodes of on-chip memories all have somewhat different needs than logic transistors.

Embedded DRAMs suffer the most because they need quite different manufacturing processes than
do logic circuits. The processing steps required to build the storage capacitors for the DRAM cell are not
good for small-geometry transistors. As a result, embedded DRAM technologies often compromise both
the memory cells and the logic transistors, with neither being as good as they would be in separate,
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optimized processes. Although embedded DRAM has been the subject of research for many years, its
limitations have kept its from becoming a widely used technology at the time of this writing.

SRAM circuits’ characteristics are closer to those of logic circuits and so can be built on SoCs with
less penalty. SRAM consumes more power and requires more chip area than does DRAM, but SRAM
does not need refreshing, which noticeably simplifies the system architecture.

Software Components

Software elements are also components of embedded systems. Just as pre-designed hardware components
are used to both reduce design time and to provide predictions of the characteristics of parts of the
system, software components can also be used to speed up software implementation time and to provide
useful data on the characteristics of systems.

CPU vendors often supply software libraries for their processors. These libraries generally supply code
for two types of operations. First, they provide drivers for input and output operations. Second, they
provide efficient implementations of commonly-used algorithms. For example, libraries for DSPs gen-
erally include code for digital filtering, fast Fourier transforms, and other common signal processing
algorithms. Code libraries are important because compilers are still not as adept as expert human
programmers at creating code that is both fast and small.

The real-time operating system (RTOS) is the second major category of software component. Many
applications perform several different types of operations, often with their own performance require-
ments. As a result, the software is split into processes that run independently under the control of an
RTOS. The RTOS schedules the processes to meet performance goals and efficiently utilize the CPU and
other hardware resources. The RTOS may also provide utilities, such as interprocess communication,
networking, or debugging. An RTOS’s scheduling policy is necessarily very different from that used in
workstations and mainframes, because the RTOS must meet real-time deadlines. A priority-driven
scheduling algorithm such as rate-monotonic scheduling (RMS)9 is often used by the RTOS to schedule
activity in the system.

22.4 Embedded System Architectures

The hardware architecture of an embedded SoC is generally tuned to the requirements of the application.
Different domains, such as automotive, image processing, and networking all have very different charac-
teristics. In order to make best use of the available silicon area, the system architecture is chosen to match
the computational and communication requirements of the application. As a result, a much wider range
of hardware architectures is found for embedded systems as compared with traditional computer systems.

Figure 22.2 shows one common configuration, a bus-based uniprocessor architecture for an embedded
system. This architecture has one CPU, which greatly simplifies the software architecture. In addition to
I/O devices, the architecture may include several devices known as accelerators designed to speed up

FIGURE 22.2 A bus-based, single-CPU embedded system.
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computations. (Though some authors refer to these units as co-processors, we prefer to reserve that term
for units that are dispatched by the CPU’s execution unit.) For example, a video operation’s inner loops
may be implemented in an application-specific IC (ASIC) so that the operation can be performed more
quickly than would be possible on the CPU. An accelerator can achieve performance gains through several
mechanisms: by implementing some functions in special hardware that takes fewer cycles than is required
on the CPU, by reducing the time required for control operations that would require instructions on the
CPU, and by using additional registers and custom data flow within the accelerator to more efficiently
implement the available communication. The single-CPU/bus architecture is commonly used in appli-
cations that do not have extensive real-time characteristics and ones that need to run a wider variety of
software. For example, many PDAs use this type of architecture. A single-CPU system simplifies software
design and debugging since all the work is assumed to happen on one processing element. The single
CPU system is also relatively inexpensive. 

In general, however, a high-performance embedded system requires a heterogeneous multiproces-
sor—a multiprocessor that uses more than one type of processing element and/or a specialized commu-
nication topology. Scientific parallel processors generally use a regular architecture to simplify
programming. Embedded systems use heterogeneous architectures for several reasons:

• Cost—A regular architecture may be much larger and more expensive than a heterogeneous archi-
tecture, which freed from the constraint of regularity, can remove resources from parts of the archi-
tecture where they are not needed and add them to parts where they are needed.

• Real-time performance—Scientific processors are desgined for overall performance but not to meet
deadlines. Embedded systems must often put processing power near the I/O that requires real-
time responsiveness; this is particularly true if the processing must be performed at a high rate.
Even if a high-rate, real-time operation requires relatively little computation on each iteration, the
high interrupt rate may make it difficult to perform other processing tasks on the same processing
element.

Many embedded systems use heterogeneous multiprocessors. One example comes from telephony. A
telephone must perform both control- and data-intensive operations: both the network protocol and the
user interface require control-oriented code; the signal processing operations require data-oriented code.
The Texas Instruments OMAP architecture, shown in Fig. 22.3, is designed for telephony: the RISC
processor handles general-purpose and control-oriented code while the DSP handles signal processing.
Shared memory allows processes on the two CPUs to communicate, as does a bridge. Each CPU has its
own RTOS that coordinates processes on the CPU and also mediates communication with the other CPU.

The C-Port network processor,11 whose hardware architecture is shown in Fig. 22.4, provides an example
of a heterogeneous multiprocessor in a different domain. The multiprocessor is a high-speed bus. The RISC
executive processor is C programmable and provides overall control, initialization, etc. Each of the 16 HDLC
processors is also C programmable. Other interfaces for higher-speed networks are not general-purpose
computers and can be programmed only with register settings.

Another category of heterogeneous parallel embedded systems is the networked embedded system.
Automobiles are a prime example of this type of system: the typical high-end car includes over a hundred
microprocessors ranging from 4-bit microcontrollers to high-performance 32-bit processors. Networks
help to distribute high-rate processing to specialized processing elements, as in the HP DesignJet, but

FIGURE 22.3 The TI OMAP architecture.10
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they are most useful when the processing elements must be physically distributed. When the processing
elements are sufficiently far apart, busses designed for lumped microprocessor systems do not work well.
The network is generally used for data transfer between the processing elements, with each processing
element maintaining its own program memory as well as a local data memory. The processing elements
communicate data and control information as required by the application. I2C and CAN are two widely-
used networks for distributed systems.

22.5 Embedded SoC Design Methodologies

Specifications

As described in section 22.2, embedded computers are typically used to build systems with complex
functionality. Therefore, capturing a functional description of the system is an important part of the
design process. A variety of specification languages have been developed. Many of these languages were
developed for software systems, but several languages have been developed over the past decade with
embedded systems in mind.

Specification languages are generally designed to capture particular styles of design. Many languages
have been created to describe control-oriented systems. An early example was Statecharts,12 which intro-
duced hierarchical states that provided a structured description of state machines. The SDL language13

is widely used to specify protocols in telecommunications systems. The Esterel language14 describes a
reactive system as a network of communicating state machines.

Data-oriented languages find their greatest use in signal processing systems. Dataflow process networks15

are one example of a specification language for signal processing. Object-oriented specification and design
have become very popular in software design. Object-oriented techniques mix control and data orientation.
Objects tend to reflect natural assemblages of data; the data values of an object define its state and the
states of the objects define the state of the system. Messages providing communication and control. The
real-time object-oriented Methodology (ROOM)16 is an example of an object-oriented methodology
created for embedded system design.

In practice, many systems are specified in the C programming language. Many practical systems
combine control and data operations, making it difficult to use one language that is specialized for any
type of description. Algorithm designers generally want to prototype their algorithms and verify them
through experimentation; as a result, an executable program generally exists as the golden standard with

FIGURE 22.4 Block diagram of the C-Port network processor.11
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which the implementation must conform. This is especially true when the product’s capabilities are
defined by standards committees, which typically generate one or more reference implementations,
usually in C. Once a working piece of code exists in C, there is little incentive to rewrite it in a different
specification language; however, the C specification is generally a long way from an implementation.
Algorithmic designs are usually written for uniprocessors and ignore many aspects of I/O, whereas
embedded systems must perform real-time I/O and often distribute tasks among several processing
elements. Algorithm designers often do not optimize their code for any particular platform, and their
code is certainly not optimized for any particular embedded platform. As a result, a C language specifi-
cation often requires substantial re-engineering before it can be used in an embedded system.

Design Flows

In order to better understand modern design methodologies for embedded SoCs, we can start with
traditional software engineering methodologies. The waterfall model, one of the first models of software
design, is shown in Fig. 22.5. The waterfall model is a top-down model with only local feedback. Other
software design models, such as the spiral model, try to capture more bottom-up feedback from imple-
mentation to system design; however, software design methodologies are designed primarily to implement
functionality and to create a maintainable design. Embedded SoCs must, as mentioned in section 22.2,
satisfy performance and power goals as well. As a result, embedded system design methodologies must
be more complex.

The design of the architecture of an embedded SoC is particularly important because the architecture
defines the capabilities that will limit both the hardware and software implementations. The architecture must
of course be cost effective, but it must also provide the features necessary to do the job. Because the
architecture is custom designed for the application, it is quite possible to miss architectural features that
are necessary to efficiently implement the system. Retrofitting those features back into the architecture
may be difficult or even impossible if the hardware and software design efforts do not keep in sync.

Important decisions about the hardware architecture include:

• How many processing elements are needed?

• What processing elements should be programmable and which ones should be hardwired?

• How much communication bandwidth is needed in the system and where is it needed?

• How much memory is needed and where should it go in the system?

• What types of components will be used for processors, communication, and memory?

The design of the software architecture is just as important and goes hand-in-hand with the hardware
architecture design. Important decisions about the software architecture include:

• How should the functionality be split into processes?

• How are input and output performed?

FIGURE 22.5 The waterfall model of software development.
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• How should processes be allocated to the various processing elements in the hardware architecture?

• When should processes be scheduled?

In practice, information required to make these decisions comes from several sources. One important
source is previous designs. Though technology and requirements both change over time, similar designs
can provide valuable lessons on how to (and not to) design the next system. Another important source
is implementation. Some implementation information can come from pre-designed hardware or software
components, which is one reason why intellectual-property-based design is so important. Implementa-
tion can also come from early design efforts.

A variety of CAD algorithms have been developed to explore the embedded system design space and
to help automate system architectures. Vulcan21 and Cosyma22 were early hardware/software partitioning
systems that implemented a design using a CPU and one or more custom ASICs. Other algorithms target
more general architectures.23,24

Once the system architecture has been defined, the hardware and software must be implemented.
Hardware implementation challenges include:

• finding efficient protocols to connect together existing hardware blocks,

• memory design,

• clock rate optimization,

• power optimization.

Software implementation challenges include:

• meeting performance deadlines,

• minimizing power consumption,

• minimizing memory requirements.

The design must be verified throughout the design process. Once the design progresses to hardware
and software implementation, simulation becomes challenging because the various components operate at
very different levels of abstraction. Hardware units are modeled at the clock-cycle level. Software
components must often be run at the instruction level or in some cases at even higher levels of abstraction.
A hardware/software co-simulator19 is designed to coordinate simulations that run at different time scales.
The co-simulator coordinates multiple simulators—hardware simulators, instruction-level simulators,
behavioral software processes—and keeps track of the time in each simulation. The co-simulator ensures
that communications between the simulators happen at the right time for each simulator.

Design verification must include performance, power, and size as well as functionality. Although these
sorts of checks are common in hardware design, they are relatively new to software design. Performance
and power verification of software may require cache simulation. Some recent work has developed higher-
level power models for CPUs.

Platform-Based Design

One response to the conflicting demands of SoC design has been the devlopment of platform-based
design methodologies. On the one hand, SoCs are becoming very complex. On the other hand, they
must be designed very quickly to meet the electronics industry’s short product lifecycles. 

Platform-based design tries to tackle this problem by dividing the design process into two phases. In
the first phase, a platform is designed. The platform defines the hardware and software architectures
for the system. The degree to which the architecture can be changed depends on the needs of the
marketplace. In some cases, the system may be customizable only by reprogramming. In other cases, it
may be possible to add or delete hardware components to provide specialized I/O, additional processing
capabilities, etc. In the second phase, the platform is specialized into a product. Because much of the
initial design work was done in the first phase, the product can be developed relatively quickly based
on the platform.
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Platform-based design is particularly well suited to products derived from standards. On the one hand,
all products must meet the minimum requirements of the standard. On the other hand, standards
committees generally leave room for different implementations to distinguish themselves: added features,
lower power, etc. Designers will generally want to modify their design to add features that differentiate
their product in the marketplace.

Platform-based design also allows designers to incorporate design experience into products. Each
product derived from the platform will teach something: how to better design part of the system,
unexpected needs of customers, etc. The platform can be updated as new products are developed from
it so that successive designs will be easier.

Platforms are usually designed within a technology generation. A new VLSI technology generally
changes enough design decisions that platforms must be rethought for each new generation of technology.
Therefore, the platform itself must be designed quickly and each product based on the platform must
be completed quickly in order to gain effective use of the platform design effort in the 18-month lifecycle
of a manufacturing technology.

Software Performance Analysis and Optimization

Although methods for hardware performance analysis and optimization are well-known, software tech-
niques for optimizing performance have been developed only recently to meet the demands of embedded
design methodologies.

The performance of an embedded system is influenced by several factors at different levels of abstrac-
tion. The first is the performance of the CPU pipeline itself. RISC design techniques tend to provide
uniform execution times for instructions, but software performance is not always simple to predict.
Register forwarding, which is used to enhance pipeline performance, also makes execution time less
predictable. Branch prediction causes similar problems.

Superscalar processors, because they schedule instructions at execution time based upon execution
data, provide much less predictable performance than do either RISC or VLIW processors. This is one
reason why superscalar processors are not frequently used in real-time embedded systems.

The memory system is often an even greater source of uncertainty in embedded systems. CPUs use
caches to improve average memory response time, but the effect of the cache on a particular piece of
software requires complex analysis. In pathological cases, the cache can add uncertainty to execution
times without actually improving the performance of critical software components. Cache simulation is
often used to analyze the behavior of a program in a cache. Analysis must take into account both
instructions and data. Unlike in workstation CPUs, in which the cache configuration is chosen by the
CPU architect based on benchmarks, the designer of an embedded SoC can choose the configurations
of caches to match the characteristics of the embedded software. Embedded system designers can choose
between hardware and software optimizations to meet performance goals.

Analyzing the performance of a program requires determining both the execution path and the
execution time of instructions along that path.18 Both are challenging problems.20 The execution path of
a program clearly depends on input data values. To ensure that the program meets a deadline, the worst-
case execution path must be determined. The execution time of instructions along the path depend on
several factors: data values, interactions between instructions, and cache state.

Energy/Power Analysis and Optimization

Many embedded systems must also meet energy and power goals as well as performance goals. The
specification may impose several types of power requirements: peak power consumption, average power
consumption, energy consumption for a given operation.

To a first-order, high-performance design is low-power design. Efficient implementations that run
faster also tend to reduce power consumption, but trade-offs between performance and power in embed-
ded system design. For example, the power consumption of a cache depends on both its size and the
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memory system activity.25 If the cache is too small, too many references require expensive main memory
accesses. If the cache is too large, it burns too much static power. Many applications exhibit a sweet
spot at which the cache is large enough to provide most of the available performance benefit while not
burning too much static power. Techniques have been developed to estimate hardware/software power
consumption.26

System-level approaches can also help reduce power consumption.27 Components can be selectively
turned off to save energy; however, because turning a component on again may consume both time and
energy, the decision to turn it off must be made carefully. Statistical methods based on Markov models
can be used to create effective system-level power management methodologies.

22.6 Summary

Embedded computers promise to solve a critical design bottleneck for SoCs. Because we can design CPUs
relatively independently of the programs they run and reuse those CPUs design across many chips,
embedded computers help to close the designer productivity gap. Embedded processors, on the other hand,
require that many design techniques traditionally reserved for hardware—deadline-driven performance,
power minimization, size—must now be applied to software as well. Design methodologies for embedded
SoCs must carefully design system architectures that will allow hardware and software components to
work together to meet performance, power, and cost goals while implementing complex functionality.
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Embedded Processor

Applications

23.1 Introduction
23.2 Embedded Processors 

Processor • Embedded Microcomputer • Choosing a 
Microcomputer 

23.3 Software Systems
Assembly Language • High-Level Languages • Software 
Development • Memory Allocation 

23.4 Interfacing
Digital Logic • Keyboard Interfacing • Finite State Machine 
Controller • Current-Activated Output Devices • Stepper 
Motors 

23.5 Data Acquisition Systems 
23.6 Control Systems

Digital Control Equations • Pulse Width 
Modulation • Period Measurement • Control Algorithms 

23.7 Remote or Distributed Systems

23.1 Introduction

This chapter overviews the field of embedded processors and their applications. Some basic concepts will
be introduced, and examples of embedded systems will be given. Each topic will include a problem statement,
definitions of terminology, fundamental hardware and software, and interfacing specific devices to create
the desired functionality. A systems-level approach to microcomputer applications is achieved by presenting
a few case studies that illustrate the spectrum of applications that employ microcomputers.

As shown in Fig. 23.1, the term embedded microcomputer system refers to a device that contains one
or more microcomputers inside. To better understand the expression “embedded microcomputer system,”
consider each word separately. In this context, the word embedded means “hidden inside so one cannot
see it.” A computer is an electronic device with a processor, memory, and I/O ports. The processor executes
software, which performs specific predefined operations. The processor includes registers (which are high-
speed memory), an arithmetic logic unit or ALU (to execute math functions), a bus interface unit or BIU
(which communicates with memory and I/O), and a control unit or CU (for making decisions.) Memory
is a high-speed storage medium for software and data. Software consists of a sequence of commands that
are usually executed in order. In an embedded system, we use read only memory (ROM) for storing the
software and fixed constant data, and random access memory (RAM) for storing temporary information.
The information in the ROM is nonvolatile, meaning the contents are not lost when power is removed.
I/O ports allow information to enter via the input ports and exit via the output ports. The I/O devices
(e.g., parallel ports, serial ports, timer, and ADC) are a crucial part of an embedded system because they
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provide necessary functionality. The software together with the I/O ports and associated interface circuits
give an embedded computer system its distinctive characteristics.

The term “microcomputer” means a small computer. Small in this context describes its size not its
computing power, so a microcomputer can refer to a very wide range of products from the very simple
(e.g., the PIC12C08 is a 8-pin DIP microcomputer with 512 by 12 bit ROM, 25 bytes RAM, and five I/O
pins) to the most powerful Pentium. One typically restricts the term “embedded” to refer to systems that
do not look and behave like a typical computer. Most embedded systems do not have a keyboard, a graphics
display, or secondary storage (disk). Embedded systems can be developed in two ways. The first technique
uses the microcomputers that are available as single chips. These devices are suitable for low-cost, low-
performance systems. On the other hand, one can develop a high-performance embedded system around
the PC architecture. These systems are first developed on a standard PC, and then the software and
hardware are migrated to a stand-alone embedded-PC platform. 

One can appreciate the wide range of embedded computer applications by observing existing imple-
mentations. Table 23.1 illustrates the breadth of applications that use an embedded microcomputer.

23.2 Embedded Processors

Processor

In the last 30 years, the microprocessor has made significant technological advances. The term micropro-
cessor refers to products ranging from the oldest Intel 8080 to the newest Pentium. The processor or CPU
controls the system by executing instructions. It contains a BIU, which provides the address, direction (read
data from memory into the processor or write data from processor to memory), and timing signals for the
computer bus. The registers are very high-speed storage devices for the computer. The program counter
(PC) is a register that contains the address of the current instruction that the computer is executing. The
stack is a very important data structure used by computers to store temporary information. It is very easy
to allocate temporary storage on the stack and deallocate it when done. The stack pointer (SP) is a register
that points into RAM specifying the top entry of the stack. The condition code (CC) is a register that
contains status flags describing the result of the previous operation and operating mode of the computer.
Most computers have data registers that contain information and address registers that contain pointers.
The ALU performs arithmetic (add, subtract, multiply, divide) and logical (and, or, not, exclusive or, shift)
operations. The inputs to the ALU come from registers and/or memory, and the outputs go to registers or
memory. The CC register contains status information from the previous ALU operation. 

Software is a sequence of commands stored in memory. The control unit (CU) manipulates the
hardware modules according to the software that it is executing. The CU contains an instruction register
(IR) which holds the current instruction. The BIU contains an effective address register (EAR) which
holds the effective address of the current instruction. The computer must fetch both instructions (op
codes) and information (data). The BIU controls both types of access.

When an instruction is executed, the microprocessor often must refer to memory to read and/or write
information. Often the I/O ports are implemented as memory locations. For example, on the Motorola

FIGURE 23.1 An embedded system includes a microcomputer with electrical, mechanical, chemical, and optical
devices. A microcomputer includes a processor with memory, input, and output devices.
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6808, I/O ports A and B exist as locations 0 and 1. Similar to most microcomputers, the I/O ports can
be configured as inputs or outputs. The 6808 ports A and B have direction registers at locations 4 (DDRA)
and 5 (DDRB), respectively. The software writes 0’s to the direction register to specify the pins as inputs,
and 1’s to specify them as outputs. When the 6808 software reads from location 0 it gets information
from Port A (lda 0). When the software writes to location 1, it sends information out Port B (sta 1).
For example, the Motorola 6808 assembly language program, shown in Fig. 23.2, reads from a sensor

TABLE 23.1 Examples of Embedded Systems

Category Examples What the Microcomputer Does

Consumer Washing machines Controls the water and spin cycles
Exercise bikes Monitors the workout
TV remotes Accepts key touches and sends IR pulses
Clocks and watches Maintains the time, alarm, and display
Games and toys Entertains the child
Audio/video Enhances performance

Communication Answering machines Saves and organizes messages
Phones and pagers Communication and security
ATM machines Security and convenience

Automotive Automatic breaking Stopping on slippery surfaces
Noise cancellation Improves sound quality
Theft deterrent devices Security
Electronic ignition Controls sparks and fuel injectors
Windows and seats Remember preferred settings
Instrumentation Collects and provides information

Military Smart weapons Does not fire at friendly targets
Missile guidance Directs ordnance at the target
Global positioning Where one is on the planet

Industrial Set-back thermostats Controls temperature and save energy 
Traffic control systems Optimizes traffic
Robot systems Performs complex tasks
Bar codes Inventory control
Sprinklers Optimizes farming

Medical Monitors Measures and alarms
Apnea Alarms if the baby stops breathing
Cardiac Monitors heart functions
Renal Studies kidney functions
Drugs Automatic delivery
Cancer treatments Controls radiation, drugs, heat
Pacemakers Helps the heart beat regularly
Prosthetic devices Increases mobility
Dialysis machines Provides kidney functions

 

FIGURE 23.2 A bang-bang temperature controller with hysteresis implemented using a Motorola 6808.

main: mov  #0,4
      mov  #$FF,5
loop: lda  0
      cmp  #73
      bhi  off
      cmp  #68
      bhs  loop
on:   mov  #1,1
      bra  loop
off:  mov  #0,1
      bra  loop

DDRA=0
DDRB=$FF
RegA=temperature
Is RegA>73?
Goto off if RegA>73
Is RegA<68?
Goto loop if RegA�68
PortB=1, heat on
Goto loop
PortB=0, heat off
Goto loop

main

make Port A inputs and
make Port B outputs

Read temperature from sensor

temperature
T < 68°F

turn on heat turn off heat

T > 73°F

loop

on off

68�T�73°F

labels  op codes  operands  comments
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that is connected to Port A, if the temperature is above 73°F, it turns off the heat (by writing 0 to Port B).
If the temperature is below 68°F, it turns on the heat by writing 1 to Port B.

Embedded Microcomputer

During the development phases of a project, we often would like the flexibility of accessing components
inside the single-chip computer. In addition, during development, we are often unsure of the memory
size and I/O capabilities that will be required to complete the design. Both of these factors point to the
need for a single-board computer. This board has all of the features of the single-chip computer but laid
out in an accessible and expandable manner. For some microcomputer systems, the final product is delivered
using a single-board computer. For example, if the production volume is small and the project does not
have severe space constraints, then a single-board solution may be cost-effective. Another example of final
product delivered with a single-board occurs when the computer requirements (memory size, number
of ports, etc.) exceed the capabilities of any single-chip computer.

Choosing a Microcomputer

The computer engineer is often faced with the task of selecting a microcomputer for the project. In 1997
Motorola had 17.4% of the 4/8/16+ bit microcontroller market, Hitachi had 15.6%, and NEC had 13.2%.
Table 23.2 breaks the 8-bit market share down by architecture, showing the 8051 architecture to be most
popular. As of 1997, Motorola has shipped over 2 billion 68HC05 8-bit microcontrollers. This cumulative
number on a unit level is more than all microprocessors from all other chip vendors. Table 23.3 lists
major manufacturers and their web sites

Often, only those devices for which the engineers have hardware and software experience are consid-
ered. Fortunately, this blind approach often still yields an effective and efficient product, because many
of the computers overlap in their cost and performance. In other words, if a microcomputer that you
are familiar with can implement the desired functions for the project, then it is often efficient to bypass that
perfect piece of hardware in favor of a faster development time. On the other hand, sometimes one wishes
to evaluate all potential candidates. Sometimes, it may be cost-effective to hire or train the engineering

TABLE 23.2 1997 Market Share in Dollars of 8-bit Microcontrollers [1]

µC Company Revenue (millions)

8051 Intel, Philips, Siemens, Dallas Semiconductor 1027
HC05 Motorola 864
HC11 Motorola 643
H8 Hitachi 505
78K NEC 497

TABLE 23.3 Web Sites of Companies That Make Microcontrollers

Company Products Web Site

Motorola HC05 HC08 HC11 HC12 
HC16 683xx 68K 
MCORE Coldfire 
PowerPC

http://www.motorola.com/

Hitachi H8 http://www.hitachi.com/
NEC 78K http://www.nec.com/
Intel 8051 80251 8096 80296 http://www.intel.com/
Mitsubishi 740 7600 7700 M16C http://www.mitsubishichips.com/index.htm
Philips 8051 http://www.philips.com/home.html
Siemens C500 C166 Tricore http://www.siemens.de/en/
Microchip PIC12 PIC12 PIC16 PIC17 http://www.microchip.com/
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personnel so that they are proficient in a wide spectrum of potential computer devices. Many factors
must be considered when selecting an embedded microcomputer. The labor costs include training, devel-
opment, and testing. The material costs include parts and supplies. The manufacturing costs depend on
the number and complexity of the components. The maintenance costs involve revisions to fix bugs and
perform upgrades. The ROM size must be big enough to hold instructions and fixed data for the software.
The RAM size must be big enough to hold locals, parameters, and global variables. The EEPROM size
must be big enough to hold nonvolatile fixed constants that are field configurable. The speed must be
fast enough to execute the software in real time. The I/O bandwidth affects how fast can the computer
input/output data. The data size (8, 16, or 32 bit) should match most of the data to be processed. Numerical
operations like multiply, divide, signed, and floating point may be needed. Special functions like multiply/
accumulate, fuzzy logic, complex numbers are sometimes required. There must be enough parallel ports
for all the I/O digital signals. The microcomputer needs enough serial ports to interface with other
computers or I/O devices. The timer functions can be used to generate signals, measure frequency, and
measure period. Pulse width modulation is convenient for the output signals in many control applications.
An ADC is used to convert analog inputs to digital numbers. The package size and environmental issues
affect many embedded systems. In order to meet manufacturing deadlines, the availability of a second
source is advantageous. The availability of high-level language cross-compilers, simulators, emulators
will facilitate software development. The power requirements will be important if the systems will be
battery operated. 

When considering speed, it is best to compare time to execute a benchmark program similar to your
specific application, rather than just comparing bus frequency. One of the difficulties is that the micro-
computer selection depends on the speed and size of the software, but the software can not be written
without the computer. Given this uncertainty, it is best to select a family of devices with a range of execution
speeds and memory configurations. In this way, a prototype system with large amounts of memory and
peripherals can be purchased for software and hardware development, and once the design is in its final
stages, the specific version of the computer can be selected now knowing the memory and speed require-
ments for the project. 

23.3 Software Systems

Assembly Language

An assembly language program, like the one shown in Fig. 23.2, has a 1-to-1 mapping with the machine
code of the computer. In other words, one line of assembly code maps into a single machine instruction.
The label field associates the absolute memory address with a symbolic label. The op code represents the
machine instruction to be executed. The operand field identifies the data itself or the memory location
for the data needed by the instruction. The comment field is added by the programmer to explain what,
how, and why. The comments are not used by the computer during execution, but rather provide a means
for one programmer to communicate with another, including oneself at a later time. This style of pro-
gramming offers the best static efficiency (smallest program size), and best dynamic efficiency (fastest
program execution). Another advantage of assembly language programming is the complete freedom to
implement any arbitrary decision function or data structure. One is not limited to a finite list of predefined
structures as is the case with higher level languages. For example, one can write assembly code with
multiple entry points (places to begin the function). 

High-Level Languages

Although assembly language enforces no restrictions on the programmer, many software developers argue
that the limits placed on the programmer by a structured language, in fact, are a good idea. Building
program and data structures by combining predefined components makes it easy to implement modular
software that is easier to debug, verify correctness, and modify in the future. Software maintenance is
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the debug, verify and modify cycle, and it represents a significant fraction of the effort required to develop
products using embedded computers. Therefore, if the use of a high level language sacrifices some speed
and memory performance, but gains in the maintenance costs, most computer engineers will choose
reliability and ease of modification over speed and memory efficiency. Cross-compilers for C, C++,
FORTH, and BASIC are available for many single-chip microcomputers with C being the most popular. 

One of the best approaches to this assembly versus high-level language choice is to implement the
prototype in a high level language, and see if the solution meets the product specifications. If it does,
then leave the software in the high level language because it will be easier to upgrade in the future. If the
software is not quite fast enough (or small enough to fit into the available memory), then one might try
a better compiler. Another approach is to profile the software execution, which involves collecting timing
information on the percentage of time the computer takes executing each module. The profile allows
you to identify a small number of modules that, if rewritten in assembly language, will have a big impact
on the system performance.

Software Development

Recent software and hardware technological developments have made significant impacts on the software
development for embedded microcomputers. The simplest approach is to use a cross-assembler or cross-
compiler to convert source code into the machine code for the target system. The machine code can then
be loaded into the target machine. Debugging embedded systems with this simple approach is very
difficult for two reasons. First, the embedded system lacks the usual keyboard and display that assist us
when we debug regular software. Second, the nature of embedded systems involves the complex and real
time interaction between the hardware and software. These real-time interactions make it impossible to
test software with the usual single-stepping and print statements.

A logic analyzer is a multiple channel digital oscilloscope. For the single-board computer that has
external memory, the logic analyzer can be placed on the address and data bus to observe program behavior.
The logic analyzer records a cycle-by-cycle dump of the address and data bus. With the appropriate
personality module, the logic analyzer can convert the address and data information into the corresponding
stream of executed assembly language instructions. Unfortunately, the address and data bus singles are
not available on most single-chip microcomputers. For these computers, the logic analyzer can still be
used to record the digital signals at the microcomputer I/O ports. The advantages of the logic analyzer
are very high bandwidth recording (100 MHz to 1 GHz), many channels (16–132 inputs), flexible triggering
and clocking mechanisms, and personality modules that assist in interpreting the data.

The next technological advancement that has greatly affected the manner in which embedded systems
are developed is simulation. Because of the high cost and long times required to create hardware proto-
types, many preliminary feasibility designs are now performed using hardware/software simulations. A
simulator is a software application that models the behavior of the hardware/software system. If both
the external hardware and software program are simulated together, even although the simulated time
is slower than the actual time, the real time hardware/software interactions can be studied.

Once the design is committed to hardware, the debugging tasks become more difficult. One simple
approach, mentioned earlier, is to use a single-board computer that behaves similarly to the single-chip.
Another approach is to use an in-circuit emulator. An in-circuit emulator (ICE) is a complex digital
hardware device, which emulates (behaves in a similar manner) the I/O pins of the microcomputer in
real time. The emulator is usually connected to a personal computer, so that emulated memory, I/O
ports, and registers can be loaded and observed. To use an emulator we first remove the microcomputer
chip from the circuit then attach the emulator pod into the socket where the microcomputer chip used
to be.

The only disadvantage of the in-circuit emulator is its cost. To provide some of the benefits of this
high-priced debugging equipment, some microcomputers have a background debug module (BDM).
The BDM hardware exists on the microcomputer chip itself and communicates with the debugging
personal computer via a dedicated 2 or 3 wire serial interface. Although not as flexible as an ICE, the
© 2002 by CRC Press LLC



       
BDM can provide the ability to observe software execution in real time, the ability to set breakpoints,
the ability to stop the computer, and the ability to read and write registers, I/O ports, and memory. 

Memory Allocation

Embedded systems group together in physical memory information that has similar logical properties.
Because the embedded system does not load programs off disk when started, allocation is an extremely
important issue for these systems. Typical software segments include global variables, local variables,
fixed constants, and machine instructions. For single chip implementations, different types of information
are stored into the three types of memory. RAM is volatile and has random and fast access. EEPROM is
nonvolatile and can be easily erased and reprogrammed. ROM is nonvolatile but can be programmed
only once.

In an embedded application, structures that must be changed during execution are usually put in
RAM. Examples include recorded data, parameters passed to subroutines, and global and local variables.
We place fixed constants in EEPROM because the information remains when the power is removed, but
can be reprogrammed at a later time. Examples of fixed constants include translation tables, security
codes, calibration data, and configuration parameters. We place machine instructions, interrupt vectors,
and the reset vector in ROM because this information is stored once and will not need to be reprogrammed
in the future. 

23.4 Interfacing

Digital Logic

Many logic families are available to design digital circuits. Each family provides the basic logic functions
(and or not), but differ in the technology used to implement these functions. This results in a wide range
of parameter specifications. Basic parameters of digital devices can be found in references [1] and [2].
Because many microcomputers are high-speed CMOS, typical values for this family are given. In general,
it is desirable to design digital systems using all components from the same family. There are three basic
considerations when using digital logic: speed and signal loading. 

One of the pressures that exists in the microcomputer embedded systems field is the need to implement
higher and higher levels of functionality into smaller and smaller amounts of space using less and less
power. Many examples of technology were developed according to these principles. Examples include
portable computers, satellite communications, aviation devices, military hardware, and cellular phones.
Simply using a microcomputer provides significant advantages in this faster-smaller race. The embedded
system is not just a computer, so there must also be mechanical and electrical devices external to the
computer. To shrink the size and power required of these external electronics, they can be integrated into
a custom integrated circuit (IC) called an application specific integrated circuit (ASIC). An ASIC provides
a high level of functionality squeezed into a small package. Advances in IC design allow more and more
of these custom circuits (both analog and digital) to be manufactured in the same IC chip as the computer
itself. In this way, single-chip solutions are possible.

The microcomputer typically responds to external events with an appropriate software action. The time
between the external event and the software action is defined as the latency. If an upper bound on the latency
can be guaranteed, the system is characterized as real-time, or hard real-time. If the system allows one software
task to have priority over the others, then it is described as soft real-time. Because most real-time systems
utilize interrupts to handle critical events, we can calculate the upper bound on the latency as the sum of
three components (1) maximum time the software executes with interrupts disabled (e.g., other interrupt
handlers, critical code); (2) the time for the processor to service the interrupt (saving registers on stack,
fetching the interrupt vector); and (3) software delays in the interrupt handler before the appropriate
software action is performed. Examples of events that sometimes require real-time processing include input,
output, and alarms. When new input data is ready, the software must respond by reading the new input.
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When the output device is idle, the software must respond by giving it more data to output. When an
alarm condition occurs, the software must process the data until the time the alarm is processed.

Sometimes the software must respond to internal events. Many real time systems involve performing
software tasks on a fixed and regular rate. For these systems, a periodic interrupt is employed to generate
requests at fixed intervals. The microcomputer clock guarantees that the interrupt request is made exactly
on time, but the software response (latency) may occur later. Examples of real-time systems that utilize
periodic interrupts include: data acquisition systems where the software executes at the sampling rate,
control systems where the software executes at the controller rate, and time of day clocks where the software
maintains the date and time.

Keyboard Interfacing

Individual buttons and switches can be interfaced to a microcomputer input port simply by converting
the on/off resistance to a digital logic signal with a pull-up resistor. When many keys are to be interfaced,
it is efficient to combine them in a matrix configuration. n2 keys can be constructed as an n by n matrix.
To interface the keyboard with n2 keys, 2n I/O ports are needed, the rows to open collector (or open
drain) microcomputer outputs and the columns to microcomputer inputs are connected. Open collector
means the output will be low if the software writes a zero to the output port, but will float (high impedance)
if the software writes a one. Pull-up resistors on the inputs will guarantee the column signals will be high
if no key is touched in the selected row. The software scans the key matrix by driving one row at a time to
zero, while the other rows are floating. If there is a key touched in the selected row, then the corresponding
column signal will be zero. Many switches will bounce on/off for about 10 ms when touched or released.
The software must read the switch position multiple times over a 20-ms time period to guarantee a
reliable reading. One simple software method uses a periodic interrupt (with a rate slower than the
bounce time) to scan the keyboard. In this way, the software will properly detect single key touches. One
disadvantage of the matrix-scanned keyboard is the fact that three keys simultaneously pressed sometimes
“looks” like four keys are pressed.

Finite State Machine Controller

To illustrate the concepts of programmable logic and memory allocation consider the simple traffic light
controller illustrated in Fig. 23.3. The finite state machine (FSM) has two inputs from sensors that identify
the presence of cars. There are six outputs, red/yellow/green for the North road and red/yellow/ green
for the East road. In this FSM, each state has a 6-bit output value, a time to wait in that state, and four
next states depending on if the input is 00 (no cars), 01 (car on the North road), 10 (car on the East
road) or 11 (cars on both roads). The software will output the pattern for the current state, wait the
specified amount of time, input from the sensors, and jump to the next state depending on the input.
The finite state machine data structure (linked list or table) will be defined in EEPROM, and the program
will be stored in ROM. The software for this system exhibits the three classic segments. Since the variables
have values that change during execution, they must be defined in RAM. One should be able to make

FIGURE 23.3 A simple traffic controller implemented using a finite-state machine.
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minor modifications to the finite state machine (e.g., add/delete states, change input/output values) by
changing the linked list data structure in EEPROM without modifying the assembly language controller
in ROM. A C-level program written for a Motorola 6812 follows:

const struct State{    // const means put in EEPROM
 unsigned char Out;   // 6-bit Output          
 unsigned char Time;   // Time to wait in seconds     
 unsigned char Next[4];}; // Next state if input=00,01,10,11 
typedef const struct State StateType;
#define GoN  0  // Green on North, Red on East
#define WaitN 1  // Yellow on North, Red on East
#define GoE  2  // Red on North, Green on East 
#define WaitE 3  // Red on North, Yellow on East
StateType fsm[4]={ //    EEPROM

{0x21, 100, {GoN, GoN,WaitN,WaitN}}, // GoN EEPROM
{0x22, 8, {GoE, GoE, GoE, GoE}}, // WaitN EEPROM
{0x0C, 100, {GoE,WaitE, GoE,WaitE}}, // GoE EEPROM
{0x14, 8, {GoN, GoN, GoN, GoN}}}; // WaitE EEPROM

void main(void){ // ROM
 unsigned char Input;          //    RAM
 unsigned int St;    // Current State      RAM
 St=GoN;        // Initial State      ROM
 DDRA=0, DDRB=0xFF;   // Set direction registers ROM
 while(1){       //             ROM
  PORTB=fsm[St].Out;  // output for this state  ROM
  Wait(fsm[St].Time); // wait in this state   ROM
  Input=PORTA&0x03;  // Input=00 01 10 or 11  ROM
  St=fsm[St].Next[Input];}}     //      ROM

Current-Activated Output Devices

Many external devices used in embedded systems activate with a current, and deactivate when no current
is supplied. The control element can be either a diode or a coil (resistor and inductor combination). The
microcomputer controls the device by passing current or no-current through the control element. Coil
devices include electromagnetic relays, solenoids, DC motors, and stepper motors. Diode-based devices
include LEDs, optosensors, optical isolation, solid state relays. Diode-based devices require a current
limiting resistor. The value of the resistor determines the voltage (Vd), current (Id) operating point. The
coil-based devices require a snubber diode to eliminate the large back EMF (over 200 V) that develops
when the current is turned off. The back EMF is generated when the large dI/dt occurs across the
inductance of the coil. The microcomputer output pins do not usually have a large enough IOL to drive
these devices directly, so an open collector gate (such as the 7405, 7406, 75492, 75451, or NPN transistors)
can be used to sink current to ground or use an open emitter gate (like the 75491 or PNP transistors)
to source current from the power supply. Darlington switches such as the ULN-2061 through ULN-2077
can be configured as either current sinks (open collector) or sources (open emitter). A device with an
output current larger than the current required by the control element needs to be selected.

Stepper Motors

A bipolar stepper motor has only two coils and four wires, as shown in Fig. 23.4. Using the full-step
algorithm, current always passes through both coils. The computer controls a bipolar stepper by reversing
the direction of the currents. If the computer generates the sequence (positive, positive) (negative, positive)
(negative, negative) (positive, negative), the motor will spin. A unipolar stepper motor is controlled by
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passing current through four coils, exactly two at a time. There are five or six wires on a unipolar stepper
motor. For both types of stepper motors, the software outputs the sequence 1010, 1001, 0101, 0110 to
spin the motor. The software makes one change (e.g., change from 1001 to 0101) to affect one step. The software
repeats the entire sequence over and over at regular time intervals between changes to make the motor
spin at a constant rate. Some stepper motors will move on half-steps by outputting the sequence 1010,
1000, 1001, 0001, 0101, 0100, 0110, 0010. Assuming the motor torque is large enough to overcome the
mechanical resistance (load on the shaft), each output change causes the motor to step a predefined angle.
One of the key parameters that determine whether the motor will slip (a computer change without the
shaft moving) is the jerk, which is the derivative of the acceleration (i.e., third derivative of the shaft
position). Software algorithms that minimize jerk are less likely to cause a motor slip. If the computer
outputs the sequence in the opposite order, the motor spins in the other direction. A circular linked list
data structure, as shown in Fig. 23.4, is a convenient software implementation that guarantees the proper
motor sequence is maintained.

23.5 Data Acquisition Systems

Before designing a data acquisition system (DAS) the system goals must be clearly understood. The system
can be classified as a quantitative DAS, if the specifications can be defined explicitly in terms of desired
range, resolution, precision, and frequencies of interest. If the specifications are more loosely defined,
we classify it as a qualitative DAS. Examples of qualitative DASs include systems that mimic the human
senses where the specifications are defined using terms like “sounds good,” “looks pretty,” and “feels right.”
Other qualitative DASs involve the detection of events. In these types of systems, the specifications are
expressed in terms of specificity and sensitivity. For example, some premature infants stop breathing
during sleep. If we can detect this event and “wake up the baby,” it will start breathing again. An apnea
monitor is attached to the baby as it sleeps to alert the parents to this life-threatening event. Other binary
detection systems include the presence/absence of a burglar or the presence/absence of cancer. A true
positive (TP) is defined when the condition exists (the baby stops breathing) and the system properly
detects it (the alarm rings). A false positive (FP) is defined when the condition does not exist (the baby
is breathing normally) but the system thinks it exists (the alarm rings). A false negative (FN) occurs when
the condition exists (the baby stops breathing) but the system does not think it exists (the alarm is silent,
and baby dies). Sensitivity, TP/(TP + FN), is the fraction of properly detected events (the baby stops
breathing and the alarm rings) over the total number of events (the baby stops breathing). It is a measure
of how well our system can detect an event. A sensitivity of 1 means the baby will not die. Specificity,
TP/(TP + FP), is the fraction of properly detected events (the baby stops breathing and the alarm rings)
over the total number of detections (number of alarms). It is a measure of how much we believe the
system is correct when it says it has detected an event. A specificity of 1 means when the alarm rings,
the parents will rush to the baby’s crib and resuscitate the baby. 

FIGURE 23.4 A hardware interface of a bipolar stepper motor and the linked-list data structure used by the software
to spin the motor.
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Many components are included in a data acquisition system. The transducer converts the physical
signal into an electrical signal. The amplifier converts the weak transducer electrical signal into the range
of the ADC (e.g., 0–5 V). The analog filter removes unwanted frequency components within the signal.
The analog filter is required to remove aliasing error caused by the ADC sampling. A periodic interrupt
is used to control the sampling process. The interrupt service routine will sample the ADC and store the
data in a first-in-first-out queue. The data will be processed in the foreground by the main program.
Examples of digital processing include digital filters, calibration calculations, event detection, and data
display. Inherent in digital signal processing is the requirement that the ADC be sampled on a fixed time
basis. Sampling at a known and fixed rate is particularly important when a digital filter is used.

The first decision to make is the ADC precision. Whether we have a qualitative or quantitative DAS,
we choose the number of bits in the ADC so as to achieve the desired system specification. For a quantitative
DAS, this is a simple task because the relationship between the ADC precision and the system measure-
ment precision is obvious. For a qualitative DAS, experimental trials are often employed to evaluate the
relationship between ADC bits and system performance. 

The next decision is the sampling rate, fs. The Nyquist theorem states we can reliably represent in
digital form a band-limited analog signal if we sample faster than twice the largest frequency that exists
in the analog signal. For example, if an analog signal only has frequency components in the 0–100 Hz
range, then if sample are taken at a rate above 200 Hz, the entire signal can be reconstructed from the
digital samples. One of the reasons for using an analog filter is to guarantee that the signal at the ADC
input is band-limited. Violation of the Nyquist theorem results in aliasing. Aliasing is the distortion of
the digital signal that occurs when frequency components above 0.5 fs exist at the ADC input. These
high-frequency components are frequency shifted or folded into the 0–0.5 fs range.

23.6 Control Systems

Digital Control Equations

A control system is a collection of mechanical and electrical devices connected for the purpose of com-
manding, directing, or regulating a physical plant. The real-state variables are the actual properties of the
physical plant that are to be controlled. The goal of the sensor and data acquisition system is to estimate
the state variables. Any differences between the estimated state variables and the real state variables will
translate directly into controller errors. A closed loop control system uses the output of the state estimator
in a feedback loop to drive the errors to zero. The control system compares these estimated state variables,
x(n), to the desired state variables,  in order to decide appropriate action, u(n). The terminology (n)
refers to the fact that these parameters are digital values sampled at finite-time intervals, where n is the
sample number. The actuator is a transducer, which converts the control system commands, u(n), into
driving forces, which are applied to the physical plant. The goal of the control system is to drive x(n) to
equal  If the error is defined as the difference between the desired and estimated state variable:

(23.1)

then the control system will attempt to drive e(n) to zero. We usually evaluate the effectiveness of a control
system by determining three properties: steady-state controller error, transient response, and stability.
The steady state controller error is the average value of e(n). The transient response is how long does the
system take to reach 99% of the final output after  is changed. A system is stable if steady state (smooth
constant output) is achieved. An unstable system may oscillate. 

Pulse Width Modulation

Many embedded systems must generate output pulses with specific pulse widths. The internal micro-
computer clock is used to guarantee the timing accuracy of these outputs. Many microcomputers have
built-in hardware that facilitates the generation of pulses. One classic example is the pulse-width modulated
motor controller. The motor is turned on and off at a fixed frequency (see the Out signal in Fig. 23.5).

x∗,

x∗.
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The value of this frequency is chosen to be too fast for the motor to response to the individual on/off
signals. Rather, the motor responses to the average. The computer controls the power to the motor by
varying the pulse width or duty cycle of the wave. The IRF540 MOSFET can sink up to 28 A. To implement
pulse width modulation (PWM) the computer (either with the built-in hardware or the software) uses
a clock. The clock is a simple integer counter that is incremented at a regular rate. The Out signal is set
high for time Th then set low for time Tl. Since the frequency of Out is to be fixed, (Th + Tl) remains
constant, but the duty cycle Th/(Th + Tl) is varied. The precision of this PWM system is defined to be
the number of distinguishable duty cycles that can be generated. Let h and l be integer numbers repre-
senting the number of clock counts the Out signal is high and low, respectively. We can express the duty
cycle as h/(h + l). Theoretically, the precision should be h + l, but practically the value may be limited
by the speed of the interface electronics.

Period Measurement

In order to sense the motor speed, a tachometer can be used. The AC amplitude and frequency of the
tachometer output both depend on the shaft speed. It is usually more convenient to convert the AC signal
into a digital signal (In shown in the Fig. 23.5) and measure the period. Again, many microcomputers
have built-in hardware that facilitates the period measurement. To implement period measurement the
computer (again either with the built-in hardware or the software) uses a clock. Period measurement
simply records the time (value of the clock) of two successive rising edges on the input and calculates
the time difference. The period measurement resolution is defined to be the smallest difference in period
that can be reliably measured. Theoretically, the period measurement resolution should be the clock
period, but practically the value may be limited by noise in the interface electronics. The software can
calculate shaft speed, because the frequency is one over the period.

Control Algorithms

There are many common approaches to designing the software for the control system. The simplest
approach to the closed-loop control system uses incremental control. In this motor control example,
the actuator command, u, is the duty cycle of the pulse-width-modulated system. An incremental control
algorithm simply adds or subtracts a constant from u depending on the sign of the error. To add hysteresis
to the incremental controller, we define two thresholds, xH xL, at values just above and below the desired
speed,  In other words, if x < xL (the motor is spinning too slow) then u is incremented, and if x > xH

(the motor is spinning too fast) then u is decremented. It is important to choose the proper rate at which
the incremental control software is executed. If it is executed too many times per second, then the actuator

FIGURE 23.5 An interface to a DC motor that uses PWM to control the delivered power and period measurement
to determine the rotation speed.
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will saturate resulting in a bang-bang system like Fig. 23.2. If it is not executed often enough, then the
system will not respond quickly to changes in the physical plant or changes in 

A second approach, called proportional integral derivative (PID), uses linear differential equations.
To simplify the PID controller, we break the controller equation into separate proportion, integral and
derivative terms, where p(n), i(n), and d(n) are the proportional, integral, and derivative components,
respectively. In order to implement the control system with the microcomputer, it is imperative that the
digital equations be executed on a regular and periodic rate (every ∆t). The relationship between the real
time, t, and the discrete time, n, is simply t = n∆t. If the sampling rate varies, then controller errors
will occur. The proportional term makes the actuator output linearly related to the error. Using a
proportional term creates a control system that applies more energy to the plant when the error is large. 

p(n) = kpe(n) (23.2)

The integral term makes the actuator output related to the integral of the error. Using an integral term
often will improve the steady state error of the control system. If a small error accumulates for a long
time, this term can get large. Some control systems put upper and lower bounds on this term, called
anti-reset-windup, to prevent it from dominating the other terms. The implementation of the integral
term requires the use of a discrete integral or sum. If i(n) is the present control output, and i(n − 1) is
the previous calculation, the integral term is simply

i(n) = i(n − 1) + ki e(n) where imin ≤ i(n) ≤ imax (23.3)

The derivative term makes the actuator output related to the derivative of the error. This term is usually
combined with either the proportional and/or integral term to improve the transient of the control
system. The proper value of kd will provide for a quick response to changes in either the set point or
loads on the physical plant. An incorrect value may create an overdamped (very slow response) or an
underdamped (unstable oscillations) response. There are a couple of ways to implement the discrete time
derivative. A simple approach is

d(n) = kd(x(n) − x(n − 1)) (23.4)

In practice, this first order equation is quite susceptible to noise. More sophisticated calculations can be
found in reference [1]. The PID controller software is also implemented with a periodic interrupt every
∆t. The interrupt handler first estimates the state variable, x(n), and then calculates e(n). The next actuator
output is calculated by combining the three terms. 

u(n) = p(n) + i(n) + d(n) (23.5)

A third approach uses fuzzy logic to control the physical plant. Fuzzy logic can be much simpler than
PID. It will require less memory and execute faster. When complete knowledge about the physical plant
is known, then a good PID controller can be developed, i.e., the physical plant can be described with a
linear system of differential equations, an optimal PID control system can be developed. Because the fuzzy
logic control is more robust (still works even if the parameter constants are not optimal), then the fuzzy logic
approach can be used when complete knowledge about the plant is not known or can change dynamically.
Choosing the proper PID parameters requires knowledge about the plant. The fuzzy logic approach is
more intuitive, following more closely to the way a “human” would control the system. If there is no set
of differential equations that describe the physical plant, but there exists expert knowledge (human
intuition) on how it works, then a good fuzzy logic system can be developed. It is easy to modify an
existing fuzzy control system into a new problem. So if the framework exists, rapid prototyping is possible.
Examples of fuzzy logic implementations can be found in reference [1].

x∗.
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23.7 Remote or Distributed Systems

Many embedded systems require the communication of command or data information to other modules
at either a near or a remote location. We will begin our discussion with communication with devices
within the same room as presented in Fig. 23.6. A full-duplex channel allows data to transfer in both
directions at the same time. In a half-duplex system, data can transfer in both directions but only in one
direction at a time. Half-duplex is popular because it is less expensive (two wires) and allows the addition
of more devices on the channel without change to the existing nodes. If the distances are short, half-
duplex can be implemented with simple open collector TTL-level logic. Many microcomputers have open
collector modes on their serial ports that allow a half-duplex network to be created without any external
logic (although pull-up resistors are often used). Three factors will limit the implementation of this
simple half-duplex network: (1) the number of nodes on the network, (2) the distance between nodes,
and (3) presence of corrupting noise. In these situations a half-duplex RS485 driver chip, such as the SP483
made by Sipex or Maxim, can be used. The master-slave system connects the master transmit output to
all slave receive inputs. This provides for broadcast of commands from the master. All slave transmit
outputs are connected together using wire or open collector logic, allowing for the slaves to respond one
at a time. The ring network is a simple distributed approach, because it can be constructed using standard
serial ports, by chaining the transmit and receive lines together in a circuit, as shown in Fig. 23.6.

A very common approach to distributed embedded systems is called multi-drop. To transmit a byte
to the other computers, the software activates the SP483 driver and outputs the frame. Since it is half-
duplex, the frame is also sent to the receiver of the computer that sent it. This echo can be checked to
see if a collision occurred (two devices simultaneously outputting.) If more than two computers exist on
the network, address information is usually sent first, so that the proper device receives the data. 

Within the same room, IR light pulses can be used to send and receive information. This is the
technology used in the TV remote control. In order to eliminate background EM radiation from triggering
a false communication, the signals are encoded as a series of long and short pulses that resemble bar codes. 

A number of techniques are available for communicating across longer distances. Within the same
building the X-10 protocol can be used. The basic idea is to encode the binary stream of data as 120 kHz
pulses and mix them onto the standard 120 V 60 Hz AC power line. For each binary one, a 120 kHz pulse
is added at the zero crossing of the 60 Hz wave. A zero is encoded as the absence of the 120 kHz pulse.
Because there are three phases within the AC power system, each pulse is repeated also 2.778 ms, and
5.556 ms after the zero crossing. It is decoded on the receiver end. X-10 has the flexibility of adding or
expanding communication capabilities in a building without rewiring. The disadvantage of X-10 is that
the bandwidth is fairly low (about 120 bits/s) when compared to other techniques. A typical X-10 message
includes a 2-bit start code, a 4-bit house code, and a 5-bit number code requiring 11 power line cycles
to transmit. A second technique for longer distances is RF modulation. The information is modulated
on the transmitted RF and demodulated at the receiver. Standard telephone modems and the Internet
can also be used to establish long distance networks.

FIGURE 23.6 Three simple configurations for distributed embedded systems.
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Two approaches are used to synchronize the multiple computers. In a master/slave system, one device
is the master, which controls all the other slaves. The master defines the overall parameters that govern
the functions of each slave and arbitrates requests for data and resources. This is the simplest approach
but may require a high-bandwidth channel and a fast computer for the master. Collisions are unlikely
in a master/slave system if the master can control access to the network.

The other approach is distributed communication. In this approach each computer is given certain
local responsibilities and certain local resources. Communication across the network is required when data
collected in one node must be shared with other nodes. A distributed approach will be successful on
large problems that can be divided into multiple tasks that can run almost independently. As the
interdependence of the tasks increase so will the traffic on the network. Collision detection and recovery
are required due to the asynchronous nature of the individual nodes.
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24.1 Introduction

Signals are traditionally classified as being analog (continuous-time), discrete-time (sample-data), or
digital. A continuous-time signal has infinite precision in both the time- and amplitude-domain. Discrete-
time signals have infinite amplitude precision, but are discretely resolved in time (sampled). Digital signals
are of finite precision in both the time (sampled) and amplitude (quantized). Digital signals are either
synthesized by a digital system (e.g., computer), or digitized by quantizing the sample values of an analog
signal using an analog-to-digital converter (ADC). A digital-to-analog converter (DAC) maps a digital signal
into an analog signal. Signal processing refers to the science of analyzing, synthesizing, and manipulating
audio, acoustic, speech, video, image, geophysical, radar, radio signals, plus a host of other signals, using
mathematical and experimental methods. Signal may be scalars, of one, two, or M dimensions, of finite
or infinite duration. Digital signal processing (DSP) refers to the processing of digital or digitized signals
using digital technologies. DSP system elements can be linear or nonlinear and perform in the time (e.g.,
filter) or transform domain (e.g., frequency). The processing agents range from mathematical and
statistical abstractions or processes, to tangible software and hardware systems. DSP systems must often
be designed to meet restrictive real-time speed, precision, dynamic range requirements in multisignal,
multisystem environments. The design of a DSP solution, therefore, requires a concurrent knowledge of
signal processing methods and technology. 

DSP is currently a major market force, consisting of semiconductor, hardware, software, methodology,
application, and training sectors. The origins of DSP are open to debate, but a seminal moment surely
occurred when Claude Shannon developed an understanding of sample-data signal processing in the
middle of the 20th century. Shannon’s sampling theorem states that if an analog signal, having a highest
frequency bounded by B Hz, is sampled at a rate in excess of fs > B Hz, then it can be perfectly reconstructed
(exactly) from its sample values. The critical parameter fN = fs/2 is called the Nyquist frequency and represents
a strict upper frequency bound on the highest baseband frequency allowed in the sampled signal (i.e., B).
Most DSP solutions are over-sampled, operating at a sample frequency far in excess of its minimally
required value. If a signal is under-sampled at a rate below the minimum rate of 2B Hz, aliasing errors
can occur. An aliased signal is a baseband signal whose sample values impersonate those of a signal having
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frequency components in excess B Hz. Another early enabler of the DSP revolution was the Cooley–Tukey
fast Fourier transform (FFT) algorithm. The FFT made many signal-processing tasks practical for the first
time using, in many instances, only software. Another defining DSP moment occurred when the first
DSP microprocessors (DSP µp) made a marketplace appearance beginning in the late 1970s. These devices
provided an affordable and tangible means of developing hardware and embedded solutions with a
minimum risk and effort. Regardless of the origins, today’s DSP objects and systems have become part
of a pervasive technology, appearing in a myriad of applications, and supported with a rich and deep
technological infrastructure. DSP is now a discipline unto itself, with its own professional societies,
academic programs, trained practitioners, and industrial infrastructure. 

24.2 Digital Signals and Systems

Digital systems process digital signals in the time or frequency-domain. Systems can be analyzed and
characterized by the system’s response to a pure impulse (i.e., δ[k]), called the impulse response denoted
h[k] ={h[0], h[1], h[2],…}. The sequence of sample values h[k], called a time-series, can also be mathe-
matically represented using a z-transform. The z-transform of an arbitrary time-series x[k], consisting of
sample values x[k] = {x[0], x[1], x[2],…}, is given by  X(z) = . The z operator is defined in
terms of the Laplace transform delay operator, namely  z = , where Ts is the sample period. The z-
transforms of common signals are reported in standard table of z-transforms, such as those shown in
Table 24.1. The common signals shown in Table 24.1 can be manipulated and combined, using the
property list shown in Table 24.2, to synthesize higher-order and more complex signals. In addition to
the properties listed in Table 24.2, the initial value theorem x[0] =  and the final value theorem
x[∞] =   provide a convenient means of evaluating two end points of a time-series. The
mapping of a z-transformed signal X(z) back into the time-domain is performed in a piecemeal manner.
Specifically, the inverse z-transform X(z) is normally expressed in partial fraction, or Heaviside expansion
having the form X(z) = , where Xi(z) is an element of Table 24.1 corresponding to a discrete-
time signal xi[k], with Ai is a Heaviside coefficient associated with the term Xi(z). The inverse z-transform
of X(z) is given by x[k] = .

TABLE 24.1 z-Transforms of Primitive Time Functions

Discrete-time signal x[k] z-transform X(z)
δ[k] (impuise) 1
u[k] (unit step) z/(z − 1)
aku[k] (exponential) z/(z − a)
sin[bkTs]u[kTs] (sine wave) sin(bTs)z/(z2 − 2z cos(bTs) + 1)
cos[bkTs]u[kTs] (cosine wave) (z − cos(bTs))z/(z2 − 2z cos(bTs) + 1)
aksin(bkTs)u[kTs] (damped sine) a sin(bTs)z/(z2 − 2az cos(bTs) + a2) 
akcos(bkTs)u[kTs] (damped cosine) (z − a cos(bTs))z/(z2 − 2az cos(bTs) + a2)

TABLE 24.2 Properties of z-Transforms

Property Time-Series z-Transform

Linearity x1[k] + x2[k] X1(z) + X2(z)
Real scaling ax[k] aX(z)
Complex scaling wkx[k] X(z/w)
Time reversal x[−k] X(1/z)
Modulation e−akx[k] X(eaz)
Summation zX(z)/(z − 1) 

Shift delay x[k − 1] z−1X(z) − zx[0]
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The output of a linear system having an impulse response h[k] to an input x[k] is denoted y[k]=h[k] ×
x[k], where y[k] is defined by the discrete-time linear convolution sum 

Computing the convolution sum is rare. Instead, a linear system is generally analyzed using simulation,
emulation, or the z-transform. The convolution theorem states that the linear convolution y[k] = h[k] ×
x[k] of a z-transformable impulse response h[k] (i.e., H(z) = ) and input x[k] (i.e., X(z)
= ), is given by the inverse z-transform of the product Y(z)=H(z)X(z). This method is only
viable in instances where the z-transform of h[k] and x[k] have been precomputed or tabled, and the
inverse z-transform of Y[z] can be computed. While H(z) is generally known, most real signals are
arbitrary and possibly noise contaminated, making the general availability of X(z) questionable. Never-
theless, the importance of this equation has resulted in the elements being given specific titles and
meaning. The z-transform of the impulse response h[k], namely H(z), is called the system’s transfer
function and has the general form 

The filter’s poles (pm) and zeros (zm) are the roots of D(z) = 0 and N(z) = 0, respectively. The system’s
steady-state frequency response can be determined by evaluating the transfer function H(z) along the
trajectory z = ejϖ, where ϖ ∈[−π, π] which represents a normalized baseband frequency range [−fs /2, fs /2]
(±Nyquist frequency). Specifically, the frequency response of a system in magnitude-phase form is  H(e jϖ) =
|H(e jϖ)| ∠ φ(e jϖ). 

24.3 Digital Filters

Transfer functions, when implemented in the time-domain, result in digital filters. The attributes of a digital
filter can be specified in the time- or frequency-domain, or both. Digital filters can be grouped into three
broad classes called finite impulse response (FIR), infinite impulse response (IIR), and multirate filters.  

Finite Impulse Response (FIR) Filters

An FIR filter possesses an impulse response that persists only for a finite number of sample values. The
impulse response of an Nth order FIR is given by h[k] = {h[0],…, hN−1[k]}, and in the z-transform domain
by H(z) = Σhiz

−i, i ∈[0, N − 1]. One of the attributes of an FIR is its simplicity, consisting of a string of
multiply-accumulations (MACs), and shifts registers. The steady-state frequency response of an FIR H(z)
is given by H(e jϖ) = |H(e jϖ)| ∠φ(e jϖ). A system is said to possess a linear phase response if φ(e jϖ) = αϖ + β
(i.e., linear in frequency). Linear phase filters are important in a number of applications including (1)
synchronizing phase modulated data streams, (2) anti-aliasing filters placed in front of signal phase
sensitive analysis subsystems (e.g., FFT), and (3) use in phase sensitive applications (e.g., image process-
ing). Linear phase filtering can be guaranteed whenever the coefficients of an N th order FIR are sym-
metrically distributed about the filter’s mid-point L = (N−1)/2 (i.e., hi = ±hN− i, i = 0,…,L). The resulting
phase response satisfies the linear phase equation ∠φ(ϖ) = −Lϖ + {0,±π}. Another important phase
response measure is called the group delay, given by τg = −dφ(e jϖ)/dϖ. For a linear phase FIR, τg = L,
which indicates that the filter propagation delay is always L clock cycles regardless of the input signal
frequency.
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FIR design methods are well known and well developed. The simplest design technique is called the
direct, or window method. The design process begins with a specification of the desired filter frequency
response H(e jϖ). An M-harmonic (M  >> 1) inverse Fourier transform (IFFT) of H(e jϖ) is computed,
which defines an M-sample time-series h′[k] that is an approximation to the desired FIR impulse response.
Normally, the long M-sample symmetric time-series is symmetrically reduced to an N-sample impulse
response h[k], defined by the N central values of h′[k]. The major weakness of the direct design paradigm
is that the approximation errors in the frequency domain can be locally large about points of discontinuity
of H(e jϖ), as shown in Fig. 24.1. A commonly used design criteria that overcomes this weakness is based
on a minimax error criterion. The minimax criterion requires that the maximum value of the approxi-
mation error be minimized. A minimax FIR is characterized by the frequency domain errors having an
equirriple (equal ripple) envelope. Thus, this class of FIR is logically referred to as an equirriple filter
and has a typical magnitude frequency response shown in Fig. 24.1.

Windows are tools that are sometimes used to improve the shape of an FIR’s frequency domain envelope.
An N-sample data window is applied to an N th-order FIR on a sample-by-sample basis according to the
rule hw[k] = h[k]w[k], where h[k] is an FIR’s impulse response, w[k] is a window function, and hw[k] is
the windowed FIR impulse response. In the frequency domain, the effect of a window is defined by the
convolution operation Hw(n) = H(n)∗W(n), which results in a tendency to smooth the envelope of the parent
FIR’s frequency response. The attributes of a window are defined by the width of the center (main) lobe
and sideband suppression in the frequency domain (see Table 24.3). Common window functions are
rectangular, Hann, Hamming, Blackman, Kaiser, and Flat Top. The effect of a window on the direct FIR
frequency response shown in Fig. 24.1 is also displayed in Fig. 24.2.

Infinite Impulse Response (IIR) Filters

Filters containing feedback are called IIR filters. With feedback, an IIR’s impulse response can be infinitely
long. The presence of feedback allows an IIR to achieve very high frequency selectivity and near resonance
behavior. An Nth-order constant coefficient IIR filter can be modeled by the transfer function 

where the filter’s zeros {zi} are the roots of N(z) = 0, and the filter’s poles {pi} are the roots of D(z) = 0.

TABLE 24.3 Effects of Data Windows

Window Transition Width fs /N Highest Sidelobe in dB

Rectangular 0.9 −13
Hann 2.07 −31
Hamming 2.46 −41
Blackman 3.13 −58
Kaiser (β = 2.0) 1.21 −19

FIGURE 24.1 Comparison of direct and equirriple FIR designs.
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The frequency response of an Nth-order IIR is given by 

evaluated over the normalized frequency range ϖ ∈[−π  ≤ ω ≤ π), which defines the baseband frequency
range bounded by ±fNyquist.

The traditional IIR design strategy is based on converting classic analog filter models into their digital
filter equivalents. Throughout the first half of the 20th century, analog radio filter engineers created classic
Bessel, Butterworth, Chebyshev, and Elliptic (Cauer) filter instantiations whose magnitude frequency
response emulates that of an ideal filter. To standardize the analog filter design procedures, a set of
normalized −1 dB or −3 dB lowpass filter models, having a 1.0 rad/s passband were created. These models
were reduced to tables, charts, and graphs and are called analog prototype filters. The prototype lowpass
filters can be the frequency scaled to define an analog lowpass, highpass, bandpass, and bandstop filters
H(s), having desired frequency-domain attributes. The classic analog filter H(s) can then be converted into
a digital filter model H(z) to define a classic digital filter (See Table 24.4). The basic domain conversion
techniques (i.e., H(s) → H(z)) are (1) the impulse-invariant and (2) bilinear z-transform methods.

The impulse invariance filter design method results in a digital filter having an impulse response h[k] that
agrees with that of the parent analog filter’s impulse response ha(t), up to a scale factor (hd[k] = Ts ha(kTs)).
An impulse invariant design can be of significant value in applications, such as automatic control, where
design objectives are defined in the time-domain (e.g., rise-time, overshoot, settling time). If the parent
analog filter’s impulse response ha(t), or transfer function Ha(s) are known, then the impulse invariant
digital filter is defined by 

and in the frequency-domain by

FIGURE 24.2 Effects of windowing an FIR. Note that the windowed spectrum is smoothed and has an increased
transition bandwidth.
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This equation exhibits a weakness of the impulse invariant design method. For any physically meaningful
sampling rate fs = 1/Ts, aliasing errors can occur whenever the analog filter passes components at fre-
quencies greater that 2fs. Typically, analog filters have a gain that is finite for all frequencies. The aliased
filter energy can be mapped back into the baseband and can distort (sometime significantly) the frequency
response of an impulse invariant filter. As a result, the impulse invariant method is generally only used
to design frequency selective filters that are decidedly lowpass. 

When meeting frequency domain specifications is the design objective, the bilinear z-transform method
is normally used. The bilinear z-transform maps a classic analog filter Ha(s) into a digital filter H(z)
without introducing aliasing errors. The bilinear z-transform establishes a relationship between the s- and
z-domain, given by s = (2/Ts)(z + 1)/(z − 1). The bilinear z-transform also defines an algebraic connection
between the analog and digital frequency axis given by ω = (2/Ts)tan(ϖ/2), where ω is the analog
frequency, |ω| < ∞, and ϖ is the normalized digital frequency range −π/2 ≤ ϖ < π, corresponding to the

TABLE 24.4 Comparisons of Nth-Order Classic IIR Lowpass Filters Having fs = 50 kHz, a − 3 dB 15 kHz
Passband, 5 kHz Transition Band, and −50 dB Stopband

Type Order Passband Stopband Magnitude Frequency Response

Butterworth High
(N = 8)

Smooth Smooth

Chebyshev I Medium
(N = 5)

Ripple Smooth

Chebyshev II Medium
(N = 5)

Smooth Ripple

Elliptic Low
(N = 4)

Ripple Ripple
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frequency range ±fNyquist = ± fs/2. The mapping from analog frequencies ω to digital frequencies ϖ is called
warping, and pre-warping in the opposite direction. The bilinear z-transform design paradigm is a
multistep process consisting of the following steps:

1. Define the digital filter’s frequency-domain attributes (gains at critical frequencies).
2. Prewarp the critical digital frequencies ϖ into analog frequencies ω.
3. Design a prewarped classic analog filter Ha(s) that meets specified passband and stopband gain

requirements.
4. Apply the bilinear z-transform to convert Ha(s) into a digital filter H(z). In the process, the

prewarped analog filter frequencies ω will be warped back to their original locations ϖ.

Multirate Systems

DSP systems that contain multiple sample rates are called multirate systems. A signal x[k], sampled at a
rate fin, is said to be decimated by M if it is exported at a rate fout = fin/M, where M > 1. Mathematically,
the decimated signal xd[k] can be expressed as xd[k] = x[Mk], indicating that only every Mth sample of
the fast sampled time-series x[k] is retained in the decimated signal xd[k]. Decimation can also be modeled
in the z-transform domain as Xd(z) = X(zM) and Xd(e jφ) = Xd(e jMφ) in the frequency domain, as suggested
in Fig. 24.3. In order to insure that a signal x[k] can be reconstructed from its decimated samples of
xd[k], Shannon’s sampling theorem must be obeyed. Specifically, if the minimum sampling frequency is
bounded by fs > 2B Hz, the maximum decimation rate must be bounded by M ≤ fs/2B. Decimation is
routinely found in audio signal and video data transmission and signal compression applications, and
interfacing equipment with dissimilar fixed sample rates. By reducing the system’s sample rate by a factor
M, arithmetic bandwidth requirements can often be reduced by a similar amount.

Interpolation is the antithesis of decimation. While decimation is used to reduce the sampling rate,
interpolation is used to increase the sample rate. A signal x[k], sampled at a rate fin, is said to be inter-
polated by N if xi[k] = x[k] whenever k ≡ 0 modulo (N), and zero elsewhere. The interpolated signal
xi[k] is a time-series consisting of N − 1 zeros separated by the sample values x[k] and x[k + N] and is
clocked at a rate fout = Nfin N > 1. In the z-transform domain, Xi(z) = X(zN), and Xi(e jφ) = X(e jNφ) in the
frequency-domain, as shown in Fig. 24.3. It can be noted that the interpolated spectrum contains
multiple copies of the baseband spectrum X(e jφ), where the unwanted copies can be removed using a
lowpass filter. 

FIGURE 24.3 Multirate system elements showing decimation (top) and interpolation (bottom).
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Special Filter Cases

Besides baseline FIR, IIR, and multirate filters (which are based on FIR or IIR elements), other classes
of digital filters are found in common use. One of the most important of these is the adaptive filter. An
adaptive filter modifies the filter coefficients during run-time in order to respond to measurable changes
in the signal and system environment. The adaptation rules and procedures, generally based on a squared
error criteria, range from simple to sophisticated, establishing trade-offs between implementation sim-
plicity and accuracy. Adaptive filters that contain nonlinear elements are called neural networks. Some
filters classes are defined in terms of special features of their defining mathematical framework. Wavelets,
for example, are basis functions that satisfy a formal set of scaling and dilatation rules. They often appear
as a multirate solution consisting of collections of sub-filters defined by wavelet basis functions that have
been selected to match signal-specific signal attributes or features. 

Digital Filter Architecture

The physical implementation of a particular FIR or IIR filter is called an architecture. Architectures specify
how a digital filter is assembled using a collection of DSP primitive objects, such as shift-registers,
multipliers, and adders. The choice of architecture has a direct influence on the performance, cost, power
consumption, and precision of the design outcome. Common FIR architectures are the direct, transpose,
and lattice implementations. Common IIR architectures include (1) direct I and II, (2) normal (optimized
second-order section), (3) cascade (H(z) = ∏Hi(z), Hi(z) a first or second order direct II or normal
subsystem), (4) parallel (H(z) = ΣHi(z), Hi(z) a first- or second-order direct II or normal subsystem),
(5) ladder-lattice, and (6) wave. Architectures are often instantiated in terms of a state variable model.
The state variable model for a single-input single-output, nth order IIR, having an arbitrary architecture
is given in terms of a state equation x[k + 1] = Ax[k] + bu[k], and output equation y[k] = cTx[k] + du[k],
where x[k] is an n-vector, y[k] and u[k] are scalars, A is an n × n matrix, and b and c are n-vectors, and
d is a scalar. The ith state of the digital filter, xi[k] resides in the system’s ith  shift register. The coefficient
Aij denotes the filter gain existing between the ith and jth shift register, bi represents the gain between
input and ith shift register, ci the gain between ith shift register and output, and d is the direct path gain
between input and output. The state variable model is interpreted in Fig. 24.4, where the n states of the
system are stored in n shift registers. The filter complexity and run-time dynamic range requirements of
a system in state variable form can be mathematically computed or predicted. The dynamic range
requirements are generally expressed in terms of the lp norm of the states, namely ||xi[k]||p, for p = 1, 2,
and ∞, where ||xi[k]||p = (∑|xi[k]|p)

1/p. These norms are used to scale a filter in order to protect it against
run-time register overflow, a serious error condition. Errors of less severity, which can nevertheless
adversely influence system performance, are coefficient and arithmetic roundoff errors. Another minor
error source is called limit cycling, a phenomenon that relates to the least significant bits of the output
being “toggling” (producing a dynamically changing output) while the input is zero. Of the common
architectural choices, cascade is the most popular and generally provides a good balance between

FIGURE 24.4 State variable system model where x[k] is the state vector, u[k] the input, and y[k] the output.
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performance, complexity, and precision. Direct II filters are known to be low-complexity, but often suffer
from low precision. Parallel filters exhibit certain fault tolerance attributes, ladder-lattice have good
coefficient roundoff error immunity, but are comparatively complex.

24.4 Fourier and Spectral Analysis

The frequency-domain analysis and representation techniques can provide invaluable information about
a signal and a system’s environment. The mapping between the time- and frequency-domain are tradi-
tionally defined by a Fourier transform. The historic difficulty in computing a Fourier transform of an
arbitrary signal radically changed in 1965 when Cooley and Tukey introduced the now celebrated FFT
algorithm. For over three decades, the FFT established that a time-series x[k] can be efficiently mapped
into a frequency-domain using a general purpose digital computer. The FFT is a special manifestation
of a more general class of transform called the discrete Fourier transform (DFT). The DFT defines a
mapping of an N-sample time-series xN[k] (possibly complex) into an N-harmonic complex frequency
domain distribution X[n], where X[n] is called the nth harmonic. The DFT of the N-sample time-series
xN[k] is given by the analysis equation 

where WN = e−j2π/N. The DFT is also known to be periodic with period N (i.e., X[n] = X[n ± kN]). The
inverse transform is given by synthesis equation 

The DFT is parameterized in a manner shown in Table 24.5, and computes an N-harmonic spectrum
using N2 complex-multiply accumulates. The FFT algorithm significantly reduced the computational
complexity of performing a DFT to N log2(N). In general, a long FFT can be constructed from a collection
of small DFTs. Using the Cooley–Tukey FFT ordering algorithm, a DFT of length N = ΠNi can be created.
Using the Good–Thomas ordering algorithm, a length N = ΠNi (Ni and Nj relatively prime) transform
result. For example, using a N1 = 15, N2 = 16, and N3 = 17-point DFTs, an N = 4080-point DFT can be
computed.

In addition to the classic FFT, there are other spectral analysis techniques found in common use. One
is called the chirp-z DFT that implements a DFT using linear convolution. The convolution filter has an

TABLE 24.5 DFT Parameters

DFT Parameter Notation or Units

Sample size  N samples
Sample period  Ts seconds
Record length T = NTs seconds
Number of harmonics N harmonics
Number of positive (negative) harmonics N/2 harmonics
Frequency spacing between harmonics ∆f = 1/T = 1/NTs = fs/N Hz
DFT frequency (one-sided baseband range) f �[0, fs/2) Hz
DFT frequency (two-sided baseband range) f �[−fs/2, fs/2) Hz 
Frequency of the kth harmonic fk = kfs/N Hz
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impulse response that is equivalent to a linearly swept FM signal. Other DFT forms include filter banks
and number theoretic transforms (NTT) that can compete with the FFT only in narrowly defined
applications. While not technically qualifying as a DFT, the discrete Cosine transform (DCT) has signif-
icance in image compression applications and, like the FFT, has been reduced to both software and
hardware instantiations. 

The DFT and its derivatives are an important signal analysis tool. They are sometimes used for off-
line signal processing, while in other applications they must operate at real-time speeds using dedicated
hardware, firmware, or software. An N-sample time-series is often windowed (e.g., Hann) prior to being
transformed in order to improve the interpretability of the resulting DFT. DFTs can also be used to
convolve two time-series if the DFTs are suitably modified. The DFT assumes that the signals being
transformed are periodic, with period N. As a result, the convolution theorem for DFT is expressed as
the periodic outcome y[k] = x[k] ⊗ h[k] = IDFT(DFT (x[k]) × DFT(h[k])), where ⊗ denotes circular
(periodic) convolution, and IDFT denotes an inverse DFT. A circular convolution can be functionally
converted to behave like a linear convolution by adding a string of N zeros to the time-series x[k] and
h[k] prior to performing the DFTs. This process, called zero padding, allows an efficient FFT replace an
inefficient linear convolution sum. This advantage is exploited in high-order application, such as con-
volving two large, two-dimensional images.

One of the principle uses of a DFT or FFT is in performing spectral analysis. Spectral analysis pertains
to the study of signals and systems based on their frequency-domain signatures and attributes. The
frequency domain image of a signal or system is often interpreted in terms of a power spectrum that is
a display of the power in a process on a per-harmonic basis. Spectral analysis methods generally fall into
two classes, called parametric and nonparametric. Nonparametric spectral analysis methods are based
on the DFT of one or more noise contaminated time-series records. The individual spectra can be
averaged or combined in various ways to create a more interpretable frequency-domain image of the
signal or system under study. Parametric methods attempt to build a mathematical model of a process
that approximates the measured power spectrum of a signal or system. The moving-average (MA) method
is a parametric spectral estimation method that constructs an FIR (all zero) model of a signal process
or system. Another parametric method is called auto-regressive (AR) and produces an all-pole IIR model
of a signal or system, combining the two results in the parametric auto-regressive moving-average
(ARMA) method. Other parametric methods are based on an eigenvalue analysis and result in a highly
frequency-selective signal or system model. 

24.5 DSP System Implementation

The implementation of a digital filter is an iterative process requiring design trade-off choices be made
in the statement of filter specifications, filter type, architecture, and technology to achieve a design that
meets performance, precision, and complexity (cost/power) requirements. Numerous software packages
are commercially available to automatically design a baseline FIR or IIR filter of DFTs. Fewer software
packages automatically support architectural or design optimization activities that can quantify run-
time errors and register overflow saturation events. Furthermore, the majority of hardware-enabled DSP
filters and transforms are implemented in fixed-point, a point often ignored by existing design software
tools. The range of an unsigned fixed-point number is given by R = Xmax − Xmin, and has a resolution
given by Q = R/2N, where Q is called the quantization step-size and is the weighted value of the least
significant bit (LSB). The quantization error is defined to be the difference between a number’s real and
fixed-point representation, specifically e = X − XQ (rounded). Statistically, the error is uniformly distrib-
uted over [–Q/2,Q/2], with mean and variance is given as E(e) = 0 and σ 2 = Q2/12, respectively. Of all
the known fixed-point numbering systems, two’s complement (2C) is by far the most popular and
important. A 2C attribute, that makes it particularly attractive for DSP applications, is called the modulo
(2N) wrap-around property. This property states that if a string of valid 2C numbers {Xi} are added to
form S = ∑Xi, and S is a valid 2C number, then the final outcome will be correct regardless of possible
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overflows of intermediate sums. That is, as the final result is correct even though intermediate sums may
be flawed. 

For cases where higher dynamic ranges are needed, floating point solutions are employed. The floating
point representation of a real number X is given by X~(−1)S MrE, where M is the mantissa, r the radix,
E is the signed exponent, and S is the sign bit. The mantissa is usually normalized to a value 1/r ≤ M < 1,
and the format is defined by published standards (e.g., IEEE). A variation on the floating-point theme
is called block floating point, a format used by a number of DSP chips, especially FFTs. A block floating
point representation of an array of numbers {x[k]} is defined in terms of a maximum exponent E, where
|x[k]|max = rE. A block floating point representation of the number x[k] is given by x[k] = ±M[k]rE, where
E is the fixed maximum exponent and M[k] is a fractional mantissa (M[k] ≤ 1). Since the scale factor rE

is known a priori, it need not be explicitly carried in number system representation.
The primary DSP arithmetic operation is the signed multiply accumulation (MAC). Fixed-point

multipliers cover a wide range of speed, precision, and complexity tradeoffs. Compact low-complexity
MACs can be designed using ripple adders. When adder area and power dissipation are not an issue,
carry-lookahead adders can be used to accelerate wide wordlength adders and, therefore improve MAC
speed. Carry-save adders (modified full adders) can also be an important element in implementing fast
multipliers. Another fast multiplier architecture is based on Booth’s algorithm and interprets strings of
consecutive of “ones” as multiplicative NO-OP operations. Fast multipliers can also be constructed using
arrays of small wordlength multipliers. These architectures are referred to as cellular array multipliers,
or simply array multipliers. 

General-purpose programmable DSP µps make use of multipliers that map X∗Y → P, where X and Y
are variables. Most DSP applications, however, are SAXPY (S = A∗X + Y) intensive, which refers to
multiplying a variable X by a constant A (e.g., filter coefficients), followed by an accumulation. Imple-
menting SAXPY algorithms technically does not require general multiplication but rather an operation
called scaling. Several techniques have been developed to exploit scaling in the implementation of DSP
algorithms. They are particularly useful in implementing fixed-coefficient DSP algorithms with application
specific integrated circuits (ASIC), application specific standard parts (ASSP), and field-programmable
gate-arrays (FPGA) devices. One scaling technique is called the reduced adder graph (RAG) method. RAG
arithemtic is based on the theory of the ternary-valued ({0, ±1}) canonical sign-digit numbers (CSD).
For example, the 4-bit binary unsigned representation of the number 15 is 1510 ↔ 11112, while the RAG
representation is given by 1510 = 1610 − 110 ↔ 100 1RAG, which can be implemented using one adder and
a shift register. The cost of an RAG multiplier is measured in terms of the number of adders needed to
complete a design. Another scaling method is called distribute arithmetic (DA) and is applicable only to
the implementation of constant DSP coefficient algorithms. As a point of reference, an Nth order FIR
digital filter, having known coefficients hr , r ∈ [0, N), requires N MAC operations be performed per cycle.
The data is assumed to be coded as an M-bit 2C word, where 

where x[k :i] is the ith-bit of sample x[k]. The output y[k] is given by

where the mappings θ[ [k]:i] are implemented using 2N-word memory lookups. The lookup table θ
maps an array of binary valued digits [k:i] = { [k:i], x[k − 1:i],…,x[k − M−1:i]}, taken from the i th
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common-bit location from x[s], s ∈ [0,…,N − 1], under the rule  

Weighting the lookup value θ[x[k]:i] by a factor 2−i is implemented using a shift register. The result is
generally a high-speed compact design. 

24.6 DSP Technology

The semiconductor revolution, which began in the 20th century, began to shape the field of DSP
beginning in the late 1970s. Since then, DSP has been both a facilitating technology (replacing existing
solutions) as well as an enabling technology (creating new solutions). The hallmark of the DSP technology
revolution was the general purpose DSP microprocessor (DSP µp). The first generation DSP chips
included on-chip ADC and DAC and large capable multiplier. The second generation DSP µps overcame
many of the first generation device memory and precision limitations, and also removed the noisy
ADCs and DACs. Since then, third generation floating-point and fourth generation multiprocessors have
been added to the list of general-purpose DSP products. Along with the DSP µp technology explosion
came attendant improvements in software for both uni- and multiprocessor systems. High- and low-
level software environments have been created to rapidly develop and test DSP solutions. Since DSP
problems tend to be algorithmic, stressing real-time bandwidth, optimized solutions continue to be
dominated by assembly language code solutions. Throughout these generational changes, DSP µps have
maintained their dependence on capable MACs, tightly coupled memory, and a modified Harvard
architecture. These trends continue to differentiate DSP µps from general-purpose microprocessors.
Microprocessors emphasize (1) multiple data types, (2) multilevel cache memories, (3) paged virtual
memory management in hardware, (4) support for hardware context management including supervisor
and user modes, (5) large general-purpose register files, (6) orthogonal instruction sets, and (7) simple
or complex memory addressing, depending upon whether the processor is RISC or CISC. DSP µps,
however, typically (1) have only one or two data types supported by the processor hardware, (2) limited
data cache memory, (3) no memory management hardware, (4) no support for hardware context man-
agement, (5) exposed pipelines, (6) predictable instruction execution timing, (7) limited register files
with special purpose registers, (8) nonorthogonal instruction sets, (9) enhanced memory addressing
modes, (10) onboard fast RAM, ROM, and DMA, and (11) nonsequential access to data addressing
modes (e.g., bit-reversed addressing). Techniques have also been developed to exploit opportunities for
instruction level parallelism, superpipelining, and superscalar architectures. These innovations have led
to very long instruction word (VLIW) architectures. Due to the upward spiral of software development
costs a significant amount of the academic and commercial activities have been directed to automatic
compiler-based optimization of high-level language code. 

In parallel with the explosion of general-purpose DSP µp products, there has been a growing presence
of DSP-centric ASICs, ASSPs, and FPGAs. Although DSP µps enabled the DSP revolution, DSP technology
innovations have become increasingly driven by intellectual property (IP) supplied by semiconductor
houses, fabless semiconductor technology suppliers, and third-party IP providers. Their use and justifi-
cation is based on performance, power dissipation, cost, and time-to-market considerations. At the
beginning of the new millennium, the market value of ASICs and ASSPs exceeded that of general-purpose
DSP µps. The trend toward ASICs and ASSPs, over DSP µps, is motivated by the need to achieve rapid
system-on-a-chip (SOC) designs by integrating predefined DSP IP cores together using high-end elec-
tronic design automation (EDA) software. FPGAs are becoming an increasingly important DSP technol-
ogy but continue to remain primarily prototype tools and useful in some low-volume applications.

θ x k[ ]:i[ ] hrx k r:i–[ ]; x s:i[ ] 0,1[ ]∈
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24.7 Applications

“DSP” has become a well-known acronym, often appearing explicitly in the marketing vernacular of
commercial electronic products. The sphere of influence and relevance of DSP continues to expand,
often enabling solutions that could only be speculated a decade earlier. Modern DSP applications areas
include general purpose DSP (filtering, signal detection/classification, spectral analysis, adaptive filter-
ing), instrumentation (waveform analysis, transient analysis), information/communication systems
(speech, audio, voice over Internet, facsimile, modems, cellular telephones, wireless LANS), control
systems (servos, disks, printers, automotive, guidance, vibration, power systems, robots), entertainment
(sound, video, music), defense (radar, sonar, object recognition, ordinance) plus other areas such as
biomedical, transportation, and geophysical signal processing. 
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25.8 Others
25.9 Conclusions: General Trends

25.1 Introduction

The story goes like this. In 1982, when Texas Instruments’ (TI) engineers came up with their first general-
purpose chip for DSP applications, they did not know how to call it. Terms like analog microprocessor
or signal microprocessor sounded cumbersome for the user. Therefore, an engineer said, “why don’t we
confuse the chip and its application? In other words why don’t we use the term DSP (digital signal
processing) to describe our chip?” Hence, the DSP (digital signal processor) was born. Unfortunately,
this still brings confusion 20 years later.

Daniel Martin
Infineon
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DSP (Digital Signal Processor) or DSP (Digital Signal Processing)?

What do we mean by DSP applications? 

Applying the science of digital signal processing to the real world? 
An application that uses a digital signal processor? 

Although the two areas largely overlap, they are not identical. For instance, a typical digital signal processing
application such as V90 modem is performed by a general purpose DSP but also by a custom chip or a
Pentium.

A DSP Can Do More Than DSP Applications

A general purpose DSP can be efficient at many other tasks than pure processing of signals (Fig. 25.1).
The reason is that a DSP is low cost and very efficient at processing in general. It is also good at processing
math, bits, events, state-machines, etc. In addition, a DSP has a very deterministic behavior. Hence, it
can precisely control hardware and multiple external events. It is the main reason that hard disk drives
use a DSP as their main CPU. Disk drives and motor control represent one of the biggest applications
for a DSP. They are classified under DSP applications, in reality they are more control-like; however, the
“spread” of a general purpose DSPs into non-DSP applications is much less interesting than the discovery
of new DSP applications.

In the following paragraph, we will concentrate on describing applications, which recently opened
new markets thanks to some DSP techniques.   

The Importance of DSP Applications 

Over the last 20 years, the different market segments have made a different use of DSP applications
(Fig. 25.2). The next 10 years will also bring its changes. For instance, the consumer market is likely to
occupy more and more space in the life of DSP engineers. 

FIGURE 25.1 A general purpose DSP can do more than DSP.

FIGURE 25.2 Relative importance of market segments for DSP applications.
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Classifying DSP Applications 

It is usually to classify DSP applications following the market segments. For the purpose of this chapter,
we conveniently classify the seven main areas of DSP applications without necessarily following the market
segments of Fig. 25.1:

1. Military
2. Telecommunication terminals 
3. Consumer products
4. Telecommunication infrastructure (including networking) 
5. Computers, peripherals, and office automation 
6. Automotive, industrial
7. Others, such as biometrics, biomedical, etc.

25.2 Military Applications 

The first DSP applications were born in the 70s and were mainly military (radar, sonar). Today, the same
applications exist with a much higher performance target. In addition, many military applications
(vocoder) are taking advantage of “civilian” work. An interesting development for the military is the
detection and disposal of mines [1]. It must be noted that, since the military community was the first
DSP customer, strong links were created between DSP manufacturers and these pioneers. Despite its
small size, the military community continues today to have a strong influence on the evolution of DSP
architecture (floating-point, multiprocessing).

25.3 Telecommunication Terminals 

By 1995, DSP has left its original circles (military, universities) and became a household name. The
most popular DSP applications were telecommunications terminals such as cellular telephone, PC
(modem), fax, and digital-answering machine (Table 25.1). Today, the quantity of telecom terminals
that is produced per year reaches 450 M units for cell phones alone. 

Phones and Answering Machines

The plain old residential telephone has very little DSP inside it (maybe calling ID). This is the exception
among voice communication devices. For instance, second generation cordless phones (DECT) use digital
techniques. Also all “packet telephones” such as Internet (IP) phones, LAN phones, are using voice
compression, echo cancellation, and modem techniques to receive/transmit voice. An extreme telephone
application can cater for up to 12 voice conference channels. This requires 12 decompression channels
and mixing. Voice compression is not new, since they allowed the development of cheap “solid-state”
DAM (digital answering machines). All put together, a combo device including a multi-channel cordless +
a DAM + a connection to IP is a very demanding DSP application. 

TABLE 25.1 List of Telecom Terminals Using DSP Techniques

Communication Function List of Terminals 

Voice (telephony) Feature phone, DAM, cordless phone, Internet phone, business phone,
LAN phone, DECT phone, combo products (LAN/POTS) 

PC modem (Voiceband) modem, DSL modem, cable modem
Fax Color fax, fax/phone, fax/printer, fax/printer/scanner/copier
Web access Web station, Web phone, Web pad
Videophony Videophone
Cellular phone Standard, voice + data cellular phone, smart phone, pager 
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PC as a Terminal (Modem)

The PC is the second most successful telecom terminal of all times. For that it requires a modem (most
advanced voiceband modem is V90). The modem was the application that created a mass market for
DSP devices (1982–1992). Today, all DSP devices are trying to implement broadband modems. Roughly
five classes of broadband modems are available, which all use massive amount of DSP power:

• DSL, which is made of three classes in order of difficulty (SDSL, ADSL,VDSL)

• Cable modem, which is classified as a set-top box peripheral

• Broadband wireless modem (LMDS, MMDS), which is also called the “wireless DSL”

• Broadband satellite modems 

• Gigabit Ethernet (and above), which positions itself as the cheapest technology

Fax

A fax can be seen as medium range modem, plus a scanner writing bits into a graphics compression
engine, and a decompression engine driving a printer. The three functions are all DSP-based. There is
no reason why fax manufacturer will not develop DSL fax. Modern networks will allow a DSL fax to
speak to a LAN fax. In fact, modern networks will allow “anything over everything” such as fax-over-IP
and voice-over-DSL. You can bet that DSP will be in the middle of all that.

Web Access Terminals 

Not to be confused with an IP phone (which is limited to voice communication), a Web access device is
targeted at Web browsing and e-mail. Today (2001), all these types of devices and the so-called “Internet
appliances” are struggling to find a mass-market acceptance. Despite this, three classes exist: Web station,
Web phone, and Web pad.

Web Station 

It is a $99–299 consumer device in the form factor of a small laptop. It allows web browsing, send/receive
e-mail, and (maybe) JPEG decode. Web browsing requires a modem (more likely V90 than DSL), which
means DSP. Since V90 is less than 30 DSP MIPS and today’s DSPs give anything from 100 to 1500 DSP
MIPS, the use of a full-blown DSP might not be required. On the other hand, the unused performance
can be put to good use: multimedia decode.  

Web Phone 

This is the same as the Web station with the addition of telephony. Note that in the IP world, phoning
requires more DSP MIPS than Web browsing.

Web Pad

This is a cordless web station with a form factor identical to the pentop of 1992–1994. The DSP functions
are fifty/fifty shared between the base and the tablet. The big advantage of a Web pad is to be network
independent or modem independent. The big disadvantage is the price of the display. 

Videophone

Videophone shares with speech recognition the honor of being the most promising 1971 DSP application.
Thirty years later, many progresses have been made. The next 10 years will surely bring their annual
series of breakthroughs.   

Cell Phones

The modem put DSP on the radar screen in the 80s. By comparison, cell phones put DSP in the strat-
osphere in the 90s. By the end 1999, the cell phone was the star of the electronics world with more than
300 million handsets a year, some containing multiple DSPs. Multiple DSPs are needed because a cell
phone DSP function is traditionally divided into two parts: the speech coding and the channel coding. 
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Speech coding is a traditional speech codec (compression/decompression) algorithm varying from 5
to 12 kbit/s depending on standards, economic forces, and target quality. Above that, several speech-
quality enhancement features are added. This includes echo cancellation and noise suppression. A prom-
ising trend is the use of wideband codec. All together, the sum of all speech functions put in a modern
cell phone can require up to 100 DSP MIPS.    

Channel coding is working on bits in transmission and (supposedly) in reception. As such, it does not
qualify as a pure DSP application; however, in the first place, the reception is mainly done on samples
and secondly equalization and other heavy DSP techniques (Viterbi algorithm) are classified under
channel coding. Finally, the channel coding problems represent DSP research at its best today. 

Wireless Terminals 

The cell phone is the first of many types of wireless terminals that will come up over the next decade. In fact,
wireless terminals are in a class of their own. Their rapid evolution differentiates them strongly from their
wired cousins. Wireless is the technology with the most development potential over the next 10 years. It is
easy to explain this statement by taking any existing equipment (from telephones to automobile) and turn
it into a wireless device (Table 25.2). It is left to the reader to complete the table based on his or her own wishes. 

25.4 Consumer Products

Section 25.3 proves that wireless will revolutionize many types of equipment. This is especially true for
consumer devices. For instance, Bluetooth and GPS (both based on DSP) will be standard features on
most consumer products described in the following subsections. In addition, consumer products have
been traditionally nonconnected devices (camera, CD player) or passive devices (television). This is
changing, in the form of access to the Web. This itself gives a big push to DSP applications. 

Digital Cameras (and Digital Pictures)

One of the most promising consumer DSP applications is the field of digital pictures. Its most common
incarnation is the digital camera. This very large field can be segmented in many ways, following these

TABLE 25.2 A List of Possible Wireless Devices

Cellular
Proximity 

(Bluetooth)
Home RF 

(Residential)
DECT  

(Cordless)
Wireless 

LAN Broadband Satellite

Phone
Modem
Fax
Web access 
Videophone
Digital camera
Palm-top 
DVD player 
DVR
Set-top
Digital TV
Games
MP3 player
Home theater
DAB
MP3 Juke-box
E-book
PC
Printer
Car
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characteristics:

• Fixed pictures versus moving pictures (example: digital camera versus digital camcorder)

• Picture production (camera) versus picture consumption (digital frame)

• Portable versus semi-fixed/fixed equipment (example: digital camcorder versus webcam)

• Equipment versus module (example: digital camera versus add-on to a palm-type device) 

Digital Camera

A digital camera is made of several functions: an image sensor, a processing part, and a storage element.
The processing includes three main algorithms, front-end processing, image compression (DCT is mainly
used here), and coding (Huffman coding). 

In theory, a digital camera requires 10 DSP MIPS. Nevertheless, higher resolution, advanced algorithms
(pixel by pixel) and sophisticated features such as the paparazzi effect turned the digital camera into a
big DSP MIPS consumer. The paparazzi effect is when a series of pictures are taken at high speed (for
example, 10 pictures in 1 s). In effect, we are not far from the performance of a video camera. 

Digital Video Camera (Camcorder)

Big brother to the still camera, the video camera follows the same principle. It approximates the behavior
of a digital camera except it has a better resolution and a continuous automatic stream of pictures. Another
key difference is that it is a slave to the television set. Hence, decompression of pictures is as important
as compression.

Web Camera

Not all video cameras need the sophistication of a camcorder. Common examples are surveillance cameras
(slow speed, black and white) and Web cameras. The Webcam’s block diagram is very similar to a digital
(still) camera except the storage function has been replaced by a modem. Because the speed of the network
is the bottleneck, there is no need to take more than one or two pictures every 5 s. Note also that a Web
camera does not need any decompression algorithms.

PC Camera

The PC is a $10 digital video camera put on top of PC and used for video telephony or college room
broadcasting. Its consists of a very low sensor quality and a sub-dollar micro-controller. The PC has taken
the role of a DSP. 

Modules and Toy Cameras

In the same spirit, any host can take the DSP role. For instance, there is the case of digital camera modules
(host independent), add-on to a PDA (palm OS is the host), and toy cameras (PC is host). 

Digital Picture Frame

Not the most fascinating killer application of all times (sending baby pictures to grandparents), the digital
picture frame is exactly the opposite of the Web camera. The image first goes through a modem function,
then through decompression, and ends up its life on a picture frame display; however; contrary to a Web
camera there are large problems due to the human interface and the way we (the grandparents) interact
with this kind of device. 

PDAs (Handheld Devices, Palmtops)

PDA is not (yet) a big DSP platform. Still serious inroads are made. Two common ones are the use of a
PDA as a common platform for digital camera and MP3 player. Also Web access (necessitating a modem)
and wireless access (obviously necessitating a wireless link) are the two good classical DSP applications,
which are being pushed into these devices.
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DVD Player (and Digital Storage Devices)

Storage devices such hard disk and CD-ROM players are basic sub-elements of the PC. The CD audio
is also a well-known element of our life. The equipment, which really puts DSP into the consumer storage
field, is the DVD player.

DVD Player

A digital versatile disk (DVD) uses MPEG2 compression to store its video and audio tracks. A DVD
player requires in the order of 200 DSP MIPS to decode the signal. Still, compared to some recent
consumer platforms the function seems relatively straightforward, but this is only one-third of the DSP
functions. The other two functions are the control of the disk (servo) and the reading and decoding of
the stored data bits (channel coding). 

Universal Player/Recorder

Moreover, the DVD player is fast becoming a recorder device. MPEG2 coding algorithm necessitates
many more DSP MIPS than decoding. Finally, the number of standards (in other words the number of
DSP algorithms), which are currently supported by a DVD player, is mind-boggling. Effectively, the DVD
player is the de facto universal home player/recorder. It can do nearly everything from recording MP3
audio to reading karaoke Chinese videodisk. 

DVR (Digital Video Recorder)

Further pushing this recording trend is the emergence of the DVR. Here there is no disk to read or to
record. Or, more specifically, there is no BOUGHT disk; however, this is still a storage device (hard disk)
on which television program can be stored (recorded) and read in nearly real-time. The DSP algorithm
is the same as DVD (omnipresent MPEG2) but with the added complexity of simultaneous coding/decoding.
In fact, there are two coding channels and one decoding channel requiring more than 700 DSP MIPS of
DSP power. 

Digital Set-Top Box (and Digital Television Peripheral Devices)

The DVR function just described can also be integrated in a set-top device. We will call set-top devices
any consumer devices, which sits at home between the TV operator(s) and the television set (hence the
name set top). A Web TV fits neatly into this definition.

Digital Set Tops 

Two types of digital set-top boxes are currently used, the wired and the wireless. The wired is the well-
known connection to a cable, the wireless is the satellite type. Both require a massive amount of DSP in
the demodulation/error correction schemes, followed by the good old MPEG2 decode. It must be noted
that the DSP functions have a relatively minor role to play in the whole software. Set-top boxes are
considered more of an open platform similar to a PC, than a closed device such as a DVD player. This
comment was to introduce the current evolution of set-top boxes from one-way device to two-way devices
(up-link is added to down-link).

Two-Way Set Tops—Cable Modems and Web TVs 

But what about the amount of DSP functions? Intuitively both devices would require twice the number
of DSP workload since they now receive and transmit information. This is not so. The up-link is only
for data, consequently the need for compression is null and the modem speed relatively low. To summa-
rize, DSP did not drive the recent evolution of set-top boxes; however, this might change if they evolve
into multimedia home gateways.
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HDTV (and Digital Television)

If there is a domain in which DSP is bringing a lot, this is high definition TV (HDTV). This is not due
to the high definition but to the use of digital techniques. Contrary to the current digital television, the
digital functions (read MPEG2) are not put into a peripheral device but in the TV set. Even if there is
still a lot of uncertainties in this market, there is no doubt about its massive use of DSP power.

GAMES (and Toys)

Although it is not the obvious place where DSP can found, games and toys have more and more needs
of DSP because of the need for communication. 

Games Consoles (3D)

Games have massive amount of CPU and hardware power devoted to the manipulation of 3D graphics. It
is interesting to know the three reasons why this cannot be classified as DSP. The first one is that 3D graphics
is executed in floating point (whereas DSP is 95% fixed point). Reason number two is that graphics is a
synthesized object whereas DSP manipulates real signals. Finally, DSP is software whereas graphics is a
pipelined hardware. It is obvious that a lot of DSP applications can be found, which corresponds to the
three above criteria. What about a 33-stage hardware floating point multi-channel polyphase audio
synthesizer. Also, there are a lot of graphics algorithms, which are not floating point for instance. The
bottom line is that the world of gaming, the world of video communications, and the world of image
processing are now very close:

• Mixing of synthesized and real images found in modern games 

• The adoption of MPEG4 as a telecom standard (MPEG4 principles rely on objects commonly
found in PC graphics) 

Game Consoles as an Universal Platform 

The same story as for set-top box or PDA applies here. Web browsing, modem, DVD player, MP3 player
are all good examples of DSP applications. All are finding their way into game consoles. 

Toys

The first consumer device based on DSP was the Texas Instruments’ speak and spell learning aid (1981).
In fact, it was a toy disguised as a learning aid. Another TI DSP milestone was the famous “Julie doll”
(1987). For the future, a lot of toys will be based on sophisticated electronics, adaptive behavior, and
connected to the PC (possibly Bluetooth). All these functions have strong DSP contents.

MP3 Player (and Listening Musical Platforms)

Traditionally, the music industry was relying on very crude DSP in the consumer product (CD player).
The explosion of MP3 portable devices is opening the doors to sophisticated DSP in mass-market audio
devices. 

MP3 Player 

When drawing a block diagram of a MP3 player, one can use the block diagram of a portable digital
picture frame and replace the display by the connection to the speaker. This represents the simplicity of
a MP3 player. The DSP MIPS number is low and the DSP functions pretty basic. Nevertheless, as for
DVD, the difficulty is in the number of audio format to support (each one means a different DSP
algorithm) and the security features. Note that a large number of MP3 players are built with a single
DSP (no micro-controller host), which means than its 80% of its program is used for NON DSP work. 

Hi-Fi

A large number of high-fidelity equipment rely on DSP techniques. The most common is the Dolby
standard, which can be found in cinema and home (5.1 channel) theater. The most exotic could be the digital
speaker. The most difficult and resource intensive DSP application is the so-called 3D sound (PC games).
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Everyone knows about the difficulty of generating good 3D graphics. But one can appreciate the difficulty
of generating 3D sounds when doing the comparison. An image is still displayed in a 2D world, whereas
sound is really produced for a 3D world (by analogy: image will catch up with sound when it will be
displayed as a hologram). In effect, we are speaking of thousands of DSP MIPS. 

Musical Instruments 

In the professional musical world such as synthesizers, DSP first appeared as a label of quality. Music is
a field where DSP can introduces massive improvements. For instance, adaptive techniques could make
a good old country fiddle sounds like a Stradivarius. It does not sound like a very good idea, though.  

Home Networking and Multimedia 

MP3 player is the top of iceberg. The iceberg is the “connected” home. The infrastructure of this connected
home is partially described later (refer to home gateway heading).  Here, the new “gizmos” that this infra-
structure allows are briefly described:

MPEG4 player: This is the same as MP3, except it also allows viewing video clips. 
Internet radio: listening to radio on the Internet. 
MP3 juke box: listening to MP3 clips; they had been previously stored on a hard disk drive (from the

Internet Web sites). Similarly, we can add MPEG4 juke box. 
Home Storage or Multimedia Storage Box: hard disk drive containing multimedia files. 
E-book: Electronic book. Presently downloaded from the Web; in the future, this will done in two passes:

first to the home storage and then to the e-book.

Table 25.3 summarizes the DSP requirements of some consumer devices. Knowing that most of them
are starting their commercial life, one is impressed by the amount of work remaining for DSP engineers.

25.5 The Telecom Infrastructure 

The telecom infrastructure could be divided into three spheres of influence (wired, wireless, networking).
The convergence of all networks renders this distinction illusory. A very interesting trend is that infrastruc-
ture equipment such as servers, gateways, switches, radio relays are now finding their way into the home. 

CTI (Computer Telephony Integration)

Before the net, CTI was the biggest infrastructure user of DSP. CTI means voice server, voice mail, and
the infamous IVR (interactive voice response) machines “please hold on, etc.” All these infrastructure
equipment are built using standard software modules and boards. For years CTI was the lifeline of many
DSP board manufacturers. 

TABLE 25.3 Consumer Equipment—How Big Is the Market and 
How Much DSP Is Required?

Consumer Equipment  Units Sold per Year DSP MIPS

Digital camera 10 M 10 → 1000
Palm top 10 M 50
DVD player 60 M 300
DVR <1 M 700
Set top 50 M 300
Digital TV <1 M 1000++
Games 100 M 100,000+ (graphics)
MP3 player 10 M 20
Home theater <1 M 1000+
DAB <1 M 80
MP3 juke box <1 M 20
E-book <1 M 5
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Modem Banks

This is the first of the multi-channel DSP applications. Modem banks did not appear because of PC
modems. They appeared because of the Internet (web servers) and remote workers (remote access
servers). The number of required DSP MIPS is extremely high. For instance, a typical bank of 120 V90
modems requires 3600 DSP MIPS (120 × ~30). 

DSL Modem Banks

This is nothing compared to DSL, where (for instance) 30,000 DSP MIPS (120 × ~250) is required for
a 120 channels S-HDSL modem bank. 

Broadband Line Card (Voice-over-Broadband) 

The most likely example of broadband line card is a DSL line card, which fills the same function as
modem banks plus the typical voiceband functions (echo cancellation, voice compression, DTMF detec-
tion, fax relay) found in gateways. 

Gateway (Voice-over-Broadband) 

Under this heading are included all recent buzzword equipment such as voice-over-DSL, voice-over-IP,
voice-over-Packet, etc. A gateway can be on the periphery of the network (access), in the center (core)
or on customer premises (private). Its main use is to translate from a circuit network to a packet network
and back. A state-of-the-art gateway SOC (System-on-Chip) targets 200 channels, which translates into
4000–10,000 DSP MIPS depending on the voice compression quality. The voice quality has been the
subject of a lot of debate (and hard-learnt lessons) in the IP community over the last four years. 

Cellular Wireless Base Station

In wireless, voice quality is not a problem (relatively speaking) since compression algorithms are stan-
dardized. They require as low as 3 DSP MIPS (GSM full rate) to 30 DSP MIPS (third generation such
as AMR) per channel. Cellular wireless base stations are half gateway (access to network) and half radio
relay (air interface). It is this air interfaces, which presently (2001) presents a lot of challenges to the DSP
world. Many MIPS-hungry techniques have been introduced (CDMA, turbo coder) and many more will
be coming (smart antenna, multiple reception, software radio, etc.) over the next 20 years. In essence
this is 25,000 DSP MIPS per channel. In other words, each channel requires a 25 GHz general purpose
DSP. One can see the interest of application specific DSP and custom instruction set in this market.

Home Gateways and “Personal Systems”

A residential cordless base station is now the most common example of a “personal system.” A personal
system is a device having both characteristics of telecom terminals and telecom infrastructure. It is a
terminal because:

1. It is sold in retail stores. 
2. It is targeted at a small entity (single person, family, SOHO). 

It is a telecom infrastructure equipment because:

1. It has no human interface. 
2. It very often acts as a point-to-multipoint access device.
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What is Residential Gateway?

This is the latest trend in “personal system.” Two examples are given in Fig. 25.3. The first one is a DSL
(external) to Ethernet/twisted pair (internal) gateway. It could be a typical SOHO scenario where phones
are organized in star topology. Note that the LAN supports additional phones. 

The second one is a HOME gateway, which differs by being driven more by entertainment than by
work. It also uses an external DSL link but the internal communications are mainly wireless. The wireless
network is used to avoid rewiring the house. The phones are organized in bus topology, which also
corresponds to a typical home.

If the architecture of the home network evolves into thin-client terminals, home gateways are going
to be a gold mine for DSP applications. DSP is required on all access points, DSP is required for voice
compression, DSP can be required to do MP3 decompression (Internet radio), MPEG4 decompression
(Internet clips), etc. The limit is one’s wallet.  

25.6 Computer, Peripherals, and Office Automation

PC as a Home Gateway

Obviously, the home gateway market is not leaving the PC industry passive, especially after 10 years of
multimedia hype. The more likely scenario will NOT see any major integration of “telecom personal
systems” into PC; however, the home gateway is having several major impacts on PC: integration of wireless
functions, still more performance for multimedia (such as the typical MPEG4 clip already mentioned).

Printers

The benefit of a laser printer and color printer depends largely on the speed and quality of image
processing. This is typical DSP task.

Hard Disk Drive

In the last years, disk drives know-how has changed from complex control theory to sophisticated DSP
coding techniques. The algorithms used have more to do with wireless telecommunications than servo
control. In addition, the emergence of network attached storage requires communications, which in turn
means DSP.

FIGURE 25.3 Two examples of residential gateways—SOHO and HOME.
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25.7 Automotive, Industrial

Although it is often forgotten when discussing advanced digital developments, the automotive industry
could be the surprise of the decade for the DSP industry.  

Engine Control

Due to history and real-time constraints, the automotive industry uses the principle of table interpolation
for engine control; however, the availability of faster CPUs and the development of sophisticated algo-
rithms could change that in favor of more “classical” DSP techniques. In fact, automotive could become
the first embedded mass-market where floating-point DSP is implemented. 

Navigation Platform

GPS/navigation: In automotive, GPS is part of the dashboard platform. How big will this market be?  

Industrial 

A large application found in the industrial market segment is motor control. Quite a very different control
from car engine control, the two applications are strongly related since they are the domain of microcon-
trollers.  Identically to engine contol above, motor control is fast becoming a big DSP application.

25.8 Others

To finish, small many promising applications using DSP as their bases for new or more advanced features
include: 

White appliances: Refrigerators, washing machines, or any equipment requiring closed control will
eventually be heavy DSP users.

Biomedical: A good example is the processing of image in medical equipment such as scanner. 
Audio aids: This is a much larger application than previously thought. Gene FRANTZ [2] made a

parallel between visual aids (glasses) and audio aids. Let us imagine the size of the market if everybody
was wearing a hearing aid to cancel noise and unwanted conversation.       

Biometrics: All recognition methods (fingerprint, retina, voice, etc.) rely on DSP.

25.9 Conclusions: General Trends

The time when a single application was driving DSP is finished. The next DSP application goal is now
several thousands of DSP MIPS, and many applications are driving it: 

• Smart and multiple antennae techniques in wireless base stations  

• Third generation cellular wireless phones, smart-phones, and terminals 

• Broadband access devices (VDSL modem, wireless broadband, gigabit Ethernet) 

• Multi-channel application of the telecommunication infrastructure (typically: voice-over-broad-
band gateway). 

• Multimedia home gateways, integrated access device (IAD), wireless Home/LAN access devices 

• Streaming media devices (could be a MPEG4 player connected by Bluetooth to a home gateway)

• HDTV, high resolution cameras, 3D audio

Finally, even if no “broadband” applications existed, people would use DSP for cost reasons. When a
very good sensor is needed, an imperfect sensor is a worthless commodity. By using DSP techniques
(interpolation, adaptive behavior, etc.) a worthless commodity can be turned into a production device.
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The author is eager to see the day where a 30-inch 2000 × 4000 color LCD matrix with 80% defects will
be turned into a $100 HDTV screen. Only DSP can achieve that.
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26.1 Introduction

For computer and information technology (IT) applications, signal processing is an important tool.
Nowadays, it is much more efficient and accurate to work with sampled (or digitized) signals rather than
with analog (or electrical) signals. Once a signal has been sampled, it can be treated as a sequence of
numbers that is a function of a discrete-time variable. When the sampling rate is greater than the Nyquist
rate, the digital signal will completely represent the analog signal, because the analog signal can be
reconstructed from the digital signal. Digital signal processing (DSP) implements various kinds of
mathematical operations, so that physical electrical devices are replaced by computer software or hard-
ware. Unlike analog systems, DSP can handle very sophisticated jobs with as much accuracy as needed.
The theory of DSP can be found in three excellent references [1–3]. 

One very basic DSP operation is digital filtering. It is common to use many filters inside a larger DSP
application. Digital filters have widely been used in the following applications: 

• Audio: spectral shaping

• Speech: filter banks

• Image: de-blurring, edge-enhancement/detection

• Communications: bandpass filters

• Radar: matched filters
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Georgia Institute of Technology
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26.2 Digital Filters

The theory of digital filters can be found in references [4–6]. A digital filter is defined as a linear, time
invariant operator on a discrete-time input signal, x[n], that generates an output signal,  y[n]. The filtering
operation can always be written as a convolution

               

where b[n] and a[n] are the filter coefficients associated with the digital filter.

Implementation

In order to implement the filter as a causal operation, the number of filter coefficients must be finite and
the coefficients should be nonzero for only positive indices. Then the output signal can be computed via
the difference equation:

 

where N and M are the number of poles and the number of zeros, respectively, and  N + M is the total
order of the filter. If any one of the feedback coefficients a[k] is nonzero for  k > 0, then the filter is called
a recursive or infinite impulse response (IIR) filter. Otherwise, the filter is called a nonrecursive or finite
impulse response (FIR) filter. 

Frequency Response

The filtering process for linear, time-invariant (LTI) systems can be characterized by the frequency response

which shows how the filter processes sinusoidal inputs. The discrete-time Fourier transform (DTFT)
decomposes a general input signal as a superposition of harmonic signals,

where the complex amplitudes of those harmonic signals are computed by the DTFT sum:

Then the behavior of the system can be described as a multiplication in the frequency domain:

 

where Y(ω) = Η (ω)X(ω) is the DTFT of the output. In terms of the filter coefficients we get 

a n[ ]∗ y n[ ] b n[ ]∗ x n[ ] (convolution)=
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where A , B , X , and Y  are the DTFT of  a[n],  b[n],  x[n], and y[n], respectively. The difference
between FIR and IIR filters can be summarized as follows:

FIR filter: An FIR filter has A  = 1, so its frequency response is formed as a linear combination of
complex exponential functions that is equivalent to a polynomial. Hence, the design problem can
be formulated on a linear vector space and very efficient mathematical optimization methods are
available for approximating the desired frequency response. The design methods are simple, and
often guarantee convergence to an optimal solution. Finally, since FIR filters do not have feedback
they do not suffer stability and sensitivity problems.

IIR filter: In contrast to the FIR case, IIR filters are rational functions, so the design problem is
inherently nonlinear. No elegant mathematical method can guarantee convergence to the global
optimum. In addition to the difficulty of numerical design, IIR filters might exhibit instabilities
where a finite input can generate infinite output and high sensitivity, and where roundoff noise
can be amplified; however, IIR filter design has more design freedom, so IIR filters can have the
same performance as FIR filters but with many fewer filter coefficients. 

FFT Implementation

It is possible to implement a digital filter in the frequency domain with the fast Fourier transform (FFT)
algorithm [7]. The implementation requires one FFT of the input signal, one multiplication of vectors,
and one inverse FFT. The length of the FFT determines a block length so the signal must be segmented
into sections for both the input and output. The frequency domain implementation actually uses circular
convolution, so some care is needed to get the correct outputs. The FFT-based method of convolution
is used in special circumstances because it is only practical for real-time systems when the FIR filter
length is rather long—the major drawback is that it requires a large amount of buffer memory for the
block processing.

Adaptive and Time-Varying Filters

Another important class of FIR filters is the class of adaptive filters [8], which find widespread application
in areas such as equalizers for communication channels. The filter coefficients in an adaptive filter are
continually changing as the input changes, so the filter design problem is quite different for these filters.
The methods discussed in this chapter will not handle these cases where the coefficients are time varying. 

26.3 Digital Filter Design Problem

Design Specification

A digital filter is usually designed so that its output has a desired frequency content, i.e., the frequency
response is frequency selective. The filter coefficients are then optimized so that the frequency response
H  will best approximate an ideal frequency response I . The ideal response varies for different
applications. 

Frequency selective filter: The ideal frequency response is either one or zero.

 

The frequency selective filter is designed so that the actual frequency response H  is close to 1
in the passband and nearly 0 in the stopband. An example of a frequency selective filter is shown
in Fig. 26.1.
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Equalizer: Equalizers are applied to existing systems in order to remove distortion, or to improve the
overall filter characteristic. Therefore, if the desired response of the system is D(ω), the ideal
frequency response of the equalizer depends on the distortion filter HD (ω), such that

 

One example is shown in Fig. 26.2 where the equalizer is used to reduce the phase distortion of
the filter in Fig. 26.1. The phase equalized filter is shown in Fig. 26.3.

Filter bank: A filter bank is a set of filters that sum to 1, the identity system:

 

FIGURE 26.1 Frequency selective (bandpass) filter: (a) shows the ideal magnitude response (thick dashed line) and
an example of an elliptic (with 6 poles, 6 zeros) bandpass filter (thin solid line.) The ideal filter has two cutoff frequencies,
ωc l and ωc2, that separate the two stop bands from the pass band; (b) shows the ideal group delay response (thick
dashed line) and the group delay of the elliptic bandpass filter. Note that elliptic filters usually have severe phase
distortion (i.e., a highly nonlinear group delay) in the passband. 

FIGURE 26.2 The phase equalizer is designed to equalize the passband of the elliptic filter in Fig. 26.1 so that the
group delay is flat in the pass band: (a) shows the ideal equalizer response (thick dashed line) and a FIR (order 25)
equalizer; (b) shows the group delay, Dg{�}, where Dg{IEqual. (ω)} = Dg{I(ω)} − Dg {HElliptic(ω)} is the ideal group delay
(thick dashed line).

FIGURE 26.3 Equalized filter. The figures show the magnitude and the group delay of the elliptic filter (with 6 poles,
6 zeros) after being equalized by the FIR (order 25) equalizer. The ideal filter for the example is a flat group delay
frequency selective filter.
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With actual filters, the sum might be approximately one. This property lets us decompose signals
with a filter bank and then reconstruct perfectly. Filter banks are now widely used as analysis,
storage, and compression tools for DSP.

Differentiator: The derivative operation is a filter whose ideal frequency response is

 

Operators such as the first difference make poor filters because they do not work well for high-
frequency signals. Filter design, however, can create high-order numerical differentiators that have
excellent wideband characteristics by approximating the ideal frequency response, IDiff.(ω) = jω.

Error Measurement

In order to have a filter whose frequency response is very close to a given ideal response, a norm for
error measurement must be introduced. Then the filter design problem becomes a mathematical opti-
mization problem. Many possible error norms can be used. For example, the most popular norms are:

• Maximal magnitude error,  max , for a frequency-selective filter

• Maximal phase error, max , for an allpass filter

• Weighted complex error, , for general filters where the function W  is a positive
weight function

The design problem is usually carried out by minimizing one of these norms, but it is also possible
to add constraints on the error magnitude, on the pole locations, the transition band overshoot, the
smoothness of the error, or the magnitude of the filter coefficients. These various criteria lead to many
different filter design methods that offer trade-offs with respect to efficiency and flexibility.

Filter Characteristics

Although many filter design papers and procedures have been published, only a few approaches have
found widespread use in the 35-year history of DSP. 

Optimal Magnitude Response

IIR filters with optimal magnitude error are generally easy to design partially because they usually require
low order; however, these IIR filters usually have severe phase distortion that, in turn, limits the filter’s
application to cases such as audio where phase does not seem to be important.

Allpass Filters

The phase distortion of an optimal magnitude IIR filter is sometimes compensated by using an allpass
equalizer, where the numerator and denominator of  H(ω) have the same order,  M = N, and the filter
coefficients satisfy  a[k] = b∗[N − k]. The allpass equalizer, however, is usually not an efficient way to
implement filtering, because the equalizer usually has very high order compared to the original filter.
This not only causes the filtering to become inefficient, but also causes a long delay in the output signal.
Allpass filters can also be used for frequency selective filter design if a pair of allpass filters are connected
in parallel. Details of this clever allpass design method can be found in [9–13].

Filters Designed by Optimizing a General Weighted Norm

In the most general case, filter design can be treated as the process of approximating a complex-valued
function H(ω), where the filter coefficients are the approximating parameters. This treatment gives
the filter design problem more degrees of freedom in choosing the ideal response because both magnitude
and phase can be approximated. Figure 26.4 shows an example using the general weighted norm. The
filter has a much better response than the filter in Fig. 26.3 with the same order as summarized in Table 26.1.

IDiff.(ω ) jω=

I H–

I H∠–∠
W I H–( ) (ω)
© 2001 by CRC Press LLC



Several optimization techniques are available to solve these general problems. In addition, the error
can be controlled by the selection of an error constraint, an error weight, or a design norm; however,
the optimization of general norms is often a difficult problem, especially in the complex domain. Most
recent research has studied these general norm problems in order to improve the design when the goal
is a simultaneous approximation of the magnitude and phase.

Filter Design as a Norm Problem

Filter design is usually done by minimizing either the worst-case error (Chebyshev norm), or the root mean
squares (RMS) (least-squares norm) of the weighted error. Important norms from classical mathematics
are listed below:

• Chebyshev norm:  = 

• Least-squares norm:  = 

• p-norm:  = for p  [1, ∞]

• Combined norm:  = 

where E = W(I − H) is the weighted complex error. When optimizing the Chebyshev norm, the resulting
optimal filters have the smallest maximal error, while filters with minimal least-squares norm have the
smallest RMS error. Preference for one norm over the other will generally depend on the application. In
many cases, where both norms need to be small, filters should be designed under either the p-norm or
the combined norm. Along with the norm, the numerical optimization can be done under design
constraints, e.g., the most obvious one is a constraint on the magnitude of the error 

 

where  ε(ω) is the error constraint.
Figure 26.5 shows the error of the filter with the same specification designed under four different

norms. The RMS and maximal errors are summarized in Table 26.2. 

TABLE 26.1 Filter Design Comparison

Filter # Zeros # Poles Mag. Error GD. Error RMS GD. Error

Elliptic (Fig. 26.1) 6 6 0.082 13.90 3.57
Equalized elliptic (Fig. 26.3) 31 6 0.079 3.15 0.76
IIR (Fig. 26.4) 31 6 0.015 2.40 0.32

Note: The table shows three features: maximal magnitude error, maximal group delay error, and RMSs of the
group delay error, of the optimal response of the filter in Figs. 26.3 and 26.4 designed under different approaches.

FIGURE 26.4 Filter with optimal general weighted norm. The figures show the magnitude and the group delay of
an IIR frequency selective filter (31 zeros, 6 poles) with flat delay passband. The ideal filter is the same as in Fig. 26.3,
and the filter order is the same as the equalized elliptic filter.
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The norm optimization problem differs quite a bit for the FIR and IIR cases:

FIR filter: The problem is formed on a linear vector space and has been well studied. The optimal
solution is unique by convexity. Many available design methods are not only elegant, but are also
computationally efficient and have guaranteed convergence.

IIR filter: Although the IIR filter design problem does not have the same nice properties as the FIR
filter design problem, optimizing the norm is relatively easy. One iterative approach to IIR filter
design relies on a sub-procedure similar to the method for FIR filter design.

26.4 Conventional Design Methods

Although many filter design papers have been published in the 35 years of DSP, only a handful of filter
design methods are widely used. Some of the older conventional methods can design filters with excellent
magnitude response using a very simple procedure, but the variety of possible filter specifications and error
norms are usually limited. More recent methods offer general design capabilities for both magnitude and
phase approximation, but are based on numerical optimization.

IIR Filters from Analog Filters

Originally digital filters were derived from analog filters [14] because analog filter design techniques had
been studied for a long time and the design usually involved algebraic formulas that were simple to carry
out. The two main design methods are impulse-invariance and the bilinear transformation.

Impulse Invariance 

The design is carried out by starting with an already designed analog filter that is bandlimited. Let ha(t)
denote the impulse response of the analog filter. Then the impulse response of the digital filter is obtained
by sampling, i.e., by setting  h[n] = Tdha(nTd); however, no analog filter is truly bandlimited, so the actual

TABLE 26.2 Error Measurements for Fig. 26.5 

Filter RMS Error Maximal Error in Passband RMS Error in Stopband

(a) Least-squares 0.0361 0.1793 0.0348
(b) Chebyshev 0.0657 0.0923 0.0660
(c) Constrained least-squares 0.0562 0.0959 0.0571
(d) Least-squares stopband 0.0584 0.0958 0.0374

Note: These are the passband and stopband errors in bandpass filters designed by a different norm problem.

FIGURE 26.5 Different error norms. The four filters were designed to approximate the same bandpass filter of order
25 with four different norms. The filter in (c) was designed by minimizing the least-squares norm under the constraint
that the maximal error be smaller than 0.0959. Note that the filter in (c) can also be designed by minimizing the
unconstrained combined norm problem with the norm weighting α = 0.4. The filter can also be designed so that both
the distortion in the pass band and the power of the stopband error are small. The filter in (d) was designed by
optimizing the combination of the Chebyshev error norm of the passband plus the least-squares norm of the stopband.
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frequency response involves some aliasing:

where Ha(s) is the Laplace transform system function of the analog filter. The aliasing effect usually causes
only a slight perturbation of the digital filter with respect to the analog filter. The system function of the
analog filter can be expressed in partial fraction form

 

After sampling the digital filter has a frequency response that is also a rational form: 

where b[n] and a[n]are the coefficients of the designed filter. Impulse invariance is equivalent to a linear
mapping of the analog frequency range [−π /Td , π /Td] into the digital frequency range [−π,π].

Bilinear Transform  

On the other hand, the bilinear transformation performs a nonlinear mapping of the whole analog
frequency range [−∞, ∞]into the finite digital frequency range [−π,  π]. The mapping of the s-plane to
the z-plane is done by the bilinear transform:

 

The resulting correspondence between the analog and digital frequency domains is a tangent function:

 

Despite the nonlinear nature of the mapping, it is relatively easy to turn the digital design specification
into an analog design specification. The resulting filter is IIR and the filter coefficients can be computed
with an algebraic form. The bilinear transform method is usually applied to four classical analog filter
frequency selective filters: Butterworth, Chebyshev-I, Chebyshev-II, and elliptic filters. All these are well
known for their frequency-selective behavior as lowpass, bandpass, or highpass filters. When using the
bilinear mapping, elliptic IIR filters turn out to have the best magnitude response for given filter order,
but elliptic filters have severe phase distortion, which can be a significant problem in advanced DSP
applications such as telecommunications.

Windowing

IIR filter designs have poor phase response, so interest in FIR filters has always been strong. If the
coefficients of an FIR filter are real and symmetric b[k] = b∗[M − k] then the filter will have perfectly
linear phase. The first attempt to design FIR filters in the 1960s was to truncate the inverse DTFT of the
ideal frequency response (which is the impulse response h[n]of the ideal filter), so that the filter is
symmetric and linear-phase. This requires the ideal filter to have linear-phase with slope − M, where M
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is the FIR filter order. This method of filter design turns out to give the optimal least-squares filter. However,
the least-squares filter is not an acceptable filter, especially when the application calls for a frequency
selective filter. The reason is that the least-squares approximation exhibits an overshoot called the Gibbs’
phenomenon, which means that the magnitude of the error is large at the cutoff frequency regardless of
the filter order. To reduce the magnitude error near the cutoff frequency, the strict truncation (done by
applying a rectangular window) can be replaced by other windowing.  Windowing for filter design involves
the multiplication of a finite-length window shape times the ideal impulse response. For example, the
ideal lowpass filter with delay µ = M has an impulse response that is infinitely long:

 

so the windowed filter coefficients are b[n] = w[n]h[n] for n = 0, 1, 2,…, M.
Different windows generate filter responses that allow a trade-off between the sharpness of transition

region and the error magnitude. Popular windows are: Bartlett, Hamming, vonHann (or Hanning), and
Kaiser, but for filter design the only important one is the Kaiser window, which is based on the modified
Bessel function. The Kaiser window is defined as

 

where I0(x) is the modified Bessel function, and the parameter β is chosen to control the ripple height
in the stopband with the relationship:

 

where δdB = −20 log10 (δstopband) is the ripple height in dB. The design of the Kaiser window is illustrated
in Fig. 26.6.  Examples of digital filters designed via windowing are shown in Fig. 26.7.

FIGURE 26.6 The Kaiser window: (a) shows the relationship between β and the ripple height in the stop band;
(b) shows examples of length-51 Kaiser windows  (i.e., filter order = 50) with different parameters β. Note that, with
β = 0, the window is the rectangular window and, with β = 5, the window is very similar to the Hamming window.
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Frequency Sampling

Another common, but naive, approach to FIR design is the method of frequency sampling. In this case,
the ideal frequency response is sampled over the range −π < ω ≤ π at M + 1 points and then the inverse
FFT is computed to get the order-M impulse response, which then contains the coefficients of the FIR
filter. It is possible to let a few of the frequency samples be free parameters for a linear program that will
optimize the resultant H(ω). This, in turn, improves the filter characteristics by making the error smaller
near the cutoff frequency. 

Weighted Least-Squares

Although frequency sampling filters and windowing designs have pretty good responses, neither one is an
optimal filter. In the general optimization approach, the transition band of the frequency response should
be treated as a “don’t care” region. For common frequency selective filters, the optimal filter will have a
smooth behavior in the transition band even though no optimization is done in that “don’t care” region.
The FIR filter can be designed by minimizing any norm with a guaranteed unique solution. The design
can be generalized further by using a weighting function on the error. For example, the weight can be
used in clever ways to control the error. Here is the weight definition for an inverse filter (or equalizer).

 

The weighted design problem usually involves optimizing the norm of the error over the entire frequency
domain, but that is done numerically by working on a dense frequency grid. 

The easiest optimization problem is the least-squares norm minimization because the partial derivatives
(which are the elements of the gradient) of the least-squares norm with respect to the filter coefficients
are all linear combinations of the filter coefficients. This property implies that the optimal filter can be
found by solving the set of linear equations obtained by setting all those partial derivatives to zero. The
solution for the weighted least-squares FIR filter is

 

FIGURE 26.7 Digital filter design via Kaiser windowing: (a) shows the impulse response of an ideal lowpass filter
(circles with dotted lines) and the filter designed by windowing (filled circles with solid lines). The windowed filter
is the product of the ideal impulse response and the Kaiser window with β = 5 (dashed line); (b) shows the log
magnitude of four filters designed using the Kaiser window with different parameters β.
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For IIR filters, the problem is not nearly so easy because the denominator of the frequency response
function makes the problem nonlinear. The solution can still be carried out by computing the partial
derivatives and setting them equal to zero:

 

The solution may not exist, however, but even if it does, it is often not unique. Furthermore, it is likely
that only a locally optimal solution of the nonlinear equations can be found. Another approach is to use
an iteration to find a close-to-optimal solution using the Steiglitz–McBride method [15]:

 

The solution can be realized by iteratively updating the rational functions W/|A| and B/A. 

Remez Exchange

Least-squares filters are not desirable in many applications because they exhibit large worst-case error
near the transition band. On the other hand, the worst-case error can be minimized by reformulating
the design problem as a Chebyshev (or min-max) problem.

 

This min-max problem is usually difficult to solve unless the problem can be transformed into a real
problem. To do this, the ideal filter needs to be a linear-phase filter with a group delay of M. Then the
problem becomes an approximation of a real function by a sum of sinusoidal functions. For the special
case of an even-order FIR filter with symmetric coefficients, the real problem becomes:

 

where  a = [1] and b = [ cN/2,…, c1,c0, c1,…, cN/2]. This min-max problem can be solved by the Remez
algorithm [16–19]. The algorithm exploits the famous Alternation Theorem, which gives the necessary
and sufficient condition for an optimal real Chebyshev solution as one that has at least M + 2 alternating
extremal points (i.e., points where the error is maximal). The operation of the algorithm involves an
exchange that iteratively updates the extremal set and solves for the alternating error on that set. It turns
out that the Remez Exchange algorithm is very efficient and always converges, so it has become a classical
method for FIR filter design as the Parks–McClellan algorithm.

Linear Programming

Filter design by optimizing the norm of the weighted error can be further improved by applying con-
straints. However, only the magnitude constrained problem seems to be easy to solve
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This constrained magnitude problem can be solved by Mathematical programming, which takes different
forms depending on the norm. For the least-squares norm, the solution can be found by using quadratic
programming. 

Mathematical programming is also a tool for the nonlinear-phase Chebyshev problem [20], which can
be rewritten as a constrained problem:

 

This problem is a semi-infinite linear minimization (SILM). Linear programming can then be applied
to the problem by sampling the parameters ω and θ. The algorithm is not efficient for high-order filters
because dense parameter sampling is needed to design filters with high precision. In order to improve
efficiency, the SILM can be rewritten in a dual form [21–24].

26.5 Recent Design Methods

Because conventional design methods are available for only special types of digital filters, e.g., linear-
phase, researchers have proposed various new methods that use complex approximation in filter design.
Among those, only a few are discussed because they are elegant and useful in various applications.

Complex Remez Algorithm

The complex Chebyshev design problem is one of the most important approaches for designing digital
filters. Unfortunately, it might need a general algorithm such as SILM, which requires a large number of
frequency samples (with resulting high computation and high memory) when high precision is desired.
For high order filters, linear programming is very inefficient for Chebyshev filter design. Instead, mod-
ifications of the Remez Exchange algorithm would be more desirable. Therefore, the complex Remez
algorithm (CRemez) [25,26] was proposed using an exchange method search that is similar to the Remez
Exchange; however, the original CRemez is most efficient only for the special case where the extremal
error alternates. In general, nonlinear-phase filters are not guaranteed to have this strict alternating
property, so the exchange method does not converge to the optimum. In order to get the optimum filter
in the case of nonalternating extremal errors, a second stage is needed for CRemez. This second stage
has to be a general optimization method that ends up being as inefficient as the SILM method. As a
result, some filters are designed very quickly by CRemez, but others take a long time when the general
optimization step must be invoked.

Constrained Least-Squares

Adams [27] suggested that Chebyshev digital filters do not always have the best overall characteristics.
He found that by allowing the worst-case (Chebyshev) error to increase slightly, the least-squares error
can be reduced significantly. To design this sort of filter, a constrained least-squares problem was intro-
duced. The problem has been solved by [28–31] with an algorithm that is quite efficient for designing
FIR filters.

Generalized Remez Algorithm

The constrained least-squares methods have two design drawbacks: (1) error constraints are required to set
up the problem, and (2) the existing methods only handle the FIR case. The first drawback is not severe,
but it reduces the design efficiency because prior information such as a prior filter design procedure is
needed to estimate the constraints; however, both drawbacks can be eliminated by using a different norm
(called the combined norm) and by minimizing via the iterative reweighted least-squares (IRLS) technique.

minδ
subject to

ℜ E(ω )e jθ{ } δ, for all ω and θ<
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IRLS Technique

Lawson [32] proposed that the Chebyshev problem be turned into a weighted least-squares (WLS)
problem. In fact, any general norm problem can also be turned into a WLS problem 

The trick is to find the correct weight, V, which is an unknown that must be found by running an iterative
update [32–34]. For example, the following iterations converge to the  appropriate weight for the Chebyshev
norm and the p-norm, respectively.

• Chebyshev update:  V (k+1) = V (k) 

• p-norm update: V (k+1) = 

The convergence of the weight is dependent on the number of points in the frequency grid, so IRLS
alone usually converges slowly.

Combined Norm

It can be shown that the solution of the combined norm problem is equivalent to a constrained least-
squares problem. The solution has multiple extremals of the error similar to the Chebyshev solution. To
solve the combined norm problem, the IRLS technique can be used after the problem is turned into a
weighted least-squares problem:

 

By iterating on the weight, V, the solution generally converges quickly unless α is large. The optimization
procedure can be improved by exploiting the multiple extremal error property of the optimal combined
norm solution.

Generalized Remez Algorithm

The optimal filter design problem can be generalized further by considering the problem of minimizing
the combined norm together with magnitude constraints. Using Lagrange multipliers, the problem can
be turned into an unconstrained least-squares problem: 

where Λ is the Lagrange multiplier. This problem can be solved by the basic IRLS technique, but often
converges slowly. On the other hand, it can be shown that the weight, V, and the multiplier,  Λ, are nonzero
for only a finite number of points and those points are extremal points and points where constraints are
reached. So, the multiple exchange in the Remez algorithm can be used to find those points. After the
points are found, the IRLS technique is applied to compute the filter coefficients. The solution will
converge much more quickly than the classical IRLS because it deals with less frequency points. The authors
call this new algorithm the “generalized Remez algorithm” or GRemez because its structure is equivalent
to the Remez algorithm for linear phase FIR filter design [35]. Note that the GRemez algorithm is similar
to a multiple exchange algorithm for the Chebyshev problem by Tseng [36]. The GRemez algorithm is
summarized as a block diagram in Fig. 26.8.

Not only can the GRemez be used for the general constrained norm problem, but IIR filters can also
be designed by the GRemez with the least-squares techniques presented in the “Weighted Least-Squares”
subsection to find either a close-to-optimal solution or a local optimal solution. 
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26.6 Summary

General Comment

This chapter has given a brief overview of various digital filter design methods. The theoretical ideas of
frequency response and impulse response were reviewed in order to introduce the important design
methods. In addition, the mathematical idea of optimizing with respect to a norm was discussed because
many newer methods utilize numerical optimization to design general classes of filters. Readers are
encouraged to find more details in the references that include many excellent DSP and digital filtering
books [1–6].

Because digital filters must be designed for many diverse applications, a large number of design
approaches are available; however, most filter applications can be addressed with an optimization algo-
rithm when the general filter design problem is formed under the weighted norm of the complex error.
This general problem can be difficult to solve in some cases. Fortunately, it is quite simple to design the
most desirable filters, i.e., least-squares and Chebyshev FIR filters with linear-phase. Furthermore, filters
with more general characteristics can be designed by methods presented in section 26.5. We introduce
the generalized Remez algorithm in the “Weighted Least-Squares” section in order to design both FIR
and IIR filters under the weighted norm formulation. 

Filter design methods presented in this paper are usually quite efficient, but some still require a fair
amount of computation. For example, even though the least-squares method requires an amount of
computation proportional to the cube of the filter order,  O(M3), it is considered to be a relatively efficient
design method using a norm minimization. Fortunately, the design time is hardly noticed on today’s
desktop computers, which have very fast processors.

Many other important issues in filter design were not treated here. These include filter order selection,
filter pole location sensitivity, effect of implementing filter with fixed-point arithmetic, and multidimen-
sional filter design [37–39]. Some details about these issues can be found in the references. In addition,
the design of two-dimensional (2-D) filters has not been treated. Some of the optimization methods
discussed here will also work for the 2-D case, but much of the theory of Chebyshev approximation no
longer applies, so methods that exploit special features such as the Alternation Theorem will no longer
be efficient.

FIGURE 26.8 Block diagram of the generalized Remez algorithm.
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Computer Tools

General filter design methods that are able to handle virtually all of the desired filter characteristics of
common applications were discussed; however, most users would not want to be involved with details
of programming the optimization algorithms. So, software applications have been built to help users skip
the computer programming step and concentrate on entering the filter specifications for their application.
Two types of interface for the design software are common: (1) allow users to set up the full design specification
and (2) allow limited specifications.

The second type is generally implemented as a graphical user interface (GUI) that helps the user
visualize all the steps of the design from creating the passband and stopband, setting the filter type (FIR
or IIR), selecting the optimization tool, running the design program, and showing the designed filter
responses. GUI software hides most of the design steps in the interest of simplicity, but it imposes a
limitation on the amount of information that the user can see.

More advanced users probably need to design filters with more sophisticated specifications, more
control on the error, or a wider variety of filter types. Therefore, they may need to enter the parameters
manually in a command line to run the optimization function of the design algorithm. This normally
requires some experience in the programming language and sometimes knowledge of the design pro-
gram’s source code. 

One example of filter design programs can be found in the MATLAB© environment with its signal
processing toolbox. Most of the design methods of filter design are available in the SP toolbox, and
additional ones might be obtained by contracting the author who proposed the method. In MATLAB,
the information for running the signal processing toolbox can be seen by typing “help signal.” One
attempt to make DSP simple to use is the MATLAB GUI program “sptool” that can upload and
download signals, design and apply filters, and analyze the signal spectra. By pushing the button “New
Design,” the filter design GUI is called and the program gives the user an ability to design frequency
selective filters by most of the conventional methods. Actually, the design GUI takes input parameters,
changes them into the proper format, and then performs the design by calling design functions such as
“butter,” “cheby1,” “cheby2,” “ellip,” “firls,” and “remez.” For more varieties of filter
types, filters may be designed by calling “cremez,” “fircls,” etc., with appropriate parameters in the
MATLAB command line. The authors have also developed the function “gremez” and “gremez_gui”
as a MATLAB functions that can be downloaded from “http://users.ece.gatech.edu/mcclella/
gremez”.
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27.1 Introduction

Information and communication systems play bigger and bigger role in our modern society—the so-called
information society. Sound (audio and speech) is one of the most important signals in these systems and
the growing need for audio and speech processing (transmission, storing, etc.) generates new scientific
problems (e.g., formulates new questions about data acquisition, compression, and coding), stimulates
new technologies and techniques, as well as creates new areas of science and technology in informatics,
communications, artificial intelligence, psychoacoustics, etc.

Applications of digital audio processing systems are in audio production, storage, distribution, exchange,
broadcasting, transmission, Internet services, etc. Modern multimedia coding standards (e.g., moving
picture expert group (MPEG) standards: MPEG-4, MPEG-7, and MPEG-21) [3,18–20,34,36] cover the
whole range of audio signals starting from high fidelity audio, through the regular quality of audio and
speech, down to relatively low quality mobile-access and synthetic speech and audio.

In order to evaluate various audio coding systems it is necessary to qualify the audio quality they offer.
Generally, three main parameters are used to describe the quality of audio: bandwidth, fidelity, and spatial
realism.

For high-fidelity (wideband) audio a bandwidth of at least 20 kHz is needed. The acoustic signals with
higher frequencies are not audible by human beings. Compact disc (CD)—the today’s most popular
standard for digital audio representation—offers a bandwidth of 20–20,000 Hz. Traditional (analog)
radio covers the bandwidth of up to 15 kHz for frequency modulation (FM) and up to 4.5 kHz only for

Adam Dabrowski
Poznan University

Tomasz Marciniak
Poznan University
© 2002 by CRC Press LLC



                                           
amplitude modulation (AM). Wideband speech standard has a bandwidth of 50–7000 Hz, while the
telephone speech is reduced to a bandwidth of merely 300–3400 Hz.

Fidelity is a (subjective) measure of perceptibility of impairment (noise) present in the reproduced
audio. Audio fidelity is usually determined subjectively by means of an averaged judgment called the
mean opinion score (MOS). It is typically based on a 5-point grading scale: 5—impairment imperceptible,
4—perceptible but not annoying, 3—slightly annoying, 2—annoying, 1—very annoying [35].

Spatial realism of an audio representation system describes the naturalness and quality of directional
information about places of particular sound sources contained in the reproduced sound. The spatial
realism depends first of all on the number of audio channels. Typical configurations are: 1-channel audio
(mono); 2-channel audio (stereo); multichannel audio (surround sound), e.g., 4-channel (3 front and
1 rear), 5-channel (3 front and 2 rear), or 8-channel (6 front and 2 rear). An additional low-frequency
enhancement (LFE) or subwoofer channel, supplementing the low frequency content (in a bandwidth of
approximately 15–150 Hz), can be added in any of these cases (e.g., a 5.1-channel format is a 5-channel
configuration plus subwoofer).

27.2 Elements of Technical Acoustics

For the purpose of this chapter, sound can be defined as a mechanical oscillation of an elastic medium
that potentially can be heard. If acoustic vibrations are too high in frequency to be heard, they are referred
to as ultrasonic oscillations. Consequently, if they are too low in frequency, they are called infrasonic
oscillations. The sound starts in approximately 20 Hz and extends up to 20 kHz (thus it covers a bandwidth
of approximately 10 octaves) [32,54,55].

A source of sound undergoes rapid changes of position (and/or size, or shape) that disturb positions
of adjacent molecules of the surrounding medium (in most cases the atmosphere). Thus, these molecules
start to oscillate about their equilibrium positions. These disturbances propagate elastically to neighboring
particles and then gradually to larger and larger distances, thus constituting an acoustic wave traveling
through the medium. The acoustic wave speed in air equals

(27.1)

where  is the room temperature in degrees of celsius and c0 = 331 m/s is the sound speed at  = 0°C.
At room temperature (  = 20°C) the speed of sound is calculated to be 343 m/s.

A sound wave compresses and dilates the elastic medium it passes through, generating associated
pressure fluctuations. The minimum fluctuation to which the ear responds is extremely small, e.g., at a
frequency of 1000 Hz the just noticeable effective air pressure amplitude is approximately 20 µPa, i.e.,
less than 10−9 of the standard atmospheric pressure (equal to 1000 hPa = 105 Pa). The limit of danger
followed by the threshold of pain corresponds to effective air pressure amplitude one million (106) times
larger, but still less than one-thousandth of the atmospheric pressure [24].

Because of this wide range of acoustic pressure amplitudes, it has become conventional to specify the
sound pressure level (SPL), Lp, in terms of a decimal logarithm with the (dimensionless) unit of the
decibel (dB)

(27.2)

where p0 = 20 µPa.
Another quantity, which is often used, is the sound intensity level, LI, defined in decibel as

(27.3)
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The reference in this case is the sound intensity I0 = 10−12 W/m2. For a free progressive acoustic wave in
air, sound pressure level and sound intensity level are approximately equal.

27.3 Parametric Modeling of Audio Signals

A natural representation of an audio signal is its waveform x(t) describing the sound pressure changes
in time. Signal x(t) occurs at a microphone output, excites the speaker, and generally, represents sound
in analog audio processing systems. On the other hand, in digital systems, in order to reduce the required
bit rate, the physical signal x(t) can be replaced by a number of parameters, e.g., describing the way the
audio signal originates. The major problem, however, that immediately arises and has to be overcome,
consists in a fact that there exists no unique plausible model for production of all kinds of audio signals.
On the contrary, for different types of audio, only different models (if any) can be proposed [19,20,41].

For example, for speech efficient parametric description models can be developed by means of mod-
eling of the human vocal tract [13]. Such parametric speech source models describe the speech production
process by, first, modeling an excitation (noise for unvoiced speech and a periodic signal for voiced
speech), and second, by representing the human voice tract by means of an appropriate infinite impulse
response (IIR) filter. This is the so-called linear prediction coding (LPC) scheme [37].

Another signal example, for which an extremely efficient parametric description exists, is music. This
description is the well-known musical score notation. Indeed, a kind of such a description has been applied
in the musical instrument digital interface (MIDI). Although the musical score notation is extremely
efficient and it does not probably exist any other representation for music that would be more efficient,
the score as a means for audio coding has two major drawbacks. First of all, the whole information about
the individual performer is lost. Second, an automatic transcription of audio into the musical score is very
difficult. Thus, compromise solutions have to be searched for. Structured audio—a part of the MPEG-4
standard—uses such techniques. An audio signal is split into individual, meaningful source objects and
is treated as a composition of them [18,34,35]. This approach is also used in the newest standards MPEG-7
and MPEG-21 [19,20,34].

One of the most promising approaches to the parametric description of a wide class of audio signals
consists in removing the redundancy contained in the original audio signal representation x(t). This can
be done by splitting the signal into a number of almost uncorrelated components. The simplest and the
most popular method is the time-to-frequency transformation by means of an appropriate analysis filter
bank [52]. For example, in the MUSICAM standard the whole audio band, which is in this case 24 kHz
wide, is split into 32 uniform subbands of the width 24,000/32 = 750 Hz each. Another widely used
uniform filter bank is based on a modified discrete cosine transform (MDCT) [40]. Nonuniform, e.g.,
octave filter banks can also be used. An optimized octave filter bank based on the so-called wave digital
filters (WDFs) [11] is proposed in [43].

Efficient parametric description of audio signals, which is, in fact, a generalization of an octave filter
bank approach and, in other words, is a simplified score-type representation, is the so-called discrete
wavelet transformation (DWT). In order to introduce the DWT concept, it should first be noticed that
the signal x(t) can often be expressed as a linear expansion

(27.4)

where m is an integer index, cm are the real-valued expansion coefficients (parameters describing the
signal), and (t) is a set of real-valued functions of time t called the expansion set. The expansion set
is called basis if the representation (27.4) is unique, i.e., if functions (t) are linearly independent. The
most interesting case is the orthogonal or even orthonormal basis. For example, for a Fourier series, the
orthogonal basis functions (t) are cos kω0t and sin kω0t, where ω0 is related to the signal period T
according to equation ω0 = 2π/T.
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For the discrete wavelet expansion, called DWT, a two-dimensional set of coefficients akl is constructed
in such a way that

(27.5)

where the function ψ(t), called wavelet (small wave), generates the expansion set ψ(2kt − l), which is an ortho-
gonal basis. The wavelet ψ(t) is an oscillating and quickly decaying function, which has its energy sufficiently
well localized in time and in frequency. Several different wavelet classes have already been proposed [5].

Introducing another basic function  called the scaling function, a multiresolution signal repre-
sentation, starting from some resolution k, can be formulated:

(27.6)

Two fundamental self-similarity equations have to be fulfilled:

(27.7a)

(27.7b)

where h0(n) and h1(n) are impulse responses of two discrete-time complementary filters—a lowpass filter
and a highpass filter, respectively. For a finite even length N, responses h0(n) and h1(n) are related to each
other by

(27.8)

If resolution k is large enough, κ = k can only be taken into account in expansion (27.6). In other words,
we can assume that

(27.9)

Thus, from Eqs. (27.7a) and (27.7b) we conclude that x(t) is a signal of resolution k + 1 and can be
modeled as

(27.10)

Assuming that functions ϕ (2kt − l) and ψ (2kt − l) in expansion (27.9) form an orthonormal basis,
after some manipulations, we conclude that

(27.11a)

(27.11b)

If the signal x(t) is of finite duration, the sums in expressions (27.9) and (27.10) are finite. The sets {b(k+1)n}
and {bkl , akl} form alternative parametric descriptions for the signal x(t). Although both sets have the same
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number of parameters, description {bkl , akl} is somehow more efficient because parameters akl are less
important than bkl and consequently {b(k+1)n}. From Eqs. (27.11a) and (27.11b) we conclude that param-
eters bkl and akl result from a lowpass and a highpass filtering of parameters b(k+1)n, respectively, with a
two-band splitting filter bank of impulse responses h0(−n) and h1(−n), respectively, followed by a down
sampling with factor 2 (Fig. 27.1(a)). This procedure can be continued many times in order to obtain
even more efficient parametric representation. If only parameters bkl are split, which is the case in the
classical DWT, a kind of an octave signal analysis filter bank results (Figs. 27.2(a) and 27.3). If also
parameters akl are split (wavelet packet) and/or a multiband splitting filter bank is used (multiband wavelet
system) [5], very flexible analysis filter banks can be realized (Fig. 27.4), e.g., those simulating along the
frequency axis the distribution of a set of nonoverlapping peripheral auditory filters (cf., section 27.4).

Another quite efficient approach for the parametric description of audio is the so-called sinusoidal
modeling often used for the analysis and synthesis of musical instrument sounds [41]. The audio signal
x(t) is modeled by a set of tones and noise.

(27.12)

The tones have slowly varying parameters: amplitude ak(t) and frequency wk(t). Additionally, an
appropriate noise model has to be used. A perceptually acceptable noise model can be obtained by adding

FIGURE 27.1 Two-band filter bank: (a) analysis bank, (b) synthesis bank.

FIGURE 27.2 Discrete wavelet transformation (DWT): (a) two-band analysis tree, (b) two-band synthesis tree.
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some sinusoids with different frequencies and random phases. Alternative methods are based on the
noise spectrum modeling.

An additional envelope model (with particular envelope attack and decay rates) can be added for some
of the sinusoids in order to improve the sinusoidal model efficiency for highly nonstationary signals.

A dual approach to that described by Eq. (27.12) is also possible. The signal x(t) is first transformed
into the frequency domain, e.g., by means of the discrete cosine transform (DCT), and then the sinusoidal
modeling is realized in the frequency domain [41].

27.4 Psychoacoustics and Auditory Perception

Understanding of psychoacoustics phenomena occurring during the auditory perception by humans is
crucial for the design of efficient audio coding algorithms. An efficient audio coder (the so-called perceptual
coder) should not only reduce redundant components in the audio representation, using an appropriate
parametric audio model (cf., section 27.3), but it also should remove irrelevant components from the
source signal, i.e., those, which are inaudible by humans (Fig. 27.17).

FIGURE 27.3 Time-frequency (scale) signal representation patterns: (a) an initial (k + 1)-resolution scale pattern
corresponding to expression (27.10); DWT pattern after three transformation steps (the first step is made according
to Eq. (27.9)).

FIGURE 27.4 Time-frequency (scale) signal representation patterns: (a) a pattern after two transformation steps
with a four-band wavelet basis, (b) an example of a two-band wavelet packet transformation.
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Signal processing, which takes place in the human auditory system, can generally be divided into two
stages: a preliminary phase realized in the acoustic auditory organs (ears) and the advanced phase done
in auditory nervous system (in the brain). The auditory part of the inner ear, known as the cochlea
because of its snaillike shape, performs a kind of the spectral analysis. The acoustic harmonic tones
generate place selective oscillations distributed along the so-called basilar membrane, which extends
down the cochlea. In result, the frequency is mapped into a place on the basilar membrane and a frequency
scale can be laid out at the basilar membrane with low frequencies near the apex and high frequencies
near the base of the cochlea. According to the authors’ results the cochlear response is not a kind of a
Fourier like transformation but, neglecting the nonlinearities, it is rather a kind of the continuous wavelet
transformation (CWT) [5]. Consequently, the cochlear response can be interpreted as if it were produced
by a filter bank composed of highly overlapping bandpass filters with increasing passbands. These filters
are referred to as the peripheral auditory filters.

Two widely accepted approaches are used for estimation of the passbands of the peripheral auditory
filters. The older approach is based on the notion of critical bands ∆fc [12,45,56]. The widths of the critical
bands vary from ca. 100 Hz for low frequencies (lower than 300 Hz) to about one-third of an octave for
high frequencies (Fig. 27.5(a)). The critical bandwidth as a function of its center frequency can be
estimated in hertz using expression

(27.13)

in which frequency f is given in kilohertz [45].
The newer approach results from measurements of the frequency response shape of the peripheral

auditory filters and uses a concept of equivalent rectangular bandwidth (ERB) [32,44]. ERB is a bandwidth
of the equivalent ideal (rectangular) passband filter, which has the same center passband frequency as
the respective peripheral auditory filter, transmits the same amount of power when excited with the same
white noise, and has the passband gain equal to the maximum passband gain of the respective auditory
filter. ERB as a function of frequency can be approximated in hertz as

(27.14a)

where frequency f is again given in kilohertz (cf. Fig. 27.5(b)). Sometimes, a slightly simpler formula is

FIGURE 27.5 Critical bandwidth and ERB as functions of the passband center frequency: (a) critical bandwidth
according to Eq. (27.13), (b) ERB according to Eq. (27.14a).
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used [32,44]

(27.14b)

Chosen values of ∆fc and ERB are listed in Table 27.1. Critical bandwidth is greater than ERB even three
times for low frequencies but for higher frequencies, starting with ca. 500 Hz, it is 1.3–1.5 times larger only.

Approximately 24 nonoverlapping critical bands cover the whole audible frequency range, but it does
not mean that there exist 24 peripheral auditory filters only. In fact, they occur as continuously distributed
filters along the frequency axis and any audible tone creates an individual peripheral auditory filter centered
on it.

The ear canal acts as a resonator and increases the sound pressure at the tympanic membrane in the
frequency range of 1.5–5 kHz, with a maximum at 3.5 kHz by about 10–15 dB. The sensitivity of the ear
varies strongly with the frequency and reaches the maximum exactly in this band. In Fig. 27.6 equal-
loudness contours for pure tones are plotted. They are labeled in units of loudness called phones. By
definition, the loudness in phones is numerically equal to SPL in decibels at the frequency f = 1000 Hz.
The lowest curve in Fig. 27.6 represents the threshold of audibility (in quiet). This curve can be approx-
imated with expression [47] in decibels

(27.15)

TABLE 27.1 Critical Bandwidth and Equivalent Rectangular Bandwidth 
(ERB) as Functions of the Respective Center Frequency

Center Frequency fc (Hz) Critical Bandwidth ∆fc (Hz) ERB (Hz) ∆fc/ERB 

50 100 33 3.0
100 100 38 2.7
200 100 47 2.2
500 120 77 1.5

1000 160 128 1.3
2000 300 240 1.3
5000 900 651 1.4

10,000 2300 1585 1.5

FIGURE 27.6 Equal-loudness contours for pure tones.

0

20

40

60

80

100

120

10
20
30
40
50
60
70
80
90

100
110
120 phones

[kHz]      Frequency, f

[d
B

]
   

 
  

SP
L

 ,
p

L

10
-1

10
-2

10
0

10
1

ERB 24.7 4.37f + 1( )=

Lptp 3.64f 0.8– 6.5e 0.6 f 3.3–( )2
– 10 3– f 4+–=
© 2002 by CRC Press LLC



where frequency f is as before given in kilohertz. The threshold of audibility computed with formula (27.15)
is shown in Fig. 27.7.

A kind of positive feedback improves the sensitivity and selectivity of the basilar membrane oscillations.
Its function can be compared with that of the so-called “reaction” used in early radio receivers to increase
their amplification and to improve their frequency selectivity. The positive feedback effect decreases as
sound intensity increases. Thus, the cochlea is less selective for intense sounds than for weak sounds. In
result, the peripheral auditory filters are nonlinear, thereby extending the overall dynamic range of the
hearing system to the range of approximately 120 dB (cf., Fig. 27.6).

Figure 27.8 shows the whole region of audibility extending from the threshold of audibility to the limit
of danger (and further up to the threshold of pain). It also illustrates two important subregions: the
speech region and the region of music. The rest of the audibility area is a reserve of the human hearing
system. Speech covers the frequency band of ca. 200 Hz to 5 kHz and the dynamic range ca. 50 dB. Music
occupies larger area, i.e., the frequency band of 50 Hz to 10 kHz and the dynamic range of ca. 70 dB.
For the representation of high quality audio it is, however, necessary to cover and reproduce practically
the whole region of audibility, i.e., the frequency band of 20 Hz to 20 kHz and the dynamic range of at
least 80–90 dB.

FIGURE 27.7 Threshold of audibility in quiet approximated by Eq. (27.15).

FIGURE 27.8 Region of audibility.
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Because of diffraction produced by the head, the sound that reaches the ears depends on the sound
source direction. The difference between the arrival time of a sound at each of the two ears together with
the difference in the intensity of the sound that reaches each ear is used by the auditory nervous system
to determine the location of the sound source. This ability manifests mostly in the horizontal plane. In
audio coding systems it is represented by stereo (2-channel) or more exactly by surround (multichannel)
sound.

The spectral components of a sound are coded for intensity and time in the auditory nervous system,
but not always all components are audible. This interesting phenomenon called masking is extremely
important for efficient digital coding of audio. Masking is a kind of interference with the audibility of a
sound (called probe or maskee) caused by the presence of another sound (called masker), if both these
sounds are close enough to each other in frequency and occur simultaneously or closely to each other
in time. If a lower level probe is inaudible, because of a simultaneous existence of a higher level masker,
this effect is referred to as the simultaneous masking. If an inaudible probe precedes the masker or follows
the masker, this phenomenon is called temporal masking. Masking is typically described by the minimum
shift of the probe intensity level above its threshold of audibility in quiet, necessary for the probe to be
heard in the presence of the masker.

Four different cases for masking can be distinguished: tone-masking-tone, noise-masking-tone, tone-
masking-noise, and noise-masking-noise. The latter two cases are particularly important for the design of
effective perceptual audio coders, because masking can be exploited to make the quantization noise inau-
dible. The first two cases were, however, so far, much more intensively investigated. In Fig. 27.9 a simulta-
neous tone-masking-tone effect relative to the threshold of audibility in quiet is illustrated. Masker is a
pure harmonic tone of frequency 1.2 kHz and of three different sound pressure levels: 40, 50, and 60 dB.
The following effects can be observed. First, the higher the level of the masker, the greater is the masking.
Second, masking is largest for probe frequencies slightly above or below the masker frequency. Third,
masking decreases as probe frequency gets closer to that of the masker. This phenomenon is observed
for tone-masking-tone case only and is caused by audible beats between the two tones, which make the
presence of the probe more apparent. Fourth, masking is greater on frequencies above the masker
frequency than on frequencies below it. Fifth, due to a nonlinearity of the human hearing system, the
masking curve has similar shape for various masker harmonics. This phenomenon is also typical for the
tone-masking-tone case only.

Analyzing curves in Fig. 27.9 and taking the threshold of audibility in Fig. 27.6 or Fig. 27.7 into
account, the maximum probe-to-masker ratios (PMRs) can be determined. For example, for a 40 dB
SPL masker the maximum PMR is 15 + 3 − 40 = −22 dB (the maximum level of the fully masked probe

FIGURE 27.9 Simultaneous tone-masking-tone effect relative to the threshold of audibility in quiet with a masker
of frequency 1.2 kHz and of three different levels (SPL): (a) 40 dB, (b) 50 dB, and (c) 60 dB.
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relative to the threshold of audibility for the curve in Fig. 27.9(a) is almost 15 dB and the threshold of
audibility for the tone of frequency 1.2 kHz is about 3 dB SPL). Similarly, for 50 and 60 dB maskers
the maximum PMRs are calculated to be −22.5 and −23 dB, respectively.

Masking curves for tone-masking-noise are similar but smoother, because no audible bits occur in
this case. In order to reduce the influence of audible bits also in the tone-masking-tone case, a tone-like
narrow-band noise instead of a pure tone should be used as masker. In practical audio signals this situation
is observed rather than appearance of audible bits. That is why both cases with the tone as masker can
be reduced to only one: a tone-like masker. The maximum PMR can be approximated by expression [14]
in decibels

(27.16)

in which z is numerically equal to the critical band index in Bark [54] defined as

(27.17)

where frequency f is in kilohertz. The curve determined by Eq. (27.17) is plotted in Fig. 27.10.
When a wideband flat noise is used to mask a pure tone, masking is much stronger than that just

considered. It should, however, be stressed that only a narrow frequency band (the critical band) of the
noise centered at the tonal frequency causes masking of this tone. If the bandwidth of the previously
wideband masking noise is made narrower than the respective critical bandwidth (noise with the constant
power spectral density is considered) and if the previous probe tone level was just below the masking
threshold, then the intensity of this tone has to be lowered before it can be masked again. On the other
hand, if the noise bandwidth is wider than this critical bandwidth, no significant change in the masking
effect can be observed. In this case the maximum PMR, illustrated in Fig. 27.11, can be determined in
decibels by expression [23]

(27.18)

where frequency f is again given in kilohertz. Pessimistically, a constant value PMRn ≈ −5.5 dB can be
used independently from frequency. Simultaneous noise-masking-tone effect relative to the threshold of
audibility in quiet with a masker of center frequency fc = 1.2 kHz, the critical bandwidth, and 40 dB SPL,
is illustrated in Fig. 27.12.

FIGURE 27.10 Critical band index in Bark according to Eq. (27.17).
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Although masking is typically measured as a shift of the threshold level of hearing above the threshold
level of audibility in quiet, its mathematical model should be based on the additivity of signal powers
(linear scale) rather than on the additivity of levels (logarithmic scale). In this context a notion of psycho-
acoustic excitation is widely used [32]. Particular excitations are approximately additive in terms of power;
however, it is also convenient to introduce the excitation level (i.e., excitation described in the logarithmic
scale), because the masking threshold level Ltm can be modeled as the excitation level shifted by the PMR.
In all masking cases the simplest mathematical description for the masking threshold level Ltm is a
triangular shape shown in Fig. 27.13. In the abscissa axis the critical band index z in Bark is used. The
masking threshold peak can be determined in decibel by the maximum PMR according to the following
equation [14,22]:

(27.19)

where 0 ≤ α ≤ 1 is the masker tonality index defined in such a way that α = 0 if the masker is a white
noise and α = 1 if the masker is a tone. Parameter α can be determined using the so-called spectral
flatness measure (SFM) of the masker, defined as a decimal logarithm of the geometric average to the
arithmetic average ratio of the masker power spectral density distribution in the masker frequency band.

FIGURE 27.11 Maximum PMR for noise masker.

FIGURE 27.12 Simultaneous noise-masking-tone effect relative to the threshold of audibility in quiet with a masker
of center frequency of 1.2 kHz, critical bandwidth, and 40 dB SPL.
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SFMmax = 0 dB for a white noise masker and SFMmin = −60 dB for a pure tone masker. Parameter α could
be computed as

(27.20a)

but due to possible computational inaccuracies the result computed using expression (27.20a) could be
greater than 1. Therefore, a slightly more complicated expression should be used

(27.20b)

The rising slope Sr of the masking threshold triangle is approximately constant and equals [47]

(27.21a)

The falling slope Sf (dB/Bark) is smaller and depends on the masker SPL, Lp, in decibel and its center
frequency, fc, in kilohertz

(27.21b)

In most typical situations, the falling slope can be approximated as Sf ≈ −10 dB/Bark.
Consequently, the masking threshold level Ltm is a function of the critical band index z, the masker

center position zc, the masker SPL, Lp, and the masker tonality index α, i.e., Ltm = Ltm(z, zd, Lp, α). If many
simultaneous maskers occur together, the overall masking effect as a function of frequency can be deter-
mined by the global threshold of hearing Lptg (Fig. 27.14). In order to determine this threshold, additivity
of signal powers or respective psychoacoustic excitations should be taken into account. Thus, the following
approximate expression can be used

(27.22)

where Lptq(z) is the threshold of audibility in quiet, Ltm(z, zcj, Lpj, αj) are particular masking threshold
levels, and index j indicates the jth masker.

Finally, the signal-to-mask ratio (SMR) can be computed in decibels as

(27.23)

FIGURE 27.13 Simplified model of the masking threshold level Ltm = Ltm (z, zc, Lp, α).
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where zj corresponds to the smallest Lptg within the critical band of the jth masker. This is usually the
left-hand side edge of this critical band.

Masking also occurs when the signal either precedes or follows the masker (Fig. 27.15). This is the
already mentioned phenomenon of temporal masking. In backward masking (pre-masking) the signal
precedes the masker, while in forward masking (post-masking) the signal follows the masker. The pre-
masking effect appears in 10–20 ms before the masker, while the post-masking effect is by one order of
magnitude longer, i.e., in the order of 50–200 ms after the masker ends. In order to take the post-masking
into consideration, the signal power  occurring in time t should be seemingly increased
according to equation

(27.24)

in which the post-masking coefficient cj(∆t) is given by

(27.25)

but τj is a time constant depending on the jth critical band. In result, the simultaneous masking threshold
rises according to the increased level .

FIGURE 27.14 Global hearing threshold Lptg for several simultaneous maskers as a function of frequency.

FIGURE 27.15 Temporal masking effect.
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All described masking effects are exploited for data compression in modern perceptual audio coders
(e.g., in the MUSICAM procedure, MPEG standards, etc.).

27.5 Principles of Audio Coding

In order to digitally process audio, it is first necessary to sample and quantize the data, i.e., to convert the
analog signal xc(t) into a digital form. This is realized in an analog-to-digital converter (ADC). The digital
data can then be compressed and encoded in a digital audio coder (transmitter), transmitted through a
communication channel, decoded in a receiver, and finally recovered in a digital-to-analog converter
(DAC). A general scheme of a digital audio processing system is shown in Fig. 27.16.

Sampling of a continuous-time signal

(27.26)

is a process of time discretization. It consists in representing the signal xc(t) with a series of samples

(27.27)

referred to as the discrete-time signal or sampled-data signal. Uniform time discretization with sampling
period Ts > 0 and rate

(27.28)

is defined by

(27.29)

where τ > 0 is some (usually unavoidable) system delay.
It should be stressed that scaling coefficients b(k+1)n in Eq. (27.10) approximate signal samples, i.e.,

xn ≈ b(k+1)n, because for high enough scale k + 1 the scaling functions  act as “delta functions.”
Sampling period is in this case equal to .

According to the sampling theory, a low-band continuous-time signal xc(t − τ), i.e., the signal, whose
spectrum extends from zero to some maximum frequency, can be reconstructed on the basis of the discrete-
time signal x(n), if the sampling rate Fs is greater or at least equal to the Nyquist sampling rate, which is
twice as high as the greatest frequency contained in the continuous-time signal spectrum, or in other
words, if the whole signal spectrum lies below Fs/2, called the Nyquist frequency. In practice, sampling rate
Fs has to be somewhat greater than the Nyquist sampling rate [37]. Typical sampling rates for audio are:

FIGURE 27.16 General scheme of a digital audio processing system.
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8 ksamples/s for telephony (the signal spectrum extends up to 4 kHz, and thus covers most of the
frequencies contained in speech), 32 ksamples/s for medium quality digital audio (audible frequency band
up to 16 kHz is covered), 44.1 ksamples/s for a CD standard (audio frequency band up to 22.05 kHz is
represented), 48 and 96 ksamples/s for high quality digital audio (the represented frequencies range up to
24 and 48 kHz, respectively).

An important generalization of the classic sampling theory applies to band signals [8]. A continuous-
time signal, whose spectrum is limited to some frequency band

(27.30)

can be sampled with a sampling rate of at least Fs = 2∆f only (i.e., critically sampled), if both spectrum
border frequencies f1 and f2 in Eq. (27.30) are consecutive multiples of the Nyquist frequency Fs/2, i.e., if

(27.31)

where k is an integer. Such a signal is referred to as the integer-band signal. Audio signals are not by themselves
integer-band signals but they can be split with an analysis filter bank to some subband signals, which all
are integer-band signals, and thus, can be critically sampled. This is indeed the case in many digital audio
coders, e.g., in the MUSICAM standard the input audio signal, initially sampled with 48 ksamples/s, is split
into 32 subbands with bandwidths of 24,000/32 = 750 Hz each. Signals in each subband are sampled with
48/32 = 1.5 ksamples/s sampling rate.

Another signal discretization process is quantization, i.e., the procedure of converting a signal with
continuously distributed values into a signal with discrete values. Unlike sampling, which, under some
conditions, can be considered lossless, i.e., the original signal can—at least theoretically—be perfectly
recovered after sampling, quantization is an inherently lossy operation [8,37].

The error due to the quantization has a nature of noise and is referred to as the quantization noise.
Although this noise is unavoidable and cannot be removed from the signal, it can be made inaudible by
controlling its level and forcing it to lie under the threshold of audibility. Masking effects, discussed in
section 27.4, can be very effectively exploited with this end in view.

The quantization noise is usually analyzed under the following simplifying assumptions:

• The quantization steps are uniform.

• The number of quantization levels is high.

The first assumption is not fulfilled in many quantization techniques for audio signals. This is because
the perception of noise does not depend on its absolute power but on the signal-to-noise ratio (SNR).
Thus, it is reasonable to quantize audio signals nonuniformly, with quantization steps proportional to the
signal values. If the steps are not uniform, then the quantization error will be a function of the input
signal, and consequently, it will not be an additive noise any more. Fortunately, in most procedures for
the quantization of audio signals, quantization steps are at least range by range uniform and the first
assumption can be considered as approximately valid. The second assumption is usually satisfactorily
fulfilled. Due to this assumption the quantization noise has a uniform probability density distribution
and is not correlated with the signal.

Denote by Q the quantization step and by p(x) the probability distribution function of the quantization
error. Then

(27.32)

∆f f1 f2, f2 > f1–=

f1 kFs/2 and f2 k 1+( )Fs/2= =

p x( ) dx
Q/2–

Q/2

∫ 1=
© 2002 by CRC Press LLC



where

(27.33)

From Eqs. (27.32) and (27.33), the average quantization noise power pq can be calculated as

(27.34)

The signal-to-noise ratio in decibels is then

(27.35)

where Ps is the time-averaged signal power. Assume that the ADC has a full scale of m bits. Then the
maximum input signal amplitude is

(27.36)

and thus

(27.37)

From Eqs. (27.34), (27.35), and (27.37) it follows that

(27.38)

Thus, each additional bit in the quantized signal resolution means ca. 6 dB improvement in the SNR
(or equivalently in the dynamic range). The “const” in expression (27.38) is of secondary importance.
Its value depends on the signal probability density distribution and the ADC range. For instance, for an
ADC range equal to , the respective value is const ≈ −7.3 dB.

Representing a signal just as a stream of uniformly quantized samples is referred to as the pulse code
modulation (PCM). Typical resolutions in bits per sample (bps) are 16 bps, 24 bps, and even 30 bps.
For instance, for a CD standard with two stereo channels, 44.1 ksamples/s sampling rate and 16 bit
resolution, the resulting audio bit rate is 2 × 44, 100 × 16 = 1.41 Mb/s. In reality, the CD standard has
a large overhead bit rate due to 49-bit representation of every 16-bit sample. The resulting total bit rate
is thus equal to (49/16) × 1.41 = 4.32 Mb/s.

PCM representation is not an efficient method for high quality audio. In order to reduce the required
bit rate, various data compression and coding techniques can be used. Simple but not very efficient
approaches preserve the signal waveform and are therefore referred to as lossless coding techniques
(section 27.8). Data compression facility of lossless audio coders is rather moderate. Average achievable
bit per sample values are only slightly greater than 4.5 bps [35]. Sophisticated techniques, which are still
subject of an intensive research, allow for a drastic reduction of this value—at least by one order of
magnitude. These coding techniques are lossy in the sense that they corrupt the signal; however, this
corruption, can be controlled in such a way that it is inaudible. Such audio coders are called transparent
(section 27.9). In order to efficiently and transparently compress audio and/or speech, the knowledge
about the speech and audio production (the parametric audio coding discussed in section 27.3) as well
as the knowledge concerning the human auditory perception (discussed in section 27.4, resulting in the
perceptual audio coding) should be exploited (Fig. 27.17).
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27.6 Digital Audio Signal Processing Systems

Fast development of very large scale integration (VLSI) electronics chips (digital signal processors (DSPs),
ADCs and DACs, audio codecs, etc.) gives the possibility of effective digital processing of audio signals. The
general scheme of a digital audio processing system is shown in Fig. 27.16. Using novel facilities of DSPs,
not only sophisticated digital filters and filter banks, but also whole audio codecs can usually be realized in
real time with a single processor, i.e., without the necessity of using expensive multiprocessor systems.

Real-time implementation of DSP algorithms is possible due to new features of modern DSPs [7].
Among the most important are:

• Hardware multiplier and long accumulator

• Hardware type and multibus architecture

• An on-chip memory with no additional wait state cycles

• Time division multiplexed (TDM) port for communication between multiple DSPs

• Bit-reversed addressing used in fast Fourier transformation (FFT) algorithms

• Circular buffers—a key feature of many DSP routines (e.g., in the realization of finite impulse
response (FIR) digital filters)

• Multiple data registers important, e.g., for storing of temporary data

New facilities of modern DSPs give the possibility for substantial reduction of the number of operations.
A single DSP processor can be used for multichannel and/or multitasking applications, both realized in

FIGURE 27.17 Efficient audio (and speech) compression by exploiting the knowledge about the audio (and speech)
production and perception: (a) coder scheme, (b) decoder scheme.
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real-time. Although floating-point processors give very effective calculation performance, the fixed-point
processors are also often used, because they are characterized by a much lower supply energy consumption
(e.g., 0.05 mW/MIPS for the TMS320C55x processors) and are, moreover, much cheaper [50].

In order to facilitate communication with the host processor (computer), modern DSPs are equipped
with a special interface—the host port interface (HPI) [49]. Using the HPI, the host processor has an
access to the memory of the digital signal processor. Physical connection of processors uses 8- or 16-bit
parallel data bus and several control lines. The HPI performs also a boot operation of the DSP. Due to
this possibility an additional boot memory is not necessary. Selected DSPs provide also a glueless interface
to the peripheral component interconnect (PCI) bus.

The next interesting feature of modern DSPs is the use of a buffered serial port (BSP) [49]. BSP makes
a high-speed communication with external devices, e.g., ADCs and DACs, possible. In relation to a typical
serial port, BSP offers enhanced features, which allow for a direct read/write operations from/to the
memory connected to the signal processor without any participation of its central processing unit (CPU).
The BSP interrupts to CPU are generated after filling halves of the buffer. This machanism makes it
possible to effectively cooperate with multichannel ADCs and DACs or to accumulate samples for FFT
analysis. The described features, such as the HPI and the BSP, can substantially simplify the audio digital
signal processing system (cf., Fig. 27.18) [25,28].

Floating-point DSPs, with the support for the IEEE-754 standard of 32-bit floating-point format, are
based on new architecture concepts in order to guarantee a very high computational efficiency. Among
these concepts are:

• Texas Instruments’ VelociTI, which is an advanced very long instruction word (VLIW) architec-
ture [51],

• Analog Devices super Harvard architecture (SHARC) with a single instruction multiple data
(SIMD) facility [1].

Effective utilization of these highly parallel architectures needs an efficient C-compiler and an assembly
optimizer.

Comparison of selected fixed- and floating-point DSP processors is presented in Tables 27.2 and 27.3
[1,33,50,51].

TABLE 27.2 Main Features of Fixed-Point DSPs

Processor Family
Bus 

Interface (bits)
Instruction
Rate (MHz) Core MIPS

RAM
(bits)

ROM
(KWords)

ADSP-218x 16 33−75 33−75 128 K−1.6 M —
DSP56300 24 66−160 66−160 120 K−1.2 M 0−80
DSP56600 16 60−104 60−104 384 K−1.2 M 2−128
TMS320C54x 16 40−160 30−532 80 K−3.1 M 0−48
TMS320C55x 16 160−200 320−400 2.5 M 16
TMS320C62x 32 150−300 1200−2400 1−7 M —
TMS320C64x 32 400−600 3200−4800 8.5 M —

FIGURE 27.18 A digital audio signal processing system.
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27.7 Audio Processing Basics

DFT and Related Transformations

Discrete Fourier transformation (DFT) is a powerful tool for the analysis of discrete-time signals. A block
of N samples x(n), n = 0, 1,…,N − 1, is considered and its harmonic components are extracted under
assumption that they also describe an infinitely long, block wise periodic extension of signal x(n). DFT
is defined as follows:

(27.39a)

where WN = e−j(2π/N). The inverse discrete Fourier transformation (IDFT) is then given by

(27.39b)

Computation of DFT and IDFT is usually realized using the so-called FFT algorithms, which reduce the
computational complexity of DFT from ∝ N 2 to ∝ N log N under assumption that N = 2K, where K is
a natural number. Two main FFT types can be distinguished: decimation in time and decimation in
frequency.

Assuming a typical DSP, realization of an FFT of the length N = 512, requires about 200 words of the
program memory and 4N + 1050 words of data memory. Using a fixed-point DSP, the number of necessary
instruction cycles is about 33,000. Assuming a moderate instruction cycle period of 25 ns, sampling rate
of 44.1 kHz (Ts = 22.676 µs). Accumulation time of 512 input samples is 512 × Ts = 11.61 ms. FFT
analysis takes 33,000 × 25 ns = 0.825 ms only. This example shows that even a multichannel “online”
audio range FFT analysis is easily possible with common DSPs [28,48].

A block of N samples x(n) can be mirrored before it is periodically extended. This results in the so-
called discrete cosine transformation (DCT). Because of the mirroring symmetry, DCT gives sharper
spectrum than DFT. This is the main advantage of this transformation.

In perceptual audio coders, signals are often mapped into the frequency domain by means of the so-
called modified discrete cosine transformation (MDCT) [40]. This is a type of DCT with overlapped
power complementary time windows (Fig. 27.19). By this means blocking and time aliasing effects are
cancelled. Denote by xl(n), n = 0, 1,…,N − 1, time-domain signal samples in the lth block of N samples.
MDCT is defined as

(27.40a)

where Xl(k) are samples in the frequency domain, N is the number of input samples, N/2 is the frequency-
domain blocklength, w(k) is the time window function. Division of the input signal into MDCT block

TABLE 27.3 Main Features of Floating-Point DSPs

Processor Name
Instruction
Rate (MHz) Peak MFLOPS

1024-point 
Complex FFT 

(ms)
Accumulator 

Size (bits)
On-chip 

Memory (bits)

ADSP-2106x SHARC 40−66 120−198 0.27 40 544 K−4 M
ADSP−21160 SHARC 80−100 480−600 0.09 80 4 M
TMS320C67x 100−167 600−1000 0.12 40 576 K−1 M
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is quite flexible. A long block can be split into a shorter block. Figure 27.19 presents possible transitions
MDCT windows between long and short block modes. The length of the block depends on stationarity
of the input signal.

The respective inverse discrete cosine transform (IMDCT) is defined as

(27.40b)

The input signal is recovered with an overlap add operation

(27.40c)

which cancels the time-domain aliasing.

FIR Filters

Basic operation in digital audio signal processing is frequency selective filtering. It can be realized in
frequency domain, e.g., using FFT and in time domain using finite impulse response (FIR) and infinite
impulse response (IIR) filters. Mostly FIR filters are used because they are always stable and can be easily
designed with perfect linear phase characteristic.

Assuming an ideal filter frequency response given by

(27.41)

where

(27.42)

the respective FIR filter impulse response is

(27.43)

FIGURE 27.19 Overlapped, power complementary MDCT windows.
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where wN(n) is a specially selected time window (e.g., Hanning, Hamming, Blackman, or Kaiser window),
used in order to reduce the so-called Gibbs phenomenon [37]. Depending on filter type, the ideal filter
coefficients can be calculated using equations listed in Table 27.4 [9].

Another, more advanced, method for the design of FIR filters, is an optimization procedure developed
by Parks and McClellan (also known as the Remez method) [9]. This method is implemented in the
MATLAB environment with two functions: remezord to estimate the filter order and remez to compute
the filter coefficients [30]. This optimization method should be used, if a relatively high stopband
attenuation is required, e.g., with a 20-bit resolution for representation of signal samples, we usually
need a stopband attenuation of approximately 120 dB. As a design example, Fig. 27.20 presents the
frequency response of a lowpass FIR filter designed with the Parks–McClellan method, with the normal-
ized cutoff frequency of π/64. This filter can be used as a prototype filter for the design of analysis and
synthesis filter banks for audio coders, according, e.g., to the MUSICAM and MPEG-1 standards.

TABLE 27.4 Impulse Response of Ideal Filters

Filter Type Impulse Response

Lowpass

Highpass

Passband

Stopband

FIGURE 27.20 Frequency response of an FIR lowpass filter designed with the Parks–McClellan method.
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Using modern DSP’s FIR filters can easily be implemented with the MACD instruction, which realizes
multiplication, accumulation, and data move. When used with repeat next instruction (RPT) MACD
becomes a single-cycle instruction once the RPT pipeline is started. The theoretical maximum length L
of the FIR filter can be computed as

(27.44)

where Ts is the sampling period, Tc is the instruction cycle, and k is the number of converted channels.
Assuming sampling rate of 48 ksamples/s, 25 ns instruction cycle of the DSP and 6 output channels, we
can realize FIR filters with the maximum length of about 138 [25].

Another method for the implementation of FIR filters in DSPs consists in the use of two further new
features of modern DSPs, namely the circular addressing and the FIRS instruction. This possibility can
be effectively used, if the filter has a symmetric impulse response h(n) (cf., Fig. 27.21), i.e., if the filter
output signal is given by

(27.45)

The FIRS instruction can add two data values (stored in a circular buffer) in parallel with the multi-
plication of this result by a filter coefficient. Once the repeat pipeline is started, this instruction becomes
also a single-cycle instruction. A computational complexity is in this case reduced by half and makes it
possible to realize FIR filters with the double length as compared with the programming technique
previously described[48].

IIR Filters

Although FIR filters have important advantages as linear phase, stability, robustness, easy design, and
implementation, their infinite impulse response (IIR) counterparts will have complexity (order) reduced
by some orders of magnitude. Therefore, IIR filters are advantageous over and above FIR filters in
particular applications. IIR filters are typically designed starting with an analogue reference filter and
then performing the bilinear transformation [8]. Denote by H(s) transfer function of the analog reference
filter. Then the resulting IIR filter transfer function H(z) is calculated as

(27.46)

FIGURE 27.21 Symmetrical FIR filter.
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where Ts is the sampling period. The respective transformation of the analog frequency ωa into the digital
frequency ωd is given by

(27.47)

Filter Banks

A filter bank is a collection of digital filters with a multiple input and/or a multiple output [52]. The
filter bank with one input and M outputs is referred to as the analysis filter bank. On the other hand, the
synthesis filter bank consists of M inputs and one output (cf., Fig. 27.22). Splitting of the input signal
into decimated subbands via an analysis filter bank and then reconstructing the initial signal from
subband signals with a respective synthesis filter bank is referred to as the subband coding (SBC) technique
commonly used for lossless or nearly lossless data compression.

A filter bank in the main path of the MPEG-1 audio coder [39] consists of 32 subband filters with a
normalized bandwidth of π/(32Ts), where Ts is the input audio signal sampling period. The impulse
responses of particular filters in this filter bank are defined as

(27.48)

where h(n) is an impulse response of the prototype lowpass filter. In the analysis filter bank case, the
output signal in ith subband is defined as a convolution

(27.49)

FIGURE 27.22 Filter banks: (a) analysis filter bank, (b) synthesis filter bank.
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In the MPEG-1 encoder an efficient polyphase filter bank realization is implemented, using the following
steps:

1. Thirty-two new input samples x(n) are shifted into a 512-point FIFO buffer.
2. Five hundred and twelve samples x(n) are multiplied by the modified (the so-called analysis

window) coefficients C(n).

(27.50a)

where C(n) = −h(n) if the integer part of n/64 is odd, otherwise C(n) = h(n), n = 0, 1,…,511.
3. Intermediate result is calculated

(27.50b)

4. Thirty-two new output samples are computed

(27.50c)

where Mi(k) = cos{[(2i + 1)(k − 16)π]/64} are the modulation (or analysis) matrix coefficients.

Sampling Rate Conversion

Currently, digital audio signals are used with various sampling rates. Typical values are 8, 16, 22.05, 32,
44.1, 48, and even 96 ksamples/s. Thus, an “online” sampling rate conversion is a very important task in
digital audio signal processing algorithms. This, task can nowadays be realized using modern digital signal
processors [6]. Generally, three different approaches are possible:

• Natural approach based on, first, interpolation with factor integer M, and then, decimation with
factor N (Fig. 27.23),

• Time-domain approach based on direct interpolation (or decimation) in time, i.e., on the real-
ization of a sequence of noninteger delays (Fig. 27.24),  

FIGURE 27.23 Basic system for sampling rate conversion.

FIGURE 27.24 Time relationships between input and output samples.
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• Frequency-domain approach based on: first, a blockwise DFT; second, on respective spectrum
modification in each block—a throw-in of zero spectral samples in the middle of the DFT spectrum
for interpolation or cutting out of some of spectral samples in the middle of the DFT spectrum
for decimation (cf., Fig. 27.26); and third, the backward blockwise IDFT transformation (cf., the
interpft function in the MATLAB environment [30]).

FIGURE 27.25 Sampling rate conversion with multistage oversampling.

FIGURE 27.26 Sampling rate conversion in frequency domain: (a) interpolation, (b) decimation.

interpolation

2

interpolation

2

interpolation

64

interpolation

128

decimation
input
signal

output
signal

)(0x

)(xu

)(x
2j )e( ωTX

u

2j )e( ωTX

2j )e( ωTX0
0

n

n

m

m

n

n
Ω0/2 Ω

ω

ω

ω

Ω

Ω0

(a)

)(0x

)(x
2j )e( ωTX

d

2j )e( ωTX

2j )e( ωTX0
0

n

m

m

n

Ω0

ω

ω

ω

Ω

Ω

(b)

Ω0/2

)(xd n

n

© 2002 by CRC Press LLC



These first two approaches can be mixed, resulting in substantial reduction of the required intermediate
sampling rate.

A scheme of the simplest system for the synchronic sampling rate conversion is shown in Fig. 27.23.
The output samples are calculated using difference equations, which utilize the up- and downsampling
and the filtering in between. Table 27.5 presents the respective up- and downsampling factors for the
considered sampling rate conversions. These factors are equal to the least common multiple of a pair of
sampling rates (the input sampling rate and the output sampling rate), divided by the respective sampling
rate. Because the up- and downsampling factors for the rate conversion to/from 44.1 ksamples/s are
inadmissibly large, a slightly lower sampling rate, namely 44 ksamples/s (cf., Table 27.6) can usually be
accepted. This would introduce a small, not audible, error with a relative value of δ = 0.22676%.

The filtering operation between an interpolator and a decimator should be realized via a lowpass filter
with gain M and the normalized cutoff frequency ωc = min(π/M, π/N)[52]. The respective FIR filter can
be designed, e.g., using the Parks–McClellan method. Depending on the converted rates and the desired
signal resolution (16 or 20 bits, corresponding to the stopband attenuation of 96 or 120 dB, respectively)
the required length L of FIR filters varies between 154 and 198 [6]. Depending on the upsampling
coefficient M, the number of effective filter taps, which have to be calculated, is reduced to L/2M.

Sampling rate alteration using the time domain approach can be applied in asynchronic systems. An
output signal sample can be determined using the following relationship:

(27.51)

where Tin is the input sampling interval, Tout= ti+1 − ti is the output sampling interval, ti+1 is the instant
in which a new output sample should occur. The above relationships are illustrated in Fig. 27.24. Input
samples are indicated with solid lines and output samples with dotted lines.

One of the simplest time domain sampling rate conversion methods is a high oversampling and then
choosing appropriate output samples (those, which are the nearest to the required positions in time). A
multistage approach of this type is illustrated in Fig. 27.25 [27].

Interpolators with factors 64 and 128 are controlled by a time-analysis unit, which measures the ratio
between the input and the output sampling rates. An advantage of this method (in comparison with the
natural method) is the possibility for the use of the same filter coefficients for different sampling rate
conversion ratios, and thus, a simplified realization of the interpolation filters.

TABLE 27.5 Sampling Rate Conversion Factors

Sampling Rate 
Rate Conversion 
[ksamples/s]

Upsampling 
Coefficient

M

Downsampling 
Coefficient

N

Least Common 
Multiple of a Pair 
of Sampling Rates

16 → 48 3 1 48000
32 → 48 3 2 96000
16 → 44.1 441 160 7056000
32 → 44.1 441 320 14112000
44.1 → 48 160 147 7056000

TABLE 27.6 Sampling Rate Conversion to/from 
44 ksamples/s

Sampling Rate 
Rate Conversion 
[ksamples/s]

Upsampling 
Coefficient

M

Downsampling 
Coefficient

N

16 → 44 11 4
32 → 44 11 8
44 → 48 12 11

∆ti+1 ∆ti Tout+( )modTin=
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Time domain conversion can also be based on various numerical methods, e.g., on polynomial
interpolation. Lagrange interpolation or spline interpolation can effectively be used [42,53]. In the case
of an Nth-order spline with a function defined in interval [xk,…,xk+m] as

(27.52)

where 

a 6th-order interpolation is used with a simple FIR filter to compensate sinc7 -distortion in the frequency
domain caused by the spline interpolator [53].

27.8 Lossless Audio Coding

Pulse Code Modulation

The most typical digital waveform coding is the pulse code modulation (PCM), in which a stream
uniformly distributed digitally coded samples, which represent a given analog continuous-time signal is
used. Basic PCM coder consists of an antialiasing filter, sample device and a quantizer. In practice, in
order to improve the subjective audio quality, the quantizer should have a nonlinear (logarithmic)
characteristic based on, e.g., a 13-segment A-law and a 15-segment µ-law used in telephone systems. The
normalized characteristics are given by [2]

• A-law

(27.53)

• µ-law

(27.54)

For the compression from 16 bits to 8 bits typical values of the coefficients are A = 87.6 and µ = 255.
In most cases, PCM bit stream has highly redundant information. Thus, using a number previous

samples of the input signal, we can predict the next sample with a relatively small error. This feature is
used in differential pulse code modulation (DPCM), in which a difference between input sample and its
estimation is coded. The prediction is realized with appropriate FIR filter. In these case in which the
statistics of the input signal changes in time or is unknown, the prediction should be made adaptive.
An adaptive coding is realized in an adaptive difference pulse code modulation (ADPCM). The respective
schemes, i.e., those of the ADPCM encoder and the ADPCM decoder are shown in Fig. 27.27.

A special case of the DPCM approach is delta modulation (DM). The DM encoder is very simple to
implement because it uses a 1-bit quantizer and a first order predictor (cf. Fig. 27.28). The encoder is so
strongly simplified, so high sampling rates are required. Among the disadvantages of DM are possible
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slope overload and granularity noise. They can, however, be easily reduced by adaptive versions of DM,
i.e., ADM.

Continuous variable slope delta modulation (CVSD) is an example of the ADM. CVSD effectively
reduces the DM slope overload [29]. An interesting advantage of this method is its resistance to trans-
mission errors. Figure 27.29 presents structure of the CVSD encoder.

The output signal of the CVSD encoder is given by

(27.55)

where x(n) is the input PCM sample,  is the estimated sample.

FIGURE 27.27 ADPCM: (a) encoder, (b) decoder.

FIGURE 27.28 Delta modulation system.

FIGURE 27.29 CVSD encoder.
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The parameter α depends on the signal slope, i.e., J bits in K output bits of y(n):

(27.56)

The quantization step ∆(n) is increased or decreased using α parameter:

(27.57)

where

β = step decreasing coefficient,
∆min = minimum step size,
∆max = maximum step size.

The estimated value  is given by

(27.58)

where

h is the accumulator decay coefficient.

Entropy Coding Using Huffman Method

The entropy coding is a lossless bit stream reduction and can be used on its own or a supplement to
other methods, e.g., after the DPCM. This coding approach is based on the statistical redundancy, when
the signal samples, or sequences (blocks) have different probabilities. The entropy of a signal is defined
as the following average:

(27.59)

where −log2 pi is an information of the ith codeword and pi is the probability of its occurrence. The most
popular method for the entropy coding is the Huffman coding method [15], in which the optimal code
can be found using an iterative procedure based on the so-called Huffman tree. The Huffman coding is,
e.g., used in MPEG-1 audio standard to reduce the amount of output data in layer III. The set of 32
Huffman tables are specially tuned for statistics of the MDCT coefficients divided into some regions and
subregions [38].

27.9 Transparent Audio Coding

A need for reduction of bit rate required for the transmission of high quality audio signals draws a
growing attention to lossy audio coding techniques. Lossy audio coding will be fully acceptable, if it is
perceptually transparent, i.e., if the corruption of the audio signal waveform is inaudible. An efficient
transparent audio coding algorithm (Fig. 27.17) should:

• remove redundancy contained in the original audio signal,

• remove the perceptual irrelevancy.
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The first task requires an efficient parametric description of audio, e.g., a plausible mathematical model
of its production. Although this is a relatively simple task for speech, and at least a conceivable one for
music, for general audio signals this is a very complex problem. Therefore, instead of a real audio
production model, a compromise solution can be used, namely a general signal analysis model, e.g., in
the frequency domain or in the scale-of-resolution domain (cf., section 27.3), reducing redundancy
(correlation) of the signal components. In both cases, the signal is split into almost uncorrelated com-
ponents with a proper analysis filter bank. At the receiver side these components are recombined via a
corresponding synthesis filter bank. This procedure should allow perfect or at least nearly perfect signal
reconstruction under ideal conditions.

The second task should be realized by means of a precise psychoacoustic hearing model, which should
take all masking effects into account. This subject has been discussed in section 27.4. The hearing model
provides information about the dynamic range, which is necessary for the proper representation of param-
eters (signal components) contained in the signal analysis model. Thus, it allows for efficient dynamic bit
allocation to particular signal parameters or components.

A general scheme of the transparent audio coder is shown in Fig. 27.30. The input audio signal is first
analyzed via an analysis filter bank. Taking different possible analysis filter banks into account, state-of-
the-art coders can be divided into two historically relevant categories: subband coders (SBCs) and transform
coders (TCs). TCs operate usually with much greater frequency resolution than SBCs. In typical SBCs
uniform polyphase analysis filter banks are used (cf., section 27.7). On the other hand, TCs typically employ
the MDCT [40]. Other types of analysis filter banks, e.g., octave filter banks, can also be very efficiently
used. They can be realized with the discrete wavelet transformation (DWT) discussed in section 27.3 or
with wave digital filters WDFs [43]. Another approach, which is implemented in MPEG-1 layer III audio
coder, is a hybrid filter bank, which is combination of a coarse frequency resolution subband filter bank
followed by a fine frequency resolution transformation (MDCT in this case).

Parallelly, the input signal is also analyzed with a psychoacoustic model filter bank. This filter bank
should estimate a number of nonoverlapping peripheral auditory filters, which cover the whole audible
frequency range. In those audio coders, which for parametric signal description exploit octave analysis
filter banks, this can be just the same filter bank [43]; however, typically, the psychoacoustic model filter
bank is realized separately with the FFT.

Using the psychoacoustic auditory model a global dynamic threshold of hearing is computed, e.g., by
using the way shown in Eq. (27.22) or more precisely in Eq. (27.66b). Then in each analysis filter subband
the respective SMRi is computed with Eq. (27.67). Finally, the mask-to-noise ratio MNR is computed as

(27.60)

where, by SNR(m), the signal-to-noise ratio determined by Eq. (27.38), resulting from an m-bit quan-
tization, is denoted. Within the ith critical band the quantization noise will be inaudible as long as the
MNRi(m) is positive. This observation can be used for efficient dynamic bit allocation, which can be

FIGURE 27.30 General scheme of the transparent audio coder.
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realized, e.g., with the following procedure:

• The bit allocation unit searches for the analysis filter subband with the lowest MNR and allocates
code bits to this subband; then the SNR(m) value is updated for this subband and the actual MNR
is computed with Eq. (27.60).

• The process is repeated until no more code bits can be allocated.

An important problem, resulting from the transformation of the audio signal (via an analysis filter
bank) into the frequency domain, is the appearance of pre-echoes, occurring in silent signal periods followed
by sudden sound attacks (e.g., of a percussive character). This phenomenon is caused by quantization
errors, which are irrelevant in loud and stationary signal parts but are immediately audible in silent signal
parts. In TCs, the inverse transform in the receiver distributes the quantization errors over the whole block
of samples cut with the respective time window. In SBCs, this effect occurs due to transients. A possible
method for suppression of pre-echos is the adaptive window switching (cf., Fig. 27.19) [46]. Windows of
short lengths should be used in nonstationary parts of the signal, while in stationary signal parts wide
windows (improving the overall coding efficiency) should be used. Typically, the block size vary between
N = 64 and N = 1024.

Further reduction of audio bit rate is still possible by resignation from the full perceptual transparency.
In many cases, especially in multimedia and/or in mobile-access applications, a not annoying reduction
of fidelity of some audio components of secondary importance, is acceptable. The whole audio scene
can be divided into a number of individual audio objects: a conversation, a background noise, a back-
ground music, sounds produced by particular sources, etc. These objects can be coded and transmitted
separately. Furthermore, some of them may be added synthetically at the receiver. Such coding philosophy
is used in the so-called structured audio format implemented in the MPEG-4 standard (cf., section 27.10).
By this means, a very flexible scalability of audio quality can be realized. This is very useful when audio
has to be transmitted through channels of varying capacity and/or is to be received with decoders of
various quality and complexity.

27.10 Audio Coding Standards

MUSICAM and MPEG Standards

Among standards for digital coding of high quality audio, the most important role play moving picture
expert group (MPEG) standards designed for various communications and multimedia applications.
They are elaborated as a result of efforts of the working group WG 11 within the International Organi-
zation for Standardization (ISO/IEC).

The first result was MPEG-1 standard IS 11172 designed (in its audio part) for a two-channel audio,
approximately with a CD quality [16]. This standard consists of three layers I, II, and III, of increasing
efficiency. For transparent transmission, they enable bit rates of 384, 192, and 128 kb/s, respectively.
MPEG-1 supports sampling rates of 32, 44.1, and 48 ksamples/s. Layer II of MPEG-1 is based on the
masking-pattern universal subband integrated coding and multiplexing (MUSICAM) standard designed
for digital audio broadcasting (DAB) system. Layer III of MPEG-1 has become very popular in Internet
due to ∗.mp3 audio files.

The next step of the standardization was MPEG-2 AAC (advanced audio coding) standard IS 13818
designed for high definition television (HDTV) [17]. It offers a multichannel (surround) sound for high
spatial realism, provides low bit rate audio (below 64 kb/s), and also supports low sampling rates of 16,
22.05, and 24 ksamples/s.

The third generation standard MPEG-4 has been designed for a broad area of various communica-
tions (especially mobile access) and multimedia applications and is characterized by high flexibility,
scalability, and universalism [18]. It supports bit rates between 2 and 64 kb/s and offers additional services
as text-to-speech (TTS) conversion, structured audio format, and interface between TTS and synthetic
moving face models (talking heads), which are driven from speech.
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A new standard MPEG-7, named the multimedia content description interface, is aimed to support as
broad range of communications and multimedia applications as possible [19]. MPEG-7 audio merges
five different technologies: the audio description framework (scalable series, low-level descriptors, and
uniform silence segments), musical instrument timbre descriptors, sound recognition tools, spoken
content descriptors, and melody descriptors. In order to describe the low-level audio features, regions
of similarity and dissimilarity within the sound are searched for. This can be done either using samples
taken at regular intervals or segments of samples. The relevant samples are then further manipulated to
form a scalable series, which allows to progressively down-sample the data contained in a series, according
to the application, bandwidth, or storage requirements.

The scope of newest MPEG-21 standard is the integration of technologies enabling transparent and
augmented use of multimedia resources across a wide range of networks and devices to support functions
such as content creation, content production, content distribution, content consumption and usage, content
packaging, intellectual property management and protection, content identification and description, finan-
cial management, user privacy, terminals and network resource abstraction, content representation and
event reporting [20].

MUSICAM as well as MPEG-1 layers I and II coders have the same structure shown in Fig. 27.31. The
input audio signal is transmitted via a 32-band polyphase analysis filter bank (Fig. 27.22(a)) with equally
spaced passbands, according to Eqs. (27.50a–c). All subband filters with impulse responses Hi(n), i = 0,
1,…,31, determined by Eq. (27.48), are obtained by modulation of a single prototype lowpass filter with
the impulse response h(n), as is illustrated in Fig. 27.22(c). Their output signals are critically decimated.
For a 48 ksamples/s sampling rate, each subband filter has a passband width of 750 Hz. Although these
filters are highly overlapping, they can guarantee a perfect (or at least a nearly perfect) signal reconstruc-
tion (via the synthesis filter bank in Fig. 27.22(b)) due to the power complementarity. For instance, at
multiples of 750 Hz the respective filters, i.e., those with neighboring passbands exhibit a 3 dB attenuation.

Samples of subband signal components are quantized with a number of uniform midtread quantizers
with 3, 5, 7,…,65,535 possible levels. Blocks of samples are formed (e.g., blocks of 12 samples in layer I)
and divided by a scalefactor ssf selected in such a way that the sample with the largest magnitude is scaled
to 1. By this means a quite large overall dynamic range of approximately 126 dB is reached. Proper
quantizers are selected with the dynamic bit allocation algorithm described in section 27.9, controlled

FIGURE 27.31 Structure of MUSICAM and MPEG-1 layer I and II coders: (a) encoder, (b) decoder.
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by a psychoacoustic audibility model, in order to meet the bit rate and the global threshold of hearing
requirements. The whole procedure is described below.

The psychoacoustic model filter bank is based on a 512-point FFT for layer I and on a 1024-point
FFT for layers II and III. First, samples of the spectral power density P(k) and the respective level LP(k)
in decibels are computed:

(27.61a)

(27.61b)

where X(k) are DFT spectrum samples defined by Eq. (27.39a). Next in each of i = 0, 1,…,31 subbands
the signal SPL is computed as

(27.62)

where LPmax i is the maximum LP(k) value in ith subband.
Next, the relevant masker levels LPm(zj) are searched for: tone masker levels LPtm(zj), j = 1, 2,…,mtm,

and noise masker levels LPnm(zj), j = 1, 2,…,mnm. Then, the masking indices are computed (in dB):

(27.63a)

(27.63b)

where by zj the jth critical band index in Bark is denoted.
Individual masking threshold levels are computed (in dB) as

(27.64a)

(27.64b)

for tone maskers and for noise maskers, respectively. The so-called masking function v(∆z, zj) is defined by

(27.65)

where ∆z = z − zj. Expression (27.65) gives significant values in range −3 ≤ ∆z ≤ 8 only. Outside this
region we can assume that v(∆z, zj) → −∞.

Using expression (27.22), the global threshold of hearing Lptg (Fig. 27.14) can now be computed (in dB):

(27.66a)

where Lptq(z) is the threshold of audibility in quiet. Consequently,

(27.66b)

for ith subband is computed over all critical bands j contained in this subband. Now in each subband
the signal-to-mask ratio SMRi can be computed (in dB):

(27.67)

P k( ) X k( ) 2=

LP k( ) 10 P k( )10log=

Lpi max LPmax i, 20 log10 32768ssf max i( ) 10–[ ]=
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Finally, the dynamic bit allocation algorithm based on maximization of the mask-to-noise ratio MNRi(m)
defined with Eq. (27.60) assign bits to each block and each subband.

Dolby AC-3 Standard

Dolby AC-3 standard gives the possibility for multichannel audio compression (from 1 to 5.1 channels)
[3]. The bit stream ranges from 32 to 640 kb/s. Coding operation in AC-3 format is realized using time
division aliasing cancelation (TDAC) filter bank. The sample block of length 512 transformed into
frequency domain and each sample block is overlapped by 256 samples. Spectral components are repre-
sented in floating-point format and the exponents and mantissas are coded separately. A set of exponents
is coded into the spectral envelope. One AC-3 synchronization frame is composed for six audio blocks
(1536 audio samples). Simplified AC-3 encoder is presented in Fig. 27.32. The psychoacoustic model
used in the AC-3 standard divides the audio band (0–24 kHz) into 50 subbands.

Adaptive Transform Acoustic Coding ATRAC Standard

An adaptive transform acoustic coder (ATRAC) is developed by Sony and is designed for the MiniDisk
system [3]. The bit stream of 16-bit audio signal with sampling rate 44.1 ksamples/s (705.6 kbps) is
reduced into 146 kbps. The input audio signal (512 samples per channel) is decomposed into spectral
coefficients, which are grouped into 52 block floating units (BFUs). The spectral coefficients are normal-
ized in each BFU, which then are quantized to the specified word length. Using QMF filters, the time-
frequency analysis unit divides input signal into three subbands: 0–5.5 kHz, 5.5–11 kHz, and 11–22 kHz.
Each subband is transformed into the frequency domain using the MDCT. Fig. 27.33 presents the general
scheme of the ATRAC encoder.

FIGURE 27.32 AC-3 encoder.

FIGURE 27.33 ATRAC encoder.
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28.1 Introduction

Rapid increases in performance and decreases in cost of computing platforms and digital image acqui-
sition and display subsystems have made digital images ubiquitous. Continued improvements promise
to make digital video as widely used, opening a broad range of new application areas. In this chapter,
some of the key aspects of this evolving data type are examined.

Some Historical Perspective

The use of image sequences substantially predates modern video displays (see, e.g., [1]). As might be
expected, the primary initial motivation for using these sequences was the depiction of motion. One of
the earlier approaches to motion picture display was invented by the mathematician William George
Horner in 1834. Originally called the Daedaleum (after Daedalus, who was supposed to have made figures
of men that seemed to move), it was later called the Zoetrope (life turning) or the Wheel of Life. The
Daedaleum works by presenting a series of images, one at a time, through slits in a circular drum, as the
drum is rotated.

Although this device is very simple, it illustrates some important concepts. First and foremost, the
impression of motion conveyed by a sequence of images is illusory. It is the result in part of a property
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of the human visual system (HVS) referred to as persistence of vision. An image is perceived to remain for
a period of time after it has been removed from view. This illusion is the basis of all motion picture displays.
When the drum in the device is rotated slowly, the images appear (as they are) a disjoint sequence of still
images. As the speed of rotation increases (the images are displayed at a higher rate), a point is reached at
which motion is perceived, even though the images appear to “flicker.” Further increasing the speed of
rotation, a point is reached at which flicker is no longer perceived (the critical fusion frequency). Finally,
the slits in the drum illustrate a critical aspect of this illusion. In order to perceive motion from a sequence
of images, the stimulus the individual images represent must be removed for a period of time between
each presentation. If not, the sequence of images simply merges into a blur, and no motion is perceived.

These concepts (rooted in the nature of human visual motion perception) are fundamental, and are
reflected in all motion picture acquisition and display systems.

Video

Unlike image sequences on film, video is represented as a 1-D signal, derived by scanning the camera
sensor. The fact that the signal is derived by scanning imposes a particular signal structure, an example
of which is shown in Fig. 28.1 for a noninterlaced system.

In principle, scanning can be done in many ways. The simplest in concept is noninterlaced line-
continuous scanning (which yields the video signal just discussed). This approach is also referred to as
progressive scanning. Viewed in the 2-D plane (either at the camera or display), this approach appears
as shown in Fig. 28.2.

The bandwidth of the resulting video signal is relatively high. Transmitting a frame of 485 lines,1 with
a 4:3 aspect ratio (NTSC resolution), at 60 frames per second requires roughly twice the available channel
bandwidth (6 MHz). Sixty updates per second are needed to avoid wide area flicker, dictated by the
temporal response of the HVS. One approach to reducing the signal bandwidth is to send half as many
samples (lines). This cannot be accomplished by reducing the frame rate to 30 frames per second, because

FIGURE 28.1 A noninterlaced video signal.

FIGURE 28.2 A noninterlaced scanning raster.

1NTSC consists of 525 lines, but only ∼485 lines are active.

Line blanking
(for line retrace)

Frame blanking
(for frame retrace)

Retrace
(not visible)
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an unacceptable degree of flicker is introduced. Reducing the spatial resolution of each frame results in
unacceptable blurring. Interlaced scanning is a compromise between the two approaches.

As used in NTSC television, each complete scan (a frame) contains 525 lines and occurs every 1/30 s.
The frame consists of two fields (even and odd), 262  lines each. These fields are interlaced to form the
frame. Fields are scanned every 1/60 s (reducing flicker). Because two fields are interlaced to form one
frame, this is called 2:1 interlace. Two interlaced fields (NTSC) are shown in Fig. 28.3.

Image acquisition and display via scanning has several disadvantages. Nonideal aspects of the scanning
system (e.g., nonzero spot size), and under some circumstances the act of scanning itself, lead to a
reduction in vertical resolution below that predicted by the sampling theorem. The ratio of the actual to
ideal resolution is called the Kell factor k, 0 ≤ k ≤ 1. Typical values of k are .6 < k < .8, with interlaced
systems having lower k. Scanning also causes distortion when objects in the scene are in motion. For
example, a vertical line in motion will result in a tilted scanned image (not due to the tilt of the scan
line, but because points on the line at the bottom of the screen are reached later than points at the top).
Finally, different points in space within the frame do not correspond to the same point in time. Viewed
in the spatiotemporal volume, each frame is tilted, with the upper left corner of the frame corresponding
to a significantly earlier time than the lower right corner. This can make the accurate analysis of the
image sequence difficult.

Interlaced scanning has additional disadvantages. Interlaced display systems suffer from interline flicker
(particularly in regions of the image with nearly horizontal structure). Interlacing results in reduced
vertical resolution, which increases aliasing. It also increases the complexity of subsequent processing or
analysis (such as motion estimation). Interoperability with other systems, such as computer workstations
(which use noninterlaced displays), is made difficult. Still images extracted from interlaced video (“freeze
frames”) are generally of poor quality. Often only “freeze fields” are provided. This last point can be seen
by considering the case of an edge in horizontal motion (Fig. 28.4). To merge two fields to get a still

FIGURE 28.3 An NTSC frame, formed by interlacing two fields (2:1 interlace).

FIGURE 28.4 The effect of interlace on an edge in horizontal motion.
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image of reasonable quality, or to get a good progressively scanned sequence from an interlaced one, is
a nontrivial problem.

Image Sequences as Spatiotemporal Data

As discussed previously, the scanning process makes the precise specification of an image sequence
difficult (since every spatial point exists at a different time). Interlace complicates matters further. In the
remainder of this chapter, the simplifying assumption will be made that each point in a frame corresponds
to the same point in time. This is analogous to the digitization of motion picture film, or the sequence
which results from a CCD camera with a shutter. It is a reasonable assumption in progressive or interlaced
video systems when scene motion is slow compared to the frame rate. The series of frames are no longer
tilted in the spatiotemporal domain and can be “stacked” in a straightforward way to form a spatiotem-
poral volume (see Fig. 28.5).

28.2 Some Fundamentals

Following are some notational conventions and basic principles used in the balance of this chapter. A
continuous sequence is denoted as u(x, y, t), v(x, y, t), etc., where x, y are the continuous spatial variables
and t is the continuous temporal variable. Similarly, a discrete sequence is denoted as u(m, n, p), v(m, n, p),
etc., where m, n are the discrete (integer) spatial variables and p is the discrete (integer) temporal variable. 

A 3-D System

As in 1-D and 2-D, a 3-D discrete system can be defined as

(28.1)

where H is the system function. In general, this function need be neither linear nor shift invariant. If
the system is both linear and shift invariant (LSI), it can be characterized in terms of its impulse response
h(m, n, p). The linear shift invariant system response can then be written as

(28.2)

FIGURE 28.5 An image sequence represented as a spatiotemporal volume, raytraced to exhibit its internal structure.
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∞

∑
m ′=−∞

∞
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where ‘∗’ denotes (discrete) convolution. Similarly, for the continuous case,

(28.3)

The 3-D Fourier Transform

The 3-D continuous Fourier transform can be expressed as

(28.4)

where ξx, ξy, and ξt are the spatiotemporal frequency variables and f(x, y, t) is a continuous spatiotem-
poral signal. As in the 2-D case, the 3-D Fourier transform is separable:

(28.5)

Also as in the 1-D and 2-D cases, if

(28.6)

then

(28.7)

If h(x, y, t) is the LSI system impulse response, then H(ξx, ξy , ξt) is the frequency response of the system.
The spatiotemporal discrete Fourier transform is defined as

(28.8)

where 0 ≤ h, k, l ≤ N − 1 and WN = .
The inverse transform is

(28.9)

where 0 ≤ m, n, p ≤ N − 1.

Moving Images in the Frequency Domain

Following the discussion in [2], a moving monochrome image can be represented by an intensity
distribution f(x, y, t). The image is static if f(x, y, t) = f(x, y, 0) for all t. The velocity of the image can be
expressed via the image velocity vector

(28.10)

If the (initially static) image translates at a constant velocity , then

(28.11)
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Consider the case of a simple 2-D “image” f(x, t). Let

(28.12)

where ξx and ξt are the spatial and temporal frequency variables. Then the transform pair can be written as 

(28.13)

Now, translation can be represented as a coordinate transformation

(28.14)

where

(28.15)

and rx is the horizontal speed.
Using the expression for the Fourier transform after an affine coordinate transformation (any com-

bination of scaling, rotation, and translation),

(28.16)

where

(28.17)

so that

(28.18)

Example

Consider a simple static image with only two components (Fig. 28.6). As the image undergoes translation
with horizontal speed rx, all temporal frequencies are shifted by −rxξx. Spatial frequency coordinates
remain unchanged. That is, all frequency components of an image moving with velocity rx lie on a line
through the origin, with slope −rx .

FIGURE 28.6 A two-component, 1-D signal in translational motion.
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Extending the analysis to the 3-D case ( f(x, y, t)), let the velocity . Then

(28.19)

Each temporal frequency is shifted by the dot product of the spatial frequency vector  = (ξx, ξy) and the
image velocity vector  = (rx, ry). If the image was originally static, then

(28.20)

Geometrically, the image motion changes the static image transform (which lies in the (ξx, ξy) plane)
into a spectrum in a plane with slope −ry in the (ξy, ξt) plane and −rx in the (ξx, ξt) plane. As in the 2-D
case, the shifted points lie on a line through the origin. Note that this represents a relatively sparse
occupation of the frequency domain (of interest for compression applications). A 3-D volume of data
has been “compressed” into a plane. This compactness is not observed in the spatiotemporal domain.

In summary, the spectrum of a stationary image lies in the (ξx, ξy) plane. When the image undergoes
translational motion, the spectrum occupies an oblique plane which passes through the origin. The
orientation of the plane indicates the speed and direction of the motion. It is, therefore, possible to
associate energy in particular regions of the frequency domain with particular image velocity components.
By filtering specific regions in the frequency domain, these image velocity components can be detected.
As will be seen shortly, other effects (such as the visual impact of temporal aliasing) can also be understood
in the frequency domain.

3-D Sampling

In its simplest form (regular sampling on a rectangular grid, the method used here), 3-D sampling is a
straightforward extension of 2-D (or 1-D) sampling (Fig. 28.8). Given a bandlimited sequence

 (28.21)

with

(28.22)

the continuous sequence can be reconstructed from a discrete set of samples whenever

 (28.23)

FIGURE 28.7 A two-component, 2-D signal in translational motion.
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where are the sampling frequencies. Equivalently, the sequence can be reconstructed if the
intervals between samples are such that

(28.24)

If any of the sampling frequencies fall below the specified rates, the neighboring spectra (replications
of the continuous spectrum, produced by the sampling process) overlap, and aliasing results. A case for
which the temporal sampling frequency is too low is shown in Fig. 28.9. The appearance of aliasing in the
spatial domain, where it commonly manifests as a jagged approximation of smooth high contrast edges,
is relatively familiar and intuitive. The effect of sampling at too low a rate temporally is perhaps less so.

Consider the earlier simple example of a 1-D image with only two components, moving with velocity rx.
The continuous case, as derived previously, is shown in Fig. 28.10. is the frequency of the static image.

FIGURE 28.8 A sampled spatiotemporal signal (image sequence).

FIGURE 28.9 An image sequence with insufficiently high sampling in the temporal dimension.
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Suppose this image is sampled along the temporal dimension at a sampling frequency less than the
Nyquist rate ( ), and the image is reconstructed via an ideal lowpass filter with temporal cutoff
frequencies at plus and minus half the sampling frequency (Fig. 28.11). What is the visual effect of the
aliased components?

As seen previously, the velocity of motion is reflected in the slope of the line connecting the components.
For the situation shown, a sinusoidal grid (of the same frequency as the original) moving in the opposite
direction, with speed  is observed. As the sampling frequency drops, the velocity decreases,
eventually reaching zero. Continued reduction in results in motion in the same direction as the original
image, increasing in velocity until (at ) the velocities of the two components are identical.

In the simple example just considered, the image was spatially homogeneous, so that the effects of
aliasing were seen throughout the image. In general, this is not the case. As in the 1-D and 2-D cases,
the temporal aliasing effect is seen in regions of the sequence with sufficiently high temporal frequency
components to alias. Circumstances leading to high temporal frequencies include high velocity (large
values of rx in our simple example) and high spatial frequency components with some degree of motion
(high in our example). Higher spatial frequency components require slower speeds to cause aliasing.

A well-known example of temporal aliasing is the so-called “wagon wheel” effect, in which the
wheels of a vehicle appear to move in a direction opposite to that of the vehicle itself. The wheels have

FIGURE 28.10 A continuous, two-component, 1-D signal in translational motion.

FIGURE 28.11 A reconstruction of a sampled 1-D signal with temporal aliasing.

rx ξx 0

ξ t

ξ x 0
- ξx 0

ξx

-rx ξx 0

A line with slope -r,
passing through the
origin.

ξts

ξtN
2rxξx0

=

rxξx0
(ξtN

ξts
– )–

ξts

ξts
0=

ξx0
© 2002 by CRC Press LLC



both high spatial frequency components (due to their spokes) and relatively high rotational velocity.
Hence, aliasing occurs (the wheels appear to rotate in reverse). The vehicle itself, however, which is
moving more slowly and is also generally composed of lower spatial frequency components, moves
forward (does not exhibit aliasing effects).

28.3 The Perception of Visual Motion

Visual perception can be discussed at a number of different levels: the anatomy or physical structure of
the visual system; the physiology or basic function of the cells involved; and the psychophysical behavior
of the system (the response of the system to various stimuli). Following is a brief discussion of visual
motion perception. A more extensive treatment can be found in [3].

Anatomy and Physiology of Motion Perception

The retina (the hemispherical surface at the back of the eye) is the sensor surface of the visual system,
consisting of two major types of sensor elements. The rods are long and thin structures, numbering
approximately 120 million. They provide scotopic (“low-light”) vision and are highly sensitive to motion.
The cones are shorter and thicker, and substantially fewer in number (approximately 6 million per retina).
They are less sensitive than the rods, providing photopic (“high-light”) and color vision. The cones are
much less sensitive to motion.

The rods and cones are arranged in a roughly hexagonal array. However, they are not uniformly
distributed over the retina. The cones are packed in the fovea (hence color vision is primarily foveal).
The rods are primarily outside the fovea. As a result, motion sensitivity is higher outside the fovea,
corresponding to the periphery of the visual field.

Visual information leaves each eye via the optic nerve. The nerves from each eye split at the optic chiasma,
pass through the lateral geniculate nucleus, and continue to the visual cortex. Information is retinotopically
mapped on the cortex (organized as in the original scene, but reversed). Note, however, that the mapping
is not one-to-one (one retinal rod or cone to one cortical cell). As mentioned previously, approximately
120 million rods and 6 million cones are found in each eye, but only 1 million fibers in the associated optic
nerve. This 126:1, apparently visually lossless compression, is one of the motivations for studying percep-
tually inspired image and video compression techniques, as discussed later in this chapter.

To achieve this compression, each cortical cell receives information from a set of rods and/or cones.
This set makes up the receptive field for that cell. The response of a cortical cell to stimuli at different
points in this field can be measured (e.g., via a moving spot of light) and plotted just as one might plot
the impulse response of a 2-D filter.

Physiologically, nothing mentioned so far seems specifically adapted to the detection (or measurement)
of motion. It might be reasonable to expect to find cells, which respond selectively to, e.g., the direction
of motion. There appear to be no such cells in the human retina (although other species do have retinal
cells that respond in this way); however, cells in the mammalian striate cortex exhibit this behavior (the
complex cells).

How these cells come to act this way remains under study. However, most current theories fit a common
organizational structure [4], shown in Fig. 28.12. The input receptive fields are sensitive both to the
spatial location and spatial frequency of the stimulus. The role, if any, of orientation is not widely agreed
upon. The receptive field outputs are combined, most likely in a nonlinear fashion, in the directionally
sensitive subunits to produce an output highly dependent on the direction and/or velocity of the stimulus.
The output of these subunits are then integrated both spatially and temporally.

Consider the hypothetical directionally sensitive mechanism in more detail for the case of rightward
moving patterns (Fig. 28.13). For example, suppose the receptive fields are symmetric, and C is a com-
parator which requires both inputs to be high to output a high value. If a pattern, which stimulates
receptive field 1 (RF1), moves a distance ∆x in time ∆t so that it falls within receptive field 2 (RF2), then
the comparator will “fire.”
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Although it is simple, such a model establishes a basic link between moving patterns on the retina and
the perception of motion. Additional insight can be obtained by considering the problem from a systems
perspective.

The Psychophysics of Motion Perception

Spatial Frequency Response

In the case of spatial vision, much can be understood by modeling the visual system as shown in Fig. 28.14.
The characteristics of the filter H(ξx, ξy) have been estimated by determining the threshold visibility of
sine wave gratings. The resulting measurements indicate visual sensitivity as a function of spatial fre-
quency that is approximately lowpass in nature. The response peaks in the vicinity of 5 cycles/degree,
and falls off rapidly beyond 10 cycles/degree.

FIGURE 28.12 A common organizational structure for modeling complex cell behavior.

FIGURE 28.13 A mechanism for the directionally sensitive detection of motion.

FIGURE 28.14 A simple block diagram modeling spatial vision.
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If it were separable (that is, H(ξx, ξy) could be determined by finding H(ξx) and H(ξy) independently),
with H(ξx) = H(ξy), or isotropic, the spatial response could be characterized via a single 1-D function.
Although the assumption of separability is often useful, the spatial CSF of the human visual system is not,
in fact, separable. It has been shown that visual sensitivity is reduced at orientations other than vertical
and horizontal. This may be due to the predominance of vertical and horizontal structures in the visual
environment, leading to the development or evolution of the visual system to be particularly sensitive at
(or conversely, less sensitive away from) these orientations. This is referred to as the “oblique effect.” 

Temporal Frequency Response

The most straightforward approach to extending the above spatial vision model to include motion is to
modify the CSF to include temporal frequency sensitivity, so that H(ξx, ξy) becomes H(ξx, ξy, ξt).

One way to estimate the temporal frequency response of the visual system is to measure the flicker
response. Although the flicker response varies with intensity and with the spatial frequency of the
stimulus, it is again generally lowpass, with a peak in response in the vicinity of 10 Hz. The attenuation
of the response above 10 Hz increases rapidly, so that at 60 Hz (the field rate of NTSC television) the
flicker response is very low.

It is natural, as in the 2-D case, to ask whether the spatiotemporal frequency response H(ξx, ξy, ξt) is
separable with respect to the temporal frequency. There is evidence to believe that this is not the case.
The flicker response curves for high and low spatial frequency patterns do not appear consistent with a
separable spatiotemporal response.

Reconstruction Error

To a first approximation, the data discussed above indicate that the HVS behaves as a 3-D lowpass filter,
with bandlimits (for bright displays) at 60 cycles/degree along the spatial frequency axes, and 70 Hz
temporally. This approximation is useful in understanding errors, which may occur in reconstructing a
continuous spatiotemporal signal from a sampled one. Consider the case of an image undergoing simple
translational motion. This spatiotemporal signal occupies an oblique plane in the frequency domain.
With sampling, the spectrum is replicated (with periods determined by the sampling frequencies along
the respective dimensions) to fill the infinite 3-D volume. The spectrum of a sufficiently sampled (aliasing-
free) image sequence produced in this way is shown in Fig. 28.15.

The 3-D lowpass reconstruction filter (the spatiotemporal CSF) can be approximated as an ideal
lowpass filter, as shown in Fig. 28.16. As long as the cube in Fig. 28.16 completely encloses the spectrum

FIGURE 28.15 The spectrum of a sampled image undergoing uniform translational motion.
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centered at DC, without including neighboring spectra, there is no reconstruction error. This case
included no aliasing. If aliasing is included (the sample rate during acquisition is too low), the aliased
components will be visible only if they fall within the passband of the CSF filter.

The above frequency domain analysis explains some important aspects of human visual motion percep-
tion. Other observations are not as easily explained in this way, however. As observed in [5], perceived
motion is local (different motions can be seen in different areas of the visual field) and spatial-frequency
specific (individual motion sensors respond differently (selectively) to different spatial frequencies). These
two observations suggest an underlying representation that is local in both the spatiotemporal and
spatiotemporal-frequency domains. Examples of such representations will be discussed in the following
subsection.

The Effects of Eye Motion

The analysis of motion perception described previously assumed a “passive” view. That is, any change in
the pattern of light on the retinal surface is due to motion in the scene. That this is not the case can be
seen by considering the manner in which static images are viewed. They are not viewed as a whole, but
in a series of “jumps” from position to position. These “jumps” are referred to as saccades (French for
“jolt” or “jerk”).

Even at the positions where the eye is “at rest” it is not truly static. It undergoes very small motions
(microsaccades) of 1–2 min of arc. In fact, the eye is essentially never at rest. It has been shown that if
the eye is stabilized, vision fades away after about a second. The relevance of this to the current discussion
is that although the eye is in constant motion, so that the intensity patterns on the retina are constantly
changing, when viewing a static scene no motion is perceived. Similar behavior is observed when viewing
dynamic scenes [6]. Obviously, however, in the case of dynamic scenes motion is often perceived (even
though the changes in intensity patterns on the retina are not necessarily greater than for static images). 

Two hypotheses might explain these phenomena. The first is that the saccades are so fast that they are
not sensed by the visual system; however, this does not account for the fact that motion is seen in dynamic
scenes, but not static ones. The second is that the motion sensing system is “turned off” under some
circumstances (the theory of corollary discharge). The basic idea is that the motor signals that control
eye movement are also involved in the perception of motion, so that when intensity patterns on the
retina change and there is a motor signal present, no motion is perceived. When intensity patterns change
but there is no motor signal, or if there is no change in intensity patterns but there is a motor signal,
motion is perceived. The latter situation corresponds to the tracking of moving objects (smooth pursuit).

FIGURE 28.16 An ideal 3-D, lowpass reconstruction filter, with cutoff frequencies determined by the spatiotem-
poral contrast sensitivity funtion.
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The first hypothesis (the less plausible of the two) can be easily modeled with temporal linear filters. The
second, more interesting behavior can be modeled with a simple comparator network. 

28.4 Image Sequence Representation

What Does “Representation” Mean?

The term “representation” may require some explanation. Perhaps the best way to do so is to consider
some examples of familiar representations. For simplicity, 2-D examples will be used. Extension to 3-D
is relatively straightforward.

The Pixel Representation

The pixel representation is so common and intuitive that it is usually considered to be “the image.” More
precisely, however, it is a linear sum of weighted impulses:

(28.25)

where u(m, n) is the image, u(m′, n′) are the coefficients of the representation (numerically equal to the
pixel values in this case), and the δ(m − m′, n − n′) play the role of basis functions.

The DFT

The next most familiar representations (at least to engineers) is the DFT, in which the image is expressed
in terms of complex exponentials:

 (28.26)

where 0 ≤ m, n ≤ N − 1 and

(28.27)

In this case v(h, k) are the coefficients of the representation and the 2-D complex exponentials 
are the basis functions.

The choice of one representation over the other (pixel vs. Fourier) for a given application depends on
the image characteristics that are of most interest. The pixel representation makes the spatial organization
of intensities in the image explicit. Because this is the basis of the visual stimulus, it seems more “natural.”
The Fourier representation makes the composition of the image in terms of complex exponentials
(“frequency components”) explicit. The two representations emphasize their respective characteristics
(spatial vs. frequency) to the exclusion of all others. If a mixture of characteristics is desired, different
representations must be used.

Spatial/Spatial-Frequency Representations

A natural mixture is to combine frequency analysis with spatial location. An example of a 1-D representation
of this type (a time/frequency representation) is a musical score. The need to know not only what the
frequency content of a signal is, but where in the signal the frequency components exist is common to many
signal, image, and image sequence processing tasks [7]. A variety of approaches [8,9] can be used to develop
a representation to facilitate these tasks. The most intuitive approach is the finite-support Fourier
transform.
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The Finite-Support Fourier Transform

This approach to local frequency decomposition has been used for many years for the analysis of time-
varying signals. In the 2-D continuous case,

(28.28)

where

(28.29)

f(x′, y′) is the original image, and h(x − x′, y − y′) is a window centered at (x, y).
The properties of the transform depend a great deal on the properties of the window function. Under

certain circumstances (i.e., for certain windows) the transform is invertible. The most obvious case is
for nonoverlapping (e.g., rectangular) windows.

The windowed transform idea can, of course, be applied to other transforms, as well. An example that
is of substantial practical interest is the discrete cosine transform, with a rectangular nonoverlapping
window:

(28.30)

where h, k = 0, 1, …,N − 1, 

(28.31)

α(k) is defined similarly, and the window dimensions are N × N. This transform is the basis for the well-
known JPEG and MPEG compression algorithms.

The Gabor Representation

This representation was first proposed for 1-D signal analysis by Dennis Gabor in 1946 [10]. In 2-D [11],
an image can be represented as the weighted sum of functions of the form

(28.32)

where

(28.33)

is a 2-D Gaussian function, σx and σy determine the extent of the Gaussian along the respective axes,
(x0, y0) is the center of the function in the spatial domain, and ( ) is the center of support in the
frequency domain. A representative example of a Gabor function is shown in Fig. 28.17.

Denoting the distance between spatial centers as D and the distance between their centers of support
in the frequency domain as W, the basis is complete if WD = 2π. These functions have a number of
interesting aspects. They achieve the lower limits of the Heisenburg uncertainty inequalities:

(28.34)
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where ∆x, ∆y , ∆ξx, and ∆ξy are the effective widths of the functions in the spatial and spatial-frequency
domains. By this measure, then, these functions are optimally local. Their real and imaginary parts also
agree reasonably well with measured receptive field profiles. The basis is not orthogonal, however.
Specifically, the Gabor transform is not equivalent to the finite-support Fourier transform with a Gaussian
window. For a cross-section of the state of the art in Gabor transform-based analysis, see [12].

The Derivative of Gaussian Transform

In 1987, Young [13] proposed a receptive field model based on the Gaussian and its derivatives. These
functions, like the Gabor functions, are spatially and spectrally local and consist of alternating regions
of excitation and inhibition in a decaying envelope. Young showed that Gaussian derivative functions
more accurately model the measured receptive field data than do the Gabor functions [14].

In [15], a spatial/spatial-frequency representation based on shifted versions of the Gaussian and its
derivatives was introduced (the derivative of Gaussian transform (DGT)). As with the Gabor transform,
although this transform is nonorthogonal, with a suitably chosen basis it is invertible. The DGT has
significant practical advantage over the Gabor transform in that both the basis functions and coefficients
of expansion are real-valued.

The family of 2-D separable Gaussian derivatives centered at the origin can be defined as 

(28.35)

(28.36)

This set can then be shifted to any desired location. The variance σ defines the extent of the functions
in the spatial domain. There is an inverse relationship between the spatial and spectral extents, and the
value of this variable may be constant or may vary with context. 

The 1-D Gaussian derivative function spectra are bimodal (except for that of the original Gaussian,
which is itself a Gaussian) with modes centered at ±Ωm rad/pixel: 

(28.37)

FIGURE 28.17 The real (top) and imaginary (bottom) parts of a representative 2-D Gabor function.
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where m is the derivative order. The order of derivative necessary to center a mode at a particular frequency
is therefore

(28.38)

The Wigner Distribution

The previous examples indicate that a local frequency representation need not have an orthogonal basis.
In fact, it need not even be linear. The Wigner distribution was introduced by Eugene Wigner in 1932
[16] for use in quantum mechanics (in 1-D). In 2-D, the Wigner distribution can be written as

(28.39)

where the asterisk denotes complex conjugation. The Wigner distribution is real valued, so does not have
an explicit phase component (as seen in, e.g., the Fourier transform). A number of discrete approximations
to this distribution (sometimes referred to as pseudo-Wigner distributions) have also been formulated.

Spatial/Scale Representations (Wavelets)

Scale is a concept that has proven very powerful in many applications, and may under some circumstances
be considered as fundamental as frequency. Given a set of (1-D) functions

(28.40)

where the indices j and k correspond to dilation (change in scale) and translation, respectively, a signal
decomposition

(28.41)

emphasizes the scale (or resolution) characteristics of the signal (specified by j) at specific points along
x (specified by k), yielding a multiresolution description of the signal.

A class of functions Wjk(x) that have proven extremely useful are referred to as wavelets. A detailed
discussion of wavelets is beyond the scope of this chapter (see [17–19] for excellent treatments of this
topic); however, an important aspect of any representation (including wavelets) is the resolution of the
representation, and how it can be measured.

Resolution

In dealing with joint representations, resolution is a very important issue. It arises in a number of ways.
In discussing the Gabor representation, it was noted that the functions minimized the uncertainty
inequalities, e.g.,

(28.42)

Note that it is the product that is minimized. Arbitrarily high resolution cannot be achieved in both domains
simultaneously, but can be traded between the two domains at will. The proper balance depends on the
application. It should be noted that the “effective width” measures ∆x, ∆ξx, etc. (normalized second moment
measures) are not the only way to define resolution. For example, the degree of energy concentration could
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be used (leading to a different “optimal” set of functions, the prolate spheroidal functions). The appropri-
ateness of the various measures again depends on the application. Their biological (psychophysical) rele-
vance remains to be determined.

All the previously mentioned points are relevant for both spatial/spatial-frequency and spatial/scale
representations (wavelets). Wavelets, however, present some special considerations. Suppose one wishes
to compare the resolutions of time/frequency and wavelet decompositions? Specifically, what is the
resolution of a multiresolution method? This question can be illustrated by considering the 1-D case,
and examining the behavior of the two methods in the time-frequency plane (Fig. 28.18).

In the time/frequency representation, the dimensions ∆t and ∆ξt remain the same throughout the
time-frequency plane. In wavelet representations the dimensions vary, but their product remains constant.
The resolution characteristics of wavelets may lead one to believe that the uncertainty of a wavelet
decomposition may fall below the bound in Eq. (28.42). This is not the case. The tradeoff between ∆t
and ∆ξt simply varies. The fundamental limit remains.

A final point relates more specifically to the representation of image sequences. The HVS has a specific
(bandlimited) spatiotemporal frequency response. Beyond indicating the maximum perceivable frequen-
cies (setting an upper bound on resolution) it seems feasible to exploit this point further, to achieve a
more efficient representation. Recalling the relationship between motion and temporal frequency, a
surface with high spatial frequency components, moving quickly, has high temporal frequency compo-
nents. When it is static, it does not. The characteristics of the spatiotemporal CSF may lead us to the
conclusions that static regions of an image require little temporal resolution, but high spatial resolution,
and that regions in an image undergoing significant motion require less spatial resolution (due to the
lowered sensitivity of the CSF), but require high temporal resolution (for smooth motion rendition). 

The first conclusion is essentially correct (although not trivial to exploit). The second conclusion,
however, neglects eye tracking. If the eye is tracking a moving object, the spatiotemporal frequency
characteristics experienced by the viewer are very similar to those in the static case, i.e., visual sensitivity
to spatial structure is not reduced significantly.

28.5 The Computation of Motion

Many approaches are used for the computation of motion (or, more precisely, the estimation of motion
based on image data). Before examining some of these approaches in more detail, it is worthwhile to
review the relationship between the motion in a scene and the changes observed in an image of the scene.

The Motion Field

The motion field [20] is determined by establishing a correspondence between the motion of points in
the scene (the real world) and the motion of points in the image plane. This correspondence is found
geometrically, and is independent of the brightness patterns in the scene (e.g., the presence or absence
of surface textures, changes in luminance, etc.).

FIGURE 28.18 The resolution of a time/frequency representation and a wavelet representation in the time-
frequency plane.
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Consider the situation in Fig. 28.19. At a particular instant in time, a point Pimage in the image
corresponds to some point Pobject on the surface of an object. The two points are related via the perspective
projection equation. Now, suppose the object point Pobject has velocity (vx, vy, vz ) relative to the camera.
The result is a velocity  for the point Pimage in the image plane. The relationship between the
velocities can be found by differentiating the perspective projection equation with respect to time. In
this way, a velocity vector can be assigned to each image point, yielding the motion field.

Optical Flow

Usually, the intensity patterns in the image move as the objects to which they correspond move. Optical
flow is the motion of these intensity patterns. Ideally, optical flow and the motion field correspond; but
this is not always the case. For a perfectly uniform sphere rotating in front of an imaging system, there
is shading over the surface of the sphere (due to the shape of the sphere), but it does not change with
time. The optical flow is zero everywhere, while the motion field is not. For a fixed sphere illuminated
by a moving light source, the shading changes with time, although the sphere is not in motion. The
optical flow is nonzero, while the motion field is zero.

Furthermore, optical flow is not uniquely determined by local information in the changing image.
Consider, for example, a region with uniform brightness which does not vary with time. The “most
likely” optical flow value is zero, but (as long as there are corresponding points of equal brightness in
both images) there are many “correct” flow vectors. What we would like is the motion field, but what
we have access to is optical flow. Fortunately, the optical flow is usually not too different from the motion
field.

The Calculation of Optical Flow

Wide variety of approaches are used for the calculation of optical flow. The first, below, is a conceptually
simple yet very widely used method. This approach is particularly popular for video compression, and
is essentially that used in MPEG-1 and 2.

Optical Flow by Block Matching

The calculation of optical flow by block-matching is the most commonly used motion estimation technique.
The basic approach is as follows. Given two successive images from a sequence, the first image is partitioned
into nonoverlapping blocks (e.g., 8 × 8 pixels in size, Fig. 28.20(left)). To find the motion vector for each
block, the similarity (e.g., via mean-squared error) between the block and the intensities in the neighborhood
of that block in the next frame (Fig. 28.20(right)) is calculated. The location that shows the best match is
considered the location to which the block has moved. The motion vector for the block is the vector
connecting the center of the block in frame n to the location of the best match in frame n + 1.

FIGURE 28.19 The motion field based on a simple pinhole camera model.
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The approach is simple, but a number of things must be consider. The size of the search neighborhood
must be established, which in turn determines the maximum velocity that can be estimated. The search
strategy must be decided, including the need to evaluate every potential match location and the precision
with which the match locations must be determined (e.g., is each pixel a potential location? Is subpixel
accuracy required?). The amount of computation time/power available is a critical factor in these deci-
sions. Even at its simplest, block matching is computationally intensive. If motion estimates must be
computed at frame rate (1/30 s) this will have a strong effect on the algorithm design. A detailed discussion
of these and related issues can be found in [21].

Optical Flow via Intensity Gradients

The calculation of optical flow via intensity gradients, as proposed by Horn and Shunck [22], is a classical
approach to motion estimation.

Let f(x, y, t) be the intensity at time t for the image point (x, y), and let rx(x, y) and ry(x, y) be the x and
y components of the optical flow at that point. Then for a small time interval δt, 

(28.43)

This single equation is not sufficient to determine rx and ry . It can, however, provide a constraint on
the solution. Assuming that intensity varies smoothly with x, y, and t, the left hand side of equation 28.43
can be expanded in a Taylor’s series:

(28.44)

Ignoring the higher order terms, canceling f(x, y, t), dividing by δt and letting δt → 0,

(28.45)

or

(28.46)

where fx, fy, and ft are estimated from the image sequence.
This equation is called the optical flow constraint equation, since it constrains rx and ry of the optical

flow. The values of (rx, ry) which satisfy the constraint equation lie on a straight line in the (rx, ry) plane.
A local brightness measurement can identify the constraint line, but not a specific point on the line. Note
that this problem cannot really be solved via, e.g., adding an additional constraint. It is a fundamental
aspect of the image data. A “true” solution cannot be guaranteed, but a solution can be found.

FIGURE 28.20 Motion estimation by block matching.
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To view this limitation in another way, the constraint equation can be rewritten in vector form, as

(28.47)

so that the component of optical flow in the direction of the intensity gradient ( fx, fy)
T is

(28.48)

However, the component of the optical flow perpendicular to the gradient (along isointensity contours)
cannot be determined. This is a manifestation of the aperture problem. If the motion of an oriented
element is detected by a unit that is small compared with the size of the moving element, the only
information that can be extracted is the component of motion perpendicular to the local orientation of
the element. For example, looking at a moving edge through a small aperture (Fig. 28.21), it is impossible
to tell whether the actual motion is in the direction of a or of b.

One way to work around this limitation is to impose an explicit smoothness constraint. Motion was
implicitly assumed smooth earlier, when a Taylor’s expansion was used and when the higher order terms
were ignored. Following this approach, an iterative scheme for finding the optical flow for the image
sequence can be formulated:

(28.49)

and 

(28.50)

FIGURE 28.21 An instance of the aperture problem.
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where the superscripts n and n + 1 indicate the iteration number, λ is a parameter allowing a tradeoff
between smoothness and errors in the flow constraint equation, and  and  are local
averages of rx and ry . The updated estimates are thus the average of the surrounding values, minus an
adjustment (which in velocity space is in the direction of the intensity gradient).

The previous discussion relied heavily on smoothness of the flow field. However, there are places in
image sequences where discontinuities should occur. In particular, the boundaries of moving objects
should exhibit discontinuities in optical flow. One approach taking advantage of smoothness but allowing
discontinuities is to apply segmentation to the flow field. In this way, the boundaries between regions
with smooth optical flow can be found, and the algorithm can be prevented from smoothing over these
boundaries. Because of the “chicken-and-egg” nature of this method (a good segmentation depends on
a good optical flow estimate, which depends on a good segmentation …), it is best applied iteratively. 

Spatiotemporal-Frequency-Based Methods

It was shown in section 28.2 that motion can be considered in the frequency domain, as well as in the
spatial domain. A number of motion estimation methods have been developed with this in mind. If the
sequence to be analyzed is very simple (has only a single motion component, for example) or if motion
detection alone is required, the Fourier transform can be used as the basis for motion analysis, as examined
in [23–25]; however, due to the global nature of the Fourier transform, it cannot be used to determine
the location of the object in motion. It is also poorly suited for cases in which multiple motions exist
(i.e., when the scene of interest consists of more than one object moving independently), since the
signatures of the different motions are difficult (impossible, in general) to separate in the Fourier domain.
As a result, although Fourier analysis can be used to illustrate some interesting phenomena, it cannot be
used as the basis of motion analysis methods for the majority of sequences of practical interest.

To identify the locations and motions of objects, frequency analysis localized to the neighborhoods of
the objects is required. Windowed Fourier analysis has been proposed for such cases [26], but the accuracy
of a motion analysis method of this type is highly dependent on the resolution of the underlying
transform, in both the spatiotemporal and spatiotemporal-frequency domains. It is known that the
windowed Fourier transform does not perform particularly well in this regard. Filterbank-based
approaches to this problem have also been proposed, as in [27]. The methods examined below each
exploit the frequency domain characteristics of motion, and provide spatiotemporally localized motion
estimates.

Optical Flow via the 3-D Wigner Distribution
Jacobson and Wechsler [28] proposed an approach to spatiotemporal-frequency, based derivation of
optical flow using the 3-D Wigner distribution (WD). Extending the 2-D definition given earlier, the 3-D
WD can be written as

(28.51)

It can be shown that the WD of a linearly translating image with velocity  = (rx, ry) is

(28.52)

which is nonzero only when rxξx + ryξy + ξt = 0.
For a linearly translating image, then, the local spectra  contain energy only in a plane

(as in the Fourier case) the slope of which is determined by the velocity. Jacobson and Wechsler proposed
to find this plane by integrating over the possible planar regions in these local spectra (via a so-called
“velocity polling function”), using the plane of maximum energy to determine the velocity.
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Optical Flow Using 3-D Gabor Filters
Heeger [29] proposed the use of 3-D Gabor filters to determine this slope. Following the definition
discussed for 2-D, a 3-D Gabor filter has the impulse response

(28.53)

where

(28.54)

To detect motion in different directions, a family of these filters is defined, as shown in Fig. 28.22.
In order to capture velocities at different scales (high velocities can be thought of as occurring over large

scales, because a large distance is covered per unit time), these filters are applied to a Gaussian pyramidal
decomposition of the sequence. Given the energies of the outputs of these filters, which can be thought
of as sampling spatiotemporal/spatiotemporal-frequency space, the problem is analogous to that shown
in Fig. 28.23. The slope of the line (corresponding to the slope of the plane which characterizes motion)

FIGURE 28.22 The (stylized) power spectra of a set of 3-D Gabor filters.

FIGURE 28.23 Velocity estimation in the frequency domain via estimation of the slope of the spectrum.
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must be found via a finite set of observations. In this method, this problem is solved under the assumption
of a random texture input (the plane in the frequency domain consists of a single constant value).

Optical Flow via the 3-D Gabor Transform
One shortcoming of a filterbank approach (if the filters are not orthogonal or do not provide a complete
basis) is the possibility of loss. Using the 3-D Gabor functions as the basis of a transform resolves this
problem. A sequence of dimension N × M × P can then be expressed at each discrete point (xm, yn, tp) as

(28.55)

where J ⋅K ⋅L ⋅Q ⋅R ⋅S = N ⋅M ⋅P for completeness, the functions denote the
Gabor basis functions with spatiotemporal and spatiotemporal-frequency centers of (xq, yr, ts) and

 respectively, and  are the associated coefficients. Note that these coefficients
are not found by convolving with the Gabor functions, since the functions are not orthogonal. See [30]
for a survey and comparison of methods for computing this transform.

In the case of uniform translational motion, the slope of the planar spectrum is sought, yielding the
optical flow vector . A straightforward approach to estimating the slope of the local spectra [31,32] is
to form vectors of the ξx, ξy, and ξt coordinates of the basis functions that have significant energy for
each point in the sequence at which basis functions are centered. From equation 20, the optical flow vector
and the coordinate vectors at each point are related as

(28.56)

where  An LMS estimate of the optical flow vector at a given point can then be found using
the pseudo inverse of S:

(28.57)

In addition to providing a means for motion estimation, this approach has also proven useful in
predicting the apparent motion reversal associated with temporal aliasing [33].

Wavelet-Based Methods
A number of wavelet-based approaches to this problem have also been proposed. In [34–37], 2-D wavelet
decompositions are applied frame-by-frame to produce multi-scale feature images. This view of motion
analysis exploits the multiscale properties of wavelets, but does not seek to exploit the frequency domain
properties of motion. In [38], a spatiotemporal (3-D) wavelet decomposition is employed, so that some
of these frequency domain aspects can be utilized. Leduc et al. explore the estimation of translational,
accelerated, and rotational motion via spatiotemporal wavelets in [39–44]. Decompositions designed and
parameterized specifically for the motion of interest (e.g., rotational motion) are tuned to the motion
to be estimated. 

28.6 Image Sequence Compression

Image sequences represent an enormous amount of data (e.g., a 2-hour movie at the US HDTV resolution
of 1280 × 720 pixels, 60 frames/second progressive, with 24 bits/pixel results in 1194 Gbytes of data).
This data is highly redundant, and much of it has minimal perceptual relevance. One approach to reducing
this volume of data is to apply still image compression to each frame in the sequence (generally referred
to as intraframe coding). For example, the JPEG still image compression algorithm can be applied frame
by frame (sometimes referred to as Motion-JPEG or M-JPEG). This method, however, does not take
advantage of the substantial correlation, which typically exists between frames in a sequence. Compression
techniques which seek to exploit this temporal redundancy are referred to as interframe coding methods.
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Motion Compensated Prediction/Transform Coders

Predictive coding is based on the idea that to the degree that all or part of a frame in a sequence can be pre-
dicted, that information need not be transmitted. As a result, it is usually the case that the better the pre-
diction, the better the compression that can be achieved. The simplest possible predicator is to assume that
successive frames are identical (differential coding); however, the optical flow, which indicates the motion
of intensity patterns in the image sequence, can be used to improve the predictor. Motion compensated
prediction uses optical flow information, together with a reconstruction of the previous frame, to predict
the content of the current frame.

Quantization (and the attendant loss of information) is inherent to lossy compression techniques.
This loss, if introduced strategically, can be exploited to produce a highly compressed sequence, with
good visual quality. Transforms (e.g., the DCT), followed by quantization, provide a convenient mech-
anism to introduce (and control) this loss. Following this approach, a hybrid (motion compensated
prediction/transform) encoder and decoder are shown in Figs. 28.24 and 28.25. This hybrid algorithm
(with the addition of entropy coders and decoders) is the essence of the H.261, MPEG-1, MPEG-2, and
US HDTV compression methods [45].

Perceptually Based Methods

Although algorithms such as MPEG exploit the properties of visual perception (principally in the for-
mulation of quantization matrices), it is not especially central to the structure of the algorithm. There
is, for example, no explicit model of vision underlying the MPEG-1 and 2 algorithms. In perceptually-
based (sometimes called second generation) methods, knowledge of the HVS takes a much more central
role. This view of the problem is particularly effective (and necessary) when designing compression
algorithms intended to operate at very high compression ratios (e.g., over 200:1).

FIGURE 28.24 A hybrid (predictive/transform) encoder.

FIGURE 28.25 A predictive/transform decoder.
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The methods in this subsection are inspired by specific models of visual perception. The first is an
approach based on a very comprehensive vision model, performing spatial and temporal frequency
decomposition via filters designed to reflect properties of the HVS. The second and third are techniques
using visually relevant transforms (the Gabor and derivative of Gaussian transforms, respectively) in an
otherwise conventional hybrid (predictive/transform) framework. Finally, a method based on spatiotem-
poral segmentation (following the contour/texture model of vision) will be discussed.

The Perceptual Components Architecture

The perceptual components architecture [46] is a framework for the compression of color image
sequences based on the processing thought to take place in the early HVS. It consists of the following
steps. The input RGB image sequence is converted into an opponent color space (white/black (WB),
red/green (RG), and blue/yellow (BY)). The sequence is filtered spatially with a set of frequency and
orientation selective filters, inspired by the frequency and orientation selectivity of the HVS. Filters based
on the temporal frequency response of the visual system are applied along the temporal dimension. The
filtered sequences are then subsampled using a hexagonal grid, and subsampled by a factor of two in the
temporal dimension. Uniform quantization is applied within each subband, with higher frequency
subbands quantized more coarsely. The WB (luminance) component is quantized less coarsely overall
than the RG and BY (chrominance) components. The first-order entropy of the result provides an estimate
of the compression ratio.

Note that there is no prediction or motion compensation. This is a 3-D subband coder, where temporal
redundancy is exploited via the temporal filters. For a 256 × 256, 8 frame segment of the “football”
sequence (a widely used test sequence depicting a play from an American football game), acceptable
image quality was achieved for about 1 bit/pixel (from 24 bits/pixel). Although this is not very high
compression, the sequence used is more challenging than most. Another contributing factor is that the
subsampled representation is 8/3 the size (in terms of bits) of the original, which must be overcome
before any compression is realized.

Very-Low-Bit-Rate Coding Using the Gabor Transform

In discussing the Gabor transform previously, it was stated that the basis functions of this transform are
optimally (jointly) local. In the context of coding, there are three mechanisms that can be exploited to
achieve compression, all of which depend on locality: the local correlation between pixels in the sequence;
the bounded frequency response of the human visual system (as characterized by the CSF); and visual
masking (the decrease in visual sensitivity near spatial and temporal discontinuities). To take advantage
of local spatial correlation, the image representation upon which a compression method is based must
be spatially local (which is why images are partitioned into blocks in JPEG, MPEG-1&2, H.261, etc.). If
the CSF is to be exploited (e.g., by quantizing high frequency coefficients coarsely) localization in the
spatial-frequency domain is required. To exploit visual masking, spatial locality (of a fairly high degree)
is required. 

The Gabor transform is inherently local in space, so the partitioning of the image into blocks is not
required (hence no blocking artifacts are observed at high compression ratios). Its spatial locality also
provides a mechanism for exploiting visual masking, while its spatial-frequency locality allows the
bandlimited nature of the HVS to be utilized.

An encoder and decoder based on this transform are shown in Figs. 28.26 and 28.27 [47]. Note that
they are in the classic hybrid (predictive/transform) form. This codec does not include motion compen-
sation, and is for monochrome image sequences. 

Applying this method to a 128-by-128, 8 bit/pixel version of the Miss America sequence resulted in
reasonable image quality at a compression ratio of approximately 335:1.2 At 24 frames per second, the
associated bit rate is 9.4 kbits/s (a bitrate consistent, e.g., with wireless videotelephony).

2Not including the initial frame, which is intracoded to 9.1 kbits (a compression ratio of 14).
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Video Coding Using the Derivative of Gaussian Transform

As mentioned previously, the derivative of Gaussian transform (DGT) has properties similar to the Gabor
transform, but with the practical advantage that it is real-valued. This makes it particularly well-suited to
video compression. In [48] the hybrid codec structure shown in Figs. 28.24 and 28.25 is adapted to the
DGT, replacing the DCT (and IDCT), and adapting the quantization scheme to fit the visibility of the
DGT basis, via a simple quantization mask.

Comparable results to those of the standard H.261 (DCT-based) codec are obtained for bitrates around
320 kbits/s (5 channels in the p∗64 model).

Object-Based Coding by Split and Merge Segmentation

Object-based coding reflects the fact that scenes are largely composed of distinct objects, and that these
objects are perceived as boundaries surrounding fields of shading or texture (the contour/texture theory of
vision). Encoding an image or sequence in this way requires segmentation to identify the constituent objects.
This view of compression, which also facilitates interaction and editing, underlies the MPEG-4 video com-
pression standard [49]. Although the method that will be described is different in detail from MPEG-4, as
one of the earliest documented object-based systems, it illustrates many important aspects of such systems.

In this approach [50], 3-D (spatiotemporal) segmentation is used to reduce the redundant information
in a sequence (essentially identifying objects within the sequence), while retaining information critical
to the human observer. The sequence is treated as a single 3-D data volume, the voxels of which are
grouped into regions via split and merge. The uniformity criterion used for the segmentation is the
goodness-of-fit to a 3-D polynomial. The sequence is then encoded in terms of region boundaries (a binary
tree structure) and region interior intensities (the coefficients of the 3-D polynomial).

The data volume is first split such that each region is a parallelepiped over which the gray level variation
can be approximated within a specified mean squared error (Fig. 28.28). Regions are split by quadrants,
following the octree strategy. A region adjacency graph is constructed, with nodes corresponding to each
region and links between the nodes assigned a cost indicating the similarity of the regions. A high cost
indicates low similarity. Regions are merged, starting with regions with the lowest cost, and the region
adjacency graph is updated. The resulting regions are represented using a pyramidal (binary tree)
structure, with the regions labeled so that adjacent regions have different labels.

FIGURE 28.26 A Gabor transform-based video encoder.

FIGURE 28.27 The associated Gabor transform-based decoder.
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Using 16 frames from the “Secretary” sequence, the compression ratio achieved was 158:1 (a bitrate
of 83 kbits/s). A total of 5740 parallelepipeds (1000 regions) were used.

28.7 Conclusions

In this chapter, some of the fundamental aspects and algorithms in the processing of digital video were
examined. Continued improvements in computing performance make many methods that previously
required specialized platforms (or were primarily of research interest due to computational require-
ments) practical. In addition to bringing high-end applications to the desktop, numerous new applica-
tions are thus enabled, in areas as diverse as medical imaging, entertainment, and human-computer
interaction.
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č

© 2002 by CRC Press LLC



35. Y.-T. Wu, T. Kanade, J. Cohn, and C.-C. Li. Optical flow estimation using wavelet motion model.
In Proc. IEEE Int. Conf. on Computer Vision, pp. 992–998, Bombay, India, January 4–7, 1998.

36. G. Van der Auwera, A. Munteanu, G. Lafruit, and J. Cornelis. Video coding based on motion
estimation in the wavelet detail image. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, vol. 5, pp. 2801–2804, Seattle, WA, May 12–15, 1998.

37. C. P. Bernard. Discrete wavelet analysis: a new framework for fast optic flow computation. In Proc.
5th European Conf. on Computer Vision, vol. 2, pp. 354–368, Freiburg, Germany, June 2–6, 1998.

38. T. J. Burns, S. K. Rogers, M. E. Oxley, and D. W. Ruck. Discrete, spatiotemporal, wavelet multi-
resolution analysis method for computing optical flow. Optical Engineering, 33(7):2236–2247, 1994.

39. J.-P. Leduc. Spatio-temporal wavelet transforms for digital signal analysis. Signal Processing, 60(1):
23–41, July 1997.

40. J.-P. Leduc, J. Corbett, M. Kong, V. Wickerhauser, and B. Ghosh. Accelerated spatio-temporal wavelet
transforms: an iterative trajectory estimation. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, vol. 5, pp. 2781–2784, Seattle, WA, May 12–15, 1998.

41. J.-P. Leduc, J. R. Corbett, and M. V. Wickerhauser. Rotational wavelet transforms for motion analysis,
estimation and tracking. In Proc. IEEE Int. Conf. on Image Processing, vol. 2, pp. 195–199, Chicago, IL,
October 4–7, 1998.

42. J.-P. Leduc and J. R. Corbett. Spatio-temporal continuous wavelets for the analysis of motion on
manifolds. In Proc. IEEE-SP Int. Symp. on Time-Frequency and Time-Scale Analysis, pp. 57–60,
Pittsburgh, PA, October 6–9, 1998.

43. M. Kong, J.-P. Leduc, B. K. Ghosh, J. Corbett, and V. M. Wickerhauser. Wavelet-based analysis of
rotational motion in digital image sequences. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, vol. 5, pp. 2777–2780, Seattle, WA, May 12–15, 1998.

44. J. Corbett, J.-P. Leduc, and M. Kong. Analysis of deformational transformations with spatio-temporal
continuous wavelet transforms. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing,
vol. 6, pp. 3189–3192, Phoenix, AZ, March 15–19, 1999.

45. A. N. Netravali and B. G. Haskell. Digital Pictures—Representation, Compression, and Standards.
Plenum Press, New York, 1995.

46. A. B. Watson and C. L. M. Tiana. Color motion video coded by perceptual components. In SID ’92
Digest of Technical Papers, vol. XXIII, pp. 314–317, 1992.

47. T. R. Reed and A. E. Soohoo. Very-low-bit-rate coding of image sequences using the Gabor transform.
Journal of the Society for Information Display, 3(2), September 1995.

48. J. A. Bloom and T. R. Reed. On the compression of video using the derivative of Gaussian transform.
In Proc. Thirty Second Annual Asilomar Conference on Signals, Systems, and Computers, pp. 865–869,
Pacific Grove, California, November 1–4, 1998.

49. R. Koenen, editor. MPEG-4 Overview. ISO/IEC JTC1/SC29/WG11 N3747, La Baule, October 2000.
50. P. Willemin, T. R. Reed, and M. Kunt. Image sequence coding by split and merge. IEEE Transactions

on Communications, 39(12), December 1991.
© 2002 by CRC Press LLC



                       
29
Low-Power Digital

Signal Processing

29.1 Introduction
29.2 Power Dissipation in Digital Circuits
29.3 Low-Power Design in Programmable DSPs

Voltage Scaling • Architectural Power
Optimizations • Circuit Power Optimizations

29.4 Low-Power Design in Application-Specific DSPs
Variable Supply Voltage Schemes • Nonstandard Arithmetic 
Structures • Algorithmic/Architectural Exploitation of Data 
Distribution Properties • Power vs. Quality and Precision 
Trade-offs

29.5 Conclusion

29.1 Introduction

During the last few years, signal processing integrated circuits (programmable or not) have become
primary experimentation grounds for low power digital design techniques. There have been two main
motivating factors for this design trend. The first (and most significant) is the abundant proliferation
and market penetration of cellular phones. During the first phase in the life cycle of cellular systems,
programmable digital signal processings (DSPs) were used to implement the voice coding component.
As DSPs became more powerful and flexible, they took over most of the baseband tasks within a cel-
lular handset such as channel coding (convolutional coding and decoding), encryption/decryption,
and demodulation/equalization [1]. Consumer preferences placed significant importance on handset
size and battery life and this in turn created pressure in the design community to produce higher
performance and lower power signal processors. The second motivating factor is the introduction of
a new breed of consumer electronic devices such as digital cameras, portable digital video and audio
players, wireless-enabled personal digital assistants that require substantial signal processing capa-
bility and at the same time are battery-powered and can benefit substantially from reduced energy
consumption. 

The low-power trends in the signal processing domain will definitely continue in the coming years
with the introduction of 3G wireless and the corresponding wideband code-division multiple-access
(WCDMA) physical transmission channel, and also with emerging wireless computing platforms such
as sensor data processing systems [2].

In this chapter, an overview of commonly used low-power techniques in programmable digital signal
processors, as well as embedded DSP subsystems for custom applications, are presented.

Thucydides Xanthopoulos
Caveo Networks Inc.
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29.2 Power Dissipation in Digital Circuits

This section provides a brief overview of power dissipation basics to render this document self-contained.
Four major sources of power dissipation are used in digital circuits:

• Switching or dynamic power (Psw)

• Short-circuit or direct-path power (Psc)

• Leakage power (Pleak)

• Static power (Pstat)

The total chip power is given by the following Eq. (29.1):

(29.1)

The switching power dissipation is the dominant component and is due to the charging and discharging
of all capacitive nodes in the circuit. It is given by Eq. (29.2):

(29.2)

where a is the switching activity (0 ≤ a ≤ 1), C is the total capacitance of all capacitive nodes in the circuit,
VDD is the supply voltage, and f is the clock frequency. In case the internal nodes of the circuit do not
experience a full voltage swing from 0 V to VDD, Eq. (29.2) is modified as follows: 

 (29.3)

where Vswing is the low voltage swing.
Short-circuit power (Psw) is dissipated when there is a transient direct path from VDD to ground during

switching: During the rising (or falling) transition of static CMOS gates from VTN to VDD – VTP (VDD –
VTP to VTN) a direct path from VDD to ground exists through a PMOS and NMOS stack that are both in
their ON region. If the rise and fall times of the digital circuit are kept well under control (a small fraction
of the period), short-circuit power is rarely a design issue. A comprehensive analysis on short-circuit
power in static CMOS circuits can be found in [3]. 

Two main types of leakage power are available. The first is subthreshold leakage and involves finite
channel conductance in the NMOS and PMOS OFF regions. The second is reverse bias junction leakage
and it involves source and drain-to-substrate PN junction leakage. Figure 29.1 shows the subthreshold
and junction leakage components. 

The subthreshold current is typically the dominant component of leakage power. Low-voltage process
technologies that rely on reduced threshold voltages to maintain performance are especially susceptible
to increased subthreshold leakage. Threshold reduction results in large increases in leakage currents as
Idsat a percentage of device. Leakage currents can be especially important in low activity embedded DSP
systems (i.e., pagers) that are mostly in standby mode. In such cases, system battery life is mainly dependent
on Pleak. Techniques for reducing Pleak include the use of multiple VT devices (MTCMOS) [4] and
substrate bias control variable threshold CMOS [5]. Commercial signal processors use such techniques
for leakage reduction [6]. 

FIGURE 29.1 Leakage current components.
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29.3 Low-Power Design in Programmable DSPs

Programmable, general-purpose DSPs have experienced substantial reduction in power dissipation over
the last 15–20 years. Figure 29.2 (data reproduced from [1]) shows an exponential reduction in power
per million multiply-accumulate operations per second (MMACS) for a family of Texas Instruments’
(TI) DSPs (TMS320). In this section, we examine several design trends that have contributed to increased
power efficiency.

Voltage Scaling

As shown in Fig. 29.2, the design supply voltage of programmable DSPs has been reduced substantially
during the last 15–20 years. DSP performance is mostly driven by the sample data rate on which the
processor operates as opposed to pure clock frequency, as is the case in the general-purpose micropro-
cessor world. Adding multiple execution units in parallel to speed up DSP computational kernels with
small code dependencies permits designers to reduce the required clock frequencies and in response
reduce the supply voltage with important power benefits [7,8]. Voltage scaling may also be implemented
without proportional performance degradation if the threshold voltages are scaled accordingly. In such
case, techniques such as multiple-threshold CMOS (MTCMOS) are employed [6] to control leakage
power. Voltage scaling has a dramatic effect on power efficiency due to the square law dependence on
VDD in Eq. (29.2).

Architectural Power Optimizations

Traditionally, programmable DSP chips have included support for frequently used DSP operations and
addressing modes. Such operations include multiple parallel multiply-accumulate operations used to
implement efficiently computation kernels such as FIR/IIR filters and linear transformation operations
[9]. In the last few years, we have seen programmable DSPs that include native support for Vitterbi
decoding [7]. The Vitterbi algorithm [10] is a computationally efficient maximum likelihood estimator
for convolutional decoding used in cellular phone and modem applications. Programmable DSPs usually
include hardware support for an Add Compare Select (ACS) operation used to eliminate the nonoptimal
trellis paths during the decoding process [9]. The (TI) TMS320C54x architecture includes an explicit
compare, select and store unit (CSSU), which decouples the path metric computation from the path
selection process. 

Maximum datapath efficiency and minimum control overhead has become of paramount importance
in DSPs because of reduced power dissipation in addition to performance benefits [11]. Increased
datapath parallelism can allow the DSP designer to reduce the clock frequency and power supply for

FIGURE 29.2 Power dissipation trends in TI DSPs (data reproduced from [1]).
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additional power benefits. Efficient hardwired instructions can reduce control overhead and minimize
communication among functional units thus reducing switched capacitance in Eq. (29.2). 

General-purpose DSPs typically include instructions that place them in multiple levels of standby
modes [6]. As an example, a DSP processor can be in full operational mode, in level 2 standby mode
(computational units powered down, peripheral circuits and PLL on), in level 1 standby mode (only PLL
on) or in sleep mode (everything including PLL is powered down except for a small sleep circuit capable
of ramping up the PLL and powering on the rest of the units). Digital PLL designs help in the imple-
mentation of multiple idle states because they facilitate fast PLL frequency ramping sequences and fast
switching between various standby modes. Depending on the application, such software-induced standby
modes can provide substantial power savings. 

DSP algorithms usually involve the repetitive execution of a small set of instructions (kernel). Most
programmable DSPs include hardware support for tight loops. A standard software loop implementation
requires the maintenance and update of a loop index, a compare instruction, and a conditional branch to
the beginning of the loop. The loop overhead can easily slow down a DSP kernel by a substantial factor.
DSPs include hardware support for both single and multiple instruction loops (i.e., REPEAT instruction)
[11]. A single instruction loop repeats a single instruction multiple times without maintaining a loop
index and by fetching it only once from memory. A multiple instruction loop on the other hand must
repeatedly fetch the instructions from memory each time the processor executes the loop. Hiraki et al.
[12] have proposed an interesting low power optimization for multiple instruction loops that has wide
applicability in programmable DSPs. A small decoded instruction buffer (DIB) is provided that stores
decoded instructions during the first iteration into the loop. Subsequent iterations do not engage the
instruction memory and decode unit, but fetch the decoded instructions from the DIB. Case studies have
indicated 40% power savings when a DIB is implemented in a DSP for certain multimedia applications. 

Recently, the Berkeley Pleiades project [13] has introduced a 1-V heterogeneous reconfigurable DSP
targeted to wireless baseband processing. The architecture consists of multiple “satellite” arithmetic
processors, on-chip FPGA sections, on-chip memory banks, address generators, and an embedded ARM
core. All these heterogeneous units are interconnected with a hierarchical reconfigurable network. The
ARM core is responsible for the online reconfiguration through a dedicated bus. According to the Pleiades
computation model, the embedded microprocessor core executes the high-level control and spawns
arithmetic-intensive DSP kernels to the satellites. The flow of control is returned to the ARM core when
all the satellite operations have completed. Run-time reconfiguration makes such an architecture very
power-efficient compared to conventional programmable DSPs. A Pleiades silicon implementation is
reported to implement baseband wireless functions at 10–100 MOPS/mW. 

Circuit Power Optimizations

Most of the DSPs available in the market today include some form of fine-grain, clock-gating mechanism
for power reduction. DSPs are very well suited for clock-gating because of the regular datapath structure
and the small control structures (which typically cannot employ fine-grain gated clocks). A typical
datapath pipeline stage employing clock-gating is shown in Fig. 29.3. Signals EN0 and EN1 are the stage
clock enables that are latched 180° ahead of time and computed by the control section. A master clock
is distributed to the gating clock drivers, which are typically amortized across the entire datapath width
of the pipeline. Clock-gating not only saves clock and flip-flop power, but also prevents the combinational
logic between pipeline stages from switching. The main down side of clock-gating is that it can present
some difficulties in static timing closure because of increased uncertainty during the calculation of setup
and hold time constraints. Clock-gating reduces the switching activity factor a in Eq. (29.2).

On-chip memory blocks (SRAMs and ROMs) are typically optimized for low power: Memory blocks
are partitioned in multiple banks so that a small fraction of the total memory array is activated during
a memory access [6,8]. Moreover, address bits are typically allocated in such a fashion among row decoders
and column decoders such that sequential memory accesses do not activate the row decoders during
each cycle [8].
© 2002 by CRC Press LLC



         
29.4 Low-Power Design in Application-Specific DSPs

Low-power design approaches in application-specific DSPs exhibit more breadth and innovation due to
the fact that such designs target a well defined problem as opposed to a wide range of possible applications.
Classification of such design techniques can by no means be complete due to continuous novelties in
circuit and system designs improving DSP system power performance. In this section, technology and
low-level circuit issues are not addressed because they were briefly addressed earlier and are also relevant
to general-purpose DSP systems. Instead, the focus is on unique application-specific power reduction
techniques that have been reported in the literature during the last few years. 

Variable Supply Voltage Schemes

Embedded adaptive supply scaling has been the focus of multiple investigators due to the potential for
substantial power savings in both fixed and variable throughput systems. 

Nielsen et al. [14] have demonstrated a self-timed adaptive supply voltage system that takes advantage
of variable computational loads (Fig. 29.4(a)). The self-timed system operates in a synchronous envi-
ronment and is enclosed between rate-matching FIFO buffers. The state detecting circuit monitors the
state of the input FIFO, which is an indicator of remaining workload. If the buffer is relatively full, the
supply voltage is increased and the circuit operates faster to keep up with the load. If the FIFO is relatively
empty the supply voltage is reduced because the circuit operates too fast. In this way, the supply voltage
is optimally adjusted to the actual workloads maintaining the throughput requirements at all times. Wei
and Horowitz [15] have investigated techniques for low-power switching supplies for similar applications. 

Gutnik [16] has demonstrated a synchronous implementation of a variable supply voltage scheme that
uses FIFO state to generate both a supply voltage and a corresponding variable clock using a closed-loop
ring oscillator (Fig. 29.4(b)). As the FIFO fills up the clock speed increases to sustain the higher workload
and as the FIFO empties the clock slows and the supply voltage decreases for quadratic power reduction.

FIGURE 29.3 Clock-gating.

FIGURE 29.4 Adaptive supply voltage schemes.
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Power savings are higher than simple clock gating mechanisms due to the square law dependence of
power dissipation on supply voltage. Buffering and workload averaging makes this scheme applicable to
fixed throughput but variable algorithmic load applications (i.e., video compression/decompression and
digital communication applications). 

Goodman and Dancy [17] have demonstrated a low power encryption processor with an embedded
high-efficiency DC-DC converter that takes advantage of the time-varying data rates found in wireless
encryption applications. Power reduction varying from 1× up to 5.33× has been reported depending on
data throughput variations. 

Nonstandard Arithmetic Structures

Fixed-function DSP VLSI implementations (i.e., digital filters with constant coefficients, frequency domain
data transformations such as FFT and DCT) can benefit a lot from hardwired arithmetic structures,
different from standard multipliers and adders. One such important structure is the distributed arithmetic
(DA) implementation, which has found many applications in past chips [18,19]. 

DA [20,21] is a bit-serial operation that computes the inner product of two vectors (one of which is
a constant) in parallel. In the DSP domain, this operation finds applications in FIR computations, linear
transform computation, and any other DSP kernel which involves dot products. Its main advantage is
the efficiency of mechanization and the fact that no multiplications are necessary. DA has an inherent
bit serial nature but this additional latency can be hidden if the number of bits in each variable vector
element is equal or similar to the number of elements in each vector. In other words, DA is very efficient
in computing long dot products of relatively low precision numbers. 

As an example of DA mechanization let us consider the computation of the following inner product
of M-dimensional vectors a and x where a is a constant vector:

(29.4)

Let us further assume that each vector element xk is an N-bit 2’s complement binary number and can
be represented as

 (29.5)

where  is the ith bit of vector element xk. Note that bk0 is the least significant bit (LSB) of xk

and bk(N−1) is the sign bit. 
Substituting Eq. (29.5) in Eq. (29.4) yields (after interchanging the double summation order):

 (29.6)

Let us consider the term in brackets:

 (29.7)

Because bkn , qn has only 2M possible values. Such values can be precomputed and stored in
a ROM of size 2M. The bit serial input data ({b0i, b1i,…, bki} for i = 0, 1,…, N − 1) is used to form the
ROM address, and the ROM contents can be successively added in an accumulation structure to form
the outer sum of Eq. (29.6). Successive scalings with powers of 2 can be achieved with an arithmetic shifter
in the accumulator feedback path. Some additional control circuit is necessary to ensure that the partial
sum is subtracted as opposed to being added to the total at sign bit time (negative term in Eq. (29.6)).
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After N cycles (where N is the total bitwidth of the xk vector elements) the final result y has converged to
its final value in the accumulator.

Figure 29.5 shows a detailed example of a DA computation. The structure shown computes the dot
product of a 4-element vector X and a constant vector A. All 16 possible linear combinations of the
constant element vectors (Ai) are stored in a ROM. The variable vector X is forming the ROM address,
MSB-first. The figure assumes that the Xi elements are 4-bit 2’s complement integers (bit 3 is the sign
bit.) Every clock cycle, the RESULT register adds 2× its previous value to the currently addressed ROM
contents. In addition, the 4-shift registers that hold the variable vector X are shifted to the right. The
sign timing pulse Ts is activated when the ROM is addressed by the sign bit (bit 3) of the vector elements.
In this case, the accumulator subtracts the addressed ROM contents to implement the first negative term
of Eq. (29.6). After four cycles, the dot product has been produced within the RESULT register. 

The power advantages of DA versus multiply-accumulate can be summarized as follows:

1. ROM accesses can be more energy efficient than multiplications.
2. A ROM and accumulator (RAC) structure can be much more area efficient than a multiplier and

accumulator (MAC) structure. In such case, wires tend to be shorter and less capacitive. 
3. If the number of elements in the vectors forming the dot product is greater than the bit precision

of the variable vector, then DA structure can be clocked slower than the sample rate and take
advantage of voltage scaling techniques. Essentially, such a configuration is an interesting form of
parallelism.

4. A DA RAC structure is an ideal arithmetic unit for approximate processing (trading off power
dissipation vs. output quality). This property will be expanded upon in the subsection on “Power
vs. Quality and Precision Trade-offs.”

Algorithmic/Architectural Exploitation of Data Distribution Properties

Fixed-function DSP systems typically operate on data streams that exhibit common distribution prop-
erties. Some examples are:

1. Data streams related to human aural and visual perception (uncompressed audio and video
samples): Such streams typically exhibit large spatial and temporal correlation and reduced dynamic
range.

2. Data streams of compressed video or image data in the frequency domain: Typically, such streams
contain large numbers of zero-valued coefficients indicating the lack of high spatial frequencies
in natural images.

FIGURE 29.5 Distributed arithmetic ROM and accumulator (RAC) structure.
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A priori knowledge of data stream distribution can be exploited at the algorithmic and architectural level
for computation minimization and power reduction.

Nielsen and Sparso [22] observed that 16-bit sampled speech data samples exhibit significant corre-
lation, in addition to a predominance of small signal values. As a result, they have proposed a sliced
datapath for a digital hearing aid filter bank to exploit the small magnitude of the input samples. The
arithmetic datapath has been partitioned in an MSB and an LSB slice. The MSB slice is only engaged
when the input bitwidth requires it. Activation of the slices is performed by using special data tags that
indicate the presence of sign extension bits in the MSB input slice. Additional circuit overhead is required
for the computation and update of the tags. Dynamic bitwidth adaptation is coarse and can only be
performed on a slice basis. This scheme results in data-dependent power reduction and processing time. 

Xanthopoulos [23] has demonstrated a DA-based dicrete cosine transform (DCT) [24] architecture
that exploits correlation in the incoming image or video samples for computation minimization and
power reduction. DCT is a frequency domain data transform widely used in video and still image
compression standards such as MPEG [25] and JPEG [26]. The 8-point one-dimensional DCT transform
is defined as follows:

(29.8)

where c[u] = 1/  if u = 0 and 1 otherwise. 
Image pixels are locally well correlated and exhibit a certain number of common most significant bits.

These bits constitute a common-mode DC offset that only affects the computation of the DC DCT
coefficient (X[0] in Eq. (29.8)) and is irrelevant for the computation of the higher spectral (AC) coeffi-
cients (X[1] X[7] in Eq. (29.8)). The DCT chip in [23] includes adaptive-bitwidth DA computation
units that reject common most significant bits for all AC coefficient computations resulting in arithmetic
operations with reduced bitwidth operands, thus reducing switching activity. The bit-serial nature of the
DA operation allows very fine grain (1-bit) adaptation to the input dynamic range as opposed to the
coarse slice-level adaptation in [22].

An interesting algorithmic adaptation to data distribution properties has been demonstrated in [27].
The chip computes the inverse discrete cosine transform (IDCT) and is targeted to MPEG-compressed
video data. The 8-point, one-dimensional IDCT is defined as follows:

 (29.9)

where c[u] = 1/  if u = 0 and 1 otherwise. 
Numerous fast IDCT algorithms can minimize the number of multiplications and additions implied

by Eq. (29.9) [28,29]. Yet, the statistical distribution of the input DCT coefficients possesses unique
properties that can affect IDCT algorithmic design. Typically, 64-coefficient DCT blocks of MPEG-
compressed video sequences have only 5–6 nonzero coefficients, mainly located in the low spatial fre-
quency positions due to the low pass characteristics of frame sequences [27]. The histogram of Fig. 29.6
shows the frequency of 64-coefficient block occurrence plotted versus the number of nonzero coefficient
content for a typical MPEG sequence. The mode of such distributions is invariably blocks with a single
nonzero spectral coefficient (typically the DC). 

Given such input data statistics, we observe that direct application of Eq. (29.9) will result in a small
average number of operations since multiplication and accumulation with a zero-valued coefficient X[k]
constitutes a NOP [30]. The chip in [27] uses such a direct coefficient-by-coefficient algorithm coupled
with extensive clock-gating techniques to implement the implied NOPs. IDCT computation power of
4.5 mW for MPEG-2 sample rates has been reported.
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Power vs. Quality and Precision Trade-offs

In many DSP applications, lower quality in visual or audio output can be tolerated for reduced power
dissipation. Recently, a number of researchers have resorted to approximate processing as a method for
reducing average system power. Ludwig et al. [31] have demonstrated an approximate filtering technique,
which dynamically reduces the filter order based on the input data characteristics. More specifically, the
number of taps of a frequency-selective FIR filter is dynamically varied based on the estimated stopband
energy of the input signal. The resulting stopband energy of the output signal is always kept under a
predefined threshold. This technique results in power savings of a factor of 6 for speech inputs. Nikol et al.
[32] have demonstrated an adaptive scheme for dynamically reducing the input amplitude of a Booth-
encoded multiplier to the lowest acceptable precision level in an adaptive digital equalizer. Their scheme
simply involves an arithmetic shift (multiplication/division by a power of 2) of the multiplier input
depending on the value of the error at the equalizer output. They report power savings of 20%. 

When the DA operation is performed MSB first (“Variable Supply Voltage Schemes” subsection), it
exhibits stochastically monotonic successive approximation properties. In other words, each successive
intermediate value is closer to the final value in a stochastic sense. An analytical derivation is presented
in [33]. As an example, let us assume that we have a DA structure computing the dot product of two
vectors. Each vector element is 8-bits 2’s complement integer. If we clock the DA structure of Fig. 29.5
for eight full cycles, the full precision value of the dot product will form into the RESULT register. If
instead we clock the DA structure for four cycles and perform a 4-bit arithmetic left shift of the output
in the RESULT register (multiplication by 24), we obtain an approximation of the actual dot product. If
we clock the structure once more (total of five cycles) and then perform a 3-bit arithmetic left shift of the
output (multiplication by 23), we obtain a better approximation. In this way, a DA structure can implement
a fine-grain trade-off between power and precision. 

Xanthopoulos [23] is extensively using this property for power reduction in a DCT application. In
image and video compression applications not all spectral coefficients have the same visual significance.
Typically, a large number of high spatial frequencies are quantized to zero in a lossy image/video com-
pression environment (i.e., JPEG and MPEG) with no significant change in visual quality. The DCT
processor in [23] exploits such different precision requirements on a coefficient basis by reducing the
number of iterations of the DA units that compute the visually insignificant spectral coefficients in a user-
programmable fashion. Figure 29.7 plots average power chip dissipation vs. compressed image quality in
terms of the image peak SNR (PSNR), a widely used quality measure in image processing. The data points
in the graph have been obtained by chip power measurements at different RAC maximum iteration settings.
The data implies that the chip can produce on average 10 additional decibels of image quality per milliwatt
of power dissipation. Figure 29.8 displays the actual compressed images for three (power, PSNR) data
points of Fig. 29.7 for visual appreciation.

FIGURE 29.6 Histogram of Nonzero DCT coefficients in sample MPEG stream.

0
0 16 32 48 64

10000

20000

30000

40000

50000

Number of Nonzero DCT Coefficients

N
um

be
r 

of
 B

lo
ck

s

© 2002 by CRC Press LLC



Amirtharajah et al. [34,36] use a similar DA-based approximate processing technique in a program-
mable ultra-low-power DSP targeted to physiological monitoring. Reduced RAC iterations reduce the
signal to noise ratio of the input signal (effectively increasing the quantization noise) and result in less
reliable heart beat detection. Yet, the reduced performance results in linear power savings, which may be
desirable in certain situations. 

29.5 Conclusion

This chapter has presented a collection of power reduction techniques that applied in DSP applications
during the last few years. Although presented in a categorized form to provide structure in the exposition,
the author does not believe that true low-power design involves a laundry list of power reduction
techniques and blind application to the problem in question. Instead, low-power design involves a vertical
design process and a global optimization across algorithmic, architectural, circuit, and physical design
boundaries. A designer must have a deep understanding of the DSP application under power optimiza-
tion. The best algorithm must be selected, which minimizes a weighted average of the number of
arithmetic operations, memory accesses, on-chip communication, and silicon area. The right boundary
must be achieved between programmability and predefined functionality. Architectural, circuit, and
physical design techniques must then be applied that fully support the algorithmic selection but at the
same time should be allowed to influence such selection in order to achieve optimum results.

The author concludes by enumerating a few case studies, which demonstrate concurrent optimization
across all design phases and as a result have achieved impressive results in a few key DSP application areas.
Chandrakasan et al. [35] have demonstrated a low-power chipset for a portable multimedia terminal.
This work was power optimized from a system perspective and performed a number of functions such as
protocol conversion, synchronization, and video decompression, among others, while consuming under
5 mW of power. Amirtharajah [36] has demonstrated an ultra-low-power programmable DSP for physi-
ological monitoring (heartbeat detection and classification). His techniques involved algorithmic design,

FIGURE 29.7 DCT Chip [my DCT] average power vs. compressed image quality.

FIGURE 29.8 Compressed image quality and power.
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a balanced hybrid architecture containing both customized and programmable units, and appropriate
circuits supporting such architectural choices. The DSP consumes 220 nW at 1 V, 1.2 kHz and includes
embedded support for harvesting energy from ambient sources. Simon [37] has demonstrated a low-
power single chip video encoder with embedded dynamic memory. The compression is performed using
wavelet filtering and a combination of zero-tree and arithmetic coding of filter coefficients. Hooks for
motion estimation are also provided. The chip dissipates on the order of 0.5 mW while compressing an
8-bit gray scale 30 frames/sec, 128 × 128 video stream. Goodman [38] built a programmable reconfig-
urable public key processor that demonstrated 2–3 orders of magnitude of power reduction compared
to software and programmable-logic based implementations while providing similar flexibility and free-
dom in algorithm selection. Finally, Mosch et al. [39] have demonstrated a DSP for a hearing aid chipset
featuring 77 MOPS/mW. Algorithmic and architectural optimizations were heavily employed to achieve
such a result. 
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30.1 Architecture

The set of layers and the corresponding set of protocols are called the architecture of a network. In
designing a layered architecture there are problems that must be solved in several layers. These problems
include addressing and connection establishment, connection termination, nature of channel (e.g., full
or half-duplex), error control and sequencing, flow control, and multiplexing.

OSI Reference Model

Open Systems Interconnect (OSI) Reference Model consists of seven layers: physical, data link, network,
transport, session, presentation, and application.

The physical layer is responsible for transmitting bits over a communication channel.
The data link layer is responsible for providing an error-free line to the higher layers. It provides error

and sequence checking, and implements a system of time-outs and acknowledgements that enables a
transmitter to determine which frames need to be retransmitted due to error or drop out. In addition,
flow control is provided in data link layer.

The network layer provides routing and congestion control services to higher layers. The network
accounting function is obtained in this layer.

The transport layer accepts data in message form from the session layer above it, breaks it into smaller
pieces, usually called packets, and passes the packets to the network layer. It must then ensure that the
packets arrive correctly at the destination host. The transport layer is an end-to-end protocol, as opposed
to layers below it, which are chained. The transport layer may multiplex several sessions over a single
network connection, or it may utilize several connections to provide a high data rate for a session that
requires it. The transport layer may provide either virtual circuit or datagram service to the session layer.
In a virtual circuit, messages are delivered in the order in which they were sent, while in a datagram
service there is no guarantee concerning order of delivery. The transport layer also has the responsibility
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for establishing and terminating connections between hosts across the network and for providing host-
to-host flow control.

The session layer is responsible for establishing and managing connections between two processes.
Session establishment typically requires authentication, billing authorization, and agreement on a set of
parameters that will be in effect for the session. The session layer is also responsible for recovery from a
transport failure and for providing virtual circuit service if the transport layer does not do so.

The presentation layer performs services that are commonly requested by users, such as text compres-
sion, code conversion, file formatting, and encryption. 

The application layer contains routines specific to a particular application.

Networks

LAN

Local area network (LAN) is a privately owned network of up to a few kilometers in size. LANs are used
to connect computers, workstations, and file servers, and attach printers and other devices. The restricted
size of LANs allows for prediction of transmission time, and simplifies network management. Traditional
LANs run at speeds of 10–100 Mbps and have low delay of tens of miliseconds.

Broadcast topologies include bus and ring. In a bus network, at any instant one machine is the master
and is allowed to transmit. At the same time, all other machines are required to refrain from sending.
IEEE 802.3, which is the Ethernet, is a bus-based broadcast network with decentralized control operating
at 10 or 100 Mbps. Computers on an Ethernet can transmit at any time. If two or more packets collide,
each computer waits for a random time and tries again later.

In a ring network, each bit propagates around on its own, not waiting for the rest of the packet to which
it belongs. IEEE 802.5, which is the IBM token ring, is a ring-based LAN operating at 4 and 16 Mbps.

WAN

Wide area network (WAN) covers a large area, a country or a continent. The hosts in WAN are used to
run application programs and are connected by a communication subnet, which consists of transmission
lines and switching elements. A switching element, also called router, is used to forward packets to their
destinations.

Cellular Network

The most widely employed wireless network topology is the cellular network. This network architecture
is used in cellular telephone networks, personal communication networks, mobile data networks, and
wireless local area networks (WLAN). In this network configuration, a service area, usually over a wide
geographic area, is partitioned into smaller areas called cells. Each cell, in effect, is a centralized network,
with a base station (BS) controlling all the communications to and from each mobile user in the cell.
Each cell is assigned a group of discrete channels from the available frequency spectrum (usually radio
frequency). These channels are in turn assigned to each mobile user, when needed.

Typically, BSs are connected to their switching networks using landlines through switches. The BS is
the termination point of the user-to-network interface of a wireless cellular network. In addition, the BS
also provides call setups, cell handoffs and various network management tasks, depending on the type of
network.  

TCP/IP Protocol

Transmission control protocol/Internet protocol (TCP/IP) suite is used in the network and transport layers.
TCP/IP is a set of protocols allowing computers to share resources across the network. Although the protocol
family is referred to as TCP/IP, user datagram protocol (UDP) is also a member of this protocol suite.

TCP/IP protocol suite used as network and transport layers has the following advantages:

1. It is not vendor-specific.
2. It has been implemented on most systems from personal computers to the largest supercomputers.
3. It is used for both LANs and WANs.
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Using TCP/IP also makes the network system portable, and program portability is one of the system
design goals.

The network layer uses Internet protocol (IP). IP is responsible for routing individual datagrams and
getting datagrams to their destination. The IP layer provides a connectionless and unreliable delivery
system. It is connectionless because it considers each IP datagram independent of all others and any
association between datagrams must be provided by the upper layers. Every IP datagram contains the
source address and the destination address so that each datagram can be delivered and routed indepen-
dently. The IP layer is unreliable because it does not guarantee that IP datagrams ever get delivered or
that they are delivered correctly. Reliability must be provided by the upper layers.

Transport layer uses UDP and transmission control protocol (TCP). TCP is a connection-oriented
protocol that provides a reliable, full-duplex, byte stream for the multimedia communication process.
TCP is responsible for breaking up the message into datagrams, reassembling them at the other end,
resending anything that got lost, and putting everything back in the right order. TCP handles the
establishment and termination of connections between processes, the sequencing of data that might be
received out of order, the end-to-end reliability (checksums, positive acknowledgments, timeouts), and
the end-to-end flow control. 

UDP is a connectionless protocol for user processes. Unlike TCP, which is a reliable protocol, there is
no guarantee that UDP datagrams ever reach their intended destination. UDP is less reliable than TCP
but transfers data faster because they are not held up by earlier messages awaiting retransmission. TCP
protocol is used for file transfer that requires reliable, sequenced delivery, where real-time delivery may
not be of utmost importance.

Mobile IP Protocols

In TCP/IP an application is connected with another application through a router. Each host in Internet
has a unique address. An IP address is a 32-bit binary number that can also be used in a dotted notation.
IP addresses contain two parts: network address which identifies the network to which the host is attached,
and local address which identifies the host. Local address can be separated into two parts, subnet address
and local address. 

The hierarchical address makes routing simple. A host that wants to send packets to another host only
needs to send packets to the network to which the target host is attached. The host does not need to
know the inside of the network; however, a computer’s IP address cannot be changed during connection
and communication. If the user wants to move the computer to the other area while using it, this will
be difficult because the physical IP address of the computer must be changed in a different subnet. To
solve this problem, a number of protocols have been proposed: virtual IP (VIP), loose source routing IP
(LSRIP), and Internet engineering task force mobile IP (IETF-MIP).

VIP

VIP uses two, 32-bit IP-style addresses to identify mobile hosts: one is named virtual IP (VIP) address,
the other is named temporary IP (TIP) address. VIP address is the IP address that mobile hosts get from
their home network. Mobile hosts always use VIP as their source address inside IP packet. When mobile
hosts move to another network, they get another IP address from the foreign network, it is a TIP address.
Each VIP packet contains information to combine VIP and TIP, so the packet target to VIP can be routed
through general Internet to its temporary network by reading its TIP. VIP uses additional space inside
packet to carry this information: a new IP option to identify VIP while original address fields carry TIP.

When a mobile host moves to a foreign network, the information about mobile host’s current location
is sent to the mobile host’s home network. During the transmission, each intermediate router that
supports VIP protocol can receive this information and update this router’s cache. This cache is a database
that stores information about mobile hosts’ current location.

If a host wants to send a packet to a mobile host, it only knows the VIP address of the mobile host
and does not know its TIP, which is its current location. The packet will be sent to the mobile host’s
home area. If any intermediate router that supports VIP receives this packet, it will modify this packet
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according to its cache so that the new packet will include information of TIP and can be routed to the
mobile host’s current location. If the packet does not reach any intermediate router that supports VIP
and has cache information about the mobile host, the packet will be routed to mobile host’s home
network. The gateway in mobile host’s home network can modify this packet according to this gateway’s
cache and route the packet to the mobile host’s current network. This gateway always has the mobile
host’s current location, because each time when the mobile host moves to a new network, the mobile
host notifies its home network about the mobile host’s current location. The optimized path in VIP is
mainly based on the number of intermediate VIP routers. If many intermediate routers support VIP, the
optimized routing path should be obtained. The option VIP uses to carry information of VIP is an option
of IP, and not all of the routers will support this option. Some computers even discard all of the options
IP packets carry. VIP also needs many extra IP addresses for foreign network to assign to the mobile hosts. 

LSRIP

Loose source routing IP uses one of the IP options to cause the IP packets to be routed through a series
of intermediate routers to the destination. This IP option is loose source and record route (LSRR). For
example, if host A wants to send a packet to host C with LSRR option, the packet can reach host B through
general IP routing. Then host B replaces the destination IP address in IP header with the first IP address
C in LSRR option and routes the packet to a new destination C. Also host B puts the pointer to the second
IP address in LSRR option. Host C can perform the same procedure: replace destination IP address with
next IP address in LSRR option, increase pointer to next IP address in LSRR option, and reroute the
packet to a new destination. Until the pointer points to the last IP address in LSRR option, the packet is
sent to its destination address. LSRIP uses LSRR option to carry the information of a mobile host. 

When a mobile host moves to a foreign network, the information about the mobile host’s current
location is sent to the mobile host’s home network. During the transmission, each intermediate router
that supports LSRIP protocol can receive this information and update this router’s cache.

If a host wants to send a packet to a mobile host, which is not at its home area, the packet will be first
sent to the mobile host’s home network. During the path to the home network, if an intermediate router
has the cache of the mobile host, this router can put the LSRIP option into the packet and cause it to be
routed to the current network of the mobile host. The gateway of current network reads information
from LSRIP option and can determine that the mobile host is the destination of this packet’s destination.
Thus, the gateway can route the packet to mobile host that is connected to current network.

If the packet does not reach any intermediate router that supports LSRIP and has cache information
about the mobile host, the packet will be routed to mobile host’s home network. The gateway in mobile
host’s home network can add the LSRIP option to this packet according to the gateway’s cache and route
the packet to the mobile host’s current network. This gateway always has the mobile host’s current location
because each time when the mobile host moves to a new network, the mobile host notifies its home
network about the mobile host’s current location.

LSRIP needs more intermediate routers to achieve optimized routing path. Also, the option used by
LSRIP is not compatible with current routers. This can be tested by sending a packet using traceroute, a
tool to check the path one packet has passed. Traceroute uses LSRR option to record the path of the packet
and the transmission time to each intermediate host. If any intermediate host does not support LSRR
option, traceroute bypasses this host. After sending a packet, it can be found from the messages sent back
that some sites are not displayed correctly, which means that these sites do not support LSRR option.

IETF-MIP

IETF-MIP is the most usable protocol for mobile IP in the Internet. The basic idea is to use two agents
to handle the job related to the mobile host. When the mobile host moves to the other networks, it will
notify foreign network’s agent, foreign agent, and its home agent about its current location. Then when
the packet to mobile host is sent to home agent using general IP, the home agent will modify the header
of IP packet: change the destination address to foreign agent’s address and add some fields to the packet
including the mobile host’s permanent address. When the foreign agent receives this packet, it will know
© 2002 by CRC Press LLC



               
this is for one mobile host which is now at its location, the foreign agent will modify this packet again
and send it directly to the mobile host through the local network. In IETF-MIP, there are cache agents
to optimize the performance. A cache agent is a host that can maintain a database that stores the mobile
hosts current location. This database can be changed according to the location change of the mobile host.

In this protocol it is difficult to achieve the optimized routing path, especially in a WAN. For example,
a user in London wants to send a packet to a mobile host in London, whose home network is in New
York. This packet will be first sent to New York, then modified by the home agent, and then sent back.
This takes about one half of the circle of the whole earth. The optimized path can only be about 100 ft.
Thus, the only solution for IETF-MIP is to set up as many cache agents as possible in the entire Internet.
When the cache agents receive a packet, they can modify the packet instead of sending it to the home
agent of the mobile host.

Mobile IP should be compatible with current IPs, that means the current protocols and applications
do not need to be changed. Mobile IP also needs to have optimized routing path, that means the protocol
should be efficient in routing packets. VIP and LSRIP use the option of IP to carry the information of
mobile hosts. But some of the current hosts do not support an IP option. When these hosts receive a
packet that includes options, they discard the options of the IP packet. Meanwhile, IETF-MIP only uses
basic IP header and packet, and does not use any IP option. From the compatibility point, IETF-MIP is
the best out of those three protocols. From the point of optimized routing path, all three protocols depend
on intermediate cache hosts. If enough intermediate cache hosts are inside the Internet, the three protocols
can find optimized routing path. The IETF-MIP is the best out of the three mobile IPs considering both
the compatibility and optimized routing path. IETF-MIP is also the mobile IP protocol that is used in
the Internet.

30.2 Technology

Broadband Networks

Broadband integrated services digital network (B-ISDN) based on asynchronous transfer mode (ATM)
is used for transport of information from multimedia services and applications.

ATM

ATM is a cell-based, high-bandwidth, low-delay switching and multiplexing technology that is designed
to deliver a variety of high-speed digital communication services. These services include LAN intercon-
nection, imaging, and multimedia applications as well as video distribution, video telephony, and other
video applications.

ATM standards define a fixed-size cell with a length of 53 bytes comprised of a 5-byte header and a
48-byte payload.

The virtual path identifiers (VPIs) and virtual channel identifiers (VCIs) are the labels to identify a
particular virtual path (VP) and virtual channel (VC) on the link. The switching node uses these values
to identify a particular connection and then uses the routing table established at connection set-up to
route the cells to the appropriate output port. The switch changes the value of the VPI and VCI fields to
the new values that are used on the output link.

SONET

Synchronous optical network (SONET) is used for framing and synchronization at the physical layer.
The basic time unit of a SONET frame is 125 µs. The basic building block of SONET is synchronous
transport signal level 1 (STS-1) with a bit rate of 51.84 Mbps. Higher-rate SONET signals are obtained
by byte-interleaving n frame-aligned STS-1s to form an STS-n (e.g., STS-3 has a bit rate of 155.52 Mbps).

Due to physical layer framing overhead, the transfer capacity at the user-network interface (UNI) is
155.52 Mbps with a cell-fill capacity of 149.76 Mbps. Because the ATM cell has 5 bytes of overhead, the
48 bytes information field allows for a maximum of 135.631 Mbps of actual user information. A second
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UNI interface is defined at 622.08 Mbps with the service bit rate of approximately 600 Mbps. Access at
these rates requires a fiber-based loop.

ATM Services

Users request services from the ATM switch in terms of destination(s), traffic type(s), bit rate(s), and
Quality of Service (QoS). These requirements are usually grouped together and categorized in different
ATM traffic classifications. The ATM services are categorized as follows:

• Constant Bit Rate (CBR): Connection-oriented constant bit rate service such as digital voice and
video traffic.

• Real-Time Variable Bit Rate (rt-VBR): Intended for real-time traffic from bursty sources such as
compressed voice or video transmission.

• Non-Real-Time Variable Bit Rate (nrt-VBR): Intended for applications that have bursty traffic but
do not require tight delay guarantee. This type of service is appropriate for connectionless data
traffic. 

• Available Bit Rate (ABR): Intended for sources that accept time-varying available bandwidth. Users
are only guaranteed a minimum cell rate (MCR). An example of such traffic is LAN emulation
traffic.

• Unspecified Bit Rate (UBR): Best effort service that is intended for noncritical applications. It does
not provide traffic related service guarantees.

ATM networks are fixed (optical) point-to-point networks with high bandwidth and low error rates.
These attributes are not associated with the limited bandwidth and error prone radio medium. While
increasing the number of cables (copper or fiber optics) can increase the bandwidth of wired networks,
wireless telecommunications networks experience a more difficult task. Due to limited usable radio
frequency, a wireless channel is an expensive resource in terms of bandwidth. In order for wireless
networks to support high-speed networks such as ATM, a multiple access approach is needed for sharing
this limited medium in a manner different from the narrowband, along with the means of supporting
mobility and maintaining QoS guarantees.

Wireless Networks

Media access control (MAC) is a set of rules that attempt to efficiently share a communication channel
among independent competing users. Each MAC uses a different media (or multiple) access scheme
to allocate the limited bandwidth among multiple users. Many multiple access protocols have been
designed and analyzed both for wired and wireless networks. Each has its advantages and limitations
based on the network environment and traffic. These schemes can be classified into three categories:
fixed assignments, random access, and demand assignment. The demand assignment scheme is the
most efficient access protocol for traffic of varying bit rate in the wireless environment.

Due to the limited radio frequencies available for wireless communication, wireless networks have to
maximize the overall capacity attainable within a given set of frequency channel. Spectral efficiency
describes the maximum number of calls that can be served in a given service area. To achieve high spectral
efficiency, cellular networks are designed with frequency reuse. If a channel with a specific frequency
covers an area of a radius R, the same frequency can be reused to cover another area. A service area is
divided into seven cell clusters. Each cell in the cluster, designated 1 through 7, uses a different set of
frequencies. The same set of frequencies in each cell can be reused in the same service area if it is
sufficiently apart from the current cell. Cells using the same frequency channels are called cocells. In
principle, by using this layout scheme, the overall system capacity can be increased as large as desired by
reducing the cell size, while controlling power levels to avoid co-channel interference. Co-channel inter-
ference is defined as the interference experienced by users operating in different cells using the same
frequency channel. Smaller size cells called microcells are implemented to cover areas about the size of
a city block. Research has been done on an even smaller cells called picocells.
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TDMA

Time-division multiple access (TDMA) and frequency-division multiple access (FDMA) are fixed assign-
ment techniques that incorporate permanent subchannels assignments to each user. These traditional
schemes perform well with stream-type traffic, such as voice, but are inappropriate for integrated mul-
timedia traffic because of the radio channel spectrum utilization. In a fixed assignment environment, a
subchannel is wasted whenever the user has nothing to transmit. It is widely accepted that most services
in the broadband environment are VBR service (bursty traffic). Such traffic wastes a lot of bandwidth in
a fixed assignment scheme.

ALOHA

Typical random assignment protocols like ALOHA and carrier sense multiple access with collision
detection (CSMA/CD) schemes are more efficient in servicing bursty traffic. These techniques allocate
the full channel capacity to a user for short periods, on a random basis. These packet-oriented techniques
dynamically allocate the channel to a user on a per-packet basis. 

Although a few versions of the ALOHA protocol are used, in its simplest form it allows the users to
transmit at will. Whenever two or more user transmissions overlap, a collision occurs and users have to
retransmit after a random delay. The ALOHA protocol is inherently unstable due to the random delay, i.e.,
it is possible that a transmission may be delayed for an infinite time. Various collision resolution algorithms
were designed to stabilize and reduce contention in this scheme.

Slotted ALOHA is a simple modification of the ALOHA protocol. After a collision, instead of retrans-
mitting at a random time, slotted ALOHA retransmits at a random time slot. Transmission can only be
made at the beginning of a time slot. Obviously, this protocol is implemented in time slotted systems.
Slotted ALOHA is proven to be twice as efficient as a regular or pure ALOHA protocol.

CSMA/CD

CSMA/CD, taking advantage of the short propagation delays between users in a typical LAN, provides
a very high throughput protocol. In a plain CSMA protocol, users will not transmit unless it senses that
the transmission channel is idle. In CSMA/CD, the user also detects any collision that happens during a
transmission. The combination provides a protocol that has high throughput and low delay; however,
carrier sensing is a major problem for radio networks. The signal from the local transmitter will overload
the receiver, disabling any attempts to sense remote transmission efficiently. Despite some advances in
this area, sensing still poses a problem due to severe channel fading in indoor environments. Similarly,
collision detection proves to be a difficult task in wireless networks. Although it can be easily done on a
wired network by measuring the voltage level on a cable, sophisticated devices are required in wireless
networks. Radio signals are dominated by the terminal’s own signal over all other signals in the vicinity
preventing any efficient collision detection. To avoid this situation, a terminal transmitting antenna
pattern has to be different from its receiving pattern. This requires sophisticated directional antennas
and expensive amplifiers for both the BS and the mobile station (MS). Such requirements are not feasible
for the low-powered mobile terminal end. 

CDMA

Code-division multiple access (CDMA) is a combination of both fixed and random assignment. CDMA
has many advantages such as near zero channel access delay, bandwidth efficiency, and excellent statistical
multiplexing, but it suffers from significant limitations such as limited transmission rate, complex BS,
and problems related to the power of its transmission signal. The limitation in transmission rate is a
significant drawback to using CDMA for integrated wireless networks.

Demand Assignment

In demand assignment protocol, channel capacity is assigned to users on demand basis, as needed.
Demand assignment protocols typically involve two stages: a reservation stage where the user requests
access, and a transmission stage where the actual data is transmitted. A small portion of the transmission
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channel, called the reservation subchannel, is used solely for users requesting permission to transmit
data. Short reservation packets are sent to request channel time by using some simple multiple access
schemes, typically, TDMA or slotted ALOHA. Once channel time is reserved, data can be transmitted
through the second subchannel contention-free. Unlike a random access protocol where collisions occur
in the data transmission channel, in demand assignment protocols, collisions occur only in the small-
capacity reservation subchannel.  

This reservation technique allows demand assignment protocols to avoid bandwidth waste due to
collisions. In addition, unlike fixed assignment schemes no channels are wasted whenever a VBR user
enters an idle period. The assigned bandwidth will simply be allocated to another user requesting access.
Due to these features, protocols based on demand assignment techniques are most suitable for integrated
wireless networks.

Demand assignment protocols can be classified into two categories based on the control scheme of the
reservation and transmission stages. They can be either centralized or distributed. An example of a central-
ized controlled technique in demand assignment is polling. Each user is sequentially queried by the BS for
transmission privileges. This scheme, however, relies heavily on the reliability of the centralized controller.

An alternative approach is to use distributed control, where MSs transmit based on information
received from all the other MSs. Network information is transmitted through broadcast channels. Every
user listens for reservation packets and performs the same distributed scheduling algorithm based on
the information provided by the MS in the network. Requests for reservation are typically made using
contention or fixed assignment schemes.

30.3 Routing

Routing in Terrestrial Networks

Routing refers to the determination of a set of paths to be used for carrying messages from a source node
to all destination nodes. It is important that the routes used for such communications consume a minimal
amount of resources. In order to use network resources as little as possible while meeting the network
service requirements, the most popular solution involves the generation of a tree spanning the source
and destination nodes.

Routing algorithms for constructing trees have been developed with two optimization goals in mind.
Two measures of the tree quality are in terms of the tree delay and tree cost, and are defined as follows: 

1. The first measure of efficiency is in terms of the cost of the tree, which is the sum of the costs on
the edges in the tree.

2. The second measure is the minimum average path delay, which is the average of minimum path
delays from the source to each of the destinations in the group. 

Optimization objectives are to minimize the cost and delay, however, the two measures are individually
insufficient to characterize a good routing tree. For example, when the optimization objective is only to
minimize the total cost of the tree, a minimum cost tree is built. Although total cost as a measure of
bandwidth efficiency is certainly an important parameter, it is not sufficient to characterize the quality
of the tree, because networks, especially those supporting real-time traffic, need to provide certain QoS
guarantees in terms of the end-to-end delay along the individual paths from source to destination node.
Therefore, both cost and delay optimization goal are important for the routing tree construction. The
performance of such a route is determined by two factors: 

1. Bounded delay along the path from source to destination 
2. Minimum cost of the tree, for example, in terms of network bandwidth utilization 

The goal of the routing algorithm is to construct a delay constrained minimum cost tree. In order to
provide a certain quality of service to guarantee end-to-end delay along the path from source to desti-
nation node, the algorithm sets the delay constraint on the path, instead of trying to minimize the average
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path delay. The two measures of the tree quality, the tree edge delay and tree edge cost, can be described
by different functions. For example, edge cost can be a measure of the amount of buffer space or channel
bandwidth, and edge delay can be a combination of propagation, transmission, and queuing delay.

The shortest path algorithm can be used to generate the shortest paths from the source to destination
nodes; this provides the optimal solution for delay optimization. Routing algorithms that perform cost
optimization have been based on computing the minimum Steiner tree, which is known to be an NP-complete
problem.

DDBMA

A heuristic algorithm called DDBMA (Dynamic Delay Bounded Multicasting Algorithm) is used for
constructing minimum-cost multicast trees with delay constraints. The algorithm sets variable delay
bounds on destinations and can be used to handle the network cost optimization goal: minimizing the
total cost (total bandwidth utilization) of the tree. The algorithm can also be used to handle a dynamic
delay-bounded minimum Steiner tree, which is accomplished by updating the existing multicast tree
when destinations need to be added or deleted. 

During the network connection establishment, DDBMA can be used to construct a feasible tree for a
given destination set. For certain applications, however, nodes in the network may join or leave the initial
multicast group during the lifetime of the multicast connection. Examples of these applications such as
teleconferencing, mobile communication, etc., allow each user in the network to join or leave the connec-
tion at any time without disrupting network services to other users. 

The DDBMA is based on a feasible search optimization method, which starts with the minimum delay
tree and monotonically decreases the cost by iterative improvement of the delay-bounded tree. Then the
algorithm starts to update the existing tree when nodes in the network request to join or leave. The
algorithm will stay steady when there is no leaving or joining requests from nodes in the network.

Multimedia, multiparty communication services are supported by networks having the capability to
setup/modify the following five basic types of connections: point-to-point, point-to-multipoint (also
called multicast), multipoint-to-point (also called concast), multipoint-to-multipoint, and point-to-
allpoint (also called broadcast).

Many types of communication require transmission of certain information from the source to a
selected set of destinations. This could be the cast of multipoint video conference, the distribution of a
document to a selected number of persons via a computer network or the request for certain information
from a distributed database.

Routing in Wireless Networks

Wireless personal communication networks use a general routing procedure, a rerouting procedure, and
a handoff. Along with the features of wireless communication, the user mobility control function tracking
locations of networks subscribers should be associated with routing schemes during communication
connection. In wireless communications networks the network topology is established by virtual paths.
Virtual paths are logical direct radio links between all switch nodes. The bandwidth of virtual path can
consist of a number of virtual channels. Because of the features of wireless communications networks,
the network topology is highly dynamic. The bandwidth of wireless communications networks is limited,
the traffic increases quickly, and it is hard to schedule incoming traffic on time in the centralized
approaches, which are not efficient when network size increases and the network services are enhanced.

The subscribers in wireless communications networks roam. To create connections between all com-
munication parties to deliver incoming and outgoing calls, the first consideration is the current location
of mobile users and hosts. In wireless communications networks, the key service for providing seamless
connectivity to mobile hosts is creation and maintenance of a message forwarding path between two
known locations of calling and called mobile hosts. A routing decision in wireless communications
networks is made not only using the states of paths and internal switching nodes, but also using the
location of available information. 
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Geographical area covered by wireless communication networks is partitioned into a set of cells. A
routing path may be inefficient while a mobile host hands off to another cell coverage area. The connection
paths need to be reestablished each time to continue communication. As a result, the network call processor
can become involved many times during the lifetime of mobile connection. When wireless communica-
tions networks move toward smaller size cells to accommodate more mobile hosts or to provide higher
capacity, the handoff becomes a more frequent part of communications. Conventional routing procedures
for connecting mobile hosts fail due to frequent handoff when the network call processor becomes a
bottleneck. Hence, routing efficiency in wireless communications networks depends critically on the
propagation of location information into the network; however, excessive information propagation can
waste network resources, while insufficient location information leads to inefficient routing. 

Wireless communications networks can provide different personal communications services, which
have different transmission time delay requirements. For cellular telephone communication, the shortest
time delay or strict time delay to transmit voice message is required. In portable computer communica-
tions or other data communications, the requirements of transmitted time delay are not very strict.
Transmitted data can be stored in buffers and be transmitted later when channels are available; however,
in order to provide a high QoS, transmission time delay is an important factor in wireless communications
networks. Routing procedure in wireless communications networks should depend on different require-
ments of transmission time delay, and on how to balance transmission load and find minimum cost
transmission paths.

30.4 Applications Support

Multimedia

Multimedia communications is the field referring to the representation, storage, retrieval, and dissemi-
nation of machine-processable information expressed in multimedia, such as voice, image, text, graphics,
and video. With high-capacity storage devices, powerful and yet economical computer workstations, and
high-speed integrated services digital networks, providing a variety of multimedia communication ser-
vices is becoming not only technically but also economically feasible. Multimedia conference systems can
help people to interact with each other from their homes or offices while they work as teams by exchanging
information in several media, such as voice, text, graphics, and video. Multimedia conference system
allows a group of users to conduct a meeting in real time. The participants can jointly view and edit
relevant multimedia information, including text, graphics, and still images distributed throughout the
LAN. Participants can also communicate simultaneously by voice to discuss the information they are
sharing. This multimedia conference system can be used in a wide variety of cooperative work environ-
ment, such as distributed software development, joint authoring, and group decision support.

Multimedia is the integration of information that may be represented by several media types, such as
audio, video, text, and still images. The diversity of media involved in a multimedia communication
system impose strong requirements on the communication system. The media used in the multimedia
communications can be classified into two categories: discrete media and continuous media.

Discrete media are those media that have time-independent values, such as text, graphics, or numerical
data, bit mapped images, geometric drawings, or any other non-time-dependent data format. Capture,
storage, transmission, and display of non-real-time media data does not require that it happen at some
predictable and fixed time or within some fixed time period.

Continuous media data may include sound clips, video segments, animation, or timed events. Real-
time data requires that any system that is recording or displaying be able to process the appropriate data
within a predictable and specified time period. In addition, the display of real-time data may need to be
synchronized with other data or some external (real-world ) event. 

Multimedia data can be accessed by the user either locally or remotely during multimedia communica-
tion. Locally stored data typically resides in conventional mass storage systems such as hard disk, CD-ROMs,
optical disk, or high-density magnetic tape. It can also be stored to and recalled from analog devices that
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are under the control of the system, video tape disks, videodisk players, CD-audio disks, image scanners,
and printers. In addition, media data can be synthesized locally by the systems or its peripherals.  Multi-
media data is typically recorded and edited on local systems for distribution on some physical media and
is later played back using local devices.

Remotely stored multimedia data is accessed via a network connection to a remote system. The data
is stored on that remote server and recalled over the network for viewing, editing, or storage on the user’s
system. 

Multimedia communications cover a large set of domains including office, electronic publishing,
medicine, and industry. Multimedia communication can be classified into real-time applications and
non-real-time applications. 

Multimedia conferencing represents a typical real-time multimedia communication. In general, high
conductivity is needed for real-time multimedia communications. A guaranteed bandwidth is required
to ensure real-time consistency, and to offer the throughput required by the different media. This
bandwidth varies depending on the media involved in the application. There is also a need for synchro-
nization between different users, and between different flows of data at a user workstation.

Non-real-time multimedia communications, such as multimedia mail are less demanding than real-time
applications in terms of throughput and delay, but edition tools, exchange formats, and exchange protocols
are essential. Multicast service and synchronization at presentation time has to be offered.

Local non-real-time multimedia characterizes most typical personal computer applications, such as
word processing, and still image editing. Typical text-based telecommunications can be described as
remote non-real-time. Database of text and still image may be interactively viewed and searched, and
audio or video data (perhaps included in mail messages) can be downloaded for display locally.

Multimedia workstations are generally characterized by local real-time applications. Data from video
and audio editing and annotations, interactive animated presentations, and music recording are stored
on local devices and are distributed on physical media for use locally.

Networks that can provide real-time multimedia communication via a high-speed network connection
enable the new generation of multimedia applications. Real-time remote workstation-based multimedia
conferencing, video and audio remote database browsing, and viewing of movies or other video resources
on demand are typical for these systems.

Mobile and Wireless

The support for bandwidth intensive (multimedia) services in mobile cellular networks increases the
network congestion and requires the use of micro/picocellular architectures in order to provide higher
capacity in regard to radio spectrum. Micro/pico cellular architectures introduce the problem of frequent
hand-offs and make resource allocation difficult. As a result, availability of wireless network resources
at the connection setup time does not necessarily guarantee that wireless resources are available through-
out the lifetime of a connection. Multimedia traffic imposes the need to guarantee a predefined QoS to
all calls serviced by the network. 

In microcellular networks supporting multimedia traffic, the resource allocation schemes have to be
designed such that a call can be assured a certain QoS once it is accepted into the network. The resource
allocation for multimedia traffic becomes quite complex for different classes of traffic comprising mul-
timedia traffic. These classes of traffic have different delay and error rate requirements. Resource allocation
schemes must be sensitive to traffic characteristics and adapt to rapidly changing load conditions. From
a service point of view, multimedia traffic can be categorized into two main categories: real-time traffic
with stringent time delays and relaxed error rates, and non-real-time traffic with relaxed time delays and
stringent error rates.  

It is important to note that provisioning of QoS to different classes of traffic necessitates a highly
reliable radio link between the mobile terminal and its access point. This requires efficient communication
techniques to mitigate the problems of delay sensitivity, multipath fading, shadow fading, and cochannel
interference. Some methods such as array antennas and optimal combining can be used to combat these
problems.
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CAC

Schemes have been proposed to address the problem of resource allocation for multimedia traffic support
in microcellular networks. In these schemes, real-time traffic being more delay sensitive, is given priority
over non-real-time traffic.   

In these schemes, the central approach used is call admission control (CAC). CAC imposes a limit on
the number of calls accepted into the network. Each cell site only supports a predetermined number of
call connections. This call threshold is periodically calculated depending on the number of existing calls
in the cell in which the call arrives and its adjoining cells and the resources utilized by all calls in the
cell. Once the threshold is reached, all subsequent requests for new call connections are refused. 

AT

In an admission threshold (AT)-based scheme, resource management is done by periodically calculating
the admission threshold and by blocking all new call connection requests once the threshold is reached.
The call admission decision is made in a distributed manner whereby each cell site makes a decision by
exchanging state information with adjoining cells periodically. A cell with a base station and a control
unit is referred to as cell site. 

RS

In a resource sharing (RS)-based scheme to support traffic classes with different delay and error require-
ments, resource sharing provides a mechanism to ensure a different grade of service to each class of
traffic. This scheme employs a resource sharing mechanism that reacts to rapidly changing traffic con-
ditions in a cell. An adaptive call admission control policy that reacts to changing new call arrival rates
can be used to keep the handoff dropping rate and forced call termination rate acceptably low. 

The call admission control scheme differentiates the new call on the basis of its traffic class and a
decision is based on traffic class of the new call connection request and number of call connections of
each class already being serviced in the cell cluster.

For real-time call connections, a new call is blocked if no bandwidth is available to service the request.
A similar algorithm is used to service a handoff request. The QoS metrics for real time calls are handoff
dropping probability and forced call termination probability. For non-real-time calls, the available band-
width is shared equally among all non-real-time call connections in the cell. Handoff queuing or delaying
is not used in this scheme. CAC keeps the probability of a call being terminated before its lifetime
acceptably low. Resource sharing algorithms provide better performance for a particular class of traffic.    

RRN

Resource reservation and renegotiation (RRN) scheme provides QoS guarantee to real-time traffic and
at the same time guarantees a better performance to non-real-time traffic. The resource allocation scheme
uses resource reservation in surrounding cells for real-time calls and renegotiation of bandwidth assigned
to non-real-time calls. The resource allocation scheme is simple enough and can be implemented in a
distributed manner to ensure fast decision making.

In RRN scheme, for service applications requiring smaller bandwidths, a shared pool of bandwidth is
used for reservation. For applications requiring greater bandwidth, the largest of requested bandwidth
is reserved. This helps in keeping the call blocking rate low and does not affect the handoff dropping rate. 

In microcellular networks, calls require handoffs at much faster rates in comparison to networks with
larger cells. On the other hand, microcellular networks provide a higher system capacity. The RRN scheme
supports real-time calls and non-real-time calls along with a variety of service type for each class. Real-
time calls are delay sensitive and hence cannot be queued or delayed. Resources must be available when
a handoff is requested. In order to guarantee that real-time calls are not forced to terminate at the time
of handoff, a resource reservation mechanism is used. Resource reservation guarantees acceptably low
handoff dropping rate and forced call termination rate for real-time traffic. 

For a real-time call, bandwidth is reserved in all cells adjacent to the cell in which the call arrives.
When a call hands-off to another cell, if enough bandwidth is not available to service the handoff, it uses
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the bandwidth reserved in the target cell and thus the likelihood that a call will be dropped is reduced.
When a call is successfully handed off to another cell, the bandwidth of old cell is released and reserved
in the cell cluster of new cell. 

Non-real-time calls are more tolerant to delay as compared to real-time calls. Delay tolerance is
equivalent to accepting variable service rate. This property of data traffic makes resource renegotiation
possible in microcellular networks. Non-real-time calls receive higher service rates under low traffic
conditions while, under heavy traffic conditions, the service rate available to them is kept at a minimum.
Thus, the resource renegotiation scheme adapts to changing traffic conditions in the network. 
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The speed of off-chip I/O circuits plays a significant role in the overall performance of a computer system.
To keep up with the increasing clock rates in processors, designers target I/O data rates that are exceeding
gigabits per second per pin for memory busses [26], peripheral connections [29], and multiprocessor
interconnection networks [17]. This chapter examines the issues and challenges in the design of these
high-performance I/O subsystems.

As illustrated in Fig. 31.1, an I/O subsystem consists of four components: a transmitter, a transmission
medium, a receiver, and a timing-recovery circuit. A transmitter converts the binary sequential bit stream
into a stream of analog voltages properly sequenced in time. The medium such as a cable or PCB trace
delays and filters the voltage waveform. The receiver recovers the binary values from the output of the
medium. As part of the receiver, a clock samples the data to recover the bit sequence compensating for
the arbitrary delay of the medium.

This chapter focuses on the transmission over an electrical medium1 and begins by reviewing the
electrical characteristics of transmission lines. The design issues and design techniques for each link
component will be described, beginning with the transmitter (section 31.2) continuing with the receiver
(section 31.3), and ending with the timing-recovery circuits (section 31.4).

31.1 Transmission Lines

A transmission medium confines the energy of a signal and propagates it [33]. The energy is stored as
the electric and magnetic field between two conductors, the transmission line. The geometric configu-
ration of the conductors for a segment of the transmission line determines the voltage and current

1Optical local interconnects are emerging as an alternative for short haul systems.

Chik-Kong Ken Yang
University of California
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relationship in that segment defining an effective impedance (Zo = V/I). A signal source driving the
segment only sees this impedance as a sink of the signal energy and has no immediate knowledge of
other parts of the line. 

The two conductors can be either two signals wires driven differentially or a single signal wire over a
reference plane where an image current2 flows in the plane coupled to the signal. A coaxial cable has a
center conductor for the signal and the outer shield as the reference (Fig. 31.2(a)). Similarly a PCB trace
forms a microstrip line with a ground plane as the reference (Fig. 31.2(b)). 

An effective way to model a transmission line is to use capacitances and inductances to represent the
electrical and magnetic energy storage and propagation. The entire line is modeled using multiple LC
segments as illustrated in Fig. 31.2(c).3 The impedance of the line and the propagation velocity can be
represented as  and . An ideal transmission line propagates a signal with no
added noise or attenuation. Imperfections in the construction of the line such as varying impedance or
neglecting the image current path cause noise in the signal transmission. 

Reflections, Termination, and Crosstalk

When a signal wave encounters a segment with a different impedance, a portion of the signal power
reflects back to the transmitter and can interfere with future transmitted signals. The reflection occurs
because the boundary condition at a junction of two impedances must be preserved such that (1) the
voltage is the same on both sides of the junction and (2) the signal energy into and out of the junction
is conserved. For instance, if a lower impedance is seen by a signal, a lower voltage must be propagated
along the new segment so that the propagated power is less than the original power. The lower voltage
at the junction implies that a negative voltage wave is propagated in the reverse direction. Similarly, at
the end of a transmission line, the receiver appears as an open circuit (high impedance) and would cause

FIGURE 31.1 Components of an I/O subsystem.

FIGURE 31.2 Cross-sectional view of transmission line: (a) coaxial, (b) microstrip (PCB), and (c) LC model of a
transmission line.

2Image current, also called return current, is equal to the signal current.
3The L’s and C ’s are per unit length.
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a positive reflection of the entire signal energy. The equation

represents the reflected wave, where Γ is the reflection coefficient. 
Using a termination resistance at the end of the line that is equal to that of the transmission line impedance

eliminates the reflection by dissipating the signal power. A reflection only poses a problem if the transmitter
reflects the wave again causing the old signal energy from a previous bit to add to the signal of a newly
transmitted data bit.4 Allowing the entire signal to reflect at the receiver is acceptable as long as the line is
properly terminated at the transmitter. So proper termination of a transmission line includes matching the
resistance either at the receiver (end termination) or at the transmitter (source termination). Noise in the signal
results either from imperfect termination at the ends of the line or from variations in the impedance along
the line.5 

A second source of noise is due to the leakage of signal energy from other transmission lines (aggres-
sors) known as crosstalk. Improper design of transmission line often neglects the image current path.
Image current can flow on closely routed signal traces on a PCB or nearby signal pins on a connector
instead of the reference plane. The coupling appears as noise when the nearby signal transitions. The
worst often occurs in the chip carrier where a reference plane is not readily available. 

The noise source is modeled as either mutual inductance or capacitance in the LC model. The amount
of noise is proportional to the aggressor’s signal amplitude. Because the coupling is reactive, the noise is
proportional to the frequency of the aggressor signal. This motivates the design of transmitters and
receivers to filter frequencies above the data bandwidth, as will be discussed. 

Frequency Response and ISI

An ideal transmission-line segment delays a signal perfectly; however, real transmission media attenuate
the signal because of the line conductor’s resistance and the loss in the dielectric between the conductors.
Both loss mechanisms of wires increase at higher signal frequencies. Hence, a wire low-pass filters and
the filtering increases with distance. The transfer function of a 6-m and 12-m cable, shown in Fig. 31.3(a),
illustrates increasing attenuation with frequency and distance. Figure 31.3(b) illustrates the effects of that
frequency-dependent attenuation in the time-domain. The signal amplitudes are reduced and the energy
of each bit is spread in time. If the bit time is short, the spreading causes interference between subsequent

FIGURE 31.3 Frequency (a) and time (b) domain of an RG-55U cable illustrating filtering and ISI.

4This noise can be compensated if the length of the delay and amount of reflection can be measured, but it adds
significant complexity to the system.

5Impedance variations can be due to vias, changing of reference plane, connectors, etc. 
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bits known as inter-symbol interference (ISI). As data rates increase beyond gigabits per second, the
design of transmitters and receivers must incorporate additional filtering to compensate for this low-pass
filtering. 

Methods of Signaling

The characteristics of the transmission medium influence the trade-off between various signaling methods.
In DRAM or backplane applications where a data word connects between multiple chips, multi-drop busses
save considerable pins over point-to-point connections; however, each drop of a bus structure introduces
a splitting of a transmission line that causes reflections and increases noise. A similar trade-off exists with
differential and single-ended signaling. Differential signaling is more robust to common-mode noise by
using the second wire as the explicit image current path. A third trade-off involves whether or not signaling
occurs in both directions on a pin simultaneously (full-duplex). Typically, an I/O link contains both a
transmitter and a receiver on each end. Only one pair is operating at one time (half-duplex). Operating
full-duplex halves the number of pins but degrades the signal amplitude and increases noise because the
receiver must now compensate for the transmitted values. All three of these common choices are trading
between the number of I/O pins and the signal-to-noise ratio (SNR). For high performance, system designers
often opt for the more expensive options of point-to-point and differential links that are half-duplex. Some
designers use single-ended signaling that has an explicit and dedicated ground pin for a signal’s image
current since perfectly differential structures are difficult to maintain in a PCB environment.

The following sections focus on the design of high-performance link circuitry in a high-performance
system of point-to-point links. Many of the design techniques are applicable to busses and bidirectional
links as well.

31.2 Transmitters

Transmitters convert the digital bits into analog voltages. Figure 31.4 illustrates the major pieces of a
transmitter. Prior to the conversion by the output driver, transmitters commonly synchronize the data
to that of a stable, noise-free clock so the resulting waveform has well-defined timing. Because I/Os often
operate at a higher rate than the on-chip clock, the synchronization also multiplexes the data. The simplest
and most commonly used is 2:1 multiplexing, using each half-cycle of the clock to transmit a data bit.6

A pre-driver follows the multiplexing and provides any pre-conditioning of the data signal. 
The output voltage range depends on the signaling specification. If the voltage range nears or exceeds

that of the on-chip supply voltage, the design must convert the voltage and ensure the reliability to the
over-voltage. In addition to protection against electrostatic discharge (ESD), transistors that are not built

FIGURE 31.4 Transmitter components.

6For memories, the 2:1 multiplexing is known as double-data rate (DDR). The duty cycle of the clock is critical
in guaranteeing a constant width of each bit. Even higher multiplexing has been demonstrated using multiple clock
phases [52].
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to handle large voltages across the gate oxide or source/drain junction must be appropriately protected
by cascoding and well-biasing. This section begins with discussing these large output-swing transmitters.
The section follows with low-swing transmitters, which are more common for high-performance designs. 

Noise is the primary challenge. Techniques that reduce noise such as impedance matching, swing
control, and slew-rate control are described next. The last part addresses techniques that can be used to
reduce intersymbol interference due to a band-limiting transmission channel.

Large-Swing Output Drivers

A simple push-pull architecture, as shown in Fig. 31.5, can drive a signal as large as the voltage provided
for the I/O, Vs. When driving a transmission line, the initial output voltage is the result of a voltage division

where Rdrv is the on-resistance of the driving device. The initial voltage is also the final voltage if the line is
terminated appropriately at the receiver. In which case, the driver draws continuous current even with the
absence of signal transitions. With only source termination (Rdrv equal to Ro), the line voltage settles to Vs.
The power dissipation is less since no current flows when the signal is constant. If the line is unterminated
on either end, the signal will reflect several times before settling to Vs. Because the bit period must be long
enough for the signal to settle, high-performance links avoid this penalty.

Impedance matching at the transmitter is challenging because (1) process, voltage, and temperature
(PVT) varies, and (2) the impedance changes significantly as the device is switched from on to off. To
minimize the net variation, designers over-design the size of the device for an impedance much lower
than Ro. And then, by adding an external but constant resistance Rext = Ro − Rdrv, the net impedance varies
within an acceptable tolerance.

Many chips are required to interface with chips that operate at different power supply voltages. As on-
chip supplies lower with CMOS technology scaling, the disparity between on-chip and off-chip voltages
increases. Unfortunately, for high reliability, the on-chip devices cannot tolerate excessive over-voltage.
Catastrophic breakdown of gate oxide occurs at 12 MV/cm of oxide thickness. 

Device technologists address the issue by providing transistors that are slower but high-voltage tolerant.
One of the tasks of the pre-driver is to shift the level of the input so that the output-driver devices are
fully turned off. Figure 31.5 illustrates an example of level-shifting using cross-coupled PMOS devices in
the pre-driver.

To avoid over-voltage, circuit designers add a cascode transistor in series with the output switch to
reduce the voltage drop [39]. Figure 31.6(a) shows a bottom device that switches with the data. The
upper cascoding device uses a constant high gate voltage that is commonly the core Vdd. As long as the
output voltage does not exceed Vdd + Voxide(max), the gate oxide is preserved. Vx remains below Vdd − VT(eff),

FIGURE 31.5 Push-pull I/O driver with level shifting pre-drivers.
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hence avoiding source/drain punchthrough of N1.
7 To avoid a source/drain punchthrough of N2 during

an output high-low transition, the size of the cascode device needs to be large enough so that Vx does
not fall too quickly.8 

PMOS devices for the pull-up pose an additional challenge. In a half-duplex configuration, the system
tri-states the transmitter by pulling the gate of the driving device to the I/O supply voltage, Vs ; however,
with reflections and inductive ringing, line voltages can exceed Vs. To avoid forward biasing the drain–well
junction, designers leave the well floating, as shown in Fig. 31.6(b) [8]. Transistors P1 and P2 allow the
well to be charged up to either the pad voltage or Vs depending on which is higher. To avoid conduction
of the driving device when pad voltage is high, Pdrv , transistor P3 pulls the gate input to the pad voltage. 

Small-Swing Output Drivers

I/O standards are migrating toward smaller output voltage swings due to several advantages. There is
less concern regarding over-voltages on I/O devices. Using smaller devices and fewer over-voltage pro-
tection devices reduces output capacitance and improves bandwidth. The device stays in a single region
of operation (either in triode or saturation) reducing impedance mismatches. The transmitter also dissi-
pates less power because of the lower-swing and smaller drive devices; however, reducing signal swing
directly reduces the SNR making the designs more sensitive to noise.9 The following describes two com-
monly used driver architectures: low-impedance and high-impedance drivers.

A simple extension of the large-swing push-pull driver to low-swing is shown in Fig. 31.7, where Vs

is a low voltage that determines the signal swing. The transistors operate in the linear region of their I-V
curve appearing as a low-impedance signal source. With signal swings under 1 V, a smaller NMOS device
can have the same pull-up resistance as PMOS devices. The impedance matching is better than the large
signal driver because the device impedance varies less with Vds [19]. 

However, with low-impedance drivers, power-supply noise appears directly on the signal. By connecting
the power supply as the signal’s return connection, the noise would appear as common-mode. Unfortunately,

FIGURE 31.6 Cascoding (a) and well-biasing (b) to protect driving devices.

FIGURE 31.7 Low-swing, push-pull driver with supply bypassing.

7Feedthrough from output to the Vgate of N2 can dynamically elevate Vx so N2 cannot be excessively large. 
8N2 can often be a size 4× larger than N1.
9Fortunately, many noise sources are proportional to the signal swing, so the SNR degradation is not overly severe.
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the connection is difficult because multiple I/Os (and sometimes the core logic) share the ground to
minimize cost. Furthermore, signal current flows through two supplies. To reduce noise, designers trade-
off area and pin by (1) bypassing Vs to ground with a large capacitance, (2) limiting the number of I/Os
sharing a single ground, and (3) carefully minimizing the inductive loop formed by the current return path
(ground connection). 

A second style of drivers, high-impedance drivers, switch currents instead of voltages. By keeping
transistors in the saturated-current region, the devices appear as current sources. The current can be
switched either differentially in PECL type drivers (Fig. 31.8(a)) or single-ended in open-drain type drivers
(Fig. 31.8(b)). To provide source termination, a resistor (Ro) can be placed in parallel with the output.
These drivers have several advantages over their low-impedance counterparts. The outputs have less noise
because the high-impedance isolates the output from one of the power supplies, but it is critical for the
current to remain constant. The output bandwidth is higher because the saturated device (with a higher
Vds) is smaller in size, for a given current than a triode device (with low Vds); however, because of the
higher Vds, these drivers dissipate more power, I ⋅ Vs. 

For both high- and low-impedance drivers, switching currents inject noise onto the supply via di/dt.
Instead of using purely single-ended drivers, complementary single-ended drivers approximates a con-
stant current and reduces the noise. Differential drivers such as PECL force a constant current over time
and eliminate the problem.10

Impedance, Current, and Slew-Rate Control

Process, voltage, and temperature (PVT) variations can cause drive resistance (of low-impedance drivers)
and currents (of high-impedance drivers) to deviate from the design target causing offsets and noise. For
robust operation, control loops are often used to dynamically maintain the proper impedance or current.
To minimize coupled and reflected noise, designers also limit the high-frequency spectral content of the
output signal. This section describes these noise reduction methods. 

Figure 31.9 illustrates the block diagram of a loop that controls the current of a high-impedance driver
[28]. The output driver device is divided into binary-weighted segments. A digital control word, stored
in a register, sets the number of transistors used by the driver. A replica driver determines the control
word. The replica drives half the output impedance. A comparator compares the output voltage with a
reference voltage set at Vs − Vsw/2, where Vsw is the desired voltage swing of the output. The comparison
result increments or decrements the control word until reaching the desired output current. A similar
loop can control the output impedance by adjusting the resistance of driving devices using binary-
weighted segments [7].

As mentioned earlier, filtering the high-frequency spectral content of the output signal reduces coupling
noise. This is equivalent to limiting the output slew rate, but an excessively low slew rate may filter the
signal’s desired spectral frequencies and cause ISI. The difficulty arises when the slew rate is designed for

FIGURE 31.8 High-impedance drivers: PECL (a) and open-drain (b).

10The drawback is that differential drivers have slightly larger output capacitance because the differential input
devices have smaller Vgs and need to be larger to switch the output current. 
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the fastest operating condition. The slowest operating condition would cause excessive ISI. Early designs
of drivers use devices that correlate inversely with transistor speed. In the example shown in Fig. 31.10(a),
an output device can be broken into segments and each segment turns on sequentially [41]. The delay
can be introduced using polysilicon resistors, which are not very sensitive to PVT. More recent methods
(Fig. 31.10(b)) control the rate at which the pre-driver turns on the output device. By using a control
voltage that tracks PVT,11 the pre-driver resistance or current stays constant and consequently the slew-rate.

Transmitter Pre-Emphasis

When the data rate exceeds the channel bandwidth, designers compensate for the filtering by equalization.
Because of the ease of implementation, many high-speed links equalize at the transmitter by pre-distorting
the signal to emphasize higher frequencies [6,14,50]. Early pre-emphasis designs were known as advanced
pull up/down (APU/D) [12], which were applied to driving large capacitances. The technique turns on

FIGURE 31.9 Current-control feedback loop.

FIGURE 31.10 Slew-rate control using resistors (a) and controlled pre-driver (b).

11The control voltage can be the voltage of a VCO whose frequency is locked to an external reference clock via a
PLL [49].
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the driver more strongly for a period immediately after a data transition so that the transmitter drives
higher frequency components with more signal power. For more complex channel responses, a program-
mable filter precedes the actual line driver and inverts the effect of the channel. Figure 31.11(a) illustrates
an example of an analog filter. The length of the optimal filter depends on the tail of the pulse response.
For many cables (less than 10 m) one or two taps is sufficient [6,13,14]. Figure 31.11(b) shows the effect
of transmitter equalization. The small, negative pulses before and after the original pulse eliminates the
tails of the pulse response. 

A digital-FIR filter would output a quantized word that represents the output voltage. Instead of
transmitting two levels, the driver is a high-speed D/A converter. Because current or impedance control
uses binary-weighted driver segments, designs for a D/A converter are not significantly different; however,
a design with linearity of >6 bits at multi-GSamples/sec faces challenging issues: device mismatches limit
linearity, transmit clock jitter limits the SNR, and the switching of output transitions induce glitches.
Thermal noise for a 50-Ω environment is approximately 1nV/  and only limits resolution at very
high resolution. Recent research has demonstrated this potential with <6-bit D/A converters [10,13]. 

Two system issues must be considered when implementing transmitter pre-distortion. First, transmit
power is limited, so the low-frequency signal energy must be attenuated to that of the worst-case attenu-
ation of the channel. This leads to significant loss of SNR. Second, the channel characteristic is not known
to the transmitter. Accurate filter coefficients are dynamically trained with loopback information sent from
the receiver, which adds complexity to the system.

31.3 Receivers

The task of the receiver is to convert the analog waveform from the channel into a sequence of binary data.
Figure 31.12 illustrates the common components of a receiver. First, an input amplifier conditions the signal.
A sampling circuit follows and captures the analog value of each bit. A comparator amplifies the sampled
value to digital values. Similar to the transmitter, the sampling block often demultiplexes the data so that
the on-chip clock rate can be slower than the off-chip data rate. The most simple and common design
uses two samplers operating on opposite edges of a digital clock for 2:1 demultiplexing.

The primary difficulty in high-performance receiver design is maintaining low noise, both static and
dynamic. The noise of a signal at the receiver can be illustrated by an eye diagram (Fig. 31.13), which
overlays the waveform of each bit of a random sequence. The transmitter design and the channel
contributes the majority of the signal’s amplitude and timing noise. The receiver should compare the
signal with a proper reference voltage. Static offsets reduce the effective signal amplitude reducing the
SNR. To minimize dynamic noise, the receiver should reject supply and common-mode noise, filter high-
frequency input noise, and avoid any bandwidth limitation and ISI. Sampling the data at the optimal
point will be addressed in the timing-recovery section. This section describes several examples of high-
performance receiver designs. Then techniques to reduce noise and ISI are addressed.

FIGURE 31.11 Transmitter pre-distorted waveform (a) and implementation (b).
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Receiver Designs

Figure 31.14 illustrates an example of a receiver design. The first stage performs several tasks: (1) filtering
the noise, (2) level-shifting the output, and (3) amplifying the signal. An amplifier with appropriate
bandwidth can filter input noise frequencies above the data bandwidth. Furthermore, using a differential
structure improves the common-mode and supply noise rejection even though the input may be single-
ended. The outputs of the first stage [5,9] are differential for good supply noise sensitivity and are

FIGURE 31.12 Receiver components.

FIGURE 31.13 Eye diagram at the receiver.

FIGURE 31.14 Receiver design with receiving amplifier.
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level-shifted12 to accommodate the clocked comparator that follows [34]. A high clock level resets the
comparator shown in Fig. 31.14. The negative clock edge samples the data and starts a positive feedback
that regeneratively amplifies the sampled value to digital values during the low clock phase. To demultiplex
the data, the comparators operate on different clock phases. The amplification is exponentially dependent
on the duration of the low phase. Because the comparator has high gain, the first stage does not need
significant gain. Some gain reduces the effective input offset voltage since the contribution of the compar-
ator’s offset is divided by the gain. Mismatch in the feedback devices and clock coupling of the comparators
can introduce significant offsets. For very high data rates, the drawback of the design is that the first
stage must have sufficient bandwidth to minimize ISI. Furthermore, delay variation of the first stage can
add timing noise. 

A simple design can avoid ISI by eliminating the first stage and sampling/demultiplexing the input with
comparators directly [24,52]. Because the comparators are reset before each sample, no signal energy from
previous bits remains hence removing ISI; however, direct sampling is noisier and has larger static offsets.
Figure 31.15 illustrates an alternate design that clocks the first stage to remove ISI but still conditions the
signal [26,43]. During the low phase of the clock, the amplifier output is reset. During the high phase
of the clock, the amplifier conditions the data. For demultiplexing, two clocked amplifiers loads the input.
A comparator samples the amplifier output to further amplify to digital levels. The clock used for the clocked
amplifier must be timed with the arriving signal to amplify the proper bit. The timing issue will be discussed
in section 31.4.

dc Offsets

Random dc offsets limit the voltage resolution of the receiver. These offset are due to random mismatches
in the devices and scales inversely with the size of the device [35]. Because minimum size devices are often
used to minimize pin capacitance and power dissipation, input-referred offset of amplifiers and compar-
ators can be tens of millivolts. 

To compensate for the error, devices are added that can create an offset in either the first amplifier or
the comparator. The control can be open-loop where the compensation value is determined with an
initial calibration [10]. Figure 31.16(a) shows a comparator with digitally controllable switches that
differentially inject an error current. The open-loop compensation is commonly digital so the value does
not drift in time. Alternatively, the control can be continuously operating and closed-loop [51]. As shown
in Figure 31.16(b), a third nonoverlapping clock phase, clk1, is added to the reset and amplify (clk0) phases
of operation. Clk1 reconfigures the amplifier to short the inputs and to store the value of the offset on

FIGURE 31.15 Receiver design using clocked amplifier/sampler as first stage.

12The input common-mode voltage depends on the transmitter and the I/O specification.
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capacitors, Cos. If data is encoded so that averaged dc is a constant (dc-balanced), a similar technique
finds the offset by averaging of the received data [22] instead of wasting a phase to short the inputs.

Noise

The main sources of noise for a receiver are mutual coupling between I/O signals and differences between
chip ground and board ground. Large image currents that flow through the supply pins to support the
output drivers cause significant voltage differences.13 Some of the supply noise inevitably appears at the input
to the receiver. Signaling differentially and carefully routing the two signals together can effectively reduce
noise to the order of tens of millivolts. Supply noise couple capacitively as common-mode noise. Further-
more, mutual coupling from other signals is at least partially compensated by coupling from its complement.

Single-ended signaling can achieve nearly the same performance if the return current supply connec-
tion is brought on-chip, tightly coupled to the signal through a separate pin. The receiver’s reference can
be derived from the return connection, but this requires the same number of pins as differential signaling.
To save pins, most single-ended systems use the chip supplies (Vdd and ground) to derive the reference.
Or, several receivers share a single return current connection. Unfortunately, since the reference signal
is shared, the capacitance between the supplies to the input pad and to the reference voltage differ. The
larger capacitance to the reference couples more high-frequency supply noise [26,42,46]. Single-ended
systems typically require larger input swings than differential systems for the same performance.

A band-limited receiving amplifier can filter some of the noise. One approach to control the bandwidth
is to bias the effective load transistors with a control signal that tracks the bit time.14 To maintain constant
output swing, the bias current of the differential amplifier must also track. An ideal filter for square-wave
inputs averages the input signal over the bit time with an integrator15 [43]. An integrating receiver replaces
the load elements with capacitors. The capacitors integrate the current that is switched by the input value.
At the end of the bit time, a comparator samples and compares the values on the capacitors before the
integrator is reset.

Receiver Equalization

With data rates above the bandwidth of the channel, an alternative to transmitter pre-emphasis is to build
the inverse channel filter at the receiver. Designers can increase the gain of the first amplifier at high-
frequencies to flatten the system response [45]. The required high-pass filter can also be implemented

FIGURE 31.16 Offset cancellation using digital controllable switchs (a) and using feedback control (b). 

13On-chip bypass capacitance only reduces chip VDD to chip ground noise, and has no effect on the noise between
chip ground and board ground.

14Similar to transmitter slew-rate control, one can leverage the fact that buffers in the clock generator have been
adjusted to have a bandwidth related to the bit rate [49].

15Most signals are not perfect square waves. In addition to finite signal slew rate, bit boundaries contain timing
uncertainty. Integrating over a portion of the bit-time (“window”) can reduce noise. 
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digitally by first feeding the input to an analog-to-digital converter (ADC) and digitally post-processing the
ADC’s output. An ADC is commonly used in disk-drive read channels since it also allows one to
implement more complex nonlinear receive filters. Although this approach works well at frequencies
lower than 1 GHz, it is very challenging with gigahertz signals because of the required GSamples/sec
converters. Recent research demonstrated a multi-GSamples/sec 4-bit ADC [10] (1 W of power), which
indicates the potential of high data rate conversion albeit with high power dissipation. Instead of a digital
implementation, for less area and power overhead at these high bit rates, a simple 1-tap FIR filter (1 − αD)
has been implemented as a switched-current filter [13] or a switched capacitor filter [47].

31.4 Timing Generation and Recovery

The task of timing recovery essentially determines the timing relationship between the transmitter and
the receiver so that the data can be received with minimal error. Typically, the burden of adjusting the
timing relationship falls on the receiver. Transmitter clocking is much easier where one primarily needs
a low-jitter clock source.16 The receiver has a more difficult task of recovering the timing from the received
signals.

The prior receiver discussion does not address how to generate the clock for the amplifiers and
samplers. Recovering a clock signal with low timing noise (jitter) and with accurate phase position is the
most difficult challenge for high data rates. The same eye diagram in Fig. 31.13 illustrates the timing
margin of a receiver. To maximize the timing margin, the receiver should sample the data in the middle
of the data-eye.17 If clocked amplifiers are used, the clock should be in-phase with the data to maximize
the settling time of the amplifier. Furthermore, designs should minimize the jitter of both the sampling
clock and the clock used at the transmitter. Almost all clock recovery circuits use a feedback loop known
as a phase-locked loop (PLL) to adjust the clock phase position and minimize jitter. This section discusses
different PLL architectures and methods to reduce offsets from the ideal sampling position (static phase
offsets) and jitter.

Architectures

A PLL is often used to synchronize the transmitter clock’s phase and frequency18 to that of a system clock.
In order to transmit phase information along with the data, two methods are commonly used. For short
distances of a wide data bus, source synchronous clocking is a method that transmits a clock in-phase
with the data. Otherwise, prior to transmission, data is encoded to contain periodic data transitions that
can be used to align the receive clock [13,15]. In some systems, the receiver and the transmitter use clocks
with slightly different frequencies. Then the timing recovery PLL has the additional task of recovering
the frequency from the data transitions. 

Figure 31.17 shows the architecture of a PLL. Two basic approaches are used: oscillator-based PLLs, and
delay-line-based PLLs or delay-locked loops (DLLs). Both systems are similar feedback loops where a control
voltage (Vctl) adjust the phase of the periodic output signal (clkint) to have a fixed phase relationship with
the input signal (inpref). To distribute the clock to many receivers, a buffer chain drives the clock line, clksamp.

DLLs control the output phase by directly adjusting the delay of a voltage-controlled delay line (VCDL)
[25]. The control loop integrates the control voltage to drive the phase error to zero. This feedback loop
is a first-order loop and is guaranteed stability, but it is constrained in that the frequency of the input
clock (clkext or inpref) determines the frequency of the output signal. Furthermore, the delay elements
limit the maximum and minimum delay of the line. Designing the range to be large enough for all PVT
and starting the loop at the correct delay often require auxiliary circuits. Using an oscillator-based PLL

16If data is multiplexed, clock phases must be properly positioned. For 2:1 multiplexing, the duty cycle needs to
be 50%.

17The eye may not be symmetric. Off-center sampling may increase the amplitude of the sampled signal. 
18PLLs are often used to generate a multiplied frequency.
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provides more flexible in frequency and phase. The oscillator is often implemented using a ring of
controllable delay elements,19 but an oscillator-based system is more complex to design. The phase of
the output signal is adjusted by integrating the change in frequency of the oscillator. Thus, an oscillator-
based PLL is a higher-order control system that has stability constraints [3,38].

Phase detector designs vary depending on whether the input reference is a clock or a data sequence.
Recovering the phase from an input clock is easier because a transition is guaranteed every cycle. An
example shown in Fig. 31.18(a) is an SR-latch where the Q and  outputs have equal pulse widths when
the input clocks are spaced 180o apart [44]. When the phases deviate from 180o, the difference in pulse
width indicates the phase difference. For data input, the added difficulty is recovering the transitions. A
common design technique shown in Fig. 31.18(b) uses XORs to compare consecutive bits [20]. When
the XOR output is high, a phase difference is present. PD1 is high starting on a transition of the input
to the rising edge of the clock. PD2 is high for half the clock period whenever data transitions. The phase
difference is the difference between the pulse width of PD1 and PD2.

20 

FIGURE 31.17 Phase-locked loop architecture using oscillator (a) and delay-line (b).

FIGURE 31.18 Phase-detection using SR-latch (a) or XOR (b) to detect data transition.

19With the availability of on-chip inductors, LC-type oscillators often used in RF applications are being considered
in large digital ICs. 

20In order to recover frequency where the input data frequency is significantly different from the oscillator natural
frequency, phase detection alone is often not sufficient. An entire class of circuits aids frequency acquisition [13,36,40].

Filter

VCO or VCDL

inpref

phase

Vctl

(clkext)

detector

Clock
Buffer

clkint

Dummy
Buffer

clksamp

data
PD1

PD2

clk

D Q

D Q
XORA

XORB

d1

d2

data

PD1

PD2

clk

d1

d2

clkint

Q

Q

cint

cref

clkint

clkref

clkref

cint

cref

One-shot

One-shot

Q

Q

(a) (b)

Q

© 2002 by CRC Press LLC



Minimizing Jitter

Jitter in the sampling clock is primarily due to the sensitivity of the loop elements to supply noise. Although
the feedback system can correct for noise with frequencies below the bandwidth of the loop, high-
frequency noise can appear as jitter on the output clocks. Loop elements, especially oscillator or delay-
line buffer elements, are often differential and have high common-mode and supply rejection to minimize
the noise. Oscillators in particular are carefully designed because noise causes errors in frequency [32].
Phase error accumulates because it is the integral of the frequency error. 

Many clocks drive large capacitances. Clock buffers are typically CMOS inverters for power efficiency,
but they have much higher supply sensitivity than the delay buffers21 and cause over half of the total jitter
of the output clock. Dummy clock buffers are often included in the feedback of the PLL (Fig. 31.17) to
use the feedback loop to track out the low frequency portion of the noise [1,21]. A well-designed loop
in a system with 5% supply noise will often have a jitter roughly 0.5 of the delay of a FO-4 inverter22 of the
clock period. Intrinsic jitter without supply noise can be more than three times less. 

Phase Detection and Static Phase Offsets

In addition to the jitter, dc phase offsets are equally important in maximizing the timing margin. Using
a loop that integrates the phase error helps reduce any inherent offsets. The offset primarily depends on
any errors in the time spacing between sampling clocks when demultiplexing, and the mismatch between
the phase detector and the receiver. 

In a 1:2 demultiplexing receiver, the clock (0°) and its complement (180°) are used. Duty cycle errors
can cause one receiver to not sample at its optimal location. Typically, a correction loop is added to the
PLL output to guarantee 50% duty cycle23 [31]. The loop averages a clock waveform to determine the
duty cycle. Using the information, the duty cycle can be adjusted by changing the logical threshold of a
clock buffer. 

To sample at the middle of a data bit, a clock must be 90° shifted with respect to the data. This shift can
be achieved by either (1) using a phase detector that indicates zero error when the difference is 90° [42], or
(2) locking to 0° and shifting the clock by 90°. The first method employs XORs in the design of the phase
detector. Figure 31.19(a) illustrates a simple case, when the reference input and loop output are two clock
waveforms. The XOR output has equal high and low durations when the clocks are 90° apart. In the second
method shown in Fig. 31.19(b), reference and loop output are locked in-phase. Using a ring-oscillator with
even number of stages, an internal clock phase in the ring can be tapped for the 90° clock [27,49]. 

A common error in phase locking is that the receiving comparator has a nonzero setup time. To
optimally sample the data, the clock position should be adjusted for the setup time.24 An additional delay

FIGURE 31.19 90o locking using XOR (a) and ring-oscillator (b).

21A 1% change in supply yields roughly a 1% change in delay, which can be 10× that of delay buffers.
22For a figure relatively insensitive to PVT, the time can be normalized relative to the delay of a FO-4 inverter. 
23A higher degree of demultiplexing requires multiple phases to be generated and tuning of each phase position [52].
24An error that is not easily dealt with is any data dependent setup time variations. This can be minimized by

designing the receiver for low input-offset voltage and hysteresis.
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at the input of the phase detector can compensate for the setup delay. The most accurate compensation
is to use a replica of the receiver as the phase detector since the setup time is inherent to the receiver;
however, this poses challenge because a receiver does not give phase information proportional to the
phase difference. The output only indicates that the loop clock is either earlier or later than an reference
clock transition. An oscillator-based loop is not stable with this type of bang-bang control so only DLLs
can be built. In order to also lock to the input frequency, a clever design uses a dual-loop architecture
that locks to the input frequency using a core loop [21,27,44]. Coarsely-spaced clock phases from the
core loop are interpolated25 to generate a clock phase that can be finely controlled. This loop clock is
locked to the input phase using a receiver replica phase detector. Using these techniques, phase offsets
can be smaller than 2% of the bit time.

31.5 Conclusion

This chapter has described the design goals and challenges for high-performance I/O. Performance using
2:1 multiplexing of greater than 5 Gb/s has been demonstrated using a 0.18-µm CMOS technology
[16,18,40]. Higher bit-rates have been shown using higher degree of multiplexing and demultiplexing.
Because transistor speeds will scale with technology, link speeds are expected to scale as well. Unfortunately,
noise coupling due to parasitic capacitances and inductances increases with frequency requiring designs
to be even more robust to noise. Designs employ many of the noise reductions techniques described in
this chapter and have continued to scale. Figure 31.20 illustrates the scaling so far. Future designs will need
to improve these noise reducing and filtering techniques. Furthermore, wire bandwidth does not scale
with technology scaling so the compensating for the low-pass filtering will be even more important. 

Methods are being researched that can squeeze more bits into existing bandwidth. Given an SNR,
Shannon’s limit shows the maximum channel capacity to be Capacity/fbw = log(1 + SNR). Researchers
are beginning to show that multilevel (4 + PAM) can be encoded in each bit period at the gigabits per
second broadband data rate [10,13]. This and many techniques [37] that have been demonstrated in
phone modems [4,23] can dramatically increase capacity to 10 bits/Hz in extremely noisy conditions,
but all require accurate A/D and D/A converters. Research has shown that they are feasible but require
extremely accurate timing. Low-jitter PLLs that lock accurately to the data phase are critical in maintaining
the resolution at the gigahertz sampling rates.

FIGURE 31.20 Scaling of link performance with process technology.

25Interpolation takes two clock phases and performs a weighted average to generate an intermediate clock phase
[32,52].
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Power of these links is becoming an important issue. For many digital systems, the aggregate off-chip
bandwidth is expected to exceed terabits per second in 2010. The data rate is not expected of a single
link but over hundreds of I/Os. Each I/O cannot afford power more than a few tens of milliwatts. 

These issues challenge the next generation of higher-performance link designs. The availability of faster
and more abundant transistor as CMOS technology scales will help designers face the challenges. 
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32.1 Introduction 

In large applications, data sets are often too massive to fit completely inside the computer’s internal
memory. The resulting input/output (or I/O) communication between fast internal memory and slower
external memory (such as disks) can be a major performance bottleneck. For example, loading a register
takes on the order of a nanosecond (10−9 s), and accessing internal memory takes tens of nanoseconds,
but the latency of accessing data from a disk is several milliseconds (10−3 s), which is about one million
times slower.
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Many computer programs exhibit some degree of locality in their pattern of memory references: Certain
data are referenced repeatedly for a while, and then the program shifts attention to other sets of data.
Substantial gains in performance may be possible by incorporating locality directly into the algorithm
design and by explicit management of the contents of each level of the memory hierarchy, thereby
bypassing the virtual memory system. 

Overview of the Chapter 

This chapter on the I/O communication between the random access internal memory and the magnetic
disk external memory, where the relative difference in access speeds is most apparent. It surveys several
paradigms for how to exploit locality and thereby reduce I/O costs when solving problems in external
memory. The problems that are considered fall into two general categories: 

1. Batched problems: No preprocessing is done and the entire file of data items must be processed,
often by streaming the data through the internal memory in one or more passes. 

2. Online problems: Computation is done in response to a continuous series of query operations and
updates. 

The approach is based upon the parallel disk model (PDM), which provides an elegant model for analyzing
the relative performance of external memory (EM) algorithms and data structures. The three main
performance measures of PDM are the number of I/O operations, the disk space usage, and the CPU time.
For reasons of brevity, we focus on the first two measures. Most of the algorithms we consider are also
efficient in terms of CPU time. In Section 32.4 we list four fundamental I/O bounds that pertain to most
of the problems considered in this chapter. In Section 32.5 we discuss an automatic load balancing technique
called disk striping for using multiple disks in parallel. 

Section 32.6 examines canonical batched EM problem of external sorting and the related problems of
permuting and fast Fourier transform. In Section 32.7, we discuss grid and linear algebra batched
computations. 

For most problems, parallel disks can be utilized effectively by means of disk striping or the parallel
disk techniques of Section 32.6, and hence we restrict ourselves starting in Section 32.8 to the conceptually
simpler single-disk case. In Section 32.8 we mention several effective paradigms for batched EM problems
in computational geometry. In Section 32.9 we look at EM algorithms for combinatorial problems on
graphs, such as list ranking, connected components, topological sorting, and finding shortest paths. 

In Sections 32.10–32.12 we consider data structures based on hash tables and search trees in the
online setting. We discuss some additional EM approaches useful for dynamic data structures, and we
also consider kinetic data structures, in which the data items are moving. Section 32.13 deals with EM
data structures for manipulating and searching text strings. In Section 32.14 we list several program-
ming environments and tools that facilitate high-level development of efficient EM algorithms. In
Section 32.15 we discuss EM algorithms that adapt optimally to dynamically changing internal memory
allocations. 

32.2 Parallel Disk Model (PDM) 

EM algorithms explicitly control data placement and movement, and thus it is important for algorithm
designers to have a simple but reasonably accurate model of the memory system’s characteristics. Magnetic
disks consist of one or more rotating platters and one read/write head per platter surface. The data are
stored on the platters in concentric circles called tracks. To read or write a data item at a certain address
on disk, the read/write head must mechanically seek to the correct track and then wait for the desired
address to pass by. The seek time to move from one random track to another is often on the order of
3–10 ms, and the average rotational latency, which is the time for half a revolution, has the same order
of magnitude. In order to amortize this delay, it pays to transfer a large contiguous group of data items,
called a block. Similar considerations apply to all levels of the memory hierarchy.
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Even if an application can structure its pattern of memory accesses to exploit locality and take full
advantage of disk block transfer, there is still a substantial access gap between internal memory perfor-
mance and external memory performance. In fact, the access gap is growing, because the latency and
bandwidth of memory chips are improving more quickly than those of disks. Use of parallel processors
further widens the gap. Storage systems such as RAID deploy multiple disks in order to get additional
bandwidth [53,105]. 

The main properties of magnetic disks and multiple disk systems can be captured by the commonly
used PDM introduced by Vitter and Shriver [202]: 

N = problem size (in units of data items)
M = internal memory size (in units of data items)
B = block transfer size (in units of data items)
D = number of independent disk drives
P = number of CPUs

where M < N, and 1 ≤ DB ≤ M/2. The data items are assumed to be of fixed length. In a single I/O, each
of the D disks can simultaneously transfer a block of B contiguous data items. When the problem involves
queries, two more performance parameters are needed: 

Q = number of input queries (for a batched problem) 
Z = query output size (in units of data items)

It is convenient to refer to some of the above PDM parameters in units of disk blocks rather than in
units of data items: 

(32.1) 

It is assumed that the input data are initially “striped” across the D disks, in units of blocks, as illustrated
in Fig. 32.1, and we require the output data to be similarly striped. Striped format allows a file of N data
items to be read or written in O(N/DB) = O(n/D)I/Os, which is optimal.

The three primary measures of performance in PDM are 

1. the number of I/O operations performed,
2. the amount of disk space used,
3. the internal (sequential or parallel) computation time. 

For reasons of brevity, this chapter focuses on only the first two measures. The reader can refer to [199]
for discussion and references on more complex and precise disk models.

FIGURE 32.1 Initial data layout on the disks, for D = 5 disks and block size B = 2. The input data items are initially
striped block-by-block across the disks. For example, data items 16 and 17 are stored in the second block (i.e., in
stripe 1) of disk D3.
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32.3 Related Memory Models, Hierarchical 
Memory, and Caching 

The study of problem complexity and algorithm analysis when using EM devices began more than 40 years
ago with Demuth’s Ph.D. thesis on sorting [71,124]. In the early 1970s, Knuth [124] did an extensive
study of sorting using magnetic tapes and (to a lesser extent) magnetic disks. At about the same time,
Floyd [87,124] considered a disk model akin to PDM for D = 1, P = 1, B = M/2 = Θ(Nc), for constant
c > 0, and developed optimal upper and lower I/O bounds for sorting and matrix transposition. Hong
and Kung [108] developed a pebbling model of I/O for straightline computations, and Savage and Vitter
[177] extended the model to deal with block transfer. Aggarwal and Vitter [15] generalized Floyd’s I/O
model to allow D simultaneous block transfers, but the model was unrealistic in that the D simultaneous
transfers were allowed to take place on a single disk. They developed matching upper and lower I/O
bounds for all parameter values for a host of problems. Because the PDM model can be thought of as a
more restrictive (and more realistic) version of Aggarwal and Vitter’s model, their lower bounds apply
as well to PDM. The section on “A General Simulation” discusses a recent simulation technique due to
Sanders et al. [176]; the Aggarwal–Vitter model can be simulated probabilistically by PDM with only a
constant factor more I/Os, thus making the two models theoretically equivalent in the randomized sense.
Deterministic simulations on the other hand require a factor of log(N/D)/log[log(N/D)] more I/Os [29]. 

Surveys of I/O models, algorithms, and challenges appear in [19,94,181,199]. Several versions of PDM
have been developed for parallel computation [70,135,185]. Models of “active disks” augmented with
processing capabilities to reduce data traffic to the host, especially during streaming applications, are
given in [3,167]. Models of microelectromechanical systems (MEMS) for mass storage appear in [100]. 

Some authors have studied problems that can be solved efficiently by making only one pass (or a small
number of passes) over the data [81,106]. One approach to reduce the internal memory requirements is
to require only an approximate answer to the problem; the more memory available, the better the
approximation. A related approach to reducing I/O costs for a given problem is to use random sampling
or data compression in order to construct a smaller version of the problem whose solution approximates
the original. These approaches are highly problem-dependent and somewhat orthogonal to our focus in
this chapter. 

The same type of bottleneck that occurs between internal memory (DRAM) and external disk storage
can also occur at other levels of the memory hierarchy, such as between registers and level 1 cache,
between level 1 and level 2 cache, between level 2 cache and DRAM, and between disk storage and tertiary
devices. The PDM model can be generalized to model the hierarchy of memories ranging from registers
at the small end to tertiary storage at the large end. Optimal algorithms for PDM often generalize in a
recursive fashion to yield optimal algorithms in the hierarchical memory models [12,13,201,203]. Con-
versely, the algorithms for hierarchical models can be run in the PDM setting, and in that setting many
have the interesting property that they use no explicit knowledge of the PDM parameters like M and B.
Frigo et al. [89] and Bender et al. [43] develop cache-oblivious algorithms and data structures that require
no knowledge of the storage parameters. 

However, the match between theory and practice is harder to establish for hierarchical models and
caches than for disks. For reasons of focus, such hierarchical models and caching issues are not considered
in this chapter. The reader is referred to the discussion and references in [199]. 

32.4 Fundamental I/O Operations and Bounds 

The I/O performance of many algorithms and data structures can be expressed in terms of the bounds
for the following four fundamental operations: 

1. Scanning (a.k.a. streaming or touching) a file of N data items, which involves the sequential reading
or writing of the items in the file 

2. Sorting a file of N data items, which puts the items into sorted order 
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3. Searching online through N sorted data items
4. Outputting the Z answers to a query in a blocked “output-sensitive” fashion

The I/O bounds for these four operations are given in Table 32.1. The special case of a single disk (D = 1)
is emphasized, because the formulas are simpler and many of the discussions in this chapter will be
restricted to the single-disk case. 

32.5 Disk Striping for Multiple Disks

It is conceptually much simpler to program for the single-disk case (D = 1) than for the multiple-disk
case (D ≥ 1). Disk striping [122,169] is a practical paradigm that can ease the programming task with
multiple disks: I/Os are permitted only on entire stripes, one stripe at a time. For example, in the data
layout in Fig. 32.1, data items 20–29 can be accessed in a single I/O step because their blocks are grouped
into the same stripe. The net effect of striping is that the D disks behave as a single logical disk, but with
a larger logical block size DB. 

Therefore, the paradigm of disk striping can be applied to automatically convert an algorithm designed
to use a single disk with block size DB into an algorithm for use on D disks each with block size B: In
the single-disk algorithm, each I/O step transmits one block of size DB; in the D-disk algorithm, each
I/O step consists of D simultaneous block transfers of size B each. The number of I/O steps in both
algorithms is the same; in each I/O step, the DB items transferred by the two algorithms are identical.
Of course, in terms of wall clock time, the I/O step in the multiple-disk algorithm will be Θ(D) times
faster than in the single-disk algorithm because of parallelism. 

Disk striping can be used to get optimal multiple-disk algorithms for three of the four fundamental
operations of Section 32.4—streaming, online search, and output reporting—but it is nonoptimal for
sorting. If D is replaced by 1 and then B by DB in the sorting bound Sort(N) given in Section 32.4, an
expression is obtained that is larger than Sort(N) by a multiplicative factor of 

(32.2)

When D is on the order of m, the log(m/D) term in the denominator is small, and the resulting value
of (32.2) is in the order of log m, which can be significant in practice. 

It follows that the only way theoretically to attain the optimal sorting bound Sort(N) is to forsake disk
striping and to allow the disks to be controlled independently, so that each disk can access a different
stripe in the same I/O step. In the next section, algorithms for sorting with multiple independent disks
are discussed. The techniques that arise can be applied to many of the batched problems addressed later
in the paper. Two such sorting algorithms—distribution sort with randomized cycling and simple ran-
domized mergesort—have relatively low overhead and will outperform disk-striped approaches.

TABLE 32.1 I/O Bounds for the Four Fundamental Operations

Operation I/O bound, D = 1 I/O bound, general D ≥ 1

Scan (N)

Sort (N)

Search (N)

Output 
(Z )

Note: The PDM parameters are defined in Section 32.2.
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32.6 External Sorting and Related Problems

The problem of external sorting (or sorting in external memory) is a central problem in the field of EM
algorithms, partly because sorting and sorting-like operations account for a significant percentage of
computer use [124], and also because sorting is an important paradigm in the design of efficient EM
algorithms, as shown in Section 32.9. With some technical qualifications, many problems that can be
solved easily in linear time in internal memory, such as permuting, list ranking, expression tree evaluation,
and finding connected components in a sparse graph, require the same number of I/Os in PDM as does
sorting. 

Theorem 32.6.1 [15,157] The average-case and worst-case number of I/Os required for sorting N = nB
data items using D disks is 

(32.3)

From Section 32.5, efficient sorting algorithms can be constructed for multiple disks by applying the
disk striping paradigm to an efficient single-disk algorithm. But in the case of sorting, the resulting
multiple-disk algorithm does not meet the optimal Sort(N) bound of Theorem 32.6.1. In the “Sorting
by Distribution” and “Sorting by Merging” sections, some recently developed external sorting algorithms
that use disks independently are discussed. The algorithms are based upon the important distribution
and merge paradigms, which are two generic approaches to sorting.  

Sorting by Distribution

Distribution sort [124] is a recursive process in which we use a set of S − 1 partitioning elements to
partition the items into S disjoint buckets. All the items in one bucket precede all the items in the next
bucket. We complete the sort by recursively sorting the individual buckets and concatenating them
together to form a single fully sorted list. 

One requirement is that we choose the S − 1 partitioning elements so that the buckets are of roughly
equal size. When that is the case, the bucket sizes decrease from one level of recursion to the next by a
relative factor of Θ(S), and thus there are O(logSn) levels of recursion. During each level of recursion,
we scan the data.  As the items stream through internal memory, they are partitioned into S buckets in
an online manner. When a buffer of size B fills for one of the buckets, its block is written to the disks in the
next I/O, and another buffer is used to store the next set of incoming items for the bucket. Therefore,
the maximum number of buckets (and partitioning elements) is S = Θ(M/B) = Θ(m), and the resulting
number of levels of recursion is Θ(logmn).

It seems difficult to find S = Θ(m) partitioning elements using Θ(n/D)I/Os and guarantee that the
bucket sizes are within a constant factor of one another. Efficient deterministic methods exist for choosing
S =  partitioning elements [15,156,202], which has the effect of doubling the number of levels of
recursion. Probabilistic methods based upon random sampling can be found in [82]. A deterministic
algorithm for the related problem of (exact) selection (i.e., given k, find the kth item in the file in sorted
order) appears in [184]. 

In order to meet the sorting bound (3), the buckets at each level of recursion must be formed using
O(n/D)I/Os, which is easy to do for the single-disk case. In the more general multiple-disk case, each
read step and each write step during the bucket formation must involve on the average Θ(D) blocks. The
file of items being partitioned was itself one of the buckets formed in the previous level of recursion. In
order to read that file efficiently, its blocks must be spread uniformly among the disks, so that no one
disk is a bottleneck. The challenge in distribution sort is to write the blocks of the buckets to the disks
in an online manner and achieve a global load balance by the end of the partitioning, so that the bucket
can be read efficiently during the next level of the recursion.

Sort N( ) Θ
n
D
---- logmn 

 =

m
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Vitter and Shriver [202] develop two complementary randomized online techniques for the partition-
ing so that with high probability each bucket will be well balanced across the D disks. Putting the methods
together, they got the first provably optimal randomized method for sorting with parallel disks.

DeWitt et al. [72] present a randomized distribution sort algorithm in a similar model to handle the
case when sorting can be done in two passes. They use a sampling technique to find the partitioning
elements and route the items in each bucket to a particular processor. The buckets are sorted individually
in the second pass.

An even better way to do distribution sort, and deterministically at that, is the BalanceSort method
developed by Nodine and Vitter [156]. During the partitioning process, the algorithm keeps track of how
evenly each bucket has been distributed so far among the disks. It maintains an invariant that guarantees
good distribution across the disks for each bucket. 

The distribution sort methods that we mentioned above for parallel disks perform write operations
in complete stripes, which makes it easy to write parity information for use in error correction and
recovery. But since the blocks written in each stripe typically belong to multiple buckets, the buckets
themselves will not be striped on the disks, and we must use the disks independently during read
operations. In the write phase, each bucket must therefore keep track of the last block written to each
disk so that the blocks for the bucket can be linked together.

An orthogonal approach is to stripe the contents of each bucket across the disks so that read operations
can be done in a striped manner. As a result, the write operations must use disks independently, since
during each write, multiple buckets will be writing to multiple stripes. Error correction and recovery can
still be handled efficiently by devoting to each bucket one block-sized buffer in internal memory. The
buffer is continuously updated to contain the exclusive-or (parity) of the blocks written to the current
stripe, and after D − 1 blocks have been written, the parity information in the buffer can be written to
the final (Dth) block in the stripe.

Under this new scenario, the basic loop of the distribution sort algorithm is, as before, to read one
memoryload at a time and partition the items into S buckets; however, unlike before, the blocks for each
individual bucket will reside on the disks in contiguous stripes. Each block therefore has a predefined
place where it must be written. If we choose the normal round-robin ordering for the stripes (namely, …,
1, 2, 3, …, D, 1, 2, 3, …, D, …), the blocks of different buckets may “collide,” meaning that they need to
be written to the same disk, and subsequent blocks in those same buckets will also tend to collide. Vitter
and Hutchinson [200] solve this problem by the technique of randomized cycling. For each of the S
buckets, they determine the ordering of the disks in the stripe for that bucket via a random permutation
of {1, 2,…,D}. The S random permutations are chosen independently. If two blocks (from different
buckets) happen to collide during a write to the same disk, one block is written to the disk and the other
is kept on a write queue. With high probability, subsequent blocks in those two buckets will be written
to different disks and thus will not collide. As long as there is a small pool of available buffer space to tem-
porarily cache the blocks in the write queues, Vitter and Hutchinson show that with high probability the
writing proceeds optimally. 

The randomized cycling method or the related merge sort methods discussed at the end of the
subsection on “Sorting by Merging” will be the methods of choice for sorting with parallel disks. Experi-
ments are underway to evaluate their relative performance. Distribution sort algorithms may have an
advantage over the merge approaches in that they typically make better use of lower levels of cache in
the memory hierarchy of real systems, based upon analysis of distribution sort and merge sort algorithms
on models of hierarchical memory, such as the RUMH model of Vitter and Nodine [201]. 

Sorting by Merging

The merge paradigm is somewhat orthogonal to the distribution paradigm of the previous section. A
typical merge sort algorithm works as follows [124]: In the “run formation” phase, the n blocks of data are
scanned, one memoryload at a time; each memoryload is sorted into a single “run,” which is then output
onto a series of stripes on the disks. At the end of the run formation phase, there are N/M = n/m (sorted)
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runs, each striped across the disks. (In actual implementations, we can use the “replacement-selection”
technique to get runs of 2M data items, on the average, when M  B [124].) After the initial runs are
formed, the merging phase begins. In each pass of the merging phase, we merge together groups of R
runs. For each merge, we scan the R runs and merge the items in an online manner as they stream
through internal memory. Double buffering is used to overlap I/O and computation. At most R = Θ(m)
runs can be merged at a time, and resulting number of passes is O(logmn).

To achieve the optimal sorting bound (32.3), each merging pass must be performed in O(n/D)I/Os,
which is easy to do for the single-disk case. In the more general multiple-disk case, each parallel read
operation during the merging must on an average bring in the next Θ(D) blocks needed for the merging.
The challenge is to ensure that those blocks reside on different disks so that they can be read in a single
I/O (or a small constant number of I/Os). The difficulty lies in the fact that the runs being merged were
themselves formed during the previous merge pass. Their blocks were written to the disks in the previous
pass without knowledge of how they would interact with other runs in later merges.

For the binary merging case R = 2, can be devised a perfect solution, in which the next D blocks
needed for the merge are guaranteed to be on distinct disks, based upon the Gilbreath principle [92,124]:
The first run is striped into ascending order by disk number, and the other run is striped into descending
order. Regardless of how the items in the two runs interleave during the merge, it is always the case that
we can access the next D blocks needed for the output via a single I/O operation, and thus the amount
of internal memory buffer space needed for binary merging is minimized. Unfortunately there is no
analog to the Gilbreath principle for R > 2, and as we have seen above, we need the value of R to be large
in order to get an optimal sorting algorithm.

The Greed Sort method of Nodine and Vitter [157] was the first optimal deterministic EM algorithm
for sorting with multiple disks. Each merge is done “approximately” so that items go relatively closely to
their final destinations. A final application of Columnsort [133], using O(n) extra I/Os, completes the merge.

Aggarwal and Plaxton [14] developed an optimal deterministic merge sort based upon the Sharesort
hypercube parallel sorting algorithm [67]. To guarantee even distribution during the merging, it employs
two high-level merging schemes in which the scheduling is almost oblivious. Similar to Greed Sort, the
Sharesort algorithm is theoretically optimal (i.e., within a constant factor of optimal), but the constant
factor is larger than the distribution sort methods.

One of the most practical methods for sorting is based upon the simple randomized merge sort (SRM)
algorithm of Barve et al. [34,36], referred to as “randomized striping” by Knuth [124]. Each run is striped
across the disks, but with a random starting point (the only place in the algorithm where randomness
is utilized). During the merging process, the next block needed from each disk is read into memory, and
if there is not enough room, the least needed blocks are “flushed” (without any I/Os required) to free
up space. Barve et al. [34] derive an asymptotic upper bound on the expected I/O performance, with no
assumptions on the input distribution. A more precise analysis, which is related to the so-called cyclic
occupancy problem, is an interesting open problem. The expected performance of SRM is not optimal
for some parameter values, but it significantly outperforms the use of disk striping for reasonable values
of the parameters, as shown in Table 32.2. Experimental confirmation of the speedup was obtained on
a 500-MHz CPU with six fast disk drives, as reported by Barve and Vitter [36].

TABLE 32.2 The Ratio of the Number of I/Os Used by Simple Randomized Merge 
Sort (SRM) to the Number of I/Os Used by Merge Sort with Disk Striping, During a 
Merge of kD Runs, Where kD ≈ M/2B 

D = 5 D = 10 D = 50

k = 5 0.56 0.47 0.37

k = 10 0.61 0.52 0.40

k = 50 0.71 0.63 0.51

Note: The figures were obtained by simulation.

>>
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Further improvements can be obtained in merge sort by a more careful prefetching schedule for the
runs. Barve et al. [35] and Kallahalla and Varman [114,115] have developed competitive and optimal
methods for prefetching blocks in parallel I/O systems. Hutchinson et al. [112] have demonstrated a
powerful duality between parallel writing and parallel prefetching, which gives an easy way to compute
optimal prefetching and caching schedules for multiple disks. More significantly, they show that the same
duality exists between distribution and merging, which they exploit to get a provably optimal and very
practical parallel disk mergesort. Rather than use random starting points and round-robin stripes as in
SRM, Hutchinson et al. order the stripes for each run independently, based upon the randomized cycling
strategy discussed in Section “Sorting by Distribution” for distribution sort.

A General Simulation

Sanders et al. [176] and Sanders [175] give an elegant randomized technique to simulate the Aggarwal–Vitter
model of Section 32.3, in which D simultaneous block transfers are allowed regardless of where the blocks
are located on the disks. On the average, the simulation realizes each I/O in the Aggarwal–Vitter model
by only a constant number of I/Os in PDM. One property of the technique is that the read and write
steps use the disks independently. Armen [29] had earlier shown that deterministic simulations resulted
in an increase in the number of I/Os by a multiplicative factor of log(N/D)/log[log(N/D)]. 

Handling Duplicates

Arge et al. [23] describe a single-disk merge sort algorithm for the problem of duplicate removal, in which
a total of K distinct items are among the N items. It runs in O(n max{1, logm(K/B)})I/Os, which is optimal
in the comparison model. The algorithm can be used to sort the file, assuming that a group of equal
items can be represented by a single item and a count.

A harder instance of sorting called bundle sorting arises when K distinct key values are among the N
items, but all the items have different secondary information. Abello et al. [2] and Matias et al. [145]
develop optimal distribution sort algorithms for bundle sorting using BundleSort(N, K) = O(n max{1,
logm min{K, n}})I/Os, and Matias et al. [145] prove the matching lower bound. Matias et al. [145] also
show how to do bundle sorting (and sorting in general) in place (i.e., without extra disk space). In
distribution sort, for example, the blocks for the subfiles can be allocated from the blocks freed up from
the file being partitioned; the disadvantage is that the blocks in the individual subfiles are no longer
consecutive on the disk. The algorithms can be adapted to run on D disks with a speedup of O(D), using
the techniques described in the “Sorting by Distribution” and “Sorting by Merging” subsections.

Permuting and Transposition

Permuting is the special case of sorting in which the key values of the N data items form a permutation
of {1, 2, . . . , N}.

Theorem 32.6.2 [15] The average-case and worst-case number of I/Os required for permuting N data
items using D disks is 

(32.4)

The I/O bound (32.4) for permuting can be realized by using one of the sorting algorithms from
Section 32.6 except in the extreme case B log m = o(log n), in which case it is faster to move the data
items one by one in a non-blocked way. The one-by-one method is trivial if D = 1, but with multiple
disks there may be bottlenecks on individual disks; one solution for doing the permuting in O(N/D)I/Os
is to apply the randomized balancing strategies of [202].
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Matrix transposition is the special case of permuting in which the permutation can be represented as
a transposition of a matrix from row-major order into column-major order. 

Theorem 32.6.3 [15] With D disks, the number of I/Os required to transpose a p × q matrix from row-
major order to column-major order is 

(32.5)

where N = pq and n = N/B. 
When B is relatively large (for instance, 1/2 M ) and N is O(M2), matrix transposition can be as hard

as general sorting, but for smaller B, the special structure of the transposition permutation makes
transposition easier. In particular, the matrix can be broken up into square submatrices of B2 elements
such that each submatrix contains B blocks of the matrix in row-major order and also B blocks of the
matrix in column-major order. Thus, if B2 < M, the transpositions can be done in a simple one-pass
operation by transposing the submatrices one-at-a-time in internal memory. 

Matrix transposition is a special case of a more general class of permutations called bit-permute/
complement (BPC) permutations, which in turn is a subset of the class of bit-matrix-multiply/complement
(BMMC) permutations. BMMC permutations are defined by a log N × log N nonsingular 0-1 matrix A
and a (log N)-length 0-1 vector c. An item with binary address x is mapped by the permutation to the
binary address given by Ax ⊕ c, where ⊕ denotes bitwise exclusive-or. BPC permutations are the special
case of BMMC permutations in which A is a permutation matrix, that is, each row and each column of
A contain a single 1. BPC permutations include matrix transposition, bit-reversal permutations (which
arise in the FFT), vector-reversal permutations, hypercube permutations, and matrix reblocking. Cormen
et al. [62] characterize the optimal number of I/Os needed to perform any given BMMC permutation
solely as a function of the associated matrix A, and they give an optimal algorithm for implementing it. 

Theorem 32.6.4 [62] With D disks, the number of I/Os required to perform the BMMC permutation
defined by matrix A and vector c is 

(32.6)

where γ is the lower-left log n × log B submatrix of A. 

An interesting theoretical question is to determine the I/O cost for each individual permutation, as a
function of some simple characterization of the permutation, like number of inversions.

Fast Fourier Transform and Permutation Networks

Computing the fast Fourier transform (FFT) in external memory consists of a series of I/Os that permit
each computation implied by the FFT directed graph (or butterfly) to be done while its arguments are
in internal memory. A permutation network computation consists of an oblivious (fixed) pattern of I/Os
such that any of the N! possible permutations can be realized; data items can only be reordered when
they are in internal memory. A permutation network can be realized by a series of three FFTs [213]. 

Theorem 32.6.5 With D disks, the number of I/Os required for computing the N-input FFT digraph or
an N-input permutation network is Sort(N). 

Cormen and Nicol [61] give some practical implementations for one-dimensional (1-D) FFTs based
upon the optimal PDM algorithm of [202]. The algorithms for FFT are faster and simpler than for sorting
because the computation is nonadaptive in nature, and thus the communication pattern is fixed in advance.
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Lower Bounds on I/O

The most trivial batched problem is that of scanning (a.k.a. streaming or touching) a file of N data items,
which can be done in a linear number O(N/DB) = O(n/D) of I/Os. Permuting is one of several simple
problems that can be done in linear CPU time in the (internal memory) RAM model, but require a
nonlinear number of I/Os in PDM because of the locality constraints imposed by the block parameter B.

The proof of the permutation lower bound (32.4) of Theorem 32.6.2 is due to Aggarwal and Vitter
[15]. A stronger lower bound is obtained from a more refined argument that counts input operations
separately from output operations [111]. For the typical case in which B log m = ω(log N), the I/O lower
bound, up to lower order terms, is 2n logmn. For the pathological, in which B log m = o(log N), the I/O
lower bound, up to lower order terms, is N/D. Permuting is a special case of sorting, and hence, the
permuting lower bound applies also to sorting. In the unlikely case that B log m = o(log n), the permuting
bound is only Ω(N/D), and the comparison model must be used to get the full lower bound (32.3) of
Theorem 6.1 [15]. The reader is referred to [199] for further discussion and references on lower bounds
for sorting and related problems.

32.7 Matrix and Grid Computations

Dense matrices are generally represented in memory in row-major or column-major order. Matrix
transposition, which is the special case of sorting that involves conversion of a matrix from one repre-
sentation to the other, was discussed in the subsection on “Permuting and Transposition.” For certain
operations such as matrix addition, both representations work well; however, for standard matrix mul-
tiplication (using only semiring operations) and LU decomposition, a better representation is to block
the matrix into square  ×  submatrices, which gives the upper bound of the following theorem: 

Theorem 32.7.1 [108,177,202,212] The number of I/Os required for standard matrix multiplication of
two K × K matrices or to compute the LU factorization of a K × K matrix is Θ(K3/min{K, }DB). 

Hong and Kung [108] and Nodine et al. [155] give optimal EM algorithms for iterative grid compu-
tations, and Leiserson et al. [134] reduce the number of I/Os of naive multigrid implementations by a
Θ(M1/5) factor. Gupta et al. [102] show how to derive efficient EM algorithms automatically for compu-
tations expressed in tensor form. 

If a K × K matrix A is sparse, that is, if the number Nz of nonzero elements in A is much smaller than
K 2, then it may be more efficient to store only the nonzero elements. Each nonzero element Ai,j is repre-
sented by the triple (i, j, Ai,j). Unlike the dense case, in which transposition can be easier than sorting (e.g.,
see Theorem 32.6.3 when B2 ≤ M), transposition of sparse matrices is as hard as sorting. 

Theorem 32.7.2 For a matrix stored in sparse format and containing Nz nonzero elements, the number of
I/Os required to convert the matrix from row-major order to column-major order, and vice-versa, is Θ(Sort(Nz)).

The lower bound follows by reduction from sorting. If the ith item in the input of the sorting instance
has key value x ≠ 0, there is a nonzero element in matrix position (i, x). 

For further discussion of numerical EM algorithms, the reader is referred to the survey by Toledo
[190]. Some issues regarding programming environments are covered in [59] and Section 32.14.

32.8 Batched Problems in Computational Geometry

Problems involving massive amounts of geometric data are ubiquitous in spatial databases [131,172,
173], geographic information systems (GIS) [131,172,194], constraint logic programming [119,120],
object-oriented databases [215], statistics, virtual reality systems, and computer graphics [90]. NASA’s
Earth Observing System project, the core part of the Earth Science Enterprise (formerly Mission to Planet
Earth), produces petabytes (1015 bytes) of raster data per year [76]. Microsoft’s TerraServer online database

B B

M
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of satellite images is over one terabyte in size [188]. A major challenge is to develop mechanisms for
processing the data, or else much of the data will be useless.∗

For systems of this size to be efficient, fast EM algorithms and data structures are needed for basic
problems in computational geometry. Luckily, many problems on geometric objects can be reduced to
a small core of problems, such as computing intersections, convex hulls, or nearest neighbors. Useful
paradigms have been developed for solving these problems in external memory.  

Theorem 32.8.1 The following batched problems involving N = nB input items, Q = qB queries, and
Z = zB output items can be solved using 

O((n + q)logm n + z) (32.7)

I/Os with a single disk: 

1. Computing the pairwise intersections of N segments in the plane and their trapezoidal decomposition, 
2. Finding all intersections between N nonintersecting red  line segments  and N nonintersecting blue line

segments in the plane, 
3. Answering Q orthogonal 2-D range queries on N points in the plane (i.e., finding all the points within

the Q query rectangles), 
4. Constructing the 2-D and 3-D convex hull of N points, 
5. Voronoi diagram and Triangulation of N points in the plane, 
6. Performing Q point location queries in a planar subdivision of size N, 
7. Finding all nearest neighbors for a set of N points in the plane, 
8. Finding the pairwise intersections of N orthogonal rectangles in the plane, 
9. Computing the measure of the union of N orthogonal rectangles in the plane, 

10. Computing the visibility of N segments in the plane from a point, 
11. Performing Q ray-shooting queries in 2-D Constructive Solid Geometry (CSG) models of size N: The

parameters Q and Z are set to 0 if they are not relevant for the particular problem.

Goodrich et al. [97], Zhu [217], Arge et al. [27], Arge et al. [24], and Crauser et al. [64,65] develop
EM algorithms for those problems using the following EM paradigms for batched problems:  

Distribution sweeping—a generalization of the  distribution paradigm of Section 32.6 for “externalizing”
plane sweep algorithms. 

Persistent B-trees—an offline method for constructing  an optimal-space persistent version of the
B-tree data structure (see the subsection “B-trees and Variants”), yielding a factor of B improve-
ment over the  generic persistence techniques of Driscoll et al. [74]. 

Batched filtering—a general method for performing  simultaneous EM searches in data structures that
can  be modeled as planar layered directed acyclic graphs; it is useful for 3-D convex hulls and
batched point location. Multisearch on parallel computers is considered in [73]. 

External fractional cascading—an EM analog to fractional cascading on a segment tree,  in which the
degree of the segment tree is O(mα) for  some constant 0 < α ≤ 1. Batched queries can be  performed
efficiently using batched filtering; online queries can be supported efficiently by adapting the
parallel algorithms of work of Tamassia and Vitter [187] to the I/O setting. 

External marriage-before-conquest—an EM analog to the technique of Kirkpatrick and Seidel [123]
for performing output-sensitive convex hull constructions.

Batched incremental construction—a localized version of the randomized incremental construction
paradigm of Clarkson and Shor [56], in  which the updates to a simple dynamic data structure

∗For brevity, in the remainder of this chapter, only with the single-disk case D = 1 is presented. The single-disk
I/O bounds for the batched problems can often be cut by a factor of Θ(D) for the case D ≥ 1 by using the load
balancing techniques of Section 32.6. In practice, disk striping (cf., Section 32.5) may be sufficient. For online
problems, disk striping will convert optimal bounds for the case D = 1 into optimal bounds for D ≥ 1.
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are done in a  random order, with the goal of fast overall performance on the average.  The data
structure itself may have bad worst-case performance,  but the randomization of the update order
makes worst-case  behavior unlikely.  The key for the EM version so as to gain  the factor of B I/O
speedup is to batch together the  incremental modifications. 

32.9 Batched Problems on Graphs

The first work on EM graph algorithms was by Ullman and Yannakakis [192] for the problem of transitive
closure. Chiang et al. [54] consider a variety of graph problems, several of which have upper and lower
I/O bounds related to sorting and permuting. Abello et al. [2] formalize a functional approach to EM
graph problems, in which computation proceeds in a series of scan operations over the data; the scanning
avoids side effects and thus permits checkpointing to increase reliability. Kumar and Schwabe [128],
followed by Buchsbaum et al. [49], develop graph algorithms based upon amortized data structures for
binary heaps and tournament trees. Munagala and Ranade [151] give improved graph algorithms for
connectivity and undirected breadth-first search, and Arge et al. [20] extend the approach to compute
the minimum spanning forest (MSF). Meyer [148] provides some improvements for graphs of bounded
degree. Arge [18] gives efficient algorithms for constructing ordered binary decision diagrams. Grossi
and Italiano [101] apply their multidimensional data structure to get dynamic EM algorithms for MSF
and 2-D priority queues (in which the delete_min operation is replaced by delete_minx and delete_miny).
Techniques for storing graphs on disks for efficient traversal and shortest path queries are discussed in
[7,96,110,154]. Computing wavelet decompositions and histograms [205,206,208] is an EM graph problem
related to transposition that arises in online analytical processing (OLAP). Wang et al. [207] give an I/O-
efficient algorithm for constructing classification trees for data mining. 

Table 32.3 gives the best known I/O bounds for several graph problems, as a function of the number
V = vB of vertices and the number E = eB of edges. The best known I/O lower bound for these problems
is Ω((E/V )Sort(V ) = e logm v). 

In the case of semi-external graph problems [2], in which the vertices fit in internal memory but not
the edges (i.e., V ≤ M < E), several of the problems in Table 32.3 can be solved optimally in external
memory. For example, finding connected components, biconnected components, and minimum span-
ning forests can be done in O(e) I/Os when V ≤ M. The I/O complexities of several problems in the
general case remain open, including connected components, biconnected components, and minimum
spanning forests in the deterministic case, as well as breadth-first search, topological sorting, shortest paths,
depth-first search, and transitive closure. It may be that the I/O complexity for several of these problems is
Θ((E/V)Sort(V) + V). For special cases, such as trees, planar graphs, outerplanar graphs, and graphs of
bounded tree width, several of these problems can be solved substantially faster in O(Sort(E)) I/Os [7,54,
141,142].

Chiang et al. [54] exploit the key idea that efficient EM algorithms can often be developed by a seq-
uential simulation of a parallel algorithm for the same problem. The intuition is that each step of a parallel
algorithm specifies several operations and the data they act upon. If the data arguments for each operation
are brought together, which can be done by two applications of sorting, the operations can be performed
by a single linear scan through the data. After each simulation step, sorting is again performed in order
to reblock the data into the linear order required for the next simulation step. In list ranking, which is
used as a subroutine in the solution of several other graph problems, the number of working processors
in the parallel algorithm decreases geometrically with time, so the number of I/Os for the entire simulation
is proportional to the number of I/Os used in the first phase of the simulation, which is Sort(N) =
Θ(n logm n).  The optimality of the EM algorithm given in [54] for list ranking assumes that  logm =
Ω(log n), which is usually true in practice. That assumption can be removed by use of the buffer tree data
structure [17] (see Section 32.11 “B-trees and Variants”). A practical, randomized implementation of list
ranking appears in [183]. Dehne et al. [69,70] and Sibeyn and Kaufmann [185] use a related approach
and get efficient I/O bounds by simulating coarse-grained parallel algorithms in the BSP parallel model. 

m
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32.10 External Hashing for Online Dictionary Search

This section focuses on online data structures for supporting the dictionary operations of insert, delete,
and lookup. Given a value x, the lookup operation returns the item(s), if any, in the structure with key
value x. The two main types of EM dictionaries are hashing, which we discuss in this section, and tree-
based approaches, which is deferred until Section 32.11. The advantage of hashing is that the expected
number of probes per operation is a constant, regardless of the number N of items. The common element
of all EM hashing algorithms is a predefined hash function:

hash : {all possible keys} → {0, 1, 2, . . . , K − 1}

that assigns the N items to K address locations in a uniform manner. Hashing algorithms differ from
one another in how they resolve the collision that results when there is no room to store an item at its
assigned location.

The goals in EM hashing are to achieve an average of O(Output(Z)) = O(z)I/Os per lookup, where
Z = zB is the number of items output, O(1)I/Os per insert and delete, and linear disk space. Most
traditional hashing methods use a statically allocated table and are thus designed to handle only a fixed

TABLE 32.3 Best Known I/O Bounds for Batched Graph Problems for the Single-Disk Case D = 1

Graph Problem I/O bound, D = 1

List ranking, Euler tour of a tree, centroid 
decomposition, expression tree evaluation

Connected components, minimum spanning 
forest (MSF)

Bottleneck MSF, biconnected components

Ear decomposition, maximal matching

Undirected breadth-first search

Undirected single-source shortest paths

Directed and undirected depth-first search, 
topological sorting, directed breadth-first 
search, directed single-source shortest paths

Transitive closure

Note: The number of vertices is denoted by V = υB and the number of edges by E = eB. The terms Sort (N) and
BundleSort (N, K) are defined in Sections 32.4 and 32.6.
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range of N. The challenge is to develop dynamic EM structures that can adapt smoothly to widely varying
values of N. 

EM hashing methods fall into one of two categories: directory methods and directoryless methods. Fagin
et al. [79] proposed a directory scheme called extendible hashing, illustrated in Fig. 32.2: The directory,
for a given d ≥ 0, consists of a table (array) of 2d pointers. Each item is assigned to the table location
corresponding to the d least significant bits of its hash address. The value of d, called the global depth,
is set to the smallest value for which each table location has at most B items assigned to it. Each table
location contains a pointer to a block where its items are stored.  Thus, a lookup takes two I/Os: one to
access the directory and one to access the block storing the item. If the directory fits in internal memory,
only one I/O is needed. Several table locations may have many fewer than B assigned items, and for
purposes of minimizing storage utilization, they can share the same disk block for storing their items by
using a local depth smaller than the global depth. When new items are inserted and deleted, the blocks
can overflow or underflow, and the local depths and global depth are changed accordingly. 

The expected number of disk blocks required to store the data items is asymptotically n/ln 2 ≈ n/0.69;
that is, the blocks tend to be about 69% full [147]. At least Ω(n/B) blocks are needed to store the direc-
tory. Flajolet [86] showed on the average that the directory uses Θ(N1/Bn/B) = Θ(N1+1/B/B2) blocks, which
can be superlinear in N asymptotically; however, for practical values of N and B, the N1/B term is a small
constant, typically less than 2, and directory size is within a constant factor of optimal.

The resulting directory is equivalent to the leaves of a perfectly balanced trie [124], in which the search
path for each item is determined by its hash address, except that hashing allows the leaves of the trie to

FIGURE 32.2 Extendible hashing with block size B = 3. The keys are indicated in italics. For convenience of
exposition, the hash address of a key consists of its binary representation. For example, the hash address of key 4 is
“…000100” and the hash address of key 44 is “…0101100”. (a) The hash table after insertion of the keys 4, 23, 18,
10, 44, 32, 9. (b) Insertion of the key 76 into table location 100 causes the block with local depth 2 split into two
blocks with local depth 3. (c) Insertion of the key 20 into table location 100 causes a block with local depth 3 to split
into two blocks with local depth 4. The directory doubles in size and the global depth d is incremented from 3 to 4.
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be accessed directly in a single I/O. Any item can thus be retrieved in a total of two I/Os. If the directory
fits in internal memory, only one I/O is needed.  

A disadvantage of directory schemes is that two I/Os rather than one I/O are required when the directory
is stored in external memory. Litwin [136] and Larson [130] developed a directoryless method called linear
hashing that expands the number of data blocks in a controlled regular fashion. In contrast to directory
schemes, the blocks in directoryless methods are chosen for splitting in a predefined order. Thus the block
that splits is usually not the block that has overflowed, so some of the blocks may require auxiliary overflow
lists to store items assigned to them. On the other hand, directoryless methods have the advantage that
there is no need for access to a directory structure, and thus searches often require only one I/O.

32.11 Multiway Tree Data Structures

An advantage of search trees over hashing methods is that the data items in a tree are sorted, and thus
the tree can be used readily for 1-D range search.  The items in a range [x, y] can be found by searching
for x in the tree and then performing an inorder traversal in the tree from x to y. In this section we
explore some important search-tree data structures in external memory.   

B-trees and Variants

Tree-based data structures arise naturally in the online setting, in which the data can be updated and
queries must be processed immediately.  Binary trees have a host of applications in the (internal memory)
RAM model. In order to exploit block transfer, trees in external memory generally use a block for each
node, which can store Θ(B) pointers and data values.  

The well-known balanced multiway B-tree due to Bayer and McCreight [39,58,124] is the most widely
used nontrivial EM data structure. The degree of each node in the B-tree (with the exception of the
root) is required to be Θ(B), which guarantees that the height of a B-tree storing N items is roughly
logB N. B-trees support dynamic dictionary operations and 1-D range search optimally in linear space,
O(logB N) I/Os per insert or delete, and O(logB N + z) I/Os per query, where Z = zB is the number of
items output. When a node overflows during an insertion, it splits into two half-full nodes, and if the
splitting causes the parent node to overflow, the parent node splits, and so on. Splittings can thus
propagate up to the root, which is how the tree grows in height. Deletions are handled in a symmetric
way by merging nodes. 

In the B+-tree variant, pictured in Fig. 32.3, all the items are stored in the leaves, and the leaves are
linked together in symmetric order to facilitate range queries and sequential access. The internal nodes
store only key values and pointers and thus can have a higher branching factor. In the most popular
variant of B+-trees, called B∗-trees, splitting can usually be postponed when a node overflows, by “sharing”
the node’s data with one of its adjacent siblings. The node needs to be split only if the sibling is also full;
when that happens, the node splits into two, and its data and those of its full sibling are evenly redis-
tributed, making each of the three nodes about 2/3 full. This local optimization reduces how often new

FIGURE 32.3 B+-tree multiway search tree. Each internal and leaf node corresponds to a disk block. All the items
are stored in the leaves; the darker portion of each leaf block indicates its relative fullness. The internal nodes store
only key values and pointers, Θ(B) of them per node. Although not indicated here, the leaf blocks are linked together
sequentially.

Leaves

Level 1

Level 2
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nodes must be created and thus increases the storage utilization. Because fewer nodes are in the tree,
search I/O costs are lower. When no sharing is done (as in B+-trees), Yao [214] shows that nodes are
roughly ln 2 ≈ 69% full on the average, assuming random insertions. With sharing (as in B∗-trees), the
average storage utilization increases to about 2 ln(3/2) ≈ 81% [32,129]. Storage utilization can be increased
further by sharing among several siblings, at the cost of more complicated insertions and deletions. Some
helpful space-saving techniques borrowed from hashing are partial expansions [33] and use of overflow
nodes [186].  

A cross between B-trees and hashing, where each subtree rooted at a certain level of the B-tree is
instead organized as an external hash table, was developed by Litwin and Lomet [137] and further studied
in [30,138]. O’Neil [158] proposed a B-tree variant called the SB-tree that clusters together on the disk
symmetrically ordered nodes from the same level so as to optimize range queries and sequential access.
Rao and Ross [165,166] use similar ideas to exploit locality and optimize search tree performance in internal
memory. Reducing the number of pointers allows a higher branching factor and thus faster search.

Partially persistent versions of B-trees have been developed by Becker et al. [41] and Varman and Verma
[195]. By persistent data structure, we mean that searches can be done with respect to any timestamp y
[74,75]. In a partially persistent data structure, only the most recent version of the data structure can be
updated. In a fully persistent data structure, any update done with timestamp y affects all future queries
for any time after y. An interesting open problem is whether B-trees can be made fully persistent. Salzberg
and Tsotras [171] survey work done on persistent access methods and other techniques for time-evolving
data. Lehman and Yao [132], Mohan [149], and Lomet and Salzberg [140] explore mechanisms to add
concurrency and recovery to B-trees.

Arge and Vitter [28] introduce a powerful variant of B-trees called weight-balanced B-trees, with the
property that the weight of any subtree at level h (i.e., the number of nodes in the subtree rooted at a
node of height h) is Θ(ah), for some fixed parameter a of order B. By contrast, the sizes of subtrees at
level h in a regular B-tree can differ by a multiplicative factor that is exponential in h. 

It is sometimes useful to augment B-trees with parent pointers. Order queries such as “Does leaf x
precede leaf y in the total order represented by the tree?” can be answered using O(logB N) I/Os by following
parent pointers starting at x and y. The update operations insert, delete, cut, and concatenate can be done
in O((1 + (b/B) logm n) logb N) I/Os amortized, for any 2 ≤ b ≤ B/2, which is never worse than O((logB N)2)
by appropriate choice of b. 

Agarwal et al. [4] apply level-balanced B-trees in a data structure for point location in monotone
subdivisions, which supports queries and (amortized) updates in O((logB N)2) I/Os. They also use it to
dynamically maintain planar st-graphs using O((1 + (b/B)(logm n) logb N) I/Os (amortized) per update,
so that reachability queries can be answered in O(logB N)I/Os (worst-case). (Planar st-graphs are planar
directed acyclic graphs with a single source and a single sink.) An interesting open question is whether
level-balanced B-trees can be implemented in O(logB N)I/Os per update. Such an improvement would
immediately give an optimal dynamic structure for reachability queries in planar st-graphs. 

Arge [17] developed the elegant buffer tree data structure to support batched dynamic operations, such
as in sweep line applications, where the queries do not have to be answered right away or in any particular
order. The buffer tree is a balanced multiway tree, but with degree Θ(m) rather than degree Θ(B), except
possibly for the root.  Its key distinguishing feature is that each node has a buffer that can store Θ(M)
items (i.e., Θ(m) blocks of items). Items in a node are pushed down to the children when the buffer fills.
Emptying a full buffer requires Θ(m) I/Os, which amortizes the cost of distributing the M items to the
Θ(m) children. Each item thus incurs an amortized cost of O(m/M) = O(1/B) I/Os per level, and the
resulting cost for queries and updates is O((1/B) logm n) I/Os amortized.

Buffer trees provide a natural amortized implementation of priority queues for time-forward processing
applications like discrete event simulation, sweeping, and list ranking [54]. Govindrajan et al. [98] use
time-forward processing to construct a well-separated pair decomposition of N points in d dimensions
in O(Sort(N)) I/Os, and they apply it to the problems of finding the K nearest neighbors for each point
and the K closest pairs. Brodal and Katajainen [48] provide a worst-case optimal priority queue, in the
sense that every sequence of B insert and delete_min operations requires only O(logm n) I/Os. Practical
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implementations of priority queues based upon these ideas are examined in [47,174]. Further experiments
on buffer trees appear in [109].

32.12 Spatial Data Structures and Range Search

A fundamental database primitive in spatial databases and GIS is range search, which includes dictionary
lookup as a special case. An orthogonal range query, for a given d-dimensional rectangle, returns all the
points in the interior of the rectangle. Various forms of 2-D orthogonal range search are pictured in Fig. 32.4.
Other types of spatial queries include point location queries, ray shooting queries, nearest neighbor queries,
and intersection queries, but for brevity we restrict our attention primarily to range searching. 

Two types of spatial data structures are used: data-driven and space-driven. R-trees and kd-trees are
data-driven since they are based upon a partitioning of the data items themselves, whereas space-driven
methods like quad trees and grid files are organized by a partitioning of the embedding space, akin to
order-preserving hash functions. In this section, primarily data-driven data structures are discussed. The
goal is generally to perform queries in O(logB N + z) I/Os, use linear storage space (namely, O(n) disk blocks),
and support dynamic updates in O(logB N) I/Os. 

Linear-Space Spatial Structures

Grossi and Italiano [101] construct an elegant multidimensional version of the B-tree called the cross
tree. Using linear space, it combines the data-driven partitioning of weight-balanced B-trees at the upper
levels of the tree with the space-driven partitioning of methods like quad trees at the lower levels of
the tree. For d > 1, d-dimensional orthogonal range queries can be done in O(n1−1/d + z) I/Os, and inserts
and deletes take O(logB N) I/Os. The O-tree of Kanth and Singh [121] provides similar bounds. Cross
trees also support the dynamic operations of cut and concatenate in O(n1−1/d ) I/Os.  In some restricted
models for linear-space data structures, the 2-D range search query performance of cross trees and O-
trees can be considered to be optimal, although it is much larger than the logarithmic bound of Criterion
1. 

One way to get multidimensional EM data structures is to augment known internal memory structures,
such as quad trees and kd-trees, with block-access capabilities. Examples include kd-B-trees [168], buddy
trees [180], and hB-trees [78,139]. Grid files [107,127,152] are a flattened data structure for storing the
cells of a 2-D grid in disk blocks. Another technique is to “linearize” the multidimensional space by
imposing a total ordering on it (a so-called space-filling curve), and then the total order is used to organize
the points into a B-tree [93,117,160]. Linearization can also be used to represent nonpoint data, in which
the data items are partitioned into one or more multidimensional rectangular regions [1,159]. All the
methods described in this paragraph use linear space, and they work well in certain situations; however,
their worst-case range query performance is no better than that of cross trees, and for some methods,
like grid files, queries can require Θ(n) I/Os, even if there are no points satisfying the query. The reader
is referred to [10,91,153] for a broad survey of these and other interesting methods. Space-filling curves
arise again in connection with R-trees, which is described next. 

FIGURE 32.4 Different types of 2-D orthogonal range queries: (a) Diagonal corner 2-sided 2-D query equivalent
to a stabbing query (cf., subsection “Specialized Structures for 2-D Orthogonal Range Search”), (b) 2-sided 2-D
query, (c) 3-sided 2-D query, and (d) general 4-sided 2-D query.
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R-trees

The R-tree of Guttman [104] and its many variants are a practical multidimensional generalization of
the B-tree for storing a variety of geometric objects, such as points, segments, polygons, and polyhedra,
using linear disk space. Internal nodes have degree Θ(B) (except possibly the root), and leaves store Θ(B)
items. Each node in the tree has associated with it a bounding box (or bounding polygon) of all the items
in its subtree. A big difference between R-trees and B-trees is that in R-trees the bounding boxes of sibling
nodes are allowed to overlap.  If an R-tree is being used for point location, for example, a point may lie
within the bounding box of several children of the current node in the search. In that case, the search
must proceed to all such children. 

In the dynamic setting, several popular heuristics are used to determine to insert new items into an
R-tree and how to rebalance it; see [10,91,99] for a survey. The R∗-tree variant of Beckmann et al. [42]
seems to give best overall query performance. New R-tree partitioning methods by de Berg et al. [68]
and Agarwal et al. [9] provide some provable bounds on overlap and query performance. 

In the static setting, in which there are no updates, constructing the R∗-tree by repeated insertions, one
by one, is extremely slow. A faster alternative to the dynamic R-tree construction algorithms mentioned
above is to bulk-load the R-tree in a bottom-up fashion [1,116,159]. The quality of the bottom-up R-tree
in terms of query performance is generally not as good as that of an R∗-tree, especially for higher-
dimensional data [45,118]. 

In order to get the best of both worlds—the query performance of R∗-trees and the bulk construction
efficiency of Hilbert R-trees—Arge et al. [22] and van den Bercken et al. [193] independently devised
fast bulk loading methods based upon buffer trees that do top-down construction in O(n logm n) I/Os,
which matches the performance of the bottom-up methods within a constant factor. The former method
is especially efficient and supports dynamic batched updates and queries. 

Specialized Structures for 2-D Orthogonal Range Search

Diagonal corner 2-sided queries (see Fig. 32.4(a)) are equivalent to stabbing queries, which have the
following form: “Given a set of 1-D intervals, report all the intervals ‘stabbed’ by the query value x.”
(That is, report all intervals that contain x.) A diagonal corner query x on a set of 2-D points {(a1, b2),
(a2, b2), …} is equivalent to a stabbing query x on the set of closed intervals {[a1, b2], [a2, b2], …}. Arge
and Vitter [28,199] introduced a new paradigm we call bootstrapping to support such queries in optimal
I/O bounds and space: The data structure uses O(n) disk blocks, queries use O(logB N + z) I/Os, and
updates take O(logB N) I/Os. In another example of bootstrapping, Arge et al. [25] achieve the same
bounds for 3-sided orthogonal 2-D range searching (see Figure 32.4(c)). 

The dynamic data structure for 3-sided range searching can be generalized using the filtering technique
of Chazelle [51] to handle general 4-sided queries with optimal I/O query bound O(logB N + z) and
optimal disk space usage O(n(log n)/log (logB N + 1)) [25]. The update bound becomes O((logB N) (log
n)/log (logB N + 1)), which may not be optimal. 

Other Types of Range Search

For other types of range searching, such as in higher dimensions and for nonorthogonal queries, different
filtering techniques are needed. So far, relatively little work has been done, and many open problems
remain. 

Vengroff and Vitter [196] develop the first theoretically near-optimal EM data structure for static 3-D
orthogonal range searching. They create a hierarchical partitioning in which all the points that dominate
a query point are densely contained in a set of blocks. Compression techniques are needed to minimize disk
storage. With some recent modifications [204], (3 + k)-sided 3-D range queries, where k of the dimensions
(0 ≤ k ≤ 3) have finite ranges, can be done in O(logB N + z) I/Os, which is optimal, and the space usage
is O(n(log n)k+1/(log(logB N + 1))k). The result also provides optimal O(log N + Z)-time query performance
for 3-sided 3-D queries in the (internal memory) RAM model, but using O(N log N) space. 
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By the reduction in [52], a data structure for 3-sided 3-D queries also applies to 2-D homothetic range
search, in which the queries correspond to scaled and translated (but not rotated) transformations of an
arbitrary fixed polygon. An interesting special case is “fat” orthogonal 2-D range search, where the query
rectangles are required to have bounded aspect ratio. For example, every rectangle with bounded aspect
ratio can be covered by two overlapping squares. An interesting open problem is to develop linear-sized
optimal data structures for fat orthogonal 2-D range search. By the reduction, one possible approach
would be to develop optimal linear-sized data structures for 3-sided 3-D range search. 

Agarwal et al. [6] consider halfspace range searching, in which a query is specified by a hyperplane
and a bit indicating one of its two sides, and the output of the query consists of all the points on that
side of the hyperplane. They give various data structures for halfspace range searching in two, three, and
higher dimensions, including one that works for simplex (polygon) queries in two dimensions, but with
a higher query I/O cost. They have subsequently improved the storage bounds for halfspace range queries
in two dimensions to obtain an optimal static data structure satisfying Criteria 1 and 2 of Section 32.12. 

The number of I/Os needed to build the data structures for 3-D orthogonal range search and halfspace
range search is rather large (more than Ω(N)).  Still, the structures shed useful light on the complexity
of range searching and may open the way to improved solutions. An open problem is to design efficient
construction and update algorithms and to improve upon the constant factors. 

Callahan et al. [50] develop dynamic EM data structures for several online problems in d dimensions.
For any fixed � > 0, they can find an approximately nearest neighbor of a query point (within a 1 + � factor
of optimal) in O(logB N) I/Os; insertions and deletions can also be done in O(logB N) I/Os. They use a
related approach to maintain the closest pair of points; each update costs O(logB N) I/Os. Govindrajan
et al. [98] achieve the same bounds for closest pair by maintaining a well-separated pair decomposition.
For finding nearest neighbors and approximate nearest neighbors, two other approaches are partition trees
[5,6] and locality-sensitive hashing [95]. Numerous data structures and lower bounds have been developed
for range queries and related problems on spatial data. Refer to [10,91,153,199] for a broad survey. 

Dynamic and Kinetic Data Structures

The preceding sections have outlined cases of data structures in which the data items change dynamically.
The bootstrapping paradigm discussed in the two previous subsections is a very useful approach for
converting static data structures that are efficient in internal memory into dynamic ones that are efficient
for external memory.  

In another approach to dynamic data, Arge and Vahrenhold [26] obtain I/O bounds for dynamic point
location in general planar subdivisions similar to those of [4], but without use of level-balanced trees.
Their method uses a weight-balanced base structure at the outer level and a multislab structure for storing
segments similar to that of Arge and Vitter [28]. They use an externalization of Bentley’s logarithmic
method [44,161] to construct a data structure to answer vertical rayshooting queries in the multislab
structures. Arge et al. [8] apply the logarithmic method (in both the binary form and B-way variant) to
get EM versions of kd-trees, BBD trees, and BAR trees. 

In some applications, the data items are moving and their spatial coordinates change in a regular manner.
Early work on temporal data generally concentrated on time-series data or multiversion data [171]. A
question of growing interest in this mobile age is how to store and index continuously moving items, such
as mobile telephones, cars, and airplanes (e.g., see [113,170,211]). Two main approaches are used for
storing moving items: The first technique is to use the same sort of data structure as for nonmoving data,
but to update it whenever items move sufficiently so far as to trigger important combinatorial events that
are relevant to the application at hand [38]. A different approach is to store each item’s location and speed
trajectory, so that no updating is needed as long as the item’s trajectory plan does not change. Such an
approach requires fewer updates, but the representation for each item generally has higher dimension, and
the search strategies are therefore less efficient. 

Kollios et al. [126] developed a linear-space indexing scheme for moving points along a (1-D) line, based
upon the notion of partition trees. Their structure supports a variety of range search and approximate
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nearest neighbor queries. For example, given a range and time, the points in that range at the indicated
time can be retrieved in O(n1/2+� + k) I/Os, for arbitrarily small � > 0. Updates require O((log n)2) I/Os.
Agarwal et al. [5] extend the approach to handle range searches in two dimensions, and they improve the
update bound to O((logB n)2) I/Os. They also propose an event-driven data structure with the same query
times as the range search data structure of Arge and Vitter [25] discussed earlier, but with the potential
need to do many updates. A hybrid data structure combining the two approaches permits a tradeoff between
query performance and update frequency. 

R-trees offer a practical generic mechanism for storing multidimensional points and are thus a natural
alternative for storing mobile items. One approach is to represent time as a separate dimension and to
cluster trajectories using the R-tree heuristics. However, the orthogonal nature of the R-tree does not
lend itself well to diagonal trajectories. For the case of points moving along linear trajectories, Šaltenis
et al. [170] build the R-tree upon only the spatial dimensions, but parameterize the bounding box
coordinates to account for the movement of the items stored within. They maintain an outer approxi-
mation of the true bounding box, which they periodically update to refine the approximation. Agarwal
and Har-Peled [11] show how to maintain a provably good approximation of the minimum bounding
box with need for only a constant number of refinement events. 

32.13 String and Text Algorithms 

The simplest and most commonly used method to index text in large documents or collections of
documents is the inverted file, which is analogous to the index at the back of a book. The words of interest
in the text are sorted alphabetically, and each item in the sorted list has a list of pointers to the occurrences
of that word in the text. In an EM setting, a hybrid approach makes sense, in which the text is divided
into large chunks (consisting of one or more blocks) and an inverted file is used to specify the chunks
containing each word; the search within a chunk can be carried out by using a fast sequential method,
such as the Knuth–Morris–Pratt [125] or Boyer–Moore [46] methods. This particular hybrid method
was introduced as the basis of the widely used GLIMPSE search tool [144]. Another way to index text is
to use hashing to get small signatures for portions of text. The reader is referred to [31,88] for more
background on the above methods. 

In a conventional B-tree, Θ(B) unit-sized keys are stored in each internal node to guide the searching,
and thus the entire node fits into one or two blocks; however, if the keys are variable-sized text strings, the
keys can be arbitrarily long, and there may not be enough space to store Θ(B) strings per node. Pointers
to Θ(B) strings could be stored instead in each node, but access to the strings during search would require
more than a constant number of I/Os per node.  In order to save space in each node, Bayer and Unterauer
[40] investigated the use of prefix representations of keys. Ferragina and Grossi [83,84] recently developed
an elegant generalization of the B-tree called the String B-tree or simply SB-tree (not to be confused with
the SB-tree [158] mentioned in Section 32.11). The query time to search in an SB-tree for a string of �
characters is O(logB N + �/B), which is optimal. Insertions and deletions can be done in the same I/O bound.
Ferragina and Grossi [83,84] apply SB-trees to the problems of string matching, prefix search, and substring
search. Ferragina and Luccio [85] apply SB-trees to get new results for dynamic dictionary matching; their
structure even provides a simpler approach for the (internal memory) RAM model.

Tries and Patricia tries are commonly used as internal memory data structures for storing sets of strings.
One particularly interesting application of Patricia tries is to store the set of suffixes of a text string. The
resulting data structure, called a suffix tree [146,210], can be built in linear time and  supports search for
an arbitrary substring of the text in time linear in the size of the substring. A more compact (but static)
representation of a suffix tree, called a suffix array [143], consisting of the leaves of the suffix tree in
symmetric traversal order, can also be used for fast searching. (See [103] for general background.) Farach
et al. [80] show how to construct SB-trees, suffix trees, and suffix arrays on strings of total length N using
O(n logm n) I/Os, which is optimal. Clark and Munro [55] give a practical implementation of dynamic
suffix trees that use about five bytes per indexed suffix. Crauser and Ferragina [63] present an extensive
© 2002 by CRC Press LLC



set of experiments on various text collections in which they compare the practical performance of some
novel and known suffix array construction algorithms.  

Arge et al. [21] consider several models for the problem of sorting K strings of total length N in external
memory. They develop efficient sorting algorithms in these models, making use of the SB-tree, buffer
tree techniques, and a simplified version of the SB-tree for merging called the lazy trie. 

Theorem 32.13.1 [21] The number of I/Os needed to sort K strings of total length N, where there are K1

short strings of total length N1 and K2 long strings of total length N2 (i.e., N = N1 + N2 and K = K1 + K2), is

(32.8)

Lower bounds for various models of how strings can be manipulated are given in [21]. There are gaps
in some cases between the upper and lower bounds for sorting. 

32.14 The TPIE External Memory Programming Environment

Three basic approaches are used for supporting development of I/O-efficient code, which we call access-
oriented, array-oriented, and framework-oriented. TPIE falls primarily into the third category with some
elements of the first category. Access-oriented systems preserve the programmer abstraction of explicitly
requesting data transfer. They often extend the read-write interface to include data type specifications
and collective specification of multiple transfers, sometimes involving the memories of multiple process-
ing nodes.  Examples of access-oriented systems include the UNIX file system at the lowest level, higher-
level parallel file systems such as Whiptail [182], Vesta [60], PIOUS [150], and the high-performance
storage system [209], and I/O libraries MPI-IO [59] and LEDA-SM [66].  

Array-oriented systems access data stored in external memory primarily by means of compiler-recognized
data types (typically arrays) and operations on those data types.  The external computation is directly
specified via iterative loops or explicitly data-parallel operations, and the system manages the explicit I/O
transfers. Array-oriented systems are effective for scientific computations that make regular strides through
arrays of data and can deliver high-performance parallel I/O in applications such as computational fluid
dynamics, molecular dynamics, and weapon system design and simulation. Array-oriented systems are
generally ill-suited to irregular or combinatorial computations. Examples of array-oriented systems include
PASSION [189], Panda [179] (which also has aspects of access orientation), PI/OT [164], and ViC∗ [57].

TPIE [22,191,197] provides a framework-oriented interface for batched computation as well as an
access-oriented interface for online computation. Instead of viewing batched computation as an enter-
prise in which code reads data, operates on it, and writes results, a framework-oriented system views
computation as a continuous process during which a program is fed streams of data from an outside
source and leaves trails of results behind. TPIE programmers do not need to worry about making explicit
calls to I/O routines. Instead, they merely specify the functional details of the desired computation, and
TPIE automatically choreographs a sequence of data movements to feed the computation. The reader is
referred to [199] for further discussion of TPIE and some examples of timing experiments in TPIE. 

32.15 Dynamic Memory Allocation

The amount of internal memory allocated to a program may fluctuate during the course of execution
because of demands placed on the system by other users and processes.  EM algorithms must be able to
adapt dynamically to whatever resources are available so as to preserve good performance [162]. The
algorithms in the previous sections assume a fixed memory allocation; they must resort to virtual memory
if the memory allocation is reduced, often causing a severe degradation in performance. 
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Barve and Vitter [37] discuss the design and analysis of EM algorithms that adapt gracefully to changing
memory allocations. In their model, without loss of generality, an algorithm (or program) P is allocated
internal memory in phases: During the ith phase, P is allocated mi blocks of internal memory, and this
memory remains allocated to P until P completes 2mi I/O operations, at which point the next phase
begins. The process continues until P finishes execution. We say that P is dynamically optimal, no other
algorithm can perform more than a constant number of sorts in the worst-case for the same sequence
of memory allocations. 

Barve and Vitter [37] define a precise model and give dynamically optimal strategies for sorting, matrix
multiplication, and buffer tree operations. Previous work was done on memory-adaptive algorithms for
merge sort [162,216] and hash join [163], but the algorithms handle only special cases and can be made
to perform nonoptimally for certain patterns of memory allocation.  

32.16 Conclusions

In this chapter, several useful paradigms for the design and implementation of efficient external memory
(EM) algorithms and data structures were described. The problem domains we have considered include
sorting, permuting, FFT, scientific computing, computational geometry, graphs, databases, geographic
information systems, and text and string processing. Interesting challenges remain in virtually all these
problem domains. One difficult problem is to prove lower bounds for permuting and sorting without an
item indivisibility assumption. Another promising area is the design and analysis of EM algorithms for
efficient use of multiple disks. Optimal bounds have not yet been determined for several basic EM graph
problems like topological sorting, shortest paths, breadth-first and depth-first search, and connected com-
ponents. There is an intriguing connection between problems that have good I/O speedups and problems
that have fast and work-efficient parallel algorithms. Several problems remain open in the dynamic and
kinetic settings, such as range searching, ray shooting, point location, and finding nearest neighbors.  

A continuing goal is to develop optimal EM algorithms and to translate theoretical gains into observ-
able improvements in practice. For some of the problems that can be solved optimally up to a constant
factor, the constant overhead is too large for the algorithm to be of practical use, and simpler approaches
are needed. In practice, algorithms cannot assume a static internal memory allocation; they must adapt
in a robust way when the memory allocation changes. 

Many interesting challenges and opportunities in algorithm design and analysis arise from new archi-
tectures being developed, such as networks of workstations and hierarchical storage devices. Active (or
intelligent) disks, in which disk drives have some processing capability and can filter information sent
to the host, have recently been proposed to further reduce the I/O bottleneck, especially in large database
applications [3,167].  MEMS-based nonvolatile storage has the potential to serve as an intermediate level
in the memory hierarchy between DRAM and disks. It could ultimately provide better latency and
bandwidth than disks, at less cost per bit than DRAM [178,198].  
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33.1 Introduction

The I/O system is a critical bottleneck for many modern data-intensive applications. The demand for
greater storage capacity and high-speed access to stored data is growing rapidly. Disks, the most common
secondary-storage medium in use today, have shown remarkable improvements in capacity and perfor-
mance over the past decade. Innovations in disk technology have resulted in higher recording densities,
smaller form factors, increased spindle speeds, and the increased availability of multi-zoned disks with
variable transfer rates. Nonetheless, the storage requirements of modern applications is growing at an
even faster rate, exceeding the impressive capacity of modern disk drives, and necessitating the use of
multiple storage devices. Simultaneously the I/O rates required by these applications has outstripped the
data rates that can be provided by single disks, despite the very significant improvements that have been
made. 

Consider as one example the growing use of digital multimedia in diverse applications ranging from
entertainment and education to medicine and commerce. Multimedia or multimedia-enhanced appli-
cations routinely manipulate digitized images and video and audio data, requiring tremendous amounts
of storage capacity, and placing stringent real-time constraints on the delivery rate to ensure smooth
playback. A single hour-long MPEG-compressed video stream recorded at a rate of 4 Mbits/s, would
require almost 2 GB of storage. A storage system with hundred or thousands of such clips would require
several storage devices, perhaps a combination of disks to keep the more popular clips online, and slower
tertiary tape storage to archive less popular video streams. The data transfer rate of a single disk is able
to support the real-time retrieval of at most a few tens of concurrent streams, and the capacity decreases
with increased video resolution and playback speeds. Analogous issues arise in other applications like
real-time databases [47] where large numbers of sensory inputs need to be  continually  monitored  and
logged in an event database; critical events in turn may trigger the execution of data analysis routines
that need to be complete within stipulated time bounds, placing a tremendous strain on the I/O subsystem.
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Spatial databases in geographic information systems [7], temporal and kinetic databases that track the
evolution or movement of objects in time [2,47], Web and application servers, graphics and visualization,
and data mining systems, are other examples of the growing list of data-centric applications requiring
the use of parallel I/O [1]. Even in compute-intensive domains like scientific computing applications,
the scale of problems being addressed necessitates the use of advanced data management techniques,
including the use of concurrent I/O to achieve acceptable performance [41].

33.2 Parallel I/O Organization

In this chapter, a parallel I/O system will refer to a disk-based I/O subsystem, made up of multiple disk
drives that can access their data in parallel. Within this broad framework, different parallel I/O organizations
are conceivable and supported by different vendors. RAID (an acronym that now stands for redundant
array of independent disks) systems provide increased storage capacity and bandwidth by incorporating
multiple disk drives within a single storage unit, and employ fault-tolerance mechanisms to cope with
the increased failure probability stemming from the use of multiple devices [15]. Different RAID orga-
nizations (traditionally referred to as RAID levels) using different redundancy techniques to achieve fault
tolerance have been proposed. RAID 1 uses data mirroring, whereby the entire disk contents are mirrored
on an additional disk. RAID 4 and RAID 5 systems (RAID 5 is probably the most popular organization
used in practice), employ the concept of a parity block to achieve fault tolerance. The multiple-disk
system is viewed as a collection of stripes. A stripe consists of a block from each disk. One block of each
stripe is designated as a parity block; it stores the bitwise exclusive-or of the corresponding bits of each of
the other blocks in that stripe. In the event of a single-disk failure, the blocks on the failed disk can be
reconstructed from the blocks in the same stripe on the working disks. The storage overhead for fault-
tolerance is much less than the 100% redundancy of RAID 1 systems. The penalty, however, is the
increased time for a write, since an update to a data block requires a read-modify-write operation on
the parity block as well. A RAID 4 system uses a single designated disk to hold the parity blocks of all
the stripes. In RAID 5 the use of a roving parity block, that associates different parity disks for different
stripes, alleviates the potential parity-disk bottleneck of a RAID 4 design. Other RAID organizations have
been since proposed. RAID 6 systems permit the failure of up to two disks without incurring any loss
of data; these systems either use two parity blocks with differently computed parities, or employ a two-
dimensional arrangement of disks with associated row and column parities.  RAID 0 does not provide
any fault tolerance, but allows data to be striped across multiple disks thereby allowing high-bandwidth
transfers to and from the disks. Hybrid combination like RAID 10 and RAID 53 attempt to combine the
advantages of different RAID levels in a hybrid architecture [51].

The interconnection between the disk system and the server is also undergoing changes to facilitate
the increasingly parallel and distributed nature of storage systems. Traditional disk architectures use bus-
based interconnects like the small computer system interconnect (SCSI) to connect a set of devices to
the host [53].  A SCSI interconnect permits only a small number (7 or 15 depending on the SCSI protocol
level) of devices to be connected to a single controller using the shared bus. The maximum transfer rate
is small, starting at 5 MB/s for the original SCSI-1 protocol up to 40 MB/s for UltraSCSI.  

More scalable I/O architectures are based on the use of switched interconnections. The high perfor-
mance parallel interface (HIPPI) [29] defines a point-to-point interconnection, with high speed peak
data transfer rates of 100 MB/s (HIPPI-800) to 800 MB/s (HIPPI-6400). Multiple devices are intercon-
nected using a cross-point switch. Fiber channel refers to a set of standards [25] being developed by the
American National Standards Institute (ANSI) that allows for an active intelligent interconnection
scheme, called a fabric, to connect devices. It attempts to combine both network-oriented communication
methods and dedicated hardware-based channel communication into a single I/O interface for both
channel and network users. Different fiber channel topologies are supported including point-to-point,
cross-point switched, or an arbitrated loop (or ring topology) network. Fiber channel supports its own
protocol, as well as higher level protocols such as the FDDI, SCSI, HIPPI, and IPI, enhancing its versatility,
but increasing the potential compatibility problems as well. The fibre channel standard addresses the
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need for fast transfers, up to 1 Gbits/s, of large amounts of information. Other emerging interconnect
standards include the switched InfiniBand architecture, a synthesis of formerly competing System I/O
and NextGeneration I/O proposals, with projected peak bidirectional rates of up to 6 GB/s [30]. 

Another trend in I/O organizations is the decentralization of storage devices [24,45]. Storage area
networks (SAN) and network-attached storage devices  (NASD) are two such directions towards reducing
the tight coupling between servers and devices in traditional I/O architectures. In a SAN, multiple servers
and devices are connected together by a dedicated high-speed network different from, and in addition
to, the local area network (LAN) connecting the servers and clients. Data transfer between a server and
a device occurs over this dedicated back-end network. Networked storage architectures have several
potential benefits. They facilitate sharing of disk-resident data between multiple servers by avoiding the
three-step process (read I/O, network transfer, write I/O) required in transferring data on traditional
server-hosted I/O architectures. Furthermore, they permit autonomous data transfer between devices
simplifying backup and data replication for performance or reliability, and encourage the spatial distri-
bution of devices on the network, while maintaining the capability for centralized management. A
network-attached storage device [26] allows many of the server functions to be offloaded directly to the
device. Once a request is authenticated by the server and forwarded to the device, data transfer to the network
proceeds independently without further involvement of the server. In principle a NASD can be directly
connected to the LAN or may serve as an independent module in a back-end SAN.

Highly parallel I/O organizations with high-bandwidth interconnections that have the capability of
supporting hundreds of concurrent I/O transfers are a characteristic of current and evolving I/O archi-
tectures. The physical realization in terms of interconnection and communication protocols, redundancy
and fault-tolerance, and balance between distribution and centralization of resources are a continuing
topic of current research. Complex issues dealing with cost, performance, reliability, interoperability,
security, and ease of configuration and management will need to be resolved, with perhaps different
configurations suitable in different application domains.  

Whatever the physical manifestation, managing hundreds of concurrent I/O devices in order to fully
exploit their inherent parallelism and high interconnection bandwidth is a challenging problem. To study
the issues at a high level, configuration-independent abstract models such as the parallel disk model (PDM)
[58] have been proposed. Two extremes of logical I/O organizations based on the memory buffer can be
identified: in a shared-buffer organization there is a centralized memory buffer shared by all the disks,
and all accesses are routed through the buffer. In a distributed-buffer organization each disk has a private
buffer used exclusively to buffer data from that disk. The shared configuration has the potential to make
better use of the buffer space by dynamically changing the portion of the buffer devoted to any disk based
on the load. In contrast,  the performance of the distributed configuration can be limited by a few heavily
loaded disks. Hybrid configurations are possible as in a logically shared but physically partitioned buffer.
Such an architecture provides the scalability and modularity inherent in having distributed resources
while providing increased resource utilization due to sharing.

33.3 Performance Model for Parallel I/O

Parallel I/O systems have the potential to improve I/O performance if one can exploit disk parallelism by
performing multiple concurrent I/Os; however, it is a challenging problem to successfully exploit the
available disk bandwidth to reduce application I/O latency. According to increasing evidence, traditional disk
management strategies can severely under-utilize available bandwidth and therefore do not scale well, leading
to excessive I/O service time. As a consequence, several new algorithms for managing parallel I/O resources,
with the explicit intention of exploiting I/O parallelism have been recently advanced [5,11,32–36,50,57].

The performance of a parallel I/O system is fundamentally determined by the pattern of disk accesses.
The simplest form of data access, sequential reading of a file, represents the canonical application that can
benefit from parallel I/O. Disk striping provides the natural solution for such an access pattern. The file is
broken into blocks, and the blocks are placed in a round-robin fashion on the D disks, so that every Dth
block is placed on the same disk. A main memory buffer of D blocks is used. In each I/O an entire stripe
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of D consecutive blocks, one block from each disk, is read into the memory buffer. The number of I/O
steps is reduced by a factor of D over sequentially accessing the file from a single disk.  Despite its simplicity,
disk striping is not the best solution for most other data access problems. For instance, generalizing the
above problem to concurrently read N sequential files, a disk-striping solution would read D blocks of a
single file in each I/O. The total buffer space required in this situation is ND blocks. A more resource-
efficient solution is to perform concurrent, independent read I/Os on the different disks. In one parallel
I/O, blocks from D different files are fetched from the D disks; this requires only 1/Dth the buffer of a disk
striping solution if the blocks are consumed at the same rates. In fact, if the blocks are consumed at a rate
comparable to the I/O time for a block, then by using independent I/Os only Θ(D) blocks of buffer suffice.  

In contrast to the uniform access patterns implied by the previous examples, a skewed data access pattern
results in hot spots, in which a single disk is repeatedly accessed in a short time period. The bandwidth
of the multiple-disk system is severely underutilized in this situation, and the performance degrades to
that of a single disk. Consider, for instance, the retrieval of constant data length (CDL) video data, in
which the frames are packed into fixed-size data blocks; the blocks are then placed on the disks using
either striped, random, or other disk allocation policy. If a number of such streams are read concurrently,
the access pattern consists of an interleaving of the blocks that depends on the playback times of the
blocks. For constant-bit rate (CBR) video streams the playback time of a block is fixed, and (assuming
striped allocation) the accesses are spread uniformly across the disks as in the example on multiple file
access. In the case of variable bit rate (VBR) video data streams, the accesses are no longer uniformly
distributed across the disks, but depend on the relative playback times of each of the blocks. Consequently,
both the load on a disk and the load across the disks varies as a function of time. In this case, simply
reading the blocks in the time-ordered interleaving of blocks, may no longer maximize the disk paral-
lelism, and more sophisticated scheduling strategies are necessary to maximize the number of streams
that can be handled by the I/O system [22].

The  abstract model of the I/O system that will be used to analyze the quality of different schedules
is based on the PDM [58]: the I/O system consists of D independent disks, which can be accessed in
parallel, and has a buffer of capacity M, through which all disk accesses occur. The computation requests
data in blocks—a block is the unit of disk access. The I/O trace of a computation is characterized  by a
reference string, which is an ordered sequence of I/O requests made by the computation. In serving a
reference string the buffer manager determines which blocks to fetch and when to fetch them so that the
computation can access the blocks in the order specified by the reference string. The computation waits
for data from the I/O system only when the data are not available in the buffer. Additionally, when an
I/O is initiated on one disk, blocks can be concurrently fetched from other disks. The number of parallel
I/Os that are issued is a measure of performance in this model. Because the buffer is shared by all disks
it is possible to allocate buffer space unevenly to different disks to meet the changing load on different
disks. The PDM assumes unit time I/Os. In many applications like those dealing with streaming data,
data logging or in several scientific computations, where large block sizes are natural, this is a viable and
useful idealization. In these situations, the number of I/Os has a direct relationship to the I/O time. In
other cases where requests are for small amounts of data and access times are dominated by the seek and
rotational latency components, no analytical models are widely applicable. In these cases, empirical
evaluations need to be employed in estimating performance [19,23]. 

33.4 Mechanisms for Improving I/O Performance

Prefetching and caching are two fundamental techniques that are employed for increasing I/O perfor-
mance. Prefetching refers to the process of initiating a read from a disk before the computation demands
the data. In a parallel I/O system, while a read progresses on one disk, reads can be started concurrently
on other disks to prefetch data that are required later. These prefetched blocks are held in the I/O buffer
till needed. In this way a temporary concentration of accesses to a small subset of the disks is tolerated
by using the time to prefetch from the disks that are currently idle; when the locality shifts to the latter
set of disks, the required data are already present in the buffer. 
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In contrast to prefetching that masks disk latencies by overlapping the access with that of I/Os to other
disks, caching attempts to exploit temporal locality in the accesses. A selected subset of the recently
accessed blocks are held in the I/O buffer in the expectation that they will be referenced again soon,
thereby avoiding repeated disk accesses for the same block. Although both prefetching and caching are
well-known techniques employed ubiquitously in computer systems and networking, deploying these
mechanisms effectively in a parallel I/O system raises a unique set of challenges.

The I/O schedule determines the set of blocks that are fetched in each parallel I/O operation. The
schedule is constructed dynamically so as to minimize the total number of parallel I/Os. This requires
the scheduler to decide which blocks to prefetch, and, when the need for replacement arises, to decide
which blocks in the buffer to cache and which to evict. Prefetching and caching in parallel I/O systems
is fundamentally different from that in systems with a single disk, and requires the use of substantially
different algorithms [11,32–36]. In a single-disk system, prefetching is used to overlap I/O operations
with CPU computations. This is usually done using asynchronous I/O whereby a computation continues
after making the I/O request without blocking. A stall model for analyzing the performance of overlapped
I/O and computation was proposed in [17] for a single disk system; prefetching and caching algorithms
to minimize stall time as a function of CPU and I/O speeds were presented in [5,17]. Disk scheduling
algorithms that reorder I/O requests to minimize the disk seek times [59] can also be considered as a
form of prefetching in single-disk systems. 

In parallel I/O systems prefetching allows overlap between accesses on different disks thereby hiding
the I/O latency behind the access latency on some other disk. The scheduler has to judiciously decide on
questions like how much buffer to allocate for prefetching and how much for caching, which blocks to
prefetch, and which blocks to cache. For instance, to utilize the available bandwidth, it may appear
desirable to keep a large number of disks busy prefetching data during an I/O; however, excessive
prefetching can fill up the buffer with blocks, which may not be used until much later in the computation.
Such blocks have the adverse effects of choking the buffer and reducing the parallelism in fetching more
immediate blocks. In fact, even when the problem does not involve the use of caching, the decisions of
which blocks to prefetch and when to do so is not trivial. 

Another issue needs to be addressed to employ prefetching and caching effectively. In order to prefetch
accurately (rather than speculatively) some knowledge of future accesses is required. This is embodied
in the notion of lookahead, which is a measure of the extent of knowledge about the future accesses that
is available in making prefetching and caching decisions. Obtaining this lookahead has been the area of
much active research [13,40,43,50]. In some applications like external sorting the lookahead can be obtained
dynamically by using a sample of the data to accurately predict the sequence of block requests [10]. In
video retrieval the sequence is determined by the playback times of blocks in the set of concurrently
accessed streams; summary statistics of the streams are used to obtain the lookahead at run time [22].
Indexes in database systems can similarly be used to provide information about the actual sequence of
data blocks that must be accessed. In broadcast servers the set of requests are prioritized by the system
to maximize utilization of the broadcast channel [4]; the prioritized request sequence provides the
lookahead for required I/O accesses. Access patterns can be revealed to the system either using program-
mer provided hints [50], or the system may attempt to uncover sequential or strided access patterns
automatically at run time [40]. Speculative execution is another technique based on executing program
code speculatively to determine the control path and the blocks accessed in the path [13]. 

33.5 Limitations of Simple Prefetching 
and Caching Strategies

In [11,32], the problem of scheduling read-once reference strings, in which each block is accessed exactly
once, was considered.  Such reference strings are characteristic of streaming applications like multimedia
retrieval. Simple intuitive algorithms that work well in a single-disk scenario were analyzed and shown
to have poor performance in the multiple-disk case. For instance, consider a natural scheduling algorithm
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that we refer to as aggressive prefetching. In each I/O, the next block required from each disk is fetched
provided there is enough free buffer space; if not then only the block demanded immediately by the
computation is read. Such an aggressive prefetching scheme, while intuitively attractive, can be shown
to have poor worst-case as well as average-case performance. There exist worst-case reference strings for
which aggressive prefetching can perform Θ(D) times as many I/Os as the optimal scheduling strategy [11].
In the average case, when the accesses are assumed to be randomly distributed across the disks with
independent uniform probability, it has been shown that reading a reference string of length N requires
Θ(N/D) I/Os using a buffer of size Ω(D2) blocks [48]. 

The problem with aggressive prefetching is that it prefetches too deep on some disks, holding up buffer
space that could better be used in fetching more immediately required blocks. A simple heuristic to
correct for this is to place a bound on the depth of prefetching. One such attractive policy is to always
give priority to a block that is required earlier in the reference string over one that is accessed later,
whenever there is insufficient buffer space to hold both blocks. Intuitively this scheme tries to keep all
disks busy by fetching greedily, but prevents blocks that are prefetched very much earlier than their time
of usage from holding up buffer space that can be used by other more urgently needed blocks. This
greedy algorithm is referred to as earliest required first (ERF) prefetching.

Consider the following example of an I/O system with three disks and an I/O buffer of capacity 6. Let
the blocks labeled ai (respectively bi, ci) be placed on disk A (respectively B, C), and the reference string be

a1  a2  a3  a4  b1  c1  a5 b2  c2  a6  b3  c3  a7  b4  c4  c5  c6 c7

Figure 33.1(a)  shows the I/O schedule constructed by the ERF algorithm described above.  In the first
step blocks a1, b1, and c1 are fetched concurrently in one I/O. When block a2 is requested, blocks a2, b2,
and c2 are fetched in parallel in step 2. Subsequently the buffer contains five blocks: a2, b1, b2, c1, and c2.
Next when a3 is requested, an I/O needs to be done to fetch it; however, there is buffer space for only one
additional block besides a3, and the choice is between fetching b3, c3, or neither. Fetching greedily in the
order of the reference string means that we fetch b3. Continuing in this manner we obtain a schedule of
length 9. Figure 33.1(b) presents an alternative schedule for the same reference string. The first two steps
in the schedule are identical to the previous case. In step 3, c3 that occurs after b3 is prefetched; and in
step 4, c4 is fetched by evicting b2 even though c4 is referenced only after b4; however, by doing so the
overall length of the schedule is reduced to 7, better than the previous schedule.

Disk A a1 a2 a3 a4 a5 a6 a7

Disk B b1 b2 b3 b4

Disk C c1 c2 c3 c4 c5 c6 c7

(a)

Disk A a1 a2 a3 a4 a5 a6 a7

Disk B b1 b2 b3 b4

Disk C c1 c2 c3 c4 c5 c6 c7

(b)

FIGURE 33.1 (a) Greedy ERF schedule. (b) Optimal schedule.

b2
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The ERF algorithm was analyzed in [11]. It was shown that there exist reference strings for which ERF
will perform Θ(√D) times as many I/Os as the optimal schedule. For the average case, under the same
assumptions as for aggressive prefetching, it can be shown that ERF can read an N block reference string
in  Θ(N/D) I/Os using a buffer of size Ω(D log D) blocks [10]. Hence, although ERF improves upon
aggressive prefetching, it does not construct the optimal-length schedule. 

In the previous discussion all blocks were implicitly assumed to be distinct. Such reference strings are
called read-once and are characteristic of streaming applications like multimedia retrieval. General
reference strings where each block can be accessed repeatedly introduce additional issues related to caching.
In particular, decisions need to be made regarding which blocks to evict from the buffer. In a single-disk
system the optimal offline caching strategy is to use the MIN algorithm [12] that always evicts the block
whose next reference is furthest in the future; however, it is easy to show that using this policy in a
multiple-disk situation does not necessarily minimize the total number of parallel I/Os that are required.
In fact, there exist reference strings for which the use of the MIN policy necessitates Θ(D) times as many
I/Os as an optimal caching strategy [34].

33.6 Optimal Parallel-Disk Prefetching

In this section we present an online prefetching algorithm L-OPT for read-once reference strings. L-OPT
uses L-block lookahead; at any instant L-OPT knows the next L references, and uses this lookahead to
determine blocks to fetch in the next I/O. It uses a  priority assignment scheme to determine the currently
most useful blocks to fetch and to retain in the buffer. As the lookahead window advances and information
about further requests are made available, the priorities of blocks are dynamically updated to incorporate
the latest information. When considered as an offline algorithm for which the entire reference string is
known in advance, it has been shown that L-OPT is the optimal prefetching algorithm that minimizes the
number of parallel I/Os [32].

L-OPT is a priority-controlled greedy prefetching algorithm. A priority-controlled greedy prefetching
scheme provides a general framework for describing different prefetching algorithms. Blocks in the looka-
head are assigned priorities depending on the scheduling policy in effect. The scheduler fetches one block
each from as many disks as possible in every I/O, while ensuring that the buffer never retains a lower-
priority block in preference to fetching one with a higher priority, if necessary by evicting the lower-
priority blocks. Algorithm priority-controlled greedy I/O describes the algorithm formally using the
definitions below.  

Different prefetching policies can be implemented using this framework merely by changing the
priority function. For instance, to implement the ERF prefetching algorithm the priority of blocks should
decrease with their position in the reference string. This is easily achieved if the priority function assigns
the ith block in the reference string a priority equal to −i. Similarly, prefetching strategies akin to aggressive
prefetching can be emulated by assigning the ith referenced block from each disk a priority of +∞ if it
is the demand block and −i otherwise.

Definitions

1. Let Σ = b1, b2,…,bn denote the reference string. If bi is a block in the lookahead, let disk(bi) denote
the disk from which it needs to be fetched and let priority(bi) be the block’s priority.

2. At the instant when bi is referenced, let Bi denote the set of blocks in the lookahead that are present
in the buffer.

3. When bi is referenced, let Hi be the maximal set of (up to) D blocks, such that if b ∈ Hi then
priority of b is the largest among all blocks from disk(b) in the lookahead but not present in the
buffer.

4. Let  be the maximal set of (up to) M blocks with the highest priorities in Hi ∪ Bi; in the case
of ties the block occurring earlier in Σ is preferred.

Bi
+
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Algorithm Priority-Controlled Greedy I/O

On a request for a block, bi, the algorithm takes the following actions. 

If bi is present in the buffer then no I/O is necessary.
If bi is not present in the buffer then 

update priorities of blocks using blocks revealed since the last I/O; 
accommodate the blocks to be read in, evict the blocks in Bi − ; and
initiate an I/O to fetch the blocks in Hi ∩ .

Service the request for block bi.

Implementing the priority-controlled greedy I/O algorithm can be done using a simple forecasting
data structure similar to that in [10], to maintain the list of blocks with highest priority on each disk.
On a hit in the buffer, the algorithm does not need to do any bookkeeping. When the requested block
is not present in the buffer the algorithm needs to find the set of blocks to fetch and the corresponding
set of blocks to evict from the buffer. If we have all the blocks in the buffer maintained and sorted in
order of their priorities, then we can choose the D blocks to fetch and evict in O(M + D) time. With
standard linked data structures, logarithmic update times are sufficient for these operations.

In contrast to the static priority assignments for ERF and aggressive prefetching, the priority function
of the optimal algorithm L-OPT depends on the relative distribution of the load on different disks.
Furthermore, as more lookahead is revealed, the previously assigned priorities of blocks may change as
a result of the new information. At any time, the blocks in the lookahead are partitioned into two
subsequences called the current and future window, respectively. At the start all blocks in the lookahead
are in the current window and the future window is empty. As new blocks are revealed they are added
to the future window. When the last block of the current window is referenced, the future window
becomes the current window and a new (empty) future window begins. The priorities of blocks in the
current window are fixed at the time the window became current, and do not change; however, the priorities
of blocks in the future window are updated to reflect new additions. All blocks in the future window have
priorities less than that of any block in the current window.

The priority assignment routine used by L-OPT to determine the priorities of blocks in a given piece
of the reference string is described below. At any instant the priority of a block is a reflection of how
urgently that block must be fetched. The lower the priority of a block, the later it can be fetched. The
central idea is to set the priority of a block as low as possible, subject to two constraints. Blocks from the
same disk are assigned priorities in order of their reference. Second, no block can have such a low priority
that M or more blocks referenced after it have a higher or same priority. In the routine below the variables
lowestPriorityOnDisk[d] and lowestPriority track the smallest priority that can be assigned to a block
without violating the two constraints. The former is incremented whenever a block is placed on disk d.
The variable lowestPriority is incremented whenever M blocks with priority lowestPriority or higher have
been placed. A block is assigned the larger of these two priorities.

L-OPT: Priority Assignment

Assign priorities to blocks 〈b1, b2,…,bn〉 of the reference string.
Initialize

lowestPriority to 1
numberOfBlocksPlaced to 0
lowestPriorityOnDisk[1…D] to 0
blocksWithPriority[1…n] to 0

for i from n down to 1
if (lowestPriority > lowestPriorityOnDisk(disk(bi))) then assign

lowestPriorityOnDisk(disk(bi))) ← lowestPriority
assign priority(bi) ← lowestPriorityOnDisk(disk(bi)))

Bi
+

Bi
+

© 2002 by CRC Press LLC



increment lowestPriorityOnDisk(disk(bi)))
increment blocksWithPriority(priority(bi))
increment numberOfBlocksPlaced
if (numberOfBlocksPlaced = M) then

decrement numberOfBlocksPlaced by blocksWithPriority(lowestPriority)
increment lowestPriority

By using the priority assignment described here, it has been shown that L-OPT always creates a schedule
that is within a factor Θ√(MD/L) times the length of  the schedule created by the optimal offline algorithm,
and that this is the best possible ratio. In addition, L-OPT’s schedule is never more than twice the length
of that created by any online algorithm (including algorithms that consistently make fortuitously correct
guesses) that has the same amount of lookahead. Finally, note that if the entire reference string is known
in advance, then L-OPT is the optimal offline algorithm [32].

33.7 Optimal Parallel-Disk Caching

For general reference strings where blocks may be repeatedly accessed, the buffer manager must decide
which blocks to cache and which to evict. As noted earlier, the optimal single-disk caching policy
embodied in the MIN algorithm can be decidedly suboptimal in the parallel I/O case. Prefetching and
caching need to harmoniously cooperate in the multiple-disk situation. The caching problem has been
studied by several researchers in the recent past for different I/O organizations. For a distributed-buffer
configuration where each disk has its own private buffer, an algorithm P-MIN that generalizes MIN to
multiple disks was shown to be optimal [57]. P-MIN uses the furthest forward reference policy on each
disk independently to determine the eviction candidate for that disk. It initiates an I/O only on demand;
in the ensuing I/O operation it prefetches aggressively from every disk unless the reference to the block
to be prefetched is further than the references of all blocks currently in that buffer. For a shared-buffer
configuration in the stall-model of computation, a sophisticated near-optimal algorithm called Reverse-
Aggressive to minimize the stall time was proposed and analyzed in [36].  

Recently, an optimal prefetching and caching algorithm, SUPERVISOR, for the parallel disk model
was presented in [34]. Like the L-OPT algorithm for prefetching, SUPERVISOR uses the general frame-
work of priority-controlled greedy I/O. The scheme for assigning priorities to references is, however,
considerably more complex than that used by L-OPT for read-once reference strings. Just as a low priority
with respect to prefetching indicates that an I/O for that block can be delayed, a low priority with respect
to caching  indicates that the block can be evicted from the buffer. 

Intuitively, SUPERVISOR assigns priorities in accordance with two principles: issue prefetches for
blocks close to their reference so that they do not wastefully occupy buffer space, and avoid caching a
block if there is any later free I/O slot available, which can be used to fetch it.  Among possible candidates
for a block to cache, it is desirable to cache a block that will occupy the buffer for a smaller duration.
Hence, the question to be answered is: Given that at some time we would like two previously referenced
blocks in the buffer, which of these should have been cached and which should be fetched now? It is
preferable to cache the block whose previous reference is closer to the current time, as this reduces the
buffer pressure between the two previous accesses. SUPERVISOR uses this intuition to assign priorities
to blocks for prefetching and caching. 

The formal details of the priority assignment algorithm used by SUPERVISOR are presented in [34].
The routine examines subsets of the lookahead consisting of M distinct references and then assigns priorities
to one block from each disk. The idea behind the assignment can be understood by considering the largest
subsequence of the lookahead including the last reference and having at most M distinct references. All
blocks which are assigned the smallest priority should belong to this set. Otherwise there will be some
reference such that M or more blocks referenced after it have a higher, or same priority. Which among
these blocks should have the lowest priority? The lowest priority can be assigned to, at most, one distinct
reference from each disk. Additionally, among two blocks from the same disk, this priority is assigned to
the block with the previous reference outside this subsequence is earlier, because we would rather not
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cache this block. It is shown in [34] that SUPERVISOR, which assigns priorities based on the above
principle is the optimal offline algorithm for parallel prefetching and caching in the parallel disk model. 

33.8 Randomized Data Placement

Randomizing the placement of blocks on the disks of a parallel I/O system is a method to reduce I/O
serialization caused by hot spots [10,11,33,35,37,52,55]. If blocks are distributed on the disks randomly
then the maximum number of accesses to a single disk in any sequence of requests can be bounded with
high probability. There are two potential benefits of randomized placement: the amount of memory
buffer required to smooth out the imbalance in disk accesses is greatly reduced, and good performance
can be achieved using simpler prefetching and caching algorithms. 

In a randomized data placement scheme each block is placed on any of the D disks with a uniform
probability 1/D. The performance of two simple prefetching algorithms using randomized placement has
been analyzed in [10,33]. Using the results of [46], aggressive prefetching was shown to read a reference
string of N blocks in an expected number Θ(N/D) I/Os using  a buffer of size Θ(D2) blocks [32]. Note
that N/D is the minimum number of I/Os needed to read N blocks, so the scheme performs within a
constant factor of the minimum possible number of I/Os. The performance of ERF that gives preference
to blocks that occur earlier in the reference string was analyzed in [10] and shown to require an expected
Θ(N/D) I/Os using a smaller buffer, of size Θ(D log D) blocks. In an online situation the two prefetching
algorithms require different lookahead information. The aggressive prefetching algorithm only needs to
know the ordered sequence of accesses to be made from each disk independently. The greedy priority-
based algorithm needs to know the global ordering of accesses across the disks. In some applications like
external merging for instance, the global ordering can be inferred from the local ordering by using a
small amount of preprocessing [10].  

Recently, it was shown how randomized placement coupled with data replication can be used to improve
I/O performance [37,50,55], particularly in [37] where two copies of each block are allocated randomly
to the disks. A scheduling algorithm decides which of the copies should be read in an I/O. It was shown
that N blocks can be read in N/D + 1 I/Os with high probability, using only Θ(D) blocks of buffer
storage [52].

For general reference strings a simple caching and prefetching algorithm that can be used in conjunc-
tion with randomized data placement was presented in [35]. The algorithm uses the ERF policy for
prefetching and a variant of the least recently used buffer replacement policy to handle evictions. It was
shown that the expected number of I/Os performed by this algorithm is within a factor Θ[log D/log(log D)]
of the number of I/Os performed by an optimal scheduling algorithm. 

Randomized data placement can generally provide good expected performance using less buffer memory
and simpler disk management algorithms than those required to deal with worst-case data placements. 

33.9 Out-of-Core Computations

Out-of-core computation deals with the problems of solving computational problems that are too large for
the entire data set to fit in primary memory. Although the virtual memory mechanisms of modern operating
systems can handle the problem transparently by paging the required data in and out of main memory
on demand, the performance of such a solution is usually poor. Improved performance is achieved by
optimizing the algorithm to be sensitive to the constraints of the I/O subsystem. The computation should
be structured to provide spatial locality using data clustering, accesses should be organized to expose
temporal locality, and declustering should be used to exploit the parallelism provided by the underlying
I/O system. In many cases traditional in-core algorithms that deal with minimizing the number of
computations without explicit consideration of the data access costs perform poorly when the data is
disk-resident, necessitating the development of new algorithms or requiring radical restructuring of the
known algorithms to achieve good I/O performance.
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External or out-of-core algorithms using parallel data transfers can be traced to the work by Aggarwal
and Vitter [3], generalizing earlier models, which dealt with sequential or nonblocked data transfers. The
model used in that work was more powerful than the PDM that models multiple-disk systems. A number
of out-of-core algorithms for external sorting, computational geometry, FFT data permutations, linear
algebra computations, scientific codes, and data structures for indexing complex multidimensional data
have since been developed [1–3,9,20,21,27,46,56,58]. The reader is referred to [1] and the references
therein for a comprehensive bibliography and discussion of these works. 

Run-time environments to increase efficiency and simplify the programming effort in applications
requiring parallel I/O has been addressed by several research groups [6,8,14,16,18,28,31,38,39,42,44,54].
For a detailed discussion of the different proposals the reader is referred to [41,49].

33.10 Conclusion

Parallel I/O systems consisting of multiple concurrent devices are necessary to handle the storage and
bandwidth requirements of modern applications. Parallel I/O hardware and interconnection technology
will continue to evolve to meet the growing demands. New algorithms and system software are essential
to effectively manage the hundreds of richly interconnected concurrent devices. Caching and prefetching
are two fundamental techniques to improve data access performance by exploiting temporal locality and
latency hiding. In a parallel I/O system using these mechanisms effectively involve challenging issues,
which have been extensively studied over the past few years. These have resulted in the design of optimal
algorithms for prefetching and caching, techniques to obtain lookahead of the I/O accesses, external
algorithms for important problems, and  file system and I/O primitives to support parallel I/O. As systems
grow larger and more complex, challenging problems to control and manage the parallelism automatically
and effectively will continue to be explored. Building on the fundamental understanding of what works and
the algorithms required to control them, tools to automatically perform configuration, dynamic declustering,
replication, prefetching, and caching will continue to be developed. Finally, although this chapter deals
primarily with disk I/O, it can be readily seen that many of the issues transcend device specificity and
apply in more general contexts dealing with managing and processing multiple concurrent I/O streams,
using limited storage and bandwidth resources, as in embedded system environments. 
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A steady increase in recording densities and data rates of magnetic hard drives during last 15 years are
mostly due to advances in recording materials, read/write heads, and mechanical designs. The role of
signal processing and coding has been to make the best use of the capacity and speed potentials offered
by these advances. As the recording technology matures, the read channel is becoming more and more
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advanced, reaching the point where it uses equally or even more complicated signal processing, coding
and modulation algorithms than any other telecommunication channel and where, due to the speed,
power consumption, and cost requirements, the challenges in implementing new architectures and
designs have been pushed to today’s integrated circuit manufacturing technology limits.

This chapter reviews advanced signal processing, modulation, coding techniques, and architectures
for magnetic recording read channel. In the most general terms, the read channel controls the reading
and writing the data to/from magnetic medium (unjustifiably the “write” part has disappeared from its
name). The operations performed in the data channel are: timing recovery, equalization, data detection,
modulation coding/decoding, and limited error control. Besides this, so called data channel, a read channel
also has a servo channel, which role is to sense head position information, and, together with the head
positioning servo system, to regulate a proper position of the head above the track. This chapter gives
an in-depth treatment of all of these subsystems.

We begin with the review of the magnetic recording principles. We describe basic recording physics
and explain how the interactions among neighboring magnetic domains cause intersymbol interference
(ISI). Then we introduce a partial response signaling as a method of controlling the ISI. The first section
also describes physical and logical organization of data on a disk and methods of increasing recording
density.

The second section gives a block diagram of a state-of-the-art read channel and explain its subsystems.
We explain organization of data on the disc tracks, servo sectors and data sectors, seeking and tracking
operations, and phase and frequency acquisition. The section on servo information detection explains
sensing radial information and read channel subsystem used to perform this operation.

The treatment of the data channel begins with an in-depth treatment of partial response signaling and
adaptive equalization-standard techniques used in today’s read channels. The novel equalization
approaches and generalized partial response polynomials are also discussed in this section. We continue
with a maximum likelihood sequence detection algorithm—Viterbi algorithm—and a noise predictive
Viterbi algorithm, which enhances the performance by exploiting the fact that noise is highly colored
and can be therefore predicted to some extent. The data detection also includes error event correction
through post-processing, a new technique used in latest generation of read channels, as well as novel soft
decoding and iterative decoding techniques.

The fourth part of the chapter discusses modulation and error control coding. Modulation coding in
a read channel serves a variety of important roles. Generally speaking modulation coding eliminates
those sequences from a recorded stream that would degrade the error performance, for example, long
runs of consecutive like symbols that impact the timing recovery, or/and sequences that result in a signal
on a small Euclidian distance. We complete the coding section with error control coding—both traditional
algebraic techniques such as Reed Solomon codes, as well as with new trends such as iterative decoding.
The error control coding is not part of present read channel chips, but will be integrated in the next
generation of so-called “super chips.”

We conclude this chapter by the review of read channel technology including novel read channel
architectures such as postprocessor, super chip, etc., as well as the issues of digital design, chip testing,
and manufacturing.

34.1 Recording Physics and Organization of Data on a Disk

Bane Vasić and Miroslav Despotović

Magnetic Recording Basics

The basic elements of a magnetic recording system are read/write head, which is an electromagnet with
a carefully shaped ferrous core, and a rotating disk with a ferromagnetic surface. Since the core of the
electromagnet is ferrous, the magnetic flux preferentially travels through the core. The core is deliberately
broken at an air gap. In the air gap, the flux creates a fringing field that extends some distance from the core.
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To record data on a surface of a disk, the modulated signal current, typically bipolar, is passed through
the electromagnet coils thus generating a fringing magnetic field. The fringing magnetic field creates a
remanent magnetization on the ferromagnetic surface, i.e., the ferromagnetic surface becomes perma-
nently magnetic. The magnetic domains in the surface act like tiny magnets themselves and create their
own fringing magnetic field above the ferromagnetic surface. The data are recorded in concentric tracks
as a sequence of small magnetic domains with two senses of magnetization depending on a sign of writing
current. In this, so-called saturation recording, the amplitude of two writing current signal levels are
chosen sufficiently large so as to magnetize to saturation the magnetic medium in one of two directions.
In this way, the nonlinear hysteresis effect does not affect domains recorded over previously recorded ones.

In a simple reading scenario the reading head flies over the disk-spinning surface (at head-to-medium
velocity, v) and passes through the fringing magnetic fields above the magnetic domains. Depending on
a head type, the output voltage induced in the electromagnet is proportional to the spatial derivative of
the magnetic field created by the permanent magnetization in the material in the case of inductive heads,
or is proportional to the fringing magnetic field in the case of magneto-resistive heads. Today’s hard
drives use magneto-resistive heads for reading, because of their higher sensitivity. Pulses sensed by a head
in response to transition on the medium are amplified and then detected to retrieve back the recorded data.
For both types of heads, it is arranged that the head readback signal responds primarily to transitions
of the magnetization pattern. The simplest, single parameter model for an isolated magnetic transition
response is the so-called Lorenzian pulse

where t50 is a parameter representing the pulse width at 50% of the maximum amplitude. Simplicity and
relatively good approximation of the channel response are the main reasons for attractiveness of this
model. The family of g(t) curves for different t50 values is depicted in Fig. 34.3. The width at half amplitude

FIGURE 34.1 (a) Longitudinal recording. (b) Perpendicular recording.

FIGURE 34.2 Magnetic domains representing bits.
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defines the recording process resolution, i.e., PW50,* as a spatial, while t50, as a temporal measure, is
alternatively in use (PW50 = vt50).

Ideal conditions for readback process would be to have head that is sensing the medium in an infinitely
narrow strip in front of the head; however, head resolution is limited, so that the head output depends
on “past” and “future” bit cell magnetization patterns. Such dependence causes superposition of isolated
transition responses partly canceling each other. This phenomenon is known as intersymbol interference
(ISI). The interference is largest for transitions at minimum spacing, i.e., a spacing of a single bit cell T.
The response to two physically adjacent transitions is designated dibit response or symbol response, i.e.,
h(t) = g(t) − g(t − T). Typical readback waveform illustrating these types of responses is depicted in Fig. 34.4.

Mathematically, the noiseless input-output relationship can be expressed as

FIGURE 34.3 Transition response g(t)—mathematical model.

FIGURE 34.4 Sketch of a typical readback waveform in magnetic recording.

*This is not so strict because, contrary to this, some authors use PW50 designating temporal resolution.
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where y and x ∈{−1, +1} are readback and recorded sequences, respectively. Notice that every transition
between adjacent bit cells yields a response ±2g(t), while no transition in recorded sequence produces
zero output.

Normalized measure of the information density* is defined as the ratio D = t50/T showing how many
channel bits are packed “under” the dispersed pulse of duration t50. Case in which we are increasing
density (D > 2) is accompanied by an increase of duration of h(t) expressed in units of T, as well as rapid
decrease of the amplitude of dibit response, which is equivalent to lowering of signal-to-noise ratio in
the channel. As a consequence, any given bit will interfere with successively more preceding and subse-
quent bits producing more severe ISI. At low normalized information densities, peaks of the transition
responses are clearly separated, so it is possible to read recorded data in simple manner by detecting these
peaks, i.e., peak detectors. Contrary to this, high-density detectors have to implement more sophisticated
detection methods in order to resolve combination of these effects. One of the most important techniques
to combat ISI in magnetic recording channels is partial-response (PR) signaling with maximum-likelihood
(ML) sequence detection, i.e., PRML detection, Section 34.5. The applicability of this scheme in magnetic
recording channels was suggested over 30 years ago [4], but the advance in technology enabled first disk
detectors of this type at the beginning of nineties [2].

The basic idea of a PR system is that certain controlled amount of ISI, at the channel equalizer output,
is left for a detector to combat with. The nature of controlled ISI is defined by a PR. This method avoids
full channel equalization and intolerable noise enhancement induced by it in a situation when amplitude
distortions, as a result of increased density, are severe. In magnetic recording systems the PR detector
reconstructs recorded sequence from samples of a suitable equalized readback signal at time instants t = iT,
i ≥ 0. The equalization result is designed in a manner that produces just a finite number of nonzero h(t)
samples h0 = h(0), h1 = h(T), h2 = h(2T),…hK = h(KT). This is usually represented in a compact partial-
response polynomial notation h(D) = h0 + h1D + h2D

2 + … + hKDK, where the dummy variable Di signifies
a delay of i time units T. Then the “sampled” input-output relationship is of the form

For channel bit densities around D ≈ 2, the target PR channels is usually the class-4 partial response
(PR4), described by h(D) = 1 − D2 = (1 − D)(1 + D). At higher recording densities Thapar and Patel [6]
introduced a general class of PR models with PR polynomial in the form hn(D) = (1 − D)(1 + D)n, n ≥ 1
that is a better match to the actual channel discrete-time symbol response. Notice that the PR4 model
corresponds to the n = 1 case. The channel models with n ≥ 2 are usually referred to as “extended class-4”
models, and denoted by En−1PR4 (EPR4, E2PR4). Recently, the modified E2PR4 (ME2PR4) channel, h(D) =
(1 − D2)(5 + 4D + 2D2), was suggested due to its robustness in high-density recordings. Notice that as
the degree of PR polynomials gets higher, the transition response, g(t), becomes wider and wider in terms
of channel bit intervals, T (EPR4 response extends over 3-bit periods, E2PR4 over 4), i.e., the remaining
ISI is more severe.

The transfer characteristics of the Lorentzian model of the PR4 saturation recording channel (at
densities D ≈ 2), is close to transition response given by

*When channel coding is introduced, this density is greater than the user information density because of added
redundancy in the recorded channel sequence.
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generating the output waveform described by

Note that g(t) = 1 at consecutive sample times t = 0 and t = T, while at all other discrete time instants,
its value is 0. Such transition response results in known ISI at sample times, leading to output sample
values that, in the absence of noise, take values from the ternary alphabet {0, ±2}. In order to decode the
readback PR sequence it is useful to describe the channel using the trellis state diagram. This is a diagram
similar to any other graph describing a finite-state machine, where states indicate the content of the
channel memory and branches between states are labeled with output symbols as a response to the certain
input (the usual convention is that for the upper branch leaving a state we associate input −1 and +1 for
the lower). The EPR4 channel has memory length 3, its trellis has 23 = 8 states, and any input sequence
is tracing the path through adjacent trellis segments.

An example of the trellis diagram is given in Fig. 34.5 for the EPR4 channel. However, notice that in
PR trellis there are also distinct states for which there exist mutually identical paths (output sequences)
that start from those states, so that we can never distinguish between them (e.g., the all-zero paths emerging
from the top and bottom states of the EPR4 trellis). Obviously, such a behavior can easily lead to great
problems in detection in situations when noise can confuse us in resolving the current trellis state (e.g.,
the bottom one for the upper in the running example). Such a trellis is so-called quasi-catastrophic trellis
and further details on this subject could be found in [3].

A common approach to studying the PR channel characteristics is to analyze its frequency spectra.
Basically, when the recording density is low (D ≈ 0.5) and readback pulses are narrow compared to the
distance between transitions, such a signal contains a high-frequency component (highest frequency
components correspond to the fastest edge of the signal). With the growth of density, the spectral energy
distribution move towards lower frequency range. This means that for the system with D = 2, the signal
spectrum is concentrated below half of the channel bit rate given by 1/T. The power of the highest spectral
components outside this half-bandwidth range is negligible. This means that for high-density recording
we can limit the channel bandwidth to 1/2T without loss of information and filtering the high frequencies
containing noise only.

Finding the Fourier transform of the dibit response we obtain the frequency response for the PR4
channel given by

FIGURE 34.5 Trellis representation of EPR4 channel outputs.
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For higher order PR channels we have different transition responses and accordingly different frequency
responses calculated in a similar fashion as for the PR4 channel. The frequency response for these channels
is shown in Fig. 34.6.

These lower frequency spectrum distributions of PR channels are closer to a typical frequency content
of raw nonequalized pulses. Hence, equalization for extended PR channels can become less critical and
requires less high frequency boost that may improve signal-to-noise ratio.

Physical Organization of Data on Disk

In most designs, the head is mounted on a slider, which is a small sled-like structure with rails. Sliders
are designed to form an air bearing that gives the lift force to keep the slider-mounted head flying at the
small and closely controlled height (the so-called Winchester technology). A small flying height is
desirable because it amplifies the readback amplitude and reduces the amount of field from neighboring
magnetic domains picked by the head, thus enabling sharper transitions in the readback signal and
recording more data on a disk; however, the surface imperfections and dust particles can cause the head
to “crash.” Controlling the head-medium spacing is of critical importance to ensure high readback signal,
and stable signal range. It is also important during reading to keep the head center above the track being
read to reduce magnetization picked up from neighboring tracks. The signal induced in the head as a
result of magnetic transitions in a neighboring track is known as a cross-talk or inter-track interference.
In order to position the head, special, periodic, wedge-like areas, the so-called servo wedges, are reserved
on a disk surface for radial position information. They typically consume 5–10% of the disk surface
available. An arch of a track laying in a servo wedge is called a servo sector. The area between servo wedges
is used to record data, and a portion of a track between two servo sectors is referred to as a data sector
or data field. In other words, the data and servo fields are time multiplexed, or using disk drive termi-
nology, the servo field is embedded in the data stream. To estimate radial position a periodic waveform
in a servo sector is detected, and the radial position error signal is calculated based on the current
estimated position of a head and the actual position of the track to be followed, and then used in a head
positioning servo system (Fig. 34.7).

Logical Organization of Data on a Disk

On a disk, data are organized in sectors. For a computer system, the sector is a sequence of (8-bit) bytes
within each addressable portion of data on a disk drive. The sector size is typically 512 bytes. For an
error control system, the sector is a sequence of error control codewords or blocks. For interleaved error
control systems, each sector contains as many blocks as there are interleave cycles. The block elements

FIGURE 34.6 Frequency response of PR4 and EPR4 channel.
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are symbols that are not necessarily eight bit long. In the most general terms, the symbols are used in
the error control coidng (ECC) system to calculate and describe error locations and values.

A read channel sees a sector as a sequence of modulation codewords together with synchronization
bits. Synchronization field is partitioned into a sector address mark, or sync mark, typically of length
around 20 bits, and phase lock loop (PLL) field, a periodic pattern whose length is about 100 bits used
for PLL synchronization. In addition to this, a secondary sync mark is placed within a data field and
used for increased reliability. A zero-phase start pattern of length 8–16 bits is used for initial estimation
of phase in the PLL. Figure 34.8 illustrates the format of user data on a disk.

Increasing Recording Density

Increasing areal density of the data stored on a disk can be achieved by reducing lengths of magnetic
domains along the track (increasing linear density) and by reducing a track width and track pitch (increasing
radial density). Although the radial density is mostly limited by the mechanical design of the drive and
ability to accurately follow the track, the linear density is a function of properties of magnetic materials
and head designs, and ability to detect and demodulate recorded data.

As linear density increases, the magnetic domains on a surface become smaller and thus thermally
unstable, which means that lower energy of an external field is sufficient to demagnetize them. This effect
is known as a superparamagnetic effect [1]. Another physical effect is the finite sensitivity of the read
head, i.e., at extremely high densities, since the domains are too small; the signal energy becomes so
small as to be comparable with the ambient thermal noise energy.

The orientation of magnetization on a disk can be longitudinal, which is typical for today’s systems,
or perpendicular. The choice of the media influences the way the magnetization is recorded on the disk.
Media with needle shaped particles oriented longitudinally tend to have a much higher remanent mag-
netization in the longitudinal direction, and favor longitudinal recording. The head design must support
the favorable orientation of magnetization. Longitudinal orientation requires head shapes that promote

FIGURE 34.7 Data and servo sectors.

FIGURE 34.8 Format of data on a disk.
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longitudinal fields such as ring heads. Similarly, some media are composed of crystallites oriented
perpendicularly to the field. Such media have a much higher remanent magnetization in the perpendicular
direction, and favor perpendicular recording. If a head design promotes perpendicular fields, such as
single pole heads, the result is perpendicularly recorded magnetization.

Some recent experiments have shown that media that favor perpendicular recording have better thermal
stability. This is why, lately, perpendicular recording is attracting a considerable attention in magnetic
recording community. Typically, in perpendicular recording a recording surface is made of a hard
ferromagnetic material, i.e., material requiring large applied fields to permanently magnetize it. Once
magnetized, the domains remain very stable, i.e., large fields are required to reverse the magnetization.
The recording layer is made thick so that, since each magnetic domain contains a large number of
magnetic particles, larger energy is required for demagnetization. The low remanence, low coercivity,
materials (the so-called soft materials) are placed beneath hard ferromagnetic surface (soft underlayer)
and used to conduct magnetic field back to another electromagnet pole. A pole-head geometry is used,
so that the medium can effectively travel through the head gap, and be exposed to stronger magnetic
field. A pole-head/soft-underlayer configuration can produce about twice the field that a ring head
produces. In this way sharp transitions can be supported on relatively thick perpendicular media, and
high frequencies (that get attenuated during readback) are written firmly. However, effects of demagne-
tizing fields are much more pronounced in perpendicular recording systems, because in longitudinal
media the transitions are not that sharp.

Physical Limits on Recording Density

At extremely high areal densities each bit of information is written on a very small area. The track width
is small and magnetic domains contain relatively small numbers of magnetic particles. Because the particles
have random positions and sizes, large statistical fluctuations or noise on the recovered signal can occur.
The signal-to-noise ratio is proportional to the track width, and is inversely proportional to the mean size
of the particle and the standard deviation of the particle size. Therefore, increasing the track size, increasing
the number of particles by increasing media thickness, and decreasing the particle size will improve the
signal-to-noise ratio. Uniaxial orientation of magnetic particles also gives higher signal-to-noise ratio;
however, the requirement for thermal stability over periods of years dictates a lower limit to the size of
magnetic particles in a magnetic domain because ambient thermal energy causes the magnetic signals to
decay. Achieving both small particle size and thermal stability over time can be done by using magnetic
materials with higher coercivity, but there is a strong practical upper limit to the coercivity that can be
written, and it is determined by the saturation magnetization of the head material.

In addition to the basic physics, a number of practical engineering factors must be considered at extremely
high densities. In particular, these factors include the ability to manufacture accurately the desired head
geometries and control media thickness, the ability to closely follow the written tracks, to control head
flying height, and the ability to maintain a very small, stable magnetic separation.

The Future

The hard drive areal densities have grown at an annual rate approaching 100%. Recently a 20 Gbit/in.2 has
been demonstrated [5], and some theoretical indications of feasibility of extremely high densities approach-
ing 1 Tbit/in.2 have been given [8,9]. Although the consideration related to user needs including higher
capacity, speed, error performance, reliability, environment condition tolerances, etc. are important, the
factors affecting cost tend to dominate read channel architecture and design considerations. Thus, achieving
highest recording density with lowest component costs at high manufacturing yields is the ultimate goal.

With areal densities growing at an annual rate approaching 100%, real concern continues to be
expressed that we may be approaching a limit to conventional magnetic recording technology; however,
as long as the read channel is concerned, large opportunities are available to improve on the existing
signal processing, both with detectors better matched to the channel and by applying more advanced
detection, modulation, and coding schemes.
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34.2 Read Channel Architecture

Bane Vasić, Pervez M. Aziz, and Necip Sayiner

The read channel is a device situated between the drive’s controller and the recording head’s preamplifier
(Fig. 34.9). The read channel provides an interface between the controller and the analog recording head,
so that digital data can be recorded and read back from the disk. Furthermore, it reads back the head
positioning information from a disk and presents it to the head positioning servo system that resides in

FIGURE 34.9 The block diagram of a disk drive.
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the controller. A typical read channel architecture is shown in Fig. 34.10. During a read operation, the
head generates a pulse in response to magnetic transitions on the media. Pulses are then amplified by
the preamplifier that resides in the arm electronics module, and fed to the read channel. In the read
channel, the readback signal is additionally amplified and filtered to remove noise and to shape the
waveform, and then the data sequence is detected (Fig. 34.10). The data to be written on a disk are sent
from a read channel to a write driver that converts them into a bipolar current that is passed through
the electromagnet coils. Prior to sending to read channel, user data coming from computer (or from a
network in the network attached storage devices) are encoded by an error control system. Redundant
bits are added in such a way to enable a recovery from random errors that may occur during reading
data from a disk. The errors occur due to number of reasons including: demagnetization effects, magnetic
field fluctuations, noise in electronic components, dust and other contaminants, thermal effects, etc.
Traditionally, the read channel and drive controller have been separate chips. The latest architectures
have integrated them into so called “super-chips.”

Analog Front End

As a first step, the read signal is normalized with respect to gain and offset so that it falls into an expected
signal range. Variation of gain and offset is a result of variations in the head media spacing, variations
in magnetic and mechanical and electronic components in the drive, preamplifier and read channel. The
front end also contains a thermal asperity (TA) circuit compensation. Thermal asperity occurs when
head hits a dust particle or some other imperfection on a disk surface. At the moment of impact, the
temperature of the head rises, and a large signal at the head’s output is generated. During TA a useful
readback signal appears as riding on the back of a low frequency signal of much higher energy. The
beginning of this “background” signal can be easily predicted and the TA signal itself suppressed by a
relatively simple filter.

FIGURE 34.10 A typical read channel architecture.
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High-frequency noise is then removed with a continuous-time low pass filter to permit a sampling of
the signal without aliasing of high-frequency noise back into the signal spectrum. The filter frequently
includes programable cut-off frequency, which can be used to shape the signal to optimize data detection.
A programmable cut-off frequency is essential since the disk rotates with constant angular velocity, and
data rate varies by approximately a factor of two from the inner to outer radius of the disc. It is also
important for the analog filter bandwidth to be switched to allow for low cut-off frequencies when
processing servo sector information.

Precompensation

Nonlinear bit shift in magnetic recording is the shift in position of a written transition due to the
demagnetizing field from adjacent transitions. In a PRML channel, the readback waverofm is synchro-
nously sampled at regular intervals, and the sample values depend on the position of written transitions.
Therefore, nonlinear bit shift leads to error in sample values which, in turn, degrades the channel
performance. The write precompensation is employed to counteract the nonlinear bit shift. However,
determining the nonlinear bit shift is not simple and straightforward especially when one tries to fine
tune each drive for its optimum precompensation. The precompensation circuit generates the write clock
signal whose individual transition timing is delayed from its nominal position by the required precom-
pensation amount. The amount of precompensation and the bit patterns requiring precompensation can
be found using the extracted pulse shape [10,18]. Another approach is a frequency-domain technique
that offers simple measurement procedure and a possible hardware implementation using a band-pass
filter [32] or using PRML sample values [33].

Partial-Response Signaling with Maximum Likelihood Sequence Estimation

After sampling with a rate 1/T, the read signal is passed through an analog or digital front end filter and
detected using a maximum likelihood sequence detector. The partial-response signaling with maximum
likelihood (PRML) sequence estimation is proposed for use in magnetic recording by Kobayashi 30 years
ago [15,16]. In 1990 IBM produced the first disk drives employing PRML detection. Today’s all read
channels are based on some version of the PRML. Cideciyan et al. [3] described a complete PRML systems
including equalization, gain and timing control, and Viterbi detector. All basic functions of a PRML
system have remained practically unchanged, until the introduction of a postprocessor that performs a
special type of soft error correction after maximum likelihood sequence detection. Also, significant
improvements in all the subsystems have been made during last 10 years. The term “partial response”
comes from the fact that the sample of the equalized signal at, say, time nT (T is a signaling interval),
contains information not only on data bits at time nT, but also on neighboring bits, i.e., magnetic
transitions. The number of adjacent bits that determine the sample at nT is referred to as channel memory.
The channel memory is a parameter that can be selected in the process of defining a read channel
architecture. The channel memory and the details of the partial response selection are made based on
an attempt to have the partial response be as close a match to the channel as possible. Since the complexity
of a maximum likelihood detector is an exponential function of a memory, it is desirable to keep the
memory low, but, the equalization required to achieve this might boost the high-frequency noise, which
result in decrease of a signal-to-noise ratio, called equalization loss. The typical value of channel memory
in today’s read channels is 4. The value of an equalized sample at time nT, yn can be written as

where xn is a user-data bit recorded at time n (xn ∈ {−1, +1}), and Lh is a channel memory. The coefficients
hk form, h(D) = , a partial response polynomial or partial response target (D is a formal, time-
delay variable). The main idea in partial response equalization is to equalize the channel to a known and
short target that is matched to the channel spectrum so that noise enhancement is minimum. Therefore, the

yn hk xn−k
k=0

Lh

∑=

Σk=0

Lh hk⋅D
k

© 2002 by CRC Press LLC



deliberate inter-symbol interference is introduced, but since the target is known, the data can be recovered,
as explained in the previous article.

Adaptive Equalization

To properly detect the user-data it is of essential importance to maintain the partial response target
during the detection. This implies that channel gain, finite-impulse response (FIR) filter coefficients, and
sampling phase must be adaptively controlled in real-time. Continuous automatic adaptations allow the
read channel to compensate for signal variations and changes that occur when drive operation is affected
by changes in temperature or when the input signals are altered by component aging. Comparing the
equalizer output samples with the expected partial response samples generates an error signal, which is
used to produce adaptive control signals for each of the adaptive loops. For filter coefficients control, a
least-mean square (LMS) algorithm is used [4]. LMS operates in the time domain to find filter coefficients
that minimize the mean-squared error between the samples and the desired response. Initial setting of
the filter coefficients is accomplished by training the filter with an on-board training sequence, and the
adaptation is continued while chip is reading data. Adaptation can be in principle performed on all
coefficients simultaneously at lower clock rate or on one coefficient at a time. Because disk channels
variations are slow relative to the data rate, the time-shared coefficient adaptation achieves the same
optimum filter response while consuming less power and taking up less chip area. Sometimes, to achieve
better loop stability, not all filter coefficients are adapted during reading data. Also, before writing, data
are scrambled to whiten the power spectral density and ensure proper filter adaptation.

The FIR filter also compensates for the large amount of group-delay variation that may be caused by
a low-pass filter with a nonlinear phase characteristics. Filters with nonlinear characteristics, such as the
Butter-worth filter, are preferred over, say, an equi-ripple design of the same circuit complexity, because
they have much better roll-off characteristics. The number of FIR filter coefficients in practical read channels
has been as low as 3 and as high as 10 with various trade-offs associated with the different choices, which
can be made.

Viterbi Detection

In many communications systems, a symbol-by-symbol detector is used to convert individual received
samples at the output of the channel to corresponding detected bits. In today’s PRML channels, a Viterbi
detector is a maximum likelihood detector that converts an entire sequence of received equalized samples to
a corresponding sequence of detected bits. Let y = (yn) be the sequence of received equalized samples
corresponding to transmitted bit sequence x = (xn). Maximum likelihood sequence estimation maximizes
the probability density p(y |x) across all choices of transmitted sequence x [7]. In the absence of noise
and mis-equalization, the relationship between the noiseless equalized samples zn and the corresponding
transmitted bits is known by the Viterbi detector and is given by

 (34.1)

In the presence of noise and mis-equalization the received samples will deviate from noiseless values.
The Viterbi detector considers various bit sequences and efficiently compares the corresponding expected
PR channel output values with those actually received. For Gaussian noise at the output of the equalizer
and equally probable input bits, maximizing p(y |x) is equivalent to choosing as the correct bit sequence
the one closest in a (squared) Euclidean distance sense to the received samples. Therefore, the following
expression needs to be to minimized 

(34.2)
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The various components of (34.3) are also known as branch metrics.The Viterbi detector accomplishes
the minimization in an efficient manner using a trellis-based search rather than an exhaustive search.
The search is effectively performed over a finite window known as the decision delay or path memory
length of the Viterbi detector. Increasing the window length beyond a certain value leads to only insig-
nificant improvements of the bit detection reliability or bit error rate (BER).

Despite the efficient nature of the Viterbi algorithm the complexity of a Viterbi detector increases
exponentially with the channel memory of the PR target. A target with channel memory of L − 1 requires
for example a 2L−1 state Viterbi detector trellis. For a fully parallel Viterbi implementation, each Viterbi
state contains an add-compare-select (ACS) computational unit, which is used to sum up the branch
metrics of (34.4) and keep the minimum metric paths for different bit sequences. Also required for the
hardware is a 2L−1⋅P bit memory to keep a history of potential bit sequences considered across the finite
decision delay window.

Timing Recovery

A phase-locked loop (PLL) is used to regenerate a synchronous clock from the data stream. The PRML
detector use decision directed timing recovery typically with a digital loop filter. The digital loop filter
parameters can be easily controlled using programmable registers and changed when read channel
switches from acquisition to tracking mode. Because a significant pipelining is necessary in the loop logic
to operate at high speeds, the digital loop filter architecture exhibits a relatively large amount of latency.
It can affect considerably the acquisition time when the timing loop must acquire significant phase and
frequency offsets. To ensure that only small frequency offsets are present, the synchronizer VCO is phase-
locked to the synthesizer during nonread times. For fast initial adjustment of the sampling phase, a
known preamble is recorded prior to user data. The time adjustment scheme is obtained by applying the
stochastic gradient technique to minimize the mean squared difference between equalized samples and
data signal estimates. To compensate for offset between the rate of the signal received and the frequency
of the local timing source the loop filter design allows for a factor ∆Tn to be introduced, so that the
sample at discrete time n is taken T + ∆Tn seconds after the sample at discrete time n − 1. In acquisition
mode, in order to quickly adjust the timing phase, large values for loop gains are chosen. In tracking
mode, the loop gains are lowered to reduce loop bandwidth.

Read Channel Servo Detection

In an embedded servo system (introduced in the previous article), the radial position of the read head is
estimated from two sequences recorded on servo wedges: track addresses and servo-bursts. The track
address provides a unique number for every track on a disk, while a servo-burst pattern is repeated on
each track or on a group of tracks. Determining the head position using only the track number is not
sufficient because the head has to be centered exactly on a given track. Therefore, the servo-burst
waveform is used in conjunction with the track address to determine the head position. Using the servo-
burst pattern, it is possible to determine the off-track position of a head with respect to a given track
with a high resolution. While positioning the head over a surface, the disk drive can be in either seeking
or tracking operation mode. In a seeking mode, the head moves over multiple tracks, trying to reach the
track with a desired address as quickly as possible, while in a tracking mode, the head tries to maintain
its position over a track. The track addresses are therefore used mostly in the seeking mode, while servo-
burst information is usually used in the tracking mode [25,30].

In read channels, periodic servo-burst waveforms are detected and used to estimate radial position.
The radial position error signal is calculated based on the current estimated position and the position
of the track to be followed, and then used in an external head positioning servo system. Generally, two
types of position estimators are in use: maximum likelihood estimators based on a matched filtering and
sub-optimal estimators based on averaging the area, or the peaks, of the incoming periodic servo-burst
waveform. A variety of techniques have been used to demodulate servo bursts including amplitude, phase,
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and null servo detectors. Today, most read channels use an amplitude modulation with either peak or
area detection demodulators.

Older generation channels generally implemented the servo functions in analog circuitry. The analog
circuitry of these servo channels partially duplicates functions present in the digital data channel. Now,
several generations of read-channel chips have switched from analog to digital circuits and digital signal
processing [8,34]. These channels reduce duplication of circuits used for servo and data and provide a
greater degree of flexibility and programmability in the servo functions.

Typically, a single analog-to-digital converter (ADC) or quantizer is used for both data datection and
servo position error signal estimation [8,20,27,34], but quantizer requirements are different in data and
servo fields. Compared to position error signal estimators, data detectors require a quantizer with higher
sampling clock rate. On the other hand position error signal estimators require a quantizer with finer
resolution. A typical disk drive has a data resolution requirement of around 6 bits, and a servo resolution
requirement of around 7 or 8 bits. Furthermore, servo bursts are periodic waveforms as opposed to data
streams. In principle, both the lower sampling clock rate requirement in the servo field and the periodicity
property of servo-burst signals can be exploited to increase the detector quantization resolution for
position error signal estimation. The servo field is oversampled asynchronously to increase the effective
quantizer resolution.

Track densities in today’s hard drives are higher than 25,000 tracks per inch, and the design of a
tracking servo system is far from trivial. Some of the recent results include [Saks97], [2,24–26]. Increasing
the drive level servo control loop bandwidth is extremely important. Typical bandwidth of a servo system
is about 1.5 kHz, and is mainly limited by the parameters that are out of reach of a read channel designer,
such as mechanical resonances of voice coil motor, arm holding a magnetic head, suspension, and other
mechanical parameters.

Another type of disturbance with a mechanical origins, that has to be also detected and controlled in
a read channel, is repeatable runout (RRO) in the position of the head with respect to the track center.
These periodic disturbances are inherent in any rotating machine, and can be the result of an eccentricity
of the track, offset of the track center with respect to the spindle center, bearing geometry, and wear and
motor geometry. The frequencies of the periodic disturbances are integer multiplies of the frequency of
rotation of the disk, and if not compensated they can be a considerable source of tracking error. In essence
the control system possesses an adaptive method to learn online the true geometry of the track being
followed, and a mechanism of continuous-time adaptive runout cancellation [31].

Postprocessor

Due to the channel memory and noise coloration, maximum likelihood sequence detector (Viterbi
detector) produces some error patterns more often than others. They are referred to as dominant error
sequences, or error events, and can be obtained analytically or through experiments and/or simulation.
Relative frequencies of error events strongly depend on a recording density.

Parity check processors combine syndrome decoding and soft-decision decoding [35]. Error event
likelihoods needed for soft decoding can be computed from a channel sequence by some kind of soft-
output Viterbi algorithm. By using a syndrome calculated for a received codeword, a list is created of all
possible positions where error events can occur, and then error event likelihoods are used to select the
most likely position and most likely type of the error event. Decoding is completed by finding the error
event position and type. The decoder can make two type of errors: it fails to correct if syndrome is zero
or it makes a wrong correction if syndrome is nonzero, but the most likely error event or combination
of error events do not produce right syndrome.

A code must be able to detect a single error from the list of dominant error events, and should minimize
the probability of producing zero syndrome when more than one error event occur in a codeword.

Consider a linear code given by an (n − k) × n parity check matrix H, with H capable of correcting
or detecting dominant errors. If all errors from a list were contiguous and shorter than m, then a cyclic
n − k = m parity bit code could be used to correct a single error event; however, in reality, the error
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sequences are more complex, and occurrence probabilities of error events of lengths 6, 7, 8, or more are
not negligible. Furthermore, practical reasons (such as decoding delay, thermal asperities, etc.) dictate
using short codes, and consequently, in order to keep code rate high, only a relatively small number of
parity bits is allowed, making the design of error event detection codes nontrivial.

The detection is based on the fact that we can calculate the likelihoods of each of dominant error
sequences at each point in time. The parity bits serve to detect the errors, and to provide some localization
in error type and time. The likelihoods are then used to choose the most likely error events (type and
location) for corrections. The likelihoods are calculated as the difference in the squared Euclidean
distances between the signal and the convolution of maximum likelihood sequence estimate and the
channel partial response, versus that between the signal and the convolution of an alternative data pattern
and the channel partial response. During each clock cycle, the lowest M are chosen, and the syndromes
for these error events are calculated. Throughout the processing of each block, a list is maintained of the
N most likely error events, along with their associated error types, positions, and syndromes. At the end
of the block, when the list of candidate error events is finalized, the likelihoods and syndromes are
calculated for each of six combinations of two candidate error events which are possible. After disqual-
ifying those pairs of candidates, which overlap in the time domain, and those candidates and pairs of
candidates which produced a syndrome, which does not match the actual syndrome, the candidate or
pair, which remains and which has the highest likelihood, is chosen for correction.

Modulation Coding

Modulation of constrained coding is used to translate an arbitrary sequence of input data to a channel
sequence with special properties required by the physics of the medium [21]. Two large important classes
of channel constraints are run-length and spectral constraints. The run-length constraints [12] bound
the minimal and/or maximal lengths of certain types of channel subsequences, while the spectral con-
straints include dc-free [11] and higher order spectral-null constraints [6,23]. The spectral constraints
also include codes that produce spectral zero at rational sub-multiples of symbol frequency as well as
constraints that give rise to spectral lines. The most important class of runlength constraints is a (d, k)
constraint, where d + 1 and k + 1 represent minimum and maximum number of consecutive like symbols
or space between the adjacent transitions. Bounding minimal length consecutive like symbols controls
ISI in the excess bandwidth systems and reduces transition noise. Bounding the upper limits of the mark
lengths improves timing recovery and automatic gain control. In order to keep code rate high, today’s read
channels employ only k constrained codes. Typical code rates are: 16/17, 24/25, 32/34, 48/49. Modulation
decodes can be either block-by-block or sliding-window. Block decoders determine data word by using
a single codeword, while sliding-window decoders require so-called look-ahead, which means that the
output data word is a function of several consecutive codewords. Due to inherent nonlinearity, a modulation
decoder may produce multiple errors as a result of a single erroneous input bit. If a sliding-window
decoding is used, an error can affect several consecutive data blocks. This effect is known as an error
propagation. The block codes are favored because they do not propagate errors.

A mathematically rigorous code design approach based on symbolic dynamics was developed by Marcus
and Siegel et al. [19,22]. The algorithm is known as the “state splitting algorithm” or Adler, Coppersmith,
and Hassner (ACH) algorithm [1]. Another constrained coding approach, championed by Immink [14]
emphasizes the low-complexity encoding and decoding algorithms [13]. Despite this nice mathematical
theory, design of constrained codes remains too difficult to be fully automated, and in the art of designing
efficient codes, human intervention and skill are still necessary.

Error Control Coding

In a conventional hard disk drives the error control coding (ECC) system does not reside in a read channel;
however, the ECC performance is linked to the performance of a detection algorithm, error propagation
in a modulation code, and it is natural to try to expand the read channel functionality to error control
as well. A new trend in industry is aimed toward designing an integrated circuit, so called super chip with
a such expanded functionality.
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In the most general terms, the purpose of ECC is to protect user data, and this is achieved by including
redundant, so-called parity bits along with the data bits. The codes used in hard drives belong to a large
class of ECC schemes, called block codes. A block code is a set of codewords (or blocks) of a fixed length n.
The length is expressed in number of symbols, and a symbol is a binary word of length m. Other parameters
of a block code are k-number of data symbols in the block, and t-number of symbols correctable by the
ECC system [17,36].

Reed–Solomon (RS) codes [28] have been the class of codes most often used in the magnetic disk
storage for the last 15 years. The reason is their excellent performance in presence of error events that
exhibit burstiness, which is typical for magnetic recording channels, and lend themselves to high-speed
encoding/decoding algorithms required for high-speed disk drives [5,9,37]. Very often RS codes are
interleaved to reduce effect of long error burst, and to reduce the implementation cost by eliminating
conversion of bytes to possibly longer code symbols used in encoding and decoding. The parameters of
RS codes satisfy the following relations: n ≤ 2m − 1, number of parity symbols n − k ≥ 2t, and code rate
of the RS code r = k/n.

In today’s hard drives typically, a part of ECC decoding is performed in hardware with a throughput
equal to the data rate, and the other part is performed in firmware with much lower speed. In some
cases, such as thermal asperities, no error control is sufficient to recover the data. In this case, it is necessary
to retry reading the same sector. A choice between hardware or firmware correction depends on the
application, the data transfer protocol, and the bus transfer rate. In applications such as single-user work-
stations, short data transfers dominate, but streaming data transfers occasionally occurs (during boot,
large file transfers, etc.). Additionally, data read from the disk drive can be transmitted to the host
computer in a physically sequential or in any convenient order. If the bus transfer rate is higher than the
ECC hardware throughput, and if sufficiently long ECC firmware buffer is available to store all the sectors,
or if sectors are transmitted to the host computer in any convenient order all firmware error recovery
can be performed in parallel with disk reads without interrupting streaming read operations. In the case
of short packet transfers, it is better to perform read retry in parallel with firmware error correction.
Retries in conjunction with hardware correction typically consume less time than firmware error correction.
On the other hand, for long streaming transfers, correcting errors in firmware in parallel with reading
the sector is better strategy, provided that the firmware ECC throughput is high enough to prevent buffer
overflow. A detailed treatment of an error control system design considerations can be found in [29].

The Effect of Thermal Asperites

As explained earlier, if a head hits a dust particle, a long thermal asperity will occur, producing a severe
transient noise burst, loss of timing synchronization, or even off-track perturbation. Error events caused by
TAs are much less frequent than random error events, but they exist and must be taken into account during
read channel design. If there were no TA protection in the read channel, a loss of lock in timing recovery
system would occur, causing massive numbers of data errors well beyond the error correction capability
of any reasonable ECC system. Despite TA protection, the residual error cannot be completely eliminated,
and many bits will be detected incorrectly; however, the read channel should be designed to enable proper
functioning of timing recovery in the presence of bogus samples. Typically, the read channel estimates
the beginning and length of TA and sends this information to the ECC system, which may be able to
improve its correction capability using so-called erasure information; however, since the TA starting
location is not known precisely, and the probability of random error in the same sector is not negligible,
the ECC system can misscorrect, which is more dangerous than not to detect the error.

Error Performance Measures

A commonly used measure of ECC performance is a BER, which is defined as a ratio of unrecoverable
error events and total user data bits. An unrecoverable error event is a block that contains more erroneous
symbols than the ECC system can correct, and it may contain as many as exist in a single data block
protected by the ECC system. Various applications require different BERs, but they are typically in the
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range of 10−12–10−15. Another ECC performance measure is undetected bit error rate (UBER), which is
a number of undetected error events per total number of user bits. In some cases the ECC system detect
that the sector contain errors, but is not able to correct them. Then a controller asks a read channel to
retry reading the same sector. The retry rate per bit is a useful measure of a data throughput. The hard
drive standards of a retry rate is 10−14. The performance measure used depends on the application. For
example UBER is much more important for bank transactions than for multimedia applications ran on
PC. All performance measures depend on a symbol length, number of correctable errors, and symbol
error statistics. On the other hand symbol error statistics depend on the read channel error event
distribution.
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34.3 Adaptive Equalization and Timing Recovery

Pervez M. Aziz

Adaptive signal processing plays a crucial role in storage systems. Proper detection of the readback signal
by a Viterbi detector assumes that the signal has the right gain, is equalized to the partial response, and
is sampled at the proper sampling instances. In this section, the focus is mainly on equalization and
timing recovery. Some of the basic algorithms employed in equalization and timing recovery are reviewed.
Various architectures and algorithms are presented, which have been used in state-of-the-art read chan-
nels. Finally, comparative performance data for some of these architectures are presented.

Adaptive Equalization

What is equalization? It is the act of shaping the read back magnetic recording signal to look like a
target signal specified by the partial response (PR). The equalized signal is made to look like the target
signal in both the time and frequency domain. In this subsection, various equalization architectures and
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strategies are reviewed, which have been popular historically and still being used in present day read
channels. A quick review of the well-known least mean square (LMS) algorithm used for adaptive equalizers
is also provided. Finally, the performance implications of selecting several different equalizer architectures
is explored. This performance is measured in terms of bit error rate (BER) at the output of the read
channel’s Viterbi detector.

Equalization Architectures and Strategies

In PRML channels the read back signal will be sampled at some point in the data path for further digital
signal processing. A continuous time filter (CTF) with a low-pass characteristic will be present as an anti-
aliasing filter [1] prior to the sampling operation so that high-frequency noise is not aliased into the
signal band. This same CTF may also play a role in equalizing the read back signal to the target partial
response. Various architectures can be used to perform the required equalization. The equalizer archi-
tecture can consist of a CTF, a finite impulse response filter (FIR), or both. The CTF parameters may be
fixed, programmable, or adaptive. The FIR filter coefficients may be fixed, programmable, or adaptive.
In addition, the FIR operation may occur in the sampled data analog domain or digital domain. Following
equalization, the data are detected using a Viterbi detector. Of course, quantization by an analog-to-
digital converter (ADC) occurs at some point before the Viterbi detector.

Figure 34.11 shows some examples of various equalizer architecture configurations. The first architec-
ture (Type 1) consists of a CTF-only equalizer. The CTF is comprised of an all-pole low-pass filter section
whose purpose is to reject high-frequency noise for anti-aliasing. One key parameter in the CTF is its
low-pass bandwidth determined by its cutoff or corner frequency, fc. The type of CTF, fc, and its order
(or the number of poles it contains) will determine its low-pass rolloff characteristic. If the CTF is expected
to take part in equalization, it must also be able to provide some boost and does so by typically having
one or two real zeros at some frequency fz in its transfer function. These parameters are noted in the figure.

The second architecture (Type 2) is one where both the CTF and an analog FIR are involved in
performing equalization. The third architecture (Type 3) is an analog FIR-only architecture in that the
CTF design does not consist of any zeros, i.e., its main role is to perform anti-aliasing and not provide
any boost for equalization. Finally, the last architecture (Type 4) is one where a CTF and FIR are both
involved in equalization except that the FIR operation is done digitally.

In general, there is a clear trade-off between the degree of flexibility of the equalizer and implementation
complexity. The read-back signal characteristics change across the disk surface as manifested by somewhat

FIGURE 34.11 Various equalizer architectures.
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different channel bit densities (cbds) or pw50/T. Consequently, programmability of the equalizer param-
eters is a mimimum requirement for optimum performance. The signal or some of the equalizer param-
eters themselve may change with chip ageing and temperature variations [2]. Therefore, it is often
desirable for some of the equalizer parameters to be continually adaptive to be able to compensate for
these effects.

CTF Configurations

Two common types of CTFs, which have been used in read channels are Butterworth filters and equiripple
linear phase filters. Butterworth filters have a maximally flat  magnitude response but nonlinear phase
response. Equiripple linear phase filters, as their name implies, have linear phase and constant group
delay over the passband [3,4]. For a given order, the Butterworth filters will have sharper rolloff charac-
teristics. One could also consider mixed filters whose poles are chosen to lie some percentage of the distance
in between the poles of a Butterworth and equiripple linear phase filter. Figure 34.12 shows the normalized
pole location on the s plane for a sixth-order Butterworth, a sixth-order equiripple linear phase filter, as
well as the poles for various sixth order mixed filters, which are 25%, 50%, 75%, and 90% away from
the poles of the equiripple filter. Note that the Butterworth poles lie on the unit circle. Figure 34.13 shows
the corresponding magnitude responses for the filters, while Fig. 34.14 shows the group delay responses.
As can be observed, the Butterworth has the sharpest lowpass rolloff and the equiripple filter has the
shallowest rolloff but constant group delay over the passband.

The CTF parameters can be programmable or adaptive [5,6]; however, most CTFs that have been used
in actual read channels have had programmable bandwidth and boosts any adaptivity being left to the
FIR. Adaptive CTF systems face some challenging issues as discussed in [7]. Also, some work has been
done to analytically determine the optimum CTF transfer functions [8,9]. 

The performance of equalizers involving several CTF configurations will be compared: fourth-order
Butterworth (b4), sixth-order Butterworth (b6), seventh-order equiripple linear phase (e7 ) all with single
zeros. We also examine a seventh-order equiripple linear phase CTF with two zeros (e7tz). The linear
phase of the all pole section is kept in the e7tz filter. Another filter considered is the fourth-order 50%
mixed filter with one zero (em4).

FIGURE 34.12 Normalized pole locations for sixth-order Butterworth and equiripple linear phase filters as well as
mixed filters.
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FIR Filter and the LMS Algorithm

The FIR filter is important for equalization. Whether implemented as an analog sampled data filter or a
digital filter the FIR filter produces output samples y(n) in terms of input samples x(n) as

(34.3)

where h(k) are the FIR filter tap weights. As noted, it is very desirable for the FIR to be adaptive. The
FIR taps are adapted based on the well-known LMS algorithm [10,11]. Other adaptive algorithms can
also be found in [12] and [13].

FIGURE 34.13 Magnitude response for sixth-order Butterworth and equiripple linear phase filters as well as mixed
filters.

FIGURE 34.14 Group delay response for sixth-order Butterworth and equiripple linear phase filters as well as mixed
filters.
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The basic idea is to minimize the mean squared error with respect to some desired or ideal signal. Let
the desired or ideal signal be (n) in which case the error is e(n) = y(n) − (n). This minimization is
achieved by adjusting the tap value in the direction opposite to the derivative (with respect to the tap
values) of the expected value of the mean squared error. Dispensing with the expected value leads to the
LMS or stochastic gradient algorithm. The stochastic gradient for the kth tap weight is

(34.4)

where the partial derivative of (n) with respect to h(k) is zero. We can now expand y(n) as in Eq. (34.3)
to further obtain

(34.5)

The gradient would actually be scaled by some tap weight update gain tug to give the following tap update
equation:

(34.6)

The choice of this update gain depends on several factors: (a) it should not be too large so as to cause
the tap adaptation loop to become unstable, (b) it should be large enough that the taps converge within
a reasonable amount of time, (c) it should be small enough that after convergence the adaptation noise
is small and does not degrade the BER performance. In practice, during drive optimization in the factory
the adaptation could take place in two steps, initially with higher update gain and then with lower update
gain. During the factory optimization different converged taps will be obtained for different radii on the
disk surface. Starting from factory optimized values means that the tap weights do not have to adapt
extremely fast and so allows the use of lower update gains during drive operation. Also, this means that
the tap weights need not all adapt every clock cycle—instead a round-robin approach can be taken, which
allows for sharing of the adaptation hardware across the various taps. A simpler implementation can also
be obtained by using the signed LMS algorithm whereby the tap update equation is based on using 2- or
3-level quantized version of x(n − k). For read channel applications, this can be done without hardly any
loss in performance. 

A few other issues should be emphasized about the adaptive FIR. During a read event, the FIR filter
is usually adapted after the initial gain and timing recovery operations are performed over a preamble
field. Nevertheless, during the rest of the read event, the FIR filter equalizes the signal at the same time
that the gain and timing loops are operating. The adaptive gain loop uses an automatic gain control
(AGC) block to apply the correct gain to the signal to achieve the desired partial response target values.
Likewise the adaptive timing recovery loop works to adjust the sampling phase to achieve the desired PR
target values. It is necessary to minimize the interaction between these adaptive loops. The FIR filter will
typically have one tap as a “main” tap, which is fixed to minimize its interaction with the gain loop.
Another tap such as the one preceeding or following the main tap can be fixed (but allowed to be
programmable) to minimize interaction with the timing loop [14]. In some situations it may be advan-
tageous to have additional constraints to minimize the interaction with the timing loop [15].

Performance Characterization

The performance of various equalizer architectures based on bit error rate simulations can now be
characterized. The equalizer types (with reference to Fig. 34.11) actually simulated are of Types 2 (CTF +
analog FIR) and 3 (anti-aliasing CTF + analog FIR). One can consider the case where there are very few
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taps as an approximation of the Type 1 (CTF only) equalizer. Although many actual read channel
architectures do use digital FIRs (Type 4), we do not consider this type for simulations here. Although
a digital FIR filter may be cost effective for implementation given a particular technology, it does have
two disadvantages compared with the analog FIR. With the analog FIR, quantization noise is added after
equalization and so is not enhanced through the equalizer whereas for the digital FIR the quantization
noise does pass through the equalizer and could be enhanced. Consequently, fewer quantization levels
can be used and this results in reduced chip area and power dissipation with the analog FIR. Also, the
digital FIR is likely to have more latency in producing its final output and this extra latency may not
hurt significantly but is nonetheless not beneficial for the timing loop. 

Simulation Environment and Optimization Procedure
The simulation environment, including two system simulation models, and the optimization methodology
by which the optimum performance is obtained for each equalizer architecture can now be described.
Finally, BER results quantifying the performance of the various architectures are presented. 

To obtain a simulation bound for the performance of the best possible equalizer we use the system of
Fig 34.15. The signal + noise is fractionally sampled at a rate of T/5 and filtered with a fractionally spaced
FIR filter equalizer, which equalizes the signal to an EPR4 target. The channel bit period is T. The output
of the equalizer is then sampled at the channel bit rate of T and these samples are presented to the EPR4
Viterbi. The FIR has 125 taps (spanning 25T). The FIR tap weights are adapted from zero starting values
using the LMS algorithm. There is no quantization, AGC, or timing recovery. Therefore, the performance
is solely determined by the noise. 

Pseudo random data are 16/17 modulation encoded to generate a signal at various cbds based on a
Lorentzian pulse shape. For each cbd, the SNR needed by the “ideal” T/5 oversampled system of Fig 34.15
to produce a BER of 10−5 is determined. SNR is defined as the ratio of the isolated pulse peak to rms
noise in the Nyquist band. The (cbd, SNR) pairs are used for performing simulations with the practical
system of Fig. 34.16, which accurately models an actual read channel chip and a version of the T/5 system
where the equalized samples are quantized before being detected with the Viterbi detector. Signals at

FIGURE 34.15 Block diagram of system with five times oversampled equalizer.

FIGURE 34.16 Block diagram and simulation model of practical symbol rate sampled read channel system.

Generation

S

S

EPR4 Equalizer

Sampledata
Known

Update
LMS Tap

Output data

BER

T

125 Tap FIR
signal
Input

noise

EPR4

Detector
Sequence

T/5

and error generation

for updating feedback

loops

non-adaptive

parameters:

equalizer z

FIR

Adaptive Decision Driven Feedback Loops

ADC

S

Tentative decision

f

CTF

c
f

T

pt

AGC

signal

noise

sampler

slicer

Output data
EPR4

Detector

BER

Sequence

Known data
© 2002 by CRC Press LLC



several cbds or PW50/T values 1.9, 2.4, and 2.8 are examined. The SNRs needed for 1e-5 BER for these
densities are 21.66, 22.90, and 24.70 dB, respectively. 

Let us now describe the simulation model for the actual read channel system. A block diagram of this
system is shown in Fig. 34.16. The system consists of AGC, CTF, T rate sampled analog FIR equalizer,
ADC quantizing the equalizer output, and an EPR4 Viterbi detector. Three decision directed adaptive
loops are used: LMS tap update loop, AGC loop, and digital PLL (DPLL) timing recovery loop. Note that
in this practical system the adaptive feedback loops are updated not based on known data but on tentative
or preliminary decisions made by the read channel. The algorithm used for the tap update is the signed
LMS algorithm as implied by the 3-level slicer shown in the figure. 

Using the practical system model, BER simulations are performed for the various CTFs mentioned
earlier and FIRs of various number of taps. The simulations are performed with this realistic system
using the SNRs mentioned earlier. This allows the calculation of the BER degradation of the realistic system
with respect to the T/5 system for a given cbd and SNR. 

For each CTF type, cbd, and FIR length  we simulate the BER of the system across a space of equalizer
parameters fc, fz (which determines CTF boost), and the fixed programmable tap of the FIR, which is labeled
as pt in Fig. 34.16. The parameters are varied across the following ranges: fc is varied between 20% and
38% of the channel bit rate, fz is varied to provide boosts between 2.6 and 8.6 dB, while the programmable
tap is varied between 40% and 60% of the main tap value. For CTFs with two zeros the zeros are adjusted
such that the total boost is in the above range. For the 10-tap FIR the fourth tap is chosen to be the fixed
main tap while for the 6- and 3-tap filters the second tap is chosen as the main tap. For the other taps,
the analog tap range was kept to be relatively large at ±80% of the main tap value. In a real system, one
would choose smaller ranges based on tap settings fitting into the smaller range, which produced good
results. For the equalizer configuration involving the FIR only equalizer, FIRs with 4–20 taps are examined.
The programmable tap pt is re-optimized for each cbd and FIR filter length.

Results
Before comparing BER results across different equalizers, some results from the equalizer optimization
procedure are illustrated. Figure 34.17 shows a contour plot of the BER obtained with the b4 CTF with
a 10-tap FIR at a cbd of 2.4 and a SNR, which gives close to 10−5 BER. The horizontal axis is CTF corner
frequency (fc) and the vertical axis is CTF boost in decibel. The plot is for one particular value of the
programmable FIR tap pt. The numbers on the contour plot are 10 × log10(BER) so that 10−5 BER would
correspond to 100. We observe that good BERs result for a large range of boosts and  range of fc’s centered

FIGURE 34.17 Boost bandwidth optimization.
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in the plot. Upon examining contour plots for all the CTFs, we concluded that the b4 CTF achieves good
BERs for fc’s typically in the center of the range explored, while the b6 CTF the performance is better at
somewhat higher fc’s; however, the linear phase CTFs achieve good BERs at very low fc’s. This is because
CTFs with worse rolloff characteristics require a smaller fc to provide enough attenuation at the Nyquist
frequency for anti-aliasing. We observe that the BER performance is mostly insensitive to the boost. This
is because the adaptive FIR is able to provide any remaining equalization needed. In practice, there will
be a trade-off in how much boost the CTF is able to provide and the corresponding analog tap ranges
required by the FIR to provide any necessary remaining equalization—the more equalization the FIR
has to provide, the larger tap ranges it will require. 

Now compare the BER performance of various Type 2 (CTF + analog FIR) equalizers. Figure 34.18
shows the BER performance of different CTFs with a 10-tap FIR. The horizontal axis is cbd and the
vertical axis is the BER degradation (in dB) of the optimum BER with respect to the BER of 10−5 achieved
by the ideal oversampled system using the T/5 equalizer. The performance of the CTFs is similar across
all cbds—they perform within 0.15 dB of one another. All perform within 0.25–0.4 dB of the 10−5 BER
achieved by the T/5 system. The linear phase of the seventh-order CTFs does not necessarily yield superior
performance. A final comment is needed about the plot—one should not expect a fixed or monotonic
relationship between cbd and the practical system BER in this plot. This is due to the finite resolution
of the equalizer optimization search and the fact that BERs are based on observing 100 (vs. even larger
number) bit errors.  

As noted, the previous results were with a 10-tap FIR. Further simulations of the various CTFs with
a 6-tap or even 3-tap show that the optimum BER performance is not very different than that with a 10-tap
FIR. These results are presented in Fig. 34.19 where the BER degradation (again with respect to the 10−5

achieved by the ideal system) of the optimum BER obtained for the various CTFs is plotted versus the
number of FIR taps for cbd = 2.4. This initially appears to be a surprising result, but this is not
unreasonable when one observes that with fewer number of taps, a large percentage of the CTF pro-
grammings result in poor BER performance. This effect is shown in Fig. 34.20, which plots the percentage
of CTF programmings (with respect to the total number of programmings producing convergent tap
weights) producing BER worse than 4 × 10−5. With more taps the percentage of poor programmings
decreases. Thus, FIR filters with a few taps, with appropriately optimized CTF settings, can perform as
well as a FIR with 10 taps; however, the difficulty in keeping the nonadaptive CTF parameters correct in
the presence of realistic device conditions makes such a FIR with few taps impractical to use. 

Finally, examine the performance of Type 3 equalizers. Here, the anti-aliasing CTF is a seventh-order
linear phase filter. The performance of this equalizer is a function of the number of FIR taps. The BER

FIGURE 34.18 CTF BER performance degradation with respect to oversampled ideal system vs. cbd with 10-tap FIR.
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performance are shown in Fig. 34.21. The vertical axis is again the degradation with respect to the ideal
system BER of 10−5. The programmable tap of the FIR is optimized to yield the best performance in each
case. The main tap is placed roughly in the center. There is benefit in increasing the number of taps from
4 to 6 to 10. Beyond 10 taps, however, there is more latency in the timing loop as the main tap position
is more delayed. This causes increased phase errors to enter the timing loop and outweighs the benefit
of enhanced equalization obtained with more taps. Although one could increase the number of taps
while keeping the main tap location mostly fixed, the FIR will then not be able to cancel the precursor
ISI  as well with a CTF, which is not involved in equalization. Also shown (dashed plot) is the performance
of a Type 2 equalizer (CTF, with its corner frequency optimized and with an optimized zero included to
provide boost). Clearly the Type 2 equalizer outperforms the Type 3 equalizer.

Actual Equalizer Architectures

Various equalization architectures and examined their performance have been considered. Let us now
examine what actual architectures read channel vendors are using. Table 34.1 summarizes some of the
most commonly used architectures. For example, Agere Systems [Note: storage products unit of AT&T was

FIGURE 34.19 CTF BER degradation with respect to oversampled ideal system vs. number of taps (cbd = 2.4).

FIGURE 34.20 Percentage of bad CTF settings vs. number of taps (cbd = 2.4).
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spun off to Lucent Technologies in 1996 and again spun off to Agere Systems in 2001) has been using a
Type 2 architecture with a fourth-order Butterworth CTF and 10-tap analog FIR. The CTF has a pro-
grammable corner frequency and zero for providing boost. This architecture is still in place now. Most
other vendors have used Type 4 architectures (digital FIR) but with seventh-order equiripple linear phase
filters. The linear phase filters typically have two programmable zeros to provide boost. In the examples
of the Cirrus equalizers, the digital FIR does not appear to be adaptive. Some vendors such as Cirrus
and Marvell seem to have increased the number of FIR taps or the number of adaptive (vs. only
programmable) taps as the years have gone by. The Datapath equalizer cited is one of the few examples
of an all CTF equalizer.

Conclusions

The performance of various CTF + adaptive analog FIR (Type 2) equalizers in equalizing a signal to an
EPR4 target has been quantified. It is shown that regardless of the number of taps in the FIR and CTF
type, the BER performance of the CTF + FIR equalizers is approximately the same if the optimum fixed
equalizer parameters (CTF corner frequency, boost, FIR fixed tap) are chosen. 

Therefore, the choice of CTF type should be based on other constraints such as area, power, speed
(data rate), as well the benefit of having one less analog block. It has also been shown that as the number
of taps is increased, the space of CTF parameter programmings producing BERs close to the optimum
increases significantly. Therefore, one can trade-off the cost of the FIR filter versus required accuracy in
the CTF setting and the sensitivity of the resulting performance. 

TABLE 34.1 Examples of Equalizers Implemented on Read Channel Chips

CTF FIR Type
(Fig. 34.11)Company Type Order Zeros Taps Adaptive? Analog/Digital Ref/Yr Comments

Agere But 4th 2 10 yes analog 2 [16], 1995 8 adaptive 
taps

Cirrus EqRip 7th 2 3 no digital 2 [17], 1995 —
Cirrus EqRip 7th 2 5 no digital 2 [18], 1996 —
Datapath EqRip 7th 2 N/A N/A N/A 1 [19], 1997 No FIR
Marvell EqRip 7th ? 7 yes digital 2 [20], 1997 —

FIGURE 34.21 BER degradation with respect to oversampled ideal system vs. number of taps with anti-aliasing
CTF (no boost).

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B
E

R
 L

O
S

S
 v

s 
ID

E
A

L 
(d

b)

ANTI-ALIASING (a.a.) CTF PERF vs NUMBER OF TAPS, also shown a OPT CTF

a.a. CTF cbd=1.9
a.a. CTF cbd=2.4
a.a. CTF cbd=2.8
opt CTF cbd=2.4 
© 2002 by CRC Press LLC



The performance of Type 3 equalizers consisting of a T spaced FIR filter with only a Nyquist anti-
aliasing CTF was also examined. Also, the Type 3 equalizer cannot approach the performance of a system
whose CTF is involved in equalization and is optimized. Therefore, to make a valid comparison between
FIR and CTF equalizers, one must include a reasonably optimum CTF prior to the FIR. 

It has been demonstrated that a wide variety of optimized CTF + FIR equalizers can perform within
0.25 dB of the quantized system using the oversampled T/5 equalizer. As this 0.25 dB includes performance
losses due to AGC and timing recovery, there is very little space left for improved equalization with any
other equalizer architecture.

Adaptive Timing Recovery

In storage systems such as PRML magnetic recording channels a clock is used to sample the analog
waveform to provide discrete samples to symbol-by-symbol (s/s) and sequence (Viterbi) detectors.
Improper synchronization of these discrete samples with respect to those expected by the detectors
for a given partial response will degrade the eventual BER of the system. The goal of adaptive timing
recovery is to produce samples for the s/s or sequence detector, which are at the desired sampling
instances for the partial response being used. In this subsection, the basics of timing recovery as well
as commonly used algorithms for timing recovery in magnetic recording channels are reviewed. Two
classes of timing recovery algorithms are presented: symbol rate VCO-based and interpolation-based
algorithms. After a discussion of the trade-offs between these two types of algorithms, the focus will
be on the traditional symbol rate VCO algorithms for the rest of the discussion. One of these timing
recovery algorithms from first principles will be derived. An analytical framework for comparing the
performance of such algorithms using timing loop noise induced output jitter as the performance
criterion is provided. Finally, quantitative comparative performance data for some of these algorithms
based on the jitter analysis as well as simulations, which measure timing loop jitter and BER, is
provided.

Timing Recovery Basics

Symbol Rate VCO versus Interpolative Timing Recovery
Timing recovery schemes, which have been considered for magnetic recording channels, can be broadly
classified into two groups: traditional symbol rate VCO-based schemes and interpolative schemes, [21,22],
which sample slightly above the symbol rate. The key difference between the schemes is that the symbol
rate VCO scheme adapts or adjusts the phase and frequency of the sampling clock to produce the desired
samples whereas interpolative timing recovery samples the analog waveform using a uniformly sampled
clock to produce samples from which the desired samples are interpolated. 

Figure 34.22 shows high-level block diagrams of both approaches. Let us describe the VCO-based
approach first. For the sake of the discussion the VCO approach is shown with an analog FIR equalizer.
Consequently the sampling occurs at the input of the FIR equalizer. The noisy equalized output y(k)
must be used to detect the timing error present in these samples. This is done using a phase detector.
The phase detector transforms an amplitude error in the samples to ∆(k), which is related to the desired
change in the sampling phase. The phase detector output is also called the timing gradient. 

The phase detector may require the use of the noisy equalized samples y(k) or other signals derived
from it. The other signals may be the preliminary or tentative decisions s, decision directed
estimates of y(k), which are  or other signals. These auxiliary signals are generated by the block
labeled “Signal Generation for Phase Detector.” The y(k)s are used to generate preliminary (tentative)
decisions  and an error signal e(k), and a decision directed estimate of the ideal equalized sample
value, . 

The phase detector output is filtered by a loop filter T(z). The loop filter T(z) is usually a second order
DPLL with an additional delay term z−L, which models any latency through the timing loop. Such latency
arises from the group delay of the FIR, computations in the DPLL, calculating the signals needed by the
phase detector, etc. The filtered phase detector output is the input to a VCO, which causes the actual

d̂ k( )
ŷ k( )

d̂ k( )
ŷ k( )
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sampling phase τ to change. The VCO is an analog circuit under digital control. The analog part can be
a phase mixer, which is capable of adjusting the timing phase by small fractions of T where T is the
channel bit period. In such a case, the VCO acts as an amplitude to time converter and so modeled as a
simple gain. To give physical meaning to the system, the units of the signals are noted: the equalized
output after quantization by the ADC is in amplitude units of LSBs, the timing gradient ∆(k) or phase
detector output is proportional to an amplitude error and so is also in LSBs. The loop filter provides a
frequency dependent gain, so the input of the VCO is LSBs. The VCO has a gain of KV in units of T/LSB,
so the output of the VCO has units of time, T. The VCO gain can also be thought of as a clock update
gain. For the specific system we will consider later, the phase mixer can make changes in the sampling
phase in steps of 0, ±1, ±2 T/64 or more. The choice of this factor of 64 is such that the quantization of
timing phase adjustment is well below the ADC quantization noise floor. 

Let us now describe the interpolative timing recovery loop of Fig. 34.22. As noted, with this scheme,
an asynchronous clock is used to sample the input to the ADC after which a FIR filter performs the
necessary equalization. The asynchronous equalized samples are now used to interpolate samples at the
correct sampling instances dictated by the partial response. This is done with the interpolation filter,
which can be thought of as a filter which delays its input by an amount τ, which is a fraction of the
channel bit period T [21]. Such an interpolation filter’s transfer function is z−τ. The samples y(k) at the
output of the interpolation filter drive the phase detector and loop filter as in the VCO-based timing
loop. The loop filter output after being processed by the phase offset calculator produces the required
sampling phase change. For good operation, the loop must be able to produce a large number of fractional
delays (such as 32 or 64) and correspondingly would require as many such filters for each of these delays.
Figure 34.22 noted that the asynchronous sampling was performed at slightly above the Nyquist rate.
The reasons for this is to accomodate a frequency offset between the written signal and the clock used
to perform the asynchronous sampling. The magnitude of this frequency offset is usually limited in
practical systems to 1% or less and so very little oversampling is required; however, oversampling ratios

FIGURE 34.22 (i) Symbol rate VCO-based timing recovery loop. (ii) Interpolative timing recovery loop.
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of up to 5% produce some improvement in performance by reducing the sensitivity of the aliasing with
respect to the phase of the asynchronous sampling clock.

 The advantages of the ITR-based timing loops are that they are all digital timing loops, which are
more amenable for design, verification, and less susceptible to process variations. Also, for the ITR timing
loop, the delays in the equalization filter and ADC do not contribute to the timing loop latency; however,
the interpolation filter is not an extremely small piece of hardware and could make the ITR timing loop
consume more chip area and power than a VCO-based loop. Practical design issues with the ITR-based
system such as adaptation of the equalizer based on asynchronous samples [22] and design of the
interpolation filter, have not been discussed. From a performance point of view, there is no significant
difference between the ITR- or VCO-based approaches as indicated by simulation results in [21]. This
also seems reasonable based on our observation in the subsection on adaptive equalization where it was
noted that a read channel system with practical equalization and timing recovery performed within a
few tenths of a decibel of the corresponding “ideal” system. Therefore, the choice between all digital ITR-
based system or a conventional VCO-based system needs to be based on the relative merits of both
systems from an ease of design and area/power standpoint.

Timing Loop Modes
Let us now further describe the operation of the entire timing loop. The entire timing recovery process
occurs in several steps: zero phase start (ZPS), acquistion mode (ACQ), and tracking mode (TRK).
During the ZPS and ACQ modes the disk controller must guarantee that the read channel is reading a
preamble signal known to the timing loop. The preamble signal for almost all magnetic recording channels
is a 2T pattern, which is the periodic data sequence “…11001100….” The purpose of the ZPS is to obtain
a good estimate of the initial phase error between the readback signal and the desired samples for the
2T pattern. Once this estimate is obtained the sampling clock’s phase is changed by the calculated amount
to approximate the desired sampling phase. The next step is the ACQ process where the sampling phase
error is further reduced and the frequency offset between the input signal and the sampling clock is
compensated for to produce even more accurately sampled preamble samples. Because the preamble is
a known signal pattern, timing recovery is facilitated in that the preliminary decisions can be obtained
more reliably with less loop latency. Consequently, high loop filter update gains can be used. Once this
initial acquisition is complete, the timing loop transitions into a TRK, which is intended for tracking
slow variations in timing. In this mode the signal may contain any excess preamble as well as random
data, but no a priori assumption about the signal is made. The tentative decisions in the TRK mode are
obtained with more loop latency and are not as reliable. The loop filter update gains are correspondingly
lower. A summary of the operation described is provided in Fig. 34.23. More fine gradations of the loop
filter gains (beyond the high/medium/low gains shown in Fig. 34.23 can be made across ACQ and TRK
to produce improved performance [23]. Of course, there is a trade-off between improved performance
and somewhat enhanced circuit complexity so that one would choose to increase the complexity only,
until diminishing returns in performance is reached. 

FIGURE 34.23 Timing loop operational modes: zero phase start, acquisition, and tracking.
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Symbol Rate Timing Recovery Schemes

Now consider in more detail the traditional symbol rate VCO-based schemes. A decision directed baud
or symbol rate timing recovery algorithm was first proposed by Mueller and Muller [24]. Their technique
relied on the concept of a “timing function.” f(τ), which generates the proper amount of timing phase
adjustment for a given phase shift, τ, in the signal. The function should be monotonic, and have a zero
output for zero sampling phase error. The Mueller and Muller (MM) technique provides a means to
derive a timing function from a linear combination of samples of the channel's impulse response. In
practice, one can design timing gradients where the expected value equals the suitably defined timing
function. The timing gradients can be used to obtain the corresponding phase adjustment signal. In some
magnetic recording systems using a PR4 target, a MM timing gradient with a second order DPLL was
used to produce the necessary timing phase updates [8,25]. 

One can also derive timing recovery schemes based on other criteria such as the minimum mean
square error (MMSE) criterion. MMSE methods seek to minimize the expectation of the square of an
error signal e(k,τ) with respect to the timing phase. The error signal is obtained by subtracting the received
equalized samples y(k,τ) from the corresponding “ideal” samples . The minimization is done by
adjusting the timing phase in the direction opposite to the derivative of the expected value of the squared
error. In practice, one ignores the expected value and minimizes the squared error resulting in a stochastic
gradient algorithm. MMSE timing recovery has been proposed in [26] and examined to some degree in
[27] for PR magnetic recording channels. Another criterion, the maximum likelihood (ML) criterion,
has also been used to derive a phase detector [28]. 

The derivation of the MMSE gradient is reviewed, and note that the MMSE gradient yields suitable
timing functions. Also formulated is the MMSE timing recovery in the framework of a slope lookup
table (SLT) instead of a discrete time filtered version of symbol rate spaced equalized samples y(k,τ). The
SLT approach leads to  an efficient implementation with slopes expressed directly in terms of a discrete
time filtered version of the data bits d(k) instead of the equalized signal samples. 

A methodology for an analytical performance evaluation of the timing loop where the timing loop
output noise jitter is the performance criterion. The analysis is described in detail for the SLT-based
MMSE timing loop and also applied to the MM timing loop. The quantitative results from this technique
are used to compare the SLT and MM timing loops. The ML loop is not considered further here as it
has somewhat adverse jitter properties compared with the other two timing loops [29]. Finally, simula-
tions results comparing the SLT and MM timing loops in terms of output noise jitter as well as BER
performance are presented.

MMSE Slope Lookup Table (SLT) Timing Recovery
Let us review MMSE timing recovery from first principles. The discussion is along the lines of [26] and
[27]. The expectation of the square of the error, , is minimized with respect to
the timing or sampling phase. Here,

(34.7)

and in the absence of any channel impairments we would have  and . The
derivative of the expectation needs to be obtained with respect to τ. Ignoring the expectation operator
we obtain a stochastic gradient algorithm [26]:

(34.8)
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Note that the MM approach was to generate a timing gradient from a suitably defined timing function
f(τ). Here, a timing gradient has been derived from the MMSE criterion; however, the resulting timing
gradient should be a valid timing function, i.e., be monotonic, and have a zero-crossing for zero sampling
phase error. This has been shown in [27]. An expression for the timing function in terms of the PR
channel coefficients is [29]

(34.9)

The result of plotting f(τ) in Eq. (34.9) for EPR4 is shown in Fig. 34.24. Let us now consider a MMSE-
based timing gradient or phase detector formulated in terms of a SLT. The signal slope is modeled in
terms of a slope generating filter, which when used to filter the data d(k) produces the slopes:

(34.10)

where the negative coefficient index indicates that the slope at time k depends on future bits (accomodated
by delaying the slope and adding the delay into the model as additional latency). C1 + C2 + 1 is the number
of nonzero coefficients of the slope filter’s impulse response, ψ. The SLT output  approximates s(k),
which depends on the data pattern. Such a SLT can be derived for any PR by correlating the data with
the actual signal slopes. In practice, it is enough to use fewer terms from the filter. Therefore, the simplified
SLT output can be represented as

(34.11)

FIGURE 34.24 Timing function for an EPR4 partial-response channel.
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where B = B1 + B2 + 1 is the size of the slope table input  i.e., the number of data bits used in calculating
the slope. The SLT-based gradient is then,

(34.12)

where the factor of −2 in Eq. (34.8) can be absorbed in the lookup table. In our analysis we need the
slope generating filter coefficients ψ(c). These coefficients ψ(c)s are obtained in the process of numerically
generating the signal slopes, which are correlated with the data. 

Phase Detector Properties
Before computing the output noise jitter of the entire timing loop, the properties of the phase detector
must be analyzed. Quantities important for the performance of the phase detector are its KPD and output
noise standard deviation ratio KPD/ . The KPD is the ratio of the mean phase detector output to a
constant sampling phase error, τ. The KPD can thus be thought of as the signal gain of the timing loop
where the signal is the sampling phase error. The output noise no(k) is the equivalent noise at the output
of the phase detector for a given input noise n(k) at the phase detector input. The error, e(k), at the
equalizer output is a combination of contributions from the sampling phase error, τ(k) and noise. Let
n(k) represent the noise at the equalizer output (intersymbol interference + filtered equalized noise). We
then have,

(34.13)

The phase detector output, ∆(k), is then

(34.14)

Figure 34.25 shows in detail the timing loop of Fig. 34.22 with the details of the SLT phase detector and
the composition of the error signal from the sampling phase and noise per Eq. (34.13). 

Now find the statistical properties of KPD and no using E as the expectation operator. For a tractable
analysis we assume n(k) is AWG. To easily relate σn to the error event rate (EER) at the output of the
Viterbi detector, we assume that channel errors are dominated by a minimum distance error event (with
distance dmin).

(34.15)

FIGURE 34.25 Timing loop with SLT phase detector.
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The EER is the BER divided by the number of bit errors in the dominant error event. In Eq. (34.15) Q
refers to the well-known Q function defined by

(34.16)

Signal Gain (KPD) of the Phase Detector

Using the definition of KPD, for a constant sampling phase error τ,

(34.17)

Consider  where  is a linear function of the data bits, which can be realistically assumed
to be uncorrelated with the noise n(k). Therefore, this term is zero and as we should expect, the noise
does not contribute to the mean phase detector output. Thus,

(34.18)

If d is uncoded, hence white, with zero mean,  if b = c and is 0 if b ≠ c.
Consequently, the KPD is

(34.19)

where it is assumed that slope table ouput is based on fewer than C1 + C2 + 1 terms to reduce the
summation to be from b = −B1 to B2. We note that the KPD values obtained here are equivalent to the
slopes of the f(τ) versus τ curve plotted in Fig. 34.24.

Output Noise of the Phase Detector
Computing the autocorrelation,

Because  is a filtered version of d(k), which is uncorrelated with n, n and  are uncorrelated. Therefore,

(34.20)

With d being uncoded (hence white) and zero mean,  if b′ = b + l and
0 if b′ ≠ b + l. Also assuming, , i.e., n to be white, we need to consider only l = 0 in which
case we have b = b′. In that case,

(34.21)
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E ŝ k( ) ŝ k l+( ){ } y b( )y b′( )E d k b–( )d k l b′–+( ){ }
b ′=−B1

B2

∑
b=−B1

B2

∑=

E d(k b– )d(k l b′)–+{ } sd
2=

Rn(l) sn
2 d l[ ]=

E no k( )no k l+( ){ } sn
2 sd

2 d l[ ] y 2 b( )
b=−B1

B2

∑=
© 2002 by CRC Press LLC



Observe that the noise at the phase detector output is indeed white with standard deviation,

(34.22)

Mueller and Muller (MM) Timing Loop
Now examine the properties of the MM timing gradient. This gradient is obtained as

(34.23)

in terms of the equalized signal y(k) and its delayed version as well as the corresponding estimates of the
“ideal” values  for these signals. A block diagram of a MM timing loop using this gradient is shown in
Fig. 34.26. It is possible to evaluate this phase detector’s KPD and noise performance. This is accomplished
by writing y(k) as , expanding e(k) as in Eq. (34.13) from which s(k) is further expressed in
terms of the slope generating filter based on Eq. (34.10). Likewise,  is expressed in terms of the PR
coefficients as per Eq. (34.7). The analysis makes the usual assumptions about the data and noise n(k)
being white. The details of the analysis can be found in [29] which yields,

(34.24)

where the sum over m is from 0 to P − 1 and that over c is from −C1 to C2 + 1. 
The autocorrelation,  for the noise at the output of the phase detector, assuming the data to be

white, is also computed in [29]. It is shown that even with AWG noise at the phase detector input,  i.e.,
noise with autocorelation , noise at the phase detector output is not white; however, it
is shown that if  the autocorrelation of  will be limited to only the first delay terms,
i.e., l = 1 and −1 so we have,

(34.25)

FIGURE 34.26 Timing loop with Mueller–Muller phase detector.
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and

(34.26)

Performance Comparison of Symbol Rate Timing Loops

So far, the properties of the SLT and MM timing gradients or phase detectors have been examined. If
the noise at the phase detector output for both systems were white we could directly compare their
performance by comparing their respective KPD to  ratio as a kind of signal-to-noise ratio (SNR) of
the phase detector. The ratio would measure a signal gain (experienced by sampling phase errors) to noise
gain across the entire bandwidth. If the noise had been white for both systems this ratio would scale
similarly for both systems when measured over the effective noise bandwidth determined by the loop
filter; however, for the MM loop we observed that the noise at the phase detector output was not white.
Therefore, we must examine the timing loop performance at the output of the loop filter not just at the
output of the phase detector. Before continuing our analysis let us make some qualitative comments
about the loop filter.

Qualitative Loop Filter Description
A timing loop is a feedback control loop. Therefore, the stability/loop dynamics are determined by the
“gain” (in converting observed amplitude error to a timing update) of the phase detector and the details
of the loop filter. If the timing loop were needed to remove the effect of a sampling phase error, a first
order DPLL would be sufficient; however, the timing loop must also recover the proper frequency with
which to sample the signal. Therefore, the use of a second order DPLL loop filter is needed. This allows
the timing loop to continually generate small phase updates to produce a clock, which not only has the
correct sampling phase within a symbol interval T but which also has the correct value for the symbol
interval i.e., the correct clock frequency. DPLL here refers to the portion of the overall loop filter transfer
function T(z) without the fixed delay term z−L. In addition, important to the performance of the loop is
its noise performance, i.e., for a given level of input noise, the effect on the jitter in sampling phase
updates. The jitter properties are determined by the noise gain of the phase detector as well as the loop
filter properties. The loop filters out noise beyond the bandwidth of interest, this bandwidth being
determined by how rapidly the loop is designed to react to timing changes. As mentioned earlier, the
DPLL loop filter is a second order filter with an additional latency term. Its transfer function is given by:

(34.27)

where fg and pg are frequency and phase update gains for the second order and first order sections,
respectively, while L is the loop latency. A block diagram of T(z) is also shown in Fig. 34.27(a).

Noise Jitter Analysis of Timing Loop
Linearized Z domain analysis of the DPLL is now performed by replacing the phase detector with its
KPD (denoted by Kp in the equations for readability). In evaluating the SLT and MM DPLLs three sets
or combinations of pg and fg will be used: “LOW”, “MED”, and “HGH” where the LOW gains, are relatively
low update gains, which would be used in tracking mode, MED gains are moderate gains, and HGH
gains, are high gains, which might be used during acquisition. For the SLT and MM DPLLs the pg and
fg are scaled so that the same settings result in the about same transient response for a given sized phase
or frequency disturbance. 
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The open loop DPLL transfer function, G(z), incorporating the loop filter L(z) and clock update gain is

Referring to the timing loop model of Fig. 34.27(b), the closed loop transfer functiont (Tout /Tin) = H(z) is

(34.28)

Note that Kp has dimensions of LSB/T, KV and G(z) have dimensions of T/LSB and H(z) is a transfer
function with respect to two time quantities. The effective noise bandwidth is then,

An example of a closed loop transfer function for the SLT DPLL is shown in Fig. 34.28 for LOW update
gains. To find the effect of AWG noise, n(k), first convert the σn to an effective timing noise by dividing
by the rms slope, σs, of the signal that is obtained during the numerical generation of the signal slopes

FIGURE 34.27 Linearized model: (a) second-order DPLL loop filter, (b) timing loop with phase detector modeled
by its average signal gain.

FIGURE 34.28 Closed loop frequency response of SLT DPLL for low pg and fg update gains. 
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and calculation of the slope generating filter coefficients. Now it can be multiplied by the square root of
the ENB to determine the corresponding noise induced timing jitter σj (units of T). Therefore,

(34.29)

The equivalent model for the above method of analysis is shown in Fig. 34.27(b). 
For the SLT-based DPLL, the total jitter is simply the above σj. For the MM DPLL the phase detector

output noise is colored; however, we know its properties here and can examine its effect from this point
onwards. The only difference is that the closed loop transfer function seen by the MM phase detector
output noise is, 

(34.30)

The noise jitter is then obtained as, 

(34.31)

where Pn( f ) is the noise p.s.d. at the phase detector output. 
Figure 34.29 plots the jitter performance of the SLT- and MM-based DPLLs for three sets of (pg, fg):

LOW, MED, HGH. Shown are the output, noise-induced timing jitter of the loop for four channel error
event rates. Observe that the MM timing loop’s output noise jitter is almost the same but slightly better
than that of the SLT-based timing loop.

Jitter and BER Simulation Results

Simulations on the SLT-based timing loop and the MM loop are run within the simulator framework
described in Fig. 34.22. The same DPLL loop filter structure is used for both systems. Simulations are
run at a channel bit density bit of 2.8 without noise and SNRs, which correspond with channel EERs of

FIGURE 34.29 Analytically calculated output jitter for SLT and MM timing loops.
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10−4 and 10−2. The steady-state jitter is examined in the DPLL output phase and the response of the
timing loop to a phase step in the data field. Figure 34.30 shows the transient phase response plots of
the SLT and MM DPLLs responding to a 0.1875T (12T/64) phase step in data field for the same LOW
pg and fg settings. Note that they have very similar responses. Table 34.2 shows the steady-state output
jitter of the two timing loops for various combinations of gains and noise levels corresponding to EERs
of 10−4 and 10−2. The settled DPLL phases show some nonzero jitter without additive noise from quan-
tization effects. Timing jitter at the DPLL output is measured by measuring the standard deviation of
the DPLL phase. Again, observe that the two timing loops have very similar jitter numbers although the
MM timing loop jitter is slightly lower. 

Finally, the Viterbi detector BER performance is examined instead of the timing loop jitter performance
for the read channel architecture of Fig. 34.31 employing the MM and SLT timing loops. Observe that
the BERs of the two systems are practically indistinguishable.

Conclusions

An overview of timing recovery methods for PRML magnetic recording channels, including interpo-
lative and traditional symbol rate VCO-based timing recovery methods, was provided. Also reviewed
was the MMSE timing recovery from first principles and its formulation in the framework of a SLT-
based timing gradient. A framework for analyzing the performance of the timing loops in terms of
output noise jitter was provided. The jitter calculation is based on obtaining linearized Z domain closed
loop transfer functions of the timing loop. Also compared was the output timing jitter, due to input noise,

TABLE 34.2 Simulation-Based Timing Loop Output Jitter σjt (Units of T/64) 
Performance of SLT and MM Timing Loops for Final EERs of Zero (Noiseless), 
10−4, and 10−2

SLT MMPD

pg, fg GAINS EER 0 EER 10−4 EER 10−2 EER 0 EER 10−4 EER 10−2

LOW 0.49 1.30 2.18 0.45 1.16 1.86
MED 0.49 1.69 2.99 0.46 1.56 2.51
HGH 0.67 2.67 4.86 0.70 2.67 4.38

FIGURE 34.30 SLT and MM DPLL reaction to 0.1875T (12T/64) phase step. Low pg, fg gains. No noise in this
simulation.
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of the SLT and MM timing loops—two commonly used timing loops. The jitter performance of the MM
loop is almost the same but very slightly better than that obtained with the SLT-based timing loop;
however, the Viterbi BER performance of read channel systems employing the two timing loops are
practically indistinguishable.
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34.4 Head Position Sensing in Disk Drives

Ara Patapoutian

Introduction

Data in a disk drive is stored in concentric tracks on one or more disk platters. As the disks spin, a
magnetic transducer known as a read/write head, transfers information between the disks and a user [1].
When the user wants to access a given track, the head assembly moves the read/write head to the
appropriate location. This positioning of the head is achieved by use of a feedback servo system as shown
in Fig. 34.32. First, a position sensor generates a noisy estimate of the head location. Then by comparing
the difference between this estimate and the desired location, a controller is able to generate a signal to
adjust the actuator accordingly.

Two known approaches are used in sensing the head position. An external optical device can be used
to estimate the head position by emitting a laser light and then by measuring the reflected beam. This
approach is relatively expensive, may need frequent calibrations, and at present is limited to servo writers,
which are discussed later. In the second approach, a read head, which is designed primarily to detect the
recorded user data pattern, will itself sense position specific magnetic marks recorded on a disk surface. Using
statistical signal-processing techniques, the read waveform is decoded into a head position estimate. At
present this second approach is preferred for disk drives and is the topic of this article.

In an embedded servo scheme, as shown in Fig. 34.33, a portion of each platter, which is divided into
multiple wedges, is reserved to provide radial and sometimes angular position information for the read
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head. These reserved wedges are known as servo fields, and the number of wedges per surface varies
significantly amongst different products. A generic servo wedge provides radial estimates in two steps.
On a disk surface, each track is assigned a number known as the track address. These addresses are
included in a servo field, providing complete radial position information with accuracy of up to a track.
In other words, the information provided by a track address is complete but coarse. The positional error
signal (PES) complements the track address by providing a more accurate estimate within a track. By
combining these two estimates, a complete and accurate head position estimate can be obtained.

A wedge may also contain coarse information regarding angular position if a specific address is assigned
to each wedge. The user data field, with its own address mark and timing capability, can complement
the wedge address by providing finer angular position estimates.

A typical wedge will have multiple sub-fields, as shown in Fig. 34.34. A periodic waveform, known as
a preamble, provides ample information to calibrate the amplitude of the waveform and, if necessary, to
acquire the timing of the recorded pattern. Frame synchronization, or the start of a wedge, is recognized

FIGURE 34.32 Position control loop for a disk drive.

FIGURE 34.33 Data and servo fields on a disk drive.

FIGURE 34.34 A generic composition of a servo field.
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by a special sequence known as the address mark. This is followed by the track and wedge addresses, and
finally by the servo burst that provides information regarding the PES. These multiple sub-fields can be
divided into two distinct areas. Since the address mark, track address, and wedge address are all encoded
as binary strings, they are referred to as the digital field, as shown in Fig. 34.34. By contrast, ignoring
quantization effects of the read channel, the periodic servo burst field is decoded to a real number
representing the analog radial position. Thus, the format designs as well as the demodulation techniques
for the digital and burst fields are fundamentally different. The digital field demodulator is known as the
detector while the servo burst field demodulator is known as the estimator.

Despite their differences, the two fields are not typically designed independently of each other. For
example, having common sample rates and common front-end hardware simplifies the receiver archi-
tecture significantly. Furthermore, it makes sense to use coherent or synchronous detection algorithms
with coherent estimation algorithms and vice versa.

Having a reserved servo field comes at the expense of user data capacity. A major optimization goal
is to minimize the servo field overhead for a given cost and reliability target. Both the servo format design
as well as that of the detectors/estimators in the read channel chip of a disk drive are optimized to
minimize this overhead.

This chapter section reviews position sensing formats and demodulators. Because estimation and detec-
tion are well-known subjects, presented in multiple textbooks [2,3], issues that are particular to disk drive
position sensors are emphasized. Furthermore, rather than the servo control loop design, the statistical
signal processing aspects of position sensing are presented. For a general introduction to disk drive servo
control design, the reader is referred to [4], where the design of a disk drive servo is presented as a case
study of a control design problem. In general, because of the proprietary nature of this technology, the
literature regarding head position sensing is limited to a relatively few published articles, with the exception
of patents.

When a disk drive is first assembled in a factory, the servo fields have to somehow be recorded on the
disk platters. Once a drive leaves the factory, these fields will only be read and never rewritten. Tradi-
tionally, an expensive external device, known as the servo writer, introduced in the subsection on “Servo
Writers,” records the servo fields. In general, the servo writing process constrains and affects the servo
field format choices as well as the demodulator performance. In the next section, the digital field format
and detection approaches are addressed, while in the subsection on “The Burst Field,” the servo burst
format and PES estimation approaches are introduced.

Servo Writers

After a disk drive is assembled, the function of a servo writer is to record the servo wedges on a drive.
While the disks are spinning, an external servo writer senses the radial position usually through the head
assembly using the reflection of a laser beam. An external mechanical device moves the head assembly.
Finally, an external read head locks on a clocking track on a disk to locate the angular position. By
knowing both the radial and angular position, as well as controlling the radial position, the servo writer
records the wedges, track by track, using the native head of the drive.

Servo writing has been an expensive process. The servo writing time per disk is an important interval
that disk manufacturers try to minimize and is proportional to the number of tracks per disk surface, to
the spin of the disk drive, and to the number of passes needed to record a track. Since the number of tracks
per disk is increasing faster than the spin speed, the servo writer time becomes a parameter that needs
to be contained. To this end, the disk drive industry has attempted to minimize both servo writer time
and the servo writer cost.

Self-servo writing is a procedure where the wedges are written by the disk drive itself without using any
external device [5,6]. Here, the servo writing time is increased but the process is less costly. Many hybrid
proposals also use a combination of an external servo writer to record some initial marks and then complete
the wedges by using the drive itself. An example of such a process is the printed media approach [7,8],
where a master disk “stamps” each disk, and afterward the drive completes writing the wedges.
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In general, the servo writer cannot record an arbitrary wedge format. For example, it is very difficult
for a servo writer that records wedges track-by-track to record a smooth angled transition across the
radius. Furthermore, the wedges generated by a servo writer are not ideal. For example, servo writers
that record wedges track-by-track create an erase band between tracks [9], where due to head and disk
media characteristics, no transition is recorded in a narrow band between two adjacent tracks. Similarly,
because of uncertainties in the angular position, two written tracks may not be aligned properly causing
radial incoherence between adjacent tracks. These two impairments are illustrated in Fig. 34.35. In
summary, the servo writer architecture affects both the wedge format design as well as the demodulator
performance of a disk drive sensor.

The Digital Field

The digital servo field has many similarities to the disk drive user data field [10] and to a digital
communications system [2]. Each track in a digital field is encoded and recorded as a binary string similar
to a data field. What differentiates a digital servo field from others is its short block length, and more
importantly its off-track detection requirement.

Before discussing these differences, let us start by saying that a magnetic recording channel, for both
the data and servo digital fields, is an intersymbol interference (ISI) channel. When read back, the
information recorded in a given location modifies the waveform not only at that given location but also
in the neighboring locations. Finite length ISI channels can be optimally detected using sequence detectors
[11], where at least theoretically, all the field samples are observed before detecting them as a string of
ones and zeros. For about a decade now, such sequence detectors have been employed in disk drives to
detect the user data field.

The digital servo field length is very short relative to a data field. The present data sector length is
around 512 bytes long, whereas the servo digital information string is only a few bytes long. So, whereas
the percentage of overhead attributable to a preamble, address marks, and error correcting codes (ECC)
is relatively small compared to the user data field, the overhead associated with a digital servo field can
easily exceed one hundred percent. For example, it is well known that ECC coding efficiency increases
with block length, i.e. codes with very short block lengths have weak error correction capability.

One strategy in minimizing the preamble field length is to use asynchronous detection, which usually
trades performance for format, since it does not require exact timing information.

A simple strategy in minimizing the digital field is to write only partial information per wedge [12].
For example, with a smart controller, the absolute track or wedge address may not be needed, since it
may be predicted using a state machine; however, such strategies improve format efficiency at the expense
of performance robustness and complexity.

Offtrack Detection

A primary factor that differentiates digital servo fields from other types of detection channels is the
requirement to detect data reliably at any radial position, even when the read head is between two adjacent
tracks. In contrast, a user data field is expected to be read reliably only if the read head is directly above

FIGURE 34.35 Servo writer impairments: erase bands and radial incoherence.
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that specific track. As will be discussed shortly, such a constraint influences the ECC as well as sequence
detection strategies.

A related concern is the presence of radial incoherence, and the erase field introduced during servo
writing that are present when the read head straddles two tracks. The detector performance will suffer
from such impairments. Formats that tolerate such impairments are desired.

Because the recorded address mark and wedge address does not vary from one track to the next, the
emphasis is on track addresses. When the read head is in the middle of two adjacent tracks, with track
addresses X and Y, the read waveform is the superposition of the waveforms generated from each of the
respective addresses. In general, the resulting waveform cannot be decoded reliably to any one of the two
track addresses. A common solution is the use of a Gray code to encode track addresses, as shown in
Fig. 34.36, where any two adjacent tracks differ in their binary address representation in only one symbol
value. Hence, for the moment ignoring ISI, when the head is midway between adjacent tracks, the detector
will decode the address bits correctly except for the bit location where the two adjacent tracks differ, that
is, for the two track addresses labeled as X and Y, the decoder will decode the waveform to either track
address X or Y, introducing an error of at most one track. By designing a radially periodic servo burst
field, with period of at least two track widths, track number ambiguity generated by track addresses is
resolved; however, as will be discussed next, Gray codes complicate the use of ECC codes and sequence
detectors.

A Gray code restricts two adjacent tracks to differ in only a single position, or equivalently forcing the
Hamming distance between two adjacent track addresses to be one. Adding an ECC field to the digital
fields is desirable since reliable detection of track addresses is needed in the presence of miscellaneous
impairments such as electronic and disk media noise, radial incoherence, erase bands, etc.; however, any
ECC has a minimum Hamming distance larger than one. That is, it is not possible to have two adjacent
track-addresses be Gray and ECC encoded simultaneously. If an ECC field is appended to each track
address, it can be used only when the head is directly above a track. A possible alternative is to write the
track addresses multiple times with varying radial shifts so that, at any position, the head is mostly directly
above a track address [13]. Such a solution improves reliability at the expense of significant format
efficiency loss.

Another complication of introducing Gray codes results from the interaction of these codes with the
ISI channel. Consider an ISI free channel where the magnetic transitions are written ideally and where
the read head is allowed to be anywhere between two adjacent Gray coded track addresses X and Y. As
was discussed earlier, the track address reliability, or the probability that the decoded address is neither
X nor Y, is independent of the read head position. Next, it is shown that for an ISI channel the detector
performance depends on the radial position. In particular, consider the simple ISI channel with pulse
response 1 − D, which approximates a magnetic recording channel. For such a channel, events of length
two are almost as probable as errors of length one (same distance but different number of neighbors).
Now, as the head moves from track X to Y, the waveform modification introduced by addresses X and
Y, at that one location where the two tracks differ, can trigger an error of length two. The detector may
decode the received waveform to a different track address Z, which may lie far from addresses X or Y. In
other words, in an ISI channel, whenever the head is between two tracks X and Y, the probability that
the received waveform is decoded to some other address Z increases.

FIGURE 34.36 An example of two Gray-coded track addresses. The two addresses are different only in the third
location.
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For readers familiar with signal space representation of codewords, the ISI free and 1 + D channels
are shown for the three addresses X, Y, and Z with their decision regions in Fig. 34.37. Let dh denote to
the shortest distance from codeword X to the decision boundaries of codeword Z. As shown in Fig. 34.37,
when the head is midway between tracks X and Y, the shortest distance to cross the decision boundaries
of codeword Z is reduced by a factor of  (or 4.77 dB). Therefore, when the head is in the middle of
two tracks, represented by addresses X and Y, the probability that the decoded codeword is Z increases
significantly. For an arbitrary ISI channel this reduction factor in shortest distance varies, and it can be
shown to be at most .

A trivial solution to address both the ECC and ISI complications introduced by the Gray code is not
to use any coding and to write address bits far enough from each other to be able to ignore ISI effects.
Then a simple symbol-by-symbol detector is sufficient to detect the address without the need for a
sequence detector. Actually this is a common approach taken in many disk drive designs; however, dropping
ECC capability affects reliability and forcing the magnetic recording channel to behave as ISI free requires
additional format.

Another approach is to use symbol based codes, such as a bi-phase code, rather than sequence-based
codes, that is, rather than maximizing the minimum distance between any two codewords, the distance
between two symbols is maximized. For example, in a magnetic recording channel, a bi-phase code
produces a positive pulse at the middle of the symbol for a symbol “1” and a negative pulse for a symbol
“0,” increasing symbol reliability [13,14]. In this example, it can be shown that the ISI related degradations
are minimized and the detector performance is improved.

A fundamentally different approach would not make use of a Gray code at all. Instead, codes would
be designed from scratch in such a way that for any two addresses X and Y the distance between X and
Y would increase, as they are radially located further away from each other.

The Burst Field

In the previous subsection, track addresses were introduced, which provide head position information to
about single-track accuracy. To be able to read the data field reliably, it is essential to position the read
head directly upon the desired track within a small fraction of a track. To this end the track number
addresses are complemented with the servo burst field, where the analog radial position is encoded in a
periodic waveform such as a sinusoid. Three ways to encode a parameter in a sinusoidal waveform are
used: amplitude, phase, and frequency [3]. Servo burst fields are also periodic radially. Because the track
address already provides an absolute position, such a periodicity does not create any ambiguity.

In a disk platter, information is recorded in one of two stable domains. Hence, a servo burst is recorded
as a periodic binary pattern. The read back waveform, at the head output, is periodic and will contain
both the fundamental and higher harmonics. The sinusoidal waveform is obtained by retaining only the
fundamental harmonic. For a given format budget, it is possible to maximize the power of the read back

FIGURE 34.37 Signal space representation of three codewords. Configuration (a) ISI free (b) with ISI.
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waveform by optimizing the fundamental period [15]. If recorded transitions get too close, ISI destroys
most of the signal power. On the other hand, if transitions are far from each other, then the read back
pulses are isolated and contain little power.

In this subsection, first the impairment sources are identified. Afterward, various servo burst formats
and their performances are discussed [16,17]. Finally, various estimator characteristics and options are
reviewed.

Impairments

Here, impairments in a servo burst field are classified into three categories: servo-writer induced, read
head induced, and read channel induced. Not all impairments are present in all servo burst formats.

As was discussed in the subsection on “Servo Writers”, when the servo-writer records wedges track-by-
track, erase band as well as radial incoherence may be present between tracks, degrading the performance
of some of the servo burst formats. Also, the duty cycle of the recorded periods may be different than the
intended 50%. Finally, write process limitations result in nonideal recorded transitions.

The read head element as well as the preamplifier, which magnifies the incoming signal, generate
electronic noise, modeled by additive white Gaussian noise (AWGN). Also, in many situations the width
of the read head element ends up, being shorter than the servo burst radial width as shown in Fig. 34.38 (a).
As will be discussed shortly, for some formats, this creates saturated radial regions where the radial
estimates are not reliable [9]. Finally, the rectangular approximation of the read head element shown in
Fig. 34.38(a) is not accurate. More specifically, different regions of the read head may respond differently
to a magnetic flux. Hence, the read head profile may be significantly different than a rectangle [18,19].

The read channel, while processing the read waveform, induces a third class of errors. Most present
estimators are digitally implemented and have to cope with quantization error. If only the first harmonic
of the received waveform is desired then suppressing higher harmonics may leave residues that may
interact with the first harmonic inside the estimator. Furthermore, sampling a waveform with higher
harmonic residues creates aliasing effects, where higher harmonics fold into the first harmonic. Many
read channel estimators require that the phase, frequency, or both phase and frequency of the incoming
waveform are known. Any discrepancy results in estimator degradation. Finally, estimator complexity
constraints result in suboptimal estimators, further degrading the accuracy of the position estimate.

Formatting Strategies

At present, the amplitude servo burst format, shown in Fig. 34.38(a), is the most common format used
in the disk drive industry. Depending on the radial position of the read head, the overlap between the
head and the bursts A and B varies. Through this overlap, or amplitude variation, it is possible to estimate
the radial position. First, the waveforms resulting from the overlap of the read head and the burst fields

FIGURE 34.38 The amplitude burst format and its position error transfer function as the head moves from center-
track n to center-track n + 1.
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A and B are transformed into amplitude estimates. These amplitude estimates are then subtracted from
each other and scaled to get a positional estimate. As the head moves from track center n to track center
(n + 1), the noiseless positional estimate, known as position error transfer function, is plotted in Fig. 34.38(b).
Here, since the radial width of the servo burst is larger than the read element, any radial position falls
into either the linear region, where radial estimate is accurate, or in the saturated region, where the radial
estimate is not accurate [9]. One solution to withstand saturated regions is to include multiple burst
pairs, such that any radial position would fall in the linear region of at least one pair of bursts. The
obvious drawback of such a strategy is the additional format loss. The amplitude format just presented
does not suffer from radial incoherence since two bursts are not recorded radially adjacent to each other.

Because nonrecorded areas do not generate any signal, in Fig. 34.38(a) only 50% of the servo burst
format is recorded with transitions or utilized. In an effort to improve the position estimate performance,
the whole allocated servo area can be recorded. As a result, at least two alternative formats have emerged,
both illustrated by Fig. 34.39.

In the first improved format, burst A is radially surrounded by an antipodal or “opposite polarity” burst
A′. For example, if burst A is recorded as ++−−++−−… then burst A′ is recorded as −−++−−++…. For
readers familiar with digital communications, the difference between the amplitude and antipodal servo
burst formats can be compared to the difference between on-off and antipodal signaling. In on-off
signaling, a symbol “0” or “1” is transmitted while in antipodal signaling 1 or −1 is transmitted. Antipodal
signaling is 6 dB more efficient than on-off signaling. Similarly, it can be shown that the antipodal servo
burst format gives a 6-dB advantage with respect to amplitude servo burst format under the AWGN
assumption [17].

Instead of recording A′ to be the opposite polarity of A, another alternative is to record a pattern A′
that is orthogonal to A. For example, it is possible to pick up two sinusoids with different frequencies
such that the two waveforms are orthogonal over a finite burst length interval. The resulting format is
known as the dual frequency format [20]. Inside the read channel, two independent estimates of the head
position can be obtained from two estimators, each tuned to one of the two frequencies. The final radial
estimate is the average of the two estimates, resulting in a 3-dB improvement with respect to the amplitude
format, again under AWGN assumption.

Unlike the amplitude format, these more sophisticated formats are in general more sensitive to other
impairments such as erase band and radial incoherence.

A fundamentally different format is presented in Fig. 34.40. Here, the transitions are skewed and the
periodic pattern gradually shifts in the angular direction as the radius changes. The radial information
is stored in the phase of the period, so it is called the phase format. In Fig. 34.40 two burst fields A and
B are presented where the transition slopes have the same magnitude but opposite polarities. An estimator
makes two phase estimates, one from the sinusoid in field A and another one from the sinusoid in field
B. By subtracting the second phase estimate from the first, and then by scaling the result, the radial
position estimate can be obtained. Similar to the antipodal format, it can be shown that the phase pattern
is 6 dB superior to the amplitude pattern [17] under AWGN. A major challenge for the phase format is
successfully recording the skewed transitions on a disk platter without significant presence of radial
incoherence and erase band.

FIGURE 34.39 Alternative burst formats where A′ and B′ are either orthogonal to or of opposite polarity of A and
B, respectively.
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Position Estimators

Estimating various parameters of a sinusoid is well documented in textbooks [3]. A decade ago position
estimators were mostly implemented by analog circuitry, whereas at present, digital implementation is
the norm and the one considered in this article [21–25]. One way of classifying estimators is to determine
whether the phase and/or the frequency of the incoming waveform are known.

Assume that the amplitude of a noisy sinusoid needs to be determined. If the phase of this waveform
is known, a matched filter can be used to generate the amplitude estimate. This is known as coherent
estimation. Under certain assumptions and performance criteria such a filter becomes optimal. When
the phase of the waveform is not known, but the frequency is known, then two matched filters can be
used, one tuned to a sine waveform while the other filter is tuned to a cosine waveform. The outputs of
the two filters are squared and added to give the energy estimate of the waveform. This is known as
noncoherent estimation and is equivalent to computing the Fourier transform at the first harmonic.
Other ad hoc estimators include the peak estimator and digital area estimators [26], which respectively
estimate the averaged peak and the mean value of the unsigned waveform. Neither of these estimators
requires the phase or the frequency of the waveform.

For the amplitude format, all the estimators mentioned here can be used. For the antipodal format,
the phase of the waveform is needed and therefore a single matched filter is the required estimator. For
dual frequency format, we need two estimators, each tuned to a different frequency. Since the two
waveforms are orthogonal to each other, an estimator tuned to one of the waveforms will not observe
the other waveform. Each estimator can utilize a single matched filter for coherent estimation or two
matched filters for noncoherent estimation. Finally, for phase estimation, two matched filters are utilized,
similar to noncoherent estimation; however, rather than squaring and adding the filter outputs, the
inverse tangent function is performed on the ratio of the filter outputs.
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34.5 Modulation Codes for Storage Systems

Brian Marcus and Emina
∨

Soljanin

Introduction

Modulation codes are used to constrain the individual sequences that are recorded in data storage
channels, such as magnetic or optical disk or tape drives. The constraints are imposed in order to improve
the detection capabilities of the system. Perhaps the most widely known constraints are the runlength
limited (RLL(d,k)) constraints, in which ones are required to be separated by at least d and no more than
k zeros. Such constraints are useful in data recording channels that employ peak detection: waveform
peaks, corresponding to data ones, are detected independently of one another. The d-constraint helps
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increase linear density while mitigating intersymbol interference, and the k-constraint helps provide
feedback for timing and gain control.

Peak detection was widely used until the early 1990s. Although it is still used today in some magnetic
tape drives and some optical recording devices, most high density magnetic disk drives now use a form
of maximum likelihood (Viterbi) sequence detection. The data recording channel is modeled as a linear,
discrete-time, communications channel with inter-symbol interference (ISI), described by its transfer
function and white Gaussian noise. The transfer function is often given by h(D) = (1 − D)(1 + D)N, where
N depends on and increases with the linear recording density. 

Broadly speaking, two classes of constraints are of interest in today’s high density recording channels:
(1) constraints for improving timing and gain control and simplifying the design of the Viterbi detector
for the channel and (2) constraints for improving noise immunity. Some constraints serve both purposes. 

Constraints in the first class usually take the form of a PRML (G, I) constraint: the maximum run of
zeros is G and the maximum run of zeros, within each of the two substrings defined by the even indices
and odd indices, is I. The G-constraint plays the same role as the k-constraint in peak detection, while
the I-constraint enables the Viterbi detector to work well within practical limits of memory. 

Constraints in the second class eliminate some of the possible recorded sequences in order to increase
the minimum distance between those that remain or eliminate the possibility of certain dominant error
events. This general goal does not specify how the constraints should be defined, but many such con-
straints have been constructed; see [20] and the references therein for a variety of examples. Bounds on
the capacities of constraints that avoid a given set of error events have been given in [26]. 

Until recently, the only known constraints of this type were the matched-spectral-null (MSN) con-
straints. They describe sequences whose spectral nulls match those of the channel and therefore increase
its minimum distance. For example, a set of DC-balanced sequences (i.e., sequences of ±1 whose accu-
mulated digital sums are bounded) is an MSN constraint for the channel with transfer function h(D) =
1 − D, which doubles its minimum distance [18].  

During the past few years, significant progress has been made in defining high capacity distance
enhancing constraints for high density magnetic recording channels. One of the earliest examples of such
a constraint is the maximum transition run (MTR) constraint [28], which constrains the maximum run
of ones. We explain the main idea behind this type of distance-enhancing codes in the subsection on
“Constraints for ISI Channels.”

Another approach to eliminating problematic error events is that of parity coding. Here, a few bits of
parity are appended to (or inserted in) each block of some large size, typically 100 bits. For some of the
most common error events, any single occurrence in each block can be eliminated. In this way, a more
limited immunity against noise can be achieved with less coding overhead [5].  

Coding for more realistic recording channel models that include colored noise and intertrack interference
are discussed in the subsection on “Channels with Colored Noise and Intertrack Interference.” The authors
point out that different constraints, which avoid the same prescribed set of differences, may have different
performance on more realistic channels. This makes some of them more attractive for implementation. 

For a more complete introduction to this subject, the reader is referred to any one of the many expository
treatments, such as [16,17,24]. 

Constrained Systems and Codes

Modulation codes used in almost all contemporary storage products belong to the class of constrained
codes. These codes encode random input sequences to sequences that obey the constraint of a labeled
directed graph with a finite number of states and edges. The set of corresponding constrained sequences
is obtained by reading the labels of paths through the graph. Sets of such sequences are called constrained
systems or constraints. Figures 34.41 and 34.42 depict graph representations of an RLL constraint and a
DC-balanced constraint. 

Of special interest are those constraints that do not contain (globally or at certain positions) a finite
number of finite length strings. These systems are called systems of finite type (FT). An FT system X
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over alphabet A can always be characterized by a finite list of forbidden strings F = {w1,…, wN} of symbols
in A. Defined this way, FT systems will be denoted by . The RLL constraints form a prominent class
of FT constraints, while DC-balanced constraints are typically not FT. 

Design of constrained codes begins with identifying constraints, such as those described in the Intro-
duction, that achieve certain objectives. Once the system of constrained sequences is specified, information
bits are translated into sequences that obey the constraints via an encoder, which usually has the form of
a finite-state machine. The actual set of sequences produced by the encoder is called a constrained code
and is often denoted C. A decoder recovers user sequences from constrained sequences. While the decoder
is also implemented as a finite-state machine, it is usually required to have a stronger property, called
sliding-block decodablility, which controls error propagation [24]. 

The maximum rate of a constrained code is determined by Shannon capacity. The Shannon capacity
or simply capacity of a constrained system, denoted by C, is defined as

where N(n) is the number of sequences of length n. The capacity of a constrained system represented by
a graph G can be easily computed from the adjacency matrix (or state transition matrix) of G (provided
that the labeling of G satisfies some mildly innocent properties). The adjacency matrix of G with r states
and aij edges from state i to state j, 1 ≤ i, j ≤ r, is the r ×  r matrix A = A(G) = {aij}r×r. The Shannon capacity
of the constraint is given by

where λ(A) is the largest real eigenvalue of A.
The state-splitting algorithm [1] (see also [24]) gives a general procedure for constructing constrained

codes at any rate up to capacity. In this algorithm, one starts with a graph representation of the desired
constraint and then transforms it into an encoder via various graph-theoretic operations including
splitting and merging of states. Given a desired constraint and a desired rate p/q ≤ C, one or more rounds
of state splitting are performed; the determination of which states to split and how to split them is
governed by an approximate eigenvector, i.e., a vector x satisfying Aq x ≥ 2px.

Many other very important and interesting approaches are used to constrained code construction—far
too many to mention here. One approach combines state-splitting with look-ahead encoding to obtain
a very powerful technique which yields superb codes [14]. Another approach involves variable-length
and time-varying variations of these techniques [2,13]. Many other effective coding constructions are
described in the monograph [17].

FIGURE 34.41 RLL (1,3) constraint.

FIGURE 34.42 DC-balanced constraint.
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For high capacity constraints, graph transforming techniques, such as the state-splitting algorithm,
may result in encoder/decoder architectures with formidable complexity. Fortunately, a block encoder/
decoder architecture with acceptable implementation complexity for many constraints can be designed
by well-known enumerative [6], and other combinatorial [32] as well as heuristic techniques  [25]. 

Translation of constrained sequences into the channel sequences depends on the modulation method.
Saturation recording of binary information on a magnetic medium is accomplished by converting an
input stream of data into a spatial stream of bit cells along a track where each cell is fully magnetized in
one of two possible directions, denoted by 0 and 1. Two important modulation methods are commonly
used on magnetic recording channels: non-return-to-zero (NRZ) and modified non-return-to-zero (NRZI).
In NRZ modulation, the binary digits 0 and 1 in the input data stream correspond to 0 and 1 directions
of cell magnetizations, respectively. In NRZI modulation, the binary digit 1 corresponds to a magnetic
transition between two bit cells, and the binary digit 0 corresponds to no transition. For example, the
channel constraint which forbids transitions in two neighboring bit cells, can be accomplished by either
F = {11} NRZI constraint or F = {101, 010} NRZ constraint. The graph representation of these two
constraints is shown in Fig. 34.43. The NRZI representation is, in this case, simpler. 

Constraints for ISI Channels

This subsection discusses a class of codes known as codes, which avoid specified differences. This is the
only class of distance enhancing codes used in commercial magnetic recording systems. Two main reasons
for this are: these codes simplify the channel detectors relative to the uncoded channel and even high
rate codes in this class can be realized by low complexity encoders and decoders.

Requirements

A number of papers have proposed using constrained codes to provide coding gain on channels with
high ISI (see, for example, [4,10,20,28]). The main idea of this approach can be described as follows
[20]. Consider a discrete-time model for the magnetic recording channel with possibly constrained input
a = {an} C ∈� {0,1}∞, impulse response {hn}, and output y = {yn} given by

(34.32)

where h(D) = ∑nhnDn = (1 − D)(1 + D)3 (E2PR4) or h(D) = ∑nhnDn = (1 − D)(1 + D)4 (E3PR4), ηn are
independent Gaussian random variables with zero mean and variance σ 2. The quantity 1/σ2 is referred
to as the signal-to-noise ratio (SNR). The minimum distance of the uncoded channel (34.32) is

FIGURE 34.43 Two equivalent constraints: (a) F = {11} NRZI and (b) F = {101, 010} NRZ.
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where �(D) = �iD
i,(�i ∈{−1,0,1}, �0 = 1,�l−1 ≠ 0) is the polynomial corresponding to a normalized

input error sequence � =  of length l, and the squared norm of a polynomial is defined as the sum
of its squared coefficients. The minimum distance is bounded from above by ||h(D)||2, denoted by

(34.33)

This bound is known as the matched-filter bound (MFB) and is achieved when the error sequence of
length l = 1, i.e., �(D) = 1, is in the set

(34.34)

For channels that fail to achieve the MFB, i.e., for which  < ||h(D)||2, any error sequences �(D) for
which

(34.35)

are of length l ≥ 2 and may belong to a constrained system , where L is an appropriately chosen
finite list of forbidden strings. 

For code C, the set of all admissible nonzero error sequences is written as

Given the condition , the least restrictive finite collection F of blocks over the alphabet
{0,1} can be identified so that

(34.36)

Definitions

A constrained code is defined by specifying F, the list of forbidden strings for code sequences. Prior to
that one needs to first characterize error sequences that satisfy (34.35) and then specify L, the list of
forbidden strings for error sequences. Error event characterization can be done by using any of the
methods described by Karabed, Siegel, and Soljanin in [20]. Specification of L is usually straightforward. 

A natural way to construct a collection F of blocks forbidden in code sequences based on the collection
L of blocks forbidden in error sequences is the following. From the above definition of error sequences
� = {�i} we see that �i = 1 requires ai = 1 and �i = −1 requires ai = 0, i.e., ai = (1 + �i)/2. For each block wE
∈ L, construct a list  of blocks of the same length l according to the rule: 

Then the collection F obtained as  satisfies requirement (34.36); however, the con-
strained system  obtained this way may not be the most efficient. (Bounds on the achievable rates
of codes which avoid specified differences were found recently in [26].) 

The previous ideas are illustrated in the example of the E2PR4 channel. Its transfer function is h(D) =
(1 − D)(1 + D)3, and its MFB is ||(1 − D)(1 + D)3⋅ 1||2 = 10. The error polynomial �(D) = 1 − D + D2 is
the unique error polynomial for which ||(1 − D)(1 + D)3

�(D)||2 = 6, and the error polynomials �(D) =
1 − D + D2 + D5 − D6 + D7 and  for l ≥ 4 are the only polynomials for which
||(1 − D)(1 + D)3

�(D)||2 = 8 (see, for example, [20]). 
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It is easy to show that these error events are not in the constrained error set defined by the list of
forbidden error strings L = {+−+ 00, +−+−}, where + denotes 1 and − denotes −1. To see this, note that an
error sequence that does not contain the string + − + 00 cannot have error polynomials �(D) = 1 − D + D2

or ε(D) = 1 − D + D2 + D5 − D6 + D7, while an error sequence that does not contain string + − + − cannot
have an error polynomial of the form  for l ≥ 4. Therefore, by the above procedure
of defining the list of forbidden ode strings, we obtain the F = {+ − +} NRZ constraint. Its capacity is
about 0.81, and a rate 4/5 c code into the constraint was first given in [19]. 

In [20], the following approach was used to obtain several higher rate constraints. For each of the
error strings in L, we write all pairs of channel strings whose difference is the error string. To define F,
look for the longest string(s) appearing in at least one of the strings in each channel pair. For the example
above and the + − + 00 error string, a case-by-case analysis of channel pairs is depicted in Fig. 34.44. We
can distinguish two types (denoted by A and B in the figure) of pairs of code sequences involved in
forming an error event. In a pair of type A, at least one of the sequences has a transition run of length 4.
In a pair of type B, both sequences have transition runs of length 3, but for one of them the run starts
at an even position and for the other at an odd position. This implies that an NRZI constrained system
that limits the run of 1s to 3 when it starts at an odd position, and to 2 when it starts at an even position,
eliminates all possibilities shown bold-faced in Fig. 34.44. In addition, this constraint eliminates all error
sequences containing the string + − + −. The capacity of the constraint is about .916, and rate 8/9 block
codes with this constraint have been implemented in several commercial read channel chips. More about
the constraint and the codes can be found in [4,10,20,28]. 

Channels with Colored Noise and Intertrack Interference

Magnetic recording systems always operate in the presence of colored noise intertrack interference, and
data dependent noise. Codes for these more realistic channel models are studied in [27]. The following
is a brief outline of the problem. 

The data recording and retrieval process is usually modeled as a linear, continuous-time, communications
channel described by its Lorentzian step response and additive white Gaussian noise. The most common
discrete-time channel model is given by Eq. (34.32). Magnetic recording systems employ channel equal-
ization to the most closely matching transfer function h(D) = ΣnhnDn of the form h(D) = (1 − D)(1 + D)N.
This equalization alters the spectral density of the noise, and a better channel model assumes that the
ηn in Eq. (34.32) are identically distributed, Gaussian random variables with zero mean, variance σ2, and
normalized cross-correlation E{ηnηk}/σ2 = ρn−k.

In practice, there is always intertrack interference (ITI), i.e., the read head picks up magnetization
from an adjacent track. Therefore, the channel output is given by

(34.37)

where {gn} is the discrete-time impulse response of the head to the adjacent track, and x = {xn} ∈ C is
the sequence recorded on that track. Assuming that the noise is white. 

FIGURE 34.44 Possible pairs of sequences for which error event + − +00 may occur.
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In the ideal case (34.32), the probability of detecting b given that a was recorded is equal to Q(d(�)/σ),
where d(�) is the distance between a and b given by

(34.38)

Therefore, a lower bound, and a close approximation for small σ, to the minimum probability of an
error-event in the system is given by Q(dmin,C/σ), where

is the channel minimum distance of code C. We refer to

(34.39)

as the minimum distance of the uncoded channel, and to the ratio dmin,C/dmin as the gain in distance of
code C over the uncoded channel. 

In the case of colored noise, the probability of detecting b given that a was recorded equals to Q(∆(�)/σ),
where ∆(�) is the distance between a and b given by

Therefore, a lower bound to the minimum probability of an error-event in the system is given by Q(∆min,C/σ),
where

In the case of ITI (Eq. 34.37), an important factor is the probability of detecting sequence b given that
sequence a was recorded on the track being read and sequence x was recorded on an adjacent track. This
probability is

where δ(�,x) is the distance between a and b in the presence of x given by [30]

Therefore, a lower bound to the minimum probability of an error-event in the system is proportional to
Q(δmin,C/σ), where
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Distance δmin,C can be bounded as follows [30]:

(34.40)

where M = maxn,x∈C Σmxmgn−m, i.e., M is the maximum absolute value of the interference. Note that M =
Σn|gn|. We will assume that M < 1. The bound is achieved if and only if there exists an �, d(�) = dmin, C,
for which Σm�mhn−m ∈{−1, 0, 1} for all n, and there exists an x ∈C such that Σmxmgn−m = M whenever
Σm�mhn−m = ±1. 

An Example

Certain codes provide gain in minimum distance on channels with ITI and colored noise, but not on
the AWGN channel with the same transfer function. This is best illustrated using the example of the
partial response channel with the transfer function h(D) = (1 − D)(1 + D)2 known as EPR4. It is well
known that for the EPR4 channel  = 4. Moreover, as discussed in the subsection on “Constraints
for ISI Channels,” the following result holds:

Proposition 1. Error events �(D) such that

take one of the following two forms:

or

Therefore, an improvement of error-probability performance can be accomplished by codes which
eliminate the error sequences � containing the strings −1 +1 −1 and +1 −1 +1. Such codes were extensively
studied in [20]. 

In the case of ITI (Eq. 34.37), it is assumed that the impulse response to the reading head from an adjacent
track is described by g(D) = αH(D), where the parameter α depends on the track to head distance. Under
this assumption, the bound (34.40) gives  The following result was shown in [30]:

Proposition 2. Error events �(D) such that

 

take the following form:

For all other error sequences for which d2(�) = 4, we have minx�C δ
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Therefore, an improvement in error-probability performance of this channel can be accomplished by
limiting the length of strings of alternating symbols in code sequences to four. For the NRZI type of
recording, this can be achieved by a code that limits the runs of successive ones to three. Note that the set
of minimum distance error events is smaller than in the case with no ITI. Thus, performance improvement
can be accomplished by higher rate codes that would not provide any gain on the ideal channel. 

Channel equalization to the EPR4 target introduces cross-correlation among noise samples for a range
of current linear recording densities (see [27] and references therein). The following result was obtained
in [27]:

Proposition 3. Error events �(D) such that

take the following form:

Again, the set of minimum distance error events is smaller than in the ideal case (white noise), and
performance improvement can be provided by codes which would not give any gain on the ideal channel.
For example, since all minimum distance error events have odd parity, a single parity check code can be
used. 

Future Directions

Soft-Output Decoding of Modulation Codes

Detection and decoding in magnetic recording systems is organized as a concatenation of a channel
detector, an inner decoder, and an outer decoder, and as such should benefit from techniques known as
erasure and list decoding. To declare erasures or generate lists, the inner decoder (or channel detector)
needs to assess symbol/sequence reliabilities. Although the information required for this is the same one
necessary for producing a single estimate, some additional complexity is usually required. So far, the
predicted gains for erasure and list decoding of magnetic recording channels with additive white Gaussian
noise were not sufficient to justify increasing the complexity of the channel detector and inner and outer
decoder; however, this is not the case for systems employing new magneto-resistive reading heads, for
which an important noise source, thermal asperities, is to be handled by passing erasure flags from the
inner to the outer decoder. 

In recent years, one more reason for developing simple soft-output channel detectors has surfaced.
The success of turbo-like coding schemes on memoryless channels has sparked the interest in using them
as modulation codes for ISI channels. Several recent results show that the improvements in performance
turbo codes offer when applied to magnetic recording channels at moderate linear densities are even
more dramatic than in the memoryless case [12,29]. The decoders for turbo and low-density parity check
codes (LDPC) either require or perform much better with soft input information which has to be supplied
by the channel detector as its soft output. The decoders provide soft outputs which can then be utilized by
the outer Reed–Solomon (RS) decoder [22]. A general soft-output sequence detection was introduced
in [11], and it is possible to get information on symbol reliabilities by extending those techniques [21,31]. 

Reversed Concatenation

Typically, the modulation encoder is the inner encoder, i.e., it is placed downstream of an error-correction
encoder (ECC) such as an RS encoder; this configuration is known as standard concatenation (Fig. 34.45).
This is natural since otherwise the ECC encoder might well destroy the modulation properties before

∆2
�( ) ∆min

2=

� D( ) 1–( )
i
D

i
, l 3, l ≥

i=0

l−1

∑= odd
© 2002 by CRC Press LLC



passing across the channel; however, this scheme has the disadvantage that the modulation decoder,
which must come before the ECC decoder, may propagate channel errors before they can be corrected.
This is particularly problematic for modulation encoders of very high rate, based on very long block size.
For this reason, a good deal of attention has recently focused on a reversed concatenation scheme, where
the encoders are concatenated in the reversed order (Fig. 34.46). Special arrangements must be made to
ensure that the output of the ECC encoder satisfies the modulation constraints. Typically, this is done
by insisting that this encoder be systematic and then re-encoding the parity information using a second
modulation encoder (the “parity modulation encoder”), whose corresponding decoder is designed to
limit error propagation; the encoded parity is then appended to the modulation-encoded data stream
(typically a few merging bits may need to be inserted in between the two streams in order to ensure that
the entire stream satisfies the constraint). In this scheme, after passing through the channel the modulation-
encoded data stream is split from the modulation-encoded parity stream, and the latter is then decoded
via the parity modulation decoder before being passed on to the ECC decoder. In this way, many channel
errors can be corrected before the data modulation decoder, thereby mitigating the problem of error
propagation. Moreover, if the data modulation encoder has high rate, then the overall scheme will also
have high rate because the parity stream is relatively small.  

Reversed concatenation was introduced in [3] and later in [23]. Recent interest in the subject has been
spurred on by the introduction of a lossless compression scheme, which improves the efficiency of
reversed concatenation [15], and an analysis demonstrating the benefits in terms of reduced levels of
interleaving [8]; see also [9].  Research on fitting soft decision detection into reversed concatenation  can
be found in [7,33]. 
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34.6 Data Detection

Miroslav Despotović and Vojin
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Introduction

Digital magnetic recording systems transport information from one time to another. In communication
society jargon, it is said that recording and reading information back from a (magnetic) medium is
equivalent to sending it through a time channel. There are differences between such channels. Namely,
in communication systems, the goal is a user error rate of 10−5 or 10−6. Storage systems, however, often
require error rates of 10−12 or better. On the other hand, the common goal is to send the greatest possible
amount of information through the channel used. For storage systems, this is tantamount to increasing
recording density, keeping the amount redundancy as low as possible, i.e., keeping the bit rate per recorded
pulse as high as possible. The perpetual push for higher bit rates and higher storage densities spurs a
steady increment of the amplitude distortion of many types of transmission and storage channels.

When recording density is low, each transition written on the magnetic medium results in a relatively
isolated peak of voltage, and peak detection method is used to recover written information; however,
when PW50 (pulse width at half maximum response) becomes comparable with the channel bit period,
the peak detection channel cannot provide reliable data detection, due to intersymbol interference (ISI).
This interference arises because the effects of one readback pulse are not allowed to die away completely
before the transmission of the next. This is an example of a so-called baseband transmission system, i.e.,
no carrier modulation is used to send data. Impulse dispersion and different types of induced noise at
the receiver end of the system introduce combination of several techniques (equalization, detection, and
timing recovery) to restore data. This chapter section gives a survey of most important detection techniques
in use today assuming ideal synchronization.

Increasing recording density in new magnetic recording products necessarily demands enhanced
detection techniques. First detectors operated at densities at which pulses were clearly separated, so that
very simple, symbol-by-symbol detection technique was applied, the so-called peak detector [30]. With
increased density, the overlap of neighboring dispersed pulses becomes so severe (i.e., large intersymbol
interference—ISI) that peak detector could not combat with such heavy pulse shape degradation. To
accomplish this task, it was necessary to master signal processing technology to be able to implement
more powerful sequence detection techniques. This chapter section will both focus on this type of detection
already applied in commercial products and give advanced procedures for searching the detection trellis
to serve as a tutorial material for research on next generation products.

Partial-Response Equalization

In the classical peak detection scheme, an equalizer is inserted whose task is just to remove all the ISI so
that an isolated pulse is acquired, but the equalization will also enhance and colorize the noise (from
readback process) due to spectral mismatch. The noise enhancement obtained in this manner will increase
© 2002 by CRC Press LLC



with recording density and eventually become intolerable. Namely, since such a full equalization is aimed
at slimming the individual pulse, so that it does not overlap with adjacent pulses, it is usually too aggressive
and ends up with huge noise power.

Let us now review the question of recording density, also known as packing density. It is often used
to specify how close two adjacent pulses stay to each other and is defined as PW50/T (see Chapter 34.1
for definition). Whatever tricks are made with peak detection systems, they barely help at PW50/T ratios
above 1.

Section 34.6 discusses two receiver types that run much less rapidly out of steam. These are the partial-
response equalizer (PRE) and the decision-feedback equalizer (DFE). Both are rooted in old telegraph tricks
and, just as is the case with peak detector, they take instantaneous decisions with respect to the incoming
data. Section 34.6 will focus mainly on these issues, together with sequence detection algorithms that
accompany partial-response (PR) equalization.

What is PR equalization? It is the act of shaping the readback magnetic recording signal to look like
the target signal specified by the PR. After equalization the data are detected using a sequence detector.
Of course, quantization by an analog-to-digital converter (ADC) occurs at some point before the sequence
detector.

The common readback structure consists of a linear filter, called a whitened matched filter, a symbol-
rate sampler (ADC), a PRE, and a sequence detector, Fig. 34.47. The PRE in this scheme can also be put
before the sampler, meaning that it is an analog, not a digital equalizer. Sometimes part of the equalizer
is implemented in the analog, the other part in the digital domain. In all cases, analog signal, coming
from the magnetic head, should have a certain and constant level of amplification. This is done in a
variable gain amplifier (VGA). To keep a signal level, VGA gets a control signal from a clock and gain
recovery system. In the sequel, we will assume that VGA is already (optimally) performed. In the design
of equalizers and detectors, low power dissipation and high speed are both required. The error perfor-
mances need to be maintained as well. So far, most systems seek for the implementations in the digital
domain, as is the case in Fig. 34.47, but it has been shown that ADC may contribute to the high-frequency
noise during the PR target equalization, causing a long settling time in clock recovery loop, as well as
degrading performance [33]. In addition, the ADC is also usually the bottleneck for the low-power high-
speed applications. On the other hand, the biggest problem for an analog system is the imperfection of
circuit elements. The problems encountered with analog systems include nonideal gain, mismatch,
nonlinear hold step, offset, etc.

Let us now turn to the blocks shown in Fig. 34.47. The first of them, the whitened matched filter, has
the following properties [7]:

Simplicity: a single filter producing single sample at the output is all that is needed. The response of
the filter is either chosen to be causal and hence realizable, or noncausal, meaning some delay has
to be introduced, yielding better performance.

Sufficiency: the filter is information lossless, in the sense that its sampled outputs are a set of sufficient
statistics for estimation of the input sequence.

Whiteness: the noise components of the sampled outputs are independent identically distributed
Gaussian random variables.

The whiteness and sufficiency property follow from the fact that the set of waveforms at the output
of the matched filter is an orthonormal basis for the signal space.

FIGURE 34.47 Maximum-likelihood sequence detector.
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The next block is PRE. What is PR? Essential to PR techniques is that the PR sequence is obtained
from the channel sequence via a simple linear filter. More specifically, the impulse response of this filter
is such that the overall response is modeled as having only a few small integer-valued coefficients, the
condition actually considered crucial for the system to be called PR. This condition subsequently yields
relatively simple sequence detectors. The correlative level coding [3], also known as PR [31] is adopted
in digital communication applications for long time. Kobayashi [9] suggested in 1971 that this type of
channels can be treated as a linear finite state machine, and thus can be represented by the state diagram
and its time instant labeled counterpart, trellis diagram. Consequently, its input is best inferred using
some trellis search technique, the best of them (if we neglect complexity issues) being the Viterbi algorithm
[2] (if one is interested in maximizing the likelihood of the whole sequence; otherwise, a symbol-by-
symbol detector is needed). Kobayashi also indicated that the magnetic recording channel could be
regarded as the PR channel due to the inherent differentiation property in the readback process [8]. This
is both present in inductive heads and in magnetoresistive (MR) heads, though the latter are directly
sensitive to magnetization and not to its change (this is due to the fact that the head has to be shielded).
In other words, the pulse will be read only when the transition of opposite magnet polarities is sensed.

Basic to the PR equalization is the fact that a controlled amount of ISI is not suppressed by the equalizer,
but rather left for a sequence detector to handle. The nature of the controlled ISI is defined by a PR. A
proper match of this response to the channel permits noise enhancement to remain small even when
amplitude distortion is severe. In other words, PR equalization can provide both well-controlled ISI and
spectral match.

PR equalization is based on two assumptions:

• The shape of readback signal from an isolated transition is exactly known and determined.

• The superposition of signals from adjacent transitions is linear.

Furthermore, it is assumed that the channel characteristics are fixed and known, so that equalization
need not be adaptive. The resulting PR channel can be characterized using D-transform of the sequences
that occur, X(D) = I(D)H(D) [7] where H(D) = hiD

i, D represents the delay factor in D-transform
and M denotes the order of the PR signals. When modeling differentiation, H(D) = 1 − D. The finite state
machine (FSM) of this PR channel is known as the dicode system since there are only two states in the
transition diagram.

The most unclear signal transformation in Fig. 34.47 is equalization. What does it mean that the pulse
of voltage should look like the target signal specified by the PR (the so-called PR target)? To answer this
question let us consider the popular Class IV PR, or PRIV system.

For magnetic recording systems with PW50/T approximately equal to 2, comparatively little equalization
is required to force the equalized channel to match a class-4 PR (PR4) channel where H(D) = (1 − D)(1 +
D) = 1 − D2. Comparing to the Lorentzian model of Chapter 34.1, PR4 channel shows more emphasis
in the high frequency domain. The equalizer with the PR4 as the equalization target thus suppresses the
low frequency components and enhances the high frequency ones, degrading the performance of all-
digital detectors since the quantization noise, that is mainly placed at higher frequencies, is boosted up.

The isolated pulse shape in a PR4 system is shown in Fig. 34.48. The transition is written at time
instant t = 0, where T is the channel bit period. The shape is oscillating and the pulse values at integer
number of bit periods before the transition are exactly zeros. Obviously, it is this latter feature that should
give us future advantage; however, at t = 0 and at t = T, i.e., one bit period later, the values of the pulse
are equal to “1”. The pulse of voltage reaches its peak amplitude of 1.273 at one half of the bit period.
Assume that an isolated transition is written on the medium and the pulse of voltage shown in Fig. 34.48
comes to the PRML system. The PR4 system requires that the samples of this pulse should correspond
to the bit periods. Therefore, samples of the isolated PR4 pulse will be 00…011000 … (of course, “1” is
used for convenience, and in reality it corresponds to some ADC level).

Because the isolated transition has two nonzero samples, when the next transition is written, the pulses
will interfere. Thus, writing two pulses adjacent to each other will introduce superposition between them,

Σi=0
M−1
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usually called a dipulse response, as shown in Fig. 34.49. Here, the samples are […,0,0,1,0,−1,0,0,…],
resulting from

Now, there is no concern about linear ISI; once the pulses can be reduced to the predetermined simple
shape, the data pattern is easily recovered because superposition of signals from adjacent transitions is known.

FIGURE 34.48 Capacity of PR4 channel.

FIGURE 34.49 Capacity of EPR4 channel.
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In the above example, we see that sample “1” is suppressed by “−1” from the next transition. It is a simple
matter to check that all possible linear combinations of the samples result in only three possible values
{−1, 0, +1} (naturally, it is that all parts of the system are working properly, i.e., equalization, gain, and
timing recovery, and that the signal is noise free). A positive pulse of voltage is always followed by a
negative pulse and vice versa, so that the system can be regarded as an alternative mark inversion (AMI)
code.

The higher bit capacity of the PR4 channel can best be understood from Fig. 34.48. It is observed that
PR4 channel provides a 50% enhancement in the recording density as compared with the peak detection
(fully equalized) one, since the latter requires isolation of single bits from each other. In the next figure,
we see that the EPR4 channel (explained later) adds another 33% to this packing density. PR4 has another
advantage over all the other PR systems; since H(D) = 1 − D2, the current symbol is correlated to the
second previous one, allowing the system to be modeled as two interleaved dicode channels, implying
the use of simple dicode detectors for even and odd readback samples. RLL coding is necessary in this
case, since nonideal tracking and timing errors result in a residual intermediate term (linear in D) that
induces correlation between two interleaved sequences, and thus degrades systems that rely on decoupled
detection of each of them.

RLL codes are widely used in conjunction with PR equalization in order to eliminate certain data
strings that would render tracking and synchronization difficult. If PR4 target is used, a special type of
RLL coding is used, characterized by (0,G/I). Here, G and I denote the maximum number of consecutive
zeros in the overall data string, and in the odd/even substrings, respectively. The latter parameter ensures
proper functioning of the clock recovery mechanism if deinterleaving of the PR4 channel into two
independent dicode channels is performed. The most popular is the (0,4/4) code, whose data rate is 7/8,
i.e., whose data loss is limited to 12.5%.

Other PR targets are used besides PR4. The criterion of how to select the appropriate PR target is
based on spectral matching, to avoid introducing too much equalization noise. For instance, for PW50/T
≈ 2.25, it is better to model ISI pattern as the so-called EPR4 (i.e. extended class-4 partial response)
channel with H(D) = (1 + D)2(1 − D) = 1 + D − D2 − D3. As the packing density goes up, more low
frequency components are being introduced (low compared to 1/T, that also increases as T is shortened,
in reality those frequencies are higher than those met for lower recording densities, respectively greater
T). This is the consequence of the fact that intersymbol interference blurs the boundary between indi-
vidual pulses, flattening the overall response (in time domain). The additional 1 + D term in the target
PR effectively suppresses the unwanted high frequencies. EPR4 enables even higher capacities of the
magnetic recording systems than PRIV, observing the difference of 33% in the recording density displayed
in Fig. 34.49; however, a practical implementation of EPR4 is much more complex than is the case with
PR4. First, the deinterleaving idea used for PR4 cannot be implemented. Second, the corresponding state
diagram (and consequently trellis) now has eight states instead of four (two if deinterleaving is used).
Furthermore, its output is five-leveled, instead of ternary for the PR4 and the dicode channel, so that a
4.4 dB degradation is to be expected with a threshold detector. Naturally, if sequence detector is used,
such as Viterbi algorithm (VA), this loss does not exist, but its elimination is obtained at the expense of
a significantly increased complexity of the detector. Furthermore, if such a detector can be used, EPR4
has a performance advantage over PR4 due to less equalization noise enhancement, cf. Fig. 34.50.

Let us reconsider the PR equalizer shown in Fig. 34.47. Following the approach from Reference 44,
its aim is to transform the input spectrum Y ′(e j2πΩ) into a spectrum Y(e j2πΩ) = Y ′(e j2πΩ)|C(e j2πΩ)|2, where
C(e j2πΩ) is the transfer function of the equalizer. The spectrum Y(e j2πΩ) = I(e j2πΩ)|H(e j2πΩ)|2 + N(e j2πΩ)
where H (D) is the PR target. For instance, duobinary PR target (H(D) = 1 + D) enhances low frequencies
and suppresses those near the Nyquist frequency Ω = 0.5, whereas dicode H(D) = (1 − D) does the
opposite: it suppresses low frequencies and enhances those near Ω = 0.5.

In principle, the spectral zeros of H(e j2πΩ) can be undone via a linear (recursive) filter, but this would
excessively enhance any noise components added. The schemes for tracking the input sequence to the
system based on the PR target equalized one will be reviewed later in this chapter section. For instance,
© 2002 by CRC Press LLC



for a PR4 system, a second-order recursive filter can in principle be used to transform its input into an
estimate of the information sequence, Fig. 34.51.

Unfortunately, if an erroneous estimate is produced at any moment, all subsequent estimates will be
in error (in fact, they will no longer be in the alphabet {−1, 0, 1}, enabling error monitoring and simple
forms of error correction [31]). To avoid this catastrophic error propagation, resort can be taken to a
precoder.

Let us analyze the functioning of this precoder in the case of the PR4 channel (1 − D2) (generalization
to other PR channels is trivial). Its function is to transform in into a binary sequence dn = indn−2 to which
the PR transformation is applied, Fig. 34.51(b). This produces a ternary sequence

Because dn−2 cannot be zero, xn is zero iff in − 1 = 0, i.e., in = 1. Thus, the estimate  of in can be formed
by means of the memoryless mapping (MM)

This decoding rule does not rely on past data estimates and thereby avoids error propagation altogether.
In practice, the sequences in and dn are in the alphabet {0, 1} rather than {−1, 1}, and the multiplication
in Fig. 34.51(b) becomes a modulo-2 addition (where 0 corresponds to 1, and 1 to −1).

The precoder does not affect the spectral characteristics of an uncorrelated data sequence. For corre-
lated data, however, precoding need not be spectrally neutral. It is instructive to think of the precoder
as a first-order recursive filter with a pole placed so as to cancel the zero of the partial response. The
filter uses a modulo-2 addition instead of a normal addition and as a result the cascade of filter and PR,
while memoryless, has a nonbinary output. The MM serves to repair this “deficiency.”

FIGURE 34.50 Equalization noise enhancement in PR channels.

FIGURE 34.51 (a) PR4 recursive restoration of information sequence and (b) precoder derived from it.
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Catastrophic error propagation can be avoided without precoder by forcing the output of the recursive
filter of Fig. 34.52 to be binary (Fig. 34.52(a)). An erroneous estimate în−2= −in−2 leads to a digit

whose polarity is obviously determined by in−2. Thus, the decision  that is taken by the slicer in Fig. 34.52(a)
will be correct if in happens to be the opposite of in−2. If data is uncorrelated, this will happen with
probability 0.5, and error propagation will soon cease, since the average number of errors in a burst is
1 + 0.5 + (0.5)2 +… = 2. Error propagation is thus not a serious problem.

The feedback detector of Fig. 34.52 is easily generalized to arbitrary partial response H(D). For purposes
of normalization, H(D) is assumed to be causal and monic (i.e., hn = 0 for n < 0 and h0 = 1). The nontrivial
taps h1, h2 ,…together form the “tail” of H(D). This tail can be collected in P(D), with pn = 0 for n ≤ 0
and pn = hn for n ≥ 1. Hence, hn = δn + pn, where the Kronecker delta function δn represents the component
h0 = 1. Hence

.

The term (i ∗ p)n depends exclusively on past digits in−1, in−2,… that can be replaced by decisions ,
,…. Therefore, an estimate  of the current digit in can be formed according to  = xk(  ∗ p)n as

in Fig. 34.52(b). As before, a slicer quantizes into binary decisions so as to avoid catastrophic error
propagation. The average length of bursts of errors, unfortunately, increases with the memory order of
H(D). Even so, error propagation is not normally a serious problem [21]. In essence, the feedback detector
avoids noise enhancement by exploiting past decisions. This viewpoint is also central to decision-feedback
equalization, to be explained later.

Naturally, all this can be generalized to nonbinary data; but in magnetic recording, so far, only binary
data are used (the so-called saturation recording). The reasons for this are elimination of hysteresis and
the stability of the recorded sequence in time.

Let us consider now the way the PR equalizer from Fig. 34.47 is constructed. In Fig. 34.53, a discrete-
time channel with transfer function F(e j2πΩ) transforms in into a sequence yn = (i ∗ f )n + un, where un is
the additive noise with power spectral density U(e j2πΩ), and yn represents the sampled output of a
whitened matched filter. We might interpret F(e j2πΩ) as comprising two parts: a transfer function
H(e j2πΩ) that captures most of the amplitude distortion of the channel (the PR target) and a function

FIGURE 34.52 Feedback detector.

Feedback detector

+
+

ni
kh

2D

2
ˆ

−ni

nx nî
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Fr(e
j2πΩ) = F(e j2πΩ)/H(e j2πΩ) that accounts for the remaining distortion. The latter distortion has only a

small amplitude component and can thus be undone without much noise enhancement by a linear
equalizer with transfer function

This is precisely the PR equalizer we sought for. It should be stressed that the subdivision in Fig. 34.53
is only conceptual. The equalizer output is a noisy version of the “output” of the first filter in Fig. 34.53
and is applied to the feedback detector of Fig. 34.52, to obtain decision variables  and . The precoder
and MM of Fig. 34.51 are, of course, also applicable and yield essentially the same performance.

The choice of the coefficients of the PRE in Fig. 34.47 is the same as for full-response equalization
and is explained in the subsection on “Adaptive Equalization and Timing Recovery.” Interestingly, zero-
forcing here is not as bad as is the case with full-response signaling and yields approximately the same
result as minimum mean-square equalization. To evaluate the performance of the PRE, let us assume
that all past decisions that affect  are correct and that the equalizer is zero forcing (see “Adaptive Equal-
ization and Timing Recovery” for details). The only difference between  and  is now the filtered noise
component (u ∗ c)n with variance

Because |H(e j2πΩ)| was selected to be small wherever |F(e j2πΩ)| is small, the integrand never becomes very
large, and the variance will be small. This is in marked contrast with full-response equalization. Here,
H(e j2πΩ) = 1 for all Ω, and the integrand in the above formula can become large at frequencies where
|F(e j2πΩ)| is small. Obviously, the smallest possible noise enhancement occurs if H(e j2πΩ) is selected so
that the integrand is independent of frequency, implying that the noise at the output of the PRE is white.
This is, in general, not possible if H(e j2πΩ) is restricted to be PR (i.e., small memory-order, integer-valued).
The generalized feedback detector of Fig. 34.52, on the other hand, allows a wide variety of causal
responses to be used, and here |H(e j2πΩ)| can be chosen at liberty. Exploitation of this freedom leads to
decision feedback equalization (DFE).

Decision Feedback Equalization

This subsection reviews the basics of decision feedback detection. It is again assumed that the channel
characteristics are fixed and known, so that the structure of this detector need not be adaptive. Gener-
alizing to variable channel characteristics and adaptive detector structure is tedious, but straightforward.

A DFE detector shown in Fig. 34.54, utilizes the noiseless decision to help remove the ISI. There are
two types of ISI: precursor ISI (ahead of the detection time) and postcursor (behind detection time). Feed-
forward equalization (FFE) is needed to eliminate the precursor ISI, pushing its energy into the postcursor
domain. Supposing all the decisions made in the past are correct, DFE reproduces exactly the modified

FIGURE 34.53 Interpretation of PR equalization.
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postcursor ISI (with extra postcursor ISI produced by the FFE during the elimination of precursor ISI),
thus eliminating it completely, Fig. 34.55. If the length of the FFE can be made infinitely long, it should
be able to completely suppress the precursor ISI, redistributing its energy into the postcursor region,
where it is finally cancelled by feedback decision part. No spectrum inverse is needed for this process, so
noise boosting is much less than is the case with linear equalizers.

The final decision of the detector is made by the memoryless slicer, Fig. 34.54. The reason why a slicer
can perform efficient sequence detection can be explained with the fact that memory of the DFE system
is located in two equalizers, so that only symbol-by-symbol detection can suffice. In terms of performance,
the DFE is typically much closer to the maximum likelihood sequence detector than to the LE. If the
equalization target is not the main cursor, but a PR system, a sequence detection algorithm can be used
afterwards. A feasible way to implement this with minimum additional effort is the tree search algorithm
used instead of VA [6]. The simple detection circuitry of a DFE, consisting of two equalizers and one
slicer, makes implementation possible. The DFE may be regarded as a generalization of the PRE. In the
DFE, the trailing portion of the ISI is not suppressed by a forward equalizer but rather canceled by a
feedback filter that is excited by past decisions. Fortunately, error propagation is typically only a minor

FIGURE 34.54 Decision feedback equalizer.

FIGURE 34.55 Precursor and postcursor ISI elimination with DFE (a) sampled channel response, (b) after feed-
forward filter and (c) slicer output.
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problem and it can, in fact, be altogether avoided through a technique that is called Tomlinson/Harashima
precoding.

Performance differences between zero-forcing and minimum mean-square equalizers tend to be con-
siderably smaller in the DFE case than for the LE, and as a result it becomes more dificult to reap SNR
benefits from the modulation code. It can be proved that DFE is the optimum receiver with no detection
delay. If delay is allowed, it is better to use trellis-based detection algorithms.

RAM-Based DFE Detection

Decision feedback equalization or RAM-based DFE is the most frequent alternative to PRML detection.
Increase of bit density leads to significant nonlinear ISI in the magnetic recording channel. Both the
linear DFE [12,26] and PRML detectors do not compensate for the nonlinear ISI. Furthermore, the
implementation complexity of a Viterbi detector matched to the PR channel grows exponentially with
the degree of channel polynomial. Actually, in order to meet requirements for a high data transfer rate,
high-speed ADC is also needed. In the RAM-based DFE [19,24], the linear feedback section of the linear
DFE is replaced with a look-up table. In this way, detector decisions make up a RAM address pointing
to the memory location that contains an estimate of the post cursor ISI for the particular symbol sequence.
This estimate is subtracted from the output of the forward filter forming the equalizer output. Look-up
table size is manageable and typically is less than 256 locations. The major disadvantage of this approach
is that it requires complicated architecture and control to recursively update ISI estimates based on
equalizer error.

Detection in a Trellis

A trellis-based system can be simply described as a FSM (Finite State Machine) whose structure may be
displayed with the aid of a graph, tree, or trellis diagram. A FSM maps input sequences (vectors) into
output sequences (vectors), not necessarily of the same length. Although the system is generally nonlinear
and time-varying, linear fixed trellis based systems are usually met. For them,

where a is a constant, i[0,∞) is any input sequence and F(i[0,∞)) is the corresponding output sequence. It
is assumed that input and output symbols belong to a subset of a field. Also, for any d > 0, if x[0,∞) =
F(i[0,∞)) and  = il−d,  = 0[0,d) then , where  = xl−d, , = 0[0,d). It is easily
verified that F(⋅) can be represented by the convolution, so that x = i ∗ h, where h is the system impulse

FIGURE 34.56 Block diagram of a RAM-based DFE.
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response (this is also valid for different lengths of x and i with a suitable definition of h). If h is of finite
duration, M denotes the system memory length.

Let us now consider a feedforward FSM with memory length M. At any time instant (depth or level) l,
the FSM output xl depends on the current input il and M previous inputs il −1,…, il −M. The overall
functioning of the system can be mapped on a trellis diagram, whereon a node represents one of qM

encoder states (q is the cardinality of the input alphabet including the case when the input symbol is
actually a subsequence), while a branch connecting two nodes represents the FSM output associated to
the transition between the corresponding system states.

A trellis, which is a visualization of the state transition diagram with a time element incorporated, is
characterized by q branches stemming from and entering each state, except in the first and last M branches
(respectively called head and tail of the trellis). The branches at the lth time instant are labeled by
sequences xl ∈ X. A sequence of l information symbols, i[0,l) specifies a path from the root node to a node
at the lth level and, in turn, this path specifies the output sequence x[0,l) = x0 • x1 • … • xl −1, where •
denotes concatenation of two sequences.

The input can, but need not, be separated in frames of some length. For framed data, where the length
of each input frame equals L branches (thus L q-ary symbols) the length of the output frame is L + M
branches (L + M output symbols), where the M known symbols (usually all zeros) are added at the end
of the sequence to force the system into the desired terminal state. It is said that such systems suffer a
fractional rate loss by L/(L + M). Clearly, this rate loss has no asymptotic significance.

In the sequel, the detection of the input sequence, i(0,∞), will be analyzed based on the corrupted output
sequence y[0,∞) = x[0,∞) + u[0,∞). Suppose there is no feedback from the output to the input, so that

 

and

Usually, u(0,∞) is a sequence that represents additive white Gaussian noise sampled and quantized to
enable digital processing.

The task of the detector that minimizes the sequence error probability is to find a sequence which
maximizes the joint probability of input and output channel sequences

Since usually the set of all probabilities P[x[0,L+M)] is equal, it is sufficient to find a procedure that
maximizes P[y[0,L+M)| x[0,L+M)], and a decoder that always chooses as its estimate one of the sequences that
maximize it or

(where A ≥ 0 is a suitably chosen constant, and f(⋅) is any function) is called a maximum-likelihood
decoder (MLD). This quantity is called a metric, µ . This type of metric suffers one significant disadvan-
tage because it is suited only for comparison between paths of the same length. Some algorithms, however,
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employ a strategy of comparing paths of different length or assessing likelihood of such paths with the
aid of some thresholds. The metric that enables comparison for this type of algorithms is called the Fano
metric. It is defined as

If the noise is additive, white, and Gaussian (an assumption that is not entirely true, but that usually
yields systems of good performances), the probability distribution of its sample is

The ML metric to be used in conjunction with such a noise is the logarithm of this density, and thus
proportional to −(yn −  xn)2, i.e., to the negative squared Euclidean distance of the readback and supposed
written signal. Thus, maximizing likelihood amounts to minimizing the squared Euclidean distance of
the two sequences, leading to minimizing the squared Euclidean distance between two sampled sequences
given by .

The performance of a trellis-based system, as is the case with PR systems, depends on the detection
algorithm employed and on the properties of the system itself. The distance spectrum is the property of
the system that constitutes the main factor of the event error probability of a ML (optimum) detector,
if the distance is appropriately chosen for the coding channel used.45 For PR channels with additive white
Gaussian noise, it is the squared Euclidean distance that has to be dealt with. Naturally, since the noise
encountered is neither white, nor entirely Gaussisan, this is but an approximation to the properly chosen
distance measure.

As stated previously, the aim of the search procedure is to find a path with the highest possible likelihood,
i.e., metric. There are several possible classifications of detecting procedures. This classification is in-line
with systematization made in coding theory, due to fact that algorithms developed for decoding in a trellis
are general so that it could be applied to problem of detection in any trellis-based system as well. According
to detector’s strategies in extending the most promising path candidates we classify them into breadth-
first, metric-first, and depth-first, bidirectional algorithms, and into sorting and nonsorting depending
on whether the procedure performs any kind of path comparison (sifting or sorting) or not. Moreover,
detecting algorithms can be classified into searches that minimize the sequence or symbol error rate.

The usual measure of algorithm efficiency is its complexity (arithmetic and storage) for a given
probability of error. In the strict sense, arithmetic or computational complexity is the number of arith-
metic operations per detected symbol, branch, or frame; however, it is a usual practice to track only the
number of node computations, which makes sense because all such computations require approximately
the same number of basic machine instructions. A node computation (or simply computation) is defined
as the total number of nodes extended (sometimes it is the number of metrics computed) per detected
branch or information frame i[0,L+M). One single computation consists of determining the state in which
the node is computing the metrics of all its successors. For most practical applications with finite frame
length, it is usually sufficient to observe node computations since a good prediction of search duration
can be precisely predicted. Nevertheless, for asymptotic behavior it is necessary to track the sorting
requirements too. Another important aspect of complexity is storage (memory or space), which is the
amount of auxiliary storage that is required for detecting memory, processors working in parallel, etc.
Thus, space complexity of an algorithm is the size (or number) of resources that must be reserved for
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its use, while the computational, or more precisely time complexity, reflects the number of accesses to
this resources taking into account that any two operations done in parallel by the spatially separated
processors should be counted as one. The product of these two, the time-space complexity, is possibly
the best measure of the algorithm cost for it is insensitive to time-space tradeoff such as parallelization
or the use of precomputed tables, although it also makes sense to keep the separate track of these two.
Finally, for selecting which algorithm to use, one must consider additional details that we omit here, but
which can sometimes cause unexpected overall performance or complicate the design of a real-time
detector. They include complexity of the required data structure, buffering needs, and applicability of
available hardware components.

Basic Breadth-First Algorithms

The Viterbi Algorithm (VA)
The VA was introduced in 1967 as a method of decoding convolutional codes. Forney showed in 1972
[7] that the VA solves the maximum-likelihood sequence detection (MLSD) problem in the presence of
ISI and additive white noise. Kobayashi and Tang [8] recognized that this algorithm is possible to apply
in magnetic recording systems for detection purposes. Strategy to combine Viterbi detector with PR
equalization in magnetic recording channel resulted with many commercial products.

The VA is an optimal decoding algorithm in the sense that it always finds the nearest path to the noisy
modification of the FSM output sequence x[0, L + M), and it is quite useful when FSM has a short memory.
The key to Viterbi (maximum-likelihood, ML) decoding lies in the Principle of Nonoptimality [17]. If the
paths  and  terminate at the same state of the trellis and

 

then  cannot be the first l branches of one of the paths i[0, L+M) that maximize the overall sequence
metric. This principle which some authors call the Principle of Optimality literally specifies the most
efficient MLD procedure for decoding/detecting in the trellis.

To apply VA as an ML sequence detector for a PR channel, we need to define the channel trellis
describing the amount of controlled ISI. Once we define the PR channel polynomial, it is an easy task.
An example of such trellis for PR4 channel with P(D) = 1 − D2 is depicted in Fig. 34.57. The trellis for
this channel consists of four states according to the fact that channel input is binary and channel memory
is 2, so that there are four possible state values (00, 10, 01, 11). Generally, if the channel input sequence
can take q values, and the PR channel forms the ISI from the past M input symbols, then the PR channel
can be described by a trellis with qM states. Branches joining adjacent states are labeled with the pair of
expected noiseless symbols in the form channel_output/channel_ input. Equalization to P(D) = 1 − D2

results in ternary channel output, taking values {0, ±1}. Each noiseless output channel sequence is
obtained by reading the sequence of labels along some path through the trellis.

FIGURE 34.57 PR4 channel trellis.
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Now the task of detecting i[0,∞) is to find x[0,∞) that is closest to y[0,∞) in the Euclidean sense. Recall that
we stated as an assumption that channel noise is AWGN, while in magnetic recording systems after
equalization the noise is colored so that the minimum-distance detector is not an optimal one, and
additional post-processing is necessary, which will be addressed later in this chapter.

The Viterbi algorithm is a classical application of dynamic programming. Structurally, the algorithm
contains qM lists, one for each state, where the paths whose states correspond to the label indices are stored,
compared, and the best one of them retained. The algorithm can be described recursively as follows:

1. Initial condition: Initialize the starting list with the root node (the known initial state) and set its
metric to zero, l = 0.

2. Path extension: Extend all the paths (nodes) by one branch to yield new candidates, l = l + 1, and
find the sum of the metric of the predecessor node and the branch metric of the connecting branch
(ADD). Classify these candidates into corresponding qM lists (or less for l < M). Each list (except
in the head of the trellis) contains q paths.

3. Path selection: For each end-node of extended paths determine the maximum/minimum* of these
sums (COMPARE) and assign it to the node. Label the node with the best path metric to it, selecting
(SELECT) that path for the next step of the algorithm (discard others). If two or more paths have
the same metric, i.e., if they are equally likely, choose the best one at random. Find the best of all
the survivor paths, , and its corresponding information sequence  and release the bit .
Go to step 2.

In the description of the algorithm we emphasized three Viterbi-characteristic operations—add, com-
pare, select (ADC)—that are performed in every recursion of the algorithm. So today’s specialized signal
processors have this operation embedded optimizing its execution time. Consider now the amount of
“processing” done at each depth l, where all of the qM states of the trellis code are present. For each state
it is necessary to compare q paths that merge in that state, discard all but the best path, and then compute
and send the metrics of q of its successors to the depth l + 1.

Consequently, the computational complexity of the VA exponentially increases with M. These opera-
tions can be easily parallelized, but then the number of parallel processors rises as the number of node
computations decreases. The total time-space complexity of the algorithm is fixed and increases expo-
nentially with the memory length.

The sliding window VA decodes infinite sequences with delay of δ branches from the last received one.
In order to minimize its memory requirements (δ + 1 trellis levels), and achieve bit error rate only
insignificantly higher than with finite sequence VA, δ is chosen as δ ≈ 4M. In this way, the Viterbi detector
introduces a fixed decision delay.

Example

Assume that a recorded channel input sequence x, consisting of L equally likely binary symbols from the
alphabet {0, 1}, is “transmitted” over PR4 channel. The channel is characterized by the trellis of Fig. 34.57,
i.e., all admissible symbol sequences correspond to the paths traversing the trellis from l = 0 to l = L,
with one symbol labeling each branch, Fig. 34.58. Suppose that the noisy sequence of samples at the
channel output is y = 0.9, 0.2, –0.6, –0.3, 0.6, 0.9, 1.2, 0.3,… If we apply a simple symbol-by-symbol
detector to this sequence, the fifth symbol will be erroneous due to the hard quantization rule for noiseless
channel output estimate

*It depends on whether the metric or the distance is accumulated.
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The Viterbi detector will start to search the trellis accumulating branch distance from sequence y. In
the first recursion of the algorithm, there are two paths of length 1 at the distance

from y. Next, each of the two paths of length 1 are extended in two ways forming four paths of length 2
at squared Euclidean distance from the sequence y

and this accumulated distance of four paths labels the four trellis states. In the next loop of the algorithm
each of the paths are again extended in two ways to form eight paths of length 3, two paths to each node
at level (depth) 3.

Node 00

Node 10

Node 01

FIGURE 34.58 Viterbi algorithm detection on the PR4 trellis.
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Node 11

Four paths of length 3 are selected as the surviving most likely paths to the four trellis nodes. The
procedure is repeated and the detected sequence is produced after a delay of 4M = 8 trellis sections. Note,
Fig. 34.58, that the symbol-by-symbol detector error is now corrected. Contrary to this example, a 4-state
PR4ML detector is implemented with two interleaved 2-state dicode, (1 − D), detectors each operating
at one-half the symbol rate of one full-rate PR4 detector [35]. The sequence is interleaved, such that the even
samples go to the first and the odd to the second dicode detector, Fig. 34.59, so the delay D in the
interleaved detectors is actually twice the delay of the PR4 detector. A switch at the output resamples the
data to get them out in the correct order.

For other PR channels this type of decomposition is not possible, so that their complexity can become
great for real-time processing. In order to suppress some of the states in the corresponding trellis diagram
of those PR systems, thus simplifying the sequence detection process, some data loss has to be introduced.
For instance, in conjunction with precoding (1,7) code prohibits two states in EPR4 trellis: [101] and
[010]. This can be used to reduce the 8-state EPR4 trellis to 6-state trellis depicted in Fig. 34.60 and the
number of add-compare-select units in the VA detector to 4. The data rate loss is 33% in this case. Using
the (2,7) code eliminates two more states, paying the complexity gain by a 50% data rate loss.

Because VA involves addition, multiplication, compare and select functions, which require complex
circuitry at the read side, simplifications of the receiver for certain PRs were sought. One of them is the
dynamic threshold technique [22]. This technique implies generating a series of thresholds. The readback
samples are compared with them, just as for the threshold detector, and are subsequently included in
their modification. While preserving the full function of the ML detector, this technique saves a substantial
fraction of the necessary hardware. Examples of dynamic threshold detectors are given in [30] and [6].

FIGURE 34.59 Implementation of 1-D2 Viterbi detec-
tor with two half-rate, 1-D detectors.

FIGURE 34.60 (1,7) coded EPR4 channel.
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Noise-Predictive Maximum Likelihood Detectors (NPLD)
Maximum likelihood detection combined with PR equalization is a dominant type of detection electronics
in today’s digital magnetic recording devices. As described earlier, in order to simplify hardware realization
of the receiver, the degree of the target PR polynomial is chosen to be small with integer coefficients to
restrict complexity of Viterbi detection trellis. On the other hand, if the recording density is increased,
to produce longer ISI, equalization to the same PR target will result in substantial noise enhancement
and detector performance degradation. Straightforward solution is to increase the duration of the target
PR polynomial decreasing the mismatch between channel and equalization target. Note that this approach
leads to undesirable increase in detector complexity fixing the detector structure in a sense that its target
polynomial cannot be adapted to changing channel density.

The (NPML) detector [20,32] is an alternative data detection method that improves reliability of the
PRML detector. This is achieved by embedding a noise prediction/whitening process into the branch
metric computation of a Viterbi detector. Using reduced-state sequence-estimation [43] (see also the
description of the generalized VA in this chapter), which limits the number of states in the detector trellis,
compensates for added detector complexity.

A block diagram of a NPML system is shown in Fig. 34.61. The input to the channel is binary sequence,
i, which is written on the disk at a rate of 1/T. In the readback process data are recovered via a lowpass
filter as an analog signal y(t), which can be expressed as y(t) = h(t − nT) + u(t), where h(t) denotes
the pulse response and u(t) is the additive white Gaussian noise. The signal y(t) is sampled periodically
at times t = nT and shaped into the PR target response by the digital equalizer. The NPML detector then
performs sequence detection on the PR equalized sequence y and provides an estimate of the binary
information sequence i. Digital equalization is performed to fit the overall system transfer function to
some PR target, e.g., the PR4 channel.

 The output of the equalizer yn + in + fi xn−i + wn consists of the desired response and an additive
total distortion component wn, i.e., the colored noise and residual interference. In conventional PRML
detector, an estimate of the recorded sequence is done by the minimum-distance criteria as described
for the Viterbi detector. If the mismatch between channel and PR target is significant, the power of
distortion component wn can degrade the detector performance. The only additional component
compared to the Viterbi detector, NPML noise-predictor, reduces the power of the total distortion by

FIGURE 34.61 Block diagram of NPVA detector.

FIGURE 34.62 NPML metric computation for PR4 trellis.
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whitening the noise prior to the Viterbi detector. The whitened total distortion component of the PR
equalized output yn is

where the N-coefficient MMSE predictor transfer polynomial is P(D) = p1D
1 + p2D

2 + … + pNDN. Note
that an estimate of the current noise sample  is formed based on estimates of previous N noise samples.
Assuming the PR4 equalization of sequence y, the metric of the Viterbi detector can be modified in order
to compensate for distortion component. In this case, the equalizer output is yn = xn − xn−2 + wn and the
NPML distance is

where ,  represent past decisions taken from the Vitrebi survivor path memory asso-
ciated with state Sj. The last expression gives the flavor of this technique, but it is not suitable for
implementation so that the interested reader can find details in [20] how to modify this equation for
RAM look-up realization. Furthermore, in the same paper, a description of the general procedure to
compute the predictor coefficients based on the autocorrelation of the total distortion wn at the output
of a finite-length PR equalizer is given.

Postprocessor
As explained earlier, Viterbi detector improves the performance of a read channel by tracing the correct
path through the channel trellis [8]. Further performance improvement can be achieved by using soft
output Viterbi algorithm (SOVA) [14]. Along with the bit decisions, SOVA produces the likelihood of
these decisions, that combined create soft information. In principle, soft information can be passed to
hard drive controller and used in RS decoder that resides there, but at the present time soft decoding of
RS codes is still too complex to be implemented at 1 Gb/s speeds. Alternatively, much shorter inner code
is used. Because of the nonlinear operations on bits performed by the modulation decoder logic, the
inner code is used in inverse concatenation with modulation encoder in order to simplify calculation of
bit likelihood. Due to the channel memory and noise coloration, Viterbi detector produces some error
patterns more often than others [5], and the inner code is designed to correct these so-called dominant
error sequences or error events. The major obstacle for using soft information is the speed limitations and
hardware complexity required to implement SOVA. Viterbi detector is already a bottleneck and the most
complex block in a read channel chip, occupying most of the chip area, and the architectural challenges
in implementing even more complex SOVA would be prohibitive. Therefore, a postprocessor architecture
is used [18]. The postprocessor is a block that resides after Viterbi detector and comprises the block for
calculating error event likelihood and an inner-soft error event correcting decoder.

The postprocessor is designed by using the knowledge on the set of dominant error sequences E =
 and their occurrence probabilities P = . The index i is referred to as an error type, while

the position of the error event end within a codeword is referred as an error position. The relative frequencies
of error events will strongly depend on recording density [36]. The detection is based on the fact that
we can calculate the likelihoods of each of dominant error sequences at each point in time. The parity
bits detect the errors, and provide localization in error type and time. The likelihoods are then used to
choose the most likely error events for corrections.

wn ŵn– wn wn−ipi
i=1

N

∑–=

ŵn
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The error event likelihoods are calculated as the difference in the squared Euclidean distances between
the signal and the convolution of maximum likelihood sequence estimate and the channel PR, versus that
between the signal and the convolution of an alternative data pattern and the channel PR. During each
clock cycle, the best M of them are chosen, and the syndromes for these error events are calculated.
Throughout the processing of each block, a list is maintained of the N most likely error events, along with
their associated error types, positions and syndromes. At the end of the block, when the list of candidate
error events is finalized, the likelihoods and syndromes are calculated for each of ( ) combinations of L-
set candidate error events that are possible. After disqualifying those L-sets of candidates, which overlap
in the time domain, and those candidates and L-sets of candidates, which produce a syndrome which does
not match the actual syndrome, the candidate or L-set of candidates, which remains and which has the
highest likelihood is chosen for correction. Finding the error event position and type completes decoding.

The decoder can make two types of errors: it fails to correct if the syndrome is zero, or it makes a
wrong correction if the syndrome is nonzero, but the most likely error event or combination of error
events does not produce the right syndrome. A code must be able to detect a single error from the list
of dominant error events and should minimize the probability of producing zero syndrome when more
than one error event occurs in a codeword. Consider a linear code given by an (n − k) × n parity check
matrix H. We are interested in capable of correcting or detecting dominant errors. If all errors from a
list were contiguous and shorter than m, a cyclic n − k = m parity bit code could be used to correct a
single error event [16]; however, in reality, the error sequences are more complex, and occurrence
probabilities of error events of lengths 6, 7, 8 or more are not negligible. Furthermore, practical reasons
(such as decoding delay, thermal asperities, etc.) dictate using short codes, and consequently, in order to
keep the code rate high, only a relatively small number of parity bits is allowed, making the design of
error event detection codes nontrivial. The code redundancy must be used carefully so that the code is
optimal for a given E.

The parity check matrix of a code can be created by a recursive algorithm that adds one column of H
at a time using the criterion that after adding each new column, the code error-event-detection capabilities
are still satisfied. The algorithm can be described as a process of building a directed graph whose vertices
are labeled by the portions of parity check matrix long enough to capture the longest error event, and
whose edges are labeled by column vectors that can be appended to the parity check matrix without
violating the error event detection capability [4]. To formalize code construction requirements, for each
error event from E, denote by si , l a syndrome of error vector σl(ei) (si , l = σl(ei) · HT), where σl(ei) is an
l-time shifted version of error event ei. The code should be designed in such a way that any shift of any
dominant error sequence produces a nonzero syndrome, i.e., that  for any 1 ≤ i ≤ I and 1 ≤ l ≤ n.
In this way, a single error event can be detected (relying on error event likelihoods to localize the error
event). The correctable shifts must include negative shifts as well as shifts larger than n in order to cover
those error events that straddle adjacent codewords, because the failure to correct straddling events
significantly affects the performance. A stronger code could have a parity check matrix that guaranties
that syndromes of any two-error event-error position pairs ((i1, l1), (i2, l2)) are different, i.e., .
This condition would result in a single error event correction capability. The codes capable of correcting
multiple error events can be defined analogously. We can even strengthen this property and require that
for any two shifts and any two dominant error events, the Hamming distance between any pair of
syndromes is larger than δ ; however, by strengthening any of these requirements the code rate decreases.

If Li is a length of the ith error event, and if L is the length of the longest error event from E,
( ), then it is easy to see that for a code capable of detecting an error event from E
that ends at position j, the linear combination of error events and the columns of H from j − L + 1 to j
has to be nonzero. More precisely, for any i and any j (ignoring the codeword boundary effects)

where ei,m is the mth element of the error event ei, and hj is the jth column of H.

N
L

si , l 0≠

si1 , l1
si2 , l2

≠

L max1≤ i≤ I Li{ }=

ei ,m hj−Li+m
T 0≠⋅

1≤m≤Li

∑
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Advanced Algorithms and Algorithms under Investigation

This subsection gives a brief overview of less complex procedures for searching the trellis. It is intended
to give background information that can be used in future development if it shows up that NPVA detectors
and postprocessing are not capable of coping with ever-increasing storage densities and longer PRs needed
for them. In such cases, a resort has to be made to some sort of reduced complexity suboptimal algorithms,
whose performance is close to optimal. Explained algorithms are not yet implemented in commercial
products, but all of them are a natural extension of already described procedures for searching the trellis.

Other Breadth-First Algorithms

The M-Algorithm
Since most survivors in the VA usually possess much smaller metrics than does the best one, all the states
or nodes kept are not equally important. It is intuitively reasonable to assume that unpromising survivors
can be omitted with a negligible probability of discarding the best one. The M-algorithm [10] is one
such modification of the VA; all candidates are stored in a single list and the best M ≤ qM survivors are
selected from the list in each cycle. The steps of the M-algorithm are:

1. Initial condition: Initialize the list with the root node and set its metric to zero.
2. Path extension: Extend all the paths of length l by one branch and classify all contenders (paths of

length l + 1) into the list. If two or more paths enter the same state keep the best one.
3. Path selection: From the remaining paths find the best M candidates and delete the others. If l =

L + M, take the only survivor and transfer its corresponding information sequence to the output
(terminated case, otherwise use the sliding window variation). Otherwise, go to step 2.

Defined in this way, the M-algorithm performs trellis search, while, when the state comparison in step
2 is omitted, it searches the tree, saving much time on comparisons but with slightly increased error
probability. When applied to decoding/detecting infinitely long sequences, it is usual that comparisons
performed in step 2 are substituted with the so-called ambiguity check [10] and a release of one decoded
branch. In each step this algorithm performs M node computations, and employing any sifting procedure
(since the paths need not be sorted) perform ∼Mq metric comparisons. If performed, the Viterbi-type
discarding of step 2 requests ∼M2q state and metric comparisons. This type of discarding can be performed
with ∼M log2 M comparisons (or even linearly) but than additional storage must be provided. The space
complexity grows linearly with the information frame length L and parameter M.

The Generalized Viterbi Algorithm
In contrast to the VA, which is a multiple-list single survivor algorithm, the M-algorithm is a single-list
multiple-survivor algorithm. The natural generalization to a multiple-list multiple-survivor algorithm
was first suggested by Hashimoto [39]. Since all the lists are not equally important, this algorithm,
originally called the generalized Viterbi algorithm (GVA), utilizes only  lists (labels), where M1 ≤ M.
In each list from all  paths, it retains the best M1 candidates. The algorithm can be described as
follows:

1. Initial condition: Initialize the starting label with the root node and set its metric to zero.
2. Path extension: Extend all the paths from each label by one branch and classify all successors into

the appropriate label. If two or more paths enter the same state keep the best one.
3. Path selection: From the remaining paths of each label find the best M1 and delete the others. If

l = L + M, take the only survivor and transfer its information sequence to the output (for the
terminated case, otherwise use the sliding window variant). Go to step 2.

When M1 = M, and M1 = 1, the GVA reduces to the VA, and for M1 = 0, M1 = M it reduces to the
M-algorithm. Like the M-algorithm, GVA in each step performs M1 node computations per label, and
employing any sifting procedure ∼M1 q metric comparisons. If performed, the Viterbi-type discarding of
step 2 requests ∼ q or less state and metric comparisons per label.

qM1

qM−M1+1

M1
2
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Metric-First Algorithms

Metric-first and depth-first sequential detection is a name for a class of algorithms that compare paths
according to their Fano metric (one against another or with some thresholds) and on that basis decide
which node to extend next, which to delete in metric first procedures or whether to proceed with current
branch or go back. These algorithms generally extend fewer nodes for the same performance, but have
increased sorting requirements.

Sequential detecting algorithms have a variable computation characteristic that results in large buff-
ering requirements, and occasionally large detecting delays and/or incomplete detecting of the received
sequence. Sometimes, when almost error-free communication is required or when retransmission is
possible, this variable detecting effort can be an advantage. For example, when a detector encounters an
excessive number of computations, it indicates that a frame is possibly very corrupted meaning that the
communication is insufficiently reliable and can ultimately cause error patterns in detected sequence. In
such situations the detector gives up detecting and simply requests retransmission. These situations are
commonly called erasures, and detecting incomplete. A complete decoder such as the Viterbi detec-
tor/decoder would be forced to make an estimate, which may be wrong. The probability of buffer overflow
is several orders of magnitude larger than the probability of incorrect decision when the decoder operates
close to the so-called (computational) cutoff rate.

The performance of sequential detecting has traditionally been evaluated in terms of three character-
istics: the probability of sequence error, the probability of failure (erasure), and the Pareto exponent
associated with detecting effort.

The Stack Algorithm
The stack (or ZJ) algorithm was for the first time suggested by Zigangirov [1] and later independently
by Jelinek [1]. As its name indicates, the algorithm contains a stack (in fact, a list) of already searched
paths of varying lengths, ordered according to their metric values. At each step, the path at the top of
the stack (the best one) is replaced by its q successors extended by one branch, with correspondingly
augmented metrics. The check whether two or more paths are in the same state is not performed. This
algorithm has its numerous variations and we first consider the basic version that is closest to Zigangirov’s:

1. Initial condition: Initialize the stack with the root node and set its Fano metric to zero (or some
large positive number to avoid arithmetic with negative numbers, but low enough to avoid
overflow).

2. Path extension: Extend the best path from the stack by one branch, delete it, sort all successors,
and then merge them with the stack so that it is ordered according to the path metrics.

3. Path selection: Retain the best Z paths according to the Fano metric. If the top path has the length
l = L + M branches, transfer its information sequence to the output (terminated case; otherwise,
a sliding window version has to be used); otherwise, go to step 2.

It is obvious that this algorithm does not consider path merging since the probability that the paths
of the same depth and the same state can be stored in the stack simultaneously is rather small. Nonetheless,
some authors [1] propose that a following action should be added to the step 2: If any of the 2K new
paths merges with a path already in the stack, keep the one with the higher metric.

The stack algorithm is based on the nonselection principle [17]. If the paths  and 
through the tree diverge at depth j and

then  cannot be the path at the top of the stack when the stack algorithm stops.

i
0,L+M )[

′ i
0,L+M )[

″

min{u x
0, l )[

′ , y
0, l )[ 

  }
l j+1,L+M )[∈

min{u x
0, l )[

″ , y
0, l )[ 

  }
l j+1,L+M )[∈

>

i
0 L+M ),[

″

© 2002 by CRC Press LLC



The computational complexity of the stack algorithm is almost unaffected by the code memory length,
but well depends on the channel performance. Its computational complexity is a random variable and
so is its stack size if not otherwise limited. The upper bound on the computational complexity is given by

where A is a constant and ρ is a power that goes to unity as R → R0 < RC and to zero as R → RC, where
RC is the channel capacity and R0 is the cutoff rate [17]. The distribution described previously is called
a Pareto distribution, and ρ a Pareto exponent. 

Omit depth-first algorithms, such as the Fano algorithm, from consideration here, because they are
not interesting for PR detection.

Bidirectional Algorithms

Another class of algorithms are those that exploit bidirectional decoding/detection which is designed for
framed data. Almost all unidirectional procedures have their bidirectional supplements since Forney
showed that detecting could start from the end of the sequence provided that the trellis contains a tail.
All bidirectional algorithms employ two searches from both sides. The forward search is performed using
the original trellis code while the backward one employs the reverse code. The reverse trellis code is
obtained from the original code by time reversing.

The Bidirectional Stack Algorithm
This algorithm was independently proposed by

∨
Senk and Radivojac [40–42], and Kallel and Li [38]. It

uses two stacks F (forward) and B (backward, that uses the reverse code). It is based on notions of tunnel,
tentative decision, and discarding criteria. The tunnel is the unique sequence T (0 ≤ T ≤ M) branches
long that connect two states in the trellis. The tentative decision is the sequence L + M branches long
that connects the known initial and terminal trellis states (direction does not matter here) that has the
highest accumulated metric of all the sequences of that length analyzed so far. A set of discarding criteria
is a means to tell beforehand whether a partly explored path is likely to be a part of the finally detected
sequence or not (in the latter case, the path may be eliminated from the subsequent search). Because the
version [30] of the algorithm is a special case of [41] (when T = 0), the steps of the BSA are:

1. Place the root node into F stack, and the unique terminal node into B stack, associating them the
zero metric. Make one of these stacks active (e.g., the F one).

2. Choose the node with the largest metric (of length, say, l) from the active stack and eliminate it
from the stack. Link it via a tunnel (if a tunnel is possible, i.e., if the states match) to each of the
existing paths in the other stack whose lengths are L − l + M − T (if a tunnel is M branches long,
then the best path from the active stack can be linked to all the paths from the other stack whose
lengths are L − l). The total length of the paths obtained in this way is l + T + (L – l + M − T) =
L + M branches. Store the best one into the tentative decision register. If there is already a path
in the register, keep the better. Prune the paths remaining in both stacks according to any of
discarding criteria used. If both stacks are emptied in this way, output the tentative decision as
the decoder’s final decision and terminate the algorithm. Otherwise, evaluate the metrics of all
the successors of the processed path, and eliminate all of them that do not conform to the
discarding criteria established.

3. Sort the remaining successors into the active stack according to their metrics applying any tie-
breaking rule. Change the active stack and return to step 2.

After each tentative decision, several discarding criteria can be applied. In [41]
∨
Senk and Radivojac

applied the nonselection principle and the maximum-likelihood criterion described. The algorithm can
be easily performed by two processors, although one node computation lasts longer than in the original
stack algorithm. Simulations showed [41] that the Pareto exponent of the BSA in the moment when the
final decision is obtained is approximately doubled, but the discarding criteria used did not provide the

P C η≥[ ] Aη−ρ< 0 ρ 1≤<
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termination at the same time. However, the algorithm may be stopped after the assigned time for its
execution has elapsed, and in such cases the erasure probability is substantially decreased.

Two additional bidirectional algorithms are worth mentioning. Belzile and Haccoun [11] investigated
the bidirectional M-algorithm. Since the M-algorithm inherently avoids erasures by its breadth-first
nature it still suffers from the correct path loss in its unidirectional version. Another interesting algorithm
is the bidirectional multiple stack algorithm [23]. It additionally decreases the erasure probability of the
MSA without compromising the error performance.

Algorithms That Minimize Symbol Error Rate

The BCJR Algorithm
So far, the algorithms that minimize the error probability of information sequence i[0,L+M) have been con-
sidered. They accomplish it by searching for the “closest” sequence x[0, L+M) according to the metric chosen;
however, these algorithms do not necessarily minimize the symbol or bit error rate. The BCJR algorithm
was independently proposed by Bahl et al. [25] and McAdam et al. [27], but a more detailed description
can be found in [25]. The algorithm is a special case of a more general problem of estimating the a posteriori
probabilities of the states and transitions of a Markov source observed through a DMC, i.e., the probabilities

(34.41)

or equivalently

(34.42)

where sl is the state of the trellis during lth branch. Introducing

 (34.43)

it is not hard [25] to show that

(34.44)

The known initial conditions are α0(i = 0) = 1, α0(i ≠ 0) = 0, βL+M(i = 0) = 1, βL+M(i ≠ 0) = 0. Assuming
that the initial and terminating state in the trellis is the all zero state, the steps of the algorithm are

1. Initialize α0(i), and βL+M(i), for i = 0, 1,…,qM
 − 1 according to (34.44).

2. As soon as yl is received, compute αl(i) and γl(i, j). Store αl(i, j) for all l and i.
3. When the complete sequence y[0,L + M) is received, compute βl(i) using (34.44), and immediately

the probabilities σl(i, j). Group those σl(i, j) that have the same information sequence il, and choose
the largest as the decoder estimate.
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The basic problem with the algorithm is that it requires both large storage and great number of
computations. All the values of αl(i) must be stored, which requires almost (L + M)qKM memory locations.
The number of multiplications required for determining the αl(i) and βl(i) for each l is qM+1, and there
are qM additions of qK numbers as well. The computation of γl(i, j) is not costly and can be accomplished
by a table look-up. Finally, the computation of all σl(i, j) requires q(M+1)+1 multiplications for each l, and
q − 1 comparisons in choosing the largest il. Consequently, this is an algorithm with exponential complexity
and in practice can be applied only when M and L are short. Nevertheless, it is used for iterative decoding
where such requirements can be fulfilled, such as for turbo codes. The main advantage of the algorithm
in such cases is its ability to estimate P[sl +1 = j |sl = i], which for the possible transitions equals q−1 only
in the first iteration.

The SOVA Algorithm
The soft-output Viterbi algorithm (SOVA) [15] is a modification of the VA that was designed with the
aim of estimating the reliability of every detected bit by the VA. It is applicable only when q = 2. The VA
is used here in its sliding window form, which detects infinite sequences with delay of δ branches from
the last received one.

The reliability (or soft value) of a bit i, L(i), is defined as L(i) = ln(P[i = 0]/P[i = 1]). The SOVA further
extends the third step in order to obtain this value, in the following way:

Path selection (extension): Let , j ∈ {0, 1,…,δ − 1} be the information sequences which merge
with  at depths l − j. Their paths have earlier been discarded due to their lower metrics. Let the
corresponding metric differences in the merging states be denoted ∆j, and let . Then

.
Because VA detecting metric can be modified in a way to take into account a priori knowledge of input

bit probabilities, the SOVA can be used as soft input-soft output (SISO) block in turbo decoding schemes.
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34.7 An Introduction to Error-Correcting Codes

Mario Blaum

Introduction

When digital data are transmitted over a noisy channel, it is important to have a mechanism allowing
recovery against a limited number of errors. Normally, a user string of 0s and 1s, called bits, is encoded
by adding a number of redundant bits to it. When the receiver attempts to reconstruct the original
message sent, it starts by examining a possibly corrupted version of the encoded message, and then makes
a decision. This process is called the decoding.

The set of all possible encoded messages is called an error-correcting code. The field was started in
the late 1940s by the work of Shannon and Hamming, and since then thousands of papers on the subject
have been published. Several very good books are available to touch different aspects of error-correcting
codes, for instance, [1,3–5,7,8], to mention just a few. 

The purpose of Section 34.7 is to give an introduction to the theory and practice of error-correcting
codes. In particular, it will be shown how to encode and decode the most widely used codes, Reed–
Solomon (RS) codes.

In principle, it will assumed that the information symbols are bits, i.e., 0s and 1s. The set {0, 1} has
a field structure under the exclusive-OR (⊕) and product operations. This field is denoted as GF(2),
which means Galois field of order 2.

Roughly, two types of error-correcting codes are used—codes of block type and codes of convolutional
type. Codes of block type encode a fixed number of bits, say k bits, into a vector of length n. So, the information
string is divided into blocks of k bits each. Convolutional codes take the string of information bits globally
and slide a window over the data in order to encode. A certain amount of memory is needed by the encoder;
however, Section 3.7 concentrates on block codes only. For more on convolutional codes, see [3,8].

As stated previously, k information bits are encoded into n bits. So, we have a 1-1 function f,

The function f defines the encoding procedure. The set of 2k encoded vectors of length n is called a code of
length n and dimension k, and we denote it as an [n, k] code. Codewords are called the elements of the
code while words are called the vectors of length n in general. The ratio k/n is called the rate of the code.

The error-correcting power of a code is characterized by a parameter called the minimum (Hamming)
distance of the code. Formally:

Definition 1 Given two vectors of length n, say  and , we call the Hamming distance between  and 
the number of coordinates in which they differ (notation, dH( , )).

s̆

~s

f : GF 2( )
k
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n
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Given a code C of length n and dimension k, let

d is the minimum (Hamming) distance of the code C, and C is an [n, k, d] code.

It is easy to verify that dH( , ) satisfies the axioms of distance, i.e.,

1. dH( , ) = dH( , ),
2. dH( , ) = 0 if and only if  = ,
3. dH( , ) ≤ dH( , ) + dH( , ).

A sphere of radius r and center  are called the set of vectors that are at distance at most r from .
The relation between d and the maximum number of errors that code C can correct is given by the
following lemma:

Lemma 1 The maximum number of errors that an [n, k, d] code can correct is , where
 denotes the largest integer smaller than or equal to x.

Proof: Assume that vector  was transmitted but a possibly corrupted version of , for instance ,
was received. Moreover, assume that no more than  errors have occurred.

Consider the set of 2k spheres of radius  whose centers are the codewords in C. By the
definition of d, all these spheres are disjoint. Hence,  belongs to one and only one sphere: the one whose
center is codeword . So, the decoder looks for the sphere in which  belongs, and outputs the center
of that sphere as the decoded vector. Subsequently, whenever the number of errors is at most ,
this procedure will give the correct answer.

Moreover,  is the maximum number of errors that the code can correct. For let 
such that dH( , ) = d. Let  be a vector such that dH( , ) = 1+  and dH( , ) = d −
1 − . We easily verify that dH( , ) ≤ dH( , ), so, if  is transmitted and  is received
(i.e.,  errors have occurred), the decoder cannot decide that the transmitted codeword
was , since codeword  is at least as close to  as . �

Example 1 Consider the following 1-1 relationship between GF(2)2 and GF(2)5 defining the encoding:

The four vectors in GF(2)5 constitute a [5,2,3] code C. From Lemma 1, C can correct one error.
For instance, assume that we receive the vector  = 10100. The decoder looks into the four spheres

of radius 1 (each sphere has six elements) around each codeword, finding that  belongs in the sphere
with center 11100. If we look at the table above, the final output of the decoder is the information
block 01. �

Example 1 shows that the decoder has to make at most 24 checks before arriving to the correct decision.
When large codes are involved, as is the case in applications, this decoding procedure is not practical,
since it amounts to an exhaustive search over a huge set of vectors. 

One of the goals in the theory of error-correcting codes is finding codes with rate and minimum distance
as large as possible. The possibility of finding codes with the right properties is often limited by bounds
that constrain the choice of parameters n, k, and d. Some of these bounds are given in the next subsection.

Let us point out that error-correcting codes can be used for detection instead of correction of errors.
The simplest example of an error-detecting code is given by a parity code: a parity is added to a string
of bits in such a way that the total number of bits is even (a more sophisticated way of saying this is that
the sum modulo 2 of the bits has to be 0). For example, 0100 is encoded as 01001. If an error occurs,
or, more generally, an odd number of errors, these errors will be detected since the sum modulo 2 of the

d min {dH(a, b): a b, a, b C∈≠ }=

a b

a b b a
a b a b
a c a b b c

a a

(d 1)/2–
x

a a r
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a r
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d 1–( )/2 b u a u a u
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received bits will be 1. Notice that two errors will be undetected. In general, if an [n, k, d] code is used
for detection only, the decoder checks whether the received vector is in the code or not. If it is not, then
errors are detected. It is easy to see that an [n, k, d] code can detect up to d − 1 errors. Also, one can
choose to correct less than errors, say s errors, by taking disjoint spheres of radius s around
codewords, and using the remaining capacity to detect errors. In other words, correct up to s errors or
detect up to s + t errors when more than s errors occur. 

Another application of error-correcting codes is in erasure correction. An erased bit is a bit that cannot
be read, so the decoder has to decide if it was a 0 or a 1. An erasure is normally denoted with the symbol “?”.
For instance, 01?0 means that we cannot read the third symbol. Obviously, it is easier to correct erasures
than to correct errors, since in the case of erasures we already know the location, we simply have to find
what the erased bit was. It is not hard to prove that an [n, k, d] code can correct upto d − 1 erasures.
One may also want to simultaneously correct errors and erasures. In fact, a code C with minimum distance
d can correct s errors together with t erasures whenever 2s + t ≤ d − 1.

Linear Codes

The previous subsection showed that a binary code of length n is  a subset of GF(2)n. Notice that, being
GF(2) a field, GF(2)n has a structure of vector space over GF(2). A code C is linear if it is a subspace of
GF(2)n, i.e.

1. ,
2.

The symbol  denotes the all-zero vector. In general, vectors will be denoted with underlined letters,
otherwise letters denote scalars.

In the first subsection, it was assumed that a code had 2k elements, k being the dimension; however,
a code of length n can be defined as any subset of GF(2)n.

Many interesting combinatorial questions can be asked regarding nonlinear codes. Probably, the most
important question is the following: Given the length n and the minimum distance d, what is the maximum
number of codewords that a code can have? For more about nonlinear codes, the reader is referred to [4].
From now on, we assume that all codes are linear. Linear codes are in general easier to encode and decode
than their nonlinear counterparts; hence they are more suitable for implementation in applications.

In order to find the minimum distance of a linear code, it is enough to find its minimum weight. The
(Hamming) weight of a vector  is the distance between  and the zero vector. In other words, the
weight of , denoted wH( ), is the number of nonzero coordinates of the vector . The minimum
weight of a code is the minimum between all the weights of the nonzero codewords. The proof of the
following lemma is left as an exercise.

Lemma 2 Let C be a linear [n, k, d] code. Then, the minimum distance and the minimum weight of C
are the same.

Next, two important matrices are introduced that define a linear error-correcting code. A code C is
now a subspace, so the dimension k of C is the cardinality of a basis of C. Consider then an [n,k,d] code C.
A k × n matrix G is a generator matrix of a code C if the rows of G are a basis of C. Given a generator
matrix, the encoding process is simple. Explicitly, let  be an information vector of length k and G a k × n
generator matrix, then  is encoded into the n-vector  given by

(34.45)

Example 2 Let G be the 2 × 5 matrix

It is easy to see that G is a generator matrix of the [5, 2, 3] code described in Example 1. �
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Notice that, although a code may have many generator matrices, the encoding depends on the particular
matrix chosen, according to Eq. (34.45). We say that G is a systematic generator matrix if G can be written as

(34.46)

where Ik is the k × k identity matrix and V is a k × (n − k) matrix. A systematic generator matrix has the
following advantage: given an information vector  of length k, the encoding given by Eq. (34.45) outputs
a codeword ( , ), where  has length n − k. In other words, a systematic encoder adds n − k redundant
bits to the k information bits, so information and redundancy are clearly separated. This also simplifies
the decoding process, since, after decoding, the redundant bits are simply discarded. For that reason,
most encoders used in applications are systematic.

A permutation of the columns of a generator matrix gives a new generator matrix defining a new code.
The codewords of the new code are permutations of the coordinates of the codewords of the original code,
therefore, the two codes are equivalent. Notice that equivalent codes have the same distance properties, so
their error correcting capabilities are exactly the same.

By permuting the columns of the generator matrix in Example 2, the following generator matrix 
is obtained:

(34.47)

The matrix  defines a systematic encoder for a code that is equivalent to the one given in Example 1.
For instance, the information vector 11 is encoded into 11 101.

The second important matrix related to a code is the so-called parity check matrix. An (n − k) × n
matrix H is a parity check matrix of an [n, k] code C if and only if, for any 

 (34.48)

where HT denotes the transpose of matrix H and  is a zero vector of length n − k. The parity check
matrix H is in systematic form if

(34.49)

where In−k is the (n − k) × (n − k) identity matrix and W is an (n − k) × k matrix.
Given a systematic generator matrix G of a code C, it is easy to find the systematic parity check matrix

H (and conversely). Explicitly, if G is given by Eq. (34.46), H is given by

(34.50)

The proof of this fact is left to the reader.
For example, the systematic parity check matrix of the code, whose systematic generator matrix is

given by Eq. (34.47), is

(34.51)

Next is an important property of parity check matrices.

G Ik|V( )=

u
u w w
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Lemma 3 Let C be a linear [n, k, d] code and H a parity check matrix. Then, any d − 1 columns of H
are linearly independent.

Proof: Numerate the columns of H from 0 to n − 1. Assume that columns 0 ≤ i1 < i2 <…< im ≤ n −1 are
linearly dependent, where m ≤ d − 1. Without loss of generality, assume that the sum of these columns
is equal to the column vector zero. Let  be a vector of length n whose nonzero coordinates are in
locations i1, i2,…, im. Then, 

hence  is in C. But  has weight m ≤ d − 1, contradicting the fact that C has minimum distance d. �

Corollary 1 For any linear [n, k, d] code, the minimum distance d is the smallest number m such that
there is a subset of m linearly dependent columns.

Proof: It follows immediately from Lemma 3. �

Corollary 2 (Singleton Bound) For any linear [n, k, d] code,

d ≤ n − k + 1

Proof: Notice that, because H is an (n − k) × n matrix, any n − k + 1 columns are going to be linearly
dependent, so if d > n − k + 1 we would contradict Corollary 1. �

Codes meeting the Singleton bound are called maximum distance separable (MDS). In fact, except
for trivial cases, binary codes are not MDS. In order to obtain MDS codes, we will define codes over
larger fields, like the so-called Reed Solomon codes, to be described later in the chapter.

A second bound is also given relating the redundancy and the minimum distance of an [n, k, d] code
the so-called Hamming or volume bound. Let us denote by V(r) the number of elements in a sphere of
radius r whose center is an element in GF(2)n. It is easy to verify that

(34.52)

We then have:

Lemma 4 (Hamming bound) Let C be a linear [n, k, d] code, then

(34.53)

Proof: Notice that the 2k spheres with the 2k codewords as centers and radius are disjoint.
The total number of vectors contained in these spheres is . This number has to be
smaller than or equal to the total number of vectors in the space, i.e.,

(34.54)

Inequality (34.53) follows immediately from Eq. (34.54). �

A perfect code is a code for which inequality Eq. (34.53) is in effect equality. Geometrically, a perfect
code is a code for which the 2k spheres of radius  and the codewords as centers cover the
whole space.
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Not many perfect codes exist. In the binary case, the only nontrivial linear perfect codes are the
Hamming codes (to be presented in the next subsection) and the [23,12,7] Golay code. For details, the
reader is referred to [4].

Syndrome Decoding, Hamming Codes, and Capacity of the Channel

This subsection studies the first important family of codes, the so-called Hamming codes. As will be
shown, Hamming codes can correct up to one error.

Let C be an [n, k, d] code with parity check matrix H. Let  be a transmitted vector and  a possibly
corrupted received version of . We say that the syndrome of  is the vector  of length n − k given by

(34.55)

Notice that, if no errors occurred, the syndrome of  is the zero vector. The syndrome, however, tells
us more than a vector being in the code or not. For instance, as before, that  was transmitted and 
was received, where  =  ⊕ , an error vector. Notice that,

 = HT = (  ⊕ )HT= HT ⊕ HT= HT

because  is in C. Hence, the syndrome does not depend on the received vector but on the error vector.
In the next lemma, we show that to every error vector of weight ≤(d − 1)/2 corresponds a unique syndrome.

Lemma 5 Let C be a linear [n, k, d] code with parity check matrix H. Then, there is a 1-1 correspondence
between errors of weight ≤(d − 1)/2 and syndromes.

Proof: Let  and  be two distinct error vectors of weight ≤(d − 1)/2 with syndromes  = HT and
 =  HT. If  = , then  = (  ⊕ )ΗT =  ⊕  = , hence  ⊕ . But  ⊕  has weight

≤d − 1, a contradiction. �

Lemma 5 gives the key for a decoding method that is more efficient than exhaustive search. We can
construct a table with the 1-1 correspondence between syndromes and error patterns of weight ≤(d − 1)/2
and decode by look-up table. In other words, given a received vector, we first find its syndrome and then
we look in the table to which error pattern it corresponds. Once we obtain the error pattern, we add it
to the received vector, retrieving the original information. This procedure may be efficient for small
codes, but it is still too complex for large codes.

Example 3 Consider the code whose parity matrix H is given by (34.51). We have seen that this is a
[5, 2, 3] code. We have six error patterns of weight ≤1. The 1-1 correspondence between these error
patterns and the syndromes can be immediately verified to be

For instance, assume that we receive the vector  = 10111. We obtain the syndrome  = HT = 100.
Looking at the table above, we see that this syndrome corresponds to the error pattern  = 00100. Adding
this error pattern to the received vector, we conclude that the transmitted vector was  ⊕  = 10011. �
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Given a number r of redundant bits, we say that a [2r − 1, 2r − r − 1, 3] Hamming code is a code
having an r × (2r − 1) parity check matrix H such that its columns are all the different nonzero vectors
of length r.

A Hamming code has minimum distance 3. This follows from its definition and Corollary 1. Notice
that any two columns in H, being different, are linearly independent. Also, if we take any two different
columns and their sum, these three columns are linearly dependent, proving our assertion.

A natural way of writing the columns of H in a Hamming code, is by considering them as binary
numbers on base 2 in increasing order. This means, the first column is 1 on base 2, the second column
is 2, and so on. The last column is 2r − 1 on base 2, i.e., (1, 1,…, 1)T. This parity check matrix, although
nonsystematic, makes the decoding very simple.

In effect, let  be a received vector such that  =  ⊕ e, where  was the transmitted codeword and 
is an error vector of weight 1. Then, the syndrome is  = HT, which gives the column corresponding
to the location in error. This column, as a number on base 2, tells us exactly where the error has occurred,
so the received vector can be corrected.

Example 4 Consider the [7, 4, 3] Hamming code C with parity check matrix

(34.56)

Assume that vector  = 1100101 is received. The syndrome is  = HT = 001, which is the binary
representation of the number 1. Hence, the first location is in error, so the decoder estimates that the
transmitted vector was  = 0100101. �

We can obtain 1-error correcting codes of any length simply by shortening a Hamming code. This
procedure works as follows: assume that we want to encode k information bits into a 1-error correcting
code. Let r be the smallest number such that k ≤ 2r − r − 1. Let H be the parity check matrix of a [2r − 1,
2r − r − 1, 3] Hamming code. Then construct a matrix  by eliminating some 2r − r − 1 − k columns
from H. The code whose parity check matrix is  is a [k + r, k, d] code with d ≥ 3, hence it can correct
one error. We call it a shortened Hamming code. For instance, the [5,2,3] code whose parity check matrix
is given by (34.51) is a shortened Hamming code.

In general, if H is the parity check matrix of a code C, H ′ is a matrix obtained by eliminating a certain
number of columns from H and C ′ is the code with parity check matrix H ′, we say that C ′ is obtained
by shortening C.

A [2r − 1, 2r − r − 1, 3] Hamming code can be extended to a [2r, 2r − r − 1, 4] Hamming code by
adding to each codeword a parity bit, that is, the exclusive-OR of the first 2r − 1 bits. The new code is
called an extended Hamming code.

So far, we have not talked about probabilities of errors. Assume that we have a binary symmetric
channel (BSC), i.e., the probability of a 1 becoming a 0 or of a 0 becoming a 1 is p < .5. Let Perr be the
probability of error after decoding using a code, i.e., the output of the decoder does not correspond to
the originally transmitted information vector.  A fundamental question is the following: given a BSC
with bit error probability p, does it exist a code of high rate that can arbitrarily lower Perr? The answer,
due to Shannon, is yes, provided that the code has rate below a parameter called the capacity of the
channel, as defined next.

Definition 2 Given a BSC with probability of bit error p, we say that the capacity of the channel is

(34.57)
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Theorem 1 (Shannon) For any � > 0 and R < C(p), there is an [n, k] binary code of rate k/n ≥ R with
Perr < �.

For a proof of Theorem 1 and some of its generalizations, the reader is referred to [5], or even to
Shannon’s original paper [6]. 

Theorem 1 has enormous theoretical importance. It shows that reliable communication is not limited
in the presence of noise, only the rate of communication is. For instance, if p = .01, the capacity of the
channel is C(.01) = .9192. Hence, there are codes of rate ≥.9 with Perr arbitrarily small. It also tells us not
to look for codes with rate .92 making Perr arbitrarily small.

The proof of Theorem 1, though, is based on probabilistic methods and the assumption of arbitrarily
large values of n. In practical applications, n cannot be too large. The theorem does not tell us how to
construct efficient codes, it just asserts their existence. Moreover, when we construct codes, we want them
to have efficient encoding and decoding algorithms. In the last few years, coding methods approaching the
Shannon limit have been developed, the so-called turbo codes. Although great progress has been made
towards  practical implementations of turbo codes, in applications like magnetic recording their com-
plexity is still a problem. A description of turbo codes is beyond the scope of this introduction. The
reader is referred to [2]. 

Codes over Bytes and Finite Fields

So far, we have considered linear codes over bits. Next we want to introduce codes over larger symbols,
mainly over bytes. A byte of size ν is a vector of ν bits. Mathematically, bytes are vectors in GF(2)ν. Typical
cases in magnetic and optical recording involve 8-bit bytes. Most of the general results in the previous
sections for codes over bits easily extend to codes over bytes. It is trivial to multiply bits, but we need a
method to multiply bytes. To this end, the theory of finite fields has been developed. Next we give a
brief introduction to the theory of finite fields. For a more complete treatment, the reader is referred
to chapter 4 of [4].

We know how to add two binary vectors, we simply exclusive-OR them componentwise. What we
need now is a rule that allows us to multiply bytes while preserving associative, distributive, and multi-
plicative inverse properties, i.e., a product that gives to the set of bytes of length ν the structure of a field.
To this end, we will define a multiplication between vectors that satisfies the associative and commutative
properties, it has a 1 element, each nonzero element is invertible and it is distributive with respect to the
sum operation.

Recall the definition of the ring Zm of integers modulo m: Zm is the set {0, 1, 2,…, m − 1}, with a sum
and product of any two elements defined as the residue of dividing by m the usual sum or product. It is
not difficult to prove that Zm is a field if and only if m is a prime number. Using this analogy, we will
give to (GF(2))ν the structure of a field.

Consider the vector space (GF(2))ν over the field GF(2). We can view each vector as a polynomial of
degree ≤ν − 1 as follows: the vector  = (a0, a1,…, aν −1) corresponds to the polynomial a(α) = a0 + a1α
+…+ αν−1 α

ν−1.
The goal is to give to (GF(2))ν the structure of a field. We will denote such a field by GF(2ν). The sum

in GF(2ν) is the usual sum of vectors in (GF(2))ν. We need now to define a product.
Let f(x) be an irreducible polynomial (i.e., it cannot be expressed as the product of two polynomials

of smaller degree) of degree ν whose coefficients are in GF(2). Let a(α) and b(α) be two elements of
GF(2ν). We define the product between a(α) and b(α) in GF(2ν) as the unique polynomial c(α) of degree
≤ν − 1 such that c(α) is the residue of dividing the product a(α)b(α) by f(α) (the notation g(x) � h(x)
(mod f(x)) means that g(x) and h(x) have the same residue after dividing by f(x), i.e., g(α) = h(α)).

The sum and product operations defined above give to GF(2ν ) a field structure. The role of the
irreducible polynomial f(x) is the same as the prime number m when Zm is a field. In effect, the proof
that GF(2ν) is a field when m is irreducible is essentially the same as the proof that Zm is a field when m
is prime. From now on, we denote the elements in GF(2ν) as polynomials in α of degree ≤ν − 1 with
coefficients in GF(2). Given two polynomials a(x) and b(x) with coefficients in GF(2), a(α)b(α) denotes

a
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the product in GF(2ν ), while a(x)b(x) denotes the regular product of polynomials. Notice that, for the
irreducible polynomial f(x), in particular, f(α) = 0 in GF(2ν), since f(x) � 0(mod f(x)).

So, the set GF(2ν) given by the irreducible polynomial f(x) of degree ν is the set of polynomials of
degree ≤ν − 1, where the sum operation is the regular sum of polynomials, and the  product operation
is the residue of dividing by f(x) the regular product of two polynomials.

Example 5 Construct the field GF(8). Consider the polynomials of degree ≤2 over GF(2). Let f(x) = 1 +
x + x3. Since f(x) has no roots over GF(2), it is irreducible (notice that such an assessment can be made
only for polynomials of degree 2 or 3). Let us consider the powers of α modulo f(α). Notice that α3 =
α3 + f(α) = 1 + α. Also, α4 = αα3 = α (1 + α) = α + α2. Similarly, we obtain α5 = αα4 = α(α + α2) =
α2 + α3 = 1 + α + α2, and α6 = αα5 = α + α2 + α3 = 1 + α2. Finally, α7 = αα6 = α + α3 = 1.

Note that every nonzero element in GF(8) can be obtained as a power of the element α. In this case,
α is called a primitive element and the irreducible polynomial f(x) that defines the field is called a primitive
polynomial. It can be proven that it is always the case that the multiplicative group of a finite field is
cyclic, so there is always a primitive element.

A convenient description of GF(8) is given in Table 34.3. The first column in Table 34.3 describes
the element of the field in vector form, the second one as a polynomial in α of degree ≤2, the third one
as a power of α, and the last one gives the logarithm (also called Zech logarithm): it simply indicates
the corresponding power of α. As a convention, we denote by − ∞ the logarithm corresponding to the
element 0. �

It is often convenient to express the elements in a finite field as powers of α ; when we multiply two
of them, we obtain a new power of α whose exponent is the sum of the two exponents modulo 2ν − 1.
Explicitly, if i and j are the logarithms of two elements in GF(2ν), then their product has logarithm i + j
(mod (2ν − 1)). In the example above, if we want to multiply the vectors 101 and 111, we first look at
their logarithms. They are 6 and 5, respectively, so the logarithm of the product is 6 + 5(mod 7) = 4,
corresponding to the vector 011.

In order to add vectors, the best way is to express them in vector form and add coordinate to coordinate
in the usual way.

Cyclic Codes

In the same way we defined codes over the binary field GF(2), we can define codes over any finite field
GF(2ν). Now, a code of length n is a subset of (GF(2ν))n, but since we study only linear codes, we require
that such a subset is a vector space. Similarly, we define the minimum (Hamming) distance and the generator
and parity check matrices of a code. Some properties of binary linear codes, like the Singleton bound,
remain the same in the general case. Others, such as the Hamming bound, require some modifications.

Consider a linear code C over GF(2ν) of length n. We say that C is cyclic if, for any codeword (c0, c1, …,
cn−1) � C, then (cn−1, c0, c1,…, cn−2) � C. In other words, the code is invariant under cyclic shifts to the
right.

TABLE 34.3 The Finite Field GF(8) Generated by 1 + x + x3

Vector Polynomial Power of α Logarithm

000 0 0 −∞
100 1 1 0
010 α α 1
001 α2 α2 2
110 1 + α α3 3
011 α + α2 α4 4
111 1 + α + α2 α5 5
101 1 + α2 α6 6
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If we write the codewords as polynomials of degree <n with coefficients in GF(2ν), this is equivalent
to say that if c(x) � C, then xc(x) mod(xn − 1) � C. Hence, if c(x) � C, then, given any polynomial w(x),
the residue of dividing w(x)c(x) by xn − 1 is in C. In particular, if the degree of w(x)c(x) is smaller than
n, then w(x)c(x) � C.

From now on, we write the elements of a cyclic code C as polynomials modulo xn − 1.

Theorem 2 C is an [n, k] cyclic code over GF(2ν) if and only if there is a (monic) polynomial g(x) of
degree n − k such that g(x) divides xn − 1 and each c(x) ∈ C is a multiple of g(x), i.e., c(x) ∈ C if and
only if c(x) = w(x)g(x), deg(w) < k. We call g(x) a generator polynomial of C.

Proof: Let g(x) be a monic (i.e., lead coefficient is 1) polynomial in C such that g(x) has minimal degree.
If deg(g) = 0 (i.e., g = 1), then C is the whole space (GF(2ν))n, so assume deg(g) ≥ 1. Let c(x) be any
element in C. We can write c(x) = w(x)g(x) + r(x), where deg(r) < deg(g). Because deg(wg) < n, g ∈C and
C is cyclic, in particular, w(x)g(x) ∈ C. Hence, r(x) = c(x) − w(x)g(x) ∈ C. If r ≠ 0, we would contradict
the fact that g(x) has minimal degree, hence, r = 0 and c(x) is a multiple of g(x).

Similarly, we can prove that g(x) divides xn − 1. Let xn − 1 = h(x)g(x) + r(x), where deg(r) < deg(g).
In particular, h(x)g(x) ≡ −r(x) mod (xn − 1), hence, r(x) ∈ C. Since g(x) has minimal degree, r = 0, so
g(x) divides xn − 1.  

Conversely, assume that every element in C is a multiple of g(x) and g divides xn − 1. It is immediate
that the code is linear and that it has dimension k. Let c(x) ∈ C, hence, c(x) = w(x)g(x) with deg(w) < k.
Also, since g(x) divides xn − 1, xn − 1 = h(x)g(x). Assume that c(x) = c0 + c1x + c2x

2 + … + cn−1x
n−1, then,

xc(x) ≡ cn−1 + c0x + … + cn−2x
n−1 (mod xn − 1).  We have to prove that cn−1 + c0x + … + cn−2x

n−1 = q(x)g(x),
where q(x) has degree ≤k − 1. Notice that

proving that the element is in the code. �

Theorem 2 gives a method to find all cyclic codes of length n, simply take all the (monic) factors of xn

− 1. Each one of them is the generator polynomial of a cyclic code.

Example 6 Consider the [7,4] cyclic code over GF(2) generated by g(x) = 1 + x + x3. We can verify that
x7 − 1 = g(x)(1 + x)(1 + x2 + x3); hence, g(x) indeed generates a cyclic code.

In order to encode an information polynomial over GF(2) of degree ≤3 into a codeword, we multiply
it by g(x).

Say that we want to encode u = (1, 0, 0, 1), which in polynomial form is u(x) = 1 + x3. Hence, the
encoding gives c(x) = u(x)g(x) = 1 + x + x4 + x6. In vector form, this gives c = (1 1 0 0 1 0 1).

It can be easily verified that the [7,4] code given in this example has minimum distance 3 and is
equivalent to the Hamming code  of Example 4. In other words, the codewords of the code given in this
example are permutations of the codewords of the [7,4,3] Hamming code given in Example 4. �

The encoding method of a cyclic code with generator polynomial g is then very simple: we multiply
the information polynomial by g. However, this encoder is not systematic. A systematic encoder of a
cyclic code is given by the following algorithm:

Algorithm 1 (Systematic Encoding Algorithm for Cyclic Codes) Let C be a cyclic [n, k] code over
GF(2ν) with generator polynomial g(x). Let u(x) be an information polynomial, deg(u) < k. Let r(x) be
the residue of dividing xn−ku(x) by g(x). Then u(x) is encoded into the polynomial c(x) = u(x) − xkr(x). 

cn−1 c0x ··· cn−2xn−1+ + + cn−1 c0x ··· cn−2xn−1 cn−1xn cn−1xn–+ + + +=

c0x ··· cn−2xn−1 cn−1xn cn−1 xn 1–( )–+ + +=

xc x( ) cn−1 xn 1–( )–=

xw x( )g x( ) cn−1h x( )g x( )–=

xw x( ) cn−1h x( )–( )g x( )=
© 2002 by CRC Press LLC



We leave as an exercise proving that Algorithm 2 produces indeed a codeword in C. 

Example 7 Consider the [7,4] cyclic code over GF(2) of Example 6. If we want to encode systematically
the information vector  = (1, 0, 0, 1) (or u(x) = 1 + x3), we have to obtain first the residue of dividing
x3u(x) = x3 + x6 by g(x). This residue is r(x) = x + x2. Hence, the output of the encoder is c(x) = u(x) −
x4r(x) = 1 + x3 + x5 + x6. In vector form, this gives  = (1 0 0 1 0 1 1). �

Reed Solomon Codes

Throughout this subsection, the codes considered are over the field GF(2ν). Let α be a primitive element
in GF(2ν), i.e.,  = 1, α i ≠ 1 for i � 0 mod 2ν − 1. A Reed–Solomon (RS) code of length n = 2ν − 1
and dimension k is the cyclic code generated by

 

Each α i is a root of unity, x − α i divides xn − 1, hence, g divides xn − 1 and the code is cyclic.
An equivalent way of describing a RS code is as the set of polynomials over GF(2ν) of degree ≤ n − 1

with roots α, α 2,…,α n−k, i.e., F is in the code if and only if deg(F) ≤ n − 1 and F(α) = F(α2) = … =
F(α n−k) = 0.

This property allows us to find a parity check matrix for a RS code. Say that F(x) = F0 + F1x +…+
Fn−1x

n−1 is in the code. Let 1 ≤ i ≤ n − k, then

(34.58)

In other words, Eq. (34.58) tells us that codeword (F0, F1,…, Fn−1) is orthogonal to the vectors (1, α i,
α2i,…, αi(n−1)), 1 ≤ i ≤ n − k. Hence, these vectors are the rows of a parity check matrix for the RS code.
A parity check matrix of an [n, k] RS code over GF(2ν) is then

(34.59) 

In order to show that H is in fact a parity check matrix, we need to prove that the rows of H are linearly
independent. The next lemma provides an even stronger result.

Lemma 6 Any set of n − k columns in matrix H defined by Eq. (34.59) is linearly independent.

Proof: Take a set 0 ≤ i1 < i2 < … < in−k ≤ n − 1 of columns of H. Denote  by αj, 1 ≤ j ≤ n − k. Columns
i1, i2, … , in−k are linearly independent if and only if their determinant is nonzero, i.e., if and only if

(34.60)

u

c

α2ν−1

g x( ) x α–( ) x α2–( )… x αn−k−1–( ) x αn−k–( )=

F α i( ) F0 F1α i … Fn−1α i n−1( )+ + + 0= =

H

1 α α2
K αn−1

1 α2 α4
K α2 n−1( )

M M M O M

1 αn−k α n−k( )2
K α n−k( ) n−1( )

 
 
 
 
 
 
 
 

=

α
ij

det

α1 α2 K αn−k

α1( )
2

α2( )
2

K αn−k( )
2

M M O M

α1( )
n−k

α2( )
n−k

K αn−k( )
n−k

 
 
 
 
 
 
 
 

0≠
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Let

(34.61)

We call the determinant V(α1, α2,…,αn−k) a Vandermonde determinant—it is the determinant of an
(n − k) × (n − k) matrix whose rows are the powers of vector α1, α2,…,αn−k, the powers running from 0
to n − k − 1. By properties of determinants, if we consider the determinant in (34.60), we have

(34.62)

Hence, by Eqs. (34.60) and (34.62), since the αj’s are nonzero, it is enough to prove that V(α1, α2,…,αn−k) ≠ 0.
A well-known result in literature states that

 (34.63)

Because α is a primitive element in GF(2ν), its powers α l, 0 ≤ l ≤ n − 1 are distinct. In particular, the
αi’s, 1 ≤ i ≤ n − k are distinct; hence, the product in the right-hand side of (34.63) is nonzero. �

Corollary 3 An [n, k] RS code has minimum distance d = n − k + 1.

Proof: Let H be the parity check matrix of the RS code defined by (34.59). Notice that, since any n − k
columns in H are linearly independent, d ≥ n − k + 1 by Lemma 3.

On the other hand, d ≤ n − k + 1 by the Singleton bound (Corollary 2), so we have equality. �

Because RS codes meet the Singleton bound with equality, they are MDS (see second subsection).

Example 8 Consider the [7,3,5] RS code over GF(8), where GF(8) is given by Table 34.3. The generator
polynomial is

Assume that we want to encode the 3-byte vector  = 101 001 111. Writing the bytes as powers of α in
polynomial form, we have u(x) = α6 + α2x + α5x2.

In order to encode u(x), we perform

In vector form the output of the encoder is given by 001 011 001 101 101 011 111. If we encode u(x)
using a systematic encoder (Algorithm 1), the output of the encoder is

which, in vector form, is 101 001 111 101 111 011 011. �

V α1 α2,…,αn−k,( ) det

1 1 K 1

α1 α2 K αn−k

M M O M

α1( )
n−k−1

α2( )
n−k−1

K αn−k( )
n−k−1

 
 
 
 
 
 
 

=

det

α1 α2 K αn−k

α1( )
2

α2( )
2

K αn−k( )
2

M M O M

α1( )
n−k

α2( )
n−k

K αn−k( )
n−k

 
 
 
 
 
 
 
 

α1α2…αn−kV α1,α2,…,αn−k( )=

V α1,α2,…,αn−k( ) αj αi–( )
1 i< j n−k≤ ≤

∏=

g x( ) x α–( ) x α2–( ) x α3–( ) x α4–( ) α3 αx x2 α3x3 x4+ + + += =

u

u x( )g x( ) α2 α4x α2x
2 α6x3 α6x4 α4x5 α5x6+ + + + + +=

α6 α2x α5x
2 α6x3 α5x4 α4x5 α4x6+ + + + + +
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Next we make some observations:

• The definition given above for an [n, k] RS code states that F(x) is in the code if and only if it has
as roots the powers α, α2,…,αn−k of a primitive element α ; however, it is enough to state that F
has as roots a set of consecutive powers of α, say, αm, αm+1,…,αm+n−k−1, where 0 ≤ m ≤ n − 1.
Although our definition (i.e., m = 1) gives the most usual setting for RS codes, often engineering
reasons may determine different choices of m. It is easy to verify that with the more general
definition of RS codes, the minimum distance remains n − k + 1.

• Given an [n, k] RS code, there is an easy way to shorten it and obtain an [n − l, k − l] code for l < k.
In effect, if we have only k − l bytes of information, we add l zeros in order to obtain an information
string of length k. We then find the n − k redundant bytes using a systematic encoder. When
writing, of course, the l zeros are not written, so we have an [n − l, k − l] code, called a shortened
RS code. It is immediately verified that shortened RS codes are also MDS. 

We have defined RS codes, proven that they are MDS and showed how to encode them systematically.
The next step, to be developed in the next sections, is decoding them.

Decoding of RS Codes: The Key Equation

Through this subsection, C denotes an [n, k] RS code (unless otherwise stated). Assume that a codeword
F(x) = Fix

i in C is transmitted and a word R(x) = Rix
i is received; hence, F and R are related by

an error vector E(x) = Eix
i, where R(x) = F(x) + E(x). The decoder will attempt to find E(x).

Let us start by computing the syndromes. For 1 ≤ j ≤ n − k, we have

(34.64)

Before proceeding further, consider Eq. (34.64) in a particular case.
Take the [n, n − 2] 1-byte correcting RS code. In this case, we have two syndromes S1 and S2. So, if

exactly one error has occurred, say in location i, by Eq. (34.64), we have

(34.65)

Hence, α i = S2/S1, so we can determine the location i in error. The error value is Ei = (S1)
2/S2.

Example 9 Consider the [7,5,3] RS code over GF(8), where GF(8) is given by Table 34.3.

Assume that we want to decode the received vector

which, in polynomial form, is

Evaluating the syndromes, we obtain S1 = R(α) = α2 and S2 = R(α2) = α4. Thus, S2/S1 = α 2, meaning
that location 2 is in error. The error value is E2 = (S1)

2/S2 = (α2)2/α4 = 1, which, in vector form, is 100.
The output of the decoder is then

Σi=0
n−1 Σi=0

n−1

Σi=0
n−1

Sj R α j( ) Riα
ij

i=0

n−1

∑ Eiα
ij

i=0

n−1

∑= = =

S1 Eiα
i= and S2 Eiα

2i=

r 101 001 110 001 011 010 100( )=

R x( ) α6 α2x α3x
2 α2x3 α4x4 αx5 x6+ + + + + +=

c 101 001 010 001 011 010 100( )=
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which, in polynomial form, is

�

Let E be the subset of {0, 1,…,n − 1} of locations in error, i.e., E = {l : El ≠ 0}. With this notation, (34.64)
becomes

(34.66)

The decoder will find the error set E and the error values Ei when the error correcting capability of the
code is not exceeded. Thus, if s is the number of errors and 2s ≤ n − k, the system of equations given by
(34.66) has a unique solution. However, this is a nonlinear system, and it is very difficult to solve it directly. 

In order to find the set of locations in error E and the corresponding error values {Ei : i ∈ E}, we define
two polynomials. The first one is called the error locator polynomial, which is the polynomial that has as
roots the values α−i, where i ∈ E. We denote this polynomial by α(x). Explicitly,

(34.67)

If somehow we can determine the polynomial σ(x), by finding its roots, we can obtain the set E of
locations in error. Once we have the set of locations in error, we need to find the errors themselves. We
define a second polynomial, called the error evaluator polynomial and denoted by ω(x), as follows:

(34.68)

An [n, k] RS code corrects at most (n − k)/2 errors, so we assume that |E| = deg(σ) ≤ (n − k)/2. Notice
also that deg(ω) ≤ |E| − 1, since ω is a sum of polynomials of degree |E| − 1. Given a polynomial f(x) =
a0 + a1x +…+ amxm with coefficients over a field F, we define the (formal) derivative of F, denoted f ′, as
the polynomial

For instance, over GF(8), if f(x) = α + α3x + α4x2, then f ′(x) = α3 (since 2 = 0 over GF(2)). The formal
derivative has several properties similar to the traditional derivative, like the derivative of a product, (fg)′ =
f ′g + fg ′. Back to the error locator and error evaluator polynomials, we have the following relationship
between the two:

(34.69)

Let us prove some of these facts in the following lemma:

Lemma 7 The polynomials σ(x) and ω(x) are relatively prime, and the error values Ei are given by
(34.69).

Proof: In order to show that σ(x) and ω(x) are relatively prime, it is enough to observe that they have
no roots in common. In effect, if α−j is a root of σ(x), then j ∈ E. By Eq. (34.68),

(34.70)

C x( ) α6 α2x αx2 α2x3 α4x4 αx5 x6+ + + + + +=

Sj Eiα
ij, 1 j n k–≤ ≤

i∈E
∑=

σ x( ) x α−i–( )
i E∈
∏=

ω x( ) Ei x α− l–( )
i E∈
l i≠

∏
i E∈
∏=

f ′ x( ) a1 2a2x L mamxm−1+ + +=

Ei
ω α−i( )
σ ′ α−i( )
------------------=

ω α− j( ) Ei α− j α− l–( ),
i E∈
l i≠

∏
i E∈
∑ Ej α j– α− l–( )

i E∈
l j≠

∏ 0≠= =
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Hence, σ(x) and ω(x) are relatively prime.
In order to prove (34.69), notice that

hence,

(34.71)

By Eqs. (34.70) and (34.71), Eq. (34.69) follows. �

The decoding methods of RS codes are based on finding the error locator and the error evaluator
polynomials. By finding the roots of the error locator polynomial, we determine the locations in error,
while the errors themselves can be found using Eq. (34.69). We will establish a relationship between σ(x)
and ω(x), but first we need to define a third polynomial, the syndrome polynomial. We define the
syndrome polynomial as the polynomial of degree ≤n − k − 1 where coefficients are the n − k syndromes.
Explicitly,

(34.72)

Notice that R(x) is in C if and only if S(x) = 0.
The next theorem gives the so-called key equation for decoding RS codes, and it establishes a funda-

mental relationship between σ(x), ω(x), and S(x).

Theorem 3 There is a polynomial µ(x) such that  the error locator, the error evaluator and the syndrome
polynomials verify the following equation:

(34.73)

Alternatively, Eq. (34.73) can be written as a congruence as follows:

(34.74)

Proof: By Eqs. (34.72) and (34.66), we have

(34.75)

σ ′ x( ) x α− l–( )
i E∈
l i≠

∏
i E∈
∑=

σ ′ α− j( ) α− j α− l–( )
i E∈
l i≠

∏=

S x( ) S1 S2x S3x2
L Sn−kxn−k−1+ + + + Sj+1x j

j=0

n−k−1

∑= =

σ x( )S x( ) ω x( ) µ x( )xn−k+–=

σ x( )S x( ) ω x( ) mod xn−k( )–=

S x( ) Sj+1x j

j=0

n−k−1

∑=

Eiα
i j+1( )

i E∈
∑

 
  x j

j=0

n−k−1

∑=

Eiα
i αix( )

j

j=0

n−k−1

∑
i�E
∑=

Eiα
i

αix( )
n−k

1–

αix 1–
----------------------------

i�E
∑=

Ei

αix( )
n−k

1–

x α−i–
----------------------------

i�E
∑=
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because al  =  (am+1 − 1)/(a − 1) for a ≠ 1. Multiplying both sides of (34.75) by σ(x), where σ(x) is
given by Eq. (34.67), we obtain

because ω(x) is given by (34.68). This completes the proof. �

The decoding methods for RS codes concentrate on solving the key equation. In the next section we
describe an efficient decoder based on Euclid’s algorithm for polynomials. Another efficient decoding
algorithm is the so-called Berlekamp–Massey decoding algorithm [1].

Decoding RS Codes with Euclid’s Algorithm

Given two polynomials or integers A and B, Euclid’s algorithm provides a recursive procedure to find
the greatest common divisor C between A and B, denoted C = gcd(A, B). Moreover, the algorithm also
finds two polynomials or integers S and T such that C = SA + TB.

Recall that we want to solve the key equation

In the recursion, xn−k will play the role of A and S(x) the role of B; σ(x) and ω(x) will be obtained at a
certain step of the recursion.

Let us describe Euclid’s algorithm for integers or polynomials. Consider A and B such that A ≥ B if
they are integers, and deg(A) ≥ deg(B) if they are polynomials. We start from the initial conditions r−1 = A
and r0 = B.

We perform a recursion in steps 1, 2,…, i,…. At step i of the recursion, we obtain ri as the residue of
dividing ri−2 by ri−1, i.e., ri−2 = qiri−1 + ri, where ri < ri−1 for integers and deg(ri) < deg(ri−1) for polynomials.
The recursion is then given by

(34.76)

We also obtain values si and ti such that ri = siA + tiB. Hence, the same recursion is valid for si and ti as well:

(34.77)

(34.78)

Because r−1 = A = (1)A + (0)B and r0 = B = (0)A + (1)B, we set the initial conditions s−1 = 1, t−1 = 0, s0 = 0
and t0 = 1.

Σl=0
m

σ x( )S x( ) Ei αix( )
n−k

1–( ) x α− l–( )
l�E
l i≠

∏
i�E
∑=

Ei x α− l–( ) Eiα
i n−k( ) x α− l–( )

l�E
l i≠

∏
i�E
∑

 
 
 
 

xn−k+
l�E
l i≠

∏
i�E
∑–=

ω x( ) µ x( )xn−k+–=

µ x( )xn−k σ x( )S x( )+ ω x( )–=

ri ri−2 qiri−1–=

si si−2 qisi−1–=

ti ti−2 qiti−1–=
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Let us illustrate the process with A = 124 and B = 46. We will find gcd(124,46). The idea is to divide
recursively by the residues of the division until obtaining a last residue 0. Then, the last divisor is the
gcd. The procedure works as follows:

Because 2 divides 4, 2 is the greatest common divisor between 124 and 46.
The best way to develop the process above is to construct a table for ri, qi, si, and ti, using the initial

conditions and recursions in Eqs. (34.76)–(34.78). Table 34.4 provides such a table for 124 and 46.
From now on, let us concentrate on Euclid’s algorithm for polynomials. If we want to solve the key

equation

and the error correcting capability of the code has not been exceeded, then applying Euclid’s algorithm
to xn−k and to S(x), at a certain point of the recursion we obtain

where deg(ri) ≤  − 1, and i is the first with this property. Then, ω(x) = −λri(x) and σ(x) =
λti(x), where λ is a constant that makes σ(x) monic. For a proof that Euclid’s algorithm gives the right
solution, see [1] or [5].

We illustrate the decoding of RS codes using Euclid’s algorithm with an example. Notice that we are
interested in ri(x) and ti(x) only.

Example 10 Consider the [3,7,5] RS code over GF(8) and assume that we want to decode the received
vector

which, in polynomial form, is

TABLE 34.4 Euclid’s Algorithm for gcd(124,46)

i ri qi si = si−2 − qisi−1 ti = ti−2 − qiti−1

−1 124 1 0
0 46 0 1
1 32 2 1 −2
2 14 1 −1 3
3 4 2 3 −8
4 2 3 −10 27
5 0 2 23 −62

46 0( )124 1( )46+=

32 1( )124 2–( )46+=

14 1–( )124 3( )46+=

4 3( )124 8–( )46+=

2 10–( )124 27( )46+=

µ x( )xn−k σ x( )S x( )+ ω x( )–=

ri x( ) si x( )xn−k ti x( )S x( )+=

n k–( )/2

r 011 101 111 111 111 101 010( )=

R x( ) α4 α6x α5x2 α5x3 α5x4 α6x5 αx6+ + + + + +=
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Evaluating the syndromes, we obtain

Therefore, the syndrome polynomial is S(x) = α5 + α x + α3x3.
Next, we apply Euclid’s algorithm with respect to x4 and to S(x). When we find the first i for which ri(x)

has degree ≤1, we stop the algorithm and obtain w(x) and σ(x). The process is illustrated in Table 34.5.
So, for i = 2, we obtain a polynomial r2(x) = α5 + α2x of degree 1. Now, multiplying both r2(x) and

t2(x) by λ = α5, we obtain ω(x) = α3 + x and σ(x) = α5 + α4x + x2.
Searching the roots of σ(x), we verify that these roots are α0 = 1 and α5; hence, the errors are in

locations 0 and 2. The derivative of σ(x) is σ ′(x) = α4. By (34.69), we obtain E0 = ω(1)/σ ′(1) = α4 and
E2 = ω(α5)/σ ′(α5) = α5. Adding E0 and E2 to the received locations 0 and 2, the decoder concludes that
the transmitted polynomial was

which, in vector form, is

If the information is carried in the first three bytes, the output of the decoder is

�

Applications: Burst and Random Error Correction

In the previous sections we have studied how to encode and decode RS codes. This subsection will
briefly examine how they are used in applications, mainly for correction of bursts of errors. The two
main methods for burst and combined burst and random error correction are interleaving and product
codes.

In practice, errors often come in bursts. A burst of length l is a vector whose nonzero entries are among
l consecutive (cyclically) entries, the first and last of them being nonzero. We consider binary bursts, and
we use the elements of larger fields (bytes) to correct them. Below are some examples of bursts of length
4 in vectors of length 15:

TABLE 34.5 Decoding of RS Codes Using Euclid’s Algorithm

i ri = ri−2 − qiri−1 qi ti = ti−2 − qiti−1

−1 x4 0
0 α5 + αx + α3x3 1
1 α2x + α5x2 α4x α4x
2 α5 + α2x α2 + α5x 1 + α6x + α2x2

S1 R α( ) α5= =

S2 R α2( ) α= =

S3 R α3( ) 0= =

S4 R α4( ) α3= =

F x( ) α6x α5x3 α 5x4 α6x5 αx6+ + + +=

c 000 101 000 111 111 101 010( )=

u 000 101 000( )=

0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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Errors tend to come in bursts not only because the channel is bursty. Normally, both in optical and
magnetic recording, data are encoded using a so-called modulation code, which attempts to match the
data to the characteristics of the channel. In general, the ECC is applied first to the random data and
then the encoded data are modulated using modulation codes (see the chapter on modulation codes in
this book). At the decoding, the order is reversed; when data exits the channel, it is first demodulated
and then corrected using the ECC. Now, the demodulator tends to propagate errors, even single-bit
errors. Although most modulation codes used in practice tend to control error propagation, nevertheless
errors have a bursty character. For that reason, we need to implement a burst-correcting scheme, as we
will see next. 

A well-known relationship between the burst-correcting capability of a code and its redundancy is
given by the Reiger bound, to be presented next, and whose proof is left as an exercise.

Theorem 4 (Reiger Bound) Let C be an [n, k] linear code over a field GF(2ν) that can correct all bursts
of length up to l. Then 2l ≤ n − k.

Cyclic binary codes that can correct bursts were obtained by computer search. A well known family
of burst-correcting codes are the so-called Fire codes. Here, we concentrate on the use of RS codes for
burst correction. There are good reasons for this. One of them is that, although good  burst-correcting
codes have been found by computer search, there are no known general constructions giving cyclic codes
that approach the  Reiger bound. Interleaving of RS codes on the other hand, to be described below,
provides a burst-correcting code whose redundancy, asymptotically, approaches the Reiger bound. The
longer the burst we want to correct, the more efficient the interleaving of RS codes is. The second reason
for choosing interleaving of RS codes, and probably the most important one, is that, by increasing the
error-correcting capability of the individual RS codes, we can correct multiple bursts, as we will see. The
known binary cyclic codes are designed, in general, to correct only one burst.

Let us start with the use of regular RS codes for correction of bursts. Let C be an [n, k] RS code over
GF(2b) (i.e., b-bit bytes). If this code can correct s bytes, in particular, it can correct a burst of length up
to (s − 1)b + 1 bits. In effect, a burst of length (s − 1)b + 2 bits may affect s + 1 consecutive bytes, exceeding
the byte-correcting capability of the code. This happens when the burst of length (s − 1)b + 2 bits starts
in the last bit of a byte. How good are then RS codes as burst-correcting codes?  Given a binary [n, k]
code that can correct bursts of length up to l,  we define a parameter, called the burst-correcting efficiency
of the code, as follows:

(34.79)

Notice that, by the Reiger bound, el ≤ 1. The closer el is to 1, the more efficient the code is for correction
of bursts. Going back to our [n, k] RS code over GF(2b), it can be regarded as an [nb, kb] binary code.
Assuming that the code can correct s bytes and its redundancy is n − k = 2s, its burst-correcting efficiency is 

Notice that, for s → ∞, e(s−1)b+1 → 1, justifying our assertion that for long bursts, RS codes are efficient
as burst-correcting codes (as a comparison, the efficiency of Fire codes asymptotically tends to 2/3);
however, when s is large, there is a problem regarding  complexity. It may not be practical to implement
a RS code with too much redundancy. Moreover, the length of a RS code is limited, in the case of 8-bit
bytes, it cannot be more than 256 (when extended). An alternative would be to implement a 1-byte
correcting  RS code interleaved s times. 

An [n, k] code interleaved m times is illustrated in Fig. 34.63. Each column c0,j, c1,j,…, cn−1,j is a codeword
in an [n, k] code. In general, each symbol ci,j is a byte and the code is a RS code. The first k bytes carry
information bytes and the last n − k bytes are redundant bytes. The bytes are read in row order, and the
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parameter m is called the depth of interleaving. If each of the individual codes can correct up to s errors,
the interleaved scheme can correct up to s bursts of length up to m bytes each, or (m − 1)b + 1 bits each.
This occurs because a burst of length up to m bytes is distributed among m different codewords.
Intuitively, interleaving “randomizes” a burst.

The drawback of interleaving is delay. Notice that we need to read most of the information bytes before
we are able to calculate and write the redundant bytes. Thus, we need enough buffer space to accomplish
this.

Interleaving of RS codes has been widely used in magnetic recording. For instance, in a disk, the data
are written in concentric tracks, and each track contains a number of information sectors. Typically, a
sector consists of 512 information 8-bit bytes (although the latest trends tend to larger sectors). A typical
embodiment would consist in dividing the 512 bytes into four codewords, each one containing 128
information bytes and six redundant bytes (i.e., each interleaved shortened RS codeword can correct up
to three bytes). Therefore, this scheme can correct up to three bursts of length up to 25 bits each.

A natural generalization of the interleaved scheme described above is product codes. In effect, we may
consider that both rows and columns are encoded into error-correcting codes. The product of an [n1, k1]
code C1 with an [n2,k2] code C2, denoted C1 × C2, is illustrated in Fig. 34.64. If C1 has minimum distance
d1 and C2 has minimum distance d2, it is easy to see that C1 × C2 has minimum distance d1d2.

In general, the symbols are read out in row order (although other readouts, like diagonal readouts,
are also possible). For encoding, first the column redundant symbols are obtained, and then the row
redundant symbols. For obtaining the checks on checks ci,j, k1 ≤ i ≤ n1 − 1, k2 ≤ j ≤ n2 − 1, it is easy to
see that it is irrelevant if we encode on columns or on rows first. If the symbols are read in row order,
normally C1 is called the outer code and C2 the inner code. For decoding, many possible procedures are
used. The idea is to correct long bursts together with random errors. The inner code C2 corrects first. In
that case, two events may happen when its error-correcting capability is exceeded: either the code will
detect the error event or it will miscorrect. If the code detects an error event (that may well have been

FIGURE 34.63 Interleaving m times of code C.

FIGURE 34.64 Product code C1 ×  C2.
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caused by a long burst), one alternative is to declare an erasure in the whole row, which will be commu-
nicated to the outer code C1. The other event is a miscorrection, that cannot be detected. In this case,
we expect that the errors will be corrected by the error-erasure decoder of the outer code. 

Product codes are important in practical applications. For instance, the code used in the DVD (digital
video disk) is a product code where C1 is a [208,192,17] RS code and C2 is a [182,172,11] RS code. Both
RS codes are defined over GF(256), where GF(256) is generated by the primitive polynomial 1 + x2 + x3 +
x4 + x8. 
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35.1 Definitions and Importance

A distributed operating system is software that runs on several machines whose purpose is to provide a
useful set of services, typically to make the collection of machines behave more like a single machine.
The distributed operating system plays the same role in making the collective resources of the machines
usable that a typical single-machine operating system plays in making that machine’s resources more
usable.

Distributed operating systems are usually viewed as running cooperatively on all machines whose
resources they control. These machines might be capable of independent operation, or they might be
usable merely as resources in the distributed system. Unlike parallel operating systems, a distributed
operating system typically runs on loosely coupled hardware. Parallel operating systems tend to focus on
making all available resources usable by a single large task, while distributed operating systems focus on
making the collection of resources usable by a set of loosely cooperating users. Network operating systems
are sometimes regarded as systems that attempt merely to make the network connecting machines more
usable, without regard for some of the larger problems of building effective distributed systems. The distinc-
tions between parallel, distributed, and network operating systems are somewhat arbitrary, because all
must handle similar problems.

Distributed operating systems are not in common use today. Altghough many interesting research systems
have been built since the 1970s, and some systems have been in use for many years, they have not displaced
more traditional operating systems designed primarily to support single machines; however, some of
the components originally built for distributed operating systems have become commonplace in today’s
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systems, the most notable example being services to access files stored on remote machines. Many
researchers feel that the failure of distributed operating systems to capture a large share of the marketplace
is primarily due to our lack of understanding on how to build them. An alternate point of view is that
their lack of popularity stems from users not really needing many distributed services not already provided.

Distributed operating systems are also an important field for study because they have helped drive
general research in distributed systems. Replicated data systems, authentication services such as Kerberos,
agreement protocols, methods of providing causal ordering in communications, voting and consensus
protocols, and many other distributed services have been developed to support distributed operating
systems, and have found varying degrees of success outside of that field. Popular distributed component
services like CORBA owe some of their success to leveraging hard lessons learned by researchers in
distributed operating systems. The popularity of the World Wide Web suggests that users would desire
a more global view of the resources available to them than is provided by today’s operating systems.

Distributed operating systems are hard to design properly. They must solve inherently hard problems
in system design. Further, they must properly trade-off issues of performance, user interfaces, reliability,
and simplicity. The relative scarcity of such systems, and the fact that most commercial operating systems’
design still focuses on single-machine systems, suggests that no distributed operating system yet developed
has found the proper trade-off among these issues.

Research continues in distributed operating systems. Current directions are primarily towards the
use of distributed operating systems in important specialized cases, such as providing high-performance
clustered servers. The increasing popularity of portable and handheld computers is likely to lead to
more distributed operating system research to support mobile computing. The emerging field of ubiq-
uitous computing offers different hardware, networking, and application characteristics likely to spur
further research on distributed operating systems. Future uses of the Internet are also likely to increase
desire for more easily distributed systems.

35.2 Why Are Distributed Operating Systems Hard to Build?

This question touches directly on why distributed operating systems are not ubiquitous and also helps
explain why research continues rapidly in certain areas, while it moves more slowly in others. 

One core problem for distributed operating system designers is concurrency and synchronization.
These issues arise in single-machine operating systems, but they are easier to solve there. Typical single-
machine systems actually run only a single thread of control simultaneously, simplifying many syn-
chronization problems. Further, they typically have access to memory, registers, or other useful physical
resources that are directly accessible by all processes that they must synchronize. These shared resources
allow use of simple and fast synchronization primitives, such as semaphores. Even modern machines that
have multiple processors typically include hardware that makes it easier to synchronize their operations.

Distributed operating systems lack these advantages. Typically, they must control a collection of processors
connected by some form of network, most often a local area network (LAN), but occasionally a network
with even more difficult characteristics. The access time across this network is orders of magnitude larger
than the access time required to reach local main memory and even more orders of magnitude larger than
that required to reach information in a local processor cache or register. Further, such networks are not as
reliable as a typical bus, so messages are more likely to be lost or corrupted. At best, this unreliability increases
the average access time.

This imbalance means that running blocking primitives across the network is often infeasible. The
performance implications for the individual component systems and the system as a whole do not permit
widespread use of such primitives. Designers must choose between looser synchronization (leading to
odd user-visible behaviors and possibly fatal system inconsistencies) and sluggish performance. The
increasing gap between processor and network speeds suggests that this effect will only get worse.

Theoretical results in distributed systems are discouraging. Research on various forms of the Byzantine
General problem and other formulations of the problems of reaching decisions in distributed systems has
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provided surprising results with bad implications for the possibility of providing perfect synchronization
of such systems. Briefly, these results suggest that reaching a distributed decision is not always possible in
common circumstances. Even when it is possible, doing so in unfavorable conditions is very expensive
and tricky. Although most distributed systems can be designed to operate in more favorable circumstances
than these gloomy theoretical results describe (typically by assuming less drastic failure modes or less
absolute need for complete consistency), experience has shown that even pragmatic algorithm design for
this environment is difficult.

A further core problem is providing transparency. Transparency has various definitions and aspects,
but at a high level it simply refers to the degree to which the operating system disguises the distributed
nature of the system. Providing a high degree of transparency is good because it shields the user from
the complexities of distribution. On the other hand, it sometimes hides more than it should, it can be
expensive and tricky to provide, and ultimately it is not always possible. A key decision in designing a
distributed operating system is how much transparency to provide and where and when to provide it.

A related problem is that the hardware, which the distributed operating system must virtualize, is
more varied. A distributed operating system must not only make a file on disk appear to be in the main
memory, as a typical operating system does, but must make a file on a different machine appear to be
on the local machine, even if it is simultaneously being accessed on yet a third machine. The system
should not just make a multi-machine computation appear to run on a single machine, but should
provide observers on all machines with the illusion that it is running only on their machine. 

Distributed operating systems also face challenging problems because they are typically intended to
continue correct operation despite failure of some of their components. Most single-machine operating
systems provide very limited abilities to continue operation if key components fail. They are certainly not
expected to provide useful service if their processor crashes. A processor crash in a distributed operating
system should ideally allow the remainder of the system to continue operations largely unharmed. Actually
achieving this ideal can be extremely challenging. If the topology of the network connecting the system’s
component nodes allows the network to split into disjoint pieces, the system might also need to continue
operation in a partitioned mode and would be expected to rapidly reintegrate when the partitions merge.

The security problems of a distributed operating system are also harder. First, data typically moves over
a network, sometimes over a network that the distributed operating system itself does not directly control.
Second, access control and resource management mechanisms on single machines typically take advan-
tage of hardware that helps keep processes separate, such as page registers. Distributed operating systems
are not able to rely on this advantage. Further, distributed operating systems are typically expected to
provide some degree of local control to users on their individual machines, while still enforcing general
access control mechanisms. When an individual user is legitimately able to access any bytes stored anywhere
on his own machine, preventing him from accessing data that belongs to others is a much harder problem,
particularly if the system strives to provide controlled high-performance access to that data.

In many cases, distributed operating systems are expected to run on heterogeneous hardware. Although
commercial convergence on popular processors has reduced this problem to some extent, the wide variety
of peripheral devices and customizations of system settings provided by today’s operating systems often
makes supposedly identical hardware behave radically differently. If a distributed operating system cannot
determine whether running the same operation on two different component nodes produces the same
result, it will face difficulties in providing transparency and consistency.

All the previously mentioned problems are exacerbated if the system scale becomes sufficiently large.
Many useful distributed algorithms scale poorly, because the number of messages they require faces
combinatorial explosion, or because the delays required to include large numbers of nodes in computa-
tions become unreasonable, or because data structures grow in proportion to the number of participants.
High scale ensures that partial failures will become more common, and that low probability events will
begin to pop up every so often. High scale also often implies that the distributed operating system must
operate away from the relatively friendly world of the LAN, leading to greater heterogeneity and uncer-
tainty in communications.
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35.3 Components of Distributed Operating Systems

Distributed operating systems consist of components that generally mirror those in their single-machine
counterparts. Some of these components are typically little altered from single-machine operating systems.
For example, many distributed operating systems schedule their tasks per machine, using standard sched-
uling mechanisms. Unless distributed shared memory is supported, components of the operating system
that support virtual memory, paging, and swapping are typically similar to other operating systems.
Support for devices and the use of device drivers is also common. Note that these similarities are merely
the rule in distributed operating systems, and that some such systems handle even these components
differently than in single-machine operating systems.

The components that tend to be most different are those related to file systems, interprocess commu-
nications, synchronization, reliability and recovery, and security. Also, some distributed operating systems
include support for process migration, a facility that makes no sense in an operating system that limits
its view to the boundaries of a single machine.

File Systems

File systems were quickly recognized as one of the areas of a distributed operating system that required the
most attention. Before the development of distributed operating systems, remote file access was limited to
explicit copying, perhaps abetted by a program such as FTP. Distributed operating system designers instantly
recognized the great value added to a computer on a network by giving it better access to files stored on
other machines. The approach was generally to provide some integrated view of the collection of files stored
on the various machines of the distributed system.

A key question in distributed file system design is the degree of transparency provided. At one extreme,
services like FTP offer very little transparency. File locations must be explicitly named; the names effectively
change if the file is moved to another machine, and files are accessed very differently if they are stored locally
or remotely. Such services do not even allow all normal file operations to be performed on a remote file.
At the other extreme, distributed operating systems like Locus tried to conceal the actual location of the
file whenever possible. The most successful distributed file systems (NFS and the Windows file-sharing
services) provide various intermediate points of transparency. NFS does not make file locations explicit in
its naming conventions, but a single file may need to be accessed by different names on different machines.
The Windows file-sharing service makes file locations explicit, requiring that users access remote files by
looking under icons representing remote machines. But both services support their file access interface for
both remote and local files, permitting these files to be read, written, and executed. This degree of trans-
parency has proven to be the minimal acceptable amount that users demand. The World Wide Web provides
this same amount of transparency, for example.

Other file system issues must be handled by the distributed operating system. Typically, remote access
is slower than local access (though in modern systems, accessing data stored in the main memory of a
remote machine may be faster than accessing data stored on a local hard disk drive). Many distributed
file systems seek to conceal this speed difference, typically by providing a local copy of the data, thereby
avoiding expensive remote access. Caching of data blocks from remote files is common, often using the
same facilities that cache data blocks fetched from local disks. The Andrew File System [1] uses a different
approach, caching whole files for extended periods (including over reboots) at client sites. 

Cache consistency problems are caused by updates. When a local file is written, invalidating locally
cached copies of the written block is straightforward and quick. Invalidating remotely cached copies is
slower and more difficult, since the local operating system must signal the remote machine’s system to
perform the actual invalidation. Even being able to do so requires that the local machine keep track of
remotely cached copies. If the local machine does keep track of these copies, the remote machine might
need to signal the local machine if the cached copy is discarded. Handling all cases of partial and transient
failures complicates the problem. The Andrew file system is one example of a system that has successfully
handled these problems, aided in part by its use of reliable server machines that store the true permanent
copy of all files. If writes are rare, ignoring the problem and accepting occasional reads of stale cached
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blocks may be a better solution than trying to maintain perfect consistency of the cached copies. The
Sun Microsystems implementation of NFS improves on this approach at a reasonable cost by having
caching clients periodically check to see if their cached copy is still fresh. This solution still allows use of
stale data, but can be tuned to trade-off freshness versus cost. Not caching at all is another solution, but
one with serious performance implications.

When file copies are to be permanently stored at a location, they switch from being cached to being
replicated. Replicating files has several advantages, including superior fault tolerance, high performance
for all file operations, and good support for disconnected operations, which is especially valuable for
mobile computing. Replicating files has a significant cost, however. Beyond the mere storage costs of
keeping multiple permanent copies of the same bits, maintaining consistency among replicated files is a
difficult problem. Generally, replicated file systems must trade the consistency of the replicas against file
system performance.  Higher consistency is possible using conservative replication methods, which ensure
that no inconsistent updates to files are possible. Conservative methods often have high costs and limit
file availability, however. Optimistic replication reverses these advantages and disadvantages, offering
lower cost and higher availability at the risk of permitting inconsistencies, which must then be handled
by some method—typically a reconciliation process that tries to merge the results of conflicting updates.
Sample replicated file systems include Coda (which uses optimistic client/server replication) [2] and Ficus
(which uses optimistic peer replication) [3]. The systems in wide commercial use tend not to provide
full functionality replicated file systems because of their cost and complexity.

File replication is widely used in an informal fashion. For example, programs that automatically dis-
tribute new versions of executables to all machines in an office are performing a limited form of file
replication. Mechanisms like the Microsoft Briefcase offer limited forms of file replication for special cases,
such as sharing files between a desktop and a portable computer, where typically only one machine is
active at any given moment. By leveraging the special circumstances of such uses, many of the harder
problems of file replication can be avoided. Such adoption of simple limited expedients for common
circumstances is characteristic of much real-world use of distributed operating systems technology.

File migration is another alternative available to distributed file systems to avoid performance problems.
Files move to the sites that use them. This paradigm requires a high degree of transparency, since all
processes in the system must be able to access all files, local or remote, under the same names. Otherwise,
applications might stop working when the file migrates from the remote to the local site. Further, such
alternatives face difficulties in preventing popular files from moving constantly. This paradigm of remote
data access has been more widely used and studied in the field of distributed shared memory.

Interprocess Communications Services

Many distributed operating systems are designed to support distributed computations, where cooperating
processes run on different nodes. Allowing the processes to cooperate implies that they can exchange
information, which in turn implies a need for interprocess communications (IPC) services. 

Single-machine systems have the same requirement, so a variety of IPC services exist for such envi-
ronments, including remote procedure calls, messages, and shared memory. Generally, the implementa-
tion of these services in single-machine environments leverages shared hardware. For example, all three
of these services are provided in most single-machine operating systems by writing information into
main memory that can be read by all communicating processes, or by copying information from the
memory of one process into the memory of another, or into buffers provided by the operating system.
The shared hardware and the synchronization provided by the shared processor simplify many issues in
making these IPC services work.

In a normal distributed system, the participating machines can only communicate by passing messages
across a network. Such networks typically do not offer the guarantees available from the shared hardware
of a single machine. Further, the participating machines are typically under the control of their local
processor. No single processor controls the complete collection. These characteristics require different
implementations of familiar IPC services. 
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Message-passing IPC shares many characteristics from the single-machine case. Bytes are gathered into an
explicit message. Instead of merely being transferred from one buffer to another on the same machine, the
message goes over the network. Failure of the network or the receiver introduces new problems. The issue of
how long to block the sender is also different, since the time required to confirm delivery of the message in
the remote case can be much longer than in the local case. Issues of message addressing must also be considered.
In a single-machine system, all addressable processes are locally known. In a distributed system, some facility
must be provided to allow the local process to discover the addressable names of remote processes and to send
messages to those names.

Remote procedure call (RPC) faces similar challenges. In a single machine, remote procedures aren’t that
remote. Although they may have a different address space, the local operating system has access to all necessary
facilities of both the calling and called processes. In distributed systems, the caller is on one machine and
the called process on another. Further, the actual transfer of data must take place via messages crossing the
network. One implication is that call-by-reference must be translated to call-by-return-value. Other com-
plexities exist, including some similar to those for message passing. Another issue is handling partial failures.
Either the caller or the called process can fail independently of the other, requiring the operating system on
the surviving machine to recover.

Shared memory is the hardest common IPC mechanism to provide in distributed operating systems,
because it relies most heavily on hardware characteristics not present in the distributed environment.
Early distributed operating systems made no attempt to provide shared memory across the network;
however, as LANs became more capable, researchers tackled the difficult problems of providing the
semantics of shared memory across the network. This problem spawned vast amounts of research, which
will not be covered in detail here. A slightly closer look at the concept of distributed shared memory will
reveal why this research was necessary.

As before, the distributed system can only communicate via messages. Yet the distributed operating system
must provide the illusion that two processes on different machines are sharing a single piece of physical
memory. The basic approach is to give each process access to a local copy of the memory, then have the
operating systems work behind the scenes to provide a consistent view between the processes. Another
approach is to migrate the memory segments between machines, as needed. This approach can run into
difficulties if processes frequently access the same memory locations. Also, because the overheads of handling
shared memory at the word level are too extreme, distributed shared memory systems must aggregate words
into shared blocks. If the aggregation is too large, false sharing occurs, where one process accesses the first
part of a block while another process accesses the second part. Because the two parts are aggregated into a
single block, the block must migrate back and forth, despite no actual commonly accessed memory locations.

Alternately, memory segments can be replicated. Doing so leads to problems when writes occur. Either
the other copies of the segment must be updated (before they are accessed again), or they must be invalidated.
Either approach requires much bookkeeping and incurs overheads when writes occur. False sharing effects
can also play a role here, since writing to the first word of a block tends to invalidate or cause updates to
the entire block.

Much inventive research has been performed on distributed shared memory, using various techniques
to overcome its challenges. Although distributed shared memory has been demonstrated to be feasible, its
performance, complexity, and limitations have prevented it from becoming popular. Few systems today
provide this facility. Research continues on distributed shared memory, but not as widely as in the past.

Naming Services

Names play an important role in operating systems. Many operating systems support several distinct
name spaces for different purposes. For example, one name space might describe the file system, while
another describes the processes running on a machine, and a third describes the users permitted to
work on the machine. One legacy of Unix systems is that the file name space is used aggressively to
provide name spaces for things that are not classically files, such as devices and interprocess commu-
nication services. (One distributed operating system, Plan 9, relies on this abstraction for all its naming
needs [4].) 
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Distributed operating systems have similar naming needs, but now some of the entities that must be
named are not located on the local machine. As before, these entities are of various types. The distributed
nature of the system leads to different problems, however. For example, in a single machine, one directory
can contain the names of all the entities in the system. Scaling and organizational concerns usually lead
to breaking the single directory into hierarchical components, but there are relatively few difficulties with
maintaining a single name space that describes the name-to-resource mappings of anything currently
available in the system.

In a distributed system, independently operating nodes can create, destroy, and change names rapidly.
These operations are local, so they are likely to appear instantly in the local name space. But how do the
other machines in the system become aware of namespace changes? 

One approach is to build a single global namespace for the entire distributed system. The Locus
Operating System took this approach, for example. It extended the standard Unix file system naming
convention across multiple machines. By providing a single hierarchical name space, the naming changes
made by one machine were available to all machines. An advantage of this approach is high transparency.
Files (and other nameable resources) had the same names on all machines, which provided an easier
model for users. The difficulties with the Locus approach are that it scales poorly and only works well
when all machines tend to be connected most of the time. Maintaining a global name space on multiple
machines is very hard. Further, if replication is being used, name space changes in one replica can sometimes
conflict with name space changes in other replicas.

The Andrew file system overcame some of these problems by storing all files on reliable servers. Whole
file caching was used to provide fast access on machines that interacted directly with users. The Andrew
file system has been operated at high scale, but usually in circumstances where one collocated set of
servers can access all clients via a high-speed reliable network.

Windows file sharing and NFS provide a more limited form of global name space. In the Windows
file sharing service, each machine has complete autonomy over its own name space, and exports that
name space to remote machines explicitly, under its own machine name. NFS allows portions of one
machine’s name space to be spliced into the name spaces of other machines at fairly arbitrary points.
Neither service is as transparent as a true global name space, but many control problems are avoided.
As the World Wide Web has demonstrated, such a name space can scale well; however, the World Wide
Web’s name space also demonstrates some problems with the approach, such as poor results when a
resource changes its location, since such a change implies a name change.

Recovery, Reliability, and Fault Tolerance Services 

Because distributed operating systems are more prone to partial failure, some such systems provide special
facilities for recovery. The system itself must have internal mechanisms (typically hidden from normal
users) that handle failure problems. These facilities ensure that system services like the file system and
name spaces continue to exhibit reasonable behavior even in the face of failures. One common require-
ment was to provide transactional behavior in the face of failures and arbitrarily slow system components.
The two-phase commit protocol is typically used for this purpose. The system might also provide
checkpointing facilities for processes, services that allow cooperative processes on different machines to
deal with failure of some of their components, or the ability to request replication or backup versions of
important processes or data.

Arguably, such services are best provided transparently. Typical users and programmers are not experts
in the complexities of distributed computations and failure handling, so few of them can make effective
use of any such tools that the system provides. On the other hand, transparent recovery and reliability
services are hard to provide.

Process Migration

Some distributed operating system designers have foreseen value in permitting running processes to be
migrated to other nodes, for load balancing, to achieve better performance for high-priority processes, to
move processes closer to critical resources (typically files), or to provide improved reliability. Migrating a
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process at any arbitrary stage in its operations is difficult. The Locus Operating System provided such a
facility, but handling all complex cases is tricky. A more common approach is to provide facilities that allow
processes to enter migratable states where the more complex situations cannot arise. Typically, this means
they are temporarily quiescent until the migration completes. Not providing process migration at all is even
more common. Process migration has not been a popular capability in the systems that do provide it.

Security Services

Single-machine operating systems provide some degree of security by relying on the characteristics of
the hardware they run, and by leveraging the fact that the operating system trusts itself. Access control
mechanisms for files, separation of data belonging to different processes, and authentication of users to
the system work on these assumptions. In a distributed operating system, communications often go over
insecure shared networks, and the remote operating systems might not be as fully trusted as the local
system. The security problems are thus harder to solve, and distributed operating systems sometimes
provide facilities to handle the problems.

The use of an insecure network is typically handled by either authenticating or encrypting network
traffic. A properly designed cryptographic system can usually make it difficult for outsiders to improperly
inject or alter traffic, or to read secret information in transit. Such a cryptographic approach does not
solve all problems, since one system must still rely on a remote system to enforce security restrictions
just as the local system would. For example, if a sensitive file is stored at node A, when node B requests
access to the file, node A can check that the request was made by a user with the right to view the file;
however, if in response node A provides blocks of the file to the proper user on node B, node A must
trust that node B will not maliciously or accidentally also provide the blocks to improper users. Node B
has concerns, as well, because it cannot determine if node A has properly applied access control to the
file. If node A has not done so, node B might provide its user with data that should be inaccessible. These
concerns make it relatively difficult to set up a distributed operating system in environments where all
participant systems do not completely trust one another.

Assuming that the nodes are all trustworthy to the extent that they will properly handle data that they
can properly access, the distributed system must still authenticate the requests from participants. Oth-
erwise, one of the nodes in the distributed system might tag requests to remote nodes from user X with
the identity of user Y, allowing X to access data improperly. The remote node must independently verify
that the request really came from user Y. Many cryptographically based mechanisms can provide such
authentication. One option is the Kerberos system, which allows machines in a distributed environment
to authenticate identities and provide controlled access to services [5]. Security designers are generally
happiest with heavily tested and used mechanisms, because they are less likely to have undiscovered
security bugs, so Kerberos’ long history and the amount of scrutiny applied to it make it popular.

35.4 Sample Distributed Operating Systems

Locus

The Locus Operating System was an early ambitious attempt to build a distributed operating system that
provided all users with a single system image [6]. It was developed at UCLA and the Locus Computing
Corporation throughout the 1980s and into the 1990s. Locus was intended to be Unix-compatible, both
in terms of the operating system interface provided and the experience of users. Ideally, a Locus user
would be given the illusion of a single large Unix system vastly more powerful than any single machine
could provide. In actuality, the distributed operating system would run on each component node of the
system. The nodes worked together to maintain the single image.

The Locus system achieved some success, but ran into several problems that prevented it from becom-
ing popular. The system demonstrated the value and feasibility of providing high transparency in a
distributed operating system, and pioneered concepts such as file replication. But the challenges of providing
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a true single image were immense. Particularly, handling all of the difficult uncommon cases properly
required much complexity. Further, one fundamental mechanism in achieving the single system image
was to reach agreement on the set of participating nodes, a task that proved difficult and expensive. The
final lesson from the Locus project was that, although transparency was valuable and attractive, too much
obsession with providing complete transparency in all circumstances could be counterproductive.

Amoeba

Amoeba provides service to a large community of users working at low-powered workstation systems.
It does this by maintaining a pool of servers capable of working interchangeably with any of the work-
stations, as well as some specialized servers [7].  When a user logs in to an Amoeba workstation, he is
implicitly logging in to the entire distributed system. The Amoeba system software assigns user tasks to
one or more machines in the server pool, handling all issues of communications and synchronization.
Because any task can potentially run on any server in the pool, Amoeba must provide a high degree of
transparency. Persistent data is typically stored remotely from both the workstation currently occupied
by the user and the machines in the server pool working on the request, which also implies a need for
high transparency.

Amoeba provides RPC and reliable multicast for interprocess communications. It handles issues of
network security by using randomly assigned ports to obscure communications and by requiring cryp-
tographic capabilities to access resources.

Amoeba provides a distributed file system with replication capabilities. An interesting aspect of the
Amoeba file system is that it only permits creation of files, not their alteration. Instead of altering an
existing file, a new file is created with the altered contents. This choice simplifies many replication issues,
but requires users to adopt a different model of file behavior than is typical.

Amoeba was used for production purposes in several environments, and is available from Vrije
Universiteit, where it was developed.

The design philosophy behind Amoeba and many other distributed operating systems is to support
operations at one large, well-connected organization. Designers also assume that it is more economical
to provide low-powered machines as a front end and perform the system’s serious work on pools of
servers. When a cheap workstation can provide all the computational and storage resources required by
a particular user, there is less advantage in this approach; however, it still has some advantages because
of system simplifications inherent in localizing important operations in well-connected, well-maintained
servers. Also, this model is not well suited for integrating portable computers, because those machines
can be disconnected from the network and are expected to continue providing service. 

Plan 9

Plan 9 is one of the more recent attempts to build a new distributed operating system [4].  Plan 9’s
approach to building a distributed operating system shares some similarities to Amoeba’s. The system is
designed primarily to support a single large organization, using a pool of CPU servers, file servers, and
many terminal servers. All machines are connected by a high-speed LAN. All resources in Plan 9 are
represented in a name space that resembles a Unix file system. A user at a terminal requests resources by
mounting name space components representing those resources into his own name space. One standard
protocol handles access to all resources, be they files, devices, or interprocess communications facilities.
Plan 9 is still in use and being studied, but has not achieved widespread popularity.

35.5 Recent Research in Distributed Operating Systems

Although distributed operating systems have not become ubiquitous, their goals continue to be tempting,
and the success and importance of some distributed operating system components suggest that further
research and development is worthwhile. Further, changes in the use of computers, such as mobile com-
puting and ubiquitous computing, demand new research to handle the problems of distribution encoun-
tered in these new environments.
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Few attempts were made in the past decade to produce revolutionary new general-purpose distributed
operating systems akin to Locus, Amoeba, and Plan 9. The focus has been on producing better distributed
services and designing distributed operating systems for important special uses.

Distributed File Systems

LAN speed and bandwidth now permit some remote file accesses to be cheaper than local accesses. Further,
designating particular machines as file servers (as is commonly done with NFS and other similar systems)
causes scaling problems when those machines become overloaded.  The xFS project addressed these issues
by striping files across the storage of all machines on a LAN [8]. By ensuring that commonly used files were
in main memory at all participating machines, xFS allows most file accesses to proceed at network speeds,
rather than disk speeds. The management responsibilities are spread across all participating nodes.  By using
RAID techniques, the failure of any individual machine does not cause unavailability of any files, unlike
failure of an NFS server. Since RAID redundancy does not require full duplication of all bits of a file, this
solution is less wasteful of storage than file replication. Other file systems, such as Zebra [9] and Frangipani
[10] use similar methods to spread file data across multiple machines. This approach assumes that all machines
are trustworthy, and is most suitable for use on a LAN, where partitioning of sets of the machines are rare.
These limitations, the complexity of the implementations, and the lack of practical experience with their use
have prevented this class of solution from being widely used, so far.

Striping files across multiple machines has particular advantages for video servers. Such services must
move large quantities of data from persistent storage to a remote network location, quickly and predict-
ably. Leveraging the capabilities of several cooperating servers simultaneously has proven advantageous
for systems like the Tiger File System [11]. Such special purpose systems can often afford high-speed
interconnection networks that avoid some performance problems.

Peer file-sharing services such as Gnutella have become popular recently. Such peer services seek to
leverage the vast amount of storage available on machines connected to the Internet to make various
kinds of files widely available to many users. These services spread requests out to other nearby machines
running the service, with relatively little information distributed about what files are stored at which
machines. Finding a particular file involves searching some of the participating machines to find the site
(or sites) storing it. Such services can face scaling problems for a variety of reasons, especially if only a
small number of participants actually store the files, since they can become overloaded. Also, machines
connected via slow links can be quickly flooded by traffic generated by the system, rendering it ineffective
for users at those machines and making the files they store hard to reach for other users. 

Networks of Workstations

The commercialization of the Internet has led to some high requirements for servers. Handling millions
of Web page hits per day is vital to some companies, and other types of service can be equally stressful.
One alternative to buying extremely expensive mainframes capable of handling such loads is to build a
network of workstations, using commodity hardware connected by a dedicated high-speed network. This
kind of hardware can be much less expensive than mainframes, and offers the promise of cheap expand-
ability by merely adding more workstations to the network. The fundamental architecture is to farm out
incoming requests to the workstations, balancing the load and leveraging their combined capabilities.
This approach often requires special distributed systems support to handle problems of shared data access,
reliability, and scalability.

The problem is relatively easy for loads like most web service, where almost all incoming requests are
read-only. In such cases, the entire set of data required to respond to requests can be replicated at each
machine in the system. The situation is trickier when writes are more common. One approach is to assign
users or categories of requests to particular machines, but such approaches may face problems with load
balancing and scaling when the pattern of work changes or large numbers of users are added. More sophis-
ticated approaches have been investigated recently.
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The DDS service provides tools for building distributed data structures to run on workstation clusters
[12]. The DDS service must handle many of the problems of distributed systems in general, including
performance and reliability; but by limiting its requirements to supporting particular types of carefully
chosen data structures, the system can solve these hard problems and provide the necessary services.
Porcupine uses a network of workstations to handle mail service, which requires significant amounts of
writing and thus demands more sophisticated mechanisms to leverage the power of the distributed system
[13]. Porcupine uses a set of nodes that can provide interchangeable services and replication techniques
to build a high-performance mail server out of a network of workstation machines. 

Distributed Systems for Ubiquitous Computing

Many researchers predict that homes, offices, and other buildings of the future will contain large numbers
of objects that have embedded processors and communications devices. For example, all appliances in a
house might contain processing and communications capabilities. Also, humans may carry several com-
puting and communications devices on their bodies, in much the same way that most people today wear
a watch. The purposes and uses of machines in these environments are not yet clear, but they seem likely
to differ from the way office workstations in a LAN or machines browsing the Web behave. Plausibly,
they will require different sets of system services than today’s distributed system services. Various research-
ers have started examining the requirements of these systems and designed distributed services for them.

One area of interest is naming in such systems. The publish/subscribe model of naming has been
proposed and implemented in systems like the Jini service discovery system. In this model, devices on
the network publish their capabilities, and other devices that hear the publications subscribe to the
services they are interested in. Another proposed model of naming for this environment is intentional
naming, where the system provides name resolution and request routing via a self-configured overlay
network [14]. In such systems, users name objects by what they want to do with them, and the naming
service takes responsibility for forwarding the request to some entity capable of fulfilling their need.

Ubiquitous computing systems also require access to persistent storage, both to access standard per-
sistent data (e.g., files) and to allow the system to keep track of the state required to give users a consistent
view of the world. Mobility, limited communications links, security concerns, and varying capabilities
of participant machines make providing persistent data harder. One approach to solving the problem is
provided by OceanStore, which postulates a utility-like model for providing persistent data handling in
a ubiquitous environment [15]. OceanStore uses replication aggressively and relies on a combination of
fast (but not always successful) search techniques and slow (but reliable) lookup algorithms.

Security in Distributed Operating Systems

Some recent research has tried to tackle the problems of running a secure distributed operating system
when not all participants are fully trusted. For example, recent enhancements to SFS have produced a secure
read-only file system that allows remote clients to independently verify that the data provided to them by
a server is indeed the true version of the data [16]. Another difficult security problem for distributed systems
that span multiple administrative domains is proper authentication across those boundaries, particularly
when the different domains use different authentication mechanisms. One recent approach to solving this
problem is to build a logic of authentication and mechanisms for applying that logic to authentication
information attached to remote requests [17]. The system can then determine if it should regard incoming
requests as being legitimately made by the putative requestor. 

35.6 Resources for Studying Distributed Operating Systems

Research appears frequently in the field of distributed operating systems. Some of the work is commer-
cial, but much of it is described in the research literature. The principal conferences where distributed
operating system research appears most often are the bi-annual Symposium on Operating Systems
(SOSP), the bi-annual Conference on Operating Systems Design and Implementation (OSDI, held in
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alternate years with SOSP), and the annual Usenix Technical Conference. Interesting research on more
specialized areas often appears in other venues. For example, mobile computing distributed system research
often appears in the MOBICOM conference, and distributed systems security research will often appear
in security conferences. A workshop called HotOS publishes early results on new areas of research in
operating systems, including distributed operating systems.

The primary journals where distributed operating systems research appears are the ACM Transactions
on Computing Systems journal and the IEEE Transactions on Computers journal. Again, research on
specialized topics often appears in other journals, such as mobile computing research in Mobile Networks
and Applications (MONET). 
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36.1 Introduction

Programmability and reconfigurability are considered to be a key ingredient for future silicon platforms
[1]. An increase in the complexity of integrated circuits and a shorter time-to-market requirement result
in a need to develop hardware platforms shared across multiple applications. In the next generation of
electronic systems, it is expected that the conventional embedded systems are unlikely to be sufficient to
meet the timing, power, and cost of such systems. Diversity and increasing number of applications do
not allow fully customized system design methodology for each application such as ASIC designs. One of
the fundamental keys is integrating programmability and reconfiguration in the systems [1,2]. On the other
hand, the current general-purpose fully programmable solutions cannot satisfy the future aggressive timing
and power constraints. Therefore, a new design methodology has to be developed to combine reconfigu-
ration into system design for future applications. One of the techniques to handle the increased complexity
in integrated circuits is programmable system-on-a-chip (SoC) design methodology [1]. In this style, there
is a combination of IP cores, programmable logic core, and memory blocks on a chip. 

System design can be viewed in a variety of levels of granularity from architecture level to logic/
interconnection level. Configuration can be applied in different hierarchy levels of a design [1]. For instance,
programmability in logic/interconnect level of system is realized via a programmable module such as FPGA
chip. Reconfigurable devices provide the necessary flexibility in such systems. FPGAs are mostly the recon-
figuration cores. An FPGA is an array of logic blocks placed in an infrastructure of interconnections, which
can be configured in logic functionality of logic blocks, interconnection between logic blocks, and
input/output (I/O) interface (see Fig. 36.1). SRAM-based FPGAs allows reconfiguration of the device via
string of bits loaded from external source once or several times. An FPGA is programmable at hardware
level. Many high-performance operations, such as computationally intensive signal processing functions
can be implemented very efficiently using FPGAs. 

Xilinx™ first introduced FPGAs in mid-1980s. In the past, considerable research effort was made for
developing programmable architectures in the past. Also, numerous commercial programmable devices
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were introduced; however, not many works have been published on how those architectures were
designed. The latest FPGA devices are provided by companies such as Xilinx™, Altera™, Actel™, and
Lucent™. Industrial designers are increasingly capturing their designs using hardware description lan-
guages such as VHDL and Verilog. There are tools developed for FPGAs, which synthesize designs in
VHDL format or other description format. Current synthesis tools for FPGAs are provided by companies
Synopsys™, Synplicity™, and Leonado Spectrum™. Physical design tools perform placement and routing
for FPGAs. Xilinx™ and Altera™ provide place/route tools for their own FPGA devices. 

Today’s high-volume applications require a fabric with higher complexity and better performance
than FPGAs. Also, shorter development cost and more flexible reconfiguration are required. Several
contributions have been made in FPGA devices toward this direction. Capacity of FPGAs has been
increased. High-density FPGAs are available in the market offering competitive solutions to ASICs and
programmable systems such as DSPs. Hierarchical features have been added into logic and routing
architecture of FPGAs. The new generation of FPGAs have a trend towards embedding coarser grain
units. Most applications require a large amount of storage. Architectural support for implementation of
memory is crucial. Some FPGA devices have embedded memory (RAM, ROM). In addition, implement-
ing general logic in these embedded arrays of memory blocks is viable. In order to support high repetitive
and data intensive computation on FPGAs more efficiently, arithmetic resources have been developed.
Examples of such enhancement are cascade chain, multipliers, and dedicated adders, etc. Fine-grain
FPGA architectures are shifting towards new architectures where memory blocks, hard IPs, and even
CPUs are being integrated into FPGAs. In these designs the traditional FPGA is not a co-processor, instead
a reconfigurable fabric is embracing all the mentioned components and enabling a much tighter inte-
gration among them. Today, FPGA CAD tools provide integration of macro blocks into designs. Macro
blocks are optimized for area, delay, or power consumption. In addition, placement of such macro blocks
can be predefined in CAD tools such as CoreGEN@ integrated with Xilinx™ design implementation
tool. MemGen@ and LogiBlox@ in Xilinx™ tool enable the implementation of embedded memory blocks.
Hence, tool vendors are moving to higher-level optimization. There is better integration between synthesis
and physical design tool.

Flexibility in reconfigurable systems comes at the expense of the reconfiguration time. The amount
of time required to set the function to be implemented on the reconfigurable logic is the configuration
time, which can become a serious bottleneck especially in systems where run-time reconfiguration is
performed [3,4]. 

FIGURE 36.1
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We have introduced a new architecture for a system that uses reconfigurable logic, which is referred
as strategically programmable system (SPS) [5]. The basic building blocks of our architecture are param-
eterized functional blocks that are pre-placed within a fully reconfigurable fabric. They are called versatile
parameterizable blocks (VPBs). When implementing an application, operations that can be mapped onto
these fixed blocks will be performed by the VPBs; computational blocks that will be instantiated on the
fully reconfigurable portion of the chip will perform the remaining operations. Properties of VPBs will
be discussed in more detail in later sections. The motivation is to generate reconfigurable architectures
that target a set of applications. Such architectures would contain VPBs to specially suit the needs of the
particular family of applications. Yet the adaptable nature of our programmable device should not be
severely restricted. The SPS will remain flexible enough to implement a very broad range of applications,
thanks to the reconfigurable resources. These powerful features help our architecture maintain its tight
relation to its predecessors, traditional FPGAs. At the same time the SPS is forming one of the first efforts
in the direction of context-specific programmable devices. 

Because the VPBs are custom made and fixed on the chip, they do not require configuration, hence
there are considerably less switches to program as compared to the implementation of the same design
on a traditional FPGA. More important, an instance of our SPS architecture is generated such that for
a given set of applications the suitably selected fixed blocks provide the best performance. 

In the proceeding sections, we introduce the basic concepts of our architecture and the notion of
generating an instance of the SPS architecture for a given set of applications. We present a framework
that provides tools for generating SPS instances and implementing applications once a fixed SPS archi-
tecture is given. In the following section, we present related work in the field of reconfigurable architecture.
Examples of versatile programmable blocks are presented in Sections 36.3, 36.4 and 36.5 as well as details
of our architecture. We complement our architecture with tools that perform the mapping of applica-
tions onto the architecture and the actual implementation and tuning for an application on our platform.
These two major tasks will be discussed in Section 36.4. In Section 36.6 we present our preliminary
results.

36.2 Related Work

With the current trend towards hybrid programmable architectures, new systems with embedded recon-
figurable cores are also being developed. Among these architectures the basic distinction is due to the
level of granularity of the reconfigurable logic.

Commercial FPGAs from several vendors such as Xilinx™, Altera™, and Actel™ are available in the
market. Traditional FPGA chips like Xilinx™ 4000 series, or Altera™ Flex family all contain some form
of an array of programmable logic blocks. Those blocks usually are not very complex and contain a few
LUTs and a small amount of storage elements. They are designed for general-purpose use. Since they
only contain fine-grain reconfigurable logic, for a new application to be implemented the whole chip
goes through a configuration phase. Although newer devices such as Xilinx™ Virtex FPGA allow partial
reconfiguration of selected rows or columns, this is still a critical issue. 

Hybrid systems also contain reconfigurable cores as coprocessors. The Garp architecture developed at
Berkeley combines a MIPS-II processor with a fine-grained FPGA coprocessor on the same die [6]. Unlike
the Garp architecture the main load of hardware implementation lies on the coarse grain parameterized blocks
in SPS architecture.

Chimaera [7] is a single chip integration of reconfigurable logic with a host processor. The reconfig-
urable coprocessor is responsible for performing the reconfigurable functional unit (RFU) instructions.
An RFU instruction is any instruction from the program running on the host processor that is performed
by the reconfigurable coprocessor. The Chimaera architecture is for a very specific class of data path
applications and still requires a large amount of reconfiguration time. 

Another reconfigurable architecture with fine granularity is the dynamically programmable gate array
(DPGA) [8]. Although the logic structure is just like existing FPGAs, DPGAs differ from traditional
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FPGAs by providing on-chip memory for multiple array configurations. The on-chip cache exploits high,
local on-chip bandwidth to perform quick reconfiguration. 

In addition, several systems with coarse-grain granularity exist, such as RaPiD [9], Raw [10], and Pleiades
[11]. RaPiD is a configurable architecture that allows the user to construct custom application-specific
architectures in a run-time configurable way. The system is a linear array of uncommitted functional
units, which contain datapath registers, three ALUs, an integer multiplier, and some local memory. The
RaPiD architecture targets applications that can be mapped to deep pipelines formed from the repeated
functional units. 

The Reconfigurable Architecture Workstation (Raw) is a set of replicated tiles, where each tile contains
a simple RISC-like processor, small amount of bit-level configurable logic, and some memory for instruc-
tions and data.

The CS2112 reconfigurable communications processor (RCP) from Chameleon Systems, Inc.™ con-
tains reconfigurable fabric organized in slices, each of which can be independently reconfigured. The
CS2112 includes four slices consisting of three tiles. Each tile comprises seven 32-bit datapath units, two
16 × 24-bit single-cycle multipliers, four local store memories, and a control logic unit. The RCP uses a
background configuration plane to perform quick reconfiguration. This reconfigurable fabric is combined
with a 32-bit embedded processor subsystem.

The Pleiades architecture is a processor approach that combines an on-chip microprocessor with an
array of heterogeneous programmable computational units of different granularities, connected by a
reconfigurable interconnect network. The programmable units are MACs, ALUs, and an embedded FPGA. 

Xilinx™ has recently introduced the Virtex-II@ devices from the new Xilinx Platform FPGAs. The
Virtex-II architecture includes new features such as up to 192 dedicated high-speed multipliers. Designers
can use Virtex-II@ devices to implement critical DSP elements of emerging broadband systems. This is
somewhat a similar effort in the same direction that we are heading. The Virtex-II device is providing
the dedicated high-performance multipliers for DSP applications like the VPBs on the SPS, which are
intended to improve performance for a set of applications. SPS differs from a Virtex-II device in the
following:

• The architecture can contain blocks of various complexities. Depending on the requirements of
the applications fixed blocks can be as complex as an FFT block or as simple as an adder or multiplier.
Examples of VPBs will be provided in the next section.

• The generation of an SPS instance is automated. Given a set of target applications an architecture
generation tool determines the number and types of VPBs to be placed on the chip. Although the
Virtex-II device is still general purpose, an instance of an SPS will be more context-defined
according to a given set of applications. 

36.3 Strategically Programmable System

Recently, reconfigurable fabric was integrated into SoCs forming hybrid (re)configurable systems. Hybrid
(re)configurable systems contain some kind of computational unit, e.g., ALUs, intellectual property units
(IPs) or even traditional general-purpose processors, embedded into a reconfigurable fabric (see Fig. 36.2).

One type of hybrid reconfigurable architecture embeds reconfigurable cores as a coprocessor to a
general-purpose microprocessor, e.g., Garp [6] and Chimaera [7]. Another direction of new architectures
considers integration of highly optimized hard cores and hardwired blocks with reconfigurable fabric.
The main goal here is to utilize the optimized blocks to improve the system performance. Such program-
mable devices are targeted for a specific context—a class of similar applications, such as DSP, data
communications (Xilinx Platform Series), or networking (Lucent’s ORCA®). The embedded fixed blocks
are tailored for the critical operations common to the application class. In essence, the programmable
logic is supported with the high-density high-performance cores. The cores can be applied at various
levels, such as the functional block level, e.g., fast Fourier transform (FFT) units, or at the level of basic
arithmetic operations (multipliers).
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Presently, a context-specific architecture is painstakingly developed by hand. The SPS explores an auto-
mated framework, where a systematic method generates context-specific programmable architectures.

The basic building blocks of the SPS architecture are parameterized functional blocks called VPBs. They
are preplaced within a fully reconfigurable fabric. When implementing an application, operations can be
performed on the VPBs or mapped onto the fully reconfigurable portion of the chip. An instance of our
SPS architecture is generated for a given set of applications (specified by C or Fortran code). The function-
ality of the VPBs is tailored towards implementing those applications efficiently. The VPBs are customized
and fixed on the chip; they do not require configuration, hence there are considerably less configuration
bits to program as compared to the implementation of the same design on a traditional FPGA.

The motivation is to automate the process of developing hybrid reconfigurable architectures that target
a set of applications. These architectures would contain VPBs that specially suit the needs of the particular
family of applications. Yet, the adaptable nature of our architecture should not be severely restricted. The
SPS remains flexible enough to implement a very broad range of applications due to the reconfigurable
resources. These powerful features help the architecture maintain its tight relation to its predecessors,
traditional FPGAs. At the same time the SPS is forming one of the first efforts in the direction of context-
specific programmable devices. 

In general, two aspects are part of the SPS system. The first area involves generating a context-specific
architecture given a set of target applications. Once there is a context-specific architecture, one must also
be able to map any application to the architecture.

36.4 Overview of SPS

Versatile Parameterizable Blocks (VPBs)

The main components of SPS are the VPBs. The VPBs are embedded in a sea of fine-grain programmable
logic blocks. Consider a lookup table (LUT) based logic blocks commonly referred to as combinatorial
logic blocks (CLBs), though it is possible to envision other types of fine-grain logic blocks, e.g., PLA-
based blocks.

Essentially, VPBs are hard-wired ASIC blocks that perform a complex function. Because the VPB is
fixed resource, it requires little reconfiguration time when switching the functionality of the chip.*
Therefore, SPS is not limited by large reconfiguration times like current FPGAs. But, the system must
strike a balance between flexibility and reconfiguration time. The system should not consist mainly of
VPBs, as it will not be able to handle a wide range of functionality.

FIGURE 36.2

* By functionally, we mean the application of the chip can change entirely, e.g., from image detection to image
restoration, or part of the application can change, e.g., a different image detection algorithm.
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There is a considerable range of functionality for the VPBs. It ranges from high-level intensive tasks
such as FFT to a “simple” arithmetic task like addition or multiplication. Obviously, there is a large range
of complexity between these two extremes. Because we are automating the architecture generation process,
we wish to extract common functionality for the given context (set of applications). The functionality
should be as complex as possible while still serving a purpose to the applications in the context. An
extremely complex function that is used frequently in only one application of the context would be wasted
space when another application is performed on that architecture.

The past decade has brought about extensive research as to the architecture of FPGAs. As we previously
discussed, many researchers have spent copious amounts of time analyzing the size and components of
the LUT and the routing architecture. Instead of developing a new FPGA architecture, the SPS leverages
the abundant body of FPGA architecture knowledge for our system. Embedding the VPBs into the
programmable logic is the most important task for the SPS architecture generation. 

SPS Framework

In this section, the tools and algorithms that actually generate strategically programmable systems and
perform the mapping of applications on the architecture are discussed. The architecture formation phase
and the architecture configuration phase are the two major parts of the framework. The SPS framework
is summarized in Fig. 36.3.

Architecture Formation

This task can be described as making the decision on the versatile programmable blocks to place on the
SPS chip along with the placement of fine-grain reconfigurable portion and memory elements, given an
application or class of applications. In this phase, SPS architecture is customized from scratch given
certain directives. This process requires a detailed description of the target application as an input to the
formation process. A tool will analyze these directives and generate the resulting architecture. Again, the
relative placement of these blocks on the SPS chip along with the memory blocks and the fully recon-
figurable portions need to be done by the architecture formation tool.

Unlike a conventional fine-grain reconfigurable architecture, a uniform distribution of configurable
logic blocks does not exist on the SPS. Hence, for an efficient use of the chip area as well as high performance,
the placement of VPBs on the chip and the distribution of configurable logic block arrays and memory
arrays among those are critical. The fact that the routing architecture supports such hybrid architecture is
equally important and requires special consideration. If the routing architecture cannot provide sufficient

FIGURE 36.3
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routing resources between the VPBs and the configurable blocks, the hardware resources will be wasted. The
type and number of routing tracks and switches need to be decided such that the resulting routing
architecture can support this novel architecture most efficiently. The most important issues here is the
routability of the architecture and the delay in the connections.

Fixed Architecture Configuration

Another case to be considered is mapping an application onto a given architecture. At this point we need
a compiler tailored for our SPS architecture. This SPS compiler is responsible for three major tasks.

The compiler has to identify the operations, groups of operations, or even functions in the given
description of the input algorithm that are going to be performed by the fixed blocks. These portions
will be mapped onto the VPBs and the information regarding the setting of the parameters of the VPBs
will be sent to the SPS chip.

Second, the SPS compiler has to decide how to use the fully reconfigurable portion of the SPS. Based
on the information on the available resources on the chip and the architecture, mapping of suitable
functions on the fine-grain reconfigurable logic will be performed. Combining these two tasks the
compiler will generate the scheduling of selected operations on either type of logic. 

Finally, memory and register allocation need to be done. An efficient utilization of the available RAM
blocks on the SPS has to be realized.

36.5 Target Applications

The first set of applications is DSP applications. Repetitive arithmetic operations on a large amount of
data can be very efficiently implemented using hardware. The primary examples focus on several image-
processing applications. This soon will be extended to cover other types of applications. First, algorithms
that have common properties and operations are grouped together. Such algorithms can use a common
set of VPBs for their implementation. The algorithms and the classes to which they belong are summarized
in Table 36.1.

Image-processing operations can be classified into three categories. Those that generate an output
using the value of a single pixel (point processing), those that take a group of neighboring pixels as input
(local processing), and those that generate their output based upon the pixel values of the whole image
(global operations) [12]. Point and local processing operations are the most suitable for hardware imple-
mentation, because they are highly parallelizable. We have designed three blocks, each representing one
algorithm class. The blocks that we are currently considering are described in the following. Later, a
reference will be made to the implementation of these blocks on fully reconfigurable logic versus the
parameterized block realization and present the potential reduction in the number of configuration bits.

Filter Operations Block
Many signal-processing algorithms are in essence filtering operations. Basically weighted sum of a col-
lection of pixels indicated by the current position of the mask over the image is computed for each pixel.

The filter block is currently the most complex block we have designed. It is developed to cover an
iterative image restoration algorithm, and several other filtering operations such as, mean computation,
noise reduction, high pass sharpening, Laplace operator, and edge detection operators (e.g., Prewitt,
Sobel). The block diagram is shown in Fig. 36.4.

TABLE 36.1 Classification of Algorithms

Algorithms Operations Class

Image restoration, mean computation, noise 
reduction, sharpening/smoothing filter

Weighted sum, addition, 
subtraction, multiplication

Filter operations

Image half-toning, edge detection Comparison Thresholding
Image darkening, image lightening Addition, subtraction Pixel modification
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The general form of the computation that this block performs is given by the following equations:

weighted sum = Sum{wi × input_pixelI}
output pixel value = B × input_pixel_value + A × pixel_value_from_prev_iteration − b

× weighted_sum + c × weighted_sum

This block takes five parameters that define its operation. The mask coefficients array holds the values
of the coefficients. The parameters B, A, and c all take the value zero for all the functions except the
iterative image restoration algorithm.

Thresholding Block
The operators in this class produce results based on a single pixel’s value. The computation is rather
simple; it compares the value of the input pixel to a predetermined threshold value. The output pixel
value is determined accordingly. The parameters of this block are the threshold value T and the algorithm
selection input. For the image halftoning application, the threshold value T is set to be 127, where the
pixel values range between 0 (black) and 255 (white). If the pixel value is above threshold, output is given
as 255, otherwise it is 0. For the edge detection operation, the output is set equal to the input value if
the pixel value is above threshold, and to 0 otherwise.

Pixel Modification Block
Pixel modification operations are point-processing operations. This block performs darkening, lighten-
ing, and negation of images. It takes two parameters, J and algorithm selection input ALG. For the
darkening operation a positive value J is added to the input pixel value. Lightening is achieved by subtracting
J from each input pixel. The negative of an image is achieved by subtracting the input pixel value from
J, which takes the value 255 for this case.

36.6 Experiments

In this section, the author presents the experiments to estimate the potential gain in reconfiguration time
that our SPS architecture will yield. This is an exploration of the reduction in reconfiguration bits that
would follow as a result of providing preplaced computation blocks with our coarse grain architecture.

Application Profiling

First, a profiling has been done on the image processing benchmarks in order to gain insight into what
type of components are used more frequently. Such a profile can give directives to the architecture formation
tool and guide it to employ certain blocks. Looking at the numbers and types of components that were
selected by our scheduling tool, we have obtained the component usage profile as shown in Fig. 36.5.

FIGURE 36.4
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The first version of the experimental SPS architecture will be created, given the directives from the profiling
information. According to Fig. 36.5 the most popular component is the adder with an average of
approximately 14 adders per benchmark. Some components such as the 8-bit multiply and bit-wise could
not average over 1. These components can be eliminated and we will focus on the rest and decide how
many of each of the remaining ones to use on the SPS. If the numbers are normalized according to the
constant multiplier, for each constant multiplier there would be one comparator, one subtractor, two
right shifters, two left shifters, and seven adders. In the next section, this information will be used to
estimate the gain of fixing different numbers of components on the chip. The start point will be the
relative usage values given by our analysis.

Reconfiguration Time

In the ideal case, the preplaced blocks should cover all the operations in our target applications such that
we can fully exploit the benefits of the custom designed high-performance blocks and improved recon-
figuration time. In reality it is not possible to create such an architecture that would support every
operation that might be encountered in a wide variety of applications. Hence, in cases where provided
blocks are not adequate, extra components are instantiated on the reconfigurable fabric. Here, we evaluate
the gain that the VPBs would bring to the configuration process. Our scheduler uses the blocks that are
made available and as many additional components as necessary for the best latency. As a result it produces
an assignment of the operations to the hardware resources.  

Compare the implementation of the same design on two architectures: a traditional fine-grain FPGA
and a SPS. We are fixing certain blocks on the SPS assuming they are pre-placed blocks on the chip. These
blocks will be the gain in reconfiguration time if they are used by the given application. The potential gain
is modeled in configuration time by assuming that the number of configuration bits is proportional to the
amount of logic to be implemented on the reconfigurable fabric. The higher the contribution of the pre-
placed blocks is to the total design, the more reduction in reconfiguration time is achieved.

Initially, an architecture is evaluated, which contains low-level blocks such as adders and subtractors.
A set of functional blocks fixed on the chip is provided to the scheduler for operation assignment. The
scheduler decides on the types and numbers of additional components, if they are needed. The first exper-
iment fixes seven 8-bit adders, one 8-bit subtractor, two right shifters, two left shifters, and one constant
multiplier. Then we have doubled the amount of hardware fixed in proportion at each step except the last
one, where we have increased the fixed hardware 50% from the previous setup. Figure 36.6 presents the
relative gains in configuration times for different setups. Observe how the gain in reconfiguration time
improves with more logic provided, and how this trend saturates at a certain point. For the initial archi-
tecture setup the average reduction in reconfiguration time is 35%. Observe that, as resources available
on the chip are duplicated, this reduction goes as high as 75%.

FIGURE 36.5
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If a VPB can cover all operations of an application, then the largest gain can be obtained. Our image
processing blocks presented in Section 36.5 will serve this purpose. They are capable of supporting several
different image-processing applications. For the three blocks that we are initially considering, the potential
savings in the number of programming bits is shown in Table 36.2. We have synthesized three parame-
terized designs for these blocks and obtained area information. Using the CLB count for these blocks we
can estimate the number of programming bits required, proportional to the size of the designs just as
we did for the first set of experiments. We assume that the reconfigurable fabric is similar to a Virtex
chip. By using the numbers reported in [13] we derive the number of programming bits required per
CLB and hence per parameterizable block. 

36.7 Conclusion

A novel reconfigurable architecture was presented. The SPS can provide the degree of flexibility
required in today’s systems. Although offering high-performance for its application set and still a
high degree of flexibility for other applications, the architecture promises a good performance and
smaller reconfiguration time as well. Experiments indicate that a proper selection of common blocks
among a fairly wide range of applications can yield an average reduction of 35% up to 100% in the
number of programming bits that need to be transferred to the chip for configuration/reconfiguration.
Because the VPBs eliminate a considerable amount of programming switches on the chip, the
improvement in delay will be accompanied by improved power consumption as well. The individual
VPBs will be designed targeting the best trade-off between delay and power consumption. Imple-
mentation of applications that are within the covering region of this system will highly benefit from
these abilities. 

TABLE 36.2 Programming Bits Required Implementing the VPBs 
with Reconfigurable Logic

Parameterizable Block Size (CLBs) Programming Bits

Pixel modification 30 29,910
Thresholding 11 10,967
Filtering 99 98,703

FIGURE 36.6
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37.1 Reconfigurable Computing

John Morris

Preamble

Architects of general-purpose processors face a herculean task: to design a processor that will run every
application fast. However, applications vary widely in instruction mix, frequency, and patterns of data
access, input and output bandwidth requirements, etc. A designer may incorporate elaborate and space-
consuming circuitry that simulation shows will dramatically improve performance for one application
but has no effect on another—or worse, slows it down. For example, designers will normally incorporate
as large a cache as space allows on a die, since cache speeds up most applications; however, the data cache
adds nothing to the performance of an application that copies data from one place to another.

Programmable hardware can be used to build systems in which the circuitry matches the structure of
the problem. In particular, inherent parallelism in problems, which a general-purpose processor—despite
multiple “go-fast” enhancements—cannot exploit, can be exploited in a system in which multiple circuits
are used to speed up the computation.

Programmable Hardware

Programmable hardware has evolved in capability and performance—tracking processor capabilities for
many years now. Designers have a wide spectrum of devices that they can draw upon—from ones that
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provide a handful of gates and flip-flops to ones that provide well over a million gates.1 In addition,
modern devices provide: 

• Considerable on-chip memory: this partially overcomes an inability of early devices to effectively
solve problems that required more than a few memory bits

• Large numbers of I/O pins—permitting high data bandwidths between a custom processor and
its environment

• Multiple I/O protocols, such as LVDS, GTL, and LVPECL—enabling high speed serial channels
between the device and other components of a system

Programmability may be provided by a number of technologies: 

• Fuses or anti-fuses, in which links are programmed open or closed

• EEPROM, in which a configuration bit is stored in nonvolatile read-only memory, and

• Static RAM cells, which store configuration bits, but, which need to be reloaded every time the
device is powered up

Thus, a designer has a broad palette of devices on which to base a system design. All the usual trade-offs
apply: in particular, the ability to change the circuit by reprogramming it invariably introduces a speed
penalty. A configurable circuit is more complex and has longer propagation delays than a fixed one: this
translates to a slower maximum clock frequency. This trade-off is discussed further when we consider
whether an application is a good candidate for a reconfigurable processor compared to a general-purpose
commodity processor.

A number of terms have been used to describe programmable devices. Simple early devices (ones with
a simple programmable and-or array, coupled with ~10 flip-flops and ~20 I/O pins) were commonly called
“programmable array logic” chips or PALs, but a host of other similar terms have been used for marketing
purposes. The most important group of devices for building processors are now almost universally termed
“field programmable gate arrays” (FPGAs)2 and this chapter section will focus on them as the key building
blocks of a reconfigurable system. As with general-purpose processors, designing a “universal” FPGA is
essentially an impossible task and a number of different architectural styles have been proposed and
manufactured. The following subsections will describe the key elements of some representative devices.

FPGA Architectures

An FPGA’s capability can usually be described in terms of three elements:

• Logic blocks: These are small blocks of logic, commonly consisting of a small number of simple
and-or arrays, some multiplexers for steering signals, one or two flip-flops. Other features such as
memory bits, lookup tables, special logic for handling the carry chains in adders, etc., may be
present also. Marketing pressures have produced a bewildering array of names for these blocks:
fortunately, most of them are readily understood. Examples are logic array blocks (Altera APEX
20k family), logic elements (Altera FLEX 10KE), macrocells (Altera MAX7000/MAX3000), con-
figurable logic blocks (Xilinx), and programmable function units (Lucent ORCA).

• Routing resources: A typical FPGA will provide lines of various lengths to interconnect the logic
blocks. Short lines provide low propagation delay paths between neighbouring blocks; longer lines
connect more distant blocks with low delay. A small number of buffered low delay lines, which
can interconnect large groups of logic blocks are usually provided for clocks.

12001 value: apply Moore’s Law for 2002 and forward.
2Market habits die hard, though: Altera persists in referring to its devices as programmable logic devices (PLDs).
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• I/O buffers: Special purpose logic blocks provide interfaces to external circuitry. In modern devices,
the I/O buffers provide a variety of electrical protocols eliminating the need to use special interface
buffers. Reducing chip-to-chip connections provides greater data transfer bandwidth between the
reconfigurable processor and its environment. 

Recent devices include memory blocks, which may be configured in several ways.

Xilinx 4000 and on
Xilinx’ 4000 series devices [1] were not the first of their family, there were several antecedents; however,
in order to avoid turning this chapter section into a history lesson, I will describe it first the author. It
is a good representative of a number of commercially available devices.

Control Logic Blocks
Figure 37.1 shows the essential features of the 4000 series control logic blocks (CLBs). It contains three
logic function blocks—each capable of implementing any arbitrarily defined boolean function of its
inputs—and two flip-flops controlled by a common clock. “Programming” the device sets the logic
functions in the logic function blocks, the signal steering multiplexors and the set/reset control. There are
nine basic inputs: F1–4, G1–4 and C4 (a direct data input to the flip-flops) and four outputs—two registered
and two combinatorial. Paths can be chosen which bypass either or both flip-flops. Xilinx’s designers have
chosen to implement a moderately complex logic block. In contrast, Altera devices have simpler logic
blocks with a single flip-flop[2] and Quicklogic’s super cells are more complex [3]. Lucent refers to the
ORCA logic block as a programmable functional unit (PFU) reflecting its complexity: 19 inputs and
4 flip-flops [4]. Additionally, the logic in the function blocks can be configured to act as a block of RAM,
which can be configured as 16 × 1, 16 × 2, or 32 × 1 bit blocks. Without this capability, applications
requiring memory are forced to use the CLB flip-flops, using a whole CLB for each 2 bits. This was a
significant limitation of early devices, but newer ones, in addition to the 32 bits per CLB provided in the
4000 series, provide dedicated RAM blocks with significant capacities [2,5].

Routing Resources
A great challenge to FPGA designers is achieving a good balance in the allocation of die area to program-
mable logic (the CLBs) versus routing resources. The XC4000 designers provide a combination of short
lines which connect each CLB to a programmable switch matrix adjacent to it, double and quad length
lines which connect every second (or fourth) switch matrix, and long lines which run the entire length
of a device (see Fig. 37.2). Connections through the switch matrices provide ultimate flexibility—any

FIGURE 37.1 Simplified block diagram of the Xilinx XC4000 device control logic block. (The XC4000 CLBs have
additional capabilities [1].)
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CLB may be connected to any other; however, there is a penalty: the switch points are implemented with
pass transistors which add to the propagation delay of any signal passing through them. Thus, the short
lines through the switch matrices should not be used for critical signals connecting widely separated CLBs.
The double, quad, or long lines need to be used to reduce delays. Predicting the optimal allocation for any
application is obviously a hard task and many strategies may be seen in the commercially available devices.
For example, Altera’s Apex 20K devices employ a hierarchical structure, grouping basic logic elements (LEs)
into logic array blocks (LABs), which are in turn grouped into MegaLABs [2]. Each block has appropriate
internal routing resources. Copper is also used to reduce resistance and thus propagation delay.

I/O Buffers
I/O buffers provide circuitry to interface with external devices. Apart from input buffers and output
drivers, the main additional feature is the ability to latch both inputs and outputs. The simplified diagram
of an XC4000 I/O buffer (IOB) in Fig. 37.3 shows the output driver, input buffer, registers, several

FIGURE 37.2 Conceptual view of the routing on an XC4000 device showing the pattern of logic blocks (CLBs)
embedded in “channels” of routing resources. Direct connections to the programmable switch matrix (PSM) are shown
as well as the patterns for double lines connecting every second PSM. Similarly, quad lines (omitted) connect every
fourth PSM. Long lines run the length of horizontal and vertical channels. This is a concept diagram only: actual
devices may differ in details [1].

FIGURE 37.3 Simplified block diagram showing essential features of the Xilinx XC4000 input/output block (IOB).
(The XC4000 IOBs have additional capabilities [1].)
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inverters, and the programmable multiplexors. The inverters provide almost all combinations of normal
and inverted direct output or latched signals synchronized with direct or inverted clocks: this avoids the
need to use resources in the CLBs simply to invert signals. Limited slew rate control was also added to
the output buffers—a precursor to the support for multiple electrical protocols now found in more modern
designs.

Additional Features
Adders, including counters, occur on the critical paths in many calculations, so the 4000 series, like most
of its modern counterparts, provides “fast-carry” logic. Ripple carry adders are simple, regular, and use
minimal logic, but they must wait until a carry bit has “rippled” through all the summing (full adder)
blocks. By providing a fast, direct path for carry bits between blocks, the critical delay in a ripple carry
adder is significantly reduced. The fast carry logic is so effective that there is no advantage to be gained
from more complex adders, such as carry-lookahead ones. A carry-lookahead adder requires a much
larger number of CLBs and the signal propagation times between these additional CLBs outweigh any
benefit to be gained from a complex adder: trials with carry-lookahead adders show them to be slower
than ripple carry adders that use the fast-carry logic [6].

The special needs of global clocks are addressed by providing “semi-dedicated” I/O pads connected
to four primary global buffers designed for minimum delay and skew. The clocks of each CLB can be
connected to these global buffers, a set of secondary buffers or any other internal signal. Thus multiple
global and local clock domains can be established.

Problem diagnosis and boundary scan testing is facilitated through support for IEEE 1149.1 (JTAG)
boundary scan logic attached to each I/O buffer.

The CLB structure lends itself to efficient implementation of functions of up to 9 inputs, but address
decoders commonly require many more bits. Special decoders accepting up to 132 bits for large XC4000
devices are provided to ensure fast, resource-efficient decoding.

A simple internal oscillator and divider provides clock signals when precise frequencies are not required.

Virtex
The Virtex family [5] are enhanced versions of the Xilinx 4000 series. Improved process technology has
allowed the gate capacity to exceed one million (4 × 106 are claimed for the largest member of the family,
requiring 2 MB of configuration data). Supply voltages as low as 1.8 V allow internal clocks up to 400 MHz
to be used.

Memory
Blocks of dedicated memory are now provided, which can be programmed to a number of single- and
dual-port configurations. This will allow considerable performance enhancements for designs which were
previously forced to use external memory.

I/O Buffers
One of the most dramatic additions to the newest devices from all manufacturers is the support of
numerous electrical protocols at the I/O pins. For example, Virtex supports single-ended standards:
LVTTL, LVCMOS, PCI-X, GTL, GTLP, HSTL, SSTL, AGP-2X and differential standards: LVDS, BLVDS,
ULVDS, LDT, and LVPECL. Support for PCI-X means that a Virtex device can implement the industry-
standard PCI interface, considerably reducing the complexity of PCI cards which can now combine
interface logic, control logic, some memory, and external bus interfaces (e.g., LVDS) in a single chip.

Virtex devices are also partially reconfigurable: individual columns may be reprogrammed.

Algotronix
Algotronix’s approach to FPGA design was radically different from the Xilinx3 approach. Cells were much
simpler and used for routing as well as logic. The basic cell in shown in Fig. 37.4. By using a much simpler
cell, it becomes possible to fit more logic per silicon die and the XC6264 device [7] was rated as containing

3However, Algotronix was taken over by Xilinx and its devices appeared as the Xilinx XC6200 series [7].
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105 gate equivalents early in 1997—about twice as many as devices with distinct logic blocks and routing
resources at the same time. Routing—other than between neighboring cells—uses the logic cells pro-
grammed simply to route a signal from input to output. Signals routed in this way pass through transmission
gates and suffer significant delays, so the XC6200 devices provided a hierarchy of “FastLANE” connections,
which linked lines of 4 and 16 cells.

These devices also permitted fast reconfiguration: the SRAM cells that hold the configuration data can
be directly addressed so that part of an operating circuit may be quickly reconfigured. (By contrast, the
XC4000 devices are programmed either with a serial bit stream or byte-by-byte from an EEROM—requiring
milliseconds for a complete chip to be reconfigured.)

The “sea-of-gates” approach provided by the XC6200 devices may be viewed as one end of a spectrum
stretching from simple cell/no dedicated routing devices to complex cell/dedicated routing devices such as
the XC4000 and most other commercially available devices. Regular applications requiring large numbers
of operations or very wide uniform data paths are likely to match a sea-of-gates device better. Less regular
problems with complex control requirements—requiring functions of many signals—are likely to match
the complex logic device devices better. The industry, however, appears to have voted strongly for complex
logic block devices and the XC6200 series is no longer commercially available.

Reconfigurable Systems

Reconfigurable systems are easy to build: a designer has only to decide what interconnection patterns
will best serve the needs of target applications and some systems, e.g., UWA’s Achilles, even allow that
to be deferred. The major proportion of the circuitry may be changed once the basic hardware system
has been constructed. As a consequence, an enormous number of experimental and several commercial
systems have been built: Guccione has compiled a list, it contains summaries of over 80 systems [8]. An
attempt to cover all of these is clearly futile: a small representative sample has been chosen.

SPLASH 2

One of the best known systems is SRC’s SPLASH 2 [9]. It consists of an array of FPGAs and interface
allowing the array to be attached to a SPARC host. The FPGA array itself was composed of a number of
array boards, each containing 17 Xilinx XC4010 FPGAs—16 “computing” devices and one interface
device. Typical of devices of its time (~1990), the XC4010 can provide limited amounts of memory itself,
so 512 KB of conventional memory were attached to each FPGA. Apart from nearest neighbour connec-
tions, a crossbar switch permitted dynamic (“almost” tick-by-tick [9]) connection changes to be made.

FIGURE 37.4 Block diagram of the cell in an XC6200 device. This cell is used for routing also.
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Programmable Active Memories (PAM)

A dozen copies of the variant named DECPeRLe-1 found their way into research centers around the
world and were applied to a diverse set of problems [10]. The computing surface was a 4 × 4 array of
XC3090 devices with seven additional FPGAs acting as memory and interface controllers. FPGAs in the
array were connected directly to each of their four neighbours. Devices in each row and column shared
common 16-bit buses, so that there were four 64-bit buses running the length of the array—one for each
geographic direction N, S, E, and W. Static RAM was added to provide the storage lacking in the early
devices used and FIFOs provided elasticity in a high-speed interface to a host processor. Vuillemin et al.
discuss an extensive list of problems to which PAMs were applied [10]: long integer arithmetic, RSA
cryptography, molecular biology, finite differences, neural networks, video compression, image classifi-
cation, image analysis, cluster detection, image acquisition, stereo vision, sound synthesis, and Viterbi
decoding.

They consistently applied the following rule in deciding what part of any problem should be allocated
to the hardware:

“Cast the inner loop in PAM hardware; let software handle the rest [10]!”

PAM spawned a successor, PAMETTE, a PCI card with 5 Xilinx 4000 series devices on it [11]. One
device served as the PCI interface with the remaining four arranged in a 2 × 2 matrix. SRAM and DRAM
may be added and provision is made for external connections via a daughter board. A large number of
similar boards—all with the same basic idea: place a number of FPGAs on a card, which may be inserted
into the bus of a suitable host—have been designed by research groups. Several commercial products are
also available.

SPACE

The Scalable Parallel Architecture for Concurrency Experiments (SPACE) machine was developed at the
University of Strathclyde [12]; it was followed by the SPACE-II, built at the University of South Australia
[13]. Both variants used fine-grain FPGAs (Algotronix CAL1024s in SPACE and Xilinx XC6216s in
SPACE 2) as the primary target was the simulation of highly concurrent systems such as digital circuits,
traffic systems, particle flow, and electrical stimuli models of the heart. SPACE 2 processor boards contained
8 XC6216 processor FPGAs and an XC4025 providing a PCI interface to an Alpha host. On each board,
the fine-grained processors are connected in a mesh in order to provide a seamless array of gates on the
board. Additional memory (32 Mb of static RAM) was present on each board. A secondary backplane
allowed high-bandwidth connections between SPACE 2 boards.

Achilles

The Achilles architecture aims to provide much more flexible interconnection patterns: Figure 37.5 shows
the 3-D arrangement in which small PCBs containing a single FPGA are arranged in a vertical “stack”
[14,15]. A limited number of fixed bussed interconnections are provided at the base of the stack, com-
mitting only about one-third of the available I/O pins to fixed interconnect. A second side of the stack is
used for programming and diagnostic connections: this enables the stack to be “gang” programmed—
each FPGA is loaded with an identical program—or individually. The remaining two sides have uncom-
mitted connections: connectors are provided for groups of eight signals and ribbon cables are used to
connect FPGAs as the target application requires. This system offers wide variations in communication
patterns at the expense of manual reconfiguration.

Applications

The list of applications, which have been successfully implemented in reconfigurable hardware systems,
is long; it includes applications from such diverse areas as:

• Image processing

• Cryptography
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• Database and text searching

• Compression 

• Signal processing

It is generally straightforward to transfer an algorithm from a general-purpose processor to reconfigurable
hardware; synthesizers which convert VHDL or Verilog models into the bit streams necessary to program
an FPGA-based system are available and efficient; however, a successful transfer must provide a solution
which is more efficient, by some criterion, than the same algorithm running on fast commodity general-
purpose processors. Reconfigurable hardware generally runs slower,4 consumes more power, and costs
more than commodity processors. This remains true at most points in the performance spectrum. At
the low performance end, small processors, e.g., Motorola’s HC11 series, are available at very low cost
and very low power consumption and will thus perform simple control and data processing tasks
effectively. Although a modern FPGA may outperform the relatively slow processors available at the low
end of the performance spectrum, there are a host of general-purpose embedded processors, e.g., the
PowerPC-based devices, which will provide the additional processing power while still consuming less
power and costing less than an FPGA. At the high performance end of the spectrum, the internal clock
speeds of FPGAs lag behind those of commodity processors and thus their sequential processing
capability does not match that of, for example, a state-of-the-art Pentium or SPARC processor; however,
although it is clear that reconfigurable hardware will not provide efficient solutions for all problems,
there are areas in which it is extremely efficient.

The general characteristics of successful applications are

(a) Sufficient parallelism: The processing algorithm must have sufficient inherent parallelism to allow
multiple processing pipelines to be created. This parallelism can be either direct or pipelined.

(b) Low storage requirements: Early FPGAs provided very few bits of memory—the flip-flops in logic
blocks were an expensive way to provide memory. Later FPGAs have addressed this problem by
allowing the configuration bits to be used as lookup tables and thus provides tens of bits per logic
block. The newest generation of FPGAs provide blocks of dedicated memory but capacities are

FIGURE 37.5 Achilles 3-D stack. Each small PCB contains one FPGA: connections are made by cabling between
the connectors visible on each small PCB.

4However, Tsu et al., argue that there is no inherent reason why an FPGA should be slower [16].
© 2002 by CRC Press LLC



                     
measured in megabits, not megabytes. Although external memory can always be added and wide
buses employed to provide high bandwidth, this uses valuable I/O pins, the path to external memory
is likely to become a bottleneck and limit performance.

(c) “Decision-free” processing patterns: Multiplexors in the data paths will readily handle simple deci-
sions, which switch the dataflow between down-line functional blocks, but complex decision trees
will generally not map efficiently to hardware. When large numbers of branches exist, inevitably
many paths are little used and thus expensive to implement in fixed hardware relative to their
benefit. In particular, error handling logic will generally be complex relative to its frequency of
use. Complex decision logic is efficiently handled in high-performance modern processors, which
move common logic to cache at the expense of little used code. When branches have similar
probabilities, speculative execution ensures good average rates of instruction completion. However,
this criterion for successful hardware implementation should be applied with caution: if high
throughput for all possible processing paths is required, then the resources devoted to implement-
ing all paths (including little used ones) may be justified. In the near future, dynamically recon-
figurable logic may also provide effective solutions when there are complex decision trees.

(d) Ability to use local (i.e., between neighbouring devices) data paths in problems that are large
enough to require multiple devices. Most systems provide high-bandwidth paths between nearest
neighbors with lower-bandwidth multiple device buses and global interconnects. The 3-D Achilles
design provides more device–device data path flexibility but at a cost—wiring patterns must be
set up manually for each application [14].

(e) Integer arithmetic: Although it is possible to implement arbitrary precision floating-point proces-
sors in FPGAs, the number of logic blocks required and hence the delays introduced by data paths
between logic blocks make them expensive in area and low in performance compared to those
found in superscalar processors.5 On the other hand, the ability to easily implement arbitrary
precision integer arithmetic allows a reconfigurable system designer to pack more functional units
of higher performance into a given area by choosing the minimum required word length.

Image Processing

Real-time image processing presents a classic application for custom processors. A stream of pixels
emanating from a camera can be passed through a wide deep pipeline—performing as many unrelated
and complex operations on each pixel as needed. Unrelated operations (e.g., threshholding and masking)
are performed in parallel and complex operations (e.g., masking) are performed in deep pipelines. For
basic operations, little storage is required and the relatively inefficient memory on an FPGA suffices. A
masking operation, such as applying a 3 × 3 mask to a group of neighboring pixels, requires the storage
of two scanlines in a shift register and thus is feasible in large FPGAs. The reverse process, visualisation, or
the processing of machine generated images for display is already the domain of special purpose proces-
sors, but market volumes have justified use of ASICs.6

Stereo Vision

The matching problem dominates research into fully automated stereo vision systems; it requires the
comparison of pixels (or regions of pixels) to determine matches between corresponding segments of two
images. The distance between matching regions on the left and right images (the disparity) is combined
with camera system geometry to determine the distance to objects in the field of view. Without the apparent
ability of a human brain to “jump” to the obvious match, a machine must try all possible disparities in
order to find candidate matches between pixels or to correlate regions. Objects close to the camera system

5Superscalar processor manufacturers are also prepared to invest large amounts in order to win benchmark compe-
titions, which allows man-years of effort to be used to optimize individual circuits and layouts.

6However, prototyping designs which are destined for ASICs are a major application for reconfigurable processors.
They can be used to ensure that a design is correct and that the silicon will function correctly first time. Some foundries
will take FPGA-based designs and convert them directly to ASICs.
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have disparities approaching infinity, but one of the major applications of stereo vision is collision avoidance
in which it is possible to put a lower bound on the distances of objects from the camera.7 In practical
camera systems, this results in a need to consider objects with disparities from 0 pixels (i.e., at infinity)
to of the order of 10–100 pixels at closest permissible approach. Thus this problem has all of the required
attributes for an efficient pipeline parallel implementation: 

• Parallelism of 10–100 or more

• Simple calculations (comparing pixel intensities) 

• Regular computation (the same correlation operators are applied to each pixel)

Woodfill et al., using the census transform to reduce problems caused by intensity variations and depth
discontinuities, programmed a PARTS engine [17] to calculate object depths from pairs of 320 × 240 pixel
images. With a maximum disparity of 32, their system was able to compute depth at 42 frames per second
[18]. They estimated that it was performing about 2.3 × 109 RISC equivalent operations per second.
Piacentino et al. have built a video processing system (Sarnoff Vision Front End 200) in which reconfig-
urable processing elements are used not only for stereo computations, but for motion estimation and
warping also [19]. They estimate that the VFE-200 can provide ~500 GOPS of processing power.

Encryption/Decryption

Shand and Vuillemin have used RSA cryptography as a benchmark for their PAM machines; they were
able to demonstrate an order of magnitude improvement in performance relative to the best software
implementations of the time. In 1992, PAM achieved over 1 Mb/s for 512 bit keys compared to 56 kb/s
on a 150 MHz Alpha processor [20]. This relative performance will not change; state-of-the-art FPGAs
can now fit the entire PAM system in a single device, giving the reconfigurable hardware system additional
speed as it no longer needs to use slower inter-device links or external memory.

Symmetric encryption algorithms are easily and efficiently implemented in FPGAs; they require a
number of “rounds” of application of simple operations. Each round can be implemented as a pipeline
stage. Thus, as an example, TwoFish [21] requires 16 rounds of lookup table accesses, which can be imple-
mented as a 16-stage pipeline. This allows a stream of 32-bit input data words to be encrypted at very
high input frequencies with a latency of 16 cycles. In a study of four AES candidates, Elbirt et al. report
an order of magnitude difference between FPGA-based implementations and the best software ones [22];
however, they also note that for one AES candidate, CAST-256, FPGA implementations were slower than
their software counterparts. This result highlights the fact that the performance advantage of commodity
processors can only be overcome when the problem matches the capabilities of FPGA-based custom
processors. By adding further pipeline stages within each round—24 for TwoFish, for example—Chodowiec
et al. were able to achieve throughputs greater than 10 Gb/s for five of the AES candidate algorithms (12 Gb/s
using a 95 MHz internal clock for Rijndael, the eventual winner of the AES competition) [23]. 

Secure communications systems require encryption hardware; placing the encryption subsystem in
hardware makes it less susceptible to tampering and enables keys to be hidden in “write-only” registers.
Reconfigurable hardware provides an additional capability, algorithm agility [24]. This not only enables
an encryption algorithm which has become insecure to be replaced with a secure one, but permits an
algorithm independent security protocol to use the hardware effectively, loading the appropriate algo-
rithm on a transaction-by-transaction basis. 

Compression

Using a systolic array style implementation of the LZ algorithm, Huang et al. were able to obtain through-
puts 30 times greater than those achievable with commodity processors [25]. This speedup was obtained
even though their FPGAs (Xilinx XC4036s) were clocked at 16 MHz versus 450 MHz for the fastest
software implementation. Huang et al. believe that even better relative performance would be obtained

7The vehicle carrying the camera system is expected to move away before this bound is violated.
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from modern FPGAs, e.g., Altera’s APEX 20K devices have built-in content addressable memories (CAMs),
which would speed up the process of matching input strings with the dictionary.

Arithmetic

When designing a reconfigurable system, the widths of arithmetic function units, and hence their propa-
gation delays, can be constrained trivially to the number of bits actually required for the application.
This saves space, logic resources, and time. Designers also have considerable flexibility when complex
arithmetic expressions must be evaluated; they can choose a single-stage combinatorial circuit or increase
throughput by adding registers and forming a pipeline. This can often be done at essentially no cost: the
logic blocks contain flip-flops already, so there is no space penalty and negligible time penalty. 

An application requiring floating point arithmetic may be a poor candidate for a reconfigurable
system—to achieve performance comparable to that offered by a commodity processor will require sig-
nificant effort; however, reconfigurable systems are excellent at processing streams of data from sensors:
this data will be fixed point and readily handled by the same circuits used for integer arithmetic.

CORDIC
Even trigonometric functions of fixed-point data are readily implemented using CORDIC arithmetic.
CORDIC algorithms are iterative, but require only shifts and adds. Again, the designer has a large space
in which to work [26]. Bit-serial designs are simple and compact, but require many cycles; this may not
be a problem if the input data rate is relatively slow. An iterative bit-parallel design will require more
space but fewer cycles. Finally, the iterative loop can be unrolled by one or more stages to produce the
desired throughput/space balance.

String and Text Matching 

Genetic sequencing technology is just one technology that is producing enormous databases of data that
must be searched. Thus, there has been considerable interest in hardware to accelerate the process of
comparing new sequences with those in existing databases. Biologists use a measure known as the edit
distance when comparing sequences. A simple implementation of a dynamic algorithm can compute the
edit distance in O(mn) time (m, n = length of source and target sequences, respectively), but if the calculation
is carried out on a processor array, then it can be seen that all operations on the diagonal may be
performed in parallel. A single board Splash 2 machine achieved a factor of 20 speedup over a CM-2—a
massively parallel processor [27]!

Similarly, full text searching of documents for relevance has sufficient parallelism to make FPGA-based
hardware effective. When document content cannot be adequately described by keywords, a searcher will
supply a list of relevant words and require that every word of every document be checked against the list
in order to build a relevance score for each document. Gunther et al. demonstrated that the original
SPACE machine was effective in this application [28]. They used a technique called “data folding” in
which the data are built into the circuitry. Match circuitry is built for each of the words in the list of
relevant words and incorporated into a fixed matching structure. This is an excellent example of the
power of partial reconfiguration; circuit patterns corresponding to the relevant words are loaded for each
new search. They demonstrate that matching in hardware does not need to be limited to direct character-
by-character matching. It is possible to implement simple regular expressions allowing, e.g., matching
on the root of a word only. Overall the system is able to test for each word in the relevant list in parallel
and aggregate a weighted relevance score as the document is read, results become available at a rate which
is basically limited by the rate at which documents can be read from disc.

Simulations

Cellular automata map readily to reconfigurable systems. They involve arrays of cells: each cell is a simple
finite state machine whose behavior depends only on its current state and the state of cells in its immediate
environment. Milne extends the fundamental cellular automata concept by removing the restrictions on
identical components, uniform update and synchronization of all updates to create generalized cellular
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automata (GCA); an example of traffic system simulation is described—digital circuits and forest fire
development are further systems, which have suitable characteristics [13]. 

Petri net models are also used extensively in simulation studies; as with cellular automata, there is
abundant low level parallelism to be exploited—the firability of each transition can be evaluated simul-
taneously. Petri net models are based on simple units—places and transitions. It is possible to create generic
models in VHDL for these units [14], paving the way to automatic generation of VHDL code from natural
visual representation of Petri nets, which can be compiled and downloaded to suitable hardware. A single
Achilles stack is able to accommodate a model containing of the order of 200 transitions [14].

Reconfigurable Processors vs. Commodity Processors

Any special purpose hardware has to compete with the rapid increase in performance of commodity
processors. Despite the relative inefficiency of a general-purpose processor for many applications, if the
special purpose hardware only provides a speedup of, say 2, then Moore’s Law will ensure that the advantage
of the special purpose hardware is lost in a year.8 When assessing whether an application will benefit
from use of a reconfigurable processor, one has to keep the following points in mind.

Raw Performance

The raw performance of FPGA-based solutions will always lag behind that of commodity processors.
This is superficially reflected in maximum clock speeds: an FPGA’s maximum clock speed will typically
be one-third or less of that of a commodity processor at the same point in time. This is inevitable and
will continue: the reconfiguration circuitry loads a circuit and requires space, increasing its propagation
delay and reducing the maximum clock speed. 

Parallelism 

Thus, to realize a benefit from a reconfigurable system, the application must have a considerable degree
of inherent parallelism which can be used effectively.

The parallelism may be exploited simply by deploying multiple processing blocks—each processing a
separate data element at the same time—followed by some “aggregation” circuitry, which reduces results
from the individual processing blocks in some way.

Long Pipelines

Alternatively, a long pipeline may be employed in which the same data element transits multiple pro-
cessing blocks in successive clock cycles. This approach trades latency for throughput: it may take many
cycles—the latency—for the first result to appear, but after that new processed data are available on
each clock cycle giving high throughput. Many signal processing tasks can effectively use long pipelines.

Memory

FPGA devices do not provide large amounts of memory efficiently: recent devices (e.g., Altera’s APEX
20K devices [2]) do attempt to address this deficiency and provide significant dedicated memory resources;
however, the total number of memory bits remains relatively small and is insufficient to support appli-
cations which require large amounts of randomly accessible data. This means that, although preprocessing
an image which is available as a pixel stream from a camera for edge detection is feasible, subsequent
processing of the image in order to segment it is considerably more difficult. In the first case, to apply a
3 × 3 mask to the pixel stream, only two preceding rows of the image need be stored. The application of
the 3 × 3 mask requires a maximum of nine basic multiply-accumulate operations. Thus, it can be effectively
handled in a 9-stage pipeline—easily allowing an edge-detected image to be produced at the same rate
as the original image is streamed into the FPGA (allowing for an 8-pixel clock latency before the first
result is available). In the second, the whole image needs to be stored and be available for random access.
Although an FPGA with auxillary memory might handle this task, it is less likely to offer a significant
advantage over a general-purpose processor.

8The author has (somewhat arbitrarily) shortened the “break-even” point from the 18 months of Moore’s Law,
because the extra cost of additional hardware needs to be factored in versus using cheap commodity hardware.
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Regularity

A processing pipeline with large numbers of decisions (if .. then .. else blocks in a high-level language
program) is also not likely to be efficiently implemented in reconfigurable hardware. In such a pipeline,
there will generally be a large number of branches which are rarely taken, but all need to be implemented
in hardware, taking up considerable space (or numbers of logic blocks). Paths with large numbers of
blocks of variable size also present a problem for the fixed routing resources in a device.

Power and Cost

FPGAs consume more power and cost more per gate than either commercial processors or custom ASICs.
Although FPGA technology tracks processor technology and power consumption is being reduced
through lower power supply voltages and reduced transistor size, it is unlikely that one will see recon-
figurable technology in micro power applications such as wearable computers; however, experiments are
underway to test their viability in spacecraft, where power is limited [29]. The cost factor is generally
offset in low volume production by the significantly lower design cost, faster design cycles, and ease with
which modifications can be incorporated. 

Dynamic Reconfiguration

There is considerable interest in the ability to reconfigure a running circuit. This would allow applications
(or groups of applications) to load circuits on demand to meet the requirements of a current task. This
would make a reconfigurable system a truly general purpose one: able to load processing tasks as demanded
by the input data.

Although most commercial devices require a complete new configuration program to be loaded every
time, usually by paths with limited bandwidths requiring thousands of cycles to completely reprogram
a device, some commercially available devices have had limited dynamic reprogramming capabilities for
some time, e.g., the original Algotronix CAL1024, its successor the Xilinx XC6200 (both now out of
production), Atmel’s AT6000 (now superceded), AT40K, and Xilinx’s Virtex family.

These devices extend the standard device programming model by allowing a part of the configuration
to be reloaded from an external source: an alternative has been proposed—the DPGA model [30]. A
DPGA device would hold several configurations in the configuration memory for each logic block and
allow the context to select one dynamically. The flexibility gained from this arrangement allows much
more effective gate utilization—at the expense of the additional space for the configuration memory and
context selection logic.

Noting some of the limitations introduced by conventional approaches to dynamic reloading of
configuration data, Vasilko and Ait-Boudaoud have proposed an optical system for transferring new
configuration data to a device [31]. Optical buses not only allow massively parallel data transfer but
provide an additional dimension for information transfer and thus reduce the conflict for routing space
between data paths and configuration nets. The advent of devices similar to their proposals would remove
some of the practical limitations constraining effective dynamically reconfigurable systems.

One requirement for effective run-time reconfiguration is a model which allows a computation to be
split into swappable computational blocks. Caspi et al. summarise several proposed models in introduc-
ing their SCORE (Stream Computations for Reconfigurable Extension) model [32]. SCORE divides a
computation into fixed size pages, which can be swapped between the running hardware and backup
store. A dataflow computation model is used, allowing the run-time system to manage resources: a
dataflow model is “memory-less” as far as the programmer is concerned. Data flowing between pages is
buffered transparently by the run-time system when necessary. 

Hybrid Systems

Hybrid systems couple a conventional processor and an area of uncommitted logic that may be configured
to suit the demands of algorithms in which the conventional processor cannot exploit data or pipeline
parallelism. Berkeley’s Garp processor is an example of this approach [33]. Garp contains a RISC processor
core (MIPS-II) and 32 × 23 array of logic blocks. A 24th column of logic blocks is responsible for
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communication outside the array. Logic blocks take up to four 2-bit inputs and produce 2-bit outputs:
a row of the array can thus process up to four 46-bit words. Garp’s designers hypothesize that the
reconfigurable section may be used effectively to implement the critical kernels found in most code: the
ability to hard-wire the control logic will reduce instruction fetch bottlenecks and better exploit paral-
lelism. Memory queues, which handle streaming of data to and from memory, were added because many
applications which use reconfigurable systems effectively process streams of data.

Results from the Garp simulator on a wavelet image compression program showed an overall
speedup of 2.9 compared to the MIPS processor. Individual kernels within this program showed
speedups up to 12, observed when a kernel had high exploitable instruction level parallelism and the
configuration loading time could be amortized over many compute cycles. Comparisons of Garp’s
performance with a 4-issue superscalar processor also showed significant speedups, indicating that
Garp was able to exploit more instruction level parallelism, sustaining 10 instructions per cycle in
many cases.

Programming Reconfigurable Systems

High-Level Hardware Design Languages

The design flow for a reconfigurable system is shown in Fig. 37.6; a high-level hardware design language
(HDL) is usually used for the software modeling stage: VHDL and Verilog are widely used as excellent
support tools are available. The design process is basically identical to that used for any software system:
specifications are drawn up and validated, software models created and verified and the compiled
“program” is loaded onto the target devices or burnt into ROMs. The only significant difference is that
two compilers are generally used. A simulator compiles VHDL or Verilog source and produces diagnostic
output not only as text to consoles or logged to files, but as waveforms or lists of changes in signal values.
When the designer has verified that the models perform in accordance with their specifications under
simulation, a synthesizer compiles the source again to a netlist—an intermediate representation of the
final circuit. Device-specific place-and-route tools take netlists as input and place logic into logic blocks
and configure the FPGA’s routing resources to make the necessary connections between logic blocks and
I/O pins. The output of this stage is a configuration file—a stream of bits which are loaded onto the
device to program its internal registers, multiplexors, etc. For many designs, the whole process (synthesis →
place-and-route → configuration bit stream) can be viewed as a single step black-box, which turns verified
HDL models into configuration files. Whilst it may take several hours for a complex system, it does not
require any input from the user. The designer will usually simply advise the tools whether speed or area
is the primary constraint. Significant interaction with the place-and-route tools is needed only if there
are performance constraints which cannot be met with default parameters: in this case, manual placement
of logic blocks can assist in satisfying the constraints.

FIGURE 37.6 Design flow using an HDL (e.g., VHDL).
Note the absence of a feedback loop in the synthesis
branch: for a design verified in simulation, the synthesis
process is a black box.
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Other Languages

Other routes from high-level languages are possible: Callahan et al. describe a tool which starts with
C [34]: it is aimed at “dusty-deck” systems. Of more potential for effective use of reconfigurable systems
are special purpose high-level languages such as Milne’s process algebra, CIRCAL [35].

Conclusions

In this chapter section, instead of providing a litany of praise for reconfigurable computing in all its forms,
the author has tried to set out the general characteristics of problems, which a reconfigurable processor
might be expected to solve efficiently. A key requirement is clearly sufficient exploitable parallelism, but
that may appear either as raw or pipeline parallelism. Raw parallelism is a requirement to perform many
simultaneous operations on a single item of data or the same operation on many data items, which may
be presented to the reconfigurable hardware at the same instant. Pipeline parallelism, on the other hand,
requires many operations to be performed on individual elements of a data stream, allowing a deep pipeline
to process data at its arrival rate and produce results in real time, even if some latency penalty must be paid. 

Reconfigurable systems are always competing against the inexorable rise in the power of general-purpose
processors. Although reconfigurable devices track the performance gains due to better device technology,
they inevitably lack the commercial drive that propels commodity processors forward in performance and
thus lag behind their better funded cousins in raw performance. Thus, when considering a special purpose
processor for any task, one must keep in mind the performance point at which commodity processors
will be when the design is complete. With “multimedia extensions” such as MMX and Altivec, commodity
processors even have limited parallel processing capabilities; however, these are limited to very regular
computations and a reconfigurable system—with its ability to implement multiple parallel data paths—will
generally be better at matching the “shape” of a multiple processing step algorithm. The use of high-level
design languages, such as VHDL and Verilog, also shortens design cycles making time-to-completion for
projects based on reconfigurable hardware considerably shorter than custom hardware designs. 

Thus, although problems that fail to meet the criteria are set out here, and thus will be more effectively
solved using commodity processors, the author has shown that many problem domains also exist in
which large numbers of individual problems are well suited to reconfigurable processors.

In this chapter section, discussion of successes has, for the most part, focussed on systems in which
reconfiguration times are long—requiring hours if the time for synthesis software to compile, analyze,
and place and route a model expressed in a high-level design language is included; however, there is
much active research into dynamically reconfigurable systems, which has the goal of producing hardware
whose function may be altered as quickly and conveniently as the general-purpose processors. The
significant problems with which researchers in this area are now grappling will be solved eventually.
Thus, we can anticipate systems in which parallelism present at some level in virtually all problems, which
cannot be exploited now, will be exploited by systems that have been configured on-the-fly. As with
statically programmed systems, when data paths can be provided that match problem structures, we will
obtain orders of magnitude larger processing powers efficiently. We will not need to use large processor
arrays in which many processors are needed for a few vital steps but are idle for much of the time.
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37.2 Using Configurable Computing Systems

Danny Newport and Don Bouldin 

Definitions

Configurable computing systems: Systems that use reprogrammable logic components, typically field
programmable gate arrays (FPGAs), to implement a specialized instruction set and/or arithmetic units
to improve the performance of a particular application. These systems can be reconfigured, enabling the
same hardware resource to be reused depending on its interaction with external components, data
dependencies, or algorithm requirements.
Configuration time: Time required to program an FPGA or configurable computing system with a given
configuration. This time varies from hundreds of nanoseconds to seconds depending on the system and
the FPGAs that are used in the system. 
Field programmable gate array: Integrated circuit containing arrays of logic blocks and programmable
interconnect between these blocks. The logic blocks can be configured to implement simple or complex
logical functions and can be changed as required. Example functions are registers, adders, and multipliers.
The programmable interconnect permits the construction of even more complex functions and/or systems.
FPGA: Acronym for field programmable gate array.
Reconfigurable computing systems: Alternate term for “configurable computing systems.” This term is
usually used to indicate that the system can be “reconfigured” at any time for some desired function. 

Introduction

Configurable computing systems use reprogrammable logic components, which are now capable of
providing more than a million logic gates on a single chip. These systems can be reconfigured at runtime,
enabling the same hardware resource to be reused depending on its interaction with external components,
data dependencies, or algorithm requirements. 
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In essence, a specialized instruction set and arithmetic units can be configured as desired by an
application designer on an as-needed basis to achieve optimal performance. The location of configurable
components within a computing system is one of the keys to achieving maximum efficiency and perfor-
mance. A variety of architectures driven by the location of configurable components are described in a
later section. 

Configurable Components

Before describing various architectures of configurable computing systems, an understanding of the
internal structure of FPGAs, the major component of a configurable computing system is necessary. In
2001, the top two FPGA vendors were Altera Corporation and Xilinx, Inc. The FPGA products from
these, and other vendors, differ in their internal structure and programming. However, the basic internal
structure for FPGAs can be illustrated as shown in Fig. 37.7. Note that the “PLB” blocks are “program-
mable logic blocks” and the “PI” blocks are programmable interconnect. A current trend among the
FPGA vendors is to also include RAM and/or a fixed microprocessor core on the same integrated circuit
as the FPGA. This enables even greater system flexibility in a design.

The means by which the logic blocks and interconnect are configured for specific functions are of a
proprietary nature and specific to each vendor’s FPGA families. In general terms, the logic blocks and
interconnect have internal structures that “hold” the current configuration and when presented with
inputs will produce the programmed logic outputs. This “configuration” is FPGA-specific and contai-
ned in a vendor-specific file. A specific FPGA is programmed by downloading the information in this
file through a serial or parallel logic connection. 

The time required to configure an FPGA is known as the configuration time. Configuration times vary
based on the FPGA family and the size of the FPGA. For a configurable computing system composed of
several FPGAs, the configuration time is based not only on the configuration time of the individual
FPGAs, but on how all the FPGAs are configured. Specifically, the FPGAs could be configured serially,
in parallel, or a mixture of serial and parallel depending upon the design of the system. Thus, this time
can vary from hundreds of nanoseconds to seconds. This directly impacts the types of applications that
have improved performance on a particular configurable computing system. A configurable computing
system that has a configuration time on the order of seconds is best suited for applications that do not

FIGURE 37.7 Basic internal structure of an FPGA.
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require reconfigurations “on-the-fly,” i.e., applications with a single configuration associated with them
or ones that are pipelined with slow pipeline stages. On the other hand, a configurable computing system
that has a very short configuration time can be used for the same applications as one with a slower
configuration time and applications that require “on-the-fly” reconfiguration. 

As implied previously, the configurable component of a configurable computing system can be com-
posed of a single FPGA or multiple FPGAs. Many architectures are used for a configurable component
composed of multiple FPGAs. Figure 37.8 illustrates the basic architectures from which most of these
architectures would be derived. Note that these architectures are very similar, or identical, to those used
for parallel processing systems. As a matter of fact, many of the paradigms used in configurable computing
systems are derived from parallel processing systems. In many cases, a configurable computing system is
the hardware equivalent of a software parallel processing system. Figure 37.8(a) is a pipelined architecture
with the FPGAs hardwired from one to the other. This type of architecture is well suited for functions
that have streaming data at specific intervals. Note that variations of this architecture include pipelines
with feedback, programmable interconnect between the FPGAs, and RAM associated with each FPGA.
Figure 37.8(b) is an array of FPGAs hardwired to their nearest neighbors. This type of architecture is well
suited for functions that require a systolic array. Note, as with the pipelined architecture, that variations
of this architecture include arrays with feedback, programmable interconnect between the FPGAs, and
RAM associated with each FPGA. Also note that an array of FPGAs is very similar to the internal structure
of a single FPGA. Thus, one has a hierarchy of configurability.

Configurable Computing System Architectures

The placement of one or more configurable components within a computing system is largely determined
by the requirements of the application. Several architectures are shown in Fig. 37.9. In some cases as
shown in Fig. 37.9(a), no additional computing power is required and the component can be utilized in
a stand-alone mode. This situation occurs in Internet routing nodes and in some data acquisition systems
as well as controllers for actuators. Note that the use of FPGAs to replace logic or to be used as state
machines is this type of architecture. This type of application was the first widespread use of FPGAs. 

FIGURE 37.8 Basic architectures for multiple FPGAs.
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For configurable computing systems, configurable components are more commonly coupled with
conventional DSPs or CPUs such that the processor can accomplish general purpose computing while
acceleration of specialized functions can be performed by the configurable components. The type of
general purpose computing required by the application determines the choice of a DSP or CPU. An
application involving signal processing would naturally lead to the use of a DSP. Whereas, an application
involving user interaction and/or user services (disks, etc.) would more likely lead to the use of a general
purpose CPU. For this discussion on general configurable computing system architectures, the type of
“general purpose” processor used is irrelevant; however, it is very relevant when an actual application
and system are being developed.

Figures 37.9(b–e) depict architectures that have configurable components coupled with DSPs or CPUs.
The communication requirements between the different types of processors determine the amount of
bandwidth and latency provided. If infrequent communication is needed, a serial line or some other
slow-speed connection may be sufficient as shown in Fig. 37.9(b). For higher bandwidth applications,
placing the two types of components on a bus or some other high-speed connection as shown in
Fig. 37.9(c) may be appropriate. In both of these cases, tasks best suited for a particular component can
be delegated to that component and sharing of data and results are facilitated. Figure 37.9(d) depicts the
tightest coupling with the lowest latency and highest bandwidth since both types of components are
placed inside the same package. Often, the DSP or CPU manages the data, especially when disk storage is
involved. When the data is being acquired at a high rate from a sensor, the configurable component is
often used to perform initial operations to reduce the size of the data. Thus, the DSP or CPU has only
a fraction of the data to be processed or stored. Note that the current trend to include RAM and a fixed
microprocessor core on the same integrated circuit as the FPGA is an implementation of this architecture.
Another variation of this theme of placing the configurable component within the system just where it
is needed can be seen in a network of workstations as shown in Fig. 37.9(e). In this case, the configurable
component can be inserted into the router itself to perform dedicated operations as the data is passed
from processor node to processor node. The processing performed in this manner appears to be “free”
because it occurs during message passing.

FIGURE 37.9 CPU/configurable computing architectures.
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Selected Applications

Several classes of applications have improved performance when implemented on configurable comput-
ing systems including image analysis, video compression, and molecular biology. In general, these appli-
cations exploit the parallel processing power of configurable computers.

Image Analysis

Image analysis requires manipulating massive amounts of data in parallel and performing a variety of
data interaction (e.g., point operations, neighborhood operations, and global operations). Many of these
operations are ideally suited for implementation on a configurable computing system due to the parallel
nature of the operations. Example implementations are image segmentation, convolution, automated
target recognition (ATR ), and stereo vision. Image segmentation is often the first step in image analysis
and consists of extracting important image features. For intensity images (i.e., those represented by point-
wise intensity levels) four popular approaches are: threshold techniques, edge-based methods, region-
based techniques, and connectivity-preserving relaxation methods. A systolic array of configurable com-
ponents, similar to that depicted in Fig. 37.8(b), can be used to perform an edge-based image segmen-
tation. Implementation results for various applications have shown that this approach is superior to the
conventional digital signal processor approach.

Two-dimensional convolution is commonly used for filtering, edge detection, and feature extraction.
The basic idea is that a window of some finite size and shape is scanned across the image. The output
pixel value is the weighted sum of the input pixels within the window where the weights are the values
of the filter assigned to every pixel of the window itself. Using a systolic array of configurable components,
the convolution window can be applied in parallel with an output pixel value being produced as new
pixel values are provided. The storage of intermediate pixel values within the window are inherent in the
systolic array structure. Implementation results have shown impressive performance gains. 

Automated target recognition (ATR) is a computationally demanding application in real-time image
analysis problems. The objective of an ATR system is to analyze a digitally represented input scene to
locate/identify all objects of interest automatically. Typically, algorithms begin with a preprocessing step
to identify regions of interest in the input image. Next, template matching is performed to correlate these
regions of interest with a very large number of target templates. The final identification step identifies
the template and the relative offset at which peak correlation occurs. The template matching process is
the most computationally intensive among these three steps and has the potential of being implemented
in a parallel form. Therefore, the template matching is a good candidate to be mapped into a configurable
computing system. Implementation results have shown significant performance improvements.

Stereo vision involves locating the same features in each of two images and then measuring the distances
to objects containing these features by triangularization. Finding corresponding points or other kinds of
features in two images, such that the matched points are the same projections of a point in the scene, is
the fundamental computational task. Matching objects at each pixel in the image leads to a distance map.
This is very similar to the template matching process in an ATR system and implementation results are
similar. 

Image and Video Compression

Image and video compression are used in many current and emerging products. Image compression is
widely used in desktop publishing, graphic arts, color facsimile, and medical imaging. Video compression
is at the heart of digital television set-top boxes, DSS, HDTV decoders, DVD players, video conferencing,
Internet video, and other applications. Compression reduces the requirements for storage of large archived
pictures, less bandwidth for the transmission of the picture from one point to another, or a combination
of both. Image and video processing typically require high data throughout and computational com-
plexity. JPEG is widely used for compressing still pictures, and MPEG or wavelets are more appropriate
for compressing videos or general moving pictures.
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A configurable component using a pipelined approach, as depicted in Fig. 37.8(a), provides a much
cheaper and more flexible hardware platform than special image compression ASICs, and it can efficiently
accelerate desktop computers. A speed improvement over a modern workstation of a factor of ten or
more can be obtained for JPEG image compression.

Molecular Biology

Scanning a DNA database is a fundamental task in molecular biology. This operation consists of iden-
tifying those sequences in the DNA database that contain at least one segment sufficiently similar to
some segment of a query sequence. The computational complexity of this operation is proportional to
the product of the length of the query sequence and the total number of nucleic acids in the database.
In general, segment pairs (one from a database sequence and one from query sequence) may be consid-
ered similar if many nucleotides within the segment match identically. This similarity search may take
several hours on standard workstations when using common software that is parameterized for high
sensitivity. 

One method of performing DNA database searches is to use a dynamic programming algorithm for
computing the edit distance between two genetic sequences. This algorithm can be implemented on a
configurable computing system configured as two systolic arrays. Execution has been found to be several
orders of magnitude faster than implementations of the same algorithm on a conventional computer.
Another method is to use a systolic filter for speeding up the scan of DNA databases. The filter can be
implemented on a configurable computing system, which acts as a coprocessor that performs the more
intensive computations occurring during the process. An implementation of this system boosted the per-
formances of the conventional workstation by a factor ranging from 50 to 400. 

Virtual Computing Power

Quantifying computing power is a challenging task due to differing computing architectures and appli-
cations. Vullemin et al. [13] define virtual computing power based on the number of programmable active
bits (PABs) and the operating frequency. He defines a “reference” PAB as a 4-input Boolean function.
These functions are essentially the core configurable elements of a configurable computing component;
however, each vendor defines them differently. For example, Xilinx calls them “logic cells (LCs)” and
organizes them into groups of four called “configurable logic blocks (CLBs).” Whereas, Altera calls them
“logic elements (LEs)” and organizes them into groups of ten called “logic array blocks (LABs).” As newer
and larger FPGAs with new architectures are constructed, the vendors will likely rename these logic
blocks. But the configurable blocks can always be defined as Boolean functions. 

Vullemin et al. define the virtual computing power of a configurable computing system with n PABs
operating at a frequency of f Hz as the product P = n × f and is expressed in Boolean operations per
second (BOPS). The frequency of operation for the PABs is taken to be the internal operating frequency
of the component. Xilinx’s largest component to date is the Virtex XCV2000E that has 43,200 LCs and
a quoted “typical” internal operating frequency in excess of 100 MHz [3]. Based on this, the Virtex
XCV2000E has a virtual computing power of 4.3+ TBOPS.  Altera’s largest available component is the
APEX EP20K1500E, which has 54,720 LEs and a quoted “typical” internal operating frequency in excess
of 100 MHz [1]. Based on this, the EP20K1500E has a virtual computing power of 5.4+ TBOPs. Note
that both Xilinx and Altera quote a maximum internal operating frequency in excess of 200 MHz and
have announced plans for even larger and faster components. 

By comparison, an Intel Pentium III 32-bit microprocessor can execute two unrelated integer opera-
tions every clock cycle. When operating at 600 MHz, it has a virtual computing power of 38.4 GBOPs.
Based on this analysis, a single, state-of-the-art configurable computing component has over 100 times
the raw virtual computing power of a state-of-the-art microprocessor; however, taking full advantage of
the virtual computing power of configurable computing systems is not trivial.  The previous subsection
listed a variety of application areas in which success has been achieved but the widespread use of these
systems is presently hampered by the difficulty of programming them. 
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Development Systems

Developing applications for microprocessor-based systems is currently far easier than developing appli-
cations for a configurable computing system. Microprocessor development systems have been optimized
over years, even decades, while those for configurable computing systems are in their infancy. A design
for a single FPGA is typically created using tools similar to those used for other digital systems, tools
such as schematic capture, VHDL, etc. Due to the proprietary nature of FPGAs, however, a designer must
typically use the design tools available from the FPGA vendor. 

A software design environment that facilitates the rapid development of applications on configurable
computing systems should permit high-level design entry, simulation, and verification by application
designers who need not be familiar with the details of the hardware. Of course, on occasions, it may be
necessary to expose to the application designer those hardware details deemed essential to ensure feasible
and efficient implementations. Metrics and visualization are desirable to assist the application designer
in achieving near-optimal system implementation rapidly. The tools available from the FPGA vendors
are currently intended for digital systems designers not the application designer. Research efforts under-
way at various universities and startup companies are producing the first development systems for
configurable computing systems similar to those for microprocessor systems. 

To Probe Further

More in-depth information on configurable computing systems is readily available. The first sources of
information are the FPGA vendors. A few of these are 

1. Altera Corporation, San Jose, CA. http://www.altera.com 
2. Atmel Corporation, San Jose, CA. http://www.atmel.com 
3. Xilinx, Inc., San Jose, CA. http://www.xilinx.com

Several sites on the World Wide Web are dedicated to configurable computing systems. A search using the
terms “configurable computing systems” or “reconfigurable computing systems” via any of the search engines
will yield a great number of hits. One of these sites is http://www.optimagic.com that provides not only
information on configurable computing systems, but also information on programmable logic in general.

Currently, very few books focus specifically on configurable computing systems; however, many books
about programmable logic provide excellent references for someone interested in configurable computing.
Some of these are

4. Digital Designing with Programmable Logic Devices, John Carter, Prentice-Hall, Englewood Cliffs,
NJ, 1996.

5. Programmable Logic: PLDs and FPGAs, Richard C. Seals and G.F. Whapshott, Macmillan, New York,
1997.

6. FPGAs and Programmable LSI: A Designer’s Handbook, Geoff Bostock, Butterworth-Heinneman,
1996.

7. Digital System Design Using Field Programmable Gate Arrays, Pak K. Chan and Samiha Mourad,
Prentice-Hall, Englewood Cliffs, NJ, 1994.

Many excellent conferences are held annually to provide the latest information on configurable computing
systems from the FPGAs to development systems. Some of these conferences are

8. Symposium on Field-Programmable Custom Computing Machines (FCCM). http://www.fccm.org
9. ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).

10. International Workshop on Field Programmable Logic and Applications (FPL).
11. Reconfigurable Architectures Workshop (RAW).
12. Design Automation Conference (DAC). http://www.dac.com

The proceedings from these conferences contain many articles on not only configurable computing
systems but applications for which configurable computing systems have been shown to be effective.
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Other application areas that one may find configurable computing systems applied to are: cryptography,
fingerprint matching, multimedia, and astronomy. 

More in-depth information on virtual computing power and a list of applications of configurable
computing system is

13. J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard, Programmable active
memories: reconfigurable systems come of age, IEEE Trans. on VLSI Systems, vol. 4, no. 1, pp. 56–69,
March 1996.

More information on research and development into design tools for configurable computing may be
obtained by visiting the web sites of the research groups involved. Some of these are

14. Brigham Young University, Configurable Computing Web page, http://splish.ee.byu.edu and the
JHDL Web page, http://www.jhdl.org

15. University of Cincinnati, REACT Web page, http://www.ececs.uc.edu/~dal/acs/index.htm
16. Colorado State University, CAMERON Project Web page, http://cs.colostate.edu/cameron
17. Northwestern University, A Matlab Compilation Environment for Adaptive Computing Systems

Web page, http://www.ece.nwu.edu/cpdc/Match/Match.html
18. University of Southern California, DEFACTO Web page, http://www.isi.edu/asd/defacto
19. University of Tennessee, CHAMPION Web page, http://microsys6.engr.utk.edu/~bouldin/darpa

37.3 Xtensa: A Configurable and Extensible Processor

Ricardo E. Gonzalez and Albert Wang

Introduction

Until a few years ago, processors were only sold as packaged individual ICs. However, the growing density
of CMOS circuits created an opportunity for incorporating the processor as part of a larger system on
a chip. Initial processor designs for this market were based on the processor existing as a separate entity,
and cores were handcrafted for each manufacturing process technology, resulting in costly and fixed
solutions. Furthermore, it was not possible to modify these cores for the particular application, in much
the same way that it was not possible to modify a stand-alone prepackaged processor. 

Xtensa is a processor core designed with ease of integration, customization, and extension in mind.
Unlike previous processors, Xtensa lets the system designer select and size only the features required for
a given application. The configuration and generation process is straightforward and lets the designer
define new system-specific instructions if preexisting features don’t provide the required functionality.
Furthermore, Xtensa fits easily into the standard ASIC design flow. Xtensa is fully synthesizeable, and
designers can use the most popular physical-design tools during the place-and-route process. 

Processor Development 

Application-specific processor development is an active area of research in the CAD, computer architec-
ture, and VLSI design communities. Early attempts to add application-specific instructions to general-
purpose computer engines relied on writable micro-code [1,2]. These techniques dynamically augmented
the base instruction set with application-specific instructions. 

More recent research focuses on automatic instruction set design [3,4] or on reconfigurable, also called
retargetable, processors [5]. These groups, however, try to solve slightly different problems than those
addressed by Xtensa. Automatic instruction set design systematically analyzes a benchmark program to derive
an entirely new instruction set for a given microarchitecture. Our group—here referred to as “we”—focuses
on how to generate a high-performance and low-power implementation of a given microarchitecture with
application-specific extensions. In this respect, automatic instruction set design is a good complement
to our work. Once the instruction set additions are derived automatically by analyzing the benchmark
program, they can be given to the Xtensa processor generator to obtain a high-performance, low-power
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implementation. Reconfigurable or retargetable processors couple a general-purpose computer engine
with various amounts of hardware-programmable logic. In the extreme, the entire processor is imple-
mented using hardware-programmable logic. The technique, however, is limited by the large difference
in operating frequency between programmable and nonprogrammable logic. Processors implemented
entirely using programmable logic operate an order of magnitude slower than nonconfigurable processors
implemented in a comparable process technology. Razdan and Smith present an interesting compromise
[5]. Their approach couples a custom-designed high-performance processor with small amounts of hard-
ware-programmable logic. Their system uses compiler-generated information to dynamically reconfigure
a small amount of hardware-programmable logic to implement new application-specific functional units.
This technique also has limitations due to the disparity in operating frequency of programmable and
nonprogrammable logic. Thus, the new functional units must be extremely simple or be deeply pipelined. 

The authors’ approach is similar to that taken by Razdan and Smith except that we don’t attempt to
dynamically reconfigure the system. The Tensilica processor generator adds the application-specific
functionality at the time the hardware is designed. Thus, the extensions are implemented in the same
logic family as the rest of the processor. This eliminates the disadvantages of using programmable logic
for implementing the extensions, but precludes modification of the extensions for different applications. 

Due to a lack of automated tools, designers incorporated application-specific functionality in CPUs
by adding specialized coprocessors [6,7]. This approach introduces communication overhead between
the CPU and the coprocessor, making system design more arduous. Recently, with the advent of synthe-
sizeable processors, some groups have proposed manual modification of the register-transfer level (RTL)
description of the processor and the software development tools [8]. This approach is tedious and error
prone. Furthermore, the extensions are only applicable to one implementation. If users want to add
similar extensions to a future implementation of the same processor, they must modify the RTL again. 

The authors’ research differs from previous studies because we use a high-level language to express
processor extension. This language, called Tensilica Instruction Extension (TIE), expresses the semantics
and encoding of instructions. TIE can add new functionality to the RTL description and automatically
extend the software tools. This lets the system developer code applications in a high-level language, such
as C or C++. TIE imposes restrictions on functions that designers can describe, which greatly simplify
verification of the processor and extensions. Because the extensions become an integral part of the
processor, there is no communication overhead.

Overview of Xtensa 

We designed the Xtena instruction set architecture (ISA) to allow ease of extension and configuration.
Furthermore, the ISA minimizes code size, reduces power dissipation, and maximizes performance. 

The Xtensa ISA consists of a base set of instructions, which exist in all Xtensa implementations, plus
a set of configurable options. The designer can choose, for example, to include a 16-bit multiply-
accumulate option if it is beneficial to the application. The base ISA defines approximately 80 instructions
and is a superset of traditional 32-bit RISC instruction sets [10]. The architecture achieves smaller code
size through the use of denser encoding and register windows. The ISA defines 24- and 16-bit instruction
formats, as opposed to 32-bit formats found in traditional RISC instruction sets. The Xtensa architecture
provides a rich set of operations despite the smaller instruction size. These sophisticated instructions,
such as single-cycle compare and branch, enable higher code density and improve performance. 

The size of Xtensa instructions is encoded in the instruction, enabling 24- and 16-bit instructions to
freely intermix at a fine granularity. The 16-bit instructions are a subset of the 24-bit instructions. Thus,
the compiler optimization to reduce code size is trivial: replacing 24-bit instructions with their 16-bit
equivalent. The compiler can reduce code size without sacrificing performance. 

Hardware Implementation

We built the first implementation of Xtensa around a traditional RISC five-stage pipeline, with a 32-bit
address space. Many other characteristics of the processor implementation, however, are configurable. The
configurability and extensibility of the implementation matches those of the architecture. Figure 37.10
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shows a high-level block diagram of Xtensa. The base ISA features correspond to roughly 80 instructions.
The designer can size or select configurable options, for example, how many physical registers to include
in the implementation, or the size of the instruction and data caches. Optional features, shown as green in
the figure, are selections the designer can make, such as whether to include a 16-bit multiply-accumulate
functional unit. Optional and configurable functions let the designer select whether to include that feature
and also to size it. For example, whether to include data watch-point registers and, if so, how many. Xtensa
optionally supports several data formats such as fixed-point and floating-point. Vectra adds a configurable
fixed-point vector coprocessor. 

Table 37.1 shows a few of the configuration parameters and associated legal values available in the
current Xtensa implementation. Unlike conventional processors, Xtensa gives designers a choice regarding
the functionality of the processor.

Configuration

The configuration process begins by accessing the Tensilica processor generator Web page at
http://www.tensilica.com. Here, using a standard browser, the designer can select and size the desired
features. The site’s configuration page gives the designer instant feedback on whether a particular choice
will affect the speed, power, or area of the core. The user interface warns the designer of conflicting
options or requirements for a particular option.

TABLE 37.1 Xtensa Configuration Parameters

Parameter Legal Values

Instruction/data cache size 1–256 KB
Instruction/data cache 

associativity
Direct-mapped, 2-way, 4-way

Instruction/data RAM size 1 KB, 2 KB, 4 KB, 8 KB, 16 KB
Instruction/data ROM size 1 KB, 2 KB, 4 KB, 8 KB, 16 KB
Size of windowed register file 32, 64
Number of interrupts 0–32
Interrupt levels 0–3
Timers 0–3
Memory order Big-endian, little-endian

FIGURE 37.10 Block diagram of Xtensa.
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The designer starts the generation process at the push of a button. The generation process produces
the processor’s configured RTL description and its configured software development tools. The software
tools consist of an ANSI C/C++ compiler, linker, assembler, debugger, code profiler, and instruction set
simulator. 

The generation process takes approximately one hour to complete. After the process is complete, the
designer can download and install the RTL and software development tools. At this point, the designer
can either compile an application and measure the performance using the instruction set simulator, or
start the hardware synthesis using the RTL description.

The software tools are built on top of the industry-standard GNU tools and include an optimizing C
compiler enabling application development in a high-level language. The instruction set simulator and
code profiler help the designer quickly identify bottlenecks in application performance. Optionally, the
designer can recode the application to work around these bottlenecks or add new instructions to the
processor designed to optimize this particular application.

The designer can map the RTL description to a gate-level netlist using industry-standard synthesis
tools. Included with the RTL description are a set of synthesis scripts that help automate this process.
These scripts let designers quickly obtain a fully optimized gate-level netlist of Xtensa. Tensilica also
provides a set of scripts to automate the place-and-route process. It is common for new users to place
and route Xtensa within a day or two of downloading the configured RTL.

Instruction Set Extension

Hardware designers realized the advantages of extending a general-purpose processor with application
specific functional units long time ago [6,7]. Until now, however, the only way to do this was to add the
functional units as a coprocessor. This often meant there was some communication overhead between
the processor and the application-specific logic. Also, often the coprocessor would require sophisticated
control, which had to be implemented with finite state machines or with micro-sequencers.

The Tensilica processor generator provides a more flexible and powerful approach to processor exten-
sion. Using TIE the system designer can describe, at a high-level, the functionality of the new functional
units. The TIE compiler will then automatically generate an efficient pipelined implementation. The
system designer must specify only the functionality of the new hardware and the required (and architec-
turally visible) storage elements—register files and special-purpose state elements. The pipeline flip-flops
and the bypass and interlock detection logic are then automatically generated by the TIE compiler. Fur-
thermore, the TIE compiler (TC) will automatically extend the software tools so that the new hardware
is accessible from C/C++. 

Using TIE has many advantages over more traditional methods of extension. First, the sophisticated
control can now be accomplished using software—making it easier to debug and optimize. Second, the
system designer can quickly prototype different design alternatives enabling him (or her) to quickly
converge to a good solution to the problem. Third, verification of the new hardware’s functionality can
be done using the instruction set simulator (ISS), which can simulate hundreds of thousands of instruc-
tion per second, rather than on the RTL model, which can only simulate hundreds of cycles per second.

Similar to most previous machine description languages [14], TIE is an instruction set architecture (ISA)
description language. It relies on a tool, the TIE compiler, to generate an efficient hardware implemen-
tation and required additions to the software tools, including the compiler, ISS, and debugger. TIE is not
intended to be a complete processor description language. Instead, the TIE language provides designers
simple ways to describe a broad variety of computational instructions, yet allows the TIE compiler to
generate efficient hardware. The language is simple enough for a wide range of designers to master, yet
general enough to allow description of sophisticated ISAs. The rest of this section describes the capabilities
of the TIE language.

TIE lets the designer specify the mnemonic, encoding, and semantics of new instructions. The designer
uses a combination of field, opcode, operand, and iclass statements to describe the format and
encoding of an instruction. The field statement gives a name to a group of bits in the instruction word.
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The opcode statement assigns instruction fields with values. The operand statement specifies how an
instruction’s operand is encoded in an instruction field. The iclass statement describes the assembly
format for an instruction and lists the input and output operands of the instruction. A large set of pre-
defined instruction fields and operands (used to describe the base Xtensa ISA) can be used directly in
the TIE description. The following example describes two instructions: A4 and S4. These instructions
take two 32-bit operands from the core register file, perform four 8-bit additions and subtractions and
store the result back to the core register file: 

opcode A4 op2 = 0 CUST0

opcode S4 op2 = 1 CUST0

iclass RR {A4, S4} {out arr, in ars, in art} 

The first two lines define the opcodes for A4 and S4 as sub-opcodes of a previously defined opcode
CUST0 with the addition of field op2 equal to 0 and 1, respectively. The third line makes use of the pre-
defined register operands arr, ars, and art, and defines two new assembly instructions,

A4 arr, ars, art

S4 arr, ars, art

Customized Datapath

The computational part of an instruction is specified in a TIE reference block. The syntax of a refer-
ence block is very similar to the Verilog hardware description language. The variables used in the ref-
erence block are predefined (if they appear in the iclass statement), or locally declared variables. The
reference block for the A4 and S4 instructions defined in the previous section are shown below, 

reference A4 {

assign arr = {

ars[31:24] + art[31:24],

ars[32:16] + art[23:16],

ars[15:8] + art[15:8],

ars[7:0] + art[7:0]};

}

reference S4 {

assign arr = {

ars[31:24] - art[31:24],

ars[32:16] - art[23:16],

ars[15:8] - art[15:8],

ars[7:0] - art[7:0]};

}

The reference description for the two instructions is simple and direct, yet may not result in the best
hardware implementation. For example, the logic for addition and subtraction could be shared between
the two instructions. TIE allows the designer to describe this high-level hardware sharing between
multiple instructions using the semantic block. The semantic block is similar to a reference
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block but allows multiple instructions to be described at the same time. The semantics of A4 and S$,
for example, can be described as follows:

{semantic add sub {A4, S4}}

assign arr = {

ars[31:24] + (S4 ? ~art[31:24] : art[31:24]) + S4,

ars[32:16] + (S4 ? ~art[23:16] : art[23:16]) + S4,

ars[15:8] + (S4 ? ~art[15:8] : art[15:8]) + S4,

ars[7:0] + (S4 ? ~art[7:0] : art[7:0]) + S4};

} 

The semantic statements allow more efficient hardware implementation, while the reference
statements are easier to write, are better suited for inclusion in documentation and are a better source
for simulation code. Thus, TIE allows instructions to have either a reference block, a semantic block,
or both. Most often, designers will write the reference description first. Once they have verified the
correctness and usefulness of the instruction they write the semantics to optimize the hardware imple-
mentation. TIE allows formal equivalence checking between the semantic and reference description to
ensure the implementation is identical. 

Multi-Cycle Instructions

To keep up with the speed of Xtensa, which is pipelined and runs at a high clock rate, instructions with
complex computation may require multiple cycles to complete. Writing and verifying multi-cycle instruc-
tions is a challenging task for designer unfamiliar with the processor’s pipeline, especially if the designer
must add the appropriate data-forwarding and interlock detection logic. TIE provides a schedule
statement that alleviates this problem. The schedule statement captures the timing requirements of the
instruction. The designer can then rely on the TIE compiler to derive the implementation automatically.
For example, a multiply-accumulate (MAC) instruction that performs the following operation: acc =
acc + (a*b) typically requires at least two cycles in a pipelined processor. In order to achieve one
MAC per cycle throughput, the hardware must use (read) the a and b operands at the beginning of the
first cycle, use acc at the beginning of the second cycle, and produce a new acc at the end of the second
cycle. The timing of the instruction can be described in TIE as

schedule MAC_SCHEDULE {MAC} {

use a = 1;

use b = 1;

use acc = 2;

def acc = 2;

} 

The rest of the implementation, including the efficient insertion of pipeline registers, interlock detec-
tion, result bypassing, and generation of good code schedules are all handled automatically by the TIE
compiler. 

Register Files and State Registers

When adding new application-specific datapaths it is often necessary to add new storage elements. Two
main reasons exist for adding new storage elements. First, algorithms often require specific bit widths,
which may not be efficiently supported by the core register file. And second, some algorithms require
higher bandwidth than the core register file provides. In the MAC instruction described in the previous
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subsection, for example, the machine would require a new state register to hold the value of the accumulator.
Otherwise it would require an additional read port in the core register file (the accumulator value would
be held in a register). Furthermore, the algorithm may require an accumulator value with more precision.

TIE states are extensions to the software visible programming model. They allow instructions to have
more sources and destinations than provided by the read and write ports of the core register file. They
can also be used as dedicated registers holding temporary values during program execution. When an
application needs a large number of such sharable TIE states, it becomes more efficient to group the state
into a register file and rely on the C compiler to assign the variables to register entries.

Describing instructions that use TIE states is simple. The designer must specify, in the iclass of the
instruction, how the state is used. The state variable is then available in the instruction’s reference
and semantic blocks. The following example is a complete description of the MAC instruction, 

state acc 40 /* a 40-bit accumulator */

opode MAC op2=0 CUST0

iclass MAC_CLASS {MAC} {in ars, in art} {inout acc}

reference {

assign acc = (ars * art) + acc;

}

Using a register file involves one more step: describing the register operands. The following TIE code,
for example, adds a 24-bit register file:

regfile GR 24 16 /* 26 entries, 24-bits each*/

operand gr r {GR[r]}

operand gs s {GR[s]}

operand gt t {GR[t]}

The three register operands use predefined instruction fields (r, s, t) as indices to access the register
file contents. An instruction that uses these operands can be describes as, 

iclass RF {AVE} {out gr, in gs, in gt} 

Using TIE it is possible to very quickly develop sophisticated hardware that can significantly enhance
the application performance of the processor. Furthermore, the new hardware is easily accessible to the
C/C++ programmer. 

Software Support 

One key advantage of TIE is that it allows hardware and software to be extended together. This allows
the programmer to access the new hardware from C or C++. This allows the programmer to focus on
algorithmic optimization, rather than mapping the algorithm to a fixed processor architecture. Program-
mers often spend more time designing how to map the algorithm’s data-types to the processor data-
types than they do on optimizing the algorithm for their application. Using TIE it is possible to extend
the hardware and software together so the mapping of the algorithm’s data-types is more natural. 

In order for this extension to be useful to the programmer, however, it must be complete. The compiler,
assembler, simulator, debugger, real-time operating system, and application libraries must be extended
to use the new hardware datapaths. The TIE compiler generates dynamically loadable libraries (DLLs)
that are used to configure the software tools at runtime. Generation of the DLLs takes less than a minute
(even for large TIE descriptions). This allows designers to quickly make changes to the TIE description
and evaluate the performance of the system. TIE allows designers (or programmers) to define new C
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data-types that are mapped to TIE register files. The programmer must also specify, in the TIE description,
instruction sequences to load and store these data-types from (to) memory. The programmer can then
use these new data-types in C/C++ as if they were built-in data-types. Operations are described via
instrinsics (every TIE instruction is available as an intrinsic in C/C++) but register allocation, variable
saves and restores, addressing arithmetic, and control flow generation for the new data-types are handled
automatically by the C compiler. The C compiler is also aware of any side-effects and pipelining of TIE
instructions so it can efficiently schedule the instructions.

The TIE compiler also generates libraries to save and restore processor state on a context switch. The
compiler uses the instruction sequences described by the programmer to load and store the new data-
types. The libraries are used by commercial operating systems, such a WindRiver’s VxWorks. The
operating system is delivered as a pre-built binary with hooks to call the context switch code generated
by the TIE compiler.

The TIE compiler must also add knowledge of the new instructions and register files to the instruction
set simulator and the debugger. The TIE compiler translates the reference block of each instruction to a
C implementation that can be used by the simulator to model the execution of the instruction. The TIE
compiler also extends the debugger to allow visualization of new register files and state registers.

Application Examples

DES

To demonstrate the potential of TIE, we extended Xtensa to improve the performance of the Data
Encryption Standard (DES)—a popular encryption and decryption algorithm often used for secure
Internet communication. We chose DES for two reasons: its growing popularity in embedded applications
that require secure Internet transactions, and the relatively poor encryption and decryption performance
of general-purpose processors. 

A simple DES modification, known as Triple-DES, extends the key to 168 bits by iterating the DES
algorithm three times with three different keys. Triple-DES has been specified as an encryption algorithm
for both the secure shell tools11 and the Internet protocol for security12. Both of these applications require
high-speed encryption and decryption and are implemented as part of many of today’s interesting
embedded systems. 

The DES algorithm requires extensive bit permutations, which are difficult to implement efficiently
in software. However, designers can efficiently implement these permutations in hardware, since each
corresponds to a simple renaming of the wires. The algorithm also specifies rotation on 28-bit boundaries.
Even if the processor has a rotate instruction, it often is not usable since it most likely rotates on 32-bit
boundaries. Finally, the algorithm requires bit packing, unpacking, and table lookups. These operations
are slow in software but easy to implement with hardware. We modified the Xtensa processor to include
special instructions to speed up these operations. 

Based on run-time profile information, we defined four new instructions and reimplemented the
application to use these instructions. We verified the implementation of the TIE instructions by comparing
the output of the modified application, which uses the TIE-generated C description of the instructions,
with the results of a reference implementation of DES written completely in C. In addition to four new
instructions, we also added three new state registers to the processor. The registers hold intermediate
values during the encryption and decryption process. Of the four new instructions, one performs the
encryption and decryption step using values in the state registers. The other three instructions transfer
data to (and from) the processor registers from (and to) the state registers, while concurrently permuting
the data values. When compiled for the Xtensa architecture, the new application required only 154 bytes
of object code and no static or dynamic data storage. Thus, the original implementation required 36 times
more memory than this implementation. 

Figure 37.11 shows the speedup of the DES-enhanced Xtensa core compared to an unmodified Xtensa
core. The X-axis shows the block size used for encryption and decryption. The original DES implemen-
tation gains much of its speed by precomputing large tables of values from a fixed key, making key changes
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very expensive. Thus, small blocks can attain speedup by a greater factor than large blocks (where key
changes are less frequent). The modified Xtensa can encrypt and decrypt data at the rate of 377 MB/s.
The hardware cost of the TIE instructions is roughly0 4,500 equivalent (NAND2) gates (measured in a
0.25-µm process technology). The reduced storage requirements of the application offset this hardware
cost. In addition, the new TIE instructions did not increase the cycle time of the machine. DES is only
one of the applications that can benefit from specialized hardware.

Consumer Multimedia

The EEMBC consumer benchmarks contain a representative sample of multimedia applications of interest
today. A baseline configuration of Xtensa contains many features suitable for these applications. At
200 MHz operation Xtensa delivers more than 11 times the performance of the reference processor (ST
Microelectronics ST20C2 at 50 MHz). Performance is measured as the geometric mean of the relative
number of iterations per second for each algorithm compared to the reference processor; however, when
we added instructions for image filtering and color-space conversion (RGB to YIQ and RGB to CYMB)
the average performance increased by 17X (193 times faster then the reference). An AMD K6-III+ at
550 MHz, for comparison, is 34.2 times faster then the reference processor. The base configuration was
optimized for 200 MHz operation in a 0.18-µm technology. The processr was configured with  16 KB
two-way set associative caches, 256 KB local data RAM, 16-entry store buffer, and 32-bit multiplier. The
total area of the processor was 57,600 NAND2-equivalent gates. The optimized TIE code cost an additional
64,100 NAND2-equivalent gates.

DSP Telecommunications

The EEMBC “Telemark” benchmark suite includes many kernels representative of DSP applications. The
performance of a base Xtensa processor in this suite is comparable to that of other 32-bit microprocessors
(2.3 times faster than the reference). Performance was also measured as the geometric mean of the relative
number of iterations per second for each algorithm compared to the reference processor (IDT 32334 –
MIPS32 architecture at 100 MHz). Adding a fixed-point vector co-processor and a few more specialized
instructions, the performance of Xtensa increases by 37X, or a speedup of 85.7X compared to the reference
processor. The AMD K6-III+ at 550 MHz has a speedup of  8.7 compared to the reference, while a TI
DSP (TMS320C6203) running hand-optimized code at 300 MHz has a 68.5 speedup compared to the
reference processor. The base Xtensa configuration was also optimized for 200 MHz operation in 0.18-
µm technology with 16 KB two-way set associative caches, and 16-entry write buffer. The vector co-
processor and new TIE instructions add 180,000 thousand NAND2-equivalent gates.

FIGURE 37.11 DES speedup using TIE.
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Conclusions

Configurable and extensible processors provide significant advantages compared to traditional hard-
wired processors. To take full advantage of extensibility, however, requires a methodology that can extend
both the hardware and the software together. We showed that TIE provides a methodology for extension
that is complete, fast, and robust. 

Using TIE can also help reduce design time by simplifing the hardware verification effort and also by
allowing a more natural maping of the algorithm to the hardware implementation. 

Furthermore, since the control flow is described in software it is much easier to verify and to enhance.
We also showed the extension can significantly increase application performance. We showed that for
two different set of application kernels an Xtensa procesor with application-specific extension was 20–40
times faster than a high-performance RISC processor. 
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38.1 Background of Intelligent Transportation Systems

Today, one encounters a lot of traffic congestion and hears of people injured or killed by traffic accidents.
Moreover, there has been no remarkable improvement in air pollution due to exhaust gases from vehicles
inspite of the stringent regulation for vehicles. It is natural that frequent traffic congestion results in lower
mean vehicle speed. Figure 38.1 shows an example of mean averaged vehicle speed in Japan. Vehicle speed
in urban area like Tokyo and Osaka is very close to that of a bicycle. On the contrary, vehicle speed in
countryside is faster than urban area. Therefore, average vehicle speed of the whole of Japan shows a
little bit higher value, as shown in Fig. 38.1.

Traffic accidents are a more serious matter than vehicle speed. Figure 38.2 shows an example of the
number of people killed due to traffic accidents in Japan. About ten thousand persons are still killed by
traffic accidents. Moreover, the death rate of senior people has become higher in Japan.

A third example of traffic problems—the status of air pollution in Japan—is shown in Fig. 38.3. Both
hydrocarbon (HC) and carbon monoxide (CO) have decreased gradually. On the contrary, nitric oxide (NOx)
has not decreased. It has remained nearly constant in spite of the stringent Japanese exhaust gas regulation.
These three examples are related to Japan. But the traffic situation of all countries is very much similar.

Shoichi Washino
Tottori University
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In principle, these phenomena are eliminated by constructing new roads because it gives smoother
traffic flow. The cost to construct them, however, has become very expensive in every country. So such
a conventional way to solve these traffic problems is not available. On the other hand, information
technology has progressed remarkably these days. As a result of this, many government officers have
embraced an idea to solve these traffic problems by using information technology. Indeed the idea
has led to a system image called Intelligent Transportation Systems (ITS), as shown in Fig. 38.4.

38.2 An Overview of Japanese ITS and the Nine Developing 
Fields of Japanese ITS

It was in 1995 that the second ITS World Congress was held at Yokohama. In Japan, several projects on
ITS had been carried before 1995. Table 38.1 shows those projects. The first project was called compre-
hensive automobile traffic control system (CACS) proposed and lead by Ministry of Construction of the
Japanese government at that time. Then the Ministry of Transport, Ministry of Post and Telecommunication,

FIGURE 38.1 Average vehicle speed.

FIGURE 38.2 Numbers of persons killed by traffic accidents.
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Ministry of International Trade and Industry, National Police Agency, and Ministry of Construction
proposed several projects on ITS and they had also promoted these projects. These are the major six
projects to develop ITS in Japan, as shown in Table 38.1.

VICS means vehicle information & communication system. This mainly provides traffic information
such as congestion, road construction, road restriction, traffic accidents, and parking information. VICS
supposes an in-vehicle navigation system is loaded in a vehicle; this is already widespread in Japan as
shown later.

ETC means electronic toll collection system. One often sees congestion in front of a tollgate due to
“stop” and “go” at the tollgate. The aim of this project is to reduce such congestion using communication
technologies between vehicle and road infrastructure.

FIGURE 38.3 Air pollution.

FIGURE 38.4 Concept of ITS.
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AHS means advanced cruise-assist highway system originally from automated highway system. This
system supposes advanced safety vehicle to enhance traffic safety and reduce accidents. This system is a
kind of driving support system with collaborating road infrastructure and vehicle.

ASV is advanced safety vehicle to enhance traffic safety and reduce accidents. It has originally aimed
to do so without any aid of road infrastructure. But now both ASV and AHS projects are collaborating
because the collaboration is more effective from the point of view of both system performance and its cost.

SSVS means super smart vehicle system. Now, its main activity is related to the development of inter-
vehicle communication technologies.

UTMS is an abbreviation of universal traffic management system. This project has an aim to develop ITS
using two-way communication between road and vehicle, particularly using infrared light communication.

In 1995, the Japanese government set nine development fields to promote Japanese ITS. Both Fig. 38.5
and Table 38.2 show the nine development fields. In Fig. 38.5, those fields are expressed dividing the two
categories of road infrastructure side and vehicle side.

Vehicle side includes only two fields. One is advances in navigation system (ANS) and the other is
assistance for safe driving (ASD). For example, VICS is included in the field of ANS. Five of the nine
fields belong to infrastructure side. For example, road maintenance by special cars like removal of snow
on roads using snow shoveling car is in these five fields.

ETC and SFP, which means support for pedestrians, locate between infrastructure and vehicle because
these systems are very effective only when both infrastructure and vehicle are collaborating.

38.3 Status of Japanese ITS Development

It is apparent that setting these developing fields shown in the above accelerates ITS development. As a
result of this VICS has started its service to provide vehicles with real-time traffic information such as
congestion, road construction, and accidents since 1996. Though this system assumes that in-vehicle
navigation systems are loaded in a vehicle, VICS is the first system to be put into practical use all over
the world. In 2001 ETC is also to be started at the several tollgates of highways in Tokyo and Osaka area.

TABLE 38.1 ITS Projects in Japan

• VICS (MOC, NPA, MPT)
Vehicle Information & Communication System

• ETC (MOC, MPT)
Electronic Toll collection System

• AHS (MOC)
Advanced cruise-assist Highway System

• ASV (MOT)
Advanced Safety Vehicle

• SSVS (MITI)
Super Smart Vehicle System

• UTMS (NPA)
Universal Traffic Management System

TABLE 38.2 Nine Developing Fields of Japanese ITS

1. Advances in navigation systems (ANS)
2. Electronic toll collection systems (ETC)
3. Assistance for safe driving (ASD)
4. Optimization of traffic management (OTM)
5. Increasing efficiency of road management (IERM)
6. Support for public transport (SPT)
7. Increasing efficiency in commercial vehicle operation (IECVO)
8. Support for pedestrians (SFP)
9. Support for emergency vehicle operation (SEVO)
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As one can easily see, VICS is not likely to reduce traffic congestion and accidents in a direct way. But
according to some statistics it is said that VICS also provides people with a kind of comfort when they
drive. So VICS is very useful to reduce traffic problems.

At the time the VICS service started, Tokyo, Aichi, and Kansai were the only three available areas to
receive the information provided by VICS service. But now the service areas have spread to almost all
over Japan. Figure 38.6 shows how rapidly both in-vehicle navigation system and VICS terminals grow
in Japan. White bars in Fig. 38.6 show the accumulated number of in-vehicle navigation units in Japan. At
the end of the last year, the number reached to about 6 million units. Getting along the growth of in-vehicle

FIGURE 38.5 Nine fields of Japanese ITS.

FIGURE 38.6 Accumulated numbers of units.
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navigation systems VICS terminals also have grown very rapidly, as shown by the grey bars in Fig. 38.6
since 1996.

Besides VICS, five private companies shown in Table 38.3, Benz, Toyota, Nissan, Honda, and Sony,
are also providing traffic information and other information such as parking area, weather forecast,
sightseeing spots, and so on. Using the Internet, as Sony is doing, means no charge or fee to get
information, except the media fee, to receive traffic information. In my opinion, it will be interesting to
see which of the companies survive—the automakers or Sony.

In-Vehicle Navigation System and VICS

First of all, the Japanese in-vehicle navigation system will be explained more minutely. Figure 38.7 shows
the four main functions an in-vehicle navigation system can provide.

The first function is positioning of present vehicle location. Normally, global positioning system (GPS)
and map matching technologies have been used to determine the present location of a car. The second
function is route search between a present location of a vehicle and a driver’s destination. One can easily
get an optimum route between the present location and the destination when only the destination is

TABLE 38.3 Private Services of Information Provision

Name Information Provided & Function Media Start
Application

Fee
Annual 

Fee

Intelligent 
traffic 
guidance 
system

1. Optimum route to destination, travelling
time

2. News, weather forecast
3. Leasure information

Cellular April ’97 ¥5,000 ¥36,000

Moneh 1. Conjesion, construction, traffic control
2. Parking, gas station, restaurant guide
3. News, weather forecast

Cellular April ’98 ¥2,500 ¥6,000

Inter-navi 
system

1. Setting of destination & course
2. Connecting to internet
3. Parking, gas station, restaurant guide

Cellular July ’98 ¥2,500
Free 99/6

¥6,000
Free 99/6

Compass 
link

1. Parking, gas station, restaurant guide
2. News, weather forecast
3. Response by operators

Cellular Sept. ’98 ¥3,500 ¥30,000

Mobile link 1. Hotel, restrant, movies, news, TV guide Cellular Nov. ’97 Free Free

FIGURE 38.7 Major four functions of car navigation.
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input into an in-vehicle navigation system. The third function is route guidance to guide you to your
destination along with the determined way by the route calculation function. Normally, this guidance is
performed by both voice and display for driver’s safety. The last important function is to display vehicle
position, results of route search, and guidance so that drivers can understand them easily at a glance.

A real configuration of a typical in-vehicle navigation system is shown in Fig. 38.8. It normally consists
of the six components shown in this picture. A color monitor for a navigation system is also used to
display moving pictures from a TV set and a DVD player, as shown at the lower right of Fig. 38.9. An
important issue is that VICS supposes an in-vehicle navigation system to be loaded in a vehicle. So, a
TV tuner also includes a receiver for VICS, in general. As shown later, VICS uses three major media such
as FM multiplex, electromagnetic beacon, and infrared light beacon.

Figure 38.10 is an example of a map display that often appears on a color display monitor of Japanese
in-vehicle navigation system. It shows the three major basic results in the minute map: the display of the
present vehicle position, the optimum route for the destination, and vehicle guidance. A simplified map
in Fig. 38.10 helps drivers to understand the direction they have to follow at the next intersection. The
large red triangle at the lower left of this figure shows the present vehicle position determined by the
location identification technology. A row of small yellow triangles shows the optimum route calculated
by a navigation system. The right simplified map in this picture enables a driver easily understand which
way he or she should take at the next intersection.

Figure 38.11 is another example of map display of in-vehicle navigation system. The left map in this
figure shows a real map showing the present vehicle position and the calculated optimum route to the
destination. The right picture shows a 3-D, simplified map with several landmarks such as McDonald’s,
road messages, and a traffic signal. Normally, it is said that a 3-D representation is easily understandable
for drivers regarding which way they have to go.

The situation is a bit different between Japan and other countries because of people’s preferences for
navigation displays are a bit different. For example, Japanese people like a map display as shown in Fig.
38.10, but people of other countries like only displays of the directions drivers have to take.

A block diagram of an in-vehicle navigation system is shown in Fig. 38.12. One can easily understand
that essential configuration of an in-vehicle navigation system is the same as that of a personal computer
excluding both the VICS unit and the sensors to be used to determine the vehicle location. In the CD-ROM,

FIGURE 38.8 Real configuration of in-vehicle navigation system.
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a map database is stored and accessed when a map is displayed, an optimum route is searched, and route
guidance is performed. The software in the ROM in Fig. 38.12 provides the four functions—vehicle
location, route search, route guidance, and display. For example, vehicle location is determined with
processing signals from GPS, a vehicle speed sensor, and a gyro sensor. After vehicle location is fixed, a
map database in the CD-ROM is accessed. Then, both the present vehicle location and a map near to the

FIGURE 38.9 Examples of information display.

FIGURE 38.10 Example of a map display (1).
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present vehicle location are displayed simultaneously on a color display moniter. If a driver inputs his or her
destination to the navigation unit through the color monitor, the optimum route calculation is initiated
and then the result is displayed. Along with the optimum route, the navigation unit guides the route to
the driver in response to the vehicle movement. In addition to this, information such as the locations of
restaurants, convenience stores, and gas stations near the vehicle’s present location are also displayed.

FIGURE 38.11 Example of a map display (2).

FIGURE 38.12 Vehicle navigation & VICS.
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The four basic functions of an in-vehicle navigation system, including the required function by VICS,
are performed by software implemented in a navigation system as previously mentioned. So the scale of
the software of an in-vehicle navigation system has become very large, it needs about 10 MB memory.
This means it is 100 times as much as that of the software scale of engine control system that can cope
with emission regulation of the passenger cars by Japanese government. Therefore, the software develop-
ment of an in-vehicle navigation system cannot be developed with a conventional way in a short time at
low expense.

The whole system of VICS can be explained using Fig. 38.13. Traffic information is collected and edited
in VICS center, then it transmitted with the three media—electromagnetic beacon, infrared light beacon,
and FM multiplex. One can get information, such as traffic congestion, through display of in-vehicle
navigation system with the VICS terminal. VICS is supported by three ministries of Japanese government:
the Ministry of Construction, the Ministry of Post & Telecommunication, and the National Police Agency.
Figure 38.14 shows an example of a display that shows several pieces of information such as traffic infor-
mation sent by VICS service. The map display is performed using a map database of an in-vehicle
navigation system in Fig. 38.12. A road next to one red line in the left part of Fig. 38.14 shows conjestion
in only one direction. In this case up direction of this road is congested. Two red lines along a road
shown at the right part in Fig. 38.14 means that the road is congested in two directions (up and down).
One can easily detour these congested roads if with such real-time traffic information. VICS provides
other information about road construction, road restrictions, and even about parking lots. VICS can also
provide real-time information regarding traffic information and other useful information, and it gives a
kind of comfort to drivers as a result.

Electronic Toll Collection System

The electronic toll collection system (ETC) is an electronic fare collection system. This system was
introduced in foreign countries earlier than in Japan. In Japan, the service of ETC starts this year. One
of the aims of this system in Japan is to reduce the congestion at highway tollgates thereby resulting in less
emission of exhaust. Figure 38.15 shows the whole system of Japanese ETC. Three major technologies are
used: network in the infrastructure, automotive terminals for ETC, and road-to-vehicle communication.
The infrastructure is composed of a huge network system into which personal information such as credit
card numbers are flowing. Therefore, the information flowing into this network is written in code to
ensure the security. Information from the automotive terminals for the ETC system is transmitted to the

FIGURE 38.13 Configuration of VICS.
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network through road-to-vehicle communication known as dedicated short range communication (DSRC).
Of course, it is also written in code to ensure the security. Specification of DSRC is shown in Table 38.4.
In the same manner, information about road infrastructure, such as the location of the tollgate, is also
transmitted to a vehicle from the infrastructure and through DSRC.

FIGURE 38.14 Examples of displayed information (VICS).

FIGURE 38.15 Network system for ETC.
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Support of Safe Driving System

The support of safe driving system that appears in Fig. 38.5 is defined as the third development field of
Japanese ITS has also been developed in Japan. In the early stages of the safe driving system, automatic
driving was considered an ultimate support system. But many technical demonstrations on automatic
driving from 1996 to 2000 gave people an impression that there were still many issues to be deployed from
the point of view of both drivers and legal aspects. The author will demonstrate this more specifically later.
So, recently it appears to the author that the idea of automatic driving is disappearing gradually. Instead
of this, various warning systems and assistance systems have been considered. Demo2000 held at Japan
last year shows effectiveness of those assistance systems such as AHS-I and ASV. “I” in the term of AHS-I
means “information provision.” AHS-I is a kind of concept to assure safe driving of vehicle by using
information provision of both traffic information and road configuration through road-to-vehicle com-
munication. Not only road-to-vehicle communication but inter-vehicle communication is also useful to
ensure traffic safety. A demonstration showing the effectiveness of this technology was also shown in
Demo2000 at Tsukuba, Japan. For example, it was shown to form platooning composed of running vehicles
using inter-vehicle communication technology.

38.4 Issues of ITS Development and Roles
of Software Technology

Issues of ITS Development

The readers can easily think of technological issues to put into practical with the use of ITS, particularly
an assist system of safe driving. Actually, the more important issues to deploy ITS are related to social,
legal, and human issues, including responsibility, which are recognized with technical demonstration
from 1996 to 2000 of the support system for safe driving. Table 38.5 shows the technical issues for
deploying ITS. The importance of these technical issues will be easily understood. Figure 38.16 shows
social, legal, and driver’s issues summarized by Becker and the author.

Legal and driver’s issues are composed of five terms, as shown in Fig. 38.16. The first is “product
perception and use.” This means how deeply users of the ITS-related system like the assist system for
safe driving, can recognize the performance and the use of the system. For example, suppose you buy
an air-bag system. You have to understand both its performance and how to use it very well. You have
to know how it works depending on magnitude of the crash. If you do not know that, you will be
overconfident about the air-bag system, and you may be injured by a traffic accident. In this process,
sufficient explanation of a system by a salesman is very important for users to operate the system very well.

The second important issue is about “system safety and controllability” in Fig. 38.16. One can easily
understand the importance of this issue if one compares control systems of a car with that of an aircraft.
Pilots in an aircraft can operate the control system completely because pilots know how the control

TABLE 38.4 Specification of DSRC

Item Description

Frequencies Two pairs in the 5.8 GHz band
Bandwidth 8 MHz max.
Transmitter output 10 mW
Communication system Active type with slotted Aloha
Maximum vehicle speed 80 kph
Data transmission rate 1.024 Mbps
Modulation method Amplitude shift keying
Bit error rate Less than 10 ppm
Communication error rate Less than 1 ppm
Encoding method Manchester encoding
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systems work well. Moreover, they know how to override the control systems in an emergency. Pilots are
highly disciplined people, but drivers are not necessarily such people. So this issue becomes very impor-
tant in case of drivers.

The third issue is related to “responsibility and product liability.” Suppose a crash happens. Who has
to be responsible for the crash? Which is more responsible, a control system or a driver? Is it the biggest
issue to deploy the ITS properly?

TABLE 38.5 Technological Issues

1. Robust sensing technology
(e.g., obstacles, road conditions, traffic flow, and so on)

2. Robust control technology
(e.g., vehicle control, traffic control, platoon control, and so on)

3. Human technology
(e.g., display, human I/F, drivers intention, and so on)

4. Information and processing technology
5. Communication technology
6. System integration technology

FIGURE 38.16 Legal and social issues.

FIGURE 38.17 Simulation results with ITS simulator.
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System evaluation, the fourth issue, and traffic regulation and standard, the fifth issue, are also very
important. So you can easily understand their importance without any explanation on these issues.

Two social issues are shown in Fig. 38.16. One is the chicken-and-egg argument and the other is
persuasion of people who suspect effectiveness of ITS deployment. The chicken-and-egg argument holds
in the spread of a system that is composed of both infrastructure and automotive equipments, which
rely on infrastructure and vice versa. For example, we consider the case of ETC. There will be no incentive
of spreading automotive terminal for ETC without preparation of infrastructure for ETC. On the other
hand, there is no incentive for infrastructure to be prepared without automotive terminal of ETC. This
is a so called a problem that is first infrastructure or automotive terminals.

Now many people say that ITS is necessary to make smoother traffic flow as well as decrease air pollution
as a result. But some people are still suspicious as to the effectiveness of ITS. For example, is it true that
ITS decreases traffic congestions? Even if it is true, less congestion makes more people use cars. As a result,
less congestion cause more traffic demands. This will lead to more traffic flow. Therefore, only more vehicles
can run, thanks to ITS. As a final result, they think that more cars can run on roads after ITS is deployed.
So congestion will remain almost invariable even if ITS is introduced. It is a conclusion of the people who
are suspicious about the effects of ITS and that traffic congestion will not decrease after ITS is introduced.
In case of ETC deployment, several people do not believe the effect, and they say ETC will change only
location of congestion. For example, suppose there is a junction in front of a tollgate. Before ETC is
introduced, the tollgate was congested. After ETC is introduced, there will be congestion at the junction
instead of the congestion in front of the tollgate. It seems that the location of the congestion shifts from
the tollgate to the junction. This is a conclusion of the people who are suspicious as to the effect of ETC.

Roles of Software Technology

As discussed earlier, ITS is making full use of both information technology and communication tech-
nology. Therefore, the importance of software technology does not need to be explained. For example,
in-vehicle navigation system has a size of the software about 10 MB. This size is about one hundred times
that of engine control software that meets the stringent exhaust gas regulation. This software can provide
important performance, as shown in Fig. 38.7. Besides, this software technology has a great potential to
solve these issues mentioned previously.

In advance, to explain the potential of software technology for solving the social and driver’s issues, as
shown in the preceding section, let us explain the concept to solve these issues. The first issue of “product
perception and use” in Fig. 38.16 would be solved by showing both the performance of the product or
system to be introduced into the market and how to use it. For this purpose, a simulation program that
can simulate the performance is very effective and makes users understand it. For example, a simulation
program of the performance of the air-bag system can show both its performance and how it works well.
So users can easily understand the performance of an air-bag system or, in some cases, even the limitation
of that system. In other words, the issue of product perception and use is realized by software technology.

In a similar way, the second issue of “system safety and controllability” is also solved by software
technology. For example, you can very easily learn system safety and controllability if you have a simu-
lation program. For a new aircraft, pilots can learn its control system and can be trained very well with
a flight simulator.

As for the third issue of “responsibility and product liability,” a simulation program is very helpful in
solving this issue. Product liability (PL) is originally set for protecting users of product, but it sometimes
makes manufacturers conservative about developing a new product. The solution for this issue, however,
is obtained by assuring the safety of a product from the viewpoint of users. This can be done by showing
users the safety of the product in every area where the product is supposed to be used. Only a simulation
program of the performance of the product can perform this. For the third issue, software technology
is also very effective.

The forth issue of “system evaluation” can also be supported with the use of a simulation program. It
would not need to explain. The fifth issue of “traffic regulation and standards” is a little bit different
compared with the four issues mentioned previously.
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Social issues, including both the “chicken-and-egg argument” and persuasion of people who suspect
effectiveness of ITS, are also solved by simulation. For example, people can learn about the effectiveness
of ETC by a simulation program of ETC. Figure 38.17 is an example of a simulation of the effect of ETC
with the ITS simulator that is under development. You can easily understand that the introduction of
ETC decreases the congestion in front of a tollgate, as shown in the upper portion of Fig. 38.17. Even
conservative people would agree to build ETC in order to see this result.

38.5 Practices of Software Development of Both In-Vehicle 
Navigation System and ITS Simulator

Software scales of both the in-vehicle navigation system and the ITS simulator are relatively large, but there
is a difference in both properties between the navigation system and the ITS simulator. In the case of the
navigation system it is embedded software that meets the needs of users. On the other hand, the ITS
simulator is not embedded. In this section, both the software of the in-vehicle navigation system and the
ITS simulator are explained briefly.

In-Vehicle Navigation Systems

Status of the Development of In-Vehicle Navigation System

One of the most severe issues in the development of the software for in-vehicle navigation is the short
development time for the software, which meets customer requirements with low expense.

So some people say that only people who can develop in-vehicle navigation system software very
quickly, at very low cost, would control the in-vehicle navigation system market.

As discussed earlier, in-vehicle navigation system software size is relatively large compared with other
consumer products like a refrigerator, a washing machine, and an air conditioner. The size has reached
nearly 10 MB. Cellular phones have almost the same software size. In general, this means that the cost
to build the software has become very high and it needs a long time for development.

As you can easily understand, the market of the in-vehicle navigation system has two aspects. One is
the aspect of consumer electronic products mainly sold at after-markets. The other aspect is that of the
OEM market where the in-vehicle navigation system is sold and delivered directly to automakers from
suppliers such as manufacturers of electric equipments. Table 38.6 shows three important issues to be
maintanied or met by OEM suppliers of in-vehicle navigation system.

The first issue is customer satisfaction. Here, customer means automakers, not drivers themselves.
That is, automakers decide which supplier’s navigation system to buy. So, it is necessary for suppliers to
meet the various needs of automakers.

The second important issue is keeping the delivery time set by automakers. Automakers have strategies
to sell their cars. So the delivery time of navigation systems is set by automakers. The only thing that
suppliers can do is to keep the delivery time very strictly. So the lead-time to develop an in-vehicle
navigation system is normally very limited for suppliers.

The last important issue to keep in mind is reliability of an in-vehicle navigation system. Of course,
reliability is also very important in the case of consumer electronic products; but in the OEM market,
reliability is a more important issue because a sold car might have been returned due to the unreliability
of the in-vehicle navigation system.

TABLE 38.6 Features of OEM Market as Customers

1. Customer satisfaction
We have to meet the various needs of each automaker.

2. The date of delivery
We have to keep it very strictly.

3. High reliability
It may happen that a sold car is returned to automakers due to unreliability of car navigation system.

Note: Quick development of navigation software with high reliability.
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Summarizing the three important issues, we can see a quick development of navigation software, with
high reliability is a key point. Currently, many difficulties are present in navigation software development
based on conventional methodology; however, as large as the software scale becomes, it does not have
any problem if we can reuse the software in response to the needs of each automaker. But each auto-maker
has many different needs, for example, different functions of a navigation system, man machine interfaces,
desired price, and so on. On the other hand, normally the rate of reused software is relatively low, about
40%. Of the software, 60% has to be developed or modified profoundly in response to the needs of each
automaker. Figure 38.18 shows the software volume ratio in developing the new navigation systems.
About 60% of the software must be renewed for them, and the human-interface related software occupies
a large part of all the renewed software. In addition to this, we have often encountered that software
specification of each automaker has not been fixed until the end of development of the software.

To reduce both S/W bugs and lead-time to develop the navigation software, adoption of both mid-
dleware architecture and auto code generation is desirable. These techniques originate from the so-called
object oriented development of software.

To promote determination of software specification of automakers, particularly man machine interface
(MMI) portion of in-vehicle navigation system, it is suitable to introduce man machine builder tool that
has already developed in another field, such as public infrastructure. The next subsection explains these
two technologies realizing the issues stated earlier.

New Methodology to Develop In-Vehicle Navigation Software

The first technology originated from object-oriented software development. Figure 38.19 shows the basic
development flow along with the object-oriented software development. In the beginning, that is, the
design stage of the object-oriented development model, customer requirements and system functions
are decomposed of the object components that represent the basic or initial system. In this stage, various
supplemental functions of automakers are decomposed of both each child component and the basic
components that will incorporate features as additional components. Because all decomposed compo-
nents including basic and child components are developed individually, their implementation and tests
can be easily performed. For example, both the basic component and child components are implemented

FIGURE 38.18 Issues of navigation software development.
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and tested separately, and then both implementation and test as a whole system, such as system function,
can be performed.

Child components and additional components are also given the same process to assemble the complete
system, which meets the customers requirement. In object-oriented development we can easily modify
with the addition of additional components. So this modification costs relatively less compared with the
conventional waterfall software development. From the point of view of both easy debug and implemen-
tation to a target machine, we need another means besides adoption of object oriented development
model. Moreover, we need a means to make automakers decide their specifications earlier.

Figure 38.20 shows the hierarchical software architecture models to make us debug easily and imple-
ment. The architecture has two distinct points. One is this middleware and the other, man machine

FIGURE 38.19 Object-oriented development model.

FIGURE 38.20 Hierarchical software architecture model.
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builder tools serving to build MMI of in-vehicle navigation system. The middleware acts as a kind of
separator between application software for navigation and hardware like personal computer (PC), and
target machine. A detail of man machine builder tools will be shown later.

Generally speaking, it is desirable to use a PC as a software development environment because of its
lighter weight, portability, and low price. The operating system (OS) for this environment is Windows
NT. This OS includes device drivers for the hardware in the left picture of Fig. 38.20. Now let us explain
the flow of navigation software development. In the beginning, application software of navigation system,
composed of both child and basic components, is built with man machine builder on PCs as software
development tools. Then the software is tested and debugged on the PCs. After that, the software is
rewritten in terms of a target machine by using auto code generation and implemented. Then the
application software is transferred to the target environment. This software definitely works well on the
target machine because all necessary tests are already done by using PC and confirmed that the application
software works well without any problem. So the remaining development that has to be done is to develop
the device drivers for target hardware, which harmonizes the embedded OS with the hardware, as shown
in the right picture of Fig. 38.20.

Also, it is necessary to modify the middleware for target hardware. After the modification of the mid-
dleware for target machine, the developed application software, excluding user interface objects, is tested
to check how well it works. Thus, the application software for navigation can be easily applied onto the
target environment by using this middleware.

The man machine builder tool automatically generates the software code for user interface object, and
this software code is included into the application software. When one develops navigation software along
with the above processes, one can indeed develop both software and hardware concurrently. This reduces
the lead-time of developing new navigation system dramatically and enhances reliability of the software.
Because the application software of the navigation system is developed on Windows OS, one can easily
confirm its operation, in the early phase of development, even if the target hardware is still under
development. CRT display in Fig. 38.21 shows an example of the software test in development phase. In
this display, one can confirm how the functions of the navigation software work well, instead of the real

FIGURE 38.21 Confirmation of operation using PC.

Voice Guide
Dialogue
© 2002 by CRC Press LLC



    
display device; that is, these functions of application software can operate and confirm with virtual
operation panel with dummy signal dialog, and voice guide dialog.

The man machine builder tool is also used to make automakers decide the specification of the man
machine interface in the early stage of the software development because man machine builder tool can
give them virtual MMI and show how it works. For example, using the virtual display, drivers can input
their destinations and their requests to search optimum routes or restaurants near their present locations.
MMI serves drivers to do these interactively using several icons in Fig. 38.21. Generally speaking, the
specification of man machine interface is often not determined until the end of development because the
determination needs ergonomic studies. So it is desirable for providers to make a virtual environment
to simulate the operation of man machine interface to be developed.

The man machine builder tool consists of both user interface design tool and state chart CASE tool.
The missions of the user interface design tool are graphical object design, operation confirmation, and
code generation.

On the other hand, the mission of the state chart CASE tool are production of operative transition,
graphical confirmation of transition, and code generation of state transition.

Before explaining the function of the man machine builder tool briefly, we will explain about the
conventional way to build MMI using Fig. 38.22. In the conventional method, the man machine module
including graphical object design for user interface and state transition is designed from requirement
analysis in the beginning. After both graphical object design and state transition are proceeded, software
code of man machine module are coded separately by manual operation (hand coding).

Then the software code is combined with other application software. Finally, its operational test is
performed on a display of target hardware. If some unexpected behavior or shape occurs in the user
interface, its correction of design and coding are reprocessed. And, though this is a more important issue,
additional requests by customers are often added to the specification to MMI. In order to cope with this,
a new environment to build MMI differently from the conventional method is indispensable.

By using the new development environment of building MMI, one can generate the man machine
module throughout from design to software code. With this tool, a graphical object is designed with the
menu object editor, as shown in Fig. 38.23. This means both the graphic objects for MMI and the
animation of their graphic objects are defined simultaneously with production of objects.

State transition is defined in the state chart editor in the right part of Fig. 38.23. In the state chart editor,
both the animation parameters of graphic objects and navigation function behavior are defined following
the state transition. After the graphical confirmation of both these graphic behaviors and state transition,
these tools can generate the software code for man machine module automatically. Thus, you can show

FIGURE 38.22 Conventional method for man machine module.
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automakers how the user interface under development works well, using the virtual display. And you can
get necessary suggestions including the additional needs from them. Thus, one can easily understand
that this tool can accept various requests from customers interactively. So the specification of MMI is
easily determined, unlike the conventional method, by using this tool.

The menu object editor in Fig. 38.23 has two main functions. One is the production of the graphical
object of the user interface of the navigation system using the basic and special components. The other
is the production of animation in the user interface. In Fig. 38.24 basic components, such as polygonal
line, polygon and ellipse are shown in the upper dotted box of the left picture in Fig. 38.24. Special
components are only needed for the navigation object, such as character strings, bitmaps representing

FIGURE 38.23 Development with man machine builder tool.

FIGURE 38.24 Function of menu object editor.
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the specified functions of the system, and the button object for the menu interface are generated. In
addition to the object design, animation of the object can also create its transition, and this animation
can be simulated on this tool, as shown in Fig. 38.25. This menu object editor also has a function of
automation code generation for designed object and animation.

Use of state chart CASE tool to state transition design has these major points. The first major point
is the easy description of graphical menu transition. Designed transition can be visually confirmed
with the visible state chart, which is the second major point. The third point is easy customizing of the
state transition. It can be modified in the visual tool by moving the transition line in the design window
in the right picture of Fig. 38.25. So one can introduce it to advanced environment for navigation software
development. This CASE tool can also output the software code of the state transition with an automatic
code generation function.

Here, we show the operation flow of making the entire software using the MMI builder tool. In Fig. 38.26,
the man machine module provides the navigation software code. When the graphical object design is finished,
the software code of the menu objects is generated automatically. The software code of the state transition
is also generated in the same manner. Both the codes are included in man machine module, then the binary
code of the navigation software is built to confirm its function on the PC. This sequence is continued until
achievement of all requirements, and it builds for the target hardware to release the actual sample.

ITS Simulator and Its Functions

ITS simulator is a kind of driving simulator. So real configuration of the ITS simulator is very similar to
that of the driving simulator. Figure 38.27 shows the configuration that is composed of computer, screen,
projector, and a half actual vehicle. Although the configuration of the ITS simulator is similar to a driving
simulator, the functions are very different from those of a driving simulator. The ITS simulator can
simulate both several effects and effectiveness of ITS deployment as a result of simulating the interaction
between road infrastructure and vehicles. This is one of the greatest different points between a driving
simulator and ITS simulator.

Figure 38.28 shows the architecture of ITS simulator. It consists of four major modules, vehicle
dynamics simulator module, micro traffic simulator module, 3D road environmental simulator module,
and system control module.

FIGURE 38.25 State transition design.
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The first module of vehicle dynamics simulator provides the movement of the half driving vehicle
dynamics in real-time. This vehicle dynamics model has nine degrees of freedom of movements. Therefore,
you can feel as if you were in a real car in the half vehicle of ITS simulator in the same manner of a
driving simulator.

The second module of microscopic road traffic simulator, which is called MELROSE, generates a virtual
road traffic environment based on an autonomous driving model. Every vehicle provided by this module
acts as surrounded vehicles of the simulated vehicle of the vehicle dynamics simulator, and also every
vehicle can run with its own origin and destination. So these vehicles can act as surrounded vehicles.

This third module is a 3D-computer graphics road environment simulator. This simulator creates
actual geographical conditions and road configurations in response to the vehicle location of the simulated

FIGURE 38.26 Operation flow with man machine builder.

FIGURE 38.27 Physical configuration of ITS simulator.
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vehicle. For these, various road data like width, gradient, numbers of lane, road shape, and so on are
stored in the memories of this module. In response to the vehicle movement the stored road data are
accessed to form virtual road environment with 3D graphics based on real road data.

The final module is to control the operation of the above three module and to make the total modules
operate as the ITS simulator. A representative action is to synchronize other three modules because all
time units to compute are different in each module.

Figure 38.29 shows an architecture and data flow among all four modules. The land database means
the stored data as shown before. The upper right computer in Fig. 38.29 means system control module
and 3D graphic processing of road environment simulator.

A simulation result on how congestion is formed by a blocking vehicle is shown in Fig. 38.30. The
reader can easily understand a process of congestion due to a blocking vehicle in a circle. A driving
simulator cannot simulate such a situation. The next simulation result is shown in Fig. 38.31. It simulates

FIGURE 38.28 Modules of ITS simulator.

FIGURE 38.29 Physical architecture of ITS simulator.
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a kind of the interaction effects between provisions of traffic information and vehicles or drivers, that
is, it simulates the differences of traffic flow rate with and without traffic information with a message
board to drivers. For example, a roadside message board in the circle in Fig. 38.31 says that there is an
icy road surface ahead, so please slow down. This message is also sent through road to vehicle commu-
nication to vehicle and shown in the in-vehicle display like in-vehicle navigation system in Fig. 38.31. Now
a smart driver follows this advice to get smooth traffic flow. Some driver might not follow. As a result
of this, congestion would occur to cause bad traffic flow. Therefore, traffic flow rates between these two
cases are very different. ITS simulator can simulate such a situation and show the effectiveness of the
provisions of traffic information.

FIGURE 38.30 Generation of congestion due to accident.

FIGURE 38.31 Simulation of effectiveness of AHS-i.
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Figure 38.32 shows another example of the simulation with ITS simulator. A foggy situation with bad
visibility is simulated. For example, a vehicle with an automatic driving system can run safely in spite of
such a foggy condition. Though several modifications are needed, ITS simulator can simulate both every
considerable traffic situation and considerable situation of use of control systems like automatic driving.
As I mentioned earlier, this means that ITS simulator has a great advantage to show both the effects and
the effectiveness of ITS deployment.

The microscopic traffic simulator, that is a part of the ITS simulator, alone can simulate several
situations. For example, Fig. 38.17 shows the effects on congestion in front of a tollgate of a highway
between with and without ETC. The upper case in Fig. 38.17 shows congestion in front of a tollgate with
ETC. The lower shows the case without ETC. Each colored rectangle shows each vehicle. So the length
of congestion is given by that of the row of the rectangles on each lane. You can easily see the difference
between with and without ETC. Even people who suspect the effect of introducing ETC can understand
the effect and would agree to the introduction of ETC.

38.6 Conclusion

We have the following conclusions:

1. In Japan in-vehicle navigation system are widespread and the VICS service to provide real-time
traffic information is also widely spread. As for ETC, its service is about to start.

2. In the development of navigation software, adoption of both an hierarchical architecture and man
machine builder into the development environment of navigation software is powerful enough to
develop the software very quickly with high reliability.

3. ITS simulator is a powerful tool to solve the issues of ITS deployment.
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To Probe Further

In this field, there has been much rapid progress. So we cannot find comprehensive literature on Japanese
ITS. Therefore, below is someliterature about specific fields.

Japanese ITS in general:

“ITS Handbook” edited by 2000

and the following several website are available for your further study:

http//:www.vics.or.jp/;www.moc.go.jp/;www.mpt.go.jp/;www.npa.go.jp/;www.miti.go.jp/;www.mot.
go.jp/

In-vehicle navigation system:

For example, “Car-Navigation Systems” K. Yokouchi, H. Ideno, and M. Ota, Mitsubishi Electric
Advance Vol. 91/Sep. 2000, 2000.

ITS deployment and ITS simulator:

1. “Driver Assistance Systems—industrial, psychological, and legal aspects” S. Becker, D. Randow,
and J. Feldges, In Proceeding of the Intelligent Vehicle Symposium, 1998.

2. “Simulation environment for ITS—a real-time 3D simulator” M. Ikawa, H. Kumazawa, Y. Goto,
H. Furusawa, and Y. Akemi, In Proceeding of the 5th ITS World Congress, 1998.

3. “A prototype of smart ways in ITS simulator” Y. Goto, M. Ikawa, and H. Kumazawa, In Proceeding
of the 6th ITS World Congress, 1999.
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39.1 Instruction Set Architecture for Multimedia 
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Ruby Lee

Introduction

Multimedia signal processing, or media processing [1], is the processing of digital multimedia information
in a programmable processor. Digital multimedia information includes visual information like images,
video, graphics, and animation, audio information like voice and music, and textual information like
keyboard text and handwriting. With general-purpose computers processing more multimedia informa-
tion, multimedia instructions for efficient media processing have been defined for the instruction set
architectures (ISAs) of microprocessors. Meanwhile, digital processing of video and audio data in consumer
products has also resulted in more sophisticated multimedia processors. Traditional digital signal processors
(DSPs) in music players and recorders and mobile telephones are becoming increasingly sophisticated as
they process multiple forms of multimedia data, rather than just audio signals. Video processors for
televisions and video recorders have become more versatile as they have to take into account high-fidelity
audio processing and real-time three-dimensional (3-D) graphics animations. This has led to the design
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of more versatile media processors, which combine the capabilities of DSPs for efficient audio and signal
processing, video processors for efficient video processing, graphics processors for efficient 2-D and 3-D
graphics processing, and general-purpose processors for efficient and flexible programming. The functions
performed by microprocessors and media processors may eventually converge. In this chapter, some of the
key innovations in multimedia instructions added to microprocessor ISAs are described, which have
allowed high-fidelity multimedia to be processed in real-time on ubiquitous desktop and notebook com-
puters. Many of these features have also been adopted in modern media processors and DSPs.

Subword Parallelism

Workload characterization studies on multimedia applications show that media applications have huge
amounts of data parallelism and operate on lower-precision data types. A pixel-oriented application, for
example, rarely needs to process data that is wider than 16 bits. This translates into low computational
efficiency on general-purpose processors where the register and datapath sizes are typically 32 or 64 bits,
called the width of a word. Efficient processing of low-precision data types in parallel becomes a basic
requirement for improved multimedia performance. This is achieved by partitioning a word into multiple
subwords, each subword representing a lower-precision datum. A packed data type will be defined as data
that consists of multiple subwords packed together. These subwords can be processed in parallel using a
single instruction, called a subword-parallel instruction, a packed instruction, or a microSIMD instruction.
SIMD stands for “single instruction multiple data,” a term coined by Flynn [2] for describing very large
parallel machines with many data processors, where the same instruction issued from a single control
processor operates in parallel on data elements in the parallel data processors. Lee [3] coined the term
microSIMD architecture to describe an ISA—where a single instruction operates in parallel on multiple
subwords within a single processor.

Figure 39.1 shows a 32-bit integer register that is made up of four 8-bit subwords. The subwords in the
register can be pixel values from a grayscale image. In this case, the register is holding four pixels with
values 0xFF, 0x0F, 0xF0, and 0x00. The same 32-bit register can also be interpreted as two 16-bit subwords,
in which case, these subwords would be 0xFF0F and 0xF000. The subword boundaries do not correspond
to a physical boundary in the register file; they are merely how the bits in the word are interpreted by the
program. If we have 64-bit registers, the most useful subword sizes will be 8-, 16-, or 32-bit words. A single
register can then accommodate 8, 4, or 2 of these different sized subwords, respectively.

To exploit subword parallelism, packed parallelism, or microSIMD parallelism in a typical word-
oriented microprocessor, new subword-parallel or packed instructions are added. (The terms “subword-
parallel,” “packed,” and “microSIMD” are used interchangeably to describe operations, instructions and
architectures.) The parallel processing of the packed data types typically requires only minor modifica-
tions to the word-oriented functional units, with the register file and the pipeline structure remaining
unchanged. This results in very significant performance improvements for multimedia processing, at a
very low cost (see Fig. 39.2).

Typically, packed arithmetic instructions such as packed add and packed subtract are first intro-
duced. To support subword parallelism efficiently, other classes of new instructions such as subword
permutation instructions are also needed. Typical subword-parallel instructions are described in the rest
of this chapter, pointing out interesting arithmetic or architectural features that have been added to
support this style of microSIMD parallelism. In the subsection on “Packed Add and Packed Subtract
Instructions,” packed add and packed subtract instructions described are, as well as several variants
of these. These instructions can all be implemented on the basic Arithmetic Logical Units (ALUs) found
in programmable processors, with minor modifications. Such partitionable ALUs are described in the
subsection on “Partitionable ALUs.” Saturation arithmetic—one of the most interesting outcomes of

FIGURE 39.1 32-bit integer register made up of four 8-bit subwords.
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subword-parallel additions—for efficiently handling overflows and performing in-line conditional oper-
ations is also described. A variant of packed addition is the packed average instruction, where unbiased
rounding is an interesting associated feature. Another class of packed instructions that can use the ALU
is the parallel compare instruction where the results are the outcomes of the subword comparisons.

The subsection on “Packed Multiply Instruction” describes how packed integer multiplication is handled.
Also described are different approaches to solving the problem of the products being twice as large as the
subword operands that are multiplied in parallel. Although subword-parallel multiplication instructions
generally require the introduction of new integer multiplication functional units to a microprocessor, the
special case of multiplication by constants, which can be achieved very efficiently with packed shift and
add instructions that can be implemented on an ALU with a small preshifter, is described.

The subsection on “Packed Shift and Rotate Operations” describes packed shift and packed
rotate instructions, which perform a superset of the functions of a typical shifter found in micropro-
cessors, in parallel, on packed subwords. 

The subsection on “Subword Permutation Instruction” describes a new class of instructions, not
previously found in programmable processors that do not support subword parallelism. These are
subword permutation instructions, which rearrange the order of the subwords packed in one or more
registers. These permutation instructions can be implemented using a modified shifter, or as a separate
permutation function unit (see Fig. 39.3).

To provide examples and illustrations, the following first and second generation multimedia instruc-
tions in microprocessor ISAs are used:

• IA-64 [4,5], MMX [6,7], and SSE-2 [8] from Intel, 

• MAX-2 [9,10] from Hewlett-Packard, 

FIGURE 39.2 MicroSIMD parallelism uses packed data types and a partitionable ALU.

FIGURE 39.3 Typical datapaths and functional units in a programmable processor.
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• 3DNow!11 [11,12] from AMD, 

• AltiVec [13] from Motorola.

Historical Overview

The first generation multimedia instructions focused on subword parallelism in the integer domain.
These are described and compared in [14]. The first set of multimedia extensions targeted at general-
purpose multimedia acceleration, rather than just graphics acceleration, was MAX-1, introduced with
the PA-7100LC processor in January 1994 [15,16] by Hewlett-Packard. MAX-1, an acronym for “multi-
media acceleration extensions,” is a minimalist set of multimedia instructions for the 32-bit PA-RISC
processor [17]. An application that clearly illustrated the superior performance of MAX-1 was MPEG-1
video and audio decoding with software, at real-time rates of 30 frames per second [18]. For the first
time, this performance was made possible using software on a general-purpose processor in a low-end
desktop computer. Until then, such high-fidelity, real-time video decompression performance was not
achievable without using specialized hardware. MAX-1 also accelerated pixel processing in graphics
rendering and image processing, and 16-bit audio processing.

Next, Sun introduced VIS [19], which was an extension for the UltraSparc processors. VIS was a much
larger set of multimedia instructions. In addition to packed arithmetic operations, VIS provided very
specialized instructions for accessing visual data, stored in predetermined ways in memory.

Intel introduced MMX [6,7] multimedia extensions in the dominant Pentium microprocessors in
January 1997, which immediately legitimized the valuable contribution of multimedia instructions for
ubiquitous multimedia applications. 

MAX-2 [9] was Hewlett-Packard’s multimedia extension for its 64-bit PA-RISC 2.0 processors [10].
Although designed simultaneously with MAX-1, it was only introduced in 1996, with the PA-RISC 2.0
architecture. The subword permutation instructions introduced with MAX-2 were useful only with the
increased subword parallelism in 64-bit registers. Like MAX-1, MAX-2 was also a minimalist set of
general-purpose media acceleration primitives. 

MIPS also described MDMX multimedia extensions and Alpha described a very small set of MVI
multimedia instructions for video compression.

The second generation multimedia instructions initially focused on subword parallelism on the floating-
point (FP) side for accelerating graphics geometry computations and high-fidelity audio processing. Both
of these multimedia applications use single-precision, floating-point numbers for increased range and
accuracy, rather than 8-bit or 16-bit integers. These multimedia ISAs include SSE and SSE-2 [8] from Intel
and 3DNow! [11,12] from AMD. Finally, the PowerPC’s AltiVec [13] and the Intel-HP IA-64 [4,5] multi-
media instruction sets are comprehensive integer and floating-point multimedia instructions. Today, every
microprocessor ISA and most media and DSP ISAs include subword-parallel multimedia instructions.

Packed Add and Packed Subtract Instructions

Packed add and packed subtract instructions are similar to ordinary add and subtract instruc-
tions, except that the operations are performed in parallel on the subwords of two source registers. Add
(nonpacked) and packed add operations are shown in Figs. 39.4 and 39.5, respectively. The packed
add in Fig. 39.5 uses source registers with four subwords each. The corresponding subwords from the
two source registers are summed up, and the four sums are written to the target register. A packed
subtract operation operates similarly.

Partitionable ALUs 

Very minor modifications to the underlying functional units are needed to implement packed add and
packed subtract instructions. Assume that we have an ALU with 32-bit integer registers, and we want
to extend this ALU to perform a packed add that will operate on four 8-bit subwords in parallel.

1 3DNow! may be considered as having two versions. In June 2000, 25 new instructions were added to the original
3DNow! specification. In this text, this extended 3DNow! architecture will be considered.
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To achieve this, the carry propagation across the subword boundaries has to be blocked. Because each
subword is interpreted as being independent of the neighboring subwords, by stopping the carry bits
from affecting the neighboring subwords, the packed add operation can be realized. 

In Fig. 39.6, the packed integer register Ra=[0xFF|0x0F|0xF0|0x00] is being added to another packed
register Rb=[0x00|0xFF|0xFF|0x0F]. The result is written to the target register Rc. In an ordinary add
instruction, the overflows generated by the addition of the second and third subwords will propagate into
the first two sums. The correct sums, however, can be achieved easily by blocking the carry bit propagation
across the subword boundaries, which are spaced 8-bits apart from one another.

As shown in Fig. 39.7, a 2-to-1 multiplexer placed at the subword boundaries of the adder can be used
to control the propagation or the blocking of the carry bits. If the instruction is a packed add, the
multiplexer control is set such that a zero is propagated into the next subword. If the instruction is an
ordinary add, the multiplexer control is set such that the carry from the previous stage is propagated.
By placing such a multiplexer at each subword boundary and adding the control logic, partitionable
ALUs are achieved at insignificant cost. 

By using 3-to-1 multiplexers instead of 2-to-1 multiplexers, we can also implement packed subtract
instructions. The multiplexer control is set such that:

• For packed add instructions, zero is propagated into the next stage.

• For packed subtract instructions, one is propagated into the next stage.

FIGURE 39.4 ADD Rc,Ra,Rb : Ordinary add instruction.

FIGURE 39.5 PADD Rc,Ra,Rb : Packed add instruction. 
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• For ordinary add/subtract instructions, the carry/borrow bit from the previous stage is prop-
agated into the next stage.

When a zero is propagated through the boundary into the next subword in the packed add instructions,
we are essentially ignoring any overflow that might have been generated. Similarly, when a one is propa-
gated through the boundary into the next subword in the packed subtract instructions, we are
essentially ignoring any borrow that might have been generated. Ignoring overflows is equivalent to using
modular arithmetic in add operations. Although modular arithmetic can be necessary or useful, other
occasions arise when the carry bits should not be ignored and have to be handled differently.

FIGURE 39.6 In the packed add instruction, the carry bits are not propagated.

FIGURE 39.7 Partitionable ALU: In packed add instructions, the multiplexers propagate zero; in ordinary add
instructions, the multiplexers propagate carry-out from the previous stage into the carry-in of the next stage.
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Handling Parallel Overflows

Overflows in packed add/subtract instructions can be handled in the following ways:

• The overflow may be ignored (modular arithmetic).

• A flag bit may be set if at least one overflow is generated.

• Multiple flag bits (i.e., one flag bit for each addition operation on the subwords) may be set.

• A software overflow trap can be taken.

• Saturation arithmetic: the results are limited to a certain range. If the outcome of the operation
falls outside this range, the corresponding limiting value will be the result. 

Most nonpacked integer add/subtract instructions choose to ignore overflows and perform mod-
ular arithmetic. In modular arithmetic, the numbers wrap around from the largest representable number
to the smallest representable number. For example, in 8-bit modular arithmetic, the operation 254+2
will give a result of 0. The expected result, 256, is larger than the largest representable number, which is
255, and therefore is wrapped around to the smallest representable number, which is 0. 

In multimedia applications, modular arithmetic frequently gives undesirable results. If the numbers
in the previous example were pixel values in a grayscale image, by wrapping the values from 255 down
to 0, white pixels would have converted into black ones. One solution to this problem is to use overflow
traps, which are implemented in software.

A flag bit is an indicator bit that is set or cleared depending on the outcome of a particular operation.
In the context of this discussion, an overflow flag bit is an indicator that is set when an add instruction
generates an overflow. Occasions arise where the use of the flag bits are desirable. Consider a loop that
iterates many times and in each iteration, executes many add instructions. In this case, it is not desirable
to handle overflows (by taking overflow trap routines) as soon as they occur, because this would negatively
impact the performance by interrupting the execution of the loop body. Instead, the overflow flag can
be set when the overflow occurs, and the program flow continues as if the overflow did not occur. At
the end of each iteration, however, this overflow flag can be checked and the overflow trap can be executed
if the flag turns out to be set. This way, the program flow would not be interrupted while the loop body
executes.

An overflow trap can be used to saturate the results so that the aforementioned problems would not
occur. A result that is greater than the largest representable value is replaced by that largest value. Similarly,
a result that is less than the smallest representable value is replaced by that smallest value. One problem
with this solution will be its negative effects to performance. An overflow trap is handled in software and
may take many clock cycles to resolve. This can be acceptable only if the overflows are infrequent. For
nonpacked add/subtract instructions, generation of an overflow on a 64-bit register by adding 8-bit
quantities will be rare, so a software overflow trap will work well. This is not the case for packed arithmetic
operations. Causing an overflow in an 8-bit subword is much more likely than in a 64-bit register. Also,
since a 64-bit register may hold eight 8-bit subwords, multiple overflows can occur in a single execution
cycle. In this case, handling the overflows by software traps could easily negate any performance gains
from executing packed operations. The use of saturation arithmetic solves this problem.

Saturation Arithmetic

Saturation arithmetic implements in hardware the work done by the overflow trap described above. The
results falling outside the allowed numeric ranges are saturated to the upper and lower limits by hardware.
This can handle multiple parallel overflows efficiently, without operating system intervention. Two types
overflows for arithmetic operations are:

• A positive overflow occurs when the result is larger than the largest value in the defined range for
that result

• A negative overflow occurs when the result is smaller than the smallest value in the defined range
for that result
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If saturation arithmetic is used in an operation, the result is clipped to the maximum value in its
defined range if a positive overflow occurs, and to the minimum value in its defined range if a negative
overflow occurs.

For a given instruction, multiple saturation options may exist, depending on whether the operands
and the result are treated as signed or unsigned integers. For an instruction that uses three registers (two
for source operands and one for the result), there can be eight different saturation options. Each one of
the three registers can be treated as containing either a signed or an unsigned integer, which gives 23

possible combinations. Not all of the eight possible saturation options are equally useful. Only three of
the eight possible saturation options are used in any of the multimedia ISAs surveyed:

a) sss (signed result–signed first operand–signed second operand): In this saturation option, the
result and the two operands are all treated as signed integers. The most significant bit is considered
the sign bit. Considering n-bit subwords, the result and operands are defined in the range [−2n−1,
2n−1 − 1]. If a positive overflow occurs, the result is saturated to 2n − 1. If a negative overflow occurs,
the result is saturated to −2n−1. In an addition operation that uses the sss saturation option, since
the operands are signed numbers, a positive overflow is possible only when both operands are
positive. Similarly, a negative overflow is possible only when both operands are negative.

b) uuu (unsigned result–unsigned first operand–unsigned second operand): In this saturation option,
the result and the two operands are all treated as unsigned integers. Considering n-bit integer
subwords, the result and the operands are defined in the range [0,2n − 1]. If a positive overflow
occurs, the result is saturated to 2n − 1. If a negative overflow occurs, the result is saturated to
zero. In an addition operation that uses the uuu saturation option, since the operands are unsigned
numbers, negative overflow is not a possibility; however, for a subtraction operation using the
uuu saturation, negative overflow is possible, and any negative result will be clamped to zero as
the smallest value.

c) uus (unsigned result–unsigned first operand–signed second operand): In this saturation option,
the result and the first operand are treated as unsigned numbers, and the second operand is treated
as a signed number. Although this may seem like an unusual option, it proves useful because it
allows the addition of a signed increment to an unsigned pixel. It also allows negative numbers
to be clipped to zero. Its implementation has logical symmetry to the sss case.

In addition to the efficient handling of overflows, saturation arithmetic also facilitates several other
useful computations. For instance, saturation arithmetic can also be used to clip results to arbitrary max-
imum or minimum values. Without saturation arithmetic, these operations could normally take up to
five instructions for each pair of subwords. That would include instructions to check for upper and lower
bounds and then to perform the clipping. Using saturation arithmetic, however, this effect can be achieved
in as few as two instructions for all the pairs of packed subwords. 

Saturation arithmetic can also be used for in-line conditional execution, reducing the need for con-
ditional branches that can cause significant performance degradations in pipelined processors. Some
examples are the packed maximum and packed absolute difference operations shown in
Figs. 39.8(a, b).

Table 39.1 contains examples of operations that can be performed using saturation arithmetic [15].
All of the instructions in the table use three registers. The first register is the target register. The second
and the third registers hold the first and the second operands respectively. PADD and PSUB denote
packed add and packed subtract instructions. The three-letter field after the instruction mnemonic
specifies which saturation option is to be used. If this field is empty, modular arithmetic is assumed.
All the examples in the table operate on 16-bit integer subwords.

Table 39.2 contains a summary of the register and subword sizes and the saturation options found in
different multimedia ISAs. Table 39.3 is a summary of the packed add/subtract instructions in
several multimedia ISAs. The first column contains descriptions of common packed instructions. The
symbols ai and bi represent the corresponding subwords from the two source registers. The symbol ci

represents the corresponding subword in the target register. 
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The IA-642 architecture has 64-bit integer registers. Packed add and packed subtract instructions
are supported for subword sizes of 1, 2, and 4 bytes. Modular arithmetic is defined for all subword sizes
whereas the saturation options (sss, uuu, and uus) exist for only 1 and 2-byte subwords.

The PA-RISC MAX-2 architecture also has 64-bit integer registers. Packed add and packed sub-
tract instructions operate on only 2-byte subwords. MAX-2 instructions support modular arithmetic,
and the sss and uus saturation options. 

The IA-32 MMX architecture defines eight 64-bit registers for use by the multimedia instructions.
Although these registers are referred to as separate registers, they are aliased to the registers in the FP
data register stack. Supported subword sizes are 1, 2, and 4 bytes. Modular arithmetic is defined for all
subword sizes whereas the saturation options (sss and uus) exist for only 1-  and 2-byte subwords. 

The IA-32 SSE-2 technology introduces a new set of eight 128-bit FP registers to the IA-32 architecture.
Each of the 128-bit registers can accommodate four single-precision (SP) or two double-precision (DP)
numbers. Moreover, these registers can also be used to accommodate packed integer data types. Integer
subword sizes can be 1, 2, 4, or 8 bytes. Modular arithmetic is defined for all subword sizes whereas the
saturation options (sss and uus) exist for only 1- and 2-byte subwords. 

The PowerPC AltiVec architecture has thiry-two 128-bit registers for multimedia instructions. Packed
add/subtract instructions are supported for 1-, 2-, and 4-byte subwords. Modular or saturation
arithmetic (uuu or sss) can be used, although sss saturation is only supported for packed add. 

FIGURE 39.8 (a) Packed maximum operation using saturation arithmetic. (b) Packed absolute differ-
ence operation using saturation arithmetic.

2All the discussions in this chapter consider Intel’s IA-64 as the base architecture. Evaluations of the other
architectures are generally carried out by comparisons to IA-64.
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Packed Average

Packed average instructions are very common in media applications such as pixel averaging in MPEG-2
encoding, motion compensation, and video scaling. In a packed average, the pairs of corresponding
subwords in the two source registers are added to generate intermediate sums. Then, the intermediate
sums are shifted right by one bit, so that any overflow bit is shifted in on the left as the most significant
bit. The beauty of the average operation is that no overflow can occur, and two operations (add followed
by a one bit right shift) are performed in one operation. In a packed average instruction, 2n operations
are performed in a single cycle, where n is the number of subwords. In fact, even more operations are
performed in a packed average instruction, if the rounding applied to the least significant end of the
result is considered. Here, two different rounding options have been used:

TABLE 39.1 Examples of Operations That are Facilitated by Saturation Arithmetic

Operation Instruction Sequence Notes

Clip ai to an arbitrary maximum value 
vmax, where vmax < 215 − 1.

PADD.sss Ra, Ra, Rb

PSUB.sss Ra, Ra, Rb

Rb contains the value (215 − 1 − vmax). If ai > vmax, this 
operation clips ai to 215 − 1 on the high end. 

ai is at most vmax.

Clip ai to an arbitrary minimum value 
vmin, where vmin > −215.

PSUB.sss Ra, Ra, Rb

PADD.sss Ra, Ra, Rb

Rb contains the value (−215 + vmin). If ai < vmin, this 
operation clips ai to −215 at the low end. 

ai is at least vmin.

Clip ai to within the arbitrary range 
[vmin, vmax], where –215 < vmin < vmax < 
215 − 1.

PADD.sss Ra, Ra, Rb

PSUB.sss Ra, Ra, Rd

PADD.sss Ra, Ra, Re

Rb contains the value (215 − 1 − vmax). This operation 
clips ai to 215 − 1 on the high end.

Rd contains the value (215 − 1 − vmax + 215 − vmin). This 
operation clips ai to −215 at the low end.

Re contains the value (−215 + vmin). This operation clips 
ai to vmax at the high end and to vmin at the low end.

Clip the signed integer ai to an unsigned 
integer within the range [0, vmax], 
where 0 < vmax < 215 − 1.

PADD.sss Ra, Ra, Rb

PSUB.uus Ra, Ra, Rb

Rb contains the value (215 − 1 − vmax). This operation 
clips ai to 215 − 1 at the high end.

This operation clips ai to vmax at the high end and to 
zero at the low end.

Clip the signed integer ai to an unsigned 
integer within the range [0, vmax], 
where vmax < 216 − 1.

PADD.uus Ra, Ra, 0 If ai < 0, then ai = 0 else ai = ai.
If ai was negative, it gets clipped to zero, else remains 

same.
ci = max(ai, bi) PSUB.uuu Rc, Ra, Rb If ai > bi, then ci = (ai − bi) else ci = 0.
Packed maximum operation

PADD Rc, Rb, Rc If ai > bi, then ci = ai else ci = bi.

ci = |ai − bi| PSUB.uuu Re, Ra, Rb If ai > bi, then ei = (ai − bi) else ei = 0.

Packed absolute difference 
operation

PSUB.uuu Rf, Rb, Ra

PADD Rc, Re, Rf

If ai <= bi , then fi = (bi − ai) else fi = 0.
If ai > bi, then ci = |ai − bi|, else ci = |bi − ai|.

Note: ai and bi are the subwords in the registers Ra and Rb, respectively, where i = 1, 2, …, k, and k denotes the
number of subwords in a register. Subword size n, is assumed to be two bytes (i.e., n = 16) for this table.

TABLE 39.2 Summary of the Integer Register, Subword Sizes, and Subtraction Options Supported by 
the Different Architectures

Architectural Feature IA-64 MAX-2 MMX SSE-2 AltiVec

Size of integer registers (bits) 64 64 64 128 128
Supported subword sizes (bytes) 1, 2, 4 2 1, 2, 4 1, 2, 4, 8 1, 2, 4
Modular arithmetic Y Y Y Y Y
Supported saturation options sss, uuu, uus sss, uus sss, uuu sss, uuu uuu, sss

for 1, 2 byte for 2 byte for 1, 2 byte for 1, 2 byte for 1, 2, 4 byte
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• Round away from zero: A one is added to the intermediate sums, before they are shifted to the
right by one bit position. If carry bits were generated during the addition operation, they are
inserted into the most significant bit position during the shift right operation (see Fig. 39.9).

• Round to odd: Instead of adding one to the intermediate sums, a much simpler OR operation is
used. The intermediate sums are directly shifted right by one bit position, and the last two bits of
each of the subwords of the intermediate sums are ORed to give the least significant bit of the final
result. This makes sure that the least significant bit of the final results are set to 1 (odd) if at least
one of the two least-significant bits of the intermediate sums are 1 (see Fig. 39.10).

TABLE 39.3 Summary of the packed add and packed subtract Instructions and Variants

Integer Operations IA-64 MAX-2 MMX SSE-2 3DNow! AltiVec

ci = ai + bi √ √ √ √ √
ci = ai + bi (with saturation) √ √ √ √
ci = ai − bi √ √ √ √ √
ci = ai − bi (with saturation) √ √ √ √
ci = average(ai , bi) √ √ √ √ √
ci = average(ai, − bi) √
[c2i, c2i+1] = [a2i + a2i+1, b2i + b2i+1] √
lsbit(ci) = carryout(ai + bi) √
lsbit(ci) = carryout(ai − bi) √
ci = compare(ai , bi) √ √ √
Move mask √ √
ci = max(ai , bi) √ √a √ √ √
ci = min(ai , bi) √ √a √ √ √
c = √ √a √ √

a This operation is realized by using saturation arithmetic.

FIGURE 39.9 PAVG Rc, Ra, Rb: Packed average instruction using the round away from zero option.

Σ ai bi–
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This rounding mode also performs unbiased rounding under the following assumptions. If the interme-
diate result is uniformly distributed over the range of possible values, then half of the time the bit shifted
out is zero, and the result remains unchanged with rounding. The other half of the time the bit shifted out
is one: if the next least significant bit is one, then the result loses –0.5, but if the next least significant bit
is a zero, then the result gains +0.5. Because these cases are equally likely with a uniform distribution of
the result, the round to odd option tends to cancel out the cumulative averaging errors that may be generated
with repeated use of the averaging instruction.

Accumulate Integer

Sometimes, it is useful to add adjacent subwords in the same register. This can, for example, facilitate
the accumulation of streaming data. An accumulate integer instruction performs an addition of the
subwords in the same register and places the sum in the upper half of the target register, while repeating
the same process for the second source register and using the lower half of the target register (Fig. 39.11).

Save Carry Bits

This instruction saves the carry bits from a packed add operation, rather than the sums. Figure 39.12
shows such a save carry bits instruction in AltiVec: a packed add is performed and the carry bits
are written to the least significant bit of each result subword in the target register. A similar instruction
saves the borrow bits generated when performing packed subtract instead of packed add.

Packed Compare Instructions

Sometimes, it is necessary to compare pairs of subwords. In a packed compare instruction, pairs of
subwords are compared according to the relation specified by the instruction. If the condition is true for a
subword pair, the corresponding field in the target register is written with a 1-mask. If the condition is

FIGURE 39.10 PAVG Rc, Ra, Rb: Packed average instruction using the round to odd option. (From Intel,
IA-Architecture Software Developer’s Manual, Vol. 3, Instruction Set Reference, Rev. 1.1, July 2000. With permission.)
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false, the corresponding field in the target register is written with a 0-mask. Alternatively, a true or false
bit is generated for each subword, and this set of bits is written into the least significant bits of the result
register. Some of the architectures have compare instructions that allow comparison of two numbers for
all of the 10 possible relations,3 whereas others only support a subset of the most frequent relations. A
typical packed compare instruction is shown in Fig. 39.13 for the case of four subwords.

When a mask of bits is generated as in Fig. 39.13, often a move mask instruction is also provided. In
a move mask instruction, the most significant bits of each of the subwords are picked, and these bits are
placed into the target register, in a right aligned field (see Fig. 39.14). In different algorithms, either the
subword mask format generated in Fig. 39.13 or the bit mask format generated in Fig. 39.14 is more useful.

Two common comparisons used are finding the larger of a pair of numbers, or the smaller of a pair
of numbers. In the packed maximum instruction, the greater of the subwords in the compared pair gets
written to the corresponding subword in the target register (see Fig. 39.15). Similarly, in the packed
minimum instruction, the smaller of the subwords in the compared pair gets written to the corresponding
subword in the target register. As described in the earlier section on saturation arithmetic, instead of special
instructions for packed maximum and packed minimum, MAX-2 performs packed maximum and

FIGURE 39.11 ACC Rc, Ra, Rb: Accumulate integer working on registers with two subwords.

FIGURE 39.12 Save carry bits instruction.

3 Two numbers a and b can be compared for one of the following 10 possible relations: equal, less-than, less-than-
or-equal, greater-than, greater-than-or-equal, not-equal, not-less-than, not-less-than-or-equal, not-greater-than,
not-greater-than-or-equal. Typical notation for these relations are as follows respectively: =, <, <=, >, >=, !=,
!<, !<=, !>, !>=.
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FIGURE 39.13 Packed compare instruction. Bit masks are generated as a result of the comparisons made.

FIGURE 39.14 Move mask Rb, Ra.

FIGURE 39.15 Packed maximum instruction.
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packed minimum operations by using packed add and packed subtract instructions with satu-
ration arithmetic (see Fig. 39.8). An ALU can be used to implement comparisons, maximum and
minimum instructions with a subtraction operation; comparisons for equality or inequality is usually
done with an exclusive-or operation, also available in most ALUs.

Sum of Absolute Differences

A more complex, multi-cycle instruction is the sum of absolute differences (SAD) instruction (see
Fig. 39.16). This is used for motion estimation in MPEG-1 and MPEG-2 video encoding, for example. In
a SAD instruction, the two packed operands are subtracted from one another. Absolute values of the resulting
differences are then summed up. 

Although useful, the SAD instruction is a multi-cycle instruction with a typical latency of three cycles.
This can complicate the pipeline control of otherwise single cycle integer pipelines. Hence, minimalist
multimedia instruction sets like MAX-2 do not have SAD instructions. Instead, MAX-2 uses generic
packed add and packed subtract instructions with saturation arithmetic to perform the SAD
operation (see Fig. 39.8(b) and Table 39.1).

Packed Multiply Instructions

Multiplication of Two Packed Integer Registers

The main difficulty with packed multiplication of two n-bit integers is that the product is twice as long
as each operand. Consider the case where the register size is 64 bits and the subwords are 16 bits. The
result of the packed multiplication will be four 32-bit products, which cannot be accommodated in a
single 64-bit target register.

One solution is to use two packed multiply instructions. Figure 39.17 shows a packed multiply
high instruction, which places only the more significant upper halves of the products into the target register.

FIGURE 39.16 SAD Rc, Ra, Rb: Sum of absolute differences instruction.
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Figure 39.18 shows a packed multiply low instruction, which places only the less significant lower
halves of the products into the target register. 

IA-64 generalizes this with its packed multiply and shift right instruction (see Fig. 39.19),
which does a parallel multiplication followed by a right shift. Instead of being able to choose either the
upper or the lower half of the products to be put into the target register, it allows multiple4 different 16-bit
fields from each of the 32-bit products to be chosen and placed in the target register. Ideally, saturation

FIGURE 39.17 Packed multiply high instruction. 

FIGURE 39.18 Packed multiply low instruction.

4 In IA-64 the right-shift amounts are limited to 0, 7, 15, or 16 bits, so that only 2 bits in the packed multiply
and shift right instruction are needed to encode the four shift amounts.
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arithmetic is applied to the shifted products, to guard for the loss of significant “1” bits in selecting the
16-bit results. 

IA-64 also allows the full product to be saved, but for only half of the pairs of source subwords. Either
the odd or the even indexed subwords are multiplied. This makes sure that only as many full products
as can be accommodated in one target register are generated. These two variants, the packed multiply
left and packed multiply right instructions, are depicted in Figs. 39.20 and 39.21.

Another variant is the packed multiply and accumulate instruction. Normally, a multiply
and accumulate operation requires three source registers. The PMADDWD instruction in MMX
requires only two source registers by performing a packed multiply followed by an addition of two
adjacent subwords (see Fig. 39.22). 

Instructions in the AltiVec architecture may have up to three source registers. Hence, AltiVec’s packed
multiply and accumulate uses three source registers. In Fig. 39.23, the instruction packed
multiply high and accumulate starts just like a packed multiply instruction, selects the more
significant halves of the products, then performs a packed add of these halves and the values from a
third register. The instruction packed multiply low and accumulate is the same, except that only
the less significant halves of the products are added to the subwords from the third register.

Multiplication of a Packed Integer Register by an Integer Constant

Many multiplications in multimedia applications are with constants, instead of variables. For example, in
the inverse discrete cosine transform (IDCT) used in the compression and decompression of JPEG images
and MPEG-1 and MPEG-2 video, all the multiplications are by constants. This type of multiplication can
be further optimized for simpler hardware, lower power, and higher performance simultaneously by using

FIGURE 39.19 The generalized packed multiply and shift right instruction.
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packed shift and add instructions [14,15,20]. Shifting a register left by n bits is equivalent to multiplying
it by 2n. Since a constant number can be represented as a binary sequence of ones and zeros, using this
number as a multiplier is equivalent to a left shift of the multiplicand of n bits for each nth position where
there is a 1 in the multiplier and an add of each shifted value to the result register.

As an example, consider multiplying the integer register Ra with the constant C = 11. The following
instruction sequence performs this multiplication. Assume Ra initially contains the value 6.

FIGURE 39.20 Packed multiply left instruction where only the odd indexed subwords of the two source
registers are multiplied.

FIGURE 39.21 Packed multiply right instruction where only the even indexed subwords of the two source
registers are multiplied.

Initial values: C = 11 = 10112 and Ra = 6 = 01102

Instruction Operation Result

Shift left 1 bit Rb,Ra Rb = Ra <<  1 Rb = 11002 = 12
Add Rb,Rb,Ra Rb = Rb + Ra Rb = 11002 + 01102 = 0100102 = 18
Shift left 3 bit Rc,Ra Rc = Ra <<  3 Rc = 01102 ∗ 8 = 1100002 = 48
Add Rb,Rb,Rc Rb = Rb + Rc Rb = 0100102 + 1100002 = 10000102 = 66
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This sequence can be shortened by combining the shift left and the add instructions into one
new shift left and add instruction. The following new sequence performs the same multiplication
in half as many instructions and uses one less register. 

Multiplication of packed integer registers by integer constants uses the same idea. The shift left
and add instruction becomes a packed shift left and add instruction to support the packed data
types. As an example consider multiplying the subwords of the packed integer register Ra=[1|2|3|4] by
the constant C = 11. The instructions to perform this operation are:

The same reasoning used for multiplication by integer constants applies to multiplication by fractional
constants. Arithmetic right shift of a register by n bits is equivalent to dividing it by 2n. Using a fractional
constant as a multiplier is equivalent to an arithmetic right shift of the multiplicand by n bits for each
nth position where there is a 1 in the multiplier and an add of each shifted value to the result register.
By using a packed arithmetic shift right and add instruction, the shift and the add instruc-
tions can be combined into one to further speed such computations. For instance, multiplication of a

FIGURE 39.22 Packed multiply and accumulate instruction in MMX.

Initial values: C = 11 = 10112 and Ra = 6 = 01102

Instruction Operation Result

Shift left 1 bit and add Rb,Ra,Ra Rb = Ra <<  1 + Ra Rb = 18
Shift left 3 bit and add Rb,Ra,Rb Rb = Ra <<  3 + Rb Rb = 66

Initial values: C = 11 = 10112 and Ra = [1|2|3|4] = [0001|0010|0011|0100]2

Instruction Operation Result

Shift left 1 bit and add Rb,Ra,Ra Rb = Ra <<  1 + Ra Rb = [3|6|9|12]
Shift left 3 bit and add Rb,Ra,Rb Rb = Ra <<  3 + Rb Rb = [11|22|33|44]
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packed register by the fractional constant 0.0112 (=0.375) can be performed by using just two packed
arithmetic shift right and add instructions.

Only two single-cycle instructions are required to perform the multiplication of four subwords by a
constant, in this example. This is equivalent to an effective rate of two multiplications per cycle. Without
subword parallelism, the same operations would take at least four integer multiply instructions.
Furthermore, the packed shift and add instructions use a simple ALU with a small preshifter, whereas
the integer multiply instructions need a more complex multiplier functional unit. In addition, each
multiplication operation takes at least three cycles of latency compared to one cycle of latency for a
preshift and add operation. Hence, for this example, the speedup for multiplying four subwords by a
constant is six times faster (4 × 3/2), comparing implementations with one subword multiplier versus
one partitionable ALU with preshifter.

MAX-2 in PA-RISC and IA-64 are the only multimedia ISAs surveyed that have these efficient packed
shift left and add instructions and packed shift right and add instructions. The preshift

FIGURE 39.23 In the packed multiply high and accumulate instruction in AltiVec, only the high-order
bits of the intermediate products are used in the addition.

Initial values: C = 0.375 = 0.0112 and Ra = [1|2|3|4] = [0001|0010|0011|0100]2

Instruction Operation Result

Arithmetic shift right 3 bit and add Rb,Ra,0 Rb = Ra >>  2 + 0 Rb = [0.125|0.25|0.375|0.5]
Arithmetic shift right 2 bit and add Rb,Ra,Rb Rb = Ra >>  2 + Rb Rb = [0.375|0.75|1.125|1.5]
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amounts allowed are by one, two, or three bits, and the arithmetic is performed with signed saturation,
for 16-bit subwords.

Vector Multiplication

So far, this chapter has examined relatively simple packed multiply instructions. These instructions all
take about the same latency as a single multiply instruction, which is typically 3–4 cycles compared to
an add instruction normalized to one cycle latency. For better or worse, some multimedia ISAs have included
very complex, multiple-cycle operations. For example, AltiVec has a packed vector multiply and
accumulate instruction, using three 128-bit packed source operands and a 128-bit target register (see
Fig. 39.24). First, all the pairs of bytes within a 32-bit subword in two of the source registers are multiplied
in parallel and 16-bit products are generated. Then, four 16-bit products are added to each other to
generate a “sum of products” for every 32 bits. A 32-bit subword from the third source register is added
to this “sum of products.” The resulting sum is placed in the corresponding 32-bit subword field of the
target register. This process is repeated for each of the four 32-bit subwords. This is a total of sixteen 8-bit
integer multiplies, twelve 16-bit additions, and four 32-bit additions, using four 128-bit registers, in a
single VSUMMBM instruction. This can perform a 4 × 4 matrix times a 4 × 1 vector multiplication, where
each element is a byte, in a single instruction, but this single complex instruction takes many cycles of
latency. While a multiplication of a 4 × 4 matrix with a 4 × 1 vector is a very frequent operation in
graphics geometry processing, the precision required is usually that of 32-bit single-precision floating-
point numbers, not 8-bit integers. Whether the complexity of such a compound VSUMMBM instruction
is justified depends on the frequency of such 4 × 4 matrix-vector multiplications of bytes. Table 39.4
summarizes the packed integer multiplication instructions described.

FIGURE 39.24 AltiVec’s VSUMMBM instruction: only one-fourth of the instruction is shown. Each box represents
a byte. This process is carried out for each 32-bit word in the 128-bit source registers.
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Packed Shift and Rotate Operations

Most microprocessors have one or more shifters in addition to one or more ALUs (see Fig. 39.3). Just as
the ALU is partitionable, so is the shifter, for subword-parallel operation. A packed shift instruction
performs blocking shifts of the subwords packed in a register. Any bits shifted to the left are blocked
from affecting the adjacent subword on the left; any bits shifted to the right are blocked from affecting
the adjacent subword on the right.

For the packed shift instruction, the shift can be logical (zeros substituted for vacated bits) or
arithmetic (zeros substituted for vacated bits on the right and sign-bit replicated for vacated bits on the
left). The shift amount can be given by an immediate operand or by a register operand. When the shift
amount is given by a register, each subword is usually shifted by the same amount, given by the least
significant log2n bits of a second source register, for shifting the n bits of a first source register (see
Fig. 39.25). In a more complicated, but more versatile form, each subword in a packed register can be
shifted by a different amount (see Fig. 39.26).

Similarly, the packed rotate instruction performs rotations on each subword in parallel. The amount
to be rotated can be specified by an immediate in an instruction, by a single rotate amount in a register, or
by different rotate amounts for each subword (see Fig. 39.27). Data-dependent rotations, where the single
rotate amount is given in a register, have been proposed for symmetric cryptography algorithms like RC5. 
Packed shift instructions may also be used to multiply or divide subwords by a constant that is a

power of two. When used in this way, it may be necessary to apply saturation arithmetic with parallel
left shifts used for multiplication. It may also be desirable to apply rounding with parallel arithmetic
right shifts. Such saturation and rounding complicate the circuitry for the shifter functional unit, and is
not implemented by any of the current multimedia ISAs. Hence, packed shift instructions should be
used for multiplication or division only when no overflow can occur on left shifts, and sufficient precision
can be preserved on right shifts. For multiplication by an integer or fractional constant, packed shift
and add instructions, described in the subsection on “Multiplication of a Packed Integer Register by an
Integer Constant,” are preferable. These can better control accuracy in the multiplication.

TABLE 39.4 Packed Integer Multiplication Instructions

Integer Operations IA-64 MAX-2 MMX SSE-2 3DNow! AltiVec

ci = lower_half(ai ∗ bi) √ √ √ √ √
ci = upper_half(ai ∗ bi) √ √ √ √ √
ci = lower_half [(ai ∗ bi) >> n] √a

Packed multiply left √ √
[c2i, c2i+1] = a2i ∗ b2i

Packed multiply right √ √
[c2i, c2i+1] = a2i+1 ∗ b2i+1

Packed multiply and accumulate
[c2i, c2i+1] = a2i ∗ b2i + a2i+1 ∗ b2i+1 √
di = upper_half(ai ∗ bi) + ci √
di = lower_half(ai ∗ bi) + ci √
Packed shift left and addb √ √
ci = (ai << n) + bi, for n = 1, 2 or 3 bits.
Packed shift right and addc √ √
ci = (ai <<  n) + bi, for n = 1, 2 or 3 bits.
Packed vector multiply and 
accumulate (VSUMMBM)  

[d4i, d4i+1, d4i+2, d4i+3] = 
[c4i, c4i+1, c4i+2, c4ι+3] + a4i+j ∗ b4i+j

√

VMSUMxxx instructions of AltiVec (general form)
 [d2i, d2i+1] = a2i ∗ b2i + a2i+1 ∗ b2i+1 + [c2i, c2i+1 ] √

a Shift amounts are limited to 0,7,15, or 16 bits.
b For use in multiplication of a packed register by an integer constant.
c For use in multiplication of a packed register by a fractional constant.

Σj=1
4
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Table 39.5 summarizes the multimedia instructions involving packed shift and packed rotate
operations. In the table, n is used to represent a shift or rotate amount that is specified in the immediate
field of an instruction. For example, in the operation denoted as ci = ai <<  n, each subword of c is shifted
to the left by the amount given in the immediate field of the corresponding instruction. Similarly, in the
operation ci = ai <<  b, each subword of c is shifted to the left by the amount specified in the source register b.
In ci = ai <<  bi, each subword of c is shifted to the left by the amount specified in the corresponding subword
of the source register b. Shift left is represented by <<, shift right by >>, and rotate by <<< .

FIGURE 39.25 Packed shift instruction. Shift amount is given in the second operand. Each subword is shifted
by the same amount.

FIGURE 39.26 Packed shift instruction. Shift amount is given in the second operand. Each subword can be
shifted by a different amount.
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Subword Permutation Instructions

Initially, the rearrangement of subwords in registers manifested only as packing and unpacking opera-
tions. MAX-2 first introduced general-purpose subword permutation instructions for more versatile
reordering of subwords packed into one or more registers.

Pack Instructions

Pack instructions convert from larger subwords to smaller subwords. If the value in the larger subword
is greater than the maximum value that can be represented by the smaller subword, saturation arithmetic
is performed, and the resulting subword is set to the maximum value of the smaller subword. Figure 39.28
shows how a register with smaller packed subwords can be created from two registers with subwords that
are twice as large. Pack instructions differ in the size of the supported subwords and in the saturation
options used.

Unpack Instructions

Unpack instructions are used to convert smaller packed data types to larger ones. The subwords in the
two source operands are written sequentially to the target register in alternating order. Because, only
one-half of each of the source registers can be used, the unpack instructions come with two variants

TABLE 39.5 Summary of packed shift and packed rotate Instructions

Integer Operations IA-64 MAX-2 MMX SSE-2 3DNow! AltiVec

ci = ai <<  n √ √ √
ci = ai <<  b √ √
ci = ai <<  bi √
ci = ai >>  n √ √ √
ci = ai >>  b √ √
ci = ai >>  bi √
ci = ai <<<  n
ci = ai <<<  b
ci = ai <<<  bi √

FIGURE 39.27 Packed rotate instruction. Rotate amount is given in the second operand. Each subword can
be rotated by a different amount.
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unpack high or unpack low. The high/low unpack instructions select and unpack the high or low
order subwords of a source register, when used with register zero as the second source register.5

Subword Permutation Instructions

Ideally, it is desirable to be able to perform all possible permutations on packed data. This is only possible
for small numbers of subwords. When the number of subwords increases, the number of control bits
required to specify arbitrary permutations becomes too large to be encoded in an instruction. For the case
of n subwords, the number of control bits used to specify a particular permutation of these n subwords

FIGURE 39.28 Pack instruction converts larger subwords to smaller ones.

FIGURE 39.29 Unpack high instruction.

FIGURE 39.30 Unpack low instruction.

5Register zero gives a constant value of “zero” when used as a source register.
© 2002 by CRC Press LLC



is n log2(n). Table 39.6 shows how many control bits are required to specify any arbitrary permutation for
different numbers of subwords. When the number of subwords is 16 or greater, the number of control bits
exceeds the number of the bits available in the instruction, which is typically 32 bits. Therefore, it becomes
necessary to use a second register6 to contain the control bits used to specify the permutation. By using
this second register, it is possible to get any arbitrary permutation of up to 16 subwords in one instruction.

Because AltiVec instructions have three 128-bit source registers, a subword permutation can use two
registers to hold data, and the third register to hold the control bits. This allows any arbitrary selection
and re-ordering of 16 of the 32 bytes in the two source registers in a vperm instruction.

Only a small subset of all the possible permutations is achievable with one subword permutation
instruction, so it is desirable to select permutations that can be used as primitives to realize other
permutations. A permute instructions can have one or two source registers as operands. In the latter
case, only half of the subwords in the two source operands may actually appear in the target register.
Examples of these two cases are the mux and mix instructions respectively, in both IA-64 and MAX-2.
Mux in IA-64 operates on one source register. It allows all possible permutations of four packed 16-bit

subwords, with and without repetitions (see Fig. 39.31). An 8-bit immediate field is used to select one of
the 256 possible permutations. This is the same operation performed by the permute instruction in
the earlier MAX-2.

In IA-64, the mux instruction can also permute eight packed 8-bit subwords. For the 8-bit subwords,
mux has five variants, and only the following permutations are implemented in hardware (see Fig. 39.32):

• Mux.rev (reverse): Reverses the order of bytes.

• Mux.mix (mix): Performs the Mix operation (see below) on the bytes in the upper and lower
32-bit halves of the 64-bit source register.

TABLE 39.6 Number of Control Bits Required to Specify an Arbitrary Permutation

Number of Subwords in 
a Packed Data Type

Number of Control Bits Required to Specify an Arbitrary 
Permutation for a Given Number of Subwords

2 2
4 8
8 24

16 64
32 160
64 384

128 896

FIGURE 39.31 Arbitrary permutation on a register with four subwords.

6This second register needs to be at least 64-bits wide to fully accommodate the 64 control bits needed for 16 subwords.
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• Mux.shuf (shuffle): Performs a perfect shuffle on the bytes in the upper and lower halves of the
register.

• Mux.alt (alternate): Selects first the even7 indexed bytes, placing them in the upper half of the result
register, then selects the odd indexed bytes, placing them in the right half of the result register.

• Mux.brcst (broadcast): Replicates the least significant byte into all the byte locations of the result
register.

Mix is a very useful permutation operation on two source registers. A mix left instruction picks
even subwords alternately from the two source registers and places them into the target register (see Fig.
39.33). A mix right instruction picks odd subwords alternately from the two source registers and places
them into the target register (see Fig. 39.34).

The versatility of Mix is demonstrated [9, 14], for example, in performing a matrix transpose. Mix
can also be used to perform an unpacking function similar to that done by Unpack High and Unpack
Low. The usefulness of Mix and Mux (or Permute) has also been validated in [21] as general-purpose
subword permutation primitives for processing of two-dimensional data in microSIMD architectures.

Extract, Deposit, and Shift Pair Instructions

A more sophisticated shifter can also perform extract and deposit bit-field operations, as in PA-RISC
[17, 10]. An extract instruction picks an arbitrary contiguous bit-field from the source operand and
places it right aligned into the result register (Fig. 39.35). Extract instructions may be limited to work

FIGURE 39.32 Mux instruction of IA-64 has five permutation options for 8-bit subwords. (From Intel, IA-Archi-
tecture Software Developer’s Manual, Vol. 3, Instruction Set Reference, Rev. 1.1, July 2000. With permission.)

7The bytes indexed from 0 to 7. 0 corresponds to the most significant byte, which is on the left end of the registers.
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on subwords instead of bit-fields (Fig. 39.36). Extract instructions clear the upper bits of the target
register.

A deposit instruction picks a right-aligned contiguous bit-field from the source register and patches
it into an arbitrary location in the target register (Fig. 39.37). The unpatched bits of the target register
remain unchanged. Alternatively, they are cleared to zeros in a zero and deposit instruction [17].
Deposit instructions may be limited to work on subwords instead of arbitrarily long bit-fields and
arbitrary patch locations (Fig. 39.38).

FIGURE 39.33 Mix left instruction.

FIGURE 39.34 Mix Right instruction.

FIGURE 39.35 Extract bit-field instruction.

FIGURE 39.36 Extract subword instruction.
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A very useful instruction for rearranging subwords from two registers is the shift pair instruction
in IA-64 (see Fig. 39.39). This instruction, which was first introduced in the PA-RISC ISA [10,17], is
essentially a shift instruction for bit-strings that span more than one register. Shift pair concatenates
the two source registers to form a 128-bit intermediate value, which is shifted to the right by n bits. The
least significant 64 bits of the shifted value is written to the result register. If the same register is specified
for both operands, the result is a rotate operation. Rotates can be realized this way, so IA-64 does not
have a separate rotate instruction. This shift pair instruction is more general than a rotate,
allowing flexible combination of two bit-fields from separate registers. Table 39.7 summarizes the subword
permutation instructions on packed data types.

Floating-Point MicroSIMD Instructions

High-fidelity audio and graphics geometry processing require the higher precision and range of floating-
point numbers. Usually, single-precision (32-bit) floating-point (FP) numbers are sufficient, but 16-bit
integers or fixed-point numbers are not. Double-precision (64-bit) floating-point numbers are not really
needed for such multimedia computations.

Because floating-point registers are at least 64-bits wide in microprocessors to support double-
precision (DP) FP numbers, it is possible to pack two single-precision (SP) FP numbers in a 64-bit
register, to support subword parallelism, or packed parallelism, or microSIMD parallelism on the FP

FIGURE 39.37 Deposit bit-field instruction.

FIGURE 39.38 Deposit subword instruction.

FIGURE 39.39 Shift pair instruction in IA-64.
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functional units and registers. The precision levels supported by different ISAs are shown in Table 39.8.
SP and DP numbers are 32 and 64 bits long, respectively, as defined by the IEEE-754 FP number
standard. Only SSE-2 supports packed DP FP numbers. MAX-2 and MMX do not support packed
FP instructions.

Packed Floating-Point Arithmetic Instructions

Packed FP Add
Figure 39.40 shows a packed FP add, where four pairs of single-precision FP numbers in two 128-bit
registers are added using floating-point addition. Packed FP subtract instructions are similar. While
the packed FP instruction looks very similar to the packed integer equivalents (see Fig. 39.5), implemen-
tation of packed FP add is not as simple as blocking carries at the subword boundary as in packed
integer addition (see Fig. 39.7). It is much more difficult to partition a FP functional unit for subword
parallelism because of the nature of FP arithmetic acting on FP numbers represented in sign, mantissa,
and exponent format. Another difference is that in floating-point number representation, considerations
like modular arithmetic or saturation arithmetic are not applicable.

Packed FP Multiplication
Multiplication of two packed FP registers involves multiplication of corresponding FP subwords from
the source registers, where the products are written to the corresponding subword in the target register
(see Fig. 39.41). In multiplication of two single-precision numbers, the product is also single-precision,
and hence the same width. Therefore, packed FP multiply does not have the problem associated with
packed integer multiply instructions, where the product is twice the width of the operands.

TABLE 39.7 Subword Permutation Instructions

Integer Operations IA-64 MAX-2 MMX SSE-2 3DNow! AltiVec

Pack √ √ √
Unpack low √ √ √ √
Unpack high √ √ √
Permute n subwords √ (n = 4) √ (n = 4) √ (n = 4) √ (n = 4) √ (n = 16,32)a

Mux.rev √
Mux.mix √
Mux.shuffle √
Mux.alt √
Mux.brcst √
Mix left √ √ √
Mix right √ √ √
Extract bit-field √ √
Extract subword √
Deposit bit-field √ √
Deposit subword √
Shift pair Rc,Ra,Rb √ √

a This is the vperm instruction, and it has some limitations for n = 32. See text for more details on
this instruction. Subword size for this instruction is 8 bits regardless of whether n is 16 or 32.

TABLE 39.8 Supported Precision Levels for the Packed FP Operations

Architecture IA-64 SSE-2 3DNow! AltiVec

FP register size 82 bits 128 bits 128 bits 128 bits
Allowed packed FP 

data types
2 SP 4 SP or 2 DP 4 SP 4 SP
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Packed FP Multiply and Add
The most important FP operation in audio, graphics, and digital signal processing is the FP multiply
and accumulate operation. Recognizing this, many ISAs have implemented this as the basic FP oper-
ation, needing three source registers. For example, IA-64 implements packed FP multiply and add
(FPMA), packed FP multiply and subtract (FPMS), and packed FP negative multiply and
add (FPNMA). It then realizes packed FP add, packed FP subtract, and packed FP multiply
operations by using FPMA and FPMS instructions. IA-64 architecture specifies 128 FP registers, which
are numbered FR0 through FR127. Of these registers, FR0 and FR1 are special. FR0 always returns the
value +0.0 when sourced as an operand, and FR1 always reads +1.0. When FR0 or FR1 are used as source
operands, the FPMA and FPMS instructions can be used to realize packed FP add or packed FP
subtract operations and packed FP multiply operations (see Table 39.9). 

The format of the FPMA (Fig. 39.42) instruction is FPMA Rd,Ra,Rb,Rc and the operation it performs
is Rd = Ra ∗ Rb + Rc. If FR1 is used as the first or the second source operand, a packed FP add operation
is realized. Similarly, a FPMS instruction can be used to realize a packed FP subtract operation. Using
FR0 as the third source operand in FPMA or FPMS results in a packed FP multiply operation. 

Table 39.10 is a summary of the packed FP instructions supported by multimedia ISAs. Several packed
FP instructions operate like their packed integer equivalents, except that they operate on packed FP subwords

FIGURE 39.40 PFPADD Rc,Ra,Rb: Packed FP add instruction.

FIGURE 39.41 PFPMUL Rc,Ra,Rb: Packed FP multiply instruction.
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rather than packed integer (or fixed-point) subwords. These include packed FP add, packed FP
subtract, packed FP multiply, packed FP negate, packed FP absolute value, packed FP
compare, packed FP maximum, and packed FP minimum. IA-64 also has the packed FP maximum
absolute value and the packed FP minimum absolute value. These put the larger or smaller
of the absolute values of the pairs of FP subwords into the result subwords in the target register,
respectively.

Packed FP Compare
The packed FP compare instruction compares pairs of FP subwords according to the relation specified
by the instruction. If the condition is true for a subword pair, the corresponding field in the target register
is written with a 1-mask. If the condition is false, the corresponding field in the target register is written
with a 0-mask. The only difference is that two additional relations, ordered and unordered, are possible
for floating-point numbers in addition to the 10 relations already specified for comparing integers (see

TABLE 39.9 IA-64 uses FPMA and FPMS Instructions for packed FP add, packed FP 
subtract, and packed FP multiply

IA-64 Instruction Operation Equivalent Instruction

FPMA Rd,FR1,Rb,Rc
(packed FP multiply and add)

Rd = FR1 ∗ Rb + Rc

= 1.0 ∗ Rb + Rc

= Rb + Rc

Packed FP add

FPMS Rd,FR1,Rb,Rc
(packed FP multiply and subtract)

Rd = FR1 ∗ Rb − Rc

= 1.0 ∗ Rb − Rc

= Rb − Rc

Packed FP subtract

FPMA Rd,Ra,Rb,FR0
(packed FP multiply and add)

Rd = Ra ∗ Rb + FR0
= Ra ∗ Rb + 0.0
= Ra ∗ Rb

Packed FP multiply

FIGURE 39.42 Packed FP multiply and add instruction in IA-64.
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subsection “Packed Compare Instruction”). Some ISAs have packed FP compare instructions that allow
all the 12 possible relations,8 whereas others support a more limited subset of relations. 

Packed FP Compare Bounds
An interesting comparison instruction is the packed FP compare bounds (VCMPBFP) instruction of
AltiVec. This instruction compares corresponding FP subwords from the two source registers, and depending
on the relation between the compared numbers, it generates a two-bit result, which is written to the
target register. The resulting two-bit field indicates the relation between the two compared FP numbers.
For instance, in VCMPBFP Rc,Ra,Rb, the FP number pairs (ai, bi) are compared, and a two-bit field is
written into ci such that:

• Bit 0 of the two-bit field is cleared if ai <= bi, and is set otherwise.

• Bit 1 of the two-bit field is cleared if ai >=(−bi), and is set otherwise.

• Both bits are set if any of the compared FP numbers is a NaN.

TABLE 39.10 Summary of FP microSIMD Instructions

Packed FP Instructions IA-64 SSE-2 3DNow! AltiVec

ci = ai + bi √a √ √ √
ci = ai − bi √b √ √ √
ci = ai ∗ bi √c √ √
di = −ai ∗ bi √
di = ai ∗ bi + ci (FPMA) √ √
di = ai ∗ bi − ci (FPMS) √
di = −ai ∗ bi + ci (FPNMA) √ √
ci = −ai √
ci = |ai| √
ci = −|ai| √
ci = compare(ai, bi) √ √ √ √
ci = max(ai, bi) √ √ √ √
ci = min(ai, bi) √ √ √ √
ci = max(|ai|, |bi|) √
ci = min(|ai|, |bi|) √
ci = VCMPBFB(ai, bi)

d √
ci = √
ci = 1/ √ √ √
ci = 1/ai √ √ √
ci = log2 ai √
ci = √
Permute n FP subwords √ (n = 2,4)
Swap FP subwords
(optionally negate left or right subword) √
Mix_Left, Mix_Right,
Mix_Left_Right √
Unpack_high, Unpack_low √
Pack √ √

a This operation is realized by using the packed FP multiply and add instruction.
b This operation is realized by using the packed FP multiply and subtract instruction.
c This operation is realized by using the packed FP multiply and add or packed FP

multiply and subtract instruction.
d This is the packed FP compare bounds instruction, which is explained in the text.

8Two floating-point numbers a and b can be compared for one of the following 12 possible relations: equal, less-
than, less-than-or-equal, greater-than, greater-than-or-equal, unordered, not-equal, not-less-than, not-less-than-or-
equal, not-greater-than, not-greater-than-or-equal, ordered. Typical notation for these relations are as follows
respectively: =, <, <=, >, >=, ?, !=, !<, !<=, !>, !>=, !?.

ai

ai

2ai
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The two-bit result field is written to the high-order two bits of ci; the remaining bits of ci are cleared
to 0. Table 39.11 gives examples of input pairs that result in each of the four different possible outputs
for this instruction.

The SSE-2 architecture also includes a packed FP square root instruction. This instruction
operates on packed single-precision or double-precision numbers and computes the square roots to SP
or DP accuracy. IA-64 has the packed FP reciprocal square root instruction and the packed
FP reciprocal instruction. Both are very useful for graphics computations.

Subword Permutation Instructions

FP Permutation Instructions
SSE-2 has an FP permute (see Fig. 39.43) instruction that allows any arbitrary permutation of the four
32-bit SP subwords in one of its 128-bit multimedia registers. This operates just like the permute
instruction in MAX-2 and the mux instruction (2-byte subword version) in IA-64 (see Fig. 39.31).

IA-64 only has two single-precision subwords in its packed format, so all possible permutations of two
subwords can be achieved with a much simpler operation, FP swap. This instruction just exchanges the
two subwords. IA-64 also allows two variants of this: after swapping the subwords, the sign of either the
left or the right FP value is negated.
FP mix is a useful operation that performs a permutation on two packed FP registers. A FP mix

instruction picks alternating subwords from two source registers and places them into the target register.
FP mix in IA-64 appears in three variants. The first one (Fig. 39.44) is called the FP mix left and uses
the odd indexed FP subwords of the source registers in the permutation, starting from the leftmost
subword. The second variant, FP mix right (Fig. 39.45) uses the even indexed FP subwords of the
source registers, ending with the rightmost subword. The third variant, FP mix left right (Fig. 39.46)
uses the odd indexed FP subword of the first source register, and the even indexed subword of the second

TABLE 39.11 Result of the VCMPBFP 
Instruction for Different Input Pairs

Input Output

ai bi Bit 0 Bit 1

3.0 5.0 0 0
−8.0 5.0 0 1

8.0 5.0 1 0
3.0 −5.0 1 1

FIGURE 39.43 FP permute Rb,Ra: FP permute instruction.

Any permutation of
the subwords
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Rb:
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FIGURE 39.44 FP mix left Rc,Rb,Ra: FP mix left instruction in IA-64.

FIGURE 39.45 FP mix right Rc,Rb,Ra: FP mix right instruction in IA-64.

FIGURE 39.46 FP mix left right Rc,Rb,Ra: FP mix left right instruction in IA-64.
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source register. These three FP mix instructions, together with the Shift Pair instruction described
earlier, allow any one of the four combinations of the SP subwords packed into two IA-64 registers to
be achieved with only one instruction.

FP Unpack
Packing and unpacking subwords has a different interpretation for FP numbers than for integers. In
general, there is sufficient precision in single-precision numbers, and there is no need to unpack it to
a double-precision number; however, the FP unpack can be regarded as a useful subword permutation
instruction like FP mix. It performs a shuffle by interleaving the subwords from two registers. The
FP unpack instructions operate just like the equivalent integer unpack instructions (see Figs. 39.29 and
39.30). They come in two “flavors”: FP unpack high and FP unpack low. Note that the SSE-2 employs
FP unpack, after unpack in MMX, and IA-64 employs FP mix, after mix in MAX-2.

FP Pack
In the integer domain, pack instructions are used to create smaller packed data types from larger data
types. The FP pack instruction in IA-64 creates two packed SP numbers from two 82-bit source registers.
All IA-64 FP registers are 82-bit extended precision FP format with two extra guard bits for computational
accuracy. First, the two 82-bit numbers are converted to standard 32-bit SP representation. These two
SP numbers are then concatenated and the result is stored in the significand field (which is 64 bits) of
the 82-bit target FP register. The exponent field of the target register is set to the biased exponent for
2.063, which indicates a packed FP format, and the sign bit is set to zero, indicating a positive number.

Conclusions

Section 39.1 described multimedia instructions for programmable processors by broad classes according
to the functional units used, first in the integer domain then in the floating-point domain. For integer
subwords, packed add and packed subtract instructions, and different variants of these, use the
ALU. Packed multiply instructions use the multiplier functional unit, although very efficient mul-
tiplication by constants can be implemented with packed shift and add instructions, which only
need an ALU with a preshifter. Packed shift and packed rotate instructions use the shifter. Packed
subword permutation instructions can either be implemented on a modified shifter or in a new permu-
tation unit. For packed floating-point subwords, less leverage of hardware seems possible. The basic
functional units are a floating-point adder, multiplier, and FP subword permutation unit. IA-64 combines
the FP adder and multiplier into an FP multiply-add unit. For each of these instruction classes, interesting
multimedia instructions introduced in current microprocessors were described, for example, in the IA-
64, MMX, and SSE-2 from Intel; MAX-2 from Hewlett-Packard; 3DNow! from AMD; and AltiVec from
Motorola.

The key feature in these multimedia instructions is the concept of subword parallelism, also called
packed parallelism or microSIMD parallelism. This is implemented for packed integers or fixed-point
numbers in the integer datapaths, and for packed floating-point numbers in the floating-point datapaths.
Visual multimedia data like images, video, graphics rendering and animation involve pixel processing,
which can fully exploit subword parallelism on the integer datapath. Higher-fidelity audio processing and
graphics geometry processing require single-precision floating-point computations, which exploit subword
parallelism on the floating-point datapath. Typical DSP operations such as multiply and accumulate
have also been added to the multimedia repertoire of general-purpose microprocessors. These multimedia
instructions have embedded DSP and visual processing capabilities into general-purpose microprocessors,
providing native signal processing (sometimes referred to as NSP) for multimedia data. In fact, most
DSPs and media processors have also adopted subword parallelism in their architectures, as well as other
features often first introduced in microprocessors for multimedia signal processing. 

More unusual computer arithmetic issues arising from subword-parallel multimedia instructions in
microprocessors are saturation arithmetic, integer rounding alternatives, integer multiplication problems
and solutions, and subword permutation instructions.
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Some of the multimedia ISAs introduced in microprocessors adhere to the “less is more” minimalist
architecture approach, defining as few instructions as necessary for high-performance, with each instruc-
tion executable in a single pipeline cycle. Others embody the “more is better” approach, where complex
sequences of operations are represented by a single multimedia instruction, with such an instruction
taking many cycles for execution. An example is the packed vector multiply and accumulate
instruction in AltiVec (Fig. 39.24). These two trends represent different stylistic preferences, akin to
reduced instruction set computer (RISC) and complex instruction set computer (CISC) architectural
preferences. In fact, sometimes, RISC-like multimedia instructions have been added to CISC processor
ISAs, and CISC-like multimedia instructions to RISC processor ISAs. The remarkable fact is that subword-
parallel multimedia instructions have achieved such rapid and pervasive adoption in both RISC and
CISC microprocessors, DSPs and media processors, attesting to their undisputed cost-effectiveness in
accelerating multimedia processing in software.

To simplify software compatibility and interoperability of multimedia software across different pro-
cessors, it is highly desirable to refine the best ideas from the different multimedia ISAs into a coherent
set of subword-parallel instructions. If this is a small yet powerful set, it is more likely to be implemented
in all future microprocessors and media processors, allowing algorithm and compiler optimizations to
exploit microSIMD parallelism with confidence that benefits would be realized across almost all proces-
sors. While slight differences in multimedia instructions across processors may not affect the potential
performance provided by each ISA, they make it difficult to design an optimal algorithm and a set of
compiler optimizations that achieve the best multimedia performance for every processor. The challenge
for the next phase of multimedia ISA design is to understand which ISA features are truly effective for
multimedia signal processing, and encapsulate these insights into the design of third-generation multi-
media ISA for both microprocessors and media processors.
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39.2 DSP Platform Architecture for SoC Products

Gerald G. Pechanek 

Introduction

The development of wireless, networking, communications, video, and consumer products has shifted
toward low-power high-functionality systems-on-chip (SoC) semiconductors [1]. Driving this develop-
ment is the availability of deep sub-micron technology allowing more complete system designs to be
embedded in silicon. Some of these improvements include increasing on-chip memory capacity, the use
of more fully programmable solutions using DSPs, and the inclusion of specialized interfaces and functions.

To make these high-value SoC products widely available at low cost requires the use of standard design
practices that allow them to be fabricated at multiple semiconductor suppliers. This means that custom
designed SoCs, optimized to a particular manufacturing process, cannot be used. Consequently, as the
complexity and functionality of SoC products continues to increase with stringent power requirements,
the standard approach of increasing clock speed on an existing design to meet higher performance
requirements is infeasible.

The need to support multiple standards, and to quickly adapt to changing standards, has become a
product requirement [2]. To satisfy this need, programmable DSPs and control processors are being
increasingly used as the central SoC design component. These processors form the basis of the SoC
product platform and permeate the overall system design including the on-chip memory, DMA, internal
busses, etc. Consequently, choosing a flexible and efficient processor, which can be manufactured by
multiple semiconductor suppliers, is arguably the most important intellectual property (IP) decision that
needs to be made in the creation of an SoC product. 

In recent years, a class of high-performance programmable processor IP has emerged that is appropriate
for use in high-volume embedded applications such as digital cellular, networking, communications, and
console gaming [3,4]. Section 39.2 briefly describes the ManArray thread coprocessor as an example of
the architectural features needed for demanding SoC requirements. The next subsection provides a brief
description of the ManArray thread coprocessor architecture. The subsection “The ManArray Thread
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Coprocessor Platform” describes how the ManArray architecture fulfills SoC application requirements, with
focus on the implementation, compiler, and tools. “Performance Evaluation” presents performance results,
and last subsection concludes the chapter section.

The ManArray Thread Coprocessor Architecture

In numerous application environments there is a need to significantly augment the signal processing capa-
bilities of a MIPS, ARM, or other host processor. In addition, many applications require low power con-
sumption at very high performance levels to accomplish the tasks of emerging applications, such as wireless
LAN (i.e., 802.11a) for battery-powered Internet devices. The BOPS SoC cores provide streamlined copro-
cessor attachment to MIPS, ARM, or other hosts for this purpose. Through selectable parallelism, the
ManArray SoC cores achieve high performance at low clock rates, which minimizes power requirements.
The compiler or programmer can select from packed data, indirect VLIW, PE array SIMD, and multiple
threaded forms of parallelism to provide the best product solution. Further, BOPS provides a complete
solution by providing a comprehensive top-down design methodology for delivering the SoC solutions. 

The ManArray processor is an array processor using a sequence processor (SP) array controller and
an array of distributed indirect VLIW processing elements (PEs) (see Fig. 39.47). By varying the number
of PEs on a core, an embedded scalable design is achieved with each core using a single architecture.
This embedded scalability makes it possible to develop multiple products that provide a linear increase
in performance and maintain the same programming model by merely adding array processor elements
as needed by the application. As the processing capability is increased, the memory-to-PE bandwidth is
increased, and the system DMA bandwidth may be increased as well. Embedded scalability drastically
reduces development costs for future products because it allows for a single BOPS software development
kit (SDK) to support a wide range of products.

In addition to the embedded scalability, ManArray cores are configurable in the number and type of
cores included on a chip, instruction subsetting for application optimization, the sizes of each SP’s
instruction memory, the distributed iVLIW memories, the PE/SP data memories, and the I/O buffers,
selectable clock speed, choice of on-chip peripherals, and DMA bus bandwidth. The ManArray cores
provide a lower cost, more optimized signal processing solution than reconfigurable processors designed
using FPGA technology [5]. Multiple ManArray cores provide optimized scalable multiprocessing by
including multiple BOPS cores on an SoC product. These multiple ManArray cores can be organized to
provide data pipeline processing between SP/PE-array cores and the parallelization of sub-application
tasks (thread parallelism) with a centralized host-based control to be described later in this chapter section. 

Generally speaking, the ManArray processor combines PEs in clusters that also contain a SP, uniquely
merged into the PE array, and a cluster-switch, Fig. 39.47. The SP provides program control, contains
the instruction and data address generation units, and dispatches instructions to the processor array. In
this manner, the ManArray processor is designed for scalability with a single architecture definition and
a common tool set. The processor and supporting tools are designed to optimize the needs of a SoC
platform by allowing a designer to balance an application’s sequential control requirements with the
application’s inherent data parallelism. This is accomplished by having a scalable architecture that begins

FIGURE 39.47 ManArray architectural elements.
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with a simple uniprocessor model and continues through multi-array processor implementations. In the
design flow we ensured that the ManArray architecture supported a reasonably large array processor as
well as a simple stand-alone uniprocessor that could act as an array controller. In more detail, a SP
merged with PE0 (SP/PE0) and an additional PE (PE1), referenced as a 1 × 2, are shown in Fig. 39.48. 

The ManArray architecture uses a distributed register file model where the SP and each PE contain
their own independent register space, up to eight execution units (five shown), a distributed very long
instruction word memory (VIM), local SP instruction memory, local data memories, and an application-
optimized DMA and bus I/O control unit. In the Manta™ core, an available 2 × 2 implementation of
the ManArray architecture, and its 1 × 1 and 1 × 2 subsets (available by software masking of selected
PEs), a 64-entry register file space is used in the SP and each PE. The register space consists of a recon-
figurable compute register file (CRF), which can act as a 32 × 32-bit or 16 × 64-bit register file for the
execution units on a cycle-by-cycle basis, totally integrated into the instruction set architecture, an 8 ×
32-bit address register file (ARF), and a 24 × 32-bit miscellaneous register file (MRF). 

In the ManArray architecture, the address registers are separated from the compute register file. This
approach maximizes the number of registers for compute operations and guarantees a minimum number
of dedicated address registers. This approach does not require any additional ports from the compute
register file to support the load and store address generation functions, and it still allows independent
PE memory addressing for such functions as local data dependent table lookups. The Manta chip supports
both 32-bit data types including quad byte, dual halfword, and word; and 64-bit data types including
octal byte, quad halfword, dual word, and double word. The balanced architectural approach taken for
the compute register file provides the high performance features needed by many applications. It supports
octal byte and quad halfword operations in a logical 16 × 64-bit register file space without sacrificing
the 32-bit data type support in the logical 32 × 32-bit register file. Providing both allows optimum usage
of the register file space and minimum overhead in manipulating packed data items. By adding PEs, the
packed data support grows such that a 1 × 2 effectively provides 128-bit packed data support, a 2 × 2
provides 256-bit packed data support, etc., growing the level of parallelism needed by appropriate choice
of the selected core.

The ManArray instruction set is partitioned into four groups using the high two bits of the instruction
format—a control group, an arithmetic group, a load/store group, and a reserved proprietary instruction
group. Figure 39.49 shows 32-bit simplex instructions in groupings that represent the five execution unit
slots of the Manta chip, the first ManArray implementation, plus a control group (01). The execution units
include store and load units, an arithmetic logic unit (ALU), a multiply accumulate unit (MAU), and a
data select unit (DSU). The load and store instructions support base plus displacement, direct, indirect,
circular, and table addressing modes. The ALU, MAU, and DSU support basic add/subtract, multiply,

FIGURE 39.48 ManArray 1 × 2 core elements.
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and data type manipulations such as shift, rotate, and permute, respectively. In addition, many application
specific instructions are used for improved signal processing efficiency. An example of this are the multiply
complex instructions for improved FFT performance described in reference [6].

The control and branch instructions are executed by the SP. It is also capable of indirectly executing
VLIWs that are local to the SP and in each PE. To minimize the effects of branch latencies, a short variable
pipeline is used consisting of Fetch, Decode, Execute, and ConditionReturn for non-iVLIWs and Fetch,
PreDecode, Decode, Execute, and ConditionReturn for iVLIWs. The PreDecode pipeline stage is used to
indirectly fetch VLIWs from their local VIMs. Note that VLIWs are stored locally in VIMs in each PE
and in the SP and are fetched by a 32-bit execute VLIW (XV) instruction. In addition, an extensive
scalable conditional execution approach is used in each PE and the SP to minimize the use of branches. 

All loads/stores and arithmetic instructions execute in one or two cycles with no hardware interlocks.
Further, all arithmetic and load/store instructions can be combined into VLIWs, stored locally in the SP
and in each PE, and can be indirectly selected for execution from the small distributed VLIW memories
(VIMs). Using the load iVLIW (LV) instruction, the programmer or compiler loads individual instruction
slots with the 32-bit simplex instructions optimized for the algorithm being programmed. These VLIWs
are used for algorithm performance optimization, are re-loadable, and require only the use of a 32-bit
execute VLIW (XV) instructions in the program stored in the SP instruction memory.  

A dedicated bit in all instruction formats controls whether an instruction is executed in parallel across
the array of PEs or sequentially in the SP. To more optimally support a multiple PE array containing the
distributed register files, the ManArray network is integrated into the architecture providing single-cycle
data transfers within PE clusters and between orthogonal clusters of PEs. The DSU communications
instructions can also be included into VLIWs, thereby overlapping communications with computation
operations, which in effect reduces the communication latency to zero. The ManArray network operation
is independent of background DMA operations, which provide a data streaming path to peripherals,
such as a global memory. 

The inherent scalability of the ManArray processor is obtained in part through the advanced ManArray
network which interconnects the PEs. Consider by way of example, a two-dimensional (2D) 4 × 4 torus
and the corresponding embedded 4D hypercube, written as a 4 × 4 table with both row, column, and
hypercube node labels. (See Fig. 39.50A.) 

In Fig. 39.50A, the PEi,j cluster nodes are labeled in gray-code as follows: PEG(i),G(j) where G(x) is the
gray code of x. First, columns 2, 3, and 4 are rotated one position down. Next, the same rotation is
repeated with columns 3 and 4, and then with column 4. The resulting 4D ManArray table is shown in
Fig. 39.50B. 

Notice that the row elements in Fig. 39.50B, for example {(1,0), (0,1), (3,2), (2,3)}, contain the transpose
PE elements. By grouping the row elements in clusters of four PEs each, and completely interconnecting
the four PEs, connectivity among the transpose elements can be obtained. Notice also that, in the new
matrix of PEs, the east and south wires, as well as the north and west wires, are connected between adjacent
clusters. For example, using Fig. 39.50A note that node (2,3) connects to the east node (2,0) with wraparound

FIGURE 39.49
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wires in a torus arrangement. Node (2,3) also connects to the south node (3,3). Now, using Fig. 39.50B,
note that nodes (2,0) and (3,3) are both in the same cluster adjacent to the cluster containing node (2,3).
This same pattern occurs for all nodes in the new matrix. This means that the east and south wires can
be shared and, in a similar manner, the west and north wires can be shared between all clusters. This
effectively cuts the wiring in half as compared to a standard torus, and without affecting the performance
of any SIMD array algorithm. 

The rotating algorithm maintains the connectivity between the PEs, so the normal hypercube con-
nections still remain as shown in one example in Fig. 39.50B as PE (1,0/0100) can communicate to its
nearest hypercube nodes {(0000), (0101), (0110), (1100)} in a single step. Note also that the longest paths
in a hypercube, where each bit in the node address changes between two nodes, are all contained in the
completely connected clusters of processors nodes. For example, the circled cluster contains node pairs
{(0100), (1011)} and {(0001), (1110)}, which would take four steps to communicate between each pair
in previous hypercube processors, takes only one step to communicate in the new ManArray network.
These properties are maintained in higher dimensional ManArray networks containing higher dimen-
sional tori, and thus hypercubes, as subsets of the ManArray connectivity matrix. We have also shown
that the complexity of the ManArray network is small and that the diameter, the largest distance between
any pair of nodes, is 2 for all d where d is the dimension of the subset hypercube [7].

Application-specific instructions are included in the various execution units, such as multiply complex
[6] and other video, graphics, and communications unique instructions. Any of the four groups of
instructions can be mixed on a cycle-by-cycle basis. The single ManArray instruction set architecture
supports the entire ManArray family of cores from the single merged SP/PE0 1 × 1 to any of the highly
parallel multi-processor arrays (1 × 2, 2 × 2, 2 × 4, 4 × 4, etc.), for more details see references [8] and [9].

The ManArray Thread Coprocessor Platform

The ManArray thread coprocessors are designed to act as independent coprocessors to ARM, MIPS, or
other hosts. The programmer’s view is a shared memory sequentially coherent model where multiple
processors operate on independent processes. With this model, an SoC developer can quickly utilize the
signal processing capabilities of the ManArray core subsystem since the operating system already runs
on the host processors. In its role as a digital signal coprocessor, the ManArray core is subservient to the
host processor. A core driver running on the host operating system manages all the DSP resources on
the core. The ManArray system interface allows multiple BOPS cores to be attached to a single host
processor as shown, for example, in Fig. 39.51. For wireless and media processing applications the 1 × 1
MOCARay-I mobile communications accelerator and the 1 × 2 MICORay-I imaging communications
engine are designed to work separately or jointly, as shown in Fig. 39.51, to provide ultra low-power
baseband and media DSP services for 3G mobile products. Figure 39.51 shows a multimode Smart Phone
or PDA with MOCARay-I providing the GPRS/EDGE and/or UMTS mode while MICORay-I provides
support for video MPEG-4, JPEG 2000 photo imaging, speech decode/encode, sprite-based rendering in
a gaming mode, audio processing MP3, etc.

FIGURE 39.50 Hypercube interconnection scheme.
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Another example of the use of BOPS cores as thread coprocessors is in voice-over-Internet protocol
(VoIP) products. For this application, an integrated dual 1 × 2 arrangement with a common DMA
controller is used as the basic platform unit. One, two, or four of these dual 1 × 2 units are provided as
an SoC DSP “farm” with an on-board host engine, e.g. MIPS. 

Figure 39.52 illustrates the configuration with eight 1 × 2 cores. This system arrangement allows the
workload to be partitioned appropriately allowing extant applications to run on existing host OSs in the
MIPS controller. This lowers the risk of migrating an existing code base, and no new OS ports are required
to support the ManArray cores. To complement the configurable hardware, there is a BOPS library of
both DSP and control software routines to perform the desired VoIP gateway functions. In addition,

FIGURE 39.51 Application of multiple BOPS cores to 3G wireless.

FIGURE 39.52 Application of multiple BOPS cores to VoIP.
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existing host optimized compilers are used for the sequential code that remains resident on the host
allowing the parallel code to be optimized for the ManArray cores. 

A driver API allows host applications to initialize, control, and communicate with multiple ManArray
coprocessors attached to the host. A standard message interface exists for all coprocessors to/from the
host. Specifically, the ManArray core DSPs are described as thread coprocessors because the host processor
dispatches entire threads of execution to the cores. The host driver loads programs, schedules context
switches, and manages data streams into and out of the various coprocessors. The high-performance
DMA engine, scaled appropriately for the application, autonomously transfers data streams to and from
the host. In addition, data streams can be “pushed/pulled” from one coprocessor to another, or to/from
peripherals (such as an H.100 interface) and coprocessors, without host intervention, using the ManArray
DMA-to-DMA interconnection protocol. 

The DMA subsystem consists of the DMA controller, a ManArray control bus (MCB), and a ManArray
data bus (MDB). The MDB provides the high-bandwidth data interface between the cores and other
system peripherals including system memory. The MDB consists of multiple identical lanes and is scalable
by increasing the number of lanes and/or increasing the width of the lanes. Specifically, the MDB uses
time division multiplexing of multiple independent buses or lanes to transfer data. The MCB is a low
latency coprocessor-to-coprocessor/peripheral messaging bus, which runs independently and in parallel
with the MDB. This system of multiple independent application task-optimized cores is designed to have
each core run an independent thread supported by the programmable DMA engines [10].

Figure 39.53 illustrates the host-DSP software layers. The multiple ManArray cores support the multiple
independent program threads that are managed by the host OS through remote procedure calls (RPC)
scheduled by the RTOS driver running in the host. The BOPS channel processing API provides a standard
interface for allocating voice channel processing to the multiple 1 × 2 cores. On the ManArray core side,
a thin DSP nano-kernel supports thread load/unload with DMA transfers overlapping computation. The
RPC and DMA drivers provide standard host-DSP communication and data transfer support. 

Supporting this scalable platform for VoIP solutions is BOPS SoC design flow as shown in Fig. 39.54.
Four parallel processes are shown supporting both hardware and software design efforts for the thread
coprocessors, peripherals, host software, and DSP software developments.

Once the SoC functional specification and a basic system design is determined the next development
steps can be done in parallel. The ManArray core RTL and other peripheral RTL are done in parallel,
being designed to the ManArray interface specifications. At the same time, due to the use of a cycle accurate
system simulator and other supporting tools, the host CPU software and DSP software development are
done in parallel. 

To streamline development, verification and debug, BOPS provides a range of modeling and proto-
typing platforms to support system modeling, and software and hardware system development including: 

• a cycle-accurate C-simulator, which can be used to develop ManArray DSP and system software.
This can be used directly with other C simulations, or with control processor tools and bus models
to provide a software simulation model of an entire system; 

• a software development toolkit (SDK) including the BOPS ANSI-C Halo parallelizing C compiler;

• the Jordan/Manta PCI card, which can be used to model and test DSP software at 100 MHz
processor speeds and under actual DMA I/O conditions; 

FIGURE 39.53 Host DSP software layers.
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• the Travis/ Manta prototyping board, which can be used to prototype entire SoC systems at
actual speeds; 

• the Xemulator emulation board, which can be used to model RTL emulations of an entire SoC
system. 

The same DSP debugging GUI is shared by the C-simulator, Jordan, Travis, and Xemulator boards.
The Jordan development and Travis prototyping boards are provided using a 2 × 2 Manta core that
contains features needed in many applications. The Travis system prototyping board uses the standard
configurations available on Manta cores 1 × 1, 1 × 2, and 2 × 2. All of the normal fixed resources such as
host microcontroller, oscillators, memories, power supplies, configuration controls, debug, peripheral
and PCI interfaces are also on board. In addition, a large FPGA accommodates all unique logic circuits
allowing for rapid design, testing, and debug. The Jordan board with the Manta chip provides real time
operation of standard cores in a MIPS host system with off board system prototyping. Also included on
the Jordan board is a MIPS microcontroller with interrupts and boot ROM. With these development
boards the software can be integrated and tested. BOPS also provides verification tools and supporting
scripts and guidelines for the physical design.

The SoC emulator board, the Xemulator, allows MHz speed emulation in FPGAs of the many possible
RTL hardware and software configurations of the scalable ManArray architecture. This is useful when
bus sizes, bus protocols, and external interfaces are changed from the standard core configurations.
Likewise, I/O and DMA controllers may need to be altered for certain applications. Additions, subsetting,
and other changes to the instruction set can be explored on the Xemulator by modifying the downloaded
core’s FPGA description.

Performance Evaluation

To illustrate the power of the highly parallel ManArray architecture, a simple example is presented: Two
vectors are to be added and the result stored in a third vector.

for (i = 0; i < 256; i++)

A[i] = B[i] + C[i]

FIGURE 39.54 BOPS SoC design flow.
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In a sequential-only implementation there would be required a loop of four instructions, two loads
to move a B and a C element to registers, an add of the elements, and a store of the result to register A.
The sequential implementation takes (4∗256) iterations = 1024 cycles, assuming single cycle load, add,
and store instructions.

Assuming the data type is 16-bits and quad 16-bit packed data instructions are available, the vector
sum would require (4∗64) iterations = 256 cycles.

Further assuming an array processor of four PEs where each PE is capable of the packed data operations,
then the function can be partitioned between the four PEs and run in parallel requiring (4∗16) iterations =
64 cycles.

Finally, assuming a VLIW processor such as the ManArray processor, a software pipeline technique
can be used with the VLIWs to minimize the instructions issued per iteration such that (2∗16) iterations =
32 cycles are required. This represents a 32x improvement over the sequential implementation.

ManArray architecture allows a programmer or compiler to select the level of parallelism appropriate
for the task at hand. This selectable parallelism includes packed data operations (4 × 16-bits and 8 × 8-bits
in one 64-bit operation on the Manta core), parallel array PEs (performance scales linearly with the
addition of PEs), and instruction level parallelism (iVLIW concurrent store/load, ALU, MAU, and DSU
instructions).  

By use of the three levels of parallelism available on each core, including the use of single-cycle PE
communications, scalable conditional execution, and background data streaming DMA, the following
benchmarks, Fig. 39.55, can be obtained on the Manta 2 × 2 thread coprocessor, which can also function
as subset array 1 × 1 and 1 × 2 array processors.

Conclusions and Future Extensions

The pervasive use of processor IP in embedded SoC products for consumer applications requires a stable
design point based on a scalable processor architecture to support future needs with a complete set of
hardware and software development tools. The ManArray cores are highly scalable, using a single archi-
tecture definition that provides low power and high performance. Target SoC designs can be optimized
to a product by choice of core type, 1 × 1, 1 × 2, 2 × 2, … and by number of cores. The BOPS tools and
SoC development process provides a fast path to delivering verified SoC products. Future plans include
architectural extensions, representing a superset of the present design, which greatly improve performance
in the intended applications.

FIGURE 39.55 Manta 2 × 2 thread coprocessor benchmarks.

Benchmark Data Type Performance 
256 pt. Complex FFT (2x2) 16-bit real & imaginary 383 cycles 
256 pt. Complex FFT (1x1) 16-bit real & imaginary 1115 cycles 
1024 pt. Complex FFT (2x2) 16-bit real & imaginary 1513 cycles 
1024 pt. Complex FFT (1x1) 16-bit real & imaginary 5221 cycles 
2048 pt. Complex FFT (2x2) 16-bit real & imaginary 3182 cycles 
2D 8x8 IEEE IDCT [11] (2x2) 8-bit 34 cycles 

2D 8x8 IEEE IDCT (1x1) 8-bit 176 cycles 
256 tap Real FIR filter, M samples (2x2) 16-bit 16*M + 81 cycles  
256 tap Real FIR filter, M samples (1x1) 16-bit 64*M + 78 cycles 

4x4 Matrix * 4x1 vector (2x2) IEEE 754 Floating Point 2 cycles / output vector 
3x3 Correlation (720col) (2x2) 8-bit 271 cycles 

3x3 Median Filter (720col) (2x2) 8-bit 926 cycles 
8x8 Block Motion Est. (H=64, V=32) (2x2) 8-bit 4611 cycles 
Horizontal Wavelet  (N Rows = 512) (2x2)  16-bit 1029 cycles 
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39.3 Digital Audio Processors for Personal Computer Systems

Thomas C. Savell

Introduction

The audio subsystem of the personal computer (PC), once an almost unnecessary component, has become
an integral part of the operating systems and applications software that run on them. The evolution of
the PC itself has led to a complex audio system; requiring simultaneous playback and recording while
applying advanced signal processing. The best PC audio systems employ one or more specialized digital
audio processors to offload the main processor and guarantee artifact-free audio.
© 2002 by CRC Press LLC
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Brief History and Evolution

The early PCs could only generate simple tones and beeps. In the early 1980s, the system designers of
the original IBM-PC used the Intel 8253 digital timer to generate a series of pulses at a regular rate,
usually a square wave within the audio range of less than 20 kHz. The output of this chip drove the base
of a transistor to switch on and off a small speaker as shown in the schematic of Fig. 39.56. This simple,
cost-effective solution effectively offloaded the 4.77 MHz Intel 8088 main processor from the task of
generating a tone. The 8253 timer had three independent channels, and the system designers used channel
0 to keep track of the time of day and channel 1 to generate DRAM refresh cycles. Thus, the otherwise
unused timer channel 2 provided an essentially cost-free audio processor.

Although the most common use of this primitive audio system was to alert the user to an event, clever
programmers were able to play simple melodies using it. Eventually, they discovered how to use pulse-
width modulation coupled with the reactance of the circuit to create a low-quality digital-to-analog
converter (DAC), enabling the playback of digitally sampled waveforms. Audio created using this method,
however, was very noisy and presented a significant load on the main processor.

Later in the 1980s, add-in cards appeared with an integrated music synthesizer capable of playing back
polyphonic music. One such early card, the Adlib soundcard, used a form of music synthesis known as
frequency modulation (FM) synthesis. As John Chowning described in 1973, FM synthesis creates
complex sounds using simple sine waves to modulate the frequency of other sine waves [1]. The Adlib
soundcard used the simple Yamaha OPL2 FM synthesis chip, which used only two sine waves per voice
to synthesize complex waveforms. It could create satisfactory, yet unrealistic synthesis of natural musical
instruments, as well as a limited spectrum of special sound effects.

The immensely popular Adlib-compatible SoundBlaster® (Creative Technology, Ltd.) was introduced
in 1989 by Creative Labs. In addition to Adlib’s FM synthesis capabilities, it added a simple method of
playing and recording digital audio encoded as a pulse code modulated (PCM) stream. Perhaps as
important to its success, Creative Labs provided software development support to computer game
developers free of charge, resulting in widespread software support for the SoundBlaster. The new PCM
audio capabilities added the possibility of using any sound as an effect in a game. This important
enhancement led to the requirement for PCM audio on all future soundcards.

PCM audio was transferred to and from the soundcard using the Intel 8237 direct memory access
(DMA) controller on the main system motherboard, as shown in Fig 39.57. The early SoundBlaster cards
could only transfer 8-bit PCM audio, resulting in a dynamic range of only about 48 dB. Later, the Sound-
Blaster 16 card added support for 16-bit PCM audio with a much better 96 dB dynamic range, using the
16-bit DMA controller of the newer computers.

As time progressed, wavetable synthesis replaced FM synthesis. Wavetable synthesis is capable of
synthesizing musical instrument sounds that are nearly indistinguishable from real instruments except
to the trained ear. It works by triggering digital recordings of notes played on actual instruments in
response to keys played on a keyboard. To synthesize the sound of a piano, the wavetable synthesizer
stores a series of digital recordings of a real piano, and plays them back on command. Although the sound

FIGURE 39.56 Simplified schematic of IBM-PC speaker circuit.
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quality is far superior to that produced by the earlier FM soundcards, the high price of the early wavetable
implementations was prohibitive to widespread market acceptance. The normal market forces eventually
drove the price down, and soundcards that could only produce FM became obsolete.

An important force in the evolution of both graphics and audio in PCs is the computer game. The
continually increasing realism of game graphics, with players able to navigate through virtual three-dimen-
sional (3-D) environments, created demand for more realistic game audio. This demand led to the advent
of 3-D positional audio, allowing accurate placement of sound sources within a virtual 3-D environment
rendered on stereo speaker systems. It ultimately led to full environmental simulation, with the ability to
simulate a sound in various environments such as a carpeted room, a large hall, and even underwater.

A 3-D audio experience is difficult to achieve using two speakers. The smallest head movement of the
listener can often destroy the effect. Movie theaters overcame this problem using multi-speaker sound
systems that placed speakers to the sides and rear of the listener. It eventually migrated to home theater
systems and finally to computer gaming systems.

The best systems now have a 5.1 channel audio system such as Dolby Digital (Dolby Laboratories)
coupled to a 3-D rendering soundcard with environmental simulation capabilities. These systems provide
an audio experience that immerses the listener in the environment, helping to create the illusion of realism.

Today’s System Requirements

Today’s systems use a layered approach, with applications able to produce audio with little or no knowl-
edge of the underlying hardware. Layers of software hide most of the hardware-specific features. Appli-
cations use a query mechanism to determine which features are present, enabling considerable freedom
in hardware implementation. Many features of the audio system can also be rendered in software,
guaranteeing the application developer a minimum feature set and performance level, nearly independent
of the installed hardware. Thus, today’s architecture is scalable, allowing the user to choose hardware
acceleration for better performance, or software emulation for lowest cost.

Audio on a PC can be divided into several general categories, including operating system interaction,
music, gaming, and voice applications. Each of these categories has unique properties, but with proper
architecture, a single solution can apply to all of them.

Operating system interaction is generally limited to alerting the user to various events, such as starting
up the system, selecting an invalid choice, or receiving new e-mail messages. In the early days of PCs,
simple beeps communicated all of these items. Now, these events can be associated with any sound
recording, and each association can be unique. Whenever an event occurs, the operating system instructs
the soundcard to play back the associated sound recording.

Music applications are much more complex. The soundcard is required to provide a wavetable syn-
thesizer responsive to musical instrument digital interface (MIDI) commands [2]. In addition, it must
be able to play back streaming audio in various formats including PCM, MP3 (MPEG-1 Layer 3 Audio),
and Dolby Digital (5.1-channel home theater audio). Finally, it must be capable of recording in CD
quality, or 16-bit stereo PCM at a sample rate of 44.1 kHz. Each of these major features must be
independent and operate simultaneously.

FIGURE 39.57 Slave DMA using the Intel 8237 DMA controller.
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Gaming applications often require a very sophisticated audio system. Many games place sound sources
in a virtual 3-D space. The user expects the system to render this 3-D space on any number of speaker
systems, ranging from headphones to stereo speakers to 5.1-channel home theater systems. The virtual
3-D space includes not only positional cues, but environmental cues as well. A game player must be able
to move a character from an open outdoor space into a small wooden room and seamlessly hear the
environmental cues such as the short reverberation of a small room. Objects in motion produce the well-
known Doppler effect increasing the apparent frequencies of the sounds emitted by objects moving
toward the listener and decreasing those of objects moving away [3]. The most sophisticated audio systems
can reproduce the Doppler effect on both the objects in motion and their reflections.

Voice applications, although not new, have yet to gain the widespread availability of operating system,
music, and gaming applications. Because of the large memory requirements, voice recognition algorithms
are better suited to the main processor and use limited, if any, preprocessing by the soundcard in the
record path. Moreover, automatic voice recognition is still unreliable, except when restricted to isolated
words from a limited vocabulary. Another class of voice applications is voice communication. The emer-
gence of the Internet has brought with it the promise of low-cost worldwide telephony. The implementation
of Internet telephony requires sophisticated noise-cancellation and echo-cancellation algorithms that are
often best suited to run on the sound card.

Hardware Architecture

The hardware of the PC audio system satisfies these system requirements with a simple model. Much like
the entire computer system, it consists of three major subsystems: storage, processing, and input/output (I/O).
The storage subsystem can include local memory, system memory, and disk storage such as hard drives
and compact discs, but the audio processor does not usually interface directly with a disk storage device.
The processing subsystem includes both the main processor and a processor located on the soundcard
to provide hardware acceleration. The I/O subsystem usually consists of an analog interface such as the
Audio CODEC ’97 (AC97) standardized DAC and ADC. In addition, digital interfaces such as the
Sony/Philips digital interface (S/PDIF) are often included. By dividing the audio system into three logical
blocks, the system designer faces the simplified task of creating each block while optimizing the interfaces
between them. The audio processor designer is concerned with the processing capabilities of the chip as
well as the I/O system interface and the memory bus interface.

Memory

Local memory connects directly to the audio processor. This includes both ROM and RAM of various
types located on the soundcard, generally used to store wavetables for wavetable synthesis and digital delay
lines for environmental simulation algorithms. Local memory provides the highest system performance
for wavetable synthesis and environmental simulation since it need not share bandwidth with the main
processor and other hardware such as disk, video, and networking interfaces; however, local memory costs
money, and cost is often a major consideration in market driven engineering. The emergence of the RAM-
less soundcard, which stores audio in system memory rather than local memory, is primarily due to the
need to decrease costs.

Creation of a RAM-less soundcard requires that system memory store most audio data. A relatively
small amount of RAM is still required on the audio processor chip for algorithms that require high-
bandwidth access to memory. System memory connects to the main processor of the PC through bus
bridging logic, and stores the programs and data that make up the operating system and application
programs. When the audio processor requires access to system memory, it generates a memory access
request on the add-in card bus. If the main processor or any other device is currently accessing system
memory, the audio processor must wait.

The early PCs used a relatively low-performance add-in card bus known as ISA, or Industry Standard
Architecture. The soundcards that plugged into the ISA bus accessed system memory through the Intel
8237 DMA controller. The 8237 DMA controller contains auto-incrementing address registers and uses
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a request/acknowledge handshake protocol to communicate with requesting devices. Because it generates
the memory address and controls the direction of the transfer, it is the bus master.

The soundcard operates as a slave to the 8237 DMA controller, which is limited to a single address
per requesting device and only performs single-word transfers. In addition, certain channels of the DMA
controller are limited to 8-bit transfers, and others can perform 16-bit transfers. The soundcards that
could support 16-bit samples had to allocate two DMA channels, one for 8-bit audio, and the other for
16-bit audio. These limitations were acceptable for soundcards that did not require system memory to
store wavetables or digital delay lines. These soundcards either had local memory or supported only FM
synthesis. They used this slave DMA system for streaming audio, which is generally a recording of music
or other sounds.

Applications such as games that create virtual environments generate a continuous stream of audio;
however, it is not as simple as playing a static recording. The content of the stream changes based on the
actions of the user. As the user interacts with the virtual environment, virtual objects move in relation
to the listener, and the sounds they produce may change over time. Each sound an object can make is
usually stored as a short recording. The process of creating the continuous audio stream that represents
the virtual environment entails summing all the sound sources within the listener’s range. The use of
slave DMA for these types of applications requires software to create the continuous audio stream. The
software for positioning objects in a virtual 3-D space is nontrivial, so the applications generally simplify
the problem when using an ISA bus soundcard.

A better solution is to place a powerful DMA controller directly on the soundcard. When the soundcard
contains a DMA controller, it becomes the bus master, and can overcome the limitations of the 8237A
DMA controller. For example, it can have a large number of independent address generators, enabling
both wavetable synthesis and 3-D hardware acceleration for audio stored in system memory. A soundcard
that supports wavetable synthesis or environmental simulation using system memory must have a bus
mastering DMA controller.

The audio processor designer must consider the memory bandwidth requirements, bus bandwidth
availability, and bus transfer latency to determine whether bus-mastering DMA is a viable design choice.
Given the number of simultaneous audio channels, the sample rate of each channel, and the number of
bytes in each sample, the designer can easily calculate the memory bandwidth requirements. For example,
a processor supporting 64 audio channels with a sample rate of 48 kHz and 2 bytes (16-bit) per sample
requires 6,144,000 bytes/s. The available bus bandwidth must be greater than that for it to be a viable
design choice.

Calculating available bus bandwidth is much more difficult. It depends on the bus bandwidth capa-
bility, the reserved bandwidth for other transactions on the bus, and any transaction overhead not
accounted for in the bus bandwidth capability. The bus bandwidth capability is straightforward to
calculate. The simplest method is to use the data transfer rate times the bus width. For example, a
33.33 MHz PCI bus is 4-bytes wide, leading to a bus bandwidth capability of approximately 133 Mbytes/s.

This, however, ignores the per-transaction overhead required to arbitrate for the bus and begin a
bus cycle. For example, a transaction with a single data transfer typically requires about five clocks
to complete. If all transactions are single data transfers, the available bus bandwidth is only about
27 Mbytes/s. Burst data transfers reduce the effect of the per-transaction overhead. If 16 data transfers
occur in a burst transaction that requires 20 clocks to complete, the available bus bandwidth increases
to about 106 Mbytes/s. Computers represent a waveform as an array of numeric values in memory, so
audio is well suited to burst transactions. Even so, the available bandwidth is generally much less
than these theoretical amounts due to system overhead such as DRAM refresh and CPU cache access
to main memory.

The least quantified of all the factors is the reserved bandwidth for other transactions on the bus. This
includes bandwidth required by other devices on the bus and the bandwidth needed to program the
audio processor itself. The bandwidth required by other devices is unknown since it depends on the add-
in cards in each user’s individual system. Even the bandwidth needed to program the audio processor is
difficult to quantify, since it depends on the peculiarities of the software device driver, the operating
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system, and the application programs that ultimately generate the audio. Any method of determining
the amount to reserve seems entirely arbitrary since variable quantities determine the optimal amount.

Instead of relying on an arbitrary decision based on a guess, one could make measurements of the
bus bandwidth used by other devices on the bus in a typical system. Although measurements are by no
means a guarantee that any particular system will provide enough bandwidth, one can assume that a
similarly equipped typical system will provide a similar amount of bandwidth. The designer can also
estimate the bandwidth needed to program the audio processor. Clearly, there is a known overhead to
start up a single channel of audio. The bandwidth needed to program the processor includes at least this
overhead multiplied by the number of channels. There is additional bandwidth required to maintain a
channel of audio. For example, if an object in a virtual 3-D environment moves, the processor must
reprogram the portion of the audio processor that positions the object. Numerous other facets are part
of this problem, and the audio processor designer should consult with the software engineers to obtain
a reasonable estimate of the true bandwidth needed to program the processor.

Given estimates of the memory bandwidth required for audio data transfer and the available bus
bandwidth, the designer can determine the limits at which the system will fail. Based on this information,
the processor implementation or the target system requirements may need to change.

Mixing Multiple Sources

The basic system requirements and user expectations require that the sound system sum together multiple
audio sources with an independent level control for each source. The audio term for this summation
process is mixing. The operating system usually provides software for a simple audio mixer that enables
the user to control the relative levels of the compact disc, line in, microphone, and various internally
generated sound sources. The system often uses a small digitally programmable analog mixer for the
analog sources such as line in and microphone; however, the wavetable synthesizer and 3-D gaming
applications require mixing a relatively large number of channels under real-time software control, as
shown in Fig. 39.58. These applications use an all-digital mixer due to the large number of channels.

On the surface, a digital audio mixer sounds like a trivial exercise in multiply-accumulate operations;
however, in order to sum together sampled waveforms, they must all have the exact same sample rate.
Consider two sampled waveforms, each 1-second in length. The first has a sample rate of 48 kHz and the
second has a sample rate of 24 kHz. Although they both represent 1-second of time, the first waveform
consists of 48000 points, and the second waveform consists of 24000 points. In order to mix them, they
must have the same number of points representing the same amount of time.

The solution is to use a sample rate converter before the mixer. The sample rate converter has a fixed
output sampling-rate and a variable input sampling-rate. This allows the digital mixer to operate on
multiple waveforms of different sample rates. The software programs the sample rate converter with the
ratio of input to output, also known as the pitch. Pitch is a musical term that relates to the frequency of

FIGURE 39.58 Mixing a large number of sound sources under software control.
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a note. A higher pitch corresponds to a higher frequency. The sample rate converter performs a double
duty as a pitch shifter, enabling a single recorded note to reproduce many notes on the instrument. This
provides effective data compression by reducing the number of recordings required to reproduce the
sound of an instrument. In addition, it enables a variety of musical effects such as vibrato, pitch bend,
and portamento. Finally, the pitch shifting effect of the sample rate converter emulates the Doppler effect
needed by 3-D environmental audio. Thus, the sample rate converter is a fundamental building block
used by nearly all facets of the digital audio system in the PC.

Sample Rate Converters

Sample rate converters come in several varieties, offering different levels of conversion quality. Higher
quality conversion requires more computation, and comes at a correspondingly higher cost. Drop-sample
converters require almost no computation to implement and offer the lowest quality. Linear interpolation
converters require more computation and offer reasonably good quality, especially for downward pitch
shift. Multi-point interpolation converters require the most computation and memory bandwidth, but
provide the highest quality; however, there can be considerable variation in the quality of multi-point
interpolation converters.

To understand sample rate conversion, it is necessary to understand discrete-time sampling theory as
described by Nyquist and Shannon [4,5]. In order to sample a signal properly, the sample rate must be at
least twice the highest frequency component in the signal. The Nyquist frequency is one-half the sample
rate, and indicates the highest frequency component that a particular sample rate can represent. Sampling
of frequency components above the Nyquist frequency results in aliases in the sampled waveform that
are not present in the original signal. Sampling systems such as digital recorders typically use a low-pass
filter at the input of the analog to digital converter to avoid aliasing.

The relationship between the frequencies of the aliases and those of the original out-of-band signal is
simple. A sine wave at a frequency F between the Nyquist, N, and the sample rate, 2N, will alias to a
frequency of 2N − F. Consider a signal consisting of two sine waves, one at 28,000 Hz and another at
45,000 Hz. Using a sample rate of 48,000 Hz, the resulting sampled waveform would consist of an alias
of the 28,000 Hz sine wave at 20,000 Hz, and an alias of the 45,000 Hz sine wave at 3000 Hz. The sampling
process has lost the original signal and created a new signal. Figure 39.59 illustrates the frequency domain
spectrum of the original signal and the aliases created by sampling at too low of a rate.

In-band signals also create a type of alias, known as an image. Images and aliases are the converse of
one another. A properly sampled sine wave at frequency F has an image at 2N − F. It also has images at
2N + F, 4N − F, 4N + F, and so on up to infinity. Consider a signal consisting of two sine waves, one at
20,000 Hz, and the other at 3000 Hz. The spectrum of this signal is identical to the one generated by
sampling sine waves at 28,000 Hz and 45,000 Hz, as shown in Fig. 39.60. One cannot determine by
inspection whether the sampled waveform represents true in-band signals, aliases of out-of-band signals,
or some combination of the two.

The images are quite important when performing sample rate conversion. At the original sample rate,
the images fold back into the passband at exactly the same frequencies of the in-band signal; however,
changing the sample rate causes the images to fold back onto different frequencies in the passband, creating

FIGURE 39.59 Aliasing caused by sampling at too low a rate.
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aliasing distortion. Figure 39.61 illustrates the effect of changing the sample rate on the images of the in-
band signal. The sample rate converter must remove these images in order to obtain high quality conversion.

It is easy to deceive a naïve observer by a sampled waveform. Consider the following time series:

0.707 0.707 −0.707 −0.707 0.707 0.707 −0.707 −0.707

As shown in Fig. 39.62, the waveform might appear to represent a square wave of peak magnitude
0.707 at exactly one-half the Nyquist frequency. This is incorrect. A true square wave consists of an infinite

FIGURE 39.60 Images above the Nyquist frequency.

FIGURE 39.61 Aliases and images from sample rate conversion.

FIGURE 39.62 Simple time series that deceptively appears to represent a square wave.

48

45

24

2820

3

freq (kHz)

Original signal
Image signal caused
by sampling at 48 kHz

52

45 49

26

28 3220 24

3 7

freq (kHz)

Original signal

Alias signal and image caused
by sample rate conversion to

52 kHz without filter

Image of original
signal

0 1 2 3 4 5 6 7

-1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

-

-

-

-

© 2002 by CRC Press LLC



                          
series of frequencies at F, 3F, 5F, 7F,…, (2n + 1)F, where n goes to infinity. However, the first partial, 3F,
is above the Nyquist frequency. Therefore, this must represent a sine wave. However, its peak magnitude
is not 0.707, but is instead equal to 1.0, as shown in Fig. 39.63.

The ultimate goal of sample rate conversion is to create a new time series at a new sample rate that
correctly represents the true original signal. An ideal sample rate converter creates a time series that is
indistinguishable from that derived by resampling the original signal. Because it requires an infinite-
length time series, no real sample rate converter achieves this ideal; however, it is possible to come
arbitrarily close, given enough computation.

To create a new time series at a new sample rate, it is necessary to interpolate values between the input
samples. To do this, the sample rate converter maintains an output phase that represents the time index
of the output samples relative to the input samples. It maintains the phase by accumulating the pitch.
To double the number of output samples, use a pitch of 0.5. On each output sample period, the sample
rate converter adds the pitch to the phase accumulator. If the initial value for the phase accumulator is
0.0, the resulting phase over time will be the following:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 …

The integer portion of the phase accumulator is the address of the input sample(s) to convert, and
the fractional portion is the interpolation factor that indicates how far between input samples to generate
an output sample. In the previous example phase accumulator, the fraction alternates between 0.0 and
0.5. The fraction of 0.5 indicates that the output sample should be halfway between two input samples.
This definition is somewhat imprecise when using multi-point interpolation, but in a logical sense, it
still applies.

Usually, a hardware implementation of a sample rate converter uses a fixed-point representation for
both the pitch and the phase accumulator. The fixed-point representation enables very simple extraction
of both the integer and fractional portions, and minimizes the size of the adder used to maintain the
phase accumulator. The number of integer bits in the phase accumulator limits the amount of memory
addressable by the sample rate converter. Integer widths of at least 24-bit are common.

The number of integer bits required for the pitch is much smaller than the number required for the
phase accumulator. Upward pitch shifting, which is equivalent to conversion to a lower sample rate
requires filtering to a lower cutoff frequency than downward pitch shifting. Often, much more distortion
occurs when performing upward pitch shifting. The additional filtering and distortion of upward pitch

FIGURE 39.63 True signal represented by simple time series.
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shifting place limits on its usefulness. Upward pitch shifts of more than three octaves extend into the realm
of special effects. When viewed as pure sample rate conversion, a three octave upward shift is equivalent
to converting from a 48 to a 6 kHz sample rate. The lowest sample rate commonly used for audio is 8 kHz.
Thus, it is usually acceptable to limit the number of integer bits in the pitch to two or three, providing a
2- to 3-octave upward shift capability.

The magnitude of the least-significant bit (LSB) of the pitch fraction, indicated by the number of
fractional bits, determines the frequency ratio resolution. For example, the LSB of a 12-bit fraction is
equal to 1/4096. The perceptual unit of measurement for pitch is cents, or 1/100 of a semitone. This is
equal to a ratio of 21/1200 or 1.00058. The just-noticeable-difference (JND) for pitch is around 8 cents, or
1.0046, indicating the acceptable frequency error [3]. Given this, it would seem that a 12-bit fraction is
sufficient and even generous, since the ratio 4097/4096 is equal to 1.00024, much better than the JND
of 1.0046; however, an effective method of data compression for sampled waveforms is to lower the
sample rate such that the highest frequency of interest in the signal is near the Nyquist frequency of the
lower sample rate. Consider a sine wave consisting of only four points. When played back at unity pitch
on a system with a 48 kHz output rate, the frequency of the sine wave is 12 kHz. A more useful frequency
in the human hearing range is 125 Hz. To generate this, the pitch must be 0.0104. The closest available
ratio with 12-bits of fraction is 0.0105, generating a frequency ratio error of 1.0078, more than the JND.
In practice, a minimum of 14-bits of fraction is required for acceptable results across a wide range of
input rates and pitches. Ideally, the number of fractional bits in both the phase accumulator and the
pitch should match.

Drop-Sample Interpolation
Drop-sample interpolation, sometimes called nearest-neighbor interpolation, is the simplest type of
sample rate converter. The drop-sample interpolator simply rounds the phase accumulator to the nearest
integer and chooses the input sample at the resulting integer address to be the output sample. This
requires very little hardware as illustrated in Fig. 39.64. It also requires access to only a single input
sample to create an output sample, whereas all other forms of sample rate conversion require access to
more than one input sample to create a single output sample, but the result can be very poor quality.

Linear Interpolation
Linear interpolation may be the most common type of sample rate converter. The quality is good, and
the cost is relatively low. It requires access to two input samples to create a single output sample. The
computational cost is one multiply, one add, and one subtract. It is possible to implement the entire linear
interpolator with a single adder, using a shift and add approach to the multiply. This is feasible as long as
the clock rate is high enough to support the desired channel count and fractional accuracy. The following
equation describes the linear interpolation process, where x is the input waveform, y is the output sample,
n is the integer part of the phase accumulator, and f is the fractional part of the phase accumulator:

One can clearly see that when the fraction is zero, the output sample is equal to the input sample at
the address indicated by the phase accumulator. As the fraction approaches 1.0, the output follows a

FIGURE 39.64 Address generator for drop-sample interpolator.
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straight line drawn between adjacent input samples. Figure 39.65 illustrates the result of linearly inter-
polating a sine wave. The quality is quite good if the frequency of the sine wave is low relative to the
Nyquist, but the quality deteriorates significantly as the frequency approaches the Nyquist. The linear
interpolator has a low pass filtering effect that becomes noticeable above one half the Nyquist frequency.
In addition, the alias rejection is not very good for the images of signals above one-half the Nyquist
frequency. Thus, linear interpolation affects the quality in both the frequency response and aliasing
distortion for high frequencies.

Multi-Point Interpolation
Multi-point interpolation can produce much better quality than linear interpolation in both frequency
response and aliasing distortion. The ideal interpolator has a frequency response that is perfectly flat
within the passband and attenuates all other frequencies to zero. Convolving the input waveform with a
sinc function that runs from negative to positive infinite time produces such a frequency response.
Unfortunately, we must work within the limits of finite time to build a real interpolator. In 1984, Gossett
and Smith showed an efficient way to use a finite-length, windowed sinc function as a finite-impulse-
response (FIR) filter for sample rate conversion over a wide range of pitches [6]. The definition of the
sinc function is sint/t.

The convolution equation is , where x is the input waveform and a is a selected set of
coefficients, possibly a windowed sinc function.

The hardware implementation of a Gossett-Smith sample rate converter consists of a read-only-
memory (ROM) containing the filter coefficients, a linear interpolator to increase the resolution of the
filter coefficient set, and a multiply-accumulate unit to perform the convolution. Figure 39.66 shows a
block diagram of a typical Gossett-Smith interpolation system. Because the sinc function and other low-
pass FIR filters are symmetric about their centers, it is only necessary to store half of the points in the
ROM. Simple address mirroring makes the ROM appear to contain all the points.

Perceived quality is often more important than measured quality. That is, it is more important to sound
good to humans than to measure low distortion on laboratory instruments. Using a perceptual approach,
one can design sample-rate conversion filters that sound better [7]. For example, humans cannot hear
above 20 kHz, yet a 48 kHz sample-rate can represent frequencies up to 24 kHz. A filter that allows
distortion within this guardband between 20 and 24 kHz can achieve better quality within the audible
range of 20 Hz to 20 kHz.

FIGURE 39.65 Linear interpolation of simple time series.
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Address Looping
The phase accumulator of the sample rate converter must have some provision for looping back to a lower
address. Clearly, it cannot continue to increment to infinity. The finite number of bits used to represent
the integer part of the phase precludes that possibility. In addition, it is not useful simply to rely on binary
wraparound of the address from its maximum value back to zero. This would imply all channels of sample
rate conversion are reading from the same input waveform. At a minimum, the phase accumulator contains
a loop address and loop size for each channel. When the value of the phase accumulator crosses the loop
address, it loops back by the loop size and continues from the beginning of the loop. This enables both
streaming audio and wavetable synthesis.

Many natural musical instrument sounds can be characterized by an attack phase, sustain phase, and
release phase. The attack phase is often a primary cue to the listener as to the identity of the instrument.
Usually, it consists of a rapidly changing and nonrepeating waveform. Conversely, the sustain phase is
often a steady state that can be easily described by a repeating waveform. This is also true of the release
phase. During sustain and release phases, the phase accumulator can loop to create the repeating wave-
form, saving considerable memory. Besides, the length of the sustain phase is usually unknown because
it is controlled by the length of time the musician presses the key.

When streaming audio, the software fills a circular buffer with a continuous waveform to play. The
phase accumulator loops at the boundaries of the circular buffer and plays the stream. The software must
be careful not to overwrite audio that the sample rate converter has not yet played.

Envelopes and Modulation

It is often necessary to control various aspects of a sound, such as pitch, amplitude, and filter cutoff
frequency with time-varying signals called envelopes. The audio system may use these envelopes to simulate
the changes in sound that occur when a 3-D sound source moves, or as an integral part of the music
synthesis process.

A typical music synthesizer envelope generator has four segments designated attack, decay, sustain,
and release (ADSR) as shown in Fig. 39.67. These four segments are a reasonable approximation of the
amplitude envelopes of real musical instruments. The first two segments are attack and decay, and are
usually a fixed duration. During these segments, the sound is changing rapidly, often containing transients
and wideband noise corresponding to the initial strike of a drum, or pluck of a string. The decay segment
leads to the sustain segment, a variable duration, steady state corresponding to the portion of a note that
is held for a length of time. The final segment, release, occurs after the musician releases the note.

FIGURE 39.66 Gossett–Smith interpolator block diagram.
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Envelopes used for 3-D sound positioning do not have such a clearly defined set of segments. Instead,
3-D positional audio is often interactive. It is not possible to predict the movements of the user in advance.
For these applications, a fixed segment envelope generator may not be useful. A more useful method is
to set a target value to which the hardware will smoothly ramp from the current value, enabling the
software to be event driven.

In addition to the ADSR envelopes used for music synthesis and ramp-to-target envelopes used for
3-D positioning, a complete system requires a low frequency oscillator, or LFO. The system uses the LFO
to create slowly modulating effects such as vibrato and tremolo.

The final control signal is usually a weighted sum of one or more ADSR envelopes and one or more
LFOs. The scaling applied to the envelopes and LFOs are often time varying signals as well. This enables,
for example, vibrato to slowly increase during the sustain segment of a synthesized violin sound. It is
important to note that the scaling and summation occurs in perceptual units such as decibels and pitch
cents, not physical units such as voltage and Hertz. This means that the result of the summation goes
through a perceptual to physical units transform function before it is useful to the destination process.
Example transform functions are 10x/20 for decibels and 2x/1200 for pitch cents.

Filters

The most common filters in music synthesis are low-pass resonators. The frequency response of these
filters is generally flat from 0 Hz up, with a characteristic resonance just below the low-pass cutoff frequency,
as shown in Fig. 39.68. It is most common to build these filters with an infinite impulse response, or IIR
structure, such as that illustrated in Fig. 39.69. The software specifies the cutoff frequency and resonant

FIGURE 39.67 ADSR envelope.

FIGURE 39.68 Frequency response of lowpass resonant filter.

time

Attack Decay Sustain Release

10
1

10
2

10
3

10
4

10
5

-25

-20

-15

-10

5

0

5

10

Freq (Hz)

d
B

© 2002 by CRC Press LLC



          
gain of the filter. It is possible to sweep these parameters in real time, so it is important to ensure filter
stability under time-varying conditions. Stability criteria are outside the scope of this discussion, but
it is not difficult to drive IIR filters to instability when varying coefficients in the presence of an input
signal.

Three-dimensional positional audio and environmental simulation also demand the use of filters;
however, low-pass resonators are not the ideal choice. The head-related transfer function (HRTF) describes
the filtering performed by the shape of the human head, ear lobes, and ear canal [8]. In addition to
loudness and inter-aural time delay, the brain uses cues provided by this filtering to determine the position
of sound emitting objects. The most common implementation of an HRTF uses a FIR structure such as
the Gossett–Smith interpolator filters; however, both the impulse response and the usage of HRTF filters
are much different from that of Gossett–Smith interpolator filters.

Obstruction and occlusion are other filtering effects that occur when sound sources move in relation
to other objects. For example, obstruction is the effect caused by an obstacle between the listener and a
sound source in the same room. This applies a low-pass filtering effect on the direct sound, but not on
the reverberation. In contrast, occlusion is the effect caused by a sound source located outside the same
room as the listener. This applies a low-pass filtering effect on both the direct sound and the reverberation.
Low-pass IIR filters are appropriate for these applications, although resonance is neither needed nor
desired. The system can simulate these effects with the low-pass resonators used for music synthesis, but
the typical −12 dB per octave attenuation slope is generally too steep. A gentle −3 or −6 dB per octave
slope is more appropriate.

The audio system of the PC also performs the role of a typical component stereo system, playing
prerecorded music from CD or other sources. Thus, the software distributed with soundcards often includes
equalization, such as tone controls and graphic equalizers. Simple tone controls, such as bass and treble,
often use shelving filters as shown in Fig. 39.70. Graphic equalizers can use a bank of either band-pass
filters or parametric equalizers into a summation matrix.

It is the designer’s choice whether to implement the filter types required by the digital audio system
of the PC in hardware or software. The system often includes a programmable digital signal processor
(DSP), enabling a software implementation. As the required filter count increases, it often becomes more

FIGURE 39.69 Two-pole IIR filter block diagram.
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efficient to implement them in hardware, especially if multiple filter types can use the same filter structure.
Moreover, while FIR and IIR filter structures are quite different, a clever designer may find opportunities
to reuse the same basic arithmetic hardware for both. For example, both structures can use a multiply-
accumulate arithmetic unit. If each structure requires only one-half the available bandwidth, they can
share the same math unit by time-division multiplexing the inputs. Because arithmetic units are generally
costly, techniques such as this can significantly reduce the system cost.

Effects

Music synthesis applications use effects such as reverb, delay, and chorus as sweeteners. They are not
required, but tend to make the music sound more pleasing. In contrast, 3-D positional and environmental
simulation applications require delay and reverb to achieve realistic results. The fundamental unit of many
digital audio effects is the digital delay line. A simple echo effect may use only one delay line, whereas a
reverb effect may use 20 or more delay lines. Even modulation effects such as chorus and flange use delay
lines. Digital delay lines require one memory location per sample period of delay, an address generator,
and arithmetic units to scale the inputs and outputs of the delay line. Figure 39.71 illustrates a typical
delay line implementing a repeating echo through the use of feedback.

An obvious method of implementing a set of delay lines is to allocate memory buffers for each delay
line and maintain circular address counters for each indicating the read and write locations. The delay
time is equal to the difference between the read and write pointers, modulo buffer size. Maintaining
circular address counters can easily use a large percentage of the total instruction bandwidth of a DSP.
Many DSP implementations provide special instructions or self-maintaining address registers to reduce
the load on the DSP.

To provide maximum flexibility in implementation of effects, most PC audio systems include a pro-
grammable DSP. The designer may choose to purchase an off-the-shelf DSP, either as a separate chip or

FIGURE 39.70 Bass and treble tone control filter shapes.

FIGURE 39.71 Delay line with feedback implementing a repeating echo.
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as a core to integrate onto the same silicon as the rest of the solution. An alternative is to design a custom
DSP to fit the particular needs of the system. The advantages of a custom design are the freedom to add
or reduce features, easier integration, and often a lower cost. The disadvantages include possible increased
time to market and the lack of standard development tools such as compilers.

Digital Audio I/O

Eventually, the system must present the processed audio to the listener. A DAC outputs an analog voltage
proportional to the value of a word of digital data written to it. The analog output voltage drives the input
to an amplifier, and eventually the sound comes from a speaker. A DAC generally accepts serial digital
data rather than parallel, so the processor must first perform a parallel to serial conversion. A DAC is
usually stereo, so it accepts a time-multiplexed serial stream alternating between left and right channels.
The serial protocols are usually synchronous, and come in a few varieties. The most common in use today
are AC97 and I2S, both of which are easily available and inexpensive.

In addition to audio output, the system must be capable of recording audio from microphones and
external line-level devices such as CD players and tape decks. An ADC outputs digital data proportional
to the magnitude of an analog voltage presented to its input. As in the case of a DAC, an ADC usually
generates serial digital data consisting of time-multiplexed left and right channel data. The AC97 standard
developed by Intel specifies a monolithic CODEC containing both a stereo DAC and a stereo ADC [9].
An AC97 implementation can sometimes be the most cost effective. Generally, devices that use the I2S
protocol are of a higher quality but do not include both a stereo ADC and a stereo DAC.

For digital transmission of audio between the computer and an external device, the Sony/Philips Digital
Interface (S/PDIF) protocol as specified in IEC-958 is the connection of choice [10]. It is a robust protocol
intended for transmission over a 75-ohm coaxial cable. It uses Manchester encoding for the data, thus
embedding a clock and making it insensitive to logical inversion. The ground is isolated, preventing hum
and noise due to ground loops. Many consumer stereo components now have S/PDIF or its optical
counterpart TOS-Link as integral connections.

Emerging Applications

The basic digital audio system of a PC operates in stereo at 44.1 or 48 kHz sample rate with 16 bits of
resolution. The current trend of audiophile systems is moving to a multichannel 96 kHz sample rate with
24 bits of resolution. Often, these audiophile trends trickle down to the mainstream systems as the cost
comes down and demand rises. From a strict psycho-acoustical point of view, there is little value in
increasing the sample rate to 96 kHz, since the range of human hearing is generally restricted to 20–20 kHz.
In addition, a 96-kHz waveform requires twice the storage and twice the computation of the equivalent
waveform at 48 kHz; however, there is some benefit to processing audio at 96 kHz, primarily in the response
of filters over the human hearing range. It is easy to trade channel count for the higher sample rate. A
system that can process 128 channels at 48 kHz can only process 64 channels at 96 kHz. The designer
should weigh the cost versus the benefit, but often the market drives the decision. If the market demands
96 kHz, the designer must deliver it.

There is, however, a very real benefit to using 24 bits of resolution. The maximum dynamic range of
human hearing is around 130–140 dB. The 96 dB dynamic range of 16-bit resolution is insufficient to
cover this range. A 24-bit waveform has a dynamic range of 144 dB, more than sufficient to cover the
range of human hearing. The design impact of 24 bits versus 16 bits is additional storage and larger
arithmetic units, resulting in higher cost. 

Likewise, there is a real benefit to multichannel audio beyond stereo. A real environment produces
sounds from all directions instead of than only two points as in a stereo speaker system. But the processor
should still support stereo as a minimum baseline system, since the majority of audio systems are stereo.
To achieve this, the processor must have more than two separate outputs and be capable of sending different
audio to the multiple outputs.

Data rate reduction is another important trend in digital audio processing. The majority of the
popular techniques in use, including Dolby Digital and MP3, process the signal in the frequency domain.
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They employ a perceptual model that attempts to determine which frequency components are not perceiv-
able by the human hearing system. By removing those components, the encoding process can reduce the
amount of data required to represent the signal. For example, the MP3 encoding process achieves about a
10:1 compression ratio while maintaining a quality level high enough to satisfy most people.

Conclusion

A digital audio processor for PCs consists of only a few components: a memory and host interface coupled
to sample rate converters, filters, envelope generators, a mixer, and a programmable DSP. These compo-
nents, as illustrated in Fig. 39.72, interact in various ways to become a variable-rate playback engine, a
wavetable synthesizer, a 3-D positional audio processor, and an environmental audio simulator.

However, a digital audio system consists of both hardware and software. Given the wide range of
possibilities, the designer has considerable freedom in choosing an implementation to meet particular
market needs and price points. To meet the lowest price point, the designer chooses software implemen-
tations whenever possible. To achieve the highest performance, the designer chooses hardware; however,
a hardware implementation may limit the flexibility of the end system. The task of partitioning the system
into hardware and software components is one of the greatest hurdles to overcome. It requires a coor-
dinated effort of strategic marketing with hardware and software engineering early in the design process.
A proprietary chip is expensive to design and can take a long time from concept to production. The early
involvement of strategic marketing and software engineering helps ensure the success of any new hardware
design.

The customer purchases an audio system, not a chip. Thus, the designer must be aware of, yet look
beyond the technical aspects of digital audio processors to create a system that provides the proper
functionality at the right price.
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39.4 Modern Approximation Iterative Algorithms and Their 
Applications in Computer Engineering

Sadiq M. Sait and Habib Youssef

Introduction

This chapter section discusses one class of combinatorial optimization algorithms: approximation iter-
ative algorithms. We shall limit ourselves to four of these algorithms, which are, in order of their popularity
among the engineering community: (1) simulated annealing (SA), (2) genetic algorithm (GA), (3) tabu
search (TS), and (4) simulated evolution (SimE).

GA and SimE are evolutionary algorithms, a term used to refer to any probabilistic algorithm whose
design is inspired by evolutionary mechanisms found in biological species. Evolutionary algorithms, SA
and TS have been found very effective and robust in solving numerous problems from a wide range of
application domains. Furthermore, they are even suitable for ill-posed problems where some of the
parameters are not known beforehand. These properties are lacking in all traditional optimization tech-
niques. The four algorithms share the following properties:

1. They are approximation algorithms, i.e., they do not guarantee finding an optimal solution. Actually,
they are blind, in that they do not know when they reached an optimal solution. Therefore, they
must be told when to stop.

2. They are neighborhood search algorithms, which start from one suboptimal solution (or a pop-
ulation of solutions) and perform a partial search of the solution space for better solutions.

3. They are all “general.” They are not problem-specific and, practically, they can be tailored to solve
any combinatorial optimization problem.

4. They all strive to exploit domain specific heuristic knowledge to bias the search toward “good”
solution subspace. The quality of subspace searched depends to a large extent on the amount of
heuristic knowledge used.

5. They are easy to implement. All that is required is to have a suitable solution representation, a
cost function, and a mechanism to traverse the search space.

6. They have hill climbing property, i.e., they occasionally accept uphill (bad) moves.

The goal in this chapter section is to briefly introduce these four powerful algorithms. It is organized
into nine sections. In the next four subsections, an intuitive discussion of each of the four iterative
algorithms is provided. The remaining sections briefly address convergence aspects of the heuristics, their
parallel implementation, and examples of applications. The final subsection concludes the chapter section
with a comparison among the heuristics and a glimpse at the notion of hybrids. This chapter section
does not provide a full account of any of this important class of heuristics. For more details, readers
should consult the numerous references cited in the body of this work. 

Simulated Annealing

Simulated Annealing (SA) is one of the most well-developed and widely used iterative techniques for solving
optimization problems. It is a general adaptive heuristic and belongs to the class of nondeterministic
algorithms [1]. It has been applied to several combinatorial optimization problems from various fields
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of science and engineering. The term annealing refers to heating a solid to a very high temperature
(whereby the atoms gain enough energy to break the chemical bonds and become free to move), and
then slowly cooling the molten material in a controlled manner until it crystallizes. By cooling the metal
at a proper rate, atoms will have an increased chance to regain proper crystal structure with perfect
lattices. During this annealing procedure, the free energy of the solid is minimized.

In the early 1980s, a correspondence between annealing and combinatorial optimization was estab-
lished, first by Kirkpatrick, Gelatt and Vecchi [2] in 1983, and independently by erny [3] in 1985. These
scientists observed that a solution in combinatorial optimization is equivalent to a state in the physical
system and the cost of the solution is analogous to the energy of that state. As a result of this analogy,
they introduced a solution method in the field of combinatorial optimization. This method is thus based
on the simulation of the physical annealing process, and hence the name simulated annealing [2,3].

Every combinatorial optimization problem may be discussed in terms of a state space. A state is simply
a configuration of the combinatorial objects involved. For example, consider the problem of partitioning
a graph of 2n nodes into two equal sized subgraphs such that the number of edges with vertices in both
subgraphs is minimized. In this problem, any division of 2n nodes into two equal sized blocks is a
configuration. A large number of such configurations exists. Only some of these correspond to global
optima, i.e., states with optimum cost. 

An iterative improvement scheme starts with some given state, and examines a local neighborhood of
the state for better solutions. A local neighborhood of a state S, denoted by N(S), is the set of all states
which can be reached from S by making a small change to S. For instance, if S represents a two-way
partition of a graph, the set of all partitions which are generated by swapping two nodes across the
partition represents a local neighborhood. The iterative improvement algorithm moves from the current
state to a state in the local neighborhood if the latter has a better cost. If all the local neighbors have
larger costs, the algorithm is said to have converged to a local optimum. This is illustrated in Fig. 39.73.
Here, the states are shown along the x-axis, and it is assumed that two consecutive states are local
neighbors. It is further assumed that we are discussing a minimization problem. The cost curve is
nonconvex, i.e., it has multiple minima. A greedy iterative improvement algorithm may start off with an
initial solution such as S in Fig. 39.73, then slide along the curve and find a local minimum such as L.
There is no way such an algorithm can find the global minimum G of Fig. 39.73, unless it “climbs the
hill” at the local minimum L. In other words, an algorithm that occasionally accepts inferior solutions
can escape from getting trapped in a local optimum. SA is such a hill-climbing algorithm.

During annealing, a metal is maintained at a certain temperature T for a pre-computed amount of
time, before reducing the temperature in a controlled manner. The atoms have a greater degree of freedom
to move at higher temperatures than at lower temperatures. The movement of atoms is analogous to the
generation of new neighborhood states in an optimization process. In order to simulate the annealing process,

FIGURE 39.73 Local vs. global optima.
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much flexibility is allowed in neighborhood generation at higher “temperature,” i.e., many “uphill” moves
are permitted at higher temperatures. The temperature parameter is lowered gradually as the algorithm
proceeds. As the temperature is lowered, fewer and fewer uphill moves are permitted. In fact, at absolute
zero, the SA algorithm turns greedy, allowing only downhill moves.

The SA algorithm is shown in Fig. 39.74 . The core of the algorithm is the Metropolis procedure, which
simulates the annealing process at a given temperature T (Fig. 39.75) [4]. The Metropolis procedure
receives as input the current temperature T, and the current solution CurS, which it improves through
local search. Finally, Metropolis must also be provided with the value M, which is the amount of time
for which annealing must be applied at temperature T. The procedure Simulated_annealing simply invokes
Metropolis at decreasing temperatures. Temperature is initialized to a value T0 at the beginning of the
procedure and is reduced in a controlled manner (typically in a geometric progression); the parameter

FIGURE 39.74 Procedure for simulated annealing algorithm.

FIGURE 39.75 The Metropolis procedure.
© 2002 by CRC Press LLC



α is used to achieve this cooling. The amount of time spent in annealing at a temperature is gradually
increased as temperature is lowered. This is done using the parameter β  > 1. The variable Time keeps
track of the time being expended in each call to the Metropolis. The annealing procedure halts when
Time exceeds the allowed time. 

The Metropolis procedure is shown in Fig. 39.75. It uses the procedure Neighbor to generate a local
neighbor NewS of any given solution S. The function Cost returns the cost of a given solution S. If the
cost of the new solution NewS is better than the cost of the current solution CurS, then the new solution
is accepted, and we do so by setting CurS = NewS. If the cost of the new solution is better than the best
solution (BestS) seen thus far, then BestS must be replaced by NewS. If the new solution has a higher
cost in comparison to the original solution CurS, Metropolis will accept the new solution on a probabilistic
basis. A random number is generated in the range 0 to 1. If this random number is smaller than e−∆Cost/T,
where ∆Cost is the change in costs, (∆Cost = Cost(NewS) _ Cost(CurS)), and T is the current temperature,
the uphill solution is accepted. This criterion for accepting the new solution is known as the Metropolis
criterion. The Metropolis procedure generates and examines M solutions.

The probability that an inferior solution is accepted by the Metropolis is given by P(RANDOM <
e−∆Cost/T). The random number generation is assumed to follow a uniform distribution. Remember that
∆Cost > 0 because it is assumed that NewS is uphill from CurS. At very high temperatures (when T → ∞),
e−∆Cost/T ≈ 1, and, hence, the above probability approaches 1. When T → 0, the probability e−∆Cost/T falls to 0.

In order to implement SA, a suitable cost function needs to be formulated for the problem being solved.
In addition, as in the case of local search techniques, the existence of a neighborhood structure is assumed,
and the perturb operation or Neighbor function needs to generate new states (neighborhood states) from
current states. And finally, a control parameter is needed to play the role of temperature and a random
number generator. The actions of SA are best illustrated with the help of an example. For the solution
of the two-way partitioning problem using SA, please refer to [5].

A quality SA implementation requires the careful setting of a set of parameters that govern the conver-
gence of the algorithm, namely (a) the initial value of temperature, (b) the number of iterations of the
inner loop, (c) the rate of temperature decrease, and (d) the number of global iterations (the stopping
criterion or the final value of temperature). This set of parameters is commonly referred as the “cooling
schedule” [2,6,7]. It is customary to determine the cooling schedule by trial and error. However, some
researchers have proposed cooling schedules that rely on some mathematical rigor. For a discussion on
cooling schedule, and SA requirements the reader is referred to [8].

Genetic Algorithms

Genetic Algorithm (GA), is a powerful, domain-independent search technique that was inspired by
Darwinian theory. It emulates the natural process of evolution to perform an efficient and systematic
search of the solution space to progress toward the optimum. It is an adaptive learning heuristic that is
based on the theory of natural selection that assumes that individuals with certain characteristics are
more able to survive, and hence pass their characteristics to their offspring. Several variations of the basic
algorithm (modified to adapt to the problem at hand) exist. Subsequently, this set will be referred to as
genetic algorithms (in plural).

GAs were invented by John Holland and his colleagues [9] in the early 1970s. Holland incorporated
features of natural evolution to propose a robust, computationally simple, and yet powerful technique
for solving difficult optimization problems. The structure that encodes how the organism is to be con-
structed is called a chromosome. One or more chromosomes may be associated with each member of the
population. The complete set of chromosomes is called a genotype and the resulting organism is called
a phenotype. Similarly, the representation of a solution to the optimization problem in the form of an
encoded string is termed as a chromosome. In most combinatorial optimization problems a single chro-
mosome is generally sufficient to represent a solution, i.e., the genotype and the chromosome are the same.
The symbols that make up a chromosome are known as genes. The different values a gene can take are
called alleles.
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The fitness value of an individual (genotype or a chromosome) is a positive number that is a measure
of its goodness. When the chromosome represents a solution to the combinatorial optimization problem,
the fitness value indicates the cost of the solution. In the case of a minimization problem, solutions with
lower cost correspond to individuals that are more fit.

GAs operate on a population (or set) of individuals (or solutions) encoded as strings. These strings
represent points in the search space. In each iteration, referred to as a generation, a new set of strings that
represent solutions (called offspring) is created by crossing some of the strings of the current generation [10].
Occasionally, new characteristics are injected to add diversity. GAs combine information exchange along
with survival of the fittest among individuals to conduct the search.

When employing GAs to solve a combinatorial optimization problem one has to find an efficient
representation of the solution in the form of a chromosome. Associated with each chromosome is its
fitness value. If we simulate the process of natural reproduction, combined with the biological principle
of survival of the fittest, then, as each generation progresses, better and better individuals (solutions)
with higher fitness values are expected to be produced.

Because GAs work on a population of solutions, an initial population constructor is required to
generate a certain predefined number of solutions. The quality of the final solution produced by a genetic
algorithm depends on the size of the population and how the initial population is constructed. The initial
population generally comprises random solutions.

The population of chromosomes evolves from generation to the next through the use of two
types of genetic operators: (1) unary operators such as mutation and inversion, which alter the genetic
structure of a single chromosome, and (2) higher order operator, referred to as crossover, which consists
of obtaining new individual by combining genetic material from two selected parent chromosomes. The
resulting individuals produced when genetic operators are applied on the parents are termed as
offspring. Then the new population is selected out of the individuals of the current population and
its offspring.

The choice of parents for crossover from the set of individuals that comprise the population is
probabilistic. In keeping with the ideas of natural selection, we assume that stronger individuals, i.e.,
those with higher fitness values, are more likely to mate than the weaker ones. One way to simulate this
is to select parents with a probability that is directly proportional to their fitness values. Larger the fitness,
the greater is chance of an individual being selected as one of the parents for crossover [10].

Several crossover operators have been proposed in the literature. Depending on the combinatorial
optimization problem being solved some are more effective than others. One popular crossover that will
also help illustrate the concept is the simple crossover. It performs the “cut-catenate” operation. It consists
of choosing a random cut point and dividing each of the two chromosomes into two parts. The offspring
is then generated by catenating the segment of one parent to the left of the cut point with the segment
of the second parent to the right of the cut point.

Mutation (µ) produces incremental random changes in the offspring by randomly changing allele
values of some genes. In case of binary chromosomes it corresponds to changing single bit positions. It
is not applied to all members of the population, but is applied probabilistically only to some. Mutation
has the effect of perturbing a certain chromosome in order to introduce new characteristics not present
in any element of the parent population. For example, in case of binary chromosomes, toggling some
selected bits produces the desired effect.

Inversion is the third operator of GA and like mutation it also operates on a single chromosome.
Its basic function is to laterally invert the order of alleles between two randomly chosen points on a
chromosome.

A generation is an iteration of GA where individuals in the current population are selected for crossover
and offspring are created. Due to the addition of offspring, the size of population increases. In order to
keep the number of members in a population fixed, a constant number of individuals are selected from
this set that consists of both the individuals of the initial population, and the generated offspring. If M
is the size of the initial population and N0 is the number of offspring created in each generation, then,
before the beginning of next generation, M new parents from M + N0 individuals are selected. A greedy
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selection mechanism is to choose the best M individuals from the total of M + N0. The complete pseudo
code of a simple GA is given in Fig. 39.76.

Tabu Search

The previous subsection discussed simulated annealing, which was inspired by the cooling of metals, and
genetic algorithms, which imitate the biological phenomena of evolutionary reproduction. In this section
we present a more recent optimization method called tabu search (TS), which is based on selected
concepts of artificial intelligence (AI).

Tabu search was introduced by Fred Glover [11–14] as a general iterative heuristic for solving combi-
natorial optimization problems. Initial ideas of the technique were also proposed by Hansen [15] in his
steepest ascent mildest descent heuristic. TS is conceptually simple and elegant. It is a form of local neigh-
borhood search. Each solution S ∈ Ω has an associated set of neighbors N(S) ⊆ Ω. A solution S′ ∈ N(S)
can be reached from S by an operation called a move to S′. Normally, the neighborhood relation assumed
symmetric. That is, if S′ is a neighbor of S then S is a neighbor of S′. At each step, the local neighborhood
of the current solution is explored and the best solution in that neighborhood is selected as the new
current solution. Unlike local search that stops when no improved new solution is found in the current
neighborhood, tabu search continues the search from the best solution in the neighborhood even if it is
worse than the current solution. To prevent cycling, information pertaining to the most recently visited
solutions are inserted in a list called tabu list. Moves to tabu solutions are not allowed. The tabu status
of a solution is overridden when certain criteria (aspiration criteria) are satisfied. One example of an
aspiration criterion is when the cost of the selected solution is better than the best seen so far, which is
an indication that the search is actually not cycling back, but rather moving to a new solution not
encountered before.

Tabu search is a metaheuristic, which can be used not only to guide the search in complex solution
spaces, but also to direct the operations of other heuristic procedures. It can be superimposed on any
heuristic whose operations are characterized as performing a sequence of moves that lead the procedure
from one trial solution to another. In addition to several other characteristics, the attractiveness of tabu
search comes from its ability to escape local optima. 

Tabu search differs from SA or GA, which are memoryless, and also from branch-and-bound, A∗

search, etc., which are rigid memory approaches. One of its features is its systematic use of adaptive

FIGURE 39.76 Structure of a simple genetic algorithm.
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(flexible) memory. It is based on very simple ideas with a clever combination of components, namely [16,17]:

1. A short-term memory component; this component is the core of the tabu search algorithm.
2. An intermediate-term memory component; this component is used for regionally intensifying

the search.
3. A long-term memory component; this component is used for globally diversifying the search.

The central idea underlying tabu search is the exploitation of the above three memory components.
Using the short-term memory, a selective history H of the states encountered is maintained to guide
the search process. Neighborhood N(S) is replaced by a modified neighborhood, which is a function of
the history H, and is denoted by N(H, S). History determines which solutions may be reached by a move
from S, since the next state S is selected from N(H, S). The short-term memory component is imple-
mented through a set of tabu conditions and the associated aspiration criterion.

The major idea of the short-term memory component is to classify certain search directions as tabu
(or forbidden). By doing so we avoid returning to previously visited solutions. Search is therefore forced
away from recently visited solutions, with the help of a short-term memory (tabu list T). This memory
contains attributes of some k most recent moves. The size of the tabu list denoted by k is the number of
iterations for which a move containing that attribute is forbidden after it has been made. The tabu list
can be visualized as a window on accepted moves as shown in Fig. 39.77. Moves, which tend to undo
previous moves within this window, are forbidden. A flow chart illustrating the basic short-term memory
tabu search algorithm is given in Fig. 39.78. An algorithmic description of a simple implementation of
the tabu search is given in Fig. 39.79.

FIGURE 39.77 The tabu list can be visualized as a window over accepted moves.

FIGURE 39.78 Flow chart of the tabu search algorithm.
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Intermediate-term and long-term memory processes are used to intensify and diversify the search,
respectively, and have been found to be very effective in increasing both quality and efficiency [18,19].

The basic tabu search algorithm based on the short-term memory component is discussed first.
Following this is a discussion on uses of intermediate and long-term memories.

Referring to Fig. 39.79, initially the current solution is the best solution. Copies of the current solution
are perturbed with moves to get a set of new solutions. The best among these is selected and if it is not
tabu then it becomes the current solution. If the move is tabu, its aspiration criterion is checked. If it
passes the aspiration criterion, it becomes the current solution. If the move to the next solution is accepted,
the move or some of its attributes are stored in the tabu list. Otherwise, moves are regenerated to get
another set of new solutions. If the current solution is better than the best seen thus far, the best solution
is updated. Whenever a move is accepted the iteration number is incremented. The procedure continues
for a fixed number of iterations, or until some pre-specified stopping criterion is satisfied. 

Tabu restrictions and aspiration criterion have a symmetric role. The order of checking for tabu status
and aspiration criterion may be reversed, though most applications check if a move is tabu before checking
for aspiration criterion. For more discussion on move attributes, types of tabu Lists and the various tabu
restrictions, the data structure to handle tabu-lists, and other aspiration criteria, the reader is referred
to [8].

In many applications, the short-term memory component by itself has produced solutions superior
to those found by alternative procedures, and usually the use of intermediate-term and long-term memory
is bypassed; however, several studies have shown that intermediate and long-term memory components
can improve solution quality and/or performance [19–22].

The basic role of the intermediate-term memory component is to intensify the search. By its incorpo-
ration, the search becomes more aggressive. As the name suggests, memory is used to intensify the search.

FIGURE 39.79 Algorithmic description of short-term tabu search (TS).
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Intermediate-term memory component operates as follows. A selected number m >>  |T| (recall that |T|
is the size of tabu list) of best trial solutions generated during a particular period of search are chosen and
their features are recorded and compared. These solutions may be m consecutive best ones, or m local
optimal solutions reached during the search. Features common to most of these are then taken and new
solutions that contain these features are sought. One way to accomplish this is to restrict/penalize moves
that remove such attributes. For example, in the TSP problem with moderately dense graphs, the number
of different edges that can be included into any tour is generally a fraction of the total available edges
(Why?). After some number of initial iterations, the method can discard all edges not yet incorporated
into some tour. The size of the problem and the time per iteration now become smaller. The search therefore
can focus on possibilities that are likely to be attractive, and can also examine many more alternatives in a
given span of time.

The goal of long-term memory component is to diversify the search. The principles involved here are
just the opposite of those used by the intermediate-term memory function. Instead of more intensively
focusing the search with regions that contain previously found good solutions, the function of this com-
ponent is to drive the search process into new regions that are different from those examined thus far.

Diversification using long-term memory in tabu search can be accomplished by creating an evaluator
whose task is to take the search to new starting points [11]. For example, in the traveling salesman
problem (TSP), a simple form of long-term memory is to keep a count of the number of times each edge
has appeared in the tours previously generated. Then, an evaluator can be used to penalize each edge on
the basis of this count; thereby favoring the generation of other, hopefully good starting tours that tend
to avoid those edges most commonly used in the past. This sort of approach is viewed as a frequency-
based tabu criterion in contrast to the recency-based (tabu list) discussed earlier. Such a long-term
strategy can be employed by means of a long-term tabu list (or any other appropriate data structure)
that is periodically activated to employ tabu conditions of increased stringency, thereby forcing the search
process into new territory [23].

It is easy to create and test the short-term memory component first, and then incorporate the intermediate/
long components for additional refinements.

Let a matrix entry Freq(i, j) (i and j be movable or swappable elements) store the number of times swap
(i, j) was made to take the solution from current state S to a new state S∗. We can then use this information
to define a move evaluator ε(H, S), which is a function of both the cost of the solution, and the frequency
of the swaps stored. Our objective is to diversify the search by giving more consideration to those
swaps that have not been made yet, and to penalize those that frequently occurred, that is given them
less consideration [24]. Taking the above into consideration, the evaluation of the move can be expressed
as follows:

α is a constant which depends on the range of the objective function values, the number of iterations,
the span of history considered, etc. Its value (α′s) is such that cost and frequency are appropriately
balanced.

Simulated Evolution (SimE)

The simulated evolution algorithm (SimE) is a general search strategy for solving a variety of combina-
torial optimization problems. The first paper describing SimE appeared in 1987 [25]. Other papers by
the same authors followed [26–28]. 

SimE assumes that there exists a population P of a set M of n (movable) elements. In addition, there
is a cost function Cost that is used to associate with each assignment of movable element m a cost Cm.

ε H,S∗( )
Cost S( ) Cost S( ) Cost S( )≤

Cost S∗( ) α Freq i,j( )×+ Cost S∗( ) Cost S( )>



=
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The cost Cm is used to compute the goodness (fitness) gm of element m, for each m ∈ M. Furthermore,
Usually additional constraints must be satisfied by the population as a whole or by particular elements.
A general outline of the SimE algorithm is given in Fig. 39.80. 

SimE algorithm proceeds as follows. Initially, a population1 is created at random from all populations
satisfying the environmental constraints of the problem. The algorithm has one main loop consisting of
three basic steps, Evaluation, Selection, and Allocation. The three steps are executed in sequence until the
population average goodness reaches a maximum value, or no noticeable improvement to the population
goodness is observed after a number of iterations. Another possible stopping criterion could be to run
the algorithm for a prefixed number of iterations (see Fig. 39.80). Some details of the steps of the SimE
algorithm are presented in the next subsection.

Evaluation 

The Evaluation step consists of evaluating the goodness of each individual i of the population P. The
goodness measure must be a single number expressible in the range [0,1]. Goodness is defined as follows:

(39.1)

where Oi is an estimate of the optimal cost of individual i, and Ci is the actual cost of i in its current
location. Equation (39.1) assumes a minimization problem (maximization of goodness). Notice that,
according to the previous definition, the Oi’s do not change from generation to generation, and, therefore,
are computed only once during the initialization step. Hence, only the Ci’s have to be recomputed at
each call to the Evaluation function. Empirical evidence [29] shows that the accuracy of the estimation
of Oi is not very crucial to the successful application of SimE; however, the goodness measure must be
strongly related to the target objective of the given problem.

FIGURE 39.80 Simulated evolution algorithm.

1 In SimE terminology, a population refers to a single solution. Individuals of the population are components of
the solution; they are the movable elements.
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Selection 

The second step of the SimE algorithm is Selection. Selection takes as input the population P together
with the estimated goodness of each individual and partitions P into two disjoint sets, a selection set Ps

and a set Pr of the remaining members of the population (see Fig. 39.81). Each member of the population
is considered separately from all other individuals. The decision whether to assign individual i to the set
Ps or set Pr is based solely on its goodness gi. The operator uses a selection function Selection, which takes
as input gi and a parameter B, which is a selection bias. Values of B are recommended to be in the range
[−0.2, 0.2]. In many cases a value of B = 0 would be a reasonable choice.

The Selection function returns true or false. The higher the goodness value of the element, the higher
is its chance of staying in its current location, i.e., unaltered in the next generation. On the other hand,
the lower the goodness value, the more likely the corresponding element will be selected for alteration
(mutation) in the next generation (will be assigned to the selection set Ps). An individual with a high
fitness (goodness close to one) still has a nonzero probability of being assigned to the selected set Ps. It is
this element of nondeterminism that gives SimE the capability of escaping local minima. 

For most problems, it is always beneficial to alter the elements of the population according to a
deterministic order that is correlated with the objective function being optimized. Hence, in SimE, prior
to the Allocation step, the elements in the selection set Ps are sorted. The sorting criterion is problem
specific. Usually there are several criteria to choose from [8].

Allocation 

Allocation is the SimE operator that has most impact on the quality of solution. Allocation takes as input
the two sets Ps and Pr and generates a new population P ′ that contains all the members of the previous
population P, with the elements of Ps mutated according to an Allocation function (see Fig. 39.82).

The choice of a suitable Allocation function is problem specific. The decision of the Allocation strategy
usually requires more ingenuity on the part of the designer than the Selection scheme. The Allocation
function may be a nondeterministic function, which involves a choice among a number of possible
mutations (moves) for each element of Ps. Usually, a number of trial-mutations are performed and rated
with respect to their goodnesses. Based on the resulting goodnesses, a final configuration of the population
P ′ is decided. The goal of Allocation is to favor improvements over the previous generation, without
being too greedy.

The Allocation operation is a complex form of genetic mutation that is one of the genetic operations
thought to be responsible for the evolution of the various species in biological environments; however, there

FIGURE 39.81 Selection.

FIGURE 39.82 Allocation.
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is no need for a crossover operation as in GA since only one parent is maintained in all generations;
however, because mutation is the only mechanism used by SimE for inheritance and evolution, it must
be more sophisticated than the one used in GA.

Allocation alters (mutates) all the elements in the selected set Ps one after the other in a predetermined
order. For each individual ei of the selected set Ps, W distinct trial alterations are attempted. The trial
that leads to the best configuration (population) with respect to the objective being optimized is accepted
and made permanent. The goodness of each individual element is also tightly coupled with the target
objective, so the superior alterations are supposed to gradually improve the individual goodnesses as well.
Hence, Allocation allows the search to progressively evolve toward an optimal configuration where each
individual is optimally located.

Initialization Phase 

This step precedes the iterative phase. In this step, the various parameters of the algorithm are set to
their desired values, namely, the maximum number of iterations required to run the main loop, the
selection bias B, and the number of trial alterations W per individual. Furthermore, similar to any iterative
algorithm, SimE requires that an initial solution be given. The convergence aspects of SimE are not
affected by the quality of the initial solution; however, starting from a randomly generated solution usually
increases the number of iterations required to converge to a near-optimal solution.

Convergence Aspects

One of the desirable properties that a stochastic iterative algorithm should possess is the convergence
property, i.e., the guarantee of converging to one of the global optima if given enough time. The
convergence aspects of the simulated annealing algorithm have been the subject of extensive studies. For
a thorough discussion of simulated annealing convergence we refer the reader to [6,7,30].

For convergence properties of the GA heuristic based on Markovian analysis, the reader is referred to
[31–37]. Fogel [38] provides a concise treatment of the main GA convergence results.

The tabu search algorithm as described in this article is known as ordinary or deterministic tabu search.
Because of its deterministic nature, ordinary tabu search may never converge to a global optimum state.
The incorporation of a nondeterministic element within tabu search allows the algorithm to lend itself
to mathematical analysis similar to that developed for simulated annealing, making it possible to establish
corresponding convergence properties. Tabu search with nondeterministic elements is called probabilistic
tabu search [11,39]. Probabilistic tabu search has been shown to converge in the limit to a global optimum
state. The proof is analogous to that of SA. 

Proof of convergence of SimE can be found in [28,40]. For complete convergence analysis, the reader
may refer to [8].

Parallelization/Acceleration

Due to their iterative and blind nature, the heuristics discussed in this chapter section require large
runtime, especially on large problems, and CPU-intensive cost functions. Substantial amount of work has
been done to parallelize or design accelerators to run these time consuming heuristics. With respect to
simulated annealing, which is inherently sequential, some ingenuity is required on the part of the designer
to cleverly parallelize the annealing process. Several parallel implementations of SA have been reported
in [6,41–47]. Hardware acceleration that consists of implementing time consuming parts in hardware is
described in [48]. Parallel acceleration, where execution of the algorithm is partitioned on several con-
currently running processors, is reported in [49–51]. Other approaches that have been applied to paral-
lelize SA are found in [6,49,52,53]. The parallel accelerations follow two general strategies: (1) move
acceleration, also called single-trial parallelism, and (2) parallel moves or multiple-trial parallelism.

The GA is highly parallel. The reported GA parallelization strategies fall into three general categories:
the island model [54,55], the stepping stone model [56–59], and the neighborhood model, also called the
cellular model [60,61].
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Work on parallelization of the tabu search heuristic can be found in [8,62–66]. The heuristic has also
been parallelized and executed on a network of workstations using PVM [67]. Techniques to accelerate
the execution of SimE by implementing it on vector-processors [29] or on a network of workstations
[68] are described in [8].

Applications

The first applications of SA were on placement [2]. Furthermore, the largest number of applications of
SA was on digital design automation problems [5]. A popular package that uses SA for VLSI standard-
cell placement and routing is the TimberWolf3.2 package [46]. In addition to placement, SA has been
applied successfully to several other problems. These include classical problems such as the TSP [2],
graph partitioning, matching problem, Steiner problems [69], linear arrangement [1], clustering prob-
lem [70], quadratic assignment [71], various scheduling problems [72,73], graph coloring [74], etc. In
the area of engineering SA has been applied extensively to solve various hard VLSI physical design
automation problems [5]. In addition, it has been applied with success in other areas such as topology
design of computer networks [75], image processing [76], test pattern generation, code design, etc. A
comprehensive list of bibliography of some of the above applications and some details of their imple-
mentation such as cost function formulation, move set design, parameters, etc., is available in [6,8,77–79].

In addition to their application to classical optimization problems such as the knapsack problem [80],
TSP [81,82], Steiner tree problem [83], set covering problem [84], N-queens problem [85], clustering
problem [86], graph partitioning [87], etc., GAs have also been applied to several engineering problems.
Some examples of these applications include job shop and multiprocessor scheduling [81,88,89], discov-
ery of maximal distance codes for data communications [90], bin-packing [91], design of telecommu-
nication (mesh) networks [92], test sequence generation for digital system testing [93], VLSI design (cell
placement [5,94–96], floorplanning [97], routing [98]), pattern matching [99], technology mapping
[100], PCB assembly planning [101], and high-level synthesis of digital systems [102,103]. The books by
Goldberg (1989) [10], Davis (1991) [104], recent conference proceedings on evolutionary computation,
and on applications of genetic algorithms discuss in detail the various applications of GAs in science and
engineering. These range from optimization of pipeline systems and medical imaging to applications
such as robot trajectory generation and parametric design of aircraft [10,104]. 

TS has also been applied to solve combinatorial optimization problems appearing in various fields of
science, engineering, and business. Results reported indicate superior performance to other previous
techniques. Examples of some hard problems to which tabu search has been applied with success include
graph partitioning [105], clustering [106], TSP [107], maximum independent set problem [108], graph
coloring [109,110], maximum clique problem [111], and quadratic assignment problem [62,112] to name
a few. In the area of engineering, tabu search has been applied to machine sequencing [113], scheduling
[22,114–118], fuzzy clustering [119], multiprocessor scheduling [120], vehicle routing [121–123], general
fixed charge problem [17], bin-packing [124], bandwidth packing [24], VLSI placement [125], circuit
partitioning [126], global routing [127], high-level synthesis of digital systems [128,129], etc. A good
summary of most recent applications of tabu search can be found in [8,18,130].

The SimE algorithm has also been used to solve a wide range of combinatorial optimization problems.
Kling and Banerjee published their results with respect to SimE in design automation conferences [25,27]
and journals [26,28]. This explains the fact that most published work on SimE has been originated by
researchers in the area of design automation of VLSI circuits [40,131–134]. The first problem on which
SimE was first applied is standard cell placement [25,28]. A number of papers describe SimE-based
heuristics as applied to the routing of VLSI circuits [131,135–140]. SimE was also successfully applied in
high-level synthesis [141–143]. Other reported SimE applications are in micro-code compaction [144],
automatic synthesis of gate matrix [134], and the synthesis of cellular architecture field programmable
gate arrays (FPGAs) [145].
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Conclusion

This chapter section has introduced the reader to four effective heuristics that belong to the class of general
approximation iterative algorithms, namely SA, GA, tabu search, and SimE. From the immense literature
that is available it is evident that for a large variety of applications, in certain settings, these heuristics
produce excellent results. All five algorithms are general iterative metaheuristics. A value of the objective
function is used to compare results of consecutive iterations and a solution is selected based on its value. 

All algorithms incorporate domain specific knowledge to dictate the search strategy. They also tolerate
some element of nondeterminism that helps the search escape out of local minima. They all rely on
the use of a suitable cost function, which provides feedback to the algorithm as the search progresses. The
principle difference among these heuristics is how and where domain specific knowledge is used. For
example, in SA such knowledge is mainly included in the cost function. Elements involved in a perturbation
are selected randomly, and perturbations are accepted or rejected according to the Metropolis criterion,
which is a function of the cost. The cooling schedule has also a major impact on the algorithm performance
and must be carefully crafted to the problem domain as well as the particular problem instance.

For the two evolutionary algorithms discussed in the chapter, GA and SimE, domain specific
knowledge is exploited in all phases. In the case of GA, the fitness of individual solutions incorporates
domain specific knowledge. Selection for reproduction, the genetic operations, as well as generation
of the new population also incorporate a great deal of heuristic knowledge about the problem domain.
In SimE, each individual element of a solution is characterized by a goodness measure that is highly
correlated with the objective function. The perturbation step (selection followed by allocation) affects
mostly low goodness elements. Therefore, domain specific knowledge is included in every step of the
SimE algorithm. 

Tabu search is different from the above heuristics in that it has an explicit memory component. At
each iteration the neighborhood of the current solution is partially explored, and a move is made to the
best nontabu solution in that neighborhood. The neighborhood function as well as tabu list size and
content are problem specific. The direction of the search is also influenced by the memory structures
(whether intensification or diversification is used). 

A classification of meta-heuristics proposed by Glover and Laguna [130] is based on three basic
features: (1) the use of adaptive memory, where the letter A is used if the meta-heuristic employs adaptive
memory, and the letter M is used if it is memoryless; (2) the kind of neighborhood exploration, where
the letter N is used if the meta-heuristic performs a systematic neighborhood search, and the letter S is
used if stochastic sampling is followed; and (3) the number of current solutions carried from one iteration
to the next, where the digit 1 is used if the meta-heuristic maintains a single solution, and the letter P
is used if a parallel search is performed with a population of solutions of cardinality P. For example,
according to this classification, GA is M/S/P, tabu search is A/N/1, SA is M/S/1, and SimE is also M/S/1.

It is also possible to make hybrids of these algorithms. The basic idea of hybridization is to enhance
the strengths and compensate for the weaknesses of two or more complementary approaches. For the
details about the hybridization the readers are referred to [8]. 

In this chapter section, it has not been the authors’ intention to demonstrate the superiority of one
algorithm over the other. Actually it would be unwise to rank such algorithms. Each one of them has its
own merits. Recently, an interesting theoretical study has been reported by Wolpert and Macready in
which they proved a number of theorems stating that the average performance of any pair of iterative
(deterministic or nondeterministic) algorithms across all problems is identical. That is, if an algorithm
performs well on a certain class of problems then it necessarily pays for that with degraded performance
on the remaining set of problems [146]; however, it should be noted that the reported theorems assume
that the algorithms do not include domain specific knowledge of the problems being solved. Obviously,
it would be expected that a well-engineered algorithm would exhibit superior performance to that of a
poorly engineered one.
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40.1 Introduction

Computing Models for Internet-Based Architectures

The increasingly competitive global marketplace puts pressure on companies to create and deliver their
products faster, with high quality and greater performance. To get the new products and technologies to
consumers is through a new industry called application service providers (ASPs). Similar to Internet
service providers, that linked businesses and consumers up to the Internet, ASPs lease software applica-
tions to businesses and consumers via the Internet. These applications range from word processing
programs to payroll management software, document management systems, and many others. The major
challenge is to develop an efficient Internet-based architecture, which will efficiently provide access to
these software applications over the Internet.

Application architectures have traditionally followed software development architectures. The software
development architectures can be classified into:

• traditional desktop computing model,

• client-server computing model,

• network computing model,

• server-based computing model.

Traditional desktop computing model assumes that the whole application is on the client and the
application is executed locally. The client must be a “fat” client.

Client-server computing model assumes that clients are powerful and processing is centered around
local execution on clients. Computer resources were split between a server and one or several clients.
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This architecture allowed for larger, more scalable, applications to be brought to a larger number of
clients; however, the key for this architecture was to successfully partition the complexity of overall
application and determine correctly which part should reside on the server and which part should run
on the client. As more and more functionality migrated to the client, it became harder for applications
to be maintained and updated.

Network computing model, supported by Sun, Oracle, Netscape, IBM, and Apple, assumes that software
applications are dynamically downloaded from the network into the client for execution by the client.
This architecture requires that the clients are fat.

Server-based computing model, supported by Citrix, assumes that business applications reside on the
servers and can be accessed by users without requiring them to be downloaded to the client. The client
can be either “thin” or “fat.” 

Server-Based Computing Model

The fundamental three elements of the server-based (or host-based) computing model are [1]:

• multi-user operating system,

• efficient computing technology,

• centralized application and client management.

Multi-user operating system allows multiple concurrent users to run applications in separate, protected
sessions on a single server.

Efficient computing technology separates the application from its user interface, so only simple user’s
commands, received through keystrokes, mouse clicks, and screen updates, are sent via the network. As
a result, application performance does not depend on network bandwidth. 

Centralized application and client management allows efficient solution of application management,
access, performance, and security.

A server-based computing model is very efficient for enterprise-wide application deployment, includ-
ing cross-platform computing, Web computing, remote computing, thin-client device computing, and
branch-office computing, as illustrated in Fig. 40.1 [1].

FIGURE 40.1 Server-based computing models can be used for enterprise-wide application deployment.
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40.2 Evolution of Internet-Based Application 
Service Architectures

Similar to software development architectures, applications service architectures have emerged from the
traditional client-server architectures to three-tier and multitier architectures.

The first generation of Internet-based application service architecture was based on delivery of
information via public Web sites. This technology, sometimes referred to as the “first wave” Internet
[2] employs the Web to present the information to the user and then allows the user to give some
relevant information back. The primary focus of this architectural model is mass distribution of public
information over the Internet. This architecture, which focuses on accessing information, consists of
three levels (or three tiers)—presentation level, content level, and data and service level, as shown in
Fig. 40.2 [2]. 

At the presentation level, there is the client system, which is used to view Web page information.
The client contains both presentation and application logic components. At the content level, there is
a Web server that provides interactive view of information from a relational database. Finally, at the
data and service level, there is a relational database system, which provides data for the Web server.
This architecture is also called three-tier architecture consisting of client tier, Web server tier, and
database tier.

With the advancements of the Internet, the Web, and related technologies (such as Java and HTML),
as well as acceptance of standard communication protocols (such as TCP/IP and HTTP), a new archi-
tecture has emerged. In this architecture, sometimes referred as to the “second wave” Internet [2] or
network-based application architecture [3], focus is on highly targeted, private distribution of software
services over Intranets and Extranets. In this architecture, the Web page is not only the agent for
providing information but also offers a variety of application services to speed up business transactions
and offer additional services. This architecture consists of n-tiers and offers maximum functionality
and flexibility in a heterogeneous Web-based environment. An example of four-tier architecture is shown
in Fig. 40.3. 

At the presentation level, the client views Web pages for information as well as for a variety of
application services. At the second, content level, the Web server provides an interactive view of infor-
mation and supports client-initiated transactions. At the third, application level, there is an application
server, which is used to find requested data and services, makes them available for viewing, and carries
out transactions. At the fourth, data and service level, there is a variety of data and services accessible by
the application server. This architecture, also called multitier architecture, consists of client tier, Web
server tier, application server tier, and database tier.

Two-tier Internet architecture is typically limited for systems with a small number of users, a single
database, and nonsecure network environments. 

FIGURE 40.2 The three-tier architecture for application service providers (ASPs) is focused on accessing information.
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40.3 Application Server

In the second generation of Internet architectures, the focus has shifted to access to business services
rather than to information only. The main component of the system is an application server, which
searches for services and data—this is done in the background without involving the user. 

The main challenges in developing the first generation of Internet architectures and application services
were related to user interfaces and cross-platform interoperability. In developing the second generation
of Internet architectures, the main challenge for service developers is to deliver their services seamlessly
via the Internet, which in turn requires innovations in many areas. The following challenges need to be
addressed in developing the second generation of Internet architectures:

• Standards. Many standards are used for developing Web pages, which causes difficulties for
developers.

• Increased programming complexity. The implementation of business services on the Internet is
a very complex programming task.

• Network performance. Business applications over Intranets and Extranets require very reliable
and high-performance networks.

• Security. Business applications on the Internet require a very high level of security.

• Web access to legacy applications. As mentioned earlier, the new Internet architectures are focused
on accessing various business applications rather than just information.

• Database connection support across Web-based requestors. Users should be able to access a
variety of databases connected to the application server.

The majority of these functions, sometimes called middleware, are implemented in application servers
that provide support for developing and deploying business applications located on the server or parti-
tioned across client and server.

Application server offers support for developing and deploying business logic that may be located on
the server or, more often, partitioned across client and server. Running business applications on the
server provides many benefits [4].

Key Technologies for Application Servers

Key technologies for developing contemporary application servers include:

• Java programming language and environment,

FIGURE 40.3 The multitier Internet-based architecture for ASPs is focused on accessing application services.
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• JavaBeans—the Java-based component technology, which allows the development of new appli-
cations more rapidly and economically,

• ActiveX—the competing technology to JavaBeans, which is Windows platform-dependent and
language-independent,

• Java Database Connectivity (JDBC)—the Java SQL that provides cross-platform database access
for Java programs,

• Java servlets—small Java routines that service HTTP requests and dynamically generate HTML, and

• Common object request broker architecture (CORBA)—provides a standard architecture for dis-
tributed computing and interoperability on the Internet.

Java application servers have recently emerged as an efficient solution, with many features, for the appli-
cation server tier. A Java application server:

• Makes it easy to develop and deploy distributed Java applications.

• Provides scalability, so hundreds to thousands of cooperative servers can be accessed from ten of
thousands clients. Therefore, Java must be fully multithreaded and have no architectural bottle-
necks that prevent scaling.

• Provides an integrated management environment for comprehensive view of application resources
(e.g., Java Beans, objects, events, etc.), network resources (databases), system resources (ACLs,
threads, sockets, etc.), and diagnostic information.

• Provides transaction semantics to protect the integrity of corporate data even as it is accessed by
distributed business components.

• Provides secure communications.

CORBA and JavaBeans are open standards for component software development and deployment that
allow writing small code objects that can be reused in multiple applications and updated quickly. They
also allow developers to expose legacy system data and functionality as services available over the Web, and
therefore most application servers are based on these technologies.

For example, the CORBA architecture makes it possible to find and use services over the Internet.
Similarly, Enterprise JavaBeans is a standard server component model for Java application servers that
provides services to network-enable applications, so that they may be easily deployed on Intranets,
Extranets, and the Internet [5].

CORBA provides universal connectivity in broadly distributed environments as well as cross-platform
interoperation of both infrastructures and applications. The object Web model based on CORBA and
other standards is shown in Fig. 40.4 [7].

FIGURE 40.4 The object Web model based on CORBA and other standards provides universal connectivity in
distributed environments.
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CORBA currently provides many services including naming, security, transactions, and persistence,
as illustrated in Fig. 40.5 [7]. 

40.4 Implementations of Internet Architectures 

In this section, four popular Internet architectures developed by Sun, Netscape, IBM, and Microsoft are
presented.

Sun’s Architecture

Initially, Sun Microsystems defined, in Fall 1996, Java-based application development architecture, which
consisted of three tiers: the client tier that provided user interface, the middle tier for business logic and
database access, and the database tier, as illustrated in Fig. 40.6 [8].

Sun selected Java language for the client tier, which provided more sophisticated GUI capabilities than
HTML implementation. Client applets did not perform significant business logic functions in order to
keep clients as thin as possible. Java technology was also used for the middle tier and the middle tier
servers were implemented as standalone Java applications.

Because both client and middle tiers are implemented using Java, client middle tier communication
was performed using remote method invocation (RMI), where the middle tier servers created the nec-
essary RMI objects and made them available to clients via the RMI object registry. The middle tier
communicated with the database via the JDBC API. This architecture is based on client-server computing
model, in which client resides on the user’s desktop, and the middle and database tiers reside on one or
more of five data centers around the company. 

Recently, Sun has developed an enhanced multitier architecture, which includes an additional tier—
the WebTop server tier, as shown in Fig. 40.7 [8].

In the three-tier architecture (Fig. 40.6), applets were dynamically downloaded at runtime to the users’
locations from an application server. For remote locations and modem connections with constrained
bandwidth, applet download time was a few minutes, which was unacceptable. 

Another issue related to three-tier architecture was the access to network resources such as files and
printers. Java prohibits applets from accessing any local or network resources. In addition, Java does not
allow communications with any machine other than the one from which the applet was downloaded. As
a result of these limitations, file access occurred at the middle tier. This meant that information might
be sent from the client to the middle tier and then back to a file server near the client.

Introducing a new tier, WebTop server tier, has resolved the issues related to the three-tier architecture.
The WebTop server runs the Java Web server and is located near the users it serves. This server is used
as a cache for applets and static application data, so the first problem was resolved. The server also
supports services that access network resources such as user files and printers, which are typically located
near the users. Finally, the WebTop server is used to find the services that users need.

FIGURE 40.5 CORBA provides a standard for interoperability that includes many services required by object
applications.
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In the architecture in Fig. 40.7 the client is thin and typically includes a graphical user interface written
as an applet that runs from a Web browser. The application server tier provides access to data and
implements business logic and data validation. The application server is responsible for all database
transaction handling.

For the communication between the client and WebTop server tier and between the WebTop server
and the application server tier, HTTP and RMI are used. Communication between application servers
and databases is performed via JDBC.

One of the main benefits of the multitier architecture is that it increases application scalability and
performance by enabling clients to be connected concurrently. In a client-server model clients are directly
connected to databases, while in a multitier architecture only application servers connect directly to
databases. In this way, the application server can process multiple requests from many clients through a
pool of preallocated database connections, thus reducing the database server load. Load on the application
server tier can be balanced by using multiple application servers.

Another benefit of the multitier architecture is that it supports thinner clients, because most of the
logic runs in the application server and database tiers. Thus, broad range of client platforms can run the
applications.

Netscape’s Architecture

Similar to Sun’s architecture, Netscape recently developed multitier architecture for application develop-
ment and distributed computing, which is based on the separation of presentation logic from application
logic, as illustrated in Fig. 40.8 [2].

In Netscape’s multitier architecture, the client tier is typically based on an open-standard browser such
as Netscape Navigator. The presentation logic and GUI is built using HTML pages that include Java
applets. At the content level, a Web server primarily uses HTTP. It provides base-level information and
content services as well as simple database information access via Java, JavaScript, and other high-level
CGI scripting languages such as Perl.

FIGURE 40.6 Sun’s Java-based three-tier architecture for ASP.

FIGURE 40.7 Sun’s Java-based multitier architecture for ASP.
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The application server uses CORBA and JavaBeans components or objects. Transaction services enable
access to relational databases and other legacy systems. 

The first three levels in the multitier architecture in Fig. 40.8 are provided by Netscape technologies
and products, while the last levels—back-end services and other legacy systems—are accessed through
standard Internet interfaces.

IBM’s Architecture

IBM has developed the Component Broker, which is Internet middleware for distributed objects [7].
Component Broker is a software system that allows developers to build, run, and manage Web-enabled
business objects, components, and applications. Component Broker consists of:

• tools for building distributed and business objects, and applications,

• a runtime that provides a distributed-object infrastructure on the middle tier, and

• a system management functions for the distributed object runtime and its resources.

Component Broker architecture, shown in Fig. 40.9, accepts inputs from any clients (Java or C++)
transported via Internet InterORB Protocol, and ActiveX transported via a bridge. The object server
consists of components that provide control, services, context, and connection resources. 

The Component Broker receives client requests through the CORBA-compliant object request broker
(ORB). Object services are supplied through the CORBA common object services (COS). These services
provide object transaction services, database services, system services, and object management functions,
as illustrated in Fig. 40.9.

Application adapters connect Component Broker object applications with existing software systems
and applications. 

Microsoft’s Architecture

Microsoft Internet architecture is a component-based architecture based on Windows DNA [14]. The
heart of Windows DNA is the component object model (COM) that allows developers to build applica-
tions from binary software components at any tier of the application architecture. These components

FIGURE 40.8 Netscape’s multitier architecture for ASP.
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provide support for packaging, partitioning, and distributing application functionality [14]. Distributed
COM (DCOM) enables communications between COM components that reside on different machines.
DCOM is a competing model for distributed object computing to CORBA, described in section 40.3.

40.5 A Contemporary Architecture for Application 
Service Providers

In this section, ASP computing architecture using server-based computing model and the related ASP
application architecture is presented.

ASP Computing Architecture

Our computing architecture for application service providers is based on the server-based computing
model, described in the subsection on “Computing Models for Internet-Based Architectures.” As we
indicated earlier, in server-based computing all applications and data are managed, supported, and
executed on the server. This architecture provides the following benefits:

• Single-point management

• Predictable ownership costs

• High reliability

• Bandwidth-independent performance

• Universal application access

• Use of thousands of off-the-shelf applications

• Low-cost and fast application development

• Use of open standards

• Graphical and rich user interface

• Wide choice of client devices

The proposed server-based architecture uses two technologies developed by Citrix:

• Independent computing architecture (ICA)

• Windows-based terminal (WBT)

Independent computing architecture is a Windows presentation services protocol that turns any client
device (thin or fat) into the thin client. The ICA consists of three components: server software, client
software, and network protocol. 

FIGURE 40.9 Architecture of IBM’s Component Broker at the middleware tier.
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On the server, ICA separates applications from the user interface, while on the client users see and
work with applications’ interface. The application logic executes on the server. The ICA protocol trans-
ports keystrokes, mouse clicks, and screen updates over standard protocols requiring less than 20 kbps
of network bandwidth.

A Windows-based terminal is a thin-client hardware device that connects to Citrix server-based system
software. The WBT does not require downloading of the operating system or applications and there is
no local processing of applications at the client, as in the case of other thin clients such as network
computers or NetPCs. A WBT has the following features:

• An embedded operating system such as DOS, Windows CE, or any real-time operating system

• ICA protocol to transport keystrokes, mouse clicks, and screen updates between the client and the
server

• Absolute (100%) execution of application logic on the server

• No local execution of application at the client device

The proposed architecture also allows consumers and business to access software applications from their
Internet browsers. This is provided using Citrix’s software Charlotte. In addition, software component
Vertigo allows more interactive applications on the Web. This software allows customized Web pages such
as electronic trading accounts to be updated automatically without hitting the refresh button on the
computer.

The proposed architecture for ASP using server-based model and Citrix technologies is shown in
Fig. 40.10.

The proposed architecture is platform independent and allows non-Windows and specialized ICA
devises to run Windows applications residing and executing on application server farm. Application
server farm is a group of application servers that are linked together as a single system to provide
centralized administration and scalability.

The architecture in Fig. 40.10 allows ASPs to rapidly develop and deploy applications across complex
computing environments. It also provides application access to all users, regardless of the their location,
type of client device, or form of network connectivity. The architecture can be applied to any type of
client hardware, and therefore requires no change in client hardware. The system significantly reduces
requirements for network bandwidth compared to other architectures. Finally, the proposed architecture
reduces the total cost of application, as analyzed in section 40.6.

FIGURE 40.10 The proposed architecture for ASP uses server-based model. All applications are executed at the
server or cluster of servers.
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ASP Application Architecture

To take maximum advantage of ASP computing architecture, a new breed of applications needs to be
developed. The key drivers of new distributed application architecture is a need for wide spectrum of
thin clients, bandwidth usage optimization, application multi-identity shared back-end computing, reli-
able data flow management, security, legacy application integration, and long list of service operation
requirements.  The diagram shown in Fig. 40.11 can depict a desired architecture of an ASP application.

Client Software

ASP application client software is in general very different from types of client software provided as part
of traditional client-server applications available on the market today. To support ASP business model,
client software must be “thin,” i.e., requiring minimum computing power, installation and support effort,
minimum communication bandwidth, and minimum version upgrade. Highly distributed nature of ASP
service requires from client software ability to support versatile data inputs, highest level of user’s security,
and ability to support multiple communication protocols.

Data Input
ASP service architecture is in essence remote computing architecture, which requires capabilities to
generate and import application data into the remote application. Data can be generated as part of
specialized batch program or as by-product of third party software. Data input clients can be stand alone
or integrated within other clients or legacy applications. Multistep data flow requires advanced informa-
tion security, tracking, reporting, and above all ability to restore data in case that any stage system failure
results in data loss. Data input clients may or may not be thin. The footprints of these clients are primarily
defined by local functionality necessary to create the data at optimum cost.

Application Access
Application access clients are characterized by limited local computation capability and remote command
capability to the server side application concentrated at service back end. These clients are the ones that
should be as generic and as thin as possible. The smaller and simpler the client, the lesser the operational

FIGURE 40.11 Architecture of an ASP application.
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cost at the front end. The ideal application access client is plain Web browser. However, browser access is
limited to very low level of functionality provided by HTML protocol. Function rich application computing
requires specialized client software or plug-ins providing access to remote application at the back end. 

Toolbox
To bridge the existing legacy applications with ASP service, an ASP application software requires a
comprehensive set of APIs or application enabling tools providing the system integration capabilities and
customizations.

Administration
This client should provide the end user with the ability to completely control its own application. Desired
functions are: adding new users, setting up security profiles, managing application specific variables,
usage tracking and reporting, and billing presentments and reporting.

Security
Client software security capability must include ability to authenticate users on the front end and to
create virtual private channel of communication with the service back end.

Service Layer

Server side application is characterized by concentration of all computing and data intensive processes
at back end, application multi-identity, sophisticated data flow management, and by its ability to integrate
with business management, application support, and service production components. The ultimate goal
of such application engineering is to create the fastest computing environment, economy of scale through
all customers’ sharing of common computing and data management infrastructure, and maximum oper-
ational readiness.

Application Layer
At the core of service layer is the application layer of software providing actual computing application
packaged as specific service, for example: Service #1. This service application can be either stand alone
application or user interface into integrated solution based on several other independent third-party
applications.

Data Flow Management
Data generated through data input clients is managed by data flow management software. One can
consider this software component as a data switch capable of accepting data input, decompressing and
decoding data, identifying the owner of data and target data base, importing data in the target data base,
cashing and mirroring data at each stage for disaster readiness reasons, and creating logs for data input
tracking and reporting.

Application State and Identity Management
An ASP provider will have many different applications for many different customers simultaneously.
Also, each individual application will have many different users requiring different application setup and
profile. Application state and identity management software acts as an application switch identifying
individual users and applications and then assigning the appropriate user’s profile. Therefore, ASP appli-
cations must support multiple identity capability. Ability to share the same computing and data man-
agement resources between many different users and applications is essential for reliable service delivery
and economy of scale.

Business Management
The ASP application should also integrate into business management software enabling automatic account
creation and usage data feed into billing solution.

Application Support
The ASP application should also integrate with application support solution that consists from customer
self support site.
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40.6 Evaluation of Various Architectures

Analysts and IT professionals have developed numerous models for estimating the total cost of IT services,
sometimes called “total cost of ownership (TCO).” In the past, these models had the hardware-centric
view because they analyzed the costs of owning and maintaining desktop computer hardware. In the age
of the Internet, Web-based computing, and E-commerce, applications must be accessible across a wide
variety of connectivity options, from low-speed, dial-up connections to wireless, WAN, and Internet
connections. A contemporary cost analysis should consider the total cost of application ownership (TCA),
rather than the total cost associated with specific computing devices. The Tolly Group has developed a
model for comparing the TCA of different computing models, discussed earlier [9]. We present and
discuss their results in this section.

In order to determine the cost of application deployment, four computing models introduced in
section 40.1 can be analyzed from the following points of views:

• physical location of the application,

• execution location of the application,

• physical location of data,

• location of the user and means of connectivity.

The cost of complexity of deploying and managing an application strongly depends on physical location
of the application. The cost of application distribution, installation, and managing of updates must be
considered.

The choice of where an application is executed determines the hardware, network, and connectivity
costs. An application can run on the server, on the client, or in a distributed server-client environment.
In some cases, the application must be downloaded from a server to a client, which has an impact on
performance and productivity.

The location of stored data determines the speed at which information is available. It also has an
impact on the cost related to protecting and backing up critical corporate data.

The location of the user and the means of connectivity also have an impact on the cost and complexity
of deploying an application.

Table 40.1 summarizes the application deployment characteristics for four computing models intro-
duced in section 40.1 [9].

Tolly Group has analyzed and calculated the total cost of application ownership for a medium-size
enterprise of 2500 users, with 175 mobile users working on the road. The calculated costs were divided
into (a) Initial (first-year) cost (which includes hardware, software, network infrastructure, and user
training) and (b) annual recurring costs (which includes technical support and application maintenance).
The results of analysis are presented in Fig. 40.12.

Traditional desktop computing approach requires relatively high initial cost for hardware, software,
network infrastructure, and training ($14,000) as well as very high annual recurring costs for technical
support and application maintenance ($11,000 annually).

TABLE 40.1 Computing Models and Application Deployment Characteristics

Application 
Location

Application 
Execution Data Location User Access

Network 
Requirements

Traditional 
desktop

Client Client Client Local None

Client-server Client and server Client and server Client and server Lan, WAN, 
Internet

High bandwidth

Network-based Server Client and server Server or client LAN, WAN, 
Internet

High bandwidth

Server-based Server Server Server LAN, WAN, 
Internet

Low bandwidth
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Client-server and network computing approaches require slightly higher initial investment ($16,000)
in order to replace existing client hardware; however, annual recurring costs are reduced ($9,500). This
model becomes less expensive than the traditional desktop model from the third year forward.

The server-based approach gives the best TCA both in terms of initial costs and annual recurring costs
($6,000 and $2,600, respectively). The reason for it is that this model allows any type of client to access
any application across any type of connection. This model also provides single point for the deployment
and management of applications.

In summary, the server-based model, which was applied in our architecture, is the most efficient and
cost-effective solution to application deployment and management.

40.7 Conclusions

This chapter presented and evaluated contemporary multitier Internet architectures, which are well suited
for distributed applications on the Internet including ASPs. The chapter also evaluated several computing
models for Internet-based architectures and proposed a server-based computing model, which has a
number of advantages over the other models.
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41.1 Introduction

The history of home entertainment consumer electronics begins in May 7, 1946, with the founding of
Tokyo Tsushin Kogyou (Tokyo Telecommunication Engineering ) by Masaru Ibuka (36) and Akio Morita
(25) in Tokyo, Japan. Had these two bright young men not met and combined their considerable resolve
and talents, the home electronics business would not have accelerated so much as we see it today, and
our semiconductor business efforts would have been aimed only for military purposes for a while. 

In the Founding Prospectus, Ibuka eloquently stated his dreams for the company. Morita, together
with the company’s first directors headed by Kazuo Iwama, led employees to realize these goals. Through-
out their work, the young force was inspired by the free and dynamic atmosphere of the “ideal” factory
they were striving to create. From the onset, Ibuka, Morita, and Iwama endeavoured to develop unique
and exciting products that fulfil their customers’ dream.

Iwama was 35 when he visited Western Electric to study transistors in January 1954. Iwama was the
first engineer in Japan who understood the concept of “electron fog” in the bipolar transistor device
physics.

He worked as the leader of the bipolar transistor development project to realize the epoch-making
portable bipolar transistor radio TR-55 introduced to the home entertainment electronics market in
August 1955.

Seven years had passed since the invention of the bipolar transistor in Bell Lab in December 1947.
I was only seven years old and had no idea about how a transistor works at that time. 

I was a junior undergraduate at CalTech in Pasadena, California, in 1969 when I learned how the
bipolar transistor and MOSFET work with the classical textbook by Grove. My class instructor was Prof.
James McCaldin who was known as the co-inventor of basic planar passivation technology in modern
MOS transistor fabrications. 

In the summer of 1971, I visited Sony Atsugi plant right after I received a B.S. from CalTech and
worked as a reliability engineer in Bipolar IC production line for Sony’s Trinitron color TV sets. 

Yoshiaki Hagiwara
Sony Corporation
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In the fall of 1971, I returned to CalTech to pursue further my graduate work and learned how to
design MOS LSIs from Professor Carver Mead. My Ph.D. thesis was about the buried channel CCD imagers,
which can be applied to low light intensity solid state imagers. Prof. T.C. McGill was my Ph.D. thesis
advisor. 

After defending my Ph.D., in February 1975, I joined Sony at the Central Research Center in Yokohama,
Japan, and engaged in further research on high-performance CCD imagers project headed by Iwama
who was the pioneer engineer in the early bipolar technology development effort in Sony. 

My first patent filed in Sony in November 1975 was about a simple pnp-substructure used as the light
sensing device for imagers. The sensor structure is now called the HAD sensor in Sony’s current video
cameras and digital still cameras.

Sony put most of its engineering sources in CCD imagers and camera systems in 1970s. We engineers
had to design signal processing and camera control chips by ourselves. Those experiences were useful to
apply to other MOS LSI design applications, which made possible the current home entertainment LSI
chip sets such as digital cameras, home robots, and games.

In this chapter, some basic semiconductor device concepts are first reviewed briefly. They are about
the concept of “electron fog,” the bipolar and MOSFET device model, the buried channel CCD imager
structure, and the pnp-substructure which is used as the light sensing device, which is now universally
adopted in most of high performance solid state imagers. Then, some general discussions on the product
specifications and performance aspects of the home entertainment consumer LSI chip sets such as for
digital cameras, home robotics, and games are presented in detail.

41.2 Basic Semiconductor Device Concepts 

In this section, some introductory comments on the basic semiconductor device concepts are explained.
They are strongly related to the microelectronics of the present home entertainment LSI chips. 

Concept of Electron Fog

Figure 41.1 shows the electron fog in metal and semiconductor. Electrons in metal are depicted in this
picture as the moisture above the water surface in the container, while the electrons in the semiconductor
are depicted as the moisture on the top of a floating box in water. If the box is heavy, the water surface
is very close to the top of the box and there is a lot of moisture.

FIGURE 41.1 Electron fog model in metal and semiconductor.
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This corresponds to the n-type semiconductor band diagram. If the box is relatively light, only a small
bottom portion of the box is submerged into the water and the top of the box can be quite dry, and there
will a lot of bubbles (holes) under the bottom of the box. This corresponds to the p-type semiconductor. 

Applying these p- and n-type semiconductor box models, a diode behavior model can be constructed
and the diode rectifying characteristics can be explained.

Bipolar Transistor Device Model

Figure 41.2 shows energetic boys (electron fog in the emitter region) trying to climb a hill (base region)
to catch the girls on the hill (hole fog, which is the majority carrier in the base region). Some of the boys
can luckily catch girls on the hill, recombine, become happy and disappear as light or heat energy. But
the hill width is very short and most of the boys will not have enough time to catch girls and fall down
the cliff (the base-collector depletion region). The poor boys are now collected deep down the cliff in
the collector region. 

In the time interval ∆t, IE ∆t boys are jumping to the hill to catch girls on the hill. Some boys are lucky
enough to catch girls on the hill. The number of girls caught by the energetic boys in ∆t is IB ∆t, which
is proportional to the number of the average boys on the hill Qn. The girls are supplied as the base current
IB. Other salient physical parameters normally used in the bipolar transistor device modeling are also
given in the figure. 

MOSFET Model

Figure 41.3 shows a MOSFET structure. If you see how the electron fog moves from the left source n+
region to the right n+ region through the Si–SiO2 surface under the MOS gate, one can see that it is also
considered as an electron transportation along an npn-structure. In this case, however, the potential in
the p-region is controlled by the gate voltage isolated by the thin oxide.

The figure shows the electron fog moving from the source to the region under the gate at the onset
of strong inversion at the Si–SiO2 surface. At this point the electron fog density at the channel is equal
to the density of the majority “hole fog” in the p-type Si substrate, and the gate voltage at this point is
defined to be the threshold voltage Vth of the MOSFET.

Figure 41.4 shows water flowing from the right source region to the left drain region through the water
gate. The depth of the channel Vch is given as (Vg − Vth), where Vg is the applied gate voltage which
induces the channel depth Vch = (Vg − Vth). The amount of the water flow I is proportional to the mobility
µ, the water amount Q under the gate and the electric field E, i.e., I = µQE can be written in this rough
approximation.

FIGURE 41.2 Bipolar transistor action.
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In the first approximation, take E = (Vd − Vs)/L, where Vd, Vs, and L are the drain voltage, the source
voltage, and the gate channel length. The total charge can be approximated as Q = WCo∆V, where W and
Co are the channel width and the oxide capacitance of the actual corresponding MOSFET transistor,
respectively. Now, ∆V corresponds to the voltage difference between the average water surface (Vd + Vs)/2
and the channel potential Vch = (Vg − Vth). 

That is, ∆V = (Vd + Vs)/2 − Vch. Hence, since Q = WCo∆V, the equivalent amount Q of the water (or
charge) under the gate is given as Q = WCo[(Vd + Vs)/2 − Vch], where Vch = (Vg − Vth), E = (Vd − Vs)/L.

FIGURE 41.3 MOSFET at Onset VG = Vth.

FIGURE 41.4 MOSFET I-V characteristics.
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Now if these relationships are put into the original equation I = µQE, this leads, without going through
the calculations normally done in the classical gradual channel approximation, finally to the classical
MOS I-V equation:

Buried Channel CCD Structure

Figure 41.5 shows the physical structure and the potential profile of a buried channel CCD. The signal
charge is the electron fog in the lightly doped n-region at the surface. As you can see, these signal charges
are isolated from the direct contact to the Si–SiO2 interface and do not suffer the charge trapping. This
structure gives a good CCD charge transfer efficiency of more than 99.9999% along the buried channel
CCD shift register in the direction of this chapter. At very high light, excess charge can be drained into
the substrate by lowering the well voltage Vwell or making the substrate voltage very deep and inducing
the punch-through mode in the n-p-n(sub) structure.

High-density and high-performance, solid-state imagers became available applying this structure as
the scanning system. The surface n-layer is completely depleted when there is no signal charge. It is
dynamically operated.

It is considered as one extended application of dynamic MOS device operations. The most well-known
dynamic operation of a MOS device application is the DRAM data storage operation.

HAD Sensor, a pnp-substructure 

The floating diode structure for image sensing unit was well known in early 1970s. The author simply pro-
posed to use a pnp-substructure instead for the imaging element. Figure 41.6 shows the proposed structure.

It is a simple pnp bipolar transistor structure itself with a very lightly doped base region, operated in
the strong cut-off mode with the base majority charge completely depleted.

It is the first practical application of the bipolar transistor in dynamic operation mode, which turned
out to be the best structure and way to convert photons to electrons for imaging including the current
MOS imagers applications. The sensor structure is now called the HAD sensor in Sony’s current video
cameras and digital still cameras. 

FIGURE 41.5 Buried channel CCD structure.
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41.3 LSI Chips for Home Entertainment

Digital Still Camera

The picture in the Fig. 41.7 shows a 2/3 in. 190 K pixel IT CCD imager, ICX016/XC-37, which the author
designed when he was still a young CCD design engineer in early 1981. This model became the model
of the world’s first consumer CCD video camera for mass production in 1983.

The goal now is to become “Imaging Device No. 1!” Many applications of CCD and LCD are used, as
seen in Fig. 41.8.

FIGURE 41.6 A typical PNP bip Tr structure in the early 1970s, and a proposed application as an image-sensing
element in 1975.

FIGURE 41.7 The world’s first consumer CCD video camera for mass production 1983.
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AIBO, a Home Entertainment Robot

This subsection reviews the most popular product, the entertainment robot AIBO shown in Fig. 41.9.
When you buy a brand new AIBO, it is like a baby, so it does not have any knowledge. It has a certain
intelligence level that is preprogrammed. You can play with the AIBO and gradually your AIBO will
recognize your gestures and voices. AIBO will remember the wonderful time you spent together with it.
Actually the experience and knowledge AIBO accumulates during these memorable moments are stored
in a chewing gum size NVRAM called a memory stick shown in Fig. 41.9.

This memory stick can be also used in other products such as PCs, digital audios, and DSCs. Unfor-
tunately it is not used in PS and PS2 for generation compatibility as of now. But in one form or another,
there is a definite need NVRAMs in PS, DSC, digital audio, PC, and the future home entertainment
robots.

The twenty-first century will become an era of autonomous robots, which are partners of human
beings. Autonomous robot will help and support people in the future. AIBO is designed to be the first
product model of robot entertainment systems. The main application of this robot is a pet-style robot,
which must be lifelike in appearance.

Although AIBO is not a nursing robot, the development of AIBO is the first step of the era of
autonomous robots in the twenty-first century.

The following are some works done in the Digital Creation Laboratory at Sony. Most of the works
were actually done by the pioneering engineers, Mr. Fujita, Mr. Kageyama, Mr. Kitano, and Mr. Sabe. 

The epoch-making debut of AIBO, model ERS-110 in 1999, had the following features:
First of all, it has a CCD color camera with 180 K pixels. Of course, it does not have a mechanical

shutter. It does not have any eyelid. It has an audio sensor called microphones, a pair of them for stereo
audio pick-up. It also has an acceleration sensor, gyrometer, and also a tactile sensor. So, if you pat it on
the head gently, it will show some happy gesture. If you strike it on the head, it will interpret it as your
sermon. The moving joints have 18 degrees-of-freedom in total. 

FIGURE 41.8 Applications of CCD and LCD.
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Before introducing this first AIBO model, ERS-110, the basic research period lasted about five years.
Now we have the second generation AIBO model, ERS-210 and also another type of robot, Sony Dream
Robot, SDR-3, as seen in Fig. 41.10.

The second generation AIBO model, ERS-210, has the following features:

Joint DOF: neck: 3, mouth: 1, ear: 2, legs: 3 × 4, tail: 2, total: 20
Sensors: color CMOS image

FIGURE 41.9 AIBO model ERS-110.

FIGURE 41.10 New AIBO models: ERS-210 and SDR-3.
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sensor (1100 K pixel)
Microphone × 2
Infrared sensor
Acceleration sensor × 3
Tactile sensor × 7 
CPU: 64 bit RISC processor (192 MHz)
Memory: 32 MB DRAM
OS, Architecture: Aperios, OPEN-R1.1
IF: PCMCIA, memory stick

The model SDR-3 has the following features:

Joint DOF: neck: 2, body: 2, arms: 4 × 2, legs: 6 × 2, total: 24
Sensors: color CCD camera 
1800 K pixel, microphone × 2
Infrared sensor, acceleration sensor × 2 gyrometer × 2, tactile sensor × 8 
CPU: 64 bit RISC processor × 2 
Memory: 32 MB DRAM × 2
OS, Architecture: Aperios, OPEN-R

It weighs 5.0 kg and its size is 500 × 220 × 140 mm.
It has an OPEN-R architecture. It is made of configurable physical components (CPCs). The CPU in

the head recognizes the robot configuration automatically. The components are built for plug & play or
hot plug-in use. The relevant information in each segment is memorized in each CPC.

Each CPS may have a different function such as behavior planning, motion detection, color detection,
walking, and camera module. Each CPS is also provided the corresponding object oriented programming
and software component.

With this OPEN-R architecture, the body can be decomposed or assembled anyway for plug & play
or hot plug-in use. The diagram in Fig. 41.11 shows the details of the logical hardware block diagrams,
which contain DMAC : FBK: CDT: IPE and HUB  

FIGURE 41.11 Logical hardware block diagram.
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In the following two figures, Figs. 41.12 and 41.13, the topology of model ERS-110 and Model SDR-
3x are shown, respectively.

At the same time, it is very important to have a powerful software platform that covers the top semantic
layer to the deep bottom of the device driver objects codings. Careful design considerations are very
important to make the middleware software components. 

FIGURE 41.12 Topology of ERS-110.

FIGURE 41.13 Topology of SDR-3x.
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Memory Stick

AIBO, VAIO PC, and other audio and video products now use memory sticks as digital data recording
media. 

In July 1997, Sony had a technical announcement. The following year, in January 1998, the VAIO center
was inaugurated. On July 1998, sony had a product announcement. The 4 Mbyte and 8 Mbyte memory
sticks were on sale in September 1998. In February 1999, sony announced Magic Gate, that is, memory
sticks with copyright protection feature. Figure 41.14 shows the form comparison. The memory stick is
unique in its chewing gum-like shape and it is much taller in length than other media. The difference
in appearance of memory stick from other media is clear in size and features. 

Figure 41.15 shows the internal structure. It is fool proof. It features a simple 10-pin connection and
it is impossible to touch the terminals directly.

FIGURE 41.14 Form comparison.

FIGURE 41.15 Internal structure.
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The shape was designed intentionally to make exchanging of media easy, without having to actually
see them, and to guide the direction for easy and correct insertion. Much contrivance is made in the
design.

In order to decrease the number of connector pins for ensuring reliability of the connectors, serial
interface was adopted instead of parallel interface used in conventional memory cards. As a result, con-
nector pins were reduced to 10. And as the structure is such that these pins do not touch the terminal
directly, extremely high reliability is ensured. The length is same as AA size battery of 50 mm for further
deployment to portable appliances. The width is 21.5 mm and the thickness is 2.8 mm.

The memory stick consists of Flash EEPROM and a controller, controlling multiple Flash EEPROM,
flexible to their variations, and capable of correcting errors unique to different Flash EEPROMs used.
The memory stick converts parallel to/from serial data with the controller designed in compliance with
the serial interface protocol; any kind of existing or future Flash EEPROM can be used for the memory
stick. The function load on the controller chip is not excessive, and its cost can be kept to a minimum.

It is light and the shape makes it easy to carry around and to handle. Also, the write-protection switch
enables easy protection of variable data.

For still-image format, DCF standardized by JEIDA is applied. DCF stands for design rule for camera
file system and JEIDA stands for Japan Electronic Industry Development Association. For voice format,
ITU-T Recommendation G.726 ADPCM is adopted. The format is regulated for applications that convert
voice data to text data by inserting a memory stick to a PC.

The memory stick can handle multiple applications such as still image, moving image, voice, and
music on the same media. In order to do this, formats of respective application and directory management
must be stipulated to realize compatibility among appliances. Thus, simply by specifying the “control
information” format, one can have a new form of enjoyment through connecting AV appliances and the
PC. This format, which links data handed in AV appliances, enables relating multiple AV applications.
For example, voice recorded on IC recorder can be dubbed on to a still image file recorded by a digital
still camera.

Presently, the music world is going from analog to digital, and the copyright protection issue is
becoming serious along with the wide use of the Internet. The memory stick can provide a solution to
this problem by introducing “Magic Gates (MG),” a new technology.

Open MG means (1) allowing music download through multiple electronic music distribution platforms,
(2) enabling playback of music files and extracting CD on PCs (OpenMG Jukebox), (3) transferring contents
securely from PCs to portable devices.

Figure 41.16 shows the stack technology applied to the memory stick with four stacked chips.

PlayStation 2

PlayStation 2 was originally aimed at the fusion of graphics, audio/video, and PC. The chipset includes
a 128-bit CPU called “Emotion Engine” with 300 MHz clock frequency with direct Rambus DRAM of
32 Mbyte main memory. The chipset also includes a graphic synthesizer chip with 150 MHz clock
frequency. It has 4 MB video RAM as an embedded cache.

As SPUs, the chipset also has an I/O processor for X24 speed CR-ROM drive and X4 speed DVD-
ROM. Figure 41.17 shows PlayStation 2 (SCPH-10000) system block diagram.

PlayStation 2, which Sony Computer Entertainment, Inc., released in March 2000, integrates games,
music, and movies into a new dimension. It is designed to become the boarding gate for computer enter-
tainment. PlayStation 2 uses an ultra-fast computer and 3-D graphics technology to allow the creation of
video expressions that were not previously possible. 

Although it supports DVD, the latest media, it also features backward compatibility with PlayStation
CD-ROM so that users can enjoy the several thousand titles of PlayStation software. PlayStation 2
is designed as a new generation computer entertainment system that incorporates a wide range of
future possibilities. The table shows the performance specifications of the graphic synthesizer chip,
CXD2934.
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Clock Frequency 150 MHz
Number of pixel engines 16 parallel processors
Hybrid DRAM capacity 4 MB@150 MHz
Total memory bandwidth 48 GB/s
Maximum number of display colors 2560 bits
Z buffer 32 bits (RGBA: 8-bit each)
Process
Technology 0.25 µm
Total number of transistors 43 M Tr’sPackage 
384-pin BGA image output formats NTSC/PAL, D-TV, VESA (upto 1280 × 1024 dots)

FIGURE 41.16 Stack technology.

FIGURE 41.17 PSX2 system block diagram.
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In addition to the 128-bit CPU Emotion Engine™ and I/O processor, Playstation 2 adopts several
advanced technologies. The graphics synthesizer graphic engine, CXD2934GB, takes full advantage of
embedded DRAM system LSI technology. The Fig. 41.18 shows the chip photograph of Sony’s 0.25 µm
CMOS 4 MB embedded DRAM, which has 42.7 M Trs. The clock rate is 150 MHz, with 48 GB/s bandwidth.
It can draw 75 M polygons per second. It has 384 pin in BGA. Its cross-sectional view is also shown here.

The semiconductor’s optical integrated device technology contributes significantly to miniaturization
and high reliability in the optical pickups, SLK3201PE, a two-wavelength laser coupler chip. PlayStation
2 also adopts the optical disc system chip solution which has a solid track record, CXD2942R, a sound
processor chip, and has earned the trust of the optical disc system market. 

It also includes CXD1869 (CD/DVD signal processor LSI), CXP102064R (disk controller), CXA2605R
(Cd/DVD RD matrix amplifier), and CXA3525R (analog video encoder).

The first commercial product for use in consumer products were the 0.5 µm LSI chips for 8-mm
camcorders in 1995. Then, Sony had 0.35 µm LSI chips for MD products with low voltage operation
of 2.0 V. Now, the 0.25 µm PlayStation 2 graphics synthesizer has eDRAM with 48 GB/s bandwidth.
Figure 41.19 shows the EmDRAM history.

Sony Em-DRAM has a high-band performance of 76.8 GB/s. See Fig. 41.20. In the following three
figures, Figs. 41.21,  41.22, and 41.23, the memory cell size trend, some details of our embedded DRAM
history, and the vertical critical dimensions between 0.25 and 0.18 µm EmDRAM process are shown,
respectively.

Now, a few words on the feature and critical issues of 130 nm Emb-DRAM LSI process. The most
advanced design rule to achieve high performance Tr –

Enhance resolution, and
refine OPC system (speed, accuracy) 
Large variation in duty cycles
Reduce isolation—dense bias
High global step-> Enlarge D.O.F
High aspect hole process
Enhance etching durability
OPC = optical proximity correction
DOF = depth of focus

FIGURE 41.18 4 MB EmDRAM for PSX2.
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In the 0.18 µm EmDRAM process, the optical proximity correction (OPC ) technology and the phase-
shift mask technology (PSM) were very important. See Figs. 41.24 and 41.25. Many high-performance
manufacturing and measurement automatic machines, such as those shown in Fig. 41.26, are necessary.

Figure 41.27 shows the cross-sectional view of 0.18 µm EmDRAM, which was realized by utilizing all
these technologies and high-performance machines. 

Now some comments on key factors: technology extention such as optical extention and full flat process
technology. KrF lithograpy optical extention features high NA, ultra-resolution, thin photo resist, and
the OPC technology. Wirings are fully planarized interlayers of Cu/Dual Damascene. The EmDRAM
features a fully planarized capacitor with the global step-less DRAM/logic structure by self-align process.

FIGURE 41.19 Embedded DRAM history.

FIGURE 41.20 Performance of embedded DRAM.
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41.4 Conclusion 

Some introductory comments on the basic semiconductor device concepts were given. They are strongly
related to the microelectronics of the present home entertainment LSI chips. The chapter covered in
detail some product specifications and performance aspects of the home entertainment LSI chip sets,
such as those used in digital cameras, home robotics, and games. Cost of EmDRAM and its solutions by
using EmDRAM are strongly related with new market creation such as PSX2. The EmDRAM technology
for PS2/computer and some other future home entertainment electronics gadgets has a potential to be
the technology driver in the years to come.

FIGURE 41.21 CMOS memory cell size.

FIGURE 41.22 Embedded DRAM history.
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FIGURE 41.23 Em-DRAM process technology.

FIGURE 41.24 Optical proximity correction.

FIGURE 41.25 Phase-shift mask (PSM) technology.
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42.1 Bluetooth—A Cable Replacement and More

John F. Alexander and Raymond Barrett

What is Bluetooth?

Anyone who has spent the time and effort to connect a desktop computer to its peripheral devices,
network connections, and power source knows the challenges involved, despite the use of color-coded
connectors, idiot proof icon identification, clear illustrations, and step-by-step instructions. As com-
puting becomes more and more portable, the problems are compounded in the laptop computer case,
and the palmtop device case, let alone the cell phone case, where cabling solutions are next to impossible.
The challenges associated with cabling a computer are tough enough for purposes of establishing the
“correct” configuration, but are nearly unmanageable if the configuration must be dismantled each time
a portable device is carried about in its portable mode.

Similar to a knight in shining armor, along comes Bluetooth; offering instant connectivity, intelligent
service identification, software driven system configuration, and a myriad of other advantages associated
with replacing cabling with an RF link. All of this good stuff is provided for a target price of $5 per termina-
tion, a cost that is substantially lower than the cost of most cables with a single pair of terminations. This
miracle of modern communication technology is achieved with a 2.4-GHz frequency hopping trans-ceiver
and a collection of communications protocols. At least, that is the promise. The participants who include
such industrial giants as IBM, Motorola, Ericsson, Toshiba, Nokia, and over a thousand other consortium
participants provide credibility for the promise.

There has been considerable interest in the press over the past few years in the evolution of the open
Bluetooth® [1] specification for short-range wireless networking [2]. Bluetooth is one of many modern
technological “open” specifications that are publicly available. The dream is to support Bluetooth short-
range wireless communications (10–100 m) any where in the world. The 2.4 GHz frequency spectrum
was selected for Bluetooth primarily because of its globally available free license. As we entered the twenty-
first century there were already more than 1800 members of Bluetooth special interest group (SIG) [3].
Its reasonably high data rate (1 Mb/s gross data rate) and advanced error correction make it a serious
consideration that is irresistible for hundreds of companies in a very diverse group of industries, all
interested in ad hoc wireless data and voice linkages.

The Bluetooth specification utilizes a frequency hopping spread spectrum algorithm for the hardware
and specifies rapid frequency hopping of 1600 times per second. As one might conclude 2.4 GHz digital
radio transceivers that support this type of high frequency communication are quite complex, however,
the hardware design and implementation is just the tip of the iceberg in understanding Bluetooth. The
goal of this chapter is to provide the reader with a thorough overview of Bluetooth. An overview is
detailed in the standard, but the Bluetooth specifications alone are thousands of pages.

Some of the proposed and existing Bluetooth usage models are the cordless computer, the ultimate
headset, the three-in-one phone, the interactive conference (file transfer), the Internet bridge, the speak-
ing laptop, the automatic synchronizer, the instant postcard, ad hoc networking, and hidden computing.

Competing Infrared Technology

First, a brief digression will be taken into infrared wireless communication. With the advent of the personal
digital assistant (PDA), it was obvious for the need of a low cost, low power means of wireless commu-
nication between user’s devices and peripherals. At an Apple Newton users group one could see hundreds
of enthusiasts “beaming” business cards back and forth. As other vendors came out with PDA each had
its own proprietary infrared communication scheme. Eventually one “standard” method of communi-
cation between users applications came about as an outgrowth of the work of the Infrared Data Associ-
ation. This specification became known as IrDA [4]. An international organization creates and promotes
interoperable, low cost infrared data interconnection standards that support a walk-up, point-to-point
user model. The standards support a broad range of appliances, computing, and communications devices.
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Several reasons exist for mentioning the IrDA. First, many of the companies involved in the Bluetooth
effort are members of the IrDA and have many products, which support IrDA protocols. Thus, much of
the learning time in developing and attempting to implement a workable open standard for ad hoc short
range wireless communication is in house. Also the IrDA has been one of the many well thought out
high technology products that never gained much user acceptance. Many of the members of the Bluetooth
SIG were anxious not to make the same mistake but to gain a way to profit from all the hard work
invested in IrDA.

The proposed solution seemed simple. Just include more or less the entire IrDA software protocol
stack in Bluetooth. Thus, the many already developed but seldom-used “beaming” applications out there
could readily use Bluetooth RF connectivity. Whether this was a good idea, only time can tell. But it is
important in understanding the Bluetooth specification because it is so heavily influenced by millions
of hours of corporate IrDA experience and frustrations.

Secure Data Link

Providing a secure data link is a fundamental goal for the Bluetooth SIG. One could envision the horror
of walking through an airport with your new proprietary proposal on your laptop and having the com-
petition wirelessly link to your machine and steal a copy. Without good security Bluetooth could never
gain wide acceptance in virtually all cell phones, laptops, PDAs, and automobiles that the drafters
envisioned.

Secure and nonsecure modes of operation are designed into the Bluetooth specification. Simple security
is provided via authentication, link keys, and PIN codes, similar to bank ATM machines. The relatively
high frequency hopping at 1600 hops/sec adds significantly to the security of the wireless link. Several
levels of encryption are available if desired. In some cases, this can be problematic in that the level of
encryption allowed for data and voice varies between countries and within countries over time. The
Bluetooth system provides a very secure environment, eavesdropping is difficult. Bluetooth probably will
be shown to be more secure than landline data transmission [5].

Master and Slave Roles

The Bluetooth system provides a simple network, called a piconet, nominally 10 m in radius. This is the
1-mW power mode (0 dbm). There is also a 10-mW mode allowed, which probably could reach a 100 m
in ideal cases, but it may not become widely implemented. One should think of a Bluetooth piconet as
a 10 m personal bubble providing a moderately fast and secure peer-to-peer network. The specification
permits any Bluetooth device to be either a master or a slave. At the baseband level, once two devices
establish connection, one has to be a master and the other a slave. The master is responsible for establishing
and communicating the frequency-hopping pattern based on the Bluetooth device address and the phase
for the sequence based on its clock [6].

Up to seven active slaves are allowed all of which must hop in unison with the master. The Bluetooth
specification allows for the direct addressing of up to 255 total slave units, but all but seven of the slaves
must be in a “parked” mode. The master–slave configuration is necessary at the low protocol levels to
control the complex details of the frequency hopping, however, at higher levels, the communication
protocol is a peer-to peer and the connection established looks like point-to-point. The protocol supports
several modes, which include active, sniff & hold, and park. Active uses the most power. While the master
unit is in sniff mode, it conserves power by periodically becoming active. Additionally, the slave is in a
hold mode but wakes up periodically based on timing from the master to “see” if any data is ready for
it. While a slave is in park mode it consumes the least power, but the slave still maintains synchronization
with the master.

A more complex Bluetooth communication topology is the scatternet. In one of the simpler scatternet
schemes there are two masters with a common slave device active in two piconets. In another variation
on the scatternet, one device is a slave in one piconet and the master in another. Using this scatternet
idea some have speculated that an entire wireless network could be formed by having many piconets,
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each with one common node. Theoretically, this would work, but the rest of the original Bluetooth
specification is not designed for making Bluetooth a wireless LAN. It is likely the newer SIG work group
on personal area networking will be interested in expanding the definition and capability of Bluetooth
scatternet capability. Currently there is lots of interest in forming location aware ad hoc wireless networks
[7]. NASA has already approached this author for ideas for use of Bluetooth for ad hoc small area networks
in space missions. The appeal of a wireless link made up of five dollar, very small, low-power, self-
configuring, parts capable of connecting various sensors is irresistible for complex space missions where
power and payload weight is at a premium.

Bluetooth SIG Working Groups

To understand the Bluetooth specification it is important to understand how the very large Bluetooth
SIG is organized. The actual work in producing the various specifications is done by the various SIG
working groups. Given that the Bluetooth specification is thousands of pages of detailed technical docu-
mentation, it is not practical to just sit down and read the specification sheet. Briefly, five major groups
compose the SIG including the air interface group, the software group, the interoperability group, the
legal group, and the marketing group [3].

The software group contains three working subgroups primarily responsible for the Bluetooth protocol
stack. These are the lower Transport Protocol Group, the Middleware Protocol Group, and the Application
Group. The protocol stack follows the international origination of standardization (ISO) seven-layer
reference model for open system interconnection [8].

The Transport Protocol Group

The Transport Protocol Group includes ISO layers one and two, which are the Bluetooth radio, the link
controller baseband, the link manager, the logical link controller and application protocol (L2CAP) layer,
and the host controller interface. Collectively this set of protocol groups form a virtual pipe to move
voice and data from one Bluetooth device to another. Audio applications bypass all of the higher level
layers to move voice from one user to another [6].

The L2CAP layer prevents higher level layers from having to deal with any of the complexity of the
frequency hopping Bluetooth radio and its complex control or special packets used over the Bluetooth
air radio interface. The responsibility of the L2CAP layer is to coordinate and maintain the desired level
of service requested and coordinate new incoming traffic. The L2CAP layer’s concern is with asynchro-
nous information (ACL packet) transmission [6]. This layer does not know about the details of the
Bluetooth air interface such as master, slave, polling, frequency hopping, and such. Its job is to support
the higher layer protocol multiplexing so multiple applications can establish connectivity over the same
Bluetooth link simultaneously [9].

Device authentication is based on an interactive transaction from the link manager. When an unknown
Bluetooth device request connectivity, the device requested ask the requester to send back a 16 byte
random number key, which is similar to the familiar bank ATM PIN code procedure. Once a device is
authenticated it is necessary for the device to store the authentication codes so this process can be automatic
in future connections. Link encryption up to 128 bytes is supported and is controlled by desirability and
governing legal issues of the area. Encryption applies only to the data payload and is symmetric. 

Power management of connected devices is also handled at this level. In sniff mode the slave must
wake up and listen at the beginning of each even-numbered slot to see if the master intends to transmit [6].
In hold mode the slave is suspended for a specified time. The API for hold mode puts the master in
charge but provisions are available to negotiate the time. In Park mode, the slave dissociates itself from
the piconet while still maintaining synchronization of the hopping sequence. Before going in to park
mode the master informs the slave of a low-bandwidth beacon channel the master can use to wake the
parked slave if there not already seven active slaves.

Paging schemes allow for a more repaid reconnection of Bluetooth devices. For example, paging is
used in the event a master and a slave need to switch rolls to solve some problem such as forming some
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sort of local area network. Support for handling paging is optional in the Bluetooth specification. Another
role of the link managers is to exchange information about each other to make passing data back and
forth more efficient.

The Bluetooth Transceiver

The Bluetooth systems operate in the industrial and scientific (ISM) 2.4 GHz band. This band is available
license free on a global basis and is set a side for wireless data communications. In the United States the
Federal Communication Commission (FCC) sets up rules for transmitters operating in the ISM band
under section 15.247 of the Code of Federal Regulations. The frequency allocated is from 2,400 MHz to
2,483.5 MHz. The Bluetooth transceiver operates over 79 channels each of which is one megahertz wide.
At least 75 of the 79 frequencies hoped to must be pseduo-random. Bluetooth uses all 79 channels and
hops at a rate of 1600 hopes per second.

The Middleware Protocol Group

The Middleware Protocol Group includes ISO layers three and six, which are made up of the RFCOMM
protocol, the service discovery protocol (SDP), IrDA interoperability protocols, IrDA, and Bluetooth
wireless protocol, and the audio and telephony control protocol. Fitting Bluetooth into the ISO model
is really up to the developer. If you want to make it fit it makes sense, but there is lots of strange baggage
imbedded protocols in Bluetooth that makes this difficult to see. First, we have already seen the voice
communication connect down at the L2CAP layer. Now we are faced with how the toss in multiplexed
serial port emulation, IrDA interoperability, and a bunch of protocols from telephony world. No wonder
the standard goes on for thousands of pages and hundreds of companies around the world are struggling
with comparability testing of various Bluetooth devices designed from this very complex specification.

The Application Protocol Group

The Application Protocol Group includes ISO layer seven. This grouping contains the most extensive
variety of special-purpose profiles all of which rely on the six lower levels for service. These include the
generic profiles, the serial and object exchange profile, the telephony profiles, and the networking profiles.

The generic profiles includes the generic access profile and the service discovery application profile.
The serial and object exchange profile contains the serial port profile, the generic object exchange profile,
the object push profile, the file transfer profile, the synchronization profile, the networking profiles, the
dial-up networking profile, the LAN access profile, the fax profile, the telephony profiles, the cordless
telephony profile, the intercom profile, the headset profile, and the cordless telephony profile. Most of
these applications profiles are self-explanatory and are only of detailed interest to the software developer
when developing a specific application using the appropriate profile. This is not to say that they are not
important, but they provide very detailed application programmer interfaces (API) [15].

The possible Bluetooth applications keep expanding. This stimulates interest in expanding the array
of application profiles in the Bluetooth specification. Several of the newer application profiles are the car
profile, a richer audio/video profile, and a local positioning profile. 

Bluetooth Development Kits

Given the obvious complexity of the Bluetooth hardware and software applications, having access to
good development kits is essential to speed the implementation of the specification. The first inexpensive
development kit to become widely available to universities was Ericsson’s Bluetooth Application and
Training Toolkit. This is a first generation Bluetooth kit that demonstrates important Bluetooth features
and has a well defined, but extensive proprietary API in C++. Application development is possible, but
is time-consuming and tedious requiring knowledge of C++ to learn a vast API. Newer kits, specifically
for development, are more efficient.
© 2002 by CRC Press LLC



      
Cambridge Silicon Radio (CSR) Bluetooth silicon radio has been very well publicized in the Bluetooth
development and features “all CMOS” one chip solution. The CSR development kit includes software
for CRR “BlueCore™” [11] IC with on-chip Bluetooth™ protocol and a PC development environment.
Tools for embedded “1-chip” products are provided. Bluetooth BlueCore-to-host serial protocol and
integrated Bluetooth protocol: BlueStack™. An innovative feature is that BlueCore devices enable users
to configure the level of BlueStack that loads at boot time using software switches. SCR clams that
running the full Bluetooth protocol locally on a BlueCore device significantly reduces the load on the
host embedded processor, delivering major advantages to users of there Bluetooth system on a chip
solution [12].

Many other development tools can be found currently at the http://www.bluetooth.com/product/
dev_tools/development.asp. The above two are referenced because they have been around for a year or
so and the authors have direct experience with them [2].

Interoperability 

There is a conflict with IEEE 802.11 Wireless Network Specification, which uses a direct sequence spread
spectrum approach in the same frequency band. The direct sequence modulation is incompatible with
the frequency hopping approach employed in Bluetooth. It is unlikely that an elegant interoperability
solution can be found, without duplication of the entire hardware solutions for each; however, some
early ad hoc reports in the trade press seem to point to the interoperability between 802.11 and Bluetooth
to be minor [13,14].

Both operate in the 2.4 GHz ISM band, and both are a form of spread spectrum, but the 802.11 is
direct sequence modulated spread spectrum and allows more power. Bluetooth is frequency hopping and
low power.

Bluetooth Hardware Implementation Issues

First, for Bluetooth to achieve the stated goals for widespread usage at low cost, there are severe hardware
constraint issues to be addressed. Second, the environment into which Bluetooth is likely to be deployed
is rapidly changing. Finally, the business models for adoption of Bluetooth technology are also impacted.

Broadly speaking, there are two classes of hardware implementation for Bluetooth, one employs
discrete multiple chips to produce a solution, and a second in which Bluetooth becomes an embedded
intellectual property (IP) block in a system-on-a-chip (SoC) product.

For the short run, the multiple chip strategy provides an effective implementation directed at prototype
and assembly-level products. The strategy is effective during the initial period of development for Blue-
tooth, while the specification is still evolving and the product volumes are still low; however, a strong
case can be made that the high volumes, low cost, and evolving environment make an IP block approach
inevitable if Bluetooth is to enjoy wide acceptance.

In addressing the environmental issues, the most widely dispersed communications product today is
the cell phone, with its service variants. The Internet connectivity of cell phones is soon to surpass the
Internet connectivity of the desktop computer. The consequence of the cell phone driving the environ-
ment for all information processing connectivity under its constraints of low power, tight packaging,
high volume, and low cost manufacturing forces examination of IP blocks for SoC solutions.

Bluetooth is highly attractive for cell phone products as a wire replacement, enabling many of the
existing profiles from a cell phone, as well as providing expansion for future applications. The desktop
computer embraces Bluetooth also as a wire replacement, but has a history of services supported by
cabling. The cell phone cannot support many services with cabling, and in contrast to the desktop, service
extensions for the raw communication capability of 3G and 4G cell phones must be addressed by wireless
solutions.

Once Bluetooth IP block solutions exist, the market forces will drive high-volume products toward
either embedded or single-chip Bluetooth implementations.
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Technological hurdles must be overcome in the road toward Bluetooth IP block solutions. Presently,
the RF front-end solutions for bluetooth are nearly all implemented in bipolar IC technology, implying
at least a BiCMOS IC, which is widely recognized as too high cost for high-volume SoC products. As the
lithography becomes available for denser CMOS IC products, the deep submicron devices provide the
density and speed increases to support SoC solutions in the digital arena, and also improve the frequency
response of the analog circuitry, enabling the possibility of future all-CMOS implementation.

In addition, communications system problems must be solved in order to ensure the feasibility of an
all-CMOS implementation. For example, one of the more popular architectures for a modern commu-
nications receiver is the zero-IF (ZIF) approach. Unfortunately, the ZIF approach usually converts the
RF energy immediately to baseband without significant amplification, which places the very small signal
in the range of 1/f noise of the semiconductor devices employed. Typically, the only devices with
substantially low enough noise are bipolar devices, which are to be avoided for system level considerations.
Alternative architectures that are suitable include variants of super heterodyne architectures that usually
require tuned amplifiers, which are also seldom suitable for integration. One approach that seems to
meet all the requirements is one variant of the super heterodyne architecture known as low-IF, that places
the energy high enough in the spectrum to avoid noise considerations, but low enough to be addressed
by DSP processing to achieve the requisite filtering.

Regardless of the particular architecture chosen, the rapid channel switching involved in the frequency-
hopping scheme necessitates frequency synthesis for local oscillator functions. There is considerable design
challenge in developing a fully integrated voltage-controlled-oscillator (VCO) for use in a synthesizer
that slews rapidly and still maintains low phase noise.

To compound the above issues, true IP block portability implies a level of process independence that
is not currently enjoyed by any of the available architectures. Portability issues are likely to be addressed
by intelligence in the CAD tools that are used to customize the IP blocks to the target process through
process migration and shrink paths.
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42.2 Signal Processing ASIC Requirements for High-Speed 
Wireless Data Communications

Babak Daneshrad

Introduction

To date, the role of application specific integrated circuits (ASICs) in wireless communication systems
has been rather limited. Almost all of the signal processing demands of second generation cellular systems
such as GSM and IS-136 (US TDMA) can be met with the current generation of general purpose DSP
chips (e.g., TI TMS320, Analog Device’s ADSP 21xx, or Lucent’s DSP16xx families). The use of ASICs
in wireless data communications has been limited to wireless LAN systems such as Lucent’s WaveLAN
and the front end, chip-rate processing needs of DSSS-CDMA based systems such as IS-95 (US CDMA).

Several major factors are redirecting the industry’s attention towards ASICs for the realization of highly
complex and power efficient wireless communications equipment. First, the move toward third genera-
tion (3-G) cellular systems capable of delivering data rates of up to 384 kbps in outdoor macro-cellular
environments (an order of magnitude higher than the present second generation systems) and 2 Mbps
in indoor micro-cellular environments. Second, the emergence of high-speed wireless data communica-
tions, whether in the form of high-speed wireless LANs [1] or in the form of broadband fixed access
networks [2]. A third, but somewhat more subtle factor is the increased appeal of software radios. Radios
that can be programmed to transmit and receive different waveforms and thus enable multi-mode and
multi-standard operation. Although ASICs are by nature not programmable, they are parameterizable.
In other words, ASIC designers targeting wireless applications must develop their architectures in such
a way as to provide the user with features such as variable symbol rates and carrier frequency, as well as
the ability to shut off parts of the circuit that may be unused under benign channel conditions. For DSSS
systems the ASICs should provide sufficient flexibility to accommodate programmability of the chip-
rate, spreading factor, and the spreading code to be used.

The next subsection further explores these elements and identify key signal processing tasks that are
suited for ASIC implementation. In the subsection on “VLSI Architectures for Signal Processing Blocks”
will present signal processing algorithms and ASIC architectures for the realization of these blocks. The
chapter section ends with “Conclusions.” 

Emerging High-Speed Wireless Systems

Third Generation (3-G) Cellular Networks

Second generation cellular systems such as IS-136, GSM, and IS-95 have mainly focused on providing
digital voice services and low-speed data traffic. With the growing popularity of the Internet and the need
for multimedia networking, standardization bodies throughout the world are looking at the evolution of
current systems to support high-speed data and multimedia services. The technology of choice for all such
3-G systems is wideband code division multiple access (W-CDMA) based on direct sequence spread
spectrum (DSSS) techniques [3,4]. The targeted chipping rate for these systems is 3.84 Mcps for the
European UTRA standardization work, and a multiple of 1.2288 Mcps for the CDMA-2000 proposal.

In addition to providing higher data rates, which come about in part due to the increased bandwidth
utilization of 3-G systems, a second and equally important aim of these systems is to increase the capacity
of a cell (number of simultaneous calls supported by a cell). To this end, all the current proposals call for
the use of sophisticated receivers utilizing multi-user detection and possibly smart antenna technologies.

In order to better appreciate the signal processing requirements of these receiver units, consider the
block diagrams presented in Fig. 42.1. Figure 42.1(a) depicts the transmitter of a DSSS system, along
with a candidate successive interference canceller (SIC) shown in Fig. 42.1(b) [5]. The details of the rake
receiver are shown in Fig. 42.1(c). 
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The tremendous processing requirements of this architecture will become evident by considering a
modest system operating at a chip rate of say, 4 Mcps using a 32-tap shaping filter, four rake fingers per
user, four complex correlators per rake finger and 10 users in the cell, the number of operations (real
multiply-adds) needed for a 5-stage SIC is upwards of 14 billion operations per second or giga-operations
per second (GOPS). This amount of processing can easily overwhelm even the latest generation of general-
purpose processors such as the TI TMS320C6x which delivers 1.6 giga-instructions per seconds (GIPS),
but only 400 mega multiply-add operations per second [6]. At an anticipated power dissipation of 850 mW
per processor, the overall power consumption of a SIC circuit based on such units will be quite large.

It is also worth noting that many operands are in the SIC or other MUD receiver that require only
a few number of bits (i.e., multiplication with a 1-bit PN code sequence). This fact can be exploited
in a dedicated ASIC datapath architecture but not in a general-purpose software programmable
architecture.

Broadband Wireless Networks

Emerging broadband fixed wireless access systems provide high-speed connectivity between a cellular
base station and a home or office building at data rates of a few Mbps to a few tens of Mbps. On the
other hand, standardization activities that are currently targeting high-speed wireless mico-cellular (wire-
less LAN) systems are looking at delivering 10–20 Mbps over the air data rates in the near future, with
higher rates projected in the long term. 

It is generally accepted that in order to achieve such high data rates, beam switching or beamforming
techniques must be integrated into the development of the nodes. In addition, single carrier systems
must include adaptive equalization to overcome time varying channel impairments, while multicarrier
systems based on OFDM will require a large number of subcarriers [7]. The signal processing require-
ments for such high data rate systems could easily mount into the tens of GOPS range, thus necessitating
the development of ASICs. 

FIGURE 42.1 Block diagram of (a) generic DSSS transmitter, (b) successive interference canceller for multiuser
detection, and (c) rake receiver for a system with parallel pilot channel (i.e., IS-95).
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Furthermore, the flexibility of digital implementation compared to an analog implementation of the
down-conversion path makes a digital IF architecture more appealing. Figure 42.2 depicts the detailed
block diagram of a single carrier high-speed wireless communication receiver complete with adaptive
beamforming, adaptive equalization, and variable symbol rates. The flexibility offered by such an archi-
tecture can meet the demands of different systems requiring different levels of performance.

In this architecture, the direct digital frequency synthesizer (DDFS) serves three roles. First, it enables
down-conversion of any carrier frequency up to half the sampling frequency of the analog-to-digital
converter. Second, it can replace or complement a VCO for the purposes of carrier recovery, and third
it can easily generate different phases needed by the beamforming circuit.

The variable rate decimator block is a key element in variable symbol rate systems where it is desired
to maintain the same exact analog filtering, but yet accommodate user defined symbol rates. This is
particularly important in wireless systems where a predefined data rate is difficult to guarantee due to
statistical channel variations such as fading and shadowing. In such scenarios, the user can simply back-
off on the symbol rate and provide connectivity albeit at a lower data rate. 

The flexible decimation architecture depicted in Fig. 42.2 consists of two stages. The first is a course
decimator block, which can decimate the signal by 2N for N = 0,1,2,…, M. This section is realized using
a cascade of N decimate by two stages. The second part of the decimator is a variable rate interpolator
block, which can change the sampling rate by any value in the range of 2–4. Not only can this block be
used to change the sampling frequency of the signal, but it is the vital element in the realization of an
all digital timing recovery loop. 

The matched filter is typically a fixed coefficient fixed impulse response (FIR) filter. This block is
followed by a decision feedback equalizer (DFE) that helps mitigate the effects of intersymbol interference
(ISI) caused by the multipath nature of the channel. The DFE is made up of two adaptive FIR filters
referred to as the feedforward filter (FFF) and the feedback filter (FBF).

The amount of processing (in terms of real multiply-adds per second) needed to realize these blocks
can easily run into several GOPS. As an example, a baseband QAM receiver consisting of a 30-tap matched
filter, a 10-tap FFF and a 5-tap FBF adapted using the least mean squares (LMS) algorithm, and running
at 10 Mbaud requires close to 2.5 GOPS of processing. Once the processing needs of the DDFS, variable
rate filters, and the beamforming network are also factored in, the processing requirements can easily
reach 7–8 GOPS.

FIGURE 42.2 Block diagram of an all-digital receiver for a single carrier system (i.e., QAM) featuring digital IF
sampling, beamforming, variable symbol rate, adaptive equalization, all digital timing, and carrier recovery loops.
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VLSI Architectures for Signal Processing Blocks

Fixed Coefficient Filters

The most intuitive means of implementing a FIR filter is to use the direct form implementation presented in
Fig. 42.3(a) [12]. Applying the transposition theorem to this filter we get the transposed structure shown in
Fig. 42.3(b). The two structures are identical in terms of I/O, however, the transposed form is ideal for high
speed filtering operations since the critical path for an N tap filter is always one multiplier delay plus one
adder delay. The critical path of the direct form, however, is one multiplier delay plus N-1 adder delays. The
fact is that the symbol rate for most wireless communication systems is a few tens of megahertz, whereas a
typical multiplier in today’s CMOS process technologies can easily reach speeds of 80–100 MHz. It is thus
desirable to use the hybrid architecture shown in Fig. 42.3(c) where each multiplier accumulator is time-
shared between several taps (three in this case) resulting in a more compact circuit for lower symbol rates.

The implementation of fixed coefficient FIR filters can be further simplified by moving away from the
use of 2’s complement number notation, and using a signed-digit number system in which each digit
can take on one of three values {−1, 0, 1}. In general there are multiple signed-digit representations for
the same number and a canonic signed-digit (CSD) representation can be defined for which no two
nonzero digits are adjacent [8]. The added flexibility of signed-digit numbers allows us to realize the
same coefficient using fewer nonzero coefficients than would be possible with a simple 2’s complement
representation. Using an optimization program, it is possible to design an FIR filter using CSD filters
with as few as three or four nonzero digits for each coefficient. This could help significantly reduce the
complexity of fixed coefficient multipliers since the number of partial products generated is directly
proportional to the number of nonzero digits in the multiplier.

Direct Digital Frequency Synthesizer (DDFS)

Given an input frequency word W, a DDFS will produce a frequency proportional to W. The most common
techniques for realizing a DDFS consist of first accumulating the frequency word W in a phase accumu-
lator and then producing the sine and cosine of the phase accumulator value using a table lookup or a

FIGURE 42.3 Alternative FIR filter structures: (a) Direct form FIR structure, (b) Transposed form FIR structure,
and (c) Hybrid FIR structure.
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coordinate rotation (CORDIC) algorithm. These two approaches are depicted in Fig. 42.4. The two
metrics for measuring the performance of a DDFS are the minimum frequency resolution ∆f and the
spurious free dynamic range (SFDR). The frequency resolution can be improved by increasing the wordlength
used in the accumulator, while the SFDR is affected by the wordlengths in both the accumulator as well
as the sine/cosine generation block.

One of the main challenges in the development of the table lookup DDFS has been to limit the size
of the sine/cosine table. This has been accomplished through two steps [9]. First, by exploiting the
symmetry of the sine and cosine functions it is only necessary to store β of the period of a sine wave and
derive the remainder of the period through manipulation of the saved portion. Second, the number of
bits per entry can be reduced by dividing the sine table between a coarse ROM and a fine ROM with the
final result obtained after simple post-processing of the values. Combining these two techniques can
result in the reduction of the sine tables by an order of magnitude or better.

In the CORDIC algorithm, Fig. 42.4, sine and cosine of the argument are calculated using a cascade of
stages, each of which rotates its input complex vector by δ/2k (δ = π/2) if the kth bit of W is 0 and −δ/2k

if the bit is a 1. Thus each stage performs the following matrix operation: 

In [10] a simplification of the CORDIC DDFS is presented in which for small θ, tan(θ) is simply
approximated by θ. In [11] a different modification to the CORDIC architecture is proposed that will
facilitate low-power operation in cases where a sustained frequency is to be generated. This is achieved
by calculating the necessary angle of rotation for each sampling clock period, and dedicating a single
rotation stage in a feedback configuration to contiually rotate the phasor through the desired angle. 

Decimate/Interpolate Filters

Variable rate interpolation and decimation filters play a very important role in the development of highly
flexible and self contained all-digital receivers. As previously mentioned, they are the critical element of
all digital timing recovery loops as well as systems capable of operating at a host of user defined symbol
rates. Additionally, digital resampling allows the ASIC designer to ensure that the clock frequency at all
portions of the circuit are the minimum that they need to be to properly represent the signals. This could
have significant impact on the size and power consumption of the resulting ASIC since power scales with
the clock frequency and the square of the supply voltage. Thus, for a given circuit with a critical path of
say τ seconds, if the data rate into the block is lowered by a factor K, then the frequency dependent portion
of the dissipated power is also scaled by the same factor; however, additional power savings can be achieved
by noting that the block now has Kτ seconds to complete its task. Because the speed of a digital circuit is
proportional to the supply voltage, we can reduce the supply voltage and still ensure that the circuit meets
the speed constraints. 

FIGURE 42.4 Two most common DDFS architectures: (a) Table lookup and (b) Coordinate rotation (CORDIC).
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Given the coefficients of an FIR decimation or interpolation filter, the structure of choice for the real-
ization of a decimate by D or an interpolate by D filter is the polyphase structure [12] shown in Fig. 42.5.
The attractiveness of this structure is in the fact that the filter is always operated at the lower sampling
frequency. 

In many cases it is desirable to resample the signal by a power of 2N. In which case N decimate
(interpolate) by two stages can be cascaded one after the other. Each decimator will consist of a halfband
filter followed by a decimator. The halfband filter could be realized using the polyphase structure to
simplify its implementation. Moreover, these filters are typically very small consisting of anywhere from
7 to 15 taps depending on the specified stopband attenuation and the size of the transition band. Their
implementation can be simplified by exploiting the fact that close to half of the coefficients are zero and
the remainder are symmetric about the main tap due to the linear phase characteristics of the halfband
filter. Finally, since these are fixed-coefficient filters, they can be realized using CSD coefficients [13].

It is interesting to note that for the special case of a decimate (interpolate) by 2N, it is possible to reuse
the same hardware element and simply recirculate the data through it. In this architecture, the filter is
run at the highest data sampling rate. The first pass through the filter will use up 1/2 of its computational
resources, the second pass will use up 1/4 of the resources, and so on [14]. Although conceptually
attractive, the clock generation circuit for such an architecture is quite critical and complex and this
approach looses its appeal for recirculating factors greater than 3 or 4. 

In cases where the oversampling ratio is large (e.g., narrowband signal) an alternative approach using
a cascaded integrator-comb (CIC) structure can be used to implement a multiplierless decimator. The
interested reader is referred to [15] for a brief overview of a CIC ASIC.

The continuously variable decimator block shown in Fig. 42.2 can resample the input signal by any
factor α in the range of 2–4. The operation of this block is equivalent to that shown in Fig. 42.6, where
the input data x(n), originally sampled at 1/Ts is resampled to produce an output sequence y(n) sampled
at 1/Ti. The entire operation is performed digitally.

To better understand the operation of this block, let us define the variable µk, to be the time difference
between the output sample y(k) and the most recent input sample x1. The job of the variable rate
interpolator is to weight the adjacent input samples (…, x0, x1,…), based on the ratio µk/Ts, and add the
weighted input samples to obtain the value of the output sample, y(k). Mathematically, a number of
interpolation schemes can perform the desired operation; however, many of them, such as sinc-based inter-
polation, require excessive computational resources for a practical hardware implementation. For real-time

FIGURE 42.5 Polyphase filter structures for interpolation and decimation.

FIGURE 42.6 Variable rate interpolation.
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calculation, Erup et al. [16] found polynomial-based interpolation to yield satisfactory results while
minimizing the hardware complexity. In this approach, the weights of the input samples are given as
polynomials in the variable µk and can be easily implemented in hardware using the Farrow structure
[17] shown in Fig. 42.7. In this sructure, all the filter coefficients are fixed and polynomials in µk are
realized by nesting the multipliers as shown in Fig. 42.7. 

The signal contained in the imageband will cause aliasing after resampling; however, proper choice of
the coefficients in the Farrow structure can help optimize the frequency response of the interpolator for
a particular application. An alternative method to determine the filter coefficients is outlined in (see Fig.
42.8) [18].

Conclusions

Section 42.2 reviewed trends in the wireless communications industry towards high speed data commu-
nications in both the macrocellular and the microcellular environments. The implication of these trends
on the underlying digital circuits will move designers towards dedicated circuits and ASICs to meet these
demands. As such the paper outlined the major signal processing tasks that these ASICs will have to
implement.
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42.3 Communication System-on-a-Chip

Samiha Mourad and Garret Okamoto

Introduction

Communication traffic worldwide is exploding: wired and wireless, data, voice, and video. This traffic
is doubling every 100 days and it is anticipated that there will be a million people online by 2005. Today,
more people are actually using mobile phones than are surfing the Internet. This unprecedented growth
has been encouraged by the deployment of digital subscriber lines (DSL) and cable modems, which
telephone companies have provided promptly and at a relatively low price. Virtual corporations have
been created because of the availability and dependability of communication products such as laptops,
mobile phones and pagers, which all support mobile employees. For example, vending machines may
contact the suppliers when the merchandise level is low so that suppliers remotely vary the prices of the
merchandise according to supply and demand. 

With such proliferation in communication products and the need for a high volume, high speed transfer
of data, new standards such as ATM and ITU-T are being developed. In addition, a vast body of knowledge,
central to problems arising in the design and planning of communication systems, has been published;
however, in fabricating products to meet these needs, the industry has continually attempted to use new
design approaches that have not been fully researched or documented. 
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Communication devices need to be of small size and low power dissipation for portability and need
to be operated at very high speed. Any of these devices, as other digital products, may consist of a single
integrated circuit (IC) or more likely many ICs mounted on a printed circuit broad (PCB). Although
the new technology (small feature size) has resulted in higher speed ICs, the transfer of data from one
IC to another still creates a bottleneck of information. The I/O pads, with their increasing inductance,
cause supply surges that compromise signal integrity. As an alternative to PCB design, another design
approach known as multichip module (MCM) consists of placing more than one chip in the same
package. The connections between modules have a large capacitive load that slows down communication
among all of the modules. In the late 1990s, a new paradigm design called system-on-a-chip (SoC) has
been successfully used to integrate the components of an entire system on one chip. This is in contrast
to the traditional design where the components are implemented in separate ICs and then assembled on
a PCB.

Section 42.3 describes the new design paradigm of a SoC and its beneficial attributes are outlined.
The remainder of the paper concentrates on communication devices and the subsection on “Need for
Communication Systems” emphasizes the need for these systems. Descriptions of communication SoCs
and projections on their characteristics are given in “Communication SoCs.” Latency, an important
attribute, is the subject of “System Latency”; and “Communication MCMs” describes the integration of
these systems with analog parts in MCM.

System-on-a-Chip (SoC)

The shift toward very deep submicron technology has encouraged IC designers to increase the complexity
of their designs to the extent that an entire system is now implemented on a single chip. To increase the
design productivity and decrease time-to-market, reuse of previously designed modules is becoming
common practice in SoC design; however, the reuse approach is not limited to in-house designs. It is
extended to modules that have been designed by others as well. Such modules are referred to as embedded
cores. This design approach has encouraged the founding of several companies that specialize in providing
embedded cores to service multiple customers. It is predicted that in the near future, cores, of which
40% to 60% will be from external sources [Smith 1997], will populate 90% of a chip. Except for a very
few, individual companies do not have the wide range of expertise that can match the spectrum of design
types in demand today.

Core-based design, justified by the need to decrease time-to-market, has created a host of challenging
problems for the design and testing community. First, there are legal issues for the core provider and the
user, regarding the intellectual property (IP). Second, there are problems with integrating and verifying
a mix of proprietary and external cores that are more involved than simply integrating ICs on a PCB. 

A typical SoC configuration is shown in Fig. 42.9. It consists of several cores that are also referred to
as modules, blocks, or macros. Often, these terms are used interchangeably. These cores may be DSP, RAM

FIGURE 42.9 A system-on-a-chip (SoC).
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modules, or controllers. This same image of an SoC may be perceived as a PCB with the cores being the
ICs mounted on it. 

It also resembles standard cells laid on the floor of an IC. In the latter case, the blocks are of elementary
gates of the same layout height. That is, they are all ICs in the PCB case or all standard cells in the IC
case. For an SoC, they may consist of a several types, as described below. A UDL is a user defined logic
that is basically equivalent to glue logic in microprocessors.

Cores are classified in three categories: hard, firm, and soft [Gupta 1997]. Hard cores are optimized
for area and performance and they are mapped into a specific technology and possibly a specific foundry.
They are provided as layout files that cannot be modified by the users. Soft cores, on the other hand, may
be available as HDL technology-independent files. From a design point of view, the layout of a soft core
is flexible, although some guidelines may be necessary for good performance. The flexibility allows
optimization to the desired levels of performance or area. Firm cores are usually provided as technology-
dependent netlists using library cells whose size, aspect ratio, and pin location can be changed to meet
the customer needs. Table 42.1 summarizes the attributes of reusable cores. The table indicates a clear
trade-off between design flexibility on one hand, and predictability and hence time-to-market perfor-
mance complexity on the other. Soft cores are easily embedded in a design. The ASIC designers have
complete control over the implementation of this core, but it is the designer’s job to optimize it for area,
test, or power performance. 

Hard cores are very appropriate for time critical applications, whereas soft cores are candidates for
frequent customization. The relationship between flexibility and predictability is illustrated in Fig. 42.10.

TABLE 42.1 Categorizing Reusable Cores [Hunt 1996]

Type Flexibility Design Flow Representation Libraries
Process 

Technology Portability

Soft Very flexible 
Unpredictable

System design Behavioral Not applicable Independent Unlimited

RTL design RTL

Firm Flexible Floor planning RTL, blocks 
Netlist

Reference Generic Library 
mapping

Placement Footprint, timing 
model 

Hard Inflexible 
Predictable

Routing 
Verification

Polygon data Process specific 
library and 
design rules

Fixed Process 
mapping

FIGURE 42.10 Trade-offs among types of cores  [Hunt 1996].
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The cores can also be classified from a testing perspective. For example, there is typically no way to test
a hard core unless the supplier provides a test set for this core, whereas a test set for the soft core needs
to be created if not provided by the core provider. This makes hard cores more demanding when
developing a test strategy for the chip. For example, it would be difficult to transport through hard cores
a test for an adjacent block that may be another core or a UDL component. In some special cases, the
problem may be alleviated if the core includes well described testability functions.

Design and Test Flow

An integrated design and test process is highly recommended. This approach cannot be more appropriate
than it is for core-based systems. Conceptually, the SoC paradigm is analogous to the integration of
several ICs on a PCB, but there is a fundamental difference. Whereas in a PCB the different ICs have
been designed, verified, fabricated, and tested independently from the board, fabrication and testing of
an SoC are done only after integration of the different cores. This fact implies that even if the cores are
accompanied by a test set, incorporation of the test sets is not that simple and must be considered while
integrating the system. In other words, reuse of design does not translate to easy reuse of the test set.
What makes this task even more difficult is that the system may include different cores that have different
test strategies. Also, the cores may cover a wide range of functions as well as a diverse range of technologies,
and they may be described using different HDL languages, such as Verilog, VHDL, and Hardware C to
GDSII. 

The basic design flow applies to SoC design in the sense that the entire system needs to be entered,
debugged, modified for testability, validated, and mapped to a technology; but all of this has to be done
in an integrated framework. Before starting the design process, an overall strategy needs to be chartered
to facilitate the integration. In this respect, the specification phase is enlarged and a test strategy is included.
This move toward more design on the system level and less time on the logic level.

The design must first be partitioned. Then decisions must be made on such questions as:

• Which partition can be instantiated by an existing core? 

• Should a core be supplied by a vendor or done in-house?

• What type of core should be used?

• What is the integration process to facilitate verification and testing?

Because of the wide spectrum of core choices and the diversity of design approaches, SoC design requires
a meta-methodology. That is, a methodology that can streamline the demands of all other methodologies
used to design and test the reusable blocks as well as their integration with user defined logic. To optimize
on the core-based design, an industry group deemed it necessary to establish a common set of specifi-
cations. This group, known as the virtual socket interface alliance (VSIA), was announced formally in
September 1996. Its intent is to establish standards that facilitate communication between core creators
and users, the SoC designers [IEEE 1999a]. 

An example of using multiple cores is the IBM-designed PowerPC product line, based on the PowerPC
40X chip series [Rincon 1997]. The PowerPC micro-controller consisted of a hard core and several soft
cores. For timing critical components such as the CPU, a hard core was selected, while soft cores were
used for peripheral functions such as the DMA controller, external bus interface unit (EBIU), timers,
and serial port unit (SPU). The EBIU may be substituted by, say, a hard core from Rambus. 

A change in the simulation and synthesis processes is required for embedded cores due primarily to
the need to protect the intellectual property of the core provider. Firm cores may be encrypted in such
a manner as to respond to the simulator without being readable by humans. For synthesis, the core is
instantiated in the design. In the case of a soft core, sometimes the parameters are scaled to meet the
design constraints. To preserve the core performance, the vendor may include an environment option
to prevent the synthesis program from changing some parts of the design. This will protect the core
during optimization, but the designer may remove such an option and make some changes in the design.
A hard or a firm core is treated as a black box from the library and goes through the synthesis process
untouched. 
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Advantages of SoCs

The overall size of the end product is reduced because manufacturers can put the major system functions
on a single chip, as opposed to putting them on several chips. This reduces the total number of chips
needed for the end product. For the same reason, the power consumption is reduced.

SoC products provide faster chip speeds due to the integration of the components/functions into one
chip. Many applications such as high-speed communication devices (VoIP, MoIP, wireless LAN, 3G
cellular phones) require chip speeds that may be unattainable with separate IC products. This is primarily
due to the physical limitations of moving data from one chip to another, through bonding pads, wires,
buses, etc. Integrating chip components/functions into one chip eliminates the need to physically move
data from one chip to another, thereby producing faster chip speeds. Another important advantage of
SoCs is the reuse of previously designed circuits, thereby reducing the design process time. This conse-
quently translates into shorter time-to-market. In addition to decreasing time-to-market, it is very impor-
tant to decrease the cost of packaging and testing, which are constantly increasing with the finer technology
features. Instead of testing several chips and the PCB on which they are assembled, testing time is reduced
to only one IC. SoCs are, however, very complex and standards are now being developed to facilitate
their testing [IEEE 1995b]. In the remainder of this paper, we focus on communication systems that we
will refer to as comm. SoC or simply SoC.

Need for Communication Systems 

Public switched telephone networks (PSTN) are becoming congested due to increasing Internet traffic
as shown in Fig. 42.11. This drives the development of broadband access technology and high-speed
optical networks. Another important factor is the convergence of voice, data, and video. As a consequence,
there is a need for low and uniform latency devices for real time traffic. In addition, Internet service

FIGURE 42.11 Internet growth.

FIGURE 42.12 Components of a communication SoC.
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providers (ISP) and corporate Intranet are needed for voice and data IP gateways. Mobile users drive the
development of wireless and satellite devices. In addition, there is an increasing demand for routers/switches,
DSL modems, etc.

All needs mentioned above require smaller size and faster communication devices. Telephone calls
that used to last an average of three minutes now exceed an hour or more when connected to the Internet.
This has resulted in increasing the demand on DSL that transmit data over Internet protocols (IP) such
as voice-over-IP (VoIP), mobile-over-IP (MoIP), and wireless requires speeds that may be unattainable
with separate IC products. Examples of products:

1. 2G and 3G wireless devices (CDMA2000, WCDMA), etc.
2. DSL modems
3. Infrastructure, carrier, and enterprise circuit, packet switched and VoIP devices
4. Satellite modems
5. Cable modems and HFC routing devices
6. De/MUX for data stream on optical network
7. Web browsers (WAP) or short messaging systems (I-mode)
8. LAN telephony
9. ATM systems

10. Enterprise, edge network and media-over-IP switches and high-speed routers
11. Wireless LAN (IEEE 802.11 IEEE 802.11a, and IEEE 802.11b)
12. Bluetooth

Maybe the most important example of an emerging wireless communication standard is Bluetooth. This
is a wireless personal area network (PAN) technology from the Bluetooth special interest group (SIG),
founded in 1998 by Ericsson, IBM, Intel, Nokia, 3Com, Lucent, Microsoft, Motorola, and Toshiba. Bluetooth
is an open standard for short-range transmission of digital voice and data between mobile devices (cellular
phones, PDAs, laptops) and desktop devices. Bluetooth may provide a common standard to enable PDAs,
laptop and desktop computers, cellular phones, thermostats, and virtually every other home and business
electronic device to communicate with each other. Manufacturers will rely on SoC advances to help reach
the target of $5 added cost to a consumer appliance by 2001. A study by Merrill Lynch projected that Bluetooth
semiconductor revenue will reach $3.4 billion in 2005, with Bluetooth included in 1.7 billion devices that
year, and the Bluetooth SIG estimated that the technology would be a standard feature in 100 million mobile
phones by the end of 2001.

Communication SoCs

The exponential growth of the Internet and the bandwidth shown in Fig. 42.11, indicate that more
communication products are geared towards this technology, which requires a communication mode
different than that used in traditional switching telephony. For example, in a PSTN, circuit switching is
used and requires a dedicated physical circuit through the network during the life of a telephone session.
In Internet and ATM technology, however, packet switching is used. Packet switching is a connectionless
technology, where a message is broken into several small packets to be sent to a destination. The packet
header contains the destination and source address, plus a sequence number so that the message can be
reassembled. 

There is a paradigm shift in digital communication motivated by the evolution of Internet as mission
critical service that demands migration from circuit switch to packet switch. The older paradigm sup-
ported the data traffic part of the telephone networks. Whereas the new paradigm support the convergence
of voice, data, and video and require a new class of media-over-IP systems voice traffic as part of the
data network, thus requiring communication SoC for VoIP.

Most communication SoC consists of few components that are clustered around a central processing
unit (CPU), which controls some or all of the following: (1) Packet processing, (2) Programmable DSP
for data and signaling algorithm/protocol implementation, (3) I/O for interface with voice and data network
such as ATM, PCI, Ethernet, H100/110, (4) memory system for intermediate storage of voice and data
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streams, (5) hardwired DSP or accelerators for Codec and multi level mod/demod to increase system
throughput, and (6) MPEG cores for media-over-IP MoIP processing.

Communication SoCs are actually a mix of software and hardware. Some of the circuits contain hard-
wired algorithms for code processing, but the software can be stored on the chip for protocols that process
data. Figure 42.13 shows the software for a typical VoIP. This include several layers of software and IP
such as: 

1. Telephony signaling: Network interface protocol, which contains address translation and parsing
and protocols such as H-3xx, media gateway control protocol (MGCP), and real time conferencing
protocol (RTCP).

2. Voice processing: includes voice-coding unit using G.xx protocol, voice activation detection (VAD),
comfort noise generation (CNG), which is used in fax-to-fax communication. 

3. User interface: provides system services to the user such as key pad and display drivers and user
procedures.

4. Network management: software upload and handling Java applets.
5. Network Interface Protocols: such as transmission control protocol (TCP), user datagram protocol

(UDP), which is a TCP/IP, and Ethernet driver.

Other software and protocol may also be included such as packet processing and network management
protocols, call control/signaling protocols/fax and modem tone detection, echo canceller, VAD, CNG,
read to order systems (RTOS), and other software components for MoIP systems. Communication SoCs
that accomplish the above tasks are expected to grow in size as projected in Fig. 42.14. The number of

FIGURE 42.13 Software for VoIP SoC.

FIGURE 42.14 Communications SoCs: Density and memory size.
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gates per chip will increase from one million in 1999 to 7 M in 2003. A major component in a commu-
nication SoC is the embedded memory banks, which is also expected to increase from 1 to 16 Mbit. The
type of memory used will change from static RAMs (SRAM) to enhanced dynamic RAMs (EDRAM),
which are much more compact. 

The processing power of these SoCs is also expected to increase as illustrated in Fig. 42.15. The
processing power is measured in million instructions per second (MIPs). It is predicted to grow from
100 to 1000 MIPs (dashed line) from 1999 to 2003. In same time period, the memory bandwidth (solid
line) will increase from 100 to 1000 Mbits. The growth of the number of DSP processors by SoC is shown
in Fig. 42.16(a). With all of this growth, it is interesting that the price of SoCs is estimated to decrease
according to the trend shown in Fig. 42.16(b). 

Several predictions were given to the bandwidth of communication chips. Two of these predictions
are shown in Fig. 42.17. One assumes that the bandwidth will triple each year in the next 25 years as
illustrated by the solid line [George Dilder-Telecosm]. The other shows that the growth will be at the
rate of 8–16 times a year [SUN Microsystems]. In the 1990s, Bill Gates claimed that “we will have infinite
bandwidth in a decade of time [Gates 1994].”

System Latency

Latency is defined as the delay experienced a certain processing stage. The latency trends in Fig. 42.18
refer to the time taken to map the voice data into a packet to be transmitted. Three main types of latency
are usually identified: 

FIGURE 42.15 Communications SoCs processing power and memory handwidth.

FIGURE 42.16 (a) Number of DSP processors per SoC. (b) Price per functional VoIP channel.
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• Frame/packetization Delay 

• Media processing delay/complexity of the system

• Bridging delay, e.g., used for conferencing or multi SoC system

These delays may occur at different times in the life of the data in the communication system. A simplified
communication system is shown in Fig. 42.18. It starts with the sender transmitting data through the
network to a receiver at the other end. The total system latency is known as the end-to-end delay. It
consists of the time taken to send the first bit of a packet to the time it takes to receive the last bit in the
stream of data, i.e., 

• delay in processing the data at the sending end,

• transit delay within the network,

• delay in processing the data at the receiving end. 

With the use of SoC, latency has been reduced and this reduction is projected to continue as the technology
feature is getting finer. The trend is illustrated in Fig. 42.19. Several SoCs may themselves be integrated
in one multichip module (MCM) as will be discussed next.

FIGURE 42.17 Bandwidth trends.

FIGURE 42.18 System latency.
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Communication MCMs

Digital communication SoCs are usually connected to external analog functions and I/O as depicted in
Fig. 42.20. In order to optimize the interface between digital SoCs and analog functions, it is beneficial
to integrate both designs in a MCM. The simplest definition for an MCM is a single electronic package
containing more than one IC [Doanne 1993]. An MCM then combines high performance ICs with a
custom-designed common substrate structure that provides mechanical support for the chips and mul-
tiple layers of conductors to interconnect them. Such an arrangement takes advantage of the performance
of the ICs because the interconnect length is much shorter. 

Multichip modules are not new, they preceded SoC. They have several advantages because they improve
the maximum external memory bandwidth achieved, reduce size and weight of the product, increase the
operating speed, and decrease power dissipation of the system; however, they are limited by wiring
capacitance to frequencies below 150 MHz, e.g., Sony’s HandyCam. Thus, they are limited by slower
memory in comparison with the massive parallel processing power of an SoC with embedded memory.

MCM wide bus pin out is restricted by cost and yield in comparison with an SoC that provides high
throughput data processing with wide 256–1024 bit on chip data bus. System configurability is harder
to achieve in MCM than in SoC that are software configurable.

Analog and digital functions are separately optimized in MCM while in SoC many analog functions
are optimized and their yield improved by using on chip integrated DSP algorithms. Multiple commu-
nication SoCs and analog functions can be packaged on a single MCM. The advantage of MCMs is even
more pronounced when the package is enhanced. For example, flip-chips may be used or even more
advanced package

FIGURE 42.19 Latency for voice to packet in communication SoCs.

FIGURE 42.20 Communication MCMs.
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The interconnections between the various SoCs and the memory chips are the major paths for crosstalk
and other types of signal distortion. Reducing the routing length of the connection will help to increase
the operation speed. This can be achieved with a chip-on-chip (CoC) module. The metal redistribution
layers were fabricated on the top of the processor and the two memory chips, while the original bond
pads still remained for the wire bonding to the substrate. The memory chips can be mounted on the top
of the processor using flip-chip technology. Redistribution layers have been used to replace the bond
wires and traces on the substrate to provide the interconnections between memory chip and processor.
Since Know Good Die memory chips are usually used, testing only requires open/short test between the
processor and memory chips. No burn-in and extensive memory tests are required, so the connection
to the package ball can be removed as a new test program is implemented with the open/short test of
the memory interface through other IO paths of the VGA processor.  

Summary

The broadband access, infrastructure, carrier, and enterprise Communication SoCs will demand higher
MIPS, integration, and memory bandwidth. They will also demand lower latency, power dissipation, and
cost/channel or function. Comm. SoC utilizes programmable DSP, hardwired DSP accelerators, and I/O
to implement Comm. protocols and systems in a highly integrated form. Higher memory access fre-
quency, DSP interface speeds, and specialized analog functions will demand the integration of Comm.
SoCs on Comm. MCM
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42.4 Communications and Computer Networks

Mohammad Ilyas

The field of communications and computer networks deals with efficient and reliable transfer of infor-
mation from one point to another. The need to exchange information is not new but the techniques
employed to achieve information exchange have been steadily improving. During the past few decades,
these techniques have experienced an unprecedented and innovative growth. Several factors have been
and continue to be responsible for this growth. The Internet is the most visible product of this growth
and it has impacted the life of each and every one. Section 42.4 describes salient features and operational
details of communications and computer networks.

The contents of section 42.4 is organized in several subsections. “A Brief History” describes a brief
history of the field of communications. The “Introduction” deals with the introduction of communication
and computer networks. “Computer Networks” describes operational details of computer networks.
“Resource Allocation Techniques” discusses resource allocation mechanisms. “Challenges and Issues”
briefly describes the challenges and issues in communication and computer networks that are still to be
overcome. The “Summary and Conclusions” subsection summarizes the article.

A Brief History

Exchange of information (communications) between two or more entities has been a necessity since the
existence of human life. It started with some form and shape of human voice that one entity can create
and other(s) can listen and interpret. Over a period of several centuries, these voices evolved into languages.
As the population of the world grew, more and more languages were born. For a long time, languages were
used for face-to-face communications. If there were ever a need to convey some information (a message)
over a distance, someone would be briefed and sent to deliver the message to a distant site. Gradually,
additional methods were developed to represent and exchange the information. These methods included
symbols, shapes, and eventually alphabets. This development facilitated information recording and use
of nonvocal means for exchanging information. Hence, preservation, dissemination, sharing, and com-
munication of knowledge became easier.

Until about 150 years ago, all communication was via wireless means and included smoke signals,
beating of drums, and use of reflective surfaces for reflecting light signals (optical wireless). Efficiency
of these techniques was heavily influenced by the environmental conditions. For instance, smoke signals
were not very effective in windy conditions. In any case, as we will note later, some of the techniques that
were in use centuries ago for conveying information over a distance, were similar to the techniques that we
currently use. The only difference is that the implementation of those techniques is exceedingly more
sophisticated now than it was centuries ago.

As the technological progress continued and electronic devices started appearing on the surface, the
field of communication also started making use of the innovative technologies. Alphabets were translated
into their electronic representations so that information may be electronically transmitted. Morse code
was developed for telegraphic exchange of information. Further developments led to the use of telephone.
It is important to note that in earlier days of technological masterpieces, users would go to a common
site where one could send a telegraphic message over a distance or could have a telephonic conversation
with a person at a remote location. This was a classic example of resource sharing. Of course, human
help was needed to establish a connection with remote sites.
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As the benefits of the advances in communication technologies were being harvested, the electronic
computers were also emerging and making the news. The earlier computers were not only expensive and
less reliable, they were also huge in size. For instance, the computers that used vacuum tubes, were of
the size of a large room and used roughly about 10,000 vacuum tubes. These computers would stop
working if a vacuum tube had burnt, and the tube would need to be replaced by using a ladder. On the
average, those computers would function for a few minutes, before another vacuum tube’s replacement
was necessary. A few minutes of computer time was not enough to execute a large computer program.
With the advent of transistors, computers not only became smaller in size, less expensive, but also more
reliable. These aspects of computers resulted in their widespread applications. With the development of
personal computers, there is hardly any side of our lives that has not been impacted by the use of computers.
The field of communications is no exception and the use of computers has escalated our communication
capabilities to new heights.

Introduction

Communication of information from one point to another in an efficient and reliable manner has always
been a necessity. A typical communication system consists of the following components as shown in
Fig. 42.21:

• Source that generates or has the information to be transported

• Transmitter that prepares the information for transportation

• Transmission medium that carries the information from one end to the other

• Receiver that receives the information and prepares it for delivering to the receiver

• Destination that takes the information from receiver and utilizes it as necessary

The information can be generated in analog or in digital form. Analog information is represented as
a continuous signal that varies smoothly in time. As one speaks in a microphone, an analog voice signal
is generated. Digital information is represented by a signal that stays at some fixed level for some duration
of time followed by a change to another fixed level. A computer works with digital information that has
two levels (binary digital signals). Figure 42.22 shows an example of analog and digital signals. Trans-
mission of information can also be in analog or in digital form. Therefore, we have the following four
possibilities in a communication system [21]:

• Analog information transmitted as an analog signal

• Analog information transmitted as a digital signal

• Digital information transmitted as an analog signal

• Digital information transmitted as a digital signal

There may not be a choice regarding the form (analog or digital) of information being generated by
a device. For instance, a voice signal as one speaks, a video signal as generated by a camera, a speed signal
generated by a moving vehicle, and an altitude signal generated by the equipment in a plane will always
be analog in nature; however, there is a choice regarding the form (analog or digital) of information
being transmitted over a transmission medium. Transmitted information could be analog or digital in
nature and information can be easily converted from one form to another.

FIGURE 42.21 A typical communication system.
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Each of these possibilities has its pros and cons. When a signal carrying information is transmitted,
it looses its energy and strength and gathers some interference (noise) as it propagates away from the
transmitter. If energy of signal is not boosted at some intermediate point, it may attenuate beyond
recognition before it reaches its intended destination. That will certainly be a wasted effort. In order to
boost energy and strength of a signal, it must be amplified (in case of analog signals) and rebuild (in
case of digital signals). When an analog signals is amplified, the noise also becomes amplified and that
certainly lowers expectations about receiving the signal at its destination in its original (or close to it)
form. On the other hand, digital signals can be processed and reconstructed at any intermediate point
and, therefore, the noise can essentially be filtered out. Moreover, transmission of information in digital
form has many other advantages including processing of information for error detection and correction,
applying encryption and decryption techniques to sensitive information, and many more. Thus, digital
information transmission technology has become the dominant technology in the field communications
[9,18].

As indicated earlier, communication technology has experienced phenomenal growth over the past
several decades. The following two factors have always played a critical role in shaping the future of
communications [20]:

• Severity of user needs to exchange information

• State of the technology related to communications

Historically, inventions have always been triggered by the severity of needs. It has been very true for
the field of communications as well. In addition, there is always an urge and curiosity to make things
happen faster. When electricity was discovered and people (scattered around the globe) wanted to
exchange information over longer distances and in less time, telegraph was invented. Morse code was
developed with shorter sequences (of dots and dashes) for more frequent alphabets. That resulted in
transmission of message in a shorter duration of time. Presence of electricity, and capability of wires to

FIGURE 42.22 Typical analog and digital signals.
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carry information over longer distances, led to the development of devices that converted human voice
into electrical signal, and thus led to the development of telephone systems. Behind this invention was
also a need/desire to establish full-duplex (two-way simultaneous) communication in human voice. As
the use of telephone became widespread, there was a need for a telephone user to be connected to any
other user, and that led to the development of switching offices. In the early days, the switching offices
were operated manually. As the state of the technology improved, the manual switching offices were
replaced by automatic switching offices. Each telephone user was assigned a telephone number for
identification purposes and a user able to dial the number for the purpose of establishing a connection
with the called party. As the computer technology improved and the computers became easier to afford
and smaller in size, they found countless uses including their use in communications. The computers
not only replaced the automatic (electromechanical) switching offices, they were also employed in many
other aspects of communication systems. Examples include conversion of information from analog to
digital and vice versa, processing of information for error detection and/or correction, compression of
information, and encryption/decryption of information, etc.

As computers became more powerful, there were many other applications that surfaced. The most visible
application was the amount of information that users started sharing among themselves. The volume of
information being exchanged among users has been growing exponentially over the last three decades.
As users needed to exchange such a mammoth amount of information, new techniques were invented
to facilitate the process. There was not only a need for users to exchange information with others in an
asynchronous fashion, there was also need for computers to exchange information among themselves.
The information being exchanged in this fashion has different characteristics than the information being
exchanged through the telephone systems. This need led to the interconnection of computers with each
other and that is what is called computer networks.

Computer Networks

Computer networks is an interconnection of computers. The interconnection forms a facility that pro-
vides reliable and efficient means of communication among users and other devices. User communication
in computer networks is assisted by computers, and the facility also provides communication among
computers. Computer networks are also referred to as computer communication networks. Interconnec-
tion among computers may be via wired or wireless transmission medium [5,6,10,13,18].

There are two broad categories of computer networks:

• Wide area networks

• Local/metropolitan area networks

Wide area computer networks, as the name suggests, span a wider geographical area and essentially
have a global scope. On the other hand, local/metropolitan area networks span a limited distance. Local
area networks are generally confined to an industrial building or an academic institution. Metropolitan
area networks also have limited geographical scope but it is relatively larger than that of the local area
networks [19]. Typical wide and local/metropolitan area networks are shown in Fig. 42.23.

Once a user is connected to a computer network, it can communicate with any other user that is also
connected to the network at some point. It is not required that a user must be connected directly to
another user for communicating. In fact, in wide area networks, two communicating users will rarely be
directly connected with each other. This implies that the users will be sharing the transmission links for
exchanging their information. This is one of the most important aspects of computer networks. Sharing
of resources improves utilization of the resources and is, of course, cost-effective as well. In addition to
sharing the transmission links, the users will also share the processing power of the computers at the
switching nodes, buffering capacity to store the information at the switching nodes, and any other
resources that are connected to the computer network. A user that is connected to a computer network
at any switching node will have immediate access to all the resources (databases, research articles, surveys,
and much more) that are connected to the network as well. Of course, access to specific information
may be restricted and a user may require appropriate authorization to access the information.
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The information from one user to another may need to pass through several switching nodes and trans-
mission links before reaching its destination. This implies that a user may have many options available to
select one out of many sequences of transmission links and switching nodes to exchange its information.
That adds to the reliability of information exchange process. If one path is not available, not feasible or is
not functional, some other path may be used. In addition, for better and effective sharing of resources
among several users, it is not appropriate to let any user exchange a large quantity of information at a time;

FIGURE 42.23 (a) A typical wide area computer communication network. (b) A typical local/metropolitan area
communication bus network. (c) A typical local/metropolitan area communication ring network.
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however, it is not uncommon that some users may have a large quantity of information to exchange. In
that case, the information is broken into smaller units known as packets of information. Each packet is
sent towards destination as a separate entity and all packets are assembled together at the destination
side to re-create the original piece of information [2].

Due to resource sharing environment, users may not be able to exchange their information at any
time they wish to because the resources (switching nodes, transmission links) may be busy serving other
users. In that case, some users may have to wait for some time before they begin their communication.
Designers of computer networks should design the network so that the total delay (including wait time)
is as small as possible and that the total amount of information successfully exchanged (throughput) is
as large as possible.

As can be noted, many aspects must be addressed for enabling networks to transport users’ information
from one point to another. The major aspects are listed below:

• Addressing mechanism to identify users

• Addressing mechanism for information packets to identify their source and destination

• Establishing a connection between sender and receiver and maintaining it

• Choosing a path or a route (sequence of switching nodes and transmission links) to carry the
information from a sender to a receiver

• Implementing a selected route or path

• Checking information packets for errors and recovering from errors

• Encryption and decryption of information

• Controlling the flow of information so that shared resources are not over taxed

• Informing the sender that the information has been successfully delivered to the intended desti-
nation (acknowledgement)

• Billing for the use of resources

• Making sure that different computers that are running different applications and operating sys-
tems, can exchange information

• Preparing information appropriately for transmission over a given transmission medium.

This is not an exhaustive list of items that need to be addressed in computer networks. In any case,
all such issues are addressed by very systematic and detailed procedures. The procedures are called
communication protocols. The protocols are implemented at the switching nodes by a combination of
hardware and software. It is not advisable to implement all these features in one module of hardware
or software because that will become very difficult to manage. It is a standard practice that these features
be divided in different smaller modules and then modules be interfaced together to collectively provide
implementation of these features. International Standards Organization (ISO) has suggested dividing
these features into seven distinct modules called layers. The proposed model is referred to as Open System
Interconnection (OSI) reference model. The seven layers proposed in the OSI reference model are [2]:

• Application layer

• Presentation layer

• Session layer

• Transport layer

• Network layer

• Data link layer

• Physical layer

Physical layer deals with the transmission of information on the transmission medium. Data link layer
handles the information on a single link. Network layer deals with the path or route of information from
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the switching node where source is connected to the switching node where receiver is connected. It also
monitors end-to-end information flow. The remaining four layers reside with the user equipment.
Transport layer deals with the information exchange from source to the sender. Session layer handles
establishment of session between source and the receiver and maintains it. Presentation layer deals with
the form in which information is presented to the lower layer. Encryption/decryption of information
can also be performed at this layer. Application layer deals with the application that generates the infor-
mation at the source side and what happens to it when it is delivered at the receiver side.

As the information begins from the application layer at the sender side, it is processed at every layer accord-
ing to the specific protocols implemented at that layer. Each layer processes the information and appends
a header and/or a trailer with the information before passing it on to the next layer. The headers and trailers
appended by various layers contribute to the overhead and are necessary for transportation of the
information. Finally, at the physical layer, the bits of information packets are converted to an appropriate
signal and transmitted over the transmission medium. At the destination side, the physical layer receives
the information packets from the transmission medium and prepares them for passing these to the next
higher layer. As a packet is processed by the protocol layers at the destination side, its headers and trailers
are stripped off before it is passed to the next layer. By the time information reaches the application layer,
it should be in the same form as it was transmitted by the source.

Once a user is ready to send information to another user, he or she has two options. He or she can
establish a communication with the destination prior to exchanging information or he can just give the
information to the network node and let the network deliver the information to its destination. If commu-
nication is established prior to exchanging the information, the process is referred to as connection-oriented
service and is implemented by using virtual circuit connections. On the other hand, if no communication
is established prior to sending the information, the process is called connectionless service. This is imple-
mented by using datagram environment. In connection-oriented (virtual circuit) service, all packets between
two users travel over the same path through a computer network and hence arrive at their destination in
the same order as they were sent by the source. In connectionless service, however, each packet finds its
own path through the network while traveling towards its destination. Each packet will therefore experience
different delay and the packets may arrive at their destination out of sequence. In that case, destination will
be required to put all the packets in proper sequence before assembling them [2,10,13].

As in all resource sharing systems, allocation of resources in computer networks requires a careful
attention. The main idea is that the resources should be shared among users of a computer network as
fairly as possible. At the same, it is desired to maintain the network performance as close to its optimal
level as possible. The fairness definition, however, varies from one individual to another and depends upon
how one is associated with a computer networks. Although fairness of resource sharing is being evaluated,
two performance parameters—delay and throughput—for computer networks are considered. The delay
is the duration of time from the moment information is submitted by a user for transmission to the
moment it is successfully delivered to its destination. The throughput is amount of information success-
fully delivered to its intended destination per unit time. Due to the resource sharing environment in
computer networks, these two performance parameters are contradictory. It is desired to have the delay
as small as possible and the throughput as large as possible. For increasing throughput, a computer
network must handle increased information traffic, but the increased level of information traffic also
causes higher buffer occupancy at the switching nodes and hence, more waiting time for information
packets. This results in an increase in delay. On the other hand, if information traffic is reduced to reduce
the delay, that will adversely affect the throughput. A reasonable compromise between throughput and
delay is necessary for a satisfactory operation of a computer network [10,11].

Wide Area Computer Networks

A wide area network consists of switching nodes and transmission links as shown in Fig. 42.23(a). Layout
of switching nodes and transmission links is based on the traffic patterns and expected volume of traffic
flow from one site to another site. Switching nodes provide the users access to a computer network and
implement communication protocols. When a user is ready to transmit its information, the switching
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node, to which the user is connected to, will establish a connection if a connection-oriented service has
been opted. Otherwise, the information will be transmitted in a connectionless environment. In either
case, switching nodes play a key role in determining path of the information flow according to some
well-established routing criteria. The criteria include performance (delay and throughput) objectives
among other factors based on user needs. For keeping the network traffic within a reasonable range,
some traffic flow control mechanisms are necessary. In late 1960s and early 1970s, when data rates of
transmission media used in computer networks were low (a few thousands of bits per second), these
mechanisms were fairly simple. A common method used for controlling traffic over a transmission link
or a path was an understanding that sender will continue sending information until the receiver sends
a request to stop. The information flow will resume as soon as the receiver sends another request to
resume transmission. Basically the receiver side had the final say in controlling the flow of information
over a link or a path. As the data rates of transmission media started increasing, this method was not
deemed efficient. To control the flow of information in relatively faster transmission media, a sliding
window scheme was used. According to this scheme, sender will continuously send information packet
but no more than a certain limit. Once the limit has reached, the sender will stop sending the information
packets and will wait for the acknowledgement of the packets that have been transmitted. As soon as an
acknowledgement is received, the sender may send another packet. This method ensures that there are no
more than a certain specific number of packets in transit from sender to receiver at any given time. Again
the receiver has the control over the amount of information that sender can transmit. These techniques
for controlling the information traffic are referred to as reactive or feedback based techniques because
the decision to transmit or not to transmit is based on the current traffic conditions.

The reactive techniques are acceptable in low to moderate data rates of transmission media. As the
data rates increase from kilobits per second to megabits and gigabits per second, the situation changes.
Over the past several years, the data rates have increased manifold. Optical fibers provide enormously
high data rates. Size of the computer networks has also experienced tremendous increase. The amount
of traffic flowing through these networks has been increasing exponentially. Given that, the traffic control
techniques used in earlier networks are not quite effective anymore [11,12,22]. One more factor that has
added to the complexity of the situation is that users are now exchanging different types of information
through the same network. Consider the example of Internet. The geographical scope of Internet is
essentially global. Extensive use of optical fiber as transmission media provides very high data rates for
exchanging information. In addition, users are using Internet for exchanging any type of information
that they come across, including voice, video, data, etc. All these factors have essentially necessitated use
of modified approach for traffic management in computer networks. The main factor leading to this
change is that the information packets are moving so fast through the computer networks that any
feedback-based (or reactive) control will be too slow to be of any use. Therefore, some preventive mech-
anisms have been developed to maintain the information traffic inside a computer network to a com-
fortable level. Such techniques are implemented at the sender side by ensuring that only as much
information traffic is allowed to enter the network as can be comfortably handled by the networks
[1,20,22]. Based on the users’ needs and state of the technology, providing faster communications for
different types of services (voice, video, data, and others) in the same computer network in an integrated
and unified manner, has become a necessity. These computer networks are referred to as broadband
integrated services digital networks (BISDNs). Broadband ISDNs provide end-to-end digital connectivity
and users can access any type of communication service from a single point of access. Asynchronous
transfer mode (ATM) is expected to be used as a transfer mechanism in broadband ISDNs. ATM is
essentially a fast packet switching technique where information is transmitted in the form of small fixed-
size packets called cells. Each cell is 53 bytes long and includes a header of 5 bytes. The information is
primarily transported using connection-oriented (virtual circuit) environment [3,4,8,12,17].

Another aspect of wide area networks is the processing speed of switching nodes. As the data rates of
transmission media increases, it is essential to have faster processing capability at the switching nodes.
Otherwise, switching nodes become bottlenecks and faster transmission media cannot be fully utilized.
When transmission media consists of optical fibers, the incoming information at a switching node is
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converted from optical form to electronic form so that it may be processed and appropriately switched
to an outgoing link. Before it is transmitted, the information is again converted from electronic form to
optical form. This slows down the information transfer process and increases the delay. To remedy this
situation, research is being conducted to develop large optical switches to be used as switching nodes.
Optical switches will not require conversion of information from optical to electronic and vice versa at
the switching nodes; however, these switches must also possess the capability of optical processing of
information. When reasonable sized optical switches become available, use of optical fiber as transmis-
sion media together with optical switches will lead to all-optical computer and communication networks.
Information packets will not need to be stored for processing at the switching nodes and that will certainly
improve the delay performance. In addition, wavelength division multiplexing techniques are rendering
use of optical transmission media to its fullest capacity [14].

Local and Metropolitan Area Networks

A local area network has a limited geographical scope (no more than a few kilometers) and is generally
limited to a building or an organization. It uses a single transmission medium and all users are connected
to the same medium at various points. The transmission medium may be open-ended (bus) as shown
in Fig. 42.23(b) or it may be in the form of a loop (ring) as shown in Fig. 42.23(c). Metropolitan area
networks also have a single transmission medium that is shared by all the users connected to the network,
but the medium spans a relatively larger geographical area, upto 150 km. They also use a transmission
medium with relatively higher data rates. Local and metropolitan area networks also use a layered imple-
mentation of communication protocols as needed in wide area networks; however, these protocols are
relatively simpler because of simple topology, no switching nodes, and limited distance between the
senders and the receivers. All users share the same transmission medium to exchange their information.
Obviously, if two or more users transmit their information at the same time, the information from
different users will interfere with each other and will cause a collision. In such cases, the information of
all users involved in a collision will be destroyed and will need to be retransmitted. Therefore, there must
be some well-defined procedures so that all users may share the same transmission medium in a civilized
manner and have successful exchange of information. These procedures are called medium access control
(MAC) protocols.

There are two broad categories of MAC protocols:

• Controlled access protocols

• Contention-based access protocols

In controlled access MAC protocols, users take turns in transmitting their information and only one
user is allowed to transmit information at a time. When one user has finished its transmission, the next
user begins transmission. The control could be centralized or distributed. No information collisions
occur and, hence, no information is lost due to two or more users transmitting their information at the
same time. Example of controlled access MAC protocols include token-passing bus and token-passing
ring local area networks. In both of these examples, a token (a small control packet) circulates among
the stations. A station that has the token is allowed to transmit information, and other stations wait until
they receive the token [19].

In contention-based MAC protocols, users do not take turns in transmitting their information. When a
users becomes ready, it makes its own decision to transmit and also faces a risk of becoming involved in a
collision with another stations who also decides to transmit at about the same time. If no collision occurs,
the information may be successfully delivered to its destination. On the other hand, if a collision occurs, the
information from all users involved in a collision will need to be retransmitted. An example of contention-
based MAC protocols is carrier sense multiple access with collision detection (CSMA/CD) which is used
in Ethernet. In CSMA/CD, a user senses the shared transmission medium prior to transmitting its infor-
mation. If the medium is sensed as busy (someone is already transmitting the information), the user will
refrain from transmitting its information; however, if the medium is sensed as free, the user transmits
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its information. Intuitively, this MAC protocol should be able to avoid collisions, but collisions still do
take place. The reason is that transmissions travel along the transmission medium at a finite speed. If
one user senses the medium at one point and finds it free, it does not mean that another user located at
another point of the medium has not already begun its transmission. This is referred to as the effect of
the finite propagation delay of electromagnetic signal along the transmission medium. This is the single
most important parameter that causes deterioration of performance in contention-based local area
networks [11,19].

Design of local area networks has also been significantly impacted by the availability of transmission
media with higher data rates. As the data rate of a transmission medium increases, the effects of prop-
agation delay becomes even more visible. In higher speed local area networks such as Gigabit Ethernet,
and 100-BASE-FX, the medium access protocols are designed such that to reduce the effects of propa-
gation delay. If special attention is not given to the effects of propagation delay, the performance of high-
speed local area networks becomes very poor [15,19].

Metropolitan area networks essentially deal with the same issues as local area networks. These networks
are generally used as backbones for interconnecting different local area networks together. These are high-
speed networks and span a relatively larger geographical area. MAC protocols for sharing the same trans-
mission media are based on controlled access. Two most common examples of metropolitan area networks
are fiber distributed data interface (FDDI) and distributed queue dual bus (DQDB). In FDDI, the trans-
mission medium is in the form of two rings, whereas DQDB uses two buses. FDDI rings carry information
in one but opposite directions and this arrangement improves reliability of communication. In DQDB,
two buses also carry information in one but opposite directions. The MAC protocol for FDDI is based on
token passing and supports voice and data communication among its users. DQDB uses a reservation-
based access mechanism and also supports voice and data communication among its users [19].

Wireless and Mobile Communication Networks

Communication without being physically tied-up to wires has always been of interest and mobile and
wireless communication networks promises that. The last few years have witnessed unprecedented growth
in wireless communication networks. Significant advancements have been made in the technologies that
support wireless communication environment and there is much more to come in the future. The devices
used for wireless communication require certain features that wired communication devices may not
necessarily need. These features include low power consumption, light weight, and worldwide commu-
nication ability.

In wireless and mobile communication networks, the access to a communication network is wireless
so that the end users remain free to move. The rest of the communication path could be wired, wireless,
or combination of those. In general, a mobile user, while communicating, has a wireless connection with
a fixed communication facility and rest of the communication path remains wired. The range of wireless
communication is always limited and therefore range of user mobility is also limited. To overcome this
limitation, cellular communication environment has been devised. In a cellular communication envi-
ronment, geographical region is divided into smaller regions called cells, thus the name cellular. Each
cell has a fixed communication device that serves all mobile devices within that cell. However, as a mobile
device, while in active communication, moves out of one cell and into another cell, service of that conn-
ection is transferred from one cell to another. This is called handoff process [7,16].

The cellular arrangement has many attractive features. As the cell size is small, the mobile devices do
not need very high transmitting power to communicate. This leads to smaller devices that consume less
power. In addition, it is well known that the frequency spectrum that can be used for wireless commu-
nication is limited and can therefore only support a small number of wireless communication connections
at a time. Dividing communication region into cells allows use of the same frequency in different cells as
long as they are sufficiently apart to avoid interference. This increases the number of mobile devices that
can be supported. Advances in digital signal processing algorithms and faster electronics have led to very
powerful, smaller, elegant, and versatile mobile communication devices. These devices have tremendous
mobile communication abilities including wireless Internet access, wireless e-mail and news items, and
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wireless video (through limited) communication on handheld devices. Wireless telephones are already
available and operate in different communication environments across the continents. The day is not far
when a single communication number will be assigned to every newborn and will stay with that person
irrespective of his/her location.

Another field that is emerging rapidly is the field if ad hoc wireless communication networks. These
networks are of a temporary nature and are established for a certain need and for a certain duration.
There is no elaborate setup needed to establish these networks. As a few mobile communication devices
come in one another’s proximity, they can establish a communication network among themselves.
Typical situations where ad hoc wireless networks can be used are classroom environment, corporate meet-
ings, conferences, disaster recovery situations, etc. Once the need for networking is satisfied, the ad hoc
networking setup disappears.

Resource Allocation Techniques

As discussed earlier, computer networks are resource sharing systems. Users share the common resources
as transmission media, processing power and buffering capacity at the switching nodes, and other resources
that are part of the networks. A key to successful operation of computer networks is a fair and efficient
allocation of resources among its users. Historically, there have been two approaches to allocation of
resources to users in computer networks:

• Static allocation of resources

• Dynamic allocation of resources

Static allocation of resources means that a desired quantity of resources is allocated to each user and
they may use it whenever they need. If they do not use their allocated resources, no one else can. On the
other hand, dynamic allocation of resources means that a desired quantity of resources is allocated to
users on the basis of their demands and for the duration of their need. Once the need is satisfied, the
allocation is retrieved. In that case, someone else can use these resources if needed. Static allocation
results in wastage of resources, but does not incur the overhead associated with dynamic allocation.
Which technique should be used in a given a situation is subject to the famous concept of supply and
demand. If resources are abundant and demand is not too high, it may be better to have static allocation
of resources; however, when the resources are scarce and demand is high, dynamic allocation is almost
a necessity to avoid the wastage of resources.

Historically, communication and computer networks have dealt with both the situations. Earlier
communication environments used dynamic allocation of resources when users will walk to public call
office to make a telephone call or send a telegraphic message. After a few years, static allocation of res-
ources was adopted, when users were allocated their own dedicated communication channels and these
were not shared among others. In late 1960s, the era of computer networks dawned with dynamic allocation
of resources and all communication and computer networks have continued with this tradition to date.
With the advent of optical fiber, it was felt that the transmission resources are abundant and can satisfy
any demand at any time. Many researchers and manufacturers held the opinion in favor of going back
to the static allocation of resources, but a decision to continue with dynamic resource allocation approach
was made and that is here to stay for many years to come [10]. 

Challenges and Issues

Many challenges and issues are related to communications and computer networks that are still to be
overcome. Only the most important ones will be described in this subsection.

High data rates provided by optical fibers and high-speed processing available at the switching nodes
has resulted in lower delay for transferring information from one point to another. However, the propagation
delay (the time for a signal to propagate from one end to another) has essentially remained unchanged.
This delay depends only on the distance and not on the data rate or the type of the transmission medium.
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This issue is referred to as latency versus delay issue [11]. In this situation traditional feedback-based
reactive traffic management techniques become ineffective. New preventive techniques for effective traffic
management and control are essential for achieving the full potential of these communication and com-
puter networks [22].

Integration of different services in the same networks has also posed new challenges. Each type of
sexrvice has its own requirements for achieving a desired level of quality of service (QoS). Within the
networks any attempt to satisfy QoS for a particular service will jeopardize the QoS requirements for
other service. Therefore, any attempt to achieve a desired level of quality of service must be uniformly
applied to the traffic inside a communication and computer network and should not be intended for any
specific service or user. That is another challenge that needs to be carefully addressed and its solutions
achieved [13].

Maintaining security and integrity of information is another continuing challenge. The threat of sensitive
information passively or actively falling into unauthorized hands is very real. In addition, proactive and
unauthorized attempts to gain access to secure databases are also very real. These issues need to be resolved
to gain the confidence of consumers so that they may use the innovations in communications and computer
networking technologies to their fullest [13].

Summary and Conclusions

Section 42.4 discussed the fundamentals of communications and computer networks and the latest
developments related to these fields. Communications and computer networks have witnessed tremen-
dous growth and sophisticated improvements over the last several decades.

Computer networks are essentially resource sharing systems in which users share the transmission
media and the switching nodes. These are used for exchanging information among users that are not
necessarily connected directly. Transmission rates of transmission media have increased manifold and
the processing power of the switching nodes (which are essentially computers) has also been multiplied.
The emerging computer networks are supporting communication of different types of services in an
integrated fashion. All types of information, irrespective of its type and source, is being transported in
the form of packets (e.g., ATM cells). Resources are being allocated to users on a dynamic basis for better
utilization. Wireless communication networks are emerging to provide worldwide connectivity and ex-
change of information at any time.

These developments have also posed some challenges. Effective traffic management techniques, meet-
ing QoS requirements, and information security are the major challenges that need to be surmounted
in order to win the confidence of users.
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42.5 Video over Mobile Networks

Abdul H. Sadka

Introduction

Due to the growing need for the use of digital video information in multimedia communications especially
in mobile environments, research efforts have been focusing on developing standard algorithms for the
compression and transport of video signals over these networking platforms. Digital video signals, by
nature, require a huge amount of bandwidth for storage and transmission. A 6-second monochrome
video clip of QCIF (176 × 144) resolution and a frame rate of 30 Hz requires over 742 kbytes of raw
video data for its digital representation where each pixel has an 8-bit luminance (intensity) value. When
this digital signal is intended for storage or remote transmission, the occupied bandwidth becomes too
large to be accommodated and thus compression becomes necessary for the efficient processing of the video
content. Therefore, in order to transmit video data over communication channels of limited bandwidth,
some kind of compression must be applied before transmission. 

Video compression technology has witnessed a noticeable evolution over the last decade as research
efforts have revolved around the development of efficient techniques for the compression of still images
and discrete raw video sequences. This evolution has then progressed into improved coding algorithms
that are capable of handling both errors and varying bandwidth availability of contemporary commu-
nication media. The contemporary standard video coding algorithms provide both optimal coding
efficiency and error resilience potential. Current research activity is focused on the technologies associated
with the provision of video services over the future mobile networks at user-acceptable quality and with
minimal cost requirements. Section 42.5 discusses the basic techniques employed by video coding tech-
nology, and the associated most prominent error resilience mechanisms used to ensure an optimal trade-
off between the coding efficiency and quality of service of standard video coding algorithms. The chapter
section also sheds the light on the algorithmic concepts underlying these technologies and provides a
thorough presentation of the capabilities of contemporary mobile access networks, such as general packet
radio service (GPRS), to accommodate the transmission of compressed video streams at various network
conditions and application scenarios.
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Evolution of Standard Image/Video Compression Algorithms

The expanding interest in mobile multimedia communications and the concurrently expanding growth
of data traffic requirements have led to a tremendous amount of research work during a period of over
15 years for developing efficient image and video compression algorithms. Both International Telecom-
munications Union (ITU) and International Organization for Standardization (ISO) have released a
number of standards for still image and video coding algorithms that employ the discrete cosine trans-
forms (DCT) and the Macroblock (MB) structure of an image to suppress the temporal and spatial redun-
dancies incorporated in a sequence of images. These standardized algorithms aimed at establishing an
optimal trade-off between the coding efficiency and the perceptual quality of the reconstructed signal.
After the release of the first still-image coding standard, namely JPEG [1], CCITT recommended the
standardisation of the first video compression algorithm for low-bit rate communications at p × 64 kbit/s
over ISDN, namely ITU-T H.261 [2] in 1990. In post 1990s, intensive work has been carried out to
develop improved versions of the aforementioned ITU standard, and this has culminated in a number
of video coding standards, namely MPEG-1 [3] for audiovisual data storage (1.5-2 Mbit/s) on CD-ROM,
MPEG-2 [4] (or ITU-T H.262) for HDTV applications (4–9 Mbit/s), ITU-T H.263 [5] for very low bit
rate (<64 kbit/s) communications over PSTN networks, and then the first content-based, object-oriented
audiovisual compression algorithm, namely MPEG-4 [6], for multimedia communications over mobile
networks in 1998. Recent standardization work resulted in recommending annexes to ITU-T H.263
standard, namely H.263+ [7] and H.263++ [8] for improved coding efficiency, bit rate scaleability, and
error resilience performance. ITU-T is currently considering the standardization of H.26L, a new video
compression algorithm expected to outperform H.263 at very low bit rate applications. Despite this
remarkable evolution of digital video coding technology, the common feature for all the released standards
so far is that they all employ the same algorithmic concepts and build on them for further improvement
in both quality and coding efficiency. In this chapter section, the fundamental techniques that constitute
the core of today’s video coders are presented.

Digital Representation of Raw Video Data

A video signal is a sequence of still images. When played at a high enough rate, the sequence of images
(mostly referred to as video frames) gives the impression of an animated video scene. Video frames are
captured by a camcorder at a certain sampling rate and processed as a sequence of still pictures correlated
by motion dependencies. When adjacent frames are strongly correlated, smaller redundancy is found in
the video signal if only the difference between successive frames is encoded. The process of exploiting
temporal redundancies between adjacent frames by subtracting the prediction image (sometimes referred
to as the motion compensated image) from the original input image and then coding the resulting residual
is called INTER frame coding. If no motion prediction was employed in encoding a video frame and only
spatial redundancies were exploited to compress a video frame, then the frame is said to be INTRA coded.

Each video frame is a two-dimensional matrix of pixels, each of which is represented by a luminance
(intensity) component and two chrominance (color) components Y, U, and V, respectively. In block-based
video coders, each frame is divided into groups of blocks (GOB). Each GOB is divided into a number of
MBs (macroblock). A MB relates to 16 pixels by 16 lines of luminance Y and the spatially corresponding
8 pixels by 8 lines of chrominance U and V. A MB consists of four Y-blocks and two spatially corresponding
color difference blocks. Figure 42.24 depicts the hierarchical layering structure of a video frame of Quadra-
ture Common Intermediate Format (QCIF) resolution, i.e., 176 pixels by 144 lines.

Basic Concepts of Block-Based Video Coding Algorithms

Despite their differences, the video coding standards have the same core structure. They all adopt the
MB structure as described in the previous section and consist of the same major building blocks. The
standard video coding algorithms employ one of the two coding modes, INTRA or INTER. A typical
block diagram of a block-based transform video coder is depicted in Fig. 42.25.
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Discrete Cosine Transforms (DCT)

The 64 coefficients of an 8 × 8 block of data are passed through a DCT transformer. DCT extracts the
spatial redundancies of the video block by gathering the biggest portion of its energy in the low frequency
components that are located in the top left corner of the block. The transfer function of a two-dimensional
DCT transformer employed in a block-based video coder is given in Eq. (42.1) below:

 (42.1)

with u, v, x, y = 0, 1, 2,…, 7, where x and y are the spatial coordinates in the pixel domain, u and v are
the coordinates in the transform domain

FIGURE 42.24 Hierarchical layering structure for a QCIF frame in block-based video coders.

FIGURE 42.25 Block diagram of a block-based video coder.

Input

Output
DCT Q

 IQ

IDCT

FM

ME

RLC HUFFZigzag+

MC

+

-

DCT: Discrete Cosine Transform
Q: Quantisation
RLC: Run-Length Coding
HUFF: Huffman Coding
IQ: Inverse Quantisation
IDCT: Inverse DCT
FM: Frame Memory
MC: Motion Compensation
ME: Motion Estimation

F u, v( )
1
4
--C u( )C v( )  f x, y( ) π 2x  + 1( )

u
16
----- π 2y + 1( )

v
16
-----coscos

y =0

∑
x =0

∑=

C u( )
1

2
------- for= u 0; = 1 otherwise

C v( ) 1

2
-------= for v 0; = 1 otherwise

7 7
© 2002 by CRC Press LLC



Quantization

Quantization is a process that maps the symbols representing the DCT transformed coefficients from
one set of levels to a narrower one in order to minimise the number of bits required to transmit the
symbols. Quantization in block-based coders is a lossy process and thus it has a negative impact on the
perceptual quality of the reconstructed video sequence. The quantization parameter (Qp) is a user-defined
parameter that determines the level of distortion that affects the video quality due to quantization. The
higher the quantization level, Qp, the coarser the quantization process. Quantization uses different tech-
niques based on the coding mode employed (INTRA or INTER), the position of the coefficient in a video
block (DC or AC coefficients), and the coding algorithm under consideration.

Raster Scan Coding

It is also known as zigzag pattern coding. The aim of zigzag coding the 8 × 8 matrix of quantised DCT
coefficients is to convert the two-dimensional array into a stream of indices with a high occurrence of
successive 0 coefficients. The long runs of zeros will then be efficiently coded as will be shown in the
next subsection. The order of a zigzag pattern encoder is depicted in Fig. 42.26.

Run-Length Coding

The run-length encoder takes the one-dimensional array of quantised coefficients as input and generates
coded runs as output. Instead of coding each coefficient separately, the run-length coder searches for runs
of similar consecutive coefficients (normally zeros after the DCT and quantisation stages) and codes the
length of the run and the preceding nonzero level. A 1-bit flag (LAST) is sent after each run to indicate
whether or not the corresponding run is the last one in the current block. Run-lengths and levels are then
fed to the Huffman coder to be assigned variable length codewords before transmission on the video channel.

Huffman Coding

Huffman coding, traditionally referred to as entropy coding, is a variable length coding algorithm that
assigns codes to source-generated bit patterns based on their frequency of occurrence within the generated
bit stream. The higher the likelihood of a symbol, the smaller the length of the codeword assigned to it
and vice versa. Therefore, Entropy coding results in the optimum average codeword size for a given set
of runs and levels. 

Motion Estimation and Prediction

For each MB in a currently processed video frame, a sum of absolute differences (SAD) is calculated
between its pixels and those of each 16 × 16 matrix of pixels that lie inside a window (in the previous
frame) of a user-defined size called the search window. The 16 × 16 matrix, which results in the least

FIGURE 42.26 Sequence of zigzag-coding coefficients of a quantised 8 × 8 block.
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SAD, is considered to most resemble the current MB and referred to as the “best match.” The displacement
vector between the currently coded MB and the matrix that spatially corresponds to its best match in
the previous frame is called the motion vector (MV) and the relative SAD is called the MB residual
matrix. If the smallest SAD is less than a certain threshold then the MB is INTER coded by sending the
MV and the DCT coefficients of the residual matrix, otherwise the MB is INTRA coded. The coordinates
of the MV are transmitted differentially using the coordinates of one or more MVs corresponding to
neighboring MBs (left MB in ITU-T H.261 or left, top, and top right MBs in ITU-T H.263 and ISO
MPEG-4) within the same video frame. Figures 42.27 and 42.28 illustrate the motion estimation and
prediction processes of contemporary video coding algorithms.

Subjective and Objective Evaluation of Perceptual Quality

The performance of a video coding algorithm can be simply subjectively evaluated by visually comparing
the reconstructed video sequence to the original one. Two major types of subjective methods are used
to assess the quality of perceptual video quality. In the first, an overall quality rating is assigned to the
image (usually last decoded frame of a sequence). In the second, quality impairment is induced on a
standard type image until it is completely similar to the reference image or vice versa. 

FIGURE 42.27 Motion estimation process in a block-based video coder.

FIGURE 42.28 Motion prediction in 2 ITU-T video coding standards.
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Objectively, the video quality is measured by using some mathematical criteria, the most common of
which is the peak-to-peak signal-to-noise ratio (PSNR) defined in Eq. (42.2).

 (42.2)

For a fair comparison of perceptual quality between two video coding algorithms, the objective and
subjective results must be evaluated at the same target bit rates. Because the bit rate in kbit/s is directly
proportional to the number of frames coded per unit of time, the frame rate (f/s) has also to be mentioned
in the evaluation process.

Figures 42.29 and 42.30 show the subjective and objective results, respectively, for coding 150 frames
of the sequence “Suzie” at a bit rate of 64 kbit/s and a frame rate of 25 f/s.

FIGURE 42.29 150th Frame of original: (a) “Suzie” sequence and its compressed version at 64 kbit/s using, (b) H.261,
(c) baseline H.263, and (d) Full-option H.263.

FIGURE 42.30 PSNR values for Suzie sequence compressed at 64 kbit/s (a) baseline H.263 (b) Full-option H.263
(c) H.261.
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Error Resilience for Mobile Video

Mobile channels are characterised by a high level of hostility resulting from high bit error ratios (BER)
and information loss. Because of the bit rate variability and the spatial and temporal predictions, coded
video streams are highly sensitive to transmission errors. This error sensitivity can be the reason for an
ungraceful degradation of video quality, and hence the total failure of the video communication service.
A single bit error could lead to a disastrous damage to perceptual quality. The most damaging effect of
errors is that which leads to a loss of synchronisation at the decoder. In this case, the decoder is unable
to determine the size of the affected variable-length video parameter and, therefore, drops the stream
bits following the position of error until it resynchronises at the next synch word. Consequently, it is
vital to employ an error resilience mechanism for the success of the underlying video communication
service.

A popular technique used to mitigate the effects of errors is called error concealment [9]. It is a decoder-
based zero-redundancy error control scheme whereby the decoder makes use of previously received error-
free video data for the reconstruction of the incorrectly decoded video segment. A commonly used approach
conceals the effect of errors on a damaged MB by relying on the content of the spatially corresponding MB
in the previous frame. In the case where motion data is corrupted, the damaged motion vector can be
predicted from the motion vectors of spatially neighboring MBs in the same picture. On the other hand,
transform coefficients could also be interpolated from pixels in neighboring blocks.

However, error concealment schemes cannot provide satisfactory results for networks with high BERs
and long error bursts. In this case, error concealment must be used in conjunction with error resilience
schemes that make the coded streams more robust to transmission errors and video packet loss. In the
literature, there are a large number of error resilience techniques specified in the standard ISO MPEG-
4 [10] and the annexes to ITU-T H.263 defined in recommendations H.263+ [11] and H.263++ [12].
One of the most effective ways of preventing the propagation of errors in encoded video sequences is
the regular insertion of INTRA-coded frames, which do not make use of any information from previously
transmitted frames; however, this method has the disadvantage of making the traffic characteristics of a
video sequence extremely bursty since a much larger number of bits are required to obtain the same
quality levels as for INTER (predictively coded) frames. A more efficient improvement to INTRA-frame
refresh consists of regular coding of INTRA MBs per frame, referred to as Adaptive INTRA Refresh (AIR),
where the INTRA coded MBs are identified as part of the most active region in the video scene. The
insertion of a fixed number of INTRA coded MBs per frame can smooth out the bit rate fluctuations
caused by coding the whole frame in INTRA mode. In the following subsections, we present two major
standard-compliant error resilience algorithms specified in the MPEG-4 video coding standard, namely
data partitioning and two-day decoding with reversible codewords.

Video Data Partitioning

The non error-resilient syntax of video coding standards suggests that video data is transmitted on a MB
basis. In other words, the order of transmission is established such as all the parameters pertaining to a
particular MB are sent before any parameter of the following MB is transmitted. This implies that a bit
error detected in the texture data of an early MB in the video frame leads to the loss of all forthcoming
MBs in the frame. Data partitioning changes the order of transmission of video data from a MB basis
to a frame basis or a Visual Object Plane (VOP) basis in MPEG-4 terminology. Each video packet that
corresponds to a VOP consists of two different partitions separated by specific bit patterns called markers
(DC marker for INTRA coded VOPs and motion marker for INTER coded VOPs). The first partition
contains the shape information, motion data, and some administrative parameters such as COD for
INTRA frames and MCBPC of all the MBs in the VOP, while the second partition contains the texture
data (i.e., the transform coefficients TCOEFF) of all the MBs inside the VOP and other control parameters
such as CBPY. Using this partitioning structure as illustrated in Fig. 42.31, the errors that hit the data
bits of the second partition do not lead to the loss of the whole frame since the error-sensitive motion
data would have been correctly decoded upfront.  
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Two-Way Decoding and Reversible Variable-Length Codewords

Two-way decoding is used with reversible VLC words in order to reduce the size of the damaged area in
a video bit stream. This error resilience technique enables the video decoder to reconstruct a part of the
stream that would have been skipped in the ordinary one-way decoding due to loss of synchronisation.
This is achieved by allowing the decoding of the variable-length codewords of the video bit stream in
the reverse direction. The reversible codewords are symbols that could be decoded in both the forward
and reverse directions. An example of reversible VLCs is a set of codewords where each one of them
consists of the same number of the starting symbol, either 1 or 0. For instance, the set of variable-length
codewords that is defined by 0100, 11001, 10101, 01010, 10011, 0010, consists of codewords that contain
three 1s or 0s each, where the 1 or 0 is the starting symbol, respectively. 

In conventional one-way decoding, the decoder loses synchronisation upon detection of a bit error.
This is mainly due to the variable rate nature of compressed video streams and the variable-length
Huffman codes assigned to various symbols that represent the video parameters. In order to restore its
synchronisation, the decoder skips all the data bits following the position of errors until it falls on the
first error-free synch word in the stream. The skipped bits are then discarded, regardless of their correct-
ness, resulting in an effective error ratio that is larger than the channel BER by orders of magnitude. The
response of the one-way video decoder to a bit error is depicted in Fig. 42.32. 

With two-way decoding, a part of the skipped segment of bits can be recovered by enabling decoding
in the reverse direction as shown in Fig. 42.33. Upon detection of a bit error, the decoder stops its
operation searching for the next synch word in the bit stream. Upon gaining synchronization at the synch
word, the decoder resumes its operation in the backward direction thereby rescuing the part of the bit
stream, which has been discarded in the forward direction. If no error is detected in the reverse direction
then the damaged area is confined to the MB where the bit error has been detected in the forward
direction. If an error has also been flagged up in the backward direction, then the segment of bits between
the positions of error in both the forward and backward directions is discarded as the error damaged
area as shown in Fig. 42.33. 

In many cases, a combination of error resilience techniques is used to further enhance the error
robustness of compressed video streams to transmission errors of mobile environments. For instance,

FIGURE 42.31 Data partitioning for error resilient video communication.

FIGURE 42.32 One-way decoding of variable-length codes.

FIGURE 42.33 Two-way decoding of variable-length codes.
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both data partitioning and two-way decoding can be jointly employed to protect the error-sensitive motion
data of the first video partition. The motion vectors and the administrative parameters contained in the
first partition are all coded with reversible VLC words. The detection of a bit error in the forward direction
triggers the decoder to stop its operation, regain synchronisation at the motion marker separating the
two partitions in the corresponding VOP, and then decode backwards to salvage some of the correctly
received bits that were initially skipped in the forward direction. 

New Generation Mobile Networks

Packet-switched mobile access networks such as GPRS [13] and EGPRS [14] are intended to give sub-
scribers access to a variety of mobile multimedia services that run on different networking platforms, let
it be the core mobile network, i.e., UMTS, ATM, or even Internet. The packet-switched mobile access
networks have a basic common feature in that they are all IP-based and allow time multi-slotting on a
given radio interface. The multi-slotting capabilities enable the underlying networking platform to accom-
modate higher bit rates by providing the end-user with a larger physical layer capacity.

The real-time interactive and conversational services are very much delay-critical, so the provision of
these services over mobile networks can only be achieved by using a service class capable of guaranteeing
the delay constraints with one-delays in the order of 200 msec being required. In order to achieve such
delay requirements, it is necessary to avoid using any retransmissions or repeat-requests scenarios by oper-
ating the RLC layer of the GPRS protocol stack in the unacknowledged mode of operations. Similarly,
the transport layer protocol that must be employed is the user datagram protocol (UDP), which operates
over IP and does not make use of any repeat-request system.

IP networks do not guarantee the delivery of packets and neither do they provide any mechanism to
guarantee the orderly arrival of packets. This implies that not only does the inter-packet arrival time vary
but it is also likely that packets may arrive out of order. Therefore, in order to transmit real-time video
information, some transport-layer functionality must be overlaid on the network layer to provide timing
information from which streaming video may be reconstructed. To offer this end-to-end network trans-
port functionality, the IETF real-time transport protocol (RTP) [15] is used. RTP fulfills functions such
as payload type identification, sequence numbering, timestamping, and delivery monitoring, and operates
on top of IP and UDP for the provision of real-time services and video applications over the IP-based
mobile networks.

On the other hand, the mobile access networks employ channel protection schemes that provide error
control capabilities against multipath fading and channel interferers. For instance, GPRS employs four
channel protection schemes (CS-1 to CS-4), offering flexibility in the degree of protection and data traffic
capacity available to the user. Varying the channel coding scheme allows for an optimization of the through-
put across the radio interface as the channel quality varies. The data rates provided by GPRS with the
channel coding schemes enabled are 8 kbit/s for CS-1, 12.35 kbit/s for CS-2, 14.55 kbit/s for CS-3, and
20.35 kbit/s for CS-4; however, almost 15% of the bits in the payload of a radio block are used up by header
information belonging to the overlying protocols. Therefore, the rates presented to the video source for
each one of the channel coding schemes per time slot are 6.8 kbit/s for CS-1, 10.5 kbit/s for CS-2, 12.2
kbit/s for CS-3, and 17.2 kbit/s for CS-4. It is, however, envisaged that the CS-1 and CS-2 schemes will be
used for video applications. Obviously, the available throughput to a single terminal will be multiples of
the given rates per slot, depending upon the multi-slotting capabilities of the terminal. Conversely, EGPRS
provides 9 channel coding schemes of different protection rates and capabilities and the choice of a suitable
scheme is again a trade-off between the throughput and the error protection potential.

Provision of Video Services over Mobile Networks

Taking into perspective the traffic characteristics of a coded video source employing a fixed quantiser,
we observe that the output bit rate is highly variable with high peaks taking place each time an INTRA-
coded frame is transmitted. INTRA frames require roughly three times on average the bandwidth required
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for transmitting a predictively coded frame. Therefore, if the frequency of INTRA frames is increased
for error control purposes as discussed in the subsection on “Error Resilience for Mobile Video,” the
encoder will have to discard a number of frames following each INTRA coded frame until some band-
width becomes available. Despite the fact that a fixed quantiser leads to a constant spatial quality, yet the
frequent insertion of INTRA frames in the video sequence has a degrading effect on the temporal quality
of the entire video sequence. In order to preventively cure this situation, it is advisable that a rate control
mechanism be employed at the video encoder before the coded video bit stream is sent over the mobile
channel. One method is to vary the used quantiser value in order to truncate the high-frequency DCT
coefficients in accordance with the target bit rate of the video coder and the number of bits available to code
a particular frame, VOP or MB. Coding an INTRA frame with a coarse quantiser results in a poor spatial
quality but helps improve the temporal quality of the video sequence by maintaining the original frame
rate and reducing the jittering effect caused by the disparity in size between INTRA and INTER coded
frames.

The video delivery over mobile channels can take the form of real-time delay-sensitive conversational
services, delay-critical (on-demand or live) streaming services, or delay-insensitive multimedia messaging
applications. The latter requires guarantee on the error-free delivery of intended messages without placing
any stipulation on the duration of transmission and therefore allows retransmissions of erroneous
messages to take place. The former two categories of video services, however, are rather more delay-critical
and necessitate the use of both application and transport layer end-to-end error control schemes for the
robust transmission of compressed video in mobile environments. 

The analysis of the GPRS protocol efficiency shows that a reduction of 15% in the data rate per time
slot, as seen by the video encoder, is enough to compensate for all the protocol overheads. The video
quality that can be achieved in video communications over the new generation mobile networks, is a
function of the time slot/coding-scheme combination and the channel conditions during the time of
video packet transmission. It is observed that in error-free conditions, CS-1 yields a sub-optimal quality
due to the large overhead it places on the available bandwidth of each time slot; however, in error-prone
conditions and for C/I ratios lower than 15 dB, CS-1 presents the best error protection capabilities and
offers the best video quality as compared to other channel coding schemes. When eight time slots are
used with CS-1, GPRS can offer a video payload data rate of 54.4 kbit/s. At this rate, it has been
demonstrated that QCIF-resolution conversational MPEG-4 video services can be offered over GPRS for
a frame rate of 10 f/s with fairly good perceptual quality, especially when frequency hopping is used;
however, for highly detailed scenes involving a high amount of motion, the error-free video quality at
high C/I ratios suffers both spatially and temporally because of the coarse quantiser used and the jitter
resulting from the large number of discarded frames respectively. The error protection schemes of the
GPRS protocol are used in conjunction with the application-layer error resilience techniques specified
by the MPEG-4 video compression standard. Figure 42.34 shows the subjective video quality achieved

FIGURE 42.34 One frame of Suzie sequence encoded with MPEG-4 at 18 kbit/s and transmitted over a GPRS
channel with C/I = 15 dB, with CS-1 and 4 time-slots used: (a) no error resilience and (b) AIR.
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by transmitting an MPEG-4 coded video sequence (at 18 kbit/s) over a GPRS channel with and without
error resilience (AIR) when CS-1 and four time slots are used.

On the other hand, video services on EGPRS are less likely to encounter the same problems posed by
the lack of bandwidth in the GPRS networks. When EGPRS employs the channel coding scheme MCS-9,
the terminal can be offered a data rate of 402.4 kbit/s when 8 time slots are employed. Obviously, at this
data rate, there exists a much higher flexibility in selecting the operating picture resolution and the video
content intended for transmission over the mobile network.

Conclusions

The provision of video services over the new generation mobile networks is made possible through the
enabling technologies supported by the error protection schemes and the multi-slotting capabilities of
the radio interface. Conversational video applications are delay-sensitive and thus do not support re-
transmissions of corrupted video data. To provide a user-acceptable video quality, the video application
must employ an error resilience mechanism in conjunction with the physical layer channel coding schemes.
A wide range of error resilience techniques have been developed in recent video compression algorithms
and their annexed versions. The use of error resilience techniques for supporting the provision of video
services over mobile networks helps enhance the perceptual quality, especially at times where the mobile
channel is suffering from low C/I ratios resulting from high BERs and radio block loss ratios.

References

1. ISO/IEC JTC1 10918 & ITU-T Rec. T.81: Information Technology—Digital Compression and coding
of continuous-tone still images: Requirements and guidelines, 1994.

2. CCITT Recommendation H.261: Video Codec for audiovisual services at p × 64 kbit/s, COM XV-R
37-E, 1990.

3. ISO/IEC CD 11172: Coding of moving pictures and associated audio for digital storage media at 1.5
Mbit/s, December 1991.

4. ISO/IEC CD 13818-2: Generic coding of moving pictures and associated audio, November 1993.
5. Draft ITU-T Recommendation H.263: Video coding for low bit rate communication, May 1996.
6. ISO/IEC JTC1/SC29/WG11N2802: Information technology—Generic coding of audiovisual objects—

Part 2: Visual, ISO/IEC 14496-2, MPEG Vancouver meeting, July 1999.
7. Draft ITU-T Recommendation H.263 Version 2 (H.263+): Video coding for low bit rate communica-

tions, January 1998.
8. Rapporteur for Q.15/16—Draft for H.263++, Annexes U, V and W to Recommendation H.263, ITU

Telecommunication Standardisation Sector, November 2000.
9. Y. Wang, and Q. F. Zhu, “Error control and concealment for video communication: a review,” Proc.

of the IEEE, Vol. 86, No. 5, pp. 974–997, May 1998.
10. R. Talluri, “Error resilient video coding in the MPEG-4 standard,” IEEE Communications Magazine,

pp. 112–119, June 1998.
11. S. Wenger, G. Knorr, J. Ott, and F. Kossentini, “Error Resilience Support in H.263+,” IEEE Transaction

on Circuit and Systems for Video Technology, Vol. 8, No. 7, Nov. 1998.
12. G. Sullivan, “Rapporteur for Q.15/16—Draft for H.263++, Annexes U, V and W to Recommendation

H.263,” ITU Telecommunication Standardisation Sector, November 2000.
13. Digital Cellular Telecommunications System (Phase 2+), “General Packet Radio Service (GPRS);

Overall description of the GPRS Radio Interface; Stage 2,” ETSI/SMG, GSM 03.64, V. 5.2.0, January
1998.

14. Tdoc SMG2 086/00, “Outcome of Drafting Group on MS EGPRS Rx Performance,” EDGE Drafting
Group, January 2000.

15. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time
Applications,” RFC1889, January 1996.
© 2002 by CRC Press LLC



             
42.6 Pen-Based User Interfaces—An Applications Overview

Giovanni Seni and Jayashree Subrahmonia 

Introduction

A critical feature of any computer system is its interface with the user. This has led to the development of
user interface technologies such as mouse, touch-screen, and pen-based input devices. They all offer signif-
icant flexibility and options for computer input; however, touch-screens and mice cannot take full advantage
of human fine motor control, and their use is mostly restricted to data “selection,” i.e., as pointing devices.
On the other hand, pen-based interfaces allow, in addition to the pointing capabilities, for other forms of
input such as handwriting, gestures, and drawings. Because handwriting is one of the most familiar com-
munication media, pen-based interfaces appear to offer a very easy and natural input method. 

A pen-based interface consists of a transducer device and a fine-tipped stylus so that the movement
of the stylus is captured; such information is usually given as a time ordered sequence of x-y coordinates
(digital ink) and an indication of “inking,” i.e., whether the pen is up or down. Digital ink can be passed
on to recognition software that will convert the pen input into appropriate computer actions. Alterna-
tively, the handwritten input can be organized into ink documents, notes, or messages that can be stored
for later retrieval or exchanged through telecommunications means. Such ink documents are appealing
because they capture information as the user composed it, including text in any mix of languages and
drawings such as equations and graphs. 

Pen-based interfaces are desirable in mobile computing (e.g., Personal Information Appliances—PIAs)
because they are scalable. Only small reductions in size can be made to keyboards before they become
awkward to use; however, if they are not shrunk in size, they lose their portability. This is even more
problematic as mobile devices develop into multimedia terminals with numerous functions ranging from
agenda and address book to wireless web browser. Voice-based interfaces may appear to be a solution,
but they entail all the problems that mobile phones already have introduced in terms of disturbing
bystanders and loss of privacy. Furthermore, using voice commands to control applications such as a
web browser can be difficult and tedious; by contrast, clicking on a link with a pen, or entering a short
text by writing, is very natural and takes place in silence. 

Recent hardware advances in alternative ink capture devices based on ultrasonic and optical tracking
technologies have also contributed to the renewed interest in pen-based systems. These technologies
avoid the need for pad electronics, thus reducing the cost and weight of a pen-enabled system. Further-
more, they can sometimes be retrofited to existing writing surfaces such as whiteboards [4] or used with
plain paper [5]. 

Section 42.6 reviews a number of applications, old and new, where the pen can be used as a very
convenient and natural form of input. Our emphasis will be on the user experience, highlighting limi-
tations of existing solutions and suggesting ways of improving them. We start with a short review of
currently available pen input hardware in the subsection on “Pen Input Hardware.” We then, in “Hard-
writing Recognition,” discuss handwriting recognition user interfaces for mobile devices and the need
for making applications aware of the handwriting recognition process. In “Ink and the Internet” we
present Internet related applications such as ink messaging. In “Extension of Pen-and-Paper Metaphor”
we discuss functionality that extends the traditional pen and paper metaphor. Finally, in “Pen Input and
Multimodal Systems,” we present examples of synergistic interfaces that are being developed combining
the pen with other input modalities. 

Pen Input Hardware

The function of the pen input hardware is to convert pen tip position over time into X,Y coordinates at
a sufficient temporal and spatial resolution for handwriting recognition and visual presentation [25]. 

A pen input system consists of a combination of pen, pad, and in some cases, paper. Not all pen
systems have a paper interface for capturing the position of the pen-tip. Examples of these include PIAs
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and some electronic tablets. Some of these have a glass surface on the pad that is the interface to capture
and display ink. Others (like the electronic tablets) have an input device that is separate from the display.
Although these are usable for small quantities of input and for navigating through applications using
touch-selection, they are extremely difficult from a usability standpoint for entering large quantities of
digital ink. Paper-based systems provide the best user interface for inputting digital ink and hence are
the best user interface for large note-taking applications. They are also the highest resolution displays
for ink available today and do not suffer from issues like tolerance to glare that glass surfaces do. 

In systems that use paper, an additional challenge that needs to be addressed comes from the fact that
pen tip contact with paper also needs to be sensed to establish when ink is deposited on paper.

Pen hardware platforms available today use one of the following four kinds of technologies: 

Magnetic Tracking Here, sequentially energized coils embedded in the pad couple a magnetic field
into a pen tank circuit (coil and capacitor). Neighboring coils pick up the magnetic field from the
pen, and their relative strength determines pen location [22]. The magnetic field can also be
generated in the pen, requiring a battery that increases pen weight and thickness [23]. 

Electric Tracking Here, the conductive properties of a hand and normal pen can be used for tracking
[24]. A transmitter electrode in the pad couples a small displacement current through the paper
to the hand, down through the pen, and back through the paper to an array of receiver electrodes.
Pen location is calculated as the “center of mass” of the received signal strengths. 

Ultrasonic Tracking Ultrasonic tracking is based on the relatively slow speed of sound in air (330 m/
sec). A pen generates a burst of acoustic energy. Electronics in the pad measure the time of arrival
to two stationary ultrasonic receivers [4,5]. The ultrasonic transmission is either synchronized to
the pad, typically with an infrared signal, or a third ultrasonic receiver is used [26]. 

Optical Tracking Technology Optical tracking systems can either provide relative tracking (like a
mouse) or absolute position tracking (like a touch screen) [28,29]. 

Bar codes printed over an entire page can provide absolute position using a tiny camera mounted in a
pen [30,31]. The bar codes can also encode page number, eliminating overwrites when a person forgets to
tell the digitizer they have changed pages (a challenge that pen hardware systems with paper interfaces have
to address). Another approach captures a sequence of small images of handwriting and assembles them to
reconstruct the entire page [32]. 

Discussion of Input Hardware

Magnetic tracking is the widest deployed system due to high spatial resolution (>1000 dpi), acceptable
temporal resolution (>100 Hz), reliability, and modest cost [33].

Magnetic and electric tracking require pad electronics and shielding, making them thicker and heavier
than a conventional clipboard. Electric tracking uses a normal pen but has no direct way to measure pen
tip contact, and must rely on less reliable pen trajectory analysis [34]. 

Ultrasonic tracking does not require pad electronics, making it lower cost and weight. Relative tracking
can reach 256 dpi, but absolute spatial resolution is limited to about 50 dpi due to air currents that cause
Doppler shifts. 

Optical tracking offers the highest spatial (>2000 dpi) and temporal (>200 Hz) resolution, and can
utilize a self-contained pen that remembers everything written. Special bar code paper provides absolute
position and page tracking. Optical methods based on CMOS technology lend themselves to low-power,
low-cost, and highly integrated designs. These features suggest that optical tracking will play a significant
role in future pen systems. 

Handwriting Recognition

Handwriting is a very well-developed skill that humans have used for over 5,000 years as means of
communicating and recording information. With the widespread acceptance of computers, the future
role of handwriting in our culture might seem questionable. However, as we discussed in introduction
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section, a number of applications exist where the pen can be more convenient than a keyboard. This is
particularly so in the mobile computing space where keyboards are not ergonomically feasible. 

Handwriting recognition is fundamentally a pattern classification task; the objective is to take an input
graphical mark, the handwritten signal collected via a digitizing device, and classify it as one of a pre-
specified set of symbols. These symbols correspond to the characters or words in a given language encoded
in a computerized representation such as ASCII (see Fig. 42.35). In this field, the term online has been
used to refer to systems devised for the recognition of patterns captured with digitizing devices that
preserve the pen trajectory; the term offline refers to techniques, which instead take as input a static two-
dimensional image representation, usually acquired by means of a scanner. 

Handwriting recognition systems can be further grouped according to the constraints they impose on
the user with respect to writing style (see Fig. 42.36(a)). The more restricted the allowed handwritten
input is, the easier the recognition task and the lower the required computational resources. At the highest
restricted end of the spectrum, boxed-discrete style, users write one character at a time within predefined
areas; this removes one difficult step, segmentation, from the recognition process. Very high levels of
recognition accuracy can be achieved by requiring users to adhere to rules that restrict character shapes
so as to minimize letter similarity (see Fig. 42.36(b)). Of course, such techniques require users to learn
a “new” alphabet. At the least restricted end of the spectrum, mixed style, users are allowed to write words
or phrases the same way they do on paper—in their own personal style—whether they print, write in
cursive, or use a mixture of the two.

Recognition of mixed-style handwriting is a difficult task due to ambiguity in segmentation (parti-
tioning the word into letters), and large variation at the letter level. Segmentation is complex because it
is often possible to wrongly break up letters into parts that are in turn meaningful (e.g., the cursive letter
“d” can be subdivided into letters “c” and “I”). Variability in letter shape is mostly due to co-articulation

FIGURE 42.35 The handwriting recognition problem. The image of a handwritten character, word, or phrase is
classified as one of the symbols, or symbol strings, from a known list. Some systems use knowledge about the language
in the form of dictionaries (or Lexicons) and frequency information (i.e., Language Models) to aid the recognition
process. Typically, a score is associated with each recognition result. 

FIGURE 42.36 Different handwriting styles. In (a), Latin characters are used, from top to bottom, according to
the presumed difficulty in recognition (adapted from Tappert,1984). In (b), the GraffitiTM unistroke (i.e., written
with a single pen trace) alphabet which restricts characters to a unique pre-specified way that simplifies automatic
recognition, the square dot indicates starting position of the pen. 
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(the influence of one letter on another), and the presence of ligatures, which frequently give rise to
unintended (“spurious”) letters being detected in the script. 

In addition to the writing style constraints, the complexity of the recognition task is also determined
by dictionary-size and writer-adaptation requirements. The size of dictionary can vary from very small
(for tasks such as state name recognition) to open (for tasks like proper name recognition). In open
vocabulary recognition, any sequence of letters is a plausible recognition result and this is the most
difficult scenario for a recognizer. In the writer-adaptation dimension, systems capable of out-of-the box
recognition are called writer-independent, i.e., they can recognize the writing of many writers; this gives
a good average performance across different writing styles; however, there is considerable improvement
in recognition accuracy that can be obtained by customizing the letter models of the system to a writer’s
specific writing style. Recognition in this case is called writer-dependent. 

Despite these challenges, significant progress has been made in the building of writer-independent
systems capable of handling unconstrained text and using dictionary sizes of over 20,000 words [1,2,3].
Some of these systems are now commercially available. For a comprehensive survey of the basic concepts
behind written language recognition algorithms see [14,21,37]. 

User Interfaces on Mobile Devices

In Fig. 42.37, examples of user interfaces for handwritten text input are presented that are representative
of those found on today’s mobile devices. Because of the limited CPU and memory resources available
on these platforms, handwritten input is restricted to the boxed-discrete style. 

Additional highlights of the user interface on these text input methods are: 

Special Input Area. Users are not allowed the fredom of writing anywhere on the screen. Instead, there
is an area of the screen specially designated for the handwriting user interface, whether for text
input or control. This design choice offers the following advantages: 

FIGURE 42.37 Character-based text input method on today’s mobile devices. In (a), user interface for English
character input on a cellular phone. In (b), user interface for Chinese character input on a 2-way pager. 
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• No toggling between edit/control and ink mode. Pen input inside the input method area is treated
as ink to be recognized by the recognizer; pen input outside this area is treated as mouse events,
e.g., selection, etc. Without this separation, special provisions, sometimes unnatural, have to be
taken to distinguish among the two pen modes. 

• Better user control. Within the specially designated writing window it is possible to have addi-
tional GUI elements that help the user with the input task. For instance, there might be buttons
for common edit keys such as backspace, newline, and delete. Similarly, a list of recognition
alternates can be easily displayed and selected from. This is particularly important because top-n
recognition accuracy—a measure of how often the correct answer is among the highest ranked
n results, is generally much higher than top-1 accuracy.

• Consistent UI metaphor. Despite its ergonomic limitations, an on-screen keyboard is generally
available as one of the text input methods on the device. Using a special input area for hand-
writing makes the user interface of alternative text entry methods similar. 

Modal Input. The possibilities of the user’s input are selectively limited in order to increase recognition
accuracy. Common modes include “digits,” “symbols,” “upper-case letters,” and “lower-case letters”
in English, or “traditional” versus “simplified” in Chinese. By limiting the number of characters
against which a given input ink is matched, the opportunities for confusion and mis-recognition
are decreased, and recognition accuracy is improved. Writing modes represent another tradeoff
between making life simpler for the system or simpler for the user. 

Natural Character Set. It is possible to use any character writing style commonly used in the given
language, no need to learn a special alphabet. Characters can be multi-stroke, i.e., written with
more than one pen trace. 

Multi-boxed Input. When multi-stoke input is allowed, end of writing is generally detected by use of
a timer that is set after each stroke is completed; the input is deemed concluded if a set amount
of time elapses before any more input is received in the writing area. This “timeout” scheme is
sometimes confusing to users. Multiple boxes give better performance because a character in one
box can be concluded if input is received in another, removing the need to wait for the timer to
finish. 

Of all the restrictions imposed on users by these character-based input methods, modality is the one
where user feedback has been strongest: people want modeless input. The challenge lies in that distin-
guishing between letters which have very similar forms across modes is virtually impossible without
additional information. In English orthography, for instance, there are letters for which the lower case
version of the character is merely a smaller version of the upper case version; examples include “Cc,”
“Kk,” “Mm,” “Oo,” “Ss,” “Uu,” “Ww,” etc. Simple attempts at building modeless character recognizers can
result in a disconcerting user experience because upper case letters, or digits, might appear inserted into
the middle of lower case words. Such m1Xed CaSe w0rdS (mixed case words) look to users to be gibberish. 

In usability studies, the authors have further found that as the text data entry needs on wireless PIA
devices shifts from short address book or calendar items to longer notes or e-mail messages, users deem
writing one letter at a time to be inconvenient and unnatural. 

More Natural User Interfaces

One known way of dealing with the character confusion difficulties described in section “User Interfaces
on Mobile Devices” is to use contextual information in the recognition process. At the simplest level this
means recognizing characters in the context of their surrounding characters and taking advantage of
visual clues derived from word shape. At a higher level, contextual knowledge can be in the form of
lexical constraints, e.g., a dictionary of known words in the language is used to restrict interpretations
of the input ink. These ideas naturally lead to the notion of a word-based text input method. By “word”
we mean a string of characters which, if printed in text using normal conventions, would be surrounded
by white-space characters (see Fig. 42.38(a)). 
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Consider the notion of a mixed-case word recognition context where the size and position of a character,
relative to other characters in the word, is taken into account during letter identification (see Fig. 42.38(b)).
Such additional information would allow us to disambiguate between the lower case and upper case
version of letters that otherwise are very much alike. Similarly, Fig. 42.38(b) illustrates that relative
position within the word would enable us to correctly identify trailing punctuation marks such as periods
and commas. A different kind of contextual information can be used to enforce some notion of “con-
sistency” among the characters within a word. For instance, we could have a digit-string recognition
context that favors word hypotheses where all the characters can be viewed as digits; in the image example
of Fig. 42.38(c), the recognizer would thus rank string “90187” higher than string “gol87.” 

In addition to the modeless input enabled by a word-based input method, there is a writing throughput
advantage over character-based ones. In Fig. 42.39 we show the results of a timing experiment where
eight users where asked to transcribe a 42-word paragraph using our implementation of both kinds of
input methods on a keyboardless PIA device. The paragraph was derived from a newspaper story and
contained mixed-case words and a few digits, symbols, and punctuation marks. The length of the text
was assumed to be representative of a long message that users might want to compose on such devices.
For comparison purposes, users were also timed with a standard on-screen (software) keyboard. Each
timing experiment was repeated three times. The median times were 158, 185, and 220 s for the keyboard,
word-based, and character-based input methods, respectively. Thus, entering text with the word-based
input method was, on average, faster than using the character-based method.

Our current implementation of the word-based input method does not have, on average, a time
advantage over the soft keyboard; however, the user who was fastest with the word-based input
method (presumably someone for whom the recognition accuracy was very high and thus had few
corrections to do) was able to complete the task in 141 s, which is below the median soft keyboard time.

FIGURE 42.38 Word-based text input method for mobile devices. In (a), a user interface prototype. In (b), an
image of the mixed-case word “Wow,” where relative size information can be used for distinguishing among the
letters in the “Ww” pair. In (c), an image of the digit string “90187” where ambiguity in the identity of the first three
letters can be resolved after identifying the last two letters as digits. 
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Furthermore, the authors believe that the time gap between these two input methods will be reduced in
the case of European languages that have accents, since they require additional key presses in the case of
the soft keyboard. 

As one can expect, the modeless and time advantage of a word-based input method over a character-based
one comes at the expense of additional computational resources. Currently, the word-based recognition
engine requires a 10× increment in MIPS and memory resources compared to the character-based engine.
One should also say that, as evidenced by the range of the timing data shown in the above plots, there
isn’t a single input method that works best for every user. It is thus important to offer users a variety of
input methods to experiment with and choose from. 

Write-Anywhere Interfaces
In the same way that writing words, as opposed to writing one letter at a time, constitutes an improvement
in terms of “naturalness” of the user experience, we must explore recognition systems capable of handling
continuous handwriting such as phrases. For the kind of mobile devices we’ve been considering, with
very limited screen real estate, this idea leads to the notion of a “write-anywhere” interface where the
user is allowed to write anywhere on the screen, i.e., on top of any application and system element on
the screen (see Fig. 42.40).

FIGURE 42.39 Boxplots of time to enter a 42-word message using three different text input methods on a PIA
device: an on-screen QWERTY keyboard, a word-based handwriting recognizer and a character-based handwriting
recognizer. Median writing throughput were 15.9, 13.6, and 11.4 words-per-minute respectively. 

FIGURE 42.40 Write-anywhere text input method for
mobile devices. Example of an Address Book application
with the Company field appearing with focus. Hand
written input is not restricted to a delimited area of the
screen but rather can occur anywhere. The company
name “Data Warehouse” has been written. 
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A write-anywhere text input method is also appealing because there is no special inking area covering
up part of the application in the foreground; however, a special mechanism is needed to distinguish pen
movement events intended to manipulate user interface elements such as buttons, scrollbars, and menus
(i.e., edit/control mode) and pen events corresponding to longhand (i.e., ink mode). The solution
typically involves a “tap and hold” scheme wherein the pen has to be maintained down without dragging
it for a certain amount of time in order to get the stylus to act temporarily as a mouse.

An additional user interface issue with a write-anywhere text input paradigm is that there are usually
no input method control elements visible anywhere on the screen. For instance, access to recognition
alternates might require a special pen gesture. As such, a write-anywhere interface will generally have
more appeal to advanced users. Furthermore, recognition in the write-anywhere case is more difficult
because there is no implicit information on the word separation, orientation, or size of the text. 

Recognition-Aware Applications

Earlier in this section, the authors discussed how factors such as segmentation ambiguity, letter co-articulation,
and ligatures make exact recognition of continuous handwritten input a very difficult task. To illustrate this
point consider the image shown in Fig. 42.41 and the set of plausible interpretations given for it. Can we
choose with certainty one of these recognition results as the “correct” one? Clearly, additional information,
not contained within the image, is required to make such a selection. One such source of information that
we have already mentioned is the dictionary, or lexicon, for constraining the letter strings generated by
the recognizer. At a higher-level, information from the surrounding words can be used to decide, for
example, among a verb and a noun word possibility. It is safe to say that the more constraints that are
explicitly available during the recognition process the more ambiguity in the input that can be automatically
resolved. Less ambiguity results in higher recognition accuracy and thus, improved user experience. 

For many common applications in PIA devices, e.g., contacts, agenda, and web browser, it is possible
to specify the words and patterns of words that can be entered in certain data fields. Examples of structured
data fields are telephone numbers, zip codes, city names, dates, times, URLs, etc. In order for recognition-
based input methods to take advantage of this kind of contextual information, the existing text input
framework on PIA devices needs to be modified. Currently, no differentiation is made between text input
made by tapping the “keyboard” and that of using handwriting recognition; i.e., applications are, for the
most part, not aware of the recognition process. A possible improvement over the current state of the
art for UI implementation would be for applications to make an encoding of the contextual constraints
associated with a given field available to the recognition engine. 

One typically uses a grammar to define the permitted strings in a language, e.g., the language of valid
telephone numbers. A grammar consists of a set of rules or productions specifying the sequences of
characters or lexical items forming allowable strings in the defined language. Two common classes of
grammars are BNF grammar or context-free grammar and regular grammar (see [6] for a formal
treatment). Grammars are widely used in the field of speech recognition and recently the W3C Voice

FIGURE 42.41 Inherent ambiguity in continuous handwriting recognition. In (a), a sample image of a handwritten
word. In (b), possible recognition results, strings not in the English lexicon are in italics. 
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Browser Working Group has suggested an XML-based syntax for representing BNF-like grammars [7].
In Fig. 42.42 we show a fragment of a possible grammar for defining telephone number strings. In the
extended text input framework that we are advocating, this grammar, together with the handwritten ink,
should be passed along to the recognition engine when an application knows that the user is expected
to enter a telephone number. 

Information about how the ink was collected, such as resolution and sampling rate of the capture
device, whether writing guidelines or other writing size hints were used, spatial relationships to nearby
objects in the application interface, etc., should also be made available to the recognition engine for
improved recognition accuracy.

Ink and the Internet

Digital ink does not always need to be recognized in order for it to be useful. Two daily life applications
where users take full advantage of the range of graphical representations that are possible with a pen are
messaging, as when we leave someone a post-it note with a handwritten message, and annotation, as when
we circle some text in a printed paragraph or make a mark in an image inside of a document. This
subsection discusses Internet-related applications that will enable similar functionality. Both applications
draw attention to the need for a standard representation of digital ink that is appropriate in terms of
efficiency, robustness, and quality. 

Ink Messaging

Two-way transmission of digital ink, possibly wireless, offers PIA users a compelling new way to com-
municate. Users can draw or write with a stylus on the PIA’s screen to compose a note in their own
handwriting. Such an ink note can then be addressed and delivered to other PIA users, e-mail users, or
fax machines. The recipient views the message as the sender composed it, including text in any mix of
languages and drawings (see Fig. 42.43).

In the context of mobile-data communications it is important for the size of such ink messages to be
small. There are two distinct modes for coding digital ink: raster scanning and curve tracing [8,9].
Facsimile coding algorithms belong to the first mode, and exploit the correlations within consecutive
scan lines. Chain Coding (CC), belonging to the second mode, represents the pen trajectory as a sequence
of transitions between successive points in a regular lattice. It is known that curve tracing algorithms
result in a higher coding efficiency if the total trace length is not too long. Furthermore, use of a raster-
base technique implies the loss of all time-dependent information. 

<rule id = “digits0–9” scope=”private”> <rule id = “suffix” scope=”private”>
<one-of> <count number = “4”>
<item>0</item> <ruleref uri=”#digit0–9”/>
… </count>
<item>9</item> </rule>

</one-of>
</rule>
<rule-id = “area-code” scope=”private”>
<token>(</token> <!-- Main rule -->
<count number = “3”> <rule id = “phone-num” scope=”public”>
<ruleref uri=”#digit0–9”/> <count number = “0–1”>

</count> <ruleref uri=”#area-code”/>
<token>)</token> </count>

</rule> <ruleref uri=”#prefix”/>
<rule id = “prefix” scope=”private”> <count number = “0–1”>
<count number = “3”> <token>-</token>
<ruleref uri=”#digit0–9”/> </count>

</count> <ruleref uri=”#suffix”/>
</rule> </rule>

FIGURE 42.42 Example of an XML grammar defining telephone numbers and written as per the W3C Voice
Working Group Specification. There are four “private” rule definitions that are combined to make the main rule
called phone-num. 
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Message sizes of about 500 bytes have been recently reported for messages composed in a typical PIA
screen size, using a CC-based algorithm known as multi-ring differential chain coding (MRDCC) [10].
MRDCC is attractive for transmission of ink messages in terms of data syntax, decoding simplicity, and
transmission error control; however, MRDCC is lossy, i.e., the original pen trajectory cannot be fully
recovered. If exact reconstructability is important, a lossless compression technique is required. This might
be the case when the message recipient might need to run verification or recognition algorithms on the
received ink, e.g., if the ink in the message corresponds to a signature that is to be used for computer
authentication. One example of a lossless curve tracing algorithm proposed by the ITU is zone coding [11].
Our internal evaluation of zone coding, however, reveals there is ample room for improvement. 

Additional requirements for an ink messaging application include support for embedded ASCII text,
support for embedded basic shapes (such as rectangles, circles, and lines), and support for different pen-
trace attributes (such as color and thickness). 

Ink and SMIL

SMIL, pronounced smile, stands for synchronized multimedia integration language. It is a W3C recom-
mendation ([12]) defining an XML compliant language that allows a spatially and temporally synchro-
nized description of multimedia presentations. In other words, it enables authors to choreograph
multimedia presentations where audio, video, text, and graphics are combined in real-time. A SMIL
document can also interact with a standard HTML page. SMIL documents might become very common
on the web thanks to streaming technologies. 

The basic elements in a SMIL presentation are (for a complete introduction see [13]): a root-layout,
which defines things like the size and color of the background of the document; a region, which defines
where and how a media element such as an image can be rendered, e.g., location, size, overlay order,
scaling method; one or more media elements such as text, img, audio, and video; means for specifying
a timeline of events, i.e., seq and par indicate a block of media elements that will all be shown sequentially
or in parallel, respectively, dur gives an explicit duration, begin delays the start of an element relative to
when the document began or the end of other elements; means for skipping some part of an audio or
a video (clip-begin and clip-end); means for adapting the behavior of the presentation to the end-user
system capabilities (switch); means for freezing a media element after its end (fill); and a mean for
hyperlinking (a). 

Digital ink is not currently supported as a SMIL native media type. One option would be to convert
the ink into a static image, say in GIF format, and render it as an img element; however, this would
preclude the possibility of displaying the ink as a continuous media (like an animation). Another option

FIGURE 42.43 Example of ink messaging application for mobile devices. Users can draw or write with a stylus on
the device screen to compose an e-mail in their own handwriting; no automatic recognition is necessarily involved. 
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is using the SMIL generic media reference ref (see Fig. 42.44); this option requires the existence of an
appropriate MIME content-type/subtype. 

In the near future, it is expected that a standard will be designed to allow SMIL documents to use
animated or static digital ink content as a media component.

Extension of Pen-and-Paper Metaphor

Use of the pen-and-paper paradigm dates back to almost 3000 BC. Paper, as we know of today, dates
back to around 200 AD. Hence, the notion of writing with a pen on paper is a extremely natural way of
entering handwritten information. 

Archival and retrieval are two primary actions performed on handwritten information captured using
traditional pen and paper. The problem, however, with regular pen and paper is that the process of
retrieving information can be extremely inefficient. Retrieving information typically involves visually
scanning the documents, which can be inefficient when the size of handwritten information becomes
large. One way to make the process efficient is to tag the information in a useful way. For example, a
yellow sticker on pages that relate to a certain topic, or entering information about different topics into
different notebooks, can make the process of looking for information on a topic efficient, when using
normal paper notebooks. The goal here is to extend the same functionality to electronic pen-and-paper
systems. 

Extending the pen-and-paper metaphor, one of the main applications for digital ink capture systems,
aims to provide users with efficient ink archival/retrieval capabilities by providing users the tools to tag
information captured on the devices in a useful way. 

The need for efficient ink archival/retrieval is accentuated by devices like the IBM ThinkPad TransNote
[27] and Anoto [30], which provide users the capability of using normal or special paper for capturing
handwritten information. With paper, users of such devices tend to capture more handwritten informa-
tion, which in turn increases the need for efficient ink archival/retrieval capabilities. 

Ink Archival and Retrieval

An example of a digital ink capture system that provides users the ability to efficiently archive/retrieve
handwritten information is the ThinkPad TransNote system from IBM. The system combines a regular
notebook PC with a digital notepad. Slider controls provided on the digital notepad allow users to assign
handwritten notes to a particular page and to a specific topic. In addition, controls are provided on the
digital notepad to mark blocks of handwritten ink as a keyword. Functions of the sliders and controls
can be modified depending on the needs of the application. 

<smil>
<head>
<meta name=”title” content=”Ink and SMIL” />
<root-layout width=”300” height=”200”

background-color=”white” />
</head>
<body>
<par>
<img src=”car.gif” region=”main” />
<ref src=”car.uni” region=”onmain”

type=”ink/unipen” fill=”freeze”/>
<audio src=”car.wav” />
</par>
</body>
</smil>

(b)

FIGURE 42.44 Example of the role of digital ink in SMIL documents. In (a), a diagram or photo taken with a
digital camera can be annotated with a pen; the digital ink can be coordinated with a spoken commentary. In (b),
a corresponding short SMIL document fragment assuming the existence of an appropriate MIME content-type called
“ink” and a subtype called “unipen” for representing the ink. 
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Ink management software on the notebook PC allows users to archive handwritten notes and retrieve
them, using either the time of creation of the handwritten notes or the tags associated with keywords.
The tags are typically text strings created using a handwriting recognition system. Figure 42.45 shows an
example of a piece of the ink management software that displays blocks of ink marked as keywords in
the middle column and their tags in the left column. Users can retrieve handwritten documents by
clicking on the keywords or typing a word in the search text box in the upper righthand-top corner of
the application. 

In the application shown in Fig. 42.45, all the tags are text strings; however, one can easily extend the
retrieval paradigm to use graphical queries and retrieve documents containing graphics, using features
extracted from the graphical query. An example of this is shown in Fig. 42.46.

Gesture Recognition

A gesture is a set of handwritten ink that implies a certain action. In many cases, a gesture can be used
to represent an action much more efficiently compared to enumerating the action through a set of
keyboard events. An example is the task of moving a portion of text from one position to another. Using
a keyboard would involve selecting the portion of ink to be moved, copying it into a clipboard, deleting
the selection, moving the cursor to the place in the document where the user would like to place the ink,
and finally pasting the ink. Using a pen would allow users to indicate the same action by drawing a
selection area around the ink to be moved and an arrow indicating the position to move the selection
to. An example of this is shown in Fig. 42.47. 

FIGURE 42.45 Ink retrieval using keywords. Example of an application that uses the ASCII tags associated with
handwritten ink to retrieve information from handwritten documents.

FIGURE 42.46 Ink searching example. Users can search for an ink pattern inside a longer ink document, or collection
of documents.
© 2002 by CRC Press LLC



       
Smart Ink
One can extend the gesture recognition system to allow users to associate more complex actions with
groups of pen strokes as shown in Fig. 42.48. The handwritten document on the left side is a typical
handwritten page with text, tables and drawings, and the one of the right side is a version of the same
document after being automatically interpreted by a smart ink recognition scheme. This association
allows users to work with handwritten documents in more efficient ways, which turn an electronic pen
into a more effective way of entering information than a keyboard and mouse. 

A successful implementation of these ideas led to the development of a tool, called SILK [35],
which allows graphic designers to quickly sketch a user-interface with a electronic pen and stylus.
The tool addresses the needs of designers who prefer to sketch early interface ideas on paper or
whiteboard and concentrate on behavior. Existing interactive user interface construction tools make it

FIGURE 42.47 Example of pen-and-paper-like editing. Users can perform erasing by scribbling directly on the
unwanted text, moving text by circling and dragging, and transposing text by common gesturing. 

FIGURE 42.48 Segmentation and recognition of on-line documents. Example of a typical handwritten page with
text, tables and drawings; and the desired segmentation interpretation.
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hard for a user-interface designer to illustrate the behavior of an interface; these tools focus on specifying
widgets and making it easy to manipulate details such as colors, alignment, and fonts, i.e., they can show
what the interface will look like, but make it hard to show what it will do.

Pen Input and Multimodal Systems

A multimodal interface is one that integrates multiple kinds of input simultaneously to achieve a desired
result. With the increased availability of significant computing power on mobile devices and of efficient
wireless connectivity enabling distributed systems, development of pen-based multimodal interfaces is
becoming more and more feasible. The motivation is simple: create more robust, flexible, and user-
friendly interfaces by integrating the pen with other input modalities such as speech. Higher robustness
is achievable because cross-modal redundancy can be used to compensate for imperfect recognition on
each individual mode. Higher flexibility is possible because users can choose from among various modes
of achieving a task, or issuing commands, the mode that is most appropriate at the time. Higher user-
friendliness will result from having computer interfaces that better resemble the multi-modality naturally
present in human communication. In this section we review some successful multimodal systems that
take advantage of the pen to produce very synergistic interfaces, highlighting their common features. 

Cohen et al. [15] combined speech and pen gestures to interact with a 2D representation, like a map,
of the entities in a 3D scene such as the one generated with a battlefield simulator. An interactive map
is displayed on a handheld device where the user can draw or speak to control the system. For example,
while holding the pen at some location in the map, the user may say “XXXX platoon”; this command
will result in the creation of a platoon simulation element labelled “XXXX” at the desired location. The
user can then assign a task to the new platoon by uttering a command like “XXXX platoon follow this
route” while drawing a line on the map. 

Heyer et al. [16] combined speech, pen gestures, and handwriting recognition in a travel planning
application. Users interact with the map of a city, possibly displayed on a PIA device, to find out
information about hotels, restaurants, and tourist sites. This information is accessed from a public
database through the Internet. Pen and voice may be used by speaking a query such as “what is the
distance from here to Fisherman’s Wharf” while making a mark on the map. Pen-only gestures can also
be used for control actions, such as moving the viewing area. Similarly, voice-only commands are allowed
as in “show me all hotels with a pool.”

Tue Vo et al. [17] prototyped a multimodal calendar application called Jeanie. This is a very common
application on PIA devices and one having several tasks that can be simplified by the multimodal method
of pointing to or circling objects on the screen in addition to speaking commands. For example, a
command combining spoken and handwritten input is “reschedule this on Tuesday,” uttered while holding
the pen on a meeting entry in the appointment list. An example of a pen-only command is drawing an
X on a meeting entry to cancel it. 

Suhm et al. [18] have explored the benefits of multimodal interaction in the context of error correction.
Specifically, they have integrated handwriting recognition in an automatic dictation system. Users can
switch from continuous speech to pen-based input to correct errors. This work capitalizes on the fact
that words that might be confused in one modality (e.g., sound similar) are not necessarily so in another
one (e.g., with similar handwritten shape). Their study concluded that multimodal error correction is
more accurate and faster than unimodal correction by re-speaking.

Multimodal applications such as these ones are generally built using a distributed “agent” framework.
The speech recognizer, the handwriting recognizer, the gesture recognizer, the natural language under-
standing module, the database access module, etc., might each be a different agent; a computing process
that provides a specific service and which runs either locally on the PIA device or remotely. These agents
cooperate and communicate in order to accomplish tasks for the user. One publicly available software
environment offering facilitated agent communication is the open agent architecture (OAA) from SRI [19]. 

A special agent is needed for integrating information from all input sources to arrive at a correct
understanding of complete multimodal commands. Such a unification agent is sometimes implemented
using semantic frames, a knowledge representation scheme from the early A.I. days [36], consisting of
© 2002 by CRC Press LLC



                           
slots specifying pieces of information about the command. Recognition results from each modality agent
are parsed into partially filled frames, which are then merged together to produce a combined interpre-
tation. In the merging process information from different input modes is weighted, meaningless com-
mand hypotheses are filtered out, and additional feedback from the user might be requested. 

Summary 

As more electronic devices with pen interfaces have and continue to become available for entering and
manipulating information, applications need to be more effective at leveraging this method of input.
Pen is a mode of input that is very familiar for most users since everyone learns to write in school. Hence,
users will tend to use this as a mode of input and control when available. Providing enhanced user-
interfaces that will make it easier for users to use the pen interface in effective ways will make it easier
for them to work with such devices.

Section 42.6 has given an overview of the pen input devices available today along with some of the
applications that use the electronic pen either in isolation or in conjunction with other modes of input such
as speech and the keyboard. The community has made great strides in addressing a number of the user-
interface issues for capturing and manipulating information from electronic pens. A number of challenges
still need to be addressed before such devices truly meet the needs of a user to a higher level of satisfaction. 

To Probe Further

Pen Computing. http://hwr.nici.kun.nl/pen-computing. A Web site hosted at the Nijmegen University
with links related to practical issues in pen and mobile computing. 

Handhelds. http://handhelds.org. A Compaq-hosted Web site created to encourage and facilitate the
creation of open source software for use on handheld and wearable computers. 
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42.7 What Makes a Programmable DSP Processor Special?

Ingrid Verbauwhede

Introduction

A programmable DSP processor is a processor “tuned” towards its application domain.  Its architecture
is very different from a general-purpose von Neumann architecture to accommodate the demands of
real-time signal processing. When first developed in the beginning of the 1980s, the main application
was filtering. Since then, the architectures have evolved together with the applications. Currently, the
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most stringent demands for low-power embedded DSP processors come from wireless communication
applications: second, 2.5, and third generation (2G, 2.5G, and 3G) cellular standards. The demand for
higher throughput and higher quality of source and channel coding keeps growing while power con-
sumption has to be kept as low as possible to increase the lifetime of the batteries. 

In this chapter section, first the application domain and its historical evolution will be described in
the subsection on “DSP Application Domain.” Then, in “DSP Architecture,” the overall architecture will be
described. In “DSP Data Paths,” the specifics of the DSP data paths will be given. In “DSP Memory and
Address Calculation Units,” the memory architecture and its associated address generation units are
described. In “DSP Pipeline,” the specifics of the DSP pipeline will be explained. Finally, in “Conclusions
and Future Trends,” the conclusions will be given followed by some future trends.

DSP Application Domain

DSP processors were originally developed to implement traditional signal processing functions, mainly
filters, such as FIRs and IIRs [5]. These applications decided the main properties of the programmable
DSP architecture: the inclusion of a multiply-accumulate unit (MAC) as separate data path unit and a
Harvard or modified Harvard memory architecture instead of a von Neumann architecture. 

Original Motivation: FIR Filtering 

The fundamental properties of these applications were (and still are):

• Throughput driven calculations and real-time operation. Signal processing applications, such as
speech and video, can be represented as an “infinite stream” of data samples that need to be
processed at a rate determined by the application [20]. The sample rate is a fundamental property
of the application. It determines at what rate the consecutive samples arrive for processing. For
speech processing, this is the rate of speech samples (kHz range), for video processing this might
be the frame rate or the pixel rate (MHz range) [3]. The DSP has to process these samples at this
given rate. Therefore, a DSP operates under worst-case conditions. This is fundamentally different
from general-purpose processing on a micro processor, which operates on an average case base,
but which has an unpredictable worst-case behavior. 

• Large amounts of computations, few amounts of control flow operations. DSP processors were devel-
oped to process large amounts of data in a very repetitive mode. For instance, speech filtering,
speech coding, pixel processing, etc., require similar operations on consecutive samples, pixels,
frames, etc. The DSP processor has adapted to this, by providing means of implementing these
algorithms in a very efficient way. It includes zero-overhead looping, very compact instruction
code, efficient parallel memory banks, and associated address generation units.

• Large amount of data, usually organized in a regular or almost regular pattern. Because of the real-
time processing and the associated “infinite” amount of data that is processed, DSP processors
usually have several parallel memory banks; each bank has its own address generation unit and
parallel reads and writes are supported by the DSP. 

• Embedded applications. DSP processors are developed for embedded applications, ranging from
cellular phones, disk drives, cable modems, etc. The result is that all the program codes have to
reside on the processor (no external memory, no cache hierarchy). Thus, the code size has to be
minimized, as a result of which, till today there is a lot of assembly code written. Secondly, the
power consumption has to be minimized since many of these applications run from batteries or
have tight cooling requirements such as the usage of cheap plastic packages or enclosed boxes. 

Modern Applications: Digital Wireless Communications

New applications drive the design of new DSP processors. State-of-the-art DSP processors will have more
than one MAC, acceleration for Viterbi decoding, specialized instructions for Turbo decoding, and so on.
Indeed, DSP processors have become the main workhorse for wireless communications for both the
handsets and the base station infrastructure [22].  
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Second generation (2G) cellular standards required the introduction of optimized instructions for
speech processing and for communication algorithms used in the channel coding and modula-
tion/demodulation. The fundamental components of a wireless system are shown on Fig. 42.49.

Speech Coding
The source coder/decoder in 2G cellular standards (GSM, IS-136, IS-95 CDMA, Japanese PDC) is mainly
a speech coder/decoder. The main function of a speech coder is to remove the redundancy and compress
the speech signal and hence, reduce the bandwidth requirements for storage or transmission over the
air. The required reduction in bit rate is illustrated in Fig. 42.50 for the Japanese PDC standard. 

At point A, a “toll quality” digital speech signal requires the sampling of the analog speech waveform
at 8 kHz.  Each sample requires 8 bits of storage (µ-law compressed) thus resulting in a bit rate of
64 kbits/s or 2560 bits for one 40 ms TDMA frame. This speech signal needs to be compressed to increase
the capacity of the channel. One TDMA frame, which has a basic time period of 40 ms, is shared by six
users. The bit rate at point B is 42 kbits/s. Thus, one user slot gets only 7 kbits/s. The 2560 bits have to
be reduced to 138 bits, to which 86 bits are added for forward error correction (FEC), resulting in a total
of 5.6 kbits/s. 

The higher the compression ratio and the higher the quality of the speech coder, the more calculations,
usually expressed in MIPS, are required. This is illustrated in Fig. 42.51. The first generation GSM digital
cellular standard employs the Regular Pulse Excitation-Long Term Prediction (RPE-LTP) algorithm and
requires a few thousand MIPS to implement it on a current generation DSP processor. For instance, it
requires 2000 MIPS on the lode processor [21]. The Japanese half-rate coder Pitch Synchronous Innovation-
Code Excited Linear Prediction (PSI-CELP) requires at least ten times more MIPS. 

Viterbi Decoding
The function of the channel codec is to add controlled redundancy to the bit stream on the encoder side
and to decode, detect, and correct transmission errors on the receiver side. Thus, channel encoding and
decoding is a form of error control coding. The most common decoding method for convolutional codes

FIGURE 42.49 Fundamental building blocks in a communication system.

FIGURE 42.50 Relationship between speech signal and the transmitted signal.
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is the Viterbi algorithm [4]. It is a dynamic programming technique as it tries to emulate the encoder’s
behavior in creating the transmitted bit sequence. By comparing to the received bit sequence, the
algorithm determines the difference between each possible path through the encoder and the received
bit sequence. The decoder outputs the bit sequence that has the smallest deviation, called the minimum
distance, compared to the received bit sequence. 

Most practical convolutional encoders are rate 1/n, meaning that one input bit generates n coded
output bits. A convolutional encoder of constraint length K can be represented by a finite state machine
(FSM) with K − 1 memory bits. The FSM has 2K−1 possible states, also called trellis states. If the input
is binary, two next states are possible starting from the current state and the input bit. The task of the
Viterbi algorithm is to reconstruct the most likely sequence of state transitions based on the received bit
sequence. This approach is called the “most likelihood sequence estimation.” These state transistions are
represented by a trellis diagram. The kernel of the trellis diagram is the Viterbi butterfly as shown in
Fig. 42.52(b). 

Next Generation Applications

Current generation DSP processors are shaped by 2G cellular standards, the main purpose of which is
voice communication. 3G cellular standards will introduce new features: increased focus on data com-
munication, e-mail, web browsing, banking, navigation, and so on.

2G standards can support short messages, such as the popular SMS messages in the GSM standard,
but are limited to about 10 to 15 kbits/s. In the 2.5G cellular standards, provisions are made to support
higher data rates. By combining GSM time slots, generalized packet radio services (GPRS) can support
up to 115 kbits/s. But the 3G standards are being developed specifically for data services. Wideband
CDMA (WCDMA) will support up to 2 Mbits/s in office environments, lowered to 144 kbits/s for high
mobile situations [6,13]. 

The increased focus on data services has large consequences for the channel codec design. The traditional
Viterbi decoder does not provide a low enough bit error rate to support data services. Therefore, turbo

FIGURE 42.51 MIPS requirement of several speech coders.

FIGURE 42.52 Viterbi trellis diagram and one butterfly.
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codes are considered [2]. Turbo decoding (shown in Fig. 42.53) is a collaborative structure of soft-
input/soft-output (SISO) decoders with the inclusion of interleaver memories between decoders to scatter
burst errors [2]. Either soft-output viterbi algorithm (SOVA) [7] or maximum a posteriori (MAP) [1]
can be used as SISO decoders. Within a turbo decoder, the two decoders can operate on the same or
different codes. Turbo codes have been shown to provide coding performance to within 0.7 dB of the
Shannon limit (after a number of iterations).

The log MAP algorithm can be implemented in a manner very similar to the standard Viterbi algorithm.
The most important difference between the algorithms is the use of a correction factor on the “new path
metric” value (the alpha, beta, and log-likelihood ratio values in Log MAP). This correction factor
depends on the difference between the values being compared in the add-compare-select butterfly (as
shown in Fig. 42.52). This means that the Viterbi acceleration units, that implement this add-compare-
select operation, need to be modified. Turbo coding is one member of a large class of iterative decoding
algorithms. Recently low density parity check codes (LDPC) that have gained renewed attention as
another important class, which are potentially more easily translated to efficient implementations.

Other trends seem to place an even larger burden on the DSP processor. The Japanese i-Mode system
includes e-mail, web browsing, banking, location finding in combination with the car navigation system,
etc. Next generation phones will need to support video and image processing, and so on. Applications
and upgrades will be downloadable from the Internet. 

But at the same time, consumers are used to longer talk times (a couple of hours) and very long
standby times (days or weeks). Thus, they will not accept a reduction of talk time nor standby time in
exchange for more features. This means that these increased services have to be delivered with the same
power budget because the battery size is not expected to grow nor is the battery technology expected to
improve substantially. 

DSP Architecture

The fundamental property of a DSP processor is that it uses a Harvard or modified Harvard architecture
instead of a von Neumann architecture. This difference is illustrated in Fig. 42.54. 

A von Neumann architecture has one unified address space, i.e., data and program, are assigned to
the same memory space. In a Harvard architecture, the data memory map is split from the program
memory map. This means that the address busses and data busses are doubled. Together with specialized
address calculation units, this will increase the memory bandwidth available for signal processing appli-
cations. This concept will be illustrated by the implementation of a simple FIR filter.  The basic equation
for an N tap FIR equation is the following:

FIGURE 42.53 Turbo encoder and decoder.
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Expansion of this equation results in the following pseudo code statements:

y(0) = c(0)x(0) + c(1)x(-1) + c(2)x(-2) +  + c(N - 1)x(1 - N);
y(1) = c(0)x(1) + c(1)x(0) + c(2)x(-1) +  + c(N - 1)x(2 - N);
y(2) = c(0)x(2) + c(1)x(1) + c(2)x(0) +  + c(N - 1)x(3 - N);

y(n) = c(0)x(n) + c(1)x(n - 1) + c(2)x(n - 2) +  + c(N - 1)x(n - (N - 1));

When this equation is executed in software or assembly code, output samples y(n) are computed in
sequence. To implement this on a von Neumann architecture, the following operations are needed.
Assume that the von Neumann has a multiply and accumulate instruction (not necessarily the case).
Assume also that pipelining allows to execute the multiply and accumulate in parallel with the read or
write operations. Then one tap needs four cycles:

1. Read multiply-accumulate instruction.
2. Read data value from memory.
3. Read coefficient from memory.
4. Write data value to the next location in the delay line (because to start the computation of the

next output sample, all values are shifted by one location).

Thus even if the von Neumann architecture includes a single cycle multiply-accumulate unit, it will
take four cycles to compute one tap. 

Implementing the same FIR filter on a Harvard architecture will reduce the number of cycles to three
because it allows the fetch of the instruction in parallel with the fetch of one of the data items. This was

FIGURE 42.54 von Neumann architecture and Harvard/modified Harvard architecture. 

FIGURE 42.55 Finite impulse response filter.
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a fundamental property that distinguished the early DSP processors. On the TMS 320C1x, released in
the early ’80s, it took 2N cycles for a N tap filter (without the shift of the delay line) [5]. 

The modified Harvard architecture improves this idea even further. It is combined with a “repeat”
instruction and a specialized addressing mode, the circular addressing mode. In this case, one multiply-
accumulate instruction is fetched from program memory and kept in the one instruction deep instruction
“cache.” Then the data access cycles are performed in parallel: the coefficient is fetched from the program
memory in parallel with the data sample being fetched from data memory. This architecture is found in
all early DSP processors and is the foundation for all following DSP architectures. The number of memory
accesses for one tap are reduced to two and these occur in the same cycle. Thus, one tap can execute in
one cycle and the multiply-accumulate unit is kept occupied every cycle.

Newer generation of DSP processors have even more memory banks, accompanying address gener-
ation units and control hardware, such as the repeat instruction, to support multiple parallel accesses.
The execution of a 32-tap FIR filter on the dual Mac architecture of the Lucent DSP 1621, shown in
Fig. 42.56, will take only 19 cycles. The corresponding pseudo code is the following:

do 14 { //one instruction !
    a0=a0+p0+p1 
    p0=xh*yh p1=xl*yl 
    y=*r0++ x=*pt0++ 
}

This code can be executed in 19 clock cycles with only 38 bytes of instruction code. The inner loop
takes one cycle to execute and as can be seen from the assembly code, seven operations are executed in
parallel: one addition, two multiplications, two memory reads, and two address pointer updates. Note
that the second pointer update, *pt0++, updates a circular address pointer. 

Two architectures which speed up the FIR calculation to 0.5 cycle per tap are shown in Fig. 42.56. The
first one is the above mentioned Lucent DSP16210. The second one is an architecture presented in [9].
It has a multiply accumulate unit that operates at double the frequency from the memory accesses.

The difficult part in the implementation of this tight loop is the arrangement of the data samples in
memory. To supply the parallel Mac data paths, two 32-bit data items are read from memory and stored
in the X and Y register, as shown in Fig. 42.56. A similar split in lower and higher halfs occurs in the

FIGURE 42.56 DSP architectures for 0.5 cycle per FIR tap. 
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Intel/ADI Frio core [10]. Then the data items are split in an upper half and a low half and supplied
to the two 16 × 16 multipliers in parallel or the left half and the right half of the TEMP registers in
Fig. 42.56(b). It requires a correct alignment of the data samples in memory, which is usually a tedious
work done by the programmer, since compilers are not able to handle this efficiently.  Note that a similar
problem exists when executing SIMD instructions on general purpose micro-processors.

Memory accesses are a major energy drain. By rearranging the operations to compute the filter outputs,
the amount of memory accesses can be reduced. Instead of working on one output sample at a time,
two or more output samples are computed in parallel. This is illustrated in the pseudo code below:

y(0) = c(0)x(0) + c(1)x(-1) + c(2)x(-2) +  + c(N-1)x(1-N);
y(1) = c(0)x(1) + c(1)x(0) + c(2)x(-1) +  + c(N-1)x(2-N);
y(2) = c(0)x(2) + c(1)x(1) + c(2)x(0) +  + c(N-1)x(3-N);

y(n) = c(0)x(n) + c(1)x(n-1) + c(2)x(n-2) +  + c(N-1)x(n-(N-1));

In the lode architecture [21] a delay register is introduced between the two Mac units as shown in
Fig. 42.57. This halves the amount of memory accesses. Two output samples are calculated in parallel as
indicated in the pseudo code of Table 42.3. One data bus will read the coefficients, c(i), the other data
bus will read the data samples, x(N − i), from memory. The first Mac will compute a multiply-accumulate
for output sample y(n). The second multiply-accumulate will compute in parallel on y(n + 1). It will use
a delayed value of the input sample. In this way, two output samples are computed at the same time. 

This concept of inserting a delay register can be generalized. When the datapath has P Mac units,
P − 1 delay registers can be inserted and only 2N/(P + 1) memory accesses are needed for one output
sample. These delay registers are pipeline registers and hence if more delay registers are used, more
initialization and termination cycles need to be introduced. 

The idea of working on two output samples at one time is also present in the dual Mac processor of
TI, the TIC55x. This processor has a dual Mac architecture with three 16-bit data busses. To supply both
Macs with coefficient and data samples, the same principle of computing two output samples at the same
time is used. One data bus will carry the coefficient and supply this to both Macs, the other two data
busses will carry two different data samples and supply this to the two different Macs. 

A summary of the different approaches is given in Table 42.2. Note that most energy savings are
obtained from reducing the amount of memory accesses and secondly, from reducing the number of
instruction cycles. Indeed the energy associated with the Mac operations can be considered as “funda-
mental” energy without it, no N tap FIR filter can be implemented. 

Modern processors have multiple address busses, multiple data busses and multiple memory banks,
including both single and dual port memory. They also include mechanisms to assign parts of the physical
memory to either memory space, program, or data. For instance for the C542 processor the on-chip dual

FIGURE 42.57 Dual Mac architecture with delay register of the Lode DSP core.
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access RAM can be assigned to the data space or to the data/program space, by setting a specific control
bit (the OVLY bit) in a specific control register (the PMST register) [19].

DSP Data Paths

The focus of the previous section was on the overall architecture of a DSP processor and its fundamental
properties to increase the memory bandwidth. This will keep the data paths of the DSP operating every
clock cycle. In this section, some essential properties of the DSP data paths will be described.  

Multiply-Accumulate Unit

The unit that is most associated with the DSP is the Mac. It is shown in Fig. 42.58. The most important
properties of the Mac unit are summarized below:

• The multiplier takes two 16-bit inputs and produces a 32-bit multiplier output. Internally the
multiplication might be implemented as a 17 × 17 bit multiplier. This way the multiplier can
implement both two’s complement and unsigned numbers.

TABLE 42.2 Data Accesses, Mac Operations, Instruction Cycles, and Instructions 
for an N Tap FIR Filter

DSP 

Data 
Memory  
Accesses

MAC 
Operations

Instruction 
Cycles Instructions

von Neumann 3N N 4N 2N
Harvard 3N N 3N 3N
Modified Harvard with modulo 

arithmetic
2N N N 2 (repeat 

instruction)
Dual Mac or double frequency Mac 2N N N/2 2 (same)
Dual Mac with 3 data busses 1.5N N N/2 2
Dual Mac with 1 delay registers N N N/2 2
Dual Mac with P delay registers 2N/(P + 1) N N/(P + 1) 2

FIGURE 42.58 Multiply accumulate unit.
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• The product register is a pipelined register to speed up the calculation of the multiply-accumulate
operation. As a result the Mac operation executes in most processors in one cycle effectively
although the latency can be two cycles. 

• The accumulator registers are usually 40 bits long. Eight bits are designated as “guard” bits [11].
This allows the accumulation of 28 products before there is a need of scaling, truncation, or
saturation. These larger word lengths are very effective in implementing DSP functions such as
filters. The disadvantage is that special registers such as these accumulators are very hard to handle
by a compiler. 

Viterbi Acceleration Unit

Convolutional decoding and more specifically the Viterbi algorithm, has been recognized as one of the
main, if not the most, MIPS consuming application in current and next generation standards. The key
issue is to reduce the number of memory accesses and secondly the number of operations to implement
the algorithm. The kernel of the algorithm is the Viterbi butterfly as shown on Fig. 42.52. The basic
equations executed in this butterfly are:

These equations are implemented by the “add-compare-select (ACS)” instruction and its associated
data path unit. Indeed, one needs to add or subtract the branch metric from states i and i + s/2, compare
them, and select the minimum. In parallel, state 2i + 1 is updated. The butterfly arrangement is chosen
because it reduces the amount of memory accesses by half, because the two states that use the same data
to update the same two next states are combined.

DSP processors have special hardware and instructions to implement the ACS operation in the most
efficient way. The lode architecture [21] uses the two Mac units and the ALU to implement the ACS
operation as shown in Fig. 42.59(a). The dual Mac operates as a dual add/subtract unit. The ALU finds
the minimum. The shortest distance is saved to memory and the path indicator, i.e., the decision bit is
saved in a special shift register A2. This results in four cycles per butterfly.

The Texas Instruments TMS320C54x and the Matsushita processor described in [14,22] use a different
approach that also results in four cycles per butterfly. This is illustrated in Fig. 42.59(b). The ALU and
the accumulator are split into two halves (much like SIMD instructions), and the two halves operate
independently. A special compare, select, and store unit (CSSU) will compare the two halves, will select
the chosen one, and write the decision bit into a special register TRN. The processor described in [14]
describes two ACS units in parallel. One should note that without these specialized instructions and
hardware, one butterfly requires 15 to 25 or more instructions.

FIGURE 42.59 Two data path variations to implement the add-compare-select operation.
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DSP Memory and Address Calculation Units

Besides the data paths optimized for signal processing and communication applications, the DSP processors
also have specialized address calculation units. As explained in section “DSP Architecture,” the parallel
memory maps in the Harvard or modified Harvard architecture are essential for the data processing in DSP
processors; however, to avoid overload on the regular data path units, specialized address generation units
are included. In general, the number of address generation units will be same as the maximum number of
parallel memory accesses that can occur in one cycle.  A few examples are shown in Table 42.3. Older
processors, such as the C5× with a modified Harvard architecture, have one address generation unit serving
the data address bus, and one program address generation unit serving the program address bus. When the
number of address busses go up, so will the arithmetic units inside the address calculation unit. For instance
the Frio [10] has two address busses served by two ALUs inside the data address generation unit. 

The address generation units themselves are optimized to perform address arithmetic in an efficient
way. This includes data paths with the correct word lengths. It also includes all the typical address
modifications that are common in DSP applications. For instance indirect addressing with a simple
increment can easily be done and expressed in the instruction syntax. More advanced addressing modes
include circular buffering, which especially suits filter operations, and bit-reversed addressing, especially
useful for fast Fourier transforms, and so on. There exist many good instruction manuals that describe
the detailed operation of these specialized addressing modes, [11,18,19]. 

DSP Pipeline

The pipeline of a DSP processor is different from the pipeline of a general purpose control-oriented
micro-processors. The basic slots of the DSP pipeline and the RISC pipeline are shown in Fig. 42.60. In
a DSP processor, the memory access stage in parallel with the address generation (usually “post-modi-
fication”) occurs before the execute stage. An example is described in [10]. In a RISC processor the
memory access stage follows the execute stage [8], because the execute stage is used to calculate the
address on the main ALU. The fundamental reason for this difference in pipeline structure is that DSP
processors are optimized for memory intensive number-crunching type of applications (e.g., FIRs), while
RISC type processors, including micro-controllers and micro-processors, are optimized for complex
decision making. This is explained in Figs. 42.61 and 42.62. Typical for real-time compute intensive appli-
cations, is the continuous memory accesses followed by operations in the data path units. A typical example
is the execution of the FIR filter as shown in the FIR pseudo code above. On a DSP processor, the memory
access and the multiply-accumulate operation are specified in one instruction and follow each other in
the pipeline stage. The same operation on a RISC machine will need three instruction slots. The first
instruction slot will read the value from memory and only in the third instruction slot the actual
computation takes place. If these delays are not obeyed, a data hazard will occur [8]. Fixing data hazards
will lead to a large instruction and cycle overhead. 

Similarly, it can be argued that branches have a larger penalty on DSP processors than on RISC
machines. The reason is explained on Fig. 42.62. If a data dependent branch needs to be executed, e.g.,
“branch if accumulator is zero,” then it takes that this instruction cannot follow immediately after the

TABLE 42.3 Number of Parallel Address Generation 
Units for a Few DSP Processors

Generation Units

Processor Data Address Program Address

C5× [18] 1 (ARAU) 1
C54× [19] 2 (DAGEN has two units: 

ARAU0, ARAU1)
1

Lode [21] 2 (ACU0, ACU1) 1
Frio [10] 2 1
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accumulator is set. In the simple examples of Fig. 42.62, there needs to be two, respectively three instruction
cycles between the setting of the accumulator flag and the usage of it in the decode stage, by the RISC
and DSP processor, respectively. Therefore, the RISC has an advantage for control dominated applications.
In practice these pipeline hazards are either hidden to the programmer by hardware solutions (e.g.,
forwarding or stalls) or they are visible to the programmer, who can optimize his code around it. A typical
example are the branch and the “delayed branch” instruction in DSP processor. Because an instruction is
fetched in the cycle before it is decoded, a regular branch instruction will incur an unnecessary fetch of the
next instruction in memory following the branch.  To optimize the code in DSP processors, the delayed
branch instruction is introduced. In this case, the instruction that follows the branch instruction in memory
will be executed before the actual branch takes place. Hence, a delayed branch instruction takes effectively
one cycle to execute while a regular branch will take two cycles to execute. 

FIGURE 42.60 Basic pipeline architecture for a RISC and a DSP processor.

FIGURE 42.61 Memory-intensive number crunching on a RISC and a DSP.
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The delayed branch is a typical example on how DSP programmers are very sensitive to code size and
code execution. Indeed, for embedded applications, minimum code size is a requirement.

Conclusions and Future Trends

DSP processors are a special type of processors, very different from the general purpose micro controller
or micro processor architectures. As argued in this chapter section, this is visible in all components of
the processor: the overall architecture, the data paths, the address generation units, and even the pipeline
structure. 

The applications of the future will keep on driving the next generation of DSP processors. Several
trends are visible. Clearly, there is a need to support higher level languages and compilers. Traditional
compiler techniques do not produce efficient, optimized code for DSP processors. Compiler technology
has only recently started to address the needs of low power embedded applications. But also the architec-
tures will need changes to accommodate the compiler techniques. One drastic approach is the appearance
of VLIW architectures, for which efficient compiler techniques are known. This results, however, in code
size explosion associated with a large increase in power consumption. A hybrid approach might be a
better solution. For example, the processor described in [10] has unified register files. Yet, it also makes
an exception for the accumulators. 

Another challenge is the increased demand for performance while reducing the power consumption.
Next generation wireless portable applications will not only provide voice communication, but also video,
text and data, games, and so on. On top of this the applications will change and will need reconfigurations
while in use. This will require a power efficient way of runtime reconfiguration [16]. The systems on a
chip that implement these wireless communication devices will include a large set of heterogeneous
programmable and reconfigurable modules, each optimized to the application running on them. Several
of these will be DSP processors and they will be crucial for the overall performance. 

Acknowledgments

The author thanks Mr. Katsuhiko Ueda of Matsushita Electric Co., Japan, for the interesting discussions
and for providing several figures in this chapter section.

FIGURE 42.62 Decision making (branch) on a RISC and a DSP.

zeroflag is set

Memory
Access

DecodeFetch Execute

Memory
AccessDecodeFetch Execute

Memory
AccessDecodeFetch Execute

ExecuteDecodeFetch
Memory
Access

zeroflag is set

Write
Back

Write
Back

Write
Back

Write
Back

P
ro

gr
am

 in
st

ru
ct

io
n 

or
de

r

Time in clock cycles

Time in clock cycles

P
ro

gr
am

 in
st

ru
ct

io
n 

or
de

r

if (acc = 0) then ...

(a) RISC pipeline

(b) DSP pipeline

ExecuteDecodeFetch
Memory
Access

Write
Back

ExecuteDecodeFetch
Memory
Access

Write
Back

ExecuteDecodeFetch
Memory
Access

Write
Back

if (acc = 0) then ...
© 2002 by CRC Press LLC



References

1. Bahl L., Cocke J., Jelinek F., Raviv J., “Optimal decoding of linear codes for minimizing symbol error
rate,” IEEE Trans. Information Theory, vol. IT-20, pp. 284–287, March 1974.

2. Berrou C., Glavieux A., Thitimajshima P., “Near shannon limit error-correcting coding and decoding:
turbo-codes (1),” Proc. ICC ’93, May 1993.

3. Catthoor F., De Man H., “Application-specific architectural methodologies for high-throughput
digital signal and image processing,” IEEE Transactions on ASSP, Feb. 1990.

4. Forney G., “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–278, March 1973.
5. Gass W., Bartley D., “Programmable DSPs,” Chapter 9 in Digital Signal Processing for Multimedia

Systems, Parhi K., Nishitani T. (Eds.), Marcel Dekker Inc., New York, 1999. 
6. Gatherer A., Stetzler T., McMahan M., Auslander E., “DSP-based architectures for mobile commu-

nications: past, present, future,” IEEE Communications Magazine, pp. 84–90, Jan. 2000.
7. Hagenauer J., Hoeher P., “A viterbi algorithm with soft-decision outputs and its applications,” Proc.

Globecom ’89, pp. 47.1.1–47.1.7, Nov. 1989.
8. Hennessy J., Patterson D., Computer Architecture: A Quantitative Approach, 2nd Edition, Morgan

Kaufmann Publ., San Francisco, CA, 1996.
9. Kabuo H., Okamoto M., et al. “An 80 MOPS peak high speed and low power consumption 16-bit

digital signal processor,” IEEE Journal of Solid-State Circuits, vol. 31, no. 4, pp. 494–503, 1996.
10. Kolagotla R., et al., “A 333 MHz dual-MAC DSP architecture for next-generation wireless applica-

tions,” Proceedings ICASSP, Salt Lake City, UT, May 2001.
11. Lapsley P., Bier J., Shoham A., Lee E.A., DSP Processor Fundamentals: Architectures and Features,

IEEE Press, 1996. 
12. Lee E.A., “Programmable DSP architectures: Part I and Part II,” IEEE ASSP Magazine, pp. 4–19, Oct.

1988, pp. 4–14, Jan. 1989.
13. McMahan M.L., “Evolving cellular handset architectures but a continuing, insatiable desire for DSP

MIPS,” Texas Instruments Technical Journal, Jan.–Mar. 2000, vol. 17, no. 1, reprinted as Application
Report SPRA650-March 2000.

14. Okamoto M., Stone K., et al., “A high performance DSP architecture for next generation mobile
phone systems,” 1998 IEEE DSP Workshop.

15. Oliphant M., “The mobile phone meets the internet,” IEEE Spectrum, pp. 20–28, Aug. 1999. 
16. Schaumont P., Verbauwhede I., Keutzer K., Sarrafzadeh M., “A quick safari through the reconfigu-

ration jungle,” Proceedings 38th Design Automation Conference, Las Vegas, NV, June 2001.
17. Strauss W., “Digital signal processing, the new semiconductor industry technology driver,” IEEE

Signal Processing Magazine, pp. 52–56, March 2000.
18. Texas Instruments, TMS320C5x User’s Guide, document SPRU056B, Jan. 1993.
19. Texas Instruments, TMS320C54x DSP CPU Reference Guide, document SPRU131G, March 2001.
20. Verbauwhede I., Scheers C., Rabaey J., “Analysis of multidimensional DSP specifications,” IEEE

Transactions on signal processing, vol. 44, no. 12, pp. 3169–3174, Dec. 1996.
21. Verbauwhede I., Touriguian M., “Wireless digital signal processing,” Chapter 11 in Digital Signal

Processing for Multimedia Systems, Parhi K., Nishitani T. (Eds.), Marcel Dekker Inc., New York, 1999.
22. Verbauwhede I., Nicol C., “Low power DSP’s for wireless communications,” Proceeding ISLPED,

pp. 303–310, Aug. 2000.
© 2002 by CRC Press LLC



                                                          
43
Data Security

43.1 Introduction
43.2 Unkeyed Cryptographic Primitives

Random Oracle Model 

43.3 Symmetric Key Cryptographic Primitives
Symmetric Key Block Ciphers • Symmetric Key 
Stream Ciphers • Message Authentication Codes 

43.4 Asymmetric Key Cryptographic Primitives
Public Key Encryption Schemes •  Digital Signature 
Schemes • Advanced Topics for Public 
Key Cryptography 

43.5 Other Resources

43.1 Introduction

Cryptography is the science of data security. This chapter gives a brief survey of cryptographic practice
and research. The chapter is organized along the lines of the principal categories of cryptographic
primitives: unkeyed, symmetric key, and asymmetric key. For each of these categories, the chapter defines
the important primitives, give security models and attack scenarios, discuss constructions that are popular
in practice, and describe current research activity in the area. Security is defined in terms of the goals
and resources of the attacker.

43.2 Unkeyed Cryptographic Primitives

The main unkeyed cryptographic primitive is the cryptographic hash function. This is an efficient function
from bit strings of any length to bit strings of some fixed length (say 128 or 160 bits). The description of
the function is assumed to be publicly available. If H is a hash function, and if y = H(x), then y is called
the “hash” or “hash value” of x.

One desirable property of a cryptographic hash function is that it should be difficult to invert. This
means that given a specific hash value y it is computationally infeasible to produce any x such that
H(x) = y. Another desirable property is that it should be difficult to find “collisions.” This means that it
is computationally infeasible to produce two inputs x and x′ such that H(x) = H(x′). The attacker is
assumed to know a complete specification of the hash function.

A cryptographic hash function can be used for establishing data integrity. Suppose that the hash of a
large file is stored in a secure location, while the file itself is stored in an insecure location. It is infeasible
for an attacker to modify the file without detection, because a re-hash of the modified file will not match
the stored hash value (unless the attacker was able to invert the hash function). We will see other applications
of cryptographic hash functions when we look at asymmetric cryptographic primitives in Section 43.4.

Popular choices for cryptographic hash functions include MD-5 [1], RIPEMD-160 [2], and SHA-1
[3]. It is also common to construct cryptographic hash functions from symmetric key block ciphers [4].

Matt Franklin
University of California at Davis
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Random Oracle Model

One direction of recent research is on the “random oracle model.” This is a design methodology for
protocols and primitives that make use of cryptographic hash functions. Pick a specific cryptographic
hash function such as MD-5. Its designers may believe that it is difficult to invert MD-5 or to find
collisions for it. However, this does not mean that MD-5 is a completely unpredictable function, with
no structure or regularity whatsoever. After all, the complete specification of MD-5 is publicly available
for inspection and analysis, unlike a truly random function that would be impossible to specify in a
compact manner. Nevertheless, the random oracle model asserts that a specific hash function like MD-5
behaves like a purely random function. This is part of a methodology for proving security properties of
cryptographic schemes that make use of hash functions.

This assumption was introduced by Fiat and Shamir [5] and later formalized by Bellare and Rogaway [6].
It has been applied to the design and analysis of many schemes (see, e.g., the discussion of optimal asymmetric
encryption padding in the subsection on “Chosen Ciphertext Security for Public Key Encryption”).

Recently, a cautionary note was sounded by Canetti, Goldreich, and Halevi [7]. They demonstrate by
construction that it is possible for a scheme to be secure in the random oracle model and yet have no secure
instantiation whatsoever when any hash function is substituted. This is a remarkable theoretical result;
however, the cryptographic community continues to base their designs on the random oracle model, and
with good reason. Although it cannot provide complete assurance about the security of a design, a proof
in the random oracle model provides confidence about the impossibility of a wide range of attacks. Spe-
cifically, it rules out common attacks where the adversary ignores the inner workings of the hash function
and treats it as a “black box.” The vast majority of protocol failures are due to this kind of black box attack,
and thus the random oracle model remains an invaluable addition to the cryptographer’s tool kit.

43.3  Symmetric Key Cryptographic Primitives

The main symmetric key cryptographic primitives are discussed including block ciphers, stream ciphers,
and message authentication codes.

Symmetric Key Block Ciphers

A symmetric key block cipher is a parameterized family of functions EK, where each EK is a permutation
on the space of bit strings of some fixed length. The input to EK is called the “plaintext” block, the output
is called the “ciphertext” block, and K is called the “key.” The function EK is called an “encryption”
function. The inverse of EK is called a “decryption” function, and is denoted DK.

To encrypt a message that is longer than the fixed-length block, it is typical to employ a block cipher
in a well-defined “mode of operation.” Popular modes of operation include output feedback mode, cipher
feedback mode, and cipher block chaining mode; see [8] for a good overview. In this way, the plaintext
and ciphertext can be bit strings of arbitrary (and equal) length. New modes of operations are being
solicited in connection with the development of the Advanced Encryption Standard (see subsection
“Advanced Encryption Standard (AES)”).

The purpose of symmetric key encryption is to provide data confidentiality. Security can be stated at a
number of levels. It is always assumed that the attacker has access to a complete specification of the
parameterized family of encryption functions and to a ciphertext of adequate length. Beyond that, the
specific level of security depends on the goals and resources of the attacker. An attacker might attempt a
“total break” of the cipher, which would correspond to learning the key K. An attacker might attempt a
“partial break” of the cipher, which would correspond to learning some or all of the plaintext for a given
ciphertext. An attacker might have no resources beyond a description of the block cipher and a sample
ciphertext, in which case he is mounting a “ciphertext-only attack.” An attacker might mount a “known-
plaintext attack,” if he is given a number of plaintext-ciphertext pairs to work with (input-output pairs for
the encryption function). If the attacker is allowed to choose plaintexts and then see the corresponding
ciphertexts, then he is engaged in a “chosen-plaintext attack.” 
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Symmetric key block ciphers are valuable for data secrecy in a storage scenario (encryption by the
data owner for an insecure data repository, and subsequent decryption by the data owner at a later time),
or in a transmission scenario (across an insecure channel between a sender and receiver that have agreed
on the secret key beforehand).

Perhaps the most popular symmetric key block cipher for the past 25 years has been the Data Encryption
Standard (DES) [9], although it may be near the end of its useful life. NIST recently announced the
Advanced Encryption Standard (AES) block cipher, which we discuss in section “Advanced Encryption
Standard (AES).”

Most modern block ciphers have an “iterated” design, where a “round function” is repeated some fixed
number of times (e.g., DES has 16 rounds). Many modern block ciphers have a “Feistel structure” [10],
which is an iterated design of a particular type. Let (Lj −1, Rj −1) denote the output of the (j − 1)th round,
divided into two halves for notational convenience. Then the output of the jth round is (Lj, Rj), where
Lj = Rj −1, and Rj = Lj −1 xor f(Rj −1, Kj) for some function f. Here Kj is the jth “round key,” derived from
the secret key according to some fixed schedule. Note that a block cipher with a Feistel structure is
guaranteed to be a permutation even if the function f is not invertible.

Differential Cryptanalysis 

Differential cryptanalysis is a powerful statistical attack that can be applied to many symmetric key block
ciphers and unkeyed cryptographic hash functions. The first publication on differential cryptanalysis is
due to Biham and Shamir [11], but Coppersmith [12] has described how the attack was understood
during the design of the DES in the early 1970s.

The central idea of differential cryptanalysis for block ciphers is to sample a large number of pairs of
ciphertexts for which the corresponding plaintexts have a known fixed difference D (under the operation
of bitwise exclusive-or). The difference D leads to a good “characteristic” if the XOR of the ciphertexts (or
of an intermediate result during the computation of the ciphertext) can be predicted with a relatively large
probability. By calculating the frequency with which every difference of plaintexts and every difference of
ciphertexts coincides, it is possible to deduce some of the key bits through a statistical analysis of a
sufficiently large sample of these frequencies.

For a differential cryptanalysis of DES, the best attack that Biham and Shamir discovered requires 247

chosen plaintext pairs with a given difference. They note that making even slight changes to the S-boxes
(nonlinear substitution transformation at the heart of DES) can lead to a substantial weakening with
respect to a differential attack. 

Linear Cryptanalysis

Linear cryptanalysis is another powerful attack that can be applied to many symmetric key block ciphers
and unkeyed cryptographic hash functions. Consider the block cipher as being a composition of linear
and nonlinear functions. The goal of linear cryptanalysis is to discover linear approximations for the
nonlinear components. These approximations can be folded into the specification of the block cipher,
and then expanded to find an approximate linear expression for the ciphertext output bits in terms of
plaintext input bits and secret key bits. If the approximations were in fact perfect, then enough plaintext-
ciphertext pairs would yield a system of linear equations that could be solved for the secret key bits;
however, even when the approximations are far from perfect, they enable a successful statistical search
for the key, given enough plaintext-ciphertext pairs. This is a known-plaintext attack, unlike differential
cryptanalysis, which is chosen-plaintext.

Linear cryptanalysis was introduced by Matsui and Yamagishi [13]. Matsui applied linear cryptanalysis
to DES [14]. In his best attack, 243 known plaintexts are required to break DES with an 85% probability.
See Langford and Hellman [15] for close connections between differential and linear cryptanalysis.

Advanced Encryption Standard (AES)

In 1997, NIST began an effort to develop a new symmetric key encryption algorithm as a Federal Infor-
mation Processing Standard (FIPS). The goal was to replace the DES, which was widely perceived to be
© 2002 by CRC Press LLC



      
at the end of its usefulness. A new algorithm was sought, with longer key and block sizes, and with increased
resistance to newly revealed attacks such as linear cryptanalysis and differential cryptanalysis. The AES
was to support 128-bit block sizes, and key sizes of 128 or 192 or 256 bits. By contrast, DES supported
64-bit block sizes, and a key size of 56 bits.

Fifteen algorithms were proposed by designers around the world. This was reduced to five finalists,
announced by NIST in 1999: MARS, RC6, Rijndael, Serpent, and TwoFish. In 2000, Rijndael was selected
as the Advanced Encryption Standard. Rijndael has a relatively simple structure; however, unlike many
earlier block ciphers (such as DES), it does not have a Feistel structure.

The operation of Rijndael proceeds in rounds. Imagine that the block to be encrypted is written as a
rectangular array of byte-sized words (four rows and four columns). First, each byte in the array is
replaced by a different byte, according to a single fixed lookup table (S-box). Next, each row of the array
undergoes a circular shift by a fixed amount. Next, a fixed linear transformation is applied to each column
in the array. Last, the entire array is exclusive-or with a “round key.” All of the round keys are calculated
by expanding the original secret key bits according to a simple key schedule. Note that the only nonlinear
component is the S-box substitution step. Details of Rijndael’s operation can be found at [16].

Symmetric Key Stream Ciphers

Stream ciphers compute ciphertext one character at a time, where the characters are often individual
bits. By contrast, block ciphers compute ciphertext one block at a time, where the block is much larger
(64 bits long for DES, 128 bits long for AES). Stream ciphers are often much faster than block ciphers.
The typical operation of a stream cipher is to exclusive-or message bits with a “key stream.” If the key
stream were truly random, this would describe the operation of a “one-time pad.” The key stream is not
truly random, but it is instead derived from the short secret key.

A number of stream ciphers have been optimized for hardware implementation. The use of linear
feedback shift registers is especially attractive for hardware implementation, but unfortunately these are
not sufficiently secure when used alone. The Berlekamp–Massey algorithm [17] allows a hidden linear
feedback shift register to be determined from a very short sequence of output bits. In practice, stream
ciphers for hardware often combine linear feedback shift registers with nonlinear components to increase
security. One approach is to apply a nonlinear function to the output of several linear feedback shift
registers that operate in parallel (“nonlinear combination generator”). Another approach is to apply a
nonlinear function to all of the states of a single linear feedback shift register (“nonlinear filter generator”).
Still another approach is to have the output of one linear feedback shift register determine when a step
should be taken in other linear feedback shift registers (“clock-controlled generator”).

Some stream ciphers have been developed to be especially fast when implemented in software, e.g.,
RC5 [18]. Certain modes of operation for block ciphers can be viewed as symmetric key stream ciphers
(output feedback mode and cipher feedback mode). 

Message Authentication Codes

A message authentication code (MAC) is a keyed cryptographic hash function. It computes a fixed-length
output (tag) from an input of any length (message). When both the sender and the receiver know the
secret key, a MAC can be used to transmit information with integrity. Without knowing the key, it is
very difficult for an attacker to modify the message and/or the tag so that the hash relation is maintained.
The MAC in the symmetric key setting is the analog of the digital signature in the asymmetric key setting.
The notion of message authentication in the symmetric key setting goes back to Gilbert, MacWilliams,
and Sloane [19].

Security for MACs can be described with respect to different attack scenarios. The attacker is assumed
to know a complete specification of the hash function, but not the secret key. The attacker might attempt
to insert a new message that will fool the receiver, or the attacker might attempt to learn the secret key.
The attacker might get to see some number of message-tag pairs, either for random messages or for
messages chosen by the attacker.
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One popular MAC is the CBC-MAC, which is derived from a block cipher (such as DES) run in cipher
block chaining mode. Another approach is to apply an unkeyed cryptographic hash function after the
message has been combined with the key according to some pre-packaging transform. Care must be taken
with the choice of transform; one popular choice is HMAC [20]. The UMAC construction [21] has been
optimized for extremely fast implementation in software, while maintaining provable security. Jutla [22]
recently showed especially efficient methods for combining message authentication with encryption, by
using simple variations on some popular modes of operation for symmetric key block ciphers.

43.4  Asymmetric Key Cryptographic Primitives

Two asymmetric key cryptographic primitives are discussed in this section: public key encryption schemes
and digital signature schemes.

Public Key Encryption Schemes

A public key encryption scheme is a method for deriving an encryption function EK and a corresponding
decryption function DK such that it is computationally infeasible to determine DK from EK. The encryp-
tion function EK is made public, so that anyone can send encrypted messages to the owner of the key. The
decryption function DK is kept secret, so that only the owner of the key can read encrypted messages. The
functions are inverses of each other, so that DK(EK(M)) = M for every message M. Unlike the symmetric
key setting, there is no need for the sender and receiver to pre-establish a secret key before they can
communicate securely.

Security for a public key encryption scheme relates to the resources and goals of the attacker. The
attacker is assumed to have a complete description of the scheme, as well as the public encryption key
EK. Thus, the attacker is certainly able to encrypt arbitrary messages (“chosen-plaintext attack”). The
attacker might be able to decrypt arbitrary messages (“chosen-ciphertext attack,” discussed in more detail
in subsection on “Chosen Ciphertext Security for Public Key Encryption”). The goal of the attacker might
be to deduce the decryption function DK (“total break”), or simply to learn all or some information
about the plaintext corresponding to a particular ciphertext (“partial break”), or merely to guess which
of two plaintexts is encrypted by a given ciphertext (“indistinguishability”).

The idea of public key encryption is due to Diffie and Hellman [23]. Most popular public key encryption
schemes base their security on the hardness of some problem from number theory. The first public key
encryption proposed remains one of the most popular today—the RSA scheme due to Rivest, Shamir, and
Adleman [24]. Other popular public key encryption schemes are based on the “discrete logarithm prob-
lem,” including ElGamal [25] and elliptic curve variants [26].

For efficiency purposes, public key encryption is often used in a hybrid manner (called “key transport”).
Suppose that a large message M is to be encrypted using a public encryption key EK. The sender chooses
a random key k for a symmetric key block cipher such as AES. The sender then transmits EK(k), AESk(M).
The first component enables the receiver to recover the symmetric key k, which can be used to decrypt
the second component to recover M. The popular e-mail security protocol PGP uses this method
(augmented with an integrity check).

It is also possible to use a “key agreement protocol” to establish a secret key over an insecure public
channel, and then to use the secret key in a symmetric key block cipher. The idea is due to Diffie and
Hellman [22], and the original Diffie–Hellman key agreement protocol is still widely used in practice.

Digital Signature Schemes

A digital signature scheme is a method for deriving a signing function SK and a corresponding verification
function VK, such that it is computationally infeasible to derive SK from VK. The verification function VK

is made public, so that anyone can verify a signature made by the owner of the signing key. The signing
function SK is kept secret, so that only the owner of the signing key can sign messages. The signing
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function and verification function are related as follows: If the signature of a message M is SK(M), then
it should be the case that VK(SK(M)) = “valid” for all messages M.

Security for a digital signature scheme depends on the goals and resources of the attacker [27]. The
attacker is assumed to know a complete specification of the digital signature scheme, and the verification
function VK. The attacker might also get to see message-signature pairs for random messages (“known
message attack”), or for arbitrary messages chosen by the attacker (“chosen message attack”). The goal of
the attacker might be to derive the signature function (“total break”), or to forge a signature on a particular
message (“selected message forgery”), or to forge any message–signature pair (“existential message forgery”).

In practice, a signing function is applied not to the message itself, but rather to the hash of the message
(i.e., to the output of an unkeyed cryptographic hash function applied to the message). The security of
the signature scheme is then related to the security of the hash function. For example, if a collision can
be found for the hash function, then an attacker can produce an existential message forgery under a
chosen message attack (by finding a collision on the hash function, and then asking for the signature of
one of the colliding inputs).

One of the most popular digital signature schemes is RSA (based on the same primitive as RSA public
key encryption, where SK = DK and VK = EK). Other popular digital signature schemes include the digital
signature algorithm (DSA) [28] and ElGamal [25].

Advanced Topics for Public Key Cryptography

Chosen Ciphertext Security for Public Key Encryption

As discussed earlier, a number of definitions for the security of a public key encryption scheme have
been proposed. Chosen ciphertext security is perhaps the strongest natural definition, and it has emerged
as the consensus choice among cryptographers as the proper notion of security to try to achieve. This is
not to say that chosen ciphertext security is necessary for all applications, but instead of having a single
encryption scheme, that is, chosen ciphertext secure will allow it to be used in the widest possible range
of applications.

The strongest version of definition of chosen ciphertext security is due to Rackoff and Simon [29],
building from a slightly weaker definition of Naor and Yung [30]. It can be described as a game between
an adversary and a challenger. The challenger chooses a random public key and corresponding private
key [EK, DK], and tells the public key EK to the adversary. The adversary is then allowed to make a series
of decryption queries to the challenger, sending arbitrary ciphertexts to the challenger and receiving their
decryptions in reply. After this stage, the adversary chooses two messages M0 and M1 whose encryptions
he thinks will be particularly easy to distinguish between. The adversary sends M0 and M1 to the challenger.
The challenger chooses one of these messages at random; call it Mb, where b is a random bit. The challenger
encrypts Mb and sends the ciphertext C to the adversary. 

Now the adversary attempts to guess whether C is an encryption of M0 or M1. To help him with his
guess, he is allowed to engage in another series of decryption queries with the challenger. The only
restriction is that the adversary may never ask the challenger to directly decrypt C. At some point the
adversary makes his guess for Mb. If the adversary can win this game with any nonnegligible advantage
(i.e., with probability 1/2 plus 1/kc, where k is the length of the private key and c is any positive constant),
then we say that he has mounted a successful chosen ciphertext attack. If no adversary (restricted to the
class of probabilistic polynomial time turing machines) can mount a successful chosen ciphertext attack,
then we say that the cryptosystem is chosen ciphertext secure.

This might seem like overkill for a definition of security. Unlimited access to a decryption oracle might
seem like an unrealistically strong capability for the attacker. Merely distinguishing between two plaintexts
might seem like an unrealistically weak goal for the attacker. Nevertheless, this definition has proven to
be a good one for several reasons. First, it has been shown to be equivalent to other natural and strong
definitions of security [31]. Second, Bleichenbacher [32] showed that a popular standard (RSA PKCS #1)
was vulnerable to a chosen ciphertext attack in a practical scenario.
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In the random oracle model, chosen ciphertext security can be achieved by combining a basic public
key encryption scheme such as RSA with a simple “prepackaging” transform. Such a transform uses
random padding and unkeyed cryptographic hash functions to scramble the message prior to encryption.
The prepackaging transform is invertible, so that the message can be unscrambled after the ciphertext is
decrypted.

The optimal asymmetric encryption padding (OAEP) transform takes an m-bit message M, a random
bit string R of length s, and outputs OAEP(M, R) = ((M || 0s) xor H(R)) || (R xor G((M || 0s) xor H(R))).
Here G and H are unkeyed cryptographic hash functions that are assumed to have no exploitable
weaknesses (random oracles). This can be viewed as a two-round Feistel structure (e.g., DES is a 16-round
round Feistel structure). Unpackaging the transform is straightforward. The OAEP transform is used
extensively in practice, and has been incorporated in several standards. OAEP combined with RSA yields
an encryption scheme that is secure against a chosen ciphertext attack [33,34].

Shoup [35] shows that OAEP+, a variation on OAEP, yields chosen ciphertext security when combined
with essentially any public key encryption scheme: OAEP + (M, R) = ((M || W(M, R)) xor H(R)) || (R xor
G(M || W(M, R)) xor H(R)), where G, H, and W are unkeyed cryptographic hash functions that behave
like random oracles. Boneh [36] shows that even simpler prepackaging transforms (essentially one-round
Feistel structure versions of OAEP and OAEP+) yield chosen ciphertext secure encryption schemes when
combined with RSA or Rabin public key encryption.

Without the random oracle model, chosen ciphertext security can be achieved using the elegant
Cramer–Shoup cryptosystem [37]. This is based on the hardness of the Decision Diffie–Hellman problem
(see subsection “New Hardness Assumptions for Asymmetric Key Cryptography”). Generally speaking,
constructions in the random oracle model are more efficient than those without it.

Threshold Public Key Cryptography

In a public key setting, the secret key (for decryption or signing) often needs to be protected from theft
for long periods of time against a concerted attack. Physical security is one option for guarding highly
sensitive keys, e.g., storing the key in a tamper-resistant device. Threshold public key cryptography is an
attractive alternative for safeguarding critical keys.

In a threshold public key cryptosystem, the secret key is never in one place. Instead, the secret key is
distributed across many locations. Each location has a different “share” of the key, and each share of the
key enables the computation of a “share” of the decryption or signature. Shares of a signature or decryption
can then be easily combined to arrive at the complete signature or decryption, assuming that a sufficient
number of shareholders contribute to the computation. This “sufficient number” is the threshold that is
built into the system as a design parameter. Note that threshold cryptography can be combined with physical
security, by having each shareholder use physical means to protect his individual share of the secret key.

Threshold cryptography was independently conceived by Desmedt [38], Boyd [39], and Croft and
Harris [40], building on the fundamental notion of secret sharing [41,42]. Satisfactory threshold schemes
have been developed for a number of public key encryption and digital signature schemes. These threshold
schemes can be designed so as to defeat an extremely strong attacker who is able to travel from shareholder
to shareholder, attempting to learn or corrupt all shares of the secret key (“proactive security”). Efficient
means are also available for generating shared keys from scratch by the shareholders themselves, so that
no trusted dealer is needed to initialize the threshold scheme [43,44]. Shoup [45] recently proposed an
especially simple and efficient scheme for threshold RSA. 

New Hardness Assumptions for Asymmetric Key Cryptography

A trend has occurred in recent years toward the exploration of the cryptographic implications of new
hardness assumption. Classic assumption include the hardness of factoring a product of two large primes,
the hardness of extracting roots modulo a product of two large primes, and the hardness of computing
discrete logarithms modulo a large prime (i.e., solving gx = y mod p for x). 

One classic assumption is the Diffie–Hellman assumption. Informally stated, this assumption is that
it is difficult to compute (gab mod p) given (ga mod p) and (gb mod p), where p is a large prime. This assumption
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underlies the Diffie–Hellman key agreement protocol. The “Decisional Diffie–Hellman Assumption” has
proven to be useful in recent years. Informally stated, this assumption is that it is difficult to distinguish
triples of the form (ga mod p, gb mod p, gab mod p) and triples of the form (ga mod p, gb mod p, gc mod p)
for random a, b, c. Perhaps most notably, the Cramer–Shoup chosen ciphertext secure encryption scheme
is based on this new assumption.

The security of RSA is based on a root extraction problem related to the hardness of factoring: Given
message M and modulus N = pq of unknown factorization and suitable exponent e, compute M1/e mod N.
Recently, a number of protocols and primitives have been based on a variant of this assumption called
the “Strong RSA Assumption:” Given M and N, find e and M1/e mod N for any suitable e. For example,
a provably secure signature scheme can be based on this new assumption without the need for the random
oracle assumption [46].

The RSA public key scheme is based on arithmetic modulo N, where N = pq is a product of two primes
(factors known to the private key holder but not to the public). Recently, Paillier [47] has proposed a novel
public key encryption scheme based on arithmetic modulo p2q. His scheme has nice “homomorphic”
properties, which enable some computations to be performed directly on ciphertexts. For example, it is
easy to compute the encryption of the sum of any number of encrypted values, without knowing how to
decrypt these ciphertexts. This has many nice applications, such as for secure secret ballot election protocols. 

Lastly, the “Phi-Hiding Assumption” was introduced by Cachin, Micali, and Stadler [48]. This is a
technical assumption related to prime factors of p − 1 and q − 1 in an RSA modulus N = pq. This
assumption enables the construction of an efficient protocol for querying a database without revealing
to the database what queries are being made. (Private Information Retrieval).

Privacy Preserving Protocols

Using the cryptographic primitives described in earlier sections, it is possible to design protocols for two
or more parties to perform useful computational tasks while maintaining some degree of data confiden-
tiality. Theoretical advances were well established with the “completeness theorems” of [49] and others;
however, practical solutions have often required special-purpose protocols tailored to the particular
problem.

One important example—both historically and practically—is the problem of conducting a secret
ballot election [50,51]. This can be viewed as a cryptographic protocol design problem among three
types of parties: voters, talliers, and independent observers. All types of parties have different security
requirements. Voters want to guarantee that their individual ballots are included in the final tally, and
that the contents of the ballots remain secret. Talliers want to produce an accurate final count that includes
all valid ballots counted exactly once, and no invalid ballots. Independent observers want to verify that
the tally is conducted honestly. One of the best secret ballot election protocol currently known for large-
scale elections is probably [52], which is based on threshold public key encryption.

43.5 Other Resources

An excellent resource for further information is the CRC Handbook of Applied Cryptography [53],
particularly the first chapter of that handbook, which has an overview of cryptography that is highly
recommended. Ross Anderson’s book on security engineering [54] is a recommended resource, especially
for its treatment of pragmatic issues that arise when implementing cryptographic primitives in practice.
See also the frequently asked questions list maintained by RSA Labs (www.rsa.com/rsalabs).
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44.1 Introduction

Rapidly evolving submicron technology and design automation has enabled the design of electronic
systems with millions of transistors integrated on a single silicon die, capable of delivering gigaflops of
computational power. At the same time, increasing complexity and time to market pressures are forcing
designers to adopt design methodologies with shorter ASIC design cycles. With the emergence of system-
on-chip (SoC) concept, traditional design and test methodologies are hitting the wall of complexity and
capacity. Conventional design flows are unable to handle large designs made up of different types of
blocks such as customized blocks, predesigned cores, embedded arrays, and random logic as shown in
Fig. 44.1. Many of today’s test strategies have been developed with a focus on single monolithic block of
logic; however, in the context of SoC the test strategy should encompass multiple test approaches and
provide a high level of confidence on the quality of the product. Design reuse is one of the key components
of these methodologies. Larger designs are now shifting to the use of predesigned cores, creating a myriad
of new test challenges. Since the end user of the core has little participation in the core’s architectural
and functional development, the core appears as a black box with known functionality and I/O. Although
enabling designers to quickly build end products, core-based design requires test development strategies
for the core itself and the entire IC/ASIC with the embedded cores. 

This chapter begins with a discussion of some of the existing test methodologies and the key issues/
requirements associated with the testing of SoC. It is followed by a discussion on some of the emerging
approaches that will address some of these issues.

R. Chandramouli
Synopsys Inc.
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44.2 Current Test Practices

Current test practices consist primarily of ATE-based external test approaches. They range from manual
test development to scan-based test. Most of the manual test development efforts depend on fault simu-
lation to estimate the test coverage. Scan-based designs are becoming very common, although their capacity
and capability to perform at-speed test are being increasingly affected by physical limitations. 

Scan-Based Test

Over the past decade, there has been an increased use of the scan DFT methodology across a wide variety of
designs. One of the key motivations for the use of scan is the resulting ability to automatically generate test
patterns that verify the gate or transistor level structures of the scan-based design. Because test generation is
computationally complex for sequential designs, most designs can be reconfigured in test mode as combina-
tional logic with inputs and outputs from and to scannable memory elements (flip-flops) and primary I/O.
Different types of scan design approaches include mux-D, clock scan, LSSD, and random access scan [1].
The differences are with respect to the design of the scannable memory elements and their clocking
mechanisms. 

 Two major classes of scan design are full scan and partial scan. In the case of full scan, all of the
memory elements are made to be scannable, while in the case of partial scan, only a fraction of the
memory elements, based on certain overhead (performance and area) constraints, are mapped into scan
elements. Because of its iterative nature, the partial scan technique has an adverse impact on the design
cycle. Although full scan design has found wider acceptance and usage, partial scan is seen only in designs
that have very stringent timing and die size requirements. A major drawback with scan is the inability
to verify device performance at-speed. In general, most of the logic related to scan functionality is designed
for lower speed.

Back-End Scan Insertion

Traditional scan implementation depended on the “over-the-wall” approach, where designers complete
the synthesis and hand off the gate netlist to the test engineer for test insertion and automatic test pattern
generation (ATPG). Some electronic design automation (EDA) tools today help design and test engineers
speed the testability process by automatically adding test structures at the gate level. Although this
technique is easier than manual insertion, it still takes place after the design has been simulated and
synthesized to strict timing requirements. After the completed design is handed over for test insertion,

FIGURE 44.1 Core access through wrapper isolation.
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many deficiencies in the design may cause iteration back into module implementation, with the attendant
risks to timing closure, design schedule, and stability. 

These deficiencies may be a violation of full-scan design rules (e.g., improper clock gating or asyn-
chronous signals on sequential elements not handled correctly). In some cases, clock domain character-
istics in lower-level modules can cause compatibility problems with top-level scan chain requirements.
In addition, back-end scan insertion can cause broken timing constraints or violate vendor-specific design
rules that cannot be adequately addressed by reoptimization.

If back-end scan insertion is used on a large design, the reoptimization process to fix timing constraints
violated by inserting scan can take days. If timing in some critical path is broken in even a small part of
the overall design, and the violated constraint could not be fixed by reoptimization, the entire test process
would have to iterate back into synthesis to redesign the offending module. Thus, back-end test, where
traditionally only a small amount of time is budgeted compared to the design effort, would take an
inordinately long time. Worse, because these unanticipated delays occur at the very end of the design
process, the consequences are magnified because all the other activities in the project are converging,
and each of these will have some dependency on a valid, stable design database. 

RT-Level Scan Synthesis

Clearly, the best place to insert test structures is at the RT-level while timing budgets are being worked
out. Because synthesis methodologies for SoCs tend to follow hierarchical design flows, where subfunc-
tions within the overall circuit are implemented earliest and then assembled into higher-level blocks as
they are completed, DFT should be implemented hierarchically as well. Unfortunately, traditional full-
scan DFT tools and methodologies have worked only from the top level of fully synthesized circuits, and
have been very much a back-end processes. 

The only way to simultaneously meet all design requirements—function, timing, area, power, and
testability—is to account for these during the very earliest phases of the design process, and to ensure
that these requirements are addressed at every step along the way. A tool that works with simulation and
synthesis to insert test logic at this level will ensure that the design is testable from the start. It also
ensures that adequate scan structures are inserted to meet the coverage requirements that most companies
demand—usually greater than 95%. Achieving such high coverage is usually difficult once a design has
been simulated and synthesized. 

Tools that automatically insert test structures at the RT-level have other benefits as well. Provided that
they are truly automatic and transparent to the user, a scan synthesis tool makes it easy for the designer to
implement test without having to learn the intricacies of test engineering. Inserting scan logic before
synthesis also means that designers on different teams, working on different blocks of a complex design,
can individually insert test logic and know that the whole device will be testable when the design is assembled.
This is especially important for companies who use intellectual property (IP) and have embraced design
reuse. If blocks are reused in subsequent designs, testability is ensured because it was built in from the start.
A truly automated scan synthesis tool can also be used on third party IP, to ensure that it is testable. 

One of the key strengths of scan design is diagnosability. The user is able to set the circuit to any state
and observe the new states by scanning in and out of the scan chains. For example, when the component/
system fails on a given input vector, the clock can be stopped at the erring vector and a test clock can be
used to scan out the error state of the machine. The error state of the machine is then used to isolate the
defects in the circuit/system. In other words, the presence of scan enables the designer to get a “snap shot”
of the system at any given time, for purposes of system analysis, debug, and maintenance.

44.3 SoC Testing Complexity

With the availability of multiple millions of gates per design, more and more designers are opting to use
IPs to take advantage of that level of integration. The sheer complexity and size of such devices is forcing
them to adopt the concept of IP reuse; however, the existing design methodologies do not support a
cohesive or comprehensive approach to support reuse. The result is that many of these designs are created
© 2002 by CRC Press LLC



        
using ad hoc methodologies that are localized and specific to the design. Test reuse is the ability to provide
access to the individual IPs embedded in the SoC so that the test for the IP can be applied and observed
at the chip level. This ability to reuse becomes more complex when the IPs come from multiple sources
with different test methods. It becomes difficult to achieve plug and play capability in the test domain.
Without a standard, the SoC design team is faced with multiple challenges such as a test model for the
delivery of cores, the controllability and observability of cores from the chip I/O, and finally testing the
entire chip with embedded IPs, user defined logic, and embedded memories. 

Core Delivery Model

Core test is an evolving industry-wide issue, so no set standards are available to guide the testing of cores
and core-based designs. Cores are often delivered as RTL models, which enable the end-users to optimize
the cores for the targeted application; however, the current test practices that exist in the “soft core” based
design environment are very ad hoc. To a large extent it depends on whether the “soft core” model is
delivered to the end user without any DFT built into the core itself. The core vendors provide only
functional vectors that verify the core functionality. Again, these vectors are valid only at the core I/O
level and have to be mapped to the chip I/O level in order to verify the core functionality at the chip
level. Functional testing has its own merits and demerits, but the use of functional tests as manufacturing
tests without fault simulation cannot provide a product with deterministic quality. It can easily be seen
that any extensive fault simulation would not only result in increased resources, but also an extended
test development time to satisfy a certain quality requirement. 

Controllability and Observability of Cores

A key problem in testing cores is the ability to control and observe the core I/O when it is embedded
within a larger design. Typically, an ASIC or IC is tested using the parallel I/O or a smaller subset of
serial ports if boundary scan is used. In the case of the embedded core, an ideal approach would be to
have direct access to its I/O. A typical I/O count for cores would be in the order of 300–400 signals. Using
a brute-force approach all 300 signals could be brought out to the chip I/O resulting in a minimum of
300 extra multiplexers. The overhead in such a case is not only multiplexers, but also extra routing area
for routing the core I/O to the chip I/O and most of all, the performance degradation of at least one gate
delay on the entire core I/O. For most performance driven products, this will be unacceptable. Another
approach would be to access the core I/O using functional (parallel) vectors. In order to set each core
I/O to a known value, it may be necessary to apply many thousands of clocks at the chip I/O. (This is
because, the chip being a sequential state machine, it has to be cycled through hundreds of states before
arriving at a known state—the value on the core I/O signal).

Test Integration

Yet another issue is the integration of test with multiple cores potentially from multiple sources. Along
with the ability to integrate one or more cores on an ASIC, comes other design challenges such as layout
and power constraints and, very importantly, testing the embedded core(s) and the interconnect logic.
The test complexity arises from the fact that each core could be designed with different clocking, timing,
and power requirement. Test becomes a bottleneck in such an environment where the designer has to
develop a test methodology, either for each core or for the entire design. In either case, it is going to impact
the overall design cycle. Even if the individual cores are delivered with embedded test, the end user will have
to ensure testing of the interconnects between the multiple cores and the user logic. Although functional
testing can verify most of these and can be guaranteed by fault simulation, it would be a return to
resource-intensive ways of assuring quality.

Because many cores are physically distinct blocks at the layout level, manufacturing test of the cores
has to be done independent of other logic in the design. This means that the core must be isolated from the
rest of the logic and then tested as an independent entity. Conventional approaches to isolation and test
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impact the performance and test overhead. When multiple cores are implemented, testing of the inter-
connects between the cores and the rest of the logic is necessary because of the isolation-and-test approach. 

Defects and Performance 

Considerable design and test challenges are associated with the SoC concept. Test challenges arise both
due to the technology and the design methodology. At the technology level, increasing densities has given
rise to newer defect types and the dominance of interconnect delays over transistor delays due to shrinking
geometry’s. Because designers are using predesigned functional blocks, testing involves not only the
individual blocks, but also the interconnect between them as well as the user-created logic (glue logic).
The ultimate test objective is the ability to manufacture the product at its specified performance (fre-
quency) with the lowest DPM (defective parts per million). 

As geometry’s shrink and device densities increase, current product quality cannot be sustained through
conventional stuck-at fault testing alone [2]. When millions of devices are packed in a single die, newer
defect types are created. Many of these cannot be modeled as stuck-at faults, because they do not manifest
themselves into stuck-at-like behavior. Most of the deep submicron processes use multiple layers, so one
of the predominant defect types is due to shorts between adjacent layers (metal layers), or even between
adjacent lines (poly or metal lines). Some of these can be modeled as bridging faults, which behave as
the Boolean ANDing or ORing of the adjacent lines depending on the technology. Others do not manifest
themselves as logical faults, but behave as delay faults due to the resistive nature of certain shorts. Unlike
stuck-at faults, it becomes computationally complex to enumerate the various possible bridging faults
since most of them depend on the physical layout. Hence, most of the practical test development is
targeted towards stuck-at faults, although there has been considerable research in the analysis and test
of bridging faults.

At the deep submicron level interconnect delays dominate gate delays and this affects the ability to
test at speed the interconnect (I/O) between various functional blocks in the SoC design environment. Since
manufacturing test should be intertwined with performance testing, it is necessary to test the interaction
between various functional blocks at-speed. The testing of interconnects involves not only the propa-
gation of signal between various blocks, but also at the specified timing. Current approaches to test do
not in general support at-speed test because of a lack of accurate simulation model, limited tester
capabilities, and very little vendor support. Traditional testing, which is usually at lower speed, can trigger
failures of the device at the system level.

44.4 Emerging Trends in SoC Test

Two major capabilities are needed to address the major test challenges that were described earlier in this
chapter: (1) making the core test-ready and (2) integration of test-ready cores and user logic at the chip
level. 

Creation of Test-Ready Cores

Each core is made test-ready by building a wrapper around it as well as inserting appropriate DFT
structures (scan, BIST, etc.) to test the core logic itself. The wrapper is generally a scan chain similar to
the boundary scan chain [3] that helps the controllability and observability of the core I/O. The wrapper
chain enables access to the core logic for providing the core test vectors from the chip boundary (Fig. 44.1).
The wrappers also help in isolating the cores from other cores while the core is being tested, independent
of the surrounding cores and logic. One of the key motivation for wrapper is test-reuse. When a test-
ready core is delivered, the chip designer does not have to recreate the core test vectors but reuses the
core test vectors. The wrappers also help in isolating the core electrically form other cores so that signals
coming from other cores do not affect the core and vice versa. 
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Core Isolation

Many different approaches (Fig. 44.2) can be used to isolate a core from other cores. One common
approach is to use multiplexers at each I/O of the core. The multiplexors can be controlled by a test
mode so that external vector source can be directly connected to the core I/O during test. This approach
is very advantageous where the core doesn’t have any internal DFT structure and has only functional
vectors which can be applied directly from an external source to the core I/O; however, this approach is
disadvantageous when the number of core I/O exceeds that of the chip I/O and also impacts physical
routing.

In contrast, other approaches minimize the routing density by providing serial access to the core I/O.
The serial access can be through dedicated scan registers at the core I/O or through shared registers,
where sharing can happen between multiple cores. The scan register is called a wrapper or a collar. The
scan registers isolate the core from all other cores and logic during test mode. The wrapper cell is built
with a flip-flop and multiplexor that isolates each pin. It can be seen that the wrapper-based isolation
has impact on the overall area of the core. Sharing existing register cells at core I/O helps minimize the
area impact. Trade-offs exist with respect to core fault coverage and the core interconnect fault coverage,
between shared wrapper and dedicated wrappers. 

Access to cores can also be accomplished using the concept of “transparency” through existing logic.
In this case, the user leverages existing functionality of a logic block to gain access to the inputs of the
core and similarly from the core outputs to the chip I/O through another logic block. Figure 44.3 shows
an example of “transparency” in a logic block. Although this approach involves no hardware overhead,
detection of transparency is not a simple automation process. In addition, the existence of transparency
cannot be predicted a priori.

FIGURE 44.2 Core isolation techniques.

FIGURE 44.3 An example for transparency.
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It becomes evident that the isolation approach and the techniques to make a core test-ready depends
on various design constraints such as area, timing, power as well as the test coverage needs for the core,
and the core interconnect faults. 

Core Test Integration

Testing SoC devices with multiple blocks (Fig. 44.4), each block embedding different test techniques,
could become a nightmare without an appropriate test manager that can control the testing of various
blocks. Some of these blocks could be user-designed and others predesigned cores. Given the current
lack of any test interface standard in the SoC environment, it becomes very complex to control and observe
each of the blocks. Two key issues must be addressed: sequencing of the test operations [4] among the
various blocks, and optimization of the test interface between the various blocks and the chip I/O. These
depend very much on the test architecture, whether test controllers are added to individual blocks or
shared among many, and whether the blocks have adopted differing design-for-test (DFT) methodologies.
A high-level view of the SoC test architecture is shown in Fig. 44.5, where the embedded test in each of
the cores is integrated through a test bus, which is connected to a 1149.1 TAP controller for external
access. Many devices are using boundary scan with the IEEE 1149.1 TAP controller not only to manage
in-chip test, but also to aid at board and system-level testing. Some of the test issues pertain to the use
of a centralized TAP controller or the use of controller in each block with a common test bus to
communicate between various test controllers. In other words, it is the question of centralized versus
distributed controller architecture. Each of these has implications with respect to the design of test
functionality within each block. 

Besides testing each core through their individual access mechanism such as the core isolation wrapper,
the complete testing of the SoC also requires an integrated test which tests the interconnects between
the cores and the user-defined-logic (UDL). The solution requires, first to connect the test facilities

FIGURE 44.4 An SoC includes multiple cores with memory and user logic.

FIGURE 44.5 A high-level architecture for SoC test integration.
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between all the cores and the UDL, and then connect it to a central controller. The chip level controller
needs to be connected to either a boundary scan controller or a system interface. When multiple cores
with different test methodologies are available, test scheduling becomes necessary to meet chip level test
requirements such as test time, power dissipation, and noise level during test. 

44.5 Emerging SoC Test Standards

One of the main problems in designing test for SoC is the lack of any viable standard that help manage
the huge complexity described in this article. A complete manufacturing test of a SoC involves the reuse
of the test patterns that come with the cores, and test patterns created for the logic outside the cores. This
needs to be done in a predictable manner. The Virtual Socket Interface Alliance (VSIA) [5], an industry
consortium of over 150 electronic companies, has formed a working group to develop standards for
exchanging test data between core developers and core integrators as well as test access standards for cores.
The IEEE Test Technology Committee has also formed a working group called P1500 to define core test
access standards. As a part of the IEEE standardization effort, P1500 group [6,7] is defining a wrapper
technology that isolates the core from the rest of the chip when manufacturing test is performed. Both the
VSIA and IEEE standard are designed to enable core test reuse. The standards will be defining a test access
mechanism that would enable access to the cores from the chip level for test application. Besides the access
mechanism, the P1500 group is also defining a core test description language called core test language (CTL). 

CTL is a language that describes all the necessary information about test aspects of the core such that
the test patterns of the core can be reused and the logic outside the core can be tested in the presence of
the core. CTL can describe the test information for any arbitrary core, and arbitrary DFT technique used
in the core. Furthermore, CTL is independent of the type of tests (stuck-at, Iddq, delay tests) used to
test the core. CTL makes this all possible by using protocols as the common denominator to make all
the different scenarios look uniform. Regardless of what hardware exists in a design, each core has a
configuration that needs to be described and the method to get in and out of the configuration is described
by the protocol. The different DFT methods just require different protocols. If tools are built around this
central concept namely CTL, then plug-and-play of different cores can be achieved on a SoC for test
purposes. To make CTL a reality, it is important that tools are created to help core providers package
their core with CTL and tools be developed that work off CTL and integrate the cores for successful
manufacturing test of the SoC.

By documenting the test operation of the core in CTL reduces the test complexity and enables automation
tools to use a black-box approach when integrating test at the SoC level. Black-boxed designs are delivered
with documentation that describe the fault coverage of the test patterns, the patterns itself, the different
configurations of the core, and other pertinent test information to the system integrator. The system
integrator uses this information (described in CTL) possibly with the help of tools to translate the test
patterns described in CTL at the boundary of the core to the chip I/O that is accessible by the tester.
Furthermore, the system integrator would use the CTL to provide information on the boundary of the
core to create patterns for the user defined logic (UDL) of the SoC outside the core. The methods used
for system integration are dependent on the CTL information of the core, and the core’s embedded
environment. All these tasks can be automated if CTL is used consistently across all black-box cores being
incorporated in the design. Figure 44.6 shows the tasks during the integration process.

FIGURE 44.6 Core integration tasks with CTL.
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SoC methodologies require synchronization between the core providers, system integrators, and EDA
tool developers. CTL brings all of them together in a consistent manner. Looking ahead we can see the
industry will create many other tools and methodologies for test around CTL.

44.6 Summary

Cores are the building blocks for the newly emerging core-based IC/ASIC design methodology and a key
component in the SoC concept. It lets designers quickly build customized ICs or ASICs for innovative
products in fast moving markets such as multimedia, telecom, and electronic games. Along with design,
core-based methodology brings in new test challenges such as, implementation of transparent test
methodology, test access to core from chip I/O, ability to test the core at-speed. Emerging standards for
core test access by both VSIA and IEEE P1500 will bring much needed guidance to SoC test methodologies.
The key to successful implementation of SoC test depends on automation and test transparency. A ready-
to-test core (with embedded test and accompanying CTL, which describes the test attributes, test protocol,
and the test patterns) provides complete transparency to the SoC designer. Automation enables the SoC
designer to integrate the test at the SoC level and generate manufacturing vectors for the chip.
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45.4 Summary

45.1 Introduction

Automatic test generation for combinational logic based on the FAN algorithm [1,2], relying on the D-
algorithm [3] has reached a high level of maturity. FAN has also been modified for test generation in
synchronous sequential circuits [4,5]. Because the shortcomings of the static stuck-at fault model in the
detection of opens, dynamic faults, and bridging faults [6,7], became evident, interest has focused on
refined fault modeling either using switch-level structures or dynamic gate-level fault models.

The authors have shown [8–10] that the potential fault coverage by stuck-at-based test patterns for
transistor faults is potentially as high as 80% or above if the circuit consists of simple 2- and 3-input fully
complementary static CMOS gate primitives (AND, NAND, OR, NOR) only, but may drop to 60% or
below if complex gates and pass-transistor networks are used. The first solution to this problem is switch-
level test generation [11], which is inherently slower than gate-level test generation. The need for test
generation based on real transistor structures is also demonstrated by industrial work [12], which reported
the first mixed-level test generation approach.

Advanced work in this area was reported more recently in [13–15]. The main problem associated with
such methods is the adequate fault modeling based on the transistor circuitry for structures other than
primitive logic gates. Cox and Rajski [16] have shown that also using a transition fault model in ATPG,
transistor faults in fully complementary CMOS complex gates can be covered by gate-level networks.

U. Glaeser
Halstenbach ACT GmbH

Z. Stamenković
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This method, however, lacks the applicability to general pass-transistor networks and is also inefficient
because the resulting networks have a very large number of gates.

Delay fault testing [17–21] based on gate or path delay fault models has recently emerged as the
potentially most powerful method for functional testing. In order to achieve a high fault coverage, delay
fault testing requires a detailed timing characterization of the circuit elements. Although this is usually
satisfied for gate-level ATPG based on logic primitives, it is difficult to compute timing properties in a
full-custom design style employing complex gates, transistor networks, and bidirectional switch-level
macros. If no explicit timing information is available, a transition fault model [22] is the most convenient
choice. Such a model checks for possible high-low and low-high transitions of all internal circuit nodes
at gate-level. The system clock then sets the timing limit for transitions. 

Recently, the detection of defects beyond functional faults by methods such as built-in overcurrent
measurements (Iddq-testing) [23,24] has received considerable attention. Despite their potential coverage
of transistor faults and bridging faults, these methods are static by nature and therefore they are a comple-
ment to, instead of a replacement for, dynamic testing.

The work introduced here is aimed at the generation of efficient test sets for conventional voltage-
based tests as well as for Iddq tests. The method is based on the transition fault model and on available
structural information at transistor-level and gate-level. Our software also supports various other fault
models. The basic approach relies on relatively few but efficient modifications to the FAN algorithm
in combination with adapted local switch-level test generation. The advantage over other approaches
is that switch-level structures are only addressed where truly necessary, and fault propagation is essen-
tially handled at gate-level. Test sets are kept short by using robust multipattern sequences where
possible.

A sequential test pattern generation approach is presented in the second part of this paper. It is based
on the new FOGBUSTER-algorithm. As opposed to the BACK-algorithm [25], which was built on basic
theoretical work [26,27], FOGBUSTER uses a forward propagation and backward justification technique,
which is in general more efficient than the exclusive reverse time processing BACK uses.

The advantage of all these test pattern generators over simulation-based approaches [28,29], which are
generally much faster than these techniques, is that they are complete, i.e., for any given testable fault a
test pattern is generated assuming sufficient time.

The overall approach is summarized in Table 45.1. Although MILEF (mixed-level FAN) is able to
generate test patterns for combinational circuits using a modified FAN-algorithm, SEMILET can generate
test patterns for synchronous sequential circuits using the FOGBUSTER-algorithm.

The rest of this chapter is organized as follows: The first part (Section 45.2) describes the mixed-level
ATPG approach for combinational logic. The second part is devoted to sequential ATPG (Section 45.3).
Results for the ISCAS ’85 (combinational) and the ISCAS ’89 (sequential) benchmark circuits are pre-
sented and compared to other approaches. The chapter ends with a summary (Section 45.4).

TABLE 45.1 The Relation between Test Generation Approaches

ATPG Tool MILEF SEMILET

Circuit behavior Combinational circuits or full 
scan circuits

Synchronous sequential circuits

Algorithm Modified FAN FOGBUSTER
Test generator for embedded 

switch-level macros
CTEST CTEST

Voltage-based fault models Stuck-at
Stuck-open
Transition

Stuck-at

Current-based fault models Stuck-at
Stuck-on

Stuck-at
Stuck-on
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45.2 Mixed-Level Test Generation

The mechanism of mixed-level test generation technique is described as follows. An extraction algorithm
is used for dividing the circuit into relatively small parts (1-stage complex gates, for instance) and
extraction of primitive gates (NAND, NOR, INVERTER). The original FAN-algorithm can generate test
patterns only for circuits that consist of primitive logic gates because FAN makes, exclusively, use of
controlling and noncontrolling values. Thus the FAN-algorithm has to be modified to handle circuits,
which consist of gates described by their logic behavior. These modifications and inter-level communi-
cation between gate- and switch-level are described in the following. Finally, additional heuristics like
the robustness check supporting robust stuck-open test generation and the reconvergency analysis
decreasing the number of backtracks between the two hierarchies are shown. The performance increase
of the heuristics is pointed out by giving experimental results. 

The overall MILEF approach is described in Fig. 45.1. If the circuit consists of complex gates or
transistor networks, the logic extractor is called. Primitive gates can directly be handled by the FAN-
algorithm. For complex gates and transistor networks, CMOS test pattern generator (CTEST) computes
local test patterns. These local patterns are globally applied and propagated. Propagation of fault effects
over a switch-level macro is done at gate-level.

Basic Concepts

The MILEF system developed at GMD initially concentrated on the once popular stuck-open test [30].
MILEF has continuously been developed to cover other potentially more significant faults in an efficient
way. MILEF is not restricted to a specific fault model. It is designed to also handle dynamic faults with
the exception of explicit consideration of timing limits. Only transitions that are either impossible or
delayed beyond the duration of a clock period are detected (gross delay faults).

The main objective in MILEF is to handle only the necessary structures at the switch-level and to
perform all general path-tracing operations at the gate-level, thus obtaining an acceptable overall per-
formance of the test generation system. 

At the switch-level, a path-oriented ATPG approach as required for stuck-open tests is applied. At the
gate-level, MILEF uses a transition fault model, which includes the restriction of single input transitions,
e.g., the Hamming distance between init and test pattern is 1. Robust pattern pair requirements can be
used as an option (see subsection “Robustness Check for Pattern Pairs”). With these extensions, stuck-
open faults and stuck-at faults in primitive gates are safely covered. Stuck-on faults and local bridging
faults are excited but not safely propagated.

FIGURE 45.1 Functionality of the MILEF A TPG system.
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Input formats of MILEF are ISCAS-benchmarks (for circuits with exclusive primitive gates) and SPICE
for circuits including complex gates, transmission gates, and bus-structures.

Transistor-level information is actually reduced to a simplified switch-level structure for the test
generation. All transistor-level networks are first analyzed by an advanced logic extraction program,
which recognizes structures representing primitive gates such as NANDs, NORs, and inverters [31].
Transistor-level networks that contain only simple gates are shifted to the gate-level before any explicit
test generation and are therefore not dealt with at the switch-level. Local test generation is done for
nontrivial macros only and can mostly be limited to one-stage complex gates and smaller networks. 

The example circuit in Fig. 45.2 consists of a number of primitive gates and one transistor netlist. This
transistor netlist is divided into two parts by the extractor. The first part of this transistor netlist can be
identified as a 2-input NAND and is therefore shifted to gate-level by the extractor. Test generation for
this gate is done exclusively at gate-level. The second part of the transistor netlist representing a ANDNOR
function could not be mapped to any primitive gate. Consequently, test generation for this gate is done
at the switch-level. Fault propagation over this switch-level macro during the test generation is done at
gate-level by using the 0- and 1-cubes of the switch-level macro. The idea of extracting gate-level modules
from switch-level circuits was already proposed in [32].

To also handle sequential circuits, the extraction algorithm can also identify several sequential elements
such as, for instance, flip-flops and D-latches.

Switch-Level Test Generation

The local test patterns for the switch-level macros remaining after the extraction are generated by
CTEST (CMOS test pattern generator) [30,33]. CTEST generates transition test pattern pairs with a
hamming distance 1 between initialization and test. Therefore, the robust stuck-open test condition is
satisfied for local test patterns since the switch-level macros extracted do not have internal path recon-
vergencies. To satisfy this condition also globally in as many cases as possible, MILEF avoids static hazards
at the inputs of the switch-level macro with the actual fault whenever possible.

CTEST has a reasonable performance for circuits up to the size of 200 transistors. This is sufficient
for the MILEF approach, because the switch-level macros left by the extractor are relatively small, in
general, not exceeding 20 transistors [31]. The time spent for switch-level test generation measured in
experimental results was less than 5% of the overall test generation time, even when the extraction process

FIGURE 45.2 Logic extraction of switch-level macros.
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left around 30% of complex gates. The CPU time spent on global path tracing techniques of the FAN-
algorithm was immensely larger.

In local mode, CTEST can also handle circuits including bi-directional transistors [34] and small
sequential circuits like flip-flops and latches.

Modified FAN Approach

MILEF is based on extensions of the de-facto standard FAN [1] for the test generation at the gate-level.
The original FAN-algorithm is not able to generate test patterns for circuits, including switch-level
macros, because FAN is exclusively based on controlling and noncontrolling values of the gates, which
in general do not exist for switch-level macros. Consequently, the modified FAN in MILEF also handles
Boolean functions of switch-level macros, i.e., multiple cubes [3]. Thus the main FAN functions such as
implication, unique sensitization, and multiple backtrace are modified to handle switch-level macros.
The modified FAN approach is described as follows (see also Fig. 45.1):

As a preprocess of the test generation process, gate-level netlists are analyzed for path reconvergencies.
They have to be identified for the reconvergency analysis described in subsection on “Merging of Test
Pattern Pairs.” Most path reconvergencies in practical circuits are of a local nature, so this procedure is
quite useful. Results are also transferred to the local switch-level test generator for specific macros in order
to obtain globally applicable local test patterns from the beginning (see section “Reconvergency Analysis”).
Furthermore, redundancies discovered during this initial step are included in the formal testability analysis.
The constraint list is used later in conjunction with global implications in the FAN algorithm.

The second preprocessing step for the gate-level test generation is the formal testability analysis. In
particular, the formal controllability and observability analysis guiding the path searching process in FAN
was modified in order to also accommodate switch-level macros. Modified testability measures that can
optionally be used are, for instance, COP [35], LEVEL [36], SCOAP [37], and EXTEST [8]. We got the
best experimental results in MILEF by using COP.

Furthermore, the initial FAN-functions for implication, sensitization, and multibacktrace [1] are
modified for handling switch-level macro cells described by multiple cubs [3]. Information for propa-
gation over switch-level macros is described in a 9-valued logic, e.g., multiple cubes are used, and the
good and faulty machine are described separately [10].

As MILEF is based on the transition fault model, pattern sequences instead of single vectors are
generated. If possible, pattern pairs are merged into longer sequences to minimize initialization efforts
and to save on the overall test length.

The path searching performed by MILEF differs from approaches known from gate delay fault test
generation in three ways:

• Initialization is excited at a particular gate and test for a particular gate is propagated to primary
outputs. The transition may not be observable directly as a transition at one output, which means
it can also be observable because of a transition at an output in the faulty case. For example, in
Fig. 45.3, the stuck-open fault at the n-transistor with the gate connected to A1 in g1 will cause a
stable 1 at C and thus a rising transition at D while in the “good case” D has a “0” value. 

• Hazard analysis concentrates on static hazards that can invalidate the test by switching other paths
or elements to “conducting” (see subsection “Robustness Check for Pattern Pairs”). 

• For the generation of only overcurrent-related test vectors in combination with Iddq measurements,
the propagation of faults to primary circuit outputs can be omitted. This results in a simplified
path-tracing process and fewer patterns. 

Three phases of test generation are used in MILEF. In the first phase, test patterns are computed for all
easily detectable faults and no backtracking is allowed. No dynamic fault sensitization [2] and no dynamic
learning [4] are used in this step. The user may give a backtrack limit for the second phase in which the
extensions of SOCRATES [2] are used. For redundancy identification and generating test patterns for
hard detectable faults, dynamic learning [4] is used in the third phase of test generation.
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Robustness Check for Pattern Pairs

The understanding of “robustness” slightly differs between authors. We follow the robustness definition
of Reddy et al., described in [38], avoiding static hazards in the input cone of the fault location.

Since MILEF has no information on timing conditions, a “worst case” analysis for static hazard occur-
rences is performed. Starting from the fault location backward to the primary inputs of the circuit, every
constant signal is checked for a static hazard. If both a rising and a falling transition are found at one gate,
the output of the gate is marked hazardous. If for a pattern the static hazard is propagated to the fault
location, the corresponding pattern is marked nonrobust. By using a fault simulator that takes into account
timing conditions such as FEHSIM [39], these nonrobust patterns possibly can be identified as robust.

Inter-Level Communications

In the present version, MILEF works on two levels of hierarchy at the gate-level and the switch-level.
Communication procedures between the gate-level and the switch-level are performed systematically
during several steps of the program execution. The communication functions in Fig. 45.4 are described
as follows:

• get_cubes: The logic function of a switch-level macro is computed and the corresponding values
are prepared to be used at the gate-level. 

• put_constraints: Constraints are computed on the gate-level for a block (e.g., by the reconvergency
analysis described in the following section) and stored for a constraint driven ATPG at the switch-
level. 

• get_D_cubes: Propagation cubes are computed and prepared to be used for the propagation of
fault effects over a switch-level macro during the test generation at the gate-level. 

• generate_test: The previous local io-values of a switch-level macro are used locally as an init-
pattern at the switch-level and the computed local test pattern is used at the gate-level for global
propagation and application. 

FIGURE 45.3 Stuck-open test in gate g1.

FIGURE 45.4 Communication between MILEF and CTEST.
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• reject: The actual local test pattern is not applicable at gate-level, e.g., the fault is redundant or
aborted, an inter-level backtrack is performed. If possible a new local test pattern is generated for
the same fault condition. 

• simulate_pattern: A call of the local switch-level fault simulator for local simulation of the actual
init/test-pattern pair is performed. A robustness check is included. 

Reconvergency Analysis

The reconvergency analysis is based on a learning technique at reconvergent paths. It is executed as a
preprocess of the test generation. The learning technique is similar to SOCRATES [2]. The algorithm is
described as follows:

For all switch-level macros M
for all inputs S of M, which are part of a reconvergency in M

 assign all signals of the circuit to value X;
(1) assign S to value 0;
(2) implication;

for all inputs I of M, which were set to any value 0 or 1 by the implication
(a) store_constraint (S = 0 => I = value of I);
assign all signals of the circuit to value X;

(1) assign S to value 1;
(2) implication;

for all inputs I of M, which were set to any value 0 or 1 by the implication
(a) store_constraint (S = 1 => I = value of I);

Every input of a switch-level macro M, which is part of a reconvergency in M, i.e., in one of the
reconvergent paths reconverging in M, is set to both values 0 and 1 (1). By performing the implication
of the modified FAN-algorithm (2) every resulting value of this assignment is computed. If any assignment
is made at any other input of M, a local constraint at M is found. This constraint and its contraposition
are stored by the function store_constraint (a).

Only simple constraints (dependencies between two signals) can be detected by this technique, e.g., if
input A is 1, input B must be 1. By using these constraints at the switch-level and performing a constraint-
based switch-level test generation, a large number of inter-level backtracks can be avoided, and thus the
CPU time of switch-level test generation can be reduced. Since the constraints result from a simple FAN
implication, no backtrack in test generation is required for computing the constraint behavior. For example,
assume a constraint (a = 0 => b = 0) is detected by the reconvergency analysis. Thus, a simple implication
with starting condition a = 0 will detect that b has to be assigned to 0. Since the same implication function
is also performed during the test generation process whenever a is set to 0, b will be set to 0 by the
implication. Thus no CPU time could be saved in the test generation at the gate-level. Experimental results
showing the efficiency of the reconvergency analysis are illustrated in Table 45.2. 

TABLE 45.2 Inter-Level Backtracks in Test Generation

ISCAS- Benchmark 
Circuit Extracted 
from Layout

Inter-Level Backtracks
with no Reconvergency 

Analysis

Inter-Level Backtracks 
with Reconvergency 

Analysis
Percentage of Saved 

Backtracks (%)

lay432 19 0 100
lay880 29 2 93.1
lay1355 65 2 96.9
lay2670 254 31 87.8
lay3540 147 89 39.5
lay5315 336 40 88.1
lay6288 542 0 100
lay7552 221 46 79.2
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In Fig. 45.5 a simple example is shown. By performing the reconvergency analysis a constraint
between the inputs of the macro SLM is detected. If B2 is set to 0, by performing an implication D is
set to 0. Thus the constraint (B2 = 0 => D = 0) is found and stored at SLM by using the function
put_constraints. 

In Table 45.2 the number of inter-level backtracks without using the reconvergency analysis is compared
to test generation while using the reconvergency analysis. Depending on the structure of the sequential
benchmark circuits, between 39% and 100% of inter-level backtracks could be saved. The average saving
in the ISCAS ’85 benchmark circuits was about 85%.

These results are also important for hierarchical test generation on higher levels of abstraction (RT-
level, behavior-level). The authors believe that using a simple constraint analysis on each abstraction
level of the circuit could save a significant time. This requires a constraint-driven test generation technique
at lower abstraction levels.

Merging of Test Pattern Pairs

The test pattern set computed by MILEF is not a minimal set. A test set compaction method is imple-
mented to reduce the number of test patterns as follows. Every generated test pattern is used as an
initialization for the next undetected fault whenever possible. Experimental results with ISCAS ’85 and
ISCAS ’89 benchmark circuits have shown that with this method between 30% and 45% of stuck-open
patterns could be saved. This method is described in detail in [40].

Comparative Results

MILEF was used for gate-level benchmark circuits, for mixed gate-level netlists, and for pure transistor
netlists. Computations were performed on a Sun SPARC2 with a general limitation of 10 backtracks per
fault. The computational effort for fault simulation, which is small in comparison to the test generation
effort, is not included in the CPU times of the tables. MILEF was operated in the following modes:

1. Single-input robust transition fault generation including full stuck-open coverage and stuck-on/
local bridging fault excitation.

2. Stuck-at test at gate-level including input/output stuck-at tests for switch-level macros.
3. Iddq-test patterns derived from stuck-at patterns, no propagation to outputs.

The fault coverage FC is computed by

Table 45.3 gives results for switch-level circuits containing primitive and complex gates. The layouts of
the ISCAS ’85 circuits [41] were synthesized by MCNC, Raleigh, NC. For mixed-level netlists containing
nontrivial switch-level primitives, no standard benchmarks could be used. The circuits in Table 45.3
contain several types of complex gates. The number of complex gates in these circuits was about 30–40%
of the total number of gates in the circuit. This evaluation includes extraction and test generation on
two levels with robustness checking.

FIGURE 45.5 Reconvergency analysis of a simple circuit.
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Table 45.4 shows that MILEF has a reasonable performance for large gate-level circuits. No aborted
faults are left within a reasonable amount of time. The results presented in Tables 45.2–45.5 show that
the number of redundancies and test patterns based on the different fault models is smallest when using
overcurrent-based fault models. The CPU time and the number of test patterns required for overcurrent-
based fault models is smaller (about 10% or less depending on the circuit structure) than for test pattern
generation for the corresponding voltage-based fault models (exception C6288 where redundancies are

TABLE 45.3 MILEF Performance on Pure Switch-Level Netlists (Robust Single-Input 
Transition Fault Model) Mode 1

Circuit
Faults Redundant + 

Aborted
Robust Test 

Patterns
Non-Robust 
Test Patterns

Robust Fault 
Coverage (%)

CPU 
Time/s

lay432 46 + 0 511 63 89.5 41
lay499 8 + 0 1148 219 85.8 503
lay880 0 + 4 491 43 97.2 30
lay1355 5 + 1 1528 295 85.4 586
lay1908 8 + 6 1056 93 95.6 146
lay2670 65 + 22 1319 64 95.1 234
lay3540 121 + 3 1858 166 92.6 487
lay5315 33 + 2 3036 205 96.3 317
lay6288 2 + 1 1282 63 91.1 4017
lay7552 46 + 45 3079 258 95.7 1742

TABLE 45.4 Performance of MILEF (Stuck-at Fault Model) Mode 2

Circuit
Faults Redundant + 

Aborted
Test 

Patterns
Fault 

Coverage (%) CPU Time/s

C432 4 + 0 77 99.2 9
C499 8 + 0 90 98.9 34
C880 0 + 0 120 100 2
C1355 8 + 0 107 99.5 61
C1908 9 + 0 142 99.5 42
C2670 117 + 0 266 95.7 76
C3540 137 + 0 222 96.0 58
C5315 59 + 0 286 98.9 30
C6288 34 + 0 41 99.6 133
C7552 131 + 0 350 98.3 179

TABLE 45.5 Performance of MILEF (Stuck-at Patterns with Simplification 
for Overcurrent Tests) Mode 3

Circuit
Faults Redundant + 

Aborted Test Patterns
Fault 

Coverage (%) CPU Time/s

C432 0 + 0 14 100 <1
C499 0 + 0 44 100 2
C880 0 + 0 22 100 <1
C1355 0 + 0 91 100 20
C1908 0 + 0 45 100 9
C2670 13 + 12 57 99.5 15
C3540 1 + 0 66 99.9 20
C5315 1 + 0 67 99.9 3
C6288 17 + 1 59 99.9 463
C7552 4 + 0 106 99.9 9
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difficult to identify for overcurrent detection). Dynamic fault models require more test patterns than
static fault models, but the effort for test pattern generation for dynamic fault models is tolerable. The
highest effort in test pattern generation was spent for getting robust single input transition test patterns
(Table 45.3) as expected. The time required for mixed-level test pattern generation is almost equal to the
functional identical circuits described exclusively on the gate-level.

A further compaction of the test set, in addition to the compaction (described in the subsection on
“Merging of Test Pattern Pairs”) leading to a minimal test set, is not performed because long pattern
sequences computed for transition fault models are difficult to compress with reordering methods as
proposed in [2] for stuck-at pattern sets. With the use of an advanced fault simulator, which includes timing
conditions such as FEHSIM [39,42], a further compaction of patterns is possible since MILEF performs a
worst-case robustness check as described in the subsection on “Robustness Check for Pattern Pairs.”

45.3 The Fogbuster Algorithm for Synchronous Circuits

To also handle mixed-level sequential circuits without or with a partial scan path, the sequential test
generation system SEMILET (sequential mixed-level test generator) was developed as an extension to
MILEF. To improve shortcomings of the state-of-the-art test generators such as HITEC [43] and GENTEST
[44], the FOGBUSTER (forward propagation backward justification sequential test generator) algorithm
was developed.

The only algorithm that uses exclusively forward time processing is the FASTEST approach [45]. The
shortcomings of this algorithm are:

• The circuit is copied as often as needed for test generation, so it is very memory consuming. 

• The test generation algorithm, in general, needs a large decision tree for fault excitation. 

In this section, the FOGBUSTER algorithm for test generation for synchronous sequential circuit and
the sequential test generator SEMILET, which makes use of this algorithm are described. 

This section is organized as follows: Synchronous circuits that can be handled by our ATPG are
characterized in subsection “Circuits.” The main differences of FOGBUSTER and the BACK-algorithm
are pointed out in subsection “General Approach in Comparison with Other Algorithms.” The section
“Test Generation Technique” describes FOGBUSTER, and subsection “Fault Propagation and Propaga-
tion Justification” gives a detailed description of the forward propagation technique. A solution for the
over specification problem is presented in next subsection and finally, in next two subsections, the test
generator SEMILET using the FOGBUSTER algorithm is described. Experimental results from the
ISCAS ’89 benchmark circuits [46] are given in subsection “Experimental Results.”

Circuits

FOGBUSTER and SEMILET can handle a superset of synchronous sequential circuits that HITEC [43]
and GENTEST [44] accept. These circuits have to match the following characteristics:

• All feedback loops include at least one storage element. 

• All storage elements have a clock input that is connected to one global clock signal, one data input,
and one noninverting data output. It is assumed that the storage elements are master-slave flip-
flops, or edge-triggered D-flip-flops. 

• Global set and/or reset signals that affect all storage elements are allowed. The test generator can
take advantage of them. 

• The circuit may consist of primitive (AND, NAND, OR, NOR) and combinational complex gates. 

The restriction concerning the types of storage elements seems to be severe at first, but if the design
consists of storage elements with a local set and/or reset possibility or with multiple clocking phases,
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they can be substituted by circuits the algorithm can deal with. Basically FOGBUSTER can deal with
finite state machines with just one clock depicted in Fig. 45.6.

Each circuit consists of a number of primary inputs and a number of primary outputs. In addition, the
circuits have pseudo-inputs—the outputs of the sequential elements, and pseudo-outputs—the inputs of
the sequential elements. Each sequential element can be handled as a register. They store the actual state
of the circuit. In general, it is not possible to generate a test pattern directly from such a circuit because
one special state is needed for the fault injection, and a synchronizing sequence to this state has at least
length 1. It is also possible that more than one time frame is needed to propagate the fault effect to the
primary outputs of the circuit. For instance, a binary counter may need 2n time frames for the propagation
path depending on the fault location, where n is the number of flip-flops in the counter.

Figure 45.7 shows the iterative array model used in sequential test generation. The combinational logic
and the registers are copied as often as needed for the circuit, resulting in a number of copies equal to
the test length. The pseudo-outputs of every time frame feed a register storing the state after execution
of the time frame via the pseudo-outputs. Each register accesses a time frame feeding it with the state
stored in the register. The first time frame is fed with the initial state of the circuit, which is in general
the unknown state “xx…x.” Patterns are applied via the inputs of every time frame, and the fault can be
observed at the primary outputs of every time frame. For simplicity reasons, the inputs, the outputs, and
the registers are left out in the following diagrams in the section on “General Approach in Comparison
with Other Algorithms.”

By giving as many time frames to the circuit as needed for the maximal test length, the circuits could
be treated by a multi-fault combinational test generator as shown in [25]. This method is impractical
because of the memory space required for copying circuit and register. Thus, a window is used, scrolling
over the time frames. In most of test generation systems [4,5,44] the window size is one time frame. The
only test generator operating also with larger window size is HITEC [43].

FIGURE 45.6 Finite state machine model.

FIGURE 45.7 The iterative array model.
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General Approach in Comparison with Other Algorithms

As stated in the introduction, the most common approach in sequential test generation is based on the
BACK-algorithm [25]. Starting from a target fault, BACK first selects a primary output, where the fault
will be visible a number of time frames later. This selection is supported by a drivability measure, an
additional approach to testability analysis [4,5]. After selecting a primary output, the fault propagation
path starting from the selected primary output backward to the fault location is computed. Finally, the
needed state at the fault location is generated in the backward direction.

In Fig. 45.8 a diagram for the BACK algorithm is shown. In this example, seven time frames are used
for the test generation. It is visible that the pattern computing direction is reverse, e.g., the values of the
time frame, where the fault effect occurs at a circuit output, are computed first, and the values for the
time frame with the initial state are computed last. Thus, the fault propagation path and the fault
justification are computed by reverse time processing. 

Nearly all test pattern generators at the gate-level for sequential circuits [4,5,14,22,44,47,48] make use
of a technique based on the BACK-algorithm. The only approaches that use different techniques are
HITEC [43] and FASTEST [45]. FASTEST is a technique, which uses exclusively forward time processing.
In HITEC, Niermann and Patel use a forward propagation backward justification technique, which means
that the propagation is performed by forward processing and the line justification is done using reverse
time processing. This technique is illustrated in Fig. 45.9.

The main advantages of forward propagation backward justification over the BACK algorithm are 

• No drivability is needed for the test generation process, i.e., computing time is saved. 

• In the BACK algorithm the selection of the output where the fault is finally visible requires a large
search space, e.g., the initial decision tree is relatively large. Thus, if it is impossible to propagate
the fault effect to this output, a backtrack to a different output has to be performed. 

• It is possible to use efficient forward propagation techniques (unique sensitization, dominators),
which are well known in combinational test generation; in the reverse time processing of the BACK
algorithm these techniques are of no use. 

FIGURE 45.8 The BACK-algorithm.

FIGURE 45.9 The forward propagation, backward justification technique.
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A characteristic of HITEC is that it selects the best observable signal for the fault propagation leaving all
others in a stack for backtracking possibility. The main disadvantage of HITEC is:

• In HITEC a large decision tree is built during the propagation by selecting one fanout branch when
arriving at a fanout stem for driving the fault effect to a primary output. Thus, many backtracks
requiring large CPU time are needed for redundancy identification.

An advantage of HITEC is that it can handle more than one time frame at the same time during
propagation, because value assignment in later time frames can be performed. This should result in
reduced CPU time required for the test generation. The main disadvantage of this technique is that much
memory space is required for multiple storing of time frames.

To overcome the disadvantages of BACK and HITEC, an efficient test generator using forward prop-
agation backward justification technique (FOGBUSTER) was implemented. FOGBUSTER and the cor-
responding test generation tool SEMILET are described in the following sections.

Test Generation Technique

In this subsection, the different phases of FOGBUSTER are described. The algorithm proceeds in three
main phases of computation:

1. Forward propagation phase
2. Propagation justification phase
3. Justification phase

In the first phase the fault is transported to at least one primary output of the circuit. Efficient heuristics
for fault propagation are used in this phase, for instance, unique_sensitisation [1] with detection of
dynamic dominators. In the second phase, the propagation path is justified, e.g., unjustified signals of
the first phase, which are at the pseudo-outputs of the circuit, are justified. In the justification phase the
initial state of the time frame of fault occurrence is confirmed, e.g., a synchronizing sequence for this
state is computed. 

If a fault is hard to detect, the computing time for finding a test pattern for this fault may be too large.
To keep the computing time low, the maximal number of backtracks for one fault can be limited by the
user. Hard faults are very often detected by a test pattern for a different fault. Therefore, after a test
pattern for any fault is found, fault simulation for all remaining faults (which are not detected by any
previous test pattern) of the test generation process is performed.

In Fig. 45.10, a simple diagram of the FOGBUSTER algorithm is shown. After selecting a fault and
executing fault injection, the combinational FAN is started to compute a combinational test pattern for
this fault. In this part of test generation, combinational redundancies can directly be identified. If a
combinational test pattern is generated, the fault effect may be visible at least at one primary output. In
this case the justification phase is directly started from here on. Otherwise, the fault effect must be visible
at least at one pseudo-output, e.g., at one storage element of the circuit, and one or more time frames
are needed to propagate this fault effect to a primary output. Then the forward propagation phase has
to be entered.

In the forward propagation phase, a pattern sequence is computed to make the fault effect visible at
a primary output of the circuit. For each time frame in the fault propagation, the FAN-algorithm for a
multi-fault model is called. A multi-fault model is needed in the FAN-algorithm because the good
machine and the bad machine are possibly different at least at one pseudo-input and at the fault location.
If there is no path for fault propagation to a primary output for the computed combinational pattern,
e.g., the combinational pattern is redundant, a backtrack has to be performed to the combinational
FAN-algorithm. If a pattern sequence propagating the fault effect to a primary output is found, the
propagation phase terminates, and the propagation justification phase is started.

In the propagation justification phase, all remaining unjustified bound lines [1] (at the sequential
elements) of the propagation phase are justified. If justification is not possible, a backtrack to the first
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phase—the propagation phase—is performed. Otherwise, after termination the justification phase is
started. In the justification phase a synchronizing sequence to the initial state (the state required after
the propagation justification process) with respect to fault location is computed. This means that the
good and the bad machine both must justify a required state. On termination of this third phase, a test
pattern sequence for the selected fault is found. If there is no synchronizing sequence for the initial state,
a backtrack to the propagation justification phase or to the combinational FAN algorithm (if no prop-
agation was required after the combinational FAN execution) is performed. 

The justification phase of the FOGBUSTER-algorithm is equal to the BACK-algorithm after reaching
the fault location. The main differences in FOGBUSTER are the D-propagation through the time frames
and the propagation justification. These functions are described in the following subsection.

FIGURE 45.10 The FOGBUSTER algorithm.
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Fault Propagation and Propagation Justification

The fault propagation phase and the propagation justification phase are used to propagate a fault from
the fault location to a primary output. The objective is to find an input-sequence resulting in a difference
of at least one output of the good and the faulty machines, especially in the fault propagation phase where
completeness of the algorithm can easily get lost. In HITEC completeness is guaranteed by the targeted
D-front approach with optional decisions at every fanout of the circuit. In FOGBUSTER, as an alternative
to the targeted D-front, the D-front is propagated through all fanout branches leaving a lower number
of optional assignments. This method is motivated in Figs. 45.11 and 45.12 later in this subsection.

In each time frame the actual state is set to the pseudo-inputs of the circuit. The nonempty set of
signals, which are on the propagation path, are added to the D-front [1], which is at any time built of
the “end point signals” of all paths, transporting the fault effect in the multi-fault FAN-algorithm. The
objective is to propagate the signals of the D-front until one output is included in the D-front, e.g., until
the fault effect is visible at one output. The fault location is marked and added to the D-front, when a
different value in the good machine is computed here. The multi-fault FAN terminates:

• If the D-front cannot be propagated through this time frame. A backtrack to the previous time
frame has to be performed. 

• If the D-front reaches a primary output. The propagation is finished and the propagation justifi-
cation phase is started. 

• If the D-front is completely propagated to pseudo-outputs (also partly dissolving of the D-front
is possible). This is done because of two reasons. On one hand, for every pseudo-input, which is
not included in the D-front by entering the time frame, the good and the faulty machine are equal.
On the other hand, after reaching a pseudo-output of the circuit, a primary output and thus a

FIGURE 45.11 An example circuit.

FIGURE 45.12 An example circuit.
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shorter test sequence could possibly be reached. If the propagation of the actual time frame would
be stopped when reaching a pseudo-output, the completeness would also be lost. This will be
illustrated later using Figs. 45.11 and 45.12. 

In each time frame, some pseudo-inputs may have initial values X, because values here are not needed
for fault propagation in the previous time frame. If these signals have value requirements in the actual
time frame, they are marked as unjustified and prepared for justifying in the propagation justification
phase. The latter has to be computed using reverse time processing.

In Fig. 45.11, a simple example circuit is shown. I1 and I2 are the prime inputs of the circuit and O1

and O2 are the prime outputs, respectively. Using the FOGBUSTER algorithm, two time frames are
needed to generate a test for the stuck-at-0 fault at signal I1. In the first time frame, the primary input I1

is set to “1” to initialize the fault and thus propagate the fault to the D-flip-flop FF1.
In the second time frame, the values of all pseudo-outputs of the first time frame of the circuit are

assigned to the pseudo-inputs, thus the signal A is set to “1/0,” that means “1” in the good circuit and
“0” in the faulty circuit. By using a simple implication the D-front consists of three signals, the fanout
branches of A. Two of them are pseudo-outputs of the circuit, and the third signal of the D-front is at
gate A2. As the D-front has to be fully propagated, it is not possible to step to the next time frame in the
test generation process. First, an optional assignment has to be performed at signal I2 to propagate the
D-front completely. In our example, I2 is set to “1,” and by performing an implication the D-front changes.
Now O2 is in the D-front, and thus the fault effect is propagated to a primary output of the circuit and
the test pattern is generated.

Note that the assignment of signal I2 to “1” is an optional assignment. It is also possible that I2 was
assigned to “0” instead. In this case the fault effect is not driven to the output O2. Then, a third time
frame has to be used with signals B and C in the initial D-front. As the fault effect cannot be propagated,
neither to an output nor to a pseudo-output in the third time frame, a backtrack to the second time
frame has to be performed. Thus, a backtrack is performed at I2 setting I2 to 1 and propagating the fault
effect to the output O2.

If the D-front was not completely propagated, the completeness of test generation would be lost. A
completeness of algorithm means that for every testable fault, the algorithm can find a test pattern.

In Fig. 45.12 the effect of noncomplete D-front propagation is shown using the same example circuit.
When the D-front reaches FF2 and FF3, a direct step into time frame 3 is executed, with signals B and
C in the D-front. After performing a simple implication, the D-front is empty, and thus a backtrack
has to be performed. As there was no optional assignment in the test generation process up to here,
there is no backtracking possibility and the fault is marked redundant, although, as seen in Fig. 45.11,
it is testable.

The Over Specification Problem in Sequential Test Generation

A main problem of test generation for sequential circuits is the over specification problem. This problem
results from mapping the backtracking technique of combinational test generation to sequential test
generation. At worst-case, this problem may result in loosing completeness in test generation. Solutions
of the problem are the consequent value model described in [5] and the use of a ternary decision tree
described in [49], which both rely on increasing the logic used in the test generation. For completeness
reason our algorithm uses the method described in [49].

Detection of State Repetitions in Test Generation

To get a relatively short test sequence, state repetitions in the test sequence have to be avoided. 

Theorem: If a test sequence leading the good and the faulty machines to states q1,…,qi,…,qj ,…,qr, i, j, r 
IN, 1 < i < j < r, with qi = qj is a test for fault F, the test sequence leading the good and faulty machines to
q1,…qi ,qj+1,…,qr is also a test for fault F [50].

∈
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A corollary [50] of this theorem is that a synchronizing sequence leading to a defined state (all storage
elements store 0 or 1) of all storage elements is upper bounded by 3n − 2n (n is the number of storage
elements in the circuit) assuming that there is no global reset possibility. The reason is that a 3-valued
logic is used starting from the undefined state. With n storage elements, the number of states in the
circuit is upper bounded to 3n. Because no state repetition is allowed and the number of states where
all storage elements have a defined state, is 2n, the storage elements have a defined state after applying
an input sequence with length at most 3n − 2n. A second result is that all reachable states of the circuit
can be reached by a sequence, which has a maximum length of 3n.

Usually, the test generation results into a set of states after each considered time frame with 2y elements,
y is the number of x-values in the storage elements. For this reason, we use “set of states” instead of
“state” as notation here.

To avoid long test sequences with state repetitions, SEMILET checks the propagation and the justification
phases whether the actual set of states is a subset of a set of states, which occurred a number of time frames
earlier in the test generation. For this purpose, the good and the faulty machines are considered during
propagation while only the good machine is considered during justification. If the actual set of states is a
subset of an earlier set of states, a backtrack to the previous time frame is performed and test generation
is continued without loosing the completeness of the algorithm.

Use of Global Set and Reset Signals in ATPG

If the circuits consist of global set and reset signals, test generation can take advantage of this. A global
set signal effects that every flip-flop in the circuit is set to 1, and a global reset signal effects that every
flip-flop is set to value 0. In the justification phase of the algorithm it is possible to make use of global
set and reset signals:

• A set can be performed, if in the current state in ATPG there is no 0-requirement. 

• A reset can be performed, if in the current state in ATPG there is no 1-requirement. 

SEMILET can optionally use these features. The results with ISCAS-benchmark circuits in the subsection
on “Experimental Results.” Table 45.8 shows that use of global set- and/or reset-signals results in increased
fault coverage and/or decreased CPU time as expected.

Experimental Results

The authors have developed SEMILET for test generation for synchronous sequential circuits. SEMILET
makes use of the FOGBUSTER-algorithm and has mixed level capabilities like MILEF. In the actual state
of implementation, SEMILET can handle 3 fault models:

• Stuck-at with overcurrent detection (mode 1) 

• Stuck-at with state propagation (mode 2) 

SEMILET is programmed in C++ with about 30,000 lines of code. It is prepared for sequential test
generation with two levels of hierarchy, the switch-level and the gate-level (see also [9]).

The overcurrent techniques are reported in [23,24]. Generation of test patterns for overcurrent tech-
niques is in general easier in comparison with the test generation, which needs propagation techniques.
The authors found that, if a stuck-at test is required, in many cases it makes sense to generate IDDQ
patterns and simulate them like “intelligent random patterns” in a first phase of test generation. For all
the faults that are not detected by these patterns, a “normal” stuck-at test pattern set is computed. Thus
the test generation mode 3 is done in two phases. Table 45.9 shows experimental results of SEMILET
with fault model mode 1 in comparison with results of GENTEST [44] for some ISCAS ’89 benchmark
[46] circuits. The times of GENEST, HITEC, and SEMILET were measured on a SUN 4/260. The efficiency
is computed as follows:

efficiency (redundant faults + detected faults)/total number of faults=
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Looking at results of Table 45.6, it is visible that SEMILET has almost the same fault coverage and
performance in comparison with GENTEST for IDDQ models. For some of the circuits (s344, s349,
s838) SEMILET is a bit faster and for other circuits (s400, s713) SEMILET is a bit slower than GENTEST.
This result was theoretically expected because only justification is used for computing test patterns for
overcurrent related fault models since no fault propagation is required. Fault justification in FOGBUSTER
is equal to fault justification in BACK.

Table 45.7 shows the stuck-at performance of SEMILET in comparison with HITEC and GENTEST.
It is shown that the fault coverage of all approaches is equal (exception: for s344 the fault coverage of
HITEC is a bit worse). In most cases the test generation time required for SEMILET was smaller in
comparison with HITEC (except s386). The test generation times for GENTEST were sometimes a bit
smaller (s344, s349, s641) but sometimes much larger (s298, s386, s713, s5378) than the SEMILET times.

TABLE 45.6 Performance of SEMILET and GENTEST in Comparison 
(Stuck-at Patterns with Simplification for Overcurrent Tests) Mode 1

GENTEST SEMILET

Circuit Efficiency (%) CPU Time/s Efficiency (%) CPU time/s

s208 100 3 100 3
s298 100 6 100 4
s344 100 12 100 2
s349 100 16 100 2
s400 100 120 100 203
s420 100 17 100 5
s641 100 6 100 6
s713 100 22 100 23
s838 100 71 100 39
s953 100 2 100 2
s1196 100 7 100 5
s1238 100 7 100 6
s5378  98.4 27941∗  96.2 22113

∗ Results were computed on a Convex C-200.

TABLE 45.7 Performance of SEMILET, HITEC, and GENTEST in Comparison 
(Stuck-at Fault Model) Mode 2

GENTEST HITEC SEMILET

Circuit
Fault 

Coverage (%) CPU Time/s
Fault 

Coverage (%) CPU Time/s
Fault 

Coverage (%) CPU time/s

s208 63.7 15 63.7 24 63.7 9
s298 85.7 2099 ∗ ∗ 85.7 425
s344 96.2 334 95.9 4775 96.2 628
s349 95.7 489 95.7 3129 95.7 627
s386 81.8 878 81.8 62 81.8 80
s420 41.6 478 41.6 2701 41.6 280
s510 0 1 0 2 0 0∗∗

s641 86.5 11 86.5 737 86.5 15
s713 81.4 438 81.9 84 81.9 18
s1196 99.8 38 99.8 41 99.8 33
s1238 94.7 61 94.7 183 94.7 58
s5378 74.0 105∗∗∗ ∗ ∗ 74.0 22603
s9234 0.3 530 0.3 63 0.3 10

∗ No results known for this circuit.
∗∗ Test generation was not called for, and all redundancies were detected in the preprocess.
∗∗∗ Results were computed on a Convex C-200.
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In many cases, it was measured in the experiments that if one of the test pattern generators HITEC or
GENTEST is a bit faster than SEMILET the other test pattern generator is much slower (example: s344,
s349, s386…). Thus, SEMILET had much better results than HITEC and GENTEST in the average. In
the s510, no test pattern generation and fault simulation was necessary for SEMILET because all untestable
faults could be identified in the preprocessing phase of the test generator.

In Table 45.8, “normal” test generation for the circuits is shown in comparison with test generation
when using global set and reset signals in the circuit. For circuits that consist of noninitializable storage
elements, the fault coverage increases rapidly. For instance, the s510 is completely untestable without use
of global initialization, and by applying a global set and reset signal to all flip-flops it is completely
testable. The stuck-at fault model was used for test generation here. The use of global set and reset signals
results in increased fault coverage at reduced testing time. The fault coverage increased for s510 and s420.
The testing time was reduced for s344 and s5378.

Table 45.9 shows the percentage of computation time in the three different phases of the algorithm.
Most of the time was spent in the justification phase for almost all experiments (exception s298). This
result is consistent with the HITEC analysis in [51].

TABLE 45.8 Performance of SEMILET with and without Possibilities 
of Global Setting and Resetting (Stuck-at Patterns) Mode 3, CPU 
Times Computed on a Sparc10

Without Possibility of Setting 
and Resetting

With Possibility of Setting 
and Resetting

Circuit Fault coverage (%) CPU Time/s Fault Coverage (%) CPU Time/s

s208 63.7 3 78.1 17
s298 85.7 142 87.7 106
s344 96.2 257 99.4 56
s349 95.7 251 96.2 114
s386 81.8 32 81.8 21
s420 41.6 112 58.8 237
s510 0 0 100 109
s641 86.5 6 94.4 55
s713 81.9 7 87.6 74
s1196 99.8 13 99.8 9
s1238 94.7 23 94.7 13
s5378 74.0 9042 74.9 6105
s9234 0.3 4 6.3 22652

TABLE 45.9 Comparison between Test Generation Phases in SEMILET

Circuit CPU Time/s
Percentage 
Prop. (%) 

Percentage Prop-Just. 
(%)

Percentage Just. 
(%)

s208 3 15.8 16.5 67.7
s298 142 16.7 55.2 28.1
s344 257 10.0 19.5 70.5
s349 251 7.4 17.4 75.2
s386 32 5.6 5.6 88.8
s420 112 9.0 29.6 61.4
s641 6 7.1 4.7 88.2
s713 7 10.8 6.7 82.5
s1196 13 11.5 13.8 74.7
s1238 23 21.7 10.0 68.3
s5378 9042 7.6 14.8 77.6
s9234 4 1.5 0 98.5
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45.4 Summary

Automatic test pattern generation yielding high fault coverage for CMOS circuits has received wide
attention in industry and academia for a long time. Mixed-level test pattern generation offers advantages,
since test generation from gate-level netlists has shortcomings regarding fault coverage in complex CMOS
gates. A switch-level approach relying on the transistor structure only is too slow and impractical for
larger circuits. The first part of this chapter describes automatic test pattern generation with a mixed
switch-level and gate-level approach. It combines acceptable performance for large networks with a high
fault coverage also for nontrivial transistor networks. Patterns generated this way are inherently capable
to detect stuck-open faults and transition faults as well as various other fault models on different
abstraction levels. In combination with local overcurrent detectors, also stuck-on and local bridging faults
can be identified. To increase the efficiency of mixed-level test generation, a reconvergency analysis is
performed and constraints are stored.

An original approach to test generation for synchronous sequential circuits was presented. Two levels
of hierarchy, the switch-level and the gate-level are supported. Inter-level backtracks between these two
hierarchies are implemented. The number of inter-level backtracks is minimized using simple heuristics
for constraint identification, which is a promising method for hierarchical test generation also on higher
levels (RT or behavior level). A new efficient algorithm called FOGBUSTER for the forward propagation
backward initialization technique handles synchronous sequential circuits. A 4-valued logic and a two-
staged backtracking mechanism are used to handle the over-specification problem and to achieve com-
pleteness. Experimental results for the ISCAS ’85 and ISCAS ’89 benchmark circuits are encouraging. In
comparison to the BACK-algorithm and to the HITEC approach, FOGBUSTER on the average has a
significantly better performance.
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46.1 Introduction

Given a design under test (DUT), a test s olution is qualified as effic ient if it allows the generation of
test patterns, which enable the detection of most of possible physical faults that may occur in the design.
Researchers talk about 99% of fault coverage and more. To reach such a test efficiency, the cost to pay is
related to time which is necessary for test pattern generation and application, the area overhead for the
added logic, the added number of pins, etc. These parameters are concerned through scan testing techniques,
which are presented in the next section.

Some studies have shown that the testing phase can constitute a serious problem in the overall
production time. For typical circuits, testing can take from the one-third to the half of the total time to
market (TTM) [1]. In [2], it has been shown that a design-for-testability (DFT) technique such as full
scan can reduce by more than a half the total engineering costs. Indeed, scan helps in detecting a fault
quickly and in an efficient manner.

As shown in Fig. 46.1 the well-known “rule of ten” is true when scan is considered. Indeed, sooner a
fault is detected the lower is the subsequent cost. This is explained by the fact that DFT helps in the
generation of efficient test patterns. In other words, given in a short period of time, if a fault appears in
a DFT-based design, a high probability exists to detect the fault. Furthermore, a DFT technique such as
scan helps in the testing through the whole life cycle of the design including debug, production testing,
and maintenance.

46.2 Scan Testing

Today, given strong time to market constraints on new products, only DFT is capable of ensuring the
design of complex system-on-chips with a high testing quality. Scan is widely used in industry. It took
almost 20 years to reach such a maturity, even if some designers still think that scan penalizes a design
due to the required cost and performance degradation.

Scan testing is applied to sequential testing, i.e., testing of sequential designs. It relates to the ability
of shifting data in and out of all sequential states. Regardless to the used scan approach, all flip-flops are
interconnected into one or more shift registers that ensures the shifting in and the shifting out functions.
The built shift register is fully controlled/observed from primary inputs/outputs as shown in Fig. 46.2 [3].
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Hence, scan testing transforms the testing problem of a sequential design into a testing of a combinational
design. The problem of testing combinational circuits problem is easier since classical test generation
algorithms are more efficient (better testing results which mean an obtained fault coverage close to 100%).
In fact, it is well known that the number of feedback cycles in a circuit can increase the complexity of
sequential test generation. It is important to notice that the built shift register need to be tested too.

However, when scan is considered, the price to pay is related to the following parameters: logic
overhead, which means more space, degradation of the production yield and the design performance
since more logic is added to the original one, design effort, and usually more pins. As shown in Fig. 46.2,
the “register” built on the flip-flops or the design memory cells is transformed into a scannable shift
register (S-register). The complexity of the obtained register is more important since each memory cell
might be used in both normal and test modes. This requires at least a multiplexor at each cell level and
some additional wiring. As shown in the same figure, the normal and the test modes are controlled by
the added input “Test.”

One of the drawbacks when scan is used is the necessary time for scan-in (downloading test patterns)
and scan-out (getting test results) operations. If the DUT includes thousands of memory cells, which is
the case of nowadays integrated circuits (ICs), only one scan chain means shifting all test data serially
through the whole “S-register.” This is usually too long even if the frequency of the clock “Clk” is
reasonably high. Dividing a scan chain into several scan chains is a good issue. Figures 46.3 and 46.4
illustrate each of the two concepts where one or several scan paths (called also scan chains) are considered.
An example of a PCB (printed circuit board) of six ICs is considered.

To test this PCB, instead of using one scan chain as shown in Fig. 46.3, three scan chains are considered
as illustrated in Fig. 46.4. It is noteworthy that more pins are required to allow the parallel use of the
scan chains: three for scan-in and three for scan-out operations. In this case, two test pins are necessary
for each scan path.

FIGURE 46.1 Rule of ten in testing economics.

FIGURE 46.2 Sequential scan.
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Boundary Scan

As a widely used scan technique, boundary-scan (BS) provides an access to internal structures (blocks,
IC, etc.) knowing that few logic is directly accessible from primary inputs and primary outputs. Probably
one of the famous scan approaches is BS through the ANSI/IEEE 1149.1 standard. This standard is also
known as JTAG (Join Action Test Group). A decade earlier, a group of test experts from industry and
academia worked together in order to propose standardized protocols and architectures that help in the
dissemination of the BS technique.

Given a DUT such as a PCB, BS consists of as a first step in making each input and output of a circuit
as a memory element. Given all memory elements, the next step consists in linking all memory elements
into a register called BS register. The access to this mandatory register is possible from four standard
pins. Finally, in order to be conform with the boundary scan standard ANSI/IEEE Std. 1149.1, a controller
called TAP (Test Access Port) and a set of registers are implemented within each circuit. This is shown
in Fig. 46.5.

The BS register is mandatory in a JTAG compliant architecture. Figure 46.6 gives an example of a BS
cell. Such a cell can be used as either an input or as an output cell. Such a cell supports four functional
modes: normal mode (when Mode_Control = 0), where the BS cell is transparent during the normal use

FIGURE 46.3 Scan architecture with a single path.

FIGURE 46.4 Scan architecture with several scan chains.
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of the DUT. In the second mode called scan mode, all BS cells are connected into a BS chain. In this
mode ShiftDR = 1 and the necessary clock pulses are applied. The third mode is the capture mode where
data are loaded through the input IN into the scan path. In this mode, ShiftDR = 0 and one clock pulse
ClockDR is applied. The QA flip-flop serves as a snapshot cell. The final mode is called update mode. In
this mode, Mode_Control = 1 and one pulse of the UpdateDR is activated.

These four functioning modes allow each of the instructions summarized below to be executed.
The main motivation for this standard is to overcome the problem of physical access to circuits that

becomes more and more difficult. JTAG overcomes the need of bed-of-nails fixtures with a very fine
resolution, if available. 

As shown in Fig. 46.6, the BS architecture includes the following blocks:

• TAP controller: This block generates all clocks and signals that are necessary for the architecture.

• Instruction register: This register holds the instruction, which is related to the test that needs to
be executed.

FIGURE 46.5 Overview of the ANSI/IEEE 1149.1 architecture.

FIGURE 46.6 A BS cell.
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• Test data register: These registers hold test patterns that need to be run on the test logic. A specific
register scanned BS register is mandatory; however, other registers can be added if necessary.

Based on the BS architecture, several tests can be executed: test logic, internal logic, and interconnection:

• Test logic: Before running the test of the circuit under test, the test logic must be checked through
specific states of the TAP controller that can be used for that.

• Internal logic testing: This is ensured through the use of the specific instruction called intest
presented below. Testing the internal test logic of a DUT means that each DUT block can be
tested.

• Interconnection testing: It is related to the test of interconnection between two blocks. As summa-
rized in the next paragraph, a specific instruction called extest is used.

The JTAG standard enables the application of several kinds of tests. This is summarized in the
instructions proposed by the standard. These instructions are executed by the TAP controller. As explained
in the following list, some of these instructions are mandatory and some are optional.

• Bypass: It is mandatory. This instruction allows a specific DUT to be tested by bypassing one or
more other designs.

• Extest: This mandatory instruction allows the test of interconnection between two DUT. It is
especially useful in the case of integration testing.

• Intest: This instruction is optional. It can be used to test the internal logic, a block, or a circuit.

• Sample/Preload: This instruction is mandatory. It helps in taking snapshots of useful data that run
during normal operation of the DUT. 

• Icode and Usercode: These two instructions are optional. They allow the access to a specific register
known as the device-identification register.

• RUNBIST: This optional instruction allows the running of a BIST (built-in-self test) solution by
using the TAP controller. BIST is explained later.

For more details regarding these instructions, please refer to [12].

Partial Scan

The scan approach presented above is also called full scan because the built scan chain includes all the
DUT memory elements; however, this might be costly for complex ICs where the number of memory
elements exceeds thousands of cells. By cost, it is meant the area overhead that results from full scan
(added multiplexors, wiring, pins, etc.), the performance degradation due to signal slowdown and test
time due to very large scan chains. For a better trade-off performance/cost, a scan technique called partial
scan is proposed [11]. Only a subset of memory elements are included in the considered scan chain. This
decreases both the area overhead and the timing penalty. 

The problem of partial scan is still open. No technique proposes how to effectively determine the
appropriate subset of flip-flops to be scanned. Indeed, an effective partial scan technique is the one that
selects the fewest flip-flops in the scan chain while achieving both a high fault coverage and an optimized
physical design.

Knowing that DUT is modeled by a system graph called S-graph, the partial scan problem consists in
finding the minimal feedback vertex set (MFSV). This is known as an NP-complete problem [4]. In an
S-graph, the vertices are the DUT registers and the edges represent a combinational path from one register
to another.

The proposed solutions are some heuristics, which are based on the following techniques: testability
analysis, structural analysis, or test pattern generation. A testability analysis-based technique consists in
predicting through measures of the problems faced during test pattern generation. The concept through
structural analysis is some heuristics that try to break feedback cycles. Finally, when the selected flip-
flops are based on test pattern generation (TPG), it generally means that a TPG program is used to
© 2002 by CRC Press LLC



              
generate tests for every fault and then the test patterns, which are selected, are those which necessitate
the fewest number of flip-flops that are scanned.

Scan and Built-in Test Solutions

A scan design can serve as a support for a complete built-in-test solution. Indeed, as assumed earlier (see
Fig. 46.2), test patterns are supposed to be generated from outside and applied through the Sin pin.
Furthermore, it is assumed that test results are scanned out through the Sout pin and compared one by
one to the test results of a golden circuit. A golden circuit is a circuit, which is assumed to be fault-free.

A scan-based design can be used in order to implement both test pattern generation and test result
verification functions within the DUT. Built-in-Self-Test (BIST) is a design-for-testability technique in
which testing (test generation and test application) is accomplished through built-in hardware features
[5–6]. When testing is built as a hardware it is very fast and very efficient.

The example in Fig. 46.7 shows how a basic scan design is considered for a BIST solution. The LFSR
(linear feedback shift register) is used as an example of a test pattern generator. Pseudo-random test
patterns, which can be very efficient in case of sequential designs, are generated using such a structure.
For test results verification, a LFSR is used to compress test results and produce a signature which will
represent the obtained test results.

Tools and Languages for Scan Automation

Today, several CAD vendors include BS in their DFT test tool (Mentor Graphics, Teradyne, Jtag Tech-
nologies, Logic Vision, etc.). Tools which are available in the market propose scan testing solutions. The
main functions that are proposed by such tools are: scan design rules checking, scan conversion, and the
associated test pattern generation. 

Through the IEEE standard 1149.1-1990, the BS technology is more and more embraced in electronic
systems at several hierarchical levels: ICs, boards, subsystems, and systems. One of the key points that has
helped in that is the availability of tools and languages that support such a technology. A subset of VHDL
was proposed for this purpose [13]. The language is called BSDL (boundary scan description language).
When a new standard is proposed many barriers may slow down its adoption. BSDL was proposed in
order to speed up the implementation of the “dot one” standard through BSDL-based tools. This language
helps in the description and the checking of the compliance of a design with BS technology. More precisely,
BSDL helps in the implementation of testability features, which are related to the “dot one” technology.
Hence, necessary simulation and verification of the BS technology can be performed. More precisely,
testing if a DUT is compliant with the “dot one” technology means that devices that are mandatory to
be implemented are checked. For example, the parameters that related to the TAP controller and the
boundary scan register are described and checked out through such a language. Furthermore, BSDL serves
as a support for IC vendors to automatically add BS logic through all design process of the design.

More information about BSDL can be found in [13].

FIGURE 46.7 Example of merging scan and BIST.
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46.3 Future of Scan: A Brief Forecast

Scan for Analog and Mixed Designs

Boundary-scan was originally developed for digital circuits and systems. The motivations to use BS for
analog designs is also true; however, in contrast to digital circuits and systems, analog components are
specified by a continuous range of parameters rather than binary values 0 and 1. A new standard is
coming called P1149.4. It consists in the development of a mixed signal test bus. The aim is to standardize
to several possible tests in the case of analog DUT: interconnect test, parametric test, and internal test.
Such tests should be fully compatible with the IEEE 1149.1 standard and helps in measuring the values
of discrete components such as pull-up resistors and capacitors. Consequently, P1149.4 can be seen as an
extension of IEEE 1149.1 where the BS cells presented above are replaced by analog boundary modules
(ABM) at the level of each analog functional pin. Such pins can be accessed via internal analog test bus.
Fig. 46.8 gives the structure of the P1149.4 bus.

As IEEE 1149.1 has proven its efficiency, P1149.4 is most likely a good DFT solution for analog circuits
and systems. Furthermore, its compatibility with the IEEE 1149.1 will simplify the test of mixed DUT.

For more details regarding the standard, please refer to [7].

RTL and Behavioral Scan 

Scan techniques that have been presented until now have several drawbacks. First, they are highly related
to the used design tools and target libraries. Moreover, in case of highly complex DUT, a high computation
time is required because low-level descriptions (gate-level or lower) are considered. Furthermore, the
added logic does not take advantage of the global optimization of the design, which can be performed
by the used synthesis tools.

Recently, several techniques that improve the testability using high level descriptions [8-10], have been
proposed. For example in [9], a technique which inserts a partial scan using the B-VHDL (behavioral
VHDL) description has been presented. In [10], a technique that allows scan to be inserted at the B-VHDL
description of a DUT has been presented. This has many advantages. The scan insertion problem is
considered very early in the design process, which means that a fully testable design can be provided at
the behavioral level, i.e., before any structural information is known. Compared to approaches that
may include scan at the RTL or the logical level, inserting scan at the behavioral level is very promising
since it takes fully advantage of design validation and test generation tools that might operate at the

FIGURE 46.8 Structure of the P1149.4 bus.
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behavioral level. Furthermore, the testable description can be synthesized using several libraries and
tools. The testable design is consequently more portable. Moreover, when a scan chain is inserted at the
high level of the DUT, the added logic used for the test is globally compiled and optimized during the
synthesis process, which reduces the area overhead. 

Fig. 46.9 shows the classical approach of scan insertion. Fig. 46.10 shows how scan can be inserted
before the synthesis is performed.

To insert a scan register at a behavioral level (high-level scan), memory elements of the DUT need to
be known. In fact, the scan insertion process is made up of two basic steps. First, memory elements are
located. Then, the behavioral description of the design is modified in order to describe the behavior of
the scan register.

Such a new scan insertion approach necessitates the development of the related tools. Hiscan (high-
level scan) is a tool that allows scan insertion at the B-VHDL level. Given a synthesizable B-VHDL
description, Hiscan generates a VIF (VHDL intermediate format) file, which contains necessary infor-
mation of objects (signals and variables). Hiscan uses the VIF file to locate objects that correspond to
memory elements once the synthesis is accomplished. Before constructing a B-VHDL scan chain, Hiscan
considers constraints which can be used in the selection of the detected memory elements. Typically,
constraints are related to testability measures at the B-VHDL level or ATPG-based constraints or both.
During the last step, Hiscan generates a B-VHDL scannable description, which is ready for synthesis.

Given several examples of benchmarks, such a high-level scan insertion approach was shown efficient
since the cost of inserting a scan design is significantly reduced when compared to classical scan techniques
that operate at a low-level design. Please refer to [10] for more details.

FIGURE 46.9 Low-level scan.

FIGURE 46.10 High-level scan.

                  process (CK)  
               begin 
              if CK=’1’and CK’event then    
             A3 <= A1 or A2 ; 
          Z<= A1 and A3; 
     end if; 
end process;
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                  process (CK)  
               begin 
              if CK=’1’and CK’event then   
             A3 < = A1 or A2;     
          Z< = A1 and A3; 
     end if; 
end process;
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                           scan_out<= Z ; 
                         process (CK)  
                       begin 
                      case scan_en is  
                    when‘1’ =>  
                    Z< = A3;   
                  A3< = scan_in ;  
              when others =>  
              if CK =’1’ and CK’event then ’
              A3 < = A1or A2;   
            Z< = A1and A3;  
        end if; 
    end case; 
end process;
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47.1 Introduction

Yield is one of the cornerstones of a successful integrated circuit (IC) manufacturing technology along
with product performance and cost. Many factors contribute to the achievement of high yield but also
interact with product performance and cost. A fundamental understanding of yield limitations enables
the up-front achievement of this technology goal through circuit and layout design, device design, materials
choices, and process optimization. Defect, failure, and yield analyses are critical issues for the improve-
ment of IC yield. Finally, the yield improvement is essential to success.

The coordination of people in many disciplines is needed in order to achieve high IC yield. Therefore,
each needs to understand the impact of their choices and methods on this important technology goal.
Unfortunately, very little formal university training exists in the area of IC yield. This chapter is intended to
bring students, engineers, and scientists up to speed and enable them to function knowledgeably in this area.

Section 47.2 deals with IC yield and critical area models. Section 47.3 is dedicated to a local extraction
approach for the extraction of IC critical areas. Finally, Section 47.4 presents an application of previously
mentioned models and extraction approach in yield forecast.

47.2 Yield Models

This section is dedicated to IC yield analysis and modeling. Yield analysis includes the discussion of
methods, models, and parameters for detecting which technology and design attributes are really yield
relevant. Yield modeling mathematically expresses the dependence of yield on IC process defect character-
istics and design attributes. Thus, correct yield models are essential for meaningful yield and cost projections.
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This section describes a macroscopic approach to yield analysis and corresponding functional yield
models and yield parameters.

Classical Yield Models

Functional yield is the probability of zero catastrophic (fatal) defects. Catastrophic defects are defects
that result in primitive electrical failures and, consequently, yield loss. Therefore, the yield is derived
from Poisson’s equation as follow [1]:

(47.1)

where A is the area sensitive to defects (so-called critical area) [2–7] and D is the defect density. 
However, the simple Poisson yield formula is too pessimistic for IC chips on a wafer, because defects

are often not randomly distributed, but rather are clustered in certain regions (Fig. 47.1). Defect clustering
can cause large areas of a wafer to have fewer defects than a random distribution, such as the Poisson
model, would predict, which in turn results in higher yields in those areas. Therefore, to tackle this
nonrandom defect distribution, instead of using a constant defect density, Murphy introduced compound
Poisson statistics [8]. The Poisson distribution is compounded with a function g(D), which represents
the normalized distribution of defect densities: 

(47.2)

The function g(D) is a weighting function that accounts for the nonrandom distribution of defects.
A number of distribution functions can be used to approximate the defect density distribution and

analyze IC yield. Five of these are given below (Fig. 47.2) and corresponding yield models are described.

Poisson Model

When defects are randomly and uniformly distributed over the wafer, the wafer defect statistics can be
characterized by a constant , which is the average defect density. Therefore, g(D) is a delta function
centered at D = , resulting in the simple Poisson distribution and the yield given by

(47.3)

Figure 47.1 Defect clustering on semiconductor wafer.
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Murphy’s Model

The most preferred distribution function was a Gaussian; however, a Gaussian distribution gets difficult
for integration most of the time. In order to carry out the integration in an easier way, Murphy [8]
proposed using a symmetrical triangle weighting function for an approximation to a Gaussian distribution.
Substituting this into formula (47.2) gives

(47.4)

Murphy [8] also used a rectangle distribution function to represent the defect density distribution.
This distribution function is constant between zero and  and zero elsewhere. The meaning of this
function, physically, implies that chip defect densities are evenly distributed up to  but none have a
higher value. Using the rectangle distribution function in Murphy’s yield integral, we get

(47.5)

Price’s Model

Price [9] applied an exponential distribution function to approximate the defect density distribution.
The decaying form of the exponential function implies that higher defect densities are increasingly
unlikely. Physically, this means that high defect densities are restricted to small regions of a wafer. The
exponential distribution function can be used to represent severe clustering in small regions of a wafer.
The resulting yield formula for this distribution function is as follow:

(47.6)

Stapper’s Model

Stapper [10] used a Gamma distribution, which led to the following yield formula

(47.7)

FIGURE 47.2 Distribution functions for approximation of defect density distribution.
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where σ 2 is the variance of Gamma distribution function. The parameter  can be used to account
for defect clustering. By varying this parameter, the model covers the entire range of yield predictions.
The larger variance means more clustering of defects. If the parameter is equal to 1, this yield model
reduces to the Price formula (exponential weighting). On the contrary, for σ 2 = 0, it becomes the Poisson
formula (no clustering). The value of the clustering parameter must be experimentally determined. The
smaller values reflect higher yield and occur with maturity of technology.

Yield Distribution Model

Much work has been done in the field of yield modeling [11–30] and many results can be applied in
yield analysis; however, there is too much indistinctness in a modeling approach and too many disputes
about the correct model [16,17,19,23,24]. It appears that the main stumbling block was identification of
the yield defined as a probability of failure-free IC chip (the chip yield) with the yield defined as a ratio
between the number of failure-free chips n and the total number of chips N on a wafer (the wafer yield).
There is a major difference between these two quantities: the chip yield is a probability and can be expressed
by a number between 0 and 1, while the wafer yield is a stochastic variable and should be expressed by its
distribution function. 

The final goal of yield modeling must be to predict the wafer yield, so as to enable comparison with
the production yield data. The authors have proposed a yield model that does not require any defect
density distribution function but is completely based on the test chip yield measurement and can predict
the wafer yield as a distribution [31].

Chip Yield

Using corresponding in-line measurements of the test chip yields Yti, defined as a ratio between the number
of failure-free test chips and the total number of test chips in a given wafer area, the IC chip yield, associated
with the ith critical process step, can be directly predicted. A typical test chip containing MOS capacitors,
diodes, transistors, long conducting lines, and chains of contacts is shown in Fig.47.3. The IC chip yield
will differ from the test chip yield due to the difference in the critical area. So, if a ratio between the IC
chip and test chip critical areas is given by Αci/Αti, and the wafer area can be divided into m subareas with
approximately uniform distribution of defects, the IC chip yield can be determined by [14,31]

(47.8)

where l denotes the corresponding subarea. If a control wafer area has been divided into subareas in the
same way for each critical process step, the final IC chip yield is given by

(47.9)

FIGURE 47.3 Test chip containing test structures.
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where k is the total number of critical process steps, i.e., the total number of yield loss mechanisms;
however, the chip yield is not enough for complete yield characterization, and the wafer yield Yi should
be predicted as well.

Wafer Yield

As far as only ith critical process step is considered, there is no need to explore the very yield distribution
function, but it is enough to determine its parameters: the mean and variance. The parameters of wafer
yield distribution function are given by [31] 

(47.10)

(47.11)

where Cil is equal to lth subarea divided by the total wafer area. At the end, the final wafer yield should
be modeled as well. It is obvious that parameters of the final wafer yield distribution can be calculated
by [31]

(47.12)

(47.13)

In the most complex case, summations should be done for each IC chip from the wafer separately,
with Cil = 1/N; however, when there is a large number of chips on a wafer, this procedure is too cumbersome
and the following approximations can be used:

(47.14)

(47.15)

The wafer yield distribution itself can be obtained by Monte Carlo simulation [12], with a simulation
cycle consisting of:

• calculation of the final chip yield of each chip (Eq. (47.9)),

• decision of acceptance or rejection for each chip using a uniform pseudo-random number, and

• adding up of the number of failure-free chips on a wafer.

In some specific cases, the distribution of wafer yield can be approximated by known distribution
functions. For example, if the total number of chips on a wafer is large (N > 30), a Gaussian (normal)
distribution function can be used as an approximation:

(47.16)
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This distribution function cannot be used when the chip size increase is not accompanied by correspond-
ing increase of the wafer size, and the total number of chips on a wafer is small. Then we can apply for
approximation a binomial distribution function given by

(47.17)

where Yc is the value of final chip yield calculated by expression (47.9). Because of the small number of
chips on a wafer, the clustering of defects cannot be recognized and the values of final chip yields Ycl are
very close to each other.

Critical Area Models

Yield models generally require the estimation of IC critical area associated with each type of catastrophic
defects, i.e., each type of primitive failures. Examples of the defects include point defects (pinholes in
insulator layers, dislocations, etc.) and lithographic defects (spots on IC chip). Some of these defects are
shown in Fig. 47.4.

Critical Area for Point Defects

Two most significant types of primitive failures in ICs related to their layer structure are a vertical short
of two horizontal conducting layers through oxide (caused by a pinhole) and a leakage current increase
(due to defects of silicon crystal lattice in the depletion region of p-n junction). The critical area for both
of them can be defined as an overlap area of layout patterns from different IC conducting layers (silicon,
polysilicon, or metal), i.e., IC mask layers [32]. Consider a domain shown in Fig. 47.5, where two layout
patterns from two different mask layers are overlapping. If (x1, y1) and (x2, y2) denote canonical coordinates
of overlap area, an overlap area Al is given by

(47.18)

In the case of defects in the depletion region of p-n junction, it is needed to calculate a vertical part
of overlap area Av as well. The following expression is used for this calculation:

(47.19)

where z is the depth of p-n junction. The total critical area for point defects Ap is equal to a sum of the
lateral part Al and the vertical part Av.

FIGURE 47.4 Point and lithographic defects in IC chip.
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Critical Area for Lithographic Defects

Lithographic defects are extra and missing material spots on IC caused by particles and mask defects.
The sizes of these defects are comparable to critical dimensions of IC layout patterns and, therefore, they
can result in short and open circuits. The critical area for both of them can be defined as an area in
which the center of a defect must fall to cause one of these failures. If the assumption of circular defects
is valid, the critical area is a function of the defect diameter x. Consider the examples shown in Fig. 47.6.
An example in Fig. 47.6(a) shows two geometrical objects of a circuit layout from the same mask layer

FIGURE 47.5 Definition of IC critical area for point defects.

FIGURE 47.6 Definition of IC critical area for lithographic defects.
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and the equivalent critical area for shortening them. Moreover, an example in Fig. 47.6(b) shows a
geometrical object of a circuit layout and the equivalent critical area for opening it. We have proposed
the following expression [33]:

(47.20)

for the definition of the circular part of the critical area for shortening two geometrical objects, and the
expression [33]:

(47.21)

for the definition of the circular part of the critical area for opening a geometrical object, where x is the
defect diameter, s is the spacing between objects, w is the width of an object, and x ≥ s, w. The total
critical areas can be calculated by

(47.22)

(47.23)

where L is the length of objects.
The estimation of the critical area associated with lithographic defects requires averaging with respect

to the defect size distribution as follows [3]:

(47.24)

where A(x) (As(x) or Ao(x)) is the critical area associated with defects of a given size, and h(x) is the
defect size distribution. A Gamma distribution function (Fig. 47.7) is used to describe the defect size

FIGURE 47.7 Empirical defect size distribution (histogram) and defect size distribution approximated by Gamma
distribution function (dashed line).
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distribution [34,35]:

(47.25)

Parameters α and β are the fitting parameters that can be determined from the measured data from
the following expressions:

(47.26)

(47.27)

where M(x) and D(x) are the mean and variance of the measured defect size distribution, xj is the middle
of jth interval, and fj is the normalized number of defects with the size fallen into jth interval.

47.3 Critical Area Extraction

To facilitate failure simulations and IC yield predictions, the layout information such as minimum spacing
and widths, and the critical areas for conducting layers must be extracted. An extractor to obtain the
above layout information automatically is needed. Typical layout extraction approaches [36,37] extract
the desired information for the entire circuit at once in a global way; however, due to the methodology
requirements of the local failure simulators [38–56] as well as a visual inspection of the critical areas
[45,47,55], it is convenient to have an extractor where performance is optimized for local layout
extraction. To achieve this goal, the described critical area models and internal data structures are used
for storing the geometrical objects (rectangles) of a circuit layout and these critical areas.

In this section, a local critical area extraction approach is described. Moreover, an extraction algo-
rithm and implementation details for both the front-end and back-end of the extraction system are
presented.

Local Extraction Approach

The canonical coordinates of the critical area for point defects, i.e., overlap area of layout patterns from
two IC conducting layers Al (Fig. 47.5) have already been defined. These coordinates can be simply
extracted from the canonical coordinates of overlapping layout patterns (rectangles) as follow:

(47.28)

(47.29)

(47.30)

(47.31)

Canonical coordinates (x1, y1) and (x2, y2) are defined for a geometrical representation of the equiv-
alent critical areas for lithographic defects by considering examples shown in Fig. 47.8. Consequently,
canonical coordinates of the equivalent critical area for shortening two geometrical objects, in the case
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of s = max( , ) − min( , ), can be obtained by making use of the following expressions [33]:

(47.32)

(47.33)

(47.34)

(47.35)

but, in the case of s = max( , ) − min( , ), by making use of the expressions [33]:

(47.36)

(47.37)

(47.38)

(47.39)

Canonical coordinates of the equivalent critical area for opening a geometrical object, in the case of
w = Y2 − Y1, are given by the expressions [33]:

(47.40)

FIGURE 47.8 Definition of canonical coordinates of the equivalent critical area for shorts (a) and opens (b).
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(47.41)

(47.42)

(47.43)

and, in the case of w = X2 − X1, by the expressions [33]:

(47.44)

(47.45)

(47.46)

(47.47)

The simplest way to extract the critical area for shortening and opening geometrical objects is the
comparison of a geometrical object to all the other geometrical objects. This is computationally prohibitive
in the case of modern ICs that can contain millions of transistors due to its O(n2) performance, where n
is the total number of objects. Therefore, algorithms that enable efficient processing of geometrical objects
and minimization of the number of comparisons between object pairs must be used. These algorithms
are more complex than O(n) and their complexity determines the CPU time and memory consumption. 

Two main types of methods are used to scan objects in an IC layout: raster-scan based algorithm [57]
and edge-based scan-line algorithm [58]. In raster-scan algorithms, the chip is examined in a raster-scan
order (left to right, top to bottom) looking through an I-shaped window containing three raster elements.
The main advantage is simplicity, but a lot of time is wasted scanning over grid squares where no
information is to be gained. It further requires that all geometry be aligned with the grid. Edge-based
scan-line algorithms divide the chip into a number of horizontal strips where the state within the strip
does not change in the vertical direction. Change in state occurs only at the interface between two strips.
At the interface, the algorithm steps through the list of objects touching the scan-line and makes the
necessary updates to state. One of the main advantages of these algorithms over the raster-scan algorithms
is that empty space and large device structures are extracted easily. Because scan-line algorithms are
superior to raster-scan algorithms, a typical scan-line algorithm is used with a list for storing the incoming
objects where the top edges coincide with the scan-line. Then every object in this list is sorted and inserted
into another list called active list [32]. In the meantime, layout extractions are carried out by comparison
of the object being inserted to other objects in the active list. An object then exits the active list when
the scan-line is at or below its bottom edge.

Data Structures

The choice of a data structure for efficient geometrical object representation plays an important role.
The local extraction methodology is chosen, so a good candidate for the data structure requires a fast
region query operation and reasonable memory consumption. Many data structures are suggested for
the local extraction purposes. Among them, singly linked list, bin, k-d tree, and quad tree have been used
most often [59–61]. A singly linked list is the most memory efficient but has the slowest region query
performance. Conversely, a bin structure has the fast region query but consumes the most memory space.
Both k-d tree and quad tree reside in the middle and have a trade-off between speed and memory space.
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The layout information can be obtained by manipulating any efficient local extraction algorithm on the
geometrical objects stored in internal data structure.

Two kinds of data structures are needed for the critical area extraction. The first one is used for efficient
object representation in the active list. To minimize the number of comparisons between object pairs, a
suitable structure should be developed so that extraction can be performed as locally as possible. A singly
linked list is chosen for the active list not only for its simplicity, but also for its speed and memory
efficiency [32,62]. The chosen singly linked list and corresponding data structure are described in
Fig. 47.9(a). It contains fields X1, X2, Y1, and Y2, which represent the coordinates of the left, right, bottom,
and top edges of a rectangle, respectively, and three additional fields called layer, rect, and mk used to
indicate the layer number, the rectangle number, and the rectangles of the same pattern. The comparisons
between active rectangles stored in the active list can be carried out as locally as possible by examining
the sorted coordinates of rectangles. The second data structure is used for a list of coordinates of the
critical areas (Fig. 47.9(b)). It contains fields x1, x2, y1, and y2, which represent the coordinates of the left,
right, bottom, and top edges of the critical area, respectively, and a field Ap, As, or Ao, which represents the
value of critical area itself. This data structure also includes four additional fields called layer 1, layer 2,
rect 1 and rect 2 used to indicate the layer and rectangle numbers.

Extraction Algorithm

The main tasks of described approach are to find out all pairs of overlapping rectangles from two IC
mask layers, to determine canonical coordinates of their overlap areas (x1, y1) and (x2, y2), and to compute
the critical areas by making use of Eqs. (47.18) and (47.19) or, in the case of extraction of the critical areas
for lithographic defects, to find out all objects narrower than the largest defect with the diameter xmax, all
pairs of objects with a spacing between them shorter than the largest defect diameter xmax, to determine
canonical coordinates of the critical areas (x1, y1) and (x2, y2) for the largest defect diameter xmax, and to
compute the critical areas by making use of the expression (47.24). Therefore, an algorithm has been
developed for local critical area extraction based upon the scan-line method for scanning the sorted
geometrical objects and the singly linked list for representation of the active list of geometrical objects.
The main steps of the algorithm are as follows [32,62].

FIGURE 47.9 Data structure for a geometrical object representation in the active list (a) and data structure for
critical area representation (b).
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Algorithm

• Input: a singly linked list of rectilinearly oriented rectangles sorted according to the top edges from
top to bottom from two different IC mask layers (i.e., from the same IC mask layer in the case of
extraction of the critical areas for lithographic defects).

• Output: overlap areas between rectangles from two different IC mask layers (i.e., the critical areas
for opens and shorts between rectangles from the same IC mask layer). 

1. Set the scan-line to the top of the first rectangle from input list.
2. WHILE (the scan-line ≥ the top of the last rectangle from input list)

1. Update an active list called SOR;
2. Fetch rectangles from input list whose the top coincides with the scan-line and store them in

a singly linked list called TR;
3. Update the scan-line;
4. FOR each new rectangle in TR

1. Seek/Left sorts the new rectangle and inserts it into SOR, computes Al and Av (i.e., , As,
 and Ao) for the new rectangle and rectangles from SOR left to it, and computes and

stores the coordinates of overlap areas in a singly linked list (i.e., the coordinates of critical
areas for short and open circuits in two singly linked lists);

2. Seek/Right computes Al and Av (i.e., , As,  and Ao) for the last inserted rectangle into
SOR and rectangles from SOR right to it, and computes and stores the coordinates of
overlap areas in a singly linked list (i.e., the coordinates of critical areas for short and open
circuits in two singly linked lists);

3. Write the critical areas into output files.

The scanning process starts with setting the scan-line to the top edge of the first rectangle from input
list. The second step is a loop for updating the active list and moving the scan-line. To update rectangles
in SOR, substep 2.1 of the above algorithm performs comparison between the current scan-line and the
bottom edges of rectangles in SOR. If the bottom edge of a rectangle is above the current scan-line for
a threshold value (in the case of critical areas for lithographic defects, the largest defect diameter xmax)
or more, a rectangle will be deleted from SOR. This guarantees that the critical areas for short circuit
between any two rectangles in the y-direction can be detected. Substep 2.2 makes a singly linked list TR
contained rectangles with the same y-coordinates of the top edges. This step enables to sort rectangles
according to the x-coordinate of the left edge. The y-coordinate of the next scan-line (substep 2.3) is
equal to the top edge of the next rectangle in input list. Substep 2.4 sorts and inserts each new rectangle
from TR into the SOR active list, and computes and stores the critical areas in output lists. The last
step of the algorithm writes the content of output lists, i.e., coordinates of the critical areas (x1, y1)
and (x2, y2), as well as values of the critical areas Ap, As or Ao in output files.

Procedure Seek/Left takes the new rectangle from TR and the SOR active list as inputs and reports
the critical areas as output. Rectangles are sorted by the comparison of their left edge coordinates X1s.
The sorted rectangles are stored in the active list SOR. Procedure Seek/Right takes the last inserted
rectangle into SOR and SOR itself as input and reports the critical areas as output. In a loop of this
procedure, the place of the last inserted rectangle ∗SOR is checked first by the comparison of its right
edge coordinate X2 with the left edge coordinate X1 of the current SOR rectangle. It enables to end this
loop earlier.

Note that geometrical objects (rectangles) from two IC mask layers have to be stored in the active list
during extraction of the overlap areas. In the contrary, geometrical objects from only one IC mask layer
have to be stored in this list during extraction of the critical areas for lithographic defects. A simple
example illustrating the proposed algorithm is described in Fig. 47.10. The figure presents rectangles in
the active list with scan-lines shown in sequence. When the scan-line reaches the position S1, the newest
rectangle in SOR is the rectangle 6. In the meantime, the critical area for opening this rectangle and the
critical areas for shortening it with the rectangles 3 and 4 are computed. As the scan-line moves down,

As0

Ao0

As0 Ao0
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its next stopping position is S2. Now the newest rectangle in the active list is the rectangle 7. In the same
time, the rectangle 4 exits the active list because the spacing between its bottom edge and the current
scan-line is greater than a threshold value (xmax). By making use of the described algorithm, the critical
areas related to point and lithographic defects for any IC can be extracted.

Implementation and Performance

The layout extraction starts from the layout description in CIF format and ends by reporting the critical
areas for point or lithographic defects. In our case, this procedure is done through software system, which
consists of three tools. The previous algorithm is only dedicated to the back-end of the entire system and
is implemented in a program called EXACCA (EXtrActor of Chip Critical Area). The structure of this
system is shown in Fig. 47.11. 

Transformer of CIF (TRACIF)

The front-end of system is a technology-independent processor for transforming IC layout description
from the unrestricted to a restricted format TRACIF [63]. The unrestricted format can contain over-
lapping rectangles, as well as rectangles making bigger rectangles from the same IC mask layer; however,
an internal restricted geometric representation should contain a set of nonoverlapping rectangles that
about only along horizontal edges. Two important properties are part of the restricted format:

• Coverage—Each point in the x-y plane is contained in exactly one rectangle. In general, a plane
may contain many different types of rectangles.

• Strip—Patterns of the same IC mask layer are represented with horizontal rectangles (strips) that
are as wide as possible, then as tall as possible. The strip structure provides a canonical form for
the database and prevents it from fracturing into a large number of small rectangles.

FIGURE 47.10 Scan-lines with rectangles in the active list.

FIGURE 47.11 Software system for extraction of IC critical areas.
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TRACIF takes a CIF file as input and generates files containing geometrical objects (rectangles) defined
by the canonical coordinates of each IC cell and mask layer as outputs. Thus, the outputs of TRACIF are
lists of sorted rectangles according to the top edges from top to bottom. TRACIF can handle Manhattan
shaped objects and consists of about 800 lines of C code. Therefore, TRACIF is capable to perform the
layout description transformation hierarchically. Namely, TRACIF transforms a CIF file to the restricted
format in a hierarchical way and makes different files for different cells and layers. This feature is desirable
because most of the modern IC designs exploit the technique of design hierarchy. Within this design
methodology, the layout extraction is only required once for each layout cell. Here, the results of trans-
forming CIF file of IC chip that was designed using double metal CMOS process will be presented. The
total number of rectangles before and after processing, as well as the CPU time needed for transforming
this CIF file by TRACIF on Silicon Graphics Indy workstation are shown in Table 47.1.

EXtrActor of Chip Critical Area (EXACCA)

EXACCA takes the sorted rectangles and starts the critical area extraction by using the proposed algo-
rithm. EXACCA can handle Manhattan-type objects and consists of about 2000 lines of C code. The
outputs of EXACCA are lists of the critical areas for point or lithographic defects. Software tool GRAPH
performs the visual presentation of the critical areas. Pictorial examples of the layouts and snapshots of
the corresponding critical areas are shown in Figs. 47.12. and 47.13. Precision of a visual presentation

TABLE 47.1 Processing Time and Number of Objects 
Before and After Transformation of CIF File by TRACIF

IC Cell

Rec. No. 
Before 

Processing

Rec. No. 
After 

Processing
CPU Time 

(s)

buf.CO 394 394 1.164
buf.ME 58 37 0.014
buf.NP 203 14 0.033
buf.NW 102 2 0.014
buf.PO 44 41 0.017
buf.PP 200 14 0.031
buf.TO 414 40 0.130
buf.VI 11 11 0.006
chi.CO 2 2 0.006
chi.ME 199 108 0.108
chi.PO 4 4 0.006
chi.VI 67 67 0.021
exo.CO 63 63 0.027
exo.ME 3 3 0.006
exo.NP 35 2 0.006
exo.NW 21 1 0.006
exo.PO 45 21 0.009
exo.PP 35 2 0.006
exo.TO 73 18 0.012
exo.VI 2 2 0.006
ful.ME 30 9 0.007
ful.PO 4 4 0.006
ful.VI 6 6 0.006
hal.CO 2 2 0.006
hal.ME 88 58 0.025
hal.PO 5 4 0.006
hal.VI 27 27 0.008
hig.ME 7 3 0.006
hig.PA 1 1 0.006
hig.VI 1 1 0.006
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of the critical areas is limited by the error made in approximation of the circular parts by rectangular
subareas.

To analyze the performance of the algorithm, an idealized model is used. If there are n uniformly
distributed rectangles in a region of interest, there will be around √n rectangles, on an average, in each
scan-line. Based upon this model, the time complexity of the algorithm is analyzed. Step 1 in the algorithm

FIGURE 47.12 Layout of two metal layers of operational amplifier and corresponding critical (overlap) areas.

(a) (b)

FIGURE 47.13 Layout of metal 1 of input pad and corresponding critical areas for shorts (a) and opens (b).
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is trivial and takes a constant time. Step 2 is a loop with, on an average, √n elements under which are
four substeps are required. Substeps 2.1 and 2.2 take O(√n) expected time due to the √n length of elements
in SOR and TR. Substep 2.3 takes a constant time. Substep 4 has √n elements in a loop, under which
sub-substeps 2.4.1 and 2.4.2 take O(√n). Hence, substep 4 takes O(n) time. As a result, step 2 takes O(n√n)
time. Note that the critical areas As and Ao are calculated using Simpson’s method for numerical integra-
tion with the x-resolution 0.1 µm. Finally, step 3 takes a constant time. From the previous idealized
analysis, the complexity of this algorithm is CO(n√n), where C is a constant. The approaches used in
[41,42,44] promise O(n log n) performance, even though authors note that the actual consumption of
CPU time is a very intensive.

Because today’s VLSI circuits can contain up to 10 million transistors, the limitation of memory
resources places an important role on extraction efficiency. To avoid running out of memory, special-
coding techniques have to be employed. These techniques decrease the extraction efficiency, particularly
for very big circuits. In general, this memory limitation problem affects the algorithms regardless of
which data structure is used for the node representation of the active list. However, a singly linked list
suffers the least due to its memory efficiency. Thus, a list structure is preferred as far as memory space
is concerned. The memory consumption of EXACCA is proportional to √n. 

Here, the simulated results of five examples, which were designed using double metal CMOS process,
will be presented. The number of rectangles, as well as the CPU time of EXACCA on Silicon Graphics
Indy workstation for these five IC layouts called chip, counter4, counter6, counter8, and counter10 are
shown in Table 47.2. The extraction speed is illustrated by the analysis of CPU times needed for the
computation of critical areas for short and open circuits for five values of the largest defect diameter xmax.
The extraction results show that a CPU time increases as the diameter of largest defect increases. Namely,
the increase of the largest defect diameter means a greater threshold for updating the active list and,
consequently, a greater number of rectangles in the active list. The increase of the number of comparisons
between rectangle pairs causes a corresponding increase of the critical area extraction time. As can be
seen from Table 47.2, one of the most important advantages of the proposed extraction algorithm and
corresponding data structures is the ability to process large layouts in a relatively short CPU time.

Applications

EXACCA ensures the microscopic layout information needed for more detailed analysis. Thus, the output
of EXACCA may be used for any IC yield simulation system and design rule checking system. Also, our
software system is useful for the classical yield models that require knowing the critical area of an IC
chip. Caution should be taken in this case as the total critical area of a chip must be computed by finding
the union of (not by adding) the critical areas. Regardless of the fact that this section has focused only
on the extraction of critical areas, EXACCA can also be easily modified for the extraction of parasitic
effects. Although the critical areas are required for the simulation of functional failures, the extraction
of parasitic effects can be used for the simulation of performance failures.

This software system is capable to perform the critical area extraction hierarchically. Namely, TRACIF
is capable to transform a CIF file to sorted lists in a hierarchical way. This feature is desirable since most
of the modern IC designs exploit the technique of design hierarchy. Within this design methodology, the
critical area extraction is only required once for each layout cell. Therefore, CPU time can be reduced

TABLE 47.2 Critical Area Extraction Time (in seconds) on Silicon Graphics Indy Workstation 
for Five Values of xmax

Integrated 
Circuit

Number 
of Rectangles 10 µm 12 µm 14 µm 16 µm 18 µm

chip 4125 65.1 83.7 89.4 97.8 112.0
counter4 11637 342.4 379.5 406.7 459.9 503.1
counter6 19503 600.2 631.4 685.5 792.6 885.9
counter8 24677 897.6 954.2 1083.6 1217.8 1399.8
counter10 30198 1116.0 1338.1 1542.2 1689.5 1880.3
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significantly for extracting the critical areas of an IC with many duplicates of single cells. Following the
design hierarchy, it can be used to predict and characterize yields of future products in order to decide
about improvements in the corresponding layout cells that enable the desired yield.

47.4 Yield Forecast

By making use of the yield distribution model (see subsection “Yield Distribution Model”) and the software
system TRACIF/EXACCA/GRAPH (see subsection “Implementation and Performance”), yields associated
with each defect type can be calculated and a sophisticated selection of IC types can be undertaken.

Yield Calculations

An example of the characterization of IC production process is given in Table 47.3 (for point defects)
and Table 47.4 (for lithographic defects). The critical processes listed in these tables were assumed to
be responsible for the yield loss in double metal CMOS production process and were accompanied by
in-line yield measurements made on the corresponding test structures, and the consequent yield analysis.
The critical areas of test structures are in mm2.

TRACIF/EXACCA/GRAPH system ensures, for the yield model, the critical area of IC (for given defect
type) as a union of all local critical areas. Here, the simulated results for the IC chip, which was designed
using double metal CMOS process, will be presented. The critical areas for five cells of this IC called
inpad, ota, buffer, selector, and exor are shown in Tables 47.5 and 47.6. The numbers in parentheses denote
how many times the corresponding cell appears in the circuit layout. As can be seen from Table 47.5, the
critical areas for point defects (in mm2) are defined as overlap areas of the corresponding mask layers.
The first three are for defects of silicon crystal lattice in the depletion region of p-n junction and the
second three are for pinholes in thin and CVD oxides.

TABLE 47.3 Yield Measurements for 
Point Defects

Critical 
Process Ati Yti1 Yti2

NWI .4265 .9754 .9861
PPI .0072 .9960 .9980
NPI .0072 .9980 .9980
TOX 1 .9613 .8547
CVD1 1 .9821 .9654
CVD2 1 .9574 .9203

TABLE 47.4 Yield Measurements for Lithographic 
Defects

Critical Level Ati Yti1 Yti2

SPPI .0042 .8940 .9168
OPPI .0042 .8531 .9328
SNPI .0042 .9630 .9842
ONPI .0042 .9462 .9750
SCON .0021 .9351 .9184
OCON .0021 .9544 .9076
SPOL .0042 .8677 .8559
OPOL .0042 .9770 .9642
SME1 .0042 .8884 .8520
OME1 .0042 .9540 .9397
SME2 .0042 .7985 .8220
OME2 .0042 .8796 .9081
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Also, the critical areas for lithographic defects in Table 47.6 (in µm2) can be divided into two groups.
The first one consists of the critical areas for shorts and the second one contains the critical areas for opens. 

The wafer yield predictions are shown in Table 47.7 (for point defects) and Table 47.8 (for lithographic
defects). The total number of chips in a wafer was N = 870 and Cil = Cl = 1/2. The critical areas are
calculated as a sum of the corresponding critical areas of all cells. Calculations needed for getting the
mean and variance of the wafer yield related to each critical process step, as well as the mean and
variance of the final wafer yield are carried out by means of Eqs. (47.8)–(47.15). The values of these
parameters can now be used to decide about a possible corrective action.

IC Type Selection

A usual approach to the IC production control needs estimating the defect density and does not give the
opportunity for selection of IC types; however, the authors’ approach uses both yield parameters, the
mean and variance of the wafer yield distribution function, and enables sophisticated selection of IC types. 

TABLE 47.5 Critical Areas for Point Defects

Cell Critical 
Area

inp
(7)

ota
(3)

buff
(3)

selec
(2)

exor
(1)

NWI .0060 .0097 .0168 — .0038
PPI/NWI .0007 .0025 .0019 — .0010
NPI .0005 .0038 .0021 — .0017
POL/TOX — .0142 .0013 — .0001
ME1/POL — .0225 .0002 0 .0002
ME2/ME1 .0126 .0118 .0002 0 0

TABLE 47.6 Critical Areas for Lithographic Defects

Cell Critical
Area

inp
(7)

ota
(3)

buff
(3)

selec
(2)

exor
(1)

SPPI 31 0 14 — 0
OPPI 27 236 385 — 0
SNPI 0 59 16 — 0
ONPI 0 311 509 — 0
SCON 420 280 158 — 171
OCON 136 83 149 — 182
SPOL — 127 145 0 138
OPOL — 133 198 0 290
SME1 214 916 858 80 519
OME1 25 1194 880 17 531
SME2 0 56 72 0 0
OME2 176 321 387 0 28

TABLE 47.7 Yield Predictions for Point 
Defects

Critical 
Process Aci

NWI .1253 .9943 6.51 × 10−6

PPI .0191 .9921 9.04 × 10−6

NPI .0229 .9936 7.25 × 10−6

TOX .0466 .9954 5.21 × 10−6

CVD1 .0683 .9982 2.08 × 10−6

CVD2 .1242 .9922 8.92 × 10−6

Total — .9663 3.75 × 10−5

Yi ∂Yi

2
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An example of the selection of CMOS IC types is given in Table 14.9 and Fig. 47.14. Six critical processes
were assumed to be responsible for the yield loss, and were accompanied by in-line yield measurements
and the consequent yield analysis. It can be seen from Table 14.9 that in this particular example, the yield
associated with p+-diffusion was much smaller than the yields of the other process steps and, therefore,
was the main cause of the wafer yield loss. It is obvious that in this example an investment in the process
of p+-diffusion would be extremely beneficial. An investment made to improve the process of p+-diffusion

TABLE 47.8 Yield Predictions for Lithographic Defects

Critical Level Aci

SPPI .000259 .9939 6.98 × 10−6

OPPI .002052 .9459 5.83 × 10−5

SNPI .000225 .9986 1.65 × 10−6

ONPI .002460 .9767 2.61 × 10−5

SCON .004425 .8520 1.45 × 10−4

OCON .001830 .9396 6.48 × 10−5

SPOL .000954 .9668 3.69 × 10−5

OPOL .001283 .9909 1.03 × 10−5

SME1 .007499 .7804 1.96 × 10−4

OME1 .006962 .9135 9.07 × 10−5

SME2 .000384 .9809 2.15 × 10−5

OME2 .003384 .9135 9.06 × 10−5

Total — .4490 2.84 × 10−4

TABLE 47.9 Yield Prediction Results

 Wafer Yield Yi

Critical Process Chip 1 Chip 2

1. p−-diffusion 0.952 0.884

2. p+-diffusion 0.845/0.928∗ 0.671/0.792∗

3. n+-diffusion 0.966 0.897

4. Gate oxide formation 0.993 0.978

5. Photoprocess contacts 0.984 0.949

6. Photoprocess metal 0.958 0.867

Final wafer yield 0.727/0.799∗ 0.428/0.505∗

∗after investment in p+-diffusion process

FIGURE 47.14 Example of IC type selection.

Yi ∂Yi

2

Y
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(enhancement of the process cleanliness, etc.) resulted in the final wafer yield increase of over 10%. Such
a yield improvement could not be achieved by any investment in any other critical process step.

The usual approach to the IC production control is based on the defect or fault density measurements,
and does not take into account the dependence on the complexity of a given IC type. Therefore, the lot
of wafers may be stopped regardless of the IC type. Namely, a given defect density level can enable a
decent yield (and price) of simpler IC chips, but it may not be sufficient to achieve the desired yield and
price of more complex IC chips. The approach considered in this paper does not suffer of described
disadvantage. Moreover, it can be used to forecast and characterize yields of future products in order to
decide about investments that enable the desired final IC production yield. 

In the considered example of production of IC Chip1, it is estimated that the mean and variance of
the wafer yield associated with p+-diffusion should be higher than 0.92 and lower than 3.5 × 10−5,
respectively, in order to ensure the acceptable value of the final wafer yield. It can be seen from Fig. 47.14
that the currently established p+-diffusion process fulfills the imposed requirements; however, in the
case of production of IC Chip2, the same defect density associated with the p+-diffusion process has
resulted in the mean of the wafer yield 0.792 and its variance 2.23 × 10−4, both of them being out of
estimated limits presented in Fig. 47.14. Therefore, in order to achieve the competitive price with a
possible production of more complex IC Chip2, a further investment in p+-diffusion process should be
made.

47.5 Summary

Basic IC yield models (Murphy’s approach) and yield parameters (test structure yield, chip yield, and
wafer yield) are presented. Both defect density and defect size distributions are described. Using corre-
sponding in-line measurements of the test structure yields, the chip yield, associated with the ith critical
process step, is directly calculated; however, the chip yield is not sufficient for complete yield character-
ization, and the wafer yield, defined as a ratio between the number of failure-free chips and the total
number of chips on a wafer, is predicted as well. We define the wafer yield as a distribution with two
statistical parameters: the mean and variance. 

A local layout extraction approach for hierarchical extraction of the IC critical areas for point and
lithographic defects is described. The authors propose new expressions for definition of the circular parts
of critical areas for shorts and opens between IC patterns. Also, the Gamma distribution is proposed as
an approximation of the measured lithographic defect size distribution for estimating of the average
critical area. It is shown that the Gamma distribution provides good agreement with the measured data,
thus leading to a precise estimation of the critical area. Canonical coordinates (x1, y1) and (x2, y2) have
been defined for a geometrical representation of the equivalent critical areas for shortening two geomet-
rical objects and opening a geometrical object. Two kinds of data structures are used for the critical area
extraction. The first one is used for efficient object representation in the active list. A singly linked list
is chosen for the active list not only for its simplicity, but also for its speed and memory efficiency. The
second data structure is used for a list of coordinates of the critical areas. The extraction of critical areas
is carried out by an algorithm that solves this problem time proportional to n√n, on average, where n is
the total number of the analyzed geometrical objects (rectangles). This algorithm is a typical scan-line
algorithm with singly linked lists for storing and sorting the incoming objects. The performance of the
authors’ algorithm is illustrated on five layout examples by the analysis of CPU time consumed for
computing the critical areas applying a software tool system TRACIF/EXACCA/GRAPH.

The chip and wafer yields associated with each critical process step (i.e., each defect type) are deter-
mined by making use of the above-described approach. The final wafer yield predictions are made as
well. An example of such a characterization of IC production process is described. It is shown that the
proposed approach can be used for modeling yield loss mechanisms and forecasting effects of investments
that are required in order to ensure a competitive yield of ICs. Our approach uses both wafer yield
parameters, the mean and variance, and enables sophisticated selection of IC types.
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