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Preface

This volume contains the papers presented at PSDML 2010: ECML/PKDD
Workshop on Privacy and Security issues in Data Mining and Machine Learning
held on September 24, 2010 in Barcelona, Spain.

The purpose of the workshop was to bring together researchers from dif-
ferent areas of data mining and machine learning, with an interest in privacy
and security, to discuss recent results and open problems and to enable future
collaborations. We received 21 submissions, each of which received at least 2,
and on average 3.6, reviews. We wish to thank the reviewers for their excellent
feedback to the authors, which directly contributed to the workshop’s success.
The committee decided to accept 11 papers for an engaging full-day program
touching upon multiple aspects of the workshop’s theme.

One theme was data privacy, i.e., how to perform computations on data with-
out revealing the data itself or any sensitive knowledge that can be mined from
the data. This was explored for general computations (such as the eigenvector
computation paper by Pathak and Raj and the work by Grosskreutz et al. on
group discovery), for anonymous data publication (such as the work by Cano
and Torra, who studied the suitability of additive noise to protect sensitive mi-
crodata while taking data edits into account), and for supervised learning (such
as the work by Pathak and Raj on Gaussian classification and the Gavin and
Velcin paper on quadratic error minimization).

Security applications, focusing on detecting malicious behavior in computer
systems, formed another major part of the workshop schedule. Kruger et al. con-
tribute a method, employing n-grams and matrix factorization, for automatically
mapping network payloads onto a low-dimensional space, enabling visualization
and anomaly detection. In a similar vein, Mao et al. use generalized n-grams
to represent and detect attacks in network traffic, while the problem of filter-
ing in recommender systems is tackled using a soft two-tier classifier employing
bag-of-words and other message statistics as features.

Finally, the open problems and position papers session resulted in interesting
and fruitful discussions. Charles Elkan presented the idea of using importance
weights to preserve privacy in data mining, and Blaine Nelson gave a detailed
overview of an adversarial setting where the opponent actively tries to evade
detection by the classifier, which raises many interesting theoretical questions.

We would once more like to thank the workshop participants for their inter-
esting contributions, the reviewers for their diligent work and the ECML/PKDD
Workshops Chairs for making this workshop possible.

November 2010 Christos Dimitrakakis
Aris Gkoulalas-Divanis
Aikaterini Mitrokotsa

Yücel Saygin
Vassilios Verykios
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Edit Constraints on Microaggregation and

Additive Noise

Isaac Cano and Vicenç Torra

Artificial Intelligence Research Institute (IIIA)
Spanish National Research Council (CSIC)

Campus UAB, Catalonia, Spain
{cano,vtorra}@iiia.csic.es

Abstract. Privacy preserving data mining and statistical disclosure
control propose several perturbative methods to protect the privacy
of the respondents. Such perturbation can introduce inconsistencies to
the sensitive data. Due to this, data editing techniques are used in or-
der to ensure the correctness of the collected data before and after the
anonymization.

In this paper we propose a methodology to protect microdata based
on noise addition that takes data edits into account. Informally, when
adding noise causes a constraint to fail, we apply a process of noise
swapping to preserve the edit constraint. We check its suitability against
the constrained microaggregation, a method for microaggregation that
avoids the introduction of such inconsistencies.

Keywords: Data Editing, Privacy Preserving Data Mining, Constrained
Microaggregation, Noise Addition.

1 Introduction

Privacy Preserving Data Mining (PPDM) [1,3,23] aims to develop algorithms
for modifying sensitive data in some way, so that the private data and private
knowledge remain private even after the mining process. On the other hand,
Statistical Disclosure Control (SDC) [30] develops methodologies to ensure that
information of the data respondent is not disclosed in any National Statistics
publication. SDC involves modifying data so that the risk of identifying individ-
uals is reduced to an acceptable level.

The large volume of data gathered by public agencies and corporations require
these methods to protect the privacy of data respondents. In a broad sense, data
protection methods can be categorized into data-driven (i.e., general purpose
one), and computation-driven (i.e., specific purpose). Computation-driven meth-
ods are usually based on cryptographic tools [29] and data-driven ones on the
perturbation of the data. That is, the latter methods consist of introducing some
noise into the data so that the exact figures of a particular respondent are not
disclosed. At present, a large number of perturbative methods exist. In this pa-
per we consider two well-known perturbative methods, the Noise Addition [2,4]
and the Microaggregation [12,18,22].

C. Dimitrakakis et al. (Eds.): PSDML 2010, LNAI 6549, pp. 1–14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 I. Cano and V. Torra

Specifically, when the data to perturb is statistical data, we have to guarantee
that it is error-free after the anonymization process due to the inconsistencies
that SDC methods can introduce in it. The common approach is to apply Data
Editing [17,24,13] techniques in order to guarantee the correctness of both the
original and masked microdata. The basic idea is that microdata should satisfy a
set of constraints before their release (e.g., non-negative values are not permitted
for people’s age or when someone is male its number of pregnancies must be zero).

Whilst SDC methods have received ample attention in the literature, the study
of perturbation methods in the presence of data edits has not been considered un-
til very recently [28,25]. In this paper we assess the suitability of Additive Noise
to ensure consistent data with respect to a subset of edit constraints. Moreover,
we compare it to the Constrained Microaggregation in terms of probabilistic
information loss and disclosure risk.

The structure of the paper is as follows. Section 2 introduces the basic concepts
and the data editing constraints we have considered. In Section 3 we review
the constrained microaggregation. In Section 4 we review the correlated and
uncorrelated additive noise and we describe how we modified it to deal with
the cases where an edit constraint fails. Section 5 presents an evaluation of the
results and, finally, Section 6 concludes the paper.

2 Data Editing

Data editing can be broadly defined as the process of detecting errors in statis-
tical data [11]. It is normally accompanied by error localization, and imputation
processes. That is, if there is an error in the data, the erroneous variables have
to be identified and the data can be modified in order to fix the error. In general
the whole data editing process can be very costly, even requiring human super-
vision in some stages [13]. For this reason it is very desirable that the statistical
disclosure control methods used on edited data do not introduce new errors, so
data does not need to be edited again.

The editing process is usually formalized as a set of edit constraints, that the
data should satisfy. We present three types of edit constraints from a generic
classification [28], and show their applicability in a slightly modified version of
the Census data set [10] from the European CASC project [5]. The modification
of the dataset, shown in Table 1, is minimal and restricted to the addition of
one variable (V 14) in order to be able to show the applicability of the linear
constraints.

– Constraints on the possible values (EC-PV). The values of a given variable
are restricted to a predefined set. For example, stating that the value of
variable employer contribution for health care should be in the interval [0,
7500].

EC-PV: employer contrib. health ∈ [0, 7500]
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Or for example, consider an attribute age where a value of 18.5 does not
make sense, and only integer positive values are permitted. Similar con-
straints could involve subsets of variables.

– One variable governs the possible values of another one (EC-GV). The values
of a variable v2 are constrained by the values of the first one. For example,
considering the relations between three variables total person earnings, tax-
able income and amount as:

EC-GV: IF total person earnings < 1115
THEN taxable income ≤ amount

– Linear constraints (EC-LC). Some numerical variables satisfy some linear
constraints. That is, a variable can be expressed as a linear combination of
a set of other variables. For example, the following relation between family
income, person income, and other persons income should hold:

EC-LC: person income + other person income
= family income

In general, linear constraints can be expressed as V =
∑K

i=1 αiVi, for some
values αi and variables Vi, and the dependent variable V .

In addition to the previous types of constraints, other types of edit constraints
can be defined. This is the case of the non-linear constraints and constraints on
non-numerical variables.

Table 1. Census dataset description

V 1 AFNLWGT Final weight (2 implied decimal places)

V 2 AGI Adjusted gross income

V 3 EMCONTRB Emplyr. contribution for hlth. insurance

V 4 ERNVAL Business or Farm net earnings in 19..

V 5 FEDTAX Federal income tax liability

V 6 FICA Soc. sec. retirmnt. payroll deduction
V 7 INTVAL Amt. of interest income

V 8 PEARNVAL Total person earnings

V 9 POTHVAL Total other persons income

V 10 PTOTVAL Total person income

V 11 STATETAX State income tax liability

V 12 TAXINC Taxable income amount

V 13 WSALVAL Amount: Total Wage & salary

V 14 TOTVAL Total family income
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3 Constrained Microaggregation

Microaggregation is a statistical disclosure control technique, which provides
privacy by means of clustering the data into small clusters and then replacing
the original data by the centroids of the corresponding clusters.

In this section we will introduce microaggregation and show how it can be
used in the presence of edit constraints.

3.1 An Overview of Microaggregation

Microaggregation was originally [12] defined for numerical attributes, but later
extended to other domains. E.g., to categorical data in [27] (see also [16]), and
in constrained domains in [28].

From the operational point of view, microaggregation is defined in terms of
partition and aggregation:

– Partition. Records are partitioned into several clusters, each of them con-
sisting of at least k records.

– Aggregation. For each of the clusters a representative (the centroid) is
computed, and then original records are replaced by the representative of
the cluster to which they belong to.

From a formal point of view, microaggregation can be defined as an optimiza-
tion problem with some constraints. We give a formalization below using uij to
describe the partition of the records in the sensitive data set X . That is, uij = 1
if record j is assigned to the ith cluster. Let vi be the representative of the ith
cluster, then a general formulation of microaggregation with g clusters and a
given k is as follows:

Minimize SSE =
∑g

i=1

∑n
j=1 uij(d(xj , vi))2

Subject to
∑g

i=1 uij = 1 for all j = 1, . . . , n
2k ≥∑n

j=1 uij ≥ k for all i = 1, . . . , g
uij ∈ {0, 1}

For numerical data it is usual to require that d(x, v) is the Euclidean distance.
In the general case, when attributes V = (V1, . . . , Vs) are considered, x and v
are vectors, and d becomes d2(x, v) =

∑
v∈V (xv − vv)2. In addition, it is also

common to require for numerical data that vi is defined as the arithmetic mean
of the records in the cluster. I.e., vi =

∑n
j=1 uijxi/

∑n
j=1 uij . As the solution

of this problem is NP-Hard [22] when we consider more than one variable at a
time (multivariate microaggregation), heuristic methods have been developed.
MDAV [15] (Maximum Distance to Average Vector) is one of such existing algo-
rithms. A detailed description of the MDAV algorithm is given in Algorithm 1.
The implementation of MDAV for categorical data is given in [16].

Privacy is achieved because all clusters have at least a predefined number
of elements, and therefore, there are at least k records with the same value.
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Algorithm 1. MDAV
Data: X: original data set, k: integer
Result: X’: protected data set
begin1

while (|X| ≥ 3 ∗ k) do2

Compute the average record x̄ of all records in X;3

Consider the most distant record xr to the average record x̄;4

Form a cluster around xr. The cluster contains xr together with the5

k − 1 closest records to xr;
Remove these records from data set X;6

Find the most distant record xs from record xr;7

Form a cluster around xs. The cluster contains xs together with the8

k − 1 closest records to xs;
Remove these records from data set X;9

if (|X| >= 2 ∗ k) then10

Compute the average record x̄ of all records in X;11

Consider the most distant record xr to the average record x̄;12

Form a cluster around xr. The cluster contains xr together with the13

k − 1 closest records to xr;
Remove these records from data set X;14

Form a cluster with the remaining records;15

end16

Note that all the records in the cluster replace its own value by the value in the
centroid of the cluster. The constant k is a parameter of the method that controls
the level of privacy. The larger the k, the more privacy we have in the protected
data. Note that when all variables are considered at once, microaggregation is a
way to implement k-anonymity.

3.2 Edit Constraints and Microaggregation

In this section we show how the constrained microaggregation copes with the
edit constraints listed in Section 2. For a more detailed discussion see [28].

In the rest of this section we will use the following notation. We consider a
microdata file with n records x1, . . . , xn that take values over a set of variables
V1, . . . , Vm. We express the value for record xi in variable Vj by xi,j .

Constraints on the possible values (EC-PV). In order to enforce constrains
on the possible values, we can require the cluster representatives of x1, . . . , xN

denoted by C(x1, . . . , xN ) to be in the interval defined between the minimum
and the maximum of the elements in the cluster. That is, the function C has to
satisfy internality. Formally,

min
i

xi ≤ C(x1, . . . , xN ) ≤ max
i

xi
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Note that if the constraint is that xi ∈ [a, b] for some a and b, it is clear
that for edited data, we have xi ∈ [a, b], and thus, this constraint implies that
C(x1, . . . , xN ) ∈ [a, b].

It can be proved that both the arithmetic mean and the geometric mean do
satisfy internality [28]. So, C can be any of these two functions.

One variable governs the possible values of another one (EC-GV).
Although this case normally requires a case by case approach, in general any
monotonic function C, permits us to generate a protected file with V1 < V2 for
variables V1 and V2 if in the original file it also holds V1 < V2. In fact, the condi-
tion xi,j ≤ xi,k for all i and j �= k implies C(x1,j , . . . , xN,j) ≤ C(x1,k, . . . , xN,k),
corresponds to the monotonicity of C.

EC-GV constraints, such as the one presented in Section 2, can be summarized
as:

IF V 8 < 1115 THEN V 13 ≤ V 12.

These constraints can be satisfied by partitioning the dataset in subsets accord-
ing to the antecedent of the rule, and then applying microaggregation separately
to each subset using a monotonic function C. In this case the data is partitioned
in two sets, one with records satisfying V 8 < 1115, and the other with records
with V 8 ≥ 1115.

Linear constraints (EC-LC). A linear constraint can be expressed as follows:
if we assume that V is the dependent variable (cf. Table 2), we have that V =
∑K

i=1 αiVi, for some values αi and variables Vi.
Assuming that the original data (already edited) satisfies the linear constraint,

i.e., xj =
∑K

i=1 αixj,i, we need to consider which function is suitable for com-
puting the cluster representative.

Table 2 shows the representation of a single cluster of size N . The function C is
the cluster representative or centroid, which we assume to be a function of the
data in the cluster. More specifically, we presume that the representative of the
variable V is a function of the values of the records for V , that is, C(x1, . . . , xN ).
Similarly, the representative for variable Vi is C(x1,i, . . . , xN,i). The representa-
tives are shown in the last row of Table 2. The arithmetic mean is the most
general solution for C.

Table 2. Representation of a single cluster in microaggregation

V V1 . . . VK

x1 x1,1 . . . x1,K

...
...

...
xN xN,1 . . . xN,K

C(x1, . . . , xN ) C(x1,1, . . . , xN,1) . . . C(x1,K , . . . , xN,K)
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4 Additive Noise

Masking by adding noise [2,4] was first tested extensively by Spruill [26] and
basically consists of adding random noise to the original data. Generally, the
noise distribution is Gaussian with mean zero, to preserve means, and the vari-
ance of the noise distribution commonly reflects either complete independence
or the correlation structure of the original, unmasked data. In this section we
first review a perturbation scheme that minimizes the number of failed edits and
later we propose a perturbation procedure to deal with those cases where the
edit constraints fail.

4.1 Edit Constraints and Additive Noise

If we want to anonymize original microdata by means of additive noise, it may
cause edit constraints to start failing. In order to minimize the number of failed
edits, Shlomo and De Waal [25] proposed an alternative method for generating
univariate and multivariate random noise for continuous variables:

– Univariate Random Noise: Select the amount of uncorrelated random noise
to add to the variable z by defining the parameter δ with a value larger than
0 and less than or equal to 1. When δ = 0 no noise is added whilst when
δ = 1 we obtain the case of fully modelled synthetic data. After setting
δ to the desired value, calculate the contribution d1 of the variable z as
d1 =

√
(1− δ2). Then, generate Gaussian random noise ε independently for

each record with a mean of μ′ = ((1− d1) /δ) μ and the original variance
σ2 of the variable z, where μ is the original mean of the variable. Finally,
calculate the masked variable z′ for each record i (i = 1, · · · , n) as the linear
combination z′ = d1 × zi + δ × εi. Note that, since the random noise is
generated independently of the original variable z both the mean E and
variance V ar of the masked z′ and the original variable z are equal, this is
E(z) = E(z′) and V ar(z) = V ar(z′).

– Multivariate Random Noise: When several variables are connected through
a linear edit constraint (EC-LC), we have to add correlated random noise
to the variables simultaneously in order to preserve as much as possible
the means and covariance structures. Considering that three variables x, y, z
have to satisfy the linear constraint x + y = z, generate multivariate Gaus-
sian random noise (εx, εy, εz)T ∼ N(μ′, Σ), where the vector μ′ contains the
corrected means of each of the three variables based on the noise parame-
ter δ : μ′T = (μ′

x, μ′
y, μ′

z) = (((1 − d1)/δ)μx, ((1 − d1)/δ)μy, ((1 − d1)/δ)μz)
and the matrix Σ is the original covariance matrix. Then, for each separate
variable, calculate its corresponding masked variable by means of the linear
combination described above (i.e., for record i : z′

i = d1 × zi + δ × εzi).

4.2 Noise Swapping

Generally, the perturbation scheme of Shlomo and De Waal preserve constraints
on the possible values (EC-PV) and linear constraints (EC-LC) but it can also
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be the case that some individuals fail the edit constraints. Nevertheless, the per-
turbation scheme of Shlomo and De Waal can not directly deal with constraints
where one variable governs the possible values of another one (EC-GV) so in this
section we propose a new perturbation schema that combines both the univariate
and multivariate random noise in order to deal with EC-GV constraints.

In case of the edit constraint on the possible values, the addition of uncor-
related random noise following the proposal of Shlomo and De Waal can lead
to masked values outside of the attribute’s possible values. This can be because
either the attribute barely follows a Gaussian distribution or the noise generated
for a particular individual makes it to happen to be outside its possible values.
In order to minimize the number of failed edits, Shlomo and De Waal proposed
to generate the random noise within percentiles of the attribute. However, still
can be a great number of failed edits. To fix these inconsistencies, one possible
solution is to force the inconsistent individuals to be within its range of possible
values by establishing boundaries for the minimum and maximum values but
this can lead to a greater information loss.

Nevertheless, we propose to fix these inconsistencies by swapping the noise of
the different individuals. That is, when a perturbed individual falls out of the
possible values, its associated noise is swapped with a randomly-selected candi-
date individual if and only if both the perturbed and the candidate individuals
stay within their possible values after adding their swapped noise. This process
is repeated until the inconsistence is fixed or a maximum number or attempts.

In case of linear constraints, the addition of correlated random noise with the
previous perturbation scheme barely produces the linear relationship between
the attributes to fail. If some inconsistencies appear, swapping the correlated
noise of the individuals seemed to be enough in our experiments to preserve
the linear constraints. However, whilst the addition of correlated random noise
preserve the linear constraint between attributes, it do not guarantee the single
attributes to stay within their possible values as the constrained microaggrega-
tion does. Because of that, in case of linear constraints, the noise swapping will
be considered successful if and only if both the linear constraints between the
attributes and the constraint on the possible values of the single attributes are
preserved.

Finally, in order to deal with the EC-GV type of edit constraints, we pro-
pose the perturbation schema illustrated in Figure 1. We consider the following
notation for the three different variables involved in the EC-GV constraint:

EC-GV: IF Antecedent=True THEN V1 ≤ V2

The proposed perturbation schema satisfies the EC-GV constraints by parti-
tioning first the dataset in two subsets according to the antecedent in the rule
(i.e., one subset A1 with all the records that make the Antecedent come true
and another subset A2 with the remaining records). Then, the subset A2 is pro-
tected by means of univariate random noise with noise swapping. Each variable
is considered separately. Subset A1 is protected by applying univariate random
noise with noise swapping to the records that corresponds to the Antecedent and
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Fig. 1. Graphical representation of the proposed schema to deal with EC-GV con-
straints that combines both the univariate and multivariate random noise

multivariate random noise with noise swapping together to the variables V 1 and
V 2. In order to keep the relation V 1 ≤ V 2 when the multivariate random noise
is added, we need to introduce an additional variable Vaux = V 2 − V 1 so that
we can create a multivariate random noise from Vaux, V 1 and V 2 that holds the
linear relation εaux = ε1 − ε2. Finally, the values of V 1 and V 2 that fall in A1

are perturbed using the ε1 and ε2 respectively.
Worth to mention that we have tried different variations of the proposed per-

turbation schema to satisfy EC-GV constraints (e.g., generating univariate ran-
dom noise to perturb the whole Antecedent or generating multivariate random
noise to perturb V 1 and V 2 in the subset A2) but they obtained worse results
in terms of probabilistic information loss and disclosure risk. Because the space
limitations, we do not include in this paper the explicit numerical evaluations of
the different perturbation schemes tested.

5 Experiments

In our experiments, we used as a test dataset one of the reference datasets [5] used
in the European project CASC. We refer to the ”Census” dataset which contains
1080 records with 13 numerical attributes labeled from v1 to v13. This dataset
was used in CASC and by several authors as in e.g. [6,7,9,14]. As described in
Section 2, we have added one new variable to the ”Census” dataset to be able
to assess the linear constraint v9 + v10 = v14.

In case of additive noise, we have considered an amount of noise 0.01 ≤ δ ≤ 0.4
with increments of 0.01 whilst in case of the constrained microaggregation we
have considered k-anonimity 2 ≤ k ≤ 98 with increments of 2. Moreover, for each
δ and k we have evaluated both perturbative approaches with respect to risk and
information loss using record-linkage algorithms (i.e., Distance-Based Record
Linkage, Probabilistic Record Linkage and Interval Disclosure), Probabilistic
Information Loss (PIL) measures [19] and the standard score (SCORE) [31,8]
(computed as score = 0.5 ∗ PIL + 0.5 ∗DR).

On the one hand, to assess the noise swapping we have considered two sce-
narios regarding noise addition and linear constraints. In the first scenario (S1),
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Fig. 2. Detailed probabilistic information loss (left) and SCORE (right) when protect-
ing the dataset by adding noise and preserving the edit constraints. Results obtained
when applying the procedure proposed by Shlomo and De Waal with noise swapping
(up) and when also preserving the constraints on the possible value of the attributes
within the linear constraint (down).

we have protected the dataset in order to preserve the linear constraints with-
out forcing the masked values of the attributes v9, v10 and v14 to be within
their possible values while in the second scenario (S2) we do force the masked
values to be within their possible values. Figure 2 shows the results obtained
in both scenarios. The main difference between both scenarios is that in S2 the
probabilistic information loss regarding variances, covariances and correlations
is much greater than in S1 when incrementing the amount of noise. This is also
reflected in the SCORE of both scenarios, whilst in S1 the average SCORE is
around 30, in S2 it is around 40.

On the other hand, to assess the suitability of the procedure proposed by
Shlomo and De Waal to preserve edit constraints, we have compared it with
the constrained microaggregation. We have considered in this case the addi-
tive noise scenario S2 because the constrained microaggregation do preserve the
values of the attributes involved in a linear constraint to remain inside their
possible values. Figure 3 shows that the results obtained with constrained mi-
croaggregation and the scenario S2 of the additive noise are very similar. The
main difference is that with constrained microaggregation the probabilistic in-
formation loss increases in a more exponential fashion when incrementing k but
the average SCORE of both approaches are around 40. It is worth mentioning
that constrained microaggregation offers k-anonymity so even though they got
similar SCORE the constrained microaggregation offers better disclosure risk.
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Fig. 3. Detailed probabilistic information loss (left) and SCORE (right) when protect-
ing the dataset by the procedure proposed by Shlomo and De Waal with noise swapping
(up) and constrained microaggregation (down)

Fig. 4. Detailed probabilistic information loss (left) and SCORE (right) when dealing
with the EC-GV constraint by means of the proposed perturbation schema (up) and
the constrained microaggregation (down)
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Finally, we have compared our proposed perturbation schema to satisfy
EC-GV constraints with the constrained microaggregation. Specifically, the EC-
GV constraint considered is IF V 7 < 1115 THEN V 13 ≤ V 12. Figure 4 shows
that the proposed schema obtains better SCORE (i.e., for an amount of noise
in between 0.1 and 0.25 the proposed schema obtains a SCORE below 30 whilst
the constrained microaggregation obtains values above it) because variances,
covariances and correlations are better preserved.

6 Conclusions

In this paper we have proposed a methodology to protect microdata based on
noise addition that take data edits into account and we have assessed its suit-
ability to ensure consistent data with respect to a subset of edit constraints.

In addition, we have shown that constrained microaggregation obtains similar
results regarding disclosure risk and probabilistic information loss compared to
the noise addition with noise swapping in case of edit constraints on the possible
values, linear constraints and constraints where one variable governs the possible
values of another one.

As future work we consider the extension of the proposed methodology to
support more edit constraints.
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Abstract. This paper presents a fundamentally new approach to allow-
ing learning algorithms to be applied to a dataset, while still keeping the
records in the dataset confidential. Let D be the set of records to be kept
private, and let E be a fixed set of records from a similar domain that
is already public. The idea is to compute and publish a weight w(x) for
each record x in E that measures how representative it is of the records
in D. Data mining on E using these importance weights is then approx-
imately equivalent to data mining directly on D. The dataset D is used
by its owner to compute the weights, but not revealed in any other way.

1 Introduction and Framework

Suppose that a hospital possesses data concerning patients, their diseases, their
treatments, and their outcomes. The hospital faces a fundamental conflict. On
the one hand, to protect the privacy of the patients, the hospital wants to keep
the dataset secret. On the other hand, to allow science to progress, the hospital
wants to make the dataset public. This conflict is the issue addressed by research
on privacy-preserving data mining. How can a data owner simultaneously both
publish a dataset and conceal it?

In this paper, we propose a new approach to resolving this fundamental ten-
sion between publishing and concealing data. The new approach is based on a
mathematical technique called importance weighting that has proved to be valu-
able in several other areas of research [Hastings, 1970]. The essential idea is as
follows. Let D be the set of records that the owner must keep confidential. Let
E be a different set of records from a similar domain, and suppose that E is
already public. The owner should compute and publish a weight w(x) for each
record x in E. Given x in E, its weight is large if x is similar to the records
in D, while its weight is small otherwise. Data mining on E using the weights
will then be approximately equivalent to data mining on D. The owner uses D
privately to compute the weights, but never reveals D in any way.

Note that the proposed approach is non-interactive. The owner chooses E,
and normally there will only be one dataset E and one set of weights. Data
users, and adversaries, know the contents of E, but do not get to select E in any
way.

C. Dimitrakakis et al. (Eds.): PSDML 2010, LNAI 6549, pp. 15–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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A learning algorithm can be any statistical analysis method, including any su-
pervised or unsupervised data mining method. The class of learning algorithms
that we consider consists of methods that use the dataset D indirectly, by com-
puting averages over it. Suppose that D contains records of type X , meaning
that each record in D is an element of the space X . For example, if each record
in D is a real-valued vector of length k, then X = R

k. Let b be any real-valued
function of X , i.e. b : X → R. The empirical average over D of b is

b̄ =
1
|D|

∑

xi∈D

b(xi).

Assume that the samples xi are drawn independently and identically distributed
(iid) from a fixed probability distribution f over the space X . The empirical
average is then an estimate of the expectation of b over X given f .

The point of a learning algorithm, or of any statistical analysis, is to induce
some property of the distribution f , rather than merely to obtain a measurement
of the dataset D. The goal of an insider (that is, a data owner), is to allow
outsiders to estimate properties of f without revealing D. In general, properties
of f are expectations. An insider can estimate the expectation of the function
b(x) using the empirical distribution:

E[b(x)|x ∼ f(x)] =̂
1
|D|

∑

xi∈D

b(xi).

Different learning algorithms require estimates of different expectations relative
to the distribution f(x). The question is, how can the data owner allow out-
siders to estimate all these expectations without revealing the specific xi records
in D to them?

Note that the framework adopted here for learning is the statistical queries
model of [Kearns, 1998]. The operation of a learning algorithm is divided into
two parts. One part is an algorithm that takes as given the availability of mea-
surements of population averages. The other part is a procedure for obtaining
estimates of these measurements. The importance sampling method proposed
here is a privacy-preserving procedure for obtaining these estimates.

2 Preserving Privacy via Importance Weighting

Let f be any probability distribution over X and let b be any real-valued function
over X . The definition of the expectation of b with respect to f is

E[b(x)|x ∼ f(x)] =
∫

x∈X

b(x)f(x)dx.

Now let g be a different probability distribution over X , and consider the fol-
lowing equations:

∫

b(x)f(x)dx =
∫

b(x)f(x)
g(x)
g(x)

dx = E[b(x)
f(x)
g(x)

|x ∼ g(x)].
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In words, the expectation of b with respect to the distribution f is equal to the
expectation of b(x)f(x)/g(x) with respect to the distribution g. This result is
sometimes called the importance sampling identity [Hastings, 1970, Press, 2004]
and has been used in recent research on sample-selection bias and covariate
shift [Shimodaira, 2000, Smith and Elkan, 2007, Cortes et al., 2010]. The ratio
w(x) = f(x)/g(x) is called the importance of x.

For the importance sampling identity to be true, g(x) must be positive for all x
such that f(x) is positive, i.e. the support of g must be a superset of the support
of f . This condition is required to avoid division by zero. If f(x) = g(x) = 0 for
any x, one can define f(x)/g(x) = 0 for that x.

In order to apply importance weighting to achieve privacy-preserving data
mining, let the confidential dataset D be a random sample from the distribution
f over X . A statistical query concerning D is an expectation

E[b(x)|x ∼ f(x)] =
∫

b(x)f(x)dx

that would be estimated by the owner of D as

1
|D|

∑

xi∈D

b(xi).

Now, let E be a random sample from a different distribution g over X that is
known to an outsider. The fact that D and E are samples over the same space X
means that, in database terminology, they have the same schema. The outsider
can then estimate E[b(x)|x ∼ f(x)] as

1
|E|

∑

xi∈E

b(xi)w(xi).

In order to compute this estimate, for any b, the outsider does not need any
access to D. The outsider does need to know the weights w(xi). However, these
weights are the same for all b. The weights can be computed by the data owner
based on its knowledge of D and E, and then published, once and for all.

The importance-weighting approach to privacy-preserving data mining is based
on the assumption that an appropriate dataset E exists and is public. There are
several possibilities for how E might exist. First, E might be a dataset that was
revealed previously, perhaps inadvertently. At the time E was revealed, there was
a breach of privacy, but now, one might as well use E for future research that
does not breach privacy any further. Second, E might consist of information about
individuals who have given consent for data concerning them to be published. For
example, a hospital can gather consent for data release from some patients, and
then compute weights that allow the consenting patients to be representative of
all patients. Third, E might even consist of artificially generated synthetic data.

The method proposed above is different from two previous approaches that
may appear similar at first sight. Some recent research has considered how to
publish a version D′ of D that preserves privacy yet is such that functions
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in a certain class have similar values on D′ and D [Blum et al., 2008]. In the
proposal above, no new dataset D′ is created or published; instead an existing
dataset E is reused, and only scalar weights are published. Other research has
considered how to answer subset-sum queries interactively in a differentially
private way [Blum et al., 2005]. A subset-sum query asks the data owner to
evaluate a function on a subset of D. The proposal above is non-interactive: the
data owner does not answer queries at all. The data owner merely designates a
dataset E and publishes one set of weights, once and for all.

3 How to Compute Importance Weights

For each data point xi in E, its importance weight w(xi) is the ratio of the prob-
ability density of xi according to two different distributions. Both distributions
are over the space X , which in general has high dimensionality; the dimension-
ality is the length of the xi vectors. Estimating high-dimensional densities is
difficult at best, and often infeasible [Scott, 1992]. Fortunately, we can estimate
the ratio w(x) without estimating f(x) and g(x), as follows.

Let F be the combined dataset D ∪ E where samples from D are extended
with the label s = 1 and samples from E are extended with the label s = 0.
Suppose that we use F to learn a model of p(s = 1|x). Then,

p(s = 1|x) =
p(x|s = 1)p(s = 1)

p(x)

by Bayes’ rule. Therefore,

p(s = 1|x) =
f(x)p(s = 1)

f(x)p(s = 1) + g(x)p(s = 0)
=

1

1 + g(x)p(s=0)
f(x)p(s=1)

.

As above, let w(x) = f(x)/g(x) and let r = p(s = 0)/p(s = 1). We can derive

w(x) =
r

1/p(s = 1|x)− 1
. (1)

The equation above lets us write each weight w(x) as a deterministic trans-
formation of p(s = 1|x). The equation is correct as a statement of probability
theory. Its practical usefulness depends on being able to estimate the proba-
bility p(s = 1|x) for each x in the dataset E. Fortunately, in general we can
learn to estimate these probabilities accurately. To do so, we apply a super-
vised learning method that yields well-calibrated conditional probability predic-
tions to the union of the D and E datasets. The simplest method with this
property is logistic regression, but many other appropriate methods exist also
[Zadrozny and Elkan, 2001].

To clarify, only the data owner knows both datasets D and E. Using these,
the owner trains the model p(s = 1|x), and applies this model to each example xi

in E. The owner then computes and publishes w(xi) for each of these examples,
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non-interactively, using Equation (1). Outsiders know the dataset E and the
published numerical weights. They are not given access to anything else.

Each dataset D and E is treated as a random sample from a corresponding
population. The two populations may be more similar or less similar. If the
populations happen to be identical, then it will be the case that w(xi) equals
the same constant for all xi in E. In separate research, we have developed a
variant of regularized logistic regression that allows for lower and upper bounds
L and U for predicted probabilities:

0 < L ≤ min
x

p(s = 1|x) < max
x

p(s = 1|x) ≤ U < 1.

If D and E come from indistinguishable populations, then the new variant of
logistic regression will in principle learn that L = U .

The data owner does not need to publish the model used to compute weights
(only the numerical weights themselves). However, if an adversary happened to
know this model, it could compute p(s = 1|x) for any data record x. If this value
is high, then x is more typical of records in D than of records in E. But that
simply means x is representative of the population from which D is drawn. The
adversary cannot conclude that x actually appears in D.

The approach just explained to estimate the ratio of two probability densities,
without needing to estimate the two densities individually, is something of a
folk result. Variations of it have been discovered and used independently several
times [Zadrozny, 2004, Smith and Elkan, 2007, Tsuboi et al., 2009]. To be useful
in practice, the approach requires careful regularization.

4 Research Questions

The importance-weighting approach has two major drawbacks. The first obvious
issue is that an appropriate dataset E must already exist and be public. A less
obvious issue is that the dataset E may be too good, that is too similar to D.
Suppose for the sake of argument that E is a superset of D. Then the ideal
weights will be w(x) > 0 for each x in D, and w(x) = 0 for each x that is in
E but not in D. In general, weights will be high for examples in E that are
representative of D. An adversary will know this, but cannot conclude that a
record in E with a high weight appears “as is” in D.

The following research questions need answers. They are related to each other,
so the order in which they are stated here is somewhat arbitrary and does not re-
flect their relative importance. The first questions concern importance weighting
in general, while later ones are specifically related to privacy.

1. Is logistic regression the best supervised learning method for the data owner
to use to estimate p(s = 1|x), or does a better alternative exist? What variety
of smoothing or regularization is best?

2. How should D and E be divided into training, validation, and test sets for
the purpose of computing weights?



20 C. Elkan

3. For some xi in E, the estimated value of w(xi) will be large. These xi will
have disproportionate influence in estimates of E[b(x)] for all functions b.
How can large values of w(xi) be avoided, while still maintaining correctness?

The variant of logistic regression with lower and upper bounds mentioned above
should help answer the last question above, because Equation (1) implies that
bounds on p(s = 1|x) correspond to bounds on the importance weights.

The following research questions ask what theoretical guarantees concerning
information disclosure can be proved for the importance-weighting approach. We
conjecture that under some conditions, the approach can be proved to satisfy the
definition of differential privacy [Dwork, 2008]. Intuitively, the more general a
statistical query is, the higher the accuracy with which it can be answered using
E and the published weights. Queries that in fact ask about a single potential
record in D will only be answered with very low precision.

The specific research questions are the following:

1. Characterize the uncertainty in estimates

E[b(x)|x ∼ f(x)] =̂
1
|E|

∑

xi∈E

b(xi)w(xi)

by computing confidence intervals. What are the quantities on which these
intervals depend?

2. Intuitively, knowing the expectation of an indicator function such as

b(x) = I(lastname(x) = Obama)

destroys privacy, whereas a function such as

b(x) = I(age(x) ≥ 40)

is irrelevant to privacy. Provide a formal definition of privacy-destroying and
privacy-irrelevant functions.

3. Show that if b(x) is privacy-destroying then the uncertainty in its estimated
expectation is high, while if b(x) is privacy-irrelevant then the uncertainty
is small.

4. Show that publishing the dataset E with the weights w(xi) for xi in E
satisfies the definition of differential privacy for D.

5. Under interactive models of differential privacy, the number of queries al-
lowed must be sublinear in the size of D. When learning importance weights,
is this “privacy budget” relevant? If so, how can one avoid exceeding it?

There is a simple intuitive argument why differential privacy is guaranteed for the
importance-weighting approach. The only information that is computed and re-
vealed from the confidential dataset D is a single logistic regression function. And
regularized logistic regression can be trained while respecting differential privacy
[Chaudhuri and Monteleoni, 2008, Chaudhuri and Sarwate, 2009]. Intuitively, if
the published weights w(x) are approximately unchanged whether or not any
particular record is included in D or excluded from D, then the importance-
weighting approach satisfies differential privacy. And because the weights are
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based on logistic regression, they do satisfy differential privacy. Making this ar-
gument precise is a priority for continued research.

Acknowledgments. The author is grateful to anonymous referees for comments
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References

[Blum et al., 2005] Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy:
the SuLQ framework. In: Proceedings of the 24th ACM Symposium on Principles
of Database Systems, pp. 128–138. ACM Press, New York (2005)

[Blum et al., 2008] Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-
interactive database privacy. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 609–618. ACM Press, New York (2008)

[Chaudhuri and Monteleoni, 2008] Chaudhuri, K., Monteleoni, C.: Privacy-preserving
logistic regression. In: Proceedings of the 22nd Annual Conference on Neural
Information Processing Systems (NIPS), pp. 289–296 (2008)

[Chaudhuri and Sarwate, 2009] Chaudhuri, K., Sarwate, A.D.: Privacy constraints in
regularized convex optimization. Arxiv preprint arXiv:0907.1413 (2009)

[Cortes et al., 2010] Cortes, C., Mohri, M., Riley, M., Rostamizadeh, A.: Sample selec-
tion bias correction theory. In: Algorithmic Learning Theory, pp. 38–53. Springer,
Heidelberg (2010)

[Dwork, 2008] Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du,
D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer,
Heidelberg (2008)

[Hastings, 1970] Hastings, W.K.: Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 57(1), 97–109 (1970)

[Kearns, 1998] Kearns, M.: Efficient noise-tolerant learning from statistical queries.
Journal of the ACM 45(6), 983–1006 (1998)

[Press, 2004] Press, W.H.: How to use Markov chain Monte Carlo to do difficult in-
tegrals (including those for normalizing constants) (2004), Draft working paper
available at http://www.nr.com/whp/workingpapers.html

[Scott, 1992] Scott, D.W.: Multivariate density estimation: Theory, practice, and vi-
sualization. Wiley-Interscience, Hoboken (1992)

[Shimodaira, 2000] Shimodaira, H.: Improving predictive inference under covariate
shift by weighting the log-likelihood function. Journal of Statistical Planning and
Inference 90(2), 227–244 (2000)

[Smith and Elkan, 2007] Smith, A., Elkan, C.: Making generative classifiers robust to
selection bias. In: Proceedings of the SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pp. 657–666. ACM Press, New York
(2007)

[Tsuboi et al., 2009] Tsuboi, Y., Kashima, H., Bickel, S., Sugiyama, M.: Direct Density
Ratio Estimation for Large-scale Covariate Shift Adaptation. Journal of Informa-
tion Processing 17, 138–155 (2009)

[Zadrozny, 2004] Zadrozny, B.: Learning and evaluating classifiers under sample se-
lection bias. In: Proceedings of the 21st International Conference on Machine
Learning, pp. 903–910. ACM Press, New York (2004)

[Zadrozny and Elkan, 2001] Zadrozny, B., Elkan, C.: Obtaining calibrated probability
estimates from decision trees and naive Bayesian classifiers. In: Proceedings of
the 18th International Conference on Machine Learning, pp. 609–616. Morgan
Kaufmann, San Francisco (2001)



Quadratic Error Minimization in a Distributed
Environment with Privacy Preserving

Gérald Gavin and Julien Velcin

Laboratory ERIC
University of Lyon

Abstract. In this paper, we address the issue of privacy preserving data-
mining. Specifically, we consider a scenario where each member j of T
parties has its own private database. The party j builds a private classifier
hj for predicting a binary class variable y. The aim of this paper consists
in aggregating these classifiers hj in order to improve the individual
predictions. Precisely, the parties wish to compute an efficient linear
combinations over their classifier in a secure manner.

1 Introduction

We consider a scenario where T parties with private databases wish to coop-
erate by computing a data-mining algorithm for the union of these databases.
Since the databases are all confidential, no party wishes to divulge any content
to any other. Let us suppose that each party j has inferred a prediction function
(classifier) hj to predict a binary class variable y. Parties could be interested
in collaborating to improve each individual prediction performance. A solution
would consist in aggregating the different classifiers hj to build an overall better
one ĥ. The simplest way to combine these classifiers consists in predicting the
majority class. This approach is naive when, for instance, most of the parties
have almost the same low quality classifier. The aim of this paper is to propose
a more appropriate approach. The natural evolution of the previous approaches
consists of using linear combinations, i.e. weighted votes. Many ways are pro-
posed in literature to build such combinations. The most famous algorithm is
certainly Adaboost. This algorithm builds convex combinations maximizing mar-
gins (see [19]). In [20], the authors propose upper-bounds on the generalization
error independent on the combination size.

A key problem that arises in any collection of data is confidentiality. The need
for privacy is sometimes due to law (e.g., medical databases) or can be motivated
by business interests. In this paper, the parties do not wish to share any infor-
mation about their private data or their classifier hj . These privacy constraints
restrict the choice of the aggregating algorithm: it should be essentially “arith-
metic", meaning that the only allowed operations are additions and multiplica-
tions. This excludes, for instance, the algorithm Adaboost which requires loga-
rithms and exponential computations. In order to satisfy both machine learning
and privacy constraints, we choose to minimize the quadratic error on a convex
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C. This quadratic error is close to the exponential error minimized by Adaboost.
In addition, this optimization can be done with a simple descent gradient algo-
rithm. However, the projection operator is not “arithmetic" if C is the set of the
convex combinations. To overcome this issue, the convexity constraint is par-
tially removed, i.e. the positivity constraint on the coefficients αi is released. In
other words, the parties will build a linear combination h = α1h1 + ... + αT hT

minimizing the quadratic error under the constraint
∑T

j=1 αj = 1.
In Section 3, we propose an algorithm, called QEM, that achieves this opti-

mization process. This algorithm is experimented in Section 4: it is shown that
this weighting scheme can be dramatically better than the naive one (equivalent
to a simple vote). In Section 6, we present the protocol PDEM that allows the
parties to securely implement this scheme. The cryptographic tools used in this
paper are the threshold homomorphic encryption schemes [9], [8] allowing to se-
curely compute any arithmetical circuit [6]. These tools are presented in Section
5. PDEM is shown to be both correct and private against any adversary.

2 Related Work

In [22], [24],[5] the authors propose two-party protocols to build a decision tree,
an SVM or a neural network. In these papers it is assumed that a database
is horizontally or vertically partitioned. Parties then jointly build a classifier
on the whole database. However, intermediate computations are made public,
leaking information about private data. For instance, in [22], the entropy com-
putations are public. In [24], the authors assume that parties do not collude, i.e.
an adversary controls at most one party. Pinkas and Lindell [15] focus on the
problem of decision tree learning with the popular ID3 algorithm. Their proto-
col is shown secure against passive (semi-honest) adversaries. In [10], authors
propose protocols that allow two or more participants to construct a boosting
classifier without explicitly sharing their data sets. However, these protocols are
not private, even against passive adversaries. In [13], the authors extend the
notion of privacy preservation or secure multi- party computation to gradient-
descent-based techniques. However, the proposed two party protocols are costly
and they are not shown secure against active adversaries. The main protocol
of this paper is shown to be correct and private against any passive or active
adversaries.

3 Quadratic Error Minimization

Let us suppose that the parties agree on a sample zn of n instances. Let yi ∈
{−1, 1} be the class of the instance i and xij the information (e.g. a predictive
variables vector) known by party j about instances i. We also suppose that
parties have inferred a classifier hj in order to predict the class variable y. We
will denote by hij the class predicted by the classifier hj on the instance i,
i.e. hij = hj(xij). In this section, we propose to build a linear combination
over the classifiers hj minimizing the quadratic error, noting that this error is
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close to the one minimized by Adaboost, i.e. the exponential error. Minimizing
quadratic error under convexity constraints can be done in polynomial time
with gradient descent algorithms. However the convexity constraint implies a
projection phase which is not “arithmetic". Thus, the classical cryptographic
tools are not adapted for this algorithm. The solution that we propose consists
of relaxing this convexity constraint. For concreteness, the positivity constraint
is removed and we propose to find a linear combination h = α1h1 + ... + αT hT

minimizing the quadrating error under the constraint
∑T

j=1 αj = 1. By removing
the positivity constraint,

∑T
i=1 |αi| can be larger than 1. The performance could

be degraded if this sum is too large [1]. To overcome this, we penalize large weight
combinations by adding a regularization term γ

∑T
i=1 α2

i to the quadratic error
where γ is a parameter.

3.1 Quadratic Error

In this section, I will denote the identity matrix of size T . We denote by C the
(convex) set of the linear combinations over the classifiers hj such that the sum
of the coefficients is equal to 1,

C =

⎧
⎨

⎩

T∑

j=1

αjhj | ∀j ∈ {1, ..., T} αj ∈ R ;
T∑

j=1

αj = 1

⎫
⎬

⎭

An element h ∈ C is a real function: on an instance i = 1, ..., n, h(xi1, ..., xiT ) =
∑T

j=1 αjhij . For sake of simplicity, h(xi1, ..., xiT ) will be denoted by h(i). It is

classically transformed into a binary classifier
_
h by applying the function Sign,

i.e.
_
h = Sign(h). As discussed previously, this section proposes an algorithm to

minimize, over C, the error er(h)1 being defined by,

er(h) =
1
n

n∑

i=1

(h(i)− yi)2 + γ

T∑

j=1

α2
j

In the next lemma, it is shown that for any h ∈ C, the error er(h) only depends
on the values (mjk)(j,k)∈{1,...,T}2 defined by

mjk =
1
n

n∑

i=1

(hij − yi) (hik − yi)

This coefficient represents the common error between the party j and the party
k. Let us observe that mjk is smaller than the error of the classifiers hj and hk

and that mjj is equal to the classification error of hj computed on zn. In the
following, M will denote the T×T matrix of the coefficients mjk, i.e. M = [mjk].

1 It is straightforward to see that er(h) upper-bounds the classification error of
_
h. The

exponential error is equal to 1
n

n∑

i=1

e−h(i)yi .
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Lemma 1. Let γ ∈ R be a regularization parameter. M is symmetric, defined
positive and for any h ∈ C,

er(h) = αT (M + γIT )α

Proof. Let h be a convex combination h =
T∑

j=1

αjhj such that
∑T

j=1 αj = 1.

First, let us consider the quantity Q(h) = 1
n

n∑

i=1
(h(i)− yi)2.

Q(h) = 1
n

n∑

i=1

(
T∑

j=1

αjhij − yi

)2

By using the fact that
∑T

j=1 αj = 1 we can state

Q(h) = 1
n

n∑

i=1

(
T∑

j=1

αj (hij − yi)

)2

. By developing and by inverting sums, we

get the following result

Q(h) =
T∑

j=1

T∑

k=1

αjαk

(
1
n

n∑

i=1

(hij − yi) (hik − yi)
)

Thus Q(h) = αT Mα. The result is obtained by noticing that
er(h) = Q(h) + αT (γI)α

�

In the next section, we propose a gradient descent algorithm to minimize er(h).

3.2 Gradient Descent Algorithm

In this section, we are looking for an algorithm which minimizes er(h). In next
sections, this algorithm will be transformed for observing a secure multi-party
protocol. In order to use classical cryptographic primitives, the only allowed
computations are arithmetic operators (+ and ×). It excludes, for example,
algorithms requiring normalization steps. The following algorithm satisfies these
constraints.

Algorithm QEM

Inputs: K ∈ N, γ ∈ Q and ρ ∈ Q

1. α = (1/T )j=1,...,T

2. For k = 1 to K

(a) P = (M + γI)α
(b) αj = αj + ρ

T

(∑T
i=1(Pj − Pi)

)
for all j = 1...T

Proposition 1. For “small" values of ρ, QEM converges to the combination
which minimizes the quadratic error over the convex C.
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Proof. (Sketch.) As M + γI is positive definite, the associated bilinear form is
elliptic. Thus, the projected gradient algorithm converges if ρ is small enough.
It suffices to see that the projection over C in step 2.b is correct. �

Remark 1. By convention, α = (1/T )j=1,...,T at the 0th iteration.

4 Experiments

In this section, we experimentally compare our weighting scheme to the uniform
scheme consisting of weighting each classifier by 1/T . In all of our experiments,
we choose γ = 0 and ρ = 2T−2

∑T
j=1 m−1

jj . The tests are made on classical
benchmarks used in machine learning (they can be found on the UC Irvine
Machine Learning Repository)

Name Variables number Instances Number
Waveform 21 5000
BreastW 31 569

Clean 167 476
CreditG 25 1000

In our problem, each party has a partial view of the database. In the following,
n designates the instances number and p designates the number of explicative
variables. In our experiments, each party j only knows a subset of pj explica-
tive variables, randomly chosen, such that pj is a random number belonging
to {1, ..., p/5}. Each party j knows the value of these pj variables for all the
instances. However, each party j knows the class value of a subset zj of in-
stances: the cardinality of zj is nj where nj is a random number belonging to
{n/20, ..., n/3}.

Then each party j builds a decision tree hj with the classical method C4.5 (see
[18]). The coefficients mjk (let us recall that mjk is the common error between
the classifiers hj and hk) are computed over

⋃T
j=1 zj (≈ zn the whole training

set when T sufficiently large).
The parameters of these experiments will be the number of parties T and

the iterations numbers K in QEM. The generalization error are estimated with
10-folds cross-validation.

Results. In all of our experiments, the generalization error significantly and
sometimes drastically decreases with the iteration number (see fig. 1). Let us
recall that classifiers hi are uniformly weighted at the first iteration. At conver-
gence, the error rate is sometimes half of the error rate during the first iteration.
Secondly, the convergence is reached quickly. After 10 iterations, approximatively
50% of the improvements are already done. In our opinion, this completely val-
idates our approach.
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Fig. 1. Cross-validation error of the linear combinations obtained at each iteration of
QEM

5 Cryptographic Tools

Homomorphic encryption schemes (El Gamal [8], Paillier [17], Boneh [2]...) have
been shown relevant for secure multi-party computation. The most famous one
of them is attributed to Paillier. This encryption scheme is probabilist, the public
key is a k-bit RSA modulus μ chosen at random and an element g ∈ Z∗

μ2 of order
divisible by μ. The plaintext space for this system is Zμ. In [7], the cryptosystem
is generalized to have plaintext space Zμs for any s smaller than the factor of μ
and g has order divisible by μs. To encrypt a ∈ Zμs , one chooses r ∈ Zμs at ran-
dom and computes the ciphertext as Epk(a) = garμs

mod μs+1. The private key
sk is the factorization of n, i.e. λ(μ) or equivalent information. This encryption
scheme is shown semantically secure2 under the well-known DCRA assumption
(see [17]). This encryption scheme is additively homomorphic. Indeed the
product of two encryptions is an encryption of the sum of the encrypted value,
i.e. Epk(a)Epk(b) mod μ2 is an encryption of a + b. Several threshold versions
have been proposed in the literature [9]. In these versions, the public key pk is

2 Encryptions cannot be distinguish from random values.
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known by all parties but the private key sk is shared between parties such that
the decryption can be done only if at least t parties agree on it. In the following,
we say that S is a (t, T )−threshold encryption scheme if the secret key is shared
between T parties such that the decryption requires at least t honest parties. To
build the main protocols of this paper, the additional protocols Mult, Sign and
EncryptBit are needed.

Definition 1. Let S be a (t, T )−threshold homomorphic encryption scheme se-
mantically secure. The encryption function is denoted by Epk and we assume the
existence of the protocols Mult, Sign and EncryptBit defined by:

1. Mult. Given an encryption of a and b, parties can securely compute an
encryption of ab

2. Sign. Let ξ a security parameter. Given an encryption of a value x such
that |x| < μ/2ξ−1, parties can securely compute an encryption of the sign of
x.

Sign(x) =

⎧
⎨

⎩

0, if x = 0
1, if x > 0
−1, otherwise

3. EncryptBit. A party j builds an encryption B of a bit b ∈ {0, 1}. EncryptBit
is a Σ−protocol [12] allowing the party j to prove that B encrypts a bit
without revealing it.

These protocols are assumed secure under composition [3] against any adversary
controlling less than t parties.

A version of protocol Mult can be found in [6]. The protocol Sign can be found in
[11] and [21]. Concretely, let X be an encryption of |x| < 2ξ−1. Parties compute
encryptions of each bit of the binary decomposition of v = x + 2ξ−1 ∈ {0, ..., 2ξ}
with the protocol BITREP found in [21]. Then, parties compare v with 2ξ−1 with
a comparison protocol found in [11]. A version of EncryptBit can be found in [7].
The communication cost and the time complexity of these protocols are linear
with respect to the parties numbers, i.e. O(T ).

Notations. Let X, Y be encryptions of x, y, i.e. X = Epk(x) and Y = Epk(y).
X⊕Y and X�Y will denote an encryption of x+y and x−y. These encryptions
can be obtained by using the homomorphic properties of the encryption scheme
S. In the same way, X ⊗ Y will denote an encryption of xy. This encryption is
obtained by invoking Mult.

6 The Protocols

In this section, we assume that parties have jointly generated a pairwise
(pk, sk) by invoking the function Generation of a (t, T )−threshold homomorphic
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encryption scheme S satisfying the definition 1. The domain of Epk is assumed to
be the ring Zμ. Let us assume the existence of an adversary A controlling several
parties. A knows private data of all controlled parties and it can replace any
controlled party in the protocol. Here, adversaries can be active, meaning that
they can deviate from the protocol in any way [16]. In this section, the protocols
are shown correct and private against any adversaries. A rigorous definition of
correctness and privacy, when inputs are committed, is given in appendix A.
Intuitively, a protocol is said to be correct if an honest party outputs the correct
value (or does not output anything if the protocols fails). A protocol is said to
be private against an adversary A if A cannot learn anything about the private
data of an honest party (except what it can learn with the output and its own
private data). In our case, A will not learn anything about the coefficients mjk,
the class values yij , the coefficients αj and the values hij .

6.1 Protocol PQEM

In order to use classical and efficient cryptographic primitives, QEM should be
defined over a finite ring Zμ. Contrarily to the computation over floats, trunca-
tions are forbidden. It implies that the domain size is linked to the computations
number. This will be discussed in section 6.4.

At each iteration k in PQEM, an encryption of a coefficients vector α′ is
computed. This vector is proportional to the coefficients vector α computed at
the kth iteration in QEM, i.e. α′ = Cα (here, C = T (auv)k). Thus, the classifiers
Sign(α′

1h1 + ... + α′
1hT ) and Sign(α1h1 + ... + α1hT ) are equal. In this sense,

PQEM is correct.

Protocol PQEM

Let γ, ρ ∈ Q be parameters and M be a symmetric, defined positive, rational
matrix. Let a, u, v be integers such that ∼

ρ = vρ/T , ∼
γ = aγ are integers and

∼
M = uM is an integer matrix.
Public inputs: Let K ∈ N. let

∼
M jk be encryptions of

∼
mjk. It is also known

∼
ρ,

∼
γ, a,v and U , an encryption of u, i.e. U = Epk(u)

1. Δj = Epk(1) for all j = 1, ..., T

2. For k = 1 To K

(a) Pj = a⊗
(
⊕T

j′=1

∼
Mjj′ ⊗Δj′

)

⊕
( ∼

Mjj ⊗ ∼
γ

)

for all j = 1...T

(b) Δj = (v ⊗ a⊗ U ⊗Δj)⊕
(⊕T

k=1(Pj � Pk)
)
⊗ ∼

ρ for all j = 1...T
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Lemma 2. Assume the encryption scheme S semantically secure. Let Nk the
Manhattan norm (‖.‖1) of the vector α outputted at the kth iteration of QEM
and w = auv. Assuming μ > TwKNK, PQEM is correct and private against any
adversary controlling less than t parties.

Proof. Assuming correctness of the protocol Mult (operator ⊗), it is easy to
establish, for instance by recurrence, that Δj encrypts TwKαj mod μ where
α is the coefficients vector computed at the Kth iteration in QEM. Thus if
μ > TwKNK , Δj encrypts TwKαj .

Assuming Mult secure under composition, Mult can be replaced by a trusted
party (see [3]). As Mult output a random encryption, by replacing Mult by a
trusted party, an adversary A only receives encryptions. Assuming the encryption
scheme S semantically secure, encryptions are computationally indistinguishable
from random values. It proves privacy. �

Remark 2. In all our experiments, NK ≈ 1 meaning that the absolute values of
the negative coefficients are small.

6.2 Protocol PDEM

Let us suppose that each party j has a private database Dj containing a binary
variable y. Each party j has built a private classifier hj to predict a class variable
y. Here, it is assumed that parties agree on an instances list3. We denote the
predicted values of hj in instance i by hij , and the class value of instance i in
the private database Dj of party j by yij . By convention yij = 0 if this value is
missing in Dj. Note that yij can differ from the true class value yi of instance
i, i.e. yij 	= yi. At the beginning of the protocol PDEM, each party j broadcasts
encryptions of hij and yij for each instance i = 1, ..., n.

First, the parties must agree on the class value of each instance i, i.e. yi.
We propose to define yi as the class the most represented among the values
(yij)j=1,...,T , i.e. yi = sign

(∑T
j=1 yij

)
. Note that yi is correct only if a majority

of parties knows this value and yi = 0 if the class 1 and -1 are equally represented
or if this value is unknown by all the parties, i.e. yij = 0 for all j = 1, ..., T . So
the first step of PDEM consists of computing an encryption of yi, computed
as described previously. It is done by using homomorphic properties and the
protocol Sign.

Let E be the set of instances for which the class yi is defined, i.e. E =
{i | yi 	= 0}. The instances i /∈ E are discarded. Then parties have to securely
compute encryptions of the common errors mjk. These errors are computed over
E. Precisely, parties compute encryptions of the integers |E|mjk defined by

|E|mjk =
∑

i∈E

(hij − yi)(hik − yi)

Finally parties execute PQEM.
3 The method for this is not explained here.
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Protocol PDEM

Let K ∈ N, γ ∈ Q, ρ ∈ Q be parameters chosen a priori. Let a, v ∈ N be
integers such that ∼

γ = γa ∈ N and ∼
ρ = vρ/T ∈ N. Each party has computed a

classifier hj. For each i = 1, ..., n, each party j = 1, ..., T computes and broadcasts
encryptions Yij , Hij of yij , hij .

Public inputs: K, ∼
γ, ∼

ρ, a, v, Yij , Hij, (i, j) ∈ {1, ..., n} × {1, ..., T }.

1. each party j prove that Yij ⊗ Yij and Hij ⊗Hij encrypt a bit by invoking
EncryptBit for all i = 1...n

2. U = Epk(0)

3. For i = 1 to n

(a) compute Yi = Sign
(⊕T

j=1 Yij

)

(b) U = U ⊕ Yi ⊗ Yi

4. compute encryption
∼
M jk of umjk where U is the encrypted value of u for

(j, k) ∈ {1, ..., T }2,
∼
M jk =

n⊕

i=1

Yi ⊗ Yi ⊗ (Hij � Yi)⊗ (Hik � Yi)

5. invoke the weighting scheme PQEM(K, [
∼
M jk], U,

∼
γ,

∼
ρ, v, a): the parties out-

put the encryptions Δj computed.

Remark 3. U encrypts a value u ≤ n equal to the cardinal of E = {i | yi = 0}.
As, a,v and n are public, parties can bound auv with anv.

Lemma 3. Assume the encryption scheme S semantically secure. Assume the
protocols Mult, Sign and EncryptBit secure under composition. Let us state w =
avn. Assume μ > TwKNK , PDEM is correct and private against any adversary
controlling less than t− 1 parties.

Proof. Assuming correctness of the protocol EncryptBit, Yij encrypts a bit. Thus,⊕
Yij encrypts a value smaller than T < μ/2ξ. Thus, assuming Sign is correct,

Yj encrypts a bit. Assuming Mult is correct, at each step k, the computed encryp-
tions of u = |E|, umjk and Twkαj are correct modulo μ. Assuming TwKNK < μ
implies that TwKαj mod μ = TwKαj for all j = 1, ..., T .

Assuming Mult, EncryptBit, Sign are secure under composition, these proto-
cols can be replaced by a trusted party. These protocols output encryptions.
By replacing them by trusted parties, an adversary A only receives encryptions.
Assuming the encryption scheme S semantically secure, encryptions are compu-
tationally indistinguishable from random values. It proves privacy. �
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6.3 Protocol Prediction

In this section, it is assumed that parties have already executed PDEM and they
get encryptions Δj of TwKαj for all j = 1, ..., T (see previous section). Let x be
a new instance. To securely compute the sign of α1h1(x) + ... + αT hT (x), each
party j computes hj(x) and broadcasts its encryption Yj . Then parties jointly
compute an encryption of TwK(α1h1(x)+...+αT hT (x)) by applying Mult. Then,
by invoking protocol Sign, parties get the predicted class.

Protocol Prediction

PDEM(K,
∼
γ,

∼
ρ, a, v, (Yij , Hij)(i,j)∈{1,...,n}×{1,...,T}) should have been invoked:

parties have outputted an encryption Δj of TwKαj . Let x be a new instance.
Each party j computes yj = hj(x).

Public inputs: encryptions Yj = Epk(yj) and Δj for j = 1, ..., T ,

1. each party j proves that Yj ⊗ Yj encrypts a bit by invoking EncryptBit.

2. compute C =
⊕T

j=1 Δj ⊗ Yj

3. output y =Sign(C)

Lemma 4. Assuming the encryption scheme semantically secure and assuming
that μ > 2ξTwKNK, Prediction is correct and private against any adversary
controlling less than t parties.

Proof. As EncryptBit and Mult are correct steps 1 and 2 are correct. To prove
correctness of step 3, it suffices to see that the encrypted value by C is smaller
than TwKNK . As μ > 2ξTwKNK , the protocol Sign is secure (see definition 1).
Thus, the output is correct. Privacy is shown by the same way than for lemma
1 and 2. �

Thus, in order to ensure correctness and privacy of PDEM+Prediction, μ >
2ξTwKNK . By assuming NK ≈ 1 (according to remark 2) and by recalling
(according to remark 3) that w can be upper-bounded by a public value w′ =
anv, μ should be chosen such that

μ = O
(
2ξTw′K)

6.4 Complexity

The number of encryptions/decryptions/modular exponentiations computations
is linear with respect to T in the protocols Sign, EncryptBit and Mult. The number
of invocations of Sign, EncryptBit and Mult is equal to O(nT 2 + KT ). Thus, the
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number of encryptions/decryptions/modular exponentiations computations is
equal to

O(nT 3 + KT 2)

Furthermore, we noted in the previous section that the domain size �log2 μ� is
linear (neglecting logarithm factors) in K (log μ = O(log T+ξ+K log w′)). As the
encryptions/decryptions/modular exponentiations complexities are in O(log3 μ)
for classical homomorphic encryption schemes (Paillier, El Gamal), the complex-
ity of PDEM is

O
(
K3T 2(nT + K)

)

The protocol Mult is invoked T times by Prediction. Thus, the number of en-
cryptions/decryptions/modular exponentiations computations is quadratic with
respect to T in Prediction. By taking into account the domain size, the complexity
is

O
(
K3T 2

)

These computational costs are not relevant for many real applications. Trunca-
tions would be interesting in order to reduce the domain size expansion (�log μ�).
In [14], the authors propose a secure multi-party protocol to compute x mod a
and x/a (integer division) given a public divisor a and an encryption of x. This
protocol could be used to compute truncations.

7 Discussion and Future Work

PDEM and Prediction were shown both correct and private against any adversary.
However a “malicious" adversary A can always alter its inputs. It could choose
“malicious" inputs in order to get relatively large weights αj for the parties it
controls. To get relatively large weights, A is interested in choosing a classifier
hj with a low empirical error (even if hj has a very bad generalization error). In
other words, if it knows the class value of a majority of instances, it could input
a classifier with a low empirical error: for instance, it could choose the classifier
which predicts the correct class when it is known and random ones (or better
than random) for the others. Thus our scheme is not robust against an adversary
which knows a large number of class values.

Furthermore, to predict the class of a new instance x, each party j should input
an encryption of hj(x) in Prediction. An adversary could input an encryption of
the other class in order to change the prediction of the aggregated classifier.

To overcome this issue, the classifiers hj should belong to a restricted class
whose VC-dimension [23] should be adapted to the number of instances. For
instance, parties could only propose decision trees or neural networks of size
lower than a given size. To ensure this, the classifiers hj should be committed
such that any party can compute an encryption of the predicted class. However,
in this case, information about individual classifiers would be leaked. An other
way to proceed would consist in making statistical controls on inputs. It should
be also interesting to consider the regret minimization setting of online learning
where several experts can be combined to make an aggregate prediction in spite
of adversaries [4].
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A Correctness and Privacy Definition

Let us start to define the distance between 2 distributions.

Definition 2. Let D and D′ 2 probability distribution defined over X. For a
subset A ⊆ X, let’s denote DA(D, D′) = |D(A) − D′(A)| the distance between
D and D′ defined by

d(D, D′) = max
A⊆S

dA(D, D′) (1)

This allows us to define the notion computational indistinguishability

Definition 3. Let D and D′ 2 probability distributions over X. These distribu-
tions are computationally indistinguishable, D ≡c D′, if for all polynomial size
boolean circuit C,

|P (C(x) = 1|x← D)− P (C(x) = 1|x← D′)|
is negligible.

The classical security notions are linked to this notion of indistinguishability.

Definition 4. Let π be a two party-protocol which computes the functionality
(f1, f2). Inputs (x, y) are assumed committed. Party 1 is honest and party 2 is
controlled by a polynomial adversary A. The adversary A may commit CA(y)
instead of y where CA is a non-uniform p.p.t. Let outputπ,A(x, y) be the out-
putted value by the honest party and viewπ,A(x, y) the sequence of all received
values of the adversary A.

1. A protocol is correct if

outputπ,A(x, y) =
{⊥ if the protocol fails;

f1(x, CA(y)) otherwise.

2. It is private if there exists a non-uniform p.p.t S such that

viewπ,A(x, y) ≡c S(y, f2(x, CA(y)))
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Abstract. Supervised descriptive rule discovery techniques like sub-
group discovery are quite popular in applications like fraud detection or
clinical studies. Compared with other descriptive techniques, like classi-
cal support/confidence association rules, subgroup discovery has the ad-
vantage that it comes up with only the top-k patterns, and that it makes
use of a quality function that avoids patterns uncorrelated with the tar-
get. If these techniques are to be applied in privacy-sensitive scenarios
involving distributed data, precise guarantees are needed regarding the
amount of information leaked during the execution of the data mining.
Unfortunately, the adaptation of secure multi-party protocols for classi-
cal support/confidence association rule mining to the task of subgroup
discovery is impossible for fundamental reasons. The source is the dif-
ferent quality function and the restriction to a fixed number of patterns
– i.e. exactly the desired features of subgroup discovery. In this paper,
we present a new protocol which allows distributed subgroup discovery
while avoiding the disclosure of the individual databases. We analyze the
properties of the protocol, describe a prototypical implementation and
present experiments that demonstrate the feasibility of the approach.

1 Introduction

The question of the privacy of data can be an important aspect in the real-world
application of data mining. In privacy-sensitive scenarios, in particular those with
distributed data, a failure to guarantee certain privacy-preserving constraints
means that data mining can not be applied at all. As an example, consider
the case of competing mail order companies. To a large part, these companies
make money by knowing their customers better than their competitors do. On
the other hand, they lose money due to fraud. Typically, the risk of disclosing
sensitive customer information by far outweighs the chances of reducing expenses
by a joint fraud detection effort. Only privacy-preserving data mining techniques
will allow an analysis of fraud patterns over all companies.

In applications like the above, descriptive techniques like rule mining are very
popular, as they have the potential to provide more insight than numerical meth-
ods like SVMs or neural networks. Actually, protocols have been proposed that
allow secure association rule mining over distributed databases [10]. These, how-
ever, rely on the classical support/confidence framework, which has been ob-
served to have effects undesired in some settings [22,3,9]: In particular, there is
a danger to come up with huge amounts of rules which are not significant or do
not express a correlation.

C. Dimitrakakis et al. (Eds.): PSDML 2010, LNAI 6549, pp. 36–49, 2011.
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For this reason, several alternative (non-secure) rule mining approaches have
been proposed, that deviate from the classical support/confidence framework.
These include subgroup discovery [11], contrast set mining [2] and correlated
itemset mining [16]. These approaches share many similarities, and are some-
times subsumed under the name supervised descriptive rule discovery [17]. The
key differences compared to classical support/confidence association rule mining
is (i) the different quality function used to assess the patterns, and (ii) the in-
tention to collect only a small set of k patterns (instead of collecting all patterns
satisfying some minimal threshold constraint).

Unfortunately, it is impossible to adapt existing secure association rule mining
protocols like [10] to a supervised descriptive rule discovery task like subgroup
discovery. The reason lies in the different quality functions. The existing proto-
cols rely on the property that in the support/confidence framework every globally
large itemset must be locally large at least at one of the sites. However, an analo-
gous property does not hold for the new quality functions: the globally best rules
are not guaranteed to also be among the locally best rules of any site, neither
exactly nor approximately [19,24].

In this paper, we present a secure protocol for the task of top-k subgroup
discovery. To the best of our knowledge, this is the first approach that tackles
any of the above-mentioned supervised descriptive rule discovery tasks. Our
approach assumes horizontally partitioned data, that is, all sites use the same
set of attributes and the quality of every subgroup depends on all databases.
The approach finds patterns in the union of the databases, without disclosing
the local databases.

The remainder of this paper is structured as follows: After a brief review of
some basic definitions in Section 2, we present our new protocol in Section 3
and prove that it is secure. Next, we describe a prototypical implementation in
Section 4, before we conclude in Section 5.

2 Preliminaries

In this section, we will briefly go over the most important notions from secure
multi-party computation and subgroup discovery.

2.1 Privacy-Preserving Data-Mining and Secure Multi-party
Computation

Privacy-preserving data mining has emerged to address the situation when the
use of data mining techniques is desired, but the data to be mined may not be
disclosed or brought together due to privacy considerations. One of the most
important lines of research in privacy-preserving data mining is the family of
approaches based on secure multi-party computation [18,7]. Here, the premise
is that the data is distributed over different parties, and the goal is to obtain
some result without revealing the (private) data of one party to another. A
classical example is Yao’ famous millionaires problem [25]: two millionaires want
to learn who is richer without revealing the precise amount of their wealth. In
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the context of data mining, the input would be databases and the result a bunch
of patterns. We will now review the most important definitions of secure multi-
party computation. The following presentation is based on Goldreich [7] (with
some simplifications, as we consider a less general scenario).

Multi-Party Computation. A multi-party problem, or task, is casted by spec-
ifying a mapping from sequences of inputs (one input per party) to sequences of
outputs (one output per party). We refer to this mapping as the desired func-
tionality, denoted f : ({0, 1}∗)S → ({0, 1}∗)S , where S denotes the number of
parties. That is, f is a mapping of the combined input x̄ = (x1, . . . , xS) to the
combined output (f1(x̄), . . . , fS(x̄)): the first party with input x1 wishes to ob-
tain f1(x̄), the second party with input x2 wishes to obtain f2(x̄), etc. Clearly,
the output of every party can depend on all inputs, x1, . . . , xS .

In this paper, we consider multi-party computation in the semi-honest model,
arguably the most commonly used model in privacy-preserving data-mining (e.g.
[13,20,10]). The semi-honest model assumes that every party follows the protocol
properly with the exception that it keeps a record of all intermediate computa-
tions and messages. One motivation for the semi-honest model is that parties
who want to mine data for their mutual benefit will follow the protocol to get
correct results. Another argument is that in a complex software implementation,
it might not be easy to deviate from the specified protocol, definitely more diffi-
cult than merely recording the registers and messages. Finally, such records may
be available anyway through some standard activities of the operating systems,
which makes “totally honest” behavior hard to enforce.

A Definition of Secure Computation. Intuitively, a protocol π securely
computes a functionality f if whatever a semi-honest party can obtain after par-
ticipating in the protocol could be obtained from the input and output available
to that party. This is formalized according to the simulation paradigm, which
requires that every party’s view in a protocol execution can be simulated given
only its input and output. As the actual execution may involve messages based
on random numbers, the simulator does not need to generate exactly what is
seen during the actual execution. The following definition makes this precise:

Definition 1. Let f = (f1, . . . , fS) be a deterministic S-ary functionality and
π be a multi-party protocol for computing f . For a party i, let viewπ

i (x̄) denote
its view, i.e. its input xi and the sequence of messages it has received. We say
that π securely computes f in the presence of semi-honest adversaries without
collusion if there exist probabilistic polynomial-time algorithms Si, 1 ≤ i ≤ S,
also called simulators, such that for every party the view is computationally
indistinguishable from the simulation:

{(Si(xi, fi(x̄))}x̄∈({0,1}∗)S ≡C {viewπ
i (x̄)}x̄∈({0,1}∗)S (1)

Here, ≡C denotes computational indistinguishability. Loosely speaking, the sim-
ulations are computationally indistinguishable from the views if for every poly-
nomial-time distinguisher D the probability that D distinguishes a view and the
simulation decreases super-polynomially in the length of the input. The details
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can be found in [7]. For our purpose, it is sufficient to note that any random num-
ber in a view is computationally indistinguishable from another random number
drawn from the same probability distribution.

Yao’s Generic Circuit Solution. Yao has presented a generic solution that
allows the secure evaluation of any two-party functionality [26,14]. The solution
is based on the encryption and secure evaluation of circuits. While in principle
this implies that it is possible to securely compute any kind of (two-party) data
mining task simply by using a circuit calculating the outcome of the data mining
task, this naive approach would result in huge circuits whose inputs would be
entire databases – an approach which is not feasible in practice [18]. However,
the use of Yao’s circuit encryption scheme can be very useful to securely compute
some sub-functionality.

2.2 Subgroup Discovery

Subgroup discovery is a supervised descriptive rule learning task. In this paper,
we only consider binary labeled data, thus a subgroup description can be seen
as the antecedent of a rule whose consequence is the positive class.

Formally, let A = A1, . . . , Am be a sequence of m sets we refer to as attributes.
Beside these attributes, there is a special binary set {+,−} called the label. A
data record overA is an m+1-tuple D = (a1, . . . , am, l) ∈ A1×· · ·×Am×{+,−}.
A database D over A is a multiset of data records over A. We use the expression
D+ to denote the sub-multiset of all +-labeled data records in D. Formally, thus
D+ = {(a1, . . . , am, l) ∈ D | l = +}. Similarly, D− denotes the sub-multiset of
all −-labeled data records in D.

The subgroup description language considered here is the language of con-
junctions of attribute/value equality constraints. We formalize this as follows: a
constraint over A is an expression (Ai =v) with i ∈ {1, . . . , m} and v ∈ Ai. The
language of subgroup descriptions over A, denoted by LA, is then the power set
of constraints over A. In the following, we drop the index A because it is always
clear from the context. Given a subgroup description s ∈ L, we call the number
of constraints it is built of its length, denoted by length(s).

We will now turn to the semantics of subgroup descriptions: a data-record
(a1, . . . , am, l) ∈ D satisfies a subgroup description s ∈ L, if for all (Ai =v) ∈ s
it holds that ai = v. Then the extension of s in D, denoted by D[s], is the
sub-multiset of D containing the data records that satisfy s.

The “interestingness” of a subgroup description is measured by a quality func-
tion, which is a mapping from a database and a subgroup description to the reals.
The idea is that high function values indicate interesting patterns. In this paper,
we consider the Piatetsky-Shapiro quality function, which is (factor) equivalent
to the weighted relative accuracy [12]. This function, which is arguably one of
the most common subgroup quality functions, is defined as follows:

q(D, s) = n(D, s) (p(D, s)− p0(D)) . (2)

Here, n(D, s) = |D[s]| denotes the size of the subgroup, p(D, s) = |D+[s]| / |D[s]|
the fraction of records with positive label in the subgroup and p0(D) = |D+| / |D|



40 H. Grosskreutz, B. Lemmen, and S. Rüping

the fraction of positive records in the overall population. Subgroup discovery is
concerned with finding high-quality subgroups, as precised in the next section.

3 Distributed Secure Subgroup Discovery

We assume that there are S ≥ 2 sites (or parties) participating in the compu-
tation, each holding a private database Di (1 ≤ i ≤ S) built over the same set
of attributes. Instead of directly considering the task of top-k subgroup discov-
ery, we first consider a specialization of this problem, namely finding a single
subgroup of maximum quality. This task can be seen as the special case where
k = 1. We will describe later (in Section 3.4), how given a solution to this task,
we can iteratively collect a set of k subgroups. Beside the subgroup description,
we want to learn its quality, because this tells us whether the subgroup describes
a significant phenomenon or merely a manifestation of noise in the data. The
task we consider is thus the following:

Task 1. Top-1 Subgroup Discovery Given private databases D1, . . . ,DS at
Sites 1 to S (each built over the same set of attributes) together with a length
limit L, calculate and distribute a maximum quality subgroup description smax of
length ≤ L together with its quality. That is, compute a pair 〈smax, qmax〉 ∈ L×R
such that

qmax = max
{s∈L|length(s)≤L}

q(D, s),

length(smax) ≤ L and q(D, smax) = qmax

where the quality function q (defined in Equation 2) is evaluated wrt. the disjoint
union of the local databases, D =

⊕S
i=1Di.

It turns out that Task 1 is unexpectedly hard: First, as shown by Scholz [19],
the globally best rules may perform poor at all local sites, and moreover the
local quality of a subgroup can arbitrarily deviate from its global quality (no
matter whether a relative or an absolute definition of support is applied). The
consequence is that separately analyzing one (or all) local databases is of no
help in finding the best global subgroup. This is unlike the situation in the
classical support/confidence framework, where every globally large itemset must
be locally large at least at one of the sites, a property exploited in protocols
like [4,10]. The reason for this difference is the different quality function used in
subgroup discovery. As a consequence, the distributed association rule mining
protocols cannot be adapted to the task of subgroup discovery, and instead
a distributed global subgroup mining protocol has been proposed [24] which
computes the global quality of every subgroup essentially by polling the local
support counts from all participating sites.

In the context of secure computation, we face an additional difficulty: the
standard approach of non-secure subgroup discovery algorithms – keeping track
of the best subgroups observed so far together with their quality during the
traversal of the search space [23,8,24] – results in a security leak. The reason is,
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loosely speaking, that the sequence of increments of the best quality cannot be
simulated from the outcome. This sequence, however, reveals a lot of information
about the data, as it induces a partial order over the quality of all subgroups vis-
ited during the exploration of the search space. For this reason, we compute the
maximum-quality subgroup in two steps, by subsequently solving the following
two sub-tasks:

– first, we compute the maximum of all subgroup qualities, that is, the value
qmax. This is done in a way that only the maximum becomes known, but no
ordering between subgroup qualities;

– second, we use this quality to securely find a maximum-quality subgroup.

We will discuss these two steps in Sections 3.1 and 3.2, respectively, before we
present the overall protocol in Section 3.3 and turn to the task of top-k subgroup
discovery in Section 3.4.

3.1 Computing the Maximum Quality

Our solution to the first sub-task works as follows: In a first phase, the sites
collectively traverse the space of subgroup descriptions. For every subgroup de-
scription, the protocol ensures that Site 1 obtains a random value ri, and Site S
a second value q̃i + ri, where q̃i represents the quality of the subgroup (actually,
q̃i is an integer-valued multiple of the subgroup quality, as explained below). The
motivation for the distributed storage of ri and q̃i + ri is that none of the parties
must learn the value q̃i. In a second phase, Site 1 and Site S use the garbled
qualities q̃i + ri and the offsets ri to securely calculate the maximum quality. We
remark that the first phase is inspired by the garbled quality calculation in [5],
while the second phase shares some similarity with the maximum computation
in [13].

Computing the Garbled Qualities q̃i + ri. We will now describe these
two phases in more detail. We first observe that the Piatetsky-Shapiro quality
(Equation 2) can be rewritten as follows [6]: q(D, s) = |D+[s]| (1− p0(D)) −
|D−[s]| p0(D). Given that D =

⊕S
i=1Di, this means that the quality can be

expressed as a sum of local values:

q(D, s) =
S∑

i=1

(∣
∣D+

i [s]
∣
∣ (1− p0(D)) − ∣

∣D−
i [s]

∣
∣ p0(D)

)
. (3)

All that is required to compute the local summands is the value p0(D). Moreover,
all summands are multiples of 1/ |D|, because p0 is a multiple of 1/ |D|. Thus,
assuming that every site has knowledge of |D|, we can reduce the computation
to arithmetics on integers. In fact, the q̃i mentioned earlier are simply the inte-
gers obtained by multiplying the quality of the i-th subgroup and |D|. As final
observation, we note that the values of the integers q̃i do not exceed |D|2.

Based on these observations, we realize the computation of the values ri and
q̃i+ri at Sites 1 resp. S as follows: Site 1 generates a random number ri uniformly
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distributed in [0, . . . ,M], where M is a some power of 2 constant such that
M > |D|2. Site 1 adds it local support, (

∣
∣D+

1 [si]
∣
∣ (1− p0) −

∣
∣D−

1 [si]
∣
∣ p0) · |D| to

ri, and sends the sum (modulo M) to Site 2. Sites 2 to (S-1) add their local
support and send the result to the next site. Finally, Site S obtains the result,
which according to Equation 3 corresponds to q̃i + ri.

Obtaining the Maximum. Once the first phase of the computation is com-
pleted, Site 1 has a list of values r1, ..., rR, and Site S another list q̃1+r1, ..., q̃R+
rR, where R denotes the number of subgroup descriptions visited during the
traversal. In the second phase, only two sites are involved. This is an impor-
tant difference to the first phase, as it means that now we could apply a generic
two-party solution like Yao’s encrypted circuit scheme [26].

Fig. 1. Maximum Quality Calculation

However, due to the potentially very
large number of inputs this may result in
an in-feasibly large circuit, so we reduce
the problem to smaller subproblems: We
successively shorten the two lists by it-
eratively replacing two values by one at
both Sites 1 and S. Thereby, we take care
that while the length of the two lists de-
crease, together they still allow the recon-
struction of qmax. This is done by replac-
ing two values rα, rβ at Site 1 by a new
random value r′, and the two correspond-
ing values rα + q̃α, rβ + q̃β at Site S by
r′+max(q̃α, q̃β). The use of a new random
number r′ is important, as it will allow
us to prove that the parties learn noth-
ing new during the replacements1. The re-
placements take place until only one pair
of values remains, whose difference reveals
the quality qmax. Figure 1 illustrates the
overall idea.

To put the above into action, all we need is a secure solution for the following
functionality: Provided Site 1’s input (rα, rβ , r′) and Site S’s input (rα + q̃α, rβ +
q̃β), calculate the combined output (⊥, (max(q̃α, q̃β) + r′) mod M), i.e. Site 1
learns nothing and Site S learns the garbled maximum. Here, all inputs and
outputs are integers in [0, ...,M].

We realize this functionality using an encrypted circuit [26]. A detailed de-
scription of the circuit encryption scheme is beyond the scope of this paper
(see the excellent presentation in [14] for details). The bottom line is that given
some boolean circuit, this scheme allows to generate an encrypted representa-
tion of that circuit, together with an encoding table for the boolean input gates.
1 Simply dropping one of the pairs would not be secure, as it would reveal which

subgroup has the higher quality; this also explains why we cannot store an encrypted
representation of the subgroup description together with its garbled quality.
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Given this representation, plus cryptographic keys representing a particular set
of boolean inputs, it is possible to calculate the (plain) value of the boolean
outputs - but no additional information beyond that.

Using this encryption scheme, Site 1 proceeds as follows: First, it generates
a boolean circuit that computes the above functionality. The circuit has input
wires for the boolean representation of rα, rβ , q̃α + rα, q̃β + rβ and r′, and
the output wires represent (max(q̃α, q̃β) + r′) mod M. The circuit calculates
the output using some inverters and ripple-carry adders, a well-known type of
digital circuit. Site 1 generates the encrypted representation of the circuit and
sends the circuit (without the encoding table) to Site S, together with the keys
representing its own input bits. Now all that Site S needs to calculate the output
are the keys representing its own input. For this purpose, we make use of an
additional (“third”) party, T : Site 1 sends the encoding table for the inputs of
Site S to Site T . Site S sends its (plain) input bits to Site T and obtains the
corresponding cryptographic keys. Given this information, Site S can evaluate
the encrypted circuit and thus obtain (r′ + max(q̃α, q̃β)) mod M. None of the
parties learn anything else than the result. We remark that if S > 2, the role
of Site T can be implemented by one of the sites 2, ..., (S − 1), e.g. Site 2, after
some minor preprocessing.2

3.2 Computing a Maximum Quality Subgroup

Once the maximum quality qmax is computed, it is straightforward to solve
Task 1 and compute a maximum quality subgroup. Basically, all that has to be
done is to check, for every subgroup si, whether qi ≥ qmax, which is equivalent to
q̃i + ri ≥ ri + qmax · |D|. The first subgroup satisfying this inequality is returned
as outcome. The values q̃i + ri are known at Site S after execution of Protocol 1,
and moreover the values ri, qmax and |D| are known at Site 1, so all that is
needed is to securely compute the greater-or-equal test. This test, however, is
equivalent to Yao’ famous millionaires problem [25], and many solutions exist
for this task (e.g. [21]).

3.3 The Protocol

We now have all ingredients for a secure solution for Task 1. Protocol 1 assumes
the length limit L as input, together with local database Di, i, 1 ≤ i ≤ S.

First, the sites securely calculate |D| and |D+|. As |D| is the sum of the local
|Di|, this reduces to the secure calculation of a sum of local values – a standard
task in multi-party computation, for which efficient protocols exist (see e.g. [5]).
Same for |D+|. The values |D| and |D+| are distributed to all sites, which will
enable them to calculate p0 and hence the local values in Equation 3. Next, Site
1 and Site S initialize a local queue, Q1 resp. QS. These will be used to store
the values r1, ..., rR (at Site 1) resp. q̃1 + r1, ..., q̃1 + rR (at Site S).
2 All that is required is that before the circuits are generated, Site 1 and Site S replace

every ri by ri + r′i, where r′i is a newly generated random value. This prevents the
third party from drawing conclusions by relating the observed inputs from Site S
with the intermediate sums observed earlier.
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Protocol 1. Maximum Subgroup Quality Computation
INPUT: length limit L and local databases D1, . . . ,DS

1: Site 1 initiates the secure calculation of |D| and
∣
∣D+

∣
∣ and broadcasts the result

2: Site 1 creates a local iterator iter and a queue Q1, Site S creates a local queue QS

3: while hasNext(iter) do
4: Site 1 calculates and broadcasts si = next(iter)
5: Site 1 generates a random number ri uniformly in [0, . . . , M], enqueues ri in Q1,

adds its local support (
∣
∣D+

1 [si]
∣
∣ (1− p0) −

∣
∣D−

1 [si]
∣
∣ p0) · |D| to ri and sends the

result (mod M) to Site 2
6: Sites 2, ..., S − 1 add their local support to the intermediate sum and send the

result (mod M) to the next site
7: Site S adds its local support to the sum and enqueues the result, q̃i + ri (mod

M), in QS

8: end while

9: while Q1 contains more than 1 value do
10: Site 1 dequeues rα and rβ from Q1, generates a random number r′ uniformly in

[0, . . . ,M] and enqueues r′ in Q1

11: Site 1 generates and encrypts a circuit that computes (max(q̃α, q̃β)+r′) mod M)
from rα, rβ, q̃α + rα, q̃β + rβ and r′. It sends the circuit to Site S together with
the cryptographic keys corresponding to the input bits for rα, rβ and r′.

12: Site 1 sends the encoding table for the remaining inputs to Site T
13: Site S dequeues (rα+q̃α) and (rβ+q̃β) fromQS , asks Site T for the corresponding

cryptographic keys, evaluates the encrypted circuit and enqueues the result,
(r′ + max(q̃α, q̃β) mod M ), in QS

14: end while

15: Sites 1 and S calculate qmax by exchanging the two remaining values
16: for every subgroup descriptions si do
17: if q̃i + ri ≥ ri + qmax · |D| then return 〈si, qmax〉
18: end for

OUTPUT: smax and qmax (same output at all sites)

Thereafter, the protocol iterates over all subgroup descriptions (Line 3 to 8).
This is orchestrated by Site 1, which makes use of an iterator iter to generate
all subgroup descriptions satisfying the length limit. The iterator traverses the
space of subgroup descriptions in a canonically depth-first, left-to-right order,
according to the lexicographic order of the constraints. Using this iterator, Site 1
generates the next subgroup description si and informs all sites that si is the next
subgroup description to be considered. Next, the parties collectively calculate ri

and q̃i + ri. As discussed earlier, the latter value is computed by iteratively
adding the local support and sending the intermediate result to the next site.
The values ri resp. ri + q̃i are separately stored in the queues Q1 and QS at
Sites 1 and S, respectively.

When the second loop starts at Line 9, all candidate subgroups have been
considered. The protocol will now determine a pair of values ri∗ , (ri∗ + q̃i∗)
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such that q̃i∗ is maximal. This is done by iteratively replacing (a pair of) pairs
at Sites 1 and S simultaneously by (a pair of) single values. To this end, in
every iteration of Line 11 a new encrypted circuit is generated at Site 1, which is
evaluated afterwards by Site S, resorting to a third party T (which can optionally
be implemented by Site 2 as discussed earlier). The loop ends when only one
pair of values remains, which allows the calculation of the quality qmax.

Once the figure qmax is calculated, the protocol re-iterates over all subgroups
(in Line 16) until a subgroup with maximum quality is met. This subgroup is
returned as result together with its quality, and the execution ends.

Protocol 1 is secure, as precised by the following theorem:

Theorem 1. Protocol 1 privately solves Task 1, revealing only |D| and |D+| (in
the semi-honest model, assuming no collusion).

Proof. We have to specify how every site can simulate its view given the result,
the leaked information and its own input. Recall that the simulation does not
need to generate the exact same sequence of messages – it suffices that its output
is computationally indistinguishable from the view (which involves messages
based on random numbers).

The simulator generates execution traces following the algorithmic skeleton
of Protocol 1, i.e. by iterating over the subgroup descriptions. This ensures that
the simulations have the same overall structure as the views. We will now go
over every line of the protocol involving communication and describe how the
simulator can generate data computationally indistinguishable from the observed
messages. To this end, we will describe how the simulator generates such data
in a first paragraph “(S)”, before we prove that this data is computationally
indistinguishable from the actual messages in a second paragraph “(I)”.

Line 1: (S) The protocol computes |D| and |D+| using an existing secure-sum
sub-protocol, e.g. [5]. Goldreich’s Composition Theorem [7] says that given secure
protocols for sub-tasks, they can be dealt with in a transparent way: all we need
to show is that the simulator can predict the outcome of the sub-protocol. Given
that |D| and |D+| is part of the simulator’s input, it can output these very
values. (I) The values in the view and in the simulation are computationally
indistinguishable because they are identical.

Line 4: (S) The simulator generates the next subgroup using the iterator iter.
(I) The subgroup in the view and in the simulation coincide, because the traversal
is performed in a canonical way.

Lines 5 to 7: (S) Sites 2 to S generate a random number uniformly in [0, . . . ,M].
(I) Given that ri was randomly generated uniformly in [0, . . . ,M], the local sum
in the view is also uniformly distributed in [0, . . . ,M]. Hence, it is computa-
tionally indistinguishable from the random number in the simulation, because
two random numbers generated from the same distribution are computationally
indistinguishable [7].

Lines 11 to 13: The execution of these lines result in the following messages:
(i) Site S receives an encrypted circuit representation together with a set of
cryptographic keys that allow the evaluation of the circuit; (ii) Site T receives
an encoding table, plus the values (rα + q̃α) and (rβ + q̃β).
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(S) For Site S, the simulator generates a new encrypted circuit, and uses its
representation to simulate the circuit in the view. As simulation of the input
r′, it uses the encryption table to encode the bits of a newly generated random
number generated uniformly in [0, . . . ,M]. To simulate the other inputs, it uses
the encryption table to encode some arbitrary boolean values. For Site T , the
simulator generates an encrypted circuit and uses the encoding table as simu-
lation of the table in the view. Moreover, it generates two random numbers as
simulation of the two inputs from Site S.

(I) For Site S, recall that all can be extracted from an encrypted circuit, given
a particular set of input keys, is the outcome [14]. The outcome of the circuit
in the view is a random number uniformly distributed in the domain [0, . . . ,M],
which is independent from all values observed so far (recall that Site 1 generates a
new random offset in every iteration). The same is true for the circuit in the sim-
ulation, thus the view and the simulation are computationally indistinguishable.
For Site T , the encoding table in the view is computationally indistinguishable
from that in the simulation because both essentially consist of a set of crypto-
graphic keys generates by the same cryptographic key generation mechanism.
The inputs from Site S in the view are computationally indistinguishable from
the random numbers in the simulation because both are uniformly distributed
in [0, . . . ,M], and are independent from all values observed so far.

Line 15: (S) The simulator generates qmax, which it is part of its input. (I)
obvious.

Line: 17: (S) Again, due to the composition theorem the simulator only has to
generate the result of the test (plus, optionally, smax). This is straightforward,
given that smax is part of the input. (I) obvious. �

3.4 Top-k Subgroup Discovery and the Weighted Covering Scheme

It is straightforward to extend our solution to collect a set of subgroups. The
simplest way is to iteratively collect the k highest-quality subgroups one after
another, thereby solving the top-k subgroup discovery task. This only requires
a minor modification of the iterator, ensuring that all subgroups collected so far
will be ignored during subsequent search space traversals.

A more sophisticated approach would be to use the weighted covering scheme
[12]. Here again, the idea is to iteratively search for the maximum subgroup,
however using a definition of quality that accounts for record weights. After
every iteration, the weights of the records covered by the subgroup collected so
far is decreased by multiplication with some rational number. This results in a
definition of quality which is equivalent to the following:

qw(D, s) =
S∑

i=1

(∣
∣D+

i [s]
∣
∣w (1− p0(D)w)− ∣

∣D−
i [s]

∣
∣w p0(D)w

)
. (4)

Here, |D|w denotes the sum of the weights of the records in D, and similarly
p0(D)w = |D+|w / |D|w. All that needs to be done to implement the weighted
covering scheme is thus to make use of this quality definition instead of that in
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Equation 3. Given that Equation 4 is a sum of local values, and that these values
are rational numbers which can be computed locally given the set of subgroups
collected in the previous iterations, the adaptation is thus straightforward.

4 Prototypical Implementation

Our prototype was implemented in Java. For the encryption of the circuits, we
used the AES cipher with 128 bit keys implemented in the lightweight API of the
crypto-library Bouncycastle (http://www.bouncycastle.org). To compute secure
sums, we used the secure sum protocol described in [5]. For secure comparisons,
we used the efficient solution for Yao’ millionaires problem described in [21]. The
quality calculation is realized without sophisticated data structures like FpTrees,
as the prototype is merely intended as a proof-of-concept.

Fig. 2. Runtime of the prototype

We have evaluated the performance
of our implementation on different
datasets from the well-known UCI
repository [1]. All datasets where ran-
domly split into three parts, which
were used as local datasets. The ex-
periments were performed on three
Core 2 Duo E8400 PCs with 2GB
RAM, connected by an Ethernet
LAN. The length limit, L, was set to
3. Figure 2 visualizes the result. Be-
side the overall runtime (“total”), it
shows the proportions of the runtime
spent (i) for the distributed calcula-
tion of the garbled subgroup qualities
(“qual.”), and (ii) for the evaluation
of the encrypted circuits (“circ.”). These two components correspond to the first
resp. second while loop of Protocol 1. The figure shows that the most costly
part is the encryption and evaluation of the circuits.

Compared with state-of-the-art non-secure subgroup discovery algorithms
[12,8], the computation is (extremely) slow. Nevertheless, the experiments show
that our approach is applicable in practice. The runtime is sufficient to process
data sets of realistic size in a few hours, which is quite often sufficiently fast for
practical use. In scenarios where a failure to guarantee privacy means that data
mining can not be applied at all, the users may very well be willing to invest
this time if that allows to find valuable patterns which could not be obtained
otherwise.

5 Conclusions

In many pattern mining settings, the data to be analyzed is sensitive, which
makes the use of privacy-preserving techniques mandatory. Although approaches
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exist to securely find association rules in distributed data, these cannot be
adapted to supervised descriptive mining tasks like subgroup discovery. The
source for the difficulties are precisely the features that distinguish subgroup
discovery from classical association rule mining: (i) the different quality func-
tion, and (ii) the aim to collect only k patterns.

In this paper, we have presented a new secure protocol that allows secure
subgroups discovery on horizontally partitioned data. While the basic protocol
only solves the top-1 subgroup discovery task, it can be iterated to collect a set
of k subgroups. We have analyzed the properties of our protocol and have shown
that it leaks only little information, namely the size of the database and the share
of positive records. Finally, we have reported on a prototypical implementation
and experiments which demonstrate the feasibility of the approach.

In the experiments it has become clear that the improvements in security and
privacy come at the price of a high runtime. While the worst-case complexity
of our algorithm is the same as for a non-secure solution, i.e. exponential in the
number of attributes, in practice it is much slower than the latter. One reason
is of course the slowdown caused by communication and encryption overhead.
Another reason is that approaches of speeding up subgroup discovery, such as
optimistic estimate pruning [8] or local counting pruning [24] were not considered
here. The reason is that they need to exchange additional information between
local parties, which make them problematic in a secure computation setting.
It would be worthwhile to investigate the effective severity of such information
leaks. Clearly, knowledge about optimistic estimates tells something about the
private data, but it is not really clear how much. In particular, does it allow to
reconstruct (part of) the data? This question is closely related to the so-called
task of inverse frequent set mining [15]. We leave the investigation of these issues
to future work.

Another interesting question is whether the protocols presented in this paper
can be adapted to other quality functions used in supervised descriptive rule
discovery. Finally, it would be desirable to extend the security guarantees to
colluding parties. One standard approach in the cryptographic community to
deal with collusion issues is to divide the information into different parts, and
to use different routes for the different calculations (e.g. [10]). Whether such an
approach is applicable is left to future work.
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17. Novak, P.K., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery: A uni-
fying survey of contrast set, emerging pattern and subgroup mining. Journal of
Machine Learning Research 10 (2009)

18. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD
Explor. Newsl. 4(2), 12–19 (2002)

19. Scholz, M.: On the tractability of rule discovery from distributed data. In: ICDM,
pp. 761–764. IEEE Computer Society, Los Alamitos (2005)

20. Shaneck, M., Kim, Y., Kumar, V.: Privacy preserving nearest neighbor search. In:
ICDM Workshops, pp. 541–545 (2006)

21. Shundong, L., Yiqi, D., Daoshun, W., Ping, L.: Symmetric encryption solutions to
millionaire’s problem and its extension. In: 1st International Conference on Digital
Information Management (2006)

22. Webb, G.I.: Discovering significant rules. In: KDD 2006: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 434–443. ACM, New York (2006)

23. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Ko-
morowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer,
Heidelberg (1997)

24. Wurst, M., Scholz, M.: Distributed subgroup mining. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 421–433.
Springer, Heidelberg (2006)

25. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS.
IEEE, Los Alamitos (1982)

26. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, 1985, pp. 162–167 (October 1986)



ASAP: Automatic Semantics-Aware Analysis

of Network Payloads

Tammo Krueger1,3, Nicole Krämer2,3, and Konrad Rieck3
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Abstract. Automatic inspection of network payloads is a prerequisite
for effective analysis of network communication. Security research has
largely focused on network analysis using protocol specifications, for ex-
ample for intrusion detection, fuzz testing and forensic analysis. The
specification of a protocol alone, however, is often not sufficient for accu-
rate analysis of communication, as it fails to reflect individual semantics
of network applications. We propose a framework for semantics-aware
analysis of network payloads which automatically extracts semantics-
aware components from recorded network traffic. Our method proceeds
by mapping network payloads to a vector space and identifying commu-
nication templates corresponding to base directions in the vector space.
We demonstrate the efficacy of semantics-aware analysis in different se-
curity applications: automatic discovery of patterns in honeypot data,
analysis of malware communication and network intrusion detection.

1 Introduction

Automatic analysis of network data is a crucial task in many applications of
computer security. For example, intrusion detection systems often require parsing
of network payloads for identification of attacks [1, 2, 3], fuzz testing tools build
on automatically crafting network messages from protocol specifications [4, 5, 6],
and forensic analysis depends on inspecting network data involved in security
incidents [7, 8, 9]. In these and several other security applications, the analysis of
communication—whether from live traffic or recorded traces—critically depends
on automatic extraction of meaningful patterns from network payloads, such as
application parameters, cookie values and user credentials.

A large body of security research has thus focused on analysis of network data
using protocol specifications [10, 11, 12]. The specification of a protocol defines
the basic structure of its communication as well as the syntax of its network mes-
sages. While these analysis techniques are successful in parsing network data,
they are by design confined to the examination of protocol syntax. However, at-
tacks and security threats are rarely reflected in syntax alone but in semantics,
functionality realized on top of protocol specifications. As an example, malicious
software often employs standard network protocols for communication. However,
parsing of corresponding network traffic is not sufficient for accurate analysis,
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and significant manual effort is necessary for deducing relevant information from
parsed content. What is needed are techniques capable of automatically identi-
fying and extracting semantics-aware components from communication, thereby
reducing the gap between protocol syntax and semantics.

In this paper, we propose a framework for automatic, semantics-aware analy-
sis of network payloads (ASAP). This framework is orthogonal in design to
specification-based approaches and automatically extracts semantics-aware com-
ponents from recorded traffic—even if the underlying protocols are unknown. To
this end, ASAP ignores any protocol specification and exploits occurrences and
combinations of strings for inferring communication templates which are more
focused on the semantics instead of the syntax of communication. The main
contributions of this framework are:

1. Alphabet extraction for network payloads. For automatic analysis, we devise
a technique for extracting an alphabet of strings from network payloads. The
alphabet concisely characterizes the network traffic by filtering out unnec-
essary protocol or volatile information via a multiple testing procedure and
embeds the payloads into a vector space.

2. Analysis using matrix factorization. The method proceeds by identifying
base directions in this vector space using concepts of matrix factorization,
which combines these letters to meaningful building blocks.

3. Construction of communication templates. Discovered base directions are
transformed to communication templates—conjunctions of strings—which
give insights into semantics of communication and provide a basis for inter-
pretation of traffic beyond syntax-based analysis.

Empirically, we demonstrate the capabilities of semantics-aware analysis in dif-
ferent security applications. First, we conduct experiments on network traffic
captured using honeypots where we pinpoint exploited vulnerabilities as well as
attack sources using the ASAP framework. Second, we apply semantics-aware
analysis for investigation of network traces recorded from malware executed in
sandbox environments. We exemplarily extract typical communication patterns
for the malware Vanbot. Finally, we employ our framework in the domain of
network anomaly detection by mapping payloads into a low-dimensional space
without accuracy loss yet significantly increased runtime performance.

2 The ASAP Framework

The ASAP framework proceeds in three analysis stages, which are outlined in
Figure 1. First, an alphabet of relevant strings is extracted from raw network
payloads and used to map these payloads into a vector space for analysis. Second,
concepts of matrix factorization are applied for identification of base directions
in the vector space, characterizing usage patterns of mapped payloads. Third,
each of these base directions is traced back to a conjunction of strings from the
underlying alphabet and results in a template of typical communication content.
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Fig. 1. Overview of the ASAP framework

2.1 Alphabet Extraction for Network Payloads

A payload p is a string of bytes contained in network communication. For de-
scribing and characterizing the content of a payload, we automatically extract
an alphabet S of relevant strings from a set of payloads which provides the
ground for inferring communication templates. The alphabet S is initially con-
structed from a set of basic strings and then refined using filtering and correlation
techniques.

Basic strings. Depending on the network data to be analyzed, we build the
alphabet from a different set of basic strings. If we consider a protocol with
distinct delimiter bytes, such as HTTP, SMTP or FTP, we base the alphabet
on tokens—the set of all strings separated by delimiters. For a set of delimiter
bytes D, such as space or carriage return, tokens can be defined as

S = {{0, . . . , 255} \D}∗ .

However, for binary network protocols such as DNS, SMB and NFS, we need
to define the basic strings differently, as no delimiter symbols are available. In
these cases we apply the concept of n-grams which denotes the set of all strings
with fixed length n. Formally, this set of basic strings can be defined as

S = {0, . . . , 255}n.

Alphabet filtering and correlation. Strings within network payloads naturally ap-
pear with different frequency, ranging from volatile to constant occurrences. For
instance, every HTTP request is required to contain the string HTTP in its header,
whereas other parts such as timestamps or session numbers are highly variable.
Both, constant and highly volatile components, do not augment semantics and
thus are filtered from the alphabet S. More precisely, we employ a statistical
t-test for identifying non-constant and non-volatile strings by testing whether
their frequency is significantly different from 0 and 1. We apply the correction
proposed by Holm [13] to avoid problems with multiple testing.

With the remaining alphabet, we apply a correlation analysis to combine
co-occurring strings. That is, for each string s ∈ S we compute the Pearson
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correlation coefficient to all other strings and group strings which are highly
correlated, i.e. have a correlation coefficient of roughly one. Hence, we combine
elements of S which co-occur in the analyzed data and thereby further refine
our alphabet. Together, filtering and correlation compact the alphabet and lead
to a focused representation of S ignoring both static and volatile information.

Map to vector space. Using the alphabet S, we map a network payload p to
an |S|-dimensional vector space, such that each dimension is associated with a
string s ∈ S. In particular, we define a mapping function φ as

φ : P → {0, 1}|S|, φ : p �→ (I(s, p))s∈S ,

where P is the domain of all considered payloads and I(s, p) an indicator function
returning 1 if the string s is contained in p and 0 otherwise. Note, that the
mapping φ is sparse, that is, the vast majority of dimensions is zero, allowing
for linear-time algorithms for extraction and comparison of vectors [14].

2.2 Matrix Factorization

The mapping of network payloads to a vector space induces a geometry, reflecting
characteristics captured by the alphabet S. For instance, payloads sharing several
substrings appear close to each other, whereas network payloads with different
content exhibit larger geometric distances. The focused alphabet of the ASAP
framework enables us now to identify semantics-aware components geometrically.
In particular, we apply the concept of matrix factorization for identifying base
directions in the vector space. Given a set of payloads P = {p1, . . . pN} we first
define a data matrix X containing the vectors of P as columns by

X := [φ(p1), . . . , φ(pN )] ∈ R
|S|×N .

For determining semantics-aware components, we seek a representation of X
that retains most information but describes X in terms of few base directions.
This can be achieved in terms of a matrix factorization of X into two matrices
B ∈ R|S|×L and C ∈ RL×N such that L� |S| and

X ≈ BC =

basis
︷ ︸︸ ︷[
b1 . . . bL

] [
c1 . . . cN

]

︸ ︷︷ ︸
coordinates

. (1)

The columns b1, . . . , bL ∈ R|S| of B form a new basis for the N payloads, where
the dimensions of each base direction bi are associated with the alphabet S. As we
show in later experiments, this relation of base directions and the alphabet can
be exploited to construct communication templates from a matrix factorization.
The columns c1, . . . , cN ∈ RL of C form a new set of coordinates for the payloads
in a low-dimensional space, which can be used for visualization.

In general, matrix factorization methods differ in the constraints imposed on
the matrices B and C. In this paper, we study two standard techniques widely
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used in the field of statistics and data analysis: Principal Components Analysis
(PCA) [15, 16] and Non-negative Matrix Factorization (NMF) [17].

In PCA, we seek base directions, which are orthogonal and capture as much
of the variance inside the data as possible. Formally, the ith direction bi con-
secutively maximizes the variance of X�bi under the constraint that all base
directions are mutually orthonormal:

bi = arg max
‖b‖=1

var
(
X�b

)
s.t. b ⊥ bj , j < i.

In NMF, the orthogonality constraints are replaced by the requirement that the
matrix B and C only contain non-negative entries. Non-negative entries in the
basis vectors are a more natural representation for sequential data, as each string
contributes positively to the basis representation. For a fixed dimensionality L,
the factorization (1) is defined in terms of the minimization criterion

(B, C) = argmin
B,C

‖X −BC‖ s.t. bij ≥ 0, cjn ≥ 0 .

2.3 Construction of Communication Templates

After identification of base directions B in the vector space, every payload can
be expressed as a tuple of coordinates. For the interpretation, it is now crucial
to find a re-mapping of these coordinates to a meaningful representation, that
can be used to judge semantical content of network communication.

In case of tokens as basic strings of the alphabet we can simply select all
tokens exceeding a specific threshold inside the base directions for constructing
a template. For alphabets of n-grams we can try to concatenate occurring n-
grams and regain parts of the original ordering. For example, if we have a basis
containing the 3-grams Hos ∧ ost ∧ st: we can easily infer, that these tokens
overlap and can be concatenated to Host:.

Obviously, there is no guarantee against false concatenation. Therefore we
propose a greedy algorithm, which takes the calculated values for each token of
the alphabet into account: By sorting the n-grams according to their assigned
weights and using this inherent ordering for the matching process, we ensure
a data-driven reassembly of n-grams. We first pick the token with the highest
weight and look for overlaps to the other tokens, which are also ordered by their
respective weights. If we find an overlap, we merge the n-grams and remove the
corresponding token from the list of pending tokens. With this merged token we
restart the procedure until no more overlaps are found. This token is then added
to the representation list and the procedure is repeated for the next token with
the highest value left, until no more tokens are in the pending list.

3 Experiments and Applications

After presenting the ASAP framework, we turn to an empirical evaluation of its
capabilities in different security applications. First, we study the framework on
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GET static/3lpAN6C2.html HTTP/1.1

Host: www.foobar.com

Accept: */*
Request for static content

GET cgi/search.php?s=Eh0YKj3r3wD2I HTTP/1.1

Host: www.foobar.com

Accept: */*
Search query

GET cgi/admin.php?action=rename&par=dBJh7hS0r5 HTTP/1.1

Host: www.foobar.com

Accept: */*
Administrative request

Fig. 2. Example payloads of the artificial dataset

a toy dataset, which allows us to establish an understanding of how communica-
tion templates are inferred from communication (Section 3.1). We then proceed
to real-world applications, where network traces containing malicious communi-
cation are analyzed for interesting components, such as exploited vulnerabilities
and attack sources (Section 3.2 and 3.3). Finally, we apply our framework in the
field of network anomaly detection by reducing the processing of network data
using communication templates (Section 3.4).

3.1 A Showcase Analysis

For our first experiment, we consider an artificial dataset of HTTP commu-
nication where we have total control over protocol syntax and semantics. We
simulate a web application supporting three different types of requests, whose
network payloads are depicted in Figure 2. The first payload reflects a request
for static content, the second payload resembles a search query and the last pay-
load corresponds to an administrative request, in which the action parameter is
one of the following rename, move, delete or show. All requests are equipped
with random parts (the name of the static web page, the search string and the
administration parameter) to simulate usual fluctuation of web traffic.

Using this web application, we generate a dataset of 1,000 network payloads
with a uniform distribution of the three request types. We then apply the ASAP
framework to this dataset as detailed in Section 2.1–2.3 using tokens as basic
strings with delimiters selected according to the specification of HTTP. Based on
the extracted alphabet, we then apply matrix factorization algorithms, namely
Principal Component Analysis (PCA) and Non-negative Matrix Factorization
(NMF) for determining base directions in the vector space of payloads. Finally,
we construct communication templates for these base directions.

The extracted alphabet S consists of 8 “letters” (tokens combined by the
co-occurrence analysis are grouped by brackets and the ∧ operator):

S = {static, cgi, (search.php ∧ s), (action ∧ admin.php ∧ par),
rename, move, delete, show}.
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Table 1. Templates extracted for the artificial dataset. The templates have been con-
structed using tokens as basic strings and NMF as factorization.

Communication Templates

1) static

2) cgi ∧ (search.php ∧ s)
3) cgi ∧ (action ∧ admin.php ∧ par)
4) cgi ∧ (action ∧ admin.php ∧ par) ∧ move

5) cgi ∧ (action ∧ admin.php ∧ par) ∧ rename

6) cgi ∧ (action ∧ admin.php ∧ par) ∧ delete

7) cgi ∧ (action ∧ admin.php ∧ par) ∧ show

Note that the alphabet does not contain tokens related to HTTP syntax or
highly volatile parts of the data and thereby concentrates the following analysis
on parts, which are more likely to capture the semantics of the application.

Results for the application of matrix factorization algorithms to the artificial
dataset are visualized in Figure 3. For the algorithms PCA and NMF, base
directions (matrix B) are shown, where the x-axis details the different directions
and the y-axis the contribution of individual alphabet symbols.

While both techniques perform a matrix factorization of the payload data,
the matrices differ significantly. PCA yields positive and negative contributions
in the matrix B indicated by different colors. Although a certain structure and
relation of alphabet symbols may be deduced from the matrix, a clear separation
of different elements is not possible. By contrast, the NMF matrix shows a
crisp representation of the base directions. Static and search requests are clearly
reflected in individual base directions. The remaining base directions correspond
to administrative requests, where different combinations of action types and
other alphabet symbols have been correctly identified.

Due to this superior performance, we restrict our analysis to base directions
determined using the NMF algorithm in the following. Communication templates
resulting from the NMF matrix in Figure 3 are presented in Table 1. The tem-
plates accurately capture the semantics implemented in the example application.

1 2 3 4 5 6 7 8

static

search.php

cgi

move

rename

delete

show

action

1

2
a

2
b 3 4 5 6 7

static

search.php

cgi

move

rename

delete

show

action

Fig. 3. Visualization of bases for PCA (left) and NMF (right) on the artificial dataset.
Colors signify the intensity of the entry ranging from -1 (red) to 1 (blue).
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A set of 7 templates is constructed which covers static access of web content,
search queries and different administrative tasks. Note that two base directions
in Figure 3 are identical, resulting in a total of 7 templates. The templates
even exhibit hierarchical structure: template 3 resembles a basic administrative
request with all following templates being special cases for particular adminis-
trative actions,which renders NMF as prominent candidate for the construction
of easily comprehensible communication templates.

3.2 Analysis of Honeypot Data

Network honeypots have proven to be useful instruments for identification and
analysis of novel threats. Often however, the amount of data collected by hon-
eypots is huge, such that manual inspection of network payloads becomes te-
dious and futile. The proposed ASAP framework allows for analyzing such large
datasets of unknown traffic and extracts semantically interesting network fea-
tures automatically.

We illustrate the utility of our framework on network data collected using
the web-based honeypot Glastopf (http://glastopf.org). The honeypot captures
attacks against web applications, such as remote file inclusions (RFI) and SQL in-
jection attacks, by exposing typical patterns of vulnerable applications to search
engines. The honeypot has been deployed over a period of 2 months and col-
lected on average 3,400 requests per day. For our experiments, we randomly pick
1,000 requests from the collected data and apply our framework using tokens
as underlying alphabet. In particular, we extract 40 communication templates
using the base direction identified by NMF from the embedded HTTP payloads.
The templates are shown in Table 2. Note that 12 templates have been omitted
as they contain redundant or unspecific information.

The extracted communication templates can be classified into three cate-
gories: semantics of malware, vulnerabilities and attack sources. For example,
the first templates reflect different options supplied to a web-based malware.
Malicious functionality such as preparing a remote shell (shellz), setting up an
IRC bouncer (psybnc) or scanning for vulnerable hosts (scannerz) are clearly
manifested in strings of the templates. The following templates characterize
vulnerabilities of web applications including corresponding file and parameter
names. Finally, the last set of templates corresponds to domain and host names
used as sources of remote file inclusions. Often not only the originating host but
also parts of the complete URL have been discovered.

Note that although the communication templates have been generated from
raw HTTP traffic, no syntactic and protocol-specific strings have been extracted,
demonstrating the ability of ASAP to focus on semantics of communication.

3.3 Analysis of Malware Communication

A second application domain for the proposed framework is the automatic analy-
sis of malware communication. While there exist several methods for automatic
collection and monitoring of malware [18, 19, 20, 21], analysis of monitored
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Table 2. Templates for honeypot dataset. The templates have been constructed using
tokens as basic strings and NMF as factorization.

Communication Templates Description

1) modez ∧ shellz ∧ csp.txt Semantics of RFI malware
2) modez ∧ psybnc ∧ csp.txt —
3) modez ∧ botz ∧ bot.txt —
4) modez ∧ scannerz ∧ bot.txt —

5) mosConfig.absolute.path ∧ option ∧ http Vulnerability (VirtueMart)
6) mosConfig absolute path ∧ option ∧ Itemid —
7) com virtuemart ∧ show image in imgtag.php . . . —
8) com virtuemart ∧ export.php ∧ php.txt —
9) shop this skin path ∧ skin shop ∧ standard . . . Vulnerability (Technote)

10) board skin path ∧ Smileys ∧ http Vulnerability (GNUBoard)
11) board ∧ skin ∧ http —
12) write update.php ∧ files ∧ 1 —
13) write comment update.php ∧ files ∧ http —
14) delete all.php ∧ admin ∧ zefa.txt —
15) delete comment.php ∧ http ∧ fx29id1.txt —
16) appserv ∧ appserv root ∧ main.php Vulnerability (Appserv)
17) SERVER ∧ DOCUMENT ROOT ∧ media Vulnerability (PHP)
18) error.php ∧ dir ∧ 1 Misc. RFI vulnerabilities
19) errors.php ∧ error ∧ php.txt ∧ bot.txt —
20) administrator ∧ index.php ∧ raw.txt —
21) admin ∧ include ∧ http —

22) med.buu.ac.th ∧ com mylink ∧ stealth . . . Sources of attacks
23) http ∧ med.buu.ac.th ∧ com mylink ∧ components —
24) http ∧ www.hfsb.org ∧ sites ∧ 10225 ∧ img —
25) zerozon.co.kr ∧ eeng ∧ zefa.txt —
26) http ∧ zerozon.co.kr ∧ photos ∧ count —
27) http ∧ musicadelibreria.net ∧ footer —
28) qqe.ru ∧ forum ∧ Smileys —

malware communication still requires significant manual effort. As a remedy,
we apply the ASAP framework for discovery of typical components in malware
communication. In particular, we analyze the communication of 20 malware bi-
naries that has been recorded during repetitive executions of each binary in a
sandbox environment [see 22]. Since we do not know, which kind of protocols
are contained in the traffic, we apply the ASAP framework using 4-grams as
basic strings and extract base directions via the NMF algorithm. From the 20
binaries, we pick Vanbot as an example and present the respective communica-
tion templates in Table 3 as they particularly emphasize the capabilities of our
framework.

First, we observe that the extracted components clearly separate protocol se-
mantics: three components contain IRC related strings (1, 2, 4), while one com-
ponent contains HTTP data (3). A closer look reveals, that the first two compo-
nents contain IRC communication typical for Vanbot : the malware joins two IRC
channels, namely #las6 and #ns, and signifies the start of a TFTP service. The
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Table 3. Templates for communication of a malware binary. The templates have been
constructed using 4-grams as basic strings and NMF as factorization.

Communication Templates

1) MODE #las6←↩USER b ∧ JOIN #las6 ∧ 041- Running TFTP wormride...

2) c←↩MODE #ns←↩USER ∧ c +xi←↩JOIN #ns ∧ ub.28465.com←↩PONG :hub.2

3) GET /lal222.exe HTTP/1.0←↩Host: zonetech.info ∧ /lb3.ex ∧ /las1.ex...

4) x←↩USER e020501 . . . ∧ JOIN &virtu3 ∧ NICK bb ∧ CK gv ∧ R h020

HTTP component in turn comprises update requests, where the malware tries to
download updates of itself from different hosts. Interestingly, our analysis also ex-
tracts an IRC component (4), which contains typical communication of the Virut
malware, for example, as indicated by the channel name #virtu3. We credit this
finding to a co-infection: the malware binary labeled Vanbot has been additionally
infected by the malware Virut, a file infector.

3.4 Anomaly Detection

As final experiment, we evaluate the capabilities of ASAP in the fields of net-
work intrusion detection. Anomaly detection is frequently applied as extension
to signature-based intrusion detection systems, such as the Snort [1] and Bro [2]
system, as it enables identification of unknown and novel network threats.

For evaluation of intrusion detection performance, we consider two datasets of
network payloads: The first dataset (FIRST08) contains HTTP requests mon-
itored at the web server of a research institute during a period of 60 days.
The second dataset (FTP03) comprises FTP sessions recorded over 10 days at
Lawrence Berkeley National Laboratory [23]. Additionally to this benign data,
we inject network attacks into the traffic. The attacks are executed in a virtual
environment using common tools for penetration testing, such as Metasploit,
and are carefully adapted to match characteristics of the datasets [see 24].

For the experiment, we apply a detection method similar to the work of Rieck
and Laskov [25]. A centroid model of normal network payloads is constructed us-
ing n-grams, μfull = 1

N

∑N
i=1 φ(pi), and used for identifying unusual network con-

tent. Additionally, we consider a second model in which the n-grams are refined
using communication templates. Formally, after calculating the matrix factor-
ization X = BC, we construct this model as follows: μreduced = B( 1

N

∑N
i=1 ci),

where we calculate the centroid in the lower-dimensional space obtained by the
first 20 base directions of NMF. The two models are trained on 1,000 randomly
drawn payloads for each data set and anomaly detection is performed on 200,000
randomly chosen HTTP requests and 20,000 FTP sessions respectively.

Results are shown as Receiver Operating Characteristics (ROC) curves in
Figure 4 (left). The performance of the full and reduced centroid model is
identical on all three datasets. This demonstrates that the base directions identi-
fied by NMF capture semantic information of the underlying protocols
accurately for detection of anomalies and attacks. Figure 4 (right) details the
run-time performance attained by the different models. Reducing the analysis
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Fig. 4. ROC curves (left) and run-time (right) for network anomaly detection. Models
are constructed using 4-grams and NMF for matrix factorization.

using communication templates provides a significant performance gain over reg-
ular anomaly detection. Speed-up factors of up to 15 can be observed and clearly
indicate the utility of ASAP as a preprocessing step for anomaly detection.

4 Related Work

The problem of re-creating a certain structure based on data like network or
execution traces has been extensively studied in the domain of protocol reverse
engineering. The ultimate goal here is to reconstruct the grammar and also
underlying state machines employed during communication. Discoverer [10] by
Cui et al. works directly on recorded network traces to extract message formats
by a combination of clustering of tokens and subsequent merging by sequence
alignment. Wondracek et al. [11] are able to create grammar-like structures with
the use of dynamic data tainting: a protocol is automatically constructed by
monitoring data flow of protocol messages during request serving. This concept
is further refined in Prospex [12] by Comparetti et al. which also incorporates
the inference of the underlying state machine of the communication. All these
approaches are orthogonal to the ASAP framework, since they try to extract the
underlying syntax of the communication. With the ASAP method we address
the extraction of semantics-aware components for a monitored application, which
leads to different constraints and methods employed during the analysis.

A natural extension of protocol reverse engineering is to use the newly ex-
tracted protocol and communication state automaton and build an automated
honeypot service, which is capable of mimicking the monitored application be-
havior. The work of Leita et al. [19, 20] target the honeyd platform: by ex-
amination of a tcpdump, which contains a sample interaction, they are able to
generate a honeyd script, which can emulate to a certain extent the monitored
application. In line with this work Cui et al. present RolePlayer [26], which is
able to replay both the client and server side of a given communication. The Re-
player [27] by Newsome et al. uses methods from program verification to build
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up a logical sound solution to the replaying problem. The ASAP framework in
its current state does not incorporate any communication semantics apart from
single message semantics. However, it would be a valuable extension to include
communication behavior analysis by exploiting methods of time series analysis
inside the ASAP framework.

Dimension reduction methods have been used before to visualize network traf-
fic data [28] or track down traffic anomalies [29, 30]. While Principal Component
Analysis and Non-negative Matrix Factorization (NMF) have been studied be-
fore, the ASAP framework analyzes the traffic both on the basis of tokens and
n-grams in a unified way, which leads to a semantic-driven and easily compre-
hensible result. Furthermore NMF has also been used for intrusion detection by
Wang et al. [31, 32] on system call traces and even for the task of document
summarization [33] on a word level. This shows that the basis of the ASAP
framework is well established even beyond analysis of structured network data.

5 Conclusions

We have introduced the ASAP framework, a new technique for automatic extrac-
tion of communication templates from recorded network traffic. The framework
identifies components of network payloads by mapping them to a vector space
and determining informative base directions using techniques of matrix factor-
ization. This approach is orthogonal to existing techniques for network analysis
based on protocol specifications, as it can be applied for analysis of unknown
network protocols as well as network traces containing mixtures of protocols.

Empirically, we have demonstrated the utility of our framework in different
security applications. For example, we have been able to automatically analyze
data from a network honeypot and identify exploited vulnerabilities and attack
sources—a task not attainable by sole means of specification-based analysis.
Moreover, we have exemplarily dissected the communication of the malware
Vanbot, demonstrating the ability of the ASAP framework to discover semantics
in network traces of mixed protocols. Finally, we have applied our framework
for preprocessing the input of a network anomaly detection method, realizing a
speed-up factor of up to 15 while preserving an accurate detection of attacks.

Our analysis shows that base directions generated by our framework can be
used to easily extract valuable details from a dataset, where nearly no infor-
mation is available in advance. The ASAP framework is capable of analyzing
network data even without knowledge about the underlying protocols. The flex-
ibility of n-gram analysis paired with the structuring and summarization power
of matrix factorization generates semantics-aware components, which enable fast
and efficient insights for network traces at hand.

Besides applications presented in this work, the extracted base directions pro-
vide good candidates as input for other security methods: signature generation
methods may use the concise representation of data as direct basis for construct-
ing precise signatures, automatic construction of honeypot services could greatly
profit from semantics-aware representations of communication and the process
of forensic network analysis may be accelerated by taking these communication



62 T. Krueger, N. Krämer, and K. Rieck

templates as starting points for further investigations. Finally, the incorporation
of other matrix factorization methods like sparse NMF [34] or sparse PCA [35]
and the evaluation of their respective performance in terms of data explanation
and description would be a further extension of the ASAP framework.
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Abstract. Recommender systems are vulnerable to attack: malicious
users may deploy a set of sybils (pseudonymous, automated entities) to
inject ratings in order to damage or modify the output of Collaborative
Filtering (CF) algorithms. To protect against these attacks, previous
work focuses on designing sybil profile classification algorithms, whose
aim is to find and isolate sybils. These methods, however, assume that
the full sybil profiles have already been input to the system. Deployed
recommender systems, on the other hand, operate over time, and recom-
mendations may be damaged while sybils are still injecting their profiles,
rather than only after all malicious ratings have been input. Furthermore,
system administrators do not know when their system is under attack,
and thus when to run these classification techniques, thus risking to leave
their recommender system vulnerable to attacks. In this work, we address
the problem of temporal sybil attacks, and propose and evaluate meth-
ods for monitoring global, user and item behaviour over time, in order
to detect rating anomalies that reflect an ongoing attack.

1 Introduction

Recommender systems based on Collaborative Filtering (CF) algorithms [1] have
become important portals via which users access, browse, and interact with a
plethora of web sites, ranging from e-commerce, to movie rentals, and music
recommendation sites. These algorithms are built upon the assumption that
users who have been like-minded in the past can provide insight into each other’s
future tastes. Like-mindedness is quantified by means of similarity metrics (e.g.,
Pearson correlation [1]) computed over users’ profiles: the more items two users
have rated in common, and the more similar the ratings they have associated to
these items, the more like-minded they are considered. Unfortunately, the ratings
that CF algorithms manipulate may not be honest depictions of user preferences,
as they may have been fabricated by malicious users to damage or modify the
recommendations the system outputs. Abusing recommender systems this way is
referred to as shilling, profile injection or sybil attacks; Mobasher et al. provide
an in-depth review of the problem [2].

To protect a recommender system from these attacks, a variety of classification
algorithms [5] have been proposed, whose goal is to examine users’ profiles,
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determine whether they are honest or malicious, and isolate the latter. However,
these approaches assume that the full sybil profiles have already been created
(i.e., contained within the user-item matrix that CF algorithms operate on).
In deployed recommender systems, such an assumption does not hold: sybil
profiles may be inserted over an extended period of time, thus reducing their
immediate detectability, while not necessarily reducing the damage they may
inflict on the system. Furthermore, system administrators do not know when
their system is under attack, so deciding when to run these computationally
expensive classification algorithms becomes a fundamental issue.

In this work, we first demonstrate that attackers do have an incentive to
spread their attack over time, as this makes it difficult for system administrators
to know when to run classification algorithms and thus isolate them (Section 2).
We provide a classification of temporal sybil attacks against which a deployed
recommender system should defend itself (Section 3), and then propose and
evaluate our sybil detection technique, which dynamically monitors the deployed
recommender system to reveal anomalies in global, user, and item activity, with
respect to normal user rating habits (Section 4). We then conclude the paper
with a discussion of related work (Section 5) and future directions of research
(Section 6).

2 From One-Shot to Temporal Attacks

In this section, we show that sybils have an incentive to spread their attack over
time, as in so doing they reduce the risk of being detected and thus isolated.
To begin with, we model a deployed recommender system as done in [6]: given
a dataset at time t, and a window size |w| (reflecting how often the system will
be updated), we train the CF algorithm with any data input prior to t and
predict any ratings input between t and (t+ |w|). The entire process is repeated
at each update, with what was previously tested on becoming incorporated into
the training data. To quantify the performance of the recommender system over
time, we re-define the root mean squared error (RMSE) as follow:

RMSEt =

√∑N
r̂u,i∈Rt

(r̂u,i − ru,i)2

|Rt| (1)

Given a set Rt of predictions made up to time t, the current error is simply the
average of all predictions made to date.

The one-shot attack considered in the literature operates as follow: if we in-
dicate with S the set of sybils in the system, and with X the set of ratings they
inject, then all X would be input in the system within a single time window,
that is, between time t and (t+ |w|). We visualise the effect of a one-shot attack
with the following example: we consider five sub-samples of 10, 000 Netflix pro-
files1, and weekly system updates (|w| = 7 days); for each of these sub-samples,

1 http://www.netflixprize.com
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(a) Random Attack (b) Filtering Newcomers (c) Attack Lengths

Fig. 1. Time-Averaged RMSE Of One-Shot Attack; Prediction Shift When Pruning
Newcomer’s Ratings; Injecting Attacks Over Varying Time Windows

during the 125th week-long window we inserted 100 sybils who each rate ap-
proximately 10, 000 items (in this example, we limit ourselves to exploring the
temporal effect of a random attack, where each sybil randomly picks one of the
available items, and then rates it with a random value drawn uniformly from
the rating scale). Figure 1(a) plots the impact that these ratings have on the
time-averaged RMSE. As shown, the one-shot attack has a pronounced effect on
the time-averaged RMSE: performance is consistently degraded over the rest of
the updates.

However, this attack is very simple to detect: sybils appear all at once, rate
high volumes of items within a single window length, and disappear. CF systems
can easily defend against these attacks by distrusting newcomers: ratings coming
from new users are considered suspect and excluded by the CF algorithm; if these
users re-appear in future time windows, their ratings will be subsequently con-
sidered, otherwise they will never influence the recommender systems. We thus
repeated the previous experiment, but excluded suspect ratings from the kNN
CF algorithm. Note that, by excluding suspect ratings, we maintain our abil-
ity to formulate recommendations for all users (including sybil and new honest
users), while removing the influence that suspect ratings exert. Figure 1(b) plots
the difference in prediction (prediction shift) when exercising the same one-shot
attack described above, with and without new ratings being suspected, against
a baseline scenario of predictions computed when no sybils are inserted. Note
that the technique not only eliminates the effect of the attack, but also improves
upon the baseline RMSE in a number of windows prior to the attack taking place
(the prediction shift is negative). Removing the ratings of users who rate and
never return thus curbs these attacks and takes small steps towards de-noising
the data [7].

Attackers may respond to this simple detection technique, by widening the
number of windows taken to inject ratings. Sybils under the attacker’s control
would therefore appear in multiple windows and, after the first appearance, no
longer be suspect. In order to explore the incentives that attackers have to rate
quickly, we performed a number of random attacks, where a set of 100 sybils
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rated the same number of items over a varying number of sequential windows
W ∈ [10, 20, 50, 100]. In each case, the number of malicious ratings remained the
same, the only difference being the time taken to insert them; we compare attacks
of the same magnitude that differ only in temporal spread (i.e., the ratings per
sybil per window varies, as does the number of windows). The results in Figure
1(c) show that injecting ratings over longer time periods deviates the RMSE
from the baseline less. This is likely to be an effect of the balance between sybil
and non-sybil ratings: longer attacks have less of an effect since, during the time
taken to operate the attack, there is a larger influx of non-sybil ratings.

Based on the above experiments, real sybils’ behaviour is unlikely to follow
the one shot pattern. Rather, we have observed that: (a) there is an incentive for
attackers to inject ratings over more than one window, in order to not have their
ratings be suspect and filtered out by simple detection schemes; and (b) attackers
may attempt to displace the balance between sybil and non-sybil ratings, since
higher volumes of sybil ratings per window have more pronounced effects. With
this in mind, we provide next a classification of the types of temporal attacks that
malicious users may undertake, before proposing a defence mechanisms capable
of protecting a recommender system against them.

3 Temporal Attack Model

When enacting a sybil attack, there are two main factors that attackers can
control: the number of sybils perpetrating the attack, and the rate at which
they operate (i.e., number of ratings per sybil per window), for a predefined
sequence of windows. We thus classify attacks according to how malicious users
calibrate these two factors, and determine the four different attack types depicted
in Figure 2(a). Protection mechanisms developed so far in the literature ignore
these two factors and rather focus on another one: the strategy that attackers
deploy in determining what items to rate (i.e, whether at random or targeted),
as if the ratings were input all at once. We take a different stance and look at the
attack while it unfolds: the strategy adopted is then treated as an orthogonal
dimension, with respect to the temporal factors.

Our goal is to provide a monitoring and detection mechanism capable of
alerting the system administrator when any of these attacks is in place. In order
to assess the quality of our monitor, we will be measuring: precision, defined as
the number of attacks that were flagged (true positives) over all flagged situations
(true positives plus false positives); recall, defined as the number of attacks that
were flagged, over all the attacks enacted (true positives plus false negatives);
and impact, defined as the number of sybil ratings input at the current window,
divided by the total number of ratings input in that window. Intuitively, the
higher the precision, the lower the false alarms being raised; furthermore, the
higher the recall, the lower the number of attacks that slip through. Finally,
the impact gives an indication of the damage that an undetected attack (false
negative) is causing; intuitively, the higher the number of malicious ratings that
slip through, the higher the impact. Figure 2(b) illustrates the attack impact
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(a) Attack Classification (b) Impact (No Defences)

Fig. 2. Attack Types and Impact With No Defences

for varying numbers of sybils and rating rates, when no defences are in place
(and thus all attacks pass undetected). In this work, we place higher emphasis
on reducing false negatives (finding all the attacks that we manually insert),
rather than false positives. This is because we cannot know (and only assume)
that the data we experiment with is the fruit of honest, well-intentioned users:
false positives in the real data may very well be attacks that are likely to deserve
further inspection; however, we note that the defences described below produced
no false positives when run on the rating data with no attacks injected.

In the next section, we construct step by step a defence mechanism capable of
defending a recommender system against the temporal attacks identified above.
We do so by reasoning about factors that attackers cannot control, related to
how the non-sybil users behave: how many non-sybil users there are, the number
of ratings they input per window, what they rate, and how they rate.

4 A Temporal Defence

In this section, we focus on each type of attack in turn, and construct a com-
prehensive mechanism capable of detecting them all. The mechanism monitors
different types of information to detect anomalies: global behaviour (Section 4.1),
user behaviour (Section 4.2), and item behaviour (Section 4.3). The key to our
proposal is the capturing of stable features in the rating data, so that anomalies
introduced by attacks can be flagged.

4.1 Global Monitoring - Many Sybils/Many Ratings Scenario

The first perspective of system behaviour that we consider is at the global, or
aggregate, level. While the number of ratings that users input varies over time,
the average ratings per user per window (in the Netflix data) remains relatively
flat: Figure 3(a) plots this value over time. From this, we see that the average
user rates between 5 − 15 movies per week. Since the mean is derived from
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(a) Avg Ratings Per User Per
Week in Netflix

(b) Simulation Precision

(c) Simulation Recall (d) Global Monitoring - Impact
in Netflix

Fig. 3. Global Monitoring

a long-tailed distribution, it is a skewed representation of the “average” user.
However, when an attacker deploys a large group of sybils, this aggregate value
changes: the first dimension of our defence thus aims at monitoring changes to
the average ratings per user MUt over time. Given a window t, the current mean
ratings per user MUt, standard deviation σt, the Rt ratings input by Ut users,
and a weighting factor βt, an alarm is raised if the volume of incoming ratings
departs from the mean measured to date by an amount determined with a global
threshold αt ≥ 1:

Rt

Ut
≥ (MUt + (αt × σt)) (2)

If an alarm is not raised, we update the current MUt value as an exponentially
weighted moving average:

MUt = (βt ×MUt−|w|) + ((1 − βt)× Rt

Ut
) (3)

MUt is updated conservatively: if an attack is flagged, then it is not updated.
We also conservatively update both the αt and βt variables. The βt variable
determines the weight that is given to historical data: relying too heavily on
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historical data will not capture current fluctuations, while weighting current
values too highly will disperse temporal trends. We therefore update βt with the
standard deviation measured to date:

βt+|w| = min(|σt−|w| − σt|, 1) (4)

The value is capped at 1, thus ensuring that when there is high variability in
the data, βt gives higher preference to current values, while a smaller standard
deviation shifts βt to give higher weight to historical values. The αt variable
determines the extent to which the current Rt

Ut
value can deviate from MUt

before an attack is flagged. When an attack is flagged, we reduce αt, making it
more difficult for attackers to learn the appropriate threshold. In this work, αt

jumps between pre-specified values (0.5 and 1.5). This parameter is sensitive to
the context; we selected these values after examining our scenario (users rating
movies). We leave a more in-depth investigation of scaling the threshold as a
matter of future work.

Monitoring incoming ratings at the aggregate level is sensitive to two factors:
how naturally variable the incoming ratings are, and the amount of variance
that attacks introduce: a mechanism like this may not work if there is already
high variance in the average ratings per user and sybils do not displace the mean
value. We therefore evaluated this technique with two methods: in the first, we
simulate a stream of incoming ratings (in order to control both the variance and
size of attack); we then turned to real data where we could explore the effects
of varying attacks in a more realistic setting.

In order to simulate a stream of incoming ratings, we draw a sequence of Rt

Ut

values from a normal distribution with mean μ and standard deviation σ ∈ [0, μ].
Then, at random moments, we simulate an injected attack where a group of
sybils shifts the incoming value by the attack amplitude γ ∈ [0, (2×μ)]; in other
words, at an attack time t, the window’s value is (Rt

Ut
+γ). We then note whether

an attack was flagged, and can compute the detection precision and recall with
the results. When running the simulation, we assumed that, after a brief train-
ing phase, the system could be attacked at any time during a period of 1, 000
windows, for a pre-determined number of sequential attack windows (we used a
value of 50, as this gives the attack high impact while being difficult to detect -
see Figure 1(c)). We re-ran each simulation parameter setting 10, 000 times and
present averaged results. Figure 3(b) shows the resulting precision, which fades
as σ increases. The main point to note is that precision is dependent on σ (the
variability in the ratings per user per window) rather than the attack ampli-
tude γ. In other words, the number of false positives depends on how naturally
variable the data is. Figure 3(c), instead, displays the detection recall. This plot
highlights the trade-off between σ and γ: the best recall is when a small σ is
modified with a large γ, while the worst values are found when a large σ is devi-
ated by a small γ. Note that, in this simulated setting, the minimum precision is
slightly below 0.90, and the minimum recall remains above approximately 0.95:
we thus consistently get high precision and recall.

We returned to the Netflix dataset in order to test this method when injecting
attacks on real data. To do so, we trained our monitor with all ratings per window
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until the attack time, and then measure the attack impact after injecting the
attack. Since the attacker may unleash the sybils at any time, we repeated our
experiments, starting attacks at each possible window, and plot average results
across all windows. As Figure 3(d) shows, this method catches attacks where
large groups of sybils inject their profiles at a very high rate; the top right corner
of the plot is flattened to zero impact. However, two sensitive areas remain: first,
where many sybils inject few ratings, and when few sybils inject many ratings.
Attackers can thus respond by either reducing the size of the sybil group, or the
sybil’s rate. In Section 4.2 we address the former, while Section 4.3 describes
how to detect the latter.

4.2 User Monitoring - Few Sybils/Many Ratings Scenario

The previous monitor cannot detect when few sybils rate many items each.
We address this by designing a user monitor aimed at detecting these specific
attacks. Figure 4(a) plots the distribution of ratings input per user in a sample
window of the Netflix data; we find that the majority of users input a rather
low number of ratings per week, while a minority of outliers rate a high volume
of movies. An attack in this context would thus entail setting a small group of
sybils to rate a high volume of content over a number of windows; detecting this
behaviour focuses on examining how many high volume raters there are and how
much these outliers are rating.

(a) How Much High Volume Raters Rate. Given the current mean value
of ratings per user per window MUt, we differentiate high from low volume
raters based on the difference between the ratings that they have input in the
current window and MUt. Figure 4(b) plots the ratings per high volume user over
time. The mean ratings per high volume user HMt can then be monitored, in a
similar way as we monitored the entire distribution in the previous section: an
exponentially weighted moving average is regularly updated, and large deviations
from the expected value flag an ongoing attack.

(a) Ratings Per User (b) High Volume Raters (c) High Volume Proportion

Fig. 4. Analysis of Users’ Behaviour in Netflix: (a) An example distribution of 1 week’s
ratings, (b) Ratings Per High Volume Raters Over Time and (c) the Proportion of High
Volume Raters Over Time
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(a) Single Thresholding (b) Combined Threshold

Fig. 5. User Monitoring

(b) How Many High Volume Raters. Beside the high volume ratings HMt,
we also keep track of how many users HUt there are relative to all the users
who have rated in the current window. A user becomes suspect if they are at
the highest end of the user-rating distribution, and both the size of this group
and volume of ratings they input may indicate an ongoing attack. As we plot
in Figure 4(c), the size of this group of users, divided by the total number of
high volume raters per window, tends to be relatively stable; injecting different
forms of attacks upsets both this and the mean ratings per high volume user
values. We take advantage of both pieces of information in order to amplify our
detection mechanism: we create a combined score per window by multiplying the
HMt value by the proportion of suspect users HUt. This way, we aim to capture
fluctuations in both the group size and rate that a potential group of sybils will
inflict when performing their attack.

We evaluated the user monitor with the Netflix subsets for cross-validated
results with real data. We did so in two steps. First, Figure 5(a) shows the
resulting impact if only part (a) of above is used to defend the system: this
defence can overcome both scenarios similar to that addressed in the previous
section, and also lessen the threat of smaller groups of high-volume rating sybils.
This threat is not fully eliminated though: the top-left corner of the plot shows
a remaining non-zero impact section (more precisely, impact is approximately
[0, 0.25]). In Figure 5(b), we plot the impact of the combined defences: this time,
the impact decreases to [0, 0.12]. There is now only one type of attack left, where
many sybils rate few items. We tackle this scenario next.

4.3 Item Monitoring - Many Sybils/Few Ratings Scenario

The last scenario that we address is that of many sybils rating few items each.
This form of attack would be undetected by the previously outlined defences:
the sybils do not rate enough items each to be detected by the user monitor, and
there are enough of them to not shift the rating per user temporal mean and flag
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their presence. To detect this kind of attack, we first reason on what items the
group of sybils may be rating, and then design and evaluate an item-monitor to
identify ongoing anomalous behaviour.

In order to have the greatest impact possible, sybils who inject very sparse
profiles (by rating few items each) will tend to be rating a similar subgroup
of items, rather than dispersing the ratings over a broad range of items, which
would have a smaller effect. This strategy recalls the structure of targeted attacks
[2], where injected profiles contain filler, selected, and target item ratings: for
example, if an attack aims to promote a fantasy movie (target), the sybils will
rate it, alongside famous fantasy movies (selected) that are likely to appear in the
profiles of many honest users, together with a number of items (filler) to disguise
each profile as a “normal” user profile. The difference between a random attack
and a targeted one is thus determined by how profiles are populated: what the
selected, filler, and target items are (in the case of a random attack, there is
no target item) and how they are rated. We therefore turn to monitoring the
items in a system to detect these kinds of attacks. We further assume that it is
very unlikely for an item that is already popular to be subject to an attack that
aims to promote it; similarly, it is unlikely that unpopular items be nuked. In
other words, we assume that the purpose of attackers is to maliciously reverse an
ongoing trend (rather than reinforce a pre-existing one). Given this, we design
an item monitor to identify the target of attacks by focusing on three factors:
(a) the amount that each item is being rated, (b) the distance the mean of the
incoming ratings for each item has from an “average” item mean, and (c) a
temporal mean change detector.

(a) The Item Is Rated By Many Users. In each window w, with Rt ratings
input for It items, the average ratings per item MIt (with standard deviation
σi,t) can be computed. We can then select, from the available items, those that
have been rated the most in the current window by selecting all those that
received It ratings greater than the mean number of ratings per item MIt.

(b) The Item is Rated With Extreme Ratings. Using only the ratings
input in the current window w, we determine the mean score r̄i for each item i,
and then average these to produce the expected mean score v per item:

v =
1
It

∑

i∈It

r̄i (5)

If an item has been targeted for attack (and either nuked or promoted by a group
of sybils simultaneously), then the corresponding r̄i will reflect this by being an
outlier of the global average item mean v.

(c) The Item Mean Rating Shifts. We compare the item mean computed
with historical ratings and the r̄i value determined from the ratings in the current
window. A successful attack will shift this value by some distance δ: in this work,
since we are operating on the Netflix 5-star ratings scale, we set δ to slightly
below 2.
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(a) Avg Precision (b) Avg Recall

Fig. 6. Item Monitoring

An attack is flagged for an item if the above three conditions are met: it is rated
more than average, the mean of the incoming ratings shows that it is not being
rated in the same way as other items are, and a change from the historical value
is being introduced. Our monitor therefore focuses on identifying the moments
when groups (or subgroups) of sybils rate the target item. We therefore modified
our evaluation mechanism to test how well we find items when they are attacked,
depending on how many sybils push in the target rating at the same time.

We evaluated the monitor as follows: at time t, a group of sybils rates a
randomly chosen target item. The sybils nuke the item if it is popular (it has
mean greater than 3), and promote it otherwise. We do not discriminate on the
number of ratings that movies currently have when determining whether to nuke
or promote it; however, previous work shows that it is harder to protect sparsely
rated items from attack [8], and our item selection process is biased toward
selecting these items. We then check to see if the monitor flags any suspicious
items, and measure the number of true/false positives and false negatives. We
repeat the same run (i.e., group size and attack window) for 50 different items,
and measure the resulting precision and recall. However, since an attack may
begin in any of the available windows, we then repeat this process for each
possible window, and average the results across time. Finally, we repeat this
entire process with each Netflix subset to produce cross-validated results. The
results therefore take into account the differences between sybil group size, target
item, attack time, and honest user behaviour. The average precision and recall
values are plotted in Figures 6(a) and 6(b). They highlight that these methods
work best when many sybils are rating the same item, with recall near 99% and
precision near 70%. The fact that the precision is not performing as well as the
recall implies that there are a higher proportion of false positives rather than
false negatives: when an item is under attack, it is likely to be flagged as such, but
few items that are not attacked may be flagged as well. As with the user monitor,
it remains unclear as to how to deal with items that are being rated anomalously
by users who are not the sybils that we explicitly control in our experiments;
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in fact, we can only be certain that users are malicious if we explicitly injected
them. Otherwise, we have assumed that the users in the dataset are honest and
well-intentioned, which may not be the case: it is therefore preferable, in this
case, to have a monitor with higher recall than precision, since we are sure that
the sybils we inject are being found.

5 Related Work

Anomaly detection algorithms have been used when securing a wide range of
systems: they defend against financial fraud [9] and protect web servers from
denial of service attacks [10]. These techniques are applicable to recommender
systems too, the main problem being how to define what an anomaly is, and how
to monitor the large volume of users and items. In this work, we have introduced
novel methods that detect anomalies in various aspects of rating behaviour while
learning what normal user behaviour is, thus liberating system administrators
from these challenges. To do so, we leveraged the effect that honest users have
on the temporal dynamics of the system. For example, we used the fact that
majority of users rate very few items in order to identify the sybils who are rating
a lot. The only way that sybils may dodge pushing the monitored variables over
the detection thresholds is by not rating: our defences thus act as an incentive
for attackers to draw out the length of their attack, thus reducing its overall
effect (as seen in Section 2).

Anomaly detection has also been seen before in recommender system research.
Bhaumik et al. [11] propose a method to monitor items as they are under attack,
by looking at changes to an item’s mean rating over time. Similarly, Yang at al [12]
infer user trust values based on modelling the signal of incoming ratings. They use
these techniques to monitor when real users, who each control 50 sybils, are attack-
ing a system. To that extent, their system is under a variety of potentially conflict-
ing attacks. Our work differs on two main points: first, we evaluate a system that
iteratively updates and computes personalised recommendations for each user. We
also propose methods that assume a large set of users and items, and flag attacks
while monitoring all users and items (rather than simply monitoring users/items
individually). We evaluate attacks that may not demonstrate anomalies within
a single time window, but appear between system updates, and may be targeted
to affect particular users’ recommendations. We also explore a wide variety of at-
tacks, ranging from the random to targeted scenarios, where a key aspect of the
attacks is the fact that sybil groups of varying size are rating items.

The idea of temporality in attacks has also been explored from the point of view
of user reputation; Resnick and Sami [13] prove a variety of properties of their
reputation system, which takes into account the order that ratings are input. It
remains unclear how these systems would work in practice: many reputation or
trust-based systems assume that the ratings input by users are the ground truth,
without taking into account that users are both naturally inconsistent when they
rate [7] and what they rate will be influenced by what they are recommended. Fur-
thermore, one of the most troubling problems that both monitoring techniques
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and reputation systems suffer from is bootstrapping; systems can be easily abused
when the variables that monitor or reflect user behaviour have had little to no
data. In this work, we use all ratings input prior to a pre-specified time ε to boot-
strap each monitor. System administrators may opt to ask a controlled, closed
group of trusted users to rate for varying lengths of time in order to bootstrap. Al-
ternatively, if the system also offers social networking functionality, defences that
identify sybils according to their location on the social graph can be applied [3]; in
this work we assumed that no such graph was present. More generally, the breadth
of work in this area reflects the tight coupling between the broader system design
and particular defense mechanisms that are implemented. For example, DSybil [4]
also explores temporal attacks, but for voting-based systems that do not provide
personalised recommendations as we explore here.

6 Conclusion and Future Work

In this work, we have confronted the problem of sybil attacks to deployed rec-
ommender systems, where sybil groups (of varying size) inject item ratings (at
varying rates) over time in order to either disrupt the system’s recommenda-
tions (via a random attack) or modify the recommendations of a particular item
(with a targeted attack). We introduced a windowed-view of temporal behaviour,
defined a classification of temporal attacks, and then designed and evaluated a
global, user, and item monitoring mechanism that flags when different forms of
attack are taking place. Our work centred on the Netflix dataset: we captured a
variety of features of this data that remain stable over time and are noticeably
affected by a sybil attack. There are a number of other strategies that attack-
ers may adopt, such as the bandwagon or average attacks strategies [2] when
unleashing a set of sybils that we have not explored above. Our detection mech-
anism, in focusing on complimentary dimensions of attacks (the group size and
rate of sybils as they attack), aims to detect attacks regardless of the adopted
strategy.

Our ongoing and future work spans many directions: we have started broad-
ening the range of datasets that we apply these defences to, in order to see how
varying contexts (i.e., rating movies, music, places) change the stable factors
that we take advantage of. We are also conducting experiments in less homoge-
neous settings, where different types of attacks are taking place simultaneously,
to assess the precision, recall and impact of our monitors when combined. In this
work, we assumed that the rate at which profiles are populated is roughly similar
across sybils and constant in time; our future work aims to remove this assump-
tion, thus addressing the case of attackers that incrementally change the rate of
attack, to avoid exceeding the current thresholds and thus pass undetected. Note
though that it is extremely difficult for attackers to know the values of current
thresholds, as they vary with the updating of the exponentially weighted moving
averages; experimenting, in order to discover the thresholds, would be difficult
since avoiding detection in one window does not guarantee that the same rate
will avoid detection in the next.
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Abstract. Given a stream of time-stamped events, like alerts in a net-
work monitoring setting, how can we isolate a sequence of alerts that
form a network attack? We propose a Sequence Based Attack Detec-
tion (SBAD) method, which makes the following contributions: (a) it
automatically identifies groups of alerts that are frequent; (b) it summa-
rizes them into a suspicious sequence of activity, representing them with
graph structures; and (c) it suggests a novel graph-based dissimilarity
measure. As a whole, SBAD is able to group suspicious alerts, visualize
them, and spot anomalies at the sequence level. The evaluations from
three datasets—two benchmark datasets (DARPA 1999, PKDD 2007)
and a private dataset Acer 2007 gathered from a Security Operation
Center in Taiwan—support our approach. The method performs well
even without the help of the IP and payload information. No need for
privacy information as the input makes the method easy to plug into ex-
isting system such as an intrusion detector. To talk about efficiency, the
proposed method can deal with large-scale problems, such as processing
300K alerts within 20 mins on a regular PC.

1 Introduction

Given a long stream of events, such as network-intrusion alerts shown in Ta-
ble. 1 or word tokens in HTTP request traffic, how can we spot subsequences
inside it, that may correspond to an attack? Traditionally, such problem, known
as anomaly detection or intrusion detection has been solved by methods that
require considerable expertise. We propose a different approach which can au-
tomatically identify frequent groups of alerts, summarize them into suspicious
sequences of activity, and represent them with graph structures. Based on the
graphs, a Sequence Based Attack Detection (SBAD) method with a novel Event
Sequence Dissimilarity Measure (SeqD) is proposed for separating the attack se-
quences from the normal ones. In the aspect of visualization for human analysis,
the SBAD is also helpful for showing visualization in a low dimension space where
human experts could easily identify attacks based on the clustered distribution.

C. Dimitrakakis et al. (Eds.): PSDML 2010, LNAI 6549, pp. 78–91, 2011.
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Table 1. An example of alert sequence generated from Network Intrusion Detection
System. Note that the IP information usually seen in the alert sequence is not included
here.

Sequence of Attacks

Event Type Time Stamp (hh:mm) Result

PortScan June. 21 ‘09 10:00 True
PortSweep June. 21 ‘09 10:10 True
PortScan June. 21 ‘09 13:02 True
Open Port June. 21 ‘09 13:10 True
Telnet Traffic Encrypted June. 21 ‘09 13:13 True

Given HTTP request tokens, Fig. 1 shows the sequence-based 2-D Isomap em-
beddings, which belong to normal traffic and different Web attacks. For real
application from security operation center, this 2-D map (rather then millions
of HTTP traffic connection or IDS alerts) is convenient for domain experts to
capture the attack behavior.
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Fig. 1. The 2-D Isomap based on SBAD. Malicious behaviors are clustered together
according to different classes. Each point represents a sequence within an interval,
which is also associated with a correlation/attack graph. The figure on the right shows
a “zoom in” of the dense area on the left figure.

The behavior event, or simply event, can be an alert for network data or
a word token from HTTP request traffic. The event stream is a sequence of
events. For example, Fig. 2 shows three alert sequences that represent different
attack scenarios according to the alert occurrence and ordering. The sequence in
Figs. 2(a) and (b) is the Web application attack that exploits the vulnerability
of cross-site script, and the sequence in Fig. 2(c) is another type of attacks with
successive attempts. Such attacks always consist of several steps. Given the event
sequences, we aim at detecting these attacks.
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Fig. 2. Challenges of this work in a real case from Acer07 data: (a) Web shell variation
attack pattern for the same intention/goal, (b) interjected Web shell attack pattern by
irrelevant alert events, (c) interleaved NMAP denial of service attack pattern by another
event sequence. (A: protocol−command−decode, B: attempted recon, C: attempted
user, D: attempted dos, E: Web application activity, F: possible SQL injection, G: bad
unknown, and X: wild card alert event).

The challenges of this work are as follows:

– interleaving: alert events that belong to the same attack, are not necessarily
consecutive; i.e., other alert events may intervene, as shown in Fig. 2(c)

– interjection: alert events might be interjected by other irrelevant background
events, as shown in Fig. 2(b)

– missing alerts: the alert generation software may fail to generate some alerts,
as shown in Fig. 2(a)

– variations in known attacks: intruders attempt to vary their methods, in
order to evade detection, as shown in Fig. 2(a).

The problem definition is as follows:

Problem 0. Attack Detection

– Given: (1) a stream of events (alerts), some of which are labeled as “true
attacks” and (2) a set of known attack graphs

– Find: which (unlabeled) alerts belong to the same sequence (attack) and
give the attack id, if it is a known attack

Given an event stream, we propose a detection method SBAD on the basis of a
sequence dissimilarity measure SeqD. First, the method spots fragments that ap-
pear often by constructing a transition matrix and looks for frequently-occurring
transitions (allowing for a few variations). The novelty of the proposed method
is the manner in which an exact measurement of the sequence dissimilarity is
carried out on the basis of the dissimilarity between two slightly-different ver-
sions of a transition matrix. Such a dissimilarity measure opens the door for all
the follow-up steps: we can perform clustering (of sequences); nearest-neighbor
search/classification of a new sequence; visualization (e.g., using Fastmap [4] or
Isomap [10]); outlier detection; and several other data mining operations.

We summarize the main contributions of our study as follows: First, we pro-
pose a novel dissimilarity measure for event sequences. Under this measure,
not just sequence-to-sequence, but also sequence-to-template, or template-to-
template comparisons can be carried out. Second, justified by some real case
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studies, our event analyzer can effectively deal with event sequences in the pres-
ence of noise, interleaving, interjection (long insertion) or interception contained
sequences, sequences with missing alerts, etc. Last, we provide a visualization
(Isomap) for an easy understanding of the properties of different malicious or
normal behavior of event sequences. Providing the computable attack graphs
by sequence comparison is the significant difference against to previewed graph-
based alert analysis works [15,18]. The remainder of this paper is organized as
follows: Sec. 2 contains a review of related work. In Sec. 3, we introduce our
approach. In Sec. 4, our approach is evaluated by several series of experiments
on the alert sequence dataset and the Web traffic dataset. Then, in Sec. 5, we
conclude this work.

2 Related Work

Our objective is to detect intrusive or anomalous behavior from event sequences.
In this section, we discuss some previous work on event mining, including a rich
set of work on sequence alignment. One of the most widely used methods to
describe the relationship of two sequences is edit distance. In the case of heavy
interleaving, interceptions or interjections (long insertions) in the middle of a se-
quence, the edit distance is not appropriate to describe the relationship between
two sequences. Likewise, various sequence alignment methods do not work either
as they are considerably sensitive to the orders of one-by-one individual events.
In particular, the finding of the longest common subsequences (LCS) does not
contribute significantly toward solving this problem.

On the other hand, to speak of the complexity issue, the sequence compari-
son must be sufficiently efficient to be successfully applied to a considerably large
amount of data like network streams. Ideally, we look for a strategy that can work
in a linear or close-to-linear manner with respect to the number of event items.
In this sense, edit distance and most alignment methods, if they attempt to solve
a global optimization problem, will not be appropriate because their implementa-
tions rely mostly on a quadratic dynamic programming kernel. Overall, to effec-
tively and efficiently solve the anomaly or intrusion detection problem, given an
event stream, we need to identify the suspicious events or alerts from the stream
with a low false alarm rate and the entire process is favorable to working in a linear
or close to linear manner with respect to the number of events.

Toivonen et al. [14] processed events of Nokia routers, and report frequent
subsequences, by extending the celebrated a priori algorithm [1]. In mining of
frequent patterns with gapped constraint, Ji et al. [5] studied the minimal dis-
tinguishing sequences (MDSs) with a gapped constraint which occurs frequently
in one class but infrequently in another class, and they developed an efficient
algorithm named ConSGapMiner to prune the generated candidates patterns.
Mining MDSs among sequences could be regarded as the enhancement of mea-
suring the dissimilarity between sequences in order to alleviate the impact from
none distinguishing sequences. Mining the frequent closed sequence is also a way
to provide more compact result with better efficiency, Ding et al. [2] proposed
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an efficient approach for finding closed repetitive gapped subsequences which
generates much smaller candidates of sub-sequences. All the above approaches
intend to discover specific patterns in efficient way; but in our case for distin-
guishing intrinsic behavior from difference event sequence in network data with
interleaving, interjection or high variance of patterns, it is unlikely that those
methods can be helpful. In addition, a robust dissimilarity measure is required
for this phenomenon to tolerance highly dynamic network environment.

Keogh et al. [7] looked for a parameter-free description of data. Pao et al. [16]
studied the distance function between biological sequences. They followed the
study of Li et al. [12] and attempted to use Kolmogorov complexity [13] to describe
event sequences. Because of the difficulty of computing Kolmogorov complexity in
general, some compression methods can be adopted for its approximation. Given
two sequences, what is different in our approach is the consideration of the associ-
ated Markov chain models of the sequences and the measurement of how well one
sequence is described by the model in association with another sequence in order
to decide their distance/dissimilarity. Ke et al. [6] proposed an efficient algorithm,
which mines the top-k correlative graphs by exploring only the candidate graphs.
On the other hand, our measure is a graph-based one, which will be combined
with geodesic distance estimation [17]. Lane and Brodley [9] gave an empirical
study regarding instance-based learning and hidden Markov models approaches
with sequence learning for anomaly detection.

3 Graph Based Dissimilarity Measure for Attack
Detection

We propose an approach to identify the malicious behavior in sequences where a
graph-based dissimilarity measure is computed for each pair of event sequences
and the dissimilarity value will be used for intrusion or anomaly detection. In
this section, we detail our approach. As discussed in Sec. 1, we would like to
solve the attack detection problem, rigorously stated below:

Problem 1. Attack Detection in Event Sequences

– Given: (1) an event sequence e and (2) a set of known attack graphs (from
domain experts) {G1, G2, . . . ,Gk}

– Find: (1) the most likely attack graphs G, (2) and give the attack-id, if it
is a known attack

One input event example is the sequence of alerts each identified by the alert
type, or also associated with several additional attributes such as source IP, tar-
get IP, and time stamp. The alerts can have up to 3000 different types, including
Web-application-attack, misc-attack, etc., depending on the setting of IDS. The
attributes such as source or target IPs are generally helpful to decide whether
or not the network is under attack. However, in this work, we consider only
the alert type for the detection, while the time stamp is used only to segregate
alerts into groups. Another example is the sequence of HTTP request tokens.
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The event types in this case can be words (alphanumerical tokens), symbols,
script keywords, variables and so on. We would like to deal with mainly these
two input sequences and detect attacks in these two sequences. To achieve the
goal, we discuss the following three subproblems:

Problem 2. Graph Generation

– Given: a sequence of events e,
– Find the graph G that best describes the sequence

Problem 3. Sequence Coding

– Given: a graph/model G and a sequence e
– Find the best code to describe the sequence e given the known model G

Problem 4. Sequence Dissimilarity Measurement

– Given: two event sequences e1 and e2,
– Find the dissimilarity measure of the two sequences

Our algorithm consists of three modules: (1) Correlation Graph Construction, (2)
Sequence Coding, and (3) Sequence Comparison from our Dissimilarity Measure
SeqD where each tries to solve the Problems 2, 3, 4 just mentioned respectively.
After the dissimilarity measurement is done for each pair of sequences, ideally
we can plug-in any supervised, unsupervised or even semi-supervised schemes for
intrusion detection or anomaly detection. The complete algorithm is shown in
Algorithm 1. Below we discuss all the modules in turn in the following sections.
Before doing so, let us introduce our notations used in this work.

Notations. We use lower case bold letters for vectors or sequences and capital
bold letters for matrices. Given the event sequence e = (e1, . . . , et, . . . , eT ), the
goal is to find out the subsequence with abnormal behavior. In the alert se-
quence, et is simply alert type while in the HTTP token sequence, et is chosen
one of the token types. Given the event sequence, we define the correlation win-
dow of size Wc to indicate the range of (directly) related events. Informally, two
events that are within the distance Wc may be related, such as one attack action
leads to another attack action. For instance, the probing is always the prereq-
uisite for “Buffered Overflow Attack” or “Denial of Service Attack” for finding
the system’s vulnerability. Formally, two correlated events indicate the possible
transition in our Markov chain model. The correlation window is operated in a
sliding fashion. On the other hand, we segregate the event sequence into several
scenario interval of size Ws ≥Wc and assume that a complete attack or network
behavior can be observed in this interval, or we can have enough information
to judge the event flow belonging to an attack or a normal behavior within the
interval. The typical choice of the interval is from several hours to several days.
In a supervised problem, we have labels yi = {1,−1} = {attack, normal} to de-
scribe the intention of network actions for an interval i. In interval i, we construct
correlation graph Gi(V, E, θ) to describe the relation of events where V is the
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Algorithm 1. SBAD algorithm (batch version)
Input: {ei} := {e∗} ∪ {e�}, the new event seq. e∗ and a set of labeled event

sequences {e�}
Output: associated graphs {Gi} := {G∗} ∪ {G�}, dissimilarity matrix D, label

of e∗

/* step 1: Construction of Correlation Graph */

for each sequence e in {ei} do1

Find the event sets V and relations E of e for graph G ;2

A← the frequency counts in all pairs of events within window Wc ;3

A← A + ε (Laplace smoothing factor) ;4

end5

/* step 2: Sequence Coding */

for each pair of (e, G) ∈ {(ei,Gi)} do6

Encode the sequence e given G as c(e |G) (Eq.1) ;7

end8

/* step 3: Dissimilarity Measurement */

Compute dissimilarity matrix Dij := d(ei, ej) for each pair of event sequences9

ei, ej (Eq. 3) ;
/* step 4: Attack Labeling */

Given D, adopt any dissimilarity-based clustering or classification algorithm for10

identifying attacks in e∗

Table 2. Notations

Notation Definition and Description

T the total number of entire event instances
Wc the size of correlation window
Ws the size of scenario interval
S the number of different event types

e(t : u) the event sequence where e(t : u) = (et, et+1, . . . , eu)
yi the label of interval i

G(V, E, θ) the Markov chain-based correlation graph with vertex set V , edge set
E and θ as the model parameters; one graph for each scenario interval

A the transition matrix

set of all event types, and the edge set E as well as the corresponding transition
probabilities θ describes the transition between pair of events, if within window
size Wc. The model parameters θ can be written in a matrix form, known as the
transition matrix, denoted by A of dimension S × S, with the number of states
or event types equal to S. Table 2 summarizes all of our notations.

3.1 Construction of Correlation Graph

Given an event sequence e, we look for the graph G that is the most appropriate
one to describe the sequence. We consider correlation graph in this study. A
correlation graph G(V, E, θ) has its vertices V belonging to the event types,
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either the alert or token types; while its edges E are the possible transitions
between those event types; and the model parameters θ record all transitions, or
in matrix form the S×S transition matrix A with Aij denotes the probability1

of jumping from state (alert or token type) i at some time to state j at a
later time. To be specific, if two events et = i at time t and eu = j at time
u are directly correlated, such transition should contribute to Aij . The goal of
correlation graph is intended to model the correlations between pairs of events.
We build a graph for each partial sequence in a scenario interval of length Ws.

Given interleaved inputs like network data, we consider the pair of events
to be the possible related events if they are within the distance of Wc. Trying
all the event pairs within the time stamp distance Wc is because we have no
clue whether two events indeed form a correlated event pair. This design may
give an overestimated result. However, we can assume that the event pairs not
considered to be the true correlated pairs contribute randomly to each of the
transitions. Hopefully, the Laplace smoothing shall give us nothing but the bias
of uniform prior.

3.2 Sequence Coding

We would like to study the coding scheme of a sequence given some background
knowledge of a model. In our design, each sequence e(t0 : t0 +Ws) has an as-
sociated correlation graph G(V, E, θ) with a set of transition parameters and
states (types) decided by the sequence. The code of sequence e given G can be
chosen to be the Shannon code, with the code length equal to the negation of
log-likelihood �(e;G) = log L(e;G) = log P (e |G). The code length is given by

c(e |G) = −�(e;G) = − logL(e;G) . (1)

The alert sequence is likely to be heavily interleaved. We consider all the pairs
to be the possible transitions. That is, we compute

�̃(e;G) = log L̃(e;G) = log

⎛

⎝P (et0)
∏

0<u−t≤Wc

P (eu | et)

⎞

⎠

= log P (et0) +
∑

0<u−t≤Wc

log P (eu | et) . (2)

where L is the likelihood function. We assume the initial probability P (et0) to
be constant in this work and therefore can be avoided in later computations.

Suppose we try bi-gram counts for heavily interleaved inputs, because the
consecutive events are less likely to be correlated, we may encounter a lot of
transitions that are not existed in the model. The consequence is to obtain a low
likelihood or long code length. Opposed to that, choosing Eq. 2 can “smooth out”
such defect and give us reasonable result. We justify our conjecture in Fig. 3(c),
where an all-pair design is compared to a bi-gram strategy and the experiment
shows that the all-pair strategy is superior to the bi-gram strategy.
1 In this study, we assume A to be stationary, that is, not changing through the time.
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3.3 Sequence Comparison and Dissimilarity Measure

Given two event sequences e1 and e2 and their associated graphs G1, G2, the
dissimilarity between the two sequences depends on how well one sequence is
described by the model for another sequence. We define the dissimilarity of two
event sequences e1 and e2 as

d(e1, e2) =
c(e1 |G2) + c(e2 |G1)

c(e12 |G12)
, (3)

where e12 is the new sequence formed by concatenating sequences e1 and e2

together, and G12 is the associated correlation graph of the concatenated2 se-
quence e12. In the end, we have pairwise dissimilarities for all pairs of event
sequences.

Embedding and Attack Detection. The last goal is attack detection. Given the
dissimilarity for each pair of sequences, sequence embedding seeks to represent
the event sequences in an space so that the distance in the space well represents
the relation of those sequences. It provides the interpretable insight for further
investigation from domain experts. We need to emphasize that the “distance” in
Eq. 3 is not exactly distance if the triangle inequality does not hold. However,
with the sequences embedded by Isomap, the triangle inequality naturally holds
as it finds shortest paths between pairs of event sequences.

With the sequence embedding, in principle we can plug in any classifiers for
signature-based detection or any clustering methods for anomaly detection. In
this study, we adopt smooth SVM (SSVM), which tries to solve an unconstrained
minimization problem [11], and kNN for most of our evaluation.

4 Experiment Result

In this section, we compare our proposed method to other approaches and illus-
trate the experiment results to justify our method and the dataset and SBAD
code are available at http://neuron.csie.ntust.edu.tw/sbad. The evaluation met-
rics are described for evaluating the perfromance of proposed approach in teh
aspect of attack detection are given in Sec. 4.2. The applied data and the pa-
rameters for our experiments are introduced in Sec. 4.1, followed by the results
on the datasets in Sec. 4.3 and Sec. 4.4.

4.1 Datasets

We use three different datasets in our experiments, summarized in Table 3 . We
test our proposed SBAD on DARPA 1999 (DARPA99)3, iCAST/Acer eDC07
2 We can treat e12 and e21 as virtually the same to generate similar correlation graphs

between G12 or G21. The only thing to make the difference is the transition at
concatenating point between e1 and e2.

3 DARPA intrusion detection evaluation, in http://www.ll.mit.edu/ The proposed
method in this study just considers the alert sequences and time stamps, some
problematic features are not adopted.
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Table 3. Dataset Description (T:F denotes the ratio between True and False Events)

Duration Total Events (T:F) Correlation Graphs (T:F)

DARPA99 5 weeks 55473 (1:1.9) 442 (1:6.3)
Acer07 9 days 302434 (1:58.5) 2062 (1:5.8)
PKDD07 — 50116 (1:2.3) 50116 (1:2.3)

dataset (Acer07) 4, and ECML-PKDD 2007’s “Analyzing Web Traffic challenge”
(PKDD07) for the evaluation. For DARPA99 and Acer07, alerts are generated
using Snort5.

Other than IDS alert datasets, PKDD07 is for determining whether or not a
given HTTP request contains attack(s). PKDD07 extracted from HTTP query
logs consists of 50116 examples including one valid (normal query) category and
seven attack categories. Each example in the dataset is completely independent
from others and has a unique id, context (describing what environment the query
was run), class (the sample category classified by experts), and the content of the
query itself. Additionally, there is an important attribute called “attackInterval”
which indicates the location of attack sequences. We grouped the tokens into 40
pre-specified token categories, such as “Scripts Word”, “SQL syntax” and so on,
as event types.

4.2 Evaluation Metrics

In our evaluation, we regard each alert event as an instance for detection; that
is, our evaluation is sequence-based rather than alert-based. We identify attacks
based on a series of alerts/events and the correlations between them. Given a
series of alerts/events, we construct an associated graph and predict its label as
either an attack or normal traffic/HTTP request.

To evaluate the effectiveness of proposed method, we use a confusion matrix
[8] to measure the precision and recall in our experiments. Here, let TP (true
positive) be the number of alert sequences with true alarms (attacks) that are
correctly detected; FN (false negative) be the number of attacks that are not
detected; let TN (true negative) be the number of alert sequences without true
alarms (normal sequences) that are correctly classified; and let FP (false positive)
be the number of normal sequences that are incorrectly detected as malicious
sequences. The accuracy is defined by as follows:
the precision (P) is defined by

Precision =
TP

TP + FP
, (4)

and the recall rate (R) is defined by

recall =
TP

TP + FN
. (5)

4 http://www.accsi.net/english/index.html
5 Snort, the open source network intrusion system, in http://www.snort.org



88 C.-H. Mao et al.

3 4 5 6 7 8 9 10 11

0.2

0.4

0.6

0.8

1

Correlation Window Size (Wc)

 

 

Precision
Recall
Error Rate

Better

Better

2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

Correlation Window Size (Wc)

 

 

Precision
Recall
Error Rate

Better

Better

(a) (b)

2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

Correlation Window Size (Wc)

 

 

Precision
Recall
Error Rate

Better

Better

0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

R
ec

al
l

 

 

Acer07 Bigram
Acer07 All Pairs
DARPA Bigram
DARPA All Pairs
PKDD07 Bigram
PKDD07 All Pairs

All Paris

Bigram

All Paris

Bigram

Bigram

All Paris

(c) (d)

Fig. 3. Sensitivity analysis of correlation window Wc with its size equal to 2, 3, . . . to
11 events (Ws is 60 mins) for (a) Acer07, (b) DARPA99 and (c) PKDD07. It gives
relatively stable result. However, all-pair approach still performs better than bi-gram
approach, as shown in (d). It shows the comparison of precision and recall for Acer07,
DARPA99 and PKDD07 in both bi-gram (Wc = 2) and all-pair (Wc > 7) settings.

We use the above evaluation metrics to assess the efficacy of proposed method.

4.3 Sensitivity Analysis and Robustness

The first series is the sensitivity study of SBAD based on different choices of cor-
relation windows. As shown in Fig. 3(a) or (b), choosing the window size from
2 to 11 gives relatively stable performance according to error rate, false positive
rate and false negative rate. In Fig. 3(c), all-pair did not perform significant bet-
ter than bi-gram due to without interleaving situation in HTTP traffics (easily
separated by HTTP Request/Response protocol). However, SBAD with a corre-
lation window larger than 2 (bi-gram) always performs better, as shown in (d).
It confirms our conjecture that all-pair approach suits better for network data
than bi-gram approach where we have interleaved data, or data contains inter-
jections or variations. That means when the data is highly interleaved, to count
frequencies from all pairs as correlated events makes more sense than count-
ing only the consecutive bi-gram pairs (Wc = 2). As discussed before, even with
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Fig. 4. Capability of detection, evaluated by ROC curves for both Acer07 and PKDD07
datasets: (a) shows the Acer07 data, with AUC values equal to 0.882, 0.796, 0.792 and
0.530 for the methods of SBAD+kNN, SBAD+DT(decision tree), SBAD+SVM, and
DT respectively; (b) shows the ROC curves of several methods when they work on
the PKDD07 data. As shown, SBAD+kNN and SBAD+Näıve Bayes work better. For
PKDD07 data, (c) is the precision vs. recall plot of SBAD compared with various other
methods. SBAD’s are in “+”, “×” and “∗”, all closest to the ideal (1, 1).

the overestimation on the frequency counts, the counts are likely uniformly and
randomly distributed to all the different state transitions and give little negative
impact to our detection.

4.4 Effectiveness Analysis

In this part of experiments, we show that our SBAD is indeed superior to other
methods in several different aspects. Three datasets, DARPA99 and Acer07 for
alert analysis and PKDD07 for Web access analysis are used to demonstrate
the effectiveness of our proposed approach on solving the Problem 1. In the
evaluation of DARPA99 and Acer07 alert data, as binary classification problems
(identifying true alarm from false alarm), SBAD can achieve 90% or higher accu-
racies, as shown in Fig. 4 (DARPA result is not shown due to space limitation).
In the comparisons, SBAD is superior to other baseline approach (e.g., decision
tree), even without using the IP information.

For PKDD07, there is no IP information involved. Note that HTTP traffic
dataset in PKDD07 is a multi-class dataset, and several methods including the
method from [3] and conventional TF-IDF method are compared. As shown in
Fig. 4(b) and (c), our SBAD combined with either kNN, Näıve Bayes, or SVM
works the best among all the other methods, including the PKDD07 best result
which is a kind of generalized signature-based approach.

4.5 Real Case for Dissimilarity

Based on Acer07’s ground truth, we provide an example to demonstrate the use
of our constructed knowledge base. Figure 5(a) shows a query ACG comprised
of an alert thread and its frequency computation. We apply our dissimilarity
measure to find the alert sequences that are in close proximity, as shown in
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Fig. 5. Examples of correlation graphs and similarity measurement by proposed ap-
proach, (a) alert correlation graph query, (b) similar malicious correlation graph graph,
(c) dissimilar graph

Figure 5(b). An example of an irrelevant sequences extracted from the dataset
is shown in Figure 5(c). The dissimilarity measure can be easily validated by
checking the alert types and the structure of the correlation graph. Through the
dissimilarity measuring for two arbitrary event sequences, the different event
occurrence and ordering were considered in the same time.

5 Conclusion

We proposed a fully implemented method for event sequence analysis. Our
method can automatically extract frequent transition sets from interleaving se-
quences and give effective detection result on data with malicious or anomaly
behavior, even in the cases where attack sequences may hide themselves by
adding noise or be with missing alerts. Moreover, we showed that it can provide
meaningful insights and good visualization for domain experts, all these mer-
its are attributed to our carefully designed dissimilarity measure (Eq. 3). The
results show that our method consistently matched or outperformed the com-
petitors in terms of precision and recall, or ROC curve, even without the help
of IP information.
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Abstract. As a growing number of software developers apply machine
learning to make key decisions in their systems, adversaries are adapting
and launching ever more sophisticated attacks against these systems. The
near-optimal evasion problem considers an adversary that searches for a
low-cost negative instance by submitting a minimal number of queries
to a classifier, in order to effectively evade the classifier. In this position
paper, we posit several open problems and alternative variants to the
near-optimal evasion problem. Solutions to these problems would signif-
icantly advance the state-of-the-art in secure machine learning.

Keywords: Query Algorithms, Evasion, Reverse Engineering, Adver-
sarial Learning.

1 Introduction

A number of systems and security engineers have proposed the use of machine
learning techniques for detecting or filtering miscreant activities in a variety of
applications, e.g., spam, intrusion, virus, and fraud detection. All known de-
tection algorithms have blind spots : classes of miscreant activity that fail to be
detected. While learning enables the detector to adapt, adversaries can still ex-
ploit blind spots to evade detection. A significant challenge is to quantify how
effectively an adversary can discover blind spots by querying the detector.

Consider, for example, a spammer who wishes to minimally modify a spam
message so it is not classified as spam by a public webmail system’s spam classi-
fier. His cost is measured by the change in the value of the modified message. The
spammer can observe the classifier’s behavior by creating a dummy account on
the webmail system. By observing the responses of the spam detector to queries,
the spammer can search for a minimal modification. Similarly for host-based
intrusion detection, an intruder may be forced to obfuscate an attack to avoid
detection. The attacker can alter their exploit by inserting no-ops, using syn-
onymous system calls, or even choosing between one of several possible exploits.
Successful intrusions can also be observed by the attacker.

While instances have associated costs to the adversary, he also incurs a cost
for the queries needed to search for evading instances. Sending a large number of
queries requires additional resources and may arouse suspicion to the malicious
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� Springer-Verlag Berlin Heidelberg 2011
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behavior. In practice, adversaries employ a number of techniques to mitigate this
second cost, such as opening multiple webmail accounts or rate-limiting spam
or worm probing attacks; these strategies require the attacker to use increased
sophistication and computational resources.

Here we revisit the near-optimal evasion problem—a theoretical formulation
that quantifies how effectively a classifier can be evaded through querying. We
outline open problems and introduce novel variants of the original formulation.

1.1 The Near-Optimal Evasion Problem

The Near-Optimal Evasion Problem is a formulation of adversarial evasion that
quantifies the hardness of search for low-cost negative instances in terms of
the number of queries used. As first posed by Lowd and Meek [6] under the
name adversarial classifier reverse-engineering, the near-optimal evasion prob-
lem quantifies the query complexity required by an adversary to find a negative
instance with near-minimal cost in terms of the size of the feature space and the
desired accuracy. By analyzing the query complexity for a family of classifiers,
near-optimal evasion provides a notion of how hard that family is to evade; e.g.,
if a spammer must send exponentially-many queries in the dimensionality of the
feature space, it is difficult for the spammer to successfully improve his spam.

In this setting, we assume instances are represented in a D-dimensional feature
space (e.g., X ⊆ RD) and the target classifier f belongs to a family F of binary
classifiers where each classifier f ∈ F is a mapping from feature space X to a
label in {�−�, �+�}. A deterministic f ∈ F partitions X into two sets—the positive
class X+

f = {x ∈ X | f (x) = �+�} and the analogous negative class X−
f , which

we take to be the normal instances. We assume that the adversary is aware of
at least one instance in each class, x− ∈ X−

f and xA ∈ X+
f , knows F and not f ,

and can observe f (x) for any x ∈ X by issuing a membership query.

Adversarial Cost. We assume the adversary has a cost function A : X → R0+;
e.g., for a spammer this could be edit distance on messages. The adversary wishes
to optimize A over the negative class X−

f ; e.g., the spammer wants to send spam
that will be classified as normal email (�−�). Typically the cost function is a
distance to a target instance xA ∈ X+

f that is most desirable to the adversary;
e.g., an �p distance induces cost Ap (x) =

∥
∥x− xA

∥
∥

p
.

Lowd and Meek [6] define minimal adversarial cost (MAC) of a classifier f to
be the best lower bound on the cost that any negative instance obtains

MAC (f ,A) � inf
x∈X−

f

[A (x)] . (1)

They further define a data point to be an ε-approximate instance of minimal
adversarial cost (ε-IMAC) if it is a negative instance with cost no more than a
factor of (1 + ε) times the MAC ; i.e., every ε-IMAC is a member of the set

ε-IMAC (f , A) �
{
x ∈ X−

f

∣
∣
∣ A (x) ≤ (1 + ε) ·MAC (f , A)

}
. (2)
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The goal of the Near-Optimal Evasion Problem is to quantify the worst-case
query complexity required for an adversary to infer an ε-IMAC , depending on
the richness of the family of classifiers. Finding an ε-IMAC for a singleton family
can be achieved offline without any queries, whereas if the family is large, many
more queries will be necessary to find an ε-IMAC . Formally,

A family of classifiers F is ε-IMAC searchable under a family of cost
functions A if for all f ∈ F and A ∈ A, there is an algorithm that finds
x ∈ ε-IMAC (f , A) using polynomially many membership queries in D
and Lε = log 1

ε
. We will refer to such an algorithm as efficient.

1.2 Security and the Near-Optimal Evasion Problem

The near-optimal evasion problem sheds light on several real-world security is-
sues. The problem abstracts the scenario of an adversary who wishes to launch
a specific attack that is blocked by a classifier-based defense. The attacker has
a limited number of probing opportunities after which he must send an attack
as close as possible to his originally intended attack—a near-optimal attack.

In the case of email spam, the spammer may originally have a message that
will be detected as spam. He probes, finds a near-optimal message that evades
the filter, and sends this message instead. In the case of an intruder, he has a
preferred sequence of system calls that will be detected as intrusions. He probes,
finds and executes a near-optimal sequence that evades the detector.

With this framework in mind, we now clearly see the role of a defender: to
provide a classifier that resists near-optimal evasion. Practical implementation
requires careful selection of costs and realistic bounds on the number of probes an
adversary can perform. Resulting lower-bounds on the number of probes required
for near-optimal evasion provide significant evidence of effective security.

1.3 Previous Work

Lowd and Meek [6] first introduced near-optimal evasion and developed efficient
methods that reverse-engineer linear classifiers in both real-valued and Boolean
feature spaces for �1 costs. Nelson et al. [7] generalized the result from linear
classifiers to the family of convex-inducing classifiers that partition the space of
instances into two sets one of which is convex. In generalizing to this family, they
showed that near-optimal evasion does not require an estimate of the classifier’s
decision boundary or state. Nelson et al. [8] further explored general �p costs
and found not all are ε-IMAC searchable for convex-inducing classifiers.

Dalvi et al. use a cost-sensitive game-theoretic approach to preemptively patch
a classifier’s blind spots [5]. They construct a modified classifier designed to
detect optimally modified instances. Biggio et al. [3] extend this game-theoretic
approach and propose hiding information or randomization as additional defense
mechanisms for this setting. However, they do not explore near-optimal evasion
for randomized classifiers as we propose in Section 3.3.
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2 Open Problems in the Theory of Near-Optimal Evasion

A number of unanswered questions remain about the near-optimal evasion prob-
lem. Here we motivate these problems and suggest potential directions.

Question 1: Can we find matching upper and lower bounds for evasion al-
gorithms? Is there a deterministic strategy with polynomial query complexity for
all convex-inducing classifiers? In previous work, linear and convex-inducing
classifiers were shown to be ε-IMAC searchable for �1 costs by demonstrating
algorithms with polynomial query complexity. Currently, it is known that for con-
vex positive class, O (

Lε +
√

LεD
)

queries are sufficient to find a near-optimal
instance, although the tightest known lower bound in this case is O (Lε + D).
In the case of convex X−

f , the best known algorithm is a randomized ellipsoid
approach (cf. [2]) that finds a near-optimal instance with high probability using
O∗ (

D5
)

queries (ignoring logarithmic terms).
Question 2: Is there some family larger than the convex-inducing classifiers

that is ε-IMAC searchable? Are there families outside of the convex-inducing
classifiers for which near-optimal evasion is efficient? Existing approaches to
near-optimality have built on the machinery of convex optimization. However,
many interesting classifiers are not convex-inducing classifiers. Currently, the
only such known result (due to Lowd and Meek) is that linear classifiers on
Boolean instance space are 2-IMAC searchable.

Question 3: Is some family of SVMs ( e.g., with a known kernel) ε-IMAC
searchable for some ε? Can an adversary incorporate the structure of a non-
convex classifier into the ε-IMAC search? Consider SVMs with non-linear ker-
nels. The classifier is non-convex in the original feature space, while the classifier
is linear in its Reproducing Kernel Hilbert Space but the cost function may no
longer be easy to minimize in that space. However SVMs have other properties
that may facilitate near-optimal evasion. For instance, in cases where there are
few support vectors, one only needs to find these instances to reconstruct the
classifier.

Question 4: Are there characteristics of non-convex, contiguous bodies that
are indicative of the hardness of the body for near-optimal evasion? What about
non-contiguous bodies? It appears that the family of contiguous bodies (i.e., the
set of all classifiers for which either X+

f or X−
f is a contiguous set) cannot be gen-

erally ε-IMAC searchable since this family includes members with many locally
minimal cost regions which are hard for local search or binary search proce-
dures to avoid, but perhaps some subsets of this family are ε-IMAC searchable.
For families of non-contiguous bodies, ε-IMAC searchability seems impossible to
achieve (disconnected components could be arbitrarily close to xA) unless the
classifiers’ structure can be exploited; e.g., as we discuss for SVMs above.

Question 5: For what classes of classifiers is reverse-engineering as easy as
evasion? Reverse-engineering is the process of querying to learn the decision
boundary, and is sufficient for solving the evasion problem. It is now known that
the query complexity of reverse-engineering linear classifiers is identical to that
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of evasion, while reverse-engineering is strictly more difficult for general convex-
inducing classifiers [8]. It is unknown whether there exists a class in between
linear and convex-inducing classifiers on which the two tasks are equivalent.

Question 6: Is there a relationship between the query complexity required
for evasion and traditional measures of classifier complexity such as the VC-
dimension? Currently, there is no known relationship between these complexity
measures for a family of classifiers. Finding such a relationship could answer
many of the previous questions about what classifiers can be evaded.

3 Alternative Models for Evasion

Here we suggest a number of variants of near-optimal evasion that generalize or
reformulate the original problem to capture new aspects of the overall challenge.

3.1 Additional Information about Training Data Distribution

Consider an adversary that knows the training algorithm and obtains samples
drawn from a natural distribution. A few interesting settings include:

1. The adversary’s samples are a subset of the training data.
2. The adversary’s samples are from the same distribution as the training data.
3. The adversary’s samples are from a perturbation of the training distribution.

With this additional information, the adversary may estimate their own classifier
f̃ and analyze it offline. Some open questions include:

Question 7: What can be learned from f̃ about f ? How can f̃ best be used
to guide search? Can the sample data be directly incorporated into ε-IMAC-
search? Relationships between between f and f̃ can build on existing results in
learning theory. A possibility is to bound the difference between MAC (f ,A) and
MAC (f̃ , A) in one of the above settings. If the difference is sufficiently small
with high probability, then a search for an ε-IMAC could use MAC (f̃ , A) to
initially lower bound MAC (f ,A). This should reduce query complexity since
lower bounds on the MAC are typically harder to obtain than upper bounds.

3.2 Beyond the Membership Oracle

Question 8: What types of additional feedback may be available to the adver-
sary and how do they impact the query complexity of ε-IMAC-search? In this
scenario, the adversary receives more from the classifier than just a �+�/�−� la-
bel. For instance, suppose the classifier is defined as f (x) = I {g (x) > 0} for
some real-valued function g (as is the case for SVMs) and the adversary re-
ceives g (x) for every query instead of f (x). If g is linear, the adversary can use
D + 1 queries and solve a linear regression problem to reverse-engineer g. This
additional information may also be useful for approximating the support of an
SVM.
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3.3 Evading Randomized Classifiers

In this variant of near-optimal evasion, we consider randomized classifiers that
generate random responses from a distribution conditioned on the query x. To
analyze the query complexity of such a classifier, we must first generalize our
concept of the MAC . We propose the following candidate generalization:

RMAC (f ,A) = inf
x∈X−

f

{A (x) + λP (f (x) = �−�)} .

If f is deterministic, we need λ ≥ MAC (f , A) for this definition to be equivalent
to Eq. (1) (e.g., λ = A

(
xA

)
+ 1 is sufficient); otherwise, a trivial minimizer

for λ < MAC (f ,A) is xA. For a randomized classifier, λ balances cost with
probability of success.

Question 9: Given access to the membership oracle only, how difficult is
near-optimal evasion of randomized classifiers? Are there families of randomized
classifiers that are ε-IMAC searchable? Potential randomized families include:

1. Classifiers with fuzzy boundary of width δ around a deterministic boundary
2. Classifiers based on the class-conditional densities for a pair of Gaussians, a

logistic regression model, or other members of the exponential family.

Evasion of randomized classifiers seems to be more difficult than for determinis-
tic classifiers as each query provides limited information about the query prob-
abilities. Based on this argument, Biggio et al. promote randomized classifiers
as a defense against evasion [3]. However, the query complexity for evasion of
randomized classifiers is currently unknown.

3.4 Querying with Real-World Objects

Question 10: How can the feature mapping be inverted to design real-world
instances to map to desired queries? How can query algorithms be adapted for
approximate querying? In the original model of evasion, it was assumed that the
attacker could observe f (x) for any x ∈ X . This capability implicitly assumes
that the attacker has knowledge of the feature mapping from real-world objects
(e.g., emails or packets) into the learner’s feature space. Not only is this mapping
often unknown, it also need not be one-to-one or onto: multiple emails may map
to the same bag-of-words vector, and some instances in feature space may not
correspond to any real-world object. This significantly complicates evasion for
real-world adversaries.

3.5 Evading an Adaptive Classifier

Finally we consider a classifier that periodically retrains on queries. This variant
is a multi-fold game between the attacker and learner, with the adversary now
able to issue queries that degrade the learner’s performance. Techniques from
game-theoretic online learning should be well-suited to this setting [4].

Question 11: Given a set of adversarial queries (and possibly additional
innocuous data) will the learning algorithm converge to the true boundary or can
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the adversary deceive the learner and evade it simultaneously? If the algorithm
does converge, at what rate? To properly analyze retraining, it is important to
have an oracle that labels the points sent by the adversary since the adversary can
also query in X−

f . If all points sent by the adversary are labeled �+�, the classifier
may prevent effective evasion, but with a large number of false positives due to
the adversary’s queries in X−

f ; this itself would constitute an attack against the
learner [1].

4 Conclusion

The intersection of security, systems, and machine learning research has yielded
significant advances in decision-making for complex systems, but has also intro-
duced new challenges in protecting against malicious users. While earlier research
laid the groundwork for understanding the near-optimal evasion problem, fun-
damental problems remain unaddressed. In this paper, we discussed several of
these problems and variants, and proposed potential avenues for future research.
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Abstract. As increasing amounts of sensitive personal information is
aggregated into data repositories, it has become important to develop
mechanisms for processing the data without revealing information about
individual data instances. The differential privacy model provides a
framework for the development and theoretical analysis of such mech-
anisms. In this paper, we propose an algorithm for learning a discrim-
inatively trained multiclass Gaussian classifier that satisfies differential
privacy using a large margin loss function with a perturbed regulariza-
tion term. We present a theoretical upper bound on the excess risk of
the classifier introduced by the perturbation.

1 Introduction

In recent years, vast amounts of personal data is being aggregated in the form of
medical, financial records, social networks, and government census data. As these
often contain sensitive information, a database curator interested in releasing a
function such as a statistic evaluated over the data is faced with the prospect
that it may lead to a breach of privacy of the individuals who contributed to the
database. It is therefore important to develop techniques for retrieving desired
information from a dataset without revealing any information about individual
data instances. Differential privacy [1] is a theoretical model proposed to ad-
dress this issue. A query mechanism evaluated over a dataset is said to satisfy
differential privacy if it is likely to produce the same output on a dataset dif-
fering by at most one element. This implies that an adversary having complete
knowledge of all data instances but one along with a priori information about
the remaining instance, is not likely to be able to infer any more information
about the remaining instance by observing the output of the mechanism.

One of the most common applications for such large data sets such as the ones
mentioned above is for training classifiers that can be used to categorize new
data. If the training data contains private data instances, an adversary should
not be able to learn anything about the individual training dataset instances by
analyzing the output of the classifier. Recently, mechanisms for learning differ-
entially private classifiers have been proposed for logistic regression [2]. In this
method, the objective function which is minimized by the classification algorithm
is modified by adding a linear perturbation term. Compared to the original clas-
sifier, there is an additional error introduced by the perturbation term in the

C. Dimitrakakis et al. (Eds.): PSDML 2010, LNAI 6549, pp. 99–112, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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differentially private classifier. It is important to have an upper bound on this
error as a cost of preserving privacy.

The work mentioned above is largely restricted to binary classification, while
multi-class classifiers are more useful in many practical situations. In this pa-
per, we propose an algorithm for learning multi-class Gaussian classifiers which
satisfies differential privacy. Gaussian classifiers that model the distributions of
individual classes as being generated from Gaussian distribution or a mixture
of Gaussian distributions [3] are commonly used as multi-class classifiers. We
use a large margin discriminative algorithm for training the classifier introduced
by Sha and Saul [4]. To ensure that the learned multi-class classifier preserves
differential privacy, we modify the objective function by introducing a perturbed
regularization term.

2 Differential Privacy

In recent years, the differential privacy model proposed by Dwork, et al. [1] has
emerged as a robust standard for data privacy. It originated from the statistical
database model, where the dataset D is a collection of elements and a ran-
domized query mechanism M produces a response when performed on a given
dataset. Two datasets D and D′ differing by at most one element are said to be
adjacent. There are two proposed definitions for adjacent datasets one based on
symmetric difference – D′ containing of one entry less than D, and one based
on substitution – one entry of D′ differs in value from D. We use the substi-
tution definition of adjacency previously used by [5,2], where the one entry of
the dataset D = {x1, . . . , xn−1, xn} is modified to result in an adjacent dataset
D′ = {x1, . . . , xn−1, x

′
n}. The query mechanism M is said to satisfy differential

privacy if the probability of M resulting in a solution S when performed on a
dataset D is very close to the probability of M resulting in the same solution S
when executed on an adjacent dataset D′. Assuming the query mechanism to be
a function M : D �→ range(M) with a probability function P defined over the
space of M , differential privacy is formally defined as follows.

Definition 1. A randomized function M satisfies ε-differential privacy if for all
adjacent datasets D and D′ and for any S ∈ range(M),

∣
∣
∣
∣log

P (M(D) = S)
P (M(D′) = S)

∣
∣
∣
∣ ≤ ε.

The value of the ε parameter, which is referred to as leakage, determines the
degree of privacy. As there is always a trade-off between privacy and utility, the
choice of ε is motivated by the requirements of the application.

In a machine learning setting, the query mechanism can be thought of as an
algorithm learning the classification, regression or density estimation rule which
is evaluated over the training dataset. The output of an algorithm satisfying dif-
ferential privacy is likely to be same when the value of any single dataset instance
is modified, and therefore, no additional information can be obtained about any
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individual training data instances with certainty by observing the output of the
learning algorithm, beyond what is already known to an adversary. Differential
privacy is a strong definition of privacy – it provides ad omnia guarantee as
opposed to most other models that provide ad hoc guarantees against specific
set of attacks and adversarial behaviors.

2.1 Related Work

The earlier work on differential privacy was related to functional approxima-
tions for simple data mining tasks and data release mechanisms [6,7,8,9]. Al-
though many of these works have connection to machine learning problems,
more recently the design and analysis of machine learning algorithms satisfying
differential privacy has been actively studied. Kasiviswanathan, et al. [5] present
a framework for converting a general agnostic PAC learning algorithm to an al-
gorithm that satisfies privacy constraints. Chaudhuri and Monteleoni [2] use the
exponential mechanism [10] to create a differentially private logistic regression
classifier by adding Laplace noise to the estimated parameters. They propose
another differentially private formulation which involves modifying the objec-
tive function of the logistic regression classifier by adding a linear term scaled
by Laplace noise. The second formulation is advantageous because it does not
require the classifier sensitivity which is difficult to calculate in general. Also, it
can be shown that using a perturbed objective function introduces a lower error
as compared to the exponential mechanism.

However, the above mentioned differentially private classification algorithms
only address the problem of binary classification. Although it is possible to ex-
tend binary classification algorithms to multi-class using techniques like one-vs-
all, it is much more expensive to do so as compared to a naturally multi-class
classification algorithm. Jagannathan, et al. [11] present a differentially private
random decision tree learning algorithm which can be applied to multi-class
classification. Their approach involves perturbing leaf nodes using the sensitiv-
ity method, and they do not provide theoretical analysis of excess risk of the
perturbed classifier. In this paper, we propose a modification to the naturally
multi-class large margin Gaussian classification algorithm [4,12].

3 Large Margin Gaussian Classifiers

We investigate the large margin multi-class classification algorithm introduced
by Sha and Saul [4]. The training dataset (x, y)1 contains n d-dimensional iid
training data instances xi ∈ Rd each with labels yi ∈ {1, . . . , C}. We consider
the setting where each class is modeled as a single Gaussian ellipsoid. Each class
ellipsoid is parametrized by the centroid µc ∈ Rd, the inverse covariance matrix
Ψc ∈ Rd×d, and a scalar offset θc ≥ 0. The decision rule is to assign an instance
xi to the class having smallest Mahalanobis distance [13] with the scalar offset
from xi to the centroid of that class.
1 Notation: vectors and matrices are denoted by boldface.
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yi = argmin
c

(xi − µc)T Ψc(xi − µc) + θc. (1)

To simplify the notation, we expand (xi − µc)T Ψc(xi − µc) and collect the
parameters for each class as the following (d + 1)× (d + 1) positive semidefinite
matrix

Φc =
[

Ψc −Ψcµc

−µT
c Ψc µT

c Ψcµc + θc

]

(2)

and append a unit element to each d-dimensional vector xi. The decision rule
for a data instance xi simplifies to

yi = argmin
c

xT
i Φcxi. (3)

The discriminative training procedure involves estimating a set of positive
semidefinite matrices {Φ1, . . . ,ΦC} from the training data {(x1, y1), . . . , (xn, yn)}
which optimize the performance on the decision rule mentioned above. We apply
the large margin intuition about the classifier maximizing the distance of training
data instances from the decision boundaries having a lower error. This leads to
the classification algorithm being robust to outliers with provably strong gener-
alization guarantees. Formally, we require that for each training data instance xi

with label yi, the distance from xi to the centroid of class yi is at least less than
its distance from centroids of all other classes by one.

∀c �= yi : xT
i Φcxi ≥ 1 + xT

i Φyixi.

Analogous to support vector machines, the training algorithm is an optimization
problem minimizing the hinge loss denoted by [f ]+ = max(0, f), with a linear
penalty for incorrect classification. We use the sum of traces of inverse covariance
matrices for each classes as a regularization term. The regularization requires
that if we can learn a classifier which labels every training data instance correctly,
we choose the one with the lowest inverse covariance or highest covariance for
each class ellipsoid as this prevents the classifier from over-fitting. The parameter
λ controls the trade off between the loss function and the regularization.

J(Φ, x, y) =
∑

i

∑

c �=yi

[
1 + xT

i (Φyi −Φc)xi

]
+

+ λ
∑

c

trace(Ψc). (4)

The inverse covariance matrix Ψc is contained in the upper left size d× d block
of the matrix Φc. We replace it with IΦΦcIΦ, where IΦ is the truncated size
(d + 1)× (d + 1) identity matrix with the last diagonal element IΦd+1,d+1 set to
zero. The optimization problem becomes

J(Φ, x, y) =
∑

i

∑

c �=yi

[
1 + xT

i (Φyi −Φc)xi

]
+

+ λ
∑

c

trace(IΦΦcIΦ)

= L(Φ, x, y) + N(Φ). (5)
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The hinge loss being non-differentiable is not convenient for our analysis; we
replace it with a surrogate loss function called Huber loss lh [14] which has
similar characteristics as the hinge loss for small values of h.

�h(Φc,xi, yi) =

⎧
⎪⎨

⎪⎩

0 if xT
i (Φc −Φyi)xi > h,

1
4h

[
h − xT

i (Φyi −Φc)xi

]2
if |xT

i (Φc −Φc)xi| ≤ h

−xT
i (Φyi −Φc)xi if xT

i (Φc −Φyi)xi < −h.

(6)

The objective function is convex function of positive semidefinite matrices Φc.
The optimization can be formulated as a semidefinite programming problem [15]
and be solved efficiently using interior point methods.

The large margin classification framework can be easily extended to modeling
each class with a mixture of Gaussians. Similar to support vector machines, when
training with non-separable data, we can introduce slack parameters to permit
margin violations. These extensions do not change the basic characteristics of
the learning algorithm. The optimization problem remains a convex semidefinite
program with piecewise linear terms and is equally tractable. For simplicity, we
restrict our discussion to single Gaussians and hard margins in this paper. As
we shall see, it is easy to extend our proposed modifications to these cases.

4 Differentially Private Large Margin Gaussian Classifiers

We modify the large margin Gaussian classification formulation to satisfy differ-
ential privacy by introducing a perturbation term in the objective function. As
we will see in Section 5.2, this modification leads to a classifier that preserves
differential privacy.

We generate the size (d + 1)× (d + 1) perturbation matrix b with density

P (b) ∝ exp
(
− ε

2
‖b‖

)
, (7)

where ‖ · ‖ is the Frobenius norm (element-wise �2 norm) and ε is the privacy
parameter. One method of generating such a b matrix is to sample the norm
‖b‖ from Γ

(
(d + 1)2, 2

ε

)
and the direction of b at random.

Our proposed learning algorithm minimizes the following objective function
Jp(Φ, x,y), where the subscript p denotes privacy.

Jp(Φ, x,y) = L(Φ,x,y) + λ
∑

c

trace(IΦΦcIΦ) +
∑

c

∑

ij

bijΦcij

= J(Φ, x,y) +
∑

c

∑

ij

bijΦcij . (8)

As the dimensionality of the perturbation matrix b is same as that of the clas-
sifier parameters Φc, the parameter space of Φ does not change after pertur-
bation. In other words, given two datasets (x, y) and (x′,y′), if Φp minimizes
Jp(Φ, x,y), it is always possible to have Φp minimize Jp(Φ, x′, y′). This is a
necessary condition for the classifier Φp satisfying differential privacy.
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Furthermore, as the perturbation term is convex and positive semidefinite, the
perturbed objective function Jp(Φ, x,y) has the same properties as the unper-
turbed objective function J(Φ,x,y). Also, the perturbation does not introduce
any additional computational cost as compared to the original algorithm.

5 Theoretical Analysis

5.1 Proof of Differential Privacy

We prove that the classifier minimizing the perturbed optimization function
Jp(Φ, x,y) satisfies ε-differential privacy in the following theorem. Given a
dataset (x,y) = {(x1, y1), . . . , (xn−1, yn−1), (xn, yn)}, the probability of learn-
ing the classifier Φp is close to the the probability of learning the same classifier
Φp given an adjacent dataset (x′,y′) = {(x1, y1), . . . , (xn−1, yn−1), (x′

n, y′
n)}

differing wlog on the nth instance. As we mentioned in the previous section,
it is always possible to find such a classifier Φp minimizing both Jp(Φ,x, y)
and Jp(Φ, x′, y′) due to the perturbation matrix being in the same space as the
optimization parameters.

Our proof requires a strictly convex perturbed objective function resulting in
a unique solution Φp minimizing it. This in turn requires that the loss func-
tion L(Φ,x, y) is strictly convex and differentiable, and the regularization term
N(Φ) is convex. These seemingly strong constraints are satisfied by many com-
monly used classification algorithms such as logistic regression, support vector
machines, and our general perturbation technique can be extended to those algo-
rithms. In our proposed algorithm, the Huber loss is by definition a differentiable
function and the trace regularization term is convex and differentiable. Addition-
ally, we require that the difference in the gradients of L(Φ, x, y) calculated over
for two adjacent training datasets is bounded. We prove this property in Lemma
1 given in the appendix.

Theorem 1. For any two adjacent training datasets (x,y) and (x′, y′), the
classifier Φp minimizing the perturbed objective function Jp(Φ, x,y) satisfies
differential privacy.

∣
∣
∣
∣log

P (Φp|x, y)
P (Φp|x′, y′)

∣
∣
∣
∣ ≤ ε′,

where ε′ = ε + k for a constant factor k = log
(
1 + 2α

nλ
+ α2

n2λ2

)
with a constant

value of α.

Proof. As J(Φ,x, y) is convex and differentiable, there is a unique solution Φ∗

that minimizes it. As the perturbation term
∑

c

∑
ij bijΦcij is also convex and

differentiable, the perturbed objective function Jp(Φ, x,y) also has a unique
solution Φp that minimizes it. Differentiating Jp(Φ, x,y) wrt Φc, we have

∂

∂Φc
Jp(Φ, x,y) =

∂

∂Φc
L(Φ,x, y) + λIΦ + b. (9)



Large Margin Multiclass Gaussian Classification with Differential Privacy 105

Substituting the optimal Φp
c in the derivative gives us

λIΦ + b = − ∂

∂Φc
L(Φp,x, y).

This relation shows that two different values of b cannot result in the same
optimal Φp. As the perturbed objective function Jp(Φ,x, y) is also convex and
differentiable, there is a bijective map between the perturbation b and the unique
Φp minimizing Jp(Φ,x, y).

Let b1 and b2 be the two perturbations applied when training with the ad-
jacent datasets (x,y) and (x′, y′), respectively. Assuming that we obtain the
same optimal solution Φp while minimizing both Jp(Φ,x,y) with perturbation
b1 and Jp(Φ, x,y) with perturbation b2,

λIΦ + b1 = − ∂

∂Φc
L(Φp, x,y),

λIΦ + b2 = − ∂

∂Φc
L(Φp, x′, y′),

b1 − b2 =
∂

∂Φc
L(Φp,x′,y′)− ∂

∂Φc
L(Φp,x,y). (10)

We take the Frobenius norm of both sides and apply the bound on the the RHS
as given by Lemma 1.

‖b1 − b2‖ =
∥
∥
∥
∥

∂

∂Φc
L(Φp,x′,y′)− ∂

∂Φc
L(Φp, x,y)

∥
∥
∥
∥

=

∥
∥
∥
∥
∥

n−1∑

i=1

∂

∂Φc
L(Φp,xi, yi) +

∂

∂Φc
L(Φp,x′

n, y′
n)

−
n−1∑

i=1

∂

∂Φc
L(Φp,xi, yi)− ∂

∂Φc
L(Φp,xn, yn)

∥
∥
∥
∥
∥

=
∥
∥
∥
∥

∂

∂Φc
L(Φp,x′

n, y′
n)− ∂

∂Φc
L(Φp,xn, yn)

∥
∥
∥
∥ ≤ 2.

Using this property, we can calculate the ratio of densities of drawing the per-
turbation matrices b1 and b2 as

P (b = b1)
P (b = b2)

=
1

surf(‖b1‖)‖b1‖d exp
[− ε

2
‖b1‖

]

1
surf(‖b2‖)‖b2‖d exp

[− ε
2
‖b2‖

] ,

where surf(‖b‖) is the surface area of the (d + 1)-dimensional hypersphere with
radius ‖b‖. As surf(‖b‖) = surf(1)‖b‖d, where surf(1) is the area of the unit
(d + 1)-dimensional hypersphere, the ratio of the densities becomes

P (b = b1)
P (b = b2)

= exp
[ ε

2
(‖b2‖ − ‖b1‖)

]
≤ exp

[ ε

2
‖b2 − b1‖

]
≤ exp(ε). (11)
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The ratio of the densities of learning Φp using the adjacent datasets (x,y) and
(x′, y′) is given by

P (Φp|x, y)
P (Φp|x′, y′)

=
P (b = b1)
P (b = b2)

|det(J(Φp → b1|x,y))|−1

| det(J(Φp → b2|x′,y′))|−1
, (12)

where J(Φp → b1|x, y) and J(Φp → b2|x′,y′) are the Jacobian matrices of the
bijective mappings from Φp to b1 and b2, respectively. Following a procedure
identical to Theorem 2 of [16] (omitted due to lack of space), it can be shown
that the ratio of Jacobian determinants is upper bounded by a constant factor
exp(k) = 1 + 2α

nλ + α2

n2λ2 for a constant value of α. Therefore, the ratio of the
densities of learning Φp using the adjacent datasets becomes

P (Φp|x,y)
P (Φp|x′,y′)

≤ exp(ε + k) = exp(ε′). (13)

Similarly, we can show that the probability ratio is lower bounded by exp(−ε′),
which together with Equation (13) satisfies the definition of differential
privacy. ��

5.2 Analysis of Excess Error

In the remainder of this section, we denote the terms J(Φ,x,y) and L(Φ,x,y)
by J(Φ) and L(Φ), respectively for conciseness. The objective function J(Φ)
contains the loss function L(Φ) computed over the training data (x,y) and the
regularization term N(Φ) – this is known as the regularized empirical risk of the
classifier Φ. In the following theorem, we establish a bound on the regularized
empirical excess risk of the differentially private classifier minimizing the per-
turbed objective function Jp(Φ) over the classifier minimizing the unperturbed
objective function J(Φ). We use the strong convexity of the objective function
J(Φ) as given by Lemma 2.

Theorem 2. With probability at least 1−δ, the regularized empirical excess risk
of the classifier Φp minimizing the perturbed objective function Jp(Φ) over the
classifier Φ∗ minimizing the unperturbed objective function J(Φ) is bounded as

J(Φp) ≤ J(Φ∗) +
8(d + 1)4C

ε2λ
log2

(
d

δ

)

.

Proof. We use the definition of Jp(Φ) = J(Φ) +
∑

c

∑
ij bijΦcij and the opti-

mality of Φp, i.e., Jp(Φp) ≤ Jp(Φ∗).

J(Φp) +
∑

c

∑

ij

bijΦ
p
cij ≤ J(Φ∗) +

∑

c

∑

ij

bijΦ
∗
cij ,

J(Φp) ≤ J(Φ∗) +
∑

c

∑

ij

bij(Φ∗
cij − Φp

cij). (14)
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Using the strong convexity of J(Φ) as given by Lemma 2 and the optimality of
J(Φ∗), we have

J(Φ∗) ≤ J

(
Φp + Φ∗

2

)

≤ J(Φp) + J(Φ∗)
2

− λ

8

∑

c

‖Φ∗
c −Φp

c‖2,

J(Φp)− J(Φ∗) ≥ λ

4

∑

c

‖Φ∗
c −Φp

c‖2. (15)

Similarly, using the strong convexity of Jp(Φ) and the optimality of Jp(Φp),

Jp(Φp) ≤ Jp

(
Φp + Φ∗

2

)

≤ Jp(Φp) + Jp(Φ∗)
2

− λ

8

∑

c

‖Φp
c −Φ∗

c‖2,

Jp(Φ∗)− Jp(Φp) ≥ λ

4

∑

c

‖Φp
c −Φ∗

c‖2.

Substituting the definition Jp(Φ) = J(Φ) +
∑

c

∑
ij bijΦcij ,

J(Φ∗) +
∑

c

∑

ij

bijΦ
∗
cij − J(Φp)−

∑

c

∑

ij

bijΦ
p
cij ≥

λ

4

∑

c

‖Φ∗
c −Φp

c‖2

∑

c

∑

ij

bij(Φ∗
cij − Φp

cij)− (J(Φp)− J(Φ∗)) ≥ λ

4

∑

c

‖Φ∗
c −Φp

c‖2.

Substituting the lower bound on J(Φp)− J(Φ∗) given by Equation (15),

∑

c

∑

ij

bij(Φ∗
cij − Φp

cij) ≥
λ

2

∑

c

‖Φ∗
c −Φp

c‖2,
⎡

⎣
∑

c

∑

ij

bij(Φ∗
cij − Φp

cij)

⎤

⎦

2

≥ λ2

4

[
∑

c

‖Φ∗
c −Φp

c‖2
]2

. (16)

Using the Cauchy-Schwarz inequality, we have,

⎡

⎣
∑

c

∑

ij

bij(Φ∗
cij − Φp

cij)

⎤

⎦

2

≤ C‖b‖2
∑

c

‖Φ∗
c −Φp

c‖2. (17)

Combining this with Equation (16) gives us

C‖b‖2
∑

c

‖Φ∗
c −Φp

c‖2 ≥
λ2

4

[
∑

c

‖Φ∗
c −Φp

c‖2
]2

,

∑

c

‖Φ∗
c −Φp

c‖2 ≤
4C

λ2
‖b‖2. (18)
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Combining this with Equation (17) gives us
∑

c

∑

ij

bij(Φ∗
cij − Φp

cij) ≤
2C

λ
‖b‖2.

We bound ‖b‖2 with probability at least 1− δ as given by Lemma 4.
∑

c

∑

ij

bij(Φ∗
cij − Φp

cij) ≤
8(d + 1)4C

ε2λ
log2

(
d

δ

)

. (19)

Substituting this in Equation (14) proves the theorem. ��
The upper bound on the regularized empirical risk is in O( C

ε2
). The bound in-

creases for smaller values of ε which implies tighter privacy and therefore suggests
a trade off between privacy and utility.

The regularized empirical risk of a classifier is calculated over a given training
dataset. In practice, we are more interested in how the classifier will perform on
new test data which is assumed to be generated from the same source as the
training data. The expected value of the loss function computed over the data is
called the true risk L̃(Φ) = E[L(Φ)] of the classifier Φ. In the following theorem,
we establish a bound on the true excess risk of the differentially private classifier
minimizing the perturbed objective function and the classifier minimizing the
original objective function.

Theorem 3. With probability at least 1 − δ, the true excess risk of the classi-
fier Φp minimizing the perturbed objective function Jp(Φ) over the classifier Φ∗

minimizing the unperturbed objective function J(Φ) is bounded as

L̃(Φp) ≤ L̃(Φ∗) +
4
√

d(d + 1)2C
ελ

log
(

d

δ

)

+
8(d + 1)4C

ε2λ
log2

(
d

δ

)

+
16
λn

[

32 + log
(

1
δ

)]

.

Proof. Let the expected value of the regularized empirical risk be

J̃(Φ) = L̃(Φ) + λ
∑

c

trace(IΦΦcIΦ). (20)

Let Φr be the classifier minimizing J̃(Φ), i.e., J̃(Φr) ≤ J̃(Φ∗).
Rearranging the terms, we have

J̃(Φp) = J̃(Φ∗) + [J̃(Φp)− J̃(Φr)] + [J̃(Φr)− J̃(Φ∗)]

≤ J̃(Φ∗) + [J̃(Φp)− J̃(Φr)].

Substituting the definition of J̃(Φ),

L̃(Φp) + λ
∑

c

trace(IΦΦp
cIΦ) ≤ L̃(Φ∗) + λ

∑

c

trace(IΦΦ∗
cIΦ) + [J̃(Φp)− J̃(Φr)],

L̃(Φp) ≤ L̃(Φ∗) + λ
∑

c

trace[IΦ(Φ∗
c −Φp

c)IΦ] + [J̃(Φp)− J̃(Φr)]. (21)
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From Lemma 3 and Equation (18), we have,

[
∑

c

trace[IΦ(Φ∗
c −Φp

c)IΦ]

]2

≤ dC
∑

c

‖Φc −Φ′
c‖2

≤ 4dC2

λ2
‖b‖2 =

16d(d + 1)4C2

ε2λ2
log2

(
d

δ

)

.

Taking the square root,

∑

c

trace[IΦ(Φ∗
c −Φp

c)IΦ] ≤ 4
√

d(d + 1)2C
ελ

log
(

d

δ

)

. (22)

Sridharan, et al. [17] present a bound on the true excess risk of any classifier
as an expression of the bound on the regularized empirical excess risk for that
classifier. With probability at least 1− δ,

J̃(Φp)− J̃(Φr) ≤ 2[J(Φp)− J(Φ∗)] +
16
λn

[

32 + log
(

1
δ

)]

.

Substituting the bound from Theorem 2,

J̃(Φp)− J̃(Φr) ≤ 8(d + 1)4C
ε2λ

log2

(
d

δ

)

+
16
λn

[

32 + log
(

1
δ

)]

. (23)

Substituting the results from Equations (22) and (23) into Equation (21) proves
the theorem. ��
Similar to the bound on the regularized empirical excess risk, the bound on the
true excess risk is also inversely proportional to ε reflecting the privacy-utility
trade-off. The bound is linear in the number of classes C, which is a consequence
of the multi-class classification. The classifier learned using a higher value of the
regularization parameter λ will have a higher covariance for each class ellip-
soid. This would also make the classifier less sensitive to the perturbation. This
intuition is confirmed by the fact that the true excess risk bound is inversely
proportional to λ.

6 Conclusion

In this paper, we present a discriminatively trained Gaussian classification algo-
rithm that satisfies differential privacy. Our proposed technique involves adding
a perturbation term to the objective function. We prove that the proposed al-
gorithm satisfies differential privacy and establish a bound on the excess risk of
the classifier learned by the algorithm which is directly proportional to the num-
ber of classes and inversely proportional to the privacy parameter ε reflecting a
trade-off between privacy and utility.
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In the future, we plan to extend this work along two main directions: extending
our perturbation technique for a general class of learning algorithms and applying
results from theory of large margin classifiers to arrive at tighter excess risk
bounds for the differentially private large margin classifiers. Our intuition is
that compared to other classification algorithms, a large margin classifier should
be much more robust to perturbation. This would also give us insights into
designing low error inducing mechanisms for differentially private classifiers.
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Appendix

Lemma 1. Assuming all the data instances to lie within a unit �2 ball, the
difference in the derivative of Huber loss function L(Φ,x, y) calculated over two
data instances (xi, yi) and (x′

i, y
′
i) is bounded.

∥
∥
∥
∥

∂

∂Φc
L(Φ,xi, yi)− ∂

∂Φc
L(Φ,x′

i, y
′
i)
∥
∥
∥
∥ ≤ 2.

Proof. The derivative of the Huber loss function for the data instance xi with
label yi is

∂

∂Φc
L(Φ,xi, yi) =

⎧
⎪⎨

⎪⎩

0 if xT
i (Φc −Φyi)xi > h,

1
2h [h − xT

i (Φyi −Φc)xi]xix
T
i if |xT

i (Φc −Φyi)xi| ≤ h,

xix
T
i if xT

i (Φc −Φyi)xi < −h.

The data points lie in a �2 ball of radius 1, ∀i : ‖xi‖2 ≤ 1. Using linear algebra,
it is easy to show that the Frobenius norm of the matrix xix

T
i is same as the �2

norm of the vector xi, ‖xix
T
i ‖ = ‖xi‖2 ≤ 1.

As the term 1
2h [h−xT

i (Φyi−Φc)xi] is at most one when |xT
i (Φc−Φyi)xi| ≤ h,

the Frobenius norm of the derivative of the Huber loss function is at most one
in all cases,

∥
∥
∥ ∂

∂Φc
L(Φ,xi, yi)

∥
∥
∥ ≤ 1. Using a similar argument for data instance

x′
i with label y′

i, we have
∥
∥
∥ ∂

∂Φc
L(Φ, x′

i, y
′
i)
∥
∥
∥ ≤ 1.

Finally, using the triangle inequality ‖a− b‖ = ‖a + (−b)‖ ≤ ‖a‖+ ‖b‖,
∥
∥
∥
∥

∂

∂Φc
L(Φ,xi, yi)− ∂

∂Φc
L(Φ, x′

i, y
′
i)
∥
∥
∥
∥

≤
∥
∥
∥
∥

∂

∂Φc
L(Φ, xi, yi)

∥
∥
∥
∥+

∥
∥
∥
∥

∂

∂Φc
L(Φ, x′

i, y
′
i)
∥
∥
∥
∥ ≤ 2.

��
Lemma 2. The objective function J(Φ) is λ-strongly convex. For 0 ≤ α ≤ 1,

J (αΦ + (1− α)Φ′) ≤ αJ(Φ) + (1− α)J(Φ′)− λα(1 − α)
2

∑

c

‖Φc −Φ′
c‖2 .
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Proof. By definition, Huber loss is λ-strongly convex, i.e.

L (αΦ + (1− α)Φ′) ≤ αL(Φ) + (1− α)L(Φ′)− λα(1 − α)
2

‖Φ−Φ′‖2 . (24)

where the Frobenius norm of the matrix set Φ−Φ′ is the sum of norms of the
component matrices Φc −Φ′

c,

‖Φ−Φ′‖2 =
∑

c

‖Φc −Φ′
c‖2 . (25)

As the regularization term N(Φ) is linear,

N (αΦ + (1− α)Φ′) = λ
∑

c

trace(αIΦΦcIΦ + (1− α)IΦΦ′
cIΦ) (26)

= αλ
∑

c

trace(IΦΦcIΦ) + (1− α)λ
∑

c

trace(IΦΦ′
cIΦ)

= αN(Φ) + (1− α)N(Φ′).

The lemma follows directly from the definition J(Φ) = L(Φ) + N (Φ). ��
Lemma 3

1
dC

[
∑

c

trace[IΦ(Φc −Φ′
c)IΦ]

]2

≤
∑

c

‖Φc −Φ′
c‖2 .

Proof. Let Φc,i,j be the (i, j)th element of the size (d+1)×(d+1) matrix Φc−Φ′
c.

By the definition of the Frobenius norm, and using the identity N
∑N

i=1 x2
i ≥

(
∑N

i=1 xi)2,

∑

c

‖Φc −Φ′
c‖2 =

∑

c

d+1∑

i=1

d+1∑

j=1

Φ2
c,i,j ≥

∑

c

d+1∑

i=1

Φ2
c,i,i ≥

∑

c

d∑

i=1

Φ2
c,i,i

≥ 1
dC

(
∑

c

d∑

i=1

Φc,i,i

)2

=
1

dC

[
∑

c

trace[IΦ(Φc −Φ′
c)IΦ]

]2

.

��
Lemma 4

P

[

‖b‖ ≥ 2(d + 1)2

ε
log
(

d

δ

)]

≤ δ.

Proof. Follows from the union bound argument used in Lemma 5 of [2].
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Abstract. In this paper, we present a protocol for computing the prin-
cipal eigenvector of a collection of data matrices belonging to multiple
semi-honest parties with privacy constraints. Our proposed protocol is
based on secure multi-party computation with a semi-honest arbitrator
who deals with data encrypted by the other parties using an additive
homomorphic cryptosystem. We augment the protocol with randomiza-
tion and oblivious transfer to make it difficult for any party to estimate
properties of the data belonging to other parties from the intermediate
steps. The previous approaches towards this problem were based on ex-
pensive QR decomposition of correlation matrices, we present an efficient
algorithm using the power iteration method. We present an analysis of
the correctness, security, and efficiency of protocol.

1 Introduction

Eigenvector computation is one of the most basic tools of data analysis. In any
multivariate dataset, the eigenvectors provide information about key trends in
the data, as well as the relative importance of the different variables. These find
use in a diverse set of applications, including principal component analysis [6],
collaborative filtering [3] and PageRank [7]. Not all eigenvectors of the data are
equally important; only those corresponding to the highest eigenvalues are used
as representations of trends in the data. The most important eigenvector is the
principal eigenvector corresponding to the maximum eigenvalue.

In many scenarios, the entity that actually computes the eigenvectors is differ-
ent from the entities that possess the data. For instance, a data mining agency
may desire to compute the eigenvectors of a distributed set of records, or an
enterprise providing recommendations may want to compute eigenvectors from
the personal ratings of subscribers to facilitate making recommendations to new
customers. We will refer to such entities as arbitrators. Computation of eigenvec-
tors requires the knowledge of either the data from the individual parties or the
correlation matrix derived from it. The parties that hold the data may however
consider them private and be unwilling to expose any aspect of their individual
data to either the arbitrator or to other parties, while being agreeable, in princi-
ple, to contribute to the computation of a global trend. As a result, we require a
privacy preserving algorithm that can compute the eigenvectors of the aggregate
data while maintaining the necessary privacy of the individual data providers.

C. Dimitrakakis et al. (Eds.): PSDML 2010, LNAI 6549, pp. 113–126, 2011.
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The common approach to this type of problem is to obfuscate individual data
through controlled randomization [2]. However, since we desire our estimates
to be exact, simple randomization methods that merely ensure accuracy in the
mean cannot be employed. Han et al. [5] address the problem by computing
the complete QR decomposition [4] of privately shared data using cryptographic
primitives. This enables all parties to collaboratively compute the complete set
of global eigenvectors but does not truly hide the data from individual sources.
Given the complete set of eigenvectors and eigenvalues provided by the QR
decomposition, any party can reverse engineer the correlation matrix for the
data from the remaining parties and compute trends among them. Canny [1]
present a different distributed approach that does employ an arbitrator, in their
case a blackboard, however although individual data instances are hidden, both
the arbitrator and individual parties have access to all aggregated individual
stages of the computation and the final result is public, which is much less
stringent than our privacy constraints.

In this paper, we propose a new privacy-preserving protocol for shared com-
putation of the principal eigenvector of a distributed collection of privately held
data. The algorithm is designed such that the individual parties, whom we will
refer to as “Alice” and “Bob” learn nothing about each others’ data, and only
learn the degree to which their own data follow the global trend indicated by
the principal eigenvector. The arbitrator, who we call “Trent”, coordinates the
computation but learns nothing about the data of the individual parties besides
the principal eigenvector which he receives at the end of the computation. In our
presentation, for simplicity, we initially consider two parties having a share of
data. Later we show that the protocol can be naturally generalized to N parties.
The data may be split in two possible ways: along data instances or features. In
this work, we principally consider the data-split case. However, as we show, our
algorithm is easily applied to feature split data as well.

We primarily use the power iteration method [4] to compute the principal
eigenvector. We will use a combination of randomization, homomorphic encryp-
tion [8] and oblivious transfer (OT) [10] to enforce privacy on the computation.
The algorithm assumes the parties to be semi-honest. While they are assumed to
follow the protocol correctly and refrain from using falsified data as input, they
may record and analyze the intermediate results obtained while following the
protocol in order to to gain as much information as possible. It is also assumed
that no party collude with Trent as this will give Trent access to information.

The computational requirements of the algorithm are the same as that of
the power iteration method. In addition, each iteration requires the encryption
and decryption of two k dimensional vectors, where k is the dimensionality of
the data, as well as transmission of the encrypted vectors to and from Trent.
Nevertheless, the encryption and transmission overhead, which is linear in k, may
be expected to be significantly lower than the calculating the QR decomposition
or similar methods which require repeated transmission of entire matrices. In
general, the computational cost of the protocol is dependent on the degree of
security we desire as required by the application.
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2 Preliminaries

2.1 Power Iteration Method

The power iteration method [4] is an algorithm to find the principal eigenvector
and its associated eigenvalue for square matrices. To simplify explanation, we
assume that the matrix is diagonalizable with real eigenvalues, although the
algorithm is applicable to general square matrices as well [11]. Let A be a size
N ×N matrix whose eigenvalues are λ1, . . . , λN .

The power iteration method computes the principal eigenvector of A through
the iteration

xn+1 =
Axn

‖Axn‖ ,

where xn is a N dimensional vector. If the principal eigenvalue is unique, the
series ωn = Anx0 is guaranteed to converge to a scaling of the principal eigenvec-
tor. In the standard algorithm, �2 normalization is used to prevent the magnitude
of the vector from overflow and underflow. Other normalization factors can also
be used if they do not change the limit of the series.

We assume wlog that |λ1| ≥ · · · ≥ |λN | ≥ 0. Let vi be the normalized eigenvec-
tor corresponding to λi. Since A is assumed to be diagonalizable, the eigenvec-
tors {v1, . . . , vN} create a basis for RN . For unique values of ci ∈ RN , any vector
x0 ∈ RN can be written as x0 =

∑N
i=1 civi. It can be shown that 1

|λ1|n Anx0

is asymptotically equal to c1v1 which forms the basis of the power iteration
method and the convergence rate of the algorithm is

∣
∣
∣λ2
λ1

∣
∣
∣. The algorithm con-

verges quickly when there is no eigenvalue close in magnitude to the principal
eigenvalue.

2.2 Homomorphic Encryption

A homomorphic encryption algorithm allows for operations to be perform on
the encrypted data without requiring to know the unencrypted values. If · and
+ are two operators and x and y are two plaintext elements, a homomorphic
encryption function E satisfies

E[x] ·E[y] = E[x + y].

In this work, we use the additive homomorphic Paillier asymmetric key cryp-
tosystem [8].

3 Privacy Preserving Protocol

3.1 Data Setup and Privacy Conditions

We formally define the problem, in which multiple parties, try to compute the
principal eigenvector over their collectively held datasets without disclosing any
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information to each other. For simplicity, we describe the problem with two
parties, Alice and Bob; and later show that the algorithm is easily extended to
multiple parties.

The parties Alice and Bob are assumed to be semi-honest which means that
the parties will follow the steps of the protocol correctly and will not try to cheat
by passing falsified data aimed at extracting information about other parties. The
parties are assumed to be curious in the sense that they may record the outcomes
of all intermediate steps of the protocol to extract any possible information.
The protocol is coordinated by the semi-honest arbitrator Trent. Alice and Bob
communicate directly with Trent rather than each other. Trent performs all
the intermediate computations and transfers the results to each party. Although
Trent is trusted not to collude with other parties, it is important to note that the
parties do not trust Trent with their data and intend to prevent him from being
able to see it. Alice and Bob hide information by using a shared key cryptosystem
to send only encrypted data to Trent.

We assume that both the datasets can be represented as matrices in which
columns and rows correspond to the data samples and the features, respectively.
For instance, the individual email collections of Alice and Bob are represented as
matrices A and B respectively, in which the columns correspond to the emails,
and the rows correspond to the words. The entries of these matrices represent the
frequency of occurrence of a given word in a given email. The combined dataset
may be split between Alice and Bob in two possible ways. In a data split, both
Alice and Bob have a disjoint set of data samples with the same features. The
aggregate dataset is obtained by concatenating columns given by the data matrix
M =

[
A B

]
and correlation matrix MT M . In a feature split, Alice and Bob have

different features of the same data. The aggregate data matrix M is obtained by

concatenating rows given by the data matrix M =
[
A
B

]

and correlation matrix

MMT . If v is an eigenvector of MT M with a non-zero eigenvalue λ, we have

MT Mv = λv ⇒ MMTMv = λMv.

Therefore, Mv �= 0 is the eigenvector of MMT with eigenvalue λ. Similarly, any
eigenvector of horizontally split data MMT associated with a non-zero eigen-
value is an eigenvector of vertically split data MT M corresponding to the same
eigenvalue. Hence, we mainly deal with calculating the principal eigenvector of
the vertically split data. In practice the correlation matrix that has the smaller
size should be used to reduce the computational cost of eigen-decomposition
algorithms.

For vertical data split, if Alice’s data A is of size k×m and Bob’s data B is of
size k× n, the combined data matrix will be Mk×(m+n). The correlation matrix
of size (m + n)× (m + n) is given by

MT M =
[
AT A AT B
BT A BT B

]

.
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3.2 The Basic Protocol

The power iteration algorithm computes the principal eigenvector of MT M by
updating and normalizing the vector xt until convergence. Starting with a ran-
dom vector x0, we calculate

xi+1 =
MT M xi

‖MTM xi‖ .

For privacy, we split the vector xi into two parts, αi and βi. αi corresponds to
the first m components of xi and βi corresponds to the remaining n components.
In each iteration, we need to securely compute

MT Mxi =
[
AT A AT B
BT A BT B

] [
αi

βi

]

=
[
AT (Aαi + Bβi)
BT (Aαi + Bβi)

]

=
[
AT ui

BT ui

]

(1)

where ui = Aαi + Bβi. After convergence, αi and βi will represent shares held
by Alice and Bob of the principal eigenvector of MT M .

Alice

Trent

Bob

E[Aαi + Bβi] = E[ui]

Aαi

E[Aαi]

Bβi

E[Bβi]

E[ui]

AT ui

E[ui]

BT ui

E[‖AT ui‖2 + ‖BT ui‖2]

‖AT ui‖2

E[‖AT ui‖2]

‖BT ui‖2

E[‖BT ui‖2]

αi+1 = AT ui√
‖AT ui‖2+‖BT ui‖2

βi+1 = BT ui√
‖AT ui‖2+‖BT ui‖2

Fig. 1. Visual description of the protocol

This now lays the groundwork for us to define a distributed protocol in which
Alice and Bob work only on their portions of the data, while computing the
principal eigenvector of the combined data in collaboration with a third party
Trent. An iteration of the algorithm proceeds as illustrated in Fig. 1. At the out-
set Alice and Bob randomly generate component vectors α0 and β0 respectively.
At the beginning of the ith iteration, Alice and Bob possess component vectors
αi and βi respectively. They compute the product of their data and their cor-
responding component vectors as Aαi and Bβi. To compute ui, Alice and Bob
individually transfer these products to Trent. Trent adds the contributions from
Alice and Bob by computing

ui = Aαi + Bβi.
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He then transfers ui back to Alice and Bob, who then individually compute AT ui

and BT ui, without requiring data from one other. For normalization, Alice and
Bob also need to securely compute the term

‖MTM xi‖ =
√
‖AT ui‖2 + ‖BT ui‖2. (2)

Again, Alice and Bob compute the individual terms ‖AT ui‖2 and ‖BT ui‖2 re-
spectively and transfer it to Trent. As earlier, Trent computes the sum

‖AT ui‖2 + ‖BT ui‖2

and transfers it back to Alice and Bob. Finally, Alice and Bob respectively update
α and β vectors as

ui = Aαi + Bβi,

αi+1 =
AT ui

√‖AT ui‖2 + ‖BT ui‖2
,

βi+1 =
BT ui

√‖AT ui‖2 + ‖BT ui‖2
. (3)

The algorithm terminates when the α and β vectors converge.

3.3 Making the Protocol More Secure

The basic protocol described above is provably correct. After convergence, Alice
and Bob end up with the principal eigenvector of the row space of the combined
data, as well as concatenative shares of the column space which Trent can gather
to compute the principal eigenvector. However the protocol is not completely
secure; Alice and Bob obtain sufficient information about properties of each
others’ data matrices, such as their column spaces, null spaces, and correlation
matrices. We present a series of modifications to the basic protocol so that such
information is not revealed.

Homomorphic Encryption: Securing the data from Trent. The central
objective of the protocol is to prevent Trent from learning anything about either
the individual data sets or the combined data other than the principal eigenvec-
tor of the combined data. Trent receives a series of partial results of the form
AAT u, BBT u and MMT u. By analyzing these results, he can potentially deter-
mine the entire column spaces of Alice and Bob as well as the combined data.
To prevent this, we employ an additive homomorphic cryptosystem introduced
in Section 2.2.

At the beginning of the protocol, Alice and Bob obtain a shared public
key/private key pair for an additive homomorphic cryptosystem from an authen-
ticating authority. The public key is also known to Trent who, however, does not
know the private key; While he can encrypt data, he cannot decrypt it. Alice
and Bob encrypt all transmissions to Trent, at the first transmission step of each
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iteration Trent receives the encrypted inputs E[Aαi] and E[Bβi]. He multiplies
the two element by element to compute E[Aαi]·E[Bβi] = E[Aαi+Bβi] = E[ui].
He returns E[ui] to both Alice and Bob who decrypt it with their private key to
obtain ui. In the second transmission step of each iteration, Alice and Bob send
E[‖AT ui‖2] and E[‖BT ui‖2] respectively to Trent, who computes the encrypted
sum

E
[‖AT ui‖2

] ·E [‖BT ui‖2
]

= E
[‖AT ui‖2 + ‖BT ui‖2

]

and transfers it back to Alice and Bob, who then decrypt it to obtain ‖AT ui‖2 +
‖BT ui‖2, which is required for normalization.

This modification does not change the actual computation of the power iter-
ations in any manner. Thus the procedure remains as correct as before, except
that Trent now no longer has any access to any of the intermediate computa-
tions. At the termination of the algorithm he can now receive the converged
values of α and β from Alice and Bob, who will send it in clear text.

Random Scaling: Securing the Column Spaces. After Alice and Bob re-
ceive ui = Aαi + Bβi from Trent, Alice can calculate ui − Aαi = Bβi and Bob
can calculate ui−Bβi = Aαi. After a sufficient number of iterations, particularly
in the early stages of the computation (when ui has not yet converged) Alice can
find the column space of B and Bob can find the column space of A. Similarly,
by subtracting their share from the normalization term returned by Trent, Alice
and Bob are able to find ‖BT ui‖2 and ‖AT ui‖2 respectively.

In order to prevent this, Trent multiplies ui with a randomly generated scaling
term ri that he does not share with anyone. Trent computes

(E[Aαi] · E[Bβi])
ri = E[ri(Aαi + Bβi)] = E[riui]

by performing element-wise exponentiation of the encrypted vector by ri and
transfers riui to Alice and Bob. By using a different value of ri at each itera-
tion, Trent ensures that Alice and Bob are not able to calculate Bβi and Aαi

respectively. In the second step, Trent scales the normalization constant by r2
i ,

(
E
[‖AT ui‖2

] ·E [‖BT ui‖2
])r2

i = E
[
r2
i

(‖AT
i u‖2 + ‖BT

i u‖2)] .

Normalization causes the ri factor to cancel out and the update rules remain
unchanged.

ui = Aαi + Bβi,

αi+1 =
riA

T ui√
r2
i (‖AT ui‖2 + ‖BT ui‖2)

=
AT ui√‖AT ui‖2 + ‖BTui‖2

,

βi+1 =
riB

T ui
√

r2
i (‖AT ui‖2 + ‖BT ui‖2)

=
BT ui

√‖AT ui‖2 + ‖BT ui‖2
. (4)

The random scaling does not affect the final outcome of the computation, and
the algorithm remains correct as before.
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Data Padding: Securing null spaces. In each iteration, Alice observes one
vector riui = ri(Aαi + Bβi) in the column space of M = [A B]. Alice can
calculate the null space H(A) of A, given by

H(A) = {x ∈ R
m|Ax = 0}

and pre-multiply a non-zero vector x ∈ H(A) with riui to calculate

xriui = rix(Aαi + Bβi) = rixBβi.

This is a projection of Bβi, a vector in the column space of B into the null space
H(A). Similarly, Bob can find projections of Aαi in the null space H(B). While
considering the projected vectors separately will not give away much information,
after several iterations Alice will have a projection of the column space of B on
the null space of A, thereby learning about the component’s of Bob’s data that
lie in her null space. Bob can similarly learn about the component’s of Alice’s
data that lie in his null space.

In order to prevent this, Alice pads her data matrix A by concatenating it with
a random matrix Pa = raIk×k, to obtain

[
A Pa

]
where ra is a positive scalar

chosen by Alice. Similarly, Bob pads his data matrix B with Pb = rbIk×k to
obtain

[
B Pb

]
where rb is a different positive scalar chosen by Bob. This has the

effect of hiding the null spaces in both their data sets. In the following lemma, we
prove that the eigenvectors of the combined data do not change after padding,
while every eigenvalue λ of MMT is now modified to λ+ ra + rb. Please refer to
appendix for the proof.

Lemma 1. Let M̄ =
[
M P

]
where M is a s × t matrix, and P is a s × s

orthogonal matrix. If v̄ =
[
vt×1

v′s×1

]

is an eigenvector of M̄T M̄ corresponding to

an eigenvalue λ, then v is an eigenvector of MT M .

While the random factors ra and rb prevent Alice and Bob from estimating the
eigenvalues of the data, the computation of principal eigenvector remains correct
as before.

Oblivious Transfer: Securing Krylov spaces. For a constant c, we can
show that the vector ui = Aαi + Bβi is equal to cMMTui−1. The sequence
of vectors U = {u1, u2, u3, . . .} form the Krylov subspace (MMT )nu1 of the
matrix MMT . Knowledge of this series of vectors can reveal all eigenvectors of
MMT . Consider u0 = c1v1 + c2v2 + · · · , where vi is the ith eigenvector. If λj is
the jth eigenvalue, we have ui = c1λ1v1 + c2λ2v2 + · · · . We assume wlog that
the eigenvalues λ are in a descending order, i.e., λj ≥ λk for j < k. Let uconv

be the normalized converged value of ui which is equal to the normalized prin-
cipal eigenvector v1.

Let wi = ui − (ui · uconv)ui which can be shown to be equal to c2λ2v2 +
c3λ3v3 + · · · , i.e., a vector with no component along v1. If we perform power
iterations with initial vector w1, the converged vector wconv will be equal to the
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eigenvector corresponding to the second largest eigenvalue. Hence, once Alice
has the converged value, uconv, she can subtract it out of all the stored ui values
and determine the second principal eigenvector of MMT . She can repeat the
process iteratively to obtain all eigenvectors of MMT , although in practice the
estimates become noisy very quickly. As we will show in Section 4, the following
modification prevents Alice and Bob from identifying the Krylov space with any
certainty and they are thereby unable to compute the additional eigenvectors of
the combined data.

We introduce a form of oblivious transfer (OT) [10] in the protocol. We assume
that Trent stores the encrypted results of intermediate steps at every iteration.
After computing E[riui], Trent either sends this quantity to Alice and Bob with
a probability p or sends a random vector E[u′

i] of the same size (k × 1) with
probability 1− p. As the encryption key of the cryptosystem is publicly known,
Trent can encrypt the vector u′

i. Alice and Bob do not know whether they are
receiving riui or u′

i. If a random vector is sent, Trent continues with the protocol,
but ignores the terms Alice and Bob return in the next iteration, E[Aαi+1] and
E[Bβi+1]. Instead, he sends the result of a the last non-random iteration j,
E[rjuj ], thereby restarting that iteration.

This sequence of data sent by Trent is an example of a Bernoulli Process [9]. An
illustrative example of the protocol is shown in Fig. 2. In the first two iterations,
Trent sends valid vectors r1u1 and r2u2 back to Alice and Bob. In the beginning
of the third iteration, Trent receives and computes E[r3u3] but sends a random
vector u′

3. He ignores what Alice and Bob send him in the fourth iteration and
sends back E[r3u3] instead. Trent then stores the vector E[r4u4] sent by Alice
and Bob in the fifth iteration and sends a random vector u′

2. Similarly, he ignores
the computed vector of the sixth iteration and sends u′

3. Finally, he ignores the
computed vector of the seventh iteration and sends E[r4u4].

r1u1 r2u2 u′
1

r3u3 u′
2 u′

3
r4u4

Fig. 2. An example of the protocol execution with oblivious transfer

This modification has two effects – firstly it prevents Alice and Bob from
identifying the Krylov space with certainty. As a result, they are now unable
to obtain additional Eigenvectors from the data. Secondly, oblivious transfer
essentially obfuscates the projection of the column space of B on to the null
space of A for Alice, and analogously for Bob by introducing random vectors. As
Alice and Bob do not know which vectors are random, they cannot completely
calculate the true projection of each others data on the null spaces. This is
rendered less important if Alice and Bob pad their data as suggested in the
previous subsection.
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Alice and Bob can store the vectors they receive from Trent in each itera-
tion. By analyzing the distribution of the normalized vectors, Alice and Bob can
identify the random vectors using a simple outlier detection technique. To pre-
vent this, one possible solution is for Trent to pick a previously computed value
of rjuj and add zero mean noise ei, for instance, sampled from the Gaussian
distribution.

u′
i = rjuj + ei, ei ∼ N (0, σ2).

Instead of transmitting a perturbation of a previous vector, Trent can also use
perturbed mean of a few previous rjuj with noise. Doing this will create a
random vector with the same distributional properties as the real vectors. The
noise variance parameter σ controls the error in identifying the random vector
from the valid vectors and how much error do we want to introduce in the
projected column space.

Oblivious transfer has the effect of increasing the total computation as every
iteration in which Trent sends a random vector is wasted. In any secure multi-
party computation, there is an inherent trade-off between computation time
and the degree of security. The parameter p which is the probability of Trent
sending a non-random vector allows us to control this at a fine level based on
the application requirements. As before, introducing oblivious transfer does not
affect the correctness of the computation – it does not modify the values of the
non-random vectors ui.

3.4 Extension to Multiple Parties

As we mentioned before, the protocol can be naturally extended to multiple
parties. Let us consider the case of N parties: P1, . . . , PN each having data
A1, . . . , AN of sizes k × n1, . . . , k × nN respectively. The parties are interested
in computing the principal eigenvector of the combined data without disclosing
anything about their data. We make the same assumption about the parties
and the arbitrator Trent being semi-honest. All the parties except Trent share
the decryption key to the additive homomorphic encryption scheme and the
encryption key is public.

In case of a data split, for the combined data matrix M =
[
A1 A2 · · · AN

]
,

the correlation matrix is

MT M =

⎡

⎢
⎣

AT
1 A1 · · · AT

1 AN

...
. . .

...
AT

NA1 · · · AT
NAN

⎤

⎥
⎦ .

We split the eigenvector into N parts, α1, . . . , αN of size n1, . . . , nN respectively,
each corresponding to one party. For simplicity, we describe the basic protocol
with homomorphic encryption; randomization and oblivious transfer can be eas-
ily added by making the same modifications as we saw in Sections 3.3. One
iteration of the protocol starts with the ith party computing Aiαi and transfer-
ring to Trent the encrypted vector E[Aiαi]. Trent receives this from each party
and computes
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∏

i

E [Aiαi] = E

[
∑

i

Aiαi

]

= E[u]

where u =
∑

i Aiαi, and product is an element-wise operation. Trent sends
the encrypted vector E[u] back to P1, . . . , PN who decrypt it and individually
compute AT

i u. The parties individually compute ‖AT
i u‖2 and send its encrypted

value to Trent. Trent receives N encrypted scalars E
[‖AT

i u‖2] and calculates
the normalization term

∏

i

E
[‖AT

i u‖2] = E

[
∑

i

‖AT
i u‖2

]

and sends it back to the parties. At the end of the iteration, the party Pi updates
αi as

u =
∑

i

Aiα
(old)
i ,

α
(new)
i =

AT
i u

√∑
i ‖AT

i u‖2
. (5)

The algorithm terminates when any one party Pi converges on αi.

4 Analysis

4.1 Correctness

The protocol outlined in Section 3.2 is provably correct. The steps introduced in
Section 3.3 do not modify the operation and hence the accuracy of the protocol
in any manner.

4.2 Security

As a consequence of the procedures introduced in Section 3.3 the row spaces
and null spaces of the parties are hidden from each another. In the multiparty
scenario, the protocol is also robust to collusion between parties with data,
although not to collusion between Trent and any of the other parties. If two
parties out of N collude, they will find information about each other, but will
not learn anything about the data of the remaining N − 2 parties.

What remains is the information which can be obtained from the sequence of
ui vectors. Alice receives the following two sets of matrices:

U = {u1, u2, u3, . . .}, U ′ = {u′
1, u

′
2, . . .}

representing the outcomes of valid iterations and the random vectors respectively.
In the absence of the random data U ′, Alice only receives U . As mentioned in
Section 3.3, ui = (MMT )iu0 which is a sequence of vectors from the Krylov
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space of the matrix AAT +BBT sufficient to determine all eigenvectors of MMT .
For k-dimensional data, it is sufficient to have any sequence of k vectors in U
to determine MMT . Hence, if the vectors in U were not interspersed with the
vectors in U ′, the algorithm essentially reveals information about all eigenvectors
to all parties. Furthermore, given a sequence ui, ui+1, ui+2, . . . , ui+k−1 vectors
from U , Alice can verify that they are indeed from the Krylov space.1 Introducing
random scaling riui makes it harder still to verify Krylov space. While solving
for k vectors, Alice and Bob need to solve for another k parameters r1, . . . , rk.

Security is obtained from the following observation: although Alice can verify
that a given set of vectors forms a sequence in the Krylov space, she cannot select
them from a larger set without exhaustive evaluation of all k sets of vectors. If
the shortest sequence of k vectors from the Krylov space is embedded in a longer
sequence of N vectors, Alice needs

(
N
k

)
checks to find the Krylov space, which

is a combinatorial problem.

4.3 Efficiency

First we analyze the computational time complexity of the protocol. As the total
the number of iterations is data dependent and proportional to

∣
∣
∣λ1
λ2

∣
∣
∣, we analyze

the cost per iteration. The computation is performed by the individual parties
in parallel, though synchronized and the parties also spend time waiting for
intermediate results from other parties. The oblivious transfer introduces extra
iterations with random data, on average the number of iterations needed for
convergence increase by a factor of 1

p
, where p is the probability of Trent sending

a non-random vector. As the same operations are performed in an iteration with
a random vector, its the time complexity would be the same as an iteration
with a non-random vector.

In the ith iteration, Alice and Bob individually need to perform two matrix
multiplications: Aαi and AT (Aαi + Bβi), Bβi and BT (Aαi + Bβi) respectively.
The first part involves multiplication of a k × m matrix by a m dimensional
vector which is O(km) operations for Alice and O(kn) for Bob. The second part
involves multiplication of a m × k matrix by a k dimensional vector which is
O(km) operations for Alice and O(kn) for Bob. Calculating ‖AT (Aαi + Bβi)‖2
involves O(m) operations for Alice and analogously O(n) operations for Bob.
The final step involves only a normalization by a scalar and can be again done
in linear time, O(m) for Alice and O(n) for Bob. Therefore, total time complexity
of computations performed by Alice and Bob is O(km) + O(m) = O(km) and
O(kn)+O(n) = O(kn) operations respectively. Trent computes an element-wise
product of two k dimensional vectors Aαi and Bβi which is O(k) operations.
The multiplication of two encrypted scalar requires only one operation, making
Trent’s total time complexity O(k).

In each iteration, Alice and Bob encrypt and decrypt two vectors and two
scalar normalization terms which is equivalent to performing k + 1 encryptions
and k + 1 decryptions individually, which is O(k) encryptions and decryptions.

1 If the spectral radius of MMT is 1.
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In the ith iteration, Alice and Bob each need to transmit k dimensional vec-
tors to Trent who computes E(Aαi + Bβi) and transmits it back: involving the
transfer of 4k elements. Similarly, Alice and Bob each transmit one scalar norm
value to Trent who sends back another scalar value involving in all the transfer
of 4 elements. In total, each iteration requires the transmission of 4k +4 = O(k)
data elements.

To summarize, the time complexity of the protocol per iteration is O(km)
or O(kn) operations whichever is larger, O(k) encryptions and decryptions, and
O(k) transmissions. In practice, each individual encryption/decryption and data
transmission take much longer than performing computation operation.

5 Conclusion

In this paper, we proposed a protocol for computing the principal eigenvector
of the combined data shared by multiple parties coordinated by a semi-honest
arbitrator Trent. The data matrices belonging to individual parties and corre-
lation matrix of the combined data is protected and cannot be reconstructed.
We used randomization, data padding, and oblivious transfer to hide the infor-
mation which the parties can learn from the intermediate results. The compu-
tational cost for each party is O(km) where k is the number of features and m
data instances along with O(k) encryption/decryption operations and O(k) data
transfer operations.

Potential future work include extending the protocol to finding the complete
singular value decomposition, particularly with efficient algorithms like thin-
SVD. Some of the techniques like data padding, oblivious transfer we applied
to increase the security of the protocol can be used in other problems as well.
We are working towards a unified theoretical model for applying and analyzing
these techniques in general.
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Appendix

Proof (Lemma 1). We have,

M̄T M̄ =
[
MT M MT P
PT M I

]

.

Multiplying by the eigenvector v̄ =
[
vt×1

v′
s×1

]

gives us

M̄T M̄

[
v
v′

]

=
[
MT Mv + MT Pv′

PT Mv + v′

]

= λ

[
v
v′

]

.

Therefore,

MT Mv + MT Pv′ = λv, (6)

PT Mv + v′ = λv′. (7)

Since λ �= 1, Equation (7) implies v′ = 1
λ−1

PT Mv. Substituting this into Equa-
tion (6) and the orthogonality of P gives us

MT Mv +
1

λ− 1
MT PPT Mv =

λ

λ− 1
MT Mv = λv.

Hence, MT Mv = (λ− 1)v. �	
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Abstract. This paper proposes a system enforcing content-based message filter-
ing for On-line Social Networks (OSNs). The system allows OSN users to have
a direct control on the messages posted on their walls. This is achieved through a
flexible rule-based system, that allows a user to customize the filtering criteria to
be applied to their walls, and a Machine Learning based soft classifier automati-
cally labelling messages in support of content-based filtering.

Keywords: On-line Social Networks, Short Text Classification, Text Filtering,
Filtering Policies.

1 Introduction

In the last years, On-line Social Networks (OSNs) have become a popular interac-
tive medium to communicate, share and disseminate a considerable amount of human
life information. Daily and continuous communication implies the exchange of several
types of content, including free text, image, audio and video data. The huge and dy-
namic character of these data creates the premise for the employment of web content
mining strategies aimed to automatically discover useful information dormant within
the data and then provide an active support in complex and sophisticated tasks involved
in social networking analysis and management. A main part of social network content
is constituted by short text, a notable example are the messages permanently written by
OSN users on particular public/private areas, called in general walls.

The aim of the present work is to propose and experimentally evaluate an automated
system, called Filtered Wall (FW), able to filter out unwanted messages from social
network user walls. The key idea of the proposed system is the support for content-
based user preferences. This is possible thank to the use of a Machine Learning (ML)
text categorization procedure [21] able to automatically assign with each message a
set of categories based on its content. We believe that the proposed strategy is a key
service for social networks in that in today social networks users have little control
on the messages displayed on their walls. For example, Facebook allows users to state
who is allowed to insert messages in their walls (i.e., friends, friends of friends, or
defined groups of friends). However, no content-based preferences are supported. For
instance, it is not possible to prevent political or vulgar messages. In contrast, by means
of the proposed mechanism, a user can specify what contents should not be displayed

C. Dimitrakakis et al. (Eds.): PSDML 2010, LNAI 6549, pp. 127–140, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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on his/her wall, by specifying a set of filtering rules. Filtering rules are very flexible
in terms of the filtering requirements they can support, in that they allow to specify
filtering conditions based on user profiles, user relationships as well as the output of
the ML categorization process. In addition, the system provides the support for user-
defined blacklists, that is, list of users that are temporarily prevented to post messages
on a user wall.

The remainder of this paper is organized as follows: in Sect. 2 we describe work
closely related to this paper, Sect. 3 introduces the conceptual architecture of the pro-
posed system. Sect. 4 describes the ML-based text classification method used to cat-
egorize text contents, whereas Sect. 5 provides details on the content-based filtering
system. Sect. 6 describes and evaluates the overall proposed system with a case study
prototype application. Finally, Sect. 7 concludes the paper.

2 Related Work

In the OSN domain, interest in access control and privacy protection is quite recent.
As far as privacy is concerned, current work is mainly focusing on privacy-preserving
data mining techniques, that is, protecting information related to the network, i.e., re-
lationships/nodes, while performing social network analysis [4]. Work more related to
our proposals are those in the field of access control. In this field, many different access
control models and related mechanisms have been proposed so far (e.g., [5,23,1,9]),
which mainly differ on the expressivity of the access control policy language and on
the way access control is enforced (e.g., centralized vs. decentralized). Most of these
models express access control requirements in terms of relationships that the requestor
should have with the resource owner. We use a similar idea to identify the users to
which a filtering rule applies. However, the overall goal of our proposal is completely
different, since we mainly deal with filtering of unwanted contents rather than with ac-
cess control. As such, one of the key ingredients of our system is the availability of a
description for the message contents to be exploited by the filtering mechanism as well
as by the language to express filtering rules. In contrast, no one of the access control
models previously cited exploits the content of the resources to enforce access control.
We believe that this is a fundamental difference. Moreover, the notion of blacklists and
their management are not considered by any of these access control models.

Content-based filtering has been widely investigated by exploiting ML techniques
[2,13,19] as well as other strategies [12,7]. However, the problem of applying content-
based filtering on the varied contents exchanged by users of social networks has re-
ceived up to now few attention in the scientific community. One of the few examples in
this direction is the work by Boykin and Roychowdhury [3] that proposes an automated
anti-spam tool that, exploiting the properties of social networks, can recognize unso-
licited commercial e-mail, spam and messages associated with people the user knows.
However, it is important to note that the strategy just mentioned does not exploit ML
content-based techniques.

The advantages of using ML filtering strategies over ad-hoc knowledge engineer-
ing approaches are a very good effectiveness, flexibility to changes in the domain and
portability in different applications. However difficulties arise in finding an appropriate
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set of features by which to represent short, grammatically ill formed sentences and in
providing a consistent training set of manually classified texts.

3 Filtered Wall Conceptual Architecture

The aim of this paper is to develop a method that allows OSN users to easily filter un-
desired messages, according to content based criteria. In particular, we are interested in
defining an automated language-independent system providing a flexible and customiz-
able way to filter and then control incoming messages.

Before illustrating the architecture of the proposed system, we briefly introduce the
basic model underlying OSNs. In general, the standard way to model a social network
is as directed graph, where each node corresponds to a network user and edges denote
relationships between two different users. In particular each edge is labeled by the type
of the established relationship (e.g., friend of, colleague of, parent of) and, possibly,
the corresponding trust level, which represents how much a given user considers trust-
worthy with respect to that specific kind of relationship the user with whom he/she is
establishing it. Therefore, there exists a direct relationship of a given type RT and trust
value X between two users, if there is an edge connecting them having the labels RT
and X . Moreover, two users are in an indirect relationship of a given type RT if there is
a path of more than one edge connecting them, such that all the edges in the path have
label RT [11].

In general, the architecture in support of OSN services is a three-tier structure. The
first layer commonly aims to provide the basic OSN functionalities (i.e., profile and
relationship management). Additionally, some OSNs provide an additional layer allow-
ing the support of external Social Network Applications (SNA).1 Finally, the supported
SNA may require an additional layer for their needed graphical user interfaces (GUIs).
According to this reference layered architecture, the proposed system has to be placed
in the second and third layers (Fig. 1), as it can be considered as a SNA. In particular,
users interact with the system by means of a GUI setting up their filtering rules, accord-
ing to which messages have to be filtered out (see Sect. 5 for more details). Moreover,
the GUI provides users with a FW, that is, a wall where only messages that are autho-
rized according to their filtering rules are published.

Fig. 1. Filtered Wall Conceptual Architecture

1 See for example the Facebook Developers documentation, available on-line at
http://developers.facebook.com/docs/
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The core components of the proposed system are the Content-Based Messages Filter-
ing (CBMF) and the Short Text Classifier (STC) modules. The latter component aims to
classify messages according to a set of categories. The strategy underlying this module
is described in Sect. 4. In contrast, the first component exploits the message categoriza-
tion provided by the STC module to enforce the filtering rules specified by the user.
Note that, in order to improve the filtering actions, the system makes use of a blacklist
(BL) mechanism. By exploiting BLs, the system can prevent messages from undesired
users. More precisely, as discussed in Sect. 5, the system is able to detect who are the
users to be inserted in the BL according to the specified user preferences, so to block
all their messages and for how long they should be kept in the BL.

4 Short Text Classifier

Established techniques used for text classifications work well on datasets with large
documents such as newswires corpora [16] but suffer when the documents in the corpus
are short. In this context critical aspects are the definition of a set of characterizing
and discriminant features allowing the representation of underlying concepts and the
collection of a complete and consistent set of supervised examples.

The task of semantically categorizing short texts is conceived in our approach as a
multi-class soft classification process composed of two main phases: text representation
and ML-based classification.

4.1 Text Representation

The extraction of an appropriate set of features by which representing the text of a given
document is a crucial task strongly affecting the performance of the overall classifica-
tion strategy. Different sets of features for text categorization have been proposed in
the literature [21], however the most appropriate feature types and feature representa-
tion for short text messages have not been sufficiently investigated. Proceeding from
these considerations and basing on our experience documented in previous work [6],
we consider two types of features, Bag of Words (BoW) and Document properties (Dp),
that are used in the experimental evaluation to determine the combination that is most
appropriate for short message classification (see Sect. 6).

The underlying model for text representation is the Vector Space Model [17] for
which a text document dj is represented as a vector of binary or real weights dj =
w1j , . . . , w|T |j , where T is the set of terms (sometimes also called features) that occur
at least once in at least one document of the collection of document T r, and wkj ∈ [0; 1]
represents how much term tk contributes to the semantics of document dj . In the BoW
representation, terms are identified with words. In the case of non-binary weighting,
the weight wkj of term tk in document dj is computed according to the standard Term
Frequency - Inverse Document Frequency (tf-idf) weighting function [20], defined as

tf − idf(tk, dj) = #(tk, dj)· log
|Tr|

#Tr(tk)
(1)

where #(tk, dj) denotes the number of times tk occurs in dj , and #Tr(tk) denotes
the document frequency of term tk, i.e., the number of documents in T r in which tk
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occurs. Domain specific criteria are adopted in choosing an additional set of features
concerning orthography, known words and statistical properties of messages. In more
details:

– Correct words: express the amount of terms tk ∈ T ∩ K, where tk is a term of the
considered document dj and K is a set of known words for the domain language.

This value is normalized by
∑|T |

k=1 #(tk, dj).
– Bad words: are computed similarly to the Correct words feature, whereas the set K

is a collection of “dirty words” for the domain language.
– Capital words: express the amount of words mostly written with capital letters,

calculated as the percentage of words within the message, having more than half of
the characters in capital case. For example, the value of the feature for the document
“To be OR NOt to BE” is 0.5 since the words “OR” “NOt” and “BE” are considered
as capitalized (“To” is not uppercase since the number of capital characters should
be strictly greater than the characters count).

– Punctuations characters: calculated as the percentage of the punctuation characters
over the total number of characters in the message. For example, the value of the
feature for the document “Hello!!! How’re u doing?” is 5/24.

– Exclamation marks: calculated as the percentage of exclamation marks over the
total number of punctuation characters in the message. Referring to the aforemen-
tioned document the feature value is 3/5.

– Question marks: calculated as the percentage of question marks over the total num-
ber of punctuations characters in the message. Referring to the aforementioned
document the feature value is 1/5.

4.2 Machine Learning-Based Classification

We address the short text categorization as a hierarchical two-level classification pro-
cess. The first-level classifier performs a binary hard categorization that labels mes-
sages as Neutral and Non-Neutral. The first-level filtering task facilitates the subsequent
second-level task in which a finer-grained classification is performed. The second-level
classifier performs a soft-partition of Non-neutral messages assigning with a given mes-
sage a gradual membership to each of the non neutral classes. Among the variety of
multi-class ML models well-suited for the text classification, we choose the Radial
Basis Function Network (RBFN) model [18] for its proven robustness in dealing with
inherent vagueness in class assignments and for the experimented competitive behavior
with respect to other state-of the-art classifiers. The first and second-level classifiers
are then structured as regular RBFNs, conceived as hard and soft classifier respectively.
Its non-linear function maps the feature space to the categories space as a result of the
learning phase on the given training set constituted by manually classified messages. As
will be described in Sect. 6, our strategy includes the availability of a team of experts,
previously tuned on the way with which to intend the interpretation of messages and
their categorization, provide manually classified examples.

We now formally describe the overall classification strategy. Let Ω be the set of
classes to which each message can belong to. Each element of the supervised collected
set of messages D = {(mi, yi), . . . , (m|D|, y|D|)} is composed of the text mi and the
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supervised label yi ∈ {0, 1}|Ω| describing the belongingness to each of the defined
classes. The set D is then split into two partitions, namely the training set TrSD and
the test set TeSD.

Let M1 and M2 be the first and second level classifier respectively and y1 be the
belongingness to the Neutral class. The learning and generalization phase works as
follows:

1. each message mi is processed such that the vector xi of features is extracted.
The two sets TrSD and TeSD are then transformed into TrS = {(xi, yi), . . . ,
(x|TrSD|, y|TrSD|)} and TeS = {(xi, yi), . . . , (x|TeSD|, y|TeSD|)} respectively.

2. a binary training set TrS1 = {(xj , yj) ∈ TrS
∣
∣ (xj , yj), yj = yj1} is created for

M1.
3. a multi-class training set TrS2 = {(xj , yj) ∈ TrS

∣
∣ (xj , y

′
j), y

′
jk

= yjk+1 , k =
2, . . . , |Ω|} is created for M2.

4. M1 is trained with TrS1 with the aim to recognize whether or not a message is
Non-Neutral. The performance of the model M1 is then evaluated using the test set
TeS1.

5. M2 is trained with the Non-Neutral TrS2 messages with the aim of computing
gradual membership to the Non-Neutral classes. The performance of the model M2

is then evaluated using the test set TeS2.

To summarize the hierarchical system is then composed of M1 and M2, where the
overall computed function f : Rn → R|Ω| is able to map the feature space to the class
space, that is to recognize the belongingness of a message to each of the |Ω| classes. The
membership values for each class of a given message computed by f are then exploited
by the CBMF module described in the following section.

5 Content-Based Filtering with Blacklist

In this section, we introduce the rules adopted for filtering unwanted messages. In defin-
ing the language for filtering rules specification, we consider three main issues that, in
our opinion, should affect the filtering decision. The first aspect is related to the fact
that, in OSNs like in everyday life, the same message may have different meanings and
relevances based on who writes it. As a consequence, filtering rules should allow users
to state constraints on message creators. Thus, creators on which a filtering rule applies
should be selected on the basis of several different criteria, one of the most relevant
is by imposing conditions on user profile’s attributes. In such a way it is, for instance,
possible to define rules applying only to young creators, to creators with a given reli-
gious/political view, or to creators that we believe are not expert in a given field (e.g.,
by posing constraints on the work attribute of user profile).

Given the social network scenario, we see a further way according to which creators
may be identified, that is, by exploiting information on their social graph. This implies
to state conditions on type, depth and trust values of the relationship(s) creators should
be involved in order to apply them the specified rules.

Another relevant issue to be taken into account in defining a language for filtering
rules specification is the support for content-based rules. This means filtering rules
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identifying messages according to constraints on their contents. In order to specify and
enforce these constraints, we make use of the two-level text classification introduced
in Sect. 4. More precisely, the idea is to exploit classes of the first and second level as
well as their corresponding membership levels to make users able to state content-based
constraints. For example, it would be possible to identify messages that, with high prob-
ability, are neutral or non-neutral, (i.e., messages with which the Neutral/Non-Neutral
first level class is associated with membership level greater than a given threshold); as
well as, in a similar way, messages dealing with a particular second level class.

Another issue we believe it is worth being considered is related to the difficulties an
average OSN user may have in defining the correct threshold for the membership level.
To make the user more comfortable in specifying the membership level threshold, we
believe it would be useful allowing the specification of a tolerance value that, associ-
ated with each basic constraint, specifies how much the membership level can be lower
than the membership threshold given in the constraint. Introducing the tolerance would
help the system to handle, in some way, those messages that are very close to satisfy
the rule and thus they might deserve a special treatment. In particular, these messages
are those with a membership level less than the membership level threshold indicated in
the rule but greater or equal to the specified tolerance value. As an example, we might
have a rule requiring to block messages with violence class with a membership level
greater than 0.8. As such messages with violence class with membership level of 0.79
will be published, as they are not filtered by the rule. However, introducing a tolerance
value of 0.05 in the previous content-based constraint allows the system to automati-
cally handle these messages. How the system has to behave with messages caught just
for the tolerance value is a complex issue to be dealt with that may entail several differ-
ent strategies. Due to its complexity and, more importantly, the need of an exhaustive
experimental evaluation, in this paper we adopt a naı̈ve solution according to which
the system simply notifies the user about the message asking for him/her decision. We
postpone the investigation of these strategies as future work.

The last component of a filtering rule is the action that the system has to perform on
the messages that satisfy the rule. The possible actions we are considering are “block”,
“publish” and “notify”, with the obvious semantics of blocking/publishing the message,
or notify the user about the message so to wait him/her decision.

A filtering rule is therefore formally defined as follows.

Definition 1. A filtering rule fr is a tuple (creatorSpec, contentSpec, action), where:

– creatorSpec denotes the set of OSN users to which the rule applies. It can have one
of the following forms, possibly combined: (1) a set of attribute constraints of the
form an OP av, where an is a profile attribute name, av is a profile attribute value,
whereas OP is a comparison operator compatible with an’s domain; (2) a set of
relationship constraints of the form (m, rt, maxDepth, minTrust), denoting all
the OSN users participating with user m in a relationship of type rt, having a depth
less or equal to maxDepth, and a trust value greater than or equal to minTrust.

– contentSpec is a Boolean expression defined on content constraints. In particular,
each content constraint is defined as a triple (C, ml, T ), where C is a class of the
first or second level, ml is the minimum membership level required to class C to
make the constraint satisfied, and T is the tolerance for the constraint.
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– action ∈ {block, publish, notify} denotes the action to be performed by the
system on the messages matching contentSpec and created by users identified by
creatorSpec.

Example 1. The filtering rule ((Bob, friendOf, 10, 0.10), (Sex, 0.80, 0.05), block)
blocks all the messages created by those users having a direct or indirect friendship rela-
tionship with Bob at maximum distance 10 and minimum trust level 0.10. In particular,
it blocks only those messages with which the Sex second level class has been associ-
ated with a membership level greater than 0.80; whereas those with membership level
greater than 0.75 and less than 0.80 are notified to the wall’s owner.

As introduced in Sect. 3, we make use of a BL mechanism to avoid messages from
undesired creators. BL is managed directly by the system, which according to our strat-
egy is able to: (1) detect who are the users to be inserted in the BL, (2) block all their
messages, and (3) decide when users retention in the BL is finished. To make the sys-
tem able to automatically perform these tasks, the BL mechanism has to be instructed
with some rules, hereafter BL rules. In particular, these rules aim to specify (a) how
the BL mechanism has to identify users to be banned and (b) for how long the banned
users have to be retained in the BL, i.e., the retention time. Before going into the details
of BL rules specification, it is important to note that according to our system design,
these rules are not defined by the Social Network manager, which implies that these
rules are not meant as general high level directives to be applied to the whole commu-
nity. Rather, we decide to let the users themselves, i.e., the wall’s owners to specify BL
rules regulating who has to be banned from their walls. As such, the wall owner is able
to clearly state how the system has to detect users to be banned and for how long the
banned users have to be retained in the BL. Note that, according to this strategy, a user
might be banned from a wall, by, at the same time, being able to post in other walls.

In defining the language of BL rule specification we have mainly considered the
issue of how to identify users to be banned. We are aware that several strategies would
be possible, which might deserve to be considered in our scenario. Among these, in
this paper we have considered two main directions, postponing as future work a more
exhaustive analysis of other possible strategies. In particular, our BL rules make the
wall owner able to identify users to be blocked according to their profiles as well as
their relationships. By means of this specification, wall owners are able to ban from
their walls, for example, users they do not know directly (i.e., with which they have
only indirect relationships), or users that are friend of a given person as they may have
a bad opinion of this person. This banning can be adopted for an undetermined time
period or for a specific time window. Moreover, banning criteria take in consideration
also users’ behavior in the OSN. More precisely, among possible information denoting
users’ bad behavior we have focused on two main measures. The first is related to the
principle that if within a given time interval a user has been inserted into the BL for
several times, say greater than a given threshold, he/she might deserve to stay in the BL
for another while, as his/her behavior is not improved. This principle works for those
users that have been already inserted in the BL at least one time. To catch new bad
behaviors, we use the Relative Frequency (RF), defined later in this section. RF let the
system be able to detect those users whose messages continue to fail the filtering rules.
A BL rule is therefore formally defined as follows.
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Definition 2. A BL rule is a tuple (author, creatorSpec, creatorBehavior, T ),
where:

– author is the OSN user who specifies the rule, i.e., the wall owner;
– creatorSpec denotes the set of OSN users to which the rule applies. It can have one

of the following forms, possibly combined: (1) a set of attribute constraints of the
form an OP av, where an is a profile attribute name, av is a profile attribute value,
whereas OP is a comparison operator compatible with an’s domain; (2) a set of
relationship constraints of the form (m, rt, maxDepth, minTrust), denoting all
the OSN users participating with user m in a relationship of type rt, having a depth
less or equal to maxDepth, and a trust value greater or equal to minTrust.

– creatorBehavior = RFBlocked ∨ minBanned. In particular, RFBlocked =
(RF , mode, window) is defined such that:
• RF = #bMessages

#tMessages , where #tMessages is the total number of messages that
each OSN user identified by creatorSpec has tried to publish in the author
wall (mode = myWall) or in all the OSN walls (mode = SN ); whereas
#bMessages is the number of messages among those in #tMessages that
have been blocked.

• mode ∈ {myWall, SN} specifies if the messages to be considered for the
RF computation have to be gathered from the author’s wall only (mode =
myWall) or from the whole community walls (mode = SN ).

• window is the time interval of creation of those messages that have to be con-
sidered for RF computation;

minBanned = (min, mode, window) is defined such that min is the minimum
number of times in the time interval specified in window that OSN users identified
by creatorSpec have to be inserted into the BL due to BL rules specified by author
wall (mode = me) or other OSN users (mode = SN ) in order to satisfy the
constraint.

– T denotes the time period the users identified by creatorSpec or creatorBehavior
have to be banned from author wall.

Example 2. The BL rule (Alice, (Age < 16), (0.5, myWall, 1 week), 3 days)
inserts into the BL associated with Alice’s wall those young users (i.e., with age less
than 16) that in the last week have a relative frequency of blocked messages greater
than or equal to 0.5. Moreover, the rule specifies that these banned users have to stay in
the BL for three days.

6 A Case Study: DicomFW

In this section we illustrate how our system can be applied in a real OSN, that is, Face-
book. In the following we describe the prototype implementation details, we then pro-
vide some preliminary experiments in order to evaluate the performance of our system.

6.1 Problem and Dataset Description

We have built a dataset2 D of messages taken from Facebook. We have selected an
heterogeneous set of publicly visible user groups in italian language. The set of classes

2 http://www.dicom.uninsubria.it/~marco.vanetti/wmsnsec/
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Ω = {Neutral, V iolence, V ulgar, Offensive, Hate, Sex} is considered, where Ω−
{Neutral} belongs to the second level classes. The set D has 1266 elements, where
the percentage of elements in D that belongs to the Neutral class is 31%. In order to
deal with intrinsic ambiguity in assigning messages to classes, we conceive that a given
message belongs to more than one classes. In particular, on the average, a message
belongs to two classes (V ulgar and Offensive are the most related classes). Each
message has been labeled by a group of five experts and the class membership values
yj ∈ {0, 1}|Ω| for a given message mj were computed by majority voting. Within
Non-Neutral classes, the resulting final distribution of the sub-classes is uniform.

6.2 Demo Application

Throughout the development of the prototype3 we have focused our attention on fil-
tering rules, leaving BL implementation as a future improvement. The filtering rules
functionality is critical since permits the STC and CBMF components to interact.

To summarize, our application (Fig. 2) permits to: (1) view the list of users’ FWs
(see Fig. 2(a)), (2) view messages on a FW, (3) post a message on other FWs, (4) define
filtering rules for the FWs. When a user tries to post a message on a FW, if it is blocked
by a filtering rule, he/she receives an alerting message (see Fig. 2(b)).

(a) (b)

Fig. 2. Two relevant use cases of the DicomFW application: (a) start page proposes the list of
walls the OSN user can see, (b) a message filtered by the wall’s owner filtering rules

6.3 Short Text Classifier Evaluation

Evaluation Metrics. Two different types of measures will be used to evaluate the ef-
fectiveness of first level and second level classifications. In the first level, the short text
classification procedure is evaluated on the basis of the contingency table approach. In
particular the derived well known Overall Accuracy (OA) index capturing the simple

3 http://apps.facebook.com/dicompostfw/
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percent agreement between truth and classification results, is complemented with the
Cohen’s KAPPA (K) coefficient thought to be a more robust measure that takes into
account the agreement occurring by chance [14].

At second level, we adopt measures widely accepted in the Information Retrieval
and Document Analysis field, that is, Precision (P ), that permits to evaluate the number
of false positives, Recall (R), that permits to evaluate the number of false negatives,
and the overall metric F-Measure (Fβ), defined as the harmonic mean between the
above two indexes [10]. Precision and Recall are computed by first calculating P and
R for each class and then taking the average of these, according to the macro-averaging
method [21], in order to compensate unbalanced class cardinalities. The F-Measure is
commonly defined in terms of a coefficient β that defines how much to favor Recall
over Precision. We chose to set β = 1.

Numerical Results. By trial and error we have found a quite good parameters config-
uration for the RBFN learning model. The best value for the M parameter, that deter-
mines the number of Basis Function, seems to be N/2, where N is the number of input
patterns from the dataset. The value used for the spread σ, which usually depends on the
data, is σ = 32 for both networks M1 and M2. As mentioned in Sect. 4.1, the text has
been represented with the BoW feature model together with a set of additional features
Dp based on document local properties. To calculate the first two features we used two
specific italian word-lists, one of these is the CoLFIS corpus [15]. The cardinalities of
TrSD and TeSD, subsets of D with TrSD ∩ TeSD = ∅, were chosen so that TrSD

is twice larger than TeSD. Table 1 exposes the main results varying used features and
term weighting for BoW.

Table 1. Results for the two stages of the proposed hierarchical classifier

Configuration First level Second Level

Features BoW TW OA K P R F1

BoW binary 72.9% 28.8% 69% 36% 48%
BoW tf-idf 73.8% 30.0% 75% 38% 50%

BoW+Dp binary 73.8% 30.0% 73% 38% 50%
BoW+Dp tf-idf 75.7% 35.0% 74% 37% 49%

Dp - 69.9% 21.6% 37% 29% 33%

Network M1 has been evaluated using the OA and the K value. Precision, Recall
and F-Measure were used for the M2 network because, in this particular case, each
pattern can be assigned to one or more classes.

Table 1 shows how different features configuration and term weighting (for the BoW
features) impact on the results. The numbers prove that, for the first classification stage,
Dp features are important in order to distinguish neutral messages from others. BoW
features better support the classification task if used with the term weighting as seen
in Table 1. The last consideration that we can do on the results is that the network M2

works better using only the BoW features. This happens because Dp features are too
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Table 2. Results of the proposed model in term of Precision, Recall and F-Measure values for
each class

First level Second Level

Metric Neutral Non-Neutral Violence Vulgar Offensive Hate Sex

P 77% 69% 92% 69% 86% 58% 75%
R 92% 38% 32% 53% 27% 26% 52%
F1 84% 49% 47% 60% 41% 36% 62%

general in order to contribute significantly in the second stage classification, where there
are more than two classes, all of non-neutral type, and it is required a greater effort in
order to understand the semantics of the message.

Table 2 exposes detailed results for the best classifier (BoW+Dp with tf-idf term
weighting for the first stage and BoW with tf-idf term weighting for the second stage).
Precision, Recall and F-Measure values, related to each class, show that the most prob-
lematic cases are the Hate and Offensive classes. Messages with hate and offensive
contents often hold quite complex concepts that hardly may be understood using a term
based approach. The behavior of the system on the Non-Neutral classes is to be inter-
preted in light of the intrinsic difficulty of short message semantics.

6.4 Overall Performance and Discussion

In order to provide an overall assessment of how effectively the system will apply a
filtering rule, we look again at Table 2. This table allows us to estimate the Preci-
sion and Recall of our filtering rules, since values reported in Table 2 have been com-
puted for filtering rules with content specification component set to (C, 0.5, 0.0), where
C ∈ {Neutral, Non−Neutral, V iolence, V ulgar, Offensive, Hate, Sex}. Let us
suppose that the system applies a given rule on a certain message. As such, Precision
reported in Table 2 is the probability that the decision taken on the considered mes-
sage (that is blocking it or not) is actually the correct one. In contrast, Recall has to be
interpreted as the probability that, given a rule that must be applied over a certain mes-
sage, the rule is finally enforced. Let us now discuss, with some examples, the results
presented in Table 2, which reports Precision and Recall values. The second column of
Table 2 represents the Precision and the Recall value computed for the filtering rule with
(Neutral, 0.5, 0.0) content constraint. In contrast, the fifth column stores the Precision
and the Recall value computed for the filtering rule with (V ulgar, 0.5, 0.0) constraint.

Results obtained for the content-based specification component, on the first level
classification, can be considered good enough and aligned with those obtained by well-
known information filtering techniques [12]. Results obtained for the content-based
specification component on the second level must be interpreted in view of the intrinsic
difficulties in assigning to a messages a semantically most specific category (see the
discussion in Sect. 6.3). As such we are optimistic that after having improved the text
classifier strategies such to overcome these difficulties, results on second level will be
aligned with those on the first level. More precisely, improvements we are planning and
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carrying on focus on reducing the inconsistency in the collection of manually classified
examples and improving the message representation with the inclusion of contextual
information.

7 Conclusions

In this paper, we have presented a system to filter out undesired messages from OSN
walls. The system exploits a ML soft classifier to enforce customizable content depen-
dent filtering rules. Moreover, the flexibility of the system in terms of filtering options
is enhanced through the management of BLs.

This work is the first step of a wider project. The early encouraging results we have
obtained on the classification procedure prompt us to continue with other work that
will aim to improve the quality of classification. Additionally, we plan to enhance our
filtering rule system, with a more sophisticated approach to manage those messages
caught just for the tolerance and to decide when a user should be inserted into a BL.
For instance, the system can automatically take a decision about the messages blocked
because of the tolerance, on the basis of some statistical data (e.g., number of blocked
messages from the same author, number of times the creator has been inserted in the
BL) as well as data on creator profile (e.g., relationships with the wall owner, age, sex).
Further, we plan to test the robustness of our system against different adversary models.
The development of a GUI to make easier BL and filtering rule specification is also a
direction we plan to investigate.

However, we aware that a new GUI could not be enough, representing only the first
step. Indeed, the proposed system may suffer of problems similar to those in the specifi-
cation of privacy settings in OSN. In this context, many empirical studies [22] show that
average OSN users have difficulties in understanding also the simple privacy settings
provided by today OSNs. To overcome this problem, a promising trend is to exploit
data mining techniques to infer the best privacy preferences to suggest to OSN users,
on the basis of the available social network data [8]. As future work, we intend to exploit
similar techniques to infer BL and filtering rules.
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