

Choate ffirs.tex V1 - 11/19/2007 2:50pm Page iii

Professional
Wikis

Mark Choate

Wiley Publishing, Inc.

Choate ffirs.tex V1 - 11/19/2007 2:50pm Page ii

Choate ffirs.tex V1 - 11/19/2007 2:50pm Page i

Professional
Wikis

Chapter 1: Wikis at Work . 1
Chapter 2: Installing MediaWiki . 21
Chapter 3: Getting Started with MediaWiki . 39
Chapter 4: Writing and Editing Content . 73
Chapter 5: Images and Files . 113
Chapter 6: Page Actions and Version Control . 137
Chapter 7: Information Architecture: Organizing Your Wiki. 161
Chapter 8: Magic Words, Templates, and Skins . 173
Chapter 9: Extensions. 197
Chapter 10: The MediaWiki API. 223
Chapter 11: Wiki Performance. 263
Index 287

Choate ffirs.tex V1 - 11/19/2007 2:50pm Page ii

Choate ffirs.tex V1 - 11/19/2007 2:50pm Page iii

Professional
Wikis

Mark Choate

Wiley Publishing, Inc.

Choate ffirs.tex V1 - 11/19/2007 2:50pm Page iv

Professional Wikis
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-12690-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Choate ffirs.tex V1 - 11/19/2007 2:50pm Page v

For Christine, with love

Choate ffirs.tex V1 - 11/19/2007 2:50pm Page vi

Choate fauth.tex V1 - 11/19/2007 2:53pm Page vii

About the Author
Mark S. Choate (Washington, D.C.) is co-founder and CEO of The Choate Group, LLC, a research and
communications consulting firm serving organizations in the areas of knowledge management, research
methodology, funding strategies, and grant writing. He was the lead developer of The Choate Group’s
Metawrite authoring tool, a cross-platform desktop wiki, and he consults with organizations seeking to
implement weblog and wiki solutions. He is the former vice president of interactive media for The News
& Observer. He lectures at Georgetown University’s Communication, Culture and Technology (CCT)
graduate program where he teaches The Technology of News, which evaluates the impact of Internet
technology on news dissemination.

Choate fauth.tex V1 - 11/19/2007 2:53pm Page viii

Choate fcre.tex V1 - 11/19/2007 2:48pm Page ix

Credits
Acquisitions Editor
Jenny Watson

Development Editor
Adaobi Obi Tulton

Technical Editor
Emmett Dulaney

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lindsey Osborn

Proofreader
David Nocturne, Word One

Indexer
Robert Swanson

Anniversary Logo Design
Richard Pacifico

Choate fack.tex V1 - 11/19/2007 2:54pm Page x

Acknowledgments

I would like to thank those who helped make this book possible. In particular, I’d like to thank the
developers of MediaWiki and the participants on the MediaWiki mailing list who have shared their
insights with others in the generous spirit so often found among those involved in open-source software.
I would also like to thank Carole McClendon at Waterside Productions, Kit Kemper, Jenny Watson,
Adaobi Obi Tulton at Wrox, and my technical editor Emmett Dulaney. Special thanks to Cindy Swain,
my editor at the Cutter Consortium. An early version of much of the content in Chapter 1 first appeared
in Cutter Consortium publications (visit http://cutter.com/ to learn more).

I would also like to thank Christine, Connor, Sarah, Ian, Lucy, and Sheba for their patience and support,
as well as my parents, Dennis and Judy, for all the different ways they have helped me.

Choate ftoc.tex V2 - 11/20/2007 9:08pm Page xi

Contents

Introduction xvii

Chapter 1: Wikis at Work 1

Wiki History 2
Web 2.0 and Social Media 4
New Business Models 5

Web Content Management Systems 9
Content Management Life Cycle 9
Workflow and User Management 10
Content Authoring 12
Organization 12

When to Wiki 14
Running a Successful Wiki 15
Wikis in the Enterprise 20

Summary 20

Chapter 2: Installing MediaWiki 21

Development Environment 22
Installing the Prerequisites 22

Installing Apache 23
Installing PHP 25
Installing MySQL 27
Installing Postgres 28

Installing MediaWiki 29
Step One: Download MediaWiki 29
Step Two: Copy to Web Server 30
Installing Through the Web 31

Configuring Short URLs 36
Summary 38

Chapter 3: Getting Started with MediaWiki 39

The MediaWiki Application 39
Code Organization 40
Architecture 41
Customizing the Installation 41

Choate ftoc.tex V2 - 11/20/2007 9:08pm Page xii

Contents

Fresh Wiki 51
Wiki Pages 52

Creating Pages 52
Wiki Titles and URLs 52
Page Types 54
Article Pages 55
Redirect Pages 57
Disambiguation Pages 57

Namespaces 57
Category Namespace 58
Image Namespace 59
User Namespace 60
Talk Namespace 60
Project Namespace 60
Help Namespace 60
MediaWiki Namespace 61
Template Namespace 61
Special Namespace 61
Media Namespace 62

User Actions 62
Users and Roles 62
Changing Permissions 66

Actions 68
Custom Views with Parameters 70

Summary 71

Chapter 4: Writing and Editing Content 73

Writing for the Web 73
Wikitext versus WYSIWYG 74
Wiki Content 76

Writing and Editing 76
Editing Pages 77
Previewing Changes 78
Summary Field 79
History 79
Options for Logged-in Users 80

Creating Links 80
Wiki (Internal) Links 80
External Links 84
Interwiki Links 85

xii

Choate ftoc.tex V2 - 11/20/2007 9:08pm Page xiii

Contents

Formatting and Styles 85
Comments 87

Headings 87
Lines and Breaks 91

Block-Level Elements 91
Preformatted Text 92

Lists 94
Nested Lists 96
Mixed Nested Lists 97

Tables 99
Basic Tables 99
Table Attributes 100
Colspan and Rowspan 102
Combining Tables and Lists 104

HTML on Wiki Pages 105
Character and Entity References 105
Sanitizing 106
Ruby text, for East Asian languages 109
Footnotes 109
Signatures 110

Editing Alternatives 111
Toolbar 111

Summary 112

Chapter 5: Images and Files 113

File Uploads 113
Enabling Uploads 113
Uploading Images 114
The Image Page 115
File Types 117

Image Linking and Embedding 118
The Image Namespace 119
The Media Namespace 120
Extended Image Syntax 121
Image Display Width 122
Image Alignment 122
Thumbnails and Frames 125
Image Galleries 129

Uploading Documents 134
Summary 135

xiii

Choate ftoc.tex V2 - 11/20/2007 9:08pm Page xiv

Contents

Chapter 6: Page Actions and Version Control 137

How Pages Work 137
Components of a Page 138
Revisions 139

Actions 143
Permissions 143
Viewing Pages 146
Editing and Modifying Pages 148
Previous Versions 149
Deleting Pages 153
Protecting Pages 154
Page Metadata 156

Redirects 159
Special Pages 159

Importing and Exporting Pages 159
Summary 160

Chapter 7: Information Architecture: Organizing Your Wiki 161

How Users Find Information 161
Site Navigation 161
Search 162

Search Preferences 163
Search Options 164
Apache Lucene Search 165

Category Pages 165
Adding a Page to a Category 165
Creating Categories 166
Linking to Category Pages Using Alternate Text 167
Sorting Categories 167
Editing Category Pages 167
Subcategories 167
Multi-Faceted Categories 169
Categories as Folksonomies 170

Improving Findability 170
Redirects and Synonyms 170
Disambiguation Pages 171

Wiki Gardening 171
Summary 172

xiv

Choate ftoc.tex V2 - 11/20/2007 9:08pm Page xv

Contents

Chapter 8: Magic Words, Templates, and Skins 173

Magic Words 173
Directives 174
Variables 174
Parser Functions 178
Creating Links with Variables and Parser Functions 181

Templates 181
User Interface 185

Interface Messages 185
Skins 188

Summary 196

Chapter 9: Extensions 197

MediaWiki Hooks 197
The Parsing Process 198

XML Tag Extensions 204
The Setup Function 205
The Render Function 205
The Complete Extension 206

Parser Functions 208
The Setup Function 208
The Render Function 209
The Magic Function 209
The Complete Extension 210
Default Values 211
Return Values 211
Using Global Objects 211

Parser Functions with Messages 212
The Extension Object 212
The Setup Function 213
The Magic Function 213
The Complete Extension 215

Hook Extensions 217
ParserBeforeStrip Hook 217
EditPage::showEditForm:initial Hook 217

Special Pages 219
Summary 221

xv

Choate ftoc.tex V2 - 11/20/2007 9:08pm Page xvi

Contents

Chapter 10: The MediaWiki API 223

Bots: pywikipedia.py 223
Configuring pywikipedia.py 224
editarticle.py 226
spellcheck.py 227

API.php 229
Configuration 229
Accessing the API 230
Actions 230
Formats 230
Python Script 234
In Development 254
api.py 254

Summary 261

Chapter 11: Wiki Performance 263

Wikipedia Architecture 264
Caching 265

Purging the Cache 265
Cache Types 266
Browser Cache 266
File Cache 269
Memcached 270
Alternative PHP Cache (APC) 273

Improving Performance 276
Serializing Messages 276
Miser Mode 276
Managing Spiders 278

Maintenance Scripts 282
Configuration 283
Backup 283
Import Files 286

Summary 286

Index 287

xvi

Choate flast.tex V1 - 11/19/2007 3:00pm Page xvii

I n t roduc t ion

This book is a book about how to install, use, manage, and extend a wiki using MediaWiki, the wiki
engine used to power one of the world’s most famous wikis, Wikipedia.

Wikis are the sleeper hit of the Internet, with roots that extend far back into the old days — the very
first wiki deployed by wiki inventor Ward Cunningham was released to the world on March 25, 1995.
(It can still be found at http://c2.com/cgi/wiki, with an informative history of those early days at
http://c2.com/cgi/wiki?WikiHistory.) After that release, wikis crept along with an enthusiastic
but narrowly defined group of devotees, programmers working on project teams who used wikis for
software documentation. Credit for the sudden turn-around in fame (if not fortune) for wikis is certainly
due to Wikipedia, the online encyclopedia that nearly anyone can contribute to and edit.

According to Wikipedia, this wiki started on January 15, 2001. At the time of this writing, there are
well over 1.5 million English language articles and over 3 million user accounts. You can find the latest
statistics at http://en.wikipedia.org/wiki/Special:Statistics.

In late 2005, Wikipedia garnered a bit of negative publicity as the result of a few bad posts, but on
December 14, 2005, the well-respected scientific journal Nature published a report that found that
Wikipedia’s accuracy was comparable to the accuracy of Encyclopedia Britannica. As one might expect,
this generated some protestations from Encyclopedia Britannica. As far as I’m concerned, the jury is still
out and I’m not inclined to get into the fray. What I do know for certain, however, is that Wikipedia is
extremely useful — it’s free, and, for the vast majority of topics, it is accurate.

You can read about the controversy at www.nature.com/news/2005/051212/full/438900a.html.

The success of Wikipedia has served as an eye-opening example of just how effective wikis can be for
collaborative editing on a large scale — much larger than many people (including me) thought possible.
It shows that wikis can be used effectively in environments beyond that of the IT workgroup. At the same
time, wikis have not fully entered the mainstream. The looks my talented but non-technical friends and
colleagues would give me when I told them I was working on a book about wikis provides at least some
anecdotal evidence that wikis are not yet as famous as iPods or Britney Spears’ C-section scar.

Nevertheless, because of the fame (or notoriety) of Wikipedia, the open-source software package called
MediaWiki that runs Wikipedia is becoming an increasingly popular package for developing wikis. It is
by no means the only wiki application on the open-source market, but it is a good one, and one would be
hard-pressed to find another wiki engine as widely used.

Who Should Read This Book
Wikis can be a valuable addition for any organization that wants to increase productivity using
Web-based collaboration tools. The ideal reader of this book is a programmer or technical professional
planning to implement a MediaWiki-powered wiki. The difference between a programmer and an author

Choate flast.tex V1 - 11/19/2007 3:00pm Page xviii

Introduction

or a designer isn’t as clearly defined as it used to be. The audience is not a particular profession. Web
developers, information architects, designers, and content authors can all benefit from reading this book.

The brilliance of wikis is their simplicity. You can install and operate a very useful wiki without any
detailed technical knowledge of the underlying system. That being said, the reader of this book does
need to have certain technical skills to make the most of it. Familiarity with the World Wide Web, and
solid knowledge of HTML, XML and CSS are essential. MediaWiki is written in PHP, and uses MySQL
or PostgreSQL databases on the back-end. While much benefit can still be derived without PHP or SQL
skills, basic programming knowledge is a necessity.

This is a book about MediaWiki — it’s not a book about HTML, XML, CSS, PHP, MySQL, PostgreSQL, or
anything else. Therefore, I will assume knowledge in all of these areas. If you are not familiar with these
technologies, I can recommend the following books:

❑ Web Standards Programmer’s Reference: HTML, CSS, JavaScript, Perl, Python, and PHP, by Steven
M. Schafer (Wrox, 2005)

❑ Beginning PHP5, Apache, and MySQL Web Development, by Elizabeth Naramore, Jason Gerner,
Yann Le Scouarnec, Jeremy Stolz, and Michael K. Glass (Wrox, 2005)

MediaWiki runs on Macintosh, Windows, or Linux platforms. The examples used in this book were
written using MediaWiki 1.9.3, Apache 1.3.33, MySQL 4.1.10, and PHP 5.2, as well as the environment
provided by the PHP Development Tool (PDT) plug-in for Eclipse 3.2 from Zend. Minimum requirements
to run MediaWiki 1.9 are MySQL 4.0 or later and PHP 5.0 or later, although the developers recommend
PHP 5.1.

How This Book Is Organized
This book has been organized in a natural way so that each chapter builds on previous chapters.
The book is designed so that it moves from simpler tasks to those of increasing complexity.

Chapter 1: Wikis at Work
The most common question I get about wikis in my consulting practice is the question of when to use
wikis, rather than a more formal content management system. The answer to this question depends on
what you need to accomplish. This chapter introduces and defines wikis, and discusses how wikis are
different from other content management systems. You will learn about how wikis are being used by
different organizations and when the use of a wiki is your best strategy, or when you should look at
other alternatives.

If you’ve already determined that you need (or want) a wiki, the next step is to decide how to imple-
ment your wiki. As a consequence of their simplicity and utility, many varieties of open-source wiki
engines have sprouted all over the Web. There is also a growing number of commercial wiki applications
billing themselves as enterprise wikis. You will learn about common wiki features and which ques-
tions to ask yourself when evaluating wiki engines, including what to look for in order to avoid any
unexpected pitfalls.

xviii

Choate flast.tex V1 - 11/19/2007 3:00pm Page xix

Introduction

Chapter 2: Installing MediaWiki
In this chapter, installation of MediaWiki is covered in detail. I cover the most common installation
methods, using Apache, PHP, and MySQL. I also explain the basic configuration requirements when first
installing your wiki.

Chapter 3: Getting Started with MediaWiki
Chapter 3 introduces a guided tour of MediaWiki, including wiki terminology, and reveals the basic
steps required to get up and running as a new user. You will learn about creating user accounts, creating
new pages, understanding wiki links, and how to find your way around the wiki.

Chapter 4: Writing and Editing Content
The beating heart of a wiki is user-generated content. Chapter 4 documents the details of wikitext, the
shorthand markup used by MediaWiki that enables authors to edit content from any Web browser, apply
formatting, and easily create links to other wiki pages.

Chapter 5: Images and Files
In addition to writing wikitext, users can upload images and files. In this chapter, you will learn how to
configure MediaWiki to support image and file uploads, as well as how to refer to them using wikitext.

Chapter 6: Page Actions and Version Control
A user can do more than just edit a page. He or she can comment on pages, move them, track changes,
use trackbacks to comment on them in their blog, and syndicate their wiki page with RSS. Some pages
can also be protected from other users. There is also a class of pages called Special Pages that provide
users with interesting information about the wiki itself, and that can be used to manage the site.

Chapter 7: Information Architecture: Organizing Your Wiki
The architecture of a site defines how a user finds the information he or she is looking for by following
links or performing searches. Wikis take a different approach to information architecture than most
websites — they have a flat hierarchy, and rely on a folksonomic form of categorization. This chapter
focuses on navigation and search, and includes expanded coverage on categories, subpages, customizing
namespaces, disambiguation, and using external search facilities.

Chapter 8: Magic Words, Templates, and Skins
The look and feel of a wiki is defined by what Wikipedia calls a skin, which is a combination of HTML,
CSS, and PHP classes. In this chapter you will learn how to modify the default MediaWiki skin, as well
as how to create a new one. In addition to learning how to modify the design of a site, you will also learn
how to insert additional content on pages using magic words, a general term used by MediaWiki to cover
a few different kinds of template elements.

xix

Choate flast.tex V1 - 11/19/2007 3:00pm Page xx

Introduction

Chapter 9: Extensions
Chapter 9 covers more advanced topics, including extending MediaWiki by creating new tags, parser
functions, as well as extending or modifying the basic functionality of MediaWiki using hooks.

Chapter 10: The MediaWiki API
Bots are applications that can interact with MediaWiki wikis. In Chapter 10, the use of one such bot, called
pywikipediabot, is introduced. External applications and systems can also interact with MediaWiki using
a ReST style API. This chapter covers the functionality that can be accessed through the API and provides
examples of how that functionality can be leveraged for your benefit.

Chapter 11: Wiki Performance
MediaWiki uses a many-layered approach to cacheing, an understanding of which is essential for running
a wiki with acceptable performance characteristics. Chapter 11 explains MediaWiki’s cacheing strategy.

Where to Find More Information
Programmers use wikis to document programming projects. Because MediaWiki is a programming
project, it should come as no surprise that MediaWiki uses a wiki to document itself. The information
available on the site varies with respect to timeliness — some of the information is out of date, but enough
of it is current to make it useful. MediaWiki is also a dynamic project, always evolving, so there will likely
be many new additions to the application in the future, and this is a good place to start.

Most documentation can be found on the MediaWiki website at www.mediawiki.org. You can also learn
more about the Wikipedia family of sites and find information relevant to all users of MediaWiki soft-
ware on http://meta.wikipedia.org. I also regularly write about wikis and blogs on my own blog at
http://choate.info/.

You can also find plenty of friendly folks willing to answer your questions. Look on the #mediawiki
IRC channel hosted on Freenode.net, or you can subscribe to the MediaWiki mailing list at
http://lists.wikimedia.org/mailman/listinfo/mediawiki-l.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl + A.

xx

Choate flast.tex V1 - 11/19/2007 3:00pm Page xxi

Introduction

❑ We show filenames, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-12690-5.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book’s details page, click the Book Errata link. On this page you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and to interact with

xxi

Choate flast.tex V1 - 11/19/2007 3:00pm Page xxii

Introduction

other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxii

Choate c01.tex V1 - 11/19/2007 1:15pm Page 1

Wikis at Work

Wikis are websites that are collaboratively written by their readers. The software that makes wikis
possible is called a wiki engine. This chapter introduces the wiki concept, and what you read here
will apply to almost any wiki engine. The rest of the book, however, is devoted to one wiki engine
in particular called MediaWiki, the wiki engine that runs what is arguably the world’s most famous
wiki, Wikipedia.

The idea that wikis are websites collaboratively written by their readers is simple enough, but the
simplicity of the idea belies the profound impact a wiki can have on the flow of information among
individuals. A wiki is to a typical website what a dialogue is to a monologue. On the surface, a
conversation shares a lot in common with a lecture — in both cases, someone is talking and someone
is listening, but the experience of a conversation is qualitatively different from the experience of
either lecturing or being lectured, and the outcome of a conversation is qualitatively different from
the outcome of a lecture as well.

In other words, authors are readers and readers are authors; there is no approval process required
to post information on a wiki and there is no pre-ordained structure imposed on the content that
is presented there. If you think of a regular website as a farm, with all the content organized into
neat little rows of corn or beans, then a wiki is a meadow, teaming with grasses and wild flowers.
A meadow isn’t chaotic, however; there is order there, but it is a different kind of order. It’s an
emergent kind of order, one that evolves and is discovered, rather than imposed.

As with all definitions, this definition is only partly true. As time has passed, the principle of
openness has been reshaped as a consequence of the hard realities of the world, and many wikis
now restrict editing to certain users. Wikis have now become so popular that there are quite a few
content management systems claiming wiki status with a completely different set of features than
those conceived by the father of wikis, Ward Cunningham. He launched the first wiki (something
he called a WikiWikiWeb back then) on March 25, 1995. A host of content management systems
label themselves as wikis, even though they bear only a minor resemblance to the original wiki
concept. This can make getting started with wikis a confusing affair.

Choate c01.tex V1 - 11/19/2007 1:15pm Page 2

Chapter 1: Wikis at Work

The Wiki Way is the name of a book by Ward Cunningham, and it is also a phrase used in
reference to what was originally called Wiki Design Principles, which can be found on Ward’s
wiki at http://c2.com/cgi/wiki?WikiDesignPrinciples.

The most common question I am asked in my consulting practice goes something like this: ‘‘We have
a content management system in place, but we’d like to have a wiki, too. How can my wiki integrate
with the content management system?’’ This is like someone walking up to me and saying, ‘‘I have a
pair of red shoes and a pair of black shoes and I’d like to integrate them into the same outfit.’’ I might
suggest they wear both shoes — one red and one black. That might actually work if the only difference
between the red shoes and the black shoes were the color. But what if the red shoes were running shoes
and the black shoes were stiletto pumps? It would be very hard to get where you want to go.

The problem is this: A wiki is a content management system, not an alternative to a content
management system. A website is a collection of related HTML pages that is accessible through the World
Wide Web at a particular domain name (usually), and these pages are organized and linked to each other
in a systematic way to make it easy for readers to find the information they seek. A content management
system is a software application that provides tools to help people create and deploy websites. A wiki is
a kind of content management system with a very special set of features that make it easy for people to
use them to collaborate.

There are many different kinds of content management systems, each one suited to a different purpose,
so the first question that really needs to be answered is ‘‘What are you trying to accomplish?’’

There is a time and a season for everything. There is a time to wiki and a time not to wiki. This chapter
aims to shed some light on when it makes sense to use a wiki, and when it may make sense to try a
different approach. I start by exploring the history of wikis and why wikis have become such an item of
interest in organizations. This is followed by a more detailed look at how wikis work and what kind
of functionality is important when selecting a particular wiki engine. The chapter concludes with a
discussion of best practices for running a successful wiki.

Once you know where you are going, it’s a lot easier to figure out what kind of shoes you need to wear
in order to get there.

Wiki History
Ward’s original wiki is called the PortlandPatternRepository, and it can be found at http://c2.com/. The
‘‘WikiWikiWeb’’ name for the technology was inspired by the ‘‘Wiki Wiki’’ Chance RT-52 shuttle bus
that runs between airport terminals in the Honolulu International Airport. Wiki is the Hawaiian word for
quick, and that seemed to be an appropriate name for what Ward wanted to accomplish. His goal was
to use the World Wide Web to develop a way for programmers to more readily share ideas about design
patterns. In order for such a system to work, it needed to be something that was quick and easy to use.

In May of 1995, he invited a few of his colleagues to participate in his new site. It wasn’t long before the
idea began to slowly catch on, and over the last decade a lot has changed.

Despite the success of PortlandPatternRepository, wikis did not start out as mainstream tools. It was
the open-source software movement that first embraced the idea of wikis as an opportunity for widely
distributed, decentralized teams of people to collaborate to produce software.

2

Choate c01.tex V1 - 11/19/2007 1:15pm Page 3

Chapter 1: Wikis at Work

The use of wikis by the open-source community is fitting, because wikis work on a principle
similar to that which makes open-source software development so effective. The Linus Principle,
named after Linus Torvalds, the original creator of Linux, is this: ‘‘Given enough eyeballs, all
bugs are shallow.’’ The benefit of sharing the source code with your application is that you have
more people who can look at the code and find problems. Wikis provide the same logic to content
development: The more people who can both read and edit a document, the more likely it is that errors
will be caught and fixed.

The technology behind a wiki is relatively simple: Ward’s contribution to humanity was not the code
used to produce the first wiki (although I am sure it is fine code indeed), but getting the technology
out of the way so that people can communicate and collaborate. In every organization on the globe,
both large and small, there is information about the organization floating around inside people’s heads
that needs to be documented in some way. Practitioners of knowledge management call this kind of
knowledge, which is informal and learned largely from experience, tacit knowledge. What they call
explicit knowledge is formalized and documented knowledge. The goal of knowledge management is to
transform tacit knowledge into explicit knowledge: In other words, the goal is to get all that information
floating around inside people’s heads written down. Much to everyone’s surprise, wikis have proven to
be remarkably effective in this regard.

When I first learned about wikis in the nineties, I was skeptical because I immediately imagined the
fun that malcontents would have defacing whatever site you tried to manage this way. It wasn’t until
the success of Wikipedia that wikis caught my attention, along with the rest of the world. A relatively
small team of technically savvy developers is one thing. A global pool of experts collaborating on an
encyclopedia is another thing altogether. What is remarkable about Wikipedia is its scale and ambition.
What is most surprising is that it works so effectively. This is what has gotten knowledge management
experts so excited about wikis.

Wikipedia was an offshoot of the online encyclopedia Nupedia.com, founded by Jimmy Wales and
funded by Bomis (something Wale’s has reportedly called ‘‘a guy-oriented search-engine’’).
Nupedia was founded in March of 2000 and established as a peer-reviewed encyclopedia with a
seven-step editing process. This seven-step process proved to be rather cumbersome and not enough
articles were being generated.

As a solution to this problem, Editor in Chief Larry Sanger proposed a ‘‘feeder’’ site to Nupedia
based on wiki technology on January 10, 2001. The idea was that people could post articles on the
wiki and after those articles had been properly vetted, they could be moved onto Nupedia. The use
of a wiki would make it easier for users to contribute and, it was hoped, speed up the process. There
was never any expectation at the time that Wikipedia would replace Nupedia, although that is what
quickly happened.

Five days later, Wikipedia was formally launched, and within its first year it generated over
18,000 articles. By the time Nupedia closed up shop in September of 2003, Wikipedia boasted
over 160,000 articles, written by volunteers. In three and a half years, Nupedia’s peer-reviewed
process produced 24 articles, compared with 160,000 articles produced in the first year alone of
Wikipedia’s existence. It is a remarkable example of the impact that moving from a centralized,
formalized decision-making process to a more decentralized, informal process can have. More
important, the quality of the content generated on Wikipedia was high, and the user base found it to
be a very helpful research resource, so the traffic grew quickly.

3

Choate c01.tex V1 - 11/19/2007 1:15pm Page 4

Chapter 1: Wikis at Work

Web 2.0 and Social Media
While wikis are a distinct kind of website, they are often discussed along with other technologies under
the label of Web 2.0 or social media.

At one time, I considered ‘‘Web 2.0’’ to be a phrase in search of a meaning. My first reaction to the idea of
Web 2.0 was a quick roll of the eyes. I fell into the camp shared by Tim Berners-Lee, inventor of what we
can presumably call Web 1.0, who remarked that ‘‘Web 2.0 is, of course, a piece of jargon, nobody even
knows what it means.’’ (IBM DeveloperWorks Interview, www.ibm.com/developerworks/podcast/dwi/
cm-int082206txt.html).

Despite my dismissiveness, the Web 2.0 meme has proven its resilience and is alive and well, having
evolved into a number of variant phrases, such as Andrew McAfee’s Enterprise 2.0, which he defines as
‘‘the emerging use of Web 2.0 technologies like blogs and wikis (both perfect examples of network IT)
within the Intranet.’’ (Andrew McAfee, http://blog.hbs.edu/faculty/amcafee/index.php/faculty_
amcafee_v3/the_three_trends_underlying_enterprise_20/).

J. Bonasia, writing for Investor’s Business Daily in June, 2007, said that users ‘‘are just getting familiar
with the concept of Web 2.0, through which they can collaborate and share Internet content.’’ (Investor’s
Business Daily, www.investors.com/editorial/IBDArticles.asp?artsec=16&artnum=3&issue=20070601).

According to Tim O’Reilly, Web 2.0 represents the movement to the ‘‘Internet as platform, and an attempt
to understand the rules for success on that new platform’’ (O’Reilly.com, www.oreillynet.com/pub/
a/oreilly/tim/news/2005/09/30/what-is-web-20.html). The term was coined in an effort to capture
what was different about companies that survived the Internet bust of early 2000, and those that did
not. As such, Web 2.0 is not a set of Web technologies per se; rather, it is a set of attributes shared by
successful Internet companies.

The list of technologies commonly associated with Web 2.0 are wikis and weblogs, RSS, AJAX, Web
services (SOAP, XML-RPC, ReST) and so on. Some of these are standards, some are concepts, some are
architectures, and many of them have been around since the mid to late nineties. Unfortunately, the 2.0
designation implies new technology, although I do not think O’Reilly necessarily intended that.

While the definitions of Web 2.0 and social media are somewhat squishy, some common
themes arise when pundits try to define them. Wikis and related tools all share four common
attributes:

❑ Participatory

❑ Decentralized

❑ Linked

❑ Emergent

Wikis are clearly participatory. Unlike traditional content management systems, in which users have
distinct roles and the set of content creators is entirely distinct from the set of content consumers
(or, readers, as we once quaintly referred to them), all are equal (or mostly equal) in the public square
of wikidom.

Likewise, wikis are decentralized in the sense that participants can be geographically disbursed.
Wikipedia boasts authors from across the globe. They are also decentralized in the sense that wiki

4

Choate c01.tex V1 - 11/19/2007 1:15pm Page 5

Chapter 1: Wikis at Work

content isn’t organized into a hierarchy and is not as structured as typical content managed by a content
management system.

This decentralized content is structured by way of links, which can be old-fashioned hypertext links
from one document to another document, or it can be a conceptual link made manifest by the sharing
of a common tag (another word for what is essentially a keyword that represents the subject matter of a
given page).

This participatory, decentralized, and linked collection of ideas is not organized in a top-down manner
because there is no top or bottom. Rather, any order that arises is an emergent order. A system arises
out of the interactions of many individual agents, each operating under its own set of rules, much like
weather patterns emerge from billions of atoms acting the way that atoms do, completely unaware of the
larger system in which they are unwitting participants.

New Business Models
In almost every case, these technologies, practices, and design patterns are continuations
of the fundamental idea that has been central to the Web’s success and pattern of
development. Tim Berners-Lee did not invent hypertext. In his book Weaving the Web
(HarperBusiness, 2000), he shares his experiences contacting commercial providers of
hypertext systems in his efforts to convince them to open their platform. All the companies
whose names remain obscure and unfamiliar refused to open their platforms. In the absence of
cooperation from commercial vendors, Tim Berners-Lee developed the World Wide Web himself
as an open standard.

Proprietary versus Open Standards
Prior to the Web, most businesses based their strategy on the creation of proprietary technology or
platforms that provided them with a sustainable competitive advantage over any potential
competitors. Whether you were a software developer or a content publisher, you differentiated
yourself by being unique and maintaining strict control of intellectual property. The reason why
commercial hypertext vendors resisted opening up their systems was because they feared that if they
did, then they would not make any money from those systems.

They were right, of course, but they missed the point. While creating a hypertext system based on open
standards may have made it impossible to make money selling that hypertext system, it also happened to
create a platform through which money could be made (or efficiencies gained) that proved to be far more
powerful than anyone could have predicted. The free and open nature of the platform made it ubiquitous
and instantly relevant.

Network Effects
Network effects refers to the idea that networks become more valuable as the size of the network
increases. Network effects tend to have a ‘‘winner take all’’ effect, with one platform emerging as the
dominant platform. The World Wide Web itself is the perfect example. The more websites that were
available on the Web, the more valuable the network became.

One way to differentiate social media from old media is to look at how network effects work in the old,
proprietary environment and to contrast that with how they work now. I would argue that social media
are harvesting network effects in a fundamentally new way.

5

Choate c01.tex V1 - 11/19/2007 1:15pm Page 6

Chapter 1: Wikis at Work

The best example of the old network effect is that of Microsoft Word. The reason I have a copy of
Microsoft Word on my computer is because so many other people have a copy of Microsoft Word on
their computer. The more people who use Microsoft Word, the more it makes sense for me to use
Microsoft Word because it is simpler to read documents they send to me, and simpler for me to send them
documents I’ve written, and so on. The only connection between Word documents is the fact that they
share a common platform and that the readers of those documents need certain software applications in
order to create or read them.

In the pre-Web days, the platform was a proprietary software application. Because Microsoft owned the
platform, Microsoft made a lot of money selling licenses to use that platform. This is an example of a
network effect in a proprietary environment, which happens to be a very favorable environment for the
owner of the proprietary system who is able to succeed in this environment.

But what happens when you create an environment based on open standards, without any
proprietary technology, such as the one created by Tim Berners-Lee? How does one company compete
more effectively than another company and, most important, how is value captured?

The search engine Google is often mentioned as an example of a Web 2.0 company. None of the
technologies mentioned earlier explain why Google is a Web 2.0 company. It has nothing to do with
AJAX, blogs, wikis, or Web services. What Google has done is successfully capture network effects in an
open environment.

Google’s PageRank algorithm (which is how the search results are prioritized) is based in part upon
how many other sites link to a given page. If you have two separate pages, both with similar content
(as ascertained by word count and position), favor is given to the page to which more sites link than
the other. Google infers that a page with more links to it must be better than a page with fewer links
to it. Every day Google learns more about the content that is distributed on the Internet. By doing this,
Google leverages the wisdom of the crowd, using the aggregate wisdom of Web participants to make
more effective guesses about what specific content is most relevant to the searcher. As a result, Google’s
site makes it easier for me to find the information I am looking for.

Google is not the only company doing something like this. Flickr does the same for photos. Flickr takes
a simpler and more direct approach by having visitors tag photos — it simply enables users to assign a
keyword of choice to any photo they come across. This ad hoc system of keywords is called a folksonomy,
a term used to differentiate this approach from a taxonomy because it is a decentralized approach to
organizing content, as opposed to a taxonomy (such as the Dewey decimal system, or the Yahoo! directory)
in which content is placed in taxonomic classifications by experts or specialists. Again, Flickr is leveraging
the wisdom of the masses. The knowledge is a consequence of the steady aggregation of knowledge
in the form of links created by human beings.

Flickr is better every time a user adds a tag. The value of Flickr isn’t the repository of photos; there
are plenty of sites for hosting photos, and the technology required to host photos verges on the trivial.
However, as time passes, the database of knowledge about the photos increases, and the connections
between photos that can be made by the folksonomic tagging of information means that Flickr increases
in value every day and as a consequence derives true competitive advantage.

Google is continuing to build on this by offering new services. One such service enables Google users
to create their own search engines. This is a wonderful service and I have used it to aggregate content
on a variety of sites of interest to me. Moreover, when you are aggregating content, you are leaving
behind a trail of knowledge and human judgment that Google will be able to use to make their site’s

6

Choate c01.tex V1 - 11/19/2007 1:15pm Page 7

Chapter 1: Wikis at Work

search results even more effective. Google harvests human knowledge in creative ways, by interpreting
the results.

By enabling users to create and edit articles, Wikipedia, too, is leveraging the collective wisdom of
Wikipedia users. Much like Flickr does, Wikipedia (and all wikis run on MediaWiki software) enables
users to add arbitrary tags (called categories in MediaWiki) that describe the content of the page.
Wikipedia, too, is a better product every time a category is added to a page.

New Publishing Model
Content-oriented websites have moved in a clear progression from a proprietary model to something
completely different, a path that is mirrored by the path from Nupedia to Wikipedia. This is a path that
emerged from a scenario in which content creation is centralized and controlled and a clear distinction is
made between author and audience.

When a new technology emerges, it is always thought of in terms of the technology it replaces. Wireless
telegraphs, horseless carriages, and the computer desktop are all examples of understanding a new
technology using the terminology of the past. Eventually, wireless telegraphs were called radios and
horseless carriages were called cars.

This is the purpose of metaphor — to use one idea in place of another because it makes it easier to
understand, or evokes a sense that would otherwise be difficult to understand using more accurate,
yet abstract language. Hence the desktop metaphor. There aren’t really documents sitting in folders on
your computer, but it certainly helps to think of your files that way.

We use metaphors because they can help us understand complex ideas, and it provides a frame of
reference so that we know how to think about something new in familiar terms. The problem with
metaphors, however, is that they can be limiting. Thinking about content in terms of folders and
documents has narrowed our view of what they actually represent and what can be done with them.

The old way of thinking about documents emphasized the resemblance of computer files to paper
documents — that is, tangible, discrete, and permanent things that can be filed away in folders. If the
desktop metaphor is the old metaphor, then what is the new metaphor? How are we to understand
communication in the post-Internet world?

The first websites used an old publishing model. Before the Web democratized publishing, the publisher
owned the platform (the printing press or the content management system) and the content, all of which
was highly controlled by a select few. Now, sites like Wikipedia have turned this publishing model
upside down, eliminating the difference between author and reader. On Wikipedia and similar social
media sites, authors are readers and readers are authors.

Wikis, Blogs, and Meme Trackers
Word documents are based on the metaphor of the typewritten page. Early websites were modeled after
traditional print publications, and e-mail was delivered just like its printed, enveloped, and stamped
counterpart. These tools are now officially out of fashion.

When a business adopts social media tools such as wikis and blogs within the organization, they
are using the tools as a replacement to older forms of communication, such as e-mail. In doing so,
they are abandoning the transitional tools based on older technology, and embracing new tools that
leverage the power of the new technology.

7

Choate c01.tex V1 - 11/19/2007 1:15pm Page 8

Chapter 1: Wikis at Work

The one thing that social media sites, wikis, blogs, and meme trackers share in common is an
understanding of the fundamentally dynamic nature of information. Content evolves. It is shared,
modified, and shared again. It changes over time, it appears in different forms.

In the old way of thinking, if something has been ‘‘documented,’’ the implication is that the information
contained therein is correct, complete, authoritative, and permanent. No such assumptions are made
with blogs and wikis. In the wiki application MediaWiki (the software that runs Wikipedia), an article is
defined as a collection of revisions. There are no definitive or authoritative articles on MediaWiki; there’s
only the most recent revision.

Time plays a pivotal role in both. Blogs are organized according to when they were posted and,
secondarily, by category or topic. A blogger doesn’t revise earlier posts; if a correction needs to be made
or if new information surfaces, then a new post is all that is required. Much like on a wiki, everything on
a blog is provisional.

It is the very public and transparent nature of wikis and blogs that creates their value. E-mail
is fundamentally a private form of communication. The content goes from one mailbox to the next
and the pieces of information in them remain separate from each other, discrete little bits of data
hidden away in folders, much like the paper documents that serve as the underlying metaphor.
Communicating and collaborating with wikis and blogs opens up that process and creates opportuni-
ties to discover new things, to make connections between things that we might not have thought of or
understood before.

The network effect isn’t driven by the format because the format is open; the network effect is driven
by the participants themselves and their aggregate wisdom. Web 1.0 is the linking of one HTML page to
another. Web 2.0 is ferreting meaning and creating value through emergent properties associated with
aggregating human judgment. Organizations that do a better job of making information available in
useful formats will succeed, whereas those that attempt to control their information with proprietary
constraints will whither.

In the post-proprietary world, the nodes of the network are not connected simply by sharing a common
platform. In the post-proprietary world, the nodes of the network are points of data, information and
ideas that are linked and aggregated and universally available.

Tim Berners-Lee and others originally envisioned the Web as a global repository of human knowledge,
but the Web is not a library or a warehouse. As it turns out, the Web is emerging as a source of discovery,
a phenomenon that, like other phenomena, can be analyzed and studied empirically and from which
inferences can be drawn with a scope and a scale unknown before.

The Web does not simply store knowledge; it creates it.

Now, organizations both large and small are adopting wiki technology for a variety of purposes.
Teams of developers still use wikis for documentation and project management. Some companies
use wikis as the engine that powers their intranet — it’s free to install and easy to learn, so no
other content management system offers a better cost/benefit ratio. MediaWiki is the software that
runs Wikipedia. Because of Wikipedia’s success, MediaWiki is one of the most commonly used wiki
engines available. It’s open source and free and runs on PHP and MySQL, making it easy for many
organizations to adopt it. MediaWiki is not your only option, however, so in the next section I will go
into greater detail about MediaWiki’s features and how they compare with more traditional content
management systems.

8

Choate c01.tex V1 - 11/19/2007 1:15pm Page 9

Chapter 1: Wikis at Work

Web Content Management Systems
Content management systems are software applications used to facilitate the creation, storage, and
distribution of digital content, and a wiki is a kind of content management system, with a twist. There
are three areas where wiki engines really differentiate themselves from other run-of-the-mill content
management systems: access control, content authoring, and site organization. In the following sections, I’ll
look at each one individually and discuss the features in depth.

Content Management Life Cycle
A Web content management system is a software application that provides tools to support the vari-
ous activities required to maintain a website. As content flows through a content management system,
it flows through four distinct phases, and all content management systems provide tools for each of
these phases.

Content Acquisition
All content management systems receive their content from somewhere, a process I refer to as
acquisition. The content may come from a legacy system or from another website in the form of
syndicated content, or the content can be generated and edited directly in the content management
system itself. Content management systems usually provide some kind of interface that enables users
to create content, often through a Web browser. They also provide a system for managing workflow,
which tracks content through various stages — from authoring to editing and ultimately to being
published on the site.

Content Organization
Content management systems organize content so that readers can more easily discover the
information they are looking for. This organization is called information architecture. Users find informa-
tion on a website in two ways: they browse the site, navigating from page to page looking for
the information, or they search for the information using a search engine.

Typically, content management systems provide a means for organizing content into a hierarchy,
which is reflected in the system of navigation through which a user browses a site by following links.
They also provide some form of search based on keywords, or some more elaborate scheme.

Content Storage
Content management systems also provide storage for content. How this is done varies from system to
system. In some cases, the content is stored in a relational database; in others it is stored as XML on the
file system. Many early wikis stored content simply as wikitext in plain text files. MediaWiki, too, stores
content as raw wikitext, but it stores it in a database. It also happens to store all the previous versions of
every page, which is a useful feature for websites that anybody can edit. From time to time, you’ll find
the need to roll back to earlier versions of a page.

Content Distribution
Finally, content management systems provide a means of distributing the content, which in the case of
Web content management means providing a system of dynamically generating pages, and a set of tools
that enable the publisher to schedule when content is viewable and by whom it is viewable.

9

Choate c01.tex V1 - 11/19/2007 1:15pm Page 10

Chapter 1: Wikis at Work

Wikis are unique in how they shepherd content through these stages. In the following sections, you will
learn more specifics about the wiki approach to workflow, content authoring, and site organization, and
the specific features offered by MediaWiki to support these processes.

Workflow and User Management
Because wikis are websites that are collaboratively written by their readers, the most unique
characteristics of a wiki can be found in the systems that support user access control and workflow.

User Access Control
There are three stages to access control:

1. Authentication: This is the stage during which the system becomes reasonably assured that
the person accessing the site is who they say they are. Most content management systems,
including MediaWiki, do this with passwords.

2. Authorization: The authorization aspect of user access control works by assigning
users roles. The role to which a user is assigned determines to which content objects
that user has access. This can limit what a user sees on the site, as well as what a user
can do.

3. Activity tracking: The final step is activity tracking, which means that the system generates
an audit trail so that you can determine who did what to your site.

You will see this access control system at work with Wikipedia. If you have not registered on the
site you have the role of an anonymous user, which means that you can view articles, but you
cannot create them. In order to create articles, you need to be a registered user. Once you
have registered for the site, you can customize certain features, such as the skin being used;
you can create your own user page; and you can both create your own articles and edit articles
that already exist.

Workflow Policies
Whereas access control systems control who can perform what task on a given content item,
workflow takes this a step further and enforces a set of policies based on the state of the
document. Workflow represents what tasks are to be performed, in what order they should be
performed, and who should perform them in any given stage. From a content management
perspective, workflow is the approval process as content moves from the authoring phases to the
publishing phase of its life cycle.

In a typical workflow system, a user who is assigned an ‘‘author’’ role can create an article and
submit it for approval by someone in an ‘‘editor’’ role. Once the editor approves the content, it will
be published. In the world of wikis, there is no distinction between the two. Any changes made to an
article are immediately published.

Control over the content is exerted by the fact that changes to articles are tracked, so that one
can easily find out who made a particular change. From the access control perspective, most
of the management comes from the ability to track what was done, rather than to use
authorization to limit what one can do. This is why logging plays such an important role in
wiki management.

10

Choate c01.tex V1 - 11/19/2007 1:15pm Page 11

Chapter 1: Wikis at Work

Change Monitoring
As one might expect, one layer of defense is to simply monitor changes that have been made to
the wiki. In addition to monitoring changes, you want to be able to do something about fixing, or
editing, unwanted changes, such as rolling them back to a previous version. Therefore, the ‘‘change
monitoring’’ approach requires two basic features: the ability to monitor recent changes, plus some
kind of version control.

Recent changes can be monitored as follows:

❑ Most wikis have a Recent Changes page that lists all the pages that have been changed and who
made each change.

❑ E-mail notification of changes is just an e-mail version of the Recent Changes page, but with
the convenience of notification.

❑ A variant of e-mail notification is support for RSS syndication, which means you can monitor a
wiki for recent changes using your favorite RSS reader.

❑ MediaWiki allows you to differentiate trivial changes from more substantive ones. For example,
you may not want to be notified by e-mail every time someone fixes a spelling error.

❑ If more than one person has been tasked with monitoring changes, another useful feature tracks
whether a recently changed page has been checked yet, reducing the possibility of duplicating
work. On MediaWiki, this is called marking a page as patrolled.

Version Control
I once encountered a philosophical debate about whether wikis should have version control. The
idealist in the conversation argued that version control was against the ‘‘wiki way’’ and somehow lacked
philosophical purity. The realist argued that people make mistakes and sometimes deliberately do bad
things, so the ability to roll back changes was indeed a good thing and a feature that all wikis should
have. I’m pleased to report that the realist won the argument in the broader marketplace of ideas, and
many (if not most) versions of wiki software have version control.

Features include the following:

❑ The ability to roll back changes to the previous version

❑ The ability to compare different versions side-by-side

❑ The use of diffs between versions so that specific differences between them can be easily
identified

Spam Prevention
Another approach is to monitor the content of changes programmatically, and this is sometimes referred
to as spam prevention. This differs from user access control in the sense that it monitors wiki edits based
on the content of the edit or the patterns of user behavior. Systems can block access to IP addresses and
URLs, or they can block the posting of individual changes based on the following:

❑ Maintaining a spam blacklist, restricting access from certain domains

❑ Restricting the use of certain words or phrases, using word lists or regular expressions

❑ Blocking access based on excessive activity

11

Choate c01.tex V1 - 11/19/2007 1:15pm Page 12

Chapter 1: Wikis at Work

❑ Blocking by IP address or name

❑ Blocking content by type (or size)

Content Authoring
When we read a Microsoft Word document on our computer, we think nothing of the fact that not only
can we view the document, but we can edit it as well. When dealing with online content, the fact that
we can directly edit the content we are viewing is something of a novelty because in most cases, the
content we encounter is read-only. There is, in fact, an effort to separate the creation of content from
the design of content in the underlying technology (think HTML and CSS), and many websites have
a publication mentality that draws a clear distinction between the readers and writers (hence the term
read/write web that is used to refer to tools like wikis).

The wiki approach to authoring shortens the distance between editing and publishing a page in
two ways. First, you edit the page using the same application used to view the page — a Web browser.
Second, edits are posted immediately. There is no staging of draft versions, and no workflow
requirements.

❑ Wiki pages are editable through a Web interface so that no special software is needed, other than
a Web browser.

❑ Users with access to the site can edit pages directly, and the changes are published immediately.

❑ Wikis use a special markup sometimes called wikitext to specify formatting on the text of the
page, or to automatically create links to other pages (see Chapter 4 for more information
about wikitext). Many wikis now boast a WYSIWYG (what you see is what you get) interface
because many users are more comfortable writing pages this way. Most of these interfaces are
embedded into Web pages, but many require the use of a specific browser, such as Firefox or
Internet Explorer. Ideally, a wiki should make editing available anywhere, on any browser,
which is why some form of wikitext is required.

Organization
Ultimately, the goal of a content management system is to organize content in such a way that people
can find it when they need it. The way in which content is organized depends on the goals of the site and
the nature of the content itself.

All content management systems serve as a repository for content, but these systems are more
than just a repository for the same reason that a library is more than just a repository for books.
Documents in a content management system are organized in the same way that books in a library
are organized. In a library, books are grouped together by a classification system so that like subjects are
located in one place. For example, biographies are in one section, fiction is in another, and so on. There is
also an index, which shows the exact location of any book within the library.

When you go to the library, you might decide to browse the books, rather than go straight to the
index. In this case, you could walk to the section you are interested in and begin looking at
the spines of the books to see if you can find something you like. Conversely, you might go
to the library with a different goal in mind. That is, if you want to find a specific book, then

12

Choate c01.tex V1 - 11/19/2007 1:15pm Page 13

Chapter 1: Wikis at Work

you will go to the index. (When I was a child, this index was a physical card catalog,
long rows of wooden boxes containing 3 × 5 index cards. This has since been converted
to a digital index in those libraries that can afford it.) These two activities, browsing
and searching, are also possible with content management systems. In fact, you can think
of a library as a content management system, but one that deals with physical content, rather
than digital.

Taxonomy
Most sites organize their pages by grouping similar pages together, the way the library groups
similar books together. This classification is called a taxonomy, and on most sites it manifests itself
as a hierarchical taxonomy, with a home page, sections, and subsections. For example, a typical
newspaper website might have the hierarchical organization shown in Figure 1-1.

Newspaper

Sports

News

Football

Basketball

Baseball

Regional News

Local News

International
News

Figure 1-1: Typical hierarchy

The content of the site is first classified as either news or sports. Then, each of these classifications is
subclassified, so that news is broken down into local news, international news, and regional news, and
sports is broken down into football, basketball, and baseball.

As you navigate through the hierarchy from the home page, to sports, to baseball, you are arriving at
more narrowly defined categories. The purpose of this kind of hierarchy is primarily to assist the user
when navigating the site.

In a well-designed site, the taxonomy ultimately translates into site navigation and there should be
a correlation between the taxonomy and the URL. In the example shown in Figure 1-1, the URL for
basketball could be http://choate.info/Sports/Basketball.

One of the advantages to organizing sites in this way is that it makes it easier for users to
guess the URLs for different areas of the site. After seeing the http://choate.info/Sports/Basketball
URL, it would not be such a big leap to suppose that if you wanted to read something
about baseball, you could go to http://choate.info/Sports/Baseball. Likewise, if you just wanted
to see what kind of sports you could find more information about, you could navigate to
http://choate.info/Sports. Having an intuitive URL namespace greatly improves the quality
of a site.

These hierarchical structures can be topic-based, like the example I just used, but content can be grouped
according to a variety of different criteria. Weblogs organize content in reverse chronological order, rather
than by topic (some weblogs support categorization of content, but the basic structure of the weblog is
chronological, as it is modeled after a journal or diary).

13

Choate c01.tex V1 - 11/19/2007 1:15pm Page 14

Chapter 1: Wikis at Work

Wikis are organized using a flat hierarchical structure. One consequence of this is that URLs are
simple. For example, the following URLs link to Wikipedia’s articles about football, basketball, and
sports in general. All article URLs are this simple:

http://en.wikipedia.org/wiki/Football
http://en.wikipedia.org/wiki/Sport
http://en.wikipedia.org/wiki/Basketball

Folksonomy
Imagine if the library let you put the books back anywhere you wanted — that would lead to chaos,
right? This means that if you put the book back into a different section, then other people wouldn’t know
where to find it because it wasn’t put away according to the system. That would be bad in a library, but
not in a wiki. Wikis employ a system of organization that lets you ‘‘put the book’’ wherever you please.

The reason is very simple. Wikis don’t like hierarchies. They employ what is called a folksonomy. In terms
of the URL space of a wiki, the hierarchy is flat. There are no sections and subsections. All pages maintain
simple, non-nested URLs. Additional layers of organization evolve as tag-based folksonomies.

The excessively rural-sounding folksonomy is not the study of senior citizens; nor is it a measure of how
much money grandpa has — it’s just a clever way to refer to taxonomies that are created by a site’s users
in a decentralized, ad hoc manner. It is accomplished by allowing each user to assign tags to pages. Tags
are really nothing more than searchable keywords that users decide to apply to a page.

In the case of MediaWiki, users can set categories for pages. There is no predetermined list of
categories, and the terms used are entirely up to the user. This is in stark contrast to a taxonomy,
which uses controlled vocabularies and rigidly defined structures into which individual units of
content must be organized.

A list of categories on Wikipedia can be found at http://en.wikipedia.org/
wiki/Wikipedia:Browse.

When to Wiki
I’ve seen business people and educators throw wikis at many problems (as the latest cure-all), only to see
them splat against a wall and slowly slide down into a puddle of ooze. Wikis are wonderful things, but
only when used correctly. The successful operation of a wiki requires both the right kind of technology
and the right kind of governance. You cannot load up MediaWiki, flip a switch, and expect a wiki to
perform wonders for you. You need to apply a wiki to the right problem, and you need to manage it
properly in order to derive the greatest benefit. In this section, you will learn about the key management
elements that contribute to successful wiki implementations.

There are two ways in which organizations begin to use a wiki. The first is by way of a top-down
decision that takes place when someone in senior management decides that a wiki is the solution for
some particular problem and thus mandates its use. The second way is by way of a grass-roots movement
whereby individuals or workgroups begin to use wikis because they help them get their jobs done.

The very open and decentralized nature of wikis makes the grass-roots path the most common way
that wikis find their way into an organization. Providing an environment in which wikis are allowed to

14

Choate c01.tex V1 - 11/19/2007 1:15pm Page 15

Chapter 1: Wikis at Work

emerge in a grass-roots fashion has some definite advantages. In the following sections, you will learn
how best to foster the successful use of wikis within your organization. It is something of a contradiction
to mandate the use of wikis. A better approach is to persuade through success. First, provide a fertile
field in which the wiki seed can take root and thrive.

Running a Successful Wiki
Despite declarations of ‘‘Web 2.0’’ and the read-write Web and other trendy nomenclatures, the rules for
a successful wiki are very similar to the rules that one should apply to any community site (that’s what
we used to call them before we started to call them social media sites). One could argue that a wiki is a
modified forum, as it retains many forum features.

The advice contained in this section is based in large part on my years of experience managing
community-oriented sites for which the users are the main contributors of content, much like wikis. I also
owe a large debt to Christian Wagner and Ann Majchrzak, whose paper ‘‘Enabling Customer-Centricity
Using Wikis and the Wiki Way,’’ provided me with some particularly useful insights (see the Journal of
Management Information Systems, Winter 2006–2007, Vol. 23, No. 3, pp. 17–43).

Their research focused on enhancing constructive customer engagement in a wiki, which is not
necessarily how most companies will use one. However, the principles they suggest are good ones that,
in my experience, do in fact foster a sense of community and collaboration.

In their review, they compared wikis operated by the Los Angeles Times (thinly veiled with the
name ‘‘Boomtown Times’’), Novell, and, of course, Wikipedia. The Los Angeles Times wiki was a
dismal failure, the Novell wiki was a moderate success, and the Wikipedia wiki was, and is, of course,
a smashing success.

Wagner and Majchrzak offer six propositions based on their research, but I have taken the liberty of
condensing them into four rules of thumb, based upon my own experience with managing collaborative
websites.

Alignment of Goals
Wikis got their start by being used by programmers to document software projects. This is an ideal
use for a wiki because there is a strong incentive on the part of the programmer to participate. A social
contract is at work: The software needs to be documented and all participants must be kept in the loop,
so each programmer keeps his or her documentation updated with the understanding that the other
programmers will do the same, in a mutual back-scratching arrangement.

This apparent no-brainer is, apparently, not a no-brainer. At least, it is not a no-brainer to the editors
of the Los Angeles Times, which decided that it would be good to have a ‘‘wikitorial’’ — an editorial
composed and edited by the masses. The Los Angeles Times started by posting their editorial, and then
provided a wiki for the public to respond. As Wikipedia has learned, there is no alignment of goals
among political types, and the partisans reigned supreme during the very brief life of the wikitorial. In
the organic, evolving world of wikis, consider the wikitorial an evolutionary dead end.

At first, the users made a good faith effort to collaborate on an editorial, but they soon concluded
that producing a single editorial that was acceptable to everyone was not going to happen, and there
had already been attempts to delete the entire editorial, so by the second day, they forked the editorial
so that it would be possible to represent different points of view. Once news of the wikitorial

15

Choate c01.tex V1 - 11/19/2007 1:15pm Page 16

Chapter 1: Wikis at Work

experiment showed up on Slashdot, a technology-related news website (http://slashdot.org), it
attracted a lot of attention and was soon followed by pornographic posts, and so on. On the
third day, the wikitorial was shut down.

The kind of vandalism encountered by the Los Angeles Times represents the nightmare scenario that is
almost always raised as an objection to using a wiki. In fact, the first time I saw a wiki I thought it was a
lousy idea for this very reason. As it turns out, this kind of defacement is not as common as one might
think; and when a wiki is set up and managed properly, that kind of mischief can largely be avoided.

In the late nineties, I was responsible for what we called community publishing sites. It wasn’t a wiki per
se, but it had many of the features of a wiki, the most important one being that we (the newspaper) used
the Internet to let the community participate in the publishing process. The site was called NCHome-
team.com, and it represented a partnership between The News & Observer and WRAL-TV5 in Raleigh,
North Carolina. It was a statewide high school sports site. Coaches and interested parents were recruited
statewide to update the rosters each season, and then to update scores after the games on Friday night
(which often finished too late to make it into the paper and/or there was not enough space).

Following were the main concerns we had when launching the site:

❑ Would the sites be as credible as the newspaper itself given the fact that the content was
published without being vetted by an editor?

❑ Would the coaches reliably post their scores?

❑ Would the coaches post inaccurate results?

❑ What kind of liability would the newspaper have as a publisher? If acting as a publisher (as
it does when things are printed), then the newspaper is responsible for all the content that is
published. That means if someone is libeled in the newspaper, then the newspaper is respon-
sible. (The first reaction was to avoid any activity that would make the newspaper look like a
publisher — in other words, it didn’t monitor posts.)

We quickly learned that the coaches were enthusiastic participants, and they were just as committed as
we were to making sure that the information was timely and accurate.

In retrospect, it’s easy to see why fears about false sports scores being posted were unfounded. While
coaches did have an incentive to win, they had no incentive to cheat and post false scores because with
so many other people at the game, they would easily get caught. The transparency of the process meant
that it was in everybody’s interest to post factual data. In other words, the goals of the entire community
were aligned.

The reason why the Los Angeles Times wikitorial failed is because an editorial is a point of view about
a controversial subject. The goals of the individuals on either side of the debate are to discredit those
who disagree with them and to establish their worldview as pre-eminent. In other words, the goals
of the left and the right are not aligned. Therefore, I recommend no bipartisan wikis. Ever. There is no
such thing.

This does not mean that everyone who participates in a wiki has the same goals, or that they involve
themselves in the same activities. Goal alignment only means that their goals are not in conflict; they all
head in basically the same direction.

16

Choate c01.tex V1 - 11/19/2007 1:15pm Page 17

Chapter 1: Wikis at Work

A Culture of Collaboration
In practice, the most common problem encountered by new wikis is that it can be difficult to get people
to participate. Several psychological and organizational barriers need to be overcome. Most important,
in addition to needing the technical apparatus to operate a wiki, you also need an organization with a
culture that fosters collaboration. If you don’t, your wiki is unlikely to thrive.

For example, a certain government agency has decided to launch a wiki that will capture all of the
undocumented but highly useful information that floats around in people’s heads. They are facing two
sources of internal resistance.

First, they have a hierarchical culture whereby every communication is approved by proper channels.
Being propositioned by some young twenty-something about brain-dumping your wisdom into a wiki
after having every utterance scrutinized by your superiors for your entire career is like suddenly being
told by your wife of twenty years that she thinks you should loosen up a little and get a girlfriend.

The second source of resistance is the fact (or perception) that once your brain is dumped, it becomes
communal property; and while you may be fairly certain that you will continue to get your paycheck,
you are not so certain that you will continue to get credit for your faithful fidelity and the cultured
wisdom you have nurtured for so many years. Owning information is a source of power; that’s why it
can be so hard to get people to share it.

In one case, a department was more than willing to post content in a content management system,
but they were unwilling to do the same work if it was with a wiki. The reason? They feared a lack
of control. It can represent a loss of ownership for people. When people are rewarded for individual
output, they are going to be less inclined to participate in a project with collective output. While they
may not say this aloud, they are worried about whether they will still get credit for their good ideas and
hard work.

Universities are also experimenting with wikis. If you were a professor, you might reason that because
Wikipedia is such a wild success, it would be fantastic to set up a wiki for the class. Then, instead of
requiring students to write papers for an audience of one (which is you), they can write them for their
peers, their fellow students; and for posterity, all the students that will follow. In that case, a classroom
becomes a source or repository of knowledge. You even dreamily fantasize about students correcting and
expanding upon the postings of other students in a communal editing effort whereby everyone is both
student and professor.

The only problem is that students have no interest in correcting (or updating or expanding) another
student’s work. What’s in it for them? They annoy a potential date and don’t really have much to show
for their work. There are two reasons to go to college: to learn and to acquire documentation that you
have learned in the form of a transcript or diploma. I’ve used papers that I have written in graduate
school as part of my portfolio. What kind of portfolio do I have if all the work was done in a wiki?

Most of your school life is spent being told to do your own work and keep your eyes on your own paper,
while being forced to read wordy honor codes and the like. Traditionally, schools have not fostered a
collaborative environment, so students aren’t quite sure how wikis fit in with the culture of the school.
In fact, wikis are an excellent tool for the classroom, but you need to be prepared to help the students
unlearn some of what they have learned about what is appropriate behavior in school, just like employees
of the government agency have to relearn what’s appropriate for them.

17

Choate c01.tex V1 - 11/19/2007 1:15pm Page 18

Chapter 1: Wikis at Work

The one common theme that runs through all of these examples is that the goals of the participants were
not aligned. In some cases, their respective goals were in direct opposition to each other, while in other
cases there was a belief that participating in the wiki would not provide enough individual benefit. If you
want to derive a benefit from collaboration, you need to ensure that everybody in the organization also
benefits from collaboration.

Community Custodianship
I have already mentioned that when I first worked on community publishing sites for a newspaper, we
conscientiously avoided creating the appearance that we were the ‘‘editors’’ of the content. In this case,
we were doing so in order to avoid liability for what was posted on the community sites. This meant
that we didn’t actively monitor user posts and that we wouldn’t remove posts unless a member of the
community raised a concern with us.

What we had done inadvertently was to shift the monitoring responsibility to the community itself.
Again, this was not for any altruistic reason, such as a belief in decentralized decision-making. As it
turns out, however, letting community sites be managed, in effect, by the community is an important
component of successful sites.

Despite the open nature of wikis, an effective wiki is not an egalitarian free-for-all. Just as the members
of the community share reading and authoring privileges, they must also share custodianship of the
community. The community rules the community. In this custodial role, the community of users needs
to establish rules of conduct for contributors to the site, and they need to monitor user activity, to ensure
that it is in conformance. The custodial role means that users are not only responsible for identifying
suspect content, but they also serve on the decision-making bodies that establish guidelines regarding
when such content is deleted, or when users should be banned.

Clearly Defined Rules for Posting Content
Successful custodianship means that in order to get your users to participate fully, your wiki needs to
have clearly defined rules and processes. These rules include a clear description of the kind of content
that should be contributed to the wiki as well as rules for handling disputes. For example, Wikipedia has
‘‘five pillars’’ that define the character of Wikipedia. The following is a sampling of a few of the rules:

‘‘Wikipedia is an encyclopedia incorporating elements of general encyclopedias, specialized encyclopedias,
and almanacs. All articles must follow our no original research policy and strive for accuracy; Wikipedia
is not the place to insert personal opinions, experiences, or arguments. Furthermore, Wikipedia is not
an indiscriminate collection of information. Wikipedia is not a trivia collection, a soapbox, a vanity
publisher, an experiment in anarchy or democracy, or a web directory. Nor is Wikipedia a dictionary,
a newspaper, or a collection of source documents; these kinds of content should be contributed to sister
projects, here, Wiktionary, Wikinews, and Wikisource, respectively.’’

‘‘Wikipedia has a neutral point of view, which means we strive for articles that advocate no single point
of view. Sometimes this requires representing multiple points of view; presenting each point of view
accurately; providing context for any given point of view, so that readers understand whose view the
point represents; and presenting no one point of view as ‘‘the truth’’ or ‘‘the best view.’’ It means citing
verifiable, authoritative sources whenever possible, especially on controversial topics. When a conflict
arises as to which version is the most neutral, declare a cool-down period and tag the article as disputed;
hammer out details on the talk page and follow dispute resolution.’’

18

Choate c01.tex V1 - 11/19/2007 1:15pm Page 19

Chapter 1: Wikis at Work

The rules are very explicit and leave little room for ambiguity. The preceding rules and others can be
found at the following locations:

❑ http://en.wikipedia.org/wiki/Wikipedia:List_of_policies_and_guidelines

❑ http://en.wikipedia.org/wiki/Wikipedia:Five_pillars

In addition to establishing rules, you need to seed your wiki with content when it is first launched.
The presence of content will facilitate the creation of even more content. One of the advantages
of seeding the wiki prior to opening it up to a larger group is that the pages that you create
serve as a kind of template for the new users to refer to when creating their own pages. In other
words, they serve as an example of the kind of content you want to see on the site; and, it is
hoped, having seen an example, people will be more comfortable producing their own content for
the site.

Monitoring User Behavior
When Ronald Reagan talked about nuclear arms reduction treaties with the former Soviet Union,
he espoused the following philosophy: ‘‘Trust, but verify.’’ Running a wiki requires trust on the
part of management in the capacity of their employees, their customers, and the community at
large to behave reasonably well, most of the time. Because it is not realistic to believe that
they will behave reasonably well all of the time, then you must switch to ‘‘verification’’ mode and
monitor behavior.

Despite the part of the definition declaring that wikis are sites that anybody can edit, the truth of the
matter is that if you let just anybody edit it and do not, at the same time, provide a mechanism for proper
oversight, your wiki will not work.

The ability to monitor user behavior creates transparency, and transparency is good. The very fact
that behavior can be monitored will keep most of the behavior that needs to be monitored from ever
happening. In fact, while the most common objection managers have to using wikis is fear of vandalism,
the biggest problem they end up having is just the opposite: no activity at all.

The monitoring requirement varies according to how widely available the wiki is. In other words, a
workgroup wiki behind the corporate firewall needs less monitoring than a customer-accessible wiki
that the public can see.

It is also important that monitoring and policing the wiki remain the responsibility of the community.
As I said earlier, community custodianship is one of those factors that creates well-run wikis, and one of
the roles the community plays while acting in the capacity of custodians is the role of monitor. Not only
should the community itself be the monitor, it should also be the body that helps to determine what the
rules are in the first place.

Monitoring behavior can be more than simply a policing role. As mentioned earlier, one of the reasons
employees can be reluctant to participate is a fear of losing credit. If anybody can edit a document, how
am I going to get credit for writing this one? Most wikis can now track changes (MediaWiki can), and
you can monitor activity on the wiki as a means of identifying good uses of wikis. This is especially true
in educational settings where students might be graded on their activity.

19

Choate c01.tex V1 - 11/19/2007 1:15pm Page 20

Chapter 1: Wikis at Work

Wikis in the Enterprise
There are a lot of wikis on the market, both open source and commercial. If you want to learn more about
the others, Wikipedia is a good place to start:

❑ http://en.wikipedia.org/wiki/Comparison_of_wiki_farms

❑ http://en.wikipedia.org/wiki/Comparison_of_wiki_software

Summary
In this chapter, you learned what wikis are, you learned about the role of a wiki within an organization
relative to other content management systems, and you discovered some rules of thumb for managing
a successful wiki. In the next chapter, the discussion moves away from a general discussion about wikis to
a more specific discussion about MediaWiki. In Chapter 2, you will learn how to install and run
MediaWiki software, including system requirements, options, and alternatives.

20

Choate c02.tex V1 - 11/19/2007 1:33pm Page 21

Installing MediaWiki

In order to run MediaWiki, you need a Web server, support for PHP, and a database, either MySQL
or Postgres. The simplest way to install MediaWiki is to install it on a computer running Linux or
a Unix-like operating system, with the Apache Web server and mod_php installed. The PHP instal-
lation should be version 5.0 or later (don’t use 5.1 with 64-bit computers, as there are reportedly
some bugs), and the database should be either MySQL 4.0 or later, or Postgres 8.0 or later. This is
the basic configuration that Wikipedia’s servers run and the configuration on which the developers
of MediaWiki focus their efforts. It is also possible, although a little more difficult, to install and run
MediaWiki on Windows servers.

Apache is not the only Web server you can use, but it is the best of the options, for a few reasons.
First, because of the success of Wikipedia, we know that MediaWiki has been installed on a
high-traffic website that uses Apache servers, and we know that this configuration works reliably
and can scale to accommodate whatever optimistic growth expectations we have about our own
wiki endeavors. Second, the Apache/PHP combination is pervasive and readily available. PHP can
be loaded as a dynamic shared object (DSO) in Apache, which makes installation and configuration
a much simpler task in most cases. While the core PHP libraries are supposed to be threadsafe, not
all of the many extensions available for it are, so experts often recommend that you do not run PHP
on Web servers that are threaded — this includes Internet Information Server (IIS). If you are
running Apache 2, then you need to use the pre-forked version.

In all other cases, the most stable approach is to use FastCGI to run PHP. FastCGI is a speedier
alternative to regular old CGI, as it allows CGI applications to stay in memory between requests,
something that CGI does not do and that leads to a lot of overhead as the program is reloaded
into memory every time it is executed. Note that not all of the features or options available to
MediaWiki when running under Apache with mod_php work when running in CGI mode, with or
without FastCGI.

Choate c02.tex V1 - 11/19/2007 1:33pm Page 22

Chapter 2: Installing MediaWiki

Development Environment
All testing for this book was done using MediaWiki 1.9.3. This version is a moving target — the
application is actively maintained and is on a schedule of continuous integration with quarterly
snapshot releases.

All of the testing was done on a Macintosh MacBook Pro, running Tiger (10.4) version of OS X,
Windows Vista, and SuSE Linux 9.2, with MediaWiki installed and running on all three operating
systems. Two different configurations are running on OS X: one that uses MySQL 4.1.22 and another
that uses PostgreSQL 8.2.3.

The examples used in this book were developed using Eclipse PHP Development Tools, available at
www.zend.com/pdt. While other PHP IDEs are available, this one works well for the purposes of this
book and provides very powerful debugging tools, which would normally only be available in a
commercial IDE.

There are many administrative tasks for which no Web interface is provided by MediaWiki. This means
that you will often have to update the underlying SQL tables in order to accomplish what you want.
While this can be done from the command line, it is much simpler using a Web-based front end such as
phpMyAdmin for MySQL, or phpPgAdmin for Postgres, which is what was used for this book.

This book focuses on getting MediaWiki up and running using the Apache Web server, but if that does
not meet your needs, you can find a lot of information online that is worth checking. The MediaWiki wiki
(http://MediaWiki.org) is a good starting point, and the mailing list is a good source of information;
you can ask specific questions about different installation issues.

Installing the Prerequisites
If you are running Linux, then you’ll have the easiest time of all, and there is a good chance you can install
MediaWiki as is. If you are running Macintosh OS X, then you will have to make a few tweaks in order
to get it configured properly. If you are running Windows, your best bet is to download a preconfigured
package of Apache, PHP, and MySQL.

Once we step through the typical Linux Apache MySQL PHP (LAMP) installation of MediaWiki, we’ll
review a few installation variants too, such as using Postgres instead of MySQL.

Before getting started, we need to address a few issues. If you are unfamiliar with these concepts,
then you should get help from somebody more familiar with Apache, PHP, or MySQL, depending
on the source of your confusion. Entire books have been written about each of these software packages
individually, and there is not space (or time) available to delve too deeply into them here, so you should
have at least a moderate level of experience in all three. If you run into trouble, don’t forget to check the
MediaWiki mailing lists, as well as look into documentation or books specifically related to Web servers,
PHP, and databases.

1. Do you have root privileges on your server (or administrator privileges on Windows)? If
you do not, then you will not be able to install the necessary software. If you do not have
the required software already installed, then you will need to get a systems administrator
to set things up for you.

2. Do you have Apache installed? If you do, which version is it? If you have Apache 2 or later,
then you need to know which multi-processing module (MPM) is being run. While it may be

22

Choate c02.tex V1 - 11/19/2007 1:33pm Page 23

Chapter 2: Installing MediaWiki

possible to run MediaWiki with other MPMs, it is advisable to run it only with the pre-fork
multi-processing module because of potential threading conflicts between some third-party
PHP libraries and threaded Apache modules. If you do not have Apache installed, or it’s the
wrong module, then read the section ‘‘Installing Apache.’’

3. If Apache is already installed, do you have access to the Apache configuration
file, httpd.conf? You will if you have root privileges on your server. If not, you may
have to rely on .htaccess files for some configuration options. You also need to determine
whether you have the mod_rewrite and mod_alias modules enabled, as well as mod_php. If
they are not enabled, then you need to enable them. If you do have access to httpd.conf,
then you can check and update the configuration file yourself. You can read about how
to do that in the section ‘‘Configuring Apache and mod_php.’’ If you do not have access
to httpd.conf, then you need to have a systems administrator update the configuration
for you.

4. Is the installed version of PHP 5.0 or later, and is the PHP command-line interface (CLI)
installed, as well as the dynamic shared object (DSO) module for Apache? MediaWiki
includes several PHP maintenance scripts that must be run from the command line, which
is why the CLI version should be installed. See the section ‘‘Installing PHP’’ in this chapter
for instructions on how to install PHP. Again, if you don’t have root privileges and cannot
install software, you need to find someone to help you.

5. Is MySQL installed? If so, do you have superuser privileges on MySQL? This means you
can create new databases and new users. If you do not have superuser privileges, are you
at least able to create your own databases? If you are not able to create your own databases,
has a database already been created that you can use? You will need to have privileges to
CREATE tables, and to do SELECT, INSERT, UPDATE, DELETE and LOCK operations on
tables in the database. If you do not have these privileges, then you will not be able to run
MySQL; otherwise, read the section ‘‘Installing MySQL.’’

Installing Apache
On most Linux distributions, Apache and PHP are already installed. If for some reason you do not
have them installed, or you have the wrong versions installed, the simplest way to install them is
using the package manager for your distribution, such as yum, which is just about as easy as it gets.
Throughout the book, when demonstrating commands that you enter on the shell in Linux or Macintosh
OS X, $ represents the shell prompt — you do not need to type in the shell prompt, only the characters
that follow it:

$ sudo yum install httpd

You can also download the source code for Apache at http://apache.org. Once downloaded, you must
unpack the distribution:

$ tar xvfz httpd-2.2.4.tar.gz

Change directories and open the Apache directory that was created when you unpacked the
distribution, and do the usual installation procedure. You will need to log in as root, or use sudo when
installing it:

$./configure --prefix=/apache2 --enable-module=so --enable-rewrite
$ sudo make
$ sudo make install

23

Choate c02.tex V1 - 11/19/2007 1:33pm Page 24

Chapter 2: Installing MediaWiki

Apache can now be started and stopped by typing the following command:

$ /apache2/bin/apachectl start
$ /apache2/bin/apachectl stop

This is only a cursory description of how to install Apache. If you will be running Apache in a production
environment, then you need to be aware of numerous security concerns and configuration options, so
be sure to take the appropriate precautions and consult with experts or more detailed documentation
about Apache.

If you are interested in running a test server and want to get up and running as quickly as possible, you
can also download a pre-packaged bundle of Apache, PHP, and MySQL called XAMPP from the Apache
Friends website: www.apachefriends.org/en/xampp-linux.html. Other such packages are available,
but XAMPP works well because it maintains distributions for Linux, Windows, and Macintosh OS X.
They are designed to be used for test environments, so they are not configured for security out of the
box. They also tend to have a ‘‘kitchen sink’’ mentality, meaning that every possible Apache module
and PHP extension is installed. This is good for getting started and not an issue on a test server, but is
probably not ideal on a high-traffic website.

The download instructions are simply and clearly articulated on the website, so there is no need to repeat
them here. Once you have downloaded the bundle, you can skip to the ‘‘Installing MediaWiki’’ section.

Macintosh OS X
Macintosh OS X comes with Apache 1.3 installed, which is sufficient for our purposes, but it also has
PHP 4.4.4 installed, which will not work with MediaWiki. There are two ways to get the right version
of PHP installed. The simplest is to download the PHP distribution maintained by Marc Liyanage at
www.entropy.ch/software/macosx/php. He only maintains a distribution for the current version of
OS X, which is 10.4. The advantage of using Marc’s distribution is that it comes with an installer that
configures the default Apache installation to use PHP 5. Follow the download instructions and you will
have a working Apache/PHP 5 installation on your Macintosh.

Another alternative for Macintosh OS X is to use Fink, available from http://fink.sourceforge.net.
Fink is a package manager for OS X, like yum for Linux. You need to have the Apple developer
tools installed in order to use Fink, but they are freely available at the Apple developer website at
http://developer.apple.com.

The XAMPP option is available for OS X as well, and it can be downloaded from www.apachefriends
.org/en/xampp-macosx.html. The same caveat about Linux applies to OS X — that this is good for a test
server, and not a production environment.

You may run into a slight permissions problem when installing it on OS X. The Apache server runs as user
nobody, and when first installed, there were permissions errors when accessing the sample PHP files. Once
you make the offending files readable by Apache, everything should work fine. Because OS X already has
Apache installed, you need to turn off the other Apache, which you can do by turning off Personal Web
Sharing in the System Preferences pane.

Windows
The simplest route to getting MediaWiki up and running on Windows is to use a pre-packaged
installation of Apache, PHP, and MySQL. Several such packages are available, including XAMPP,

24

Choate c02.tex V1 - 11/19/2007 1:33pm Page 25

Chapter 2: Installing MediaWiki

which was used for this book and is available at www.apachefriends.org/en/xampp.html. Others have
had equal success with WAMP, which is available at www.wampserver.com/en/. Note that WAMP only
works on Windows, and not on Linux and OS X.

If you are going to use Internet Information Server (IIS), then it is best to use MediaWiki with FastCGI,
rather than regular CGI, or ISAPI. PHP is not as stable under ISAPI on IIS because some PHP
extensions are not threadsafe, whereas IIS is a threaded server. At the time of this writing, there is a
preview release of a FastCGI component for IIS 7.0; it can be downloaded from http://blogs.msdn.com/
hsshin/archive/2007/01/17/fastcgi-for-iis.aspx.

Installing PHP
The first step is to check whether you have PHP and if so, which version it is. If the path where PHP
resides is in your path, you can just enter php –v on the command line to determine which version is
running; otherwise, you need to use the full path. The following example will query the default PHP
implementation on Macintosh OS X. The results return the version number, followed by the API of
this particular implementation of PHP. In this example, the version is 4.4.4 of the command-line
interface version:

$ /usr/bin/php -v
PHP 4.4.4 (cli) (built: Nov 1 2006 18:10:56)
Copyright (c) 1997-2006 The PHP Group
Zend Engine v1.3.0, Copyright (c) 1998-2004 Zend Technologies

You need the CLI, but the version number is too low; and after checking the other version you have
downloaded, you can see that you are running version 5.2.1 and that it is the cgi-fcgi version, which is
the same thing as CLI, except that FastCGI support was enabled when it was compiled:

$ /usr/local/bin/php -v
PHP 5.2.1 (cgi-fcgi) (built: Mar 17 2007 20:28:34)
Copyright (c) 1997-2007 The PHP Group
Zend Engine v2.2.0, Copyright (c) 1998-2007 Zend Technologies

If you are running Linux or Macintosh OS X and you do not want to download a pre-packaged version of
PHP, you may want to download and compile it yourself. The pre-packaged installations are frequently
packed with a lot of libraries, many of which you do not necessarily need, so in the interests of economy
you might compile a slimmer version.

You can download pre-compiled binaries for Windows, and source code for Linux and OS X, at
http://php.net.

Compiling PHP
In order to compile PHP, you need to have GNU make. Go into the source directory and first execute the
configure script. At a minimum, you need to enable Apache — in the following example, I am building
PHP to be used for Apache 2 with the option -with-apxs2=/apache2/bin/apxs (you will change the
path to match your Apache installation).

You also need the GD graphics library installed, which varies according to libJPEG and libPNG.
The -with-zlib option enables PHP to compress pages in order to save bandwidth.

25

Choate c02.tex V1 - 11/19/2007 1:33pm Page 26

Chapter 2: Installing MediaWiki

Finally, you need to enable multi-byte strings (mbstring) and iconv, which allows you to convert
easily between encodings. The following code shows a minimal PHP configuration for use with
MediaWiki:

$ sudo ./configure ’--prefix=/apache2/php’ ’--with-mysql=/usr/local/mysql’ ’--with-
apxs2=/apache2/bin/apxs’ ’--with-zlib’ ’--with-gd’ ’--with-jpeg-dir=/sw’ ’--with-
png-dir=/sw’ ’--with-iconv-dir’ ’--enable-mbstring’

Once configured, run make and make install, as described in the Apache installation instructions.

In addition to the required libraries, a handful of optional libraries are of value. One group of options
includes libraries or tools to increase PHP performance through different kinds of caching. Several dif-
ferent libraries support opcode caching, which means that your PHP code doesn’t have to be recompiled
with every request. These libraries are Turk MMcache, eAccelerator, and Alternative PHP Cache (APC).
You also have the option of page caching using memcached, which is a distributed object store suitable
for high-volume sites. In order to enable this option, you need to have memcached installed; then you can
compile PHP with the –enable-sockets option. This chapter does not go into detail about caching, but
it is covered in depth in Chapter 11.

Another option is to enable Tidy with the --with-tidy[=/path/to/tidy] option enabled. MediaWiki
uses Tidy to fix the sometimes malformed HTML submitted by users when they are editing pages. The
code directly generated by MediaWiki is well formed, but there is no way to ensure that users on the site
will use wikitext correctly, so tidy is used as the last line of defense.

Configuring Apache and mod_php
Once PHP is installed, you need to configure Apache to work with PHP. The following is an example
configuration from Apache 1.3 on OS X. These changes need to be made in the httpd.conf configuration
file, or in .htaccess:

LoadModule php5_module /usr/local/php5/libphp5.so

<IfDefine APACHE1>

AddModule mod_php5.c
</IfDefine>

<IfModule mod_php5.c>

AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

<IfModule mod_dir.c>

DirectoryIndex index.html index.php
</IfModule>

</IfModule>

When configuring Apache for PHP, make sure that PHP 5 is mapped to the .php extension. On some
installations, if you have both PHP 4 and PHP 5 installed, the administrator may have PHP 5 mapped to
the extension .php5. Of course, MediaWiki requires PHP 5.x, but all of its files end in .php.

26

Choate c02.tex V1 - 11/19/2007 1:33pm Page 27

Chapter 2: Installing MediaWiki

Installing MySQL
You can download MySQL binaries for Windows, Macintosh OS X, and a variety of Linux implementa-
tions directly from the MySQL website at http://dev.mysql.com/downloads/mysql/5.0.html. You can
download PHPMyAdmin, the Web front-end for MySQL, at www.phpmyadmin.net.

Of the two database options, MySQL is definitely the more mature implementation. Postgres was
only added relatively recently. Some people make their selection based on the different open-source
licenses used. MySQL is licensed under the GNU General Public License, and Postgres is licensed
under the BSD open-source license. This means that Postgres can be used and distributed in commercial
applications. Of course, MediaWiki is GPL’d too, so this may not be a compelling reason to use Postgres
in this particular instance.

The general rule of thumb in terms of performance is as follows: On the one hand, MySQL is fast,
especially on sites containing a lot of SELECTs and not as many INSERTs and UPDATEs. Postgres, on
the other hand, scales better, especially with large transactions and a lot of INSERTs and UPDATEs. If you
are not familiar with databases, or you do not have a compelling reason to use Postgres, it’s definitely
simpler to stick with MySQL in this instance.

The out-of-the-box MediaWiki uses MySQL’s full-text indexing for the site search, or it can use
Postgres’ tsearch2. The actual Wikipedia website uses Apache Lucene for its full-text indexing, so you
will notice a difference in the output of search results if you compare Wikipedia’s search results with
your own.

If you have a superuser account on MySQL, the installation script will handle creating the database
and users for you, but in the interest of providing complete information, the steps needed to create the
necessary database and user are outlined here.

The first step is to create a database, which by default is named wikidb (but does not need to be), using
the following command:

$ mysqladmin -u root -p create wikidb

Next, you need to grant appropriate privileges to wikiuser, the username that MediaWiki uses
to access MySQL. In order to do this, log into mysql as root, and then enter the following
GRANT statement:

$ mysql -u root
mysql> grant create, select, insert, update, delete, lock tables on wikidb.* to

’wikiuser’@’localhost’ identified by ’password’;
flush privileges;

Once the user is created, you can then start the MySQL server. The following command launches MySQL
on OS X or Linux (the actual path will vary depending on your installation):

$ /usr/local/mysql/bin/safe_mysqld &.

27

Choate c02.tex V1 - 11/19/2007 1:33pm Page 28

Chapter 2: Installing MediaWiki

Installing Postgres
PostgreSQL does not offer as many options at their site for downloads, but you can download Linux and
Windows binaries at www.postgresql.org/download. Fortunately, Marc Liyanage has prepared binaries
for Mac 10.4, which can be downloaded at www.entropy.ch/software/macosx/postgresql.

You can download the Web front end to Postgres at http://phppgadmin.sourceforge.net.

In order to use PostgreSQL, you need to have plpsql and tsearch2 installed. Depending on your dis-
tribution, it may or may not have it installed. As a consequence, it is probably a good idea to manually
create the users and database in Postgres, rather than rely on the automated process. When Postgres is
first installed, the superuser is postgres, and it has no password. You are also provided with a number of
administrative programs that make it easy to create users and databases.

The first step is to create wikiuser, using the following command:

$ createuser -D -P -E wikiuser

After you enter this line, you will be prompted for the new user’s password, two consecutive times. Then
you’ll be asked whether this user should be allowed to create new users. The answer should be no.

Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

Once this is done, you can create the new database and assign ownership of it to wikiuser:

$ createdb -O wikiuser wikidb

In order for Postgres to work with MediaWiki, plpgsql (PL/pgSQL), a procedural language used to
write functions, needs to be installed as well. This can be done with the following command, which tells
Postgres to enable plpgsql with the wikidb database:

$ createlang plpgsql wikidb

The other addition to Postgres is tsearch2, which enables full-text searching. If you have
downloaded the Postgres source code, then you will find the tsearch2 directory inside the
pgsql/share/contrib directory.

tsearch2 is actually a SQL program, and you run it against a database that you want to have full-text
indexing capability. Postgres has a default table called Template1, which is used as a template to create
new databases, so you can install tsearch2 there if you want every database produced by Postgres to
use it. For the purposes of this example, install tsearch2 directly into your wikidb database.

In order to do this, access the tsearch2 directory and run the following commands:

$ make
$ make install

After you’ve run make, you can then apply tsearch2 to the wikidb database that you just created:

$ psql wikidb < tsearch2.sql -U postgres

28

Choate c02.tex V1 - 11/19/2007 1:33pm Page 29

Chapter 2: Installing MediaWiki

After you’ve installed tsearch2.sql, you need to provide the right privileges to wikiuser. To do this,
log in to the interactive prompt as the postgres user and issue the following series of grant statements.
After the permissions have been granted, you need to update the locale in the pg_ts_cfg table,
which defaults to the ‘‘C’’ locale. In order for full-text indexing to work, you need to have the right
locale set up:

$ psql wikidb -U postgres
wikidb=# grant select on pg_ts_cfg to wikiuser;
wikidb=# grant select on pg_ts_cfgmap to wikiuser;
wikidb=# grant select on pg_ts_dict to wikiuser;
wikidb=# grant select on pg_ts_parser to wikiuser;
wikidb=# update pg_ts_cfg set locale =

current_setting(’lc_collate’) where ts_name = ’default’;

Now you have the wikidb database created, you have both plpgsql and tsearch2 installed on wikidb,
and you have created the wikiuser user and granted this user the appropriate privileges to interact with
the database on behalf of MediaWiki.

Installing MediaWiki
You can now turn to the task of actually installing MediaWiki. In most respects, the installation process
will be exactly the same whether you are using MySQL or Postgres, with a couple of exceptions, which
you will see as you follow along with this example.

Step One: Download MediaWiki
You can download the most current official releases from SourceForge, at http://sourceforge
.net/projects/wikipedia, or from the wikimedia.org site at http://download.wikimedia.org/
mediawiki. Once you have downloaded the source, unpack it using the following
command:

$ tar xvzf mediawiki-1.9.3.tar.gz

If you are using Windows, then you need to have software to unpack the code, such as 7-Zip, an
opensource application available from SourceForge at http://sourceforge.net/projects/sevenzip
that knows how to manage tarred and gzipped files.

Once unpacked, you will find a folder called mediawiki-1.9.3.

If you prefer, you can check out the latest release from the MediaWiki Subversion repository by entering
the following command:

$ svn checkout http://svn.wikimedia.org/svnroot/mediawiki/branches/REL1_9/phase3

If you like to live dangerously, then you can check out the developer version here:

$ svn checkout http://svn.wikimedia.org/svnroot/mediawiki/trunk/phase3

29

Choate c02.tex V1 - 11/19/2007 1:33pm Page 30

Chapter 2: Installing MediaWiki

Step Two: Copy to Web Server
Once MediaWiki is unpacked, it needs to be copied into the document root of the Apache Web server.
On Macintosh OS X, that would be /Library/WebServer/Documents/; on Windows with XAMPP, it is
C:\Program Files\XAMPP\htdocs; and on Linux, it can be any number of places, depending on where the
Web server has been installed, such as /srv/www/htdocs/.

It is important that you put the MediaWiki folder in the document root folder and change the name from
mediawiki-1.9.3 to something simple like w (this is because it will make it easier to configure Apache
to support shorter URLs, which are demonstrated later in the chapter). With this done, the path to the
MediaWiki installation on OS X would be /Library/WebServer/Documents/w/, and so on.

Directory Structure
At this point, it is instructive to look inside the MediaWiki folder to see how the code is organized.
Following are the list directories and PHP files inside the mediawiki-1.9.3 directory:

-rw-r--r-- 1 mchoate admin 825 Feb 20 21:20 AdminSettings.sample
-rw-r--r-- 1 mchoate admin 605 Feb 20 21:20 StartProfiler.php
-rw-r--r-- 1 mchoate admin 1316 Feb 20 21:20 api.php
drwxr-xr-x 4 mchoate admin 136 Feb 20 21:20 bin
drwxrwxrwx 3 mchoate admin 102 Feb 20 21:20 config
drwxr-xr-x 22 mchoate admin 748 Feb 20 21:20 docs
drwxr-xr-x 3 mchoate admin 102 Feb 20 21:20 extensions
drwxr-xr-x 3 mchoate admin 102 Feb 20 21:20 images
-rw-r--r-- 1 mchoate admin 1978 Feb 20 21:20 img_auth.php
drwxr-xr-x 187 mchoate admin 6358 Feb 20 21:20 includes
-rw-r--r-- 1 mchoate admin 1756 Feb 20 21:20 index.php
-rw-r--r-- 1 mchoate admin 3899 Feb 20 21:20 install-utils.inc
drwxr-xr-x 8 mchoate admin 272 Feb 20 21:20 languages
drwxr-xr-x 3 mchoate admin 102 Feb 20 21:20 locale
drwxr-xr-x 138 mchoate admin 4692 Feb 20 21:20 maintenance
drwxr-xr-x 23 mchoate admin 782 Feb 20 21:20 math
-rw-r--r-- 1 mchoate admin 1532 Feb 20 21:20 opensearch_desc.php
-rw-r--r-- 1 mchoate admin 6173 Feb 20 21:20 profileinfo.php
-rw-r--r-- 1 mchoate admin 319 Feb 20 21:20 redirect.php
-rw-r--r-- 1 mchoate admin 91 Feb 20 21:20 redirect.phtml
drwxr-xr-x 7 mchoate admin 238 Feb 20 21:20 serialized
drwxr-xr-x 22 mchoate admin 748 Feb 20 21:20 skins
drwxr-xr-x 18 mchoate admin 612 Feb 20 21:20 tests
-rw-r--r-- 1 mchoate admin 2408 Feb 20 21:20 thumb.php
-rw-r--r-- 1 mchoate admin 1384 Feb 20 21:20 trackback.php
-rw-r--r-- 1 mchoate admin 88 Feb 20 21:20 wiki.phtml

In order to complete the installation, you need to access MediaWiki through your Web browser, but
before you can do that you need to make MediaWiki’s config directory writeable by the Apache server
prior to running the Web-based installation. In this case, you can make the directory world writeable by
typing the following:

$ chmod 777 config

30

Choate c02.tex V1 - 11/19/2007 1:33pm Page 31

Chapter 2: Installing MediaWiki

Installing Through the Web
In order to load the installation script, you need to make sure your Apache server is running, as well
as MySQL (or Postgres). If both are working, then you will see the page shown in Figure 2-1 when you
type in the address of http://localhost/w/ (remember that we renamed the MediaWiki directory from
mediawiki-1.9.3 to w).

Figure 2-1: The start page of MediaWiki’s installation script

If all goes well when you do this, you will be redirected to http://localhost/w/config/index.php. If
something goes wrong, it’s probably because you forgot to make the config directory writeable by the
Web server. MediaWiki will cordially inform you of your error and ask that you fix it and try again. The
reason why config needs to be writeable is that during the installation, a file called LocalSettings.php
will be created inside the config directory. Once the installation is complete, you need to copy LocalSet-
tings.php from the config directory into the main MediaWiki directory. At that point, you can delete
the config directory, or change permissions so that it is no longer world writeable.

Ideally, after the installation is complete you will change ownership of LocalSettings.php to the user
who runs the Web server (oftentimes, it’s nobody). Then enter chmod 600 LocalSettings.php in the
command line, so that prying eyes can’t see it.

If you get partway through the installation process and decide to start over again, you need to ensure
that LocalSettings.php has been deleted from the config directory. As long as MediaWiki sees it,
MediaWiki assumes that the installation has been completed.

If all goes well (and it usually does), then you will see the installation page, shown in Figure 2-2.

The top of the page outlines what it has found out about your system and whether you are able to finish
the install:

apache 2 installation results:
PHP 5.2.1 installed
Found database drivers for: MySQL PostgreSQL
PHP server API is apache2handler; ok, using pretty URLs (index.php/Page_Title)
Have XML / Latin1-UTF-8 conversion support.
PHP’s memory_limit is 128M. If this is too low, installation may fail!
Have zlib support; enabling output compression.
Couldn’t find Turck MMCache, eAccelerator or APC. Object caching functions

cannot be used.
Found GNU diff3: /usr/bin/diff3.

31

Choate c02.tex V1 - 11/19/2007 1:33pm Page 32

Chapter 2: Installing MediaWiki

Found GD graphics library built-in, image thumbnailing will be enabled if you
enable uploads.

Installation directory: /apache2/htdocs
Script URI path:
Environment checked. You can install MediaWiki.

Figure 2-2: The results of executing MediaWiki’s installation script

Farther down on the page, it is divided into a few different sections where you are prompted for some
basic configuration information.

Site Configuration
The site configuration section of the installation script is shown in Figure 2-3.

Figure 2-3: The configuration section of MediaWiki’s installation script

32

Choate c02.tex V1 - 11/19/2007 1:33pm Page 33

Chapter 2: Installing MediaWiki

In this section, you need to enter the name of your wiki (this example is called ‘‘MySQL Wiki’’ because it
is a test installation that will run using the MySQL database). Then, you enter a contact e-mail address.
This is the e-mail address that is used in error messages, and as the sender of password reminders and
other e-mail notifications. You should create an e-mail address to be used exclusively for this purpose.
Next, you select the language to use in the wiki. In this case, it is English (en – English).

The next option deserves some consideration. MediaWiki gives you the opportunity to select a license
for your content. (You can read more about licensing options for your content in the ‘‘Page Metadata’’
section of Chapter 6.) You are also given the option of including no license metadata, which means that
the license defaults to traditional copyright regulations. Due to the nature of wikis and the fact that many
people post to them and more than one person can be responsible for an article, selecting one of the other
two alternatives is a good idea (if you are a public-facing website, at least). The GNU Free Documentation
License 1.2 is used by Wikipedia.

This excerpt from the GNU Free Documentation License, posted at www.gnu.org/licenses/fdl.txt,
provides a good summary:

‘‘The purpose of this License is to make a manual, textbook, or other functional and useful document
‘free’ in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of ‘copyleft’, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.’’

Choosing a Creative Commons license gives you more flexibility over the rights you keep and give
away. You can fill out a questionnaire at http://creativecommons.org/license to help you decide
which license you would like to offer.

Next, you need to select the name and password of the site’s administrator. You can choose whatever
password you want for the wikisysop, but be sure to keep a copy of the password!

The next section is for configuring shared memory caching. For now, leave this option off. While
caching is very useful on production sites, it can be a hassle when you are developing a new site, but
changes that you make aren’t automatically reflected in the site. Caching is discussed in more detail
in Chapter 11, and you will learn how to set it up at that time.

E-mail Notification and Authentication Setup
The notification and authentication setup section, shown in Figure 2-4, gathers information about how
e-mail should be used. The selections are self-explanatory, but pay attention to e-mail address
authentication, which means that when new users sign up, they have to provide their e-mail address.
The system then e-mails the users at the e-mail addresses they gave when they signed up, and they are
asked to confirm their registration. Only after confirming their registration are users allowed to edit
pages. (More information about setting access permissions for users can be found in Chapter 6.) If you
use a public-facing wiki on which people ‘‘off the street’’ can sign up, it’s a very good idea to keep
this enabled.

33

Choate c02.tex V1 - 11/19/2007 1:33pm Page 34

Chapter 2: Installing MediaWiki

Figure 2-4: E-mail notification and authentication configuration

Selecting a Database
If you have access to the MySQL superuser (root, by default), then the MediaWiki installation script can
create the necessary database and users for you. In the Database Config section on the same page, you are
given the option to select MySQL or Postgres for your wiki’s database. Select the MySQL radio button,
as shown in Figure 2-5.

Next, you are asked to enter the database host. If the database is being hosted on the same server as
MediaWiki itself, then you can enter localhost. If MySQL is being hosted on a different database,
which will likely be the case if you run a very active wiki, then you would enter the appropriate host in
that field.

The form will have wikidb pre-filled for the database name, and wikiuser for the database user’s name
that will be used to access the wikidb database. These names can be changed if you’d like. After the
name are two blank fields for you to enter the password twice (just in case). Further down is a checkbox
that you should select if you have access to the superuser account on MySQL. The example that follows
indicates that you do have access to it, so you can select it and enter the superuser name (there’s no
password on the default installation — this should be changed in a production setting). You can, of
course, have a different superuser name and password if MySQL has been configured that way.

There are a few other items to configure and then you’ll be able to complete the installation. First, you
are asked to provide a prefix for the database tables. This is a good idea because it will enable you to run
more than one wiki out of the same database. In this example, the tables are prefixed with mw_. Then,
when asked what charset to use, choose the default, utf-8.

If you do not have access to the MySQL superuser (if you are using a hosting service, for example), then
you need to have a username and password already created. If that’s the case, then enter your username
and password in place of ‘‘wikiuser.’’ If you do not have privileges to create a database, then you will
need to use the database you already have, so enter that information into the database field.

34

Choate c02.tex V1 - 11/19/2007 1:33pm Page 35

Chapter 2: Installing MediaWiki

Figure 2-5: Database configuration for MediaWiki

The important things to remember at this stage are as follows:

❑ You can choose any name you would like for the database, even though the default is wikidb.
If you have a pre-existing database that you want to use, then you can enter the name of that
database into the name field.

❑ The database user, wikiuser, can be named anything you’d like. If you have already created a
user in the database that you intend to use, then you should enter that user’s name and password
instead of wikiuser.

❑ The only time you need to select the superuser checkbox is when you do not already have a
database and user already created and you know the username and password of a superuser.
On the default MySQL installation, a superuser called ‘‘root’’ is installed; and, by default, there
is no password for this user, so the Password field is left blank. This is a pretty big security hole,
so you should assign a password to the user as soon as you can. If there is a password, then you
obviously need to enter the password into the Password field.

If you have decided to use Postgres, then you need to check the Postgres radio button, and then fill
out the fields according to the database and username you created earlier. Do not select the superuser
checkbox, even if you know the superuser name and password — you do not need to use it because you
have already created everything you need.

Once the configuration process is completed, a file called LocalSettings.php is created in the config
directory. This file needs to be moved into the base directory for the installation, and the permissions
need to be set so that only the Web server can read it (chmod 400 for Unix-like systems). The config

35

Choate c02.tex V1 - 11/19/2007 1:33pm Page 36

Chapter 2: Installing MediaWiki

directory can then be deleted and the site accessed from the primary URL. Figure 2-6 shows the front
page of a freshly installed wiki.

Figure 2-6: The front page of a wiki after a successful installation

Configuring Short URLs
You need to make quite a few customizations once MediaWiki is installed. Most of those are discussed in
subsequent chapters, but there is one such customization that most people want to change immediately,
which is configuring Apache to use shorter URLs.

When using Apache, the URL for the main page (aptly called Main_Page) is http://mysite.tld/
mediawiki/index.php/Main_Page. If you happen to run under CGI or FastCGI, then the URL is even
longer, http://mysite.tld/mediawiki/index.php?title=Main_Page. There is also a chance that the
URL will look like this when you are running Apache. If it does, that’s because the AcceptPathInfo
directive is set to ‘‘off.’’ It is normally set to ‘‘on’’ by default, so it is unlikely that you will encounter this,
but if you do, then enter the following in httpd.conf or in an .htaccess file:

AcceptPathInfo On

Many people want to get rid of the index.php in the middle of the URL because it’s not really use-
ful and makes the URL longer than it needs to be. There is a lot of confusion about how this should
work, but it’s fairly straightforward once you understand the relationship between the variables in the
LocalSettings.php file and the directives used by Apache.

Using the Alias directive in Apache is the easiest way to dispense with the ‘‘index.php.’’ In the following
example, the /wiki path is mapped to /Library/WebServer/Documents/pg/index.php, which is where
one of my WikiMedia installations is located. Pay special attention to the absence of ‘‘/’’ at the end of
/wiki. That’s a requirement. A second path, /index.php, is also mapped to the same index.php file:

Alias /wiki /Library/WebServer/Documents/pg/index.php
Alias /index.php /Library/WebServer/Documents/pg/index.php

36

Choate c02.tex V1 - 11/19/2007 1:33pm Page 37

Chapter 2: Installing MediaWiki

In order for this to work, you need to have the $wgArticlePath variable defined in LocalSettings.php:

This variable determines who MediaWiki builds links to
articles from other articles. This pattern must correspond
with the RewriteRule.
$wgArticlePath = ’’/wiki/$1’’;

This tells MediaWiki to use the path /wiki/Article_Name when generating links to articles within
MediaWiki. Then, if one of these links is clicked, Apache handles the request and substitutes /Library
/WebServer/Documents/pg/index.php for /wiki (using the full path from the system, rather than just
the request path).

The problem with using Alias is that you cannot use it in a .htaccess file, and many users do not have
access to httpd.conf. Another approach is to use Apache’s Mod_Rewrite, which uses regular expressions
to map URLs to items in the underlying file system. It’s similar to Alias but much more flexible, and, as
a consequence, much more complicated. In the end, though, it’s the better route to take.

One reason for using Mod_Rewrite is that it can be used in .htaccess files. However, unless you truly
need to use .htaccess files, you shouldn’t, because they slow things down considerably. If you have
access to httpd.conf, then you can use Mod_Rewrite there.

If you are using virtual hosting in Apache, then you can put the RewriteRule directive in <Virtual>;
otherwise, you can put it anywhere in the configuration file.

You need to change the LocalSettings.php file, in either the httpd.conf file for Apache, or create a
.htaccess file in the doc root of your Apache installation:

RewriteEngine on
RewriteRule ^/wiki/?(.*)$ /w/index.php?title=$1 [L,QSA]

LocalSettings.php should be configured in this way:

$wgSitename = ’’MySQL Wiki’’;

The URL base path to the directory containing the wiki;
defaults for all runtime URL paths are based off of this.
$wgScriptPath = ’’/w’’;
$wgScript = ’’$wgScriptPath/index.php’’;
$wgRedirectScript = ’’$wgScriptPath/redirect.php’’;

This variable determines who MediaWiki builds links to
articles from other articles. This pattern must correspond
with the RewriteRule.
$wgArticlePath = ’’/wiki/$1’’;

The RewriteRule directive takes the path as defined in $wgArticlePath and maps it internally to the
actual URL, making the URL http://mysite.tld/wiki/Main&uscore;Page effectively the same as if
you had called http://mysite.tld/pg/index.php?title=Main_Page.

You can put the RewriteRule into a .htaccess file, but when you do, it needs to be in the top-level
directory or the doc root of your Apache implementation.

37

Choate c02.tex V1 - 11/19/2007 1:33pm Page 38

Chapter 2: Installing MediaWiki

Summary
This chapter covered how to install MediaWiki. By this time, you should be able to get MediaWiki up and
running with an Apache Web server. Now, with MediaWiki installed, it’s time to take a look at the ins
and outs of using MediaWiki software. In the next chapter, you’ll learn MediaWiki terminology and find
a user’s guide to MediaWiki, detailing information about user accounts, how to create and edit pages,
and more.

38

Choate c03.tex V1 - 11/19/2007 1:47pm Page 39

Getting Started with
MediaWiki

In the previous chapter, you learned how to set up the Web servers and PHP implementations
necessary to run MediaWiki. In this chapter, you will learn about the basic configuration options
for MediaWiki, and get a general overview of how the software works ‘‘out of the box.’’ Many of the
topics touched on lightly in this chapter are handled in much greater depth in subsequent chapters.
When appropriate, cross-references are provided directing you to the chapter of the book that covers
a given topic so that you can jump directly to it if you are particularly eager to learn more.

The authors of MediaWiki are unabashed in their commitment to develop MediaWiki
primarily for Wikipedia. The fact that others can also make use of it is an added bonus, and
certainly a ‘‘nice-to-have,’’ but at the end of the day it’s not their primary goal. Despite this, the
developers have been generous by making MediaWiki highly configurable. You can customize a
great deal of your wiki without doing any kind of programming other than changing the values
of a few variables.

Much of this chapter serves as an introduction to how MediaWiki is organized. In addition to
covering the basic features of the software, it also describes how to customize those features when
appropriate. You should have a fresh, virgin wiki at your disposal to experiment with. In some
instances, it may be most useful to look at an actively maintained wiki to see how a certain feature
works; and in those instances you’ll see examples in Wikipedia. In other cases, examples are based
on the newly minted wiki installed in the previous chapter, in case you want to follow along and
perform the tasks yourself.

The MediaWiki Application
Before you get too far along, you’ll first get a brief outline of how the code is organized.
Wiki features will be accompanied by examples of actual wikis to show you how the features
work from the users’ perspective, and you will learn where you can find the source code, too,
if you’d like to go ahead and take a look at that. You will also become familiar with some

Choate c03.tex V1 - 11/19/2007 1:47pm Page 40

Chapter 3: Getting Started with MediaWiki

of the basic debugging configuration options you have, which are turned off by default. This way, you
can log your activity as you go and more easily see what’s happened in the code.

Code Organization
The primary script that is executed with each request is index.php, which can be found in the root
directory of your installation. Alongside index.php are some additional directories that house the code
used to run and support MediaWiki.

The following directories are inside the installation directory and contain scripts or data that support
the application:

❑ bin/: This folder contains a couple of shell scripts that are executed by MediaWiki. There’s no
reason to modify these; but for the curious, they are executed by the global function wfShellExec
(see ‘‘Global Functions,’’ the next section).

❑ docs/: Some incomplete documentation is available in this directory. If you have doxygen
installed, then you can generate MediaWiki code documentation (the same documentation is
available online at MediaWiki).

❑ extensions/: Code written for MediaWiki but not part of the core MediaWiki distribution is
stored here.

❑ images/: This directory is intended for user image uploads, if you have enabled that
feature in MediaWiki. All images related to the user interface are in the skins/commons/
images directory.

❑ includes/: The bulk of the code that runs MediaWiki is in the includes folder.

❑ languages/: Inside the languages folder is Language.php, which contains the PHP code for the
Language class. The Language class manages the translation of all the text produced by
MediaWiki into the appropriate language. There are two subfolders: classes and messages.
The classes folder contains a subclass of Language for each language supported by MediaWiki.
In the messages folder are the system messages for each language. $wgLang is a global instance
of the Language class.

❑ maintenance/: The maintenance folder contains a host of PHP scripts that are executed from
the command line and that support miscellaneous maintenance and testing functions needed
to run a wiki. More details about maintenance scripts can be found in Chapter 11.

❑ math/: Information about handling math can be found in Chapter 4, ‘‘Writing and
Editing Content.’’

❑ skins/: Skins contain all the files responsible for expressing the MediaWiki look and feel, and
include PHP files, cascading stylesheets (CSS), images, and JavaScript. All the glorious details
are covered in Chapter 8, ‘‘Magic Words, Templates, and Skins.’’

Global Functions
GlobalFunctions.php can be found inside the includes/ folder. This PHP document contains a number
of global functions that can be helpful for development and debugging. MediaWiki uses a naming
convention to help identify global functions in code. In almost every case, the name of a global

40

Choate c03.tex V1 - 11/19/2007 1:47pm Page 41

Chapter 3: Getting Started with MediaWiki

function begins with the letters wf. For example, the two debugging functions discussed later in this
chapter are called wfDebug and wfDebugLog.

Global Variables
MediaWiki supplies a number of global variables as well. They are defined in a few different locations
and are discussed in more detail in the ‘‘Settings’’ section later in this chapter. MediaWiki uses a naming
convention for global variables as well. Each variable starts with $wg. The variable that represents the
user object is $wgUser, and the variable that represents a title is $wgTitle.

Architecture
The architecture of MediaWiki is driven in large part by the idiosyncrasies of PHP. When MediaWiki
was first developed, it used PHP 4.x, which lacked much in the way of object-oriented programming
features. As of July 7, 2006, MediaWiki 1.7 was released, and it was the first version to require PHP 5.0
or better. With the adoption of PHP 5.x, and its much more robust and complete object-oriented approach,
the developers have begun to migrate the core code into an object-oriented paradigm. At this time, the
move is not complete. As a consequence, you need to use a lot of global variables and functions. This
transitional state of affairs can sometimes make some of the code a little baffling at first, but the learning
curve isn’t especially steep compared with other frameworks you may have worked with.

MediaWiki is highly customizable through a variety of mechanisms, including numerous global variables
(over 300 of them, I understand, although I haven’t actually counted them myself) that can be tweaked
to modify this or that behavior, and you can also extend MediaWiki’s functionality through extensions
and hooks. In addition, it includes a robust templating system that you can extend as well. All of these
features are discussed at length in subsequent chapters.

Customizing the Installation
When MediaWiki is first installed, you are prompted to make a few configuration decisions to get you
started. These are only a few of the literally hundreds of configuration variables that can be modified
in some form or other. While some items can be configured through a Web form, the vast majority of
configuration is done in the PHP code itself. At this point, no strong coding skills are necessary, but it
is helpful if you have a basic understanding of how programming works. The configuration items are
stored in global variables, and the task of customizing the configuration involves changing the values
that are assigned to those variables.

With each request, the index.php script is accessed. One of the first things this script does is
include the WebStart.php script, which is found at includes/WebStart.php. When this script is executed
(scripts are executed when loaded), it in turn loads includes/Defines.php and LocalSettings.php.
LocalSettings.php is the file that is generated when MediaWiki is first installed, and it contains the
basic configuration items that were selected during the installation process.

Settings
In practice, configuration settings are scattered throughout the code, but the following files are
primarily responsible for managing the configuration of MediaWiki.

41

Choate c03.tex V1 - 11/19/2007 1:47pm Page 42

Chapter 3: Getting Started with MediaWiki

All of your custom settings should be used in the LocalSettings.php file. You can look in
DefaultSettings.php to see what is available and read the documentation that’s there, but then
copy them into LocalSettings.php before you change them. When you upgrade to the next version
of MediaWiki, you will not lose your customizations this way, as the upgrade process won’t
overwrite the LocalSettings.php file.

❑ Defines.php: All of the MediaWiki constants are defined in this file.

❑ LocalSettings.php: This is the file that was created when you configured MediaWiki through
the Web browser.

❑ DefaultSettings.php: All of the configurable variables are located here. If you want to
change the values of an item listed here, add it to the LocalSettings.php file and make
your change there. You should never edit DefaultSettings.php because it will be
overwritten when you install an upgrade.

❑ Setup.php: This script is responsible for defining the global variables based upon what is defined
in LocalSettings.php, and, if not defined there, then in DefaultSettings.php.

The file DefaultSettings.php contains the default values for MediaWiki. Some values are defined in
Setup.php. When Setup.php executes, it checks to see whether the values of these variables are false.
If they are not, then it assumes that new values have been set and uses them. Otherwise, it uses
the hard-coded values in the code itself. I really don’t understand why the developers didn’t just
put the default values in DefaultSettings.php instead of using this false check. It’s as if they went
out of their way to preserve hard-coded default values.

LocalSettings.php
It is worthwhile at this point to examine the LocalSettings.php file to see how the configuration choices
made during the installation are manifest in the code. Once you’ve reviewed that, you will learn how
to make specific customizations by turning on debugging and profiling for MediaWiki.

The following code listing is a sample of the contents of the LocalSettings.php file that was
automatically generated during the installation process. If you are not familiar with PHP programming,
the primary thing to pay attention to is the global variables. In PHP, all variables start with $; and by
convention, all MediaWiki global variables are prefixed with wg. As a consequence, the global variable
that represents the site’s name is $wgSitename, and so on.

In addition to the comments that are already in the document, additional comments are inserted
in the code to offer further explanation about what is going on. One important thing to note
is that LocalSettings.php includes DefaultSettings.php prior to making modifications to any global
variable. This is because the global variables are defined in DefaultSettings.php, along with their
default value, so the assignment that takes place in LocalSettings.php needs to take place after the
assignment in DefaultSettings.php, because the last assignment made will be the official assignment
used by the application. Here is the automatically generated file:

<?php

This file was automatically generated by the MediaWiki installer.
If you make manual changes, please keep track in case you need to
recreate them later.
#
See includes/DefaultSettings.php for all configurable settings

42

Choate c03.tex V1 - 11/19/2007 1:47pm Page 43

Chapter 3: Getting Started with MediaWiki

and their default values, but don’t forget to make changes in _this_
file, not there.

If you customize your file layout, set $IP to the directory that contains
the other MediaWiki files. It will be used as a base to locate files.
if(defined(’MW_INSTALL_PATH’)) {
$IP = MW_INSTALL_PATH;

} else {
$IP = dirname(__FILE__);

}

$path = array($IP, "$IP/includes", "$IP/languages");
set_include_path(implode(PATH_SEPARATOR, $path) .

PATH_SEPARATOR . get_include_path());

The DefaultSettings.php script contains the default values for the site settings. It is loaded first,
so any global variables that are assigned in this document overwrite the values defined in
DefaultSettings.php:

require_once("includes/DefaultSettings.php");

Normally, the following line is enabled, but I have disabled it because compressing the output was
causing errors in Safari and Firefox on Macintosh OS X when trying to use the profileinfo.php file.
See the section ‘‘Profiling’’ later in this chapter for more details.

If PHP’s memory limit is very low, some operations may fail.
ini_set(’memory_limit’, ’20M’);

if ($wgCommandLineMode) {
if (isset($_SERVER) && array_key_exists(’REQUEST_METHOD’, $_SERVER)) {

die("This script must be run from the command line\n");
}

} elseif (empty($wgNoOutputBuffer)) {
Compress output if the browser supports it

#if(!ini_get(’zlib.output_compression’)) @ob_start(’ob_gzhandler’);
}

$wgSitename = "ProfWikis - MySQL";

The URL base path to the directory containing the wiki;
defaults for all runtime URL paths are based off of this.

During the installation process in this example, MediaWiki was installed in a directory called w.
Obviously, this value will vary depending on where you decided to install MediaWiki. Note that this
path is relative to the document root of your Web server installation. For this example, the full file path
would be /Library/WebServer/Documents/w:

$wgScriptPath = "/w";

For more information on customizing the URLs please see:
http://www.mediawiki.org/wiki/Manual:Short_URL

43

Choate c03.tex V1 - 11/19/2007 1:47pm Page 44

Chapter 3: Getting Started with MediaWiki

When MediaWiki was originally installed for this example, no emergency contact e-mail address was
assigned, nor was an address provided to use as the sender when password reminders are e-mailed:

$wgEnableEmail = true;
$wgEnableUserEmail = true;

$wgEmergencyContact = "[no address given]";
$wgPasswordSender = "[no address given]";

These values can now be manually changed to whatever you choose. For example, the emergency contact
variable could be set as follows:

$wgEmergencyContact = "fakeaddress@choate.info"

The next values determine how and when the user receives e-mail notification. The details of this process
are discussed in more detail later in this chapter in the ‘‘Preferences’’ section.

For a detailed description of the following switches see
http://meta.wikimedia.org/Enotif and http://meta.wikimedia.org/Eauthent
There are many more options for fine tuning available see
/includes/DefaultSettings.php
UPO means: this is also a user preference option

$wgEnotifUserTalk = true; # UPO
$wgEnotifWatchlist = true; # UPO
$wgEmailAuthentication = true;

$wgDBtype = "mysql";
$wgDBserver = "localhost";
$wgDBname = "wikidb";
$wgDBuser = "wikiuser";
$wgDBpassword = "password";
$wgDBport = "5432";
$wgDBprefix = "profwiki_";

Schemas for Postgres
These are only meaningful if you are running
Postgres for your database.
$wgDBmwschema = "mediawiki";
$wgDBts2schema = "public";

Experimental charset support for MySQL 4.1/5.0.
$wgDBmysql5 = false;

Shared memory settings

Chapter 11 contains more information about caching issues.

Initially, you should probably not have memcached installed because caching can make it more difficult
to see changes that you’ve made in your site right away (because the page is cached). When the wiki is
ready to go live, caching is usually a good idea.

44

Choate c03.tex V1 - 11/19/2007 1:47pm Page 45

Chapter 3: Getting Started with MediaWiki

$wgMainCacheType = CACHE_NONE;
$wgMemCachedServers = array();

To enable image uploads, make sure the ’images’ directory
is writable, then set this to true:

Information about uploaded images is available in Chapter 6, ‘‘Page Actions and Version Control.’’
For now, it is disabled.

$wgEnableUploads = false;
$wgUseImageResize = true;

During the initial installation process, the ImageMagick libraries were not installed and ImageMagick is
not being used for image processing. However, if it were installed, you could use ImageMagick, rather
than PHP’s GD graphics library, for creating thumbnails. Some users think the quality of ImageMagick is
better. If you change your mind, you can simply uncomment the following lines, making sure you have
updated the path to reflect where the convert application was actually installed:

$wgUseImageMagick = true;
$wgImageMagickConvertCommand = "/sw/bin/convert";

If you want to use image uploads under safe mode,
create the directories images/archive, images/thumb and
images/temp, and make them all writable. Then uncomment
this, if it’s not already uncommented:
$wgHashedUploadDirectory = false;

If you have the appropriate support software installed
you can enable inline LaTeX equations:
$wgUseTeX = false;

$wgLocalInterwiki = $wgSitename;

$wgLanguageCode = "en";

$wgProxyKey = "40a245133b5843c54ca98e48659914c8811aedaf72548699843e8e9e2f90ba24";

Default skin: you can change the default skin. Use the internal symbolic
names, ie ’standard’, ’nostalgia’, ’cologneblue’, ’monobook’:
$wgDefaultSkin = ’monobook’;

For more information on copyright issues, see Chapter 6, ‘‘Page Actions and Version Control.’’

The next passage in the LocalSettings.php file documents the licensing information you selected when
installing MediaWiki. In the basic installation, I did not specify any rights. You will learn how to change
this configuration in Chapter 6.

For attaching licensing metadata to pages, and displaying an
appropriate copyright notice / icon. GNU Free Documentation
License and Creative Commons licenses are supported so far.

$wgEnableCreativeCommonsRdf = true;

45

Choate c03.tex V1 - 11/19/2007 1:47pm Page 46

Chapter 3: Getting Started with MediaWiki

$wgRightsPage = ""; # Set to the title of a wiki page that
describes your license/copyright

$wgRightsUrl = "";
$wgRightsText = "";
$wgRightsIcon = "";
$wgRightsCode = ""; # Not yet used

The next section shows the configuration of $wgDiff3. This variable represents the application
that is used to identify the differences between different versions of a file. For Unix-like systems,
the default is diff3, which is typically installed in /usr/bin/diff3. You can use a different diff
application if you choose.

$wgDiff3 = "/usr/bin/diff3";

Finally, you can configure LocalSettings.php so that whenever it is changed, cached pages will be
purged, so the changes will be reflected immediately in the site:

When you make changes to this configuration file, this will make
sure that cached pages are cleared.
$configdate = gmdate(’YmdHis’, @filemtime(__FILE__));
$wgCacheEpoch = max($wgCacheEpoch, $configdate);

Debugging
MediaWiki provides debugging tools to help you develop customized extensions. They can also be
helpful when learning how to use and program for MediaWiki.

The variables and comments in LocalSettings.php came from DefaultSettings.php, with additional
comments for clarification.

The log file needs to be in a place that is accessible by PHP, which means it needs to be in the Web server’s
document root. In order to protect it, you should either password-protect the directory or configure
Apache (or your Web server of choice) so that it will not return files that end in .log (or whatever you
decided to call it):

The debug log file should be not be publicly accessible if it is used, as
it may contain private data.
$wgDebugLogFile = ’/Library/WebServer/Documents/mediawiki.log’;

Redirects are files that point to other files so that when you request a page, you are automatically
redirected (or switched) to a different page. This is often used to map synonyms to a common page.
When the following value is set to true, then the redirect is interrupted and you will encounter a page
that shows where the redirect is pointing:

$wgDebugRedirects = true;

For example, with this value set, you get the following notification when you go to
http://127.0.0.1/wiki:

Location: http://choate.local/wiki/index.php/Main_Page

This indicates that you are being redirected to the Main Page of my wiki.

46

Choate c03.tex V1 - 11/19/2007 1:47pm Page 47

Chapter 3: Getting Started with MediaWiki

When $wgDebugRawPage is set to true, MediaWiki will track debugging information for raw
pages as well:

$wgDebugRawPage = true;

Raw pages are generated by using the following URL:

http://127.0.0.1/wiki/index.php/Main_Page?action=raw

This is an example of an action, which is discussed later in this chapter. A raw page contains the wikitext
content for a page and none of the HTML, including navigation elements.

Several globals can be set to log various SQL-related issues:

/**
* Write SQL queries to the debug log
*/

$wgDebugDumpSql = true;
$wgLogQueries = true;

The next SQL-related variable determines whether SQL errors are displayed in the Web
browser when they occur. This can be helpful in debugging, but is probably not such a good
idea on a live site:

$wgShowSQLErrors = true;

You can also tell MediaWiki how much information to send to the log. The following variable
can be set to send the complete stack trace to output whenever an uncaught exception occurs:

If set to true, uncaught exceptions will print a complete stack trace
to output. This should only be used for debugging, as it may reveal
private information in function parameters due to PHP’s backtrace
formatting.

$wgShowExceptionDetails = true;

When the following variable is set to true, the debugging data will be displayed as a comment inside the
HTML output of the page. Normally, you would set this value to true and the $wgDebugFile to false
or vice versa. If the wiki is in a publicly available location, it is unwise to include debugging information
inside the page.

$wgDebugComments = true;

The following code listing is an example of the commented debugging output that is included in the
page when $wgDebugComments is set to true. Note that this debugging log also includes SQL queries, as
defined in the previous listing. The following sample debugging output is abbreviated in the interests
of saving space, but it should give you an idea about the kind of information that is available:

<!-- Debug output:
Fully initialised
Unstubbing $wgContLang on call of $wgContLang->checkTitleEncoding from

WebRequest::getGPCVal

47

Choate c03.tex V1 - 11/19/2007 1:47pm Page 48

Chapter 3: Getting Started with MediaWiki

Unstubbing $wgUser on call of $wgUser->isAllowed from Title::userCanRead
Cache miss for user 3
Unstubbing $wgLoadBalancer on call of $wgLoadBalancer->getConnection from wfGetDB
SQL: BEGIN
SQL: SELECT /* User::loadFromDatabase */ * FROM ‘profwiki_user‘ WHERE user_id = ’3’

LIMIT 1
SQL: SELECT /* User::loadFromDatabase */ ug_group FROM ‘profwiki_user_groups‘

WHERE ug_user = ’3’
Logged in from session
SQL: SELECT /* Article::pageData */

page_id,page_namespace,page_title,page_restrictions,page
_counter,page_is_redirect,page_is_new,page_random,page_touched,
page_latest,page_len FROM ‘profwiki_page‘ WHERE
page_namespace = ’0’ AND page_title = ’Main_Page’ LIMIT 1

Unstubbing $wgLang on call of $wgLang->getCode from User::getPageRenderingHash
OutputPage::checkLastModified: -- client send If-Modified-Since: Tue, 10 Apr 2007

21:34:36 GMT
Unstubbing $wgMessageCache on call of $wgMessageCache-

>getTransform from wfMsgGetKey
SQL: SELECT /* MediaWikiBagOStuff::_doquery */ value,exptime

FROM ‘profwiki_objectcache‘ WHERE keyname=’wikidb-profwiki_:messages-hash’
SQL: SELECT /* MediaWikiBagOStuff::_doquery */ value,exptime

FROM ‘profwiki_objectcache‘ WHERE keyname=’wikidb-profwiki_:messages’
MessageCache::load(): got from global cache
Language::loadLocalisation(): got localisation for en from source
Unstubbing $wgParser on call of $wgParser->firstCallInit

from MessageCache::transform
<output deleted>

-->

You can add to the debugging information that MediaWiki logs by using two different functions.
Both are defined in includes/GlobalFunctions.php. The first is wfDebug:

function wfDebug($text, $logonly = false)

You call it by passing it the message you want sent to the log:

wfDebug(’this is my debugging info’)

If the optional $logonly parameter is set to true, then the debug messages are only sent to the log file,
and not to HTML comments, if $wgDebugComments is also set to true.

The second function is wfDebugLog:

function wfDebugLog($logGroup, $text, $public = true)

You can call this function if you have also configured the $wgDebugLogGroups global variable. In order
to use it, you set it to an array of log group keys that will be used for filenames. When set, wfDebugLog
output for that group will go to that file instead of the regular $wgDebugLogFile.

Set to an array of log group keys to filenames.
If set, wfDebugLog() output for that group will go to that file instead

48

Choate c03.tex V1 - 11/19/2007 1:47pm Page 49

Chapter 3: Getting Started with MediaWiki

of the regular $wgDebugLogFile. Useful for enabling selective logging
in production.

$wgDebugLogGroups = array();

If the optional $public parameter is true, then the text in $text will also be sent to wfDebug. Otherwise,
the debugging information only goes into the defined $logGroup.

Profiling
This section explains how to configure profiling, which adds to the information that is logged by the
debugging functions. The profiler tells you how long it takes to execute a given function, measured
in microseconds (which is 1/1,000,000th of a second). This will help you identify the slow spots in
your application. The act of profiling itself can exert a burden on the application, so some variables are
available that enable you to limit what is profiled.

$wgProfileLimit enables you to log only function profile data for functions that take more than a certain
number of seconds to execute. In the following sample LocalSettings.php file, the limit is set to 0.0,
meaning that all the profile data will be logged:

#
Profiling / debugging
#
You have to create a ’profiling’ table in your database before using
profiling see maintenance/archives/patch-profiling.sql .
#
To enable profiling, edit StartProfiler.php

/** Only record profiling info for pages that took longer than this */
$wgProfileLimit = 0.0;
/** Don’t put non-profiling info into log file */
$wgProfileOnly = false;
/** Log sums from profiling into "profiling" table in db. */
$wgProfileToDatabase = true;
/** If true, print a raw call tree instead of per-function report */
$wgProfileCallTree = false;
/** Should application server host be put into profiling table */
$wgProfilePerHost = true;

/** Detects non-matching wfProfileIn/wfProfileOut calls */
$wgDebugProfiling = true;
/** Output debug message on every wfProfileIn/wfProfileOut */
$wgDebugFunctionEntry = 0;

You also need to update StartProfiler.php, which is in the top-level directory of MediaWiki. When a
request is first made and WebStart.php is executing, it loads the StartProfiler.php script. By default,
StartProfiler.php loads a stub object that doesn’t do any actual profiling. You need to modify it so that
it loads a real profiler.

In the following example, the code was changed to use the profiler found in includes/
ProfilerSimple.php. This gives you the flexibility to develop a customized profiler, suited
to your needs.

49

Choate c03.tex V1 - 11/19/2007 1:47pm Page 50

Chapter 3: Getting Started with MediaWiki

<?php

/*require_once(dirname(__FILE__).’/includes/ProfilerStub.php’);*/

/**
* To use a profiler, delete the line above and add something like this:
**/
require_once(dirname(__FILE__).’/includes/ProfilerSimple.php’);
$wgProfiler = new Profiler;

?>

If you want to have profiling data stored in a database, then you need to take a few more steps before
profiling is enabled on the wiki. If you enable $wgProfileToDatabase, you need to first create a new
table in your wiki database.

The SQL code can be found inside the MediaWiki installation directory in maintenance/archives/
patch-profiling.sql:

-- profiling table
-- This is optional

CREATE TABLE /*$wgDBprefix*/profiling (
pf_count int NOT NULL default 0,
pf_time float NOT NULL default 0,
pf_name varchar(255) NOT NULL default ",
pf_server varchar(30) NOT NULL default ",
UNIQUE KEY pf_name_server (pf_name, pf_server)

) TYPE=HEAP;

This table will be accessed by the profileinfo.php script, so you need to ensure that the table you
create matches the table that profileinfo expects to be there. Remove the /*$wgDBprefix*/ string from
the SQL statement because the profileinfo.php script does not expect a prefix on the name of the
profiling table.

However, if you have multiple wikis running out of one database, then you may need to use the prefix
(if you recall, you configured a prefix for the database when running the install script). If you do, then
you need to manually update the SQL code in the profileinfo.php script, as well as the SQL. In the
sample wiki set up for this book, the names of the tables use a prefix of profwikis_ (underscore). In
the following snippet of code, you would need to change the line that reads FROM profiling to FROM
profwikis_profiling:

$dbh = mysql_connect($wgDBserver, $wgDBadminuser, $wgDBadminpassword)
or die("mysql server failed: " . mysql_error());

mysql_select_db($wgDBname, $dbh) or die(mysql_error($dbh));
$res = mysql_query("

SELECT pf_count, pf_time, pf_name
FROM profiling
ORDER BY pf_name ASC

", $dbh) or die("query failed: " . mysql_error());

50

Choate c03.tex V1 - 11/19/2007 1:47pm Page 51

Chapter 3: Getting Started with MediaWiki

Finally, if you want to profile to the database, then you must also configure $wgProfileCallTree to
false. Regardless of whether you are using the database, the profiling data is also written out to the
debug log file, if that is configured.

The following listing is a snippet from the debugging log file, which includes profiling data. As you can
see, it repeats the same information that’s included in the HTML comments, but also includes the
profiling data. $wgProfileCallTree is set to false (which is required to include this data in
the database).

Profiling data
Name

Calls Total Each %
Mem

-total
1 459.062 459.062 100.000% 7329576
(459.062 - 459.062) [0]

MediaWiki::initialize
1 239.825 239.825 52.242% 3493997
(239.825 - 239.825) [26]

Database::query
6 232.231 38.705 50.588% 7296
(2.382 - 123.493) [8]

MediaWiki::finalCleanup
1 152.069 152.069 33.126% 76571
(152.069 - 152.069) [11]

<deleted output>...
SQL: COMMIT
Request ended normally

PHP output is compressed by default and is configured in the LocalSettings.php file. There’s usually no
reason to change this, but in some instances the use of compressed output can cause problems (it makes
Safari throw an error, for example) on pages that take a long time to create. During testing of MediaWiki,
you can disable compression by commenting out the following:

Compress output if the browser supports it
#if(!ini_get(’zlib.output_compression’)) @ob_start(’ob_gzhandler’

Both Firefox and Safari on Macintosh were not able to display the output from the profileinfo.php
script. Once you eliminate compression, you will be able to view the pages just fine.

Fresh Wiki
The best place to start is to visit a live wiki, and Wikipedia seems appropriate. In this section, Wikipedia
will be the example used to illustrate the basic features of the software. Bear in mind that even though
MediaWiki is made for Wikipedia, Wikipedia also uses customizations (called extensions) that are not
turned on by default. They also use the bleeding-edge version (at the time of this writing, it’s 1.10), so
you may see things there that are not available in 1.9.3, or whatever the current version happens to be
wherever and whenever you are reading this.

51

Choate c03.tex V1 - 11/19/2007 1:47pm Page 52

Chapter 3: Getting Started with MediaWiki

Wiki Pages
A wiki is made up of pages. MediaWiki uses several different kinds of pages in different situations.
The key to understanding wiki pages is to understand how MediaWiki takes a page title and turns it into
a URL. This is what you learn about in the following sections.

Creating Pages
Links can be created automatically in a wiki, just by wrapping a title in double brackets, like so:

This is my new [[link]]

When MediaWiki processes this page and converts it into HTML, it creates a link to a page called
Link, regardless of whether that page exists. If the page doesn’t exist, then the link will show up
colored red (this can be changed, too, in stylesheets); otherwise, it will show up colored blue. If the
page doesn’t exist, then you can simply click on the red link and you will be taken to the editing form
for the new Link page. You will go through all of this in more detail in the next chapter, but it is
mentioned now so that you can see that links are commonly used within the text of a page. Therefore,
you need to create titles that can be used naturally in that setting. That means keeping them simple
and descriptive.

There are two ways for you to link to pages within MediaWiki. The first is with a wiki link. In that case,
MediaWiki eventually converts the wiki link into a URL. You can also enter in a URL to create a link. In
fact, if you type in a raw URL while editing a page, MediaWiki will automatically convert that URL to a
link. Because of the way URLs are handled by Web browsers, certain limitations are placed on how titles
are created.

Wiki Titles and URLs
The starting point for all wiki pages is the title. In MediaWiki, there is a Title class that is defined in
includes/Title.php. An instance of this class is defined in the global variable $wgTitle. Titles are used
to create URLs in MediaWiki, which places limitations on how titles are formed.

Title Rules

1. MediaWiki uses the UTF-8 encoding for all text, including titles.

2. Titles must be unique. Every document in MediaWiki has to have a unique title.

3. ASCII control character codes from 0 to 31 (hex 00 to 1F) and the delete character code 127
(hex 7F) are not allowed.

4. Character codes 128 to 255 (hex 80 to FF) are used in Latin-1 (by Windows) and are
officially not part of the UTF-8 specification, but MediaWiki allows them to be used in titles,
for compatibility reasons.

5. Titles must be less than or equal to 256 bytes. Remember that MediaWiki defaults to using
UTF-8, so that does not mean 256 characters (some characters in UTF-8 require multiple
bytes to represent them).

6. The following characters are not allowed and will generate an error. The reason is that they
conflict with codes used by wikitext and MediaWiki’s templating system:

< > [] | { }

52

Choate c03.tex V1 - 11/19/2007 1:47pm Page 53

Chapter 3: Getting Started with MediaWiki

7. A space is converted to an underscore (_) when used in a URL.

8. You cannot use the title. or .. or start a title with ./ or ../ because these have special
meaning when dealing with file paths.

Title Suggestions
Some allowed characters cause problems in certain instances. Depending on the nature of your wiki, you
may or may not want to avoid them altogether.

For example, / is OK as long as you are in a namespace that does not support subpages (by default, the
main space does not support them). The primary problem with using it otherwise is that it is interpreted
as a subpage, so that a/b means page b is a subpage of page a, which may or may not be what you intend.

In addition, if you link to a page whose title starts with / and that page is in a different namespace
(namespaces are covered in more detail in the next section), then you need to either replace the slash
with the HTML entity + or prepend a ‘‘:’’ to the title.

Question marks and plus signs are problematic because they have a special meaning when used in URLs.
The question mark represents the start of the query string, and the plus sign is interpreted as a space
character in URLs when they appear in a URL after a question mark:

http://127.0.0.1/wiki/Main_Page?action=my+fake+action

The best example is the article for the programming language C++. The manner in which
the + characters are treated depends on how the URL is formed. For example, if you are using
rewrite rules in Apache to have short URLs, then the following URL will work just fine:

http://en.wikipedia.org/wiki/C++

If you are not using short URLs, then the equivalent MediaWiki URL will be as follows:

http://en.wikipedia.org/w/index.php?title=C++

In this case, because the + signs show up after a ?, they are interpreted as spaces by Web browsers
and are dropped. Therefore, following this link will take you to the article about the C programming
language, rather than C++ as expected.

If you use a wiki link, like [[C++]], MediaWiki will create a link to the following URL, using the percent
encoded (also called URL encoded) form of the % character:

http://en.wikipedia.org/wiki/C%2B%2B

If you create a link for which you need to type in the actual URL, then you need to replace the plus signs
with %2B yourself.

The same is true for using a question mark in a title. You should encode it as %3F in URLs. If you embed
them in a wiki link, MediaWiki will convert it for you. In addition, note the following guidelines:

❑ Percentages aren’t allowed if they are followed by two characters from a valid pair of
hexadecimal digits (0 through 9 and A through F) because these represent entities (characters).

❑ You are allowed to use percent encoding in wiki links, but if you do so you cannot use the
percent character in titles.

53

Choate c03.tex V1 - 11/19/2007 1:47pm Page 54

Chapter 3: Getting Started with MediaWiki

❑ You can use three or more colons (in interwiki links) in a title; however, avoid two or more
colons, or one colon when the word preceding the colon is the same as a namespace.

❑ Using superscripts and subscripts in titles can be problematic (although you can use in
wikitext markup.

Title Customizations
You can change the rules that determine what characters are allowed in titles. MediaWiki uses a regular
expression to validate titles, and this expression can be overridden by setting a new value to the global
variable $wgLegalTitleChars:

$wgLegalTitleChars = " %!\"$&’()*,\\-.\\/0-9:;=?@A-Z\\\\^_‘a-z~\\x80-\\xFF+";

You can also modify the $wgCapitalLinks variable. It is true by default, which is why the first letter of all
titles is converted to a capital letter when transformed into a link. Under normal circumstances, names-
pace prefixes are not case sensitive, nor are titles, except for the first letter (this is because MediaWiki
capitalizes it when $wgCapitalLinks is set to true. The following two URLs go to the same page:

http://127.0.0.1/wiki/HeLP:Main_Page
http://127.0.0.1/wiki/Help:Main_Page

The next two URLs go to separate pages:

http://127.0.0.1/wiki/Help:Main_Page
http://127.0.0.1/wiki/Help:Main_page

The impact that setting $wgCapitalLinks has is modest, but important nevertheless. If set to true,
then the first letter of the title is case sensitive (MediaWiki no longer changes the first character to
uppercase). When set to true, the following two wiki links now point to two different files:

This is my [[link]] now, and this is my new [[Link]]

In addition to the technical restrictions regarding how titles are written, Wikipedia has also established
detailed guidelines regarding how editors should create titles in Wikipedia. Of course, you can set
whatever policy you’d like on your wiki, but they are good rules to follow because of the unique way
in which wikis manage links.

You can find the most recent version of their style guide at http://en.wikipedia.org/wiki/Wikipedia:
Manual_of_Style.

Page Types
MediaWiki uses several different page types. In order to review their individual features, it’s helpful to
have an example for demonstration purposes. The following sections refer to pages from MediaWiki
to serve as examples. Keep in mind that MediaWiki is always changing, so the actual pages may be
different by the time you read this. The page serving as our example is the page for Belgian Shepherd
Dogs. While it’s possible to go directly to the page by typing in the URL (can you guess what it would
be?), you can also use the search field that is displayed on every Wikipedia page.

54

Choate c03.tex V1 - 11/19/2007 1:47pm Page 55

Chapter 3: Getting Started with MediaWiki

Finding Pages (Search)
Go to the English version of Wikipedia at en.wikipedia.org and type in Belgian Shepherd Dog in the
search form. There are two buttons for the search: one labeled Go and the other labeled Search. The Go
button interprets the information entered into the field as the title of a page, and will take you directly to
the page if it exists. If it doesn’t exist, then the results page will notify you that it doesn’t exist, and then
return any results you would have received had you pressed the Search button. The Search button does
a full-text search on Wikipedia, looking for the phrase typed into the field.

Press Go and Wikipedia takes you to a page about Belgian Shepherd Dogs, with the following URL
(see Figure 3-1):

http://en.wikipedia.org/wiki/Belgian_Shepherd_Dog

Figure 3-1: The Belgian Shepherd Dog article from Wikipedia

Article Pages
Across the top of the Wikipedia page are four tabs (keep in mind that some of the details described here
may have changed by the time you read this): Article, Discussion, Edit This Page, and History. You will
also see, at the upper-right corner, the link Sign in/Create Account, also shown in Figure 3-1.

The selected tab, Article, represents the page being viewed. The Discussion tab takes you to a page on
which people talk about the article. This is used to separate conversations, or input, about the status of
the page — ideas about changes to the page that can be engaged in without muddying up the page itself.
If you click the Discussion tab, your browser will jump to the following URL:

http://en.wikipedia.org/wiki/Talk:Belgian_Shepherd_Dog

55

Choate c03.tex V1 - 11/19/2007 1:47pm Page 56

Chapter 3: Getting Started with MediaWiki

The only thing that has changed in this URL is that the characters Talk: have been prepended to the
document title. Recall that different kinds of pages in MediaWiki are used in different ways, or offer
distinct functionality. Page types are identified by namespace, and this is an example of a page in the
Talk namespace. Any URL that does not contain a namespace is considered to be in the content
namespace. This is where articles are found in MediaWiki. The simplest definition of an article is
simply a page in the default namespace with at least one internal link (excluding redirects, which are
discussed later in this chapter).

One of the primary functions of namespaces is to be able to differentiate between Wikipedia’s content
and content about Wikipedia. The Talk namespace was created to provide a channel for discussions
about articles that appear on Wikipedia so that disagreements could be moved out of the article itself,
and discussed on a separate page where (it is hoped) consensus can be reached.

If you click back to the Article tab to return to the article, and then click the Edit This Page tab, you will
be taken to a page whose URL looks like this:

http://en.wikipedia.org/w/index.php?title=Belgian_Shepherd_Dog&action=edit

Note a few things about the preceding URL. First, notice how the path now looks different from the other
path. Instead of /wiki/Belgian_Shepherd_Dog, it is now /w/index.php?title = Belgian_Sheperd_Dog
&action = edit. In the previous chapter, you learned how to shorten the URL using rewrite rules in
Apache, and this is exactly what Wikipedia has done. On article pages, you get a short URL, but not on
other references to the same page. These other references are called actions, and in this case, requesting
the ‘‘edit’’ action enables you to edit the page.

Whenever you call an action on Wikipedia, you will see the full URL, rather than the short one. It is
possible to update these pages with rewrite rules as well, but it is not done as often as it is on the primary
article page. This is because search engines such as Google tend to avoid indexing dynamic pages, which
are identified by the ? in the URL. The advantage of using short URLs on the main article page is that the
pages can be indexed on search engines. It is less likely that you will want to index action pages.

Pages in the Special namespace (known as Special pages) are pages that are dynamically produced. While
there are all sorts of different Special pages, these tend to be pages that handle forms for user data entry,
generate reports, perform searches, generate tables of links, and so on. One way to customize MediaWiki
is to write your own Special page. You will learn how to do this in Chapter 9, ‘‘Extensions.’’

The basic organization you see on Wikipedia is the basic organization you will see when you first install
MediaWiki. MediaWiki organizes the site into different kinds of content. The primary content type is the
article, which is an item in the encyclopedia.

MediaWiki also has different kinds of pages, one of which is an article. MediaWiki describes an article
as ‘‘a page in the main namespace, or a content namespace (see $wgContentNamespaces) that is not a
redirect and contains at least one internal link.’’

The definition of the Content namespace is important, because it helps MediaWiki determine how content
should be indexed. It separates the article content — the heart and soul of a wiki — from all the other
kind of content that is also part of the larger system, such as user discussions, help, and so on.

56

Choate c03.tex V1 - 11/19/2007 1:47pm Page 57

Chapter 3: Getting Started with MediaWiki

Redirect Pages
If you were to type in ‘‘Belgian Sheepdog’’ instead of ‘‘Belgian Shepherd Dog’’ in the search form, you’d
end up in the same place (eventually), and that’s because MediaWiki employs pages it calls redirects,
which are used for just this purpose, as many of the things written about in Wikipedia can be referred to
by more than one name. You can find information about creating redirect pages in Chapter 6.

Disambiguation Pages
A relative of the redirect page, a disambiguation page serves a similar purpose, except that instead of
dealing with the issue of multiple words with the same meaning, it handles the problem that occurs
when a single word has multiple meanings. Disambiguation pages are like normal Wiki article pages,
except the content is organized for the express purpose of shepherding users to the appropriate page,
utilizing a few different kinds of templates. For more details, see the following URL:

http://en.wikipedia.org/wiki/Wikipedia:Disambiguation

Namespaces
Wikis are organized into a flat hierarchy; they don’t have sections and subsections. The reason for this
is that flat hierarchies on sites and publications like dictionaries and encyclopedias are much easier to
navigate. All you need to know is the basic URL structure and you can more or less guess the name of
all of the articles on Wikipedia. This is good for finding articles, but not every page on Wikipedia is an
article. Numerous other kinds of pages are required, such as help pages, for example.

MediaWiki organizes pages with the use of namespaces. You’ve already seen an example of the Talk
namespace, but MediaWiki defines 15 namespaces, all of which have slightly different uses.

The constants are defined in includes/Defines.php:

/**#@+
* Virtual namespaces; don’t appear in the page database
*/

define(’NS_MEDIA’, -2);
define(’NS_SPECIAL’, -1);
/**#@-*/

/**#@+
* Real namespaces
*
* Number 100 and beyond are reserved for custom namespaces;
* DO NOT assign standard namespaces at 100 or beyond.
* DO NOT Change integer values as they are most probably hardcoded everywhere
* see bug #696 which talked about that.
*/

define(’NS_MAIN’, 0);

57

Choate c03.tex V1 - 11/19/2007 1:47pm Page 58

Chapter 3: Getting Started with MediaWiki

define(’NS_TALK’, 1);
define(’NS_USER’, 2);
define(’NS_USER_TALK’, 3);
define(’NS_PROJECT’, 4);
define(’NS_PROJECT_TALK’, 5);
define(’NS_IMAGE’, 6);
define(’NS_IMAGE_TALK’, 7);
define(’NS_MEDIAWIKI’, 8);
define(’NS_MEDIAWIKI_TALK’, 9);
define(’NS_TEMPLATE’, 10);
define(’NS_TEMPLATE_TALK’, 11);
define(’NS_HELP’, 12);
define(’NS_HELP_TALK’, 13);
define(’NS_CATEGORY’, 14);
define(’NS_CATEGORY_TALK’, 15);

In includes/Namespace.php, the constants are associated with text.

NS_MEDIA => ’Media’,
NS_SPECIAL => ’Special’,
NS_TALK => ’Talk’,
NS_USER => ’User’,
NS_USER_TALK => ’User_talk’,
NS_PROJECT => ’Project’, (ProfWikis - MySQL)
NS_PROJECT_TALK => ’Project_talk’, (ProfWikis - MySQL talk
NS_IMAGE => ’Image’,
NS_IMAGE_TALK => ’Image_talk’,
NS_MEDIAWIKI => ’MediaWiki’,
NS_MEDIAWIKI_TALK => ’MediaWiki_talk’,
NS_TEMPLATE => ’Template’,
NS_TEMPLATE_TALK => ’Template_talk’,
NS_HELP => ’Help’,
NS_HELP_TALK => ’Help_talk’,
NS_CATEGORY => ’Category’,
NS_CATEGORY_TALK => ’Category_talk’,

Category Namespace
Any page generated by MediaWiki can be assigned to one or more categories. Categories work like tags
do on Flickr and other such sites. It’s an example of a folksonomy. In other words, readers can define
categories for different pages independently, however they see fit. The pages can then be organized
and grouped by category, and you can browse category pages using the category namespace. Note the
following about categories in MediaWiki:

❑ You can assign a page to any category you choose.

❑ You can assign as many categories to a page as you like.

❑ Categories are not pre-defined for you; you can type in whatever you want. Much like a link,
linking to a category creates it.

58

Choate c03.tex V1 - 11/19/2007 1:47pm Page 59

Chapter 3: Getting Started with MediaWiki

Figure 3-2 shows the categories at the bottom of the Belgian Shepherd Dog page.

Figure 3-2: Belgian Shepherd Dog Categories

If you click the Edit tab and scroll down to the bottom of the page, you can see how the categories were
assigned to this page:

[[Category:Dog breeds]]
[[Category:Herding dogs]]
[[Category:European dogs]]
[[Category:Dog breeds originating in Belgium]]
[[Category:Dog breeds recognised by the Canadian Kennel Club]]

As an example, the category ‘‘Dog breeds originating in Belgium’’ links to a page with the
following URL:

http://en.wikipedia.org/wiki/Category:Dog_breeds_originating_in_Belgium

More information about categories and namespaces is available in Chapter 7.

Image Namespace
The Image namespace is used to refer to image pages (which is not the same as referring to a graphic
file — see the Media namespace below for more of an explanation). The Belgian Shepherd Dog page
contains photographs of different kinds of Belgians. For example, if you click on the image for
Groenendael, you will be taken to a page in the image namespace:

http://en.wikipedia.org/wiki/Image:Belgian_Groenendael_600.jpg

59

Choate c03.tex V1 - 11/19/2007 1:47pm Page 60

Chapter 3: Getting Started with MediaWiki

User Namespace
The User namespace is used to create pages for MediaWiki users. If you are registered, then you can
access your user space by using your registered username, such as the following:

http://en.Wikipedia.org/wiki/User:Mchoate

If you are not registered with the wiki, then your IP address is used to identify you. Note that because
most ISPs and institutions use dynamic assignment of IP addresses, a single IP address does not
necessarily represent a single individual. This means that you should take what you read on such a user
page with a grain of salt. You can turn off the use of IP addresses by including the following namespaces
in the LocalSettings.php page.

Talk Namespace
The Talk namespace is used for pages about articles in the Content namespace. All the other
namespaces have a similar namespace as well — that is, composed of the namespace name,
followed by _Talk. So, for example, in addition to the Image namespace, there is also an
Image_Talk namespace; and in addition to the User namespace, there is a User_Talk namespace.
If you click the Discussion link on the Belgian Shepherd Dog page, you will be taken to a page in
the Talk namespace:

http://en.wikipedia.org/wiki/Talk:Belgian_Shepherd_Dog

On this particular page (as I write) are some comments about the disposition of Belgian Shepherd Dogs
and how well the article portrays their true temperament.

Project Namespace
The Project namespace is used for pages that discuss the project itself. In practice, the Project namespace
is the name of the wiki. In other words, if your project is called Professional Wikis, instead of using

http://127.0.0.1/wiki/Project:All_About_My_Project

you would use

http://127.0.0.1/wiki/Professional_Wikis:All_About_My_Project

On the Wikipedia site, the name used for the Project namespace is Meta, rather than Wikipedia,
reflecting the underlying purpose of the Project namespace: that it reflects information about
a project, rather than the project itself (just as metadata is data about a document, and not the content
of the document).

Help Namespace
The Help namespace is self-explanatory. It contains pages that are intended to help users understand
how to use your wiki. When you first launch a MediaWiki wiki, there are links in the template to Help
pages, but there isn’t any help in them. If you follow the link, you’ll be taken to a page that asks you
to edit it. You might expect the Help pages from Wikipedia to be there, but they are not. You can,

60

Choate c03.tex V1 - 11/19/2007 1:47pm Page 61

Chapter 3: Getting Started with MediaWiki

however, upload the Help pages if you would like because all of the content on Wikipedia is available
for downloading at http://download.wikipedia.org/. More details about how to upload pages into a
wiki will be found in Chapter 11.

MediaWiki Namespace
The MediaWiki namespace is used by the MediaWiki application for the management of system
messages. As I’ve already mentioned, MediaWiki supports the use of many different languages, and
this affects the wiki manager in three distinct areas: the language of the content of the articles, the
language of the user (which is set in user preferences) and the language of the MediaWiki user
interface. The MediaWiki namespace enables you to localize the system messages that a user sees,
which affects the user interface, error messages, and so on.

Template Namespace
The Template namespace is used in support of, you guessed it, templates. In MediaWiki, templates
have a slightly different meaning than how the term is used in other content management systems.
Typically, a template is an HTML page that contains some sort of identifier that is replaced by dynamic
page content.

Templates in MediaWiki don’t refer to the actual page itself, but to elements within the page that are
inserted into the page in order to hold content. Templates and user interface customization are discussed
in gory detail in Chapter 8, ‘‘Magic Words, Templates, and Skins.’’

Special Namespace
You have already been introduced to the Special namespace, but you haven’t seen any examples of
Special namespaces until now. There are actually quite a few Special pages that you will find quite helpful
as you learn how to use MediaWiki, extend it, and administer it. The first one you’ll be introduced to is
the Specialpages Special page, which lists all the Special pages available to the logged in user:

http://en.wikipedia.org/wiki/Special:Specialpages

One of those Special pages that is of interest is the following, which lets you know which version of
MediaWiki the wiki is running. This can be helpful when you are looking at other wikis and see a feature
that you’ve never seen before or you want to know how to implement a feature:

http://127.0.0.1/wiki/index.php/Special:Version

From the Belgian Shepherd Dog article, you will find a Special Pages link in the left-hand column. You
can click it to find out the configuration of MediaWiki:

MediaWiki: 1.10alpha (r21377)
PHP: 5.1.2 (apache)
MySQL: 4.0.26-standard-log

A particularly useful Special page is Special:Version. This provides you with information about which
version of MediaWiki is being run, as well as which version of PHP, MySQL (or Postgres), and so on.
If you go to http://en.Wikipedia.org/wiki/index.php/Special:Version on Wikipedia, you will see

61

Choate c03.tex V1 - 11/19/2007 1:47pm Page 62

Chapter 3: Getting Started with MediaWiki

the current version of MediaWiki that is running, plus a list of extensions that they use as well. This
can be especially helpful if you see a feature on Wikipedia that you would like to replicate in your
own wiki.

Another Special page of interest to wiki managers is Special:Statistics, which will tell you everything you
want to know about how often your site is being accessed.

http://127.0.0.1/wiki/index.php/Special:Statistics

The most useless Special page is Special:Random. For those of you who are longing for serendipity,
follow a link to this page, or type the URL into your browser, and you’ll be taken to a random page that
may or may not be interesting or meaningful to you (or anybody else, for that matter).

Media Namespace
When files are uploaded, a description page is created for them, which is accessible through the Images
namespace, as discussed previously. Sometimes, however, it is convenient to refer to the actual image file
itself, and you use the Media namespace to do that.

User Actions
Two user groups are created at first: bureaucrats and sysops. There are two implicit groups as well: one
for anonymous users and another for registered users.

When you first configured MediaWiki, you created a sysop, which by default was called WikiSysop.
The WikiSysop user is a member of the bureaucrat and sysop groups. By default, anonymous users of
MediaWiki can create their own accounts, read pages, edit pages, create pages, and create talk pages. A
registered user can also move pages, upload and reupload files, and identify edits as minor edits (these
are edits that are not tracked as a different version).

Users and Roles
A user’s role determines the kind of actions he or she can perform on a given page. It also determines the
options that are displayed on a given page.

Anonymous Users
When you first visit your newly installed wiki, prior to registering or logging in as a sysop, you will see
the main page, and right above the title are four tabs:

❑ Article

❑ Discussion

❑ Edit

❑ History

The Article tab is selected, and it represents the article’s Main Page. If you click the Discussion tab, you
will be taken to a page in the Talk namespace: Talk:Main_Page.

62

Choate c03.tex V1 - 11/19/2007 1:47pm Page 63

Chapter 3: Getting Started with MediaWiki

If you click Edit, you will be taken to the following URL:

http://127.0.0.1/wiki/Main_Page?action=edit

This is an example of an action. Actions do things to pages, and a user’s role determines which actions
he or she can perform. In the preceding example, it’s the edit action, and by default any user can edit any
page. Later in this section, you’ll learn how to change which actions are available for particular users.
Also provided is a more complete list of available actions. In the meantime, click the History tab to see
another action:

http://127.0.0.1/wiki/Main_Page?action=history

This action takes you to a page where you can review earlier versions of a page, and compare different
versions with each other.

At the very top of the page, to the right, you will see links similar to this:

❑ 127.0.0.1

❑ Talk for this IP

❑ Log in/create account

Recall that anonymous users are identified by their IP address. This isn’t particularly useful,
as most ISPs and employers use dynamically assigned IP addresses, which means a user’s IP address
doesn’t necessarily stay the same between visits. Nevertheless, the anonymous user is tracked that
way and has all the accoutrements of a registered user: a User page for that IP address as well as a User
Talk page, and so on.

The anonymous user does have slightly fewer privileges than the default registered user. The
registered user can move and watch pages in addition to joining in the discussion about them and
viewing their history.

User Registration
The final option is Log in/create account. By default, anonymous users are allowed to create their own
accounts, but this is a configuration item that can be changed (see ‘‘Changing Permissions,’’ later in this
chapter). If you are following along on your own wiki, go ahead and click this link and create an account.
You’ll first be taken to the Login page, but if you have not already registered, you will need to click the
Create an Account link.

Creating an account is straightforward, and you can configure a few parameters. Again, the default
values can be found in DefaultSettings.php. In order to override the default value, copy the variable
into LocalSettings.php and modify it there.

Using Real Names
The first option determines whether you allow the use of real name fields (which you will see on the
Registration page by default). Set this value to false if, for some reason, you don’t want to know a user’s
real name.

/** Whether or not to allow and use real name fields. Defaults to true. */
$wgAllowRealName = true;

63

Choate c03.tex V1 - 11/19/2007 1:47pm Page 64

Chapter 3: Getting Started with MediaWiki

Password Length
The second configurable variable establishes the allowable minimum length of a password. By default,
the minimum is 0, meaning that empty passwords are allowed. Of course, even a minimal level of
security would suggest that passwords be at least six to eight characters long:

/**
* Specifies the minimal length of a user password. If set to
* 0, empty passwords are allowed.
*/

$wgMinimalPasswordLength = 0;

Registered Users
Once you have registered, you will be afforded some additional privileges. If you return to the main
page of the wiki after logging in as a registered user, you will see that in addition to the tabs that were
available for the anonymous user, you have now been granted two new tabs:

❑ Move (Special:Movepage)

❑ Watch (logged in s mchoate) (action = watch)

You also have many new options at the top of the page:

❑ Username (whatever username you are using)

❑ My talk

❑ My preferences

❑ My watchlist

❑ My contributions

❑ Log out

Moving a page in MediaWiki is really just renaming a page. If you are in a namespace that allows
subpages, you can move it to a subpage, which is what is often done in order to archive talk pages when
they get too long.

If you click the Move tab from the main page, it will take you to the following URL:

http://127.0.0.1/wiki/index.php/Special:Movepage/Main_Page

There, you will be prompted for the new name of the page.

Clicking the Watch tab toggles the tab to Unwatch. By clicking it when it says Watch, you are
requesting that the current page be tracked and displayed in your watchlist, which you visit by
clicking the My Watchlist link at the top of the page. More details about watchlists are available
in the section ‘‘My Watchlist,’’ later in this chapter.

Preferences
The Preferences pages enable users to update their own preferences. The items are self-explanatory,
except for one item in the miscellaneous section labeled ‘‘Threshold for Stub Display.’’ You can change

64

Choate c03.tex V1 - 11/19/2007 1:47pm Page 65

Chapter 3: Getting Started with MediaWiki

the Threshold for Stub Display to 50. This tells MediaWiki that entries with fewer than 50 characters will
be considered stubs, rather than full articles. Links to those stubs will appear as brown links, rather than
traditional blue. Disable page caching.

My Talk
My Talk links to the same page that the Discussion tab links (I don’t know why one is called ‘‘discussion’’
and the other is called ‘‘talk’’).

My Watchlist
Active participants in your wiki (or management) may want to keep a closer eye on certain pages so they
can be notified when they are changed. The My Watchlist page is a Special page, Special:Watchlist.

In user preferences, you can define how many days an item should be in your watchlist, whether to hide
your own edits, whether to hide the edits of bots (mass edits handled by scripts), and which namespaces
to pay attention to, as well as whether to bother watching minor edits.

My Contributions
My contributions enables you to track your contributions to the wiki.

Autoconfirmed
The next user group is considered an implicit group. You become a member of the Autoconfirmed group
after you have been a user for a certain amount of time, which is configured in the usual way. By default,
you are automatically in the Autoconfirmed group, because the $wgAutoConfirmAge value is set to 0 by
default. The purpose of this is to stop spammers from automatically signing up and posting nonsense.
It also allows sysops to monitor new users more closely, which is a much better use of their time than
monitoring long-time participants who are well behaved.

/**
* Number of seconds an account is required to age before
* it’s given the implicit ’autoconfirm’ group membership.
* This can be used to limit privileges of new accounts.
*
* Accounts created by earlier versions of the software
* may not have a recorded creation date, and will always
* be considered to pass the age test.
*
* When left at 0, all registered accounts will pass.
*/

$wgAutoConfirmAge = 0;
//$wgAutoConfirmAge = 600; // ten minutes
//$wgAutoConfirmAge = 3600*24; // one day

Emailconfirmed
The Emailconfirmed group adds another layer of security. It requires that the e-mail address of a
registered user be confirmed prior to being granted the editing privilege. When this value is set to true,
an e-mail message is sent to the e-mail address provided by the user when he or she registered. The user
must then respond to that message, proving that the recipient of the e-mail message is in fact the person
who has registered. Having a confirmed e-mail address also makes e-mail notification possible.

65

Choate c03.tex V1 - 11/19/2007 1:47pm Page 66

Chapter 3: Getting Started with MediaWiki

The default value is false:

/**
* Should editors be required to have a validated e-mail
* address before being allowed to edit?
*/

$wgEmailConfirmToEdit=false;

Bots
Bots refer to scripts that are run in order to process numerous pages at one time. Only certain users are
allowed to use bots; and because of the automated nature of bots, the configuration variables pertaining
to bots focus on keeping bot activities out of the logs (see ‘‘Changing Permissions’’).

Sysops and Bureaucrats
When you first created your wiki, you were prompted for a password for a user named ‘‘WikiSysop.’’
The user who was created in that instance is a member of both the Sysop and the Bureaucrat groups.
The only thing a bureaucrat can do is modify user permissions. All other powers are delegated to the
sysop. The actual permissions are outlined below, in the code pulled from DefaultSettings.php that
defines the default permissions.

Much of what a sysop does represents more advanced features of MediaWiki that are not discussed until
later in the book, so I will not dwell on it now; but to get a preview, log in as WikiSysop (or use whichever
name you chose), and then go to the following page:

http://127.0.0.1/wiki/index.php/Special:Specialpages

The list of pages will be familiar to you, but if you scroll down to the bottom of the page, you will see a
heading labeled Restricted Special Pages, followed by links to the following Special pages:

❑ Block user

❑ Import pages

❑ Unwatched pages

❑ User rights management

❑ View deleted pages

Of all the options that are available, User rights management is the one we will focus on now. Clicking
User rights management will take you to a page where you can add or remove groups for any user.

Changing Permissions
MediaWiki grants permissions to users based upon the group to which they were assigned.
The permission granted reflects the capability to perform one or more actions, which are discussed
in the next section.

There are two ways to change permissions. You already learned about the first: Assign a user to
a different group by using the Special:Userrights pages, only accessible by members of the
Bureaucrat group. You can also change the default permissions granted to groups by updating

66

Choate c03.tex V1 - 11/19/2007 1:47pm Page 67

Chapter 3: Getting Started with MediaWiki

the information in LocalSettings.php. The following code shows the default permissions defined
in DefaultSettings.php.

/**
* Permission keys given to users in each group.
* All users are implicitly in the ’*’ group including anonymous visitors;
* logged-in users are all implicitly in the ’user’ group. These will be
* combined with the permissions of all groups that a given user is listed
* in in the user_groups table.
*
* Functionality to make pages inaccessible has not been extensively tested
* for security. Use at your own risk!
*
* This replaces wgWhitelistAccount and wgWhitelistEdit
*/

$wgGroupPermissions = array();

// Implicit group for all visitors
$wgGroupPermissions[’*’][’createaccount’] = true;
$wgGroupPermissions[’*’][’read’] = true;
$wgGroupPermissions[’*’][’edit’] = true;
$wgGroupPermissions[’*’][’createpage’] = true;
$wgGroupPermissions[’*’][’createtalk’] = true;

// Implicit group for all logged-in accounts
$wgGroupPermissions[’user’][’move’] = true;
$wgGroupPermissions[’user’][’read’] = true;
$wgGroupPermissions[’user’][’edit’] = true;
$wgGroupPermissions[’user’][’createpage’] = true;
$wgGroupPermissions[’user’][’createtalk’] = true;
$wgGroupPermissions[’user’][’upload’] = true;
$wgGroupPermissions[’user’][’reupload’] = true;
$wgGroupPermissions[’user’][’reupload-shared’] = true;
$wgGroupPermissions[’user’][’minoredit’] = true;

// Implicit group for accounts that pass $wgAutoConfirmAge
$wgGroupPermissions[’autoconfirmed’][’autoconfirmed’] = true;

// Implicit group for accounts with confirmed email addresses
// This has little use when email address confirmation is off
$wgGroupPermissions[’emailconfirmed’][’emailconfirmed’] = true;

// Users with bot privilege can have their edits hidden
// from various log pages by default
$wgGroupPermissions[’bot’][’bot’] = true;
$wgGroupPermissions[’bot’][’autoconfirmed’] = true;
$wgGroupPermissions[’bot’][’nominornewtalk’] = true;

// Most extra permission abilities go to this group
$wgGroupPermissions[’sysop’][’block’] = true;
$wgGroupPermissions[’sysop’][’createaccount’] = true;
$wgGroupPermissions[’sysop’][’delete’] = true;
$wgGroupPermissions[’sysop’][’deletedhistory’] = true; // can view deleted

history entries, but not see or restore the text

67

Choate c03.tex V1 - 11/19/2007 1:47pm Page 68

Chapter 3: Getting Started with MediaWiki

$wgGroupPermissions[’sysop’][’editinterface’] = true;
$wgGroupPermissions[’sysop’][’import’] = true;
$wgGroupPermissions[’sysop’][’importupload’] = true;
$wgGroupPermissions[’sysop’][’move’] = true;
$wgGroupPermissions[’sysop’][’patrol’] = true;
$wgGroupPermissions[’sysop’][’autopatrol’] = true;
$wgGroupPermissions[’sysop’][’protect’] = true;
$wgGroupPermissions[’sysop’][’proxyunbannable’] = true;
$wgGroupPermissions[’sysop’][’rollback’] = true;
$wgGroupPermissions[’sysop’][’trackback’] = true;
$wgGroupPermissions[’sysop’][’upload’] = true;
$wgGroupPermissions[’sysop’][’reupload’] = true;
$wgGroupPermissions[’sysop’][’reupload-shared’] = true;
$wgGroupPermissions[’sysop’][’unwatchedpages’] = true;
$wgGroupPermissions[’sysop’][’autoconfirmed’] = true;
$wgGroupPermissions[’sysop’][’upload_by_url’] = true;
$wgGroupPermissions[’sysop’][’ipblock-exempt’] = true;

// Permission to change users’ group assignments
$wgGroupPermissions[’bureaucrat’][’userrights’] = true;

// Experimental permissions, not ready for production use
//$wgGroupPermissions[’sysop’][’deleterevision’] = true;
//$wgGroupPermissions[’bureaucrat’][’hiderevision’] = true;

/**
* The developer group is deprecated, but can be activated if need be
* to use the ’lockdb’ and ’unlockdb’ special pages. Those require
* that a lock file be defined and creatable/removable by the web
* server.
*/

$wgGroupPermissions[’developer’][’siteadmin’] = true;

When you want to change permissions, you simply need to assign the value in the LocalSettings.php
file. For example, if you were to add the following line to LocalSettings.php, then unregistered users
would no longer be able to edit pages:

$wgGroupPermissions[’*’][’edit’] = false;

Note that you did not have to copy all of the permissions over from DefaultSettings.php to
LocalSettings.php, just the one permission that you wanted to change. When anonymous users are
denied editing privileges, instead of seeing the Edit tab at the top of the page, they see a View Source
tab that will show them the raw wikitext.

Actions
When users interact with a MediaWiki wiki, they do so through actions. For example, when users click a
link to view a page in a wiki, they are telling the MediaWiki application to perform the view action. The
action being undertaken is usually evident in the URL (with the exception of view, as that is the default
action), but you usually don’t type action URLs into your browser in order to perform them. They are
almost always made available through MediaWiki’s user interface.

68

Choate c03.tex V1 - 11/19/2007 1:47pm Page 69

Chapter 3: Getting Started with MediaWiki

The following is a list of potential actions. Not all of them are available in every instance. In some cases
they need to be enabled in LocalSettings.php. If you want to see all the available actions, you need to
dig into the code of Wiki.php.

❑ view

❑ watch

❑ unwatch

❑ delete

❑ revert

❑ rollback

❑ protect

❑ unprotect

❑ info

❑ markpatrolled

❑ render

❑ deletetrackback

❑ purge

❑ print

❑ dublincore

❑ creativecommons

❑ submit

❑ edit

❑ history

❑ raw

The URL that is used to access pages contains at least two variables in the query string, specifying the
title of the page and the action to be performed on the page. The typical URL for the front page of a wiki
is something like this:

http://127.0.0.1/wiki/index.php?title=Main_Page

When no action is specified, the default is the view action. This means that the previous URL is
functionally equivalent to the following:

http://127.0.0.1/wiki/index.php?title=Main_Page&action=view

Likewise, following the same pattern, you can edit a page by specifying the edit action in the URL:

http://127.0.0.1/wiki/index.php?title=Main_Page&action=edit

The raw action displays the plain, unparsed wikitext:

http://choate.local/mysql/index.php/Main_Page?action=raw

69

Choate c03.tex V1 - 11/19/2007 1:47pm Page 70

Chapter 3: Getting Started with MediaWiki

In effect, it’s almost like View Source except that instead of viewing the HTML, you view the
wikitext used to generate the page. You’ll learn all about wikitext in the next chapter. An example
of raw output follows:

<big>"’MediaWiki has been successfully installed."’</big>

Consult the [http://meta.wikimedia.org/wiki/Help:Contents User’s Guide]
for information on using the wiki software.

== Getting started ==

*
[http://www.mediawiki.org/wiki/Help:Configuration_settings
Configuration settings list]

* [http://www.mediawiki.org/wiki/Help:FAQ MediaWiki FAQ]
* [http://mail.wikimedia.org/mailman/listinfo/mediawiki-announce MediaWiki

release mailing list]

Welcome to my new wiki, for my book [[Professional Wikis]].

The info action is not enabled by default. In order to use it, you must first enable it in LocalSettings.php:

/** Allow the "info" action, very inefficient at the moment */
$wgAllowPageInfo = true;

Once that is done, you can call it with the following URL:

http://127.0.0.1/wiki/index.php/Main_Page?action=info

Here are the results of calling the info action:

Number of watchers: 0
Number of edits (article): 6
Number of distinct authors (article): 4

Another interesting action is the credits action, which can be called as follows:

http://127.0.0.1/wiki/index.php/Main_Page?action=credits

This action returns information about when the page was last modified, who modified it, and so on:

This page was last modified 19:43, 16 April 2007 by ProfWikis - MySQL user
WikiSysop. Based on work by Professional Wikis and Anonymous user(s) of
ProfWikis - MySQL.

These are just a few examples of the available actions. There are other actions, such as delete, that you
will study in more detail in Chapter 6.

Custom Views with Parameters
Whenever a new version of a document is created, it is assigned a new id. This means that if you ever
want to refer to a particular version of an article, you can include a reference to the id. Generally speaking,
this is something I rarely do because I usually want to link to the most recent version.

70

Choate c03.tex V1 - 11/19/2007 1:47pm Page 71

Chapter 3: Getting Started with MediaWiki

For example, there is a Permanent Links link on many of the pages of Wikipedia, and it is included by
default in the MediaWiki installation. If you are on the main page of your MediaWiki installation and
you click on it, you will be taken to a page with a link similar to this one:

http://127.0.0.1/wiki/index.php?title=Main_Page&oldid=2

In addition to the title Main_Page, the URL also references oldid, which is how MediaWiki refers to
document ids. This URL tells MediaWiki to show the version of Main_Page that had the id of 2, rather
than any of the other ids. Every time a new version of Main_Page is saved, a new id is assigned to it, so
you can link to any one of those versions.

A similar URL is used to compare two different versions. In the following example, MediaWiki is
being told to compare the Main_Page with a document id of 2 with the version of Main_Page that has
a document id of 1:

http://127.0.0.1/wiki/index.php?title=Main_Page&diff=2&oldid=1

Summary
In this chapter, you learned how to update some of MediaWiki’s default settings and were introduced to
the different kinds of pages that you will encounter as a user of MediaWiki. This chapter also introduced
you to users and roles, and described the default permissions available to users, as well as how to change
them for your own needs.

In the next chapter, you will focus exclusively on writing and editing content on MediaWiki. There
is a lot of important information to cover in this chapter. MediaWiki uses a special markup language
called wikitext to author pages. While WYSIWYG editing is available, it’s only available as an extension.
Although some users do not like wikitext because it reminds them of writing code, it is an extremely
powerful and versatile tool. You will also learn how to extend MediaWiki by adding a WYSIWYG
editing tool.

71

Choate c03.tex V1 - 11/19/2007 1:47pm Page 72

Choate c04.tex V1 - 11/19/2007 1:53pm Page 73

Writing and
Editing Content

In this chapter, you will learn about writing and editing content on MediaWiki using wikitext.
Wikitext is a shorthand form of HTML, intended to be easier (and quicker) to type than HTML.
As a consequence, the more you know about HTML, the easier it will be to begin using wikitext.
This chapter assumes you have a basic knowledge of HTML, so it does not provide a detailed
explanation about how to write HTML. If you are a complete newcomer, a good starting place is
Jon Duckett’s Beginning Web Programming with HTML, XHTML, and CSS (Wrox, 2004).

MediaWiki provides a wide array of tools to edit and customize pages. This chapter focuses on
wikitext, but this is only the beginning. In Chapter 6, you will learn advanced methods of managing
pages, such as how to move and delete pages, how to protect them from unwanted editing, and how
to add additional functionality to them through extensions or external applications. In Chapter 8,
you will learn how to use MediaWiki’s magic words and templates, as well how to define your
own skins for MediaWiki, which also means more advanced skills for determining the style and
presentation of your content.

Prior to jumping into the nuts and bolts of writing wikitext, I’ll share some thoughts about writing
for the Web in general in order to provide some context for the discussion of wikitext itself.

Writing for the Web
Writing for the Web is different from writing something that will spend its life on paper. People
read differently on a computer screen than they do on the printed page, primarily because of the
nature of modern computer screens — they are backlit and lack the resolution of a printed page.
This is gradually changing as e-paper technologies are beginning to emerge, but do not expect
major changes anytime soon. People read more slowly onscreen, and they have a greater tendency
to scan the text, rather than read it in great detail.

The pace of reading is an ergonomic issue; a more interesting difference relates to the nature of
hypertext. Writing for print is primarily a linear activity. When you write for the Web, you are
writing in three dimensions. Designers and authors inexperienced with Web production often

Choate c04.tex V1 - 11/19/2007 1:53pm Page 74

Chapter 4: Writing and Editing Content

mistakenly believe that they can control their readers’ actions and ensure that readers navigate their site
in a certain order, or see it in a certain way.

Site visitors do not always start on the home page of a site. In fact, the home page may be one of the least
frequently visited pages on your site. Eye-tracking studies also show that readers often avoid graphics;
some analysts theorize that this is because readers quickly train themselves to avoid advertisements and
tend to interpret all graphics as banner ads.

The three-dimensionality of hypertext is due to links. The author can link from one page to another at
any time and any place in the document. Individual pages are not distinct. They exist within a context
(a website is one such grouping of related, interlinked pages). This interlinking is not limited to a given
domain, because pages can link to any other page (in any other format) as long as that page is available
on the Internet.

Some of this may be rudimentary information if you are experienced with writing online. Nevertheless, it
is necessary to frame what is truly creative and empowering about wikis: they make it easy to create links
between pages. They have specialized approaches for internal links, external links, and links between
other wikis.

In Apple Computer’s user-interface guidelines, WYSIWYG (what you see is what you get) is defined
as the image on the screen being representative of the output that is printed. WYSIWYG, by definition,
assumes a printed page. Everything is different now. First, most content will never be printed. Second, it
will be available on monitors of all different sizes, and on different devices, from handheld computers to
mobile phones and screen readers. Finally, users can opt to use their own stylesheet, to change the colors
on a page, to hide the images, to view it in their RSS aggregator, and so on. What you see is not what you
get. WYSIWYG is convenient, but it gives a false sense of security and detracts from the true business of
writing on the Web, which is worrying about the connections between content.

Because of reader behavior, and the unique characteristics of hypertext, there are two basic rules of thumb
for writing effectively for the Web:

❑ Use headings liberally and make plenty of use of bulleted (or numbered) lists. This helps readers
skim your work faster.

❑ Link richly, adding links to other sections of your site, or to your references or related material.
Organize content in a way that does not assume a sequential reading.

Wikitext versus WYSIWYG
There is a certain amount of disagreement among the user community about wikitext versus the more
traditional WYSIWYG interfaces. One thing is certain: most users prefer WYSIWYG, especially if they are
nontechnical and not used to thinking about writing in terms of codes. If you are implementing a wiki
for such a group, then you should consider a WYSIWYG interface.

Despite user preferences, there is an argument to be made in favor of wikitext, and my position is that
there is substantial value in encouraging authors to use wikitext because it provides an opportunity to
create content that is more structured and thereby more easily searchable and leveraged in other contexts.

Wikitext was born of a need to enable writers to easily create links to other pages, and to apply basic
formatting to pages edited through a Web browser. Wikitext is a markup language. The ‘‘through the
Web’’ requirement meant that the user did not have the benefit of a WYSIWYG interface.

74

Choate c04.tex V1 - 11/19/2007 1:53pm Page 75

Chapter 4: Writing and Editing Content

Following are the benefits of a wikitext editing interface:

❑ Low barriers to entry; everybody with a browser can edit with it.

❑ WYSIWYG editors give authors too much flexibility (something that seems to be most often
exploited by those authors who are design-impaired, leading to a tossed salad of fonts and colors
without any consistent semantic meaning).

❑ In my experience, WYSIWYG editors do a lousy job of making it easy to link to different
pages within the wiki. There really isn’t an easier way of doing it than that used by wikis,
which usually involves the simple wrapping of a page title with double brackets, like so:
[[A Title of a Wiki Page]].

The negatives of wikitext editing are as follows:

❑ Users almost universally prefer WYSIWYG editors, because they are more familiar with them.

❑ The lack of syntax highlighting makes wikitext hard to read. You cannot easily scan for section
headings, for example.

An excellent discussion of this topic can be found on CMSWatch at www.cmswatch.com/Feature/
79-Writers,-XML,-and-CMS

There are three different approaches to resolving the editing problem:

❑ Wikitext (or some other text-oriented markup language such as Textile, Markdown, etc.)

❑ WYSIWYG interfaces, like those used in word processors

❑ Syntax highlighting, similar to what is used by software programmers in Integrated
Development Environments (IDEs). You get the benefit of visual feedback as you type, but
you also have absolute control over the HTML that is generated.

The biggest problem with WYSIWYG interfaces is that they link the visual design of a site with the
content in an environment where the separation of content from design is seen as an asset. Because
content published online can be viewed in multiple browsers on a variety of different platforms (from
cell phones to televisions to 50-inch plasma television screens), the WYSIWYG interface does not really
provide the author with meaningful information. In fact, it might even shield the author from important
structural issues that are not apparent when the page on the computer screen is supposed to be an
accurate representation of the expression of that page on paper.

Philosophically speaking, markup used in HTML should be semantically meaningful; references to
visual representations are resisted. For example, the HTML element is preferred to the HTML
element . Both elements are displayed in bold, but the use of explicitly states that the
author wants to provide a strong emphasis to this word, whereas the use of only makes that
information implicit, and all you know for certain is that the author wanted to make the word bold —
perhaps for purely aesthetic reasons.

The reason for this distinction is that content will appear on different platforms, now and in the future,
and there may be different visual representations of the same idea of strong emphasis used on those
platforms. For example, how does one render a bold word when read by a screen-reader application
intended for the visually impaired? It is much easier to imagine a screen reader strongly emphasizing a
word or phrase by changing the tone of the voice.

75

Choate c04.tex V1 - 11/19/2007 1:53pm Page 76

Chapter 4: Writing and Editing Content

Another reason why wikitext is important can best be illustrated with an example. MediaWiki, the
application that runs Wikipedia, allows the user to assign a category to a page, the details of which
are discussed in the next section. MediaWiki categories are the functional equivalent of the tags used
by Flickr. We won’t get into the details now, but what is important to understand at this point is that
MediaWiki categories are used to group and organize pages, so the text used to designate a category
needs to be identifiable by the software application because it will ultimately be used to provide
an alternative means of navigation for the user. Even if you have a WYSIWYG editor for your wiki, the
user will still need to use some form of markup to identify a category. In this instance, wikitext makes it
possible to apply structure to a document as you write, and this can be a very powerful feature.

Wiki Content
There appear to be two broad applications for wikis used by organizations. The first application is as
a collaborative tool, most often used to manage projects, as a replacement for e-mail. In this sense, it
represents a middle ground between e-mail and more formal project management tools. The second
application is as a knowledge management platform. The ease of use inspires organizations to capture
tacit employee knowledge and other details that tend to never be documented.

First and foremost, a wiki engine is a content management system, and many organizations use wiki
engines for anything you would use a content management system for — more than likely in an intranet.
Wikis are an excellent entry-level content management system because they are easy to edit and require
very little training and no specialized software (other than the browser and the Web server).

Wiki engines can also be used as a project management tool. In many cases, users report that they are
employing wikis as a replacement for e-mail. Consider two e-mail-related issues. The first is mailbox
clutter. So much information (and clutter) crowds the typical professional’s mailbox these days that
messages are easily lost (overlooked or inadvertently routed to junk mail folders by overly eager spam
filters). The second issue with e-mail relates to document management and versioning.

Many organizations use Microsoft Word for a number of different purposes. Word’s internal version
tracking is often used, which can be very powerful and quite handy at times. Unfortunately, e-mail
works by spawning innumerable copies of Word documents (constrained only by the number of intended
recipients). Unless carefully managed, each document can represent a fork of the original document, with
changes made to different copies of the same document, leading to a nightmare merge scenario, not to
mention the mere difficulty of knowing with relative assurance that you are viewing the most recent
version of the document. (You can view the most recent version of your copy of the document, but you
don’t know if your copy is the latest copy.)

Wikis nicely present the very latest version of every page (plus a history of edits and who made the edits).
The wiki becomes the authoritative source of the document to be managed by the project. Mailboxes are
decluttered (and reduced in size) and documents are easier to find.

Writing and Editing
The base content is saved in the database as wikitext. When you edit a page in MediaWiki, you can’t edit
every aspect of the page. Much of it is generated by the skin. You can only edit the primary content of
the page — the text of the article, for example, but not content that appears in the left-hand column, or

76

Choate c04.tex V1 - 11/19/2007 1:53pm Page 77

Chapter 4: Writing and Editing Content

in the heading. In order to change that information, you must change the skin first, a topic that is
covered in Chapter 8.

Much of the writing on Wikipedia is defined by convention, rather than programmatically enforced.
Wikipedia has extensive article-naming guidelines, and rules for how to structure pages. This can be a
good starting point for your own wiki. It is important to remember that wikis are relatively unstructured
sites, so a user can do a lot with what’s available — and it may not always look pretty.

Editing Pages
As you learned in the previous chapter, new pages are created by embedding a wiki link into a page. For
example, if you wanted to create a page called ‘‘Brand New Page,’’ then you could create a link to it from
the main page of my wiki by clicking the Edit tab at the top of the page (assuming you have privileges, of
course). Figure 4-1 shows a screen shot of the edit field for the wiki’s main page. There are a few things
to note here: First, no one is logged in (which you can tell because an IP address is displayed in the upper
right-hand corner of the page, rather than a username). As a consequence, there are only four tabs across
the top of the page: article, discussion, edit, and history. The primary heading on the page is ‘‘Editing
Main Page,’’ and below that is a row of icons. This is the toolbar, which provides some editing shortcuts,
which you will learn more about later in this chapter.

Figure 4-1: Editing the Main page

Beneath the toolbar is the edit field where wikitext is entered into the page. In addition to the text that
is displayed on that page by default when you first install MediaWiki, the following code shows an
additional sentence:

<big>"'MediaWiki has been successfully installed."'</big>

Consult the [http://meta.wikimedia.org/wiki/Help:Contents User’s Guide] for
information on using the wiki software.

== Getting started ==

77

Choate c04.tex V1 - 11/19/2007 1:53pm Page 78

Chapter 4: Writing and Editing Content

* [http://www.mediawiki.org/wiki/Help:Configuration_settings Configuration
settings list]

* [http://www.mediawiki.org/wiki/Help:FAQ MediaWiki FAQ]
* [http://mail.wikimedia.org/mailman/listinfo/mediawiki-announce

MediaWiki release mailing list]

I’m going to edit a [[brand new page]]

An empty line separates the new text that has been entered (the line about creating a brand-new page)
and the text that was already on the page. This is the first rule of wikitext: a blank line separates paragraphs.
At this point, you have the option of saving the page, showing a preview of the page, showing changes,
and canceling my edits. When you click the Save Page button, you are returned to the main page, where
you will see that the new text you entered has now been converted to HTML. The text [[brand new page]]
has been converted to a link, and if you are using the default skin that comes with MediaWiki, the link
will be colored red, which indicates that the page does not exist. If you click on the red link, then you will
automatically be taken to the editing page for the Brand New Page page, as shown in Figure 4-2.

Figure 4-2: Editing the ‘‘Brand new page’’ page in MediaWiki

Previewing Changes
Pressing the Show Preview button enables you to see the raw wikitext alongside the rendered HTML, in
order to ensure that it is converted as intended (see Figure 4-3).

78

Choate c04.tex V1 - 11/19/2007 1:53pm Page 79

Chapter 4: Writing and Editing Content

Figure 4-3: Preview the changes you have made before saving them

Summary Field
MediaWiki also provides a summary field in which you can enter information about the changes you’ve
made before saving them. This can be particularly helpful when several people are collaborating on a
document. The text of the summary is displayed in the page’s history.

History
The history of changes made to a document can be viewed by clicking the History tab (see Figure 4-4).

Figure 4-4: Review the history of a page

79

Choate c04.tex V1 - 11/19/2007 1:53pm Page 80

Chapter 4: Writing and Editing Content

Options for Logged-in Users
If you are a registered user, the editing interface gives you two more options: a This Is a Minor Edit
checkbox, and a Watch This Page checkbox.

Minor Edits
The first option allows you, as a registered user, to mark an edit as a minor edit. A minor edit is an edit
that fixes a typo or makes a small cosmetic adjustment that doesn’t otherwise substantively change the
meaning of the underlying article.

This privilege is reserved for registered users because it is used by sysops and others who review
the site — they don’t want to be bothered with checking a recently changed page if the change
only reflects a spelling correction. As a registered user, you are presumably a little more trustworthy,
so others can focus their monitoring efforts on changes made by unregistered users, which are
always checked.

Watch This Page
The second option allows you to watch the page, which means that it will show up in the user’s watched
pages list. You need to be a registered user to have a watched pages list, so that is why it is restricted
from unregistered users.

Creating Links
In my opinion, creating links is the most important part of wikitext. This is because linking to other
pages can be the most tedious part of writing content for the Web. In most other writing environments,
the interface to creating a link is cludgy, and typically involves a pop-up window in which you
enter the link data. Once a link is established (as in Microsoft Word), it becomes difficult to edit because
if you mistakenly click on the word in the wrong way, the application assumes you want to follow the
link; and the next thing you know a Web browser is loading a page, when all you wanted was to edit the
text, or see exactly where the link was directed.

In MediaWiki terms, there are three basic varieties of link: internal links (also called wiki links), external
links, and interwiki links. The following sections describe about each one.

Wiki (Internal) Links
A wiki link is used to link one page from a wiki to another page in the same wiki. Because every page
title in a wiki is unique, you can readily create links to other pages, as long as you know the title of the
page. A wiki link is created when a word or phrase that corresponds to a page title is surrounded by a
pair of brackets, like so: [[Main Page]]. If you were to type this into the edit field of your wiki, it would
create a link that takes you to the main page of your wiki.

This is also the way a new page is created. You can place a word or phrase in a pair of brackets,
whether a page actually exists or not. Once you save this page, MediaWiki will check to see whether
the page designated in the brackets already exists. If it does not exist, then the link is displayed
in red (when using the default monospace skin), and links to the edit page for the currently
unwritten page.

80

Choate c04.tex V1 - 11/19/2007 1:53pm Page 81

Chapter 4: Writing and Editing Content

Wiki Links
For example, the following is an example of wikitext that includes basic wiki links:

==Wiki links==

This links to the [[Main Page]].

This links to the [[Main page]].

This links to the [[main Page]].

This links to the [[Help:Link]] page.

The first three links all go to the Main Page of the wiki, but you will notice that the capitalization is
different for each one. When you examine the HTML that is produced, you will notice that the first link
and third link to the Main Page works, but the second link is treated as a link to a completely different
page. This is because MediaWiki automatically treats the first character of a page title as uppercase.

In the third link, main is changed to Main and everything works fine. The reason the second link does not
work is because the second word is in lowercase, and MediaWiki will not modify the second word, so it
does a case-sensitive search for a title whose second word is : rather than Page and doesn’t find it. You
can also see in this example that MediaWiki treats namespaces just like any other link:

<h2>Wiki links</h2>

<p>This links to the <a href="/wiki/index.php/Main_Page"
title="Main Page">Main Page</p>

<p>This links to the <a
href="/wiki/index.php?title=Main_page&action=edit"
class="new" title="Main page">Main page.</p>

<p>This links to the <a href="/wiki/index.php/Main_Page"
title="Main Page">main Page.</p>

<p>This links to the <a
href="/wiki/index.php?title=Help:Link&action=edit"
class="new" title="Help:Link">Help:Link page.</p>

Piped Links
Piped links are links that use the | character, which, when inserted inside a wiki link, enables you to
define text displayed in the browser that is different from the title of the document. In the following
example, the first link is a standard example of how pipe links typically appear. Note the remaining
four links in the example: The wiki link ends with a pipe character and no information follows. In these
examples, the pipe is a shorthand notation that converts the links according to a particular set of rules.
The rules are as follows:

❑ If a pipe character follows a page with a namespace, then the namespace is dropped from the
text that is displayed in the browser.

❑ If the title contains a parenthetical word or phrase that is followed by a single pipe, then
the parenthetical phrase will be dropped from the text displayed in the browser.

81

Choate c04.tex V1 - 11/19/2007 1:53pm Page 82

Chapter 4: Writing and Editing Content

❑ If the title contains a comma that is followed by a single pipe, then the text following the comma
will be dropped from the text that is displayed in the browser.

==Piped Links==

This links to the [[Main Page | home page]].

This is how to [[Help:Link|]] to the help section.

A link to Dylan’s [[Ain’t No Man Righteous (No Not One)|]]

A link to Dylan’s [[It’s Alright, Ma (I’m only bleeding)|]]

The pipe character is [[pipes||]].

You can see an example of how these links are displayed in Figure 4-5. In the following output, you can
see the HTML that is produced from the wikitext, and how the special pipe rules are manifested:

<h2>Piped Links</h2>

<p>This links to the <a href="/wiki/index.php/Main_Page"
title="Main Page">home page.</p>

<p>This is how to <a
href="/wiki/index.php?title=Help:Link&action=edit"
class="new" title="Help:Link">Link to the help
section.</p>

<p>A link to Dylan’s <a
href="/wiki/index.php?title=Ain%27t_No_Man_Righteous_%28
No_Not_One%29&action=edit" class="new" title="Ain’t
No Man Righteous (No Not One)">Ain’t No Man
Righteous</p>

<p>A link to Dylan’s <a
href="/wiki/index.php?title=It%27s_Alright%2C_Ma_%28I%27
m_only_bleeding%29&action=edit" class="new"
title="It’s Alright, Ma (I’m only bleeding)">It’s
Alright, Ma</p>

<p>The pipe character is <a
href="/wiki/index.php?title=Pipes&action=edit"
class="new" title="Pipes">|.</p>

<div class="editsection" style="float:right;margin-
left:5px;">

[<a
href="/wiki/index.php?title=Wikilink_examples&action
=edit&section=3" title="Edit section: Special
case">edit]

</div>

Special Cases
Finally, there is one special case worth mentioning. Good link style suggests that you embed links in the
normal flow of text, so that it reads like a sentence, and that you should avoid constructions such as the

82

Choate c04.tex V1 - 11/19/2007 1:53pm Page 83

Chapter 4: Writing and Editing Content

phrase ‘‘click here’’ to insert a link into text. Sometimes, however, grammatical constructs makes this a
little awkward. For example, sometimes a word needs to be written as a plural, even though the title of
the page that you will be linking to is singular. The following wikitext example shows two different ways
to approach this:

==Special case==

How many [[Main Page]]s are there?

How many [[Main Page]]<nowiki>s</nowiki> are there?

When this wikitext is rendered as HTML, the trailing s in the first link is included in the link that is
displayed in the browser (see Figure 4-5 for an example), whereas in the second example the s
is left outside the link. The image in Figure 4-5 is in black and white, but if it were in color, you would
see that the s in the first link is blue, whereas the s in the second link is black.

<p></p>

<h2>Special case</h2>

<p>How many <a href="/wiki/index.php/Main_Page" title="Main
Page">Main Pages are there?</p>

<p>How many <a href="/wiki/index.php/Main_Page" title="Main
Page">Main Pages are there?</p>

Figure 4-5: Examples of how different wiki links are displayed

83

Choate c04.tex V1 - 11/19/2007 1:53pm Page 84

Chapter 4: Writing and Editing Content

External Links
External links are those that link to websites on the Internet that are not part of your wiki. There are three
basic forms for external links:

[http://choate.info/]
[http://choate.info This is a link to my site]
http://choate.info

Each form results in a different look on the final HTML page, which is displayed as shown in Figure 4-6.

Figure 4-6: External links are shown in three different ways.

The first link is treated almost like a footnote. The second (predictably) shows the text that follows the
URL, as well as the arrow icon indicating that it’s an external link. The final format simply repeats
the URL as the text of the link, also followed by the arrow icon.

If you wrap the external links in a element, and assign it the class plainlink, then the arrow
icon will not be displayed:

[http://choate.info]

[http://choate.info This is a link to my site.]

http://choate.info

This is not really a MediaWiki feature. It leverages cascading stylesheets that can control whether an
element is displayed or not. You could just as easily decide that external links should be bold, and create
a class that does that within your stylesheet:

[http://choate.info]

Alternately, you can embed the style information in the HTML in the style attribute. In the following
example, the text is bold and underlined:

<span style="font-weight:bold; text-
decoration:underline">http://choate.info

Characters at the end of external links are not automatically added, as they are with internal wiki links.

84

Choate c04.tex V1 - 11/19/2007 1:53pm Page 85

Chapter 4: Writing and Editing Content

Interwiki Links
Interwiki links demonstrate the benefits of having a flat namespace, as wikis do. An interwiki link is
an external link that links to another wiki (any kind of wiki will do, as long as its URL structure is pre-
dictable). When MediaWiki is installed, an interwiki table is established in the database. The table defines
a prefix and a URL (the columns iw_prefix and iw_url, respectively). The prefix serves as a substitute
for the full URL so that the URL can be typed onto a page conveniently.

One example is an interwiki link that links to the wiki run by Ward Cunningham. The prefix wiki is
replaced by http://c2.com/cgi/wiki?$1, and the $1 variable is replaced by the word or words that
follow the prefix in the link. For example, [wiki: WikiWikiWebFaq] is translated into the following:

http://c2.com/cgi/wiki?WikiWikiWebFaq

One thing you should be aware of is that MediaWiki translates what it considers to be titles according to
its own rules, but not every wiki uses the same guidelines. Originally, wikis used CamelCase links (two
or more words joined together, with an uppercase letter used on the first letter of each distinct word).
The preceding link takes you to a wiki from the Portland Pattern Repository, and it uses CamelCase
links. In order for the link to work, you have to use CamelCase as well. MediaWiki replaces spaces with
underscore (_) characters, but Portland Pattern Repository does not.

Formatting and Styles
A principle concept for Web development is the separation of content from design. The underlying
realities of this idea have already been discussed earlier in the chapter. In practice, this separation is
typically implemented in HTML by the use of cascading stylesheets (CSS). While it is possible to format
a document in HTML, it is considered bad form. Instead, HTML should focus on the structure of your
document, and a separate stylesheet should define how that structure appears on different kinds of
devices. For example, you might have one stylesheet for print and another one for viewing on a screen.

That said, you do have some control over styles using wikitext, but bear in mind that most of the
style information is documented in stylesheets. MediaWiki uses skins (I really wish they’d use
a different name), which is a combination of templates and stylesheets that together comprise a site’s
look and feel.

Customizing your wiki’s skin is discussed in great detail in Chapter 8.

The fastest way to understand this is to see some examples. You can break down these elements into two
basic categories. The first group is called inline elements, because they can be applied to individual words
or phrases within a paragraph or block of text. The second group is called block-level elements, and these
are used to apply style information to an entire block of text, such as a paragraph. The following code
samples illustrate all the wikitext and HTML tags that can be used to format inline text.

The wikitext is identified by a cluster of apostrophes. In order to make a word appear in italic type, you
have to surround it with a pair of apostrophes, like so:

This word is "italic".

85

Choate c04.tex V1 - 11/19/2007 1:53pm Page 86

Chapter 4: Writing and Editing Content

Likewise, to make the word appear in bold text, you surround it with three apostrophes:

This word is "'bold"'.

Finally, to display the word both in italic and bold, you use five apostrophes:

This word is ""'bold and italic""'.

In addition to this wikitext markup, also available are several HTML elements that you can embed
in your wikitext document, and which work just like regular HTML. The following wikitext example
demonstrates all of the inline wikitext and HTML elements available to you:

Wikitext lets you set text to "italic", "'bold"' and
""'bold and italic""' using wikitext, and I can set
text to <i>italic</i>, bold and <i>bold and
italic</i> using html, too. I can even
<u>underline</u> it. Don’t forget
strong and emphasis, either.

This text is <tt>teletype</tt> and this text is for a <var>variable</var>

I can make text <big>big</big> and I can make text <small>small</small>.

I can <s>strike</s> text I no longer need.

I can <strike>strike</strike> text I no longer need this way, too.

I can write H₂O, if I want, as well as E=mc².

I do not recommend setting the font
to "Palatino", because not all computers use that font.

Here is a code example:<code>2+2=5</code>

Feel free to <cite>cite me in your code</cite>.

The preceding passage will be translated into the following HTML:

<p>Wikitext lets you set text to <i>italic</i>, bold

and <i>bold and italic</i> using wikitext, and I
can set text to <i>italic</i>, bold and
<i>bold and italic</i> using html, too. I can
even <u>underline</u> it. Don’t forget
strong and emphasis, either.</p>

<p>This text is <tt>teletype</tt> and this text is for a <var>variable</var></p>

<p>I can make text <big>big</big> and I can make text <small>small</small>.</p>

<p>I can <s>strike</s> text I no longer need.</p>

<p>I can <strike>strike</strike> text I no longer need this way, too.</p>

86

Choate c04.tex V1 - 11/19/2007 1:53pm Page 87

Chapter 4: Writing and Editing Content

<p>I can write H₂O, if I want, as well as E=mc².</p>

<p>I do not recommend setting the font
to "Palatino", because not all computers use that font.</p>

As you can see, the original HTML elements that were used in the wikitext remained as is when the entire
passage was converted to HTML. Figure 4-7 shows how the converted wikitext will be displayed in the
viewer’s browser.

Figure 4-7: Wikitext is converted to HTML

In order to write italicized text, you must wrap the text in two apostrophes. (If you create the text in
Microsoft Word and paste it into the editing field of MediaWiki, expect unexpected results. Microsoft
Word usually converts apostrophes to ‘‘smart quotes,’’ which is not read by MediaWiki.)

Comments
HTML comments are also allowed in wikitext:

<!-- Comment goes here -->

A comment in wikitext is created in the same way as a comment in HTML, but with one important
difference. Just as in regular HTML, MediaWiki does not display comments in the browser. In fact,
MediaWiki doesn’t convert a comment into HTML at all. The only time you can see a comment is when
you are editing the wikitext. This means that you can leave notes to other editors without having to worry
about the general public seeing them (assuming, of course, that the general public doesn’t have access to
editing your wikitext).

In the following sections you will learn about more complex wikitext constructs, so the examples have
wikitext comments to highlight important areas for you to review.

Headings
Headings are used for generating tables of contents. When used, individual [edit] links appear to the
right of the heading so that users can edit a particular section of the page, rather than the entire page.

87

Choate c04.tex V1 - 11/19/2007 1:53pm Page 88

Chapter 4: Writing and Editing Content

The following code sample shows the six different heading levels, coded both in wikitext and in HTML:

=Heading 1=

<h1>Heading 1 (HTML)</h1>

==Heading 2==

<h2>Heading 2 (HTML)</h2>

===Heading 3===

<h3>Heading 3 (HTML)</h3>

====Heading 4====

<h4>Heading 4 (HTML)</h4>

=====Heading 5=====

<h5>Heading 5 (HTML)</h5>

======Heading 6======

<h6>Heading 6 (HTML)</h6>

For the sake of brevity, the following shows only the output of the first four headings:

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Headings&action=edit&section=1"
title="Edit section: Heading 1">edit]

</div>

<p></p>

<h1>Heading 1</h1>

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Headings&action=edit&section=2"
title="Edit section: Heading 1 (HTML)">edit]

</div>

<p></p>

<h1>Heading 1 (HTML)</h1>

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Headings&action=edit&section=3"
title="Edit section: Heading 2">edit]

</div>

<p></p>

<h2>Heading 2</h2>

88

Choate c04.tex V1 - 11/19/2007 1:53pm Page 89

Chapter 4: Writing and Editing Content

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Headings&action=edit§ion=4"
title="Edit section: Heading 2 (HTML)">edit]

</div>

<p></p>

<h2>Heading 2 (HTML)</h2>

MediaWiki treats headings as sections, and it allows users to edit only the section of the page they want to
modify. This can be helpful with long pages. As you can see in the HTML output, preceding each heading
is a <div> element that links to an editing page for each section. The preceding HTML output contains
four sections, numbered one through four, which you can see referred to inside the <div> element.

In addition, as you can see, both the wikitext heading and the HTML heading are formatted the same
way. The only difference is the name used for the named anchor. This is a consequence of the fact that
you cannot have duplicate named anchors in a document, so MediaWiki creates a unique name. This
is why the first heading has a name and id of Heading_1, while the second heading has a name and id
of Heading_1_.28HTML.29. These named anchors are used to generate a table of contents for the page,
which is displayed at the top of the page. Again, this is helpful when reading long pages. The following
code shows the HTML that is produced for the table of contents page. Note that it ends with a bit of
JavaScript code that enables users to toggle between displaying or not displaying the table:

<table id="toc" class="toc" summary="Contents">

<tr>

<td>

<div id="toctitle">

<h2>Contents</h2>

</div>

<li class="toclevel-1">

1 Heading 1

<li class="toclevel-1">

2 Heading 1 (HTML)

<li class="toclevel-2">

2.1 Heading 2

<li class="toclevel-2">2.2 Heading
2 (HTML)

</td>

</tr>

</table>

<p><script type="text/javascript">

if (window.showTocToggle) { var tocShowText = "show"; var
tocHideText = "hide"; showTocToggle();}

</script></p>

89

Choate c04.tex V1 - 11/19/2007 1:53pm Page 90

Chapter 4: Writing and Editing Content

By default, the table of contents is only generated for pages with three or more headings. A user can opt
not to have any table of contents at all by going to the user preferences page and clicking the Misc tab.
One of the options that is selected by default is Show Table of Contents (for pages with more than three
headings). Clicking the checkbox toggles that default preference off. You can also set limits on how deep
the table of contents can go by adding the following to the LocalSettings.php file:

/** Maximum indent level of toc. */
$wgMaxTocLevel = 999;

By default, the maximum indent level is 999, which is more than enough. In fact, the only really
meaningful limit would be something less than six, as the headings only extend six levels deep.

As a stylistic point, bear in mind that the title of the page is displayed using <h1> the element, so you
should reserve your use of headings in the body of the article to the equivalent of <h2> and above. It is
also regarded as good style to nest your headings in descending order, without skipping any levels. For
example, you do not want to do the following:

==This is my first article section==

Some introductory text...

====This is a sub-heading====

This example jumps from a level 2 heading to a level 4 heading, rather than use a level 3 heading as the
next natural subhead. Figure 4-8 shows the heading levels in MediaWiki.

Figure 4-8: Heading levels in MediaWiki

90

Choate c04.tex V1 - 11/19/2007 1:53pm Page 91

Chapter 4: Writing and Editing Content

Lines and Breaks
A horizontal rule is simply four hyphens (----). You can also use the <hr> HTML element.

The horizontal rule element is one of only a couple of elements that never have any child elements. In
HTML, you are allowed to have an element with an opening tag, but not a closing tag. XML forbids this,
so XHTML (the XML implementation of HTML) requires a closing tag, or the use of a shorthand notation.
Note that MediaWiki accepts both forms of horizontal rule.

The first item in the following example is the old-fashioned HTML version of the horizontal rule, and the
second item is the new-fangled XHTML version of the horizontal rule. The only difference is the presence
of a / in the second item:

<hr width="50%">

<hr width="50%"/>

One of the advantages of using the HTML version, rather than the wikitext version, is that you get access
to all the attributes of horizontal rules. In the previous example, I have set the width of the rule to be 50%
of the size of the page on which it is displayed. Without the intervention of cascading stylesheets (CSS),
this is not possible with the wikitext version.

When you want to insert a line break into a document without establishing another paragraph, you can
use the
 element. Like the horizontal rule, it doesn’t have any children, so MediaWiki takes two
forms of it as well:

Block-Level Elements
Technically speaking, heading elements are block-level elements too, as they apply to the entire para-
graph of text. Nevertheless, they have special attributes that warrant a separate treatment. By definition,
a block-level element stands alone with space before it and after it (see Figure 4-9). Unlike inline elements,
you’ll never see two block-level elements displayed side by side. The wikitext addition to the HTML is
simple: A blank line designates a new paragraph, as shown in the following example:

A blank line separates paragraphs.

You can also use HTML tags to establish paragraphs.

<p>This is a paragraph</p>

<div>This is a block of text</div>

<blockquote>Yes, you can quote me on this</blockquote>

And a caption: <caption>This is my caption.</caption>

The wikitext is converted to the following HTML:

<p>A blank line separates paragraphs.</p>

<p>You can also use HTML tags to establish paragraphs.</p>

91

Choate c04.tex V1 - 11/19/2007 1:53pm Page 92

Chapter 4: Writing and Editing Content

<p>This is a paragraph</p>

<center>

This is a centered paragraph
</center>

<div>

This is a block of text
</div>

<blockquote>

Yes, you can quote me on this
</blockquote>

<p>And a caption:</p>

<table>

<caption>

This is my caption.
</caption>

</table>

Note that when MediaWiki encounters a <caption> element, it automatically assumes that it is part of
a table, and inserts it between <table> tags.

Figure 4-9: The block-level elements

Preformatted Text
There are times when you do not want your wikitext converted to HTML. There are three ways to do this
in MediaWiki. The following code shows all three methods:

== Pre-formatted text==

===Example 1: <nowiki> ===

<nowiki>

First item
This item should be indented
The final item

92

Choate c04.tex V1 - 11/19/2007 1:53pm Page 93

Chapter 4: Writing and Editing Content

</nowiki>

===Example 2: <pre> ===

<pre>

First item
This item should be indented
The final item
</pre>

===Example 3: Preceding space===

First item
This item should be indented
The final item

The first example uses the <nowiki> tag. The second example uses <pre> , which should be familiar
if you know HTML. Figure 4-10 shows an example of how these are displayed. In the final example, a
space has been inserted at the front of each line. The following code shows the HTML that is rendered:

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Pre-formatted_text_example&action=edit&
section=1" title="Edit section: Pre-formatted text">edit]

</div>

<p></p>

<h2>Pre-formatted text</h2>

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Pre-formatted_text_example&action=edit&
section=2" title="Edit section: Example 1: &lt;nowiki&gt;">edit]

</div>

<p></p>

<h3>Example 1: <nowiki></h3>

<p># First item ## This item should be indented # The final item</p>

<hr>

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Pre-formatted_text_example&action=edit&
section=3" title="Edit section: Example 2: &lt;pre&gt;">edit]

</div>

<p></p>

<h3>Example 2: <pre></h3>

<pre>

First item
This item should be indented

93

Choate c04.tex V1 - 11/19/2007 1:53pm Page 94

Chapter 4: Writing and Editing Content

The final item
</pre>

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Pre-formatted_text_example&action=edit&
section=4" title="Edit section: Example 3: Preceding space">edit]

</div>

<p><a name="Example_3:_Preceding_space"
id="Example_3:_Preceding_space"></p>

<h3>Example 3: Preceding space</h3>

<pre>

First item
This item should be indented
The final item
</pre>

Figure 4-10: <nowiki> and <pre> links displayed by MediaWiki

Lists
There are three kinds of lists: ordered lists, unordered lists (bulleted lists), and definition lists. An ordered
list uses numbers of different formats to identify each list item, whereas an unordered list uses bullets.
The actual numeric format and bullet are ultimately decided by stylesheets. Definition lists are lists of
terms, along with their definitions, such as a glossary.

94

Choate c04.tex V1 - 11/19/2007 1:53pm Page 95

Chapter 4: Writing and Editing Content

As you might guess, there is both a wikitext method of creating lists and an HTML method. The following
code shows examples of both methods:

==Wikitext ordered list==

first list item
second list item

==HTML ordered list==

 first list item

 second list item

==Wikitext unordered list==

* first list item
* second list item

==HTML unordered list==

 first list item

 second list item

definition lists:

;Glossary
;Wikitext : Markup used for MediaWiki
;HTML: Hypertext Markup Language

<dl><dt>Glossary
<dt>Wikitext
<dd> Markup used for MediaWiki
<dt>HTML<dd> Hypertext Markup Language
</dl>

One important difference between the wikitext method and the HTML method is that the wikitext
method limits list items to a single paragraph. This is due to a limitation in the parser. If your list items
need to be more than one paragraph, then you should use the HTML method.

You may have noticed that the HTML used in the last example for the definition list does not use closing
tags — that is, there is no < /dt> or </dl> . That’s because, for some reason, the parser does not
interpret them properly and they end up being displayed on the page. When they are removed, the
parser converts the text to proper HTML and it is formatted appropriately when displayed. This kind of
shorthand is based on SGML-based HTML which allows tags to not be closed. In most cases, this chapter
doesn’t focus on that syntax because it is nonstandard XHTML and there is simply not enough space to
address every possible variation (the MediaWiki parser is actually quite accommodating). In this case,
the example used here was chosen because the XHTML method does not work.

95

Choate c04.tex V1 - 11/19/2007 1:53pm Page 96

Chapter 4: Writing and Editing Content

Figure 4-11 illustrates three lists displayed as HTML.

Figure 4-11: An ordered list, an unordered list, and a definition list in
MediaWiki

Nested Lists
So far, the examples have been simple, but you can do more complicated, interesting things with your
lists. For example, you can create nested lists. The following example shows you how to make a nested,
ordered list:

==Nested lists==
first list item
first sub item
second sub item
second list item

 first list item

 first sub item

 second sub item

 second list item

96

Choate c04.tex V1 - 11/19/2007 1:53pm Page 97

Chapter 4: Writing and Editing Content

Mixed Nested Lists
In the previous example, one ordered list was nested inside another ordered list. You might be tempted
to use the following wikitext to nest an unordered list inside an ordered list:

==Bad mixed nested list==
first list item
** first sub item
** second sub item
second list item

==Good mixed nested list==

first list item
#* first sub item
#**first sub sub item
#* second sub item
second list item
first numbered sub item

==Another good mixed nested list==

first list item
#* first sub item
#*#first sub sub item
#* second sub item
second list item
first numbered sub item

In the preceding examples, the first list attempts to nest an unordered list inside an ordered list. If you do
this, however, you will get the following output, which is likely not what you expect:

 first list item

 first sub item

 second sub item

 second list item

Instead of finding an unordered list nested inside an ordered list, you find an ordered list followed by an
unordered list, followed by yet another ordered list. Figure 4-12 illustrates how this list will be displayed
by MediaWiki.

The two examples that follow the first example show the proper way to do nesting. You were shown the
wrong way to do it first because the wrong way seems to be the intuitive way (to me, at least), and the
correct way isn’t that intuitive.

97

Choate c04.tex V1 - 11/19/2007 1:53pm Page 98

Chapter 4: Writing and Editing Content

Figure 4-12: Three lists in sequence, rather than nested as expected

Figure 4-13 shows both examples of acceptable nested lists.

Figure 4-13: Proper nested lists in MediaWiki

98

Choate c04.tex V1 - 11/19/2007 1:53pm Page 99

Chapter 4: Writing and Editing Content

Tables
Tables are difficult to implement under any circumstances. Wikitext provides a non-WYSIWYG
way to create tables, but it is less than ideal. As a matter of fact, it allows you to use three different
approaches to creating tables. Because the first approach is simply to code it in XHTML, I focus my
examples on the other two approaches: simplified HTML and a piped table. Either way, each system
requires a thorough understanding of how to create tables in HTML. The piped table merely substitutes
| characters for certain HTML constructs, so if you don’t understand what’s being replaced, you may
find it confusing.

Basic Tables
The following wikitext examples show three different ways of making a basic table in MediaWiki. Tables
are divided into rows and columns, and the intersection of a row and a column is a cell. The first table is
created using familiar HTML syntax:

<table>

<tr>

<th>Row 1, Heading 1</th>

<th>Row 1, Heading 2</th>

</tr>

<tr>

<td>Row 2, Cell 1</td>

<td> Row 2, Cell 2</td>

</tr>

</table>

This is the wikitext version of the same table:

{|
! Row 1, Heading 1
! Row 1, Heading 2
|-
| Row 2, Cell 1
| Row 2, Cell 2
|}

The following example shows an alternative equivalent. Instead of each cell being written on its own line,
the following example shows the cells of each row displayed on the same line. In order to separate cells
using table headers, the line must start with an exclamation mark (!), and each cell must be separated
by two exclamation marks (!!). Likewise, table data rows start with a pipe (|), and each cell in the row is
separated by two pipes (‖):

{|
! Row 1, Heading 1!! Row 1, Heading 2
|-
| Row 2, Cell 1 || Row 2, Cell 2
|}

All three of the preceding table examples are rendered the same way in MediaWiki, as shown
in Figure 4-14.

99

Choate c04.tex V1 - 11/19/2007 1:53pm Page 100

Chapter 4: Writing and Editing Content

Figure 4-14: Basic tables in MediaWiki

Table Attributes
If you enter the table example into the edit field of MediaWiki, it will be published as is, with no changes
to the code you entered. If you do this, you’ll see that the table is formed, but difficult to read. In order
to fix that, you need to modify some attributes of the table. When testing or writing a new table, one
of the best things to do is display the borders of the cells. The space between the cells is defined by the
cellpadding and cellspacing attributes.

Padding refers to the space between the text within the cell and the edge of the cell, while spacing refers
to the space between the cells. The following two examples display the same table from the previous
example, but with a border that is 1-pixel wide, and with cell padding of 2 pixels and cell spacing of
6 pixels. Figure 4-15 shows a simple table with various attributes added. In addition to the border, a
caption is added as well:

===Simple table (with attributes) example 1===

<!-- You can create tables in plain HTML -->

<table border="1" cellpadding="2" cellspacing="6">

<caption>This is my caption</caption>

<tr>

<th>Row 1, Heading 1</th>

<th>Row 1, Heading 2</th>

</tr>

<tr>

<td>Row 2, Cell 1</td>

<td> Row 2, Cell 2</td>

</tr>

</table>

===Simple table (with attributes) example 2===

100

Choate c04.tex V1 - 11/19/2007 1:53pm Page 101

Chapter 4: Writing and Editing Content

<!-- The following table is equivalent to the previous
HTML table-->

{| border="1" cellpadding="2" cellspacing="6"
|+ This is my caption
! Row 1, Heading 1
! Row 1, Heading 2
|-
| Row 2, Cell 1
| Row 2, Cell 2
|}

Figure 4-15: Tables with attributes in MediaWiki

Attributes can be used on rows and cells, too. The following example builds on the previous one by
adding color to two of the rows of the table, and by adding a wikilink in the first cell of row 4:

===Simple table (with attributes) example 3===

<!-- This is a slightly more complex table, that
sets attributes on rows and individual cells -->

<!-- Set the space between the cells (cellspacing) to 0-->

{| border="1" cellpadding="2" cellspacing="0"
<!-- I want the caption to be bold and italic-->

|+ ""'This is my caption""'
<!-- Set the header background color to gray-->

|- bgcolor="gray"

101

Choate c04.tex V1 - 11/19/2007 1:53pm Page 102

Chapter 4: Writing and Editing Content

! Row 1, Heading 1
! Row 1, Heading 2
|-
| Row 2, Cell 1
| Row 2, Cell 2
<!-- This row uses a different way to define the color-->

|- bgcolor="#cccccc"
<!-- Regular wikitext can be used in cells, too-->

| Row 3, "'Cell 1"'
Row 3, Cell 2
<!--Wiki links work as well-->

| Row 4, [[Cell 1]]
| Row 4, Cell 2
|}

Colspan and Rowspan
You can also combine cells, across rows or columns. The following examples show both the HTML and
the wikitext method of joining cells:

===Colspan and rowspan example 1===

====HTML colspan====
<table border="1">

<tr>

<!-- The header will span two columns -->

<th colspan="2">Row 1, Heading 1</th>

</tr>

<tr>

<td>Row 2, Cell 1</td>

<td> Row 2, Cell 2</td>

</tr>

</table>

====Wikitext colspan====

{| border="1"
|+ This is my caption
! colspan="2" |Row 1, Heading 1
|-
| Row 2, Cell 1
| Row 2, Cell 2
|}

===Colspan and rowspan example 2===

====HTML rowspan====

102

Choate c04.tex V1 - 11/19/2007 1:53pm Page 103

Chapter 4: Writing and Editing Content

<table border="1">

<tr>

<!--The following cell spans two rows-->

<th rowspan="2">Row 1, Heading 1</th>

<th>Row 1, Heading 2</th>

</tr>

<tr>

<td> Row 2, Cell 2</td>

</tr>

</table>

====Wikitext rowspan====

{| border="1"
|+ This is my caption
! rowspan="2"| Row 1, Heading 1
! Row 1, Heading 1
|-
| Row 2, Cell 2
|}

Figure 4-16 shows how the different colspan and rowspan options are displayed.

Figure 4-16: Tables with colspan and rowspan in MediaWiki

103

Choate c04.tex V1 - 11/19/2007 1:53pm Page 104

Chapter 4: Writing and Editing Content

Combining Tables and Lists
A more complicated construct occurs when combining tables and lists. The following wikitext is an
example of embedding a list inside a cell of a table:

===Tables and lists example===

{|border=1 cellpadding=0 cellspacing=0
|+ Resume
|- valign="top"
! Experience
|
<!-- The "NASA" item has a space in front of it, causing it to
be displayed incorrectly-->

NASA
CIA
|- valign="top"
<!-- The list items need to be on their own line -->

! Goals
|
Get a job
Lose weight
|}

The following code shows the HTML that is output. Two lists are used in the table: The first list is used
to display a list of organizations for which the applicant has worked in the past, and the second list is a
record of personal goals for the applicant. The first list is not displayed as expected because an extra space
has been inserted before the # NASA phrase, which MediaWiki assumes should be converted into a <pre>

tag. It is then followed by an ordered list with one item, CIA. The list of goals is displayed properly.

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Table_with_embedded_lists&action=edit&
section=1" title="Edit section: Tables and lists example">edit]

</div>

<p></p>

<h3>Tables and lists example</h3>

<table border="1" cellpadding="0" cellspacing="0">

<caption>

Resume
</caption>

<tr valign="top">

<th>Experience</th>

<td>

<pre>

NASA
</pre>

104

Choate c04.tex V1 - 11/19/2007 1:53pm Page 105

Chapter 4: Writing and Editing Content

CIA

</td>

</tr>

<tr valign="top">

<th>Goals</th>

<td>

Get a job

Lose weight

</td>

</tr>

</table>

The output of this HTML is shown in Figure 4-17.

Figure 4-17: Table with embedded list output

HTML on Wiki Pages
Despite the convenience of wikitext, many users prefer to use HTML, and MediaWiki obliges
that wish by providing several options for placing HTML on the page. However, it does so with its
own idiosyncrasies.

Character and Entity References
MediaWiki deviates from the XML standard in handling numeric character references and character
entity references. The goal is to avoid collisions with special characters used in XML markup.

105

Choate c04.tex V1 - 11/19/2007 1:53pm Page 106

Chapter 4: Writing and Editing Content

For example, if you were to refer to a < character in the text of a document, an XML parser would
mistake that for the beginning of an XML tag. In order to avoid that, you use a reference instead. When
you enter < in your text, it is rendered by the browser as a < character. XML defines the character
entity references shown in the following table, along with the character that is displayed in the browser.

Entity References Displayed Character

& &

< <

> >

" "

' '

MediaWiki supports all of these entities except '. All of the others work just like they do in XML,
but any use of ' in text will be converted to &apos;, which is displayed as ‘‘'’’. In other
words, it is displayed in the browser just as it’s written in wikitext.

In addition to the XML character entity references, HTML defines a total of 252 character entity references.
These are defined in the global variable $wgHtmlEntities by Sanitizer.php.

Whenever you want the characters defined in this list to display in the browser, you need to use the
entity references. One possible source of confusion is that you can enter the characters directly into the
edit field:

ˆ øπ ’’’æ. . .¬◦
�·©f

When you select Preview, the characters will be displayed as is, without being converted. However, when
you are ready to save the changes to the page, a blank page is returned — the raw UTF-8 characters are
neither converted to entities nor displayed in the browser. The reason for this has to do with how different
languages are handled by MediaWiki, a topic reviewed later in the book.

Sanitizing
MediaWiki allows you to use a wide range of HTML instead of wikitext. All such HTML is run through
the Sanitizer.php script, which ensures that the HTML is well formed, and converts HTML 4.x tags
to XHTML tags (performing tasks such as changing
 to < br/> and making the element names
lowercase). It also encodes values in attributes that would confuse the MediaWiki parser. Any characters
with special meaning to the parser are converted into entities, as shown in the following snippet of code
pulled from Sanitizer.php:

'<' => '<', // This should never happen,
'>' => '>', // we’ve received invalid input
"" => '"', // which should have been escaped.
'{' => '{',
'[' => '[',
""" => '''',

106

Choate c04.tex V1 - 11/19/2007 1:53pm Page 107

Chapter 4: Writing and Editing Content

'ISBN' => 'ISBN',
'RFC' => 'RFC',
'PMID' => 'PMID',
'|' => '|',
'__' => '__',

It also cleans up any CSS included in style attributes, removing JavaScript expressions (from Internet
Explorer 5.0+) and all URLs.

If you choose not to have this level of security (and concomitant restrictions), you can opt to allow
unrestricted HTML to be entered by users (a risky proposition), by setting the global variable $wgRawHtml
to true. Likewise, you can disable HTML altogether, by setting the global variable $wgUserHtml to false.

The following example shows wikitext handling of entities. The result of this wikitext will be a table that
displays the entity markup in the first column, and the entity output in the second column. In order to
do this, the entities in the first column are escaped:

<h2>Tables and Entities</h2>

{|border="1" width="80%" cellpadding="4px" cellspacing="0px"
|+ This table illustrates the use of entities in wikitext
|- bgcolor="gray"
! Entity !! Character
|-align="center"
|&amp;|| &
|-
|&amp;|| &
|-
|&gt;|| >
|-
|&gt;|| >

|-
|&lt;|| <
|-
|&lt;|| <

|-
|&copy;|| ©
|-
|&#34;|| "
|-
|&quot;|| "
|-
|&#34;|| "

|}

The wikitext is converted to the following HTML. Pay special attention to how the entities are
converted:

<div class="editsection" style="float:right;margin-left:5px;">

[<a href="/wiki/index.php?title=Table_example&action=edit&
section=1" title="Edit section: Tables and Entities">edit]

</div>

107

Choate c04.tex V1 - 11/19/2007 1:53pm Page 108

Chapter 4: Writing and Editing Content

<p></p>

<h2>Tables and Entities</h2>

<table border="1" width="80%" cellpadding="4px" cellspacing="0px">

<caption>

This table illustrates the use of entities in wikitext
</caption>

<tr bgcolor="gray">

<th>Entity</th>

<th>Character</th>

</tr>

<tr align="center">

<td>&amp;</td>

<td>&</td>

</tr>

<tr>

<td>&amp;</td>

<td>&</td>

</tr>

<tr>

<td>&gt;</td>

<td>></td>

</tr>

<tr>

<td>&gt;</td>

<td>></td>

</tr>

<tr>

<td>&lt;</td>

<td><</td>

</tr>

<tr>

<td>&lt;</td>

<td><</td>

</tr>

<tr>

<td>&copy;</td>

<td>©</td>

</tr>

<tr>

<td>&#34;</td>

<td>"</td>

</tr>

<tr>

<td>&quot;</td>

<td>"</td>

</tr>

<tr>

<td>&#34;</td>

<td>"</td>

</tr>

</table>

108

Choate c04.tex V1 - 11/19/2007 1:53pm Page 109

Chapter 4: Writing and Editing Content

Figure 4-18 shows how MediaWiki displays a complex table of entities.

Figure 4-18: A complex table with entities displayed by MediaWiki

Ruby text, for East Asian languages
The final group of HTML elements usable in MediaWiki are those used for rubies, a typographical
technique used in Japanese writing:

<rb>

<rp>

<rt>

<ruby>

Footnotes
Footnotes are not part of the base MediaWiki installation, but there is an extension that you can easily
install that adds this feature. All extensions are installed inside the extensions folder. The first step is to
create a Cite folder inside the extensions folder. Then, download Cite.php and Cite.i18n.php from
MediaWiki’s Subversion repository:

http://svn.wikimedia.org/viewvc/mediawiki/trunk/extensions/Cite/Cite.php?view=co
http://svn.wikimedia.org/viewvc/mediawiki/trunk/extensions/Cite/

Cite.i18n.php?view=co

109

Choate c04.tex V1 - 11/19/2007 1:53pm Page 110

Chapter 4: Writing and Editing Content

Once the files are downloaded, you need to update LocalSettings.php by adding the following line:

require_once("{\$IP}/extensions/Cite/Cite.php");

That’s all there is to adding this extension. It enables two new XML tags to be used in the text: <ref>
</ref> and <references/>. The text for the footnote is inserted between the <ref> tags.
<references/> is a placeholder that you type at the bottom of the page, where the actual reference
will be displayed. The following snippet shows how a reference is entered into the document:

A reference goes here <ref>Professional Wikis by Mark Choate</ref>.

more text....

<references/>

The preceding reference is translated into the following HTML:

A reference goes here <sup id="_ref-0" class="reference">[1]</sup>.

more text...

<ol class="references">

<li id="_note-0">\uparrow This is
a reference

The footnotes themselves are automatically numbered. This example contains one footnote, and it’s
numbered 1. The code is also smart enough to know when references are repeated, so it will combine
footnotes if more than one footnote refers to the same text.

Figure 4-19 shows how the references are displayed.

Figure 4-19: Footnotes in MediaWiki

Signatures
If you want to sign your name to a post, MediaWiki offers three shortcuts. Signatures are used primarily
on pages in the Talk namespace, to identify the person making the post. Typically, articles in the main
namespace do not use signatures because they are collaboratively authored.

110

Choate c04.tex V1 - 11/19/2007 1:53pm Page 111

Chapter 4: Writing and Editing Content

<!--Three tildes display your username-->

~~~
<!--Four tildes display your username and the current date-->

~~~~
<!--Five tildes display the current date-->

~~~~~

Figure 4-20 shows how the three different variations are displayed on the page.

Figure 4-20: Three different signatures

Editing Alternatives
Wikitext and HTML are not your only editing options. MediaWiki also provides a toolbar that can be
used to assist with the composition of wikitext, and some WYSIWYG alternatives are available too.

Toolbar
The toolbar displayed above the edit field offers some shortcuts that can help you avoid typing wikitext.
It offers at least some of the ease of using a WYSIWYG editor. The following table shows you the wikitext
that is generated if you click one of the buttons while no text is selected in the edit field is selected.

The buttons insert some placeholder text, which can be useful if you’ve forgotten the syntax of a
particular item. If you have text selected in the field, then pressing the button wraps the selected
text in the appropriate wiki tags in order to apply the proper formatting.

"'Bold text"'

"Italic text"

[[Link title]]

[http://www.example.com link title]

111



Choate c04.tex V1 - 11/19/2007 1:53pm Page 112

Chapter 4: Writing and Editing Content

= = Headline text = =

[[Image:Example.jpg]]

[[Media:Example.ogg]]

<math>Insert formula here</math>

<nowiki>Insert non-formatted text here</nowiki>

--

----

You can find information online about different approaches to editing MediaWiki, including instructions
for embedding a WYSIWYG interface, as well as how to use external editors. This chapter does not cover
these in any detail, for a few reasons.

First, many of the approaches were developed specifically for Wikipedia, so the process of customizing
them for your own needs is somewhat complex, and certainly beyond the scope of this book. Second,
in almost all cases, specialized approaches mean limiting users to certain browsers. Finally, all of the
approaches tested for this book simply didn’t work very well, or they didn’t work at all. None of them
are core parts of the MediaWiki distribution, and they are not implemented by the MediaWiki developers.

Summary
In this chapter, you learned how to create and edit pages using wikitext and some basic HTML markup.
In the next chapter, you will build on this knowledge and learn how to upload images and display them
on wiki pages, as well as how to upload files that can be downloaded by users.

112



Choate c05.tex V1 - 11/20/2007 2:47pm Page 113

Images and Files

In the previous chapter, you learned how to create and edit pages using wikitext, but that just
skimmed the surface of the kind of content you can add to a wiki page. In this chapter, you will
learn how to configure MediaWiki so that files can be uploaded, as well as how to control what
kinds of files can be uploaded. You will also learn how to link to images, embed images in pages,
and create thumbnails, as well as how to make image galleries. The chapter concludes with a
discussion of uploading different file types and how you can use this feature as a simple
document management tool.

File Uploads
MediaWiki can be configured to allow users to upload files of any type. By default, this feature is
used primarily to upload images, but it can also be used to upload documents in formats such as
Microsoft Word, Adobe PDF, and so on. By default, file uploading is disabled, so the first step is to
enable it.

Enabling Uploads
There are three steps to enabling file uploads. The first step is to make sure that PHP is configured
to allow file uploads. This is set in the php.ini file:

file_uploads = On

The second step is to make sure that $wgFileUploads is set to true in LocalSettings.php:

$wgFileUploads=true

By default, MediaWiki installs all files inside the images folder of your MediaWiki installation.

The third step is to make sure that the images directory in your MediaWiki installation is writeable
by the Web server because that is where the uploaded files will reside.



Choate c05.tex V1 - 11/20/2007 2:47pm Page 114

Chapter 5: Images and Files

Uploading Images
Files are uploaded using the Special:Upload page. If you have the privileges to upload files, then a link
to this page will appear in the toolbox of your wiki (in the left-hand column in the default design). You
can also go directly to the page at the following URL (changing the address to match yours, of course):

http://127.0.0.1/wiki/index.php/Special:Upload

If you click on the Special:Upload page and you have not enabled file uploads, then you will be notified
that uploads are disabled.

Another way to get to the Special:Upload page is to put an image link in another page, just as you
put wiki links into pages in order to create new pages (see ‘‘Image Linking and Embedding’’ later in
this chapter to learn about the syntax of creating image links). After you add a link to an image, the
link to that image will appear as a hyperlink on the page, which, when clicked, will take the user to the
Special:Upload page.

The Special:Upload page (shown in Figure 5-1) enables you to select the file to upload by clicking the
Choose File button. Once a file is selected, its name appears next to the button. You can also choose to
give the file a different name when it is uploaded. You might want to do this if there is already a file with
the same name that you do not want to overwrite. (MediaWiki saves copies of all uploaded files, so you
can always revert to a previous version of the file if you inadvertently overwrite another file.)

You should also write a summary of the file in the Summary field — the summary appears in several
places and helps to identify the image without having to actually view it. Finally, you are given the
option to watch the page, which you invoke by checking the Watch This Page checkbox. You can also
select the option to Ignore Any Warnings, which you should only do if you truly know what you are
doing. The warnings include messages that you are about to overwrite a file, that the file is larger than
is preferred, or that it’s not of a type that MediaWiki wants you to upload. The parameters that trigger
the warnings about file size and file type are all configurable in LocalSettings.php and are discussed in
more detail later in this chapter.

Figure 5-1: The Special:Upload page

To see a list of images that have already been uploaded, you can visit the Special:Imagelist page.

If you upload an image with the same name as an image that has already been uploaded, then it will
overwrite the original image. The old version of the file (or image) is saved, however, and you will be
able to revert to the file if needed. Chapter 7 provides more details about MediaWiki’s version control
facilities and how to revert to earlier versions of pages and files.

114



Choate c05.tex V1 - 11/20/2007 2:47pm Page 115

Chapter 5: Images and Files

The Image Page
Once a file is uploaded, MediaWiki creates a page for that file known as an image description page (it would
be more accurate to call it a file description page). The page that it creates is a page like any other page
(see Figure 5-2). If the file is an image, then the image is embedded in the page. If the file is not an image,
then an icon for that file is displayed if MediaWiki knows the file’s MIME type.

Figure 5-2: An image displayed in a page

User Preferences
The image shown in Figure 5-2 is rather large, large enough that the entire length of the page could
not be viewed on my computer without scrolling. Because users of wikis have different monitor sizes,
and different connection speeds, MediaWiki enables users to set some preferences for how these images
are displayed. In the preferences section of MediaWiki, users can specify how large an images should
be displayed.

The following code excerpt from DefaultSettings.php shows the available settings from which users
can choose. The first array determines the size of the image as displayed on the image description page.
The second array sets the width of image thumbnails, which are explained in the section ‘‘Image Linking
and Embedding’’ later in this chapter.

/**
* Limit images on image description pages to a user-selectable limit. In order
* to reduce disk usage, limits can only be selected from a list. This is the
* list of settings the user can choose from:
*/

115



Choate c05.tex V1 - 11/20/2007 2:47pm Page 116

Chapter 5: Images and Files

$wgImageLimits = array (
array(320,240),
array(640,480),
array(800,600),
array(1024,768),
array(1280,1024),
array(10000,10000) );

/**
* Adjust thumbnails on image pages according to a user setting. In order to
* reduce disk usage, the values can only be selected from a list. This is the
* list of settings the user can choose from:
*/

$wgThumbLimits = array(
120,
150,
180,
200,
250,
300

Figure 5-3 shows an example of an image description page displaying the same image shown
in Figure 5-2, except that here the image width has been modified.

Figure 5-3: File upload page, with user preferences set

116



Choate c05.tex V1 - 11/20/2007 2:47pm Page 117

Chapter 5: Images and Files

Now that we have a more manageable image size, we can turn to the other information that is on the
page. The first section is a section about the file’s history. Every time you upload a new file with the same
name as this file, a new entry in the history list will be added. This enables you to revert to older versions
of the image (or document). This is followed by a list of pages that link to this image.

This page can be edited, just like any other page, by clicking the Edit tab at the top of the page. Your
copy will appear above the file history section, right below the image thumbnail. Anything you do on a
regular MediaWiki page can be done here, too.

File Types
The following code listing shows the default configuration of MediaWiki with respect to file uploads.
The $wgFileExtensions variable is a list of file extensions that MediaWiki allows. This is followed by
$wgFileBlacklist, which is an array of extensions that MediaWiki explicitly does not allow because of
security concerns. For example, MediaWiki won’t let you upload HTML files, JavaScript files, or any files
associated with scripting languages or executables. The variable $wgCheckFileExtensions must be set
to true for this to have any effect.

In addition to testing by file extension, MediaWiki also maintains a blacklist based on MIME type, as the
file extension is no guarantee of what is in the file. In order for this to work, $wgVerifyMimeType must
be enabled.

/**
* This is the list of preferred extensions for uploading files. Uploading files
* with extensions not in this list will trigger a warning.
*/

$wgFileExtensions = array( 'png', 'gif', 'jpg', 'jpeg' );

/** Files with these extensions will never be allowed as uploads. */
$wgFileBlacklist = array(

# HTML may contain cookie-stealing JavaScript and web bugs
'html', 'htm', 'js', 'jsb',
# PHP scripts may execute arbitrary code on the server
'php', 'phtml', 'php3', 'php4', 'php5', 'phps',
# Other types that may be interpreted by some servers
'shtml', 'jhtml', 'pl', 'py', 'cgi',
# May contain harmful executables for Windows victims
'exe', 'scr', 'dll', 'msi', 'vbs', 'bat', 'com', 'pif', 'cmd', 'vxd', 'cpl' );

/** Files with these MIME types will never be allowed as uploads
* if $wgVerifyMIMEType is enabled.
*/

$wgMIMETypeBlacklist= array(
# HTML may contain cookie-stealing JavaScript and web bugs
'text/html', 'text/javascript', 'text/x-javascript',

'application/x-shellscript',
# PHP scripts may execute arbitrary code on the server
'application/x-php', 'text/x-php',

117



Choate c05.tex V1 - 11/20/2007 2:47pm Page 118

Chapter 5: Images and Files

# Other types that may be interpreted by some servers
'text/x-python', 'text/x-perl', 'text/x-bash', 'text/x-sh', 'text/x-csh',
# Windows metafile, client-side vulnerability on some systems
'application/x-msmetafile'

);

/** This is a flag to determine whether or not to check file extensions on upload. */
$wgCheckFileExtensions = true;

The previous settings defined file types that are allowed, as well as file types that are disallowed, but
there are a lot more file types than what is defined in these settings. In order to address all of the other
file types that are not explicitly addressed in the previous configuration variables, MediaWiki also
introduces $wgStrictFileExtensions, which by default is set to true. When this is set to true,
MediaWiki won’t let you upload any file, unless it is explicitly configured to do so. For example,
you will not be able to upload a PDF file with the default configuration, nor will you be able to upload
a TIFF file.

If this parameter is set to false, the user will see a warning when trying to upload a file that is not on the
list, but will be allowed to continue and post it anyway.

/**
* If this is turned off, users may override the warning for files not covered
* by $wgFileExtensions.
*/

$wgStrictFileExtensions = true;

A better alternative to setting $wgStrictFileExtensions to true is to explicitly add whatever file types
you want to the list. Again, placing these settings in LocalSettings.php and modifying them will
address the issue. If you want your users to be able to upload PDF files, then you need to have the
following line in LocalSettings.php:

$wgFileExtensions = array( 'png', 'gif', 'jpg', 'jpeg', 'pdf' );

Finally, you can warn users if the files they upload are too large, which, by default, is 150 kilobytes:

/** Warn if uploaded files are larger than this (in bytes)*/
$wgUploadSizeWarning = 150 * 1024;

Image Linking and Embedding
Once you upload an image, you can link to two different things. You can link directly to the image file
itself or you can link to an image description page that is automatically created by MediaWiki.

118



Choate c05.tex V1 - 11/20/2007 2:47pm Page 119

Chapter 5: Images and Files

When a file is uploaded, it is accessible using either the Image or Media namespace.

After file uploading, MediaWiki automatically generates a page for the file, which works much like any
other page in MediaWiki except that it is accessible through the Image namespace. If you want to link
directly to the file itself, you must use the Media namespace.

By default, when you add an image link to a page, the image is embedded, or displayed, in the page
itself, but you can also put links to images that appear like normal hyperlinks, which the user can click
on in order to be taken directly to either the image itself or the image description page.

The Image Namespace
Basic image links work just like wiki links, except that the filenames are accessed through
the Image namespace. When you use the Image namespace, the image is embedded in the page.
The following table shows the wikitext markup to use alongside the HTML into which MediaWiki
converts that text.

Wikitext HTML Output

[[Image:SampleImageUpload.png]] <p><a
href="/mysql/index.php/Image:SampleImageUpload.png"
class="image" title="Image:SampleImageUpload.png">

<img src="/mysql/images/b/b5/SampleImageUpload.png"
alt="Image:SampleImageUpload.png"
width="253" height="254"
longdesc="/mysql/index.php/Image:Sample
ImageUpload.png"></a></p>

[[Image:SampleImageUpload.png|
This is a sample image]]

<p><a href="/mysql/index.php/Image:SampleImage
Upload.png" class="image" title="Some ALT text">

<img src="/mysql/images/b/b5/SampleImageUpload.png"
alt="Some ALT text" width="253" height="254"
longdesc="/mysql/index.php/Image:SampleImage
Upload.png"></a></p>

As you can see in the table, you can use the pipe (|) character with image links in a similar way that you
do in wiki links. The difference is that the text that follows the | is used as the Alt text of the image. This
should be a descriptive phrase or sentence about the image that screen readers can use to describe the
image for people with disabilities, or it can also be displayed as a tooltip when a user holds the mouse
over the image. Figure 5-4 shows an example of how these two kinds of image links are displayed. In the
second image, you can see the tooltip for the image.

119



Choate c05.tex V1 - 11/20/2007 2:47pm Page 120

Chapter 5: Images and Files

Figure 5-4: Basic image links

The Media Namespace
Sometimes you may not want to embed an image in a page, but you still want to link to the image. In
other cases, you may want to link to a file for which there is no image to embed (other than an icon).
When you want to link directly to any uploaded file, you need to use the Media namespace, rather than
the Image namespace. The following table shows the wikitext and corresponding HTML output of two
links using the Media namespace.

Wikitext HTML Output

[[Media:SampleImageUpload.png]] <p><a
href="/mysql/images/b/b5/SampleImageUpload.png"
class="internal"
title="SampleImageUpload.png">media:Sample
ImageUpload.png</a></p>

[[Media:SampleImageUpload.png|
Some descriptive text]]

<p><a
href="/mysql/images/b/b5/SampleImage
Upload.png" class="internal"
title="SampleImageUpload.png">Some descriptive
text</a>

</p>

120



Choate c05.tex V1 - 11/20/2007 2:47pm Page 121

Chapter 5: Images and Files

Much like the previous example that used the Image namespace, you can use the pipe (|) character
in Media namespace links as well. In this case, instead of generating Alt text, it creates the text that is
displayed by the link, just like it does when you use the same text in a wiki link.

Figure 5-5 shows how the two links are displayed on a Web page. You can see that the text for the first
link is just the name and namespace of the link, whereas the second link uses the ‘‘Some descriptive text’’
phrase to serve as the link text.

Figure 5-5: Media namespace links

Linking to the Image Description Page
In addition to embedding an image in a page, or linking directly to the image, there is a third option:
linking directly to the image description page (without embedding the image). In order to link to the
image description page, you need to prepend a colon to the image link, as illustrated here:

[[:Image:SampleImageUpload.png]]

The colon forces the link to be in the default namespace, which is why it links to the description page
itself, rather than the file. You can use the | character here as well, with the expected results.

Using an Image as a Link
Another thing you might want to do is use an image in place of text in a link. In other words, you might
want to have an image embedded in a page that, when clicked on, goes to some other wiki page, rather
than the image description page. In order to use an image as a link to a different page, you need to use a
template or install an extension. Templates are discussed in detail in Chapter 8, where you will find an
example of how to do this.

Extended Image Syntax
It is at this point that image links begin to part ways from common wiki links. Technically speaking, the
extended image syntax is an example of a parser function, and it allows additional properties about an
image to be decided by the author.

Parser functions, like templates, are discussed in Chapter 8.

121



Choate c05.tex V1 - 11/20/2007 2:47pm Page 122

Chapter 5: Images and Files

Pay special attention to the HTML that is output when using the extended image syntax, because
MediaWiki implements the actual look and feel of these images through stylesheets, so setting a
parameter primarily affects the name of the class that is assigned to surrounding elements. It does not
necessarily apply the values to legal HTML attributes of the <img> element. This is important to know,
because it means that you can entirely change the way the image looks on the page simply by changing
the underlying stylesheet. This is covered in more detail in Chapter 8, ‘‘Magic Words, Templates,
and Skins.’’

With extended image syntax, you can set the image display width, image alignment and float properties,
and instruct MediaWiki to display an image thumbnail.

Image Display Width
The following table is an example of how to set the display width of an image in MediaWiki. In this case,
the image width is set to 150 pixels across. MediaWiki automatically calculates the height of the image,
which can be seen in the HTML output in the adjacent column.

Wikitext HTML Output

[[Image:SampleImageUpload.png|
150px|An image with a width of 150px.]]

<p>

<a href="/mysql/index.php/Image:SampleImage
Upload.png" class="image" title="An image
with a width of 150px."><img
src="/mysql/images/thumb/b/b5/SampleImage
Upload.png/150px-SampleImageUpload.png"
alt="An image with a width of 150px."
width="150" height="151"
longdesc="/mysql/index.php/Image:Sample
ImageUpload.png"></a>

</p>

Image Alignment
Image alignment is determined by setting the CSS float value of the containing element. The element
can either float left, right, or not float at all. There is also another alignment option: You can center the
element, but that is not accomplished through a CSS float value (there is no float:center property);
instead, it uses the CSS text-align property.

The important thing to remember about floats is that in addition to determining where an image is placed
on a page, they also determine how text flows (or does not flow) around the image. If an image floats to
the left, then text will flow to the right of the image. Likewise, if an image floats to the right, then text
will flow to the left of the image. If an image is centered, and is not floating, or if its float value is simply
set to none, then the text does not flow on either side of the image. Instead, the text before the image
in the HTML file stops above where the image is located on the page, and the text following the image
in the HTML document starts below the image, with no text appearing on either side. Figure 5-6 shows
examples of these image alignment options.

In the following examples, you can see that MediaWiki controls the float property by assigning
different classes to each wrapping <div> element: floatleft, floatright, floatnone and so on. There
are corresponding CSS class selectors that define the float properties.

122



Choate c05.tex V1 - 11/20/2007 2:47pm Page 123

Chapter 5: Images and Files

Wikitext HTML Output

[[Image:SampleImageUpload.png|left]] <div class="floatleft">

<span>

<a
href="/mysql/index.php/Image:SampleImage
Upload.png" class="image" title="Float left">

<img src="/mysql/images/thumb/b/b5/
SampleImageUpload.png/100px-Sample

ImageUpload.png"
alt="Float left" width="100"
height="100"
longdesc="/mysql/index.php/Image:Sample

ImageUpload.png">

</a>

</span>

</div>

[[Image:SampleImageUpload.png|right]] <div class="float right">

<span><a
href="/mysql/index.php/Image:SampleImage
Upload.png" class="image" title="Float right">

<img src="/mysql/images/thumb/b/b5/SampleImage
Upload.png/100px-SampleImageUpload.png"
alt="Float right" width="100" height="100"
longdesc="/mysql/index.php/Image:Sample
ImageUpload.png"></a></span>

</div>

[[Image:SampleImageUpload.png|none]] <div class="floatnone">

<span><a href="/mysql/index.php/Image:Sample
ImageUpload.png" class="image" title="Float
none"><img
src="/mysql/images/thumb/b/b5/SampleImage
Upload.png/100px-SampleImageUpload.png"
alt="Float none" width="100" height="100"
longdesc="/mysql/index.php/Image:SampleImage
Upload.png"></a></span>

</div>

[[Image:SampleImageUpload.png|center]] <div class="center">

<div class="floatnone">

<span><a
href="/mysql/index.php/Image:SampleImage
Upload.png" class="image" title="Some
centered text"><img
src="/mysql/images/thumb/b/b5/SampleImage
Upload.png/100px-SampleImageUpload.png"
alt="Some centered text" width="100" height="100"
longdesc="/mysql/index.php/Image:Sample
ImageUpload.png"></a></span>

</div>

</div>

123



Choate c05.tex V1 - 11/20/2007 2:47pm Page 124

Chapter 5: Images and Files

Figure 5-6: Image alignment using float properties

Clearing Elements
In some situations, you may not want text to continue to float around an image. For example, there
may be text that applies to the image that is followed by an unrelated section. If you do not want that
unrelated content to appear directly beside the image, but instead want it to start below it, then you can
use the <br> HTML element, which is a line break. If you place the following code directly above the
content you do not want to appear next to the image, then it will be pushed down and will only appear
beneath the image, as if the float property were not set.

124



Choate c05.tex V1 - 11/20/2007 2:47pm Page 125

Chapter 5: Images and Files

A visual example is probably the best way to illustrate this. The following snippet of wikitext takes an
example from the previous table and inserts <br clear="all"/> between the image and the text that
was flowing next to the image:

[[Image:SampleImageUpload.png|100px|left|Float left]]

<br clear="all"/>

Notice how text flows around a float. Notice how text
flows around a float. Notice how text flows around a float.
Notice how text flows around a float.

Notice how text flows around a float.

As shown in Figure 5-7, the text no longer flows around the image. Instead, it starts beneath it.

Figure 5-7: The use of <br clear=‘‘all’’/> to keep text from wrapping
around an image

Thumbnails and Frames
Thumbnails and frames are two similar ways of displaying an image in a wiki page. The following
wikitext code shows how the two formats can be used. The difference between them is that an image
with the thumb parameter set automatically scales the image to the size selected by the user in their user
preferences, whereas the framed parameter displays the image in either its natural size or in the size
specified (in this case, it’s 175 pixels wide):

== Image thumbnail ==

[[Image:SampleImageUpload.png|thumb|An image with the "thumb" parameter set.]]

<br clear="all"/>

125



Choate c05.tex V1 - 11/20/2007 2:47pm Page 126

Chapter 5: Images and Files

==Framed==

[[Image:SampleImageUpload.png|175px|framed|Some framed centered text]]

Notice how text flows around a float. Notice how text flows
around a float. Notice how text flows around a float.
Notice how text flows around a float.

Notice how text flows around a float.

The thumbnailed image link produces the following HTML:

<div class="thumb tright">

<div class="thumbinner" style="width:122px;">

<a href="/mysql/index.php/Image:SampleImageUpload.png"
class="internal" title="An image with the &quot;thumb&quot; parameter set.">

<img src="/mysql/images/thumb/b/b5/SampleImageUpload.png/
120px-SampleImageUpload.png" alt="An image with the &quot;thumb&quot;
parameter set." width="120" height="120"
longdesc="/mysql/index.php/Image:SampleImageUpload.png" class="thumbimage"></a>

<div class="thumbcaption">

<div class="magnify" style="float:right">

<a href="/mysql/index.php/Image:SampleImageUpload.png"
class="internal" title="Enlarge"><img src="/mysql/skins/common/images/
magnify-clip.png" width="15" height="11" alt=""></a>

</div>An image with the "thumb" parameter set.
</div>

</div>

</div>

The framed HTML output is displayed next. It looks exactly like the thumbnail version, except that the
image isn’t thumbnailed:

<div class="thumb tright">

<div class="thumbinner" style="width:255px;">

<a href="/mysql/index.php/Image:SampleImageUpload.png"
class="internal" title="Some framed centered text">

<img src="/mysql/images/b/b5/SampleImageUpload.png"
alt="Some framed centered text" width="253" height="254"
longdesc="/mysql/index.php/Image:SampleImageUpload.png" class="thumbimage"></a>

<div class="thumbcaption">

Some framed centered text
</div>

</div>

</div>

Figure 5-8 shows the page produced by the preceding HTML. You can see the similarities in presentation
between the two formats (a gray box around the image and a light-gray background) as well as the
differences. The thumbnail contains a graphic indicating that it’s a thumbnail and can be clicked on to
see a larger image.

126



Choate c05.tex V1 - 11/20/2007 2:47pm Page 127

Chapter 5: Images and Files

Figure 5-8: Thumbnails and framed images

Specifying a Specific Image for the Thumbnail
MediaWiki also enables you to substitute an image of your choice to be used as the thumbnailed image.
Consider the following wikitext:

==Thumbnail==

[[Image:SampleImageUpload.png|thumb|An image with the "thumb" parameter set.]]

<br clear="all"/>

==Selected Thumbnail==

[[Image:SampleImageUpload.png|thumb=Closedfolder.gif|An
image with the "thumb" parameter set.]]

127



Choate c05.tex V1 - 11/20/2007 2:47pm Page 128

Chapter 5: Images and Files

Note that the second image link includes thumb=Closedfolder.gif, which means that the
Closedfolder.gif file will be used as the thumbnail image, rather than an automatically generated
thumbnail. In both cases, if you click on the thumbnail image, you will go to the same place. The only
difference is the thumbnailed image. Keep in mind that you must use an image that has already been
uploaded as a thumbnail replacement.

Figure 5-9: Setting a custom thumbnail image

Thumbnail Alignment
As you can see from the preceding examples, thumbnails are automatically generated so that they float
right, but that can be overridden by explicitly specifying the thumbnail to float left, as shown in the
following code:

[[Image:SampleImageUpload.png|100px|left|thumb|An image with the "thumb"
parameter set and a width of 100px.]]

The HTML output follows. Note the use of the class tleft in the outer <div> element:

<div class="thumb tleft">

<div class="thumbinner" style="width:102px;">

<a href="/mysql/index.php/Image:SampleImageUpload.png"
class="internal" title="An image with the &quot;thumb&quot;
parameter set and a width of 100px."><img src="/mysql/images/thumb/b/b5/
SampleImageUpload.png/100px-SampleImageUpload.png"

128



Choate c05.tex V1 - 11/20/2007 2:47pm Page 129

Chapter 5: Images and Files

alt="An image with the &quot;thumb&quot; parameter set
and a width of 100px." width="100" height="100" longdesc="/mysql/index.php/
Image:SampleImageUpload.png" class="thumbimage"></a>

<div class="thumbcaption">

<div class="magnify" style="float:right">

<a href="/mysql/index.php/Image:SampleImageUpload.png"
class="internal" title="Enlarge"><img
src="/mysql/skins/common/images/magnify-clip.png"
width="15" height="11" alt=""></a>

</div>An image with the "thumb" parameter set and a width of 100px.
</div>

</div>

</div>

Image Galleries
You can add an entire gallery of images to a page using the following syntax. In MediaWiki version
1.9.3, the only attribute you can set is the gallery — a thumbnail size of 120 pixels is hard-coded into the
ImageGallery.php file that handles generation of the gallery. You may still find some references to more
detailed syntax on the MediaWiki.org website, but it won’t work. The following is a sample of a basic
image gallery:

<gallery caption="Sample gallery">

Image:SampleImageUpload1.png
Image:SampleImageUpload2.png
Image:SampleImageUpload3.png
Image:SampleImageUpload4.png
</gallery>

The HTML produced by this tag is as follows:

<table class="gallery" cellspacing="0" cellpadding="0">

<tr>

<td class="galleryheader" colspan="4"><big>Sample gallery</big></td>

</tr>

<tr>

<td>

<div class="gallerybox">

<div class="thumb" style="padding: 13px 0;">

<a href="/mysql/index.php/Image:SampleImageUpload1.png"
title="Image:SampleImageUpload1.png"><img src="/mysql/images/thumb/9/99/
SampleImageUpload1.png/120px-SampleImageUpload1.png"
width="120" height="120" alt=""></a>

</div>

<div class="gallerytext">

This is the first image
</div>

</div>

</td>

129



Choate c05.tex V1 - 11/20/2007 2:47pm Page 130

Chapter 5: Images and Files

<td>

<div class="gallerybox">

<div class="thumb" style="padding: 13px 0;">

<a href="/mysql/index.php/Image:SampleImageUpload2.png"
title="Image:SampleImageUpload2.png"><img src="/mysql/images/thumb/d/d3/
SampleImageUpload2.png/120px-SampleImageUpload2.png" width="120"
height="120" alt=""></a>

</div>

<div class="gallerytext"></div>

</div>

</td>

<td>

<div class="gallerybox">

<div class="thumb" style="padding: 13px 0;">

<a href="/mysql/index.php/Image:SampleImageUpload3.png"
title="Image:SampleImageUpload3.png"><img src="/mysql/images/thumb/6/64/
SampleImageUpload3.png/120px-SampleImageUpload3.png" width="120"
height="120" alt=""></a>

</div>

<div class="gallerytext"></div>

</div>

</td>

<td>

<div class="gallerybox">

<div class="thumb" style="padding: 13px 0;">

<a href="/mysql/index.php/Image:SampleImageUpload4.png"
title="Image:SampleImageUpload4.png"><img src="/mysql/images/thumb/3/30/
SampleImageUpload4.png/120px-SampleImageUpload4.png" width="120"
height="120" alt=""></a>

</div>

<div class="gallerytext"></div>

</div>

</td>

</tr>

</table>

Because the basic gallery tag is so limited, you may find it better to create your own galleries using
wikitext table syntax. The following code produces a similar gallery, with a few notable exceptions. First,
by using a table, you can control how many images appear on each row. In this case, there are two images
per row. In order to ensure that the thumbnail images appear correctly in the table, you have to make
sure they don’t float left or right, so you need to use the none parameter.

You also need to hard-code a width of 120 pixels. Note that in the example, the class of the table element
is set to gallery, and the class of the caption row is set to galleryheader. This ensures that the table will
share common design elements with the table produced automatically by the gallery tag.

130



Choate c05.tex V1 - 11/20/2007 2:47pm Page 131

Chapter 5: Images and Files

==Table gallery==

{| class="gallery"
|+
!class="galleryheader" style="border:none" colspan="2"| <big>Sample Gallery</big>

|-
| [[Image:SampleImageUpload1.png|120px|none|thumb| This is the first image]]
| [[Image:SampleImageUpload2.png|120px|none|thumb]]
|-
| [[Image:SampleImageUpload3.png|120px|none|thumb]]
| [[Image:SampleImageUpload4.png|120px|none|thumb]]
|}

The HTML output of this table is as follows:

<table class="gallery">

<tr>

<th class="galleryheader" style="border:none" colspan="2"><big>Sample
Gallery</big></th>

</tr>

<tr>

<td>

<div class="thumb tnone">

<div class="thumbinner" style="width:122px;">

<a href="/mysql/index.php/Image:SampleImageUpload1.png"
class="internal" title="This is the first image"><img
src="/mysql/images/thumb/9/99/SampleImageUpload1.png/
120px-SampleImageUpload1.png"
alt="This is the first image" width="120" height="120"
longdesc="/mysql/index.php/Image:SampleImageUpload1.png"
class="thumbimage"></a>

<div class="thumbcaption">

<div class="magnify" style="float:right">

<a
href="/mysql/index.php/Image:SampleImageUpload1.png" class="internal"
title="Enlarge"><img src="/mysql/skins/common/images/magnify-clip.png"
width="15" height="11" alt=""></a>

</div>This is the first image
</div>

</div>

</div
</td>

<td>

<div class="thumb tnone">

<div class="thumbinner" style="width:122px;">

<a
href="/mysql/index.php/Image:SampleImageUpload2.png" class="internal"

131



Choate c05.tex V1 - 11/20/2007 2:47pm Page 132

Chapter 5: Images and Files

title=""><img src="/mysql/images/thumb/d/d3/SampleImageUpload2.png/
120px-SampleImageUpload2.png" alt="" width="120" height="120"
longdesc="/mysql/index.php/Image:SampleImageUpload2.png" class="thumbimage"></a>

<div class="thumbcaption">

<div class="magnify" style="float:right">

<a
href="/mysql/index.php/Image:SampleImageUpload2.png"
class="internal" title="Enlarge"><img
src="/mysql/skins/common/images/magnify-clip.png" width="15" height="11"
alt=""></a>

</div>

</div>

</div>

</div>

</td>

</tr>

<tr>

<td>

<div class="thumb tnone">

<div class="thumbinner" style="width:122px;">

<a
href="/mysql/index.php/Image:SampleImageUpload3.png" class="internal"
title=""><img src="/mysql/images/thumb/6/64/SampleImageUpload3.png/120
px-SampleImageUpload3.png" alt="" width="120" height="120"
longdesc="/mysql/index.php/Image:SampleImageUpload3.png" class="thumbimage"></a>

<div class="thumbcaption">

<div class="magnify" style="float:right">

<a
href="/mysql/index.php/Image:SampleImageUpload3.png" class="internal"
title="Enlarge"><img src="/mysql/skins/common/images/magnify-clip.png"
width="15" height="11" alt=""></a>

</div>

</div>

</div>

</div>

</td>

<td>

<div class="thumb tnone">

<div class="thumbinner" style="width:122px;">

<a
href="/mysql/index.php/Image:SampleImageUpload4.png" class="internal"
title=""><img src="/mysql/images/thumb/3/30/SampleImageUpload4.png/120
px-SampleImageUpload4.png" alt="" width="120" height="120"
longdesc="/mysql/index.php/Image:SampleImageUpload4.png"
class="thumbimage"></a>

132



Choate c05.tex V1 - 11/20/2007 2:47pm Page 133

Chapter 5: Images and Files

<div class="thumbcaption">

<div class="magnify" style="float:right">

<a
href="/mysql/index.php/Image:SampleImageUpload4.png" class="internal"
title="Enlarge"><img src="/mysql/skins/common/images/magnify-clip.png"
width="15" height="11" alt=""></a>

</div>

</div>

</div>

</div>

</td>

</tr>

</table>

Figure 5-10 shows an example of both galleries. Note the design similarities between the two, because
they both use the same classes in the wikitext table version as that automatically generated using the
gallery tag. They both share a gray border around the table, and the ‘‘Sample gallery’’ text is the same
font, size, and alignment. In Chapter 8, you will learn how to change the CSS directly in order to change
the look and feel of any of the HTML produced by MediaWiki.

Figure 5-10: Sample image galleries

133



Choate c05.tex V1 - 11/20/2007 2:47pm Page 134

Chapter 5: Images and Files

Uploading Documents
On Wikipedia, images seem to be what is uploaded most often, but don’t forget that this MediaWiki
feature enables you to upload any kind of document, as long as you have configured it properly. Many
organizations use wikis on their intranet, both for basic knowledge management and as a way to share
files. While you may wish that everyone would enter their content directly to the wiki, you will find that
many Word documents and PDF files need to be shared as well.

MediaWiki’s facilities for tracking changes to any file that has been uploaded can be used to track changes
in a Microsoft Word document, for example.

The image in Figure 5-11 shows the so-called image description page for an uploaded PDF file. In order
to enable this, you have to add the PDF extension to the list of files that MediaWiki would accept for
uploading. In DefaultSettings.php, the legal extensions are as follows:

$wgFileExtensions = array( 'png', 'gif', 'jpg', 'jpeg' );

In order to enable PDF files, you need to put the following line in LocalSettings.php:

$wgFileExtensions = array( 'png', 'gif', 'jpg', 'jpeg', 'pdf' );

Once you make this change, you can upload a PDF file just like you uploaded images before.

Figure 5-11: Uploaded PDF file

134



Choate c05.tex V1 - 11/20/2007 2:47pm Page 135

Chapter 5: Images and Files

The ins and outs of tracking changes to the uploaded files are discussed in the next chapter, but you can
already see the potential for using MediaWiki as a basic document management system.

This author once consulted with a small nonprofit scientific research firm that was in the process of stan-
dardizing all of their internal processes (a necessary evil that results from growth). They were creating
standard operating procedure (SOP) documents in Microsoft Word and posting them to a shared drive
on which everyone in the office could access them.

The problem was that they had no way of knowing whether they were viewing the latest copy, and
no way to make comments on the documents as they went through the editing process. MediaWiki
was recommended as a viable solution to such a problem because it has some distinct advantages. The
documents could be made available through a Web browser, as opposed to through the file system, and
anyone could look at the different versions of the document that existed, including who uploaded the
latest version. If there was a question about one of the SOPs, then it could be posted on the talk page
for that image. Not only is it a very simple solution, it’s also very inexpensive (effectively free), and a
significant improvement on the previous method they were using.

Summary
In this chapter, you learned how to enable images and how to use wikitext to embed images in your pages
and link to images. You also learned how to create and work with image galleries. In the next chapter,
you will build on that knowledge and learn about more advanced editing features. For example, you will
learn how to move, delete, and protect pages, followed by learning how to perform advanced editing
functions using what the developers of MediaWiki call magic words. You will also learn how MediaWiki
handles version control for both regular pages and images, and how you can control access to certain
page functions.

135



Choate c05.tex V1 - 11/20/2007 2:47pm Page 136



Choate c06.tex V1 - 11/19/2007 2:02pm Page 137

Page Actions and
Version Control

In the previous two chapters, you learned how to edit pages with wikitext, as well as how to upload
images. There is a lot more that you can do with a page (or to a page). Some of the concepts have
been touched on in previous chapters, but this chapter focuses on two closely related topics: what
MediaWiki calls actions, and MediaWiki’s approach to version control.

You’ve already been exposed to actions in previous chapters. Viewing a page is an action, for
example, as is editing a page, moving a page, or deleting a page. Beyond that, you can perform
actions such as protecting pages, reverting to earlier revisions, comparing changes, and so on.

Technically speaking, an action is invoked by passing a parameter in the URL of an HTTP GET request
to MediaWiki’s index.php file. There are also some activities that fall under the same conceptual
category of actions that I have included in this chapter that rely on Special Pages to implement, such
as importing and exporting pages. While technically not actions, these topics fit best in the context
of this chapter, which is why they are discussed here.

Before we get to the actions themselves, there is some background information to review. First,
you will get a very brief overview of some aspects of the HTTP protocol that you should know in
order to help you understand the semantics of actions. This is followed by a more detailed look at
how pages are implemented in MediaWiki, including a look at the underlying database tables and
how different revisions of pages are managed. With this background information in place, you will
then learn about the actions themselves, as well as how MediaWiki handles permissions and limits
actions to specific user groups.

How Pages Work
For eleven years, while I was working at a newspaper, every day there was a distinct moment
when work on the content for that day’s newspaper stopped and the printing and distribution of
the newspaper began. This is the moment when a newspaper is published, when ink is pressed



Choate c06.tex V1 - 11/19/2007 2:02pm Page 138

Chapter 6: Page Actions and Version Control

against paper. It’s also the last step of a very long process of newsgathering, writing, and editing (a
process that was once described by a colleague as the most remarkable series of coincidences that
have to occur every day to get the paper out).

Sometimes newspaper people refer to this moment as ‘‘putting the paper to bed.’’ There was (and is) a
sense of permanence to it. For every story that appeared in the paper, the writing and editing process
was completed once the paper was put to bed. While references to earlier stories or corrections to stories
may appear in future editions, the story as published on that day will stay that way forever, a permanent
record of the state of the world on that particular day.

Editing and content management in the world of printing presses is discrete and clearly delineated,
like black ink on white paper; a wiki, more than any other kind of website, smudges those edges,
leaving smears of gray. In the world of printing presses, stories are drafted, edited, and revised in an
iterative process that culminates in publication. In the wiki world, there is no such thing as a draft.
Every modification to the content of a page is immediately published once the changes are submitted
by the author.

In MediaWiki, a page is a series of revisions. The current revision does have greater import than previous
revisions, and it is the closest thing to the idea of a published, finished work, but the next revision and
all the earlier revisions are always just a few clicks away. In theory, with each revision, the article should
be better (except for the occasional act of vandalism), but each revision is still provisional, preserving its
privileged status only until the next revision is made that replaces it.

Because MediaWiki defers all editorial oversight until after a change has been made, the ability to track,
monitor, and roll back changes is of utmost importance. In order to understand how MediaWiki manages
pages, you need to understand how MediaWiki manages revisions.

Components of a Page
Content — in this case, a page — consists of a collection of revisions and variants. The term variant isn’t
an official MediaWiki designation, but it is one that can be used when discussing content management
issues in a more precise way. One revision replaces a previous revision. A variant is another form of the
same document, either in a different context or format (such as wikitext versus HTML) or in another
language. Any given page can be displayed in the following variants:

❑ In a different skin, with different navigational elements

❑ As HTML without any navigational elements at all

❑ As raw wikitext

❑ In a different language

All of these different variants of a page (with the exception of the last one) can be triggered by using an
action in MediaWiki.

A page is broadly divided into a content area and a navigation area (see Figure 6-1). The content area
displays the content that is unique to a given page — the content that is written for an article, or was
written by users. The navigation area contains a variety of different kinds of information, such as the site
logo, copyright information, and links to other parts of the site. The actual layout and structure of the
overall page is determined by the skin, which is composed of PHP code and stylesheets. By default, users

138



Choate c06.tex V1 - 11/19/2007 2:02pm Page 139

Chapter 6: Page Actions and Version Control

can select which skin to use, but the name of the default skin is ‘‘monotone’’ (which is also the skin in use
in all the screen shots used in this book so far).

In Chapter 8, you will learn how to customize the skin for your requirements.

While the skin determines the layout of the page, it does not control the text that is displayed. Bear
in mind that MediaWiki is designed to be a multilingual site, which means that all the content in the
navigation area of the page is dependent upon the language in use at the site. The default language of
a site is determined in LocalSettings.php, but it can be overridden in user preferences. All the screen
shots thus far have been in English, but they could easily be changed to French, German, or even Hebrew,
by modifying your preferences. This chapter does not go into much detail about language localization.

Figure 6-1: A wiki page can be divided into a navigation area and a
content area

Revisions
When you visit a page, you are actually viewing the current revision of the page. While the default
behavior is to view the current revision, the default behavior can be overridden, making it possible
for any user to view any version of a page as long as the user knows the revision ID of that page.
This enables the user to view the history of the page, to roll back changes to previous versions, to find

139



Choate c06.tex V1 - 11/19/2007 2:02pm Page 140

Chapter 6: Page Actions and Version Control

out who made what changes to a page at any given time, and so on. The following URL causes the
revision of the Main Page with the ID of 1 to be displayed, rather than the current revision:

http://127.0.0.1/mysql/index.php/Main_Page?action=view&oldid=1

The version tracking of MediaWiki is not as sophisticated as what you find in a version control system
like Subversion. The primary difference is that MediaWiki keeps a complete copy of each version, even
when there are only minor differences between the two versions. Version control systems, on the other
hand, only keep a record of the differences between two versions of a document, which saves a lot of
space (and network traffic). Old versions of pages can be compressed when archived, but that is still not
quite as good as version control (arguably, it doesn’t really matter, as storage space is cheap, but it does
seem inelegant, at least).

For a typical page, three different tables track its current state: page, revision, and text. (If you chose to use
a prefix when installing MediaWiki, then the tables will be named prefix_page, prefix_revision, etc.)
There is one record per page in the page table.

The page table (MySQL)
The following code shows the SQL used to generate the page table in MySQL, and includes the comments
provided by MediaWiki developers.

The table is indexed on the page_namespace and page_title fields.

The table also tracks whether the page is a redirect, and whether it is new (which is defined as a page
with only one edit), what the restrictions are for the page, and when the page was last touched. A random
number is also stored in the table that is used by the Special:Random page to randomly display a page
to a user. The page also maintains the page_latest field, which points to the rev_id field of the revision
table, which serves as the id of the current revision. Finally, the length of the current text of the page
is stored.

-- Core of the wiki: each page has an entry here which identifies
-- it by title and contains some essential metadata.
--
CREATE TABLE /*$wgDBprefix*/page (

-- Unique identifier number. The page_id will be preserved across
-- edits and rename operations, but not deletions and recreations.
page_id int(8) unsigned NOT NULL auto_increment,

-- A page name is broken into a namespace and a title.
-- The namespace keys are UI-language-independent constants,
-- defined in includes/Defines.php
page_namespace int NOT NULL,

-- The rest of the title, as text.
-- Spaces are transformed into underscores in title storage.
page_title varchar(255) binary NOT NULL,

-- Comma-separated set of permission keys indicating who
-- can move or edit the page.
page_restrictions tinyblob NOT NULL,

140



Choate c06.tex V1 - 11/19/2007 2:02pm Page 141

Chapter 6: Page Actions and Version Control

-- Number of times this page has been viewed.
page_counter bigint(20) unsigned NOT NULL default ’0’,

-- 1 indicates the article is a redirect.
page_is_redirect tinyint(1) unsigned NOT NULL default ’0’,

-- 1 indicates this is a new entry, with only one edit.
-- Not all pages with one edit are new pages.
page_is_new tinyint(1) unsigned NOT NULL default ’0’,

-- Random value between 0 and 1, used for Special:Randompage
page_random real unsigned NOT NULL,

-- This timestamp is updated whenever the page changes in
-- a way requiring it to be re-rendered, invalidating caches.
-- Aside from editing this includes permission changes,
-- creation or deletion of linked pages, and alteration
-- of contained templates.
page_touched char(14) binary NOT NULL default ’’,

-- Handy key to revision.rev_id of the current revision.
-- This may be 0 during page creation, but that shouldn’t
-- happen outside of a transaction... hopefully.
page_latest int(8) unsigned NOT NULL,

-- Uncompressed length in bytes of the page’s current source text.
page_len int(8) unsigned NOT NULL,

) TYPE=InnoDB;

The revision table
The revision table links the page record in the page table with the different revisions in the text table.
Each page has a page_id and a revision_id.

The revision table’s function is primarily to serve as a link between a page record and a text record.
Each page can have many revisions, but each revision is linked to only one text record. In addition to
the rev_page field, which holds the page ID, and the rev_text_id field, which holds the ID of the text
record, the revision table also tracks the username and ID of the person responsible for the revision, any
comments the user made while making the revision, and a timestamp. If the user has designated this
revision as a minor one, then that fact is tracked in the rev_minor_edit field.

-- Every edit of a page creates also a revision row.
-- This stores metadata about the revision, and a reference
-- to the text storage backend.
--
CREATE TABLE /*$wgDBprefix*/revision (

rev_id int(8) unsigned NOT NULL auto_increment,

-- Key to page_id. This should _never_ be invalid.
rev_page int(8) unsigned NOT NULL,

-- Key to text.old_id, where the actual bulk text is stored.

141



Choate c06.tex V1 - 11/19/2007 2:02pm Page 142

Chapter 6: Page Actions and Version Control

-- It’s possible for multiple revisions to use the same text,
-- for instance revisions where only metadata is altered
-- or a rollback to a previous version.
rev_text_id int(8) unsigned NOT NULL,

-- Text comment summarizing the change.
-- This text is shown in the history and other changes lists,
-- rendered in a subset of wiki markup by Linker::formatComment()
rev_comment tinyblob NOT NULL,

-- Key to user.user_id of the user who made this edit.
-- Stores 0 for anonymous edits and for some mass imports.
rev_user int(5) unsigned NOT NULL default ’0’,

-- Text username or IP address of the editor.
rev_user_text varchar(255) binary NOT NULL default ’’,

-- Timestamp
rev_timestamp char(14) binary NOT NULL default ’’,

-- Records whether the user marked the ’minor edit’ checkbox.
-- Many automated edits are marked as minor.
rev_minor_edit tinyint(1) unsigned NOT NULL default ’0’,

-- Not yet used; reserved for future changes to the deletion system.
rev_deleted tinyint(1) unsigned NOT NULL default ’0’,

PRIMARY KEY rev_page_id (rev_page, rev_id),
) TYPE=InnoDB;

The text table
MediaWiki never deletes the text to a page on its own, so the text table contains all the different versions
of the page that are in existence. The text table stores the raw wikitext, so when a page is viewed, that
wikitext is rendered into HTML (or pulled from the cache). Different revision records can point to the
same text record (in the event of rollbacks to a previous version, for example). When a page is rolled back
to a previous version, a new revision record is created so that the entire history is preserved.

The fields in this table are prefixed with old as a legacy from early versions of MediaWiki. There are only
three fields in the table: old_id, old_text, and old_flags, which mark as old the text ID, the actual text
of the revision, and some flags about the nature of the content of the text field, respectively.

--
-- Holds text of individual page revisions.
--
-- Field names are a holdover from the ’old’ revisions table in
-- MediaWiki 1.4 and earlier: an upgrade will transform that
-- table into the ’text’ table to minimize unnecessary churning
-- and downtime. If upgrading, the other fields will be left unused.
--
CREATE TABLE /*$wgDBprefix*/text (

-- Unique text storage key number.
-- Note that the ’oldid’ parameter used in URLs does *not*

142



Choate c06.tex V1 - 11/19/2007 2:02pm Page 143

Chapter 6: Page Actions and Version Control

-- refer to this number anymore, but to rev_id.
--
-- revision.rev_text_id is a key to this column
old_id int(8) unsigned NOT NULL auto_increment,

-- Depending on the contents of the old_flags field, the text
-- may be convenient plain text, or it may be funkily encoded.
old_text mediumblob NOT NULL,

-- Comma-separated list of flags:
-- gzip: text is compressed with PHP’s gzdeflate() function.
-- utf8: text was stored as UTF-8.
-- If $wgLegacyEncoding option is on, rows *without* this flag
-- will be converted to UTF-8 transparently at load time.
-- object: text field contained a serialized PHP object.
-- The object either contains multiple versions compressed
-- together to achieve a better compression ratio, or it refers
-- to another row where the text can be found.
old_flags tinyblob NOT NULL,

) TYPE=InnoDB;

In the previous chapter, when you edited a page, the text stayed the same regardless of what happened,
unless it was edited again, or a page that it linked to was changed in some way. Images are a special case.
Like every other page, information about the image is stored in the page, revision, and text tables. Unlike
other pages, though, there is also an image table that contains information pertinent to the image file.

There are also pagelink and imagelink tables, that track which pages link to each other so that when a
page changes (e.g., is deleted, etc.), all the other pages that link to it can be updated.

Actions
Most of the user interaction with MediaWiki is mediated by the index.php page. Whenever the
index.php page is called, MediaWiki performs an action. The type of action is determined by
parameters that are passed as part of the URL in the query string. If no parameters are passed,
then the default action is view.

Many of the actions are oriented toward viewing different aspects of the page, such as the page metadata,
or the raw wikitext, and so on. The rest refer to actions that are done to a page, such as editing, moving,
and deleting the page.

As a user of the site, you do not necessarily need to bother yourself much with actions, other than
knowing what basic things you can do to or with a page, as well as knowing how the actions are restricted
to certain user groups. If you plan on doing any customization of MediaWiki, then more detailed
knowledge of how the different actions are triggered is essential.

Permissions
Every action is paired with a set of permissions that determines which user groups are allowed to
perform the action. Out of the box, MediaWiki is set up so that anonymous users can read, create, and
edit pages, as well as create their own accounts and their own talk page. As a wiki operator, you may not

143



Choate c06.tex V1 - 11/19/2007 2:02pm Page 144

Chapter 6: Page Actions and Version Control

want anonymous users to be able to perform such operations, and you can control that by changing the
settings in LocalSettings.php.

Every user must belong to one of five explicit groups:

❑ The * group refers to all anonymous visitors to the site — basically, readers who have not
logged in.

❑ The user group represents all logged in accounts.

❑ The bureaucrat is a special group that affords members the privilege of setting other
people’s privileges.

❑ The sysop group is the primary administrative group, which is given the most powers to
manipulate pages, including the capability to move pages, delete them, roll back edits, and
so forth.

❑ The bot group is designated to represent scripts that automate tasks in MediaWiki. The script
logs into MediaWiki as a user in the bot group. Because most of the reason for using a bot is to
make wholesale changes, it’s helpful to be able to know whether a change was made by a bot or
a human being. In addition, bot actions are not logged.

The following code snippet is the PHP array used by MediaWiki to track privileges. The first element
in the array identifies the group, and the second element identifies what action the group member is
allowed to take:

$wgGroupPermissions = array();

// Implicit group for all visitors
$wgGroupPermissions[’*’ ][’createaccount’] = true;
$wgGroupPermissions[’*’ ][’read’] = true;
$wgGroupPermissions[’*’ ][’edit’] = true;
$wgGroupPermissions[’*’ ][’createpage’] = true;
$wgGroupPermissions[’*’ ][’createtalk’] = true;

// Implicit group for all logged-in accounts
$wgGroupPermissions[’user’ ][’move’] = true;
$wgGroupPermissions[’user’ ][’read’] = true;
$wgGroupPermissions[’user’ ][’edit’] = true;
$wgGroupPermissions[’user’ ][’createpage’] = true;
$wgGroupPermissions[’user’ ][’createtalk’] = true;
$wgGroupPermissions[’user’ ][’upload’] = true;
$wgGroupPermissions[’user’ ][’reupload’] = true;
$wgGroupPermissions[’user’ ][’reupload-shared’] = true;
$wgGroupPermissions[’user’ ][’minoredit’] = true;

// Implicit group for accounts that pass $wgAutoConfirmAge
$wgGroupPermissions[’autoconfirmed’][’autoconfirmed’] = true;

// Implicit group for accounts with confirmed email addresses
// This has little use when email address confirmation is off
$wgGroupPermissions[’emailconfirmed’][’emailconfirmed’] = true;

// Users with bot privilege can have their edits hidden

144



Choate c06.tex V1 - 11/19/2007 2:02pm Page 145

Chapter 6: Page Actions and Version Control

// from various log pages by default
$wgGroupPermissions[’bot’ ][’bot’] = true;
$wgGroupPermissions[’bot’ ][’autoconfirmed’] = true;
$wgGroupPermissions[’bot’ ][’nominornewtalk’] = true;

// Most extra permission abilities go to this group
$wgGroupPermissions[’sysop’][’block’] = true;
$wgGroupPermissions[’sysop’][’createaccount’] = true;
$wgGroupPermissions[’sysop’][’delete’] = true;
$wgGroupPermissions[’sysop’][’deletedhistory’] = true; // can view deleted

history entries, but not see or restore the text
$wgGroupPermissions[’sysop’][’editinterface’] = true;
$wgGroupPermissions[’sysop’][’import’] = true;
$wgGroupPermissions[’sysop’][’importupload’] = true;
$wgGroupPermissions[’sysop’][’move’] = true;
$wgGroupPermissions[’sysop’][’patrol’] = true;
$wgGroupPermissions[’sysop’][’autopatrol’] = true;
$wgGroupPermissions[’sysop’][’protect’] = true;
$wgGroupPermissions[’sysop’][’proxyunbannable’] = true;
$wgGroupPermissions[’sysop’][’rollback’] = true;
$wgGroupPermissions[’sysop’][’trackback’] = true;
$wgGroupPermissions[’sysop’][’upload’] = true;
$wgGroupPermissions[’sysop’][’reupload’] = true;
$wgGroupPermissions[’sysop’][’reupload-shared’] = true;
$wgGroupPermissions[’sysop’][’unwatchedpages’] = true;
$wgGroupPermissions[’sysop’][’autoconfirmed’] = true;
$wgGroupPermissions[’sysop’][’upload_by_url’] = true;
$wgGroupPermissions[’sysop’][’ipblock-exempt’] = true;

// Permission to change users’ group assignments
$wgGroupPermissions[’bureaucrat’][’userrights’] = true;

As you can see from the preceding code, the sysop has the broadest level of discretion in terms of what
he or she can do. If your wiki is available on the Internet, and not behind a company firewall, you should
disable edits by the general public, unless you are prepared to monitor the pages intensively to identify
spam. It’s easily done. If you want only registered users to be able to edit pages, then you merely need
to insert the following line in LocalSettings.php:

$wgGroupPermissions[’*’ ][’edit’] = false;

Another common permissions setting is to disable anonymous users’ ability to create their own account,
by entering the following line in LocalSettings.php:

$wgGroupPermissions[’*’ ][’createaccount’] = false;

If the wiki is on a local intranet, then the IT department may want to create user accounts, or have users
use existing usernames and passwords (MediaWiki supports LDAP and ActiveDirectory). This is both
a convenience item and a security item. If users are able to create their own accounts, then it makes it
difficult to have a solid audit trail of changes made to the site. In many cases, you need to be able to
definitively associate a user ID with a real person, and the only way to do that is to place controls on
account creation.

145



Choate c06.tex V1 - 11/19/2007 2:02pm Page 146

Chapter 6: Page Actions and Version Control

In addition to the explicit permissions, there are two other groups, autoconfirmed and emailconfirmed.

The autoconfirmed permission refers to a security measure MediaWiki has in place to track new users
and limit, to some degree, spammers. When a user creates an account, the user has limited privileges
until a period of time specified by the $wgAutoConfirmAge value in LocalSettings.php. The default
value is 0, which means that no time is required. The following code snippet comes from
DefaultSettings.php:

/**
* Number of seconds an account is required to age before
* it’s given the implicit ’autoconfirm’ group membership.
* This can be used to limit privileges of new accounts.
*
* Accounts created by earlier versions of the software
* may not have a recorded creation date, and will always
* be considered to pass the age test.
*
* When left at 0, all registered accounts will pass.
*/

$wgAutoConfirmAge = 0;
//$wgAutoConfirmAge = 600; // ten minutes
//$wgAutoConfirmAge = 3600*24; // one day

As this example shows, the duration is tracked in terms of seconds.

When MediaWiki was originally configured, you had the option of requiring e-mail confirmation.
The emailconfirmed permission tracks whether a user has confirmed his or her e-mail address
after registering.

These permission settings are from MediaWiki 1.9.3. In MediaWiki 1.10, which was released during
the production of this book, additional permission settings are available. Be sure to check the latest
documentation to know what’s available.

Viewing Pages
View is the default action. As such, it does not necessarily appear in the URL request for the
page. Recall that the URL can take two forms, so this chapter will show you two different
examples of how the action view is triggered when viewing a page. The basic URL looks like
the following:

http://127.0.0.1/mysql/index.php?title=Main_Page&action=view

If you are using Apache, you can have pretty URLs that drop the question mark after the index.php
portion of the URL. As you will see in the following example, if you are using pretty URLs, then you
have to treat the action = view portion of the URL as the very first part of the query string and prepend
a ?. Web servers treat everything after the question mark as part of the query string; and even though
Apache allows you to eliminate the ? for the first parameter, you still need it for those that follow.

http://127.0.0.1/wiki/index.php/Main_Page?action=view

146



Choate c06.tex V1 - 11/19/2007 2:02pm Page 147

Chapter 6: Page Actions and Version Control

From here on out, the examples use the plain version of the URL, as it works in all cases. You will see
that the pattern action = {action word} is repeated throughout the examples.

Viewing Specific Versions
By default, the view action displays the current revision of a page, but you also have the option of
requesting a specific revision of a page. This most commonly comes into play when viewing the history
of the page — MediaWiki enables you to compare different revisions of any given page, and in order
to do that MediaWiki needs to be able to generate links to particular revisions. The following example
shows a link to a page with a revision ID of 76:

http://127.0.0.1/mysql/index.php?title=Main_Page&action=view&oldid=76

Note that because the default action is view, you can drop that parameter and use the following
equivalent URL:

http://127.0.0.1/mysql/index.php?title=Main_Page&oldid=76

Viewing the Raw Wikitext of a Page
View shows the page rendered along with the user interface of the wiki’s skin. Sometimes you want to be
able to view the raw wikitext before it is converted to HTML, and it is for that reason that the raw action
exists. To view the raw wikitext of your wiki’s main page, you can use the following URL:

http://127.0.0.1/wiki/index.php?title=Main_Page&action=raw

If you paste this URL into your browser, then instead of getting the complete page, you get only the
wikitext, as shown in the following sample:

<big>’’’MediaWiki has been successfully installed.’’’</big>

Consult the [http://meta.wikimedia.org/wiki/Help:Contents User’s Guide]
for information on using the wiki software.

== Getting started ==

*
[http://www.mediawiki.org/wiki/Help:Configuration_settings Configuration
settings list]

* [http://www.mediawiki.org/wiki/Help:FAQ MediaWiki FAQ]
* [http://mail.wikimedia.org/mailman/listinfo/mediawiki-announce MediaWiki

release mailing list]

Viewing the Wikitext Rendered as HTML
Sometimes you want to see how the wikitext text is rendered, but you are not that interested in having
all the extra navigation and logos that surround the main content area displayed. In order to do that, you
need to use the render action:

http://127.0.0.1/wiki/index.php?title=Main_Page&action=render

147



Choate c06.tex V1 - 11/19/2007 2:02pm Page 148

Chapter 6: Page Actions and Version Control

Figure 6-2 shows how just the content itself is rendered as HTML, and not every item on the typical page.

Figure 6-2: Rendered wikitext

Editing and Modifying Pages
Editing a page is a two-step process. First, you go to the edit page, where a text field is displayed in
which you can edit the wikitext. Then, once you have edited the page, you can submit the edits, which
then become the current revision for that page.

Edit/Submit
On the surface, the editing action is simple enough, but some interesting things take place in the
background that you need to know. First, to get to the edit page itself, you click on a URL that takes
the following form:

http://127.0.0.1/mysql/index.php?title=Main_Page&action=edit

This will display the edit page. Once you are finished editing, you can submit the page, but MediaWiki
needs to ensure that malicious users can’t just submit edits to any page willy-nilly, so when the editing
form is presented to the user, it contains a hidden field, #wpEditToken, which in the following example
is set to the value of 70c50ff7beee7423276b639a3877c227\. This token is then resubmitted when the
user submits the edits to the page, so MediaWiki knows that it is a legitimate edit. When the changes are
submitted, they are posted to the following URL (which is displayed as a relative URL, as that is how it
is coded on the page:

/mysql/index.php?title=Main_Page&action=submit

The value for the token is POSTed, which is how form data is sent to a Web server. This means that it is
not displayed in the URL as it is with typical GET requests. In practice, this means that some of the values
used by MediaWiki are passed in the URL, while others are passed as form data.

The following is an example of the edit form generated by MediaWiki. Toward the end of the code, you
can see the token:

<form id="editform" name="editform" method="post" action="/mysql/index.php?
title=Main_Page&amp;action=submit" enctype="multipart/form-data">

<input type=’hidden’ value="" name="wpSection">

148



Choate c06.tex V1 - 11/19/2007 2:02pm Page 149

Chapter 6: Page Actions and Version Control

<input type=’hidden’ value="20070604194308" name="wpStarttime">

<input type=’hidden’ value="20070601194849" name="wpEdittime">

<input type=’hidden’ value="" name="wpScrolltop" id="wpScrolltop">

<textarea tabindex=’1’ accesskey="," name="wpTextbox1" id="wpTextbox1"
rows=’25’ cols=’80’>

Text to edit goes here

</textarea>

<div id="editpage-copywarn">

Copyright info goes here
</div><span id=’wpSummaryLabel’><label for=’wpSummary’>Summary:

</label></span>

<div class=’editOptions’>

<input tabindex=’2’ type=’text’ value="" name=’wpSummary’ id=’wpSummary’
maxlength=’200’ size=’60’><br>

<input tabindex=’3’ type=’checkbox’ value=’1’ name=’wpMinoredit’
accesskey=’i’ id=’wpMinoredit’> <label for=’wpMinoredit’ title=’Mark this as a
minor edit [alt-i]’>This is a minor edit</label> <input tabindex=’4’
type=’checkbox’ name=’wpWatchthis’ accesskey="w" id=’wpWatchthis’>

<label for=’wpWatchthis’ title="Add this page to your watchlist [alt-w]">

Watch this page</label>

<div class=’editButtons’>

<input id="wpSave" name="wpSave" type="submit" tabindex="5"
value="Save page" accesskey="s" title="Save your changes [alt-s]">

<input id="wpPreview" name="wpPreview" type="submit" tabindex="6"
value="Show preview" accesskey="p" title="Preview your changes,
please use this before saving! [alt-p]"> <input id="wpDiff"
name="wpDiff" type="submit" tabindex="7" value="Show changes"
accesskey="v" title="Show which changes you made to the text. [alt-v]">

<span class=’editHelp’><a href="/mysql/index.php/Main_Page"
title="Main Page">Cancel</a> | <a target="helpwindow"
href="/mysql/index.php/Help:Editing">Editing help</a>

(opens in new window)</span>

</div><!-- editButtons -->

</div><!-- editOptions -->

<div class="mw-editTools"></div>

<div class=’templatesUsed’></div><input type=’hidden’
value="70c50ff7beee7423276b639a3877c227\" name="wpEditToken">

<input name="wpAutoSummary" type="hidden"
value="d41d8cd98f00b204e9800998ecf8427e">

</form>

Previous Versions
Manipulating previous versions is an important part of MediaWiki. You can view the history
of pages, compare revisions, and revert to previous revisions. Figure 6-3 shows the history of a page

149



Choate c06.tex V1 - 11/19/2007 2:02pm Page 150

Chapter 6: Page Actions and Version Control

called A New Page. You get to this page by clicking the History tab on the article page, or you can enter
the following URL directly:

http://127.0.0.1/wiki/index.php?title=A_new_page&action=history

Figure 6-3: A list of revisions displayed on the History page of an article

The History page displays a list of information about each revision for that particular page, each
displayed on its own line. It also enables you to compare different revisions of the same page by viewing
what is called a diff , a graphical representation of the differences between the two files. You can compare
a page with any previous version, not just the one immediately preceding it. You can also compare two
older versions.

In order to use this page effectively, it is helpful to take a closer look at the information that is displayed.
Each line represents a revision, and it consists of text, links to pages with more information, and radio
buttons for selecting pages to compare.

Figure 6-4 is a close-up of the top line from the previous figure. Each item is numbered to illustrate the
specific meaning of each column.

(cur) (last) 18:43, 4 June 2007 WikiSysop? (Talk? I contribs I block) m (I've added a minor change to the page.)

1 2 3 4 5 76

Figure 6-4: Information about an individual revision on the History page

150



Choate c06.tex V1 - 11/19/2007 2:02pm Page 151

Chapter 6: Page Actions and Version Control

1. This link (cur) compares the current revision (which is always the first one listed) with the
revision represented by this row. The link is disabled on the first row, as it makes no sense
to compare a revision with itself.

2. The second link in the row compares this revision with the previous revision, which is the
revision in the row directly beneath it.

3. The date reflects the date on which that particular revision was made, and if you click
on it, you are taken to a page that displays the revision. Whenever you view an earlier
revision of a page, the user is notified at the top of the page that they are reading an
earlier version of the document so that they will know they are potentially reading
outdated information.

4. This is the user who created the revision.

5. The next three links all contain information pertaining to the user who created this revision.
There is a link to the Talk page for this user, a link to a list of this user’s other contributions,
and a link to a page that enables you to block this user from making additional revisions
(see the section called ‘‘Blocking’’ later in this chapter).

6. The m signifies a minor edit.

7. The comments made by the user when submitting the edit are displayed here. It’s a
good idea to have a policy regarding what kind of comments users should place here
when submitting an edit. When the user describes the edit in some detail, it can make
it easier to review. For example, if all you did was fix the spelling of one word, then it
is helpful to note that fact in the comments so that the next reviewer will know what
was changed.

In addition to the links, there are radio buttons you can use to make an ad hoc selection. The left radio
button selects the earlier of the two revisions to be compared, while the right radio button selects a more
recent revision.

Diff
When you compare pages, you are taken to a page that displays a diff. Links to view the diff look like
the following:

http://127.0.0.1/mysql/index.php?title=A_new_page&diff=111&oldid=107

The first parameter, diff = 111, refers to the current revision, and oldid = 107 refers to an earlier revision.
In terms of radio buttons, the oldid refers to the earlier of the two revisions, which is the radio button in
the left-hand column.

The program used to generate the diff is set in LocalSettings.php. Figure 6-5 illustrates a diff
as displayed by MediaWiki. The left column represents the earlier revision and the right column
represents the more recent revision. The page does not show the complete content from both pages.
Instead, it shows the lines where differences exist, plus some additional context that includes the
preceding line.

Lines of text preceding by a minus sign (−) are lines that have been deleted (it is displayed
in yellow if you are using the default skin). Lines of text preceded by a plus sign (+) are lines

151



Choate c06.tex V1 - 11/19/2007 2:02pm Page 152

Chapter 6: Page Actions and Version Control

that have been added. In this example, line 7 was modified between the two revisions. In the earlier
revision, it said, ‘‘Not to be outdone, I’m adding a fifth revision.’’ In the later of the two revisions, it says,
‘‘Not to be outdone, I’m adding a fifth revision. A minor change.’’ The diff program treats this as if line
7 were deleted from the earlier revision and a new line 7 was added in the more recent revision. The
program is smart enough to know that the two lines share a lot of the same text, so only the actual new
text is highlighted in red — the phrase ‘‘A minor change.’’

Figure 6-5: A diff comparing two different revisions of the same page

The other links on the page work just like the links on the History page. There are some additional links
as well, which are used to revert to previous versions. There are three different ways to return to an
earlier version of a page: rollback, revert, and undo. They all do basically the same thing, but in modestly
different ways. Here are the definitions:

❑ Undo: Makes the most recent previous revision the current revision

❑ Revert: Makes any earlier revision the current revision

❑ Rollback: Eliminates any edits made by the last user to a page, so that the page
that existed prior to that user’s edits is once again the current page. From a
practical perspective, the purpose of a rollback is to revert a page back to its state
prior to being vandalized, which is why you would want to wipe out a series
of edits by a user. This privilege is limited to sysops by default and is available from the
History page.

Both undo and rollback are triggered by clicking on their respective links. In order to revert to an earlier
page, you click the Edit link on the diff page. When you click the link to edit the page, you are taken to
the edit page. The edit page displays the following warning: ‘‘You are editing an out-of-date revision of
this page. If you save it, any changes made since this revision will be lost.’’ You can make any changes
you want (or no changes at all) and then click the Save Page button, and this revision will now become
the current revision for the page.

The process of returning a page to an earlier revision suffers to some degree from a lack of clarity in the
terminology MediaWiki uses to describe the action. In some cases, the interface uses the word revert

152



Choate c06.tex V1 - 11/19/2007 2:02pm Page 153

Chapter 6: Page Actions and Version Control

and in others it uses rollback, and the online documentation isn’t particularly helpful in clarifying the
difference between reverting to an earlier revision, rolling back to an earlier revision, or undoing to an
earlier revision.

Deleting Pages
The delete action deletes the page’s record from the page table and inserts the relevant information into
the archive table. The text and revision tables are not changed. This makes it possible to restore deleted
pages using the Special:Undelete page.

The process is similar to editing and submitting changes to a page. When a page is to be deleted, a form
is presented asking for confirmation. When the user submits the form, a token ($wpEditToken) is passed
back to the server.

Deleting Files and Images
Deleting files and images works differently than deleting pages. By default, deleted files are truly deleted,
but you can configure MediaWiki to save versions of files as well. You need to set $wgSaveDeletedFiles
to true in LocalSettings.php, and you need to assign the directory in which the deleted files will be
stored by setting it in $wgFileStore as follows, replacing directory with the name of the directory in
which you want the files to reside:

$wgFileStore[’deleted’][’directory’]

Move (Rename)
When you move a page, all you are doing is renaming the page. In the page table, the name is
changed, but the page ID isn’t changed. This allows the history of the page to remain intact. A new
redirect page is created with the original name of the page so that any links to the old name are
automatically redirected to the new page location. There are a few important things to keep in mind
when moving pages:

❑ Image or category pages cannot be moved.

❑ You should always move a page, rather than simply cut the content from one and paste it into
another, because it loses the page history. In some cases this is more important than others — for
instance, the license under which Wikipedia content is released requires acknowledgment of all
contributors, and the history is how the contributors are tracked.

❑ Moving it back to the original name will result in a warning because it requires the deletion of
the redirect page that is created upon the move.

❑ If you change your mind and want to change the name back to what it was, you need to move
the page back instead of undoing it or rolling it back — undo and rollback do not work for
moves because of the way in which a page’s revision history stays connected to the moved page.
One confusing aspect of MediaWiki is that you can also go to the log page for the move (click
View Logs from the History page). There will be a link called Revert that moves the file back to
the original name.

Purge
The purge action is one that can be particularly helpful to Web developers. It clears the cache of a page.
Most of the other actions are usually triggered by following a link on a page produced by MediaWiki, but

153



Choate c06.tex V1 - 11/19/2007 2:02pm Page 154

Chapter 6: Page Actions and Version Control

this is one of the rare examples of an action that is usually triggered by manually appending the action
information to the end of the URL. The following example shows the URL needed to purge the cache for
the main page of your wiki:

http://127.0.0.1/wiki/index.php?Main_Page&action=purge

If you are not logged in, then you will get a form that asks for confirmation before MediaWiki clears the
cache; and only then will the cache be purged.

Protecting Pages
The protect, watch, and patrol actions are related in that they are three different ways that
administrators can monitor context on a wiki and ensure that the content is appropriate
for the site.

Protect/Unprotect
Protect and Unprotect use $wpEditToken to verify that the request is a valid one. You can set protections
against editing and moving a page. You have the option of using the default, restricting unregistered
viewers from editing and moving the page, or limiting the ability to edit and move the page only to
sysops. Wikipedia uses this feature to protect pages that are particularly controversial and subject to a
great deal of vandalism. By limited edits and moves to sysops, access is limited to only trusted members
of the community.

Watch/Unwatch
These actions place or remove the page in a user’s watchlist. If the page is already in the list, then it is
removed. You toggle the value indicating whether a page is watched or not by clicking the Watch tab
(labeled Unwatch if the page is already on your watchlist). To view the pages on your watchlist, go to the
special page Special:Watchlist. You can find a link to this page in the upper-right corner of the wiki
page if you are logged in.

Patrolling
Marking a page as patrolled is limited to sysops, and this is a simple mechanism that notifies other
Sysops that a page has been reviewed by a trusted figure. For example, you may decide to review all
submissions for nonregistered users. If that’s the case, then you will watch for any new revisions by
unregistered users and read what has been posted. Afterwards, you mark the page as patrolled so that
no one else will check it.

Blocking
Another available option when viewing the list of revisions on the History page is to block a particular
user. If you are in the appropriate group (sysop) and you find that a user is making inappropriate edits,
you may elect to block that user. To do so, you can click the Block link and you will be taken to the Block
User page, illustrated in Figure 6-6.

154



Choate c06.tex V1 - 11/19/2007 2:02pm Page 155

Chapter 6: Page Actions and Version Control

Figure 6-6: The Block User page

As you can see in Figure 6-6, you can block a user for a particular period of time. The drop-down menu
provides options ranging from two hours to an infinite amount of time, or you can select Other and enter
your own duration. You can also enter the reason why the user was blocked.

You can block a user by IP address or by username. This is an important distinction, and you can
fine-tune the results by setting the following values in the form:

❑ Block anonymous users only: By selecting this option, you only block anonymous users.
This is important when you are blocking an IP address because you may have more than one
user coming from the same IP address and you may not want to block registered users who
participate in the wiki.

❑ Prevent account creation: When you select this option, you are denying account creation to any-
one from a particular IP address (if you are blocking by username, then the user in question
already has created an account).

❑ Automatically block the last IP address used by this user, and any subsequent addresses they
try to edit from: This option associates any IP address used by a particular user and blocks
it. This can be something of a draconian measure because more than one user can share an IP
address (and each user can use more than one IP address). Nevertheless, there may be instances
when you want to do this.

You can get a list of blocked users on the Special:Ipblocklist page. Figure 6-7 shows a screen shot of
this page. In this example, the user was logged into the wiki as WikiSysop, and blocked user Mchoate,
selecting all of the options, including to automatically block the last IP address used by Mchoate.

If you look closely at Figure 6-7, you will see that two items are listed in the block IP list. The first
is Mchoate, and the second is WikiSysop. How did that happen? Because the user logged into the

155



Choate c06.tex V1 - 11/19/2007 2:02pm Page 156

Chapter 6: Page Actions and Version Control

wiki under both usernames on the same computer, MediaWiki followed the instructions and blocked
WikiSysop because WikiSysop was using the same IP address as the user Mchoate, who was blocked.

Figure 6-7: A list of blocked users

Page Metadata
Metadata means data about data. There are a handful of actions that are used to display data about
a page, rather than the page itself: info, credits, dublincore, and creativecommons.

Info
The info action must be enabled by setting $wgAllowPageInfo to true in LocalSettings.php. This is
because it requires a lot of effort to generate. The URL for displaying page info is as follows:

http://127.0.0.1/wiki/index.php?title=Main_page&action=info

The info page tells you the number of watchers the page has, how many edits have been done, and the
number of distinct authors, as illustrated in Figure 6-8.

Figure 6-8: Output of the info action

Credits
The credits action enables you to see who is responsible for the content on a given page. The URL looks
like this:

http://127.0.0.1/wiki/index.php/Main_Page?action=credits

156



Choate c06.tex V1 - 11/19/2007 2:02pm Page 157

Chapter 6: Page Actions and Version Control

The output of the page contains the following kind of information:

This page was last modified 16:05, 4 June 2007 by ProfWikis - MySQL user
WikiSysop. Based on work by Mark Choate and Professional Wikis and Anonymous
user(s) of ProfWikis - MySQL.

dublincore, creativecommons actions
Two actions, dublincore and creativecommons, are closely related. Both have to be enabled in
LocalSettings.php:

/** RDF metadata toggles */
$wgEnableDublinCoreRdf = false;
$wgEnableCreativeCommonsRdf = true;

The dublincore action is rather simple — it causes Dublin Core metadata to be produced in the Resource
Description Framework (RDF). The Dublin Core refers to a set of primary metadata terms that have been
defined by the Dublin Core Metadata Initiative. The terms are simple, and you will see the basic set in
the following sample output. You can learn more about the Dublin Core at http://dublincore.org.

Type in the following URL:

http://127.0.0.1/wiki/index.php?title=Main_page&action=dublincore

Instead of an HTML page being returned, you will receive an XML page that expresses the core metadata
for the document in question:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF PUBLIC "-//DUBLIN CORE//DCMES DTD 2002/07/31//EN"
"http://dublincore.org/documents/2002/07/31/dcmes-xml/dcmes-xml-dtd.dtd">

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://127.0.0.1/mysql/index.php/Page_title">

<dc:title>Page title</dc:title>

<dc:publisher>ProfWikis - MySQL</dc:publisher>

<dc:language>en</dc:language>

<dc:type>Text</dc:type>

<dc:format>text/html</dc:format>

<dc:identifier>http://127.0.0.1/mysql/index.php/Page_title</dc:identifier>

<dc:date>2007-05-30</dc:date>

<dc:creator>ProfWikis - MySQL user WikiSysop</dc:creator>

<dc:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/>

</rdf:Description>

</rdf:RDF>

The creativecommons action causes the same information to be generated, except that it includes
information about the license under which the content is released, if it has been configured. In order
to configure licensing information, the following variables need to be set in LocalSettings.php:

## For attaching licensing metadata to pages, and displaying an
## appropriate copyright notice / icon. GNU Free Documentation
## License and Creative Commons licenses are supported so far.
# $wgEnableCreativeCommonsRdf = true;

157



Choate c06.tex V1 - 11/19/2007 2:02pm Page 158

Chapter 6: Page Actions and Version Control

$wgRightsPage = ""; # Set to the title of a wiki page that describes your
license/copyright

$wgRightsUrl = "http://creativecommons.org/licenses/by/3.0/";
# prepends ’Content is available under a’
$wgRightsText = "Creative Commons Attribution-Noncommercial 3.0 License";
$wgRightsIcon = "http://creativecommons.org/images/public/somerights20.png";

MediaWiki knows about certain licenses, and will do interesting things with the licensing information
you place here, if it’s a license supported by Creative Commons (http://creativecommons.org).

The following licenses are available:

❑ Creative Commons Attribution 3.0 License

❑ http://creativecommons.org/licenses/by/3.0/

❑ Creative Commons Attribution-Noncommercial 3.0 License

❑ http://creativecommons.org/licenses/by-nc/3.0/

❑ Creative Commons Attribution-Share Alike 3.0 License

❑ http://creativecommons.org/licenses/by-sa/3.0/

❑ Creative Commons Attribution-No Derivative Works 3.0 License

❑ http://creativecommons.org/licenses/by-nd/3.0/

❑ Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

❑ http://creativecommons.org/licenses/by-nc-sa/3.0/

❑ Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License

❑ http://creativecommons.org/licenses/by-nc-nd/3.0/

❑ Creative Commons - GNU GPL 2.0

❑ http://creativecommons.org/licenses/GPL/2.0/

❑ Creative Commons - GNU LGPL 2.1

❑ http://creativecommons.org/licenses/LGPL/2.1/

There are actually three different images you can choose from if you visit Creative Commons and look at
their licenses. The image shown in Figure 6-9 is a generic image that simply says some rights have been
reserved. The image chosen will appear on the bottom of all of your pages once you have configured the
pages to do so.

Figure 6-9: Creative Commons license notice

158



Choate c06.tex V1 - 11/19/2007 2:02pm Page 159

Chapter 6: Page Actions and Version Control

Redirects
There are many cases when you want one page to be redirected to another page. Earlier, when you
learned about how to move pages, you saw that once a page was moved, a redirect page was put in place
with the original name of the page that pointed to the page with the new name. This means that any
links in place that still point to the old page name will automatically be taken to the current version of
the page. Another example of when you would want to use a redirect would be to use more than one
intuitive name to refer to a particular page.

The following is an example of a redirect page that points to the Main page:

#redirect[[Main Page]]

You might be wondering how you edit a redirect page, as every time you try to go to the redirect page,
you are redirected to some other page. Fortunately, there’s an easy solution. Simply append
&redirect = no to the end of the URL of the redirect, and you will not be redirected, but taken to the
edit page for the redirect.

You can include category tags on a redirect page, although it doesn’t make sense to put any categories on
the redirect page that are already listed on the target page. When you arrive at a page as a consequence
of a redirect, there is a notice at the top of the page content notifying the reader that the page they are
viewing is being displayed as a redirect.

It is possible to redirect to a section of a page, by appending the section anchor to the URL. Note one
important side effect of doing this, however: the ‘‘redirected from’’ link will not be displayed on the page.

If you rename a page that is the target of a redirect, then the original redirect is automatically updated to
reflect the new name of the target page. If the target of a redirect is deleted, then the original redirect is
considered broken. You can check for broken redirects using the Special:BrokenRedirects page.

Special Pages
While technically not an action, there are two special pages that let you import and export pages on a
wiki. This enables you to export a page on Wikipedia, for instance, and import it into your very own
personal wiki.

Importing and Exporting Pages
In order to export the content of a page, you need to use the Special:Export page. The content of pages
is exported in a special XML format that optionally contains all the revisions of the page. When you go
to the Special:Export page, you are presented with a text field in which you can enter a list of page
names you want exported, with one name on each line. A checkbox enables you to check whether to
export all the revisions of the page. Once you have listed the pages that you want exported, click the
Export button and the exported content will be sent to your browser. Save this file, and you can import
it into another wiki.

In order to import a page, go to the Special:Import page, where you will be given the option to select a
file to upload. Select a file that has been exported and then this file will be imported to the new wiki.

159



Choate c06.tex V1 - 11/19/2007 2:02pm Page 160

Chapter 6: Page Actions and Version Control

Summary
In this chapter, you have learned about different page actions that enable you to manage pages in a
variety of different ways. As a wiki administrator, you can use this information to decide which groups
can perform which actions to pages, as well as to get information about the page itself. The next chapter
covers MediaWiki topics related to information architecture, which is the process of organizing a site
to make information easier to find. You will learn about ways to manage the organization of your wiki
through categories, as well as how to manage MediaWiki’s search features.

160



Choate c07.tex V1 - 11/19/2007 3:35pm Page 161

Information Architecture:
Organizing Your Wiki

The objective of information architects is to make information easy to find. They do this in
two ways. The first way is by organizing a site, usually in a hierarchical fashion, and using that
organizational structure to create a system of navigation that enables users to drill down into
the content by following links. The second way is through search engines. Wikis are organized
differently than other websites, and in this chapter you will learn how to organize your content
on MediaWiki so that users can quickly and easily find the information they are looking for.

How Users Find Information
Typical Wikipedia users find the page they are looking for by searching it by title. In effect, users
are guessing the name of the article, because the default search is a title search, which, when found,
takes the user directly to the page. Wiki pages can also be grouped into categories, which enables
users to browse the site in order to find the content they are looking for.

Site Navigation
The default monotone skin provides a navigation box in the left column of the wiki. The links
to the community portal, current events, help, and donations all link to pages that do not exist
when the wiki is first set up. The other links, recent changes and random page, are links to special
pages. You can either create the pages that are being linked to or you can remove them from the list.
For now, it is worthwhile to take a look at the site navigation links themselves and see what they do
(see Figure 7-1).



Choate c07.tex V1 - 11/19/2007 3:35pm Page 162

Chapter 7: Information Architecture: Organizing Your Wiki

Figure 7-1: Site navigation links

The term ‘‘navigation’’ can be somewhat misleading and should be changed. When you customize
your wiki, it is recommended that you remove it (the next chapter will show you how). For example,
the title could be changed to something like ‘‘Related Information’’ or ‘‘About This Wiki,’’ or something
more descriptive because the fact is, you do not use the navigation box to navigate the site. Most true
navigation takes place in the search box, which you will learn about next.

Search
True user navigation — the way users actually find the information they are looking for and navigate
to it — is handled by the Search box. There are two button options in the search box that provide two
different kinds of results. The Go button searches for a page that matches (i.e., has the same title as)
the text entered into the Search box. The Search button searches page titles and page body text for any
occurrence of the search term(s).

❑ Go: When you enter a search term and select Go, MediaWiki checks to see whether a page
by that title exists. If the page does exist, the user is redirected to that page directly.
The page title has to be an exact match. If a page with that page title does not exist, the
user is taken to a Search Results page (see Figure 7-2), as if they had pressed the Search
button instead.

❑ Search: When a user clicks on the Search button, the search results are displayed on a page
that is divided into two sections: Article title matches and Page text matches. If the terms being
searched for can be found in the title but aren’t an exact match for the title, then those pages
are listed under Article title matches. If the terms are in the body text of the article or page, then
those pages are listed under Page text matches.

162



Choate c07.tex V1 - 11/19/2007 3:35pm Page 163

Chapter 7: Information Architecture: Organizing Your Wiki

Figure 7-2: The Search Results page

Search Preferences
Users can set certain search preferences that affect how search results are returned. The options are
listed under the Search tab in the User Preferences page. The following items can be set:

❑ Hits per page: If the user performs a search that returns a large number of results, MediaWiki
will page through the results, rather than display them all at once. This setting determines how
many results are displayed per page. The default value is 20.

❑ Lines per hit: When the search results are returned, each line on which the search term is found
is displayed. This setting limits the number of lines that are displayed for each item returned in
the search results. The default value is 5.

❑ Context per line: When a line is displayed with a search term, MediaWiki displays some of the
text around the search term in order to provide context for how the term is being used
on the page. You can add to or subtract from the amount of surrounding text that is displayed
by setting this value. The default value is 50 characters.

❑ Default namespaces searched: On the preferences page, the complete list of namespaces
is shown. By default, only the Main namespace is checked, which means that the search only
applies to articles contained in the Main namespace. Users can change their preferences so that
other namespaces are included as well.

163



Choate c07.tex V1 - 11/19/2007 3:35pm Page 164

Chapter 7: Information Architecture: Organizing Your Wiki

Search Options
MediaWiki implements the site’s search feature by default, using the database that was selected during
installation, either MySQL or PostgreSQL. While these options work well for many sites, they do present
some limitations, especially for large sites.

For example, the MySQL full-text search feature does not scale particularly well because the full-text
search indexes are stored in memory (which makes the search very fast when the indexes are not too
large). MySQL also has limited features in terms of how the search results are returned. The ranking of
search results is determined only by how often a word appears in a document, and it does not calculate
things such as word distance, which reflects how far apart search terms appear in a given document.

Using Google as Your Search Engine
Because of these limitations, you can decide not to use the default search engines in your wiki.
The simplest change to make is to disable MediaWiki’s text search by inserting the following text
into the LocalSettings.php page:

$wgDisableTextSearch = true;

With this value set, MediaWiki defaults to using Google as the site search, as shown in Figure 7-3.
This works well as long as Google has indexed your site. The downside is that you cannot control if,
or how often, Google will index your site.

Figure 7-3: Default Google search when text search is disabled

Using an External Search Engine
You also have the option to use any arbitrary external search engine. To do so, in addition to disabling
the text search, you also have to tell MediaWiki the URL of the external search engine, as shown here
(in LocalSettings.php):

$wgForwardSearchUrl = 'http://www.google.com/search?q=$1&domains=http://choate
.info&sitesearch=http://choate.info&ie=utf-8&oe=utf-8';

164



Choate c07.tex V1 - 11/19/2007 3:35pm Page 165

Chapter 7: Information Architecture: Organizing Your Wiki

Note that some examples on MediaWiki.org mistakenly refer to $wgSearchForwardUrl — don’t let that
confuse you. It should be $wgForwardSearchUrl.

When you forward the search URL, you are sending the search to an entirely different server.
In the following example, I’m using a search URL for Google, telling it to search my domain choate.info.
The $1 value in the query string of the URL will be replaced with the search terms the user entered
into the search form. Then the user will be taken directly to the Google site for the search results. If you
search for the term ‘‘wiki,’’ then the following URL is used:

http://www.google.com/search?q=wiki&domains=http://choate
.info&sitesearch=http://choate.info&ie=utf-8&oe=utf-8

Note how $1 has been replaced by the word wiki.

Apache Lucene Search
It is also possible to use Apache Lucene as the full-text search engine. Wikipedia uses Lucene
because it is optimized for full-text searching and offers the scalability to accommodate such
a large site. Relative to MySQL, Lucene can handle full-text search requests much more efficiently.
The implementation used by Wikipedia is Lucene.NET, a .NET port of the original Java Lucene,
with code written in C#. The details of using Lucene go beyond the scope of this book, but
you can find more detailed information www.mediawiki.org/wiki/Lucene.

Category Pages
MediaWiki uses categories as a way to organize pages, and groups similar pages together.
Different pages can be grouped into a category, and these pages are listed on a special category
page. Users can go to a special page, Special:Catagories, in order to browse through the pages of the
wiki based upon the categories to which they refer. The categories can also be arranged
hierarchically, so that a more complex navigation scheme can be developed, with categories
and subcategories.

Adding a Page to a Category
Similar to wikilinks, you can create category pages simply by embedding a category link into a page.
When you create a category this way, the page containing the category link is automatically added
to the category.

[[Category: My Category]]

Regardless of where you enter the category tag on the page, it is displayed at the bottom of the page
so that users can see to which categories a page refers, as shown in Figure 7-4, and follow a link to the
category page itself to see other pages in the same category, as shown in Figure 7-5.

165



Choate c07.tex V1 - 11/19/2007 3:35pm Page 166

Chapter 7: Information Architecture: Organizing Your Wiki

Figure 7-4: Category links appear at the bottom of the page

Figure 7-5: Category pages display an alphabetized list of pages for that
category

Creating Categories
You can also create a category page directly without automatically adding a page to the category
by using the following syntax:

[[:Category: My Category]]

166



Choate c07.tex V1 - 11/19/2007 3:35pm Page 167

Chapter 7: Information Architecture: Organizing Your Wiki

When you create a category this way, a link to the category appears on the page where you entered the
text, but the page with the link isn’t added to the category. The category page is created, so you can
follow that link to the category page, but you will see that there are no pages in the category.

Linking to Category Pages Using Alternate Text
You can also use this syntax to create a link to a category page that displays alternate text.
The following tag links to a category page called Help:Basketball, but only displays the word
‘‘Basketball’’ in the link.

[[:Category:Help:Basketball|Basketball]]

Sorting Categories
You can control how pages are sorted on category pages. This is useful when you are adding a page that
is not in the default namespace to a category. For example, if you have a page in the Help namespace
called Help:Basketball and you want to place that page in the Sports category, it normally would be
listed under H for Help:Basketball. If, however, you want it listed in the B section, then you could create
the category link like this:

[[Category:Help:Basketball|Basketball]]

The category link at the bottom of the page will still say Help:Basketball. This only affects where the item
is listed alphabetically on the category page.

Editing Category Pages
Category pages can be edited like any other page. Any text that you enter will appear above the list of
links to pages in that category.

Subcategories
It is also possible to use categories to create a hierarchy of categories and subcategories. There’s no
such thing as a subcategory per se in MediaWiki, just categories, but you can organize your pages in
a hierarchy by virtue of the fact that category pages themselves can be categorized. A category page that
is part of another category is a subcategory.

Suppose you’re creating a site about sports and you want to include articles about the following topics:

❑ Sports

❑ College Sports

❑ Pro Sports

❑ College Basketball

❑ Pro Basketball

❑ College Football

❑ Pro Football

167



Choate c07.tex V1 - 11/19/2007 3:35pm Page 168

Chapter 7: Information Architecture: Organizing Your Wiki

MediaWiki employs a flat hierarchy, and each of these pages will be in the default namespace. One way
a user can find these pages is to type the phrase ‘‘College Basketball’’ in the Search field and click the
Go button. If the user were looking for information about a particular college basketball player, however,
she would need to enter the player’s name in the Search field and click the Search button to find any page
with the player’s name in it.

If the player has a common name, the results might include a list of pages that contain information about
other people who share the same name. One way to make the search more efficient would be to group
pages about a similar subject together. For instance, it might be a good idea to group all articles about
college sports together, all pages about pro sports together, and so on. You might also want to group all
articles about college basketball together, and so on. If you were really ambitious, you also might divide
college basketball into men’s college basketball and women’s college basketball, and then separate those
into divisions, and then individual teams. All of that is possible with categories.

Whether it is advisable to go into that much detail is another question. There is a delicate balancing act
one must perform when categorizing pages. Too much categorization and the site becomes confusing
and difficult to maintain. Too little categorization and users might find it hard to find the information
they are looking for. There is no hard-and-fast rule, but it is possible to borrow some rules from more
traditional content management systems and apply them here.

The hierarchy should be no more than three levels deep, and each category should have only five
to seven subcategories. Of course, it’s not always possible to fit within these parameters, but they are
useful rules of thumb that you can use to help gauge the complexity of your site and spot potential
usability issues.

Conceptually, you can group the pages of the example site as shown in Figure 7-6.

Title: College
Sports

Title: Pro Sports

Title: Sports

Title: College
Basketball

Title: College
Football

Title: Pro Basketball

Title: Pro Football

Figure 7-6: The sports wiki hierarchy

168



Choate c07.tex V1 - 11/19/2007 3:35pm Page 169

Chapter 7: Information Architecture: Organizing Your Wiki

Figure 7-6 simply shows how I chose to categorize these pages conceptually. It’s easy to understand that
Sports is the root node of the tree, that College Sports and Pro Sports are subcategories, and so on. If you
want to implement this hierarchy in MediaWiki using categories, you first need to determine the nature
of the Sports page, and the College Sports and Pro Sports pages.

Category pages are in a different namespace than article pages, which means that a category page can
share the same title as an article page. The question you need to answer is whether these pages are
category pages, or whether you will have both category pages and article pages that share the same title.
In other words, should you have an article page and a category page called Sports, or just a category page
called Sports?

When you are developing a traditional website using traditional content management software, you
usually develop the taxonomy first, and then the content is developed to go into the pre-defined
categories. Wikis, conversely, often start with the articles first, and only later are the articles added
to categories. This is an important difference between a taxonomy and a folksonomy: Folksonomies
are created by users after the content has been created. You may find that you already have article pages
called Sports, College Sports, Pro Sports, and so on. In that case, you have the option of being able to
create category pages with the same name.

In our example, the College Sports article is in the College Sports category, and the College Sports
category is a subcategory of Sports. If, however, you simply have the articles College Basketball,
College Football, Pro Basketball, and Pro Football, then you can choose to use category pages exclusively
for College Sports and Pro Sports, and so on.

Multi-Faceted Categories
The sports example reveals one of the common problems that arises when trying to properly categorize
information into categories: There is often more than one sensible way to categorize them. The previous
example used college sports and pro sports as subcategories of sports, but you could also just as easily
decide to put basketball and football under sports. While people could argue the point both ways, very
often the ultimate decision about how to categorize things falls upon the whim or personal preference of
the categorizer.

A user of your wiki may have a different preference, or may conceptualize the topic differently than you
do. Wouldn’t it be nice to be able to organize your content into multi-faceted hierarchies, letting pages
exist in different parts of your taxonomy? With MediaWiki, you can. Because any page can be in multiple
categories, it’s possible to create rather complex, multi-faceted hierarchies.

In order to address the sports problem, all you need to do is add a new category called Category:
Basketball to the college basketball and pro basketball pages, and one called Category: Football to the
college and pro football pages. Figure 7-7 shows how the hierarchy looks now (the football
pages were omitted for clarity). As you can see, a user can now navigate to basketball-related pages
in two different ways: through either the college sports or the pro sports categories, or through
the basketball category.

169



Choate c07.tex V1 - 11/19/2007 3:35pm Page 170

Chapter 7: Information Architecture: Organizing Your Wiki

Title: Sports

Title: College 
Sports

Category: Sports

Title: Pro Sports
Category: Sports

Title: Pro Basketball
Category: Pro

Sports
Category:
Basketball

Title: Basketball
Category: Sports

Title: College 
Basketball

Category: College 
Sports

Category:
Basketball

Figure 7-7: Multi-faceted categories

Categories as Folksonomies
In the previous sections, you learned how to organize your content into meaningful hierarchies. There’s
one important detail (or caveat) you should be aware of: Anybody can add a page to any hierarchy.
In other words, one user may categorize pages in one way, while another chooses an entirely different
approach. This decentralized categorization is often referred to as a folksonomy, in contrast to a taxonomy,
which is a hierarchy of relationships developed centrally, usually by specialists.

You may be familiar with sites like Flickr that allow users to add tags to pages. Conceptually speaking, a
tag and a category are very similar — they are both keywords that are used to describe or group a page
into some conceptual category or topic. The advantage to this approach is that with many people adding
pages to different categories, multiple points of view are represented by the links. What makes sense to
one person may not have occurred to another person, and this open-ended approach makes it possible to
discover unexpected connections between pages.

Improving Findability
I’ve already mentioned the importance of using simple, clear page titles to help users find the
information they are looking for. Other useful tactics can be employed as well to improve the user
experience. Wikipedia has a Manual of Style that establishes consistent ways of formatting pages and
other conventions that improve the search experience (see http://en.wikipedia.org/wiki/
Wikipedia:Manual_of_Style).

Redirects and Synonyms
Clearly, there are often many words or phrases that describe the same thing. The best way to address
this with your wiki is with the use of redirects. You should select one name per topic, and all variants
of that name or phrase should be redirect pages that point to the canonical version. Redirects are
discussed in Chapter 6.

170



Choate c07.tex V1 - 11/19/2007 3:35pm Page 171

Chapter 7: Information Architecture: Organizing Your Wiki

Disambiguation Pages
You might run into another problem as well, which results from the fact that one word or phrase may
refer to different things. In this case, you can use what is called a disambiguation page. A disambiguation
page isn’t a formal page type in MediaWiki. Rather, it’s a standard practice that is used to address this
problem. If you have a term that applies to multiple topics, you can create a page with that term and
then link from there to the other terms. You can use a template to ensure standard formatting of the
disambiguation page.

You can read about templates in Chapter 8.

You can also list the disambiguation page on the MediaWiki:Disambiguations page, and this will
ensure that the page is listed on the Special:Disambiguations page. You can view this Wikipedia page
at http://en.wikipedia.org/wiki/MediaWiki:Disambiguationspage, where you will see a list of
templates, discussed in the next chapter.

Wiki Gardening
While it is comforting to think of a wiki as an organic process, with order arising out of chaos
naturally, without human intervention or irritating authoritarianism on the part of some consulting
taxonomist, it is also naive. Don’t get me wrong: Letting the organizational structure of your wiki develop
naturally is a good thing, but what emerges needs to be tended in order for it to thrive. Every wiki needs
a gardener — someone to pull the weeds, water the plants, and occasionally move a plant from one
bed to another.

Several special pages help with the wiki gardening task:

❑ Uncategorized pages (Special:Uncategorizedpages): These are pages that do not have one
or more categories assigned. Use this page to ensure that all pages are categorized.

❑ Uncategorized images (Special:Uncategorizedimages): These are image (or file) pages that
have not been categorized.

❑ Uncategorized categories (Special:Uncategorizedcategories): Category pages themselves
can be categorized. This is useful when building a relatively deep hierarchical structure for your
wiki. This special page lists all the category pages that have not been assigned to a category.

❑ Unused categories (Special:Unusedcategories): These are category pages with no pages
in them.

❑ Unused files (Special:Unusedfiles): These are files (usually images) that have been uploaded
but that are not being linked to.

❑ Wanted categories (Special:Wantedcategories): This page returns a list of categories that
have been created but that do not have any content in them. Having no content in them does
not mean that there are no pages in the category; it means that the category pages have not been
edited and no additional explanatory content has been added.

171



Choate c07.tex V1 - 11/19/2007 3:35pm Page 172

Chapter 7: Information Architecture: Organizing Your Wiki

❑ Wanted pages (Special:Wantedpages): These are pages for which a wiki link exists but they
have not been edited, so they have no content.

❑ Dead-end pages (Special:Deadendpages): These pages contain no links to other pages in
the wiki.

❑ Long pages and short pages (Special:Longpages, Special:Shortpages): Both of these pages
function the same way, returning a list of pages ordered either from the smallest to the largest
(for short pages) or from the largest to the smallest (for long pages), as measured in bytes. When
a page is getting too long, it is often a good idea to break it up into two or more smaller pages.
Small pages indicate pages that can possibly be expanded upon.

Summary
In this chapter, you learned how to organize content on your wiki using categories. You also learned
how to customize the search engine used by MediaWiki. In the next chapter, you will learn about magic
words, templates, and skins. This will enable you to customize the look and feel of your wiki, and add
more complex content to your pages.

172



Choate c08.tex V1 - 11/20/2007 2:52pm Page 173

Magic Words, Templates,
and Skins

Magic words and templates provide advanced methods for including content that is dynamic or
needs to be standardized across pages. Skins determine the overall look and feel of MediaWiki, as
well as standard navigation features, and user tools. All three tools can be customized. This chapter
will show you how to create your own templates, and how to modify the default MediaWiki skin
to change the look and feel of your wiki. In Chapter 9, you will learn how to install and write
extensions to MediaWiki, including how to create your own magic words.

This chapter assumes the reader knows what Cascading Stylesheets (CSS) are and how they work.
It also assumes a basic understanding of programming languages, ideally PHP. If you are not
familiar with CSS, you should familiarize yourself with it prior to reading the section on MediaWiki
skins. An excellent introduction is available on Wikipedia at http://en.wikipedia.org/wiki/CSS.
Another good source is Richard York’s Beginning CSS: Cascading Style Sheets for Web Design, Second
Edition (Wrox, 2004).

Magic Words
Magic Words are special words that serve as placeholders for other content that will appear on a
wiki page. Some magic words were introduced in Chapter 4, but they weren’t called magic words.
The XML-style tags <nowiki> and <ref> are both examples of magic words because they are not
raw HTML, and both have an impact on the way the content of the page is parsed and displayed.

There are several different styles of magic words, whose syntax is slightly different. Some magic
words are surrounded by a pair of curly brackets ({{and}}), while others are perched between a
double underscore character (__), and even others are tagged using XML constructs (such as the
<nowiki> example already mentioned). The following sections document the most commonly
used magic words and provide you with examples of how they are used.



Choate c08.tex V1 - 11/20/2007 2:52pm Page 174

Chapter 8: Magic Words, Templates, and Skins

Directives
The first group of magic words is not displayed directly on the page. Instead, they adjust the
formatting or display of the page. They are always uppercase, and are surrounded by underscores,
like so: __NOTOC__.

These magic words, described in the following table, are typed onto the page when it is being edited.
The impact of using the words can be previewed when the page content is previewed.

Magic Word Description

__TOC__ Causes the table of contents to appear where you want it on the page

__NOTOC__ Keeps the table of contents from appearing, regardless of the number of
sections in the page

__FORCETOC__ Forces the table of contents to appear when there are fewer than four
sections, or when the user has set preferences so that no tables of content
are displayed

__NOEDITSECTION__ Removes the ‘‘Edit’’ links that appear next to section headings on
wiki pages

__NEWSECTIONLINK__ New section code ads a ‘‘ + ’’ tab next to the ‘‘edit’’ tab of a page. This
is the default procedure on talk pages, because it allows the reader to
automatically create a new section, separate from all the others, gently
encouraging posters in talk sections to confine their comments to a
section, rather than edit someone else’s. The section is appended to the
other sections before it, so the most recent posts on a talk page are at the
bottom of the page, much like forum or message board words, and not
at all the way a blog works, where the latest content appears at the top
of the page.

__NOGALLERY__ When used on a page that contains a gallery, the page displays links to
the images in the gallery, rather than display the images themselves.

Variables
Variables are magic words that serve as placeholders whose values are replaced when the text is
parsed. The replacement value itself varies, depending on the context. There are two basic groups of
variables. The first group relates to date and time, and the replacement values are localized, depending
on the language used in the site. The second group consists of variables that display information about a
page or the wiki itself, such as the total number of articles, and so on. Variables are always in uppercase,
and are surrounded by a pair of curly brackets, like so: {{CURRENTMONTH}}.

Date and Time
The following magic words all apply to dates and times, and the output is dependent upon the setting
of $wgLanguageCode in LocalSettings.php. This setting determines the language that the wiki uses for
all system messages, which are items such as user-interface elements, and so on.

174



Choate c08.tex V1 - 11/20/2007 2:52pm Page 175

Chapter 8: Magic Words, Templates, and Skins

Local times are based on the local time for the wiki and not what is configured in the user’s preferences.
All other times are based on UTC, otherwise known as Greenwich Mean Time.

The following table shows the relevant magic words and their sample output, based upon an
arbitrary date of Tuesday, July 1, 2007, at 20:14 UTC and a four-hour difference between Greenwich
and this location.

Magic Word Output

{{CURRENTMONTH}} 07

{{CURRENTMONTHNAME}} July

{{CURRENTMONTHNAMEGEN}} July

{{CURRENTMONTHABBREV}} Jul

{{CURRENTDAY}} 1

{{CURRENTDAY2}} 01 (displays leading zeros when appropriate)

{{CURRENTDAYNAME}} Tuesday

{{CURRENTYEAR}} 2007

{{CURRENTTIME}} 20:14

{{CURRENTHOUR}} 20

{{LOCALMONTH}} 07

{{LOCALMONTHNAME}} July

{{LOCALMONTHNAMEGEN}} July

{{LOCALMONTHABBREV}} Jul

{{LOCALDAY}} 1

{{LOCALDAY2}} 01 (displays leading zeros when appropriate)

{{LOCALDAYNAME}} Tuesday

{{LOCALYEAR}} 2007

{{LOCALTIME}} 16:14

{{LOCALHOUR}} 16

{{CURRENTTIMESTAMP}} 20070701160537

{{LOCALTIMESTAMP}} 20070701120537

Information About the Page
The following group of magic words causes information about the page to be displayed. It serves as a
way to refer back and forth between related pages with the same title as the article, but in a different

175



Choate c08.tex V1 - 11/20/2007 2:52pm Page 176

Chapter 8: Magic Words, Templates, and Skins

namespace. The sample output is based on a fictitious page called ‘‘Magic words that show information
about the page.’’ The words come in pairs, such as {{PAGENAME}} and {{PAGENAMEE}}. The extra E at
the end means that the output has been escaped and can be used in external links or other places where
escaped text is required.

Magic Word Output

{{PAGENAME}}
{{PAGENAMEE}}

Returns the page name. If the page is a subpage, then the complete
title is returned, such as Page/Subpage.

The unescaped version returns:
Magic words that show information about the page

The escaped version returns:
Magic_words_that_show_information_about_the_page

{{NAMESPACE}}
{{NAMESPACEE}}

Returns an empty string when in the default namespace; otherwise,
returns the appropriate namespace.

{{TALKSPACE}}
{{TALKSPACEE}}

Returns the name of the next odd namespace. If the page is in the
default names, then it returns the namespace Talk. If the page is in
the Help namespace (number 12), then the title of the namespace 13 is
returned, which, in this case, would be Help_talk.

{{SUBJECTSPACE}}
{{SUBJECTSPACEE}}

Returns the name of the previous even-numbered namespace. For
example, if this magic word is used on a page in the Help_talk
namespace (13), then Help is returned (12).

{{FULLPAGENAME}}
{{FULLPAGENAMEE}}

Returns the namespace and the name of the page.

Unescaped:
Help:Magic words that show information about the page

Escaped:
Help:Magic_words_that_show_information_about_the_page

{{SUBPAGENAME}}
{{SUBPAGENAMEE}}

Only returns the name of the subpage, and does not return the parent
pages, unlike {{PAGENAME}}).

{{BASEPAGENAME}}
{{BASEPAGENAMEE}}

Only returns the name of the parent page of a subpage.

{{TALKPAGENAME}}
{{TALKPAGENAMEE}}

Unescaped:
Talk:Magic words that show information about the page

Escaped:
Talk:Magic_words_that_show_information_about_the_page

{{SUBJECTPAGENAME}}
{{SUBJECTPAGENAMEE}}

Returns the full page name in the subject namespace. In other words,
if you are on the Help page, then you can enter
{{SUBJECTPAGENAME}} to get the following:

Magic words that show information about the page

{{SUBJECTPAGENAMEE}} would return this:
Magic_words_that_show_information_about_the_page

176



Choate c08.tex V1 - 11/20/2007 2:52pm Page 177

Chapter 8: Magic Words, Templates, and Skins

Revisions
These magic words return information about the revision status of the containing page.

Magic Word Output

{{REVISIONID}} The revision ID of the page.

{{REVISIONDAY}} The day of the month of the last revision. If the revision was
made on August, 1, then the output would be 1.

{{REVISIONDAY2}} The same as before, but with preceding zeros. August, 1 would
be represented as 01.

{{REVISIONMONTH}} The number of the month the revision took place. If the
revision was made in August, it would be 8.

{{REVISIONYEAR}} Returns the year the revision was made: 2007.

{{REVISIONTIMESTAMP}} A timestamp in ISO 8601 format. For the date/time of July 11,
2007, at 12:05:35 p.m., it will return 20070711120535.

Statistics
The following magic words provide statistical information about the wiki itself. You will notice that
these often occur in pairs as well, such as {{NUMBEROFPAGES}} and {{NUMBEROFPAGES:R}}. The words
that end with :R are actually examples of parser functions, rather than variables because the R is a
parameter that tells the parser to return raw data, which, in practice, means returning numbers
without thousands separators.

Magic Word Output

{{DIRECTIONMARK}} �

{{CONTENTLANGUAGE}} Returns the language code: en for English, and so on.

{{NUMBEROFARTICLES}}
{{NUMBEROFPAGES}}
{{NUMBEROFFILES}}
{{NUMBEROFUSERS}}
{{NUMBEROFADMINS}}

These parser functions are self-descriptive. They return the
number of articles in the wiki, the number of pages, files,
users, and so on.

{{NUMBEROFARTICLES:R}}
{{NUMBEROFPAGES:R}}
{{NUMBEROFFILES:R}}
{{NUMBEROFUSERS:R}}
{{NUMBEROFADMINS:R}}

The parser function version of these magic words returns the
same value as the variable versions, except without
any thousands separator. For example, if there are 10,000
articles in a wiki, {{NUMBEROFARTICLES:R}} returns 10000.

177



Choate c08.tex V1 - 11/20/2007 2:52pm Page 178

Chapter 8: Magic Words, Templates, and Skins

Magic Word Output

{{PAGESINNS:ns}} Returns the count for the number of pages in a given
namespace. Replace ‘‘ns’’ with the number or name
of the namespace.

{{PAGESINNS:ns:R}} Same as above, except without thousands separators.

{{CURRENTVERSION}} For example, 1.9.3.

Parser Functions
According to the MediaWiki documentation, parser functions were originally called colon functions by
those who first documented them, presumably because of the presence of a colon character separating
the function name from the function arguments. In any event, the term colon functions was quickly
dumped in favor of the more amenable (and descriptive) phrase ‘‘parser functions.’’ There are core
parser functions, that are part of the basic MediaWiki distribution, and there are a number of parser
functions developed as extensions that can be added to MediaWiki. Whether a core parser function, or
an extension, both adhere to the same underlying interface.

String Functions
This group of functions is used to change the case of words on the page, as shown in the
following table.

Magic Word Output

{{lcfirst:WORD}} wORD

{{ucfirst:word}} Word

{{lc:WORD}} word

{{uc:word}} WORD

URL Functions
The following functions are used to build links to other pages. They work with wikilinks as well as
intrawiki links. Note that both fullurl and localurl have escaped versions, but there is no difference
in the output.

178



Choate c08.tex V1 - 11/20/2007 2:52pm Page 179

Chapter 8: Magic Words, Templates, and Skins

Magic Word Output

{{localurl:Image:
Closedfolder.gif}}

/wiki/index.php/Image:Closedfolder.gif

{{localurl:This is some
document title}}

/wiki/index.php/This_is_some_document_title

{{localurl:This is some
document title|action=edit}}

/wiki/index.php?title=This_is_some_document_
title&action=edit

{{localurle:This is some
document title}}

/wiki/index.php/This_is_some_document_title

{{fullurl:This is some
document title}}

<a href="http://choate.local/wiki/index.php/This_is_some_
document_title" class="external free" title="http://choate
.local/wiki/index.php/This_is_some_document_title"
rel="nofollow">http://choate.local/wiki/index.php/This_
is_some_document_title</a>

{{fullurle:This is some
document title}}

<a href="http://choate.local/wiki/index.php/This_is_some_
document_title" class="external free" title="http://choate
.local/wiki/index.php/This_is_some_document_title"
rel="nofollow">http://choate.local/wiki/index.php/
This_is_some_document_title</a>

{{localurl:wiktionary:dog}} <a href="http://en.wiktionary.org/wiki/dog"
class="external free"
title="http://en.wiktionary.org/wiki/dog"
rel="nofollow">http://en.wiktionary.org/wiki/dog</a>

{{fullurl:wiktionary:dog}} <a href="http://en.wiktionary.org/wiki/dog"
class="external free"
title="http://en.wiktionary.org/wiki/dog"
rel="nofollow">http://en.wiktionary.org/wiki/dog</a>

{{urlencode:This is an
encoded URL}}

This returns an encoded string of text so that it is suitable
for use in a URL. The output in this example would be
This+is+an+encoded+URL

{{anchorencode:This is a
section}}

This function is used to reference named anchors that are
generated for page sections.

For example, the wikitext ==This is a section== results in the
following HTML, which includes a named anchor:

<a name="This_is_a_section"></a><h2>

<span class="mw-headline">This is a section</span></h2>

This function takes the name of the section and returns
the string to use to reference the anchor: This_is_a_section.

179



Choate c08.tex V1 - 11/20/2007 2:52pm Page 180

Chapter 8: Magic Words, Templates, and Skins

Namespaces
The ns parser function provides a way to generate namespace text by referring to the namespace number
or the name of the namespace itself.

Magic Word Output

{{ns:-2}} Media

{{ns:Media}} Media

{{ns:-1}} Special

{{ns:Special}} Special

{{ns:0}} The default content namespace does not return a value.

{{ns:1}} Talk

{{ns:Talk}} Talk

{{ns:2}} User

{{ns:3}} User_talk

{{ns:4}} ProfWikis_-_MySQL (the name of the wiki)

{{ns:project}} ProfWikis_-_MySQL (the name of the wiki)

{{ns:5}} ProfWikis_-_MySQL_talk

{{ns:project_talk}} ProfWikis_-_MySQL_talk

{{ns:6}} Image

{{ns:7}} Image_talk

{{ns:8}} MediaWiki

{{ns:9}} MediaWiki_talk

{{ns:10}} Template

{{ns:11}} Template_talk

{{ns:12}} Help

{{ns:13}} Help_talk

{{ns:14}} Category

{{ns:15}} Category_talk

180



Choate c08.tex V1 - 11/20/2007 2:52pm Page 181

Chapter 8: Magic Words, Templates, and Skins

Creating Links with Variables and Parser Functions
These variables and parser functions are commonly used to create links to other pages in the wiki, and
can be used inside of wikilinks. For example, if you want to refer to the Talk page for a given article from
within that article, you could use the following:

[[{{TALKPAGENAMEE}}]]

Templates
Templates embed the content from one page in another, a process called transclusion. Most often, the page
that is being embedded is in the Template namespace (although it doesn’t have to be).

To see an example of how templates work, create a page called Template:Test in your wiki, edit it, and
add the following text:

This is a sample template page, and it will be transcluded in another page.

<noinclude>None of the text here will be displayed</noinclude>

Next, create another page called ASamplePage, and edit it as well, entering only {{Test}}.

The page ASamplePage now refers to the Template:Test page, and the content of the Template:Test
page will be included in ASamplePage. Figure 8-1 shows the output of ASamplePage. Note that only the
first sentence is displayed, and nothing inside the <noinclude> tags is displayed. The <noinclude>

tags are used to display instructions about how to use the template.

Figure 8-1: The Template:Test page embedded in another page

Parameters
You can use parameters with templates, too. By defining a template that takes parameters, you are able to
define a standard way of displaying information. For example, suppose you want people to review web-
sites on your site, and you want to make sure that they all include the same basic kinds of information.
A parameterized template works perfectly.

181



Choate c08.tex V1 - 11/20/2007 2:52pm Page 182

Chapter 8: Magic Words, Templates, and Skins

When parameters are used, they can be referred to by their name or by their position. Create another
template called Template:SecondTest and include the following content:

This template uses parameters. The first parameter is {{{1}}}
and the second is {{{2}}}.

Note that the numbers surrounded by three curly brackets are numbered sequentially, which corresponds
to their position in the template tag when it is called from another page. In the following example, the
phrase ‘‘First Word’’ is in the first position, and the phrase ‘‘Second Word’’ is in the second position.
This means that First Word will replace {{{1}}} in the template, and Second Word will replace {{{2}}} in
the template:

{{Test}}

The second template test follows:

{{SecondTest|First Word|Second Word}}

Figure 8-2 shows the output of this new, parameterized template.

Figure 8-2: Using a parameterized template

Named Parameters
In addition to using parameter position to determine what is replaced, MediaWiki also supports named
parameters. Instead of using numbers, you can use words to create placeholders for the information that
will be passed to the template. In the following example, the template is expecting two parameters, one
named First and the other named Second. Otherwise, the following is identical to the previous example:

This template uses parameters. The first parameter is {{{first}}}
and the second is {{{second}}}.

When this template is called, you need to add the name of the parameter to the template tag, as parameter
position is no longer being used, as shown in the following example:

{{Test}}

The second template test follows:

{{SecondTest|first=First Word|second=Second Word}}

The output for this template is identical to the output displayed in the previous example.

182



Choate c08.tex V1 - 11/20/2007 2:52pm Page 183

Chapter 8: Magic Words, Templates, and Skins

Wikipedia uses a lot of templates, and you’ll find references to the templates in the help sections
on Wikipedia and MediaWiki. Unfortunately, those templates aren’t installed by default when you install
MediaWiki. It’s easy enough to copy a template, however. One common template used on Wikipedia is
the Infobox template, which is used to organize related information on a given page. You can see the
source of the template by going to http://en.wikipedia.org/wiki/Template:Infobox. A screen
shot of the Infobox template is shown in Figure 8-3.

Figure 8-3: The Infobox template displayed on Wikipedia

To access the source, click the Source tab. This is a slightly more complicated template than the previous
examples, but the basic structure is the same. Note that this template uses named parameters, which
makes it easy for people to remember when dealing with templates with several parameters:

{| class="infobox bordered" style="width: 25em; text-align: left; font-size: 90%;"
|-
| colspan="2" style="text-align:center; font-size: large;" | "'{{{name}}}"'
|-
| colspan="2" style="text-align:center;" | [[Image:{{{image}}}|300px| ]]<br>

{{{caption}}}
|-
! Data 1:
| {{{data1}}}
|-
! Data 2:
| {{{data2|"this text displayed if data2 not defined"}}}
|-
! Data 3 (data hidden if data3 empty or not defined):
| {{{data3|}}}
|-
| colspan="2" style="font-size: smaller;" | {{{footnotes|}}}
|}

183



Choate c08.tex V1 - 11/20/2007 2:52pm Page 184

Chapter 8: Magic Words, Templates, and Skins

<noinclude>

<!-- TO MAKE A NEW TEMPLATE: copy the source up to, but not including,
the "noinclude" line into a new page. -->

<br style="clear:both" />

== Usage ==
Copy the source of this template (available from the "'view source"' link) and
paste it into a new blank page. Only the part up to, but not including, the tag
<code>&lt;noinclude></code> is necessary.

==See also==
*[[Wikipedia:Infobox]]

[[Category:infobox templates| ]]
[[ar: ]]
[[fa: ]]
[[fr:Modele:Infobox]]
[[zh:Template:Infobox]]
[[ia:Patrono:Infobox]]
</noinclude>

Cut and paste this text into a page of your wiki called Template:Infobox and you will immediately be
able to use that template on your site. There is a caveat, however. The CSS used in the default MediaWiki
distribution does not know about this particular template, causing it to look like it appears in Figure 8-4.
In order to make the infobox look the way you want it to look, you need to customize the CSS, which is
covered in detail in the ‘‘Skins’’ section.

Figure 8-4: The Infobox displayed without CSS

184



Choate c08.tex V1 - 11/20/2007 2:52pm Page 185

Chapter 8: Magic Words, Templates, and Skins

Substitution
When a template is transcluded in a page, it is normally refreshed every time the page is rebuilt, which
varies depending on your caching policies. This means that when the template is changed, the pages that
include the template will reflect the changes as well. Sometimes you won’t want this to happen; to ensure
that, use the template modified by subst. The first time a template is included in a page, the content of
the template is embedded in the page, so that it will not be changed if the original template is changed
later. To substitute our Test template, you would simply change your wikitext to {{subst:Test}} instead
of {{Test}}.

User Interface
Magic words, variables, and parser functions are all used in wikitext, primarily in the main content area
of each page, but this is not the only place where you can use wikitext. In addition to the article content,
other elements on each wiki page make up the user interface, including navigation boxes, sidebars,
copyright notices, and so on, and the text of these elements can be changed as well.

There are two ways to change the overall user interface. Minor changes to the text used in the interface
can be changed with interface messages. Large-scale changes to the user interface require modification of
the wiki’s skin. Both techniques are explained in the following sections.

Interface Messages
Interface messages are a kind of system message. MediaWiki handles system messages in a unique way
in order to be able to localize the user interface of the wiki and present the interface in the appropriate
language for that wiki.

Generally speaking, interface messages consist of all the navigation elements and related text that appear
on all the pages. For example, the Sidebar interface message is how the navigation links in the left-hand
column of a MediaWiki page are defined (when using the Monospace skin). Specifically, an interface
message is a page in the MediaWiki namespace, and this page is used to determine what text to display
in different elements of the page.

In order to customize interface messages, $wgUseDatabaseMessages should be set to True in LocalSet-
tings.php. You also must be logged in as an administrator. When logged in as such, the interface
message pages are edited just like any other page, and can include wikitext, magic words, parser
functions, and so on.

Sidebar
All interface messages are in the MediaWiki namespace. Therefore, the following is the URL for the
Sidebar interface message:

http://127.0.0.1/mysql/index.php/MediaWiki:Sidebar

The Sidebar interface message is responsible for the navigation box in the left-hand column of the
Monospace skin.

185



Choate c08.tex V1 - 11/20/2007 2:52pm Page 186

Chapter 8: Magic Words, Templates, and Skins

The navigation elements are defined using a customized version of wikitext in order to specify
links. The default content follows:

* navigation
** mainpage|mainpage
** portal-url|portal
** currentevents-url|currentevents
** recentchanges-url|recentchanges
** randompage-url|randompage
** helppage|help
** sitesupport-url|sitesupport

The first item is the label. It can be another system message, a wiki link, or an external link. MediaWiki
checks first to whether a system message with the same name exists. If it does, then the content of the
system page is used for the label. In this case, if you visit the page MediaWiki:Mainpage, you will find
that it contains the text ‘‘Main Page,’’ and that is what is displayed for that link.

The second element (the part after the "|" character) defines the link for that item. It, too, can be an
interface message. The interface messages are converted to the appropriate text prior to the wikitext
being parsed by the parser. That’s why the line ** mainpage|mainpage can be used to define a link to the
main page of the wiki. In effect, mainpage is converted to "Main Page", and "Main Page" is then converted
to a wiki link to the page titled ‘‘Main Page.’’

The asterisks work similarly to the way they work when creating lists in wikitext, with a few notable
differences. First, a single asterisk at the start of a line denotes a new section and causes a new box to be
displayed on the page, with the text that follows the asterisk as the label. You can nest items in the list by
adding additional asterisks, just as you can with lists. The following example shows how to add a new
section to the navigation list, as well as how to use an external link in the navigation list. Note that when
you preview the changes, MediaWiki displays the external link incorrectly, but when it is saved, the link
is displayed as it should on the page.

* navigation
** mainpage|mainpage
** portal-url|portal
** currentevents-url|currentevents
** recentchanges-url|recentchanges
** randompage-url|randompage
** helppage|help
** sitesupport-url|sitesupport
* More stuff
** http://choate.info/|Mark's blog

Figure 8-5 shows how the page looks with this modified sidebar.

186



Choate c08.tex V1 - 11/20/2007 2:52pm Page 187

Chapter 8: Magic Words, Templates, and Skins

Figure 8-5: The Sidebar now has a new section

Site Notice
Another commonly used interface message is the Sitenotice interface message, which is used to display
messages that you want all users to see. It is displayed at the top of the page, as shown in Figure 8-6.

Figure 8-6: The Sitenotice interface message is displayed at the top of
every page

The MediaWiki:Sitenotice page must be edited, just like the MediaWiki:Sidebar page was edited.
Once done, the notice is displayed sitewide.

187



Choate c08.tex V1 - 11/20/2007 2:52pm Page 188

Chapter 8: Magic Words, Templates, and Skins

Copyright Warning
The copyright warning that is displayed on editing pages is defined in MediaWiki:Copyrightwarning.
This interface message is different from the previous two examples in that it uses parameters to
customize the message for a given context. Go to the MediaWiki:Copyrightwarning page and edit it
and you will see the following text:

Please note that all contributions to {{SITENAME}} are considered to be released
under the $2 (see $1 for details). If you don’t want your writing to be edited
mercilessly and redistributed at will, then don’t submit it here.<br/>

You are also promising us that you wrote this yourself, or copied it from
a public domain or similar free resource.

<strong>DO NOT SUBMIT COPYRIGHTED WORK WITHOUT PERMISSION!</strong>

There are two variables, $1 and $2, and these values are determined based on the settings of the wiki. $1
refers to the name of the license used by the wiki, if that has been configured in LocalSettings.php.
$2 refers to the link to the wiki page that describes the copyright policy (again, if it has been configured).

An up-to-date list of available interface messages can be found at
www.mediawiki.org/wiki/Category:Interface_messages.

Skins
Skins are a collection of resources used to define the overall look and feel of your wiki. The goal of good
content management system design is to achieve a separation of application logic and content design. It’s
never possible to completely separate the two, of course, and a significant amount of application logic in
the skin classes shouldn’t be meddled with unless you want to change the actual functionality of
your wiki.

Skins include a few PHP classes, CSS, JavaScript scripts, and graphical resources. All modern
MediaWiki skins are a subclass of the SkinTemplate class, and the QuickTemplate class, both of which
are defined in /includes/SkinTemplate.php. The default template for MediaWiki is Monobook, and
the Monobook subclasses are defined in /skins/Monobook.php. All of the related graphics, CSS, and
JavaScript scripts are in the directory /skins/monobook/ or /skins/common.

If you create your own skin, you will create your own directory for these files, and you should never
overwrite anything in /skins/common.

Displaying a New Logo
The wiki’s logo is defined by assigning a URL to the $wgLogo variable in LocalSettings.php. The default
size of the logo should be 135 pixels high and 135 pixels wide. Because you are using a URL, the logo can
be a file on a different server, or it can be an image file uploaded into the wiki itself. In order to customize
the size of the logo, you need to modify the Main.css file in the Monobook skin.

The following excerpt from Main.css shows how logo size is defined for the #p-logo selector. In order
to change the size of the logo, you need to change the values for height and width to match that of the
logo you plan to display. You do not want to change the original Main.css stylesheet, because it may be
overwritten when you upgrade MediaWiki. See the section ‘‘Customizing CSS and JavaScript’’ later in

188



Choate c08.tex V1 - 11/20/2007 2:52pm Page 189

Chapter 8: Magic Words, Templates, and Skins

this chapter to learn how to change stylesheets in an upgrade-proof way. Here is the code defining
logo size:

#p-logo {
z-index: 3;
position:absolute; /*needed to use z-index */
top: 0;
left: 0;
height: 155px;
width: 12em;
overflow: visible;

}

Skin Settings and Preferences
The default skin is Monobook, but other skins are available, which the user can select if you have not
changed the default values. You can change the default skin by setting the $wgDefaultSkin global vari-
able in LocalSettings.php. When you do, use the lowercase version of the skin name. For example, if
you wanted to change the default skin to CologneBlue, you would enter the following:

$wgDefaultSkin = cologneblue;

You can also limit the skins from which users can choose on their preferences page by populating the
$wgSkinSkins array in LocalSettings.php. If you do so, every skin listed in this array will be skipped
and will not be shown as an option to the user.

$wgSkipSkins = array("chick", "cologneblue", "myskin", "nostalgia",
"simple", "standard");

If you want to remove all skin options from the user, as well as any trace that it’s possible for other skins
to exist, then you need to remove the Skins tab in the user’s preferences page. In order to do this, edit the
/includes/SpecialPreferences.php file. This file is responsible for building the preferences page for
the user. Comment out the code that builds the Skin tab (in other words, start each line that refers to the
tab with a # character). The code in question is as follows:

# Skin
#
$wgOut->addHTML( "<fieldset>\n<legend>\n" . wfMsg('skin') . "</legend>\n" );
$mptitle = Title::newMainPage();
$previewtext = wfMsg('skinpreview');
# Only show members of Skin::getSkinNames() rather than
# $skinNames (skins is all skin names from Language.php)
$validSkinNames = Skin::getSkinNames();
# Sort by UI skin name. First though need to update validSkinNames as sometimes
# the skinkey & UI skinname differ (e.g. "standard" skinkey is "Classic" in the UI).
foreach ($validSkinNames as $skinkey => & $skinname ) {
if ( isset( $skinNames[$skinkey] ) ) {

$skinname = $skinNames[$skinkey];
}

}
asort($validSkinNames);

189



Choate c08.tex V1 - 11/20/2007 2:52pm Page 190

Chapter 8: Magic Words, Templates, and Skins

foreach ($validSkinNames as $skinkey => $sn ) {
if ( in_array( $skinkey, $wgSkipSkins ) ) {

continue;
}
$checked = $skinkey == $this->mSkin ? ' checked="checked"' : ";

$mplink = htmlspecialchars($mptitle->getLocalURL("useskin=$skinkey"));
$previewlink = "<a target='_blank' href=\"$mplink\">$previewtext</a>";
if( $skinkey == $wgDefaultSkin )

$sn .= ' (' . wfMsg( 'default' ) . ')';
$wgOut->addHTML( "<input type='radio' name='wpSkin' id=\"wpSkin$skinkey\"

value=\"$skinkey\"$checked /> <label for=\"wpSkin$skinkey\">{$sn}</label>

$previewlink<br />\n" );
}

$wgOut->addHTML( "</fieldset>\n\n" );

After the preceding code is commented out, users will only be able to use the default skin, as specified
by the wiki administrator.

Customizing CSS and JavaScript
The CSS files for Monobook are in /skins/monobook/main.css. If you want to customize the look and
feel of your site, you do not want to change this file directly, because it may be overwritten when
upgrading to a later version of MediaWiki. In order to work around this potential problem, MediaWiki
provides ways to generate site-specific and user-specific CSS that will not be overwritten during
an upgrade.

Site JavaScript and CSS
Users in the sysop group can define a new CSS document that will be applied to the entire wiki but that
won’t overwrite the original CSS files. The same is true for JavaScript files as well. The first step is to
enable this feature by entering the following code into LocalSettings.php:

$wgUseSiteCss = true;
$wgUseSiteJs = true;

Once it is enabled, the sysop should create the following pages in the MediaWiki namespace:

MediaWiki:Monobook.css
MediaWiki.Monobook.js

After this is done, the sysop can enter style information into the CSS file (or code into the JavaScript file).

In the previous section, the template copied from Wikipedia did not display correctly because the
customized CSS required to do so was missing. Using MediaWiki’s CSS customization features, it’s
possible to go to Wikipedia and view the customized CSS. Type the following URL in your browser and
you will be taken to the appropriate page:

http://en.wikipedia.org/wiki/MediaWiki:Monobook.css

190



Choate c08.tex V1 - 11/20/2007 2:52pm Page 191

Chapter 8: Magic Words, Templates, and Skins

In the previous example, the table element used in the Infobox was in the infobox class. You can scroll
through the CSS on this page until you find a reference to the infobox class, which, at the time of writing,
was as follows:

/* Infobox template style */

.infobox {
border: 1px solid #aaa;
background-color: #f9f9f9;
color: black;

}

.infobox.bordered td,

.infobox.bordered th {
border: 1px solid #aaa;

}

/* styles for bordered infobox with merged rows */
.infobox.bordered .mergedtoprow td,
.infobox.bordered .mergedtoprow th {

border-top: 1px solid #aaa;
border-right: 1px solid #aaa;

}

.gallerybox .thumb img {
background: #F9F9F9;

}

.infobox.bordered .mergedrow td,

.infobox.bordered .mergedrow th {
border-right: 1px solid #aaa;

}

You can copy the preceding CSS and then go back to your wiki and paste it into the MediaWiki:
Monobook.css page so that the infoboxes that appear on your page now look exactly like the ones
on Wikipedia.

When Monobook.css is customized, it does not eliminate the other CSS files used by the site. If the style is
new, and not represented in the default CSS file, then the style is simply added. If the style already exists,
then it is overridden by the new style in Monobook.css. This means that you can override the setting for
#p-logo in the MediaWiki:Monobook.css page. Simply add the selector to that page and change any of
the values you want to change, and that change will then be reflected in the site.

User JavaScript and CSS
The sitewide CSS and JavaScript can only be modified by a sysop, but the same functionality can be
implemented for users as well. If you want to let users create their own CSS or JavaScript for the site, you
need to enable the following variables in LocalSettings.php:

$wgAllowUserCss=true;
$wgAllowUserJs=true;

191



Choate c08.tex V1 - 11/20/2007 2:52pm Page 192

Chapter 8: Magic Words, Templates, and Skins

Once the site is configured, users can create their own stylesheets and JavaScript scripts by creating the
following pages:

Special:Mypage/monobook.css
Special:Mypage/monobook.js

The special page Mypage creates a subpage to your user page. Once created, you can now customize to
your heart’s content.

While there may be some legitimate reasons to let users customize their stylesheets, it is usually better
to disable this feature altogether. This is because if you don’t know exactly what you are doing, you can
make your site unusable. While it’s true that any problems would be limited to users who customizes
their own CSS, you can avoid the support headache by avoiding the feature altogether. Bear in mind
that users can usually override a site’s stylesheet in their own browser, which is the best solution
for customization.

Skin Output
The following code listing is a sample of a MediaWiki page as generated by the Monobook skin, with
most of the content stripped out to make it more legible. References to CSS files and to element classes
and IDs are in bold.

The Monobook skin makes liberal use of HTML element IDs, which means that you can easily customize
the display of just about every element on the page. The boxes that appear on the left side of the page
(when using left-to-right languages) are called portlets, and the <div> element that contains them is in
the portlets class. Look in the sample HTML and you will see that every list item inside the various
portlets contains a unique ID.

Refer to this if you want to customize your site, so that you will know the names of the IDs and classes
that you will need to create in your own CSS:

<body class="mediawiki ns-0 ltr page-Main_Page">

<div id="globalWrapper">

<div id="column-content">

<div id="content">

<a name="top" id="top"></a>

<h1 class="firstHeading">Main Page</h1>

<div id="bodyContent">

<h3 id="siteSub">From ProfWikis - MySQL</h3>

<div id="contentSub"></div>

<div id="jump-to-nav">

Jump to: <a href="#column-one">navigation</a>, <a
href="#searchInput">search</a>

</div>

<!-- Content goes here -->

<div class="visualClear"></div>

</div>

192



Choate c08.tex V1 - 11/20/2007 2:52pm Page 193

Chapter 8: Magic Words, Templates, and Skins

</div>

</div>

<div id="column-one">

<div id="p-cactions" class="portlet">

<h5>Views</h5>

<div class="pBody">

<ul>

<li id="ca-nstab-main" class="selected"><a
href="/wiki/index.php/Main_Page">Article</a></li>

<li id="ca-talk" class="new"><a
href="/wiki/index.php?title=Talk:Main_Page&amp;action=edit">Discussion</a></li>

<li id="ca-edit"><a
href="/wiki/index.php?title=Main_Page&amp;action=edit">Edit</a></li>

<li id="ca-history"><a
href="/wiki/index.php?title=Main_Page&amp;action=history">History</a></li>

<li id="ca-unprotect"><a
href="/wiki/index.php?title=Main_Page&amp;action=unprotect">unprotect</a></li>

<li id="ca-delete"><a
href="/wiki/index.php?title=Main_Page&amp;action=delete">Delete</a></li>

<li id="ca-move"><a
href="/wiki/index.php/Special:Movepage/Main_Page">Move</a></li>

<li id="ca-watch"><a
href="/wiki/index.php?title=Main_Page&amp;action=watch">Watch</a></li>

</ul>

</div>

</div>

<div class="portlet" id="p-personal">

<h5>Personal tools</h5>

<div class="pBody">

<ul>

<li id="pt-userpage"><a
href="/wiki/index.php/User:WikiSysop" class="new">WikiSysop</a></li>

<li id="pt-mytalk"><a
href="/wiki/index.php/User_talk:WikiSysop" class="new">My talk</a></li>

<li id="pt-preferences"><a
href="/wiki/index.php/Special:Preferences">My preferences</a></li>

<li id="pt-watchlist"><a
href="/wiki/index.php/Special:Watchlist">My watchlist</a></li>

<li id="pt-mycontris"><a
href="/wiki/index.php/Special:Contributions/WikiSysop">
My contributions</a></li>

<li id="pt-logout"><a
href="/wiki/index.php?title=Special:Userlogout&amp;returnto=Main_Page">
Log out</a></li>

</ul>

</div>

</div>

<div class="portlet" id="p-logo">

<a style="background-image: url(/wiki/skins/common/images/wiki.png);"

193



Choate c08.tex V1 - 11/20/2007 2:52pm Page 194

Chapter 8: Magic Words, Templates, and Skins

href="/wiki/index.php/Main_Page" title="Main Page"></a>

</div>

<div class='portlet' id='p-navigation'>

<h5>Navigation</h5>

<div class='pBody'>

<ul>

<li id="n-mainpage"><a href="/wiki/index.php/Main_Page">

Main Page</a></li>

<li id="n-portal"><a
href="/wiki/index.php/ProfWikis_-_MySQL:Community_Portal">
Community portal</a></li>

<li id="n-currentevents"><a
href="/wiki/index.php/Current_events">Current events</a></li>

<li id="n-recentchanges"><a
href="/wiki/index.php/Special:Recentchanges">Recent changes</a></li>

<li id="n-randompage"><a
href="/wiki/index.php/Special:Random">Random page</a></li>

<li id="n-help"><a
href="/wiki/index.php/Help:Contents">Help</a></li>

<li id="n-sitesupport"><a
href="/wiki/index.php/ProfWikis_-_MySQL:Site_support">Donations</a></li>

</ul>

</div>

</div>

<div id="p-search" class="portlet">

<h5><label for="searchInput">Search</label></h5>

<div id="searchBody" class="pBody">

<form action="/wiki/index.php/Special:Search" id="searchform"
name="searchform">

<div>

<input id="searchInput" name="search" type="text" accesskey="f" value="" />

<input type='submit' name="go" class="searchButton" id="searchGoButton"
value="Go" />&nbsp;<input type='submit' name="fulltext" class="searchButton"
id="mw-searchButton" value="Search" />

</div>

</form>

</div>

</div>

<div class="portlet" id="p-tb">

<h5>Toolbox</h5>

<div class="pBody">

<ul>

<li id="t-whatlinkshere"><a
href="/wiki/index.php/Special:Whatlinkshere/Main_Page">

What links here</a></li>

<li id="t-recentchangeslinked"><a
href="/wiki/index.php/Special:Recentchangeslinked/Main_Page">

Related changes</a></li>

194



Choate c08.tex V1 - 11/20/2007 2:52pm Page 195

Chapter 8: Magic Words, Templates, and Skins

<li id="t-upload"><a
href="/wiki/index.php/Special:Upload">Upload file</a></li>

<li id="t-specialpages"><a
href="/wiki/index.php/Special:Specialpages">Special pages</a></li>

<li id="t-print"><a
href="/wiki/index.php?title=Main_Page&amp;printable=yes">

Printable version</a></li>

<li id="t-permalink"><a
href="/wiki/index.php?title=Main_Page&amp;oldid=150">Permanent link</a></li>

</ul>

</div>

</div>

</div><!-- end of the left (by default at least) column -->

<div class="visualClear"></div>

<div id="footer">

<div id="f-poweredbyico">

<a href="http://www.mediawiki.org/"><img src="/wiki/skins/common/
images/poweredby_mediawiki_88x31.png" alt="Powered by MediaWiki" /></a>

</div>

<div id="f-copyrightico"></div>

<ul id="f-list">

<li id="lastmod"></li>

<li id="viewcount"></li>

<li id="copyright"></li>

<li id="privacy"></li>

<li id="about"></li>

<li id="disclaimer"></li>

</ul>

</div>

</div>

</body>

Creating a New Skin
You create a new skin by subclassing SkinTemplate and QuickTemplate, both of which are defined in
/includes/SkinTemplate.php. The easiest way to create your new skin is to use an existing skin as the
basis for your own. To create a new skin, follow these steps:

1. Copy the /skins/monobook directory to a new directory with a name based on your skin,
such as /skins/profwiki. This directory contains main.css, plus a handful of graphics that
are used in the skin.

2. Copy /skins/Monobook.php to /skins/ProfWiki.php.

3. Two classes are defined in Monobook.php. Change class SkinMonoBook extends
SkinTemplate to class SkinProfWiki extends SkinTemplate. Then change
class MonoBookTemplate extends QuickTemplate to class ProfWikiTemplate
extends QuickTemplate.

4. The class now named SkinProfWiki contains the following three lines:

$this->skinname = 'monobook';
$this->stylename = 'monobook';

195



Choate c08.tex V1 - 11/20/2007 2:52pm Page 196

Chapter 8: Magic Words, Templates, and Skins

$this->template = 'MonoBookTemplate';
These values should be changed to reflect the new skin name:

$this->skinname = 'profwiki';
$this->stylename = 'profwiki';
$this->template = 'ProfWikiTemplate';

5. Set $wgDefaultSkin=’profwiki’ in LocalSettings.php.

With these steps finished, the skin is ready to be customized.

Summary
In this chapter, you learned how magic words, templates, and skins provide advanced editing capability
to users, and provide a means of standardizing the look and feel of your wiki. You learned how to use
the most commonly used magic words, and how to create templates, as well as how to customize the skin
currently used on your wiki. These customizations are just the start of what you can do with MediaWiki.
In Chapter 9, you will learn how to install and use extensions and how to create your own magic words
to extend the functionality of your wiki.

196



Choate c09.tex V1 - 11/19/2007 2:38pm Page 197

Extensions

By now, you are familiar with magic words and how to use them with wikitext. In this chapter, you
will learn how to create your very own magic words and special pages. Of necessity, this means
diving a little deeper into the inner workings of MediaWiki, and it requires familiarity with PHP.
If you are completely unfamiliar with PHP and computer programming, you can find several good
books that can help you.

See especially Beginning PHP, Apache, MySQL Web Development, by Michael K. Glass et al.
(Wrox, 2004).

Otherwise, read on and learn about MediaWiki’s extension mechanism.

Extensions enable you to customize MediaWiki to your individual needs. The MediaWiki
community has made a fairly large number of extensions available, which are a good starting
place to learn how to write them. Extensions are surprisingly easy to write in MediaWiki. They are
made possible by a rather large collection of hooks throughout the application that you can register
callback functions with, which are then called at opportune times.

XML tag extensions and parser functions are callback functions that enable you to extend
wikitext. There are a large number of other hooks, though, that give you the opportunity to modify
MediaWiki behavior at all stages of the page delivery process.

In addition to learning how to use hooks in this chapter, you will also learn how to create your
own special pages.

MediaWiki Hooks
A hook is an array of functions (if any functions have been registered) that are carried out every
time a given section of code is executed. XML tag extensions and parser functions are two special
cases of hooks that are used to extend wikitext. Many more, however, are available to you. The
list of available hooks is long and growing, and not all of them are documented. You can find



Choate c09.tex V1 - 11/19/2007 2:38pm Page 198

Chapter 9: Extensions

the latest documentation at www.mediawiki.org/wiki/Manual:MediaWikihooks. In addition, you
can search for undocumented hooks by running the following scripts from the command line:
maintenance/findhooks.php.

In order to understand how hooks work, and decide which hooks are good candidates to accomplish
whatever it is you want to accomplish with your extension, it is necessary to have a basic understanding
of the sequence of events that takes place when a page is requested in MediaWiki. The next section
reviews that process in some detail, after which we will delve into the specifics of creating your own
extensions. Examples are provided to get you started.

The Parsing Process
Every request begins with a call to index.php, the PHP script that serves as an entry point to
the MediaWiki application. In most typical uses of PHP, PHP code is embedded into HTML pages.
MediaWiki does things the other way around. The PHP files that comprise MediaWiki are all PHP
code. If you are familiar with computer programming, but perhaps not familiar with PHP, you need to
understand how code is executed in PHP because it will help you understand the following sections.

A PHP script executes either when it is requested by the HTTP server or when it is included in another
PHP page. Whenever a PHP script is included in another script, the scope of the included script’s
execution is limited to the current insertion. The only exception to this is PHP scripts that define functions
or classes. The code in a function isn’t executed until the function is called by a statement in the script.
Classes aren’t executed, they are instantiated, so they must be instantiated in code.

Look at the first line of code in index.php, and you’ll see the following line:

require_once( './includes/WebStart.php' );

require_once is one of the ways that PHP includes one PHP script in another script. The once refers
to the fact that this script should only be included one time. The PHP parser will then avoid loading it
again, even if it encounters the same line of code later in the script.

When a page is first requested, the WebStart.php script is executed, so in order to follow the logic of
the application, you need to open WebStart.php and start at the top. It is this functionality that often
makes PHP code so difficult to decipher — the code frequently jumps from page to page and it can be
tedious to follow. Fortunately for us, the developers of MediaWiki have made it possible to extend and
customize MediaWiki without needing to modify the base code. It is helpful, however, to understand the
basic mechanics of how a request in MediaWiki is processed.

The WebStart.php script then makes some security checks and loads the Defines.php file, which
initializes a list of constants used by the application, followed by the familiar LocalSettings.php (which
in turn loads and thereby executes DefaultSettings.php). Finally, Setup.php is executed, which sets up
a host of global variables and includes still more PHP scripts used by MediaWiki. Setup.php also instan-
tiates some very important objects that you will need to know about when writing extensions: $wgUser,
$wgOut, $wgParser, $wgTitle, and $wgArticle, which are discussed in more detail momentarily.

All of this happens when index.php includes WebStart.php at the very beginning of a page request.
The next two lines of code in index.php are as follows:

require_once( "includes/Wiki.php" );
$mediaWiki = new MediaWiki();

198



Choate c09.tex V1 - 11/19/2007 2:38pm Page 199

Chapter 9: Extensions

The MediaWiki class is defined in Wiki.php, and a new $mediaWiki object is instantiated. The MediaWiki
class is intended to be the base class for the MediaWiki application. It’s intended because the developers
are still migrating MediaWiki into a more object-oriented architecture. While good headway is being
made, not all of the functionality is encapsulated in objects, and a lot of global variables and global
functions are floating around. Nevertheless, the request is processed by the MediaWiki object. The
following snippet of code from the index.php script shows the stages of the request cycle in
MediaWiki. Additional comments in the code provide some explanation for each step:

# Generate a title object
$wgTitle = $mediaWiki->checkInitialQueries(

$title,$action,$wgOut, $wgRequest, $wgContLang );

# Some debugging and error checking code has been deleted for clarity
# Set global variables in mediaWiki, based in some instances on values
# set in LocalSettings.php
$mediaWiki->setVal( 'Server', $wgServer );
$mediaWiki->setVal( 'DisableInternalSearch', $wgDisableInternalSearch );
$mediaWiki->setVal( 'action', $action );
$mediaWiki->setVal( 'SquidMaxage', $wgSquidMaxage );
$mediaWiki->setVal( 'EnableDublinCoreRdf', $wgEnableDublinCoreRdf );
$mediaWiki->setVal( 'EnableCreativeCommonsRdf', $wgEnableCreativeCommonsRdf );
$mediaWiki->setVal( 'CommandLineMode', $wgCommandLineMode );
$mediaWiki->setVal( 'UseExternalEditor', $wgUseExternalEditor );
$mediaWiki->setVal( 'DisabledActions', $wgDisabledActions );

# Initialize the Article object, which is responsible for building the page
# In the mediaWiki->initialize method, the article object is instantiated,
# and then mediaWiki->performAction is called, which will cause the appropriate
# page to be displayed, depending on the requested action.
$wgArticle = $mediaWiki->initialize ( $wgTitle, $wgOut, $wgUser, $wgRequest );

# The following methods perform some cleanup tasks, and are
# positioned here after the article has been created for performance
# reasons.
$mediaWiki->finalCleanup ( $wgDeferredUpdateList, $wgLoadBalancer, $wgOut );

wfDebug("PROF: Do updates\n");
$mediaWiki->doUpdates( $wgPostCommitUpdateList );

$mediaWiki->restInPeace( $wgLoadBalancer );

That concludes the high-level overview of how a request is processed, but it leaves out a fair
amount of detail. A lot is going on behind the scenes. Before a page is delivered, permissions need to
be checked, wikitext needs to be converted into HTML, and the overall page needs to be displayed and
configured appropriately for the user requesting the page. This brings us to the $wgUser, $wgOut, and
$wgParser objects.

The user object represents the user making the request, whether it’s an anonymous user or a sysop, and
MediaWiki uses this object to determine whether the page can be delivered, and what options to display
on the page according to the permissions granted to the user.

The $wgOut object is the output page, which results in the HTML that is sent back to the requesting
browser. $wgParser is the parser object, responsible for parsing wikitext and turning it into HTML. The
following sections walk through the parsing process. Mind you, this is not for your moral edification;
there are very practical applications for this knowledge. When you are writing extensions for MediaWiki,

199



Choate c09.tex V1 - 11/19/2007 2:38pm Page 200

Chapter 9: Extensions

such as XML-type wikitext extensions or parser functions, your code will be executed during the parsing
process and you will need to be familiar with what happens.

Step 1: Start with Raw Wikitext
When a page is first requested, the page content, stored as wikitext, is retrieved and converted into
HTML by the parser. This, of course, is a simplified view, ignoring things like caching, but that’s basically
what happens. The process of parsing the wikitext into HTML is handled by code in includes/Parser
.php, which defines the Parser, ParserOptions and ParserOutput classes, all of which laboriously, with
much Sturm und Drang and sound and fury, convert humble wikitext into magnificent HTML.

The parser doesn’t just scan through the wikitext once and then spit out some HTML. That would be too
easy. This parser isn’t happy until it has chewed through the wikitext nine or ten times. Needless to say,
the parser is not a model of efficiency and grace (which is why you learn all about caching in Chapter 11).
In all fairness, it is a powerful parser that does a lot of cool tricks. The reason for so much of the code is
partly because of the demands of parsing wikitext, but also because the developers have provided many
hooks that enable others to extend MediaWiki so easily.

The simplest way to see what is happening is to follow wikitext through the process. The following
wikitext is fresh from the database, waiting to be parsed:

==Sample Wikitext==

I want to use "'a few"' different wikitext features.

<nowiki>

===This won't be parsed===
</nowiki>

This links to the [[Main Page]] and this links to [[User:WikiSysop]].

<pre>

when does this return?
</pre>

===Sample tag hook===

<mytaghook arg1="Red" arg2="Blue">My content</mytaghook>

===Sample parser function===

{{example: Red | Blue}}

Step 2: Remove Text That Shouldn’t Be Parsed
The first thing the parser does is strip out <nowiki>, <pre>, and <gallery> tags (and the content
they contain) and replace them with a unique identifier (so they can be unstripped later). <nowiki> and
<pre> are stripped out because, by definition, they aren’t parsed. The reason why <gallery> is stripped
out has to do with a bug in the parser, so it is handled separately. Most important, XML tag extensions
are stripped out as well, which keeps them from being parsed as raw wikitext, which takes place in the
step that follows this one.

200



Choate c09.tex V1 - 11/19/2007 2:38pm Page 201

Chapter 9: Extensions

The following code contains comments to make the code easier to read, but they are not produced during
the conversion process. You can see the unique tokens that now reside in the place where the <nowiki>

and <pre> tags once resided, as well as our customized XML extension <mytaghook arg1="Red"
arg2="Blue" >My content</mytaghook>:

==Sample Wikitext==

I want to use "'a few"' different wikitext features.

<!-- Former "nowiki" tag -->

UNIQ767b803742958244-nowiki-00000001-QINU

This links to the [[Main Page]] and this links to [[User:WikiSysop]].

<!-- Former "pre" tag -->

UNIQ767b803742958244-pre-00000002-QINU

===Sample tag hook===

<!-- Former "mytaghook" tag -->

UNIQ767b803742958244-mytaghook-00000003-QINU

===Sample parser function===

{{example: Red | Blue}}

Step 3: Generate Some (But Not All) of the Wikitext
The next step occurs when the $wgParser->internalParse() method is called. It does two things.
First, it converts some of the wikitext, such as headings and inline styles, to HTML, and adds the edit
links where appropriate. It also strips out all the wikilinks and replaces them with tokens that identify
them so that they, too, can be reinserted at a later time, using a format like the following:

<!--LINK 0-->

Now the example parser function has been executed and its output inserted into the text:

<p><a name="Sample_Wikitext" id="Sample_Wikitext"></a></p>

<h2><span class="editsection">[<a
href="/mysql/index.php?title=MediaWiki_Extensions&amp;action=edit&amp;section=1"
title="Edit section: Sample Wikitext">edit</a>]</span> <span
class="mw-headline">Sample Wikitext</span></h2>

<p>I want to use <b>a few</b> different wikitext features.
UNIQ767b803742958244-nowiki-00000001-QINU This links to the <!--LINK 0-->

and this links to <!--LINK 1-->. UNIQ767b803742958244-pre-00000002-QINU <a
name="Sample_tag_hook" id="Sample_tag_hook"></a></p>

<h3><span class="editsection">[<a
href="/mysql/index.php?title=MediaWiki_Extensions&amp;action=edit&amp;section=2"
title="Edit section: Sample tag hook">edit</a>]</span> <span

201



Choate c09.tex V1 - 11/19/2007 2:38pm Page 202

Chapter 9: Extensions

class="mw-headline">Sample tag hook</span></h3>

<p>UNIQ767b803742958244-mytaghook-00000003-QINU <a
name="Sample_parser_function" id="Sample_parser_function"></a></p>

<h3><span class="editsection">[<a
href="/mysql/index.php?title=MediaWiki_Extensions&amp;action=edit&amp;section=3"
title="Edit section: Sample parser function">edit</a>]</span> <span
class="mw-headline">Sample parser function</span></h3>

<!-- Parser functions are executed -->

<p>Function: example<br>

param1 value is: Red<br>

param2 value is: Blue<br>

<a href="http://127.0.0.1//mysql/index.php?title=MediaWiki_Extensions&amp;
action=edit" class="external free" title="http://127.0.0.1//mysql/index.php?
title=MediaWiki_Extensions&amp;action=edit" rel="nofollow">http://127.0.0.1//
mysql/index.php?title=MediaWiki_Extensions&amp;action=edit</a></p>

Step 4: Unstrip Everything That You Stripped (Except <nowiki> Text)
In this step, all the things you stripped in Step 2 should be reinserted into the wikitext, except for the
content nested in <nowiki> tags and content for links:

<p><a name="Sample_Wikitext" id="Sample_Wikitext"></a></p>

<h2><span class="editsection">[<a
href="/mysql/index.php?title=MediaWiki_Extensions&amp;action=edit&amp;section=1"
title="Edit section: Sample Wikitext">edit</a>]</span> <span
class="mw-headline">Sample Wikitext</span></h2>

<p>I want to use <b>a few</b> different wikitext features.
UNIQ767b803742958244-nowiki-00000001-QINU This links to the <!--LINK 0-->

and this links to <!--LINK 1-->.</p>

<!-- "pre" text returned -->

<pre>

when does this return?
</pre>

<p><a name="Sample_tag_hook" id="Sample_tag_hook"></a></p>

<h3><span class="editsection">[<a
href="/mysql/index.php?title=MediaWiki_Extensions&amp;action=edit&amp;section=2"
title="Edit section: Sample tag hook">edit</a>]</span> <span
class="mw-headline">Sample tag hook</span></h3>

<!-- "mytaghook" results are inserted into the text -->

<p>Input: My content<br>

Arg1 value is: Red<br>

Arg2 value is: Blue<br>

<a name="Sample_parser_function" id="Sample_parser_function"></a></p>

202



Choate c09.tex V1 - 11/19/2007 2:38pm Page 203

Chapter 9: Extensions

<h3><span class="editsection">[<a
href="/mysql/index.php?title=MediaWiki_Extensions&amp;action=edit&amp;section=3"
title="Edit section: Sample parser function">edit</a>]</span> <span
class="mw-headline">Sample parser function</span></h3>

<p>Function: example<br>

param1 value is: Red<br>

param2 value is: Blue<br>

<a href="http://127.0.0.1//mysql/index.php?title=MediaWiki_Extensions&amp;
action=edit" class="external free" title="http://127.0.0.1//mysql/index.php?
title=MediaWiki_Extensions&amp;action=edit" rel="nofollow">http://127.0.0.1//
mysql/index.php?title=MediaWiki_Extensions&amp;action=edit</a></p>

Step 5: Fix Common Errors
Nothing changes in our sample wikitext because I didn’t make any of the errors that are routinely fixed.
Basically, the code looks for some common mistakes that are made when people type wikitext and tries
to fix them before proceeding.

Step 6: Generate Block-level HTML
Next, the block-level HTML that didn’t get produced in Step 3 is now generated. In most cases, the
block-level elements are already in place, but in places where <nowiki> text has been temporarily
removed, the HTML needs to be fixed. Here is the original paragraph before the block-level HTML
is generated:

<p>I want to use <b>a few</b> different wikitext features.
UNIQ767b803742958244-nowiki-00000001-QINU This links to the <!--LINK 0-->

and this links to <!--LINK 1-->.</p>

The following output shows the same paragraph after the block-level HTML is generated. You will notice
that <p> tags have been added around the placeholder for <wikitext> and what was one paragraph
before is now three:

<p>I want to use <b>a few</b> different wikitext features.</p>

<p>UNIQ767b803742958244-nowiki-00000001-QINU</p>

<p>This links to the <!--LINK 0--> and this links to <!--LINK 1-->.</p>

Step 7: Put Links Back in
Finally, the wikilinks are put back into the page. The following code snippet shows the links before they
are returned:

<p>This links to the <!--LINK 0--> and this links to <!--LINK 1-->.</p>

This code shows the content with the links back in the page:

<p>This links to the <a href="/mysql/index.php/Main_Page"
title="Main Page"> Main Page</a> and this links to <a
href="/mysql/index.php?title=User:WikiSysop&amp;action=edit" class="new"
title="User:WikiSysop">User:WikiSysop</a>.</p>

203



Choate c09.tex V1 - 11/19/2007 2:38pm Page 204

Chapter 9: Extensions

Step 8: Do Something Obscure with Chinese Text
This step translates from one form of Chinese text to another. Needless to say, nothing happens to our
example wikitext because it’s not in Chinese.

Step 9: Unstrip <nowiki> Elements
The <nowiki> tags have not been forgotten. They are now added back into the text, which means that
we’re done converting wikitext.

The original <nowiki> tag looked like this:

I want to use "'a few"' different wikitext features.

<nowiki>

===This won't be parsed===
</nowiki>

This links to the [[Main Page]] and this links to [[User:WikiSysop]].

Then, the tag was stripped and replaced with a placeholder:

<p>I want to use <b>a few</b> different wikitext features.</p>

<p>UNIQ767b803742958244-nowiki-00000001-QINU</p>

<p>This links to the <a href="/mysql/index.php/Main_Page"
title="Main Page"> Main Page</a> and this links to <a
href="/mysql/index.php?title=User:WikiSysop&amp;action=edit" class="new"
title="User:WikiSysop">User:WikiSysop</a>.</p>

Finally, the raw content nested by the <nowiki> tag is returned, wrapped in <p> tags:

<p>I want to use <b>a few</b> different wikitext features.</p>

<p>===This won't be parsed===</p>

<p>This links to the <a href="/mysql/index.php/Main_Page"
title="Main Page"> Main Page</a> and this links to <a
href="/mysql/index.php?title=User:WikiSysop&amp;action=edit" class="new"
title="User:WikiSysop">User:WikiSysop</a>.</p>

Step 10: Tidy Up the HTML
That leaves one last step, which is to tidy up the HTML with Tidy, if you have opted for that
configuration in LocalSettings.php. In this case, there wasn’t much to tidy up, so the content remains
the same.

XML Tag Extensions
XML wikitext extensions take the form of XML tags that can optionally include attributes. The previous
examples used to illustrate the stages of the parsing process included an XML extension function called

204



Choate c09.tex V1 - 11/19/2007 2:38pm Page 205

Chapter 9: Extensions

mytaghook. In this section, you will learn how to create that extension, so that the user can enter the
following XML:

<mytaghook arg1="Red" arg2="Blue">My content</mytaghook>

The output of the preceding XML will be as follows:

<p>Input: My content<br>

Arg1 value is: Red<br>

Arg2 value is: Blue<br></p>

Creating an XML tag extension is a three-part process:

1. The first step is to create a MyTagHook.php file in the extensions directory.

2. Define two functions in the MyTagHook.php file: wfMyTagHook_Setup and
wfMyTagHook_Render.

3. Insert the following at the end of LocalSettings.php: include
("extensions/MyTagHook.php");

The Setup Function
Two functions need to be written. The first function will be used to register the second function with
the parser. In the following example, I have created a function wfMyTagHook_Setup that is added to the
$wgExtensionFunctions array. All functions appended in this way will be executed when the parser is
instantiated, in order to register the callback function to be used by the parser, which is
called wfMyTagHook_Render:

$wgExtensionFunctions[] = "wfMyTagHook_Setup";

# This function is called in Setup.php and it registers the name of the
# tag with the parser, as well as the callback function that renders the
# actual HTML output.
function wfMyTagHook_Setup() {

global $wgParser;
# If this were a parser function instead of an extension tag,

# the $wgParser->setFunctionHook method would be called.
# The renderMyTagHook function will be called in Parser->strip.
$wgParser->setHook( "mytaghook", "wfMyTagHook_Render" );

}

The Render Function
In this example, the wfMyTagHook_Render function does not do anything particularly useful. It just
returns information about the arguments that were passed to the function. The function receives
three arguments:

❑ $input: a string representing the text between the opening and closing XML tags

❑ $argv: an associative array containing any attributes used in the XML tag

❑ &$parser: a reference to the parser object

205



Choate c09.tex V1 - 11/19/2007 2:38pm Page 206

Chapter 9: Extensions

function wfMyTagHook_Render( $input, $argv, &$parser ) {
# This keeps the parser from caching output, which is especially

# useful when debugging.
$parser->disableCache();

# This tag extension simply returns information about the request,
# such as the value for $input, and the arguments.
# The $output variable is a string, not on OutputPage object.
$output = "Input: " . $input . "<br/>";

$output .="Arg1 value is: " .$argv["arg1"] . "<br/>";
$output .="Arg2 value is: " .$argv["arg2"] . "<br/>";

The Complete Extension
The complete extension script follows. In addition to the functions already discussed, some additional
code has been added that keeps the code from being run outside of MediaWiki, and that generates credits
for the author of the extension, which is displayed on the special page Special:Version:

<?php
# This is an example extension to wikitext, that adds additional
# XML tags to MediaWiki to be parsed as wikitext. The tags are
# structured like normal XML elements, such as:
# <example arg1="some value">My input text/example>

# The function registered by this extension gets passed to the text between the
# tags as $input as well as an arbitrary number of arguments passed
# in the $argv array. These tag extensions are expected to return HTML.
# If wikitext is returned instead, it will not be parsed.
# To activate the extension, include it from your LocalSettings.php
# with: include("extensions/MyTagHook.php");

# This code keeps this PHP file from being run on the commandline;
# It can only be called from within MediaWiki.
if(! defined( 'MEDIAWIKI' ) ) {

echo( "This is an extension to the MediaWiki package and cannot be run
standalone.\n" );
die( -1 );

} else {

# Give yourself credit. This will appear in the Special:Version page.
$wgExtensionCredits['parser'][] = array(

'name' => 'My Tag Hook',
'author' =>'Mark Choate',
'url' => 'http://choate.info/',
'description' => 'A simple example.'
);

}

# Register the extension function. During the setup phase in Setup.php,
# all the extensions that have been registered (or appended) to the

$wgExtensionFunctions
# array are executed. This is not the function that

generates the content, but it is the

206



Choate c09.tex V1 - 11/19/2007 2:38pm Page 207

Chapter 9: Extensions

# function that registers the extension with the parser.
$wgExtensionFunctions[] = "wfMyTagHook_Setup";

# This function is called in Setup.php and it registers the name of the
# tag with the parser, as well as the callback function that renders the
# actual HTML output.
function wfMyTagHook_Setup() {

global $wgParser;
# If this were a parser function instead of an extension tag,

# the $wgParser->setFunctionHook method would be called.
# The renderMyTagHook function will be called in Parser->strip.

$wgParser->setHook( "mytaghook", "wfMyTagHook_Render" );
}

# This is the callback function for converting the input text to HTML output.
# $input is the text that is nested in the XML tag. For example,
# in <example>My Text</example>, the value held in the $input variable
# will be "My Text". $argv is an array that contains the values of
# the XML element's attributes, such as <example arg1="Some data" arg2="More data">.
function wfMyTagHook_Render( $input, $argv, &$parser ) {

# This keeps the parser from caching output, which is especially
# useful when debugging.
$parser->disableCache();

# This tag extension simply returns information about the request,
# such as the value for $input, and the arguments.
# The $output variable is a string, not on OutputPage object.
$output = "Input: " . $input . "<br/>";
$output .="Arg1 value is: " .$argv["arg1"] . "<br/>";
$output .="Arg2 value is: " .$argv["arg2"] . "<br/>";

return $output;
}
?>

The extension should then be included in the LocalSettings.php file, so that MediaWiki is aware of it:

include("extensions/MyTagHook.php");

The renderTagHook function is called Step 2 of the parsing process, in the strip function. The results of
the function are not inserted into the original text, however, until Step 4, skipping Step 3, where the main
wikitext is converted into HTML. As a consequence, XML tag extensions skip the conversion process, so
that any wikitext returned by the function will not be converted into HTML.

Following is the source tag:

<mytaghook arg1="Red" arg2="Blue">My content</mytaghook>

Here are the tag results:

<!-- "mytaghook" results are inserted into the text -->

<p>Input: My content<br>

207



Choate c09.tex V1 - 11/19/2007 2:38pm Page 208

Chapter 9: Extensions

Arg1 value is: Red<br>

Arg2 value is: Blue<br></p>

Parser Functions
The first parser function demonstrated is called (imaginatively) Example, and it can be referenced
in wikitext in the following way:

{{example: Red | Blue}}

This parser function will generate the following HTML:

<p>Function: example<br>

param1 value is: Red<br>

param2 value is: Blue<br>

</p>

Parser functions are very similar to XML tag extensions, with the primary difference being that you have
to register the function as a magic word. The steps to creating a function are as follows:

1. Create an ExampleParserFunction.php file in the extensions directory.

2. Define three functions in the ExampleParserFunction.php file:
wfExampleParserFunction_Setup, wfExampleParserFunction_Render,
and wfExampleParserFunction_Magic.

3. Insert the following at the end of LocalSettings.php: include
("extensions/ExampleParserFunction.php");

Unlike XML tag extensions, parser functions are processed earlier enough that their output can be
wikitext, which is converted to HTML. The parser functions are called in Step 3, during the process
in which wikitext is converted to HTML.

This example makes use of magic words. In this case, the magic words provide localization for the name
of the parser function itself; you have to register a magic word for the parser function to work. In this
example, only one word is mapped to the key, but it is followed by an example with far more extensive
customization.

The Setup Function
The setup function is very similar to the XML tag extension setup function, except that it registers the
parser function using the $wgParser->setFunctionHook function, rather than $wgParser->setHook:

<?php

# Define a setup function
$wgExtensionFunctions[] = 'wfExampleParserFunction_Setup';

208



Choate c09.tex V1 - 11/19/2007 2:38pm Page 209

Chapter 9: Extensions

function wfExampleParserFunction_Setup() {
global $wgParser;

# Set a function hook associating the "example" magic word with our function
# Setting the third argument to "1" will enable you to create parser functions
# that do not need to be preceeded with a "#" character. The primary benefit of
# using "#" is that it avoids namespace collisions and other confusion.
$wgParser->setFunctionHook( 'example', 'wfExampleParserFunction_Render', 1);

}

The Render Function
The render function generates the output based on the values passed in the parameters:

function wfExampleParserFunction_Render( &$parser, $param1
= 'default1', $param2 = 'default2' ) {

# The parser function itself
# The input parameters are wikitext with templates expanded
# The output should be wikitext too.

$output = "Function: example<br/>";
$output .="param1 value is: " . $param1 . "<br/>";
$output .="param2 value is: " . $param2 . "<br/>";

return $output;
}

?>

The Magic Function
The magic function is used to add new messages to the MessageCache. In this example, not much
happens, but later you will see a more detailed explanation of what is happening here, in the section
‘‘Parser Functions with Messages.’’

# Add a hook to initialise the magic word
$wgHooks['LanguageGetMagic'][] = 'wfExampleParserFunction_Magic';

function wfExampleParserFunction_Magic( &$magicWords, $langCode ) {
# Parser functions are "magic words", which means that you can configure or
# localize the word used to refer to the function.
# All remaining elements are synonyms for our parser function.
# This is a simple case, and uses the same word regardless of language.
# The "0" value in the first element of the array signifies that this word
# is not case sensitive.
# This function is called by the LanguageGetMagic hook.
$magicWords['example'] = array( 0, 'example' );

# Return true so that the other functions will be loaded.
return true;

}

209



Choate c09.tex V1 - 11/19/2007 2:38pm Page 210

Chapter 9: Extensions

The Complete Extension
Altogether, the different elements combine to create the complete extension:

<?php

# Define a setup function
$wgExtensionFunctions[] = 'wfExampleParserFunction_Setup';

# Add a hook to initialise the magic word
$wgHooks['LanguageGetMagic'][] = 'wfExampleParserFunction_Magic';

function wfExampleParserFunction_Setup() {
global $wgParser;

# Set a function hook associating the "example" magic word with our function
# Setting the third argument to "1" will enable you to create parser functions
# that do not need to be preceeded with a "#" character. The primary benefit of
# using "#" is that it avoids namespace collisions and other confusion.
$wgParser->setFunctionHook( 'example', 'wfExampleParserFunction_Render', 1);

}

function wfExampleParserFunction_Magic( &$magicWords, $langCode ) {
# Parser functions are "magic words", which means that you can configure or
# localize the word used to refer to the function.
# All remaining elements are synonyms for our parser function.
# This is a simple case, and uses the same word regardless of language.
# The "0" value in the first element of the array signifies that this word
# is not case sensitive.
# This function is called by the LanguageGetMagic hook.
$magicWords['example'] = array( 0, 'example' );

# Return true so that the other functions will be loaded.
return true;

}

function wfExampleParserFunction_Render( &$parser, $param1
= 'default1', $param2 = 'default2' ) {

# The parser function itself
# The input parameters are wikitext with templates expanded
# The output should be wikitext too.

# Global variables must be declared locally in order to be accessed.
global $wgServer;

$output = "Function: example<br/>";
$output .="param1 value is: " . $param1 . "<br/>";
$output .="param2 value is: " . $param2 . "<br/>";

return $output;
}
?>

210



Choate c09.tex V1 - 11/19/2007 2:38pm Page 211

Chapter 9: Extensions

Default Values
Parser functions also support default values, and this function was declared with default values set for
both param1 and param2:

function wfExampleParserFunction_Render( &$parser, $param1
= 'default1', $param2 = 'default2' )

This means that you can also call the function with only one parameter, as in the following:

{{example: Red}}

The result of this function would be as follows:

<p>Function: example<br>

param1 value is: Red<br>

param2 value is: default2<br>

</p>

Return Values
Parser functions can return a string with the resulting text, or an array of values. The first element of the
array is the resulting text, and the rest are flags, which can be set to true or false.

The return values include the following:

❑ found: Stop processing the template.

❑ nowiki: Do not process the wikitext.

❑ noparse: Do not remove unsafe HTML tags.

❑ noargs: If this is used in a template, do not replace the triple-brace arguments ({{{) in the
return value.

❑ isHTML: The text is HTML and should not be parsed as wikitext.

Using Global Objects
Several global objects can be accessed when writing parser functions. The following function is
a rewritten version of the earlier function, this time making use of global objects. This function gets a
reference to the Title object from the parser and uses it to construct a URL to itself:

function wfExampleParserFunction_Render( &$parser, $param1 =
'default1', $param2 = 'default2' ) {

# Global variables must be declared locally in order to be accessed.
global $wgServer;

# You can access global variables through the parser object:
$title = $parser->getTitle();

211



Choate c09.tex V1 - 11/19/2007 2:38pm Page 212

Chapter 9: Extensions

$output = $wgServer ."/" . $title->getEditURL();

return $output;
}

The output of this page is as follows:

<p><a
href="http://127.0.0.1//mysql/index.php?title=MediaWiki_
Extensions&amp;action=edit" class="external free"
title="http://127.0.0.1//mysql/index.php?title=MediaWiki_
Extensions&amp;action=edit"
rel="nofollow">http://127.0.0.1//mysql/index.php?title=MediaWiki_
Extensions&amp;action=edit</a> Function:
example</p>

Parser Functions with Messages
The following example illustrates a more complete use of the MessageCache object to translate
terms for the parser function. This example uses a real MediaWiki extension as the starting point,
but it has been simplified to make it easy to follow the logic of the code. The original extension is called
ParserFunctions (as opposed to the built-in parser functions reviewed in the previous chapter), and is
very popular. It was written by Tim Starling, and can be found at http://meta.wikimedia.org/wiki/
ParserFunctions.

This simplified version is called ParserFunctionsLite, and in order to implement it, you need to do
the following:

1. Create a ParserFunctionsLite.php file in the extensions/ParserFunctionsLite
directory, which you will have to create, as well as a ParserFunctionsLite.i18n.php file.

2. Define the ParserFunctionsLite class.

3. Define two functions in the ParserFunctionsLite.php file: wfParserFunctionsLite_Setup
and wfParserFunctionsLite_Magic.

4. Insert the following at the end of LocalSettings.php: include("extensions/
ParserFunctionsLite/ParserFunctionsLite.php");

The Extension Object
In this example, a class is defined instead of a function. The class has two member functions that will be
registered as callback functions for two different parser functions: ifhook and ifeq:

# In this example, a class is used rather than simply a function.
class ExtParserFunctionsLite {

function clearState() {
return true;

}

212



Choate c09.tex V1 - 11/19/2007 2:38pm Page 213

Chapter 9: Extensions

function ifHook( &$parser, $test = ", $then = ", $else = " ) {
if ( $test !== " ) {

return $then;
} else {

return $else;
}

}

function ifeq( &$parser, $left = ", $right = ", $then = ", $else = " ) {
if ( $left == $right ) {

return $then;
} else {

return $else;
}

}
}

The Setup Function
Because this extension is based on a class, the setup function takes a slightly different structure than the
previous example. Before setting the hooks, the ExtParserFunctionsLite class needs to be instantiated.
Then, when the setFunctionHook method is called, a reference to the object, and the function, is passed:

$wgExtensionFunctions[] = 'wfParserFunctionsLite_Setup';

function wfParserFunctionsLite_Setup() {
global $wgParser, $wgMessageCache, $wgExtParserFunctionsLite,

$wgMessageCache, $wgHooks;

# Instantiate the object
$wgExtParserFunctionsLite = new ExtParserFunctionsLite;

# Since a class is being used, the function to call needs to be passed to
# the setFunctionHook method uding the setup phase.
$wgParser->setFunctionHook( 'if', array( &$wgExtParserFunctionsLite, 'ifHook' ) );
$wgParser->setFunctionHook( 'ifeq', array( &$wgExtParserFunctionsLite, 'ifeq' ) );
$wgHooks['ParserClearState'][] = array( &$wgExtParserFunctionsLite, 'clearState' );
}

The Magic Function
In the previous example, the magic function didn’t have messages in different languages, so the
function call was simple. In this example, translations are available, so the magic function includes the
ParserFunctionsLite.i18n.php file, which includes the translations, and then loops through the array
of translations looking for the ones that are intended for the current language, as referenced in $langCode:

$wgHooks['LanguageGetMagic'][] = 'wfParserFunctionsLite_Magic';

function wfParserFunctionsLite_Magic( &$magicWords, $langCode ) {
require_once( dirname( __FILE__ ) . '/ParserFunctionsLite.i18n.php' );

213



Choate c09.tex V1 - 11/19/2007 2:38pm Page 214

Chapter 9: Extensions

foreach( efParserFunctionsLite_Words( $langCode ) as $word => $trans )
$magicWords[$word] = $trans;

return true;
}

ParserFunctionsLite.i18.php
The translations are defined as follows:

<?php

/**
* Get translated magic words, if available
*
* @param string $lang Language code
* @return array
*/

function efParserFunctionsLite_Words( $lang ) {
$words = array();

/**
* English
*/

$words['en'] = array(

'if' => array( 0, 'if' ),
'ifeq' => array( 0, 'ifeq' ),

);

/**
* Farsi-Persian
*/

$words['fa'] = array(
'if' => array( 0, 'if' ),
'ifeq' => array( 0, 'ifeq' ),

);

/**
* Hebrew
*/

$words['he'] = array(
'if' => array( 0, 'if' ),
'ifeq' => array( 0, 'ifeq' ),

);

/**
* Indonesian
*/

$words['id'] = array(
'if' => array( 0, 'jika', 'if' ),
'ifeq' => array( 0, 'jikasama', 'ifeq' ),

);

# English is used as a fallback, and the English synonyms are
# used if a translation has not been provided for a given word

214



Choate c09.tex V1 - 11/19/2007 2:38pm Page 215

Chapter 9: Extensions

return ( $lang == 'en' || !isset( $words[$lang] ) )
? $words['en']
: array_merge( $words['en'], $words[$lang] );

}

Messages
The translation process requires some explanation. System messages are strings that are localized for the
language that is set as the default language of the site, or the selected language of the user. There is a
global object, $wgMessageCache, that contains all the messages available for the current language. It is an
instance of the MessageCache class, and when it is instantiated it loads the messages that are defined in
the message files in the /languages/messages/ directory. The messages themselves are loaded into an
associative array called $magicWords, which maps string keys to their translated value.

MediaWiki provides developers with a way to add messages to the $wgMessageCache object without
having to modify the underlying message files, and this is what is happening in the previous function.

In this example, the words that are added to the $wgMessageCache object depend upon the value passed
in $langCode. The ParserFunctionsLite.php file contains messages in four languages: English, Farsi-
Persian, Hebrew, and Indonesian. If the current language is English, then the messages for English are
added to the $magicWords array. Otherwise, if it is Farsi-Persian, then the Farsi-Persian words are added,
and so on. If no word is defined, or if the language is not defined, then the default fallback is English.

The $magicWords Array
Once the words are in the array, they are accessed by referencing the key. The most common way to
retrieve a value is with the wfMsg global function:

function wfMsg( $key )

To use this method, you pass it the string key for the message, which is usually a lowercase version of
the English translation. To illustrate, suppose the following magic word has been added to the
$magicWords array:

$magicWords['example'] = array( 0, 'example' );

In this case, the key is ‘example’, and it is associated with the array(0, ‘example’). The first digit
indicates whether the word is case sensitive or not (in this case, it isn’t), and the next element in the array
is the translated word. In this example, the translated word is ‘‘example’’ too. This means that calling the
function wfMsg(‘example’) will return the string ‘example’. Even though with English words it seems
redundant to jump through this hoop, it is important conceptually to remember that you are getting a
translation of the word associated with the key.

The Complete Extension
The complete extension is as follows:

<?php

if ( !defined( 'MEDIAWIKI' ) ) {
die( 'This file is a MediaWiki extension, it is not a valid entry point' );

}

215



Choate c09.tex V1 - 11/19/2007 2:38pm Page 216

Chapter 9: Extensions

$wgExtensionFunctions[] = 'wfParserFunctionsLite_Setup';

$wgExtensionCredits['parserhook'][] = array(
'name' => 'ParserFunctionsLite',
'url' => 'Original code http://meta.wikimedia.org/wiki/ParserFunctions',
'author' => 'Based on ParserFunctions.php by Tim Starling',
'description' => 'A scaled down version of ParserFunctions.php',

);

$wgHooks['LanguageGetMagic'][] = 'wfParserFunctionsLite_Magic';

class ExtParserFunctions {
var $mExprParser;
var $mTimeCache = array();
var $mTimeChars = 0;
var $mMaxTimeChars = 6000; # ~10 seconds

function clearState() {
$this->mTimeChars = 0;
return true;

}

function ifHook( &$parser, $test = ", $then = ", $else = " ) {
if ( $test !== " ) {

return $then;
} else {

return $else;
}

}

function ifeq( &$parser, $left = ", $right = ", $then = ", $else = " ) {
if ( $left == $right ) {

return $then;
} else {

return $else;
}

}
}

function wfParserFunctions_Setup() {
global $wgParser, $wgMessageCache, $wgExtParserFunctions,
$wgMessageCache, $wgHooks;

$wgExtParserFunctionsLite = new ExtParserFunctionsLite;

$wgParser->setFunctionHook( 'if', array( &$wgExtParserFunctionsLite, 'ifHook' ) );
$wgParser->setFunctionHook( 'ifeq', array( &$wgExtParserFunctionsLite, 'ifeq' ) );
$wgHooks['ParserClearState'][] = array( &$wgExtParserFunctionsLite, 'clearState' );
}

function wfParserFunctionsLite_Magic( &$magicWords, $langCode ) {
require_once( dirname( __FILE__ ) . '/ParserFunctionsLite.i18n.php' );

216



Choate c09.tex V1 - 11/19/2007 2:38pm Page 217

Chapter 9: Extensions

foreach( efParserFunctionsWords( $langCode ) as $word => $trans )
$magicWords[$word] = $trans;

return true;
}

Hook Extensions
All of the previous examples showed you how to use hooks to add functionality to wikitext, but that is not
the only use of hooks when writing extensions. You can also use hooks to customize the user interface,
change the way the site functions, and even write your own actions. There are too many possible hooks
to demonstrate all of them, but this section shows you how to use two different hooks in order to give
you an idea of all that you can do.

As with all the other extensions, you need to create a file in the extensions directory and define your
functions there. In addition, you need to include a reference to the file in LocalSettings.php.

ParserBeforeStrip Hook
The ParserBeforeStrip hook is called by the parser object right before the first step of the parsing
process that strips out <nowiki> tags, and so on. In other words, this function is called when the raw
wikitext is available and has not been modified at all by the parsing process. The ParserBeforeStrip
hook sends a reference to the parser object, the raw wiki text, and the strip_state object. Unlike the
other examples, which are only executed when a page author includes the XML tag or parser function in
their page, this function executes anytime wikitext is parsed (which includes parts of a page other than
just the article content).

Setting up a simple hook like this is simpler than parser functions and XML tag extensions. All you need
to do is define the function and then register it with the hook itself. The following hook will serve as
a filter that replaces the abbreviations afaik, btw, and imho with the phrases they represent, regardless
of whether the user wants it changed or not. The function does a simple string replace with the PHP
function str_replace:

$wgHooks['ParserBeforeStrip'][] = 'myfilter' ;

function myfilter ( &$parser, &$text, &$strip_state ) {
# This hook performs a simple text replacement before any of
# the raw wikitext is parsed.
$from = array("afaik", "btw", "imho");
$to = array("As far as I know", "By the way", "In my humble opinion");
$text = str_replace($from, $to, $text);

}
?>

With this hook installed, the text ‘‘afaik, everyone liked the movie. I thought it stunk, imho’’ is translated
into ‘‘As far as I know, everyone liked the movie. I thought it stunk, In my humble opinion.’’

EditPage::showEditForm:initial Hook
This hook is a little more complete than the previous hook. It enables you to add additional content to the
edit page when a user is editing a document. The hook passes a reference to the EditPage object, which
has defined five variables for the express purpose of enabling developers to leverage this hook.

217



Choate c09.tex V1 - 11/19/2007 2:38pm Page 218

Chapter 9: Extensions

You will find a reference to them in the EditPage.php file:

# Placeholders for text injection by hooks (must be HTML)
# extensions should take care to _append_ to the present value
public $editFormPageTop; // Before even the preview
public $editFormTextTop;
public $editFormTextAfterWarn;
public $editFormTextAfterTools;
public $editFormTextBottom;

The hook simply takes a reference to the form object and uses that to assign values to the object’s
member variables:

<?php
$wgHooks['EditPage::showEditForm:initial'][] = 'myformhook' ;

function myformhook( &$form ) {
# EditForm.php specifies the following variables for use
# in hooks such as this one.
$form->editFormPageTop = "<h2>Form Page Top</h2>";
$form->editFormTextTop ="<h3>Form Text Top</h3>";
$form->editFormTextAfterWarn = "<h4>Form After Warn</h4>";
$form->editFormTextAfterTools = "<h5>Form After Tools</h5>";
$form->editFormTextBottom = "<h5>Form Text Bottom</h5>";

}

With this hook in place, you can edit any page and the new text will be presented on that page, as
shown in Figure 9-1.

Figure 9-1: Text inserted into the edit page by myformhook
218



Choate c09.tex V1 - 11/19/2007 2:38pm Page 219

Chapter 9: Extensions

Special Pages
Special pages are dynamic pages, and as such are different animals than XML tag extensions or parser
functions. They share a lot in common, however, and the steps required to create a special page will be
familiar to those of you who are already familiar with parser functions and tag extensions.

While not strictly necessary, MediaWiki encourages the convention of using three distinct PHP files for
the development of a special page. In this case, the files are as follows:

❑ SpecialPageExample.php: The functions that register the special page

❑ SpecialPageExample_body.php: The SpecialPage subclass is defined here, and the execute
method is over-ridden.

❑ SpecialPageExample.i18n.php: The localization for the message cache

Because special pages are dynamic pages, their content is often (but not necessarily) the output of a query
against the database. The following example shows a special page that displays information about how
many times it has been displayed.

SpecialPageExample.php
This file sets up the special page, but the process is quite a bit different from what takes place
in other extensions. There is a global variable, $wgAutoLoadClasses, that contains references to
PHP files whose contents should be loaded into memory when a request is received. This file
adds the SpecialPageExample class to the list of classes that should be autoloaded. It also adds
a reference to this page to the $wgSpecialPages global variable, so that the special page will be listed
with the others:

<?php
# Not a valid entry point, skip unless MEDIAWIKI is defined
if (!defined('MEDIAWIKI')) {

echo <<<EOT
To install my extension, put the following line in LocalSettings.php:
require_once( "$IP/extensions/SpecialPageExample/SpecialPageExample.php" );
EOT;

exit( 1 );
}

$wgAutoloadClasses['SpecialPageExample'] =
dirname(__FILE__) . '/SpecialPageExample_body.php';

$wgSpecialPages['SpecialPageExample'] = 'SpecialPageExample';
$wgHooks['LoadAllMessages'][] = 'SpecialPageExample::loadMessages';

?>

SpecialPageExample_body.php
The SpecialPage class is a subclass in this file, and the execute method is overridden. This is where
the content for the special page is generated. Because special pages are dynamic pages, one common
use for them is to publish updated information directly from a database. The following example does
just that, making a database call to the site_stats table in order to find out how many times this page

219



Choate c09.tex V1 - 11/19/2007 2:38pm Page 220

Chapter 9: Extensions

has been accessed (I suppose it is a somewhat narcissistic special page, as its only reason for being is to
report on itself):

<?php
class SpecialPageExample extends SpecialPage
{

function SpecialPageExample() {
SpecialPage::SpecialPage("SpecialPageExample");
self::loadMessages();

}

function execute( $par ) {
global $wgRequest, $wgOut;

$this->setHeaders();

# If parameters were passed in the query string, they
# can be accessed through the global $wgRequest object.
$param = $wgRequest->getText('param');

# MediaWiki uses the convention that references to the database
# should be called $dbr if it is for read access and $dbw
# for write access. In most cases, you would be reading
# from the database in a special page.
$dbr =& wfGetDB( DB_SLAVE );
$fields = array(

'ss_row_id',
'ss_total_views',
) ;

$res = $dbr->select('site_stats',
$fields, ", 'SpecialPageExample', array('LIMIT'=> 1) );

while ( $row = $dbr->fetchObject( $res ) ) {
$wgOut->addHTML( "<p>Total Views: " . $row->ss_total_views );

}
$dbr->freeResult( $res );

# Output
$wgOut->addWikiText( wfMsg( 'specialpageexample' ) );

}

function loadMessages() {
static $messagesLoaded = false;
global $wgMessageCache;

if ( $messagesLoaded ) return true;
$messagesLoaded = true;
require( dirname( __FILE__ ) . '/SpecialPageExample.i18n.php' );
foreach ( $allMessages as $lang => $langMessages ) {

$wgMessageCache->addMessages( $langMessages, $lang );
}

return true;
}
}
?>

220



Choate c09.tex V1 - 11/19/2007 2:38pm Page 221

Chapter 9: Extensions

SpecialPageExample.i18n.php
The i18n page for special pages works exactly like the equivalent page in the previous parser
function example:

<?php
$allMessages = array(

'en' => array(
'specialpageexample' => 'Special Page Example'

)
);
?>

Summary
In this chapter, you have learned how to create your own extensions, including how to extend wikitext
by adding new XML tag extensions and parser functions. You have also learned how to create your own
special pages.

In the next chapter, you will learn how to interact with MediaWiki programmatically through
MediaWiki’s API, as well as how to use the pywikipedia.py bot to automate some
of MediaWiki’s processes.

221



Choate c09.tex V1 - 11/19/2007 2:38pm Page 222



Choate c10.tex V1 - 11/20/2007 2:59pm Page 223

The MediaWiki API

The ability to interact with MediaWiki through an application programming interface is an evolving
feature. In this chapter, you will learn about bots, programs used to automate certain administra-
tive tasks on MediaWiki, as well as the MediaWiki API, which is currently in development and
is intended to provide a programming interface to MediaWiki so that external applications can
interact with it.

Both the section on bots and the section on the API make extensive use of examples written in the
Python programming language. Even if you do not know Python, you will be able to learn a lot
about how bots and the API work, which you can use to develop scripts in your language of choice.
With respect to the API, all interaction is managed through URLs, so you don’t even have to write
any script to see samples of the API output; simply type the URL in your browser and see what
is returned.

Bots: pywikipedia.py
In MediaWiki parlance, a bot is a script or program that is used to perform some administrative
task in support of a wiki. There is a special group called bot, so any bot that is used with MediaWiki
must have a username that is in the bot group. A person with bureaucrat privileges is required to
set the appropriate permissions.

The reason for requiring a special username is twofold. One, you do not want people to be able to
automate tasks willy-nilly with your wiki. That’s just asking for trouble from spammers and trolls.
At the same time, tedious or time-consuming tasks can benefit greatly from automation. Because
the work that bots do is often en masse, meaning that they perform some task that might affect
hundreds of documents, MediaWiki treats changes made by bots a little differently. For example,
when viewing recent changes, changes made by bots can be excluded. By having a special bot
group, both issues are addressed.



Choate c10.tex V1 - 11/20/2007 2:59pm Page 224

Chapter 10: The MediaWiki API

Bots interact with MediaWiki programmatically, but to date most bots do not use any formal
MediaWiki API, because there hasn’t been one. While a new API is being crafted (which you
will learn about later in the chapter), necessity requires bot developers to create other methods
of interacting with MediaWiki programmatically, something that often involves writing scripts that
interact with the standard MediaWiki HTML interface.

One particularly well-developed bot is pywikipedia.py, which can be downloaded at
http://sourceforge.net/projects/pywikipediabot/.

Python 2.3 or later must be installed (it may work on earlier versions of Python, but this hasn’t been
tested). It is written in Python, and it is designed to be used with Wikipedia. This means that often some
customizations need to be made to the scripts in order to make them work properly on a homegrown
MediaWiki wiki.

The first step is to configure the bot with your site’s information, and a username and password in
the bot group.

Configuring pywikipedia.py
Two files need to be created in order to use pywikipedia: user-config.py and another file named after
your wiki. In the example, the file is called profwiki_family.py, which includes a subclass of the Family
class. The name that is chosen is important because pywikipedia needs to know which family object to
instantiate.

profwiki_family.py
In the main directory of the pywikipedia distribution is a file called family.py, and a directory called
families. The family.py file includes the base Family class that needs to be subclassed. The ‘‘family’’ in
question is the family of sites that make up Wikipedia. In Wikipedia’s case, the family sites are versions
of Wikipedia in different languages, so much of the family.py file concerns itself with languages and
being able to navigate around the collection of sites that make up Wikipedia.

Inside the families directory are sample subclasses of Family that have been developed by other
MediaWiki users. These sample subclasses can be used as examples for more complex
configuration.

Typically, most organizations will not have such a large family as Wikipedia, so the following example
shows you how to subclass the Family class for a single site:

# -*- coding: utf-8 -*-

import family

# Prof Wikis, by Mark Choate for Wrox

class Family(family.Family):
def __init__(self):

family.Family.__init__(self)
# The name assigned needs to be the same as the
# prefix used to name the file - in this case,

224



Choate c10.tex V1 - 11/20/2007 2:59pm Page 225

Chapter 10: The MediaWiki API

# that is profwiki_family.py
self.name = ’profwiki’
# There’s only one language to the site, so I
# associate the domain of my site with "en".
# In this instance, I’m accessing the domain
# locally. If the site were on a different
# server, I would use the actual domain name of
# the site.
self.langs = {’en’: ’127.0.0.1’,}
# The name of my test wiki is ’Profwikis - MySQL
# so I assign that to the following namespaces.
self.namespaces[4] = {’_default’: [u’Profwikis -

MySQL’, self.namespaces[4][’_default’]],}
self.namespaces[5] = {’_default’: [u’Profwikis -

MySQL talk’, self.namespaces[5][’_default’]],}
# The version of MediaWiki I am using
def version(self, code):

return "1.9.3"
# The path to the wiki
def path(self, code):

return ’/mysql/index.php’

Save this file in the families directory. After it is complete, the user-config.py file needs to be created.

user-config.py
The default configuration is in config.py. Much like the difference between DefaultSettings.php and
LocalSettings.php, config.py contains the default configuration data for the bot. Place any custom
configuration data specific to your wiki in a file called user-config.py:

#One line saying "mylang=’language’"
#One line saying "usernames[’wikipedia’][’language’]=’yy’"
mylang=’en’
family=’profwiki’
# The following user name MUST be in the bot group.
usernames[’profwiki’][’en’]= u’Mchoate’

In the profwiki_family.py file is the following line:

self.langs = {’en’: ’127.0.0.1’,}

The value for "mylang" in the user-config file corresponds with the language specified in
profwiki_family.py. The following line in user-config:

family=’profwiki’

corresponds with self.name = ‘profwiki’ in profwiki_family.py.

What all of this means is that when you execute a script using pywikipedia, the default language is
English, which defaults to the server located at 127.0.0.1, using the path mysql/index.php. The script
will log in as user Mchoate, which, if it is in the bot group, will then be allowed to make changes to
the site.

225



Choate c10.tex V1 - 11/20/2007 2:59pm Page 226

Chapter 10: The MediaWiki API

editarticle.py
The main file is wikipedia.py, which is where much of the core functionality is coded. In most cases, a
script includes the wikipedia module when executing code. The first example is editarticle.py, which
is a script that enables you to edit articles directly through an external editor, rather than edit them on
the wiki website. I won’t go into all the specific details of the implementation, but I do want to point out
that the script imports the wikipedia module and the config module, which gives it all the information
needed to log in and edit a file:

import wikipedia
import config

mchoate$ ./editarticle.py
Checked for running processes. 1 processes currently

running, including the current process.
Page to edit:

Type in the page title you want to edit at the prompt, and a Tkinter window will be displayed with the
wikitext to be edited (as shown in Figure 10-1).

Figure 10-1: The Tkinter editing window

In order to edit in a different editor, the user-config.py file needs to be updated. The next example
shows how to edit the pages using Emacs. The following line must be added to user-config.py:

editor = ’emacs’

Once this is done, you start the script just like before, but Emacs is launched instead of the Tkinter
window, as shown in Figure 10-2.

226



Choate c10.tex V1 - 11/20/2007 2:59pm Page 227

Chapter 10: The MediaWiki API

Figure 10-2: Editing wikitext using Emacs

The script works by getting a copy of the page from the wiki and then saving the data to a temporary file.
In the following output sample, the temporary file that was created was /tmp/tmp8YFggr.wiki.

Then, the editor that is configured opens the temporary file. Once the edits are made and the file is
saved, the script checks to see whether any changes have been made. If there were, it prompts the user
to provide a short summary of what was changed (just like you do when editing a page through a Web
interface). Once that’s entered, the file is then uploaded to the server:

mchoate$ ./editarticle.py
Checked for running processes. 1 processes currently

running, including the current process.
Page to edit: Main Page
Getting page [[Main Page]]
Running editor...
/tmp/tmp8YFggr.wiki
+
+ The file has been modified.

What did you change? I added a new sentence.
Getting a page to check if we’re logged in on profwiki:en
Changing page [[en:Main Page]]

spellcheck.py
One other useful script available in pywikipedia is spellcheck.py, which (not surprisingly) performs
a spell-check on wiki pages. In order to use spellcheck.py you first have to download a dictionary

227



Choate c10.tex V1 - 11/20/2007 2:59pm Page 228

Chapter 10: The MediaWiki API

file from http://pywikipediabot.cvs.sourceforge.net/pywikipediabot/pywikipedia/spelling/.
Included are files for several languages. The file for English is spelling-en.txt, which should be down-
loaded into the spelling directory in the pywikipedia distribution (it weighs in at about 2.5 megabytes of
data, which is why they don’t include it in the main distribution).

Once the spelling dictionaries are in place, spell-checking a page is simply a matter of executing the
spellcheck.py script and passing it the name of the page to spell-check. In the next example, the article
titled ‘‘Main Page’’ is going to be spell-checked:

mchoate$ ./spellcheck.py "Main Page"

When the script finds a questionably spelled word, the user is prompted through the console with various
options. Like most spell-checkers, you are given the option to add the word to the dictionary, to ignore
the word, to replace the text, to replace the text while not saving the alternative in the database, to guess,
to edit by hand, or to stop checking the page altogether. In the following example, the spell-checker
questions the spelling of ‘‘pywikipedia,’’ and, amusingly, the spelling of ‘‘wiki.’’ Once finished, the
changes are saved and then uploaded back to the wiki:

Checked for running processes. 3 processes currently running,
including the current process.

Getting wordlist
Wordlist successfully loaded.
Getting page [[Main Page]]
============================================================
Found unknown word ’Pywikipedia’
Context:
==Editing a Page with Pywikipedia==

The pywikipedia bot lets you edit
------------------------------------------------------------
a: Add ’Pywikipedia’ as correct
c: Add ’pywikipedia’ as correct
i: Ignore once
r: Replace text
s: Replace text, but do not save as alternative
g: Guess (give me a list of similar words)
*: Edit by hand
x: Do not check the rest of this page
: c
============================================================
Found unknown word ’wiki’
Context:
kipedia bot lets you edit pages in your wiki with an external editor such as:

*
------------------------------------------------------------
a: Add ’wiki’ as correct
i: Ignore once
r: Replace text
s: Replace text, but do not save as alternative
g: Guess (give me a list of similar words)
*: Edit by hand

228



Choate c10.tex V1 - 11/20/2007 2:59pm Page 229

Chapter 10: The MediaWiki API

x: Do not check the rest of this page
: a
============================================================
Found unknown word ’TKinter’
Context:
with an external editor such as:

* TKinter
* Emacs
* Vi

The file has been modified
------------------------------------------------------------
a: Add ’TKinter’ as correct
c: Add ’tKinter’ as correct
i: Ignore once
r: Replace text
s: Replace text, but do not save as alternative
g: Guess (give me a list of similar words)
*: Edit by hand
x: Do not check the rest of this page
: a
Which page to check now? (enter to stop)

These are only two examples of the scripts included in pywikipedia that can be used to assist in the
maintenance of your wiki. Also included are scripts for harvesting images, uploading images, changing
categories, and more. Many of them are tailored to Wikipedia, so you may find that they need to be edited
to suit your needs. You will also notice that some of them require Python to run, because the script needs
to access the X-Windows server.

API.php
The developers of MediaWiki know that an easier-to-use API for MediaWiki would be a great
improvement. Page through the code in pywikipedia and you’ll see that it’s a fairly complicated bit
of programming . . . and very long. A new API is being developed to streamline the developer’s work,
and while it is not completed, it already is very capable, and affords the developer a simple, efficient way
of interacting directly with the wiki’s data.

Because the API is in a state of change, be sure to check www.mediawiki.org/wiki/API for the
latest information about supported features. The developer is Yuri Astrakhan (User:Yurik on
MediaWiki.org).

Configuration
The first step to using the API is to configure MediaWiki to use it. Add the following to LocalSet-
tings.php:

/**
* Enable direct access to the data API
* through api.php

229



Choate c10.tex V1 - 11/20/2007 2:59pm Page 230

Chapter 10: The MediaWiki API

*/
$wgEnableAPI = true;
$wgEnableWriteAPI = true;

The API scripts are found in the /includes/api/ directory, and the entry point is api.php, which
is in the top-level directory of MediaWiki, along with index.php. In order to access the API, all you
need to do is replace index.php in the URL with api.php, like so (substituting your domain name,
of course):

http://127.0.0.1/wiki/api.php

Accessing the API
Because of the simplicity of the API, you can use a variety of ways to access it. Command-line tools such
as wget and curl work, as do JavaScript, ruby, PHP, and Python. Any language that can generate an
HTTP request can be used to access the API.

Actions
The current API implements five basic actions (and an edit action should be available by the time this
book is published):

❑ Help: The help action returns basic documentation about how to use the API.

❑ Login: Because some activities require a user to be logged in, a login action is included.

❑ Opensearch: This implements the OpenSearch protocol and enables the developer to search the
contents of the wiki. You can learn more about the OpenSearch protocol at
http://opensearch.org/.

❑ Feedwatchlist: This returns an RSS feed of a user’s watchlist.

❑ Query: This action enables developers to query the MediaWiki database.

Using these actions is demonstrated later in the chapter.

Formats
The available formats are as follows: json, jsonfm, php, phpfm, wddx, wddxfm, xml, xmlfm, yaml, yamlfm,
and rawfm (the default value is xmlfm). The formats that end with fm are HTML representations
of the output so that it can be displayed on a webpage. All actions can use any output style, with
one exception. The Feedwatchlist action’s output can only be one of two flavors of XML:
RSS or Atom.

The following examples are based on a simply query action that requests information about the wiki’s
Main Page article. The URL looks like this:

action=query&format=json&titles=Main+Page&meta=siteinfo&prop=info

In order to generate the different output formats, just change format=json to represent the
desired output.

230



Choate c10.tex V1 - 11/20/2007 2:59pm Page 231

Chapter 10: The MediaWiki API

JSON Format
JSON is a format based on JavaScript. You can find specifications for it at http://json.org/. Following
are the HTTP headers returned by this request. Notice that the Content-Type header value is
application/json:

Date: Thu, 09 Aug 2007 02:58:44 GMT
Server: Apache/1.3.33 (Darwin) PHP/5.2.0
X-Powered-By: PHP/5.2.0
Set-Cookie: wikidb_profwiki__session=onggurki4gg6v56ik26s9feef1; path=/
Expires: Thu, 01 Jan 1970 00:00:01 GMT
Cache-Control: s-maxage=0, must-revalidate, max-age=0
Connection: close
Transfer-Encoding: chunked
Content-Type: application/json; charset=utf-8

The actual JSON output follows (it has been reformatted to make it more legible:

{"query":
{"pages":

{"1":
{"pageid":1,"ns":0,"title":"Main

Page","touched":"2007-07-21T18:34:55Z","lastrevid":166
}

},"general":
{"mainpage":"Main

Page","base":"http:\/\/127.0.0.1\/mysql\/index.php\/Main_Page",
"sitename":"ProfWikis - MySQL","generator":"MediaWiki 1.9.3","case":"first-
letter","rights":""

}
}

}

XML Format
The HTTP headers for the XML format are the same as for JSON, except that the Content-Type is now
text/xml:

Content-Type: text/xml; charset=utf-8

The equivalent XML output follows:

<?xml version="1.0" encoding="utf-8"?>

<api>

<query>

<pages>

<page pageid="1" ns="0" title="Main Page"
touched="2007-07-21T18:34:55Z" lastrevid="166"/>

</pages>

<general mainpage="Main Page"
base="http://127.0.0.1/mysql/index.php/Main_Page"
sitename="ProfWikis - MySQL" generator="MediaWiki 1.9.3"
case="first-letter" rights=""/>

</query>

</api>

231



Choate c10.tex V1 - 11/20/2007 2:59pm Page 232

Chapter 10: The MediaWiki API

WDDX Format
WDDX (Web Distributed Data eXchange) is a standard originally developed by Macromedia for its Cold
Fusion server product. The specification can be found at www.openwddx.org. While it has largely been
surpassed by other data exchange specifications, it is still widely enough used that the developers felt it
was important enough to include (the last news item on the OpenWDDX website was posted in 2001).
The wordy WDDX output for the query follows (again formatted for clarity):

<?xml version="1.0"?>

<wddxPacket version="1.0">

<header/>

<data>

<struct>

<var name="query">

<struct>

<var name="pages">

<struct>

<var name="1">

<struct>

<var name="pageid">

<number>1</number>

</var>

<var name="ns">

<number>0</number>

</var>

<var name="title">

<string>Main Page</string>

</var>

<var name="touched">

<string>2007-07-21T18:34:55Z</string>

</var>

<var name="lastrevid">

<number>166</number>

</var>

</struct>

</var>

</struct>

</var>

<var name="general">

<struct>

<var name="mainpage">

<string>Main Page</string>

</var>

<var name="base">

<string>http://127.0.0.1/mysql/index.php/Main_Page
</string>

</var>

<var name="sitename">

<string>ProfWikis - MySQL</string>

</var>

<var name="generator">

<string>MediaWiki 1.9.3</string>

</var>

<var name="case">

232



Choate c10.tex V1 - 11/20/2007 2:59pm Page 233

Chapter 10: The MediaWiki API

<string>first-letter</string>

</var>

<var name="rights">

<string/>

</var>

</struct>

</var>

</struct>

</var>

</struct>

</data>

</wddxPacket>

PHP Format
The PHP serialized format is useful for PHP-based clients (see www.php.net/serialize). The
Content-Type is application/vnd.php.serialized:

Content-Type: application/vnd.php.serialized; charset=utf-8

The icky output is as follows:

a:1:{s:5:"query";a:2:{s:5:"pages";a:1:{i:1;a:5:{s:6:"pageid
";i:1;s:2:"ns";i:0;s:5:"title";s:9:"Main
Page";s:7:"touched";s:20:"2007-07-21T18:34:55Z";s:9:"lastrevid";
i:166;}}s:7:"general";a:6:{s:8:"mainpage";
s:9:"Main Page";s:4:"base";s:42:"http://127.0.0.1/mysql/
index.php/Main_Page";s:8:"sitename";s:17:"ProfWikis - MySQL";
s:9:"generator";s:15:"MediaWiki 1.9.3";s:4:"case";s:12:"first-letter";
s:6:"rights";s:0:"";}}}

YAML Format
Read all about YAML (and find out the definitive answer to the question regarding what YAML actually
means) here: http://yaml.org/. The YAML Content-Type is as follows:

Content-Type: application/yaml; charset=utf-8

Here is the YAML output:

query:
pages:
-

pageid: 1
ns: 0
title: Main Page
touched: 2007-07-21T18:34:55Z
lastrevid: 166

general:
mainpage: Main Page
base: >

http://127.0.0.1/mysql/index.php/Main_Page
sitename: ProfWikis - MySQL

233



Choate c10.tex V1 - 11/20/2007 2:59pm Page 234

Chapter 10: The MediaWiki API

generator: MediaWiki 1.9.3
case: first-letter
rights:

The API provides a rich set of options in terms of how the data is transferred to your application.
The final choice ultimately depends upon the developer’s preference, or is contingent upon other
environmental factors.

In the next section, the API is illustrated with a Python script. In these examples, the selected output is
XML, but it could just as easily be JSON, YAML or WDDX, as Python libraries exist to parse these formats
as well.

Python Script
The following examples all come from a Python script written to illustrate the actions and the output of
the MediaWiki API. This script is loosely based on a sample script for the old MediaWiki ‘‘Query’’ API,
posted on MediaWiki at http://en.wikipedia.org/wiki/User:Yurik/Query_API/
User_Manual#Python, but it has been expanded considerably.

I provide examples of all of the major actions, but the script is by no means exhaustive, in part because
the API is still in a state of flux, with new features being added regularly. It can best be used as a starting
point for developing your own scripts. It was also written with an eye toward being clear and easy to
understand, rather than being particularly efficient or clever. It requires the use of Python 2.5.

Obviously, this exercise will be more informative if you are familiar with Python, but even if you are
not a Python expert, you should be able to follow along as long as you have a solid understanding
of computer programming. In the code and in other places where it is appropriate, you will see some
additional explanation about what the Python code is doing, for readers who are unfamiliar with the
language.

The first block of code in the script does some preparatory work, such as import libraries and define
global variables used by the script. The urllib2 library is particularly useful in this case because it
offers a rich set of tools for accessing resources through URLs, including cookie management, which is
needed to track the logged-in status of the script when performing tasks that require special permissions.
All the functions return XML, which is parsed by Python’s ElementTree class. The global variables need
to be customized to your site. The QUERY_URL is simply the base URL of the request, and the COOKIEFILE
variable identifies where the cookie file will be stored, which enables the script to log in and stay logged
in over a series of requests.

#!/usr/bin/env python
# encoding: utf-8
" " "
api.py

Created by Mark on 2007-08-06.
Copyright (c) 2007 The Choate Group, LLC. All rights reserved.
" " "

import sys
import os

234



Choate c10.tex V1 - 11/20/2007 2:59pm Page 235

Chapter 10: The MediaWiki API

import urllib
import urllib2
import cookielib
import xml.etree.ElementTree
import StringIO

# global variables for the query url, http headers and the location
# of the cookie file to be used by urllib2
QUERY_URL = u"http://127.0.0.1/mysql/api.php"
HEADERS = {"User-Agent" : "API Test/1.0"}
COOKIEFILE = "/Users/mchoate/Documents/Code/MediaWiki/test.cookie"

The ApiRequest class is being defined in the next block of code. The class will be used like this:

api = ApiRequest()
f = api.doHelp()

In the first line, the ApiRequest is instantiated, and then the api object calls the doHelp() convenience
method, which returns a file-like object that contains the XML data returned by MediaWiki:

class ApiRequest:
" " "
Encapsulates the HTTP request to MediaWiki, managing cookies and
handling the creation of the necessary URLs.
" " "
def __init__(self):

pass

def _initCookieJar(self):
" " "
The LWPCookieJar class saves cookies in a format compatible with
libwww-perl, which looks like this:

#LWP-Cookies-2.0
Set-Cookie3: wikidb_profwiki_Token=8ade58c0ee4b60180ab7214a93403554;
path="/"; domain="127.0.0.1"; path_spec; expires="2007-09-08 22:36:14Z";
version=0
Set-Cookie3: wikidb_profwiki_UserID=3; path="/"; domain="127.0.0.1";
path_spec; expires="2007-09-08 22:36:14Z"; version=0
Set-Cookie3: wikidb_profwiki_UserName=Mchoate; path="/";
domain="127.0.0.1"; path_spec; expires="2007-09-08 22:36:14Z"; version=0

" " "
cj = cookielib.LWPCookieJar()

# If the cookie file exists, then load the cookie into the cookie jar.
if os.path.exists(COOKIEFILE):

cj.load(COOKIEFILE)

# Create an opened for urllib2. This means that the cookie jar
# will be used by urllib2 when making HTTP requests.
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
urllib2.install_opener(opener)
return cj

235



Choate c10.tex V1 - 11/20/2007 2:59pm Page 236

Chapter 10: The MediaWiki API

def _saveCookieJar(self,cj):
" " "
Save the cookies in the cookie file.
" " "
cj.save(COOKIEFILE)

def execute(self, args):
" " "
This is a generate method called by the convenience methods.
The request takes place in three stages. First, the cookie jar
is initialized and the cookie file is loaded if it already exists. Then,
the dictionary "args" is urlencoded and urllib2 generates the HTTP request.
The result of the request is returned as a file-like object. Once it is
received, the cookie data is saved so that it will be available for the
next request, and the data is returned to the calling method.
" " "
cj = self._initCookieJar()
req = urllib2.Request(QUERY_URL, urllib.urlencode(args), HEADERS)
f = urllib2.urlopen(req)
self._saveCookieJar(cj)
return f

The remaining methods all call the execute method, using arguments appropriate for the kind of request
being made. Not every option is explored in the remaining code, but the script is easily extended with
new request types.

Help
In order to get the latest information, you can make a help call to the API, which is particularly helpful
considering the fact that the API is in an evolving state. The URL looks like this:

api.php?action=help

Alternatively, because it is the default action, it can also look like this:

api.php

When this is executed, a fairly detailed list of actions and their associated parameters is returned.

ApiRequest.doHelp()
The ApiRequest Python class creates a Help action request with the following method. The values that
will be passed to the execute() method are set in a dictionary object:

def doHelp(self, format="xml"):
args={"action": "help",

"format": format}
f = self.execute(args)
return f

When the execute() method is called, the Python dictionary object is converted to a URL
(?action=help&format=xml), and then the HTTP request is made. The results are returned in a file-like

236



Choate c10.tex V1 - 11/20/2007 2:59pm Page 237

Chapter 10: The MediaWiki API

object, which, in addition to the usual Python file object methods, such as read(), also has two additional
methods that can be useful, geturl() and info(), whose functionalities are described in the sample code
that follows:

api = ApiRequest()
f = api.doHelp()

# Print a string representation of the URL that was called.
# Note that this doesn’t include the arguments, so it would
# look something like this: http://127.0.0.1/wiki/api.php
print f.geturl()

# Print the headers from the HTTP response.
print f.info()

# Print the contents of the file-like object, which can be
# xml, wddx, yaml, json, etc., depending on the format requested.
print f.read()

Login
The login action has two required parameters and one optional parameter. Required are lgname and
lgpassword; optional is lgdomain. The URL required to execute this action is as follows:

api.php?lgname=Mchoate&lgpassword=XXX&format=xml

The XML output of the action includes information about whether the login attempt was successful, the
user ID of the person logged in, as well as the username, and a token that signifies a successful login,
which can be used in subsequent requests to identify the logged in user.

MediaWiki also sets a cookie on the browser if the login is successful. In the mediawikiapi.py
script, the urllib2 object handles accepting the cookie and sending it back on subsequent
requests, which supersedes the need to use the token. The cookie encodes the same data as the value
for lgtoken.

<?xml version="1.0" encoding="utf-8"?>

<api>

<login result="Success" lguserid="3" lgusername="Mchoate"
lgtoken="8ade58c0ee4b60180ab7214a93403554"/>

</api>

The doLogin() method functions slightly differently than the other methods do in that it doesn’t return
data from the request. Instead, it returns a Boolean value indicating whether the login was successful or
not. This method can be called like so:

api = ApiRequest()
if api.doLogin("Mchoate", "connor"):

print "Login was successful.\n\n"
else:

print "Login failed.\n\n"

237



Choate c10.tex V1 - 11/20/2007 2:59pm Page 238

Chapter 10: The MediaWiki API

ApiRequest.doLogin()
The doLogin() method implementation follows. Notice in the code that the XML returned is parsed by
ElementTree, and the content of the XML is tested in order to determine whether the login was successful
or not:

def doLogin(self, name, password, domain="", format="xml"):
"""
The login action is used to login. If successful, a cookie
is set, and an authentication token is returned.

Example:
api.php?action=login&lgname=user&lgpassword=password

"""
args={

"action" : "login",
"format" : format,
"lgname" : name,
"lgpassword": password,

}
# The domain is optional
if domain:

args.update({"lgdomain":domain})

# MediaWiki returns an XML document with a blank line at
# the top, which causes an error while parsing. The
# following code strips whitespace at the front and
# back of the XML document and returns a string.
s = self.execute(args).read().strip()

# ElementTree expects a file-like object,
# so one is created for it.
f = StringIO.StringIO(s)
root = xml.etree.ElementTree.parse(f).getroot()

# The root element is the <api> element.
login = root.find("login")

# The <login> element has an attribute ’result’
# that returns ’Success’ is the login was successful
test = login.attrib["result"]
if test == "Success":

return True
else:

return False

Opensearch
This action enables you to search your wiki. The method is very similar to the doHelp() method and
should be self-explanatory.

ApiRequest.doOpensearch()

def doOpenSearch(self, search="", format="xml"):
args={

"action" : "search",

238



Choate c10.tex V1 - 11/20/2007 2:59pm Page 239

Chapter 10: The MediaWiki API

"format" : format
}

f = self.execute(args)
return f

Feedwatchlist
The Feedwatchlist action returns either an Atom or an RSS feed containing a list of pages that are being
watched by the user. In this respect, it differs from the other actions in that it returns a special XML
document. Unlike the others, it does not have a format parameter. Instead, it has a feedformat parameter
than can be either "rss" or "atom".

ApiRequest.doFeedWatchlist()

def doFeedWatchList(self, feedformat="rss"):
args={

"action" : "feedwatchlist",
"feedformat": feedformat

}
f = self.execute(args)
return f

RSS Feed
If an RSS feed is requested, then the following XML will be returned:

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/css"
href="http://127.0.0.1/mysql/skins/common/feed.css?42b"?>

<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>

<title>ProfWikis - MySQL - My watchlist [en]</title>

<link>http://127.0.0.1/mysql/index.php/Special:Watchlist</link>

<description>My watchlist</description>

<language>en</language>

<generator>MediaWiki 1.9.3</generator>

<lastBuildDate>Thu, 09 Aug 2007 22:33:30 GMT</lastBuildDate>

<item>

<title>Main Page</title>

<link>http://127.0.0.1/mysql/index.php/Main_Page</link>

<description> (WikiSysop)</description>

<pubDate>Sat, 21 Jul 2007 18:31:51 GMT</pubDate>

<dc:creator>WikiSysop</dc:creator> </item>

</channel>

</rss>

Atom Feed
If an "atom" feed is requested, then the data is reformatted to this specification:

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/css"

239



Choate c10.tex V1 - 11/20/2007 2:59pm Page 240

Chapter 10: The MediaWiki API

href="http://127.0.0.1/mysql/skins/common/feed.css?42b"?>

<feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en">

<id>http://127.0.0.1/mysql/api.php</id>

<title>ProfWikis - MySQL - My watchlist [en]</title>

<link rel="self" type="application/atom+xml"
href="http://127.0.0.1/mysql/api.php"/>

<link rel="alternate" type="text/html"
href="http://127.0.0.1/mysql/index.php/Special:Watchlist"/>

<updated>2007-08-09T22:33:31Z</updated>

<subtitle>My watchlist</subtitle>

<generator>MediaWiki 1.9.3</generator>

<entry>

<id>http://127.0.0.1/mysql/index.php/Main_Page</id>

<title>Main Page</title>

<link rel="alternate" type="text/html"
href="http://127.0.0.1/mysql/index.php/Main_Page"/>

<updated>2007-07-21T18:31:51Z</updated>

<summary type="html"> (WikiSysop)</summary>

<author><name>WikiSysop</name></author> </entry>

</feed>

Query
The query action is the workhorse of the MediaWiki API. It takes a complex set of parameters whose
composition varies depending on the various kinds of queries that are available. The base query URL
starts like this:

api.php?action=query

This doesn’t get you very far because all queries need to have some kind of parameters that narrow
down the selection of what is returned (otherwise, what’s the point of querying?). The group of queries
uses one of the following parameters: titles, pageids, or revids. These are described in the section
‘‘Searching by Title, Page ID, or Revision ID’’ that follows. The next query type is a list, which is
described in the ‘‘Lists’’ section, followed by the last basic type, generators, discussed in the
‘‘Generators’’ section.

Searching by Title, Page ID, or Revision ID
There are three parameters, titles, pageids, and revids, that enable you to query MediaWiki by title,
page ID, or revision ID, respectively. All three work similarly, so the following examples use only titles;
just bear in mind that you can do the same thing with the other parameters as well.

In all three cases, you can search for more than one value. To do so, you only need to separate the
values by the pipe (|) character (a pattern used throughout the API), as is shown in the
following example:

api.php?action=query&titles=Main+Page|Some+Other+Page&format=xml

Because the output of query actions are more varied than those of the others reviewed, the following
sections use a slightly different format to describe them. First, you will see examples showing how
the URLs can be formed to get the particular information you are looking for. Once you’ve reviewed

240



Choate c10.tex V1 - 11/20/2007 2:59pm Page 241

Chapter 10: The MediaWiki API

the important variations, then you will learn the mediawikiapi.py script method that can be used to
generate the different requests.

Simple Titles Query

A basic query that requests pages based upon their titles is illustrated in the following example:

api.php?action=query&titles=Main+Page&format=xml

The XML-formatted output of this request includes information about the page ID, plus the namespace
of the page (which in this case is the default namespace):

<?xml version="1.0" encoding="utf-8"?>

<api>

<query>

<pages>

<page pageid="1" ns="0" title="Main Page"/>

</pages>

</query>

</api>

This, of course, is of little value unless you simply wanted to know the page ID for this particular page.
Chances are good you will want more information, and this information is requested by the prop
parameter, which can be one of two values, both of which are illustrated next.

Property: info

The following URL requests general information about the page titled ‘‘Main Page’’ by assigning the
info value to the prop parameter:

api.php?action=query&format=xml&titles=Main+Page&prop=info

The output of this request now includes more information: the date the page was last ‘‘touched,’’ and the
last revision id (or current revision id, depending on whether you are a glass half-empty or glass half-full
kind of person):

<?xml version="1.0" encoding="utf-8"?>

<api>

<query>

<pages>

<page pageid="1" ns="0" title="Main Page"
touched="2007-07-21T18:34:55Z" lastrevid="166"/>

</pages>

</query>

</api>

Property: revisions

The second value available to prop is the revisions value:

api.php?action=query&format=xml&titles=Main+Page&prop=revisions

241



Choate c10.tex V1 - 11/20/2007 2:59pm Page 242

Chapter 10: The MediaWiki API

When this value is used, additional information is returned about the last (or current) revision id.
Actually, the only new data it adds by default is the oldid number:

<?xml version="1.0" encoding="utf-8"?>

<api>

<query>

<pages>

<page pageid="1" ns="0" title="Main Page">

<revisions>

<rev revid="166" pageid="1" oldid="157"/>

</revisions>

</page>

</pages>

</query>

</api>

There are times when you want more data about previous revisions, so the MediaWiki API provides a
handful of parameters that can be used alongside the prop parameter when its value is set to revisions.
These parameters are outlined in the following table.

Parameter Value

Rvprop Determines which revision properties to return. Values can be: timestamp, user, or
comment. More than one value can be included by separating them with a | character,
like so: rvprop=timestamp|user|comment.

rvlimit Determines the maximum number of revision pages to return. The default is 10.

rvstartid The value is the revision id, which indicates the starting point of the list of revisions that
will be returned. Note that the rvstartid value can be higher or lower than the rvendid
value, depending on the direction of the sort, as specified in rvdir (see below).

rvendid The ending point of the range of revision IDs whose starting point is specified by
rvstartid.

rvstart The timestamp of the starting point of the revisions to return.

rvend The timestamp of the ending point of the revisions to return.

rvdir Determines the sort direction of the returned list of revisions, either from older to newer
or newer to older. The possible values are either older or newer. The default is older,
which lists the revisions in descending order, with the newest revision first.

Using these parameters can be somewhat tricky at first if you do not understand the impact that rvdir
has on the output. It is best illustrated with a few examples. The following URL illustrates a basic request
that includes a request for information about when each revision was created, who created it, and any

242



Choate c10.tex V1 - 11/20/2007 2:59pm Page 243

Chapter 10: The MediaWiki API

user comments that may have been added. It also limits results to 10 revisions and returns the list of
revisions in reverse order of the creation date, so that the most recent revision is listed first, followed by
the rest in descending order:

api.php?format=xml&rvprop=timestamp%7Cuser%7Ccomment&
prop=revisions&rvdir=older&titles=Main+Page&rvlimit=
10&action=query

The XML output is as follows:

<?xml version="1.0" encoding="utf-8"?>

<api>

<query>

<pages>

<page pageid="1" ns="0" title="Main Page">

<revisions>

<rev revid="166" pageid="1" oldid="157"
user="WikiSysop" timestamp="2007-07-21T18:31:51Z"/>

<rev revid="165" pageid="1" oldid="156"
user="WikiSysop" timestamp="2007-07-17T23:47:46Z"/>

<rev revid="150" pageid="1" oldid="141"
user="WikiSysop" timestamp="2007-06-21T19:02:09Z"/>

<rev revid="149" pageid="1" oldid="140"
user="WikiSysop" timestamp="2007-06-21T19:00:21Z"/>

<rev revid="146" pageid="1" oldid="137"
user="WikiSysop" timestamp="2007-06-21T16:19:19Z"/>

<rev revid="134" pageid="1" oldid="125"
user="WikiSysop" timestamp="2007-06-21T14:58:39Z"/>

<rev revid="93" pageid="1" oldid="87"
user="WikiSysop" timestamp="2007-06-04T20:05:07Z"/>

<rev revid="91" pageid="1" oldid="85"
user="WikiSysop" timestamp="2007-06-01T19:48:49Z"/>

<rev revid="77" pageid="1" oldid="74"
user="WikiSysop" timestamp="2007-05-31T18:12:51Z"/>

<rev revid="76" pageid="1" oldid="73"
user="WikiSysop" timestamp="2007-05-31T17:43:53Z"/>

</revisions>

</page>

</pages>

</query>

<query-continue>

<revisions rvstartid="64"/>

</query-continue>

</api>

At the end of the XML data is a <query-continue> XML tag. This is here because the request limited
the returned values to no more than 10. Because there are more than 10 revisions for this page, the id of
the next revision in sequence is returned so that it can be used on subsequent requests.

243



Choate c10.tex V1 - 11/20/2007 2:59pm Page 244

Chapter 10: The MediaWiki API

Revision Direction: older The next query is just like the previous query except that two parameters
are added: rvstartid and rvendid. The query says to start with revision ID 77 and to end with revision
ID 150:

api.php?format=xml&rvprop=timestamp%7Cuser%7Ccomment&prop=
revisions&rvdir=older&rvstartid=77&titles=Main+Page&rvlimit
=10&rvendid=150&action=query

When this query is executed, the following data is returned:

<?xml version="1.0" encoding="utf-8"?>

<api>

<query>

<pages>

<page pageid="1" ns="0" title="Main Page"/>

</pages>

</query>

</api>

You may have noticed that something is missing. Where are the revisions between 77 and 150? The
answer is that the request is asking for a set of information that cannot exist. The order of the results is
the same as the previous query, which means that the most recent revision is first, followed by the other
revisions in descending order. This request tells MediaWiki to start at the 77th revision and to end at the
150th revision.

Because it is ordered in descending order, and the most recent revision is 166, MediaWiki returns nothing.
One solution is to tell MediaWiki to start with the 150th revision and to end with the 77th revision.
The other solution is to request the list in the reverse direction, from oldest to newest.

Revision Direction: newer The modified request now looks like the following — the only change is
setting the rvdir parameter to the value newer:

format=xml&rvprop=timestamp%7Cuser%7Ccomment&prop=revisions
&rvdir=newer&rvstartid=77&titles=Main+Page&rvlimit=10&
rvendid=150&action=query

The results of this query are markedly different from the first. The first revision listed has a revision ID
of 77, and the last revision has an ID of 150, so it has constrained the list according to the start and end
properties set in the query.

<?xml version="1.0" encoding="utf-8"?>

<api>

<query>

<pages>

<page pageid="1" ns="0" title="Main Page">

<revisions>

<rev revid="77" pageid="1" oldid="74"
user="WikiSysop" timestamp="2007-05-31T18:12:51Z"/>

<rev revid="91" pageid="1" oldid="85"
user="WikiSysop" timestamp="2007-06-01T19:48:49Z"/>

<rev revid="93" pageid="1" oldid="87"
user="WikiSysop" timestamp="2007-06-04T20:05:07Z"/>

<rev revid="134" pageid="1" oldid="125"

244



Choate c10.tex V1 - 11/20/2007 2:59pm Page 245

Chapter 10: The MediaWiki API

user="WikiSysop" timestamp="2007-06-21T14:58:39Z"/>

<rev revid="146" pageid="1" oldid="137"
user="WikiSysop" timestamp="2007-06-21T16:19:19Z"/>

<rev revid="149" pageid="1" oldid="140"
user="WikiSysop" timestamp="2007-06-21T19:00:21Z"/>

<rev revid="150" pageid="1" oldid="141"
user="WikiSysop" timestamp="2007-06-21T19:02:09Z"/>

</revisions>

</page>

</pages>

</query>

</api>

ApiRequest.doTitlesQuery()

Because there are so many variations to the parameters that can be used when making these kinds of
queries, the query code in the example uses a Python idiom that enables you to pass a varying number of
parameters to the method. Note that the same basic method can be used for pageids and revids queries
with only the slight modification of swapping pageids wherever titles appears, or revids wherever
titles appears:

def doTitlesQuery(self, titles, format, **args):
args.update({
"action": "query",
"titles": titles,
"format": format}
)
f = self.execute(args)
return f

The **args argument is a dictionary of key value pairs that is generated by adding named parameters
to the method call. This method requires a value for titles and format, but will accept any number of
named parameters, as illustrated in the following example, which shows three different but perfectly
acceptable ways of calling the method:

api = ApiRequest()
f = api.doTitlesQuery("Main Page", "xml")
f = api.doTitlesQuery("Main Page", "xml", rvprop="info")
f = api.doTitlesQuery("Main Page", "xml", rvprop="revisions", rvlimit="10)

Lists
Queries that return lists work a little differently than the queries seen thus far. There are a few important
things to understand:

1. You can request eight pre-defined lists: allpages, logevents, watchlist, recentchanges,
backlinks, embeddedin, imagelinks, and usercontribs. These are described in
detail below.

2. Lists are used instead of titles, pageids and revids. All four of these query types are
mutually exclusive.

3. Lists cannot be used with any of the prop and revision parameters.

245



Choate c10.tex V1 - 11/20/2007 2:59pm Page 246

Chapter 10: The MediaWiki API

4. There is an exception to rule number 3. Lists can be used as what is called a generator in the
API, which means that the list can be used in place of titles, pageids, and revids, in which
case all of the prop and revision parameters are available to the request. This means that
instead of typing in a long list of page titles to search for, you can use a list as the
source. This concept is best illustrated with examples, which can be found in the section
‘‘Generators’’ later in this chapter.

A basic list query is constructed like the following URL:

api.php?action=query&format=xml&list=allpages

The output of such a query follows:

<?xml version="1.0" encoding="utf-8"?>

<api>

<query-continue>

<allpages apfrom="Image galleries"/>

</query-continue>

<query>

<allpages>

<p pageid="49" ns="0" title="ASamplePage"/>

<p pageid="28" ns="0" title="A new page"/>

<p pageid="33" ns="0" title="Basic Image Links"/>

<p pageid="34" ns="0" title="Basic Media Namespace Links"/>

<p pageid="41" ns="0" title="College Basketball"/>

<p pageid="42" ns="0" title="College Football"/>

<p pageid="39" ns="0" title="College Sports"/>

<p pageid="20" ns="0" title="Core parser functions"/>

<p pageid="19" ns="0" title="Headings"/>

<p pageid="35" ns="0" title="Image Alignment"/>

</allpages>

</query>

</api>

An important item to note is that by default, all requests are limited to 10 items. This can be overridden
by the correct parameter, which varies according to which list type is being requested. Each list type has
its own collection of parameters that it can use, and these are documented in the following pages, along
with sample output.

List: allpages

Parameter Value

apfrom Returns a list of pages ordered alphabetically, starting with titles equal to or higher than
the letter or letters used. If apfrom="bamboozled", then the list will return only those
pages that come after bamboozled when sorted alphabetically.

apprefix Returns a list of pages whose title starts with the string passed as the value. If
apprefix="Ma", then all pages whose title starts with Ma will be returned. If you leave
the parameter empty, like apprefix=’"’, then no pages will be returned. Leave it out of
the query entirely if you do not want to use it.

246



Choate c10.tex V1 - 11/20/2007 2:59pm Page 247

Chapter 10: The MediaWiki API

Parameter Value

apnamespace The number of the namespace from which the list should be derived. It should be
a value from 0 to 15 (unless you’ve added custom namespaces).

apfilterredir Determines which pages to list based upon one of three values: all, redirects
and nonredirects. The default is all.

aplimit Determines the maximum number of pages to return. The default is 10.

In the previous section, an example of a simple request was already illustrated. The following request is
a little more complicated, and uses the parameters available to the allpages request:

api.php?apfilterredir=all&apprefix=M&format=xml&list=allpages
&apfrom=A&apnamespace=0&action=query&prop=revisions&
aplimit=10

The preceding request asks for all pages that start with the letter A or higher in the alphabet and all pages
that have the prefix of M. Of course, because M comes after A in the alphabet, all pages with titles that
start with M are included in the results:

<?xml version="1.0" encoding="utf-8"?>

<api>

<query>

<allpages>

<p pageid="24" ns="0" title="Magic Words"/>

<p pageid="10" ns="0" title="Magic Words that
show information about the page"/>

<p pageid="9" ns="0" title="Magic Words that use underscores"/>

<p pageid="11" ns="0" title="Magic word tests"/>

<p pageid="1" ns="0" title="Main Page"/>

<p pageid="22" ns="0" title="Math"/>

<p pageid="51" ns="0" title="MediaWiki Extensions"/>

</allpages>

</query>

</api>

The remaining list types all have unique parameters, but there is a lot of overlap with the parameters
used in the previous example. Therefore, the next sections document the parameters each list type uses,
but do not provide specific output examples.

List: logevents

Parameter Value

letype Filters log events based on the type of log event. Legal values are block, protect,
rights, delete, upload, move, import, renameuser, newusers, and makebot.
Separate each value with a pipe (|) if you are filtering on more than one value.

lestart The timestamp of the starting point of the list of log events that will be returned.

247



Choate c10.tex V1 - 11/20/2007 2:59pm Page 248

Chapter 10: The MediaWiki API

Parameter Value

leend The timestamp of the ending point of the list of log entries that will be returned.

ledir The sort order of the list of log entries that is returned. The value can be newer or
older. The default value is older.

leuser Filters entries by username.

letitle Returns log entries for a given page.

lelimit Determines the maximum number of log entries to return. The default is 10.

List: watchlist

Parameter Value

wlallrev Includes all revisions of the pages in the watchlist that will be returned. This
parameter doesn’t take a value; if it is present in the query, all revisions are
returned. If it is absent, only the current page is returned.
action=query&list=watchlist&wlallrev

wlstart The timestamp of the starting point of the watchlist that will be returned.

wlend The timestamp of the ending point of the watchlist that will be returned.

wlnamespace The number of the namespace from which the list should be derived. It should be
a value from 0 to 15 (unless you’ve added custom namespaces).

wldir Determines the sort direction of the returned list of pages, either from older to
newer or newer to older. The value is either older or newer, and the default value
is older.

wllimit Determines the maximum number of pages to return. The default is 10.

wlprop Specifies which additional items to get (nongenerator mode only). The value can
be one or more of the following: user, comment, timestamp, and patrol. When
using multiple values, separate them with a pipe (|).

List: recentchanges

Parameter Value

rcstart The timestamp of the starting point of the list of recent changes that will
be returned.

rcend The timestamp of the ending point of the list of recent changes that will be
returned.

248



Choate c10.tex V1 - 11/20/2007 2:59pm Page 249

Chapter 10: The MediaWiki API

Parameter Value

rcdir Determines the sort direction of the returned list of recent changes, either from older
to newer or newer to older. The value is either older or newer.

rcnamespace The number of the namespace from which the list should be derived. It should be a
value from 0 to 15 (unless you’ve added custom namespaces).

rcprop Includes additional properties in the return values. The value can be one or more of
the following: user, comment, and flags. When using multiple values, separate them
with a pipe (|).

rcshow Filters returned items based on the criteria specified in the value. Possible
values are minor, !minor, bot, !bot, anon, and !anon. Values that start with !
are negations. In other words, minor means include minor changes in the results,
whereas !minor means do not include minor changes in the results. Likewise,
you can specify whether to include changes made by bots and changes made by
anonymous users.

rclimit Determines the maximum number of pages to return. The default is 10.

List: backlinks

Parameter Value

blcontinue When more results are available, use this to continue.

blnamespace The number of the namespace from which the list should be derived. It should be
a value from 0 to 15 (unless you’ve added custom namespaces).

bllimit Determines the maximum number of pages to return. The default is 10.

List: emeddedin

Parameter Value

einamespace The number of the namespace from which the list should be derived. It should be
a value from 0 to 15 (unless you’ve added custom namespaces).

eiredirect If the linking page is a redirect, this finds all pages that link to that redirect (not
implemented).

eilimit Determines the maximum number of pages to return. The default is 10.

249



Choate c10.tex V1 - 11/20/2007 2:59pm Page 250

Chapter 10: The MediaWiki API

List: imagelinks

Parameter Value

ilnamespace The number of the namespace from which the list should be derived. It should be
a value from 0 to 15 (unless you’ve added custom namespaces).

illimit Determines the maximum number of pages to return. The default is 10.

List: usercontribs

Parameter Value

uclimit Determines the maximum number of contributions to return. The default is 10.

ucstart The timestamp of the starting point of the list of user contributions that will be
returned.

ucend The timestamp of the ending point of the list of user contributions that will be
returned.

ucuser The username whose contributions will be returned

ucdir Determines the sort direction of the returned list of user contributions, either from
older to newer or newer to older. The value is either older or newer.

ApiRequest.doListQuery(list=allpages, **listargs)

The Python method used to generate list queries is similar to the one used to generate titles queries.
This generic query can be used for any kind of list type:

def doListQuery(self, list, format, **args):
args.update({
"action": "query",
"list": list,
"format": format}
)
f = self.execute(args)
return f

No programmer likes to type any more than they have to, so slightly more convenient methods have
been included for each specific kind of list to be queried:

def doListAllpagesQuery(self, **args):
args.update({
"action":"query",
"list": "allpages",
})
f = self.execute(args)
return f

250



Choate c10.tex V1 - 11/20/2007 2:59pm Page 251

Chapter 10: The MediaWiki API

def doListLogeventsQuery(self, **args):
args.update({
"action":"query",
"list": "logevents",
})
f = self.execute(args)
return f

def doListWatchlistQuery(self, **args):
args.update({
"action":"query",
"list": "watchlist",
})
f = self.execute(args)
return f

def doListRecentchangesQuery(self, **args):
args.update({
"action":"query",
"list": "recentchanges",
})
f = self.execute(args)
return f

def doListBacklinksQuery(self, **args):
args.update({
"action":"query",
"list": "backlinks",
})
f = self.execute(args)
return f

def doListEmbeddedinQuery(self, **args):
args.update({
"action":"query",
"list": "embeddedin",
})
f = self.execute(args)
return f

def doListImagelinksQuery(self, **args):
args.update({
"action":"query",
"list": "imagelinks",
})
f = self.execute(args)
return f

def doListUsercontribsQuery(self, **args):
args.update({
"action":"query",
"list": "usercontribs",
})
f = self.execute(args)
return f

251



Choate c10.tex V1 - 11/20/2007 2:59pm Page 252

Chapter 10: The MediaWiki API

Generators
Earlier in this chapter, you learned that lists could be used as generators in place of titles, pageids, and
revids queries. You also saw that this concept is most easily understood by looking at sample output,
which is what you will see here.

In order to use a list as a generator, all you need to do is refer to it as a generator in the query. Instead of
list=allpages, use generator=allpages, as illustrated in the following example:

api.php?generator=allpages&format=xml&action=query

That’s all there is to it. The advantage to using a generator is that you then have access to the prop and
revision parameters and can thus query a much richer set of information than you can with lists alone.

The following two API requests will return the same data, even though one is a generator and the other
is a list:

api.php?action=query&format=xml&generator=allpages
api.php?action=query&format=xml&list=allpages

Both of these requests return the following data:

<?xml version="1.0" encoding="utf-8"?>

<api>

<query-continue>

<allpages gapfrom="Image galleries"/>

</query-continue>

<query>

<pages>

<page pageid="49" ns="0" title="ASamplePage"/>

<page pageid="28" ns="0" title="A new page"/>

<page pageid="33" ns="0" title="Basic Image Links"/>

<page pageid="34" ns="0" title="Basic Media Namespace Links"/>

<page pageid="41" ns="0" title="College Basketball"/>

<page pageid="42" ns="0" title="College Football"/>

<page pageid="39" ns="0" title="College Sports"/>

<page pageid="20" ns="0" title="Core parser functions"/>

<page pageid="19" ns="0" title="Headings"/>

<page pageid="35" ns="0" title="Image Alignment"/>

</pages>

</query>

</api>

The difference becomes apparent when you use both the generator and the prop parameter:

api.php?action=query&format=xml&generator=allpages&prop=revisions

This request returns the following data:

<?xml version="1.0" encoding="utf-8"?>

<api>

<query-continue>

<allpages gapfrom="Image galleries"/>

</query-continue>

252



Choate c10.tex V1 - 11/20/2007 2:59pm Page 253

Chapter 10: The MediaWiki API

<query>

<pages>

<page pageid="49" ns="0" title="ASamplePage">

<revisions>

<rev revid="164" pageid="49" oldid="155"/>

</revisions>

</page>

<page pageid="28" ns="0" title="A new page">

<revisions>

<rev revid="111" pageid="28" oldid="102" minor=""/>

</revisions>

</page>

<page pageid="33" ns="0" title="Basic Image Links">

<revisions>

<rev revid="121" pageid="33" oldid="112"/>

</revisions>

</page>

<page pageid="34" ns="0" title="Basic Media Namespace Links">

<revisions>

<rev revid="123" pageid="34" oldid="114"/>

</revisions>

</page>

<page pageid="41" ns="0" title="College Basketball">

<revisions>

<rev revid="138" pageid="41" oldid="129"/>

</revisions>

</page>

<page pageid="42" ns="0" title="College Football">

<revisions>

<rev revid="139" pageid="42" oldid="130"/>

</revisions>

</page>

<page pageid="39" ns="0" title="College Sports">

<revisions>

<rev revid="143" pageid="39" oldid="134"/>

</revisions>

</page>

<page pageid="20" ns="0" title="Core parser functions">

<revisions>

<rev revid="160" pageid="20" oldid="151"/>

</revisions>

</page>

<page pageid="19" ns="0" title="Headings">

<revisions>

<rev revid="59" pageid="19" oldid="56"/>

</revisions>

</page>

<page pageid="35" ns="0" title="Image Alignment">

<revisions>

<rev revid="127" pageid="35" oldid="118"/>

</revisions>

</page>

</pages>

</query>

</api>

253



Choate c10.tex V1 - 11/20/2007 2:59pm Page 254

Chapter 10: The MediaWiki API

There are, of course, a large number of variations to the kind of requests that can be made this way, and
all of the revision properties can be used as well to construct complex queries.

ApiRequest.doGeneratorQuery()

The Python method to request a generator is almost identical to the list request, except that the generator
parameter is used instead of the list parameter:

def doGeneratorQuery(self, list, format, **args):
args.update({
"action": "query",
"generator": list,
"format": format}
)
f = self.execute(args)
return f

This method can be used to replicate the queries used to illustrate generator output by using them in the
following way:

api = ApiQuery()
f = api.doGeneratorQuery("allpages", "xml")

print f.read()

f = api.doGeneratorQuery("allpages", "xml", prop="revisions")
print f.read()

In Development
One feature missing from the API is the capability to edit pages programmatically. This feature is cur-
rently under active development and will be available in future versions of MediaWiki.

api.py
The complete code of the api.py script follows:

#!/usr/bin/env python
# encoding: utf-8
"""
api.py

Created by Mark on 2007-08-06.
Copyright (c) 2007 The Choate Group, LLC. All rights reserved.
"""

import sys
import os
import urllib
import urllib2
import cookielib
import xml.etree.ElementTree
import StringIO

254



Choate c10.tex V1 - 11/20/2007 2:59pm Page 255

Chapter 10: The MediaWiki API

# Customize the following values for your wiki installation
QUERY_URL = u"http://127.0.0.1/mysql/api.php"
HEADERS = {"User-Agent" : "API Test/1.0"}
COOKIEFILE = "/Users/mchoate/Documents/Code/Metaserve/MediaWiki/test.cookie"

class ApiRequest:
"""
Encapsulates the HTTP request to MediaWiki, managing cookies and
handling the creation of the necessary URLs.
"""

def _initCookieJar(self):
"""
The LWPCookieJar class saves cookies in a format compatible with
libwww-perl, which looks like this:

#LWP-Cookies-2.0
Set-Cookie3: wikidb_profwiki_Token=8ade58c0ee4b60180ab7214a93403554;

path="/"; domain="127.0.0.1"; path_spec; expires="2007-09-08 22:36:14Z";
version=0

Set-Cookie3: wikidb_profwiki_UserID=3;
path="/"; domain="127.0.0.1"; path_spec; expires="2007-09-08 22:36:14Z";
version=0

Set-Cookie3: wikidb_profwiki_UserName=Mchoate;
path="/"; domain="127.0.0.1"; path_spec; expires="2007-09-08 22:36:14Z";
version=0

"""
cj = cookielib.LWPCookieJar()
# If the cookie file exists, then load the cookie into the cookie jar.
if os.path.exists(COOKIEFILE):

cj.load(COOKIEFILE)
# Create an opened for urllib2. This means that the cookie jar
# will be used by urllib2 when making HTTP requests.
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
urllib2.install_opener(opener)
return cj

def _saveCookieJar(self,cj):
cj.save(COOKIEFILE)

def doHelp(self, format="xml"):
args={"action": "help",

"format": format}
f = self.execute(args)
return f

def doLogin(self, name, password, domain="", format="xml"):
"""
The login action is used to login. If successful, a cookie
is set, and an authentication token is returned.

255



Choate c10.tex V1 - 11/20/2007 2:59pm Page 256

Chapter 10: The MediaWiki API

Example:

api.php?action=login&lgname=user&lgpassword=password
"""
args={

"action" : "login",
"format" : format,
"lgname" : name,
"lgpassword": password,

}
# The domain is optional
if domain:

args.update({"lgdomain":domain})

# MediaWiki returns an XML document with a blank line at
# the top, which causes an error while parsing. The
# following code strips whitespace at the front and
# back of the XML document and returns a string.
s = self.execute(args).read().strip()

# ElementTree expects a file-like object,
# so one is created for it.
f = StringIO.StringIO(s)
root = xml.etree.ElementTree.parse(f).getroot()

# The root element is the <api> element.
login = root.find("login")

# The <login> element has an attribute ’result’
# that returns ’Success’ is the login was successful
test = login.attrib["result"]
if test == "Success":

return True
else:

return False

def doOpenSearch(self, search="", format="xml"):
args={

"action" : "search",
"format" : format

}
f = self.execute(args)

def doFeedWatchList(self, feedformat="rss"):
args={

"action" : "feedwatchlist",
"feedformat": feedformat,

}
f = self.execute(args)
return f

256



Choate c10.tex V1 - 11/20/2007 2:59pm Page 257

Chapter 10: The MediaWiki API

def doQuery(self, **args):
return self.execute(args)

def doTitlesQuery(self, titles="Main Page", prop="info", meta="siteinfo", for-
mat="xml"):

args={
"action": "query",
"titles": titles,
"prop": prop,
"meta": meta,
"format": format
}
f = self.execute(args)
return f

def doTitlesQueryNoMeta(self, titles="Main Page", prop="info", format="xml"):
args={
"action": "query",
"titles": titles,
"prop": prop,
"format": format
}
f = self.execute(args)
return f

def doSimpleTitlesQuery(self, titles="Main Page", format="xml"):
args={
"action": "query",
"titles": titles,
"format": format
}
f = self.execute(args)
return f

def doTitlesQuery2(self, titles="Main Page",
rvprop="timestamp|user|comment", rvlimit="50", rvdir="forward", format="xml"):

args={
"action": "query",
"titles": titles,
"prop": "revisions",
"rvprop": rvprop, #timestamp|user|comment|content
"rvlimit": rvlimit,
#"rvstartid": "77",
#"rvendid": "200",
#"rvstart": rvstart, #timestamp
#"rvend": rvend, #timestamp
"rvdir": rvdir, #newer|older
"format": format
}
f = self.execute(args)
return f

257



Choate c10.tex V1 - 11/20/2007 2:59pm Page 258

Chapter 10: The MediaWiki API

def doTitlesQuery3(self, titles="Main Page",
rvprop="timestamp|user|comment", rvlimit="50", rvdir="older", format="xml"):

args={
"action": "query",
"titles": titles,
"prop": "revisions",
"rvprop": rvprop, #timestamp|user|comment|content
"rvlimit": rvlimit,
"rvstartid": "77",
"rvendid": "150",
#"rvstart": rvstart, #timestamp
#"rvend": rvend, #timestamp
"rvdir": rvdir, #newer|older
"format": format
}
f = self.execute(args)
return f

def doGeneratorQuery2(self, list_="allpages",
apfrom="aardvark", apnamespace="0", apfilterredir="all", aplimit="10",
apprefix="",rvprop="timestamp|user|comment", format="xml"):

args={
"action": "query",
"generator": list_,
"prop": "revisions",
"rvprop": rvprop, #timestamp|user|comment|content
"apfrom":apfrom,
"apnamespace":apnamespace,
"apfilterredir": apfilterredir,
"aplimit": aplimit,
"apprefix": apprefix,
"format": format

}
f = self.execute(args)
return f

def doGeneratorQuery(self, list, format, **args):
args.update({
"action": "query",
"generator": list,
"format": format}
)
f = self.execute(args)
return f

def doListQuery(self, list, format, **args):
args.update({
"action": "query",
"list": list,
"format": format}
)
f = self.execute(args)
return f

258



Choate c10.tex V1 - 11/20/2007 2:59pm Page 259

Chapter 10: The MediaWiki API

def doListAllpagesQuery(self, apfrom="aardvark", apnamespace="0",
apfilterredir="all", aplimit="10", apprefix="", format="xml"):

args={
"action":"query",
"list": "allpages",
"apfrom":apfrom,
"apnamespace":apnamespace,
"apfilterredir": apfilterredir,
"aplimit": aplimit,
"apprefix": apprefix,
"prop":"revisions",
"rvprop":"timestamp|user|comment",
"format":format
}
f = self.execute(args)
return f

def doSimpleListAllpagesQuery(self, apfrom="A", apnamespace="0",
apfilterredir="all", aplimit="10", apprefix="M", format="xml"):

args={
"action":"query",
"list": "allpages",
"apfrom":apfrom,
"apnamespace":apnamespace,
"apfilterredir": apfilterredir,
"aplimit": aplimit,
"apprefix": apprefix,
#"prop":"revisions",# doesn’t do anything for the list
#"rvprop":"timestamp|user|comment",
"format":format
}
f = self.execute(args)
return f

def doListLogeventsQuery(self, **args):
args.update({
"action":"query",
"list": "logevents",
})
f = self.execute(args)
return f

def doListWatchlistQuery(self, **args):
args.update({
"action":"query",
"list": "watchlist",
})
f = self.execute(args)
return f

def doListRecentchangesQuery(self, **args):
args.update({
"action":"query",
"list": "recentchanges",

259



Choate c10.tex V1 - 11/20/2007 2:59pm Page 260

Chapter 10: The MediaWiki API

})
f = self.execute(args)
return f

def doListBacklinksQuery(self, **args):
args.update({
"action":"query",
"list": "backlinks",
})
f = self.execute(args)
return f

def doListEmbeddedinQuery(self, **args):
args.update({
"action":"query",
"list": "embeddedin",
})
f = self.execute(args)
return f

def doListImagelinksQuery(self, **args):
args.update({
"action":"query",
"list": "imagelinks",
})
f = self.execute(args)
return f

def doListUsercontribsQuery(self, **args):
args.update({
"action":"query",
"list": "usercontribs",
})
f = self.execute(args)
return f

def execute(self, args):
"""
This is a generate method called by the convenience methods.
The request takes place in three stages. First, the cookie jar
is initialized and the cookie file is loaded if it already exists. Then,
the dictionary "args" is urlencoded and urllib2 generates the HTTP request.
The result of the request is returned as a file-like object. Once it is
received, the cookie data is saved so that it will be available for the
next request, and the data is returned to the calling method.
"""
cj = self._initCookieJar()
req = urllib2.Request(QUERY_URL, urllib.urlencode(args), HEADERS)
f = urllib2.urlopen(req)
self._saveCookieJar(cj)
return f

if __name__ == ’__main__’:

260



Choate c10.tex V1 - 11/20/2007 2:59pm Page 261

Chapter 10: The MediaWiki API

# Test methods
api = ApiRequest()
f = api.doHelp()

if api.doLogin("Mchoate", "connor"):
print "Login was successful.\n\n"

else:
print "Login failed.\n\n"

print "---------------------------------------\n"

f = api.doTitlesQuery(titles="Main Page", prop="info", meta="siteinfo", for-
mat="xml")

f = api.doTitlesQueryNoMeta(titles="Main Page", prop="info", format="xml")

f = api.doTitlesQueryNoMeta(titles="Main Page", prop="revisions", format="xml")

f = api.doSimpleTitlesQuery(titles="Main Page", format="xml")

f = api.doTitlesQuery2(titles="Main Page", rvprop="timestamp|user|comment",
rvlimit="10",rvdir="older", format="xml")

f = api.doTitlesQuery3(titles="Main Page", rvprop="timestamp|user|comment",
rvlimit="10",rvdir="older", format="xml")

f = api.doTitlesQuery3(titles="Main Page", rvprop="timestamp|user|comment",
rvlimit="10",rvdir="newer", format="xml")

f = api.doGeneratorQuery2(list_="allpages", rvprop="timestamp|user|comment",
format="xml")

f = api.doListAllpagesQuery()

f = api.doSimpleListAllpagesQuery()

f = api.doListQuery("allpages", "xml")

f = api.doGeneratorQuery("allpages", "xml")

f = api.doGeneratorQuery("allpages", "xml", prop="revisions")

Summary
In this chapter, you learned how to configure and run sample scripts from the pywikipedia bot, as well
as how to interact with the new MediaWiki API using Python. These tools can be used to automate
certain administrative tasks and can save administrators a significant amount of time. Eventually, the full
MediaWiki API will make it possible to create robust client applications for MediaWiki.

In the next chapter, you will learn about site maintenance and administration of your wiki, including
performance management through caching.

261



Choate c10.tex V1 - 11/20/2007 2:59pm Page 262



Choate c11.tex V1 - 11/19/2007 2:43pm Page 263

Wiki Performance

This chapter takes a look at how to performance-tune MediaWiki sites. Because of Wikipedia’s
success, you could consider it to be a worst-case scenario in terms of performance management.
It is fairly safe to say that most other installations will have much less traffic and be much less
complex than the one in place for Wikipedia, but it’s nice to know that there’s no doubt that
MediaWiki can scale.

When MediaWiki receives a request for a page, it performs a number of tasks — from ensuring
that the user requesting the page is allowed to see it to converting wikitext to HTML, and then
generating the page itself, delivering the appropriate layout based upon the preferences of the
user. As programmers are wont to say: this is not a trivial task. Consider the fact that Wikipedia
is reportedly the eighth most visited website in the world and one can see that for the developers
of MediaWiki, performance is an important issue.

A website lives in a complex environment and numerous factors influence a site’s performance
characteristics. From a user’s perspective, performance is simply a measure of how long it takes for
a page to load after the user has clicked a link to that page. When a user clicks on a link, a request is
sent to the host server in the form of an HTTP header, a simple string of text that looks like this:

GET /mysql/index.php/Main_Page HTTP/1.1
Host: 127.0.0.1
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6)

Gecko/200707250 Firefox/2.0.0.6
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/

plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive



Choate c11.tex V1 - 11/19/2007 2:43pm Page 264

Chapter 11: Wiki Performance

This request has to find the host server and then travel through a series of networks to get there,
where the server gets the request and returns a new header, followed by the content of the page.
This round-trip is made in a matter of seconds and appears almost instantaneous to the user when
everything goes well. Of course, things never go well all the time, and many factors can influence the
time it takes for the request/response cycle to complete.

Factors that affect a site’s performance include the amount of bandwidth available to the user whose
computer is making the request; how far away the server is from the computer making the request;
general network congestion, which can slow down the trip to and from the host server; and the
bandwidth available to the server.

On the server itself, performance factors include the size of the webpages, the speed of the
microprocessor and the amount of RAM available to it, how long it takes to read data from hard drives
or to query the database, as well as internal network traffic. Finally, the software used to run the site,
obviously, is a factor in a site’s performance. Because of all the factors that contribute to a site’s perceived
performance, optimizing performance can be a complex activity.

Wikipedia Architecture
Fortunately, the developers of MediaWiki have been very open about the kind of hardware they have in
place, as well as how they have configured it. Information about Wikipedia’s installation can be found at
http://meta.wikimedia.org/wiki/Wikimedia_servers.

MediaWiki uses a variety of strategies to manage the load on their servers and to optimize their
performance. The following list outlines their basic architecture:

❑ Load balancing: Round-robin DNS routes requests to multiple Squid servers.

❑ Squid: Squid is a caching proxy server based on the Harvest Cache Daemon developed in the
early 1990s. Originally funded by an NFS grant, Squid is now developed by volunteers. It sits
between the user making the request and the Apache Web server, and performs two tasks.
First, it caches frequently requested content so that when it is requested, the Squid server
handles the request instead of passing the request on to Apache. This reduces the load on the
Apache servers.
Second, Squid can be used to intelligently map incoming requests to Apache servers in a way
that distributes the request loads to different machines. Running a proxy server is a complex
task that if not done correctly can leave a site open to security vulnerabilities. MediaWiki
supports Squid, but you won’t learn about it in any detail here, as that is a subject beyond the
scope of this book. In fact, only the most active wikis would need something like Squid. The vast
majority will find Memcached and other caching strategies more than adequate. To learn more
about Squid, visit www.squid-cache.org.

❑ Memcached: Memcached was developed by Danga Interactive for LiveJournal.com, and it is
known as a distributed memory object caching system. In other words, it keeps webpages cached
in memory so that when they are requested, they can be sent back directly to the client and not
read off a hard drive or regenerated by a PHP script.

❑ Apache/PHP: The PHP scripts are compiled into bytecode and then executed. In the
default PHP installation, the scripts are compiled every time they are requested. One way to
improve performance is to cache the bytecode that is produced by the scripts so that it isn’t

264



Choate c11.tex V1 - 11/19/2007 2:43pm Page 265

Chapter 11: Wiki Performance

regenerated every time. MediaWiki supports three different products that do this: Alternative
PHP Cache (APC), eAccelerate, and Turck MMCache.

❑ Relational Databases: These are database clusters in a master/slave configuration. In a typical
configuration, the ‘‘master’’ database is the only database that can be written to, and one or more
‘‘slaves’’ are used for all ‘‘read’’ requests. The master then synchronizes the new data with the
data in the slaves. (Database load balancer: LoadBalancer.php)

❑ Full-text search (Lucene): In a default installation, MediaWiki uses the full-text indexing
capabilities of either MySQL or Postgres relational databases, but because these are relational
databases and are not designed from the ground up for full-text searches, their performance
degrades as the size of the full-text database grows, as well as when the number of searches
increases. As a consequence, Wikipedia uses Lucene, which is a full-text search engine that’s
part of the Apache Foundation family of open-source projects.

The Wikipedia installation uses all of these features to one degree or another to deliver Wikipedia content
to the world. Unfortunately, a detailed discussion of proxy servers, database architecture, and the Lucene
search engine are beyond the scope of this book (and are worthy of entire books themselves, of which
there are many).

This chapter focuses on the most commonly used performance-enhancing techniques and describes
how to configure MediaWiki’s cache. The chapter concludes with information about how to backup and
restore your wiki.

Caching
MediaWiki provides a flexible caching mechanism and can implement caching in a number of ways.

The PHP Memcached client script is included in the MediaWiki distribution, and this forms the basic
approach used by MediaWiki. Wikipedia and related sites use Memcached, and this is what they
recommend. However, for single-server installations, Memcached can be overkill because it runs in a
separate process and needs to be monitored. In those instances, MediaWiki can use one of several other
caching mechanisms, including APC, eAccelerator, or Turck MMCache.

These other methods are subclasses of the BagOStuff class, which is defined in BagOStuff.php. These
subclasses adopt the same interface as the Memcached PHP client, so the MediaWiki code is the same
regardless of which caching mechanism you decide to use — the only difference is whether the
memcached object is used, or one of the BagOStuff variants.

MediaWiki can cache HTML files on the file system, or it can cache serialized PHP objects in a database
(or dbm file).

Purging the Cache
One of the most common sources of problems for new MediaWiki developers is the cache. Typically,
a developer makes a change to some code and then goes to view it in the browser and doesn’t see
the changes just made. Whenever something is not doing what it is supposed to do, it’s a good idea
to suspect a cache problem. Developers have two caches to worry about: the browser cache and the
MediaWiki cache.

265



Choate c11.tex V1 - 11/19/2007 2:43pm Page 266

Chapter 11: Wiki Performance

To purge the browser cache, do the following:

❑ IE: Press Ctrl+F5, or press Control and then click the Reload button.

❑ Mozilla: Press Ctrl+F5 (Command+F5 on a Macintosh), or press the Ctrl key and click
the Reload button.

❑ Safari: Press Command+Shift+R, or press the Command key and click the Reload button.

To purge the MediaWiki cache, add the purge action to the end of the URL of a file:

/wiki/index.php/Main_Page?action=purge

You can also purge all caches, both browser caches and server-side caches, by setting the value of
$wgCacheEpoch in LocalSettings.php to the current date, as illustrated in the following example:

/**
* Set this to current time to invalidate all prior cached pages. Affects both
* client- and server-side caching.
* You can get the current date on your server by using the command:
* date +%Y%m%d%H%M%S
*/

$wgCacheEpoch = ’20070822000000’;

Cache Types
You just learned there are two caches, a browser cache and the MediaWiki cache. That is only partly
true. MediaWiki has an aggressive and far-reaching caching strategy embedded in the application and
actually has several different kinds of caches caching different things.

In addition to the browser cache, there is a file cache and a collection of object caches.

Browser Cache
The HTTP specification defines HTTP headers that are to be used by clients (browsers) to manage their
cache. In order to enable client-side caching, the $wgCachePages variable must be set to true (the default):

# Client-side caching:

/** Allow client-side caching of pages */
$wgCachePages = true;

In order to understand how this changes MediaWiki’s behavior, it’s helpful to understand how HTTP 1.1
handles caching. What follows is a brief, and not complete, description of the caching process used by
browsers so that you will understand how MediaWiki changes response headers when this value is set.

When a browser requests a page, the server’s response includes HTTP headers, as well as the page that
was requested. The HTTP headers that are sent back to the browser, called the response headers, can
contain information that the browser uses to cache the page.

The Expires header is optional; it tells the browser explicitly when to stop caching a page. When a
browser makes a request, it first checks to see whether the page is in the cache and if it has an
expiration date. If it has expired, then it will check to see whether the page has been modified since

266



Choate c11.tex V1 - 11/19/2007 2:43pm Page 267

Chapter 11: Wiki Performance

the last download. If it has been modified, then it will download a new copy; otherwise, it displays the
page in the cache. The following example shows the Expires header:

Expires: Thu, 23 Aug 2007 14:19:41 GMT

The next two response headers are called validators because they are used to determine whether a page
has changed and needs to be retrieved from the server, rather than the cache. These response headers are
Last-Modified and Etag (shown here):

Last-Modified: Wed, 30 May 2007 01:01:53 GMT
Etag: "655194-9f2f-465ccd01"

When a browser caches a page, it stores this information along with it. The next time it requests the
same page, it includes the following request headers, which are used to validate the cache based on the
Last-Modified time or the Etag:

If-Modified-Since: Wed, 30 May 2007 01:01:53 GMT
If-None-Match: "655194-9f2f-465ccd01"

In the preceding example, these headers tell the server that if the page has been modified since May
30, 2007 at 1:01:53 GMT, or if the Etag as generated by the server does not match the Etag sent in the
If-None-Match header, then a new instance of the page should be sent. Otherwise, it returns a header
with the following message:

HTTP/1.x 304 Not Modified

ETags (or entity tags) were introduced in the HTTP 1.1, and they are used in cache management. They are
a unique value (or hash) normally created using a file’s inode, size, and last modified time. They can be
customized using the FileEtag directive (see the Apache HTTPD documentation for more information);
and in MediaWiki, the MediaWiki application creates the Etag, using its own formula.

When $wgCachePages is set to True, ETags are used in non-dynamically generated pages, which allows
the client to cache those files. If the $wgUseETag variable is set to True in LocalSettings.php, then an
ETag is used on dynamically generated pages, too.

In the following request/response example, MediaWiki has been configured to cache files, but has not
been configured to use ETags. This is a request for a static file, called SampleImageUpload.png:

GET /mysql/images/b/b5/SampleImageUpload.png HTTP/1.1
Host: 127.0.0.1
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6)

Gecko/20070725 Firefox/2.0.0.6
Accept: image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://127.0.0.1/mysql/index.php/Image_links

Despite the fact that MediaWiki has not been configured to use ETags, the response returns an ETag.
That’s because ETags are generated and sent automatically for static pages. At the most basic level, a file
is cached by a browser as long as the Last-Modified value does not change. When this page is requested

267



Choate c11.tex V1 - 11/19/2007 2:43pm Page 268

Chapter 11: Wiki Performance

again, the browser will send an If-Modified-Since request header to the server. If the file has been
modified since the modification in the cache, then a new file will be sent:

HTTP/1.x 200 OK
Date: Wed, 22 Aug 2007 23:10:01 GMT
Server: Apache/1.3.33 (Darwin) PHP/5.2.0
Last-Modified: Wed, 30 May 2007 01:01:53 GMT
Etag: "655194-9f2f-465ccd01"
Accept-Ranges: bytes
Content-Length: 40751
Keep-Alive: timeout=15, max=98
Connection: Keep-Alive
Content-Type: image/png

In this example, MediaWiki has been configured to cache pages, as well as to use ETags. Because ETags
are automatic on static files, our expectation is that ETags will not be used on dynamic pages, such
as articles, as well. This is a new page that the browser has not visited before, so the request headers
are standard:

http://127.0.0.1/mysql/index.php/A_new_page

GET /mysql/index.php/A_new_page HTTP/1.1
Host: 127.0.0.1
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6)

Gecko/20070725 Firefox/2.0.0.6
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/

plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://127.0.0.1/mysql/index.php/Main_Page

When the response headers are returned, however, you see several new header tags, including Etag,
Expires, Cache-Control, in addition to the familiar Last-Modified:

HTTP/1.x 200 OK
Date: Wed, 22 Aug 2007 23:11:44 GMT
Server: Apache/1.3.33 (Darwin) PHP/5.2.0
X-Powered-By: PHP/5.2.0
Content-Language: en
Etag: W/"wikidb-profwiki_:pcache:idhash:28-0!1!0!!en!2--20070604224328"
Vary: Accept-Encoding,Cookie
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Cache-Control: private, must-revalidate, max-age=0
Last-Modified: Wed, 22 Aug 2007 23:11:18 GMT
Keep-Alive: timeout=15, max=98
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=UTF-8

The two items we are most concerned with now are the Etag and Cache-Control response headers.
Earlier, this section mentioned the Last-Modified and If-Modified-Since headers. These are examples

268



Choate c11.tex V1 - 11/19/2007 2:43pm Page 269

Chapter 11: Wiki Performance

of validators. When HTTP 1.1 was released, it contained a specification for a new kind of validator called
an ETag, which is what we see in this example:

Etag: W/"wikidb-profwiki_:pcache:idhash:28-0!1!0!!en!2--20070604224328"
Cache-Control: private, must-revalidate, max-age=0

It works like this: When the browser requests a file, it is sent back with an ETag, which is stored in the
cache along with the file. The Cache-Control header says must-revalidate, which means that it must
check the ETag stored in the cache with the new ETag that is sent. If they are the same, then the file hasn’t
changed and the complete file is transferred. If it has not changed, then HTTP returns with a ‘‘304 Not
Modified’’ response.

In the following example, the same page is requested again. The page has already been requested once,
so it is in the browser cache. Because caching has been enabled, the If-Modified-Since header, plus a
new one, If-None-Match, which you can see in the following example, references the ETag of the file that
was just received:

GET /mysql/index.php/A_new_page HTTP/1.1
Host: 127.0.0.1
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6)

Gecko/20070725 Firefox/2.0.0.6
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/

plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://127.0.0.1/mysql/index.php/Main_Page
If-Modified-Since: Wed, 22 Aug 2007 23:11:18 GMT
If-None-Match: W/"wikidb-profwiki_:pcache:idhash:28-0!1!0!!en!2--20070604224328"
Cache-Control: max-age=0

Compare the If-None-Match value in the request header with the Etag value in the previous response
header — they are both the same. This means the file hasn’t changed, so the HTTP server dutifully sends
back the appropriate HTTP response:

HTTP/1.x 304 Not Modified
Date: Wed, 22 Aug 2007 23:12:52 GMT
Server: Apache/1.3.33 (Darwin) PHP/5.2.0
Connection: Keep-Alive
Keep-Alive: timeout=15, max=93
Etag: W/"wikidb-profwiki_:pcache:idhash:28-0!1!0!!en!2--20070604224328"
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Cache-Control: private, must-revalidate, max-age=0
Vary: Accept-Encoding, Cookie

File Cache
The file cache is used only for non-logged in users. It works by caching the contents of the HTML file that
MediaWiki produces in response to a request. In order for it to work, you must set the $wgUseFileCache
variable to true in LocalSettings.php, and set the $wgShowIPinHeader variable to false. Setting the

269



Choate c11.tex V1 - 11/19/2007 2:43pm Page 270

Chapter 11: Wiki Performance

$wgFileCacheDirectory setting is optional; if it is not set, then MediaWiki will use the default value of
{$wgUploadDirectory}/cache. When you do configure the cache directory yourself, you must include a
full path to the directory, and you must ensure that the directory is writeable by the Web server:

$wgUseFileCache = true;
$wgFileCacheDirectory = "/tmp/yourcache";
// Setting $wgShowIPinHeader to false removes the
// personal tool links at the top of the page for
// anonymous users, who are identified by their
// IP address. This improves caching by showing
// all anonymous users the same page.
$wgShowIPinHeader = false;

You can also configure MediaWiki to compress the cached files in order to save bandwidth when they
are requested. If you do this, you need to disable the ob_gzhandler in LocalSettings.php, like so:

if ( $wgCommandLineMode ) {
if ( isset( $_SERVER ) && array_key_exists( ’REQUEST_METHOD’, $_SERVER ) ) {

die( "This script must be run from the command line\n" );
}
} elseif ( empty( $wgNoOutputBuffer ) ) {
## I have commented out the following line to disable it
#if( !ini_get( ’zlib.output_compression’ ) ) @ob_start( ’ob_gzhandler’ );

}
$wgUseGzip = false;

More information about the file cache can be found at http://meta.wikimedia.org/wiki/
Help:File_cache.

Memcached
Memcached is a distributed object store that you can run on any number of servers. The primary benefit
of being distributed is that it is highly scalable. If you need more caching, just add another memcached
server. You do incur some additional overhead because the cached data is retrieved through a TCP/IP
connection, but the benefit of having multiple servers, and the ability to share things such as session data
across servers, more than makes up for this deficit.

MediaWiki comes with a Memcached client. It is the Memcached client that saves objects into the store
and retrieves them using a unique key. Internally, the client knows which of the available memcached
servers a given object is stored in, so it can request it directly.

Benefits
Memcached allows you to run multiple servers. Because the Memcached client manages the delegation
of keys, it knows on which of the available Memcached servers a given object is stored. This makes it
possible to cache session data across multiple Web servers, something that is not possible with APC and
similar tools.

Installing
You can install Memcached by going to www.danga.com/memcached/download.bml, or through fink
(Macintosh) or yum (Linux). A Windows port of Memcached is available at http://jehiah.cz/

270



Choate c11.tex V1 - 11/19/2007 2:43pm Page 271

Chapter 11: Wiki Performance

projects/memcached-win32/, which is linked to from the danga.com website. I have not used this port,
however, and cannot speak to how well it works with MediaWiki.

If you are going to compile Memcached, you need to make sure that PHP is compiled with --enable-
sockets, and that you have a current copy of the libevent library (www.monkey.org/provos/libevent/).
Linux users may also want the epoll-rt patch for the Linux kernel, available from www.xmailserver
.org/linux-patches/nio-improve.html.

Configuring MediaWiki
You must tell MediaWiki what to cache, as well as how to cache it. All of this is configured
in LocalSettings.php:

/**
* Object cache settings
* See Defines.php for types
*/

$wgMainCacheType = CACHE_NONE;
$wgMessageCacheType = CACHE_ANYTHING;
$wgParserCacheType = CACHE_ANYTHING;

The cache types, defined in Defines.php, are as follows:

/**#@+
* Cache type
*/

define( ’CACHE_ANYTHING’, -1 ); // Use anything, as long as it works
define( ’CACHE_NONE’, 0 ); // Do not cache
define( ’CACHE_DB’, 1 ); // Store cache objects in the DB
define( ’CACHE_MEMCACHED’, 2 ); // MemCached, must specify servers in

// $wgMemCacheServers
define( ’CACHE_ACCEL’, 3 ); // APC, eAccelerator or Turck, whichever is

//available
define( ’CACHE_DBA’, 4 ); // Use PHP’s DBA extension to store in a DBM-style

//database
/**#@-*/

You will see a reference to $wgUseMemCached in DefaultSettings.php, but this has been deprecated, and
you should use $wgMainCacheType instead:

$wgMainCacheType = CACHE_MEMCACHED;

The following are additional configuration items for Memcached:

$wgParserCacheExpireTime = 86400;
$wgSessionsInMemcached = false;
$wgLinkCacheMemcached = false; # Not fully tested

/**
* Memcached-specific settings
* See docs/memcached.txt
*/

$wgMemCachedDebug = false; # Will be set to false in Setup.php,
if the server isn’t working

271



Choate c11.tex V1 - 11/19/2007 2:43pm Page 272

Chapter 11: Wiki Performance

$wgMemCachedServers = array( ’127.0.0.1:11000’ );
$wgMemCachedPersistent = false;

Configuring and Running Memcached
Because memcached runs as a different process from your Web server, it’s possible for the Memcached
server to go down while your Apache/PHP server is still running. You wiki will not crash if this happens,
but it will slow down considerably, even slower than it was before caching any data.

There are two ways to identify servers. The first simply lists the IP address and the port on which
Memcached will be listening:

$wgMemCachedServers = array( "127.0.0.1:11000" );

The second way passes an array with two items, the IP/port plus a number identifying how much mem-
ory to allocate for the server. These two different formats can be combined when configuring memcached
in LocalSettings.php, as in the following example (from memcached.txt in the MediaWiki distribution):

$wgMemCachedServers = array(
"127.0.0.1:11000", # one gig on this box
array("192.168.0.1:11000", 2 ) # two gigs on the other box

);

Memcached is launched from the command line. In the following example, Memcached is launched in
daemon mode, using the IP 127.0.0.1, with the port 11000 and 64 MB of memory allocated to the cache:

memcached -d -l 127.0.0.1 -p 11000 -m 64

The most commonly used options are listed in the following table.

-l Specifies the IP address from which the Memcached server can be accessed. If it is run-
ning on the same server as the Web server, then it should be 127.0.0.1, the loopback
address.

-d Runs Memcached in daemon mode.

-m Sets the maximum amount of memory to be used for object caching. The default value
is 64 megabytes.

-c max simultaneous connections

-p Specifies the default port on which the server will listen for connections. The default is
11211.

-M Memcached keeps as many objects in memory as it has available. When a new object
is added to it that would take up more memory than is available, it drops the oldest
item. This disables the automatic removal of items in the cache when no more memory
is available. Generally speaking, you should rely on the automatic removal of old items
and not set this option.

-h Shows the version of Memcached.

-v Tells Memcached to be verbose in its output.

272



Choate c11.tex V1 - 11/19/2007 2:43pm Page 273

Chapter 11: Wiki Performance

-vv Tells Memcached to be extremely verbose.

-D Sets the delimiter between prefixes and ids. The default is ":", which is what
MediaWiki uses, so don’t change it.

In addition to these, there are other, more obscure optimizations that can be made. For details, check the
man page for Memcached.

Memcached stores objects in hash tables, so each object is assigned a unique key. The Memcached client
generates the keys and uses the keys to determine the server on which the object is stored. It is helpful to
know how the client generates the key in case you want to look it up in Memcached. MediaWiki creates
the following caches when using Memcached:

❑ User Cache: The user cache stores an instance of the class User, which includes session data.

❑ key: $wgDBname:user:id:$sId

❑ Newtalk: This caches data that identifies a talk page as ‘‘new.’’

❑ key: $wgDBname:newtalk:ip:$ip

❑ LinkCache: Recall that articles are created in MediaWiki by creating a link to the article. If the
article does not yet exist, when you follow the link you are taken to the edit page so that you can
create it. A link to a page that does not exist looks different than a link to a page that does exist.
Depending on the configuration, purple links link to existing pages and red links link to pages
that have not been created. The LinkCache class keeps track of article titles, and whether the
articles exist yet, which is used to create the right kind of link when wikitext is being parsed.

❑ key: $wgDBname:lc:title:$title

❑ MediaWiki namespace: The MediaWiki namespace is used for storing system messages so that
they can be appropriately localized. If Memcached is configured to cache messages, then this key
is used.

❑ key: $wgDBname:messages

❑ Watchlist: Caches the user’s watchlist

❑ key: $wgDBname:watchlist:id:$userID

❑ IP blocks: IP blocks are lists of IP addresses that have been blocked from accessing the wiki.
Looking up IP addresses individually would use too many resources, so they can be cached.

❑ key: $wgDBname:ipblocks

Alternative PHP Cache (APC)
Like Memcached, Alternative PHP Cache (APC) caches PHP objects in memory. The primary distinction
is that Memcached is a distributed object store, whereas APC is local to the machine. This means that
if you are running a single-server wiki, then APC is probably your best choice. In that context, APC
outperforms Memcached because you make Memcached requests through TCP/IP, which is naturally
slower than accessing the APC cache.

273



Choate c11.tex V1 - 11/19/2007 2:43pm Page 274

Chapter 11: Wiki Performance

MediaWiki also supports eAccelerator and Turck MMCache, but this chapter does not cover them
in detail. While Turck MMCache is still in use, the open-source project itself is no longer actively
maintained. eAccelerator is based on Turck MMCache and is still an actively maintained project, but
recent versions have had problems working with PHP. eAccelerator version 0.9.4 doesn’t work with
PHP 5.1. Version 0.9.5 does work with 5.1, but requires a patch to work with PHP 5.2 in order to avoid
a segmentation fault. By all reports, version 0.9.5.1 appears to work fine. Because eAccelerator is finicky
about which versions of PHP it runs on, this discussion focuses on Alternative PHP Cache. Not only
is it actively maintained, but it works with a variety of versions of PHP so there does not seem to be a
compelling reason not to use APC.

More information on the other alternatives can be found here:

❑ http://eaccelerator.net/

❑ http://turck-mmcache.sourceforge.net/index_old.html

Installing APC
APC is most easily installed using PECL:

$ pecl install AP

Windows users can download PECL binaries at www.php.net/downloads.php.

APC is a PHP extension, so the PHP.ini file needs to be configured properly before MediaWiki can use
it. First, you should ensure that the extension path in PHP.ini is correct, and that APC has been installed
in the extension directory, which is determined by PHP.ini:

;;;;;;;;;;;;;;;;;;;;;;;;;
; Paths and Directories ;
;;;;;;;;;;;;;;;;;;;;;;;;;

; Directory in which the loadable extensions (modules) reside.
extension_dir = "/usr/local/php5/lib/php/extensions/no-debug-non-zts-20060613/"

Once the extensions directory is verified, you need to add the apc.so extension (or apc.dl if you are a
Windows user) to PHP.ini, as shown in the following example:

;;;;;;;;;;;;;;;;;;;;;;
; Dynamic Extensions ;
;;;;;;;;;;;;;;;;;;;;;;
;
; If you wish to have an extension loaded automatically, use the following
; syntax:
;
; extension=modulename.extension
;
; For example, on Windows:
;
; extension=msql.dll
;

274



Choate c11.tex V1 - 11/19/2007 2:43pm Page 275

Chapter 11: Wiki Performance

; ... or under UNIX:
;
; extension=msql.so
;
; Note that it should be the name of the module only; no directory information
; needs to go here. Specify the location of the extension with the
; extension_dir directive above.

extension=apc.so

Configuring MediaWiki
The following items need to be configured in LocalSettings.php. The CACHE_ACCEL global tells
MediaWiki to use either APC, eAccelerator, or MMTurck Cache, depending on which cache is
installed in PHP:

$wgMainCacheType = CACHE_ACCEL;
$wgMessageCacheType = CACHE_ ACCEL;
$wgParserCacheType = CACHE_ACCEL G;

The following value is set in terms of seconds, and determines how long the parsed output should
be cached:

$wgParserCacheExpireTime = 86400;

Monitoring APC
When you downloaded APC, the distribution should have included a file called apc.php. Copy this file
into the main directory of your MediaWiki installation and configure it. At the very least, you need to
assign a new admin password — as long as it is ‘‘password,’’ the apc.php script will not return any
information. The other configuration options are, as they should be, optional:

////////// BEGIN OF DEFAULT CONFIG AREA //////////////////////////////////////
/////////////////////

defaults(’USE_AUTHENTICATION’,1);// Use (internal) authentication - best choice if
// no other authentication is available
// If set to 0:
// There will be no further authentication. You
// will have to handle this by yourself!
// If set to 1:
// You need to change ADMIN_PASSWORD to make
// this work!

defaults(’ADMIN_USERNAME’,’apc’); // Admin Username
defaults(’ADMIN_PASSWORD’,’password’); // Admin Password - CHANGE THIS TO ENABLE!!!
//defaults(’DATE_FORMAT’, "d.m.Y H:i:s"); // German
defaults(’DATE_FORMAT’, ’Y/m/d H:i:s’); // US

defaults(’GRAPH_SIZE’,200); // Image size

Save the changes you made, and then you can use apc.php to monitor caching (see Figure 11-1). This par-
ticular configuration is fine for testing, but you should probably not have this file exposed on
a production server.

275



Choate c11.tex V1 - 11/19/2007 2:43pm Page 276

Chapter 11: Wiki Performance

Figure 11-1: View the apc.php script to monitor APC’s caching

Improving Performance
In addition to caching, there are several things wiki administrators can do to improve the overall
performance of their wikis.

Serializing Messages
Message files are located in the Languages folder of your MediaWiki distribution. According to the
MediaWiki developers, they decided that it is faster to load serialized message files from the file system
than it is to load it from APC or Memcached. Therefore, they’ve provided a way to serialize all the
message files in the serialized folder.

In order to do this, you need to have GNU make installed. Simply change directories into the serialized
folder and type the following at the command line:

make

After running this on OS X, the serialized directory took up 19.8 MB of space.

Miser Mode
If true, $wgMiserMode disables database-intensive features. This includes reading special pages marked
as expensive from the cache instead of regenerating them every time they are requested:

/** Disable database-intensive features */
$wgMiserMode = false;
$wgAllowSlowParserFunctions = false;

Figures 11-2 and 11-3 show the Special:Statistics page when marked as false and true, respectively.

276



Choate c11.tex V1 - 11/19/2007 2:43pm Page 277

Chapter 11: Wiki Performance

Figure 11-2: The Special:Statistics page when $wgMiserMode is set to
false

Figure 11-3: The Special:Statistics page when $wgMiserMode is set to
true

277



Choate c11.tex V1 - 11/19/2007 2:43pm Page 278

Chapter 11: Wiki Performance

Managing Spiders
One source of strain on any Web server is spiders. Spiders are software applications that crawl a site in
order to make copies of the content on the site, or to index it for a search engine. In many cases you will
be more than happy to have your site crawled, but there are also many spiders that you want to block
as well.

Robots Exclusion Standard
The Robots Exclusion Standard (usually just referred to as robots.txt, in reference to the file that
contains the exclusion rules) is supposed to provide Web servers a way to communicate with spiders
and indicate to them what you want indexed. For a site run by MediaWiki, it is likely that you do want
article pages indexed, but you may not want special pages indexed, or talk pages, and so on.

A good place to look for ideas and suggestions about what you want to do is http://meta.wikimedia
.org/robots.txt.

The following excerpt of Wikimedia’s robots.txt file shows you how to configure your server
appropriately. Spiders are identified by their user-agent, which is information that is passed to the
server from the HTTP request. The value for the user-agent is easily spoofed, so you cannot rely on it
entirely. However, although there are some well-known spiders that you may not want indexing your
site, you can generally rely on the user-agent identity reported.

The robots.txt file used by MediaWiki excludes some spiders because they are related to
advertising, or because they otherwise misbehave and put too much a strain on the servers. In the next
example, you will see how the robots.txt file excludes all spiders from user-agents that start with
‘‘Mediapartners-Google*’’:

# robots.txt for http://www.wikipedia.org/ and friends
#
# Please note: There are a lot of pages on this site, and there are
# some misbehaved spiders out there that go _way_ too fast. If you’re
# irresponsible, your access to the site may be blocked.
#
# advertising-related bots:
User-agent: Mediapartners-Google*
Disallow: /

#
# Sorry, wget in its recursive mode is a frequent problem.
# Please read the man page and use it properly; there is a
# --wait option you can use to set the delay between hits,
# for instance.
#
User-agent: wget
Disallow: /

# Don’t allow the wayback-maschine to index user-pages
#User-agent: ia_archiver
#Disallow: /wiki/User
#Disallow: /wiki/Benutzer

278



Choate c11.tex V1 - 11/19/2007 2:43pm Page 279

Chapter 11: Wiki Performance

Wikipedia administrators have also decided to keep all spiders from indexing dynamically
generated pages. While this isn’t necessarily always the best thing to do, the logic is that because they are
dynamically generated, the spiders’ results will not always be accurate. Add to that the fact that dynam-
ically generated pages are more expensive to produce in terms of server performance. Therefore, they
concluded they would keep them from being indexed.

# Friendly, low-speed bots are welcome viewing article pages, but not
# dynamically-generated pages please.
#
# Inktomi’s "Slurp" can read a minimum delay between hits; if your
# bot supports such a thing using the ’Crawl-delay’ or another
# instruction, please let us know.
#
User-agent: *
Disallow: /w/
Disallow: /trap/
Disallow: /wiki/Special:Random
Disallow: /wiki/Special%3ARandom
Disallow: /wiki/Special:Search
Disallow: /wiki/Special%3ASearch
Disallow: /wiki/Spesial:Search
#ar
Disallow: /wiki/%D8%AE%D8%A7%D8%B5:Search
Disallow: /wiki/%D8%AE%D8%A7%D8%B5%3ASearch
## <snip>

## *at least* 1 second please. preferably more :D
## we’re disabling this experimentally 11-09-2006
#Crawl-delay: 1

In addition to the robots.txt file, instructions for spiders can also be embedded in the metadata of a file.
The following meta tag tells the spider not to index the file:

<meta name="robots" content="noindex">

If you want the file to be indexed, then use the following:

<meta name="robots" content="index">

In addition to indexing, you can tell the spider whether to follow links on the page, and attempt to spider
those pages as well. (This is what crawling a site is: starting with one page, gathering all the links on that
page, and then retrieving all the links on each of the pages linked to, and so on.) The content attribute in
that case would be set to either follow or not follow. The index and follow values can also be combined,
as shown here:

<meta name="robots" content="index,follow">

<meta name="robots" content="noindex,follow">

<meta name="robots" content="index,nofollow">

<meta name="robots" content="noindex,nofollow">

Finally, you can use two shortcuts that enable you to either both index and follow all links, or not index
and follow links:

<meta name="robots" content="all">

<meta name="robots" content="none">

279



Choate c11.tex V1 - 11/19/2007 2:43pm Page 280

Chapter 11: Wiki Performance

In order to generate these meta tags on MediaWiki pages, you need to configure MediaWiki to do so.
You can tell MediaWiki which articles to index or not index by setting the $wgArticleRobotPolicies
with an array of article titles, as shown in the following example:

$wgArticleRobotPolicies = array( ’Main Page’ => ’noindex’ );

You can also configure the indexing policy based on namespace. The following example causes
a ‘noindex’ meta tag to be placed on all pages in the NS_TALK namespace:

$wgNamespaceRobotPolicies = array( NS_TALK => ’noindex’ );

Setting the following variable in LocalSettings.php causes all external links in wikitext to be given the
rel = "nofollow" attribute, which serves the same purpose as the metatags just described:

/**
* If true, external URL links in wiki text will be given the
* rel="nofollow" attribute as a hint to search engines that
* they should not be followed for ranking purposes as they
* are user-supplied and thus subject to spamming.
*/

$wgNoFollowLinks = true;

Setting this variable defines the namespaces that do not apply to the $wgNoFollowLinks variable:

/**
* Namespaces in which $wgNoFollowLinks doesn’t apply.
* See Language.php for a list of namespaces.
*/

$wgNoFollowNsExceptions = array();

Google Sitemaps
Google sitemaps also provide information to the spider, telling it which pages to index. However, rather
than being an exclusionary approach like robots.txt, it is an inclusionary approach. This means that the
default answer is no; and unless a page is on the sitemap, it won’t be spidered. Since Google first started
using sitemaps, Yahoo! and Microsoft have signed on, and it is becoming something of a standard. You
can read details about it at http://sitemaps.org/.

The maintenance script is called generateSitemap.php and when executed, produces the
following output:

0 ()
sitemap-wikidb-profwiki_-NS_0-0.xml.gz

1 (Talk)
sitemap-wikidb-profwiki_-NS_1-0.xml.gz

6 (Image)
sitemap-wikidb-profwiki_-NS_6-0.xml.gz

10 (Template)
sitemap-wikidb-profwiki_-NS_10-0.xml.gz

14 (Category)
sitemap-wikidb-profwiki_-NS_14-0.xml.gz

280



Choate c11.tex V1 - 11/19/2007 2:43pm Page 281

Chapter 11: Wiki Performance

The output of generateSitemap.php is six files. One of the files is a sitemap index file that lists all
the other files. It’s named sitemap-index-{database-name}.xml, where database-name is the name of your
wiki’s database:

<?xml version="1.0" encoding="UTF-8"?>

<sitemapindex xmlns="http://www.google.com/schemas/sitemap/0.84">

<sitemap>

<loc>sitemap-wikidb-profwiki_-NS_0-0.xml.gz</loc>
<lastmod>2007-08-22T20:10:21Z</lastmod>

</sitemap>

<sitemap>

<loc>sitemap-wikidb-profwiki_-NS_1-0.xml.gz</loc>
<lastmod>2007-08-22T20:10:21Z</lastmod>

</sitemap>

<sitemap>

<loc>sitemap-wikidb-profwiki_-NS_6-0.xml.gz</loc>
<lastmod>2007-08-22T20:10:21Z</lastmod>

</sitemap>

<sitemap>

<loc>sitemap-wikidb-profwiki_-NS_10-0.xml.gz</loc>

<lastmod>2007-08-22T20:10:21Z</lastmod>

</sitemap>

<sitemap>

<loc>sitemap-wikidb-profwiki_-NS_14-0.xml.gz</loc>

<lastmod>2007-08-22T20:10:21Z</lastmod>

</sitemap>

</sitemapindex>

The remaining files are gzipped by default. The following is an excerpt from one of the files that shows
the basic format of the output. One thing you should notice is that it uses localhost for the host, which
is not what we want:

<?xml version="1.0" encoding="UTF-8"?>

<urlset xmlns="http://www.google.com/schemas/sitemap/0.84">
<url>

<loc>http://localhost/mysql/index.php/ASamplePage</loc>

<lastmod>2007-07-12T19:30:33Z</lastmod>

<priority>1.0</priority>

</url>

<url>

<loc>http://localhost/mysql/index.php/A_new_page</loc>

<lastmod>2007-06-04T22:43:28Z</lastmod>

<priority>1.0</priority>

</url>

</urlset>

Because this script is run on the command line, it has no way of knowing what the proper host name will
be for spiders trying to access the wiki from elsewhere. To correct this, specify the host on the command
line like so:

php generateSitemap.php choate.info

281



Choate c11.tex V1 - 11/19/2007 2:43pm Page 282

Chapter 11: Wiki Performance

This will generate the following output:

?xml version="1.0" encoding="UTF-8"?>

<urlset xmlns="http://www.google.com/schemas/sitemap/0.84">
<url>

<loc>http://choate.info/mysql/index.php/ASamplePage</loc>

<lastmod>2007-07-12T19:30:33Z</lastmod>

<priority>1.0</priority>

</url>

<url>

<loc>http://choate.info/mysql/index.php/A_new_page</loc>
<lastmod>2007-06-04T22:43:28Z</lastmod>

<priority>1.0</priority>

</url>

</urlset>

For information about what options are available, enter the following command:

php generateSitemap.php --help

The output is as follows:

Usage: php generateSitemap.php [host] [options]
host = hostname
options:

--help show this message
--fspath The file system path to save to, e.g /tmp/sitemap/
--path The http path to use, e.g. /wiki
--compress=[yes|no] compress the sitemap files, default yes

The --fspath option specifies the directory in which the output should be saved. If it is not specified,
then it defaults to the current directory.

The --path option specifies that path portion of the URL (the part after the domain, such as /wiki).
In most cases, it can figure this out itself.

If --compress=yes, then the output will be compressed in gzip format (which also happens to be
the default).

The sitemap files should be placed in the root directory of MediaWiki in order to be indexed. You can tell
spiders where to find the sitemap by including it in robots.txt:

Sitemap: sitemap.xml

You can also submit the sitemap file directly to the individual search engines.

Maintenance Scripts
MediaWiki comes with a long list of maintenance scripts in the maintenance directory of the MediaWiki
installation. Most of them are PHP scripts that are run from the command line. There are far too many
to review all of them here, but there is one set of scripts that is important to cover: dumpBackup.php and
importDump.php, both of which can be used to make backups of your wiki.

282



Choate c11.tex V1 - 11/19/2007 2:43pm Page 283

Chapter 11: Wiki Performance

Configuration
You should first configure AdminSettings.php before running any maintenance scripts. It can be found
in the base directory of your MediaWiki installation.

<?php
/**
* This file should be copied to AdminSettings.php, and modified
* to reflect local settings. It is required for the maintenance
* scripts which run on the command line, as an extra security
* measure to allow using a separate user account with higher
* privileges to do maintenance work.
*
* Developers: Do not check AdminSettings.php into Subversion
*
* @package MediaWiki
*/

/*
* This data is used by all database maintenance scripts
* (see directory maintenance/). The SQL user MUST BE
* MANUALLY CREATED or set to an existing user with
* necessary permissions.
*
* This is not to be confused with sysop accounts for the
* wiki.
*/

$wgDBadminuser = ’wikiadmin’;
$wgDBadminpassword = ’adminpass’;
/*
* Whether to enable the profileinfo.php script.
*/

$wgEnableProfileInfo = false;

?>

Backup
While you can perform backups of data in MySQL or Postgres, just as you would any other database,
MediaWiki also provides an XML dump of the data in the database, which has the advantage of not
containing any kind of user passwords or other sensitive data that a database dump would have. It also
can be used to import into future versions of MediaWiki. While the database tables may change, the
MediaWiki developers intend to support the XML format into the future.

The schema for the XML format can be found at www.mediawiki.org/xml/export-0.3.xsd, and this is
the same format used by the Special:Export and Special:Import pages.

The dumpBackup.php script takes the following options:

This script dumps the wiki page database into an XML interchange wrapper
format for export or backup.

XML output is sent to stdout; progress reports are sent to stderr.

283



Choate c11.tex V1 - 11/19/2007 2:43pm Page 284

Chapter 11: Wiki Performance

Usage: php dumpBackup.php <action> [<options>]
Actions:

--full Dump complete history of every page.
--current Includes only the latest revision of each page.

Options:
--quiet Don’t dump status reports to stderr.
--report=n Report position and speed after every n pages processed.

(Default: 100)
--server=h Force reading from MySQL server h
--start=n Start from page_id n
--end=n Stop before page_id n (exclusive)
--skip-header Don’t output the <mediawiki> header
--skip-footer Don’t output the </mediawiki> footer
--stub Don’t perform old_text lookups; for 2-pass dump

Fancy stuff:
--plugin=<class>[:<file>] Load a dump plugin class
--output=<type>:<file> Begin a filtered output stream;

<type>s: file, gzip, bzip2, 7zip
--filter=<type>[:<options>] Add a filter on an output branch

To get a full dump of the data, enter the following command (on Unix-like systems). The data is sent to
standard output, so you can redirect standard output into a file test-xml-dump.xml:

php ./dumpBackup.php --full > test-xml-dump.xml

The root element in the XML document is <mediawiki>:

<mediawiki xmlns="http://www.mediawiki.org/xml/export-0.3/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.mediawiki.org/xml/export-0.3/
http://www.mediawiki.org/xml/export-0.3.xsd" version="0.3" xml:lang="en">

<!-- Body goes here-->

</mediawiki>

The rest of the XML output is divided into two sections. The first section, which is wrapped in the
<siteinfo> tag, contains basic information about the site, including the list of namespaces:

<siteinfo>

<sitename>ProfWikis - MySQL</sitename>

<base>http://localhost/mysql/index.php/Main_Page</base>

<generator>MediaWiki 1.9.3</generator>

<case>first-letter</case>

<namespaces>

<namespace key="-2">Media</namespace>

<namespace key="-1">Special</namespace>

<namespace key="0" />

<namespace key="1">Talk</namespace>

<namespace key="2">User</namespace>

<namespace key="3">User talk</namespace>

<namespace key="4">ProfWikis - MySQL</namespace>

284



Choate c11.tex V1 - 11/19/2007 2:43pm Page 285

Chapter 11: Wiki Performance

<namespace key="5">ProfWikis - MySQL talk</namespace>

<namespace key="6">Image</namespace>

<namespace key="7">Image talk</namespace>

<namespace key="8">MediaWiki</namespace>

<namespace key="9">MediaWiki talk</namespace>

<namespace key="10">Template</namespace>

<namespace key="11">Template talk</namespace>

<namespace key="12">Help</namespace>

<namespace key="13">Help talk</namespace>

<namespace key="14">Category</namespace>

<namespace key="15">Category talk</namespace>

</namespaces>

</siteinfo>

The rest of the document is a series of <page> tags. Each <page> tag contains all the revisions of that
page if the --full option was used, or only the most recent revision if --current was used.
The following sample shows output for a page with two revisions:

<page>

<title>Main Page</title>

<id>1</id>

<restrictions>edit=autoconfirmed:move=autoconfirmed</restrictions>
<revision>

<id>1</id>

<timestamp>2007-04-10T14:37:02Z</timestamp>
<contributor>

<ip>MediaWiki default</ip>

</contributor>

<text xml:space="preserve">&lt;big&gt;"’MediaWiki has been
successfully installed."’&lt;/big&gt;

Consult the [http://meta.wikimedia.org/wiki/Help:Contents User’s Guide] for
information on using the wiki software.

</text>

</revision>

<revision>

<id>2</id>

<timestamp>2007-04-10T14:39:17Z</timestamp>
<contributor>

<ip>192.168.1.10</ip>

</contributor>

<comment>/* Getting started */</comment>

<text xml:space="preserve">&lt;big&gt;"’MediaWiki has been
successfully installed."’&lt;/big&gt;

Consult the [http://meta.wikimedia.org/wiki/Help:Contents User’s Guide] for
information on using the wiki software.

Welcome to my new wiki, for my book [[Professional Wikis]].</text>

</revision>

</page>

285



Choate c11.tex V1 - 11/19/2007 2:43pm Page 286

Chapter 11: Wiki Performance

Import Files
Files in this XML format can be imported using the importDump.php script in the maintenance directory.
The best way to run it is to test it with the --dry-run option, as shown in the following example:

./importDump.php --dry-run test-xml-dump.xml

This will tell you whether there are any problems importing the data, but it won’t actually import the
data. Once you are sure you want to import it, you execute the script without the --dry-run option:

./importDump.php test-xml-dump.xml

Summary
In this chapter, you learned how to manage MediaWiki’s caching features, as well as a few
other techniques for optimizing your wiki’s performance. In addition, you learned how to back up and
restore your wiki. You have now learned how to install MediaWiki, edit pages in wikitext, and create
your own MediaWiki extensions.

MediaWiki is a thriving, open-source project and, as a consequence, it is always evolving. What is most
exciting about open-source software development is that the developers who use the project also have a
say in the future of the project. If this book has whetted your appetite enough, then you can use your new
skills to participate in the ongoing evolution of MediaWiki. If so, you can read about how to participate
as a developer at www.mediawiki.org/wiki/How_to_become_a_MediaWiki_hacker.

286



Choate: bindex.tex 11/20/2007 1:02am Page 287

In
de

x

Index

A
access control systems, 10
acquisition, content, 9
actions, 47, 63, 68–70, 137, 143–159. See also

specific actions
API, 230

login, 230, 237–238
creativecommons, 157–158
credits, 70, 156–157
dublincore, 157–158
edit, 69, 148–149
examples, 47, 63
Feedwatchlist, 230, 239–240
Help, 230
index.php script and, 143
info, 70, 156
list, 69
Opensearch, 230, 238–239
protect/unprotect, 154
purge, 153–154
query, 230, 240–254

lists from, 245–250
simple titles, 241
title/pageid/revids, 240

raw, 69–70
unwatch/watch, 154
view, 69, 146–148

AdminSettings.php configuration, maintenance
scripts and, 283

Alias directive, 36–37
alignment

of goals, 15–18
image, 122–125
thumbnail, 128–129

allpages list, 246–247

Alternative PHP Cache (APC), 265,
273–276

installation, 274–275
monitoring, 275–276

anonymous users, 62–63
block only, 155

Apache Lucene search engine, 165, 265
Apache Web server, 21

configuring for PHP, 26
installation, 23–25

Macintosh OS X, 24
Windows, 24–25

short URL configuration, 36–37
APC. See Alternative PHP Cache
apfilterredir, 247
apfrom, 246
API, MediaWiki, 223, 229–261

accessing, 230
actions, 230
configuration, 229–230
edit pages programmatically, 254
formats, 230–234
help, 236–237
login action, 230, 237–238
Python script and, 234–254

API.php format, 230–234
api.py, 254–261
ApiRequest class, 235
ApiRequest.doFeedWatchlist(), 239
ApiRequest.doGeneratorQuery(), 254
ApiRequest.doHelp(), 236–237
ApiRequest.doListQuery, 250–251
ApiRequest.doLogin(), 238
ApiRequest.doOpensearch(), 238–239
ApiRequest.doTitlesQuery(), 245
aplimit, 247



Choate: bindex.tex 11/20/2007 1:02am Page 288

apnamespace

apnamespace, 247

&apos, 106
apprefix, 246

article pages, 55–56
$wgArticle, 198, 199
Astrakhan, Yuri, 229

atom feeds, 239–240
authentication setup, 33, 34

authoring, content, 12
authors as readers/readers as authors, 1, 4, 7

autoconfirmed
permissions, 146

users, 65

automatically block last IP address used by this

user, 155

B
backlinks list, 249

backup/restore wikis, 283–286
basic image links, 120

Beginning CSS: Cascading Style Sheets for Web
Design, Second Edition (York), 173

Beginning PHP, Apache, MySQL Web
Development (Glass et al.), 197

Beginning Web Programming with HTML, XHTML,
and CSS (Duckett), 73

Belgian Shepherd Dog example, 55
Berners-Lee, Tim, 4, 5, 6, 8

bin/, 40
blcontinue, 249

bllimit, 249
blnamespace, 249
block anonymous users only, 155

Block User page, 154–155
blocked users list, 156

blocking users, 154–156
block-level elements, 85, 91–92

block-level HTML generation, 203
blogs, 7–8

Bomis, 3
Bonasia, J., 4

bot group, 66, 144, 223

bots, 223–224
<br clear=”all” />, 124, 125
Brand New page, editing, 78
browser cache, 266–269
bulleted lists, 94, 95, 96
bureaucrat group, 66, 144

C
cache. See also Alternative PHP Cache;

Memcached
browser, 266–269
file, 269–270
LinkCache, 273
MediaWiki

issues, 44, 265
purging, 265–266
types, 266
user, 273
watchlist, 273

CamelCase links, 85
Cascading Style Sheets (CSS), 85, 173

customizing, 190–192
site-specific, 190–191
user-specific, 191–192

files for Monobook, 190
float value, 122
Infobox template without, 184
online information, 173
text-align property, 122

categories, 7, 14, 58, 76, 165
as folksonomies, 170
links, 166
multi-faceted, 169–170
sub, 167–169
tags v., 7, 58, 76, 170
uncategorized, 171
unused, 171
wanted, 171

Category namespace, 58–59
category pages, 58–59, 165–170

creation, 165–167
sorting, 167

change monitoring, 11

288



Choate: bindex.tex 11/20/2007 1:02am Page 289

In
de

xEditPage::showEditForm:initial hook

character entity references, 105–106
Chinese text, 204
clearing elements, 124–125
CLI. See command line interface
collaboration, wiki, 1, 2, 3, 17–18
colon functions, 178. See also parser functions
colspan, 102–103
command line interface (CLI), 23
comments, wikitext, 87
community custodianship, 18
content

acquisition, 9
authoring, 12
decentralized, 4–5, 14, 18
distribution, 9–10
organization, 9, 12–14
storage, 9

content area, 138, 139
content management systems, 1, 2, 9–14

defined, 2, 9
life cycle, 9–10
wiki, 2
wiki engines, 76

content per line, 163
copyright interface message, 188
Creative Commons, 158

licenses, 158
creativecommons action, 157–158
credits action, 70, 156–157
CSS. See Cascading Style Sheets
Cunningham, Ward, 1, 2, 85

D
Danga Interactive, 264
databases

MediaWiki, configuration, 34–36
relational, 265

date/time magic words, 174–175
dead-end pages, 172
debugging tools, MediaWiki, 46–49
decentralized content, wiki, 4–5, 14, 18.

See also folksonomies

default namespaces searched, 163
default values, parser functions and, 211
DefaultSettings.php, 42, 43, 115–116
Defines.php, 42
definition lists, 94
deleting

files/images, 153
pages, 153

development environment, 22
diff, 150, 151–153
directives (magic words), 174
disambiguation pages, 57, 171
distribution, content, 9–10
docs/, 40
document ids, 70–71
document uploads, 134–135
DSO. See dynamic shared object
Dublin Core metadata, 157
Dublin Core Metadata Initiative, 157
dublincore action, 157–158
Duckett, Jon, 73
dumpBackup.php, 282, 283, 284
dynamic shared object (DSO), 21, 23

E
eAccelerate, 265
Eclipse PHP Development Tools, 22
edit action, 69, 148–149
editarticle.py, 226–227
editing

category pages, 167
redirect pages, 159
wikitext, 77–112

formatting/styles, 85–87
history, 79
minor edits, 80
previewing changes, 78–79
summary field, 79
toolbar, 111–112
watch this page, 80
WYSIWYG alternatives, 111, 112

EditPage::showEditForm:initial hook, 217–218

289



Choate: bindex.tex 11/20/2007 1:02am Page 290

#wpEditToken

#wpEditToken, 148, 149
eilimit, 249
einamespace, 249
eiredirect, 249
elements

block-level, 85
inline, 85

Emacs, 226, 227
e-mail address notification, 33, 34
emailconfirmed permissions, 146
Emailconfirmed users, 65–66
embeddedin list, 249
embedding/linking images, 118–133
emergent order, 1, 5, 8, 171. See also wiki

gardening
‘‘Enabling Customer-Centricity Using Wikis and

the Wiki Way,’’ 15
Enterprise 2.0, 4
entities, 105, 106, 107

complex table with, 109
entity tags, 267
error correction, wiki, 3
ETags, 267–269
explicit knowledge, 3
exporting/importing pages, 159
extended image syntax, 121–133
extension object, ParserFunctionsLite, 212–213
extensions, 51, 197–221
extensions/, 40
external links, 84
external search engines, 164–165

F
FastCGI, 21
feeds

atom, 239–240
RSS, 239

Feedwatchlist action, 230,
239–240

files
cache, 269–270
deleting, 153

types, 117–118
unused, 171
uploads, 113–118

documents, 134–135
enabling, 113
images, 114
PDFs, 134

findability, improving, 170
finding pages (search), 55
Fink, 24
fix common errors, 203
flat hierarchies, 57, 168
Flickr, 6, 58, 76, 170

links and, 6
float properties, 122–124
folksonomies, 6, 14, 58, 169

categories as, 170
footnotes, 109–110
formats

API.php, 230–234
JSON, 231
PHP, 233
WDDX, 232–233
XML, 231
YAML, 233–234

formatting/styles, wikitext, 85–87
frames. See thumbnails
functions. See also parser functions

colon, 178
global, 40–41
magic, 209

ParserFunctionsLite, 213–214
setup, 205, 208–209

mytaghook, 205
ParserFunctionsLite, 213

string, 178
URL, 178–179

G
galleries, image, 129–133

basic, 129–130
table, 130–133

290



Choate: bindex.tex 11/20/2007 1:02am Page 291

In
de

ximportDump.php

GD graphics library, 25
generators, 252–254
Glass, Michael K., 197
global functions, 40–41
global objects, parser functions and,

211–212
global variables, 41

prefixes
MediaWiki, 42
PHP, 42

GNU Free Documentation License, 33
GNU General Public License, 27, 33
GNU make, 25
Go button, 162
goal alignment, 15–18
Google search engine, 6, 164

network effects, 6
PageRank algorithm, 6

Google sitemaps, spiders and,
280–282

groups
*, 144
bot, 66, 144, 223
bureaucrat, 66, 144
sysop, 66, 144
user, 144

H
Harvest Cache Daemon, 264
heading levels, MediaWiki, 90
headings, wikitext, 87–90
Help action, 230
help, MediaWiki API, 236–237
Help namespace, 60–61
hierarchies

flat, 57, 168
multi-faceted, 169–170
sports wiki, 167–169

History page, 149–151
revisions on, 150–151

History tab, 79
hits per page, 163

hooks, 197–198, 217
EditPage::showEditForm:initial, 217–218
ParserBeforeStrip, 217

horizontal rule element, 91
HTML

list creation, 95, 96
rendered wikitext, viewing, 147–148
on wiki pages, 105–109
wikitext as shorthand, 73
wikitext converted to, 87

hypertext, 5

I
iconv, 26
IDEs. See Integrated Development Environments
ids, document, 70–71
IIS. See Internet Information Server
illimit, 250
ilnamespace, 250
image(s)

alignment, 122–125
deleting, 153
display width, 122
extended image syntax, 121–133
galleries, 129–133

basic, 129–130
table, 130–133

linking/embedding, 118–133
as links, 121
specific, for thumbnails, 127–128
uncategorized, 171
uploads, 114

image description page, 115–117
linking to, 121
user preferences, 115–117

image links, basic, 120
Image namespace, 59, 119–120
imagelinks list, 250
ImageMagick, 45
images/, 40
implicit group, 65
importDump.php, 282, 286

291



Choate: bindex.tex 11/20/2007 1:02am Page 292

importing/exporting pages

importing/exporting pages, 159
improving findability, 170
includes/, 40
index.php script, 40, 41

actions and, 143

info action, 70, 156
Infobox template, 183–184

on Wikipedia, 183

without CSS, 184

information about page magic words,
175–176

information architecture, 9, 160
wiki, 161–172

inline elements, 85
Integrated Development Environments (IDEs), 75

PHP, 22

interface messages, 185–188
copyright, 188

Sidebar, 185–187

Sitenotice, 187

internal version tracking, Word’s, 76
Internet Information Server (IIS), 21, 25
interwiki links, 85
IP blocks, 273

J
JavaScript customization, 190–192

site specific, 190–191

user specific, 191–192

JSON format, 231

K
knowledge

explicit, 3

management, 3

tacit, 3

L
language localization, 139
languages/, 40

ledir, 248
leend, 248
lelimit, 248
lestart, 247
letitle, 248
letype, 247
leuser, 248
libraries, PHP, 26
licenses, Creative Commons, 158
line breaks, 91
lines per hit, 163
lines, breaks, wikitext, 91
link(s), 74

basic image, 120

CamelCase, 85

category, 166

external, 84

Flickr and, 6

to image description page, 121

images as, 121

internal wiki, 80–83

interwiki, 85

Media namespace, 120–121

with parser functions, 181

piped, 81–82

put back in, parsing process and, 203

with variables, 181

LinkCache, 273
linked structure, wiki, 5, 74
linking/embedding images, 118–133
Linus Principle, 3
Linux, 3
lists, 94–98. See also specific lists

blocked users, 156

bulleted, 94, 95, 96

creation

HTML method, 95, 96

wikitext method, 95

definition, 94, 95, 96

nested, 96

mixed, 97–98

ordered, 94, 95, 96

292



Choate: bindex.tex 11/20/2007 1:02am Page 293

In
de

xmetadata

lists (continued)
from queries, 245–250
in tables, 104–105
unordered, 94, 95, 96

Liyanage, Marc, 24
load balancing, 264
Local.Settings.php, 35–36, 42–46
logevents list, 247–248
Login action, API, 230, 237–238
logo, wiki, 188–189
long pages, 172
Lucene search engine, 165, 265
Lucene.NET, 165

M
Macintosh OS X

Apache on, 24
magic function, 209

ParserFunctionsLite, 213–214
magic words, 135, 173–181

date/time, 174–175
directives, 174
information about page, 175–176
revisions, 177
statistics, 177–178
variables, 174–176

Main page, editing, 77
maintenance/, 40
maintenance scripts, 282–286

AdminSettings.php configuration, 283
Majchrzak, Ann, 15
Manual of Style, Wikipedia, 170
math/, 40
McAffee, Andrew, 4
Media namespace, 62, 120–121

links, 120–121
MediaWiki, 1, 8

API, 223, 229–261
architecture, 41
cache, 44, 265. See also cache
code organization, 40–41
configuration

APC and, 275

Memcached and, 271–273

configuration settings, 41–42

copied to Apache, 30

customizing, 41–51

database configuration, 34–36

debugging tools, 46–49

directory structure, 30

download, 29

global variables, prefix for, 42

heading levels, 90

installation, 21–38

Apache, 23–25

authentication setup, 33, 34

e-mail address notification, 33, 34

PHP, 25–26

prerequisites, 22–23

steps, 29–36

through Web, 31–36

wiki front page after, 36

installation script

configuration section, 32–33

execution results, 32

start page, 31

namespace, 61, 273

version tracking, 283

Memcached, 44, 264, 270–273
installation, 270–271

MediaWiki configuration, 271–273

meme trackers, 8
messages

interface, 185–188

copyright, 188

Sidebar, 185–187

Sitenotice, 187

parser functions with, 212–217

serializing, 276

system, 185

ParserFunctionsLite, 215

metadata, 159
Dublin Core, 157

page, 156–158

293



Choate: bindex.tex 11/20/2007 1:02am Page 294

Microsoft Word

Microsoft Word, 6, 7, 12
internal version tracking, 76

network effects, 6

minor edits, 80
$wgMiserMode, 276–277
modifying/editing pages, 148–149
Mod_Rewrite, 37
monitoring user behavior, 19
Monobook skin, 188, 189

CSS files, 190

output, 192–195

moving/renaming pages, 153
multi-byte strings, 26
multi-faceted categories, 169–170
multi-faceted hierarchies, 169–170
My Contributions, 65
My Preferences, 64–65
My Talk, 65
My Watchlist, 65
MySQL, 21

page table, 140–141

Postgres v., 27

mytaghook, 205
complete extension,

206–208

creation, 205–206

render function, 205–206

setup function, 205

N
named parameters, 182–184
namespaces, 57–62

Category, 58–59

default namespaces searched,

163

Help, 60–61

Image, 59

Media, 62

MediaWiki, 61, 273

Project, 60

Special, 61–62

Talk, 60

Template, 61

User, 60

navigation area, 138, 139

nested lists, 96
mixed, 97–98

network effects, 5–7
Google, 6

Microsoft Word, 6

Web, 5

newtalk, 273

<noinclude> tags, 181
<nowiki>, 93, 94, 173. See also magic words

parsing process

insertion, 204

removal, 200–201

ns parser function, 180

Nupedia, 3, 7

O
Opensearch action, 230, 238–239
open-source software movement, 2–3

proprietary technology v., 5–6, 8

ordered lists, 94, 95, 96

O’Reilly, Tim, 4
organization

content, 9, 12–14

wiki, 161–172

$wgOut, 198, 199

P
page table, MySQL, 140–141

PageRank algorithm, Google, 6
pages, 137–138. See also actions; wiki pages;

specific pages
article, 55–56

Block User, 154–155

Brand New

editing, 78

category, 58–59, 165–170

components, 138–139

dead-end, 172

294



Choate: bindex.tex 11/20/2007 1:02am Page 295

In
de

xpermissions

pages (continued)
deleting, 153
disambiguation, 57, 171
editing/modifying, 148–149
finding, 55
History, 149–151
image description, 115–117
importing/exporting, 159
long, 172
Main

editing, 77
metadata, 156–158
moving/renaming, 153
patrolled, 154
protecting, 154–156
raw, 47
redirect, 46, 57, 159

editing, 159
synonyms and, 170

request process, 198–204,
263–264

short, 172
special, 219–221
Special:Disambiguations, 171
Special:Export, 159
Special:Imagelist, 114
Special:Import, 159
Special:Mypage, 192
Special:Statistics, 277
Special:Upload, 114
Template:Test, 181
uncategorized, 171
viewing, 146–148
wanted, 172
wiki gardening, 171–172

parameters, 181–184
named, 182–184
prop, 241–242
rvdir, 242
rvend, 242
rvlimit, 242
rvstartid, 242
with templates, 181–184

parser functions, 121, 178–181
creation, 208
default values and, 211
global objects and, 211–212
links with, 181
with messages, 212–217
ns, 180
return values, 211

ParserBeforeStrip hook, 217
ParserFunctionsLite, 212–217

complete extension, 215–217
extension object, 212–213
.i18.php, 214–215
implementation steps, 212
magic function, 213–214
setup function, 213
system messages, 215
translations, 214–215

$wgParser, 198, 199
parsing process, 198–204

block-level HTML generation, 203
fix common errors, 203
links put back in, 203
<nowiki>

insertion, 204
removal, 200–201

partial wikitext generation, 201–202
reinsertion, 202–203
remove text, 200–201
starts with raw wikitext, 200
Tidy, 204

participatory quality, wiki, 4
patrolled pages, 154
PDF file uploads, 134
performance, wiki, 263–286

factors, 263–264
$wgMiserMode, 276–277
serializing messages, 276

permissions, 143–146
autoconfirmed, 146
changing, 66–68, 144
emailconfirmed, 146
PHP array, 144–145

295



Choate: bindex.tex 11/20/2007 1:02am Page 296

PHP

PHP, 21
Apache configuration for, 26

array, permissions and, 144–145

code execution, 198

compiling, 25–26

format, 233

global variables, prefix for, 42

IDEs, 22

installation, 25–26

libraries, 26

phpMyAdmin, 22
phpPgAdmin, 22
piped links, 81–82
plpgsql, 28
Portland Pattern Repository, 2, 85
portlets, 192
Postgres, 21

MySQL v., 27

<pre>, 93, 94
Preferences, 64–65
preferences/settings, skin, 189–190
preformatted wikitext, 92–94
prevent account creation, 155
previewing changes, 78–79
$wgProfileLimit, 49
profiling, 49
profwiki_family.py, 224–225
project management tool, 76
Project namespace, 60
prop parameter, 241–242
Property: info, 241
Property: revisions, 241–242
proprietary technology v. open standards,

5–6, 8
protecting pages, 154–156
protect/unprotect actions, 154
purge action, 153–154
Python programming language, 223
Python script, 234

MediaWiki API and, 234–254

pywikipedia.py, 224–229
configuration, 224–225

Q
query action, 230, 240–254

lists from, 245–250
simple titles, 241
title/pageid/revids, 240

QuickTemplate class, 188, 195

R
raw action, 69–70
raw pages, 47
raw wikitext, parsing process and, 200
rcdir, 249
rcend, 248
rclimit, 249
rcnamespace, 249
rcprop, 249
rcshow, 249
rcstart, 248
RDF. See Resource Description Framework
readers as authors/authors as readers, 1, 4, 7
read/write web, 12
recentchanges list, 248–249
redirect pages, 46, 57, 159

editing, 159
synonyms and, 170

<ref>, 110, 173. See also magic words
<references>, 110
registered users, 64–65
registration process, 63–64

password length, 64
real names, 63

relational databases, 265
removing text, parsing process and, 200–201
renaming/moving pages, 153
render function, 205–206, 209

mytaghook, 205–206
request process, page, 198–204, 263–264
Resource Description Framework (RDF), 157
response headers, 266
restore/backup wikis, 283–286
return values, parser functions and, 211

296



Choate: bindex.tex 11/20/2007 1:02am Page 297

In
de

xSubversion

revert, 152, 153
revision table, 141–142
revisions, 138, 139–143

on History page, 150–151
magic words, 177

RewriteRule directive, 37
Robots Exclusion Standard, 278–280
rollback, 152, 153
rowspan, 102–103
RSS feeds, 239
ruby text, 109
rules

Wikipedia, 18–19
wikis, 15–19

rvdir parameter, 242
rvend parameter, 242
rvlimit parameter, 242
rvstartid parameter, 242

S
Sanger, Larry, 3
Sanitizer.php, 106–109
search, 162–163. see also finding pages

button, 162
options, 164
preferences, 163

search engines, 161
Apache Lucene, 165, 265
creation, 6
external, 164–165
Google, 6, 164

serializing messages, 276
settings/preferences, skin, 189–190
setup function, 205, 208–209

mytaghook, 205
ParserFunctionsLite, 213

Setup.php, 42
short pages, 172
short URL configuration, 36–37
Show Preview button, 78
Show Table of Contents, 90
Sidebar interface message, 185–187

signatures, 110–111
site navigation, 161–162
Sitenotice interface message, 187
skins, 85, 138–139, 188–196

creation, 195–196

CSS/JavaScript customization, 190–192

Monobook, 188, 189

CSS files, 190

output, 192–195

settings/preferences, 189–190

skins/, 40
SkinTemplate class, 188, 195
social media, 4
sorting category pages, 167
SourceForge, 24, 28, 29
spam control, 11–12
Special:Disambiguations page, 171
Special:Export page, 159
Special:Imagelist page, 114
Special:Import page, 159
Special:Mypage, 192
Special:Statistics page, 277
Special:Upload page, 114
Special namespace, 61–62
special pages, 219–221
SpecialPageExample_body.php, 219–220
SpecialPageExample.i18n.php, 221
SpecialPageExample.php, 219
spellcheck.py, 227–229
spider management, 278–282

Google sitemaps and, 280–282

sports wiki hierarchy, 167–169
Squid, 264
Starling, Tim, 212
StartProfiler.php, 49
statistics (magic words), 177–178
storage, content, 9
string functions, 178
styles/formatting, wikitext, 85–87
subcategories, 167–169. See also categories
substitution, template, 185
Subversion, 29, 109, 140

297



Choate: bindex.tex 11/20/2007 1:02am Page 298

summary field

summary field, 79
superuser checkbox, 23, 27, 34, 35
synonyms, redirect pages and, 170
syntax highlighting, 75
sysop group, 66, 144
system messages, 185

ParserFunctionsLite, 215

T
table of contents, 87. See also headings, wikitext
tables, 99–105

attributes, 100–102

basic, 99–100

colspan/rowspan, 102–103

complex, with entities, 109

image galleries, 130–133

lists in, 104–105

page, 140–141

revision, 141–142

text, 142–143

tacit knowledge, 3
tags, 7, 14, 170. See also categories

categories v., 7, 58, 76, 170

entity, 267

ETags, 267–269

<noinclude>, 181

Talk namespace, 60
taxonomy, 6, 13–14. See also folksonomies
template(s), 121, 181–185

Infobox, 183–184

parameters with, 181–184

substitution, 185

Template namespace, 61
Template: Test page, 181
text removal, parsing process and, 200–201
text table, 142–143
This Is a Minor Edit checkbox, 80
thumbnails

alignment, 128–129

and frames, 125–127

specific images for, 127–128

Tidy, 204
time/date magic words, 174–175
titles, wiki page, 52–54, 170

customization, 54

rules, 52–53

suggestions, 53–54

$wgTitle, 41, 52, 198, 199
Tkinter editing window, 226
toolbar, 111–112
Torvalds, Linus, 3
transclusion, 181
translations, ParserFunctionsLite, 214–215
transparency, wiki, 8, 16, 19
tsearch2, 28, 29
Turck MMCache, 265

U
ucdir, 250
ucend, 250
uclimit, 250
ucstart, 250
ucuser, 250
uncategorized

files, 171

images, 171

pages, 171

undo, 152, 153
unordered lists, 94, 95, 96
unprotect/protect actions, 154
unused categories, 171
unused files, 171
unwatch/watch actions, 154
URL functions, 178–179
urllib2 library, 234
user(s)

anonymous, 62–63

Autoconfirmed, 65

behavior, monitoring of, 19

blocking, 154–156

Emailconfirmed, 65–66

registered, 64–65

298



Choate: bindex.tex 11/20/2007 1:02am Page 299

In
de

xwiki(s)

user(s) (continued)
registration, 63–64

password length, 64

real names, 63

roles, 62

user cache, 273
user group, 144
User namespace, 60
user preferences, image description page,

115–117
user rights management, 66
user-config.py, 225
usercontribs list, 250
$wgUser, 198, 199

V
validators, 267
vandalism, wiki, 3, 16, 19, 154
variables (magic words), 174–176

links with, 181

variants, 138
version control, 11, 139–143
version tracking

internal, Word’s, 76

MediaWiki, 283

Subversion, 29, 109, 140

view action, 69, 146–148
viewing pages, 146–148

specific versions, 147

wikitext

HTML rendered, 147–148

raw, 147

W
Wagner, Christian, 15
Wales, Jimmy, 3
WAMP, 25
wanted categories, 171
wanted pages, 172
Watch This Page checkbox, 80

watchlist, 248
cache, 273
Feedwatchlist action, 230, 239–240
My, 65

watch/unwatch actions, 154
WDDX (Web Distributed Data eXchange) format,

232–233
Weaving the Web (Berners-Lee), 5
Web

1.0, 8
2.0, 4, 8
network effects, 5
writing for, 73–74

Web Distributed Data eXchange format. See
WDDX format

websites, 2
WebStart.php script, 41, 198
wfDebug, 48
wfDebugLog, 48
what you see is what you get. See WYSIWYG
wiki(s)

attributes, 4–5
backup/restore, 283–286
collaboration, 1, 2, 3, 17–18
content, 76
content management system, 2
decentralized content, 4–5, 14, 18
defined, 1
error correction, 3
front page, after MediaWiki installation, 36
history, 2–3
information architecture, 161–172
linked structure, 5, 74. See also links
logo, 188–189
meaning, 2
online information, 20
operation, 14–15

rules, 15–19
organization, 161–172
participatory quality, 4
performance, 263–286
transparency, 8, 16, 19
vandalism, 3, 16, 19, 154

299



Choate: bindex.tex 11/20/2007 1:02am Page 300

wiki engines. See also MediaWiki

wiki engines. See also MediaWiki
content management system, 76
defined, 1

wiki gardening, 171–172
wiki (internal) links, 80–83. See also links

display examples, 83
special cases, 82–83

wiki pages, 52–57
HTML on, 105–109
links, 52
titles, 52–54, 170

customization, 54
rules, 52–53
suggestions, 53–54

types, 54–57
URLs and, 52

‘‘Wiki Wiki’’ Chance RT-52 shuttle bus, 2
wikidb, 34, 35
Wikipedia, 1, 3

architecture, 264–265
categories, 7
extensions, 51
Infobox template on, 183
Manual of Style, 170
page types, 55–57
rules, 18–19

wikipedia.py, 226
wikitext, 12, 71, 73

benefits, 75
comments, 87
converted to HTML, 87
editing, 77–112

Emacs, 226, 227
formatting, 85–87
headings, 87–90
limitations, 75
lines/breaks, 91
list creation, 95
partial generation, parsing process and,

201–202

preformatted, 92–94
raw, parsing process and, 200
as shorthand HTML, 73
styles, 85–87
table syntax, 130
viewing

HTML rendered, 147–148
raw, 147

WYSIWYG v., 74–76
The Wiki Way (Cunningham), 2
wikitorial, 15–16
wikiuser, 27, 28, 29

renaming, 35
WikiWikiWeb, 1, 2
Windows, Apache on, 24–25
wlallrev, 248
wldir, 248
wlend, 248
wllimit, 248
wlnamespace, 248
wlprop, 248
wlstart, 248
Word. See Microsoft Word
workflow policies, 10
World Wide Web. See Web
writing for Web, 73–74
WYSIWYG (what you see is what you get), 12

editing alternatives, 111, 112
limitations, 74
wikitext v., 74–76

X
XAMPP, 24
XML format, 231

Y
YAML format, 233–234
York, Richard, 173

300



Take your library 
wherever you go.
Now you can access more than 200 complete Wrox books 
online, wherever you happen to be! Every diagram, description, 
screen capture, and code sample is available with your 
subscription to the Wrox Reference Library. For answers when 
and where you need them, go to wrox.books24x7.com and 
subscribe today!

Programmer to ProgrammerTM

• ASP.NET 
• C#/C++ 
• Database 
• General  
• Java
• Mac
• Microsoft Office 

• .NET 
• Open Source 
• PHP/MySQL 
• SQL Server 
• Visual Basic 
• Web
• XML 

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd   1wrox_24x7_BOB_ad_final.indd   314 9/8/2007   4:26:08 PM9/8/2007   4:26:08 PM


	Professional Wikis
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who Should Read This Book
	How This Book Is Organized
	Where to Find More Information
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Wikis at Work
	Wiki History
	Web Content Management Systems
	When to Wiki
	Summary

	Chapter 2: Installing MediaWiki
	Development Environment
	Installing the Prerequisites
	Installing MediaWiki
	Configuring Short URLs
	Summary

	Chapter 3: Getting Started with MediaWiki
	The MediaWiki Application
	Fresh Wiki
	Wiki Pages
	Namespaces
	User Actions
	Actions
	Summary

	Chapter 4: Writing and Editing Content
	Writing for the Web
	Writing and Editing
	Creating Links
	Formatting and Styles
	Headings
	Block-Level Elements
	Lists
	Tables
	HTML on Wiki Pages
	Editing Alternatives
	Summary

	Chapter 5: Images and Files
	File Uploads
	Image Linking and Embedding
	Uploading Documents
	Summary

	Chapter 6: Page Actions and Version Control
	How Pages Work
	Actions
	Redirects
	Special Pages
	Summary

	Chapter 7: Information Architecture: Organizing Your Wiki
	How Users Find Information
	Site Navigation
	Search
	Category Pages
	Improving Findability
	Wiki Gardening
	Summary

	Chapter 8: Magic Words, Templates, and Skins
	Magic Words
	Templates
	User Interface
	Summary

	Chapter 9: Extensions
	MediaWiki Hooks
	XML Tag Extensions
	Parser Functions
	Parser Functions with Messages
	Hook Extensions
	Special Pages
	Summary

	Chapter 10: The MediaWiki API
	Bots: pywikipedia.py
	API.php
	Summary

	Chapter 11: Wiki Performance
	Wikipedia Architecture
	Caching
	Improving Performance
	Maintenance Scripts
	Summary

	Index




